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Abstract

The advent of modern vehicles has seen a paradigm shift from purely mechanical

systems to highly sophisticated entities, underpinned by advanced Electronic Con-

trol Units (ECUs) and intricate In-Vehicle Networks (IVN). These advancements

facilitate a host of new functionalities, including remote control and autonomous

driving, yet concurrently raise significant security and safety concerns. This the-

sis endeavors to tackle these issues, focusing on enhancing the security of modern

vehicular systems and ensuring the safety of autonomous driving mechanisms.

Revisiting Automotive Attack Surfaces. The complexity of modern vehi-

cles, characterized by their extensive external attack surfaces and complex inter-

nal IVN topology, poses a substantial challenge to cybersecurity. Despite efforts

by existing standards such as WP29 R155e and ISO 21434 to provide a baseline,

their effectiveness against evolving threats remains questionable. Through an in-

depth interview with 15 industry experts, we uncovered significant limitations in

current security practices and regulatory frameworks. We propose CarVal, a novel

datalog-based methodology that leverages an enhanced threat database to infer

multi-stage attack paths, assess risks more efficiently in IVNs, and uncover new

attack surfaces by analyzing five real-world vehicles. This approach not only iden-

tifies the inadequacies in existing regulations but also introduces a more effective
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mechanism for threat analysis and risk assessment in automotive systems.

EnhancingAutonomousDriving Safety. From the autonomous driving stand-

point, we focus on the perception and control modules. Our first investigation re-

veals vulnerabilities in the lane detection module of a real vehicle, highlighting its

susceptibility to misdirection throughminimal, strategically placed roadmarkings.

We developed a two-stage approach to automatically generate these markings,

significantly impacting steering decisions without detection by human drivers, as

demonstrated through experiments on a real vehicle equipped with Autonomous

Driving Systems (ADS). Concurrently, we turn our attention to the control mod-

ule of ADS, where we pinpoint a critical oversight in existing safety research. By

proposing new metrics and enhancing fuzzing methodologies, we conducted com-

prehensive evaluations on Apollo’s Model Predictive Controller (MPC). The find-

ings unearthed significant defects, underscoring the inability of Apollo’s controller

to perform basic maneuvers and identifying 14 new bugs, subsequently acknowl-

edged and addressed by the development team. This dual-focused inquiry not only

sheds light on previously overlooked vulnerabilities but also sets the groundwork

for more robust autonomous driving systems.

In conclusion, this thesis identifies critical security and safety vulnerabilities

in modern vehicles and autonomous driving systems, and proposes innovative

methodologies for their mitigation. Through the application of CarVal, we demon-

strate the potential for automated threat analysis and risk assessment in improving

automotive cybersecurity. Furthermore, our investigations into the lane detection

and control modules of ADS highlight the need for robust testing mechanisms to

uncover and address subtle yet significant vulnerabilities. Looking forward, the

ongoing evolution of vehicle technologies and attack vectors necessitates contin-
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uous refinement of security and safety measures.

Keywords: Cyber Physical System, Vehicular Security, Autonomous Driving

Safety
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Chapter 1

Introduction

1.1 Automotive Attack Surfaces

Recent advancements in automotive technology have led to more complex vehi-

cles, both in terms of vulnerability to external attacks and the intricacy of their

internal networks, known as the in-vehicle network (IVN). As manufacturers inte-

grate increasingly sophisticated functionalities into vehicles, such as remote con-

trols and Over-The-Air (OTA) updates, the potential for cyber-attacks has ex-

panded, surpassing that of earlier models with less connectivity [68, 21]. Fur-

thermore, the IVN itself is becoming more complex. The quantity of Electronic

Control Units (ECUs) has surged to accommodate new features, such as Advanced

Driver-Assistance Systems (ADAS), while the IVN’s structure has evolved to sup-

port more efficient data exchange within the vehicle, including newer architectures

like the gateway-segmented or zonal designs [66, 53, 7]. These developments

mean that contemporary vehicles bear little resemblance to those in past studies

[68, 21], presenting ongoing challenges in securing them against cyber threats.
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Chapter 1. Introduction

Facing these challenges, regulatory agencies have implemented various stan-

dards and guidelines, such as WP29 R155e [140] and ISO 21434 [58], aiming to

set a cybersecurity baseline for the automotive sector. These initiatives seek to

establish a regulatory framework that ensures the security and safety of automo-

tive technologies. Yet, it is uncertain if these regulatory measures provide a robust

enough foundation to counteract the dynamic cybersecurity risks confronting to-

day’s vehicles.

1.2 Attacks on ADS Perception

Autonomous vehicles (AVs) have seen significant advancements, relying on a va-

riety of sensors andmachine learning algorithms to perceive and interpret their sur-

roundings, thereby performing numerous tasks autonomously. Lane detection is

crucial among these tasks, as its accuracy directly influences the vehicle’s steering

decisions. Consequently, compromising the lane detection system can have dire

repercussions. For instance, if adversaries manage to deceive the system into rec-

ognizing false road markings as legitimate lanes, the vehicle could be directed into

opposing traffic, as illustrated in Fig.1.1. Although recent research has shown that

it’s possible to manipulate the camera-based perception systems of autonomous

vehicles [155, 112, 87], these studies face significant limitations. Firstly, many

rely on white-box analysis, presupposing complete access to the vehicle’s percep-

tion model [155, 112], a challenging scenario with real-world vehicles. Secondly,

experiments conducted directly on actual vehicles are scarce. To date, only Nassi

et al. have successfully demonstrated a phantom attack on a Tesla’s camera-based

system [87], which, however, is only effective in low-light conditions and could

2



1.3 Testing on ADS Safety

Physical	perturbations

Correct	driving	direction

Misguided	direction

Figure 1.1: Malicious pertubations can mislead the autonomous vehicle into the
reverse traffic lane.

be easily detected by alert drivers.

1.3 Testing on ADS Safety

The field of autonomous driving has seen significant advancements, with increas-

ing research focus on its safety aspects. A significant portion of this research

targets the perception module, exploring how external disturbances can mislead

sensors like cameras [62, 88, 111, 18, 49, 13] and LiDAR [18, 49, 17, 157]. Addi-

tionally, there is considerable interest in the planning module, focusing on identi-

fying scenarios that may cause the autonomous vehicle to make incorrect planning

decisions, such as initiating a collision with a non-player character (NPC) vehicle

[73, 67, 131, 133, 143, 156, 54, 116]. Yet, the control module, vital for the vehi-

cle’s overall operation and safety, has received less attention in research.

In leading autonomous driving system (ADS) designs [2, 8, 95], the control

module follows the planning module, which devises a planned trajectory for the

vehicle’s short-term path. The controlmodule then calculates the necessary control

3



Chapter 1. Introduction

Actual Trajectory: 

Planned Trajectory: 
Initial Position 

Figure 1.2: Planning-control inconsistency: Actual trajectory can be deviated
from planned trajectory due to the imperfection of the control module.

signals, including the acceleration and steering adjustments needed to follow this

trajectory. Previous scenario-based testing approaches [73, 131, 133, 143, 156,

54] often operate under the assumption of a perfect control module, which flaw-

lessly executes the planned movements. This assumption, however, overlooks the

practical limitations and imperfections inherent in the control module, including

the balance between precision and operational smoothness. As depicted in Fig.1.2,

the planning module might suggest a trajectory Tp, but due to potential control in-

accuracies, such as over-steering, the vehicle’s actual path Ta might deviate from

Tp. This gap and the complexities surrounding the control module have not been

fully addressed in existing research.

1.4 Our Work

1.4.1 Outline

This thesis is composed of three works, collectively enhancing the security of

connected vehicles (Work 1) and the safety of ADS (Works 2 and 3), as shown

in Fig.1.3. Specifically, Work 1 aims to enhance the security of connected ve-

hicles. We first conducted a large-scale interview study with experts working in

4
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Enhancing Connected Vehicle Security

Perception Planning Control

ADS Workflow

Interview Study

More Comprehensive
Threat Database

Automatic TARA
Approach

Attack Chains on
Real Vehicles

Insights on Cybersecurity
Regulations & Standards

Work.1: Interview Study & Automatic TARA

Enhancing ADS Safety

Work.2: Novel Attack on ADS Perception

Novel Attack on
ADS Lane

Detection Module

Deceiving Tesla
Autopilot in Real

World

New Metrics for
Evaluating ADS

Controller

Systematic
Testing on Apollo

in Simulation

Practical Bugs
Identified Assisted

by LLM

Work.3: Novel Testing & Bug Finding in ADS Control

Figure 1.3: Thesis Outline: This thesis is composed of three works, collectively
enhancing the security of connected vehicles (Work 1) and the safety of ADS
(Works 2 and 3).

automotive cybersecurity from the industry, gathering insights on how to improve

current regulations and standards, as well as constructing a more comprehensive

threat database with data collected from the interviews. As for Works 2 and 3,

they focus on enhancing the safety of the ADS system. In Work 2, with a focus

on the perception module, we present a novel attack approach to deceive the lane

detection module in the perception of the ADS workflow and demonstrate the ef-

fectiveness of our attack on the Tesla Autopilot system. In Work 3, we focus on

the control module of the ADS. We present new metrics for quantitatively eval-

uating the performance of the ADS controller, conduct systematic testing on the

state-of-the-art open-source ADS - Apollo, and identify practical and new bugs in

its codebase with the help of Large Language Models (LLMs).
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1.4.2 Work.1: Improving Regulations and Automotive TARA

We conducted a comprehensive semi-structured interview study involving 15 ex-

perts in automotive cybersecurity, aiming to understand their views on cybersecu-

rity regulations. From these interviews, we derived 20 significant insights, cover-

ing the challenges within the automotive security sector and the shortcomings and

suggestions for current regulations. Our analysis led to the identification of two

primary limitations. First, we observed that the threat scenarios outlined by exist-

ing regulations are too narrow and fail to provide adequate guidance. Second, we

noted that the current standard [58] only offers a high-level framework for Threat

Analysis and Risk Assessment (TARA), with the practical application of TARA

in the field being hampered by the absence of automated tools. Based on these

insights, we embarked on the following two contributions to address the identified

deficiencies:

An enhanced automotive threat database. To overcome the deficiencies of

the current threat database, we developed amore comprehensive and detailed auto-

motive threat database based on our interview findings. This database is structured

hierarchically, consisting of 7 themes, 28 codes, and 119 specific threat descrip-

tions. Additionally, we explored the connections between these threats and intro-

duced a Knowledge Graph (KG) for a more integrated database representation.

An automated tool for TARA. To improve the efficiency of TARA, we de-

veloped CarVal, a pioneering Datalog-based system for automating the analysis of

attack paths in IVNs and the calculation of risk levels. CarVal efficiently identifies

multi-stage attack paths in complex IVNs and produces logical paths for further

analysis, such as security assessments. Applying CarVal to five actual vehicles,
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wemapped out realistic attack scenarios. Following these scenarios, we conducted

in-depth security evaluations on five vehicles, exploiting various vulnerabilities

within the gateway-segmented IVN architecture. Notably, we discovered new po-

tential attack vectors, including vulnerabilities in the In-Vehicle Infotainment (IVI)

browser, the official mobile application, the backend server, and IVI-based mal-

ware.

1.4.3 Work.2: AttackingAutonomousDriving PerceptionMod-

ule

We embark on the first study examining the safety of the lane detection modules

in actual vehicles. Using the Tesla Autopilot system [125] as a case study, we

demonstrate that it is indeed possible to deceive the lane detection module with

strategically placed physical disruptions, leading to dangerous outcomes like col-

lisions with curbs or veering into oncoming traffic. Interestingly, the susceptibility

of the system stems not from a deficiency in its deep learning algorithm for lane

detection but from its over-sensitivity, where even subtle stickers on the road can

bemisinterpreted as valid lanes, thus misleading the vehicle. Investigating the lane

detection module within a real vehicle presents several challenges. Firstly, due to

the proprietary nature of the vehicle’s systems, gaining access to and understand-

ing the operation of the lane detection system, especially the deep learning algo-

rithms running on the GPU, is difficult. Secondly, identifying the most effective

disturbances that can fool the lane detection system without attracting the driver’s

attention is a complex task. Thirdly, devising a practical method to implement

these disturbances in the real world, such as adding inconspicuous road markings,

7
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poses its own set of challenges. A straightforward method of trial-and-error with

ground stickers to misguide the vehicle is highly laborious and prone to mistakes.

We introduce a novel two-phase method to autonomously identify the road

markings required to compromise the lane detection module. Initially, we reverse-

engineer the firmware of Tesla Autopilot to understand the inputs and outputs of

its lane detection module, specifically the camera images and the processed lane

images. Armed with this information, we employ black-box attacks against the

lane detection module by applying crafted disturbances to the camera image and

observing the manipulated lane image. We develop metrics to assess the distur-

bance’s visibility and the detectability of the manipulated lane, setting up an opti-

mization challenge to discover the most effective yet inconspicuous disturbance.

Utilizing 5 heuristic algorithms, we determine Particle SwarmOptimization (PSO)

as the most effective strategy. In the subsequent phase, we apply the identified op-

timal disturbances as physical markings and test their impact. Notably, by using

physical parameters to describe the digital disturbances, we can easily translate

these optimal disturbances into real-world markings. Our comprehensive testing

on a Tesla Model S proves that the lane detection module can indeed be fooled

by these subtle disturbances, leading to misguidance of the vehicle in auto-steer

mode.

1.4.4 Work.3: Identifying ADS Controller Involved Bugs

Evaluating control modules in autonomous driving systems poses significant chal-

lenges for twomain reasons. First, the absence of definitive benchmarks or metrics

complicates the evaluation of control module quality. This is particularly true for

8
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ADS controllers, where multifaceted metrics such as smoothness, often not a con-

cern in other Cyber-Physical System controllers, must be considered [51]. Second,

existing scenario-based testing primarily targets the planning module, leading to

a scarcity of effective methods for creating control module-specific test scenarios.

To overcome these obstacles, we introduce 4 novel metrics tailored for evaluating

autonomous driving control systems. Beyond comparing the planned and actual

trajectories (i.e., the error between Tp and Ta), our metrics also assess respon-

siveness, stability, and smoothness, offering a comprehensive set of metrics for

control module evaluation. Furthermore, we incorporate these metrics into the ex-

isting scenario-based fuzzing framework [67], enabling it to efficiently generate

scenarios that challenge the control module’s performance.

Leveraging our newly developed metrics and the improved fuzzing method,

we perform the first detailed evaluation of the control module in the industrial-

level ADS, Apollo. We create two scenario categories: basic scenarios to test

the control module’s fundamental capabilities, and critical scenarios to assess its

performance under potentially hazardous conditions. These scenarios are then ex-

ecuted in a co-simulation environment, and the control module’s performance is

quantitatively assessed using our proposed metrics. Unexpectedly, our analysis

revealed considerable performance flaws in Apollo’s control system, with the sys-

tem failing to complete basic tasks, such as executing a full turn.

Based on the proposed metrics, we have pointed out how the controller is bad,

while it is yet unknown why so. However, identifying such correspondence be-

tween how and why is challenging due to the complexity of the bug behavior and

the control code logic. To identify the specific bugs in the controller code (i.e.,

answering why), we proposed a semi-automatic bug analysis approach assisted by
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the Vision Language Model (VLM) integrated in a Chain-of-Thought reasoning

process. Compared with traditional LLMs that could only take text input, VLM

can take the visual and text input at the same time, and output content based on both

the visual and text input. In this case, VLM becomes a better solution as we can

construct both the bug behavior and the controller code into visual representations

that VLM can effectively comprehend. Specifically, in the proposed CoT process,

the VLM will first comprehend the bug behavior (from our previous metric-based

testing) and the control code logic (from the source code), via the effective and

easy-to-understand visual input, and then reason the specific bugs in the source

code. Assisted by a subsequent reliable dynamic analysis, we determined 14 pre-

viously undiscovered bugs responsible for the controller inadequacies. All iden-

tified bugs were acknowledged and promptly addressed by the official team with

our assistance. After we fixed most of these bugs, we re-evaluated the controller

and found that the controller can follow the planned trajectory more smoothly and

accurately, validating our bug findings. All discovered bugs were reported to the

official team and were promptly addressed [120].

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 presents the literature

review. Chapter 3 presents our work on revisiting automotive attack surfaces,

including the interview study, the automatic TARA tool CarVal, and the experi-

mental analysis on real vehicles. Chapter 4 presents our novel attack on the ADS

perception system. Chapter 5 presents our systematic testing on the ADS control

system. Chapter 6 concludes this thesis.
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The primary research outputs emerged from the thesis are as follows:

• Pengfei, Jing, Zhiqiang Cai, Yingjie Cao, Le Yu, Yuefeng Du, Wenkai

Zhang, Chenxiong Qian, Xiapu Luo, Sen Nie, and Shi Wu (2023). “Revisiting

Automotive Attack Surfaces: a Practitioners’ Perspective”. In: 2024 IEEE Sym-

posium on Security and Privacy (SP). IEEE Computer Society, pp. 80–80.

• Pengfei, Jing, Qiyi Tang, Yuefeng Du, Lei Xue, Xiapu Luo, Ting Wang,

Sen Nie, and Shi Wu (2021). “Too good to be safe: Tricking lane detection in

autonomous driving with crafted perturbations”. In: 30th USENIX Security Sym-

posium (USENIX Security 21), pp. 3237–3254.

• Pengfei Jing, Xiapu Luo, SenNie, and ShiWu. “Expectations aren’t Guaran-

tees: Identifying the Inconsistency Between Planning and Control in Autonomous

Driving”. (Under review of ICSE 2025)
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Chapter 2

Literature Review

2.1 Revisiting Automotive Attack Surfaces

Research studies related to the cybersecurity of modern vehicles are prospering

these years, and there are a series of related surveys as the milestones [82, 106,

102, 55, 107, 32, 35]. After going through the surveys and investigating the re-

lated works, we compare our research with previously discovered attack surfaces

in Tab.2.1. Note that there are also many studies focusing on attacking the sen-

sors to affect the behaviors of the autonomous driving systems [61, 17, 118, 89,

110, 18]. As shown in Table.2.1, various attack surfaces have been explored in

previous research. However, they suffer from the following limitations. First,

they failed to consider emerging attack surfaces due to automotive user interfaces

(e.g., mobile app, in-vehicle browser, server and IVI malware as we exploited).

In addition. none of them have taken into account the in-vehicle network (IVN)

topology, leading to two drawbacks: 1). the old attack may not function on the

new IVN (e.g., when there is a gateway protection), and 2). potential attack paths

12



2.2 Attacking ADS Perceptions

could be neglected, due to the lack of a comprehensive understanding of the IVN

topology.

Table 2.1: Comparison with previously discovered cyberattacks on modern vehi-
cles. - Attack capability: !: Affect trivial functions; "!: Perform limited car
controls; #: Perform safety-critical car controls. - Real car?: !: Simulation; "!:
Testbed; #: Real cars.

Ref Attack Surface
Attack
capabil-
ity

Real
car?

Bypass
gateway?

[52] OBD-II # # ✗
[68] OBD-II # # ✗
[83] OBD-II # # ✗
[24] OBD-II "! # ✗
[114] OBD-II "! # ✗
[21] CD, Bluetooth, Cellular # # ✗
[84] USB, Wi-Fi, Cellular # # ✗
[108] TPMS "! # ✗

[14, 42, 141, 142,
122] Immobilizer "! # ✗

[1, 44] PKES "! # ✗
[19, 152] Speech recognition system ! # ✗
[80] Mobile APP (OBD-II dongle) "! "! ✗
[150] Mobile APP (OBD-II dongle) "! # ✗
[149] Mobile APP (OBD-II dongle) "! ! ✗
[64] Telematics "! # ✗
[41] OBD-II dongle # ! ✗
[69] A compromised ECU "! # ✗

Ours Mobile APP (Official), IVI browser, backend server, IVI
Malware # # ✓

2.2 Attacking ADS Perceptions

Adversarial Attacks. Deep neural networks (DNNs) have demonstrated remark-

able performance across various domains. Nevertheless, research has revealed

that these models exhibit vulnerability when confronted with carefully crafted in-

puts [121, 103, 75, 154]. Such malicious inputs can induce incorrect decisions

while remaining imperceptible to human observers. Additionally, models may be

susceptible to other forms of attacks, such as poisoning and backdoor attacks [45,

60, 104].
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Lane Detection. Lane detection is a critical task in the environmental perception

of autonomous vehicles, as it provides positional information and ensures vehicles

remain within lane boundaries. Traditional lane detectionmethods rely on selected

features to identify lane markings [15, 65, 123], with performance heavily depen-

dent on these features. In recent years, DNNs have been widely adopted for lane

detection due to their potent feature extraction capabilities [56, 72, 76, 90].

Emerging Attacks on Perception. Numerous autonomous driving systems now

employ DNNs to process data, particularly vision data [125, 138, 92, 12]. These

vision-based models utilize camera data as input and produce steering angles as

output. While these models generally perform well, they can still make erroneous

decisions in certain instances, which can have severe repercussions [128, 137].

Eykholt et al. demonstrated the ability to misclassify a stop sign using a physi-

cal adversarial example on a DNN model [39]. Although both our method and

that in [39] are “two-stage,” they serve different purposes. The “two-stage” ap-

proach in [39] is for evaluating an attack post-deployment, whereas our “two-

stage” method is for executing the attack. Zhou et al. introduced DeepBillboard,

a method to generate physical adversarial examples that cause DNN-based au-

tonomous driving systems to steer incorrectly [155]. Shen et al.[115] employed

GPS spoofing to misdirect vehicles. Ben Nassi et al.[87] utilized projection to de-

ceive vehicles into perceiving a projection as a genuine object (phantom attack),

and they also tested the lane detection module of Tesla Autopilot. However, the

phantom attack is limited to nighttime conditions and is easily detectable. In con-

trast, our attack can be deployed during daylight hours and is more covert.
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2.3 Testing ADS Safety

2.3 Testing ADS Safety

ADS Workflow: Planning to Control. Existing Autonomous Driving System

(ADS) architecture can be divided into two main design philosophies: end-to-end

design and modular design [48, 22]. In the modular ADS architecture (e.g., Apollo

[2], Openpilot [95], and Autoware [8]), the planning and control modules work

in close collaboration to ensure smooth and safe vehicle operation. The planning

module is responsible for generating a future trajectory that the vehicle should

follow, taking into account various factors like road conditions, obstacles, and

traffic rules. Once this trajectory is planned, the control module will calculate

the optimal control commands needed to adhere to this trajectory, using control

algorithms including Proportional-Integral-Derivative (PID) controllers or Model

Predictive Control (MPC). While much of the previous research efforts [144, 67,

74, 79, 132] put into optimizing the quality of the planned trajectory, it is equally

crucial to ensure that the control module is capable of accurately following this

path.

Scenario-based Testing. There is a series of related works focus on explor-

ing the scenarios that will make the autonomous driving system go wrong [73, 67,

131, 133, 143, 156, 54, 116], and they are summarized in Tab.2.2. These previous

works share a similar processing of using fuzzing to find the violations. Specif-

ically, starting from randomly generated scenarios, the system will mutate them

from various settings (e.g., the trajectory of NPC vehicle), and calculate the fit-

ness score of the mutated scenarios (e.g, the distance to collision), then select the

scenarios with higher fitness scores for the next-round mutation. However, almost

all previous works failed to include the control module (i.e., assuming perfect lane
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Table 2.2: Summary of previous works on discovering safety violations on ADS.

Citation Tested ADS Simulator Approach Results

Control
Module
In-

volved?

AV-Fuzzer [73] Apollo 3.5 LGSVL Fuzzing based on feedback of distance
to collision 5 types of safety violations in Apollo ✗

DriveFuzz [67] Autoware Carla Fuzzing based on feedback of driving
quality 33 bugs in Autoware and Carla ✓

CRISCO [131] Apollo 6.0 LGSVL Generate scenarios by mining the influ-
ential patterns and increasing criticality

13 types of safety violations in
Apollo ✗

MOSAT [133] Apollo 6.0 LGSVL Fuzzing based on multi-objective met-
rics 11 types of safety violations ✗

PlanFuzz [143] Apollo 3.0, 5.0,
Autoware LGSVL Fuzzing based on Planning Invariants

(PI)
9 DoS vulnerability which stops the
vehicle from moving ✗

AVUnit [156] Apollo 6.0 LGSVL Failure-Coverage Fuzzing with cus-
tomized scenarios description 19 planning bugs in Apollo ✗

DoppelTest [54] Apollo 7.0 None Fuzzing with Generating multiple au-
tonomous vehicles in traffic 8 bug types in Apollo ✗

Acero [116] Openpilot and
Autoware Carla Search the adversarial trajectory to in-

terrupt the victim vehicle
6 attack cases to change the trajec-
tory of victim ADS ✓

Ours Apollo 8.0 Carla
Fuzzing based on feedback of driving
quality & planning-to-control incon-
sistency

14 new bugs in Apollo code
(Tab.5.5) ✓

following without evaluating the performance of the controller), while controller

is the key module to ensure the vehicle can follow the planned trajectory. Partic-

ularly, previous works only evaluate the correctness of the planned trajectory [73,

131, 133, 143, 156, 54, 116], without considering whether the subsequent control

module can follow the trajectory. DriveFuzz [67] and Acero [116] are the only two

works that involved the control module (i.e., sending the throttle and steering com-

mand to the vehicle instead of simply teleporting vehicles to the planned points).

However, they still failed to evaluate the inconsistency between the planning and

control module.

16



Chapter 3

Revisiting Automotive Attack

Surfaces

3.1 Overview

As modern vehicles become increasingly complex in terms of both external attack

surfaces and internal in-vehicle network (IVN) topology, ensuring their cybersecu-

rity remains a challenge. Existing standards and regulations, such as WP29 R155e

and ISO 21434, attempt to establish a baseline for automotive cybersecurity, but

their sufficiency in addressing the evolving threats is unclear. To fill in this gap, we

first carried out an in-depth interview study with 15 experts in automotive cyberse-

curity, uncovering the particular challenges encountered during security activities

and the limitations of current regulations. We identified 20 key insights from the

interview data, ranging from the challenges and gaps in the existing automotive

security industry to the limitations and recommendations for current regulations.

Notably, we discovered that the quality of threat cases provided by existing reg-
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ulations is unsatisfactory, and the Threat Analysis and Risk Assessment (TARA)

process is often highly inefficient due to the lack of automatic tools. In response

to the above limitations, we first built an improved threat database for automotive

systems using the collected interview data, which enhanced the existing database

both quantitatively and qualitatively. Additionally, we present CarVal, a datalog-

based approach designed to infer multi-stage attack paths in IVNs and calculate

risk values, thereby making TARA more efficient for automotive systems. By ap-

plying CarVal to five real vehicles, we performed extensive security analysis based

on the generated attack paths and successfully exploited the corresponding attack

chains in the newly gateway-segmented IVN, uncovering new automotive attack

surfaces that previous research failed to cover, including the in-vehicle browser,

official mobile app, backend server, and in-vehicle malware.

In summary, aiming to secure the connected vehicles from the cybersecurity

perspective, we make the following contributions:

• An in-depth interview study with 15 automotive security experts, identifying 20

key points ranging from challenges in conducting security activities to specific

limitations of existing regulations.

• An improved threat database for automotive cybersecurity, developed using the

data collected from the interviews, which enhances the existing database both

qualitatively and quantitatively.

• The design and development of CarVal, a novel Datalog-based approach to infer

attack paths and assess corresponding risk values in modern IVNs. CarVal is

capable of inferring multi-stage attacks and prioritizing attack paths based on

the calculated risk values.
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• Extensive security analysis on five real cars based on attack paths discovered by

CarVal, which led to the identification of new attack chains that previous works

failed to cover, from new attack surfaces to the ECUs behind the gateway.

3.2 Background

Threat Analysis and Risk Assessment for Automotive Systems. The increas-

ing computerization and complexity of modern vehicles have led to the emer-

gence of new attack surfaces and corresponding cyberattacks [68, 150, 21, 108].

This necessitates conducting TARA on contemporary vehicles to identify poten-

tial threats, vulnerabilities, and associated risks within the system. By compre-

hending these risks, vehicle manufacturers can implement appropriate mitigation

strategies. However, security assessment guidelines provided by current regu-

lations, such as WP29 R155e [140] and ISO 21434 [58], exhibit limitations in

delivering comprehensive security assessments. These guidelines are often too

generic and fail to provide specific guidance on addressing security risks related

to a particular system [26]. Furthermore, existing regulations [140, 23] only enu-

merate discrete threats that manufacturers should consider, leaving an efficiency

gap in automated risk assessment for modern vehicles. Automotive ISAC’s Risk

Assessment and Management [6] provides best practices for risk assessment and

management in the automotive industry, offering a comprehensive approach to

identifying and mitigating risks. Additionally, risk assessment for autonomous

driving has been explored by Derrick Dominic et al. [36], who discuss the spe-

cific challenges and methodologies for assessing risks in cooperative automated

driving systems. Furthermore, the National Highway Traffic Safety Administra-
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tion (NHTSA) has published guidelines on the cybersecurity of firmware updates

[91], which include insights from interviews with experts in other relevant indus-

tries to understand andmitigate security risks associated with Over-The-Air (OTA)

updates.

Regulations on Automotive Cybersecurity. The growing number of auto-

motive cyberattacks in recent years underscores the urgent need for standards and

regulations that enforce automotive cybersecurity. The United Nations Economic

Commission for Europe (UNECE) introduced WP29 R155e [140] as a compul-

sory regulation that Original Equipment Manufacturers (OEMs) and Tier suppli-

ers in UNECE countries must adhere to. This regulation mandates OEMs to es-

tablish a CyberSecurity Management System (CSMS) for managing security risks

throughout a vehicle’s lifecycle. Although R155e enumerates potential automo-

tive cyberattacks and corresponding defenses as references for CSMS, it does not

offer specific guidance on configuring a CSMS to meet the requirements. The

International Organization for Standardization (ISO) proposed ISO 21434 [58] as

a non-mandatory standard that supplies general guidelines for managing security

risks across the automotive lifecycle. Contrasting WP29 R155e, which is obliga-

tory, ISO 21434 provides suggestions on how to construct a CSMS. GB/T 40861-

2021 [23], published in China, is a standard that stipulates general requirements for

ensuring automotive security. This standard outlines cybersecurity threats faced

by modern vehicles across six dimensions, encompassing software and hardware

systems, in-vehicle and long-distance communication, and in-vehicle data.
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3.3 Interview Methodology

3.3.1 Study Setup

We present the methodology of our interview in this section, including the de-

sign of the interview protocol, the recruitment, the interview procedure, the data

analysis process, and the detailed interview structure.

Design of the InterviewProtocol. The preliminary interview protocol was de-

veloped in accordance with the three exploratory motivations: 1) identifying chal-

lenges and gaps in the implementation of security activities within the industry;

2) evaluating the effectiveness and relevance of current regulations in addressing

specific threats; and 3) exploring the limitations and providing recommendations

for enhancing existing regulations. In particular, a qualitative analysis of current

regulations was conducted to: 1) establish metrics for assessing existing threats,

and 2) create an initial threat database by integrating knowledge from multiple

regulations. Specifically, we first collected the threat descriptions from current

regulations [140, 58, 23], and two authors performed iterative coding on them to

derive (a). a list of initial threats that are expected to be expanded during the in-

terview process, and (b). the evaluation criteria on assessing these threats. This

qualitative analysis contributes to the design of the interview protocol. This qual-

itative analysis extracted 38 threats distributed in 6 codes, and our interview study

finally expanded this database to 119 threats in 28 codes. The protocol can be

accessed in [20]. After 10 rounds of interviews, the protocol was finalized and

remained consistent for all subsequent interviews.

Recruitment. We invited experts working in the field of automotive cyber-

security from both first-party automotive manufacturers and third-party suppliers
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to participate in the interview (two employer companies play the role as 1st-party

OEM and 3rd-party provider at the same time). The information of the 15 intervie-

wees is presented in Table 3.1. On average, they had about 6 years of experience

in the security field, and there are senior experts with experience over 10 years (P1

and P14). 8 out of 15 are from 1st-party OEMs, and 9 are from 3rd-party suppliers,

with two overlaps. Their roles included TARA, security testing, project manage-

ment, and regulation study, ensuring that all participants were experienced experts

from diverse companies who could provide convincing opinions in the field. Par-

ticularly, the 1st party manufacturers include companies from multiple countries

(e.g., China and Germany), and the 3rd party suppliers also offer security services

(e.g, security testing and security consulting) for automotive companies from all

over the world (e.g., including car brands from Germany, Japan, America, China,

and others). After the 15th round of interview, we identified a saturation of new

opinions and the threat cases that the experts can offer, and stopped recruitingmore

participants.

3.3.2 Procedure and Data Analysis

Interview Procedure. The interviews were conducted through online meetings.

During the interviews, the interviewer (i.e., author of this paper) shared the screen

to display the interview protocol and related materials (e.g., content of the regu-

lations under discussion) to the interviewees. Both audio and video of the inter-

viewer’s screen were recorded for further analysis. We began the interview by col-

lecting basic information about the interviewees, and then proceeded to discuss the

specific topics in the protocol. The interviews were conducted in a semi-structured
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Table 3.1: Interviewee demographics
ID Sex Exp1 Company 2 Position3 Duration
P1 M 10 C1: 1st Party TARA 2:52:47
P2 M 3 C2: 3rd Party TARA, Manag 1:18:16
P3 M 5 C3: 1st Party TARA, Manag, Reg 1:05:21
P4 M 4 C4: 3rd Party Test 0:59:55
P5 M 3 C4: 3rd Party Test 0:43:31
P6 M 3 C5: 3rd Party Test 1:05:36
P7 M 3 C4: 3rd Party Test, TARA 0:55:44
P8 M 7 C6: 1st & 3rd Test 0:38:50
P9 M 5 C7: 3rd Party Test, TARA, Manag 0:56:32
P10 F 3 C8: 1st Party Test, TARA, Manag 0:53:15
P11 M 3 C8: 1st Party TARA, Mang 1:27:38
P12 M 5 C8: 1st Party Test, TARA 1:33:18
P13 M 6 C6: 1st & 3rd TARA, Manag 1:37:45
P14 M 20 C9: 3rd Party TARA, Manag, Reg 2:11:10
P15 M 3 C3: 1st Party TARA, Manag 1:05:34
1 Years of working experience in security;
2 From 1st party vehicle manufacturer or 3rd party supplier;
3 TARA: Threat Analysis and Risk Assessment; Manag: Project manager; Reg: Regulation-
related study; Test: Security testing.

manner, allowing the interviewees to freely express their thoughts. After the in-

terview study, we derived an automotive threat database with 119 threats under

28 codes, and sent back this database to all participants for suggestions on final

modifications. The interview process was started in November 2022 and finished

in March 2023.

Data Analysis. We first transcribed the recorded audio to text for further anal-

ysis. We then carried out an iterative open-coding process on the collected data

[25, 11]. First, an initial codebook was established by all authors based on the

interview protocol. Then, two authors separately performed multiple rounds of it-

erative open coding on all interview data. After that, the two authors verified each

other’s coding results and resolved the conflicts, and meanwhile updated the code-

book. We continued with the iterative coding process until no new code emerged

[11]. The final codebook is available in [20].
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Sec.2 Collection of Basic Information
Gather essential information about the interviewee, including their work experience
and specific role within their organization.

Sec.3 Investigation of Security Activity Implementation
Delving into the implementation of security activities in compliance with relevant
regulations, with the goal of identifying challenges and gaps in the process.

Sec.4 Assessment of Existing TARA Approaches
Evaluating the effectiveness of the TARA approach proposed by ISO 21434 by
examining the specific TARA implementation undertaken by the interviewee.

Sec.5 Evaluation of Current Threat Databases
Assessing the quality of threat databases provided by existing regulations (e.g.,
WP29 R155e, GB/T series) by scrutinizing the specific threats listed.

Sec.6 Limitations and Recommendations
Discussing the limitations of the current standards and regulations, as well as
corresponding suggestions for enhancements and refinements.

Sec.7 Outro
Thank the interviewee and collect feedbacks.

Sec.1 Introduction
Presenting an introduction to the study, providing an overview of the interview and
its objectives.

Figure 3.1: The flow of our semi-structured interview. Each section unfolds with
particular question, in the meantime interviewees can freely express their thoughts
that might discover insights beyond the current section.

3.3.3 Interview Structure

The interview, as depicted in Fig.3.1, starts with an introduction where objectives

are outlined and interviewees are encouraged to share personal opinions on se-

curity activity implementations and regulations (Sec.1 Introduction). We then

collect basic information about the interviewees’ work experience and role within

their organizations (Sec.2 Collection of Basic Information). In the next stage,

the interview delves into the specifics of how security activities are carried out per

24



3.4 Interview Results

existing regulations (Sec.3 Investigation of Security Activity Implementation).

Following Sec.3, the effectiveness of TARA approach proposed by ISO 21434 is

assessed by scrutinizing its implementation within the interviewee’s group (Sec.4

Assessment of Existing TARA Approaches). The quality of threat databases

provided by existing regulations is then evaluated, alongside the showcasing of

an integrated threat database derived from a preliminary study (Sec.5 Evaluation

of Current Threat Databases). The interview proceeds to discuss the limita-

tions of current standards and regulations and collects suggestions for improve-

ments (Sec.6 Limitations and Recommendations), before concluding with an

expression of gratitude and feedback collection for improving the interview pro-

cess (Sec.7 Outro).

3.4 Interview Results

In this section, we present our findings based on 15 semi-structured interviews

conducted with experts. The structure of this section follows the interview flow

presented in Fig. 3.1. Each subsection reports the detailed findings of the corre-

sponding interview section, with specific Key Points (KPs) identified and summa-

rized at the end of each part. Notably, we highlight direct quotes from the intervie-

wees by italicizing them and using quotation marks. Particularly, we mainly report

KPs discovered from Sec.4, 5 and 6 in Fig.3.1, and more insights are available in

[20].
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3.4.1 Assessing TARA

We identified the following key points revealing the weakness of current TARA,

which corresponds to the Sec.4 in Fig.3.1.

• KP.1: Asset identification is difficult. We identified that the very first step of

TARA: asset identification, is a challenge stage due to the often-missing informa-

tion, and the complexity of the the automotive system. Specifically, as reported by

P14: “The asset identification often costs more than half of the time of the whole

TARA process. This is because the materials we rely on are often insufficient to

list all assets, and we need to consistently contact the provider for the necessary

information and improve the comprehensiveness of the listed assets.” (P14).

•KP.2: Lack of objective definitions and criteria. Another major limitation we

identified fromALL interviewees (11) working on TARA is that the current TARA

is a high-levelmethodology, and there is a lack of specific definitions and criteria to

ensure the effectiveness and consistency of the TARA results (e.g., when TARA

is performed by different groups). E.g., as reported by P12: “The evaluation of

certain criteria in current TARA can vary a lot between different persons or groups,

and there is a lack of more specific criteria. For example, we will do a TARA on

the specific product, and our suppliers will also do a TARA on it, but the result of

our TARA can be very different as the analysis is based on the subjective expertise

instead of objective metrics.” (P12).

• KP.3: Low level of automation and low efficiency. We also identified from

ALL interviewees working on TARA that the TARA process is often in a low level

of automation, and a huge manual effort is still required to finish TARA. E.g., as

reported by P11: “A lot of effort is needed to analyze the attack path in our TARA
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process. Currently, this process still heavily relies on our own experience and

expertise. ” (P11). Additionally, as reported by P12: “It is still difficult to craft

an automated TARA process because this process is complex and require certain

expertise. At least, we currently still rely on our expertise to do the very specific

TARA on the products. ” (P12).
Summary on TARA:We identified that currently the TARA applied by prac-

titioners suffers from limitations including requiring heavy manual effort, low

efficiency, and the lack of objective definitions and criteria. Although ISO

21434 has presented the high-level TARA methodology, it still remains a chal-

lenge on how to conduct TARA efficiently.

3.4.2 Evaluating Threat Database

This section reveals the key points related to the specific threats listed by existing

regulations, which corresponds to the Sec.5 in Fig.3.1.

• KP.4. More common and automotive-specific threats are needed, rather

than copying existing threats from other areas. The automotive system consists

of multiple sub-components (e.g., the cloud, the app side, the IoT-related mod-

ules). However, the majority of the interviewees (14/15) agree that currently listed

threats are largely copied from other domains but not the practical or commonly-

seen threats in automotive systems. E.g., as reported by P2: “Many existing threats

are just copied from other areas, rather than describing the truly common threats

for automotive systems. I do not think it necessary to detail these already known

threats. ” (P2). As also reported by P10: “We are expecting the regulations to give

more common and detailed threats that are really related to current automotives.

For example, some manufactures are adding some fancy functions to their prod-
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Figure 3.2: Average score from 5 evaluation criteria for WP29 R155e [140] and
GB/T [23].

ucts, such as remotely heating the seat. It is OK for the regulations to not mention

these unique functions. However, I think it necessary for the regulations to give

very detailed guidelines on the very common functions, such as remotely opening

the door, which I believe is a function that the majority of vehicles have already

applied. ” (P10).

• KP.5: Low scores are given to existing threats by practitioners. During

the interview, we asked the experts to evaluate the quality of threats in current

regulations from five metrics, including the Attack Description (AD), the Root

Cause (RC) of the threat, the Security Testing Approach (STA) to identify the

threat, and the MitiGation (MG). Specifically, they were asked to choose a score

from 1 to 5 to present how satisfy they were about the existing threats from the

above 5 aspects, and the overall scores are shown in Fig.3.2. Note that the average

scores for WP29 R155e and GB/T are 2.77 and 2.72, respectively, representing

that experts are overall unsatisfied with the quality of current threats. Moreover,

extremely low scores are identified from the aspect of STA.
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Summary on threats in regulations: From the practitioners’ perspectives, the

specific threats listed by existing regulations are far from being satisfying. Par-

ticularly, there is a lack of specific threats for automotive systems, and currently

listed threats are short of a comprehensive description from various dimensions

(Fig.3.2).

3.4.3 Limitations and Recommendations for Existing Regula-

tions

We present the rest key points related to the open-ended discussion of the limita-

tions on current regulations.

• KP.6: More detailed information would certainly help the security groups.

Multiple previous key points have revealed that the missing of particular details

brings challenges to security groups. Particularly, we identified that ALL inter-

viewees agree that a more detailed regulation would certainly help their work,

including being more specific on provided threat, giving clear threshold and ob-

jective criteria, etc. E.g., as reported by P10: “Our group mainly relies on our

TARA results to express the specific threats to other groups. However, this pro-

cess would be much more efficient if more details could be found in current regu-

lations.” (P10).

• KP.7: Gaps exist between traditional IT threats and automotive threats.

We identified that current regulations failed to give guideline on how to define the

severity of the specific threats, especially when the threat exists in the automo-

tive system instead of traditional IT networks, which could result in an incomplete

understanding of the threat. This KP also corresponds to the previous KP.4. Par-

ticularly, as reported by P10: “I think there is a significant gap when we switch
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our concepts from the traditional IT threats to the automotive threats, because we

are unsure about how to define and analyze the threats when they are connected

to the automotive system with the very specific hardware. For example, an engi-

neer with only software security background would find it challenging to precisely

define the threat in automotive system. For example, our group would think a vul-

nerability allowing attacker to remotely open the door is very critical, but other

groups would tell me that this would not be a critical case according to the func-

tional safety regulation. I would expect the regulations to give more details on

how we should understand the severity of the specific threats. ” (P10).

• KP.8: Non-security groups lack proper security knowledge. Due to the

complexity of modern vehicles, manufacturer companies often consist of a wide

variety of groups working together, including the development groups, security

groups and others. In our interview, a common challenge identified by ALL in-

terviewees is that non-security groups often lack consensus in security. E.g., as

P11 reported: “Our group knows clearly the meaning of the critical/high/low risks

in the TARA results, but other groups do not even know what TARA is.” (P11).

Accordingly, this fact makes it laborious for the security groups and non-security

groups to reach a consensus for decisions on particular threats, and it’s common

that security groups have to show the practical attack results to other groups to

present the rationale for security-related requests. E.g., as P11 reported: “Our

development groups actually care so little about security: they totally do not un-

derstand why it is necessary to update the system components. For example, the

development group thinks that the built-in components in the IVI Android system

are safe to use, even when their versions are out-of-date. As a result, we have to

craft a practical PoC attack chain to show that the out-of-date codes are vulner-
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able and the significance of system updates.” (P11). Overall, as identified by our

interview, it is common that the interpretation of the rationale to perform security

activities requires a lot of effort, and due to the lack of automatic tools for risk

assessment, this process heavily relies on the manual effort and is very inefficient.

•KP.9: Complex supply chains bring new challenges. As modern vehicles are

becoming increasingly complex in its interfaces and in-vehicle architecture, the

corresponding supply chains also get complex and thus bringing new challenges.

In particular, as reported by P13: “We are consistently pushing the security re-

quirements to our supplier, including performing security testing and providing

the specific software materials to us. However, it is very common that suppliers

are still not attaching enough importance to cybersecurity, and thus they are not

able to meet our requirements.” (P13). Additionally, P14 presented the challenge

from the 1st-party OEM: “It is also very challenging for the 1st-party OEM to

ensure the supply chain security: they need to present the very specific cyberse-

curity requirements to the supplier, and also be capable of reviewing whether the

requirement is met. For example, they should give very detailed information about

what TLS version and what encryption algorithm should be applied in the specific

case, instead of just saying ‘follow the best security practice’.” (P14).

• KP.10: Conflicts with other groups are common. As identified from ALL

1st-party interviewees, one fact that they face is that security activities are “costy”

and cannot be translated into immediate and direct benefits. As reported by P12:

“We are always compromising with the development groups, and this is inevitable:

the design of a strictly secured system requires extra efforts for development group,

and often causes a decrease in user experience. As a result, we are always looking

for a balance for ‘just sufficient’ security and reasonable development effort. ”
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(P12). Additionally, as reported by P15: “Overall, implementing fancy features is

the top priority for development groups, and security does not directly add attrac-

tiveness to the product. As a result, we are always trying to reach the sufficient

security design and also try to reduce the workloads of development. ” (P15).

This key point is also consistent with KP.8: to reach a common security consen-

sus, security groups tend to make a lot of effort to explain the specific threats.

• KP.11: Information is not transparently shared between groups. As indi-

cated by KP.8, current 1st-party companies are consist of many different groups,

with different responsibilities and team values, even with possible competitions.

Accordingly, another intriguing challenge presented by P13 is that the limited in-

formation sharing can affect the security activities: “Information gathering is the

very essential stage for our penetration testing, but the information we can access

is often very limited, which could affect the efficiency of our testing. For example,

other groups may not pay attention to some malfunctions or bugs, but they could

be identified as the critical vulnerabilities in our testing. However, other groups

may refuse to offer the explicit details in the first place.” (P13).

•KP.12: Security activities get inconsistent between various security groups.

It is common that multiple security groups contribute to the cybersecurity of the

same car. For example, when 1st-party manufacturers have assembled the vehicle,

they might ask multiple security groups to perform testing on the final product.

However, the inconsistent testing output from various groups could cause prob-

lems. E.g., as reported by P8: “It is common that multiple testing groups cannot

reach a final decision due to the lack of information sharing. For example, when

other groups have identified the security problems we missed, we might not be

able to validate them due to the limited information provided. Vice versa, when
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we identified a problem that other groups failed to find, we may not be able to

locate the relevant responsible party, or further validate whether the problem is

fixed in the final product.” (P8).

• KP.13: Lack of concrete support for rationales behind security-related

CRs. The development of automotive products is often based on Change Requests

(CRs). However, it is identified by all 1st-party interviewees that the development

groups often think that the security-related CR (e.g., fixing a bug) lacks rationale

or concrete supports. E.g., as reported by P13: “Development groups are often not

willing to accept our CRs to fix certain bugs, because they do not think ‘the CR

solely based on our inner-group testing’ is convincing.” (P13). Moreover, P14

gave more comments about this challenge: “Currently, it is a fact that the security

activities are short of concrete support, especially from the compulsory regula-

tions. It is common that other groups may challenge security requests, and try to

‘lower’ the security baseline.” (P14).

• KP.14: Reactive TARA overwhelmed Proactive TARA. Another challenge

we identified is that the TARA process tends to be reactive instead of proactive

(by P10, P11, P12), which may raise concerns. In particular, as reported by P11:

“I think ISO 21434 would want us to frequently perform TARA in a proactive way,

to ensure the cybersecurity consistently. However, how we use TARA is more like a

reactive way: we only use TARA when specific events happen, for example, when

development groups want to remove some security functions, or add some new

functions. In this case, we will use TARA to demonstrate the corresponding risk.

But in other cases, we would not do TARA very frequently or proactively.” (P11).

• KP.15: What companies care the most is how to pass the test. One fact we

identified from ALL 1st-party OEM is that current regulations, especially WP29
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R155e and GB/T series that listed specific threats, are not treated as the gold stan-

dard or de facto oracle to ensure cybersecurity. Instead, they are merely the se-

curity baseline that companies are trying to meet, with adequate or even minimal

effort, and this fact is consistent with the challenges we identified from KP.4 and

KP.9. E.g., as reported by P2: “The specific descriptions for the threats and at-

tacks are just auxiliary content. For us 1st-party OEM, what we care about the

most is how to meet the requirement for each listed clause. ” (P2). As also re-

ported by P3: “Our company have grown quite mature in cybersecurity, and we

have already considered all threats listed in R155e. Accordingly, we never expect

to rely on this regulation to ensure cybersecurity, and all we care about is how to

pass the standard set up by the regulation. ” (P3).

• KP.16: Companies are unsure of what level of protection is sufficient. Un-

fortunately, companies do not know to what extent the protection is sufficient, as

none of current regulations has make this requirement clear, which is identified by

ALL interviewees from 1st party. As stated in KP.15, companies are always trying

to find the just sufficient cybersecurity solution with adequate effort, but current

regulations are extremely short of this information. E.g., as stated by P2: “We

are unsure about whether our mitigations are sufficient as the current regulations

themselves are not clear about that. For example, when protecting the scenario of

using digital keys to open doors, does it mean that attacker should not be able to

get in the communication channel at all, or it would be sufficient if we can make

sure no damage will be done even if the attacker can inject the channel? Currently

no regulations are making these details clear. ” (P2).

• KP.17: Current regulations lack quantifiable criteria for evaluating threat

cases. KP.17 is also identified from ALL interviewees, and is the main reason
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leading to KP.16: because no quantifiable criteria is set up, company do not know

how to prepare the protection. E.g., as stated by P3: “We urgently need a very spe-

cific and quantifiable criteria, so that we can prepare our cybersecurity solutions

accordingly. However, current situation is that, neither we manufacturers nor the

certification authority knows how to perform the cybersecurity test. ” (P3). Also

as stated by P11: “We are constantly evaluating our products based on the threats

given by WP29 R155e. However, the threats given by R155e are very high-level,

and they are often interpreted by the certification authority, and what they say

goes. I think it is strange that these specific metrics are explained by the third

parties, instead of the regulations themselves, and I think it is one of the most

significant weakness. ” (P11).

•KP.18: Mitigation listed in current regulations is more like remedies rather

than high-level solutions. A majority of interviewees (12/15) agreed that current

listed threats seem to focus on discrete remedies instead of high-level cybersecu-

rity solutions. E.g., as reported by P1: “Currently listed mitigations for specific

threats are more like some discrete remedies, rather than some high-level solu-

tion that could be considered and applied in the development stage. Although it

is challenging to provide detailed and practical high-level solutions, our group is

currently working towards this goal and I am expecting such a content in future

regulations. ” (P1).

• KP.19: Clearer guidelines are needed for long-term security management.

We identified that the long-term management of the product cybersecurity is an

extremely challenging tasks, due to the insufficient contents of the regulations,

and some other difficulties. Particularly, as reported by P14: “Although ISO 21434

has provided quite detailed guidelines on how to ensure the cybersecurity in the
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development stage, it currently failed to give clear guide on the long-term security

management. The long-term management of the automotive cybersecurity is a

very challenging task, and all the automotive companies are exploring how to

establish a sound long-term risk management system. I hope future regulations

will give more insights on this process. ” (P14).

•KP.20: There is a lack of an open platform for sharing threat cases. Another

interesting insight we identified is that the sharing of information, especially the

knowledge about specific threats, is often very difficult. This is often due to the

very strict examination process to prevent possible leaks of specific threats. Such a

examination process is necessary, but would inevitably hinder the communication

between different groups. As reported by P13: “Although there are various ways to

access new knowledge, it is common that many details are still missing in the public

document, for example, some vulnerability disclosure documents. As a result, we

can only derive some general insights rather than technique details, making it hard

to actually try the vulnerability in our own. The situation is the same for us: when

we identify the threats which are not so common in the moment, it is also difficult

for us to communicate with other groups or to output our content to the industry.

As a result, it would be very helpful if future regulations could set up a secure and

efficient way to share the identified threat. ” (P13).
Summary: The industry is currently facing a series of challenges in imple-

menting security activities. The reasons for this are multifaceted, including

the unique nature of security teams (e.g., difficult to directly generate profits),

the complexity of modern vehicle architectures, and the inadequacy of current

regulations.
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3.4.4 Summary on Interview Study

Compared with the previous studies revealing the “business decision” impact of

security parties [50, 136, 101], we emphasize the following key points specific to

automotive security, which are not covered by the previous works. First, we have

identified a series of limitations of the specific regulations on automotive cyber-

security, including the insufficiency of threat database, TARA guidance, security

testing approach, and many others. Second, we also identified the challenges in

conducting security activities in automotive system, including the lack of automa-

tion in TARA process, the lack of quantifiable criteria for risks assessment, con-

flicts with other groups, and many others. Specifically, these challenges can be

attributed to the following two aspects:

Lack of high-quality threat database. The threats offered by existing reg-

ulations are insufficient from various dimensions (KP.2, KP.4, and KP.5). Due

to the above gap, practitioners have to rely on the experience and expertise of the

group to perform security activities, which could be incomplete or inefficient.

Lack of efficient tool for TARA. ISO 21434 [58] presents the high-level

methodology of TARA, but the specific implementation is still facing various chal-

lenges. Particularly, the lack of criteria can lead to the inconsistent TARA results

(KP.2), and the lack of automatic tools can make TARA very inefficient (KP.3).
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Threat.1 description
Threat.2 description

... ...

Threat Descriptions (TDs)

Code: IVI
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Code.1 IVI
Code.2 ADAS

... ...

Code.5 OBD
Code.6 USB

... ...

Theme: ECUs Theme: Interface

Threat Knowledge 
Graph (TKG) 

Figure 3.3: The proposed hierarchical framework to describe automotive cyberse-
curity threats.

3.5 Improved Threat Database

3.5.1 Hierarchical Framework for Automotive Threats

In response to the lack of high-quality automotive threat database, we construct a

new threat database that is improved by the collected threats from the interview.

Particularly, we use a hierarchical framework to present the automotive-specific

threats (in Fig.3.3), in which the involved concepts are explained as follows:

Threat Description (TD). A threat description (TD) is the smallest element

in the framework. It is a set of natural language sentences to describe the details

of one particular threat, including the specific Attack Description (AD), the Root

Cause (RC) of the threat, the Security Testing Approach (STA) to identify the

threat, and the MitiGation (MG) to prevent the threat.

Threat Code (TC). A threat code (TC) is a group of TDs under a particular

category. Here the word “code” comes from the qualitative analysis methodolo-

gies [25], in which the process of coding is to give labels to the qualitative data

(e.g., interview texts). For example, in Fig.3.3, Code.1 IVI is the code containing

the threat descriptions under the in-vehicle infotainment (IVI) ECU.

Threat Theme (TT). A threat theme (TT) is a group of threat codes following

a particular high-level classification logic. For example, in Fig.3.3, the Threat
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Theme: ECUs includes the threat codes representing the in-vehicle ECUs (e.g.,

IVI, ADAS), while Threat Theme: Interface includes threats related to vehicular

interfaces (e.g., OBD, USB).

ThreatKnowledgeGraph (TKG).Wederive the concept of knowledge graph

(KG) [147, 16, 59] to further represent the relations between the threat codes.

Specifically, a knowledge graph can be represented by a set of triplets: (head en-

tity, relation, tail entity), meaning that the head entity and the tail entity has the

particular relation. In our scenario, the entities are the threat codes, and the triplet

(TC.1, relation, TC.2) represents the logical relation between the two codes. For

example, the triplet (Code.1 IVI, vulnerable to threats in , Code.6 USB) connects

the code IVI and code USB because the USB interface is a common interface on

IVI.

3.5.2 Detailed Threats

The final result of our threat database is shown in Fig.3.4, with the following spe-

cific threat theme and codes:

T1: General Requirements. The various ECUs can share a set of theats

that are general to various implementations, and this T1 describes these common

threats from five threat codes: C1.Hardware, C2.Software, C3.RTOS, C4.Complex

OS, and C5.Data. The advantage of setting up this theme is that we do not need to

repeat these common threats in the specific ECU categories. For example, secure

boot is the de facto mitigation that should be deployed on various types of ECUs.

There are 24 threat descriptions under T1.

T2: In-Vehicle Components. T2 describes the threats to specific components
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C6: IVI

C15: Backend server

C14: Mobile APP
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Figure 3.4: An improved hierarchical threat database derived from the interview
study, containing 28 threat codes (TCs) under 7 threat themes (TTs). This database
serves as an improvement to existing regulations both qualitatively and quantita-
tively, and is available in [20].

in the vehicle, including the threats on various ECUs and on the In-Vechile Net-

work (IVN). T2 contains the following 8 codes: C6.IVI, C7.Telematics, C8.Sensor,

C9.Gateway and Zone Controller, C10.ADAS, C11.IVN, C12.BMS, and C13.Other

ECUs. These codes focus on the threats that are particular to the function of the

ECU. For example, the C6-10: browser threat, is the very specific threat that ex-

ists in the IVI but not on other ECUs, because the browser module has been widely

used in the IVI system to support rich infotainment functions. There are 36 threat

descriptions under T2.

T3: Outside-vehicle Components. T3 describes the threats for specific com-

ponents outside the vehicle, but can communicate with the vehicle and affect auto-

motive cybersecurity. Specifically, T3 contains the following 3 codes: C14.Mobile

APP, C15.Backend Server, C16.Charging Pile. The vulnerabilities in these exter-

nal components can pose a threat to the vehicle itself. For example, the private data

can be leaked through the charging pile. There are 14 threat descriptions under T3.

T4: Communication Protocols. T4 describes the threats to the communi-

cation protocols implemented in the automotive context. Specifically, T4 con-

tains the following 4 codes: C17.UWB, NFC and BLE, C18.V2X, C19.CAN, and

C20.Ethernet. The unsafe implementation of these protocols can introduce risks.

For example, lack of encryption on the data transmitted via the protocol can lead

to information leak. There are 16 threat descriptions under T4.
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T5: Communication Channels/Interfaces. T5 describes the threats on the

communication channels and interfaces on the vehicle. Specifically, T5 contains

the following 4 codes: C21.Wi-Fi, Bluetooth and Cellular, C22.Charging Port,

C23.USB and SD card, C24.OBD. Unsafe implementation of these interfaces leads

to threats when these interfaces are exposed to the attacker. For example, the

attacker can modify vehicular parameters through the OBD port due to the lack of

proper authentication. There are 15 threat descriptions under T5.

T6: Vehicular Functions/Services. T6 describes threats to vehicular function

and services, with the following 3 codes: C25.OTA, C26.Diagnostic, C27.Remote

monitor and control. The implementation of these “trendy” functions can vary for

different manufacturers and car models, and can introduce risks when the design

is insecure. For example, the unsafe implementation of the secret keys for remote

control can be exploited to launch attacks. There are 12 threat descriptions under

T6.

T7: Others. T7 includes other threats (e.g., insider attack) that do not fit into

other themes. There are 3 threat descriptions under T7. The complete database is

available in [20].

3.6 CarVal: Approach

In response to the lack of efficient tool for TARA, we introduce CarVal: the first

Datalog-based approach designed to automatically generate attack paths in IVNs,

calculate corresponding risk values, and thus make TARA in automotive systems

more efficient. We first present the challenges encountered during the design of

CarVal in §3.6.1. Then, in §3.6.2, we describe the workflow of CarVal in detail,
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including how attack paths are inferred and how risk values are calculated. An ex-

ample is given in §3.6.3 to provide a clear demonstration of the approach. Finally,

we provide the implementation details of CarVal in §3.6.4.

3.6.1 Challenges and Solutions

Challenges. Previous research has proposed datalog-based approaches for auto-

matic attack path generation in enterprise networks (e.g., MulVAL [98, 97, 99]).

However, these approaches cannot be directly applied to the automotive domain

due to the particular challenges. Firstly, traditional attack path reasoning engine

[98, 97, 99] relies on manually crafted reasoning rules in IT networks. However,

there are no existing rules that could be applied to reasoning attack paths in IVN.

Secondly, unlike enterprise networks, where each node is treated as a host with

an identical set of rules, the IVN consists of electronic control units (ECUs) with

various hardware and software settings. Unfortunately, previous approaches [98,

97, 99] do not account for these new features in IVN and cannot represent the up-

to-date IVN model, and thus it is unclear how to transform the IVN network into

Datalog representation. Thirdly, previous works only discussed how to calculate

the feasibility (i.e., likelihood) of specific attacks in the attack path [146, 43, 145],

and failed to consider the attack impact indicated by ISO 21434 TARA [58], which

leads to incomplete output in the specific automotive system.

Solutions. Firstly, we construct the reasoning ruleset and define cybersecurity

attacks based on the threat database collected from industry experts through an

extensive interview study. Secondly, we introduce a hybrid model combining the

bus model that represents the broadcasting nature of in-vehicle bus (e.g., CAN bus)
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Figure 3.5: CarVal workflow: Automatic attack path reasoning and risk assess-
ment in automotive system.

with the star model that represents the up-to-date gateway design (further shown

in Fig.3.7). This model can precisely present the IVN model and contribute to

correct reasoning of attack paths. Thirdly, we enhance the reasoning engine by

calculating the attack impact of each node on the path, in addition to the attack

feasibility indicated by ISO 21434. This is a improvement specifically for the

automotive systems.

3.6.2 Workflow

We propose CarVal, an automatic approach for attack path reasoning and risk as-

sessment in IVN, which is shown in Fig.3.5.

3.6.2.1 Input

There are the following four parts of input to the CarVal reasoning engine:

Attack Goal. This component specifies the particular attack that serves as the

objective for datalog reasoning. For instance, the following clause represents the

attack goal for performing a cross-domain attack on the Body Control Module

(BCM) ECU, which involves sending malicious commands like unlocking the

doors or opening the car windows:

c ro s sDoma inAt t ack ( bcm ) .
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The attack goal describes a specific attack in the IVN and is derived from a set

of primitive nodes, which include the IVN information and possible vulnerabili-

ties. These nodes are referred to as derived Attack Nodes (AN).

Attack Entry. This component describes how the attacker can gain access to

the automotive system, which serves as the starting point of the attack path. For

instance, the following clause assumes that the attacker can access the In-Vehicle

Infotainment (IVI) ECU via the Wi-Fi channel:

a t t a c k e rCanAcc e s s ( i v i , w i f i ) .

In the attack path, such an attack entry is referred to as the Entry Node (EN).

Vulnerability Set. This component consists of the possible vulnerabilities that

can lead to specific attacks. For instance, the following clauses describe the vul-

nerabilities that exist in two ECUs: IVI and BCM, and these vulnerabilities will

serve as the prerequisites to the Attack Node (AN):

v u l E x i s t s ( i v i , ‘ lowPrivCodeExec ’ ) .

v u l E x i s t s ( i v i , ‘ u n a u t h o r i z e dB r o a d c a s t ’ ) .

v u l E x i s t s ( bcm , ‘ lackMessageAuth ’ ) .

Such vulnerabilities are referred to as Vulnerability Nodes (VNs) on the attack

path.

Vehicle Configuration. This component includes vehicle-specific information

required for attack path reasoning. Specifically, such information comprises the

IVN topology and the attributes of the Electronic Control Units (ECUs) and buses

in the IVN. For instance, the following clauses indicate that the IVI ECU and

Gateway (GTW) ECU are both located on the infoCAN bus, and the broadcasting

nature of this Controller Area Network (CAN) bus may lead to specific attacks:
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ecuOnBus ( i v i , infoCAN ) .

ecuOnBus ( gtw , infoCAN ) .

busTypeBroadca s t ( infoCAN ) .

Such information is referred to as Fact Nodes (FN) on the attack path.

3.6.2.2 Attack Path Reasoning

CarVal initiates datalog reasoning upon receiving the aforementioned inputs to

determine the feasible attack path from the attack entry to the attack goal. The ef-

fectiveness of this reasoning process depends on the carefully-designed reasoning

rules. For instance, the following rule explains how an attacker can enhance the

attack impact after executing malicious code in the ECU:

a t t a c k e rB r o ad c a s tOnBu s (ECU, Bus ) : − / / AN

execCode (ECU, P r i v ) , / / AN

ecuOnBus (ECU, Bus ) , / / FN

busTypeBroadcas t ( Bus ) , / / FN

v u l E x i s t s (ECU, ‘ u n a u t h o r i z e dB r o a d c a s t ’ ) . / / VN

In this reasoning rule, the attacker can broadcast the attack message on a par-

ticular bus (e.g., CAN bus) bus after achieving code execution in the particular

ECU (e.g., IVI). It is worth noting that this rule is derived from one Vulnerability

Node (VN), two Fact Nodes (FN), and one Attack Node (AN).

3.6.2.3 Risk Assessment of Generated Attack Paths

The datalog reasoning module generates a logical attack path, representing how an

attacker can achieve the attack goal from the attack entry. Subsequently, CarVal

conducts automatic risk assessment of the derived attack nodes along the attack
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Table 3.2: Explanations for the symbols used for risk assessment.
Symbol Range Explanation
fEN (0, 1] How likely the attacker can access this particular attack surface of EN
fV N (0, 1] How likely such a vulnerability in VN can exist in automotive system
iV N >1 How severe the potential impact brought by VN can be
fAN (0, 1] How likely the AN can happen when all prerequisite nodes are satisfied
iAN >1 The intrinsic severity of the AN
FAN (0, 1] Cumulative feasibility of this AN on the specific attack path
IAN >1 Cumulative impact of this AN on the specific attack path
Rbase >0 Baseline risk value of the inferred AN
RAN >1 Cumulative risk of this AN on the specific attack path

N1 → N2 N/A On the attack path, N1 is one of the prerequisite to infer N2

path. As per the ISO 21434 regulation, the risk value of a threat in an automotive

system is not solely determined by its feasibility, but also by its impact. Initially,

starting from the attack entry, CarVal calculates the attack feasibility and attack

impact of all ANs (representing specific threats) along the path. Finally, it evalu-

ates the risk values by taking into account both the feasibility and impact.

Definitions. The risk assessment module uses two metrics: feasibility and im-

pact. The specific definitions of these metrics are presented in Table 3.2. The

intrinsic feasibility and impact of a particular node are represented by lower case

f and i, respectively. These values are fixed for all generated attack path. The

cumulative metrics FAN , IAN , and RAN represent the cumulative feasibility, cu-

mulative impact, and risk value, respectively, which can vary for different attack

nodes in different attack paths.

Attack Feasibility Calculation. The cumulative on-path attack feasibility of

an attack node is calculated as the multiplication of the feasibility value in all its

premise nodes. Since all feasibility values are within the range (0,1], the cumula-

tive attack feasibility decreases as the attack path becomes deeper. The calculation

is expressed in the following equation:
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FAN = fAN ×
∏

ANi→AN

FANi ×
∏

ENi→AN

fENi ×
∏

V Ni→AN

fV Ni (3.1)

Attack Impact Propagation. Similarly, the cumulative on-path attack impact

of an AN is the multiplication of the impact value in all its premise nodes. As

all impact values are greater than 1, the cumulative attack impact will increase as

the attack path gets deeper. This calculation can be expressed using the following

equation:

IAN = iAN ×
∏

ANi→AN

IANi ×
∏

V Ni→AN

iV Ni (3.2)

Risk Value Calculation. The determination of the risk value associated with

a particular threat in automotive systems is based on two factors, namely, its fea-

sibility and impact. A higher feasibility and impact imply a greater risk value.

According to ISO 21434 regulation [58], the final risk value of the node is a base-

line value added by the multiplication of the feasibility and impact:

RAN = Rbase + FAN × IAN (3.3)

Rbase can be assigned with any fixed value (ISO 21434 [58] assigned this value

to be 1 for demonstration). After the above calculation, each derived attack node

is assigned with the cumulative attack feasibility, impact, and risk value on the

specific attack path.
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8: vulExists(ivi, 'lowPrivCodeExec') 9: attackerCanAccess(ivi, wifi)

7: RULE: lowPriv code execution

6: execCode(ivi,noRoot):

3: vulExists(ivi,
'unauthorizedBroadcast')

4: busTypeBroadcast(infoCAN)

5: ecuOnBus(ivi,infoCAN)

2: RULE: Broadcast on Bus via
compromised ECU

1: attackerBroadcastOnBus(ivi,infoCAN)

Figure 3.6: Example: an attributed attack path generated by CarVal.

3.6.3 A Demonstrating Example

The output of CarVal is the Attributed Attack Path (AAP), which provides both

the logical flow of how an attack can be carried out in the IVN and the quanti-

tative metrics, such as attack feasibility, impact, and risk value, associated with

each attack node on the path. Figure 3.6 illustrates an example attack path gener-

ated by CarVal, in which the attack goal is Node.1: attackerBroadcastOnBus(ivi,

infoCAN), indicating that the attacker can broadcast malicious messages on the

infoCAN bus in the IVN, by exploiting a compromised IVI ECU. Node.2 repre-

sents the reasoning rule connecting four prerequisite nodes: Nodes 3, 4, 5, and 6,

with Node.6 being the prerequisite attack node (AN), indicating that the attacker

needs to first achieve code execution in IVI. Node.3 is a vulnerability node (VN)

indicating that a vulnerability exists in IVI that allows the attacker to send crafted

messages on the internal bus. Nodes 4 and 5 are fact nodes (FN) representing

supplementary conditions, including that the target bus (infoCAN) has a broad-

cast nature (i.e., CAN bus) and IVI is connected to this particular bus. Moreover,
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Node.6 execCode(ivi, noRoot) is inferred from two additional nodes: Node.8 in-

dicating a vulnerability in IVI that allows the attacker to execute malicious code

at a low privilege level, and Node.9 indicating the attack surface – the attack starts

from the Wi-Fi channel on IVI.

The risk assessmentmodule automatically computes the cumulative feasibility,

impact, and risk value of all derived attack nodes on the path, as calculated by

Equations 3.1 to 3.3.The attack node is represented by two separate nodes: the

RULE node, indicating the intrinsic feasibility and impact (Nodes 2 and 7 in Figure

3.6), and the derived attack node, indicating the cumulative metrics (Nodes 1 and

6). The cumulative metrics of Node.6 are derived from Nodes 7, 8, and 9, while

the final cumulative metrics of the attack goal Node.1 are derived fromNodes 2, 3,

and 6. Note that Fig.3.6 is only for helping to understand howCarVal works, rather

than being comprehensive. More sophisticated attack paths that we exploited on

real cars will be detailed in §3.7.

3.6.4 Implementation

The datalog reasoning engine of CarVal is implemented based on theMulVAL rea-

soning framework [99] and XSB database system [151]. Particularly, the calcula-

tion of the attack impact, attack feasibility, and overall risk value is implemented

by Python with treelib library [135]. The code of CarVal is open-sourced in [20].

3.7 Experimental Analysis on Real Vehicles

In this section, we demonstrate how CarVal can be applied to real cars to assist the

security analysis to exploit realistic threats in automotive systems.
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3.7.1 Vehicles Under Examination

...

... ... ...

...

(a) Car A: Tesla Model S (b) Car B: BMW i3
Pin 1/9 Pin 6/14

(c) Car C: Roewe Marvel X

...

1
...
...
...
...

...

...

...

...

...

...

(d) Car D: Mercedez Benz E-
class

...

...

...

...

...

...

...

(e) Car E: Anonymous vehi-
cle

Figure 3.7: The IVN topologies and POC attack paths of five investigated vehicles.

We apply CarVal to five modern vehicles: a Tesla Model S, a BMW i3, a

Roewe Marvel X, a Mercedez Benz E-Class, and another anonymous vehicle,

which we will refer to as Car A, Car B, Car C, Car D, Car E. Particularly, Car

E is anonymized because the corresponding vulnerabilities are still under the pro-

cess of being fixed. Meanwhile, for Car A, Car B, Car C, and Car D, all vul-

nerabilities have been reported and fixed by the responsible party. All five vehi-

cles offer sophisticated IVI systems, supporting entertainment activities through

audio/video players and Web browsers, and their manufacturers provide mobile

applications for remote control, which are the new attack surfaces that previous

works failed to consider [68, 21, 84]. In addition, all five vehicles’ In-vehicle net-

work have adopted the up-to-date domain E/E architecture instead of the old two-
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bus in-vehicle network. Overall, the above new features distinguish our works

from previous ones that exploited the “old” vehicles [68, 21, 84].

3.7.2 IVN Topology Discovery

We obtain the IVN topology of target vehicles from professional diagnostic tools

([70, 134, 4]), which are the devices programmed to communicate with the vehicle

through diagnostic protocols to diagnose the possible problems of the ECUs. Par-

ticularly, these diagnostic tools are embedded with the IVN topology of the target

vehicles, in which how the ECUs are connected is presented to help the experts

quickly gain an overview of the vehicular architecture. Fig.3.7 shows the IVN

topologies of the five target vehicles we derived from the diagnostic tool.

The derived topologies are then parsed to corresponding datalog clauses, which

will serve as the Vehicle Configuration, as stated in §3.6.2. Particularly, we set var-

ious Attack Goals and Attack Entry as the input to CarVal, and the specific topolo-

gies serve as the Vehicle Configuration, to output specific attack paths. Based on

the attack paths generated by CarVal, we perform security analysis accordingly

and finally exploited the practical attack chains and launched PoC attacks on real

cars. In the following sub-sections, we will detail these attack paths and our cor-

responding security analysis.

3.7.3 Path 1: Bypassing gateway: from IVI browser to BCM

The IVI ECU, which is responsible for entertainment and communication func-

tionalities within the vehicle, often contains a wide range of attack surfaces, and is

often equipped with functionalities to control the BCM ECU. However, as shown
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22: vulExists(ivi, 'lowPrivCodeExec')

23: attackerCanAccess(ivi, browser) 21: RULE: lowPriv code execution

20: execCode(ivi,noRoot):

18: vulExists(ivi, 'unauthorizedBroadcast')

19: busTypeBroadcast(infoCAN)

14: ecuOnBus(ivi,infoCAN)

17: RULE: Broadcast on Bus via
compromised ECU

16: attackerBroadcastOnBus(ivi,infoCAN)

15: ecuOnBus(gtw,infoCAN)
15: RULE: attack ECU by broadcasting on Bus

13: vulExists(infoCAN,  'lackMessageAuth')

11: inDomainBroadcastAttackECU(gtw,infoCAN,ivi)

10: ecuOnBus(gtw,bdCAN)

9: busTypeBroadcast(bdCAN)

7: vulExist(gtw, 'badForwading')

6: RULE: broadcasting via bypassing gtw

5: crossDomainBroadcastAttackECU(bdCAN,gtw,infoCAN)

4: ecuOnBus(bcm,bdCAN) 2: RULE: crossdomain to attack ECU

3: vulExists(bcm,  'lackMessageAuth') 1: crossDomainBroadcastAttackECU(bcm)

Figure 3.8: Attack Path 1: the attacker obtain code execution in IVI via IVI
browser, and finally controls the BCM ECU via sending crafted bypass messages
to gateway. This attack path is exploited on Car A, Car B, and Car C.

by the specific topologies, the IVI and BCM are segmented by the gateway ECU,

making previous injection attacks [68, 21] infeasible in this new IVN topology.

To demonstrate the capability of CarVal to generatemulti-stage attack paths in the

increasing complex IVN topology, we set the attack entry on the IVI ECU, and

the attack goal on the BCM ECU, to generate the corresponding attack path that

shed light on the subsequent analysis including TARA and security testing. The

logical attack path is shown in Fig.3.8, in which five attack nodes (Node.20, 16,

11, 5 and 1) are involved to reach the final attack goal. First, the attacker ex-

ploits IVI vulnerabilities via the IVI browser to obtain code execution (Node.20).

By compromising the interface between IVI and in-vehicle bus infoCAN, the at-

tacker broadcasts messages on infoCAN (Node.16), affecting the gateway ECU
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(Node.11). Then, the attacker crafts malicious messages to bypass the gateway

and reach the bdCAN (Node.5), and finally transmits the attack message to the

BCM ECU (Node.1).

PoC attack. The attack path in Fig.3.8 is validated on three vehicles: Car A,

Car B and Car C, and we have conducted PoC attacks on these real vehicles. This

attack path is demonstrated as the red bold line in Fig.3.7.(a), (b), (c) (from IVI to

GTW and then to BCM). We first send malicious web pages to IVI browsers, ob-

tain code executions on IVI, and compromise the interface from IVI to in-vehicle

networks. By crafting bypass messages, we make the gateway transmit our mali-

cious messages to the BCM ECU, allowing remote vehicle control.

Insights. By exploiting the attack path in Fig.3.8, we have demonstrated the

significance potential threats in IVI software, with the representation of a new at-

tack surface - browser, which is a general user interface that allows remote access

and can be especially vulnerable if developed without caution [37, 40]. Addition-

ally, we demonstrated the capability of CarVal to infer the multi-stage attack in

complex IVN architecture.

3.7.4 Path 2: From Official APP to Car Control

The second attack path we demonstrate involves a replay attack, initiated from

the official mobile app, to gain control over the vehicle’s BCM. We selected the

official mobile apps as the investigated attack surface due to their remote access

functionality and the severe consequences of a potential compromise. Compared

to dongle apps [149], which require a third-party device attached to the OBD port,

the official app functions without external devices and is typically installed on the
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7:vulExists(app,'improperKeyStorage') 8:attackerCanAccess(app,malware)

6:RULE (attacker obtain sec Key)

5:attackerCompromiseSecrectKey(app)

11:vulExists(app,'lackProtectionOnAppCode') 12:remoteControlEnabled(app,ble,tcu)

10:RULE (attacker reverse-engineer APP)

9:attackerCompromiseAppAuthProcess(app,tcu)

4:RULE (replay control via APP malware)

3:attackerReplayControlbyAPP(tcu)

13:telematicsControlCanReach(bcm)

1:attackerReplayControlbyECU(tcu,bcm)

2:RULE (replay control via TCU to another ECU

Figure 3.9: Attack Path 2: Control BCM by compromising the wireless communi-
cation between mobile app and telematic (i.e., TCU). This attack path is exploited
on Car C.

vehicle owner’s phone. Consequently, if this official app is compromised, many

on-road vehicles could be affected, causing significant financial damage to the

manufacturer. The associated logical attack path is illustrated in Fig.3.9, involv-

ing four attack nodes (Nodes 5, 9, 3, and 1) to achieve the final attack goal. First,

due to insufficient application code protection (e.g., lack of code obfuscation or

encryption), an attacker can conduct extensive security analyses on the application

code (e.g., reverse-engineering) to recover the authentication process between the

app and the Telematics Control Unit (TCU) (Node.9). Subsequently, with mal-

ware installed on the victim’s mobile phone, the attacker can access the secret key

used for the authentication process (Node.5). Upon obtaining both the secret key

(Node.5) and the authentication algorithm (Node.9), the attacker can impersonate

the official app using malware and launch a replay attack on the TCU (Node.3).

Finally, since the TCU can invoke control functions on the BCM, the attacker can

initiate these controls by launching replay attacks from the malware (Node.1).

PoC Attack. The attack path in Fig.3.9 was validated on Car C. This path is

represented as the red bold line of TCU to Gateway (GTW) to BCM in Fig.3.7.(b).
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Official App Vehicle

UUID: Control request
Value: fixed payload

UUID: Authentication challenge
Value: 6-byte challenge code (random)

Randomly generate 
challenge code

Compute  
authentication 

response UUID: Challenge response
Value:6-byte response Verify response

Action! 

Figure 3.10: Car C: Remote control process of the mobile app via BlueTooth Low
Energy (BLE).

Specifically, by conducting extensive security analyses on the corresponding mo-

bile app, we recovered the authentication process, as shown in Fig.3.10. Our anal-

ysis revealed that: 1) the secret key used for authentication is set to update every

three months, which is too long and allows the attacker the opportunity to crack

this key; 2) the code contained in the APK file is not protected by obfuscation or

encryption, enabling the attacker to directly access essential data through static

analysis (e.g., the UUID used for BLE communication); 3) the code to generate

the challenge response for the control request is called by the Java Native Interface

(JNI) [63], and the critical authentication algorithm is stored in a .so file without

obfuscation or encryption. Consequently, we launched a replay attack based on

these vulnerabilities to remotely control the vehicle’s door using an unrooted mal-

ware that sends crafted BLE messages, ultimately performing car control actions

such as unlocking the door and opening the trunk.

Insights. While previous research focused on the security of OBD-dongle apps

[149], we present the first practical attack that exploits vulnerabilities in the official

mobile app to control a vehicle. We demonstrated that the official mobile app is a

critical attack surface for modern vehicles and should be stringently protected.
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3.7.5 Path 3: Multi-stage root via in-vehicle Ethernet

12:vulExists(ivi,'lowPrivCodeExec')

13:attackerCanAccess(ivi,browser)

11:RULE (lowPriv code execution)

10:execCode(ivi,noRoot)

8:RULE (Priviledge Escape)9:vulExists(ivi,'privEscape')

7:execCode(ivi,Root)
14:ecusConnected(ivi,ethernet,ape)

6:vulExists(ape,lowPrivCodeExec)
5:RULE (Expand code execution)

4:execCode(ape,noRoot)
3:vulExists(ape,privEscape)

2:RULE (Priviledge Escape)1:execCode(ape,Root)

Figure 3.11: Attack Path 3: Multi-stage rooting via in-vehicle Ethernet. This at-
tack path is exploited on Car A.

The third attack path we demonstrate illustrates a practical case of how an at-

tacker can expand the scope of attack impact within an IVN. The corresponding

logical attack path, based on the topology of Car A, is shown in Fig.3.11. In this

attack path, the attacker first obtains root code execution in the In-Vehicle Infotain-

ment (IVI) system by exploiting specific vulnerabilities (Nodes 10 to 7). Next, by

leveraging a vulnerability between the IVI and Autopilot ECU (APE), the attacker

expands code execution privileges from the IVI to the APE (Node.4). Finally, by

exploiting a vulnerability in the APE, the attacker gains root execution in the APE

(Node.1).

PoC attack. The attack path in Fig.3.9 is validated on Car A. Specifically,

by conducting extensive security analysis on the IVI, we successfully obtain code

execution via the browser’s attack surface (Node.10) and further gain root code ex-

ecution by exploiting a vulnerability in the outdated OS implementation (Node.7).

Afterward, we identify that the IVI and APE communicate using an unencrypted
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UDP [139] protocol. By exploiting a vulnerability in the APE’s update process,

we successfully execute our code in the APE (Node.4). Finally, by compromis-

ing the authentication within the APE, we obtain root code execution in the APE

(Node.1).

Insights. The exploitation of Path 3 demonstrates how an attacker can expand

the impact range in the IVN. Specifically, we show that an attacker can exploit

in-vehicle vulnerabilities to gain root access to another ECU (APE) that has no

direct communication channel with external clients. As IVN topologies become

increasingly complex and information exchange between ECUs intensifies, it is

crucial to address such threats to ensure IVN security.

3.7.6 Path 4: From Cloud to Car Control

13:attackerCanAccess(tcu,physical)

12:vulExists(tcu,'improperKeyStorage') 11:RULE (Steal keys in ECU)

10:attackerStealKeys(tcu)

9:vulExists(server, 'serverShellExposed')

5:vulExists(server, 'vulSendingControl')

8:RULE (get server shell)

7:attackerGetServerShell(server)

6:ecuControlledbyServer(tcu)
4:RULE (send command from Server to ECU)

3:attackerSendServerControlTo(tcu)14:ecuReceiveControlFrom(bcm,tcu)

2:RULE (send control command to ECU) 1: attackerSendControltoECU(bcm)

6:ecuConnectedToServer(tcu,server)

Figure 3.12: Attack Path 4: Compromising the backend server and sending control
command back to vehicle. This attack path is exploited on Car D.

We also exploit a practical attack chain from a new attack surface, the back-

end server, to control the car. The corresponding logical attack path is shown

in Fig.3.12. Specifically, the Telematics Control Unit (TCU) is responsible for
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remote communication, including transmitting messages with the mobile app (as

shown in Path.3) and the backend server. Due to improper secret key storage in

the TCU, an attacker can steal these keys by analyzing the TCU (i.e., dumping the

firmware and performing reverse engineering), as shown in Node.10 of Fig.3.12.

After obtaining the keys, the attacker accesses the server and achieves code ex-

ecution (e.g., obtaining a shell) on the server by exploiting corresponding vul-

nerabilities (Node.7). With code execution, the attacker further analyzes how the

server sends control commands to the TCU and replays these control commands

(Node.3). Finally, upon receiving the malicious control messages sent by the at-

tacker from the server side, the TCU triggers the control of the BCM (Node.1).

PoC attack. This attack path is validated and exploited on Car D. We first

perform reverse engineering on the firmware dumped from the TCU and identify

that the certificate used to establish authenticated connections with the intranet

server is hard-coded in the firmware, which can be directly accessed (Node.10).

Once the intranet server is accessible, we obtain the server shell by exploiting a

Server-Side Request Forgery (SSRF) vulnerability (Node.7). With shell access on

the server, we further analyze how the server sends commands to the vehicular

TCU and can successfully send control commands to any vehicle by its Vehicle

Identification Number (VIN) (Node.3), ultimately invoking control on the BCM

(Node.1). In Fig.3.7.(d), this attack path originates from the Cloud, proceeds to

the TCU, and bypasses the Gateway (GTW) to reach the BCM.

Insights. This attack path demonstrates the feasibility of vehicle control from

the backend server, a new attack surface in modern vehicles. These servers are

responsible for handling sensitive information, such as personal and financial data,

as well as controlling critical systems within the vehicle.
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3.7.7 Path 5: From IVI malware to Car Control

10:vulExists(ivi, 'poorCheckOnApk')

11:attackerCanAccess(ivi,wifi)

9:RULE (inject malware APK on ECU)

8:attackerInstallMalware(ivi)

6:RULE (root ECU)7:vulExists(ivi,'privEscape')

5:execCode(ivi,'Root')

3:vulExists(ivi,'vulControlSending')

4:ecuControlCanReach(ivi,bcm)

2:RULE (send control command to ECU)

1:attackerSendControltoECU(bcm)

Figure 3.13: Attack Path 5: Invoking vehicular controls of BCM from the mali-
cious application in IVI. This attack path is exploited on Car E.

The last attack path we demonstrate involves invoking the control of the BCM

from a malicious application installed in the IVI. The corresponding logical attack

path is shown in Fig.3.13. In the previous Path 2, we demonstrated that an attacker

can launch remote vehicular control from malware installed on a victim’s mobile

device. However, as IVIs become more complex, many IVIs are now equipped

with intelligent operating systems (e.g., Android or Android Automotive) that al-

low users to install various applications, introducing corresponding risks. Specifi-

cally, as shown in Fig.3.13, by exploiting a vulnerability in the installation process

(e.g., lack of authentication on the APK file), an attacker can inject a malicious ap-

plication into the IVI (Node.8). By further exploiting a vulnerability in the IVI,

the attacker can escalate from low privilege to root code execution (Node.5), and

finally send control commands to the BCM (Node.1).

PoC attack. The attack path is validated and exploited on Car E. Specifically,

we identify that the IVI of Car E is implemented with the Android OS, allowing

users to install Android applications. By conducting extensive security analysis
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on the IVI and sniffing the network, we identify a vulnerability that allows us

to launch a Man-In-The-Middle (MITM) attack and inject a malicious app into

the IVI (Node.8). The malicious app contains code to root the IVI using a corre-

sponding vulnerability (Node.5) and finally invoke vehicle controls on the BCM,

including unlocking doors and opening trunks (Node.1).

Insights. As modern vehicles become increasingly intelligent and connected,

the IVI system grows more complex, making it crucial to ensure the security of in-

vehicle applications. This attack path highlights the importance of securing the IVI

and related applications, as vulnerabilities in these systems can lead to attackers

gaining control over critical vehicle functions.

3.7.8 Responsible Disclosure

We have reported all vulnerabilities identified in Car A, Car B, Car C, and Car D

to the respective manufacturers, and they have been promptly addressed. For Car

E, we have recently reported the corresponding vulnerabilities and are awaiting a

response. Consequently, we have anonymized the car brand and specific model of

Car E for the time being. The details of our security analysis on these vehicles,

including the security testing process, disclosure timeline, and implemented fixes,

are available in [20].

3.7.9 Summary on Our Attacks

We would like to emphasize our contributions from the following aspects:

Attack path guidance. As identified in our interviews, conducting security

activities (e.g., TARA and security testing) can be labor-intensive due to the ab-
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sence of automated tools. In our experimental analysis, we demonstrated how

attack paths generated by CarVal can aid security testing, showing that our auto-

mated tool is a valuable complement to the TARA methodology [58].

New attack surfaces. We explored a range of new attack surfaces that previ-

ous studies did not address, emphasizing the importance of protecting emerging

attack surfaces as the automotive industry rapidly evolves.

Multi-stage attack in complex IVNs. Our attack path reasoning and corre-

sponding security analysis is based on the gateway-segmented IVN [66, 53] in five

real vehicles, which is more complex than traditional architectures without gate-

ways [68, 21]. Furthermore, increasingly complex and advanced IVNs are under

development [7]. As such, CarVal can automatically reason attack paths in the

context of these increasingly complex IVNs.

3.8 Discussion

While previous threat modeling tools [130, 113, 38, 100] provide instructions on

performing each sub-task of TARA (e.g., the 7 TARA tasks indicated by ISO

21434), they mainly focus on presenting manual workflows without offering au-

tomatic solutions. In comparison, CarVal leverages Datalog to automatically in-

fer attack paths and assess corresponding risks, making the entire TARA process

more efficient. Additionally, existing threat modeling tools [130, 113, 38, 100]

often offer high-level guidance with limited use cases, leaving gaps in their prac-

tical application to real vehicles. In contrast, CarVal provides a specific solution

to model the IVN using Datalog clauses, enabling automatic attack path reasoning

and risk assessment. We also demonstrated how CarVal aids analysis using real
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vehicles as examples. Furthermore, it is important to discuss an earlier work [78]

that investigates the safety aspects of autonomous driving systems and identifies

similar challenges, such as limited automation and tool support. They also con-

ducted semi-structured interviews with vehicle companies worldwide and went

further by including an in-depth survey, which adds quantitative support to their

findings and suggests future directions. In comparison, while [78] centers on the

safety of autonomous driving systems, our study focuses on security regulations

and standards, includingWP29 R155 and ISO 21434. This serves as a supplement

to their work, together offering a comprehensive view of industry needs from var-

ious aspects. Finally, note that CarVal is not intended to fully replace current

threat modeling tools. Instead, it can be used in conjunction with other TARA ap-

proaches, including existing threat modeling tools. For instance, a team can first

perform manual threat modeling of the automotive system (e.g., identifying assets

and threat scenarios as indicated by ISO 21434 [58]), and then utilize CarVal to

generate attack paths and assess risk values.
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Attacking ADS Perception

4.1 Overview

Autonomous driving is developing rapidly and has achieved promising perfor-

mance by adopting machine learning algorithms to finish various tasks automat-

ically. Lane detection is one of the major tasks because its result directly affects

the steering decisions. Although recent studies have discovered some vulnerabil-

ities in autonomous vehicles, to the best of our knowledge, none has investigated

the security of lane detection module in real vehicles. In this paper, we conduct

the first investigation on the lane detection module in a real vehicle, and reveal

that the over-sensitivity of the target module can be exploited to launch attacks on

the vehicle. More precisely, an over-sensitive lane detection module may regard

small markings on the road surface, which are introduced by an adversary, as a

valid lane and then drive the vehicle in the wrong direction. It is challenging to

design such small road markings that should be perceived by the lane detection

module but unnoticeable to the driver. Manual manipulation of the road markings
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to launch attacks on the lane detection module is very labor-intensive and error-

prone. We propose a novel two-stage approach to automatically determine such

road markings after tackling several technical challenges. Our approach first de-

cides the optimal perturbations on the camera image and then maps them to road

markings in physical world. We conduct extensive experiments on a Tesla Model

S vehicle, and the experimental results show that the lane detection module can be

deceived by very unobtrusive perturbations to create a lane, thus misleading the

vehicle in auto-steer mode.

In summary, we make the following major contributions:

• We conduct the first investigation on the security of the lane detection module

in real vehicles and reveal that its sensitivity can be exploited by an adversary to

generate fake lanes and consequently mislead the vehicle.

• We perform reverse engineering on the firmware of Tesla Autopilot to locate the

input camera image and the output lane image. With this information, we propose

a novel two-stage approach to generate the optimal perturbations against the lane

detection module.

• We conduct extensive experiments on a Tesla vehicle (Tesla Model S)[127]

to evaluate our approach. The experimental results show that the lane detection

module in Tesla Autopilot is vulnerable to our attack and our approach can quickly

generate effective perturbations.

4.2 Background

Deep neural networks (DNNs) have become the cornerstone of many technolog-

ical advancements, particularly in the realm of computer vision and autonomous
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systems. Despite their impressive capabilities, DNNs are not without vulnerabili-

ties. Adversarial attacks, where models are fooled by inputs that are imperceptibly

altered to humans, have exposed significant security concerns [121, 103, 75, 154].

These attacks are not limited to adversarial examples but extend to poisoning and

backdoor attacks as well [45, 60, 104]. In the specific context of autonomous driv-

ing, lane detection is a critical component for vehicle safety, guiding vehicles to

stay within their lanes. While traditional methods for lane detection have relied on

hand-picked features [15, 65, 123], the advent of DNNs has significantly improved

the performance of these systems due to their superior feature extraction capabil-

ities [56, 72, 76, 90]. The security of autonomous driving systems, which often

leverage DNNs for processing vision data, is paramount, as failures can have dire

consequences [128, 137]. Physical adversarial examples have been demonstrated

to mislead DNNs in real-world scenarios, such as misclassifying traffic signs [39]

or causing incorrect vehicular navigation [155, 115].

4.3 Attack Methodology

In this section, we first introduce the threat model and then give an overview of

our two-stage attack approach.

4.3.1 Threat Model

We assume that an attacker has an autonomous vehicle, whose lane detection mod-

ule is the same as that of other vehicles of the same model, but does not have any

previous knowledge about the module (i.e., black-box setting). The attacker aims

to add unobtrusive markings on the ground so that the lane detection module rec-
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ognizes them as a valid lane and consequently the victim autonomous vehicle will

be misled.

An intuitive attack approach is to placemarkings at the possible area of the road

and check whether the vehicle will be misguided. If not, the attacker can change

the position and the shape of the markings and repeat the try-and-error method

until the attack succeeds. However, this approach is very labor-intensive and error-

prone because of the unlimited number of possible ways to modify and place the

markings. Our approach to be described in §4.3.2 tackles these limitations.

4.3.2 Our Approach

This section introduces the workflow of our approach, the challenges to be ad-

dressed, and the key ideas of our solutions.

4.3.2.1 Workflow

We first locate the input camera image to the lane detection module and the cor-

responding output lane image by conducting static and dynamic analysis on the

firmware (in §4.4). Then, we carry out the two-stage attack as shown in Fig. 4.1.

Stage 1. Finding the best perturbation in digital world. We formulate an op-

timization problem based on the visibility of the perturbation and the visibility of

the corresponding detected lane to find the best perturbation that can lead to a fake

lane but is unnoticeable to human perception.

Stage 2. Deploying markings in physical world according to the best per-

turbation. According to the best perturbation in digital world, we deploy the

markings in physical world and then evaluate the attacks on a real vehicle.
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Camera	image
(from	Autopilot)
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Figure 4.1: Overview of our two-stage approach. In the first stage, we add the
perturbation, which is based on physical coordinate, to the camera image, and
then feed the modified camera image to the lane detection module to generate the
corresponding lane image. We formulate an optimization problem based on the
visibility of perturbation and that of detected lane and adopt heuristic algorithms
to find the best perturbation, which is unobtrusive to human but causes the lane
detection module to output an obvious lane. In the second stage, we deploy the
best perturbation in physical world according to the attributes of the best pertur-
bation.

4.3.2.2 Challenges

Three challenges should be tackled to realize our approach.

C1. How to locate the input camera image and the corresponding output

lane image in the vehicle? Our two-stage attack approach needs to access the

input camera image and the output lane image. However, it is non-trivial to locate

them since the lane detection module is in the closed-source firmware of Tesla

Autopilot and the algorithms are executed inGPUusing undocumented proprietary

instruction sets.

C2. How to add perturbations to input camera image? An intuitive method is

to add perturbations at the pixel level without considering the physical deployment.

However, it may not be possible to implement such perturbations in physical world

because it is not easy to accurately project the pixels to physical world, considering

the distortion of the lens.
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C3. How to find the best perturbations? The best perturbations should be as

unobtrusive as possible so that drivers cannot notice them and meanwhile they

can force the lane detection module to output a fake lane. It is challenging to find

the best perturbations because the target model is in black-box setting so that the

gradient-based optimization methods [109] cannot be applied.

4.3.2.3 Solutions

S1 (§4.4). We reverse engineer the firmware of Tesla Autopilot through static

and dynamic analysis to locate the input camera image and output lane image.

In particular, by exploiting the observation that Tesla Autopilot is powered by

NVIDIA DRIVE technology [126] and its deep-learning computation follows the

CUDA programming model [28] and is finished in GPU, we focus on locating and

extracting the images in GPU memory. More precisely, after finding the binary

responsible for lane detection, we conduct static analysis to find out when the

images are available in GPU memory, and then instrument the binary and perform

dynamic analysis to determine the memory addresses of the images. After that,

we employ CUDA APIs to extract and modify the target images.

S2. We use a vector containing metrics from the physical world to represent the

perturbations in digital world, and design the formula, which is based on the pin-

hole camera model and camera calibration, to map the digital perturbation to the

markings in physical world (in §4.5.1).

S3. We design two metrics to quantify the visibility of the perturbation and that

of the corresponding detected lane, and formulate an optimization problem for the

best perturbations (in §4.5.2.2). Then, we use five heuristic algorithms to find the

best perturbation in digital world.
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4.4 Accessing Data in Tesla Autopilot

This section details S1 for locating the input camera image and the corresponding

output lane image in the vehicle.

4.4.1 Overview

4.4.1.1 Firmware under examination

Our target vehicle is Tesla Model S 75, with the Autopilot hardware version of

2.5 and software version of 2018.6.1. It is worth noting that our methodology

can be applied to other autonomous vehicles. The vehicle is running an AArch64

Linux operating system and uses NVIDIA GPU for deep learning computation.

In the file system of Tesla Autopilot, there is a binary named vision. Through

reverse engineering, we find that this binary is responsible for vision-related tasks

including lane detection. It transmits the data of camera images into the GPU

memory and finishes the vision-related computing tasks, in which lane detection is

involved. The lane recognized by this binary will affect the steering decision when

Autopilot is in auto-steer mode (demonstrated in §4.6). Since this vision binary

can directly interact with the camera image and lane image in GPU memory, we

carry out static and dynamic analysis on it to locate and access the target images.

4.4.1.2 CUDA

Tesla Autopilot uses NVIDIAGPU to execute its deep-learning algorithms, whose

implementation follows the CUDA programming model [28]. We first introduce

some necessary knowledge about CUDA programming because it is exploited by

us to locate the target images.
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CUDA programs usually involve two kinds of hardware: host (CPU) and de-

vice (GPU). If CPU needs to access data in GPUmemory, it invokes a special kind

of function named kernels. A kernel is a function executed in the GPU as an array

of threads in parallel [28]. These kernels will be launched and executed on GPU

and manipulate data in GPU memory. In other words, kernels are the functions

that run on GPU and launched by CPU. Since the lane detection is finished in GPU

and the target images (camera image and lane image) are related to lane detection,

the target images will be stored in GPU memory at certain time, and thus all we

need to do is to determine ”when” and ”where”.

CUDA provides memorymanagement functions [27] to access andmanipulate

data in GPU memory.

• cudaMalloc* [30]: Functions whose names begin with cudaMalloc are used

to allocate memory in GPU (except cudaMallocHost that allocates memory on

CPU). We denote such functions as cudaMalloc*, each of which has two types of

parameters. One is the pointer to the allocated memory and the other represents

the data’s size information. cudaMalloc* will act as the instrumentation location

for locating the lane image in GPU memory (in §4.4.3 and §4.4.4).

• cudaMemcpy* [31]: Functions whose names begin with cudaMemcpy are used

to copy data from one address to another. We denote these functions as cudaMem-

cpy*, which take in four types of parameters including source address, destination

address, size information, and the mode that represents the direction of the copy-

ing operation: host to GPU, GPU to host, host to host or GPU to GPU. cudaMem-

cpy* will act as the instrumentation location for locating the camera image in GPU

memory (in §4.4.3 and §4.4.4). We also employ these functions to dump the target

images from GPU memory after we get their address and size information.
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Figure 4.2: The process of dumping and visualize the target data

• cudaConfigurecall [29]: This function will be called before each kernel is in-

voked by the host to configure the launch onGPU.Hence, we can locate the kernels

by locating the positions of cudaConfigurecalls in the binary for analysis. cuda-

Configurecall will act as the instrumentation location for dumping lane image (in

§4.4.3 and §4.4.4).

4.4.1.3 Factors required for dumping target images

We leverage the documented CUDA APIs to determine ”where” and ”when” to

get the target images. In particular, we need to know the following three factors.

1. Instrumentation location. Since the lane detection is finished in GPU, the in-

put camera images and the output lane images should be available in GPUmemory

after some specific functions are executed. We add instrumentation right after the

invocation of such functions to get the target images.

2. Starting address of the images in GPU memory. It refers to the memory

address where the image is stored in GPU memory. We need such addresses to

locate the target images.
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3. Data size. We need the size information to dump the images because they are

stored in GPU memory as raw bytes. Moreover, to visualize the raw data (i.e.,

show the images), we need to know the image resolution (i.e., rows and columns)

and the bit depth in each pixel. Fig. 4.2 shows how we dump and visualize the

images from GPU memory. With the known starting address and data size, we

instrument the binary to dump the image from the GPU memory in dynamic exe-

cution. The raw data in GPUmemory are saved into a file and visualized according

to the learnt resolution and bit depth.

We perform the following steps to determine these factors.

(1) Estimating data size (§4.4.2). We estimate the data size of camera images

from the relevant document of the hardware camera [126]. For lane image, we

conclude the data size from a file in Tesla Autopilot.

(2) Conducting static analysis to collect instrumentation location candidates

(§4.4.3). We aim to dump the camera image right after cudaMemcpy* is used to

copy the image into GPU memory. Similarly, we dump the lane image right after

the kernel for lane detection finishes its task. We conduct static analysis on the vi-

sion binary to find a list of candidates, including the invocations of cudaMemcpy*

(i.e., candidates for dumping the camera images) and the kernels (i.e., candidates

for dumping the lane images).

(3) Performing dynamic analysis to determine instrumentation location and

starting address in GPU memory (§4.4.4). Since the specific GPU memory ad-

dress and the context can only be revealed during execution, we perform dynamic

analysis to determine the correct instrumentation location and starting address.

Specifically, for input camera image, we hook all cudaMemcpy* calls and locate

the one responsible for copying camera image by checking its parameters. Simi-
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larly, we first hook all cudaMalloc* to find the starting address of the output lane

image, and then determine the kernel by checking the visualized lane image after

all possible kernels based on the data size and starting address.

4.4.2 Estimating Data Size

Size of camera image. We find the camera image‘s resolution (i.e., 1280×960

pixels) according to its hardware [126], however, the bit depth is still missing.

Therefore, we compute 32 possible data sizes according to the possible bit depth,

namely from 1-bit to 32-bit, to cover most of the possible bit depth used in digital

images. For example, if an image is in 16-bit bit depth, the data size is 1280× 960

× 16 = 19,660,800 bits (or 2,457,600 bytes). After this estimation, we get a list of

the possible data size for camera image. The specific bit depth will be determined

in dynamic analysis in §4.4.4 by hooking the cudaMemcpy* calls.

Size of lane image. We find a file in the file system of Tesla Autopilot, which

provides information about the architecture of the deep neural network used for

object detection tasks (including lane detection), such as data size and pixel depth

of the data matrix in each layer. This network has several outputs and the lane

detection result is one of them, which is a 640 × 416 matrix with 32 bits float

values. With this information, we can estimate the data size of the lane image

output, which should be 640 × 416 × 32 = 8, 519, 680 bits (or 1,064,960 bytes).

The size of the lane imagewill be the key information for hooking the cudaMalloc*

in order to find the starting address of the lane image (in §4.4.3 and §4.4.4).
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4.4.3 Conducting Static Analysis

Using IDA-Pro [57], we conduct static analysis on vision binary to determine the

instrumentation locations and add instrumentation code. We detail the instrumen-

tation locations for collecting camera images and lane images, respectively.

1.Instrumentation locations for collecting camera images. Since lane detec-

tion is finished in GPU, cudaMemcpywill be used to copy the input camera image

into GPU memory before processing. Hence, we add instrumentation right after

the invocation of cudaMemcpy for copying data into GPU memory. The instru-

mentation code will collect the parameters passed to the cudaMemcpy, including

(1) source address, (2) destination address, (3) data size, and (4) mode of transfer,

when being executed in dynamic analysis.

2. Instrumentation locations for collecting lane images. We are interested in

two kinds of instrumentation locations:

•Hooking cudaMalloc* to determine the starting address. Since cudaMalloc*

is responsible for allocating memory in GPU, the memory of the lane image will

be allocated by cudaMalloc*. In this case, we add instrumentation right after the

invocation of each cudaMalloc*, and collect the (1) memory address and (2) data

size passed to cudaMalloc*. By locating the cudaMalloc* whose data size is equal

to the estimated lane image size, we can determine the cudaMalloc* that allocates

the memory of the lane image, thus knowing the starting address of the lane image

in GPU memory.

• Hooking kernels to determine instrumentation location for dumping lane

images. Since kernel functions are responsible for the computation in GPU, we

first enumerate all kernels according to the invocation of cudaConfigureCall. There
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are totally 75 calls of cudaConfigureCall by 22 different callers. Then, we add in-

strumentation right after the invocation of each kernel, because one of them will

be responsible for lane detection and we can collect the lane image right after it

finishes. The instrumentation code will dump the lane image in GPU memory ac-

cording to the given starting address (found by hooking cudaMalloc*) and data

size.By checking whether the visualized image is the desired lane image, we iden-

tify the kernel function for lane detection.

4.4.4 Performing Dynamic Analysis

We execute the instrumented vision binary to (1) get the parameters passed to the

hooked cudaMemcpy* for obtaining the starting address and data size of the cam-

era image and determining the correct instrumentation location; (2) get the param-

eters passed to the hooked cudaMalloc* for obtaining the starting address of the

lane image, and (3) dump the lane image after each kernel candidate to determine

the instrumentation location of the lane image. The processes for camera images

and lane images are described as follows.

1. Camera image. Through dynamic analysis, we collect the following informa-

tion relevant to the input camera image: (1) data size, (2) the call of cudaMemcpy*

which copies the camera image to GPU memory, (3) the starting address of cam-

era image in GPUmemory. As specified in static analysis, we add instrumentation

after each cudaMemcpy* and collect the parameters passed to cudaMemcpy* in dy-

namic execution. From the experiment results, among the 32 different estimated

sizes, only a data size of 2,457,600 bytes is found, meaning the bit depth of the

input image is 16-bit.
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2. Lane image. For lane image, we have determined the data size in §4.4.2, and

list the 75 candidate kernels. Through dynamic analysis, we obtain the following

information: (1) the starting address of the lane image, and (2) the kernel that is

responsible for lane detection among the candidates. We first finish task (1) by

hooking the cudaMalloc*, and accomplish task (2) based on the found GPU ad-

dress in task (1). Next, we describe how we determine the starting address (task

(1)) and how we determine the instrumentation location (task (2)) of the lane im-

age, respectively.

•Determining starting address of the lane image. As specified in static analysis,

we select a list of instrumentation locations for cudaMalloc* to find the starting

address of the lane image. Using IDA-Pro, we find 77 calls of cudaMalloc*. We

add instrumentation to check the parameters passed to cudaMalloc* every time it is

called, and aim to find the cudaMalloc* call whose data size is our estimated size.

After dynamic execution, we find the specific call of cudaMalloc* whose size is

our estimated size (1,064,960 bytes), and locate the address of the lane images by

this specific cudaMalloc*.

• Determining instrumentation location of the lane image. As mentioned in

static analysis, for lane image, we find 75 possible places in vision binary for in-

strumentation. Based on the foundGPUmemory address of the lane image, we add

instrumentation to dump the images after all these kernel candidates. By visualiz-

ing the dumped data, we learn that the kernel in the function named t_cuda_lane_

detection::compute is responsible for lane detection.

Remark. We summarize the factors for camera image and lane image. For camera

image, the instrumentation location is right after the invocation of cudaMemcpy*;

the starting address is the destination address passed as a parameter to the spe-
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Figure 4.3: Mapping the coordinate of (X,Y, Z) on markings in physical world to
the coordinate of (u, v) on perturbations in digital world.

cific cudaMemcpy*; the data size is 2,457,600 bytes, with 1280×960 resolution

and 16-bit bit depth. For lane image, the instrumentation location is right after the

execution of function t_cuda_lane_detection::compute; the starting address is the

address passed to the specific cudaMalloc* which allocates the memory for the

lane image; the data size is 1,064,960 bytes, with 640×416 resolution and 32-bit

bit depth.

4.5 Two-Stage Attack

This section describes howwe add digital perturbations based on the physical met-

rics and how to find the best perturbations, which are the solutions to C2 and C3,

respectively.

4.5.1 Adding Digital Perturbations

This subsection describes the solution to C2. The goal is to obtain the digital

perturbation which is defined by physical-world attributes for easy physical de-

ployment.
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Parameters Explanation

len Length of a single perturbation
wid Width of a single perturbation
D1

Longitudinal distance from the vehicle camera
to the edge of the first perturbation

D2
Lateral distance from the vehicle

camera to the edge of the first perturbation
D3 Distance between adjacent perturbations
∆G Increment of grayscale value

of the perturbed pixels
θ Rotation angle of the perturbation
n Number of the perturbations

Table 4.1: Parameters determining the added perturbations

4.5.1.1 Projecting Physical World Markings

As shown in Fig.4.3, we use (X,Y, Z) to denote the coordinate of each pixel on

the markings in real world, which is the coordinate relative to the vehicle camera,

and utilize (u, v) to denote the coordinate of the corresponding pixel on the pertur-

bation added to the image. With the pinhole camera model, we project (X,Y, Z)

to (u, v). We also undistort the image to eliminate errors due to lens distortion

through camera calibration, thus making the projection more accurate. With this

mapping relationship, we can map any physical world coordinate (X,Y, Z) to im-

age coordinate (u, v). Hence, given a set of coordinates describing the position

of the perturbations in physical world, we can project them to digital world and

find their corresponding pixels in the camera image. Moreover, by modifying the

grayscale value of the corresponding pixels, we can add the digital perturbations

according to the physical perturbations. The reason is that in physical world the

colors of the lane lines are mostly white and yellow, and they are brighter than

the ground. Consequently, the lane line pixels in digital images are also brighter

than the surrounding pixels on the ground. Therefore, raising the grayscale value
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(representing brightness) of the selected pixels in the captured digital image can

result in the perturbations.

Figure 4.4: Illustration of the parameters of perturbations.

4.5.1.2 Parameterized Perturbations

For the ease of deployment, we use 8 parameters, which are listed in Table 4.1

and shown in Fig.4.4, to characterize the digital perturbations. len and wid deter-

mine the shape of the perturbations. D1,D2, andD3 determine the position of the

perturbations. ∆G is the increment of grayscale value of the pixels on the pertur-

bation. n represents the number of perturbations (for example, n = 2 in Fig.4.4).

Higher value of ∆G and more number of perturbations n make the added pertur-

bation more obvious. θ is the rotation angle of the perturbations. The 8 parameters

comprise a vector x:

x = (len, wid,D1, D2, D3,∆G, θ, n) ∈ X (4.1)

The measurement of len, wid,D1,D2,D3 and θ is based on physical metrics.

The unit of len, wid, D1, D2, D3 is centimeter, and that of θ is degrees. ∆G is
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an 8-bit number ranging from 0 to 255 (we convert the 16-bit camera image into

8-bit for the ease of computing and visualization). Note that when n = 1, D3 is

invalid and has no influence on the added perturbation, because there is only one

perturbation in view.

The range of x is denoted asX . len,wid,D1,D3,∆G and n should be positive

values. D2 and θ can be positive or negative. Positive values of D2 mean that the

perturbation is on the left side of the vehicle, and negative means the right side.

Positive value of θ represents that the perturbation is rotated towards the right

direction of the vehicle, and negative means left.

4.5.2 Finding the Best Perturbations

We design two metrics to quantify the quality of the perturbations in digital world,

based on which we construct an optimization problem for finding the best pertur-

bations.

4.5.2.1 Quality of Perturbations

Since a good perturbation should be unnoticeable to the driver but cause the lane

detectionmodule to generate a fake lane, we quantify its quality from the following

two aspects:

Visibility of lane. The perturbations should lead to a strong and stable fake lane

in the output lane image.

Visibility of perturbation. The perturbations should be as unobtrusive as possi-

ble.

We define the following two metrics to quantify the visibility of lane and that
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of perturbation, respectively:

Vlane(x) =
∑

p∈laneo(x)

Gp (4.2)

Vperturb(x) =
∑

p∈perturbi(x)

∆G, ∆G ∈ x (4.3)

We also define S(x) = Vlane(x)
Vperturb(x)

to be the overall score of perturbations. The

explanations of the equations are listed in Table 4.2.

Parameters Explanation

p One single pixel in the image
laneo(x) Lane pixels in the output image

perturbi(x) Pixels on the added perturbations
Gp Grayscale value of pixel p

Vlane(x) Visibility of the fake lane created by x
Vperturb(x) Visibility of the perturbations added by x

S(x) Overall score of the parameter x

Table 4.2: Equation parameters explanations

Vlane(x) denotes the visibility of the fake lane in the output lane image. It

is computed by summing up the grayscale values of each lane line pixel (each

Gp represents the confidence of the current pixel). The higher value of Vlane(x)

represents higher visibility of the fake lane.

Vperturb(x) is the visibility of the perturbation added to the input camera image.

This score combines the number of added pixels and the increment of grayscale

values of these pixels to represent visibility. The lower value of Vperturb(x)means

that the perturbations are more unobtrusive to human.

S(x) is the overall score of the crafted perturbation. A high value of S(x)

means that the perturbation leads to a strong fake lane while being unobtrusive at
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the same time. If the perturbations fail to create a fake lane, S(x) should be zero.

4.5.2.2 Optimization problem

To achieve the best attack performance, we look for x∗ that results in the highest

overall score S(x).

x∗ = max
x∈X

S(x), (4.4)

where x is a 8-dimension vector in range X , and the output score S(x) is a real

number. We use five heuristic algorithms to find x∗, namely beetle antennae search

(BAS), particle swarm optimization (PSO), beetle swarm optimization (BSO), ar-

tificial bee colony (ABC) and simulated annealing (SA). To solve the optimization

problem, these algorithms first initialize one or more random input vector(s), and

iteratively improve the input vector(s) based on the output score.

These algorithms could be differentiated according to two aspects. First, is the

algorithm greedy or not? ”Greedy” means that the algorithm always updates the

searching position to the direction where the target value is likely to be higher.

BAS, PSO, and BSO are ”Greedy”, because they always encourage the search-

ing position to move to coordinates where the value is higher, based on the hints

found by the algorithms. ABC and SA are not ”Greedy”, because they essentially

randomly update the position, and accept better solutions with higher possibilities.

Second, do the searching individuals of an algorithm adopt a cooperative way to

share information or not? ”Cooperative” means that the searching individuals will

share information with others, and update positions based on the group informa-

tion. PSO, BSO, andABC are ”Cooperative”, because each individual in the group

shares his own information to help other individuals. By contrast, in BAS and SA,
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each individual works independently.

Note that n and θ are not put into the algorithms due to two reasons. First, since

perturbation number n is a discrete variable while other parameters are all continu-

ous variables, the optimization problem will become a mixed discrete-continuous

optimization problem if n is considered and it is hard to find the optimal result. We

will investigate it in future works. Second, since rotation angle θ is determined by

the intention of the attack, a value of θ found by the algorithms may not meet the

demand of the attacker. Therefore, we fix n and θ to constants, and discuss their

impact in §4.6.

We evaluate our attack on the lane detection module by answering six research

questions (RQs).

RQ1: How efficient are the heuristic algorithms to find the best perturbation?

Motivation: Wewant to identify the most efficient heuristic algorithm for finding

the best perturbations.

Approach: We carry out the experiment with five heuristic algorithms, namely

BAS, PSO, BSO, ABC, and SA, where PSO, BSO and ABC require multiple in-

puts working together, because these inputs will share information with each other,

whereas BAS and SA work with a single input. For fair comparison, we also let

BAS and SA have multiple inputs.

When looking for the best x, we record both the highest score S(x) of the per-

turbations in history (top-1 score) and the average score of the top 10 perturbations

(top-10 averaged score) to rule out contingency (i.e., an algorithm accidentally

finds the best solution). If one algorithm achieves high score in both top-1 score

and top-10 averaged score, its efficiency is no coincidence and is reproducible.

Since the effect of parameter n and θ is evaluated in RQ2, inRQ1we let n = 1
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and θ = 0. Moreover, we focus to generate perturbation only on the left-hand side

in RQ1 and discuss the right-hand side in RQ2. We implement the five algorithms

with Python, and evaluate their performance with different parameters.

Results: Fig.4.5(a)-(f) show the experimental results. The X-axis is the number

of search rounds, and the Y-axis is the best S(x) (left figure) or the top-10 aver-

aged S(x) (right figure) of the current search round. For an efficient algorithm, it

should (1) converge quickly, and (2) achieve high score in both top-1 S(x) and top-

10 averaged S(x). Fig.4.5(a)-(e) represent the performance of BAS, PSO, BSO,

ABC and SA, respectively, and Fig.4.5(f) compares the best results of the five al-

gorithms. As shown in Fig.4.5(f), the five algorithms have different performance.

The experimental results show that ”Greedy” and ”Cooperative” algorithms (e.g.

PSO, BSO) converge faster and find higher score in both top-1 S(x) and top-10

S(x), than other algorithms. Moreover, according to Fig.4.5.(f), PSO finds the

highest S(x) (both top-1 and top-10) among all five algorithms. Only ABC con-

verges faster than PSO, however, the top-1 and top-10 averaged S(x) found by

ABC are much lower than that of PSO.

4.6 Evaluation

Fig.4.6 shows one of the best perturbations. Given the original input camera im-

age, the lane detection module does not output a lane. After an unobtrusive per-

turbation (pointed out by the arrow in the image) is added, a clear lane is detected

and shown in the output lane image, although the perturbation is nearly invisible

to human perception and is unlikely to be treated as a valid lane. The parameters

of this perturbation is: wid = 1cm, len = 92cm, D1 = 1365cm, D2 = 233cm,
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(a) Performance of BAS (b) Performance of PSO

(c) Performance of BSO (d) Performance of ABC

(e) Performance of SA (f) Comparison between different algorithms

Figure 4.5: Results of the different algorithms. Overall, PSO has the best perfor-
mance, and is the most suitable heuristic algorithm in our research.

∆G = 12 (n, θ and D3 have no influence in the setting here).

Answer: All heuristic algorithms can find best perturbations. PSO is the most

efficient one and thus we use it in other experiments.

RQ2: How do the perturbation number n and the rotation angle θ affect the

best perturbation?

Motivation: As mentioned in §4.5.2.2, we do not put perturbation number n and

rotation angle θ into the heuristic algorithms. In this RQ, we study how n and θ

influence S(x).

Approach: We adopt the same image used in RQ1 as input to generate the pertur-

bations. The perturbation number is set from 1 to 5, and the absolute value of θ is

0 to 30 degrees with the interval of 5 degrees. In this case, we have 5 settings of n

(from 1 to 5), and 14 settings of θ (from 0 to 30 degrees on both sides of the image).
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Original	camera	image Normal	output	(no	lane)

Fake	lane	detectedModified	camera	image

Figure 4.6: Effect of a best perturbation. The added perturbation is only 1cm wide
in physical world, but it causes the lane detection module to generate a fake lane.

We consider all the possible settings for n and θ, thus getting totally 5× 14 = 70

different settings of n and θ. Then, we search for the best perturbations on each

setting, and record their S(x)s.

Results: Fig.4.7 shows the scores of the best perturbations found in different num-

ber n and rotation angle θ. The X-axis represents θ and Y-axis represents n. The

intersection of two coordinates represents the best score S(x) under the corre-

sponding settings. The first row of the figure represents the average S(x) under

the specific θ, and the last column represents the average S(x) under the specific

n. The average S(x) under each setting represents the overall effectiveness for

this setting. For example, the third element on the first row represents the average

S(x) when θ = 10◦ and n is from 1 to 5, and this S(x) represents the overall

effectiveness of the perturbations when θ = 10◦.

By observing the average S(x) in each θ (first row of Fig.4.7), we find that

the average S(x) decreases with θ, for both left and right lane. Specifically, when

θ = 25◦ and 30◦, the average S(x) is obviously lower than that in other settings of
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(a) Left lane (b) Right lane

Figure 4.7: Best scores (S(x)) in different setting of n and θ in RQ2. The pertur-
bations works well in different perturbation number n, and the score reduces with
perturbation angle θ increasing.

θ. Similarly, by observing the average S(x) in each n (last column of Fig.4.7), for

left lane, we find that the perturbations with n ≤ 3 have the higher average S(x)

than n = 4 and n = 5, while for right lane, the average S(x) is similar among all

settings of n.

Answer: Perturbation numbern does not have significant effect onS(x). Rotation

angle θ reduces S(x) when it increases.

RQ3: How is the performance of our approach given different input camera

images?

Motivation: The experiments for answering RQ1 and RQ2 are based on the same

input image shown in Fig.4.6. To answer RQ3, we generate perturbations on dif-

ferent input images to evaluate the effectiveness of our approach.

Approach: Besides the input image shown in Fig.4.6, we use four other images

taken by the vehicle camera in different environments to carry out the experiment.

They are shown in Fig.4.8 and their environmental features are listed in Table 4.3.

NUM.1 is the input image used in RQ1 and RQ2. NUM.2 and NUM.3 are in the
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same outdoor environment but under different light conditions. NUM.4 is taken in

an underground garage, where the ground is clean and the light is dim. NUM.5 is

a corner where the ground is dirty. The corresponding output lane images of these

original input images do not have a lane on the expected side before we add any

perturbation to them. Similar to the settings in RQ1, we let n = 1 and θ = 0 and

use S(x) to evaluate the effectiveness of our attack.

Num Environmental Features

1 Clean and bright ground, without other disturbing objects in view
2 Clean and bright ground, with disturbing objects in view
3 Clean and dark ground, with disturbing objects in view
4 Clean and dark ground, without other disturbing objects in view
5 Dirty and bright ground, with disturbing objects in view

Table 4.3: Environmental features of different input images

Results: The input images with the best perturbations and the corresponding lane

images are shown in the upper row and the lower row of Fig.4.8.(a), respectively.

The S(x) of these examples are shown in Fig.4.8.(b). NUM.1 and NUM.4 lead

to higher score than the others, because the grounds in both images are clean and

a small perturbation can easily result in a fake lane in the output lane image. Al-

though the scores of NUM.2/3/5 are relatively low, the perturbations are unnotice-

able to human eyes and the fake lane is valid and strong.

Answer: Given different input images, our approach can successfully generate

high-score perturbations that can mislead the lane detection module without being

noticed by the driver.

RQ4: What are the common characteristics of the best perturbations?

Motivation: We want to summarize the common characteristics of the best per-

turbations obtained in different scenarios and discuss their implication.

Method: We analyze the parameters x of the best perturbations obtained in the five
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NUM.1 NUM.2 NUM.3 NUM.4 NUM.5

(a) Perturbations in different input images and the corre-
sponding outputs

(b) Scores of the perturbations

Figure 4.8: RQ3 : The output lane and corresponding scores based on different
input images. In all five different settings, we manage to find the unobtrusive
perturbations which fool the lane detection module.

Num
x

wid len D1 D2 ∆G

NUM.1 1cm 117cm 15.30m 2.23m 12
NUM.2 5cm 59cm 13.37m 2.27m 28
NUM.3 3cm 72cm 12.53m 1.51m 12
NUM.4 1cm 133cm 11.68m 1.79m 7
NUM.5 1cm 83cm 10.14m 2.38m 25
Average 2cm 93cm 12.60m 2.04m 17

Table 4.4: Parameter values of the best perturbations generated for five different
input camera images.

different scenarios for answeringRQ3 and summarize the common characteristics.

x is a 8-dimension vector but we focus on five dimensions in x, including wid and

len that denote the shape of the perturbation, D1 and D2 that indicate the relative

position, and∆G represents the increment of grayscale value of the perturbations.

We do not study n and θ because they are fixed in the experiments. Moreover,D3

is meaningless when n = 1.

Results: Table 4.4 lists the values of these five dimensions of the best perturba-

tions to different images. We summarize the characteristics from the following

three aspects.

• Shape In all scenarios, wid is much smaller than len, meaning that the ‘narrow
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Figure 4.9: The road with the crafted markings from the driver’s view. The sticker
on the left side of the road is very unobtrusive and can hardly be noticed by human.

but long’ perturbations are more effective than the ‘wide but short’ perturbations.

• Position For the position of the perturbation,D1 ranges from 10.14m to 15.30m,

and D2 ranges from 1.51m to 2.23m.

• Increment of grayscale value: The value of ∆G varies in different input im-

ages. For clean ground (NUM.1 andNUM.4) or dark grounds (NUM.3 andNUM.4),

a small increment can make the lane in the output image very obvious, whereas

‘dirty’ grounds (NUM.2 and NUM.5) require larger value of ∆G to generate a

fake lane.

Answer: ‘Narrow but long’ perturbations are more likely to create a fake lane.

The required increment of grayscale value (∆G) depends on the brightness and

cleanliness of the ground.

RQ5: How effective is the attack in physical world?

Motivation: As RQ1-4 study the attacks in digital world, for RQ5, we evaluate

the attacks in physical world by deploying markings on road surface according to

the best perturbations.

Approach: We first let the vehicle generate the input camera image in an area for

conducting this experiment, and then user our approach to find the best perturba-
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(a) Lane visibility of each frame in different n
and θ

(b) Lane visibility of each frame in different n
and light conditions

Figure 4.10: The visibility of lane changes withD1. Straight perturbations (θ = 0)
have higher lane visibility. Perturbation number n and light condition have little
effect on the lane visibility. Interested readers are referred to our demo video[33].

tions. After that, according to the information of the best perturbation, we deploy

the markings (i.e., stickers) on road surface and evaluate the visibility of the fake

lane in the lane image. We adopt the following settings for this experiment.

• Perturbation number n. Since the answer to RQ2 shows that n has little ef-

fect on S(x) of the perturbations, we choose n = 1 and n = 2 for the ease of

deployment.

•Rotation angle θ. Since the answer to RQ2 shows that θ will reduce the value of

S(x), to evaluate whether the visibility of the lane will also be affected in physical

world, we set different values to θ (0, 15◦ and 30◦) in the experiment.

•Light condition. Weconduct the experiment in both light and dark environments

to evaluate the effect.

• Longitudinal Distance D1. After deploying the stickers, we drive the vehicle

from far to close to them, and record the visibility of the lane image (Vlane(x)) to

evaluate the effectiveness of the attack with different D1. Specifically, we drive

from D1 = 15m to D1 = 3m, and record 60 frames of the lane images during the

process.

•∆G. It is difficult to implement∆G precisely in physical world because it will be

affected by some uncontrollable factors, such as the environment’s light condition
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of and the texture of the physical perturbations. In this experiment, we use white

stickers, which offers high value of∆G, to construct the perturbations in physical

world.

We use the algorithm (PSO) to find the best digital perturbation for the scenar-

ios of n = 1 and n = 2, respectively. When n = 1, its length len is 1.5m, and its

width wid is 1cm. when n = 2, the length of each perturbation is 0.4m, the width

is 1cm, and the adjacent distance is (D3) 0.7m.

Fig.4.9 shows the driver’s view of the road with the crafted markings (single

perturbation). The stickers are placed on the left side of the vehicle, and can hardly

be noticed by human.

Results: The lane visibility in this experiment is represented in Fig.4.10. The

X-axis is the longitudinal distance (D1) of each frame, and the Y-axis is the lane

visibility Vlane(x). Larger value of Vlane(x)means that the attack is more effective.

We also have the following observations.

• Perturbation number n. Compared with the setting of n = 2, the lane visibility

is higher in the setting of n = 1 when D1 ≥ 9m. Therefore, the fake lane can be

detected with different perturbation numbers. Even a single perturbation can work

in physical world.

• Rotation angle θ. Fig.4.10(a) shows the influence of θ, when n = 1 and n = 2,

respectively. In both scenarios, the lane visibility with θ = 15◦ and θ = 30◦ is ob-

viously lower than the lane visibility with θ = 0. Therefore, straight perturbations

(θ = 0) are more likely to be detected.

•Light condition. Fig.4.10(b) shows the influence of light condition, when n = 1

and n = 2, respectively. When n = 1, the lane visibility under bright and dark

condition is similar in all values ofD1. When n = 2, the lane visibility under dark

92



4.6 Evaluation

condition is higher than that in the bright condition, when D1 ≥ 7m. Hence, the

perturbations work in both bright and dark environments. Darker environments

even makes the lane visibility higher (see n = 2 in Fig.4.10.(b)).

• Longitudinal Distance D1. When n = 1, the lane visibility is higher when

5m ≤ D1 ≤ 12m. When n = 2, the lane visibility is higher when 5m ≤ D1 ≤

7m. Therefore, the fake lane can be detected in a large range of D1 (from 15m

to 3m) if the perturbations are properly implemented (like n = 1, θ = 0 in

Fig.4.10.(a)). Closer distances (D1 ≤ 9m) makes the perturbation easier to be

detected.

Answer: The crafted perturbations can be detected as fake lanes while staying

imperceptible to humans. A demo video for physical attacks can be found at [33].

RQ6: Can we misguide the vehicle in physical world?

Motivation: The over-sensitivity of the target lane detection module has been

demonstrated in both digital world and physical world through the answers to the

previous RQs (i.e., RQ1, 2, 3, 4 for digital world and RQ5 for physical world).

This RQ aims to investigate whether the control policy of the Autopilot will be

affected by the crafted markings. Specifically, if Autopilot reacts to the fake lane,

our attacks can impose a severe threat to the security and safety of the victim

vehicle.

Approach: We find that in a commonly-seen crossroads scenario (i.e., the straight

lanes disappear in front of the vehicle), the perturbations can mislead the vehicle

to the oncoming traffic lane (illustrated in Fig.4.11). Specifically, in a crossroads

scenario, we generate the perturbations that can trick the lane detection module

to output an obvious lane. After physical deployment, we switch the vehicle to

auto-steer mode and let it pass the crossroads where the markers have been added.
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Figure 4.11: RQ6: Misguide the vehicle into the oncoming traffic in the crossroads
scenario.
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Figure 4.12: RQ6: The vehicle in auto-steer mode is misled into the oncoming
traffic.

Results: We record the video showing the camera images and lane images when

the vehicle is passing the crossroads. The result shows that the perturbations can

lead to a fake lane which makes the vehicle swerve. Moreover, the vehicle was

deviated by 5.1 meters (more than 2.5 times the width of the vehicle), and followed

the fake lane to the oncoming traffic, demonstrating a severe and threat in real

world.

Fig.4.12 illustrates the whole process. In each subfigure, the upper row in-

cludes the camera image and lane image, and the lower row shows what was hap-

pening when the frame was recorded. The interpretation of each frame is as below:

Fig.4.12 (a). Before approaching the crossroads, the vehicle runs on the right-hand

side (correct direction) of the road, and the middle lane, which separates the two

directions, is correctly recognized as the left-hand side lane (shown in the lane
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image).

Fig.4.12 (b). Right before the vehicle runs into the crossroads, the perturbations

are detected and recognized as the fake lane, and therefore the vehicle starts to

swerve along with the detected lane.

Fig.4.12 (c). The vehicle follows the fake lane and swerves to the left-hand side of

the road (oncoming traffic lane). During this process, the middle lane (right lane

in lane image) was recognized as the right-hand side lane. Based on this detection

result, the vehicle runs into the oncoming traffic.

Fig.4.12 (d). Finally, the vehicle is deviated by 5.1 meters (more than 2.5 times

the width of the vehicle), and is misled into the oncoming traffic lane, and further

keeps running on this wrong direction.

Note that there is no human operation in the above process. The vehicle is

in auto-steer mode, and its average speed is above 40km/h, which is already very

dangerous in real world. Interested readers are referred to our demo video [33].

Answer: The experimental result shows that the fake lane resulted from the un-

obtrusive perturbations can successfully fool the vehicle in auto-steer mode to

swerve, and even misguide the vehicle into oncoming traffic (might hit other cars

in the oncoming traffic lane), thus demonstrating the potential severe threats in

real world.
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4.7 Discussion

4.7.1 Defense

Enhancing the lane detection module. The lane detection module can be im-

proved to distinguish crafted perturbations by two ways: (1) Detecting abnormal

lane lines by features. Since the attackers want to make the perturbations unob-

trusive, the size of the perturbations for generating the fake lane should be much

smaller than the normal lanes. Moreover, as the attackers want to mislead the ve-

hicle to cause safety and/or security consequences, the detected fake lane will be

inconsistent with the real lanes (e.g., generating sharp turns [87]). As a result, the

lane detection module can leverage these features to reject the abnormal lanes in

advance. (2) Including adversarial examples in training data. As suggested by

Goodfellow et al. [46], adding adversarial examples in the training data can make

the model more robust to adversarial attacks. Hence, images with perturbations

can be included in the training data to help the lane detection module distinguish

between crafted perturbations and real lane lines.

Enhancing the control policy. To make the control policy more robust is another

option for defense: (1) Taking into consideration other visual elements. The vehi-

cle is vulnerable to our attacks if the steering control policy just relies on the lane

detection result. Hence, it can be enhanced by involving other visual elements

(i.e., coming traffic, pedestrian) to assist the steering control. (2) Multi-Sensor

fusion. In Tesla Autopilot, the lane detection module relies on visual data. A pos-

sible defense method is to adopt multi-sensor fusion. That is, the control policy

should also take into account the information from sensors like LiDAR, Radar,

sonar and GPS. For example, the data from GPS and Radar can be used to de-
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tect whether the vehicle is deviated or running in the oncoming traffic lane. (3)

Advanced warning. As the security of autonomous driving may not be fully guar-

anteed, the vehicle should warn the driver in advance when any abnormal lane

line is detected (e.g., the size of the lane is too small or the angle of the lane is too

sharp, etc.). Moreover, to ensure safety, the vehicle should demand the driver for

manual control and quit auto-steer mode.

4.7.2 Limitations

Since our attacks exploit the over-sensitivity of the lane detection module to mis-

lead the vehicle, the crafted perturbations need to be detected by the lane detection

module and thus they cannot be completely invisible. Hence, the driver may notice

them if she knows the attack and pays full attention to the ground. However, our

attack still poses severe threats to current autonomous driving because of the fol-

lowing reasons. First, drivers are likely to pay less attention in auto-steer mode.

Without being informed of our attack, the driver may simply ignore the pertur-

bations, not to mention that the vehicle is in auto-steer mode. According to the

statistics given by the surveys [105][129], distracted driving is the top-1 reason

for car crashing. In auto-steer mode, drivers are likely to pay less attention so

that they may not notice the small perturbations which are quite different from

the real lane. Second, there is not enough time for reaction. Even if the driver

notices the perturbations when the vehicle is going to the place where the crafted

perturbations have been deployed, there may not be enough time for the driver to

react. For instance, in the experiment for answering RQ6, the speed of the vehicle

is around 40km/h, and thus it takes only 0.918 seconds to deviate the vehicle for
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5.1m. M. Green [47] shows that the driver’s reaction times for unexpected events

are between 1.20s and 1.35s (> 0.918s in our experiment). Therefore, there is not

sufficient time for the driver to take action against our attack, and severe conse-

quences might have already been caused.

Additionally, while our attack design follows the principles of adversarial attacks-

aiming to find the smallest perturbation to achieve the best attack performance, our

goal extends beyond deceiving the lane detection model. We also aim to manip-

ulate the subsequent control module to follow the detected fake lane, potentially

causing the ADS to deviate and pose safety risks. This was demonstrated in a

real-world cross-road scenario, highlighting the broader safety implications of our

attack.
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Testing ADS Controller

5.1 Overview

Ensuring the safety of autonomous driving systems has become essential, with a

surge in research focusing on identifying safety violations. However, while many

studies target violations within the planning module, there’s a significant over-

sight concerning the control module. This oversight is crucial: even if a driving

plan is correct, an erroneous control signal can deviate the vehicle off its intended

trajectory. However, how to test the control module in Autonomous Driving Sys-

tem (ADS) remains a challenge due to the lack of concrete metrics and simula-

tion scenarios. To address the above gaps, we first propose four novel metrics

to evaluate the performance of the control module, and further enhance current

scenario-based fuzzing methodology based on these metrics, which can efficiently

generate corresponding scenarios for our testing. With the help of the proposed

metrics and enhanced fuzzing approach, we conduct the first extensive evaluation

on the advanced Model Predictive Controller (MPC) of the industrial-grade ADS
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- Apollo. Surprisingly, experimental results revealed significant performance de-

fects in Apollo’s controller, rendering it unable to execute basic actions (e.g., mak-

ing a complete turn). Further investigating the controller code, we identified 14

previously undiscovered bugs responsible for such inadequacies. All identified

bugs were acknowledged, and most of them have been promptly addressed by the

official team with our assistance.

In summary, the primary contributions of this work are as follows:

• Focusing on the evaluation of the control module in ADS, we introduce 4

innovative metrics to guide the assessment of the ADS controller. Additionally,

we enhanced the existing scenario-based fuzzing framework using our proposed

metrics.

• Employing the aforementioned metrics, we carried out an extensive evalua-

tion of the advanced control module in the industrial-grade ADS system, Apollo.

Our findings indicate that Apollo’s controller struggles with basic maneuvers and

exhibits deficiencies in aspects including tracking accuracy, responsiveness, sta-

bility, and smoothness.

•We proposed an semi-automatic bug analysis approach, assisted by the VLM

integrated into a CoT process, which could effectively reason the specific bugs in

the code, based on the bug behavior and controller code logic. Assisted by this

approach, we discovered a total of 14 new bugs in Apollo’s control module. All

these bugs have been acknowledged by the official team and addressed [120].
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5.2 Background

ADS Architecture. Autonomous Driving System (ADS) architecture can be di-

vided into two main design philosophies: end-to-end design and modular design

[48, 22]. In the end-to-end design, raw sensor data such as camera feeds and Li-

DAR scans are directly processed by a deep neural network, which then outputs

the control actions like steering, braking, and acceleration without the need for in-

termediate steps. This method focuses on a streamlined system to manage various

aspects of driving but often lacks in interpretability and flexibility. In contrast,

modular design breaks down the complex task of driving into distinct modules

such as perception, planning and control. Each module serves a specific function:

perception interprets sensor data to understand the environment, planning makes

decisions based on that understanding, and control executes these decisions in the

form of vehicle maneuvers. Although end-to-end ADS has great potential, the

modular design is still the choice in current industrial-level ADS solutions, such

as Apollo [2], Openpilot [95], and Autoware [8], primarily due to its greater inter-

pretability, which allows for easier debugging and validation.

ADSWorkflow: Planning to Control. In the modular ADS architecture, the

planning and control modules work in close collaboration to ensure smooth and

safe vehicle operation. The planning module is responsible for generating a fu-

ture trajectory that the vehicle should follow, taking into account various factors

like road conditions, obstacles, and traffic rules. Once this trajectory is planned,

the control module will calculate the optimal control commands needed to ad-

here to this trajectory, using control algorithms including Proportional-Integral-

Derivative (PID) controllers or Model Predictive Control (MPC). While much of
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the previous research efforts [144, 67, 74, 79, 132] have been geared toward opti-

mizing the quality of the planned trajectory, it is equally crucial to ensure that the

control module is capable of accurately following this path.

Scenario-based Testing. There is a series of related works focus on explor-

ing the scenarios that will make the autonomous driving system go wrong [73,

67, 131, 133, 143, 156, 54, 116]. These previous works share a similar process-

ing of using fuzzing to find the violations. Specifically, starting from some basic

scenarios, the system will mutate them from various settings (e.g., the trajectory

of NPC vehicle), and calculate the fitness score of the mutated scenarios (e.g, the

distance to collision), then select the scenarios with higher fitness scores for the

next-round mutation. However, almost all previous works suffer from one major

limitation: they did not included the control module, which is the key module to

ensure the vehicle can follow the planned trajectory. Particularly, previous works

only evaluate the correctness of the planned trajectory [73, 131, 133, 143, 156, 54,

116], without considering whether the subsequent control module can follow the

trajectory. DriveFuzz [67] and Acero [116] are the only two works that involved

the control module (i.e., sending the throttle and steering command to the vehicle

instead of simply teleporting vehicles to the planned points). However, they still

failed to evaluate the inconsistency between the planning and control module. In

conclusion, none of previous works investigated the performance of the essential

control module, and thus it is unknown whether the control module can follow the

planned trajectory in a satisfying manner.
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Figure 5.1: Workflow overview.

5.3 Approach

We first present the overview of our approach in §5.3.1, and then introduce the

detailed metrics to assess the control module in §5.3.2. Finally we present our

improved fuzzing framework in §5.3.3.

5.3.1 Approach Overview

Fig.5.1 provides an overview of ourworkflow, categorized into three distinct stages:

Stage 1: Scenario Generation (§5.4). The primary objective of this stage

is to outline specific scenarios for co-simulation testing. These scenarios are de-

signed to assess the efficacy of the control module under test. We propose two

classifications of scenarios:

- Basic Scenarios ( 1⃝): In these scenarios, a vehiclemoves between two points

without encountering any external disruptions like other vehicles or pedestrians.

Throughout this journey, the planning module continually furnishes the control

module with a planned trajectory. Subsequently, the control module computes the

necessary commands to follow this trajectory. These scenarios act as a standard

metric to gauge the control module’s performance.

- Critical Scenarios ( 2⃝ 3⃝): These scenarios are particularly generated to
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challenge the control module in intricate and potentially risky situations. For in-

stance, these could encompass unpredictable vehicular behaviors.

We initiate by constructing the basic scenarios 1⃝, which encompass various

objectives (§5.4.1). Subsequently, we incorporate critical scenarios 2⃝ from prior

studies [73, 131, 133, 143, 156, 54]. Moreover, to enrich our database of critical

scenarios, we applied our new metrics to the feedback in current SOTA fuzzing

framework - Drivefuzz [67]. The combination of the basic and previously obtained

critical scenarios, 1⃝ 2⃝, act as initial seeds for the fuzzing mechanism. This pro-

cess then generates modified variants, resulting in additional critical scenarios 3⃝.

Finally, the combined set of scenarios 1⃝, 2⃝, and 3⃝ serve as comprehensive test

cases for evaluating the control module.

Stage 2: Co-simulation Testing (§5.5). At this stage, the generated scenar-

ios are executed within a co-simulation environment. The simulator (e.g., Carla),

continually transmits localization data (e.g., vehicle position and velocity) to the

autonomous driving system (e.g., Apollo). In response, the autonomous driving

system computes the control command which is then relayed back to the simulator

for execution. Throughout each scenario’s run, two trajectories are documented:

the planned trajectory and the actual trajectory. These recorded trajectories sub-

sequently act as reference points for a detailed evaluation of the control module.

Stage 3: Metric-based Assessment (§5.5) and VLM-assisted Bug Analysis

(§5.6). During this stage, an extensive evaluation of the documented trajectories

is first undertaken based on the proposed metrics. This process pinpoints specific

shortcomings of the control module (i.e., how the controller performs poorly). Af-

ter that, we conduct the VLM-assisted bug analysis on the controller code, leading

to the identification of 14 new bugs in the industrial-grade autonomous driving
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system, Apollo 8.0 [2], answering why the controller performs poorly (detailed in

§5.6).

5.3.2 Testing Metrics

Consider a planned trajectory Tp = {Pp1, . . . , Ppn} alongside an actual trajec-

tory Ta = {Pa1, . . . , Pam}. Each point in these trajectories, whether Ppx or Pax,

includes attributes such as the timestamp (t), velocity (v), positional coordinates

(x, y), acceleration (a), and more. This can be exemplified as Ppx = {tpx, xpx, ypx,

vpx, apx, ...} and Pax = {tax, xax, yax, vax, aax, ...}. Drawing insights from control

theory and autonomous driving contexts, we propose the following four metrics

specifically for the ADS control module.

- m1. Tracking Error (TE). A primary objective of the control module is

to accurately trace the planned trajectory. Hence, an ideal performance would

indicate the vehicle’s actual trajectory perfectly mirroring the planned trajectory.

This premise leads to an essential metric: evaluating the Tracking Error between

the planned and the resultant actual trajectory:

TE = Distance(Tp, Ta) (5.1)

Here, Distance() embodies a generalized function indicating the variances

between two trajectories. Importantly, this error reflects not just the spatial de-

viations but also error in richer attributes such as velocity, acceleration, heading

angle, and so on. A smaller TE value implies a better performance of the control

module.

- m2. Responsiveness (RE). The Responsiveness of a control system denotes
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how promptly the controller steers the system to its intended state. In the realm of

control theory, the term Transient Response [124, 93] embodies the behavior of a

control system from its activation (or upon receiving a disturbance) up to the point

it stabilizes in its steady-state. A cornerstone metric within transient response is

the settling time [124, 93]. This metric gauges the time span the system output

takes to remain within a predefined margin of its steady-state value. In the context

of autonomous driving, to calculate the settling time, we pick a timestamp tp,i

from the planned trajectory Tp, correlating to a distinct trajectory point Pp,i. A

corresponding point Pa,j within the actual trajectory Ta matching Pp,i in attributes

like position is then identified. The timestamp associated with this congruent point

in Ta is ta,j . The settling time ts is derived from the disparity between these two

timestamps:

ts = tp,i − ta,j (5.2)

The deduced ts indicates the temporal gap between the planned moment of

reaching a particular state and the actual moment when the vehicle attains this

state. Specifically, a positive ts indicates a lag, with the control module requiring

an extra ts duration to attain the intended state (under-controlled). Conversely,

a negative ts suggests the control module achieved the state ts time units ahead

(over-controlled). Therefore, the closer ts approximates zero, the more responsive

the controller proves to be.

- m3. Stability (ST). The Stability of a control system when influenced by

control inputs is often assessed by the Input-to-State Stability (ISS) [117, 81].

Formally, a system, steered by the state equation ẋ = f(x, u), is deemed Input-
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to-State Stable when, under a confined input u(t), the state x(t) remains bounded

for all instances t, considering every initial condition x(0). Evaluating the ISS

of a nonlinear system involves finding a Lyapunov function V that quantifies the

energy disparity between the actual state and the intended state. Particularly, the

rate of change of this energy should be confined within specific bounds. Suppose

Ppt and Pat represent points from the planned and actual trajectories at a coincid-

ing timestamp t. The Lyapunov function can be construed as the state difference

between these trajectory points:

V (t) = dis(Ppt , Pat) (5.3)

Here, dis() is a generalized function quantifying the state difference, such as

positional distance, between two trajectory markers and yields a scalar output.

Consequently, to guarantee ISS stability, the derivative of this Lyapunov function

must not exceed a defined threshold VT :

V̇ ≤ VT (5.4)

- m4. Smoothness (SM). To quantify smoothness, we focus on acceleration,

a direct reflection of the forces felt by the vehicle’s occupants. The smoothness

includes both linear acceleration and angular acceleration. Linear acceleration,

denoted as a, represents the rate at which velocity (v) changes over time, and is

captured by the equation a = dv
dt . Conversely, angular acceleration, represented by

α, measures the rate of change in angular velocity (ω) relative to time, formulated

as α = dω
dt . Together, these metrics offer a holistic perspective on the dynamics of

the vehicle’s motion, enabling a nuanced assessment of how the control module
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influences ride smoothness.

5.3.3 Improved Fuzzing Framework

As presented in Tab.2.2, Drivefuzz [67] stands out as the most relevant work be-

cause it incorporates the control module into the fuzzing process. Specifically,

Drivefuzz quantifies the driving quality of each iteration using a fitness score.

Actions, such as hard acceleration and hard turn, contribute to a decreased driv-

ing quality score. However, Drivefuzz suffers from the following two limitations:

First, despite involving the control module during testing, it fails to exam the non-

trival error between the planned and actual trajectories, and thus failed to point out

specific inadequacies of the control module. Second, Drivefuzz randomly gen-

erates NPC vehicles and pedestrians, neglecting their spatial relation to the ego

vehicle (the vehicle under test). Consequently, numerous redundant scenarios oc-

cur (e.g., when the NPC vehicle is distantly situated and remains irrelevant to the

ego vehicle’s performance), which decreases testing efficiency. To address these

challenges, we have refined Drivefuzz in the following two ways:

Enhanced fitness score. We augmented the fitness score computation by in-

tegrating the metrics presented in §5.3.2. The refined score S is defined as:

S = DQ+ θ_diff(Tp, Ta) +Dis_diff(Tp, Ta) +Maxa + V ara (5.5)

Here, DQ denotes the Driving Quality score, which is inherited from Drive-

fuzz’s original scoring system. Particularly,DQ counts the number of bad-control

actions including hard acceleration, hard braking, hard turns, etc. However, this

score failed to involve the inconsistency between the planned and actual trajectory.
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Accordingly, we construct a more comprehensive score by adding DQ with four

additional metrics. θ_diff(Tp, Ta) and Dis_diff(Tp, Ta) represent the mean er-

ror between (planned heading angle and actual heading angle) and between (planned

and actual positions), respectively. Maxa and V ara define the peak acceleration

(incorporating both angular and linear accelerations) and acceleration variances.

Specifically, θ_diff(Tp, Ta) and Dis_diff(Tp, Ta) encapsulate the metrics m1,

m2, and m3, while Maxa and V ara resonate with m4, as a supplement to the

original DQ.

Enhanced Mutation Strategy. We found that Drivefuzz always generate

NPCs at random positions across the entire map. As a result, many of the gen-

erated NPCs are too far to interact with the tested ADS vehicle, and thus mak-

ing this scenario useless. As a subsequent improvement, we no longer generate

NPCs arbitrarily across the entire map. Instead, we focus on creating and modify-

ing NPCs within a certain range around the ego vehicle. To implement this, we

define a threshold to specify the maximum distance dismax permissible between

the NPC’s spawn point and the ego vehicle. This constraint ensures that NPCs

only appear within this confined region. Leveraging this approach significantly

reduces redundant scenarios and increases the number of critical scenarios (e.g.,

collisions).

Summary. Our improved fuzzing framework is summarized in Fig.5.2. First,

we restrict the range of the generated NPCs within the threshold of dismax, in

which case NPCs will have more chances to interact with ego vehicle, and thus

critical scenarios can be found more effectively. Second, we construct fitness

score with our new metrics, as detailed in Equation.5.5. This new fitness score

considers metrics including tracking error, responsiveness, stability and smooth-
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Figure 5.2: Improved fuzzing framework: We 1). restrict the range of generated
NPCs and 2). use new metrics to construct a more comprehensive fitness score.

ness, providing a more comprehensive metric than Drivefuzz [67].

Remark about our contributions. Our fuzzing framework is designed to gen-

erate effective test scenarios for the control module, diverging from the aim of pre-

vious works [73, 131, 133, 143, 156, 54, 116] that focused on uncovering diverse

violations. We enhanced Drivefuzz by enhancing its fitness score and mutation

strategy, making it suitable for our objective of creating scenarios that rigorously

test control performance. Our modified framework not only meets this goal but

also demonstrates superior performance to Drivefuzz (in §5.4.3). Our main con-

tribution lies in the new metric and testing methodologies for the control module,

with extensive bug analysis and the identification of practical bugs in Apollo (in

§5.6). These advancements are facilitated by our refined fuzzing technique, which

lays the groundwork for the aforementioned contributions.

5.4 Scenario Generation

In this section, we detail how the basic scenarios and critical scenarios were de-

rived in §5.4.1 and §5.4.2, respectively. These scenarios will be used in further

co-simulation testings to evaluate the performance of the control module, based

on the proposed metrics.
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5.4.1 Basic Scenarios.

Basic scenarios aim to test the basic functionality of the control module, and there

is no external interrupt (e.g., NPC vehicles and pedestrians). We constructed a

total of 30 basic scenarios, segregated into 5 classes: B1. Straight driving (driv-

ing straight and then stopping), B2. Sharp left turn (Taking a 90-degree left turn

and then stopping), B3. Sharp right turn (Taking a 90-degree right turn and then

stopping), B4. Soft left turn (Taking a soft left turn and then stopping), B5. Soft

right turn (Taking a soft right turn and then stopping). In each scenario, the au-

tonomous vehicle initiates from a standstill (0 speed). As the simulation proceeds,

the planning module continuously generates the requisite trajectory. Concurrently,

the control module derives the control commands to adhere to this generated tra-

jectory. The above scenarios will be used (in §5.5.1) to assess the control module’s

capability to finish the basic maneuvers ( 1⃝ in Fig.5.1).

5.4.2 Critical Scenarios.

Collected Critical Scenarios. We collected the critical scenarios from previous

works as part of the input seed and tested scenarios. Although all previous works

[73, 67, 131, 133, 143, 156, 54, 116] claimed to have discovered various types of

violation, there are overlap in their results. Particularly, the previously discovered

critical scenarios can be divided into the following five types: (1). stopping due

to DoS vulnerability (from [143, 67]), (2), crash on static objects (from [67]),

(3) collision while current lane is being invaded (from [74, 131, 133, 54]), (4)

collision while invading other lanes (from [74, 131, 133, 54]) and (5) collision

in complex crossroad scenarios (from [131, 156]). For each type of the above
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violation, we have constructed 5 variations with different relative NPC locations,

leading to totally 25 critical scenarios as the input seed (i.e., 25 critical scenarios

served as 2⃝ in Fig.5.1).

Mutated Critical Scenarios. For each type of the basic scenarios ( 1⃝), we

select one scenario as the feed to our fuzzing framework; for each type of the

collected critical scenarios ( 2⃝), we put all 5 variations into the fuzzing engine.

Starting from basic scenarios ( 1⃝) in which no NPC is introduced, the fuzzing

framework will randomly generate and mutate NPCs. Starting from critical sce-

narios ( 2⃝) in which NPCs already exist, the fuzzing framework will mutate the

positions (including the starting position and destination position) of the NPCs

based on the original scenario. Finally, for each type of the input seed (five types

from 1⃝ and five from 2⃝), we select the top-5 scenarios that have the highest fit-

ness scores (indicating the worst controlling performance). As a result, there are

totally 50 scenarios in 3⃝, in which 25 are mutated from 1⃝ and 25 from 2⃝. That

is to say, there are 50 mutated critical scenarios served as 3⃝ in Fig.5.1.

Figure 5.3: Comparison with Drivefuzz [67]: Our improved fuzzing framework
can find violations more efficiently (46 violations vs 3 after 100 rounds).
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(a) X position error (b) Y position error

(c) Velocity error (d) Acceleration error (e) Heading angle error

Figure 5.4: B2_03. Sharp left turn: Visualization of the Tracking Error (Error):
X-axis is the timestamp and Y-axis is the state value, including position (subfigure
(a) and (b)), velocity (c), acceleration (d) and heading angle (e).

5.4.3 Comparison with Drivefuzz

Fig.5.3 shows the comparison between our improved approach andDrivefuzz [67].

Specifically, a critical scenario in crossroad is selected as the initial seed. The X-

axis represents the mutation rounds, and the Y-axis represents the total number of

violations (i.e., whether the ego vehicle crashes on other objects) found. The value

of dismax is set to 30 meters. During a 100 rounds of fuzzing, our approach found

46 safety violations while Drivefuzz found only three. Due to the improved fitness

score calculation and improved mutation strategy (in §5.3.3), our framework can

find violation much more effectively than the state-of-the-art Drivefuzz [67].
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Figure 5.5: B2_03. Sharp left turn: Comparison between the planned trajectory
and the actual trajectory. Obvious deviation can be observed from two trajectories.

Table 5.1: m1: Tracking Error between the planned trajectory and actual tra-
jectory. Each row represents the average error value for one type of basic scenario.
ep,max: maximum position error; ēp: average position error; eθ,max: maximum θ
error; ēθ: average θ error; ev,max : maximum velocity error; ēv: average velocity
error; ea,max : maximum acceleration error; ēa: average acceleration error. The
percentage after ev,max, ēv, ea,max, ēa show the percentage of how much this error
is based on the average state value.

Position Error (m) θ Error (degree) v Error (m/s) a Error (m/s2)

ep,max ēp eθ,max ēθ ev,max ēv ea,max ēa

B1_mean 3.46 1.14 1.62 0.14 (2.01, 144.64%) (0.84, 61.09%) (3.21, 2283761.40%) (0.92, 1202970.00%)
B2_mean 3.14 0.98 10.56 0.96 (2.44, 197.96%) (0.86, 70.67%) (3.18, 10197.51%) (0.83, 2746.92%)
B3_mean 3.21 1.05 17.60 2.02 (2.60, 288.06%) (0.86, 92.33%) (8.85, 88615.00%) (0.98, 36052.36%)
B4_mean 2.99 1.14 3.43 0.48 (2.79, 177.14%) (0.80, 50.98%) (3.18, 6480.07%) (1.12, 2322.88%)
B5_mean 2.84 1.08 2.65 0.52 (2.78, 182.83%) (0.80, 52.77%) (2.87, 5610.02%) (1.10, 2076.94%)
Overall_mean 3.13 1.08 7.17 0.82 (2.52, 198.13%) (0.83, 65.57%) (4.26, 478932.80%) (0.99, 249233.82%)

5.5 Scenario Assessment

In this section, we perform extensive analysis on the control module of Apollo,

using the metrics proposed in §5.3 generated scenarios from §5.4. Specifically,

we use the 30 basic scenarios to assess the basic capabilities of the control mod-

ule in §5.5.1. We then use the rest 75 critical scenarios to evaluate whether the

controller can finish the task in more challenging settings in §5.5.2, and summa-

rize our findings in §5.5.3. The experiments were conducted under Apollo 8.0
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equipped with the advanced Model Predictive Control (MPC [81]) and Carla sim-

ulator 0.9.14. The experiments were conducted on a computer which is capable

of running co-simulation effectively, with all Apollo modules operating at the rec-

ommended frame rate (planning over 10Hz and controlling over 100Hz).

5.5.1 Basic Scenarios.

We investigate the detailed performance of the autonomous driving system (i.e.,

Apollo 8.0 in our context) under the basic scenarios in §5.4.1.

- Completeness. Before delving into the detail metrics to evaluate the control

module, a basic requirement - the completeness of the task should be assessed

(i.e., whether the vehicle can reach the destination point). Specifically, if the ego

vehicle reaches the destination without hitting any other objects (e.g, NPC vehicle

or road curb), we deem such a scenario as successful, otherwise (e.g., collision

happened or failed to reach destination) we think the control module failed to finish

the execution of this scenario. When the distance between the actual destination

and the planned destination is smaller than 1m, we think the task is completed.

However, out of the 5 types of basic scenarios in §5.4.1, only the B2 succeeded

to complete the tasks, resulting a very low completeness rate of 6
30 = 20%. In all

other basic scenarios involving making a turn, the vehicle will stop halfway and

cannot reach the destination (Bug#16, #17 and #21 in Tab.5.5).

- m1. Tracking Error (TE). We first introduce how TE on each state is cal-

culated with a specific scenario, and then present the comprehensive results on all

basic scenarios. Fig.5.4 shows the comparison of these states between the planned

trajectory and actual trajectory, under one basic scenario under B2. Sharp left
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turn. For the proposed 5 types of basic scenarios, the tracking error is shown in

Tab.5.1. In perfect situation, all data in Tab.5.1 is zero, in which case the control

module perfectly follow the planned trajectory. However, according to Tab.5.1:

(1). position error: the actual trajectory and planned trajectory have a maximum

of 3.13m error and an average of 1.08m error, which is neglectable; (2). θ: the

maximum error on heading angle θ reaches over 17.6◦ under and B3, indicating

that the control module failed to steer the vehicle to the planned θ; (3). v: based on

the average actual velocity, the maximum and average error on velocity reaches

198.13% and 65.57%, indicating the control module cannot drive the vehicle to

the planned velocity; (4). a: huge relative error is identified on a, indicating the

control module cannot accelerate the vehicle as planned (the percentage is huge

because the average actual acceleration is often very small).

Summary on m1: For all basic scenarios, neglectable tracking error is identi-

fied in all state values including position, heading angle, velocity and acceleration

(as indicated by Fig.5.4 and Tab.5.1). The tested control module CANNOT accu-

rately follow the planned trajectory, and even failed to reach the destination under

most basic scenarios.

- m2. Responsiveness (RE). We calculate the settling time ts according to

Equation.5.2 to assess the responsiveness. Additionally, some planned state were

never reached during the whole routine (ts = ∞), in which case the correspond-

ing ta,j of the tp,i cannot be found. Such a case is marked as a failure, and the

percentage of such failure is noted as FR (Failure Rate). Specifically, the good

responsiveness is represented by a small FR and a ts that is close to 0. Tab.5.2

shows the result of the responsiveness assessment for all 5 types of basic scenar-

ios. Particularly, we do not evaluate the responsiveness of θ under B1, because all
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scenarios under B1 is straight driving, in which case the θ difference is very small

(can be observed in Tab.5.1) and calculating ts on such small θ will lead to great

error which cannot represent the actual responsiveness. Delving into Tab.5.2, com-

paring the planned position and the actual position, there are on average 10.72%

planned positions were never reached; moreover, an average ts of 1.22s is needed

to reach the planned position. For the heading angle θ, high FR is observed in

B2 (10.79%) and B3 (17.28%), indicating the unsatisfying responsiveness of the

steering control. Particularly, very poor responsiveness is observed in v and a: for

v and a, there are 65.50% and 46.58% planned state was never reached, and for

those reached states, the average time delay is 3.20s and 10.48s, respectively.

Summary onm2: The tested control module CANNOTpromptly drive the vehi-

cle into the planned states. Particularly, significant delay is observed on v (3.20s)

and a (10.48s), indicating the control module cannot produce prompt acceleration.

Table 5.2: m2: Responsiveness assessment of basic scenarios. Each row repre-
sents the average value for one type of basic scenario. For each of the four states
(i.e., position, θ, v and a), FR is the Failure Rate presenting how many planned
states were never reached; t̄s is the average settling time, and ts,max is the maxi-
mum settling time.

Position θ v a

FR t̄s ts,max FR t̄s ts,max FR t̄s ts,max FR t̄s ts,max

B1_mean 5.24% 1.57s 8.63s \ \ \ 70.54% 2.89s 44.98s 63.44% 12.44s 70.51s
B2_mean 12.81% 0.78s 3.81s 10.79% 0.53s 9.75s 69.88% 2.15s 20.76s 52.17% 6.08s 29.19s
B3_mean 21.83% 1.18s 6.24s 17.28% 1.01s 14.24s 69.72% 2.35s 27.40s 37.34% 8.41s 37.34s
B4_mean 5.70% 1.36s 7.59s 1.93% 0.33s 9.09s 56.68% 5.51s 86.29s 38.26% 10.96s 84.29s
B5_mean 8.02% 1.23s 6.69s 1.79% 0.35s 4.88s 60.67% 3.12s 46.74s 41.67% 14.50s 61.97s
Overall_mean 10.72% 1.22s 6.59s 7.95% 0.56s 9.49s 65.50% 3.20s 45.23s 46.58% 10.48s 56.66s

- m3. Stability (ST). As stated in §5.3.2, the Lyapunov function is defined as

the absolute value of the difference between the planned state and actual state at

each timestamp t. We calculate the Lyapunov function value of all 4 states, and

further calculate its derivatives to evaluate the stability of the system, as indicated
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Table 5.3: m3: Stability assessment based on the derivatives of the Lyapunov
function value. V̇max: Maximum derivative of V ; R: V̇max

VT
.

Position (m/s) θ (degree/s) v (m/s2) a (m/s3)

V̇max R V̇max R V̇max R V̇max R

B1 3.37 421.25% \ \ 2.48 477.31% 21.32 2479.3%
B2 3.05 169.28% 19.41 2695.69% 1.95 295.76% 32.45 11589.29%
B3 3.24 539.67% 34.77 7901.36% 3.69 635.69% 84.81 10872.95%
B4 3.82 329.14% 4.84 931.35% 2.55 155.55% 21.15 7051.0%
B5 3.36 336.3% 3.50 603.45% 2.22 205.46% 21.91 10954.5%
Mean 3.36 359.13% 15.63 4597.06% 2.58 390.61% 36.33 7568.54%

Figure 5.6: B3_03. Sharp right turn: Smoothness evaluation of a specific scenario
(B3_03). Abrupt changes were observed for both α and a, and the maximum
acceleration can be over 500 times larger than the average value.

by Equation.5.3 and 5.4. Without losing generality, we establish the threshold at

20 times the average statistical value of the data (i.e., VT = 20 × V̇ ). Tab.5.3

shows the average and maximum values of V̇ . The V̇ of θ under B1 is not taken

into account due to the same reason elaborated in B1. R = V̇max
VT

represents the

ratio between the maximum derivative and the threshold, and R > 1 means that

the system is observed to be NOT stable. According to Tab.5.3, significantly large

V̇max is observed under all 4 states, with the average R being much larger than

100% (359.13%, 4597.06%, 390.61%, 7568.54% respectively).

Summary on m3: The tested control module is poor in stability: it CANNOT

maintain the vehicle state around the planned state in a stable manner. The value

of the defined Lyapunov function value V̇ (representing stability) can be over 100

times greater than the set threshold, violating the requirement of Equation.5.4.
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- m4. Smoothness (SM). As stated in §5.3.2, we use both the angular ac-

celeration α = dω
dt and linear acceleration a = dv

dt to evaluate the smoothness.

Particularly, as there is no golden metric to determine how large value of acceler-

ation can be identified as unsmooth, we record absolute accelerations during the

execution of the whole scenario, and calculate the ratio between the maximum

acceleration and average acceleration. Fig.5.6 shows the two accelerations of a

specific basic scenario B3_03, in which we can derive two intuitive facts: (1). the

trend of both α and a is very unsmooth, with multiple intensive peaks and falls;

(2). the recorded maximum acceleration can be hundreds times larger than the av-

erage value. Moreover, such patterns were observed not only on B3_03 but also on

all other scenarios. Results of quantitative analysis is shown in Tab.5.4, in which

Rα = αmax
ᾱ andRa =

amax
ā represent how big the observed maximum acceleration

is compared with the average acceleration. It is observed that the maximum ac-

celeration can be dozens of times larger than the average acceleration, indicating

that the control system failed to meet the requirement of being smooth.

Summary on m4: The tested control module CANNOT output smooth control

commands: frequent abrupt changes were identified for both angular and linear

acceleration.

Table 5.4: m4: Smoothness assessment based on the absolute angular accel-
eration and linear acceleration. αabs = |d2θdt2 |: Angular acceleration (deg/s

2);
aabs = |dvdt |: Linear acceleration (m/s2). Rα, Ra: ratio between the maximum
value and average value. For simplicity, the suffix abs is omitted in the Table.

ᾱ αmax Rα ā amax Ra

B1_mean 0.24 4.68 2062.63% 0.002460 1.86 4645842.97%
B2_mean 1.38 19.89 1566.03% 0.036704 1.69 4913.93%
B3_mean 1.58 38.45 2161.37% 0.069051 8.75 38509.53%
B4_mean 0.92 8.62 921.28% 0.051861 2.88 6262.35%
B5_mean 0.98 11.88 1080.51% 0.055409 2.48 4822.78%
Overall 1.02 16.70 1558.36% 0.043097 3.53 940070.31%
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- Summary on basic scenarios. Unfortunately, the tested control module

(MPC controller in Apollo 8.0) failed to complete the basic maneuvers under all

four metrics. The controller cannot drive the vehicle accurately to the planned

trajectory (m1), and the responses are laggy (m2); it cannot maintain the state

around the desired stable state (m3), and failed to produce smooth control com-

mands (m4).

5.5.2 Critical Scenarios

As stated in §5.4.2, we derived totally 75 critical scenarios, and will further assess

the performance control module under these scenarios in which various NPCswere

involved. For these critical scenarios, we do not repeat the analysis on all metrics

as they have been thoroughly analyzed on basic scenarios in §5.5.1. Instead, we

focus on assessing the completeness of the critical scenarios (i.e., checkingwhether

the ego vehicle can reach destination without collision).

After running all 75 critical scenarios, there are only 10 scenarios in which

Apollo completed the task, leading to a success rate of only 13.33%. For the other

65 failed scenarios, there are 61 in which the vehicle stopped permanently due to

the internal bugs in planning and control module (will be detailed in §5.6), and in

the left 4 scenarios the ego vehicle collided with other objects.

5.5.3 Summary on Assessment

Overall, the actual performance of the tested control module (MPC controller in

Apollo) has very unsatisfying performance in all four proposed metrics. For all

105 tested scenarios (30 basic and 75 critical), the overall success rate is only

120



5.6 VLM-assisted Bug Analysis

15.24% (6 success in basic ones and 10 success in critical). Moreover, based on

our metric-based assessment in §5.5, the tested control module was shown to have

bad performance in all involved metrics, and could not even complete the basic

maneuvers (e.g., making a 90-degree turn).

5.6 VLM-assisted Bug Analysis

Based on the proposed metrics, we have identified specific deficiencies in the

tested control module in §5.5 (i.e., how the controller is deficient). However, the

reason why the controller performs poorly remains unknown. In this section, we

propose a VLM-assisted CoT bug analysis to determine the practical bugs in the

Apollo controller codebase (answering why), based on the bug behaviors observed

in the previous section (from how).

Motivation: why LLM? Unlike traditional software bugs (e.g., a specific

crash deterministically corresponds to certain lines of code), the correspondence

between controller under-performance and the code-level root cause can be highly

non-deterministic. Specifically, one type of bug behavior could be due to various

root causes, including ill-tuned parameters, faulty configurations, improper code

logic, etc. As a result, traditional tools cannot determine the correspondence due

to this complex mapping relation. In such cases, Large Language Models (LLMs)

become a feasible assistant due to their (1) extensive knowledge base (having con-

sumed various data) and (2) strong flexibility in output when dealing with different

input prompts. However, applying LLMs to our bug analysis, particularly for the

controller code, presents several challenges.

Challenges. Before we can use LLMs to assist in our bug analysis, we must
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address the following three challenges:

- C1. Understanding bug behavior. As previously stated, one type of bug

behavior (e.g., large m1.tracking error) could be due to various reasons in the

buggy code. Assuming an LLM could help reason such correlations, we must

first prompt the LLM to understand the particular bug behavior, which is the first

challenge. Directly feeding the recorded trajectory data (planned and actual) to

the LLM is impractical for two reasons. First, the planned and actual trajectories

are recorded as discrete points, each marked with its states, including timestamp,

x-axis and y-axis position, heading angle θ, angular acceleration α, velocity, and

linear acceleration, totaling 7 states. As a result, LLMs will struggle to deal with

such complex data, thereby failing to extract the bug behavior within. Second,

even if LLMs could consume these data, token limitation would be another chal-

lenge. For example, in the scenario of Fig.5.4, there are a total of 8,856 trajectory

points (each labeled with 7 states) recorded over 42 seconds. Directly feeding such

a large amount of data to an LLM would not only degrade its performance (it is

known that the longer the input text, the more difficult it is for LLMs to extract key

insights) but also likely reach the token limitation. In conclusion, making LLMs

understand the bug behavior is the first challenge.

- C2. Understanding code. Assuming LLMhas comprehended the bug behav-

ior, the next step is to prompt LLM to reason the possible bugs within the code. In

this case, another challenge arises in enabling LLMs to comprehend the controller

code [9]. While previous studies have successfully employed LLMs for code un-

derstanding [86] and debugging [71], these efforts often involved simpler code-

bases and utilized pre-designed prompts. In contrast, the Apollo MPC controller

code is highly complex, spanning hundreds of lines and integrating multiple inter-

122



5.6 VLM-assisted Bug Analysis

related modules such as data loading, intricate calculations, and post-processing.

LLMs may struggle to grasp the high-level interactions between these modules

and the dependencies that govern the system’s behavior. Moreover, the MPC con-

troller relies on sophisticated mathematical models and control theory, requiring

a deep understanding of domain-specific knowledge that LLMs may lack. Conse-

quently, directly feeding the code into an LLM is unlikely to yield effective bug

identification or reasoning.

- C3. Identify practical bugs. Assuming that LLM has comprehended the

planning-control inconsistency, the controller code, and identified potential bugs

based on the correspondence between the two, the last challenge remains how to

identify the practical and real bugs from the potential bugs. This is a challenge be-

cause the potential bugs output by LLM is based on its observations on the anomaly

and code, without systematically testing the code. As a result, false positives could

exist in LLM’s output.

Solutions. To address the aforementioned challenges, we propose the follow-

ing solutions:

- S1. Leveraging Vision Language Models (VLMs). As highlighted in chal-

lenges C1 and C2, traditional LLMs struggle with long and complex data (i.e.,

trajectory points and controller code). We seek a more efficient method to in-

put this data into LLMs. In this context, a new type of LLM, the Vision Language

Model (VLM) [153], becomes relevant. Unlike traditional LLMs that process only

text input, VLMs are trained on both visual and text inputs, enabling them to pro-

cess visual data according to text prompts. Utilizing VLMs’ capability to handle

visual input, we convert complex data (i.e., trajectory points and controller code)

into graphical representations and feed them to the VLM along with tailored input
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prompts. Specifically, we first transform the recorded trajectories into a Planning-

Control Inconsistency Graph based on the metrics proposed in Sec.5.3.2 and the

failure cases identified in Sec.5.5. This inconsistency graph illustrates the trends

and comparisons between the planned and actual trajectories, effectively highlight-

ing the bug behavior. Subsequently, we construct a Controller Workflow Diagram

from the Apollo controller codebase using reliable static code analysis, including

the creation of function call graphs and dataflow graphs. This workflow diagram,

presented visually, provides a clear and high-level abstraction of the controller

code, making it easier for the VLM to comprehend compared to directly inputting

large volumes of code.

- S2. Implementing a Three-stage CoT Process. Building on S1, we devel-

oped a three-stage CoT process to guide the VLM in identifying potential bugs

in the controller code. In the first stage, we input the planning-control inconsis-

tency graph into the VLM to help it understand the bug behavior (i.e., how the

controller is deficient). In the second stage, we provide the controller workflow

diagram to the VLM, enabling it to understand the controller’s operation in the

context of the bug behavior. In the third stage, after the VLM has grasped both

the bug behavior and the code, we extract code snippets from the codebase for

line-of-code (LoC) level bug pinpointing. Following the three-stage CoT process,

the VLM is expected to identify potential bugs with specific lines of code in the

controller codebase (answering why the controller is deficient), starting from the

bug behavior (how) and the controller codebase itself.

- S3. Conducting Reliable Dynamic Analysis. To identify practical bugs in

the codebase, we further scrutinize the potential bugs identified by the VLM and

conduct dynamic analysis for reliable bug identification. We instrument debug
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Figure 5.7: Workflow: VLM-assisted CoT bug analysis.

code in the potentially buggy LoCs and recompile the controller code to facilitate

practical bug identification using debug information (e.g., dynamic values of key

variables). Finally, we determine the practical and real bugs within the codebase

through the three stages of CoT and the subsequent dynamic analysis.

5.6.1 Approach

Fig.5.7 provides an overview of the VLM-assisted CoT bug analysis workflow,

which involves three stages of CoT and a final stage of bug determination based

on dynamic analysis.

CoT-1. Graph-based Bug Behavior Understanding. The first stage of CoT

involves prompting the VLM to understand the bug behavior. To achieve this,

we constructed four types of inconsistency graphs based on our proposed metrics,

including inconsistencies in 2D relative position (x-position and y-position), ve-

locity, acceleration, and angular error (Fig.5.4). Each graph contains two lines

representing the planned and actual trajectories, respectively. We then feed these

inconsistency graphs to the VLM with explicit prompts, asking the VLM to (1)

observe the trend of the two trajectories, (2) interpret the inconsistency between

them, and (3) perform an initial analysis to indicate possible bugs. After CoT-1, the
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VLM should have understood the bug behavior, making it ready for subsequent

analysis.

CoT-2. Program-aware Bug Analysis. Following the understanding of the

bug behavior, the second stage of CoT involves prompting the VLM to under-

stand the controller logic and code. An intuitive approach is to convert the source

code into a function call graph or dataflow graph as the visual input. However,

we found that these types of graphs do not clearly represent the control logic for

the VLM to understand, due to the complexity of the original code. Therefore, we

sought a more efficient visual representation. Starting from the function call graph

and dataflow graph, we abstracted the controller logic into a Controller Workflow

Diagram, which is a high-level representation of how the controller works (de-

tailed in §5.6.2). To ensure the correctness and quality of this diagram, the con-

struction process is manually performed based on our understanding of the func-

tion call and dataflow graphs as well as the source code. Note that this construction

process is a one-time effort as we focus on the particular controller code. With the

diagram constructed, we feed it into the VLM, with prompts to (1) explicitly intro-

duce the diagram and (2) require the VLM to infer possible bugs in each functional

module of the diagram, based on the inconsistencies identified in CoT-1. Over-

all, after CoT-2, the VLM should have understood both the bug behavior and the

controller code.

CoT-3. LoC-level Bug Pinpointing. In CoT-3, we further retrieve the poten-

tially buggy code of specific modules in the controller diagram and prompt the

VLM to pinpoint the specific bugs at the code level. Specifically, we prompt the

VLM to first carefully comprehend the code in the context of the diagram pro-

vided in CoT-2, and then pinpoint the specific lines of buggy code, with detailed
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explanations of how and why it is a bug. After CoT-3, we have a list of potential

bugs with corresponding line numbers in the source code.

Bug Determination via Dynamic Analysis. The potential bugs identified by

the VLM in CoT-3 are not necessarily the real bugs in the code, so we conduct

dynamic analysis to determine the practical bugs. Specifically, we first review

whether it is a highly probable practical bug in the context of the codebase. Then

we instrument debug code in the potentially buggy LoCs and recompile the con-

troller code for practical bug identification assisted by the debug information (e.g.,

the dynamic values of key variables). Finally, we attempt to fix the bug based on

our observations and re-evaluate the metrics to determine whether the controller

performs better after the bug fix. Through this dynamic analysis, starting from the

potential bugs identified by the VLM, we can successfully identify the practical

and real bugs within the codebase.

5.6.2 Experiments

Experimental Setup. To ensure the effectiveness of the bug-finding process, we

selected one of the most powerful VLMs, GPT-4o (2024-08-06 API version [94]),

for our CoT bug analysis. Note that other VLMs (e.g., Claude-3.5, open-source

models) can also be implemented, provided they can accept visual modality input.

The temperature of GPT-4o was set to zero to ensure the stability and reproducibil-

ity of the output.

Construction of Planning-Control Inconsistency Graphs. In Sec.5.5, we

tested the Apollo MPC controllers using our proposed four metrics in various sce-

narios. Specifically, we chose the B2_03. Sharp left turn scenario (Fig.5.4) to con-
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M1. Configuration Loading

M2. Trajectory
Querying and
State Update

M3. MPC
Solver Setup

and Execution

M4. Post-
processing

D1. Config file D2. Configs
and Params

D3. Planned
Trajectory

D4. Vehicle
State

D5. State
Error

D6. Raw Control
Command:

Acceleration and
Wheel Angle 

D7. Final Control Command:
Throttle and Steer Angle 

Figure 5.8: Controller Workflow Diagram of the tested controller - Apollo MPC.
The diagram, which is derived from reliable program analysis, contains 7 data
modules and 4 functional modules, offering an intuitive program representation
for VLM to understand.

struct the inconsistency graphs, as this scenario reflects typical inconsistencies in

all types of states (position, velocity, acceleration, and heading angle), as shown in

Fig.5.4. We constructed a total of four graphs reflecting the aforementioned states

and converted the graphs into images. Although GPT-4o does not have specific

requirements for input image size, we ensured each image had a resolution higher

than 512 × 512 to maintain the details in the graph.

Construction of Controller Workflow Diagram. We constructed the con-

troller workflow diagram from the Apollo MPC controller code [9], which in-

volves complex control logic across a total of 708 lines of code. Specifically, we

first comprehended the code logic using traditional static analysis techniques, in-

cluding constructing the function call graph and dataflow graph: the function call

graph represents the logic of how the functions are called and executed in the for-

ward direction, while the dataflow graph represents the logic of how the control

commands are derived in the reverse direction. Subsequently, we summarized the

Controller Workflow Diagram as an intuitive and easy-to-understand input for the

VLM, as shown in Fig.5.8.
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As shown in Fig.5.8, there are two types of blocks: data modules (starting with

Dx) and function modules (starting with Mx), with each function module having

its input and output data modules. Specifically, M1 is responsible for loading the

configuration and parameters (D1) that globally affect all other function modules.

M2 calculates the state error (D5) between the planning state (D3) and the actual

state (D4), and M3 subsequently calculates the raw control command (D6) based

on D5 via the MPC module. Finally, the raw command is converted into an exe-

cutable command (D7) through post-processing (M4).

LoC-level Bug Pinpointing. After CoT-1 and CoT-2, we retrieved the respon-

sible code for the functional modules in Fig.5.8 as input for the VLM for LoC-level

bug identification. Among the four types of state errors involved, for position, ve-

locity, and heading angle, 15 bugs were discovered for each, while 21 bugs were

found for acceleration, resulting in a total of 66 bugs with clear LoC markings and

explanations on why these lines of code are buggy.

Bug Determination. For the 66 bugs identified in CoT-3, each was accom-

panied by a detailed explanation of how and why it could be a bug affecting con-

trol performance. Following these insights provided by the VLM, we conducted

further dynamic analysis to determine the practical bugs. Specifically, for each

potential bug, we (1) instrumented the corresponding code to derive debug infor-

mation during dynamic execution (ADS vehicle running under the instrumented

MPC controller) and checked whether the expected anomaly existed; (2) fixed the

bug and re-ran the controller to see if the performance improved (i.e., the incon-

sistency decreased after fixing). We ultimately identified 14 practical bugs within

the controller, as shown in Tab.5.5.
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Table 5.5: Identified Bugs in Baidu Apollo Planning-to-Control flow. All bugs
have been acknowledged by the Apollo official [2] and Apollo-Carla Bridge offi-
cial [119]. All bugs in the table have been fixed by the Bridge official [120].

Bug
# Bug Location Module Bug Description Bug Impact

01 M1. Configuration Loading Ill-tuned parameter for MPC calculation Under-performance of the MPC controller

02 M1. Configuration Loading The sign of the actuator value (throttle and brake) is
reversed

An acceleration command can be trans-
lated into a brake, or deceleration trans-
lated into throttle

03 M1. Configuration Loading Translation between control command and acceleration
violates physical rule

Under the same speed, lower acceleration
is translated into higher throttle, or vice
versa

04 M1. Configuration Loading Contradictory vehicle parameter
Contradictory tire mass in two config files,
resulting in different output control com-
mands

05 M1. Configuration Loading Unsmooth mapping from acceleration to throttle and
brake signal

Abrupt changes in the control signals
for acceleration (throttle) and deceleration
(brake)

06 M1. Configuration Loading Mapped throttle values (from acceleration values) are
too low to accelerate the vehicle to planned velocity

Autonomous vehicle does not accelerate in
simulator

07 M2. Trajectory Query and State
Update

Lateral error and longitudinal error are calculated based
on inconsistent planning point

Control output is calculated based on non-
existing trajectory point

08 M2. Trajectory Query and State
Update

No looking-ahead time is reserved when querying tra-
jectory points

Impractical planned point is selected, lead-
ing to lack of responsiveness

09 M2. Trajectory Query and State
Update

Frequency of the control command (100hz) does not
sync with the frequency of state update (20hz)

Controller keeps computing outdated con-
trol command based on outdated state

10 M2. Trajectory Query and State
Update

The trajectory point to be followed is queried by real-
time timestamp instead of state update timestamp

Controller keeps computing outdated con-
trol command based on outdated state

11 M4. Filtering and Post-Processing Output steering command could be filtered twice Over-smoothed steering command

12 M4. Filtering and Post-Processing Acceleration command is added with redundant feed-
forward term, nerfing MPC’s utility

Improper implementation of MPC, leading
to over-acceleration command

13 M4. Filtering and Post-Processing Steering command is added with redundant feed-
forward term, nerfing MPC’s utility

Improper implementation of MPC, of
MPC; Over-steering command

14 M4. Filtering and Post-Processing Lack of filtering on lateral error input Under-smoothed steering command

5.6.3 Identified Bugs

Bug Details. Tab.5.5 shows the 14 specific bugs we identified in the Apollo MPC

controller, with detailed descriptions and their impacts. There are 6 bugs in M1.

Configuration Loading, 4 bugs in M2. Trajectory Query and State Update, and

4 bugs in M4. Filtering and Post-Processing. No bugs were identified in M3.

MPC Solver Setup and Execution because this module was implemented based

on a high-quality third-party library [85]. All bugs listed in the table have been

acknowledged by the Apollo official [2] and Apollo-Carla Bridge official [119],

and were promptly fixed by the Bridge official [120].

Case Study - How VLM was Helpful? We present two specific cases to

illustrate how the VLM helped identify practical bugs in the controller.

- Case.1: Redundant compensations. The following is a bug identified by
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the VLM after CoT-3, regarding the calculation of the final control command:
- Bug Position: Line 393-408: Feedforward Compensation.

- Potential Bug: The feedforward compensation logic is complex and involves multiple calculations, but there are

no checks to ensure that the intermediate values are within reasonable bounds.

- Correspondence to Inconsistency: If any of the intermediate values are incorrect or extreme, it could lead to

incorrect feedforward compensation, causing deviations in the Actual Trajectory from the Planned Trajectory.

As indicated by the VLM, the control signals were derived from several differ-

ent terms, involving complex feedforward compensations, which could be the key

to the buggy behavior. Following this insight, we extensively tested the compen-

sation terms and found that improper compensations were added to both the ac-

celeration (longitudinal) control and steering (lateral) control, leading to the iden-

tification of Bug#12 and Bug#13 in Tab.5.5.

- Case.2: Faulty configurations. The following is another bug pointed out

by the VLM, regarding the control configurations:
- Bug Position: Line 393-408: Line Numbers: 475-482.

- Potential Bug: If the calibration value is not correctly interpreted, the throttle and brake commands will be incorrect,

leading to improper longitudinal control.

- Correspondence to Inconsistency: Incorrect throttle and brake commands can cause the vehicle to deviate from the

planned trajectory, particularly during acceleration or deceleration phases.

In the Apollo MPC controller, one important configuration is the calibration

table, which is responsible for mapping the raw control commands to executable

control commands (from D6 to D7 in Fig.5.8). As indicated by the VLM, the

calibration value could be problematic, leading to buggy behavior. Following this

insight, we identified Bug#05 and Bug#06 in Tab.5.5.

5.6.4 Bug Fixes

After identifying these bugs, we attempted to fix them to improve the control per-

formance. The fixed controller code is available via [120].

Re-evaluation of Fixed Controller. After fixing the identified bugs, we con-
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(a) Before fixing: there is obvious and
consistent error between the planned and
actual trajectory.

(b) After fixing: vehicle follows the planned
trajectory much more accurately.

Figure 5.9: Recorded planned and actual trajectory when vehicle makes a left turn.
(a): before fixing; (b): after fixing.

ducted a new round ofmetric-based assessments and found that the fixed controller

performs significantly better than the original buggy one. Specifically, it follows

the planned trajectory more accurately and promptly. The compared of the tra-

jectories before and after fixing is shown in Fig.5.9, validating our bug findings.

More details about the bug fixing can be found in [120].

Responsible Disclosure. All discovered bugs have been reported to the rel-

evant parties, including the Apollo official [2] and Apollo-Carla bridge official

[119]. Additionally, we have provided detailed bug fixes to them and have been

assisting the bridge official [119] in addressing these bugs. Currently, all identified

bugs in Tab.5.5 have been resolved in their updated codebase [120].

Bug Significance. Note that Apollo remains a leading open-source ADS,

widely recognized for its educational value, industrial benchmarks, and high-quality

resources for academic research. Therefore, ensuring the code quality of such an

impactful ADS - Apollo, is of vital significance, and the existence of the con-

troller bugs is already a real-world impact, as they will bring realistic problems to

educators, industrial practitioners, and researchers.
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5.7 Discussion

Manual Efforts in BugAnalysis. Due to the complex and non-deterministic map-

ping between bug behavior and root cause in ADS controllers, the bug analysis

process is semi-automatic, necessitating some manual efforts. These include (a)

constructing the controller workflow diagram and (b) performing dynamic anal-

ysis to determine the final bugs. However, we emphasize that (a) is a one-time

effort completed within hours of inspecting the code structure, and such manual

efforts are necessary to ensure the quality of the diagram, making it easier for the

VLM to understand. As for (b), due to the complexity of the bugs, specific dy-

namic tests are required for each possible bug. Nevertheless, our VLM-assisted

analysis effectively identified a list of potential bugs, starting from the bug behav-

iors and code logic (as shown in Sec.5.6.3), making the debugging process much

more efficient than aimlessly debugging from scratch.

Generalizability. We conducted experiments on the Apollo ADS and Carla

simulation. However, our proposed metrics and testing methodology are ADS-

agnostic (as long as the system follows a modular design involving a planning

module), simulator-agnostic, and controller-agnostic, making them readily adapt-

able to other ADS systems or controllers, and other simulators. For a new ADS

with a simulator, one can still collect the planned trajectory Tp and actual trajectory

Ta, then evaluate the controller based on the metrics proposed in §5.3.2. Addition-

ally, the controller workflow diagram (Fig.5.8) is a general abstraction of an MPC

controller in the ADS context, which we constructed as a one-time effort and could

be used for other MPC controllers in the bug analysis process.

Bug novelty compared with Drivefuzz [67]. Drivefuzz [67] also identi-
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fied controller-related bugs with theirDriving Quality-Guided Fuzzing. However,

Drivefuzz fails to analyze the root cause of almost all identified bugs (e.g., sim-

ply attributes the cause of bugs to “Faulty conf”) and these bugs remain unfixed.

In comparison, we conducted in-depth analysis on the controller code and found

the code-level root causes of identified bugs (Tab.5.5). All identified bugs were

acknowledged, and most of them were promptly fixed with our assistance.

Comparison with Other Testing Approaches. It is important to note that

previous works have tested ADS using techniques other than fuzzing-based ap-

proaches. For instance, Yao et al. [34] proposed ametamorphic testing approach to

identify potential issues in the overall ADS behavior. Specifically, they presented

a novel declarative rule-based metamorphic testing framework that automatically

parses human-written rules into metamorphic relations to generate test cases using

a variety of image transformation engines. Compared to fuzzing-based testing ap-

proaches (Tab.2.2), the metamorphic-based testing approach can be more efficient

in certain cases. In the future, we plan to explore the possibility of combining

different testing approaches to leverage the advantages of various methods.

Rationale behindChoosingVLM.VLMwas chosen over othermulti-modality

models like VisualBERT [77] because it is significantly more powerful, thanks to

its larger parameter size and training dataset. In the context of bug analysis, we

required a highly capable model to perform the challenging task of identifying the

code-level root cause of bug behavior. Specifically, we used GPT-4o in our ex-

periments, demonstrating that VLM can effectively pinpoint specific bugs in the

code.
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6.1 Conclusion

6.1.1 Revisiting Automotive Attack Surfaces

We conducted the first in-depth interview study with 15 experts working in auto-

motive cybersecurity, revealing the specific challenges when security activities are

being conducted, and the limitations of existing regulations. Particularly, we found

that the threat cases given by current regulations are insufficient, and conducting

TARA is often labor-intensive due to the lack of automatic tools. To address these

challenges, we constructed a hierarchical threat database for automotive systems

based on the interview data, improving the existing database both quantitatively

and qualitatively. Moreover, we propose CarVal, a datalog-based approach that

could generate multi-stage attack paths in IVN and calculate risk values. By ap-

plying CarVal to five real cars, we conducted extensive security analysis based on

the generated attack paths, and successfully exploited corresponding attack chains
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in the new gateway-segmented IVN. In conclusion, our experimental analysis on

real cars demonstrated the significant potential risks on new attack surfaces emerg-

ing in modern vehicles. Moreover, the proposed database and methodology will

shed light on how security activities (e.g., TARA and security testing) can be con-

ducted more efficiently, as a supplement to existing regulations.

6.1.2 Attacking ADS Perception

We conduct the first investigation on the lane detection module in a real vehicle,

and reveal that its sensitivity can be exploited to launch attacks on the vehicle.

Specifically, we propose a novel two-stage approach to automatically determine

the best perturbations in digital world and then project them back to the markings

in physical world after addressing technical challenges. We conduct extensive

experiments on a Tesla Model S vehicle. The experimental results show that the

lane detection module can be deceived by crafted perturbations and mislead the

vehicle in auto-steer mode.

6.1.3 Testing ADS Controller

We presented the first comprehensive study focusing on the control module of

the autonomous driving system, a pivotal component that was often ignored in

previous research. We introduced four dedicated metrics designed specifically to

test and evaluate the ADS control module and further enhanced the current state-

of-the-art scenario-based fuzzing methodology based on these metrics. Using the

guidelines set by our proposed metrics, we carried out an in-depth analysis of

the control module within the industrial-level ADS system, Apollo. Our findings
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revealed significant inadequacies: the control module struggles with even basic

operations. Moreover, according to the proposed metrics, we highlighted specific

shortcomings of the controller, including the insufficiency in tracking accuracy,

responsiveness, stability and smoothness. To identify the specific bugs leading

to such insufficiency in the controller code, we proposed an semi-automatic bug

analysis approach assisted by VLM in CoT. With the help of the semi-automatic

approach, we conducted extensive analysis of Apollo’s codebase, and identified

14 new bugs in the Apollo controller. All bugs have been reported and promptly

fixed with our assistance.

6.2 Future Work

There are the following direction of future work derived from this thesis.

6.2.1 Revisiting Automotive Attack Surfaces

Currently, the baseline “attack impact” and “attack feasibility” values (fEN , fV N ,

iV N , fAN , iAN in Table.3.2) were manually assigned based on the specific context.

For example, the feasibility to access the physical OBD-II port should be lower

than the feasibility to access the wireless channel, and the impact brought by root

execution is higher than that brought by low-privilege execution. Note that it is

challenging to derive a set of universal or common baseline values that can be ap-

plied to all situations. This is because different groups may assign different base-

line values to better suit their demand, and these impact and feasibility values can

vary in different car models. Overall, these baseline values are flexible for users to

set. Additionally, some research is focusing on scoring the individual automotive
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threat [10, 148], which can give guidelines about how to set up these baseline risk

values. In future work, we plan to further enhance the proposed tool by setting up

a systematic baseline metrics for risk assessment. Moreover, since the current in-

terviewees were either from first-party OEMs or third-party suppliers, expanding

the pool of interviewees could provide broader insights. In the future, we plan to

invite more interviewees from other organizations (e.g., automotive cybersecurity

consortiums such as Automotive ISAC [5]) to gain additional valuable insights

and enhance the threat database.

Additionally, it is important to acknowledge that not all identified limitations

could be resolved within the scope of this thesis. The complexity of modern vehi-

cles and the ever-evolving landscape of cybersecurity threats present a persistent

challenge to the industry. For example, it is out of scope to propose a very clear

threshold for how to mitigate the threats that all manufacturers must follow. It is

important to recognize that fostering a strong cybersecurity culture and refining ex-

isting standards and regulations will require continued efforts from the automotive

industry, regulatory bodies, and researchers. As a result, it is crucial to continu-

ously update the threat database, and refine the automatic tool to stay ahead of

emerging risks, which is another future work. Moreover, the primary limitation in

CarVal is the manual effort required to craft reasoning rules for the CarVal Datalog

reasoning engine. Designing these rules demands extensive expertise and consid-

erable manual effort. Currently, we have manually created dozens of reasoning

rules, which are sufficient for the current implementation of CarVal. In the future,

we plan to explore more efficient methods for crafting these rules, such as lever-

aging Large Language Models (LLMs), to enhance CarVal’s comprehensiveness

and usability.
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6.2.2 Attacking ADS Perception

This work can be extended from the following three aspects. First, we can as-

sess the vulnerability of the lane detection modules in other autonomous driving

systems, including Apollo [3] and Openpilot [96]. Second, we can explore the

feasibility of launching attacks on the lane detection modules by adding pertur-

bations on real lanes, such as using dark markings to cover part of real lanes or

adding markings to change the shape of real lanes. Finally, The core of our attack

methodology lies in defining the obtrusiveness of input perturbations and the con-

fidence levels of detected objects to quantify the quality of the perturbations. For

other objects like traffic lights or pedestrians, we can derive similar metrics within

their respective contexts. Additionally, we can use heuristic algorithms to deter-

mine the optimal perturbations to deceive other corresponding detection modules,

such as traffic light detection or pedestrian detection.

6.2.3 Testing ADS Controller

Currently our testing is conducted on the Apollo ADS and the Carla Simulator. We

plan to also test other ADS systems including Openpilot [95] and Autoware [8].

Additionally, as we also identified several bugs in the planning module, we plan

to extend our testing approach to the planning module, instead of mainly focusing

on the control module.
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