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ABSTRACT 

Debris flow is a type of gravity flow involving significant solid material 

movement, commonly occurring in mountainous areas. However, due to the 

threat debris flows pose to lives, properties, and infrastructures, preventing 

unexpected events is crucial. Challenges in quantitatively characterizing the 

formation and initiation mechanism of debris flows often lead to inaccurate 

warnings, either missing alarms or causing false ones. The frequency and scale 

of debris flows have increased due to recent extreme weather events. Though 

current warning techniques have considered extreme weather influences by 

extreme rainstorms or tropical cyclones, the impacts of extreme droughts and 

climate dry-wet cycles have been overlooked. Thus, preventing and mitigating 

debris flows regionally under extreme dry-wet events is a new scientific 

challenge. Urgent research is needed to explain the formation and initiation 

mechanisms of debris flows related to extreme weather. 

This study focuses on the typical rainfall-induced debris flows in subtropical 

monsoon climates. Sichuan Province and the Hong Kong Special Administrative 

Region, both in mountainous areas of China, are selected as study areas. 

Historical debris flow inventories and geo-environmental databases, including 

geological, terrain, meteorological, soil, and land use, are compiled. Dry-wet 

cycle characteristics are derived from long-term historical dry-wet indices based 

on the geo-environmental databases using autocorrelation function, wavelet 
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analysis, and multifractal spectrum analysis, while debris flow average 

recurrence intervals are estimated using historical debris flow inventories. 

Statistically based on dry-wet indices, in the two study areas of this study, debris 

flows occur when suffering extreme wet, while extreme drought generally exists 

6-8 years before debris flow occurrences. The responsive relationship between 

climatic dry-wet cycles and debris flow susceptibility is explored by analyzing 

the debris flow average recurrence intervals and the dry-wet cycle characteristics 

in the study areas. Stronger correlations have been observed between debris flow 

recurrence interval and dry-wet cycles compared to that between debris flow 

recurrence interval and maximum rainfall, which is one of the most used factors 

for debris flow early warning. Soil sampling and testing in typical debris flow 

gullies help explain the mechanism behind the correlation between debris flow 

recurrence interval and dry-wet cycles. The dry-wet cycle characteristics are 

utilized to construct regional debris flow susceptibility assessment models. The 

responsive relationship between the climatic dry-wet cycles and debris flow 

susceptibility is further validated by promoting the machine learning model 

performance by 1-4%. The importance of dry-wet cycle characteristics in debris 

flow susceptibility assessment is quantitatively explained. Relative influence and 

partial dependence based on model structure further disclose the main drivers and 

their impacts on debris flow susceptibility. Factors affecting the performance of 

dry-wet cycle characteristics in debris flow susceptibility assessment models 
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have been disclosed by comparing the model performance from different study 

regions. 

This study reveals the responsive relationship and explains the mechanisms 

between extreme weather events and regional debris flow susceptibility. A 

method is proposed to assess the debris flow susceptibility by considering dry-

wet cycle characteristics. The contributions of various factors to debris flow 

susceptibility are quantified, enabling targeted disaster prevention and mitigation 

plans. 

 

Keywords: Rainfall-induced debris flow; Dry-wet cycle; Recurrence interval; 

Susceptibility assessment; Wavelet analysis; Multifractal; Machine learning 
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Chapter 1  Introduction 

1.1 Background 

According to statistics from the China Geological Survey, between 2005 and 

2022, Mainland China experienced over 320,000 geological disasters of medium 

scale or higher. These disasters resulted in more than 9,100 deaths, over 2,100 

missing persons, and direct economic losses amounting to 70 billion Chinese 

Yuan. The impacts of geohazards pose a severe threat to the safety of human lives 

and properties, hindering socioeconomic development. In recent years, 

technologies such as remote sensing, geographic information systems, and 

artificial intelligence have been widely applied to disaster prevention and 

mitigation efforts. Combined with improved policies and increased economic 

investment, the impacts of geological disasters on human society have 

significantly decreased. 

However, extreme weather events have become increasingly frequent, leading to 

larger and more intense geological disasters related to climate change (Sung et 

al., 2020). For one thing, extreme drought events contribute to the accumulation 

of loose materials, leading to large-scale landslides, collapses, and debris flows. 

For another, extreme precipitation events can further trigger landslides and 

collapses, developing into larger-scale flash floods and debris flows (Chen et al., 

2014; Chen et al., 2004; Nyman et al., 2019). The distribution of debris flow 

disasters is extensive, particularly in densely populated regions. Rainfall-induced 
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debris flows are widely distributed in inland and coastal mountainous regions. In 

areas influenced by monsoons, extreme precipitation is the predominant 

triggering factor for debris flows (Dowling et al., 2014; Hürlimann et al., 2019; 

Jiang et al., 2015). For example, Sichuan Province, located in southwestern China, 

is one of the inland provinces with the largest records of debris flow events in 

mainland China. Additionally, extreme precipitation caused by tropical cyclones 

is more likely to induce larger-scale debris flow disasters in coastal areas 

(Furuichi et al., 2018; Mizuyama et al., 2010). For example, the Hong Kong 

Special Administrative Region, situated in southern coastal China, has a long-

term debris flow inventory with many records. It is evident that extreme weather 

events not only complicate the prevention and mitigation of debris flows but also 

pose threats to the development of human society. 

Therefore, it is a challenge for human society to scientifically carry out regional 

debris flow prevention and mitigation work under extreme climates. A theoretical 

approach is desired to explain the formation and initiation mechanisms of debris 

flows related to extreme weather and to apply it to the practical process of 

regional debris flow early warning. 
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1.2 Literature review 

1.2.1 Responses of debris flow to extreme climate 

Debris flows are a type of special gravity flows where solid materials are 

transported by water. It is a frequent natural phenomenon in mountainous areas. 

However, due to the threat to the lives and properties of mountain residents and 

the potential damage to mountain infrastructure, debris flow disasters have 

attracted high attention from human society. Extreme weather events, including 

extreme precipitation, extreme drought, and tropical cyclones, play an important 

role in the formation or initiation of debris flows (Cui et al., 2011; Hürlimann et 

al., 2019; Keim, 2008). The interactions among these extreme weather events can 

also contribute to debris flow formation or initiation and can be understood in the 

context of climate dry-wet cycles (Poljansek et al., 2017). Debris flows can be 

classified into rainfall-induced debris flows, glacial lake outburst flood (GLOF)-

induced debris flows, and snowmelt-induced debris flows based on the triggering 

mechanisms. GLOF-induced and snowmelt-induced debris flows predominantly 

occur in cold, high-elevation mountainous regions, whereas extreme precipitation 

is a crucial factor in triggering rainfall-induced debris flows. Therefore, rainfall-

induced debris flows occur worldwide, which have received attention from 

numerous researchers and practitioners (Cheng et al., 2003; Guzzetti et al., 2020; 

Vergara Dal Pont et al., 2020). 
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1.2.1.1 Extreme wet 

The rainfall threshold refers to the minimum precipitation level necessary to 

initiate a debris flow event and is widely utilized in issuing early warnings for 

rainfall-induced debris flows. A method based on determining regional rainfall 

thresholds was proposed early for regional debris flow forecasting (Tan et al., 

1992). The rainfall threshold is typically determined based on monitoring data 

such as antecedent precipitation, rainfall intensity, and rainfall duration (Pan et 

al., 2018). However, current prediction models based on statistics often overlook 

the variations in rainfall thresholds caused by other relevant factors such as 

drought, wildfires, earthquakes, etc. Apart from earthquakes, factors that lower 

the rainfall threshold, such as drought and wildfires, are closely related to extreme 

weather conditions (Staley et al., 2016). Considering the frequent occurrence of 

extreme weather events, the issue of missed or false alarms in debris flow early 

warnings based on rainfall thresholds is difficult to address (Guzzetti et al., 2020). 

Therefore, incorporating the impacts of extreme weather events on rainfall 

thresholds may be an innovative and effective idea in reducing missed or false 

alarms in debris flow early warnings. 

Tropical cyclones are also a type of extreme weather events that are highly related 

to debris flow disasters. Tropical cyclones include typhoons in the western Pacific 

region, hurricanes in the eastern Pacific and Atlantic regions, and tropical storms 

in the Indian Ocean region. In terms of the mechanisms of debris flow formation 
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and initiation, for one thing, like rainfall-induced debris flows caused by 

monsoons, typhoons bring intense rainfall that reduces the shear strength of the 

soil, causing the loose soil to slide with runoff and providing source materials for 

debris flows. For another, tropical cyclone transports debris, trees, rocks, and so 

on, further increasing the source materials for debris flows. Additionally, tropical 

cyclones carry a large amount of moisture from the ocean, which leads to heavy 

rainfall and landfall. The feedback between tropical cyclones and heavy rainfall 

intensifies the strength of cyclones and rainfalls (Ren et al., 2019). Therefore, 

tropical cyclones can magnify the scale of debris flows and cause greater impacts. 

1.2.1.2 Extreme drought 

The initiation of debris flows is highly correlated with preceding extreme drought 

conditions, as prolonged drought can generate loose materials for debris flows 

(Chen et al., 2014; Nyman et al., 2019). Research on machine learning-based 

debris flow susceptibility assessment models has shown that in arid valleys 

located in seismic zones, the drought index is the third most important factor after 

topography and precipitation, making it a significant dynamic factor in assessing 

debris flow susceptibility (Di et al., 2019; Xiong et al., 2020). However, most 

current debris flow warning models are based on rainfall thresholds and rarely 

consider pre-disaster long-term drought conditions (Chen et al., 2005a; Pastorello 

et al., 2020; Segoni et al., 2018). Therefore, although drought contributes 

significantly to debris flow occurrence, its importance has not been adequately 
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reflected in disaster prevention and mitigation. More comprehensive research is 

required from the perspective of the debris flow formation and initiation 

mechanisms related to extreme drought. 

Besides directly affecting soil properties, extreme drought climate increases the 

likelihood of wildfires, further raising the potential of post-fire debris flow 

occurrences. For one thing, wildfires contribute to the formation of debris flows 

(Hu et al., 2011). The extensive death of vegetation following wildfires not only 

generates the necessary sediment for debris flow occurrences but also leads to 

ecological damage, reduced vegetation cover, and increased soil erosion, 

ultimately contributing to source materials for debris flows (Hu et al., 2018). For 

another, wildfires enhance the debris flow susceptibility. Wildfires heat the soil 

to high temperatures, altering its physical properties, disrupting soil structure, and 

increasing soil hydrophobicity. This directly results in the reduction of soil 

moisture infiltration during heavy rainfall, and increasing surface runoff 

transports loose materials, eventually leading to debris flow occurrences 

(Hewelke et al., 2018). Furthermore, the changes in soil properties following 

wildfires exacerbate the erosion process and promote the accumulation of loose 

materials (Liu et al., 2020). Therefore, wildfires triggered by prolonged extreme 

drought increase the risk of debris flow occurrences. 
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1.2.1.3 Dry-wet cycle 

Dry-wet cycles refer to the alternating period of dry and wet in a specific region, 

which can reflect meteorological, hydrological, or soil-related variations. A dry-

wet cycle index not only reflects extreme weather events but also captures the 

process of changes in underlying surface moisture conditions. Therefore, it can 

provide a more comprehensive explanation of the debris flow formation and 

initiation mechanisms (Tian et al., 2022). Laboratory simulation results confirm 

a significant reduction in soil strength after experiencing the dry-wet cycles (Lian 

et al., 2022). Mechanistically, the process of reducing soil strength during the dry-

wet cycle is complex, multi-stage, and long-term, impacting soil properties in 

various ways and ultimately reducing soil strength. During the dry phase, as soil 

moisture is lost, soil particles shrink, creating voids and cracks, reducing soil 

cohesion, and increasing soil permeability. During the transition from dry to wet 

phase, the infiltration of water into voids and cracks increases pore water pressure, 

leading to reduced infiltration and increased hydrophobicity (Chen et al., 2014; 

Hewelke et al., 2018). During the wet phase, increased pore water pressure acts 

on soil particles from all directions for an extended period, destroying soil particle 

structures, the formation of micro-cracks, and a subsequent reduction in pore 

water pressure. During the transition from the wet to dry phase, internal micro-

cracks in the soil rupture, resulting in a further increase of pore voids and cracks 

(Duan et al., 2023; Wasantha et al., 2014). Therefore, after repeated dry-wet 
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cycles, the internal structure of the soil is severely damaged, and soil strength 

significantly decreases. Regarding the entire process of dry-wet cycles, the 

influence of long-term dry-wet cycles on soil strength can be explained from the 

perspective of weathering (Hai et al., 2023). In areas with less vegetation cover 

and lower biodiversity, the weathering process is mainly physical weathering, that 

is, during dry-wet cycles, temperature fluctuations cause the rock and soil to 

expand when heated and contract when cooled. The repeated expansion and 

contraction lead to the fracturing and breakdown of the rock and soil into smaller 

particles, thereby reducing the soil strength (Wei et al., 2022). In areas with more 

vegetation cover and higher biodiversity, chemical weathering predominates, 

where the cyclical crystallization and dissolution of soil-soluble salts during dry-

wet cycles cause the destruction of soil structure and an increase in the looseness 

between particles, ultimately leading to a reduction in soil strength (Cao et al., 

2022; Xu et al., 2020). However, although it is known that dry-wet cycles can 

reduce soil strength and thereby increase the likelihood of debris flow 

occurrences, current research predominantly focuses on explaining the formation 

and initiation mechanisms of debris flows based on dry-wet cycles. At the 

regional scale, constructing long-term series indicators of dry-wet cycles and 

exploring the relationship between the dry-wet cycles and the debris flow 

frequency has not been deeply investigated. 
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1.2.2 Periodicity of climate and debris flows 

The recurrence period of debris flows reflects their frequency, and their 

occurrences may be responsive to dry-wet cycles. Utilizing the responsive pattern 

between debris flows and climate dry-wet cycles, combined with the short-term 

predictability of regional meteorological conditions, is a potential new approach 

to breaking through the bottleneck of low accuracy and specificity in debris flow 

early warning systems. However, current research on integrating the debris flow 

cyclicity with climatic periodicity for debris flow early warning is still 

insufficient. 

1.2.2.1 Time series analysis 

A time series is a set of data with time information. Time series data often exhibit 

attributes such as level, trend, seasonality, and cyclicity, which reflect the 

underlying characteristics like stationarity and autocorrelation, although these 

features are not universally present in all datasets. The average value of a time 

series is called the level, while the long-term change in the level is called the trend. 

Seasonality indicates the regular variation of time series data over a certain time 

interval, which refers not only to the seasons but also to weeks, months, or years. 

Cyclicity is like seasonality but with an irregular frequency of fluctuation. In the 

context of frequent extreme weather events, the study of meteorological time 

series is of great importance. For example, research on global surface temperature 

provides various statistical parameters to describe trend characteristics, 
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quantitatively reflecting the trend of global warming (Mudelsee, 2019), and 

ultimately proposing various countermeasures such as carbon neutrality. 

Similarly, the seasonal characteristics of meteorological factors during the dry 

and wet seasons have been widely applied to the study of natural disasters closely 

related to extreme weather, including debris flows, flash floods, and wildfires 

(Özer et al., 2019; Swain, 2021; Zhang et al., 2019), to reduce casualties, 

economic losses, or ecological damage. Furthermore, some studies have proposed 

a close relationship between repeated climate dry-wet cycles and regional 

droughts or floods (Scanlon et al., 2022), but quantitative applications of the 

cyclicity of extreme dry-wet events are still relatively rare. Meteorological time 

series studies, besides focusing on trends, seasonality, and cyclicity, also consider 

homogeneity in geographical space as an important feature applicable to data 

mining (Afrifa-Yamoah et al., 2020). However, current research on 

meteorological time series often focuses on single elements such as temperature, 

air pressure (Southern Oscillation Index), precipitation, etc., with less research on 

regional meteorological characteristics under the response of multiple factors. 

Mining and analyzing meteorological time series within a certain geographical 

space can enhance the understanding of regional meteorological characteristics, 

thereby facilitating accurate predictions of regional meteorological conditions. 
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1.2.2.2 Time series forecasting 

Common methods for predicting time series data can be divided into two 

categories including those based on traditional statistical models and those based 

on artificial intelligence models. The principle of time series data prediction is to 

estimate future data reasonably by mining and applying the characteristics of time 

series based on their stationarity and autocorrelation. A stationary time series, 

with a fixed level and no obvious correlation with time, can be used to construct 

an Autoregression (AR) model based on historical data from different time points 

within the series. This model can then be used to predict future time series data. 

In addition, a Moving Average (MA) model can be built for the noise term in the 

AR model, combining to form an Autoregressive Moving Average (ARMA) 

model to further reduce prediction bias. However, for non-stationary time series 

data, it is necessary to perform differencing to make the data stationary, resulting 

in an Autoregressive Integrated Moving Average (ARIMA) model. In 

constructing an ARIMA model, the order of autoregression and moving averages, 

as well as the number of differencing steps are the three hyperparameters that 

need to be adjusted. However, the ARIMA model can struggle to make a time 

series stationary when predicting time series with seasonality or cyclicity, even 

when increasing the differencing order and steps. A seasonal time series model 

can be developed by combining the non-seasonal terms of the ARIMA model 

with additional seasonal terms, resulting in a Seasonal Autoregressive Integrated 
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Moving Average (SARIMA) model. In addition to the three ARIMA 

hyperparameters for the non-seasonal terms, the SARIMA model has four 

seasonal hyperparameters, including the order of autoregression, the order of 

moving averages, the number of differencing steps, and the additional 

hyperparameter of the seasonal period (Barman et al., 2020). Compared to time 

series prediction methods based on traditional statistical models, methods based 

on artificial intelligence models can capture the complex nonlinear relationships 

in time series to predict non-stationary time series. Common machine learning-

based time series prediction models, such as the support vector machine and 

artificial neural network, can achieve smaller prediction errors, and their 

performance is influenced by the characteristics of the time series data (Das et al., 

2018; Samsudin et al., 2010). With the development of deep learning, Recurrent 

Neural Networks (RNNs), including Gated Recurrent Units (GRUs) and Long 

Short-term Memory (LSTM) models, can capture long-term dependencies in time 

series data, thus predicting future complex nonlinear relationships, and they 

usually outperform support vector machine and artificial neural network 

(Rajagukguk et al., 2020; Zang et al., 2020). However, compared to traditional 

statistical models, artificial intelligence models have fewer restrictions on data 

patterns but require more time-series samples, especially those relying on neural 

networks, which also require a considerable amount of time for training. 

Therefore, an appropriate time series prediction model should be chosen based 
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on the characteristics and volume of data, as well as the tradeoff between time 

consumption and prediction accuracy. 

1.2.2.3 Debris flow recurrence interval 

It is found that debris flow occurrences exhibit cyclicity, which is closely related 

to the characteristics of the underlying surface, meteorological conditions, and 

other influencing factors. Rainfall-induced debris flows coincide with the cyclical 

pattern of local extreme precipitation events (Cheng, 2002; Tan et al., 1992; Wei 

et al., 1994). The cyclicity of debris flows can be quantified through the 

recurrence interval of debris flows. The average recurrence interval of debris 

flows is a common indicator used to estimate the probability of debris flows in 

large areas, characterizing the temporal distribution of debris flow occurrences in 

a certain area. It can be used to reflect the recurrence period of debris flows, and 

a shorter recurrence interval indicates a higher susceptibility to debris flows 

(Ouyang et al., 2019). Different methods, such as stratigraphic methods (Coe et 

al., 2003; Jakob et al., 2005), ecological methods including dendrochronology 

and lichenometry (Germain et al., 2020; Tie et al., 2014), numerical models based 

on rains, floods, or other triggering events of debris flows (Cheng, 2004; Phillips 

et al., 2005), as well as morphological methods combining field measurements 

and remote sensing by satellites and unmanned aerial vehicles (Garankina et al., 

2019; Lin et al., 2004), can all be used to estimate the average recurrence interval. 

However, estimates based on historical records are more direct and usually have 
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higher reliability (Hürlimann et al., 2019; Kobiyama et al., 2019), but there is 

often a problem of incomplete or even missing data in remote areas (Carrara et 

al., 2003). Therefore, if the average recurrence interval of debris flows is 

estimated based on a substantial number of events in a certain area, it is possible 

to quantitatively describe the spatiotemporal pattern of debris flow disasters. 

1.2.3 Assessment of debris flow susceptibility  

The debris flow susceptibility assessment models based on machine learning are 

well-suited for evaluating regions with a substantial number of debris flow 

samples due to the ease of data acquisition, comprehensive assessment factor 

system, flexible spatiotemporal scale, and good model interpretability. 

1.2.3.1 Advantages of machine learning models 

Physical models and statistical models are commonly used for assessing the 

susceptibility of regional debris flows with different strengths and limitations 

(Bregoli et al., 2015). Physical models simulate the formation and initiation 

process of debris flows by considering slope stability and potential runoff patterns 

(Nyman et al., 2019; Stancanelli et al., 2017). However, due to the variability in 

the mechanisms of debris flow formation and occurrence in different regions, the 

parameters of physical models need to be adjusted accordingly. Although 

physical models may perform well in assessing susceptibility at a single gully or 

medium-small scale, they may have certain limitations when applied to larger 
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study areas. Statistical models evaluate debris flow susceptibility based on event 

records and standardized environmental data, such as topography, meteorology, 

geology, socio-economic activities, vegetation cover, soil properties, erosion, and 

hydrological conditions (Di et al., 2019; Xiong et al., 2020). These models 

provide a more comprehensive description of the large-scale regional geographic 

environmental characteristics, and thus they have a certain generalizability in 

regional debris flow susceptibility assessment. However, empirical statistical and 

artificial intelligence models, as data-driven approaches, require a higher volume 

of data compared to physical models. 

In physical models, the infinite slope model is a simple and effective method for 

studying the stability of shallow slopes. This model assumes an infinitely long 

slope length, thereby simplifying the calculation and analysis process. Although 

the model assumptions neglect the impact of factors such as terrain and 

groundwater levels on boundary conditions, they can still provide valuable 

estimates of slope stability (Fuchs et al., 2014; Muntohar et al., 2010). Slope 

stability estimation based on the infinite slope model is typically represented by 

the Factor of Safety (FS). The FS can be used to reflect the susceptibility of debris 

flows (Park et al., 2013). The FS is the ratio of the resisting forces against sliding 

to the driving forces, that is, the proportion of the soil's internal frictional 

resistance to the gravitational force component acting down the slope (Wang et 

al., 2014). The internal frictional force can be calculated based on the Mohr-
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Coulomb model, which uses experimental measurements of the soil sample shear 

strength (Di et al., 2021). Common methods for measuring shear strength include 

the direct shear test and the triaxial shear test, where conditions such as 

consolidation and drainage are determined based on soil properties and 

environmental conditions (Bai et al., 2019). For rainfall-induced debris flows, it 

is assumed that drainage conditions are dominant due to the typically prolonged 

duration of precipitation (Stamatopoulos, 2015). Prolonged precipitation can lead 

to an increase in soil pore water pressure, reducing the soil shear strength, and 

increasing the unit weight of saturated soil, collectively leading to a decrease in 

the FS and an increased risk of debris flows. 

Machine learning is a representative method of artificial intelligence models, and 

the development and application of individual models have become relatively 

mature. Linear models, such as log-linear regression, logistic regression, and 

support vector machines, assume a linear relationship between the dependent 

variable and multiple independent variables (i.e., evaluation indicators). These 

models are constructed by fitting the weight coefficients of each independent 

variable. However, due to their relatively simple structure, linear models do not 

perform well with complex nonlinear problems. Algorithms based on decision 

trees, such as random forests and gradient boosting machines, build decision trees 

that classify samples based on the features corresponding to evaluation indicators. 

By integrating the classification results of a certain number of decision trees, 
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these models achieve more accurate classification of samples and can interpret 

evaluation indicators based on the structure of the decision trees, but they must 

be monitored for overfitting. Distance-based algorithms like K-means and K-

nearest neighbor classify samples based on the distance between evaluation 

indicators of samples. These models have a simple construction process but suffer 

from a steep increase in computational resource consumption with increasing data 

dimensions and are relatively sensitive to outliers. Neural networks, such as the 

artificial neural network and multilayer perceptron, identify various features of 

samples through different neurons and build a weighted network, making them 

suitable for processing high-dimensional large datasets. However, training neural 

networks consumes substantial computational resources, and interpreting 

evaluation indicators is more complex. These representative machine-learning 

models can be effectively applied to large-area debris flow susceptibility 

assessments (Di et al., 2019; Ng et al., 2021; Xiong et al., 2020). However, the 

performance of the models may vary with the changing characteristics of the 

study area, and the degree of model performance needs to be reflected by 

comparing performance metrics. 

1.2.3.2 Factor system 

The construction of a susceptibility assessment indicator system for debris flows 

requires the consideration of the mechanisms behind their formation and 

initiation, influenced by various factors such as geology, topography, 
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meteorology, soil, hydrology, vegetation, and human activities (Kumar et al., 

2023). Common geological indicators include proximity to faults, indicative of 

seismic intensity and the frequency of co-seismic landslide deposits (Huang et al., 

2020), and rock types, reflecting the impact of lithology on debris flow 

development (Wang et al., 2015). Topographical indicators such as elevation 

difference, slope gradient, aspect, and curvature are widely utilized, with 

elevation difference representing the potential energy of slopes, slope gradient 

indicating the capacity to convert potential into kinetic energy (Wei et al., 2015), 

aspect affecting vegetation growth and landslide recovery due to variations in 

sunlight duration (Li et al., 2020), and curvature influencing the accumulation 

rate of material sources and flow convergence (Achour et al., 2018; Dash et al., 

2022). Meteorological influencing factors involve precipitation, temperature, 

wind speed, relative humidity, and sunshine duration, alongside derived 

indicators like dry-wet indices (Achour et al., 2018; Di et al., 2019), with 

precipitation being a critical trigger for debris flows, necessitating a 

comprehensive consideration of intensity and duration (Kumar et al., 2023; Wei 

et al., 2015). In terms of soil, moisture content can reflect the capacity for runoff 

generation after heavy rainfall, while erosion status is closely related to the soil 

structure (Hewelke et al., 2018; Kean et al., 2011). Hydrological indicators such 

as catchment area, distance to water bodies, and river density are used. Vegetation 

indicators, such as coverage and type, are frequently applied since reduced 

vegetation cover can ultimately decrease slope stability (Hu et al., 2018), and 
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different vegetation types vary in their water retention capabilities (Zhang et al., 

2021). Human activities are represented by indicators such as land use type, 

population density, and road density, reflecting the impact of human habitation, 

exploitation, and construction on soil stability (Di et al., 2019; Xiong et al., 2020). 

However, the key to enhancing the performance of debris flow susceptibility 

assessment models lies in the construction of localized assessment indicators 

based on the geo-environmental characteristics of different study areas. 

Consequently, the factor system is not fixed, and the contribution of various 

indicators to debris flow susceptibility varies across different study areas. 

According to the debris flow susceptibility assessment results based on machine 

learning, susceptibility assessment can be conducted using visualization methods, 

though such assessment is generally static (Nie et al., 2022). The predictive 

datasets for machine learning models can be divided into constant and dynamic 

variables, with dynamic variables like meteorological factors being continuously 

updatable, thereby facilitating the construction of dynamic debris flow 

susceptibility assessment models based on machine learning (Fischer et al., 2012; 

Pavlova et al., 2014). Machine learning algorithms can apply big data to explore 

and quantitatively characterize potential correlations among multiple factors 

using statistical principles and can elucidate the quantitative impact of these 

factors on debris flow susceptibility through the model structure. By identifying 

the most important factors, machine learning models effectively address the 
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issues of physical mechanism interpretation which traditional statistical models 

struggle to resolve (Dikshit et al., 2021; Sun et al., 2021). Adjustments in 

parameters and the selection of assessment factors for the application of debris 

flow susceptibility models in different regions can provide more targeted and 

reasonable guidance for regionalized disaster prevention and mitigation measures 

(Di et al., 2019; Liu et al., 2018; Xiong et al., 2020). 

1.2.3.3 Assessment unit 

For debris flow susceptibility assessment using machine learning, in addition to 

the establishment of an indicator system, the selection of an assessment unit is 

also crucial. This is due to the assessment units typically serving as the 

fundamental units for implementing disaster prevention and mitigation measures 

for debris flows when applying susceptibility assessment results. Common 

assessment units for debris flow susceptibility include watershed units and grid 

units. A watershed is a geomorphological unit with a single outlet, also serving as 

the basic unit for the formation and initiation of debris flows, thus more 

reasonably capturing the influence of geological and geomorphological 

characteristics on debris flows. However, regional-scale data such as topography, 

meteorology, and land use are often derived from grid units, making the data from 

grid units more representative and reliable (Nie et al., 2022; Qin et al., 2019). 

Therefore, when selecting assessment units, the influence of factors in the 

indicator system related to geological and geomorphological characteristics must 
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be considered, while the accuracy of the data sources for the indicators should 

also be ensured. Moreover, watershed units are a natural geographic division with 

relatively fixed areas, while grid units can have their resolution adjusted to meet 

specific needs and adapt to different research scales. The construction of machine 

learning models requires abundant samples for training, validation, and testing, 

hence for smaller-scale study areas, which cannot generate enough watershed 

units as samples, grid-based assessment units are more appropriate. 

 

1.3 Research scope 

1.3.1 Research Questions 

Regarding the current research gaps in the field of this study, this research aims 

to address the following two key research questions: 

(1) What is the responsive relationship between debris flow susceptibility and 

climate dry-wet cycles? 

(2) Which factors influence the responsive relationship between debris flow 

susceptibility and climate dry-wet cycles? 
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1.3.2 Objectives 

To answer the questions, this study aims to provide an in-depth analysis of the 

relationship between debris flow susceptibility and climate dry-wet cycles, with 

an emphasis on developing methodologies for debris flow susceptibility 

assessment. The objectives of this research are as follows: 

(1) Constructing indicators of dry-wet cycle characteristics to represent the long-

term pre-disaster dry-wet cycle characteristics in regions affected by debris flows. 

(2) Estimating the recurrence period of debris flows to disclose the responsive 

relationship between debris flow susceptibility and climate dry-wet cycle 

characteristics. 

(3) Establishing a debris flow susceptibility assessment model to validate the 

feasibility of predicting debris flow susceptibility using dry-wet cycle 

characteristics. 

(4) Comparing inland and coastal typical regions to explore the conditions 

affecting the use of dry-wet cycle characteristics in debris flow susceptibility 

assessment. 

 

1.3.3 Methodology 

The following methodologies are included to achieve the research objectives: 
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(1) By applying geostatistical universal kriging considering terrain for spatial 

interpolation, this study extends the precipitation data from monitoring stations 

and potential evapotranspiration data estimated based on the Penman-Monteith 

equation to the assessment units. Leave-one-out cross-validation is used to 

quantify the representativeness of the interpolation results. Subsequently, these 

results are combined with soil data of the study units to construct a time series of 

the Palmer Drought Severity Index (PDSI), which serves as the dry-wet index in 

this study. The SARIMA model is used to predict and verify the accuracy of the 

dry-wet index for the coming month. Further time-series analyses of the dry-wet 

index include tests for stationarity, autocorrelation analysis, wavelet analysis, and 

multifractal analysis to ultimately obtain the dry-wet cycle characteristics 

(DWCC), such as extreme dry-wet periods (EDWP) based on wavelet power 

spectrum and extreme dry-wet characteristics based on multifractal spectrum 

parameters. 

(2) For each watershed with debris flow records in the subtropical monsoon-

affected region of Sichuan Province, debris flow recurrence buffer zones are 

constructed using two methods: one based on the equivalent diameter of the 

debris flow watershed and the other based on the nearest neighboring debris flow 

watershed. Within a buffer zone, the recurrence intervals of the debris flows are 

calculated and then estimated as the average recurrence interval (ARI) for the 

corresponding debris flow watershed. The correlation between EDWC and ARI 



 Chapter 1 Introduction 

 
24  

is then obtained to quantify the relationship between debris flow susceptibility 

and the climate dry-wet cycle. In addition, through field investigations and soil 

sampling of debris flow gullies, FS is measured to quantify the debris flow 

susceptibility. Correlation analyses between the FS and DWCC are conducted to 

further validate the responsive relationship between debris flow susceptibility and 

climate dry-wet cycles.  

(3) Taking the subtropical monsoon area in Sichuan Province as an inland typical 

region, this study uses K-means clustering based on the geological and 

topographical conditions of watersheds. The number of clusters corresponding to 

the maximum average silhouette coefficient is used to divide the subtropical 

monsoon area in Sichuan Province into a corresponding number of zones with 

different underlying surface characteristics (USC). For the coastal typical region 

represented by the Hong Kong Special Administrative Region, this study divides 

assessment units based on the scale of historical debris flow gullies. Positive and 

negative samples are constructed based on the presence or absence of debris flow 

records within a month, and assessment factors required for debris flow 

susceptibility, including geology, topography, meteorology, DWCC, vegetation 

cover, and human activities, are extracted for each assessment unit. Four 

representative machine learning methods are compared, and the best-performing 

model is selected based on model performance metrics. The model 

generalizability is ensured through cross-validation with different fold numbers. 
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Model optimization involves selecting assessment factors through collinearity 

diagnosis and tuning model hyperparameters to simplify and enhance model 

performance. The model is tested on datasets not involved in training, and the 

performance of the DWCC predicted by SARIMA when applied to model testing 

is evaluated. 

(4) Based on the established debris flow susceptibility models in the subtropical 

monsoon area in Sichuan Province and the Hong Kong Special Administrative 

Region, the relative influences of assessment indicators are calculated according 

to the model structure to quantify their contributions to debris flow susceptibility 

assessments. Partial dependence plots are drawn to reveal the main controlling 

factors and characteristics of debris flow susceptibility based on various 

assessment factors. Adaptation measures for disaster prevention and reduction of 

debris flows are formulated according to the performance of each main 

controlling factor in the susceptibility assessment and the characteristics of 

different study areas. Focusing on the role of DWCC in debris flow susceptibility 

assessment, the study discusses factors that may affect the response of debris 

flows to dry-wet cycles by examining the similarities and differences in 

assessment methods and model interpretation results between the two typical 

study areas, aiming to reveal the applicable conditions of the debris flow 

susceptibility assessment model based on DWCC. 

Based on the methodologies involved, a flowchart is shown in Fig. 1-1: 
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Fig. 1-1. Flowchart of research methodology 

 

1.3.4 Significance 

Currently, it is difficult to quantitatively characterize the mechanisms of debris 

flow formation and initiation, resulting in frequent missed or false alarms in 

debris flow early warning. It is still challenging to obtain accurate and targeted 

debris flow early warning on a large regional scale due to the lack or low accuracy 

of basic data. The significance of this study is utilizing meteorological data within 

a regional scope, combined with geographical and environmental information, 

and applying theories or technologies including statistical analysis, fractal theory, 
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time series analysis, remote sensing, geographic information systems, and 

machine learning to explore the responsive relationships and mechanisms 

between debris flow susceptibility and extreme weather events. The aim is to 

develop new technologies for debris flow susceptibility assessment in different 

typical regions, considering extreme climate factors, and providing scientific 

guidance for debris flow conducting prevention and mitigation measures under 

the background of increasing extreme weather events. 

Debris flows triggered by extreme precipitation have drawn significant attention 

due to their widespread occurrence in both inland and coastal regions with 

different climatic characteristics. Especially, for regions with a larger population 

density, the impacts of debris flow events on human society will be more 

concerned. In this study, the sub-tropical monsoon climate region of Sichuan 

Province, China, is selected as a representative inland monsoon area, while the 

Hong Kong Special Administrative Region is chosen as a typical coastal monsoon 

area. According to data from the China Geological Survey, Sichuan Province 

consistently records the highest level of debris flow disasters among all provincial 

administrative regions in China. Within the monsoon climate region, the potential 

risk of debris flows is further amplified due to its high population density. 

Significant progress has been made in geological disaster prevention and 

mitigation work in recent years due to increased financial investment and 

improved regulations, but the large-scale and frequent debris flows caused by 
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extreme weather events still result in fatalities, missing persons, and injuries 

during the rainy season. Therefore, conducting studies on the regional debris flow 

susceptibility considering the impacts of extreme weather events in the sub-

tropical monsoon climate region of Sichuan Province is of great practical 

significance and an important aspect of addressing the impact of extreme climate 

on human society. Although the area of the Hong Kong Special Administrative 

Region is relatively small compared to the sub-tropical monsoon climate region 

of Sichuan Province, the debris flow prevention and mitigation work in Hong 

Kong still deserves concentration. For one thing, due to the scarcity of land 

resources, Hong Kong experiences significant slope development, which greatly 

increases the risk of debris flows. The government thus attaches great importance 

to slope safety. For another, the Hong Kong Special Administrative Region has a 

long history of debris flow records and has made sufficient investments in debris 

flow prevention and mitigation measures, ultimately achieving significant 

success in debris flow risk control. Additionally, considering the factor of 

typhoons that occur in Hong Kong every year is also an important aspect of 

considering the impacts of extreme weather events on debris flow disasters. By 

selecting the two typical rainfall-induced debris flow regions, one inland and one 

coastal, this research not only verifies the spatial adaptation of the debris flow 

susceptibility assessment model in different study areas but also explores the 

performance of various assessment indicators in different locations. 
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1.4 Overview of structure 

This thesis is structured into 7 chapters: 

(1) Introduction. The first chapter introduces the background of this study and 

reviews related research progress, based on which the research scope including 

research questions, objectives, methodologies, and significance is summarized. 

The structure of this thesis is shown in this chapter. 

(2) Study Area and Data. The second chapter introduces two study areas involved 

in this paper, i.e., the subtropical monsoon climate region of Sichuan Province 

and the Hong Kong Special Administrative Region. Debris flow susceptibility 

models that consider climate dry-wet cycles will be constructed in both study 

areas for comparisons in the following chapters. 

(3) Representation of dry-wet cycle characteristics. The third chapter describes 

the process of extracting daily monitoring data from meteorological stations to 

the assessment unit and calculating its dry-wet index. It also includes the monthly 

forecast of dry-wet index time series. DWCC including EDWP and extreme dry-

wet characteristics are quantified in this chapter.  

(4) Impact of dry-wet cycle characteristics on debris flow susceptibility. The 

fourth chapter proposes two methods based on historical debris flow records to 
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estimate the ARI of debris flows and explores the correlation between it and 

EDWP. In this chapter, soil experiments in typical debris flow gullies validate the 

responsive patterns of debris flow susceptibility to DWCC and explain the 

responsive mechanisms. 

(5) Debris flow susceptibility model based on dry-wet cycle characteristics. The 

fifth chapter focuses on the subtropical monsoon climate region of Sichuan 

Province and the Hong Kong Special Administrative Region as study areas. It 

divides the subtropical monsoon climate region of Sichuan Province into different 

zones based on USC. A debris flow susceptibility assessment model based on dry-

wet cycle characteristics is established in each study area (zone). This chapter 

includes model comparison, model optimization, model testing, and model 

application. 

(6) Main drivers of regional debris flow susceptibility. The sixth chapter, based 

on the debris flow susceptibility assessment models constructed in the two typical 

study areas, identifies the main drivers and quantifies the characteristics of debris 

flow susceptibility according to the performance of assessment factors in the 

models. It also compares the performance of DWCC in different study areas when 

assessing debris flow susceptibility, summarizing the conditions affecting the 

applicability of DWCC. 

(7) Conclusions and Future Work. The seventh chapter summarizes the entire 

research and points out the current limitations and future research directions.
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Chapter 2  Study Areas and Data 

2.1 Overview of study areas 

This study will focus on the impact of climate dry-wet cycles on rainfall-induced 

debris flows. Due to the varying effects of the climate dry-wet cycle on the 

mechanisms of three types of debris flows, i.e., rainfall-induced, GLOF-induced, 

and snowmelt-induced, the exploration of their respective responsive patterns 

will be impacted in this study. Rainfall-induced debris flows, which are more 

widely distributed in areas with dense human activities, pose a greater impact on 

human society. Consequently, this research focuses on the responsive patterns of 

rainfall-induced debris flows to the climate dry-wet cycle, particularly in the 

typical regions of the subtropical monsoon climate zone. The study ultimately 

selects the monsoon-affected region of Sichuan Province in Southwest China as 

a typical inland study area and the Hong Kong Special Administrative Region in 

Southern China as a typical coastal study area. The comparisons between the two 

study areas aim to investigate the responsive relationship between climate dry-

wet cycles and debris flow susceptibility in different terrestrial or marine 

locations. Both study areas have extensive records of mostly rainfall-induced 

debris flows and abundant geographical environmental data. By conducting 

comparative research, this study can identify the applicable conditions under 

which the climate dry-wet cycle affects debris flow susceptibility and develop a 

more generalized susceptibility assessment model for debris flows. This proposed 
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model will provide reasonable and targeted disaster prevention and mitigation 

references for decision-makers in different regions. 

 

2.1.1 Inland monsoon region 

Sichuan Province, located in the southwest of China (26°03′ - 34°19′N, 97°21′ - 

108°12′E), was preliminarily selected as a typical inland monsoon study area (Fig. 

2-1). With a total area of approximately 485,000 square kilometers, Sichuan lies 

upstream of the Yangtze River, spanning the first and second topographical steps 

of China, featuring significant elevation differences with a maximum variation 

exceeding 7,000 meters. The province is primarily composed of mountains, hills, 

plateaus, and plains, with mountains accounting for about 85% of its total area 

(Wang et al., 2020). Sichuan incorporates multiple fault zones and has 

experienced several major earthquakes in the past years, including the Ms. 8.0 

Wenchuan earthquake (2008), the Ms. 7.0 Lushan earthquake (2013), and the Ms. 

7.0 Jiuzhaigou earthquake (2017), which destabilized mountain slopes and 

generated loose materials (Fan et al., 2021). The climate of Sichuan Province is 

dominated by the subtropical monsoon climate in the Sichuan Basin and the 

plateau climate in the western Sichuan Plateau. The vegetation in the Sichuan 

Basin is primarily subtropical evergreen broadleaf forests, while the western 

Sichuan plateau is characterized by shrub meadows. Influenced by the monsoon 

climate, the Sichuan Basin receives about 75% of its annual precipitation, 
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approximately 1100 millimeters, from June to October, which is prone to 

triggering debris flows in the surrounding mountain areas (Di et al., 2019). The 

various climate types of Sichuan result from its considerable elevation differences 

and diverse micro-terrain, with monthly average temperatures ranging from -

30.6°C to 36.4°C, according to data from the China Meteorological Data Service 

Center. Annually, Sichuan Province suffers from debris flow disasters that lead to 

casualties and economic losses. For example, the widespread flash floods and 

debris flows in July 2022, resulted in 8 deaths, 10 missing persons, and direct 

economic losses of 679 million Chinese yuan, particularly affecting infrastructure, 

local houses, and agriculture. The coupled effects of topography, seismic activity, 

and meteorological events create favorable conditions for the frequent occurrence 

of debris flows in this region (Chen et al., 2014; Di et al., 2019; Fielding et al., 

2012). 

In this study, the focus is on the influence of the climate dry-wet cycle on rainfall-

induced debris flows. Therefore, the study area was narrowed down to the 

subtropical monsoon climate region of Sichuan (SMCRS) to mitigate the impact 

of GLOF-induced and snowmelt-induced debris flows which are more prevalent 

in the regions affected by plateau climate. The study area under investigation 

encompasses an area of approximately 266,000 square kilometers, accounting for 

54.8% of the total area of Sichuan Province. 
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2.1.2 Coastal monsoon region 

The Hong Kong Special Administrative Region (HKSAR) of southern China 

(22°08' - 22°34' N, 113°49' - 114°30' E) was selected as a typical study area 

located within the coastal monsoon region (Fig. 2-1). Covering a land area of 

about 1,100 square kilometers, the HKSAR is situated at the estuary of the Pearl 

River and its bedrock primarily consists of granite and volcanic rocks, with some 

areas exposing metamorphic sedimentary rocks (Lee et al., 1997). Approximately 

75% of the undeveloped terrain in the HKSAR is classified as hills or mountains. 

Despite being a coastal region, it has an average elevation of about 100 meters, 

with the highest peak exceeding 900 meters, indicating substantial elevation 

differences. The dominant vegetation type is the South Asian tropical evergreen 

broadleaf forest, which includes various vegetation layers such as trees, shrubs, 

and herbs, as well as unique plant communities like mangroves found in intertidal 

zones (Zheng et al., 2018). The HKSAR has a subtropical monsoon climate with 

rainfall occurring more frequently at mountaintops and the city center compared 

to nearby coastal areas, with about 90% of its annual rainfall occurring between 

April and October (Shu et al., 2021). On average, the HKSAR experiences 5 to 7 

typhoons annually, typically resulting in extreme precipitation (Sewell et al., 

2015). The average temperature during the summer season is 28.4 °C, and due to 

subsidence airflows caused by tropical cyclones, daily maximum temperatures 

can exceed 35°C (Chang et al., 2021). The mountainous terrain and extreme 
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rainfall of HKSAR also lead to debris flow disasters. For instance, a severe 

rainstorm on June 7, 2008, triggered approximately 900 debris flow occurrences 

(Zhou et al., 2019). 

 

Fig. 2-1. Locations of study areas 

 

2.2 Data 

The research data required for this study encompasses two distinct areas, i.e., 

SMCRS and HKSAR. The debris flow data include details on the timing of events, 

geographical location, scale, and impact of the occurrences. Meteorological data 

comprise daily records from ground-based weather stations, including 

precipitation, temperature, relative humidity, wind speed, and sunshine duration. 
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Geological data incorporate rock types and fault information. Topographic data 

are extracted based on the Digital Elevation Model (DEM) or Digital Terrain 

Model (DTM). Soil data encompass information on the available water capacity 

(AWC) of soil. Land use data are primarily employed to characterize human 

activities and vegetation cover. 

 

2.2.1 Debris flow data 

Debris flow records in the SMCRS from 1981 to 2020 were compiled by 

combining disaster inventories prepared by the Sichuan Geo-Environment 

Monitoring program, news reports, and literature (Di et al., 2019; Fan et al., 2019). 

Hydrological analysis tools based on ArcGIS were used to divide SMCRS into 

16,195 watersheds (Xiong et al., 2020). These were further refined based on the 

distribution of valley topography to correct the delineation of the watersheds (Fig. 

2-2). The average area of the watersheds within SMCRS is 16.4 ± 0.1 km2 (mean 

± standard error). To avoid oversampling, duplicate records of debris flows 

occurring within the same watershed in a single month were removed, resulting 

in a final selection of 772 debris flow records for the calculation of the regional 

ARI and pre-disaster DWCC. For the construction of a debris flow susceptibility 

prediction model, 743 records from 1981 to 2019 were used as positive samples 

for the training dataset. Watersheds with debris flow records were excluded, and 

an equal number of non-debris flow sites were randomly determined as negative 
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samples. Each negative sample was randomly matched with a positive sample to 

assign a pseudo-occurrence date. The 29 debris flow cases from 2020 were used 

to test the proposed models, ensuring no overlap with the training dataset. This 

approach was taken to validate the generalizability of the developed debris flow 

susceptibility assessment model to different datasets. 

 

Fig. 2-2. Debris flow distribution in the SMCRS (area with elevation data) 

 

Debris flow records for the HKSAR were obtained from the Civil Engineering 

and Development Department, encompassing 1,848 events from 2010 to 2019 

(Fig. 2-3). These records include the occurrence date of the event, geographical 

coordinates, volume of the collapsed material (m3), casualty and injury numbers, 
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evacuated population, and the number of closed roads. The Enhanced Natural 

Terrain Landslide Inventory (ENTLI) dataset, compiled by the Geotechnical 

Engineering Office of Civil Engineering and Development Department, identifies 

debris flow channels through unmanned aerial vehicle (UAV) imagery, spanning 

from 1924 (the first year debris flows were observed from aerial photography) to 

2018, with a total of 7,091 records. Each record includes the width of the main 

scarp (m), the length of the source area (m), and the elevation difference between 

the crown and toe of each debris flow (m). The maximum length of the source 

areas (117 m) was used as the radius for the debris flow buffer zones, and the 

highest precision debris flow susceptibility assessment unit grid resolution was 

set at 250 m to ensure that the assessment unit area was not less than the buffer 

zone area. This provided a total of 20,451 grids as assessment units. To prevent 

oversampling, duplicate records within the same grid occurring in a single month 

were removed. An equal number of non-debris flow points were randomly 

generated in the study area, ensuring that their buffer zones did not overlap with 

those of the debris flow sites. Each non-debris flow site was randomly matched 

with a debris flow site to assign a pseudo-occurrence date. Ultimately, 977 grids 

with debris flow records and an equal number of grids without debris flow records 

were selected. In the process of constructing the debris flow susceptibility 

assessment model, 904 grids with debris flow events from 2010 to 2018 were 

used as the training dataset, while 73 grids from 2019 were used as the test dataset 

to ensure the generalizability of the model across different datasets. 
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Fig. 2-3. Debris flow distribution in the HKSAR (area in grey) 

 

Although the HKSAR has a land area significantly smaller than the SMCRS, the 

number of debris flow events impacting human society is comparable to that of 

the SMCRS. This can largely be attributed to differences in the 

comprehensiveness of data collection and the standards for data acquisition 

between the two study areas. In terms of data comprehensiveness, the SMCRS, 

due to its vast area and the prevalence of debris flows in sparsely populated areas, 

often has unreported debris flow data, making it challenging to compile a 

complete record of all debris flow events. In contrast, the HKSAR, with its 

smaller area, allows for the detailed recording of characteristics for each debris 

flow occurrence within the entire region based on field investigations or remote 
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sensing (i.e., UAV). Regarding data collection standards, the debris flow disaster 

database in the SMCRS, constructed from disaster inventories, news reports, and 

literature, only includes larger-scale debris flow events that have resulted in 

human casualties or economic loss. Conversely, the debris flow disaster database 

in HKSAR also includes records of smaller-scale events, such as those with a 

collapsed volume of only 0.001m³, even if they do not result in casualties or road 

closures. 

However, the debris flow disaster databases constructed for both the SMCRS and 

the HKSAR are based on typical debris flow events derived from field surveys. 

These events are representative enough to reflect the characteristics of the 

majority of debris flow disasters in these localities. The similarity in the number 

of debris flow samples between the two study areas is advantageous for the 

subsequent construction and comparison of debris flow susceptibility assessment 

models. Therefore, the establishment of the debris flow databases for both the 

SMCRS and the HKSAR is representative and reasonable for this study. 

 

2.2.2 Meteorological data 

Climate zoning data were downloaded from the Resources and Environment 

Science and Data Center, Chinese Academy of Sciences (https://www.resdc.cn), 

to delineate the SMCRC in Sichuan Province. 
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Meteorological data must encompass a period extending at least 20 years before 

the recorded debris flow events to study the long-term DWCC before debris flow 

occurrences. 

Based on the China Meteorological Data Service Centre (https://data.cma.cn), 

meteorological data including precipitation, temperature, relative humidity, wind 

speed, and sunshine duration for Sichuan Province and its surrounding 

meteorological stations were obtained, encompassing a total of 112 stations with 

the monitoring period covering 1960 to 2020 (Fig. 2-2). For the verification of 

typical debris flow gullies, meteorological data for the year 2021 is required. 

Therefore, the same meteorological items were downloaded based on 412 stations 

in 2021. 

Daily meteorological data for temperature, relative humidity, wind speed, and 

sunshine duration from 1990 to 2019 were downloaded and filtered from the 

Hong Kong Observatory (https://www.hko.gov.hk/sc/index.html) for five 

weather stations within the HKSAR. Additionally, daily precipitation data were 

combined based on six weather stations from the Hong Kong Observatory and 42 

rain gauge stations of the Geotechnical Engineering Office of Civil Engineering 

and Development Department for the same period (Fig. 2-3). Moreover, 175 

tropical cyclone warning signals from 2010 to 2019 for the HKSAR were sourced 

also from the Hong Kong Observatory, including the intensity, names, signal 

levels, and the start and end time of the tropical cyclones. 



Chapter 2 Study Area and Data 

 
42  

 

2.2.3 Geological data 

The geological data for the two study areas were sourced from the Spatial 

Database of 1:2500000 Digital Geologic Map of People’s Republic of China (Ye 

et al., 2017), where the data type is a vector format, and each vector feature 

contains subcategories of rocks primarily present within the region.  

Table 2-1. Rock type 

Rock Type Formation Rock Sub-type 

Igneous 
Formed by the cooling and solidification of 

magma from within the earth's crust 

Granite, diorite, gabbro, diabase, basalt, 

andesite, rhyolite, siliciclastic rocks, etc. 

Sedimentary 

Formed by the processes of weathering, 

erosion, transportation, deposition, and 

lithification 

Conglomerate, sandstone, siltstone, 

carbonate rock, clastic rock, mudstone, 

limestone, etc. 

Metamorphic 
Formed from pre-existing rocks altered by 

high temperature and pressure 

Quartzite, marble, slate, phyllite, schist, 

gneiss, mica schist, etc. 

 

To simplify the evaluation indicator system for subsequent debris flow 

susceptibility models, the principal subcategories of rocks in the dataset were 

classified according to Table 2-1. Based on the rock formation processes, rock 

types were divided into three main categories: igneous, sedimentary, and 

metamorphic rocks. Ultimately, the primary rock types of each research unit were 

extracted and used as assessment indicators for the respective assessment units. 
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The fault data for the SMCRS is sourced from the Seismic Active Fault Survey 

Data Center, China Earthquake Administration (https://www.activefault-

datacenter.cn), and is characterized as vector data. This fault information is 

utilized for the extraction and assessment of the proximity of assessment units to 

faults, thereby reflecting the intensity of geological activity in the SMCRS 

(Huang et al., 2020). Additionally, fault data serves as a crucial USC for 

delineating the SMCRS. This is to mitigate the excessive impact of USC on the 

study of the relationship between climate wet-dry cycles and regional debris flow 

susceptibility. 

 

2.2.4 Topographical data 

The topographic data for the SMCRS employs the 30-meter resolution DEM from 

the Shuttle Radar Topography Mission (https://dwtkns.com/srtm30m), as 

illustrated in Fig. 2-2. The HKSAR utilizes a 5-meter resolution DTM provided 

by the Lands Department (https://data.gov.hk/sc-data/dataset/hk-landsd-

openmap-5m-grid-dtm), which can be seen in Fig. 2-3. 

Topographic data will be utilized for obtaining features like the slope, aspect, and 

curvature. Specifically, within the SMCRS, the Melton ratio will be calculated 

according to the research units, as seen in equation (2-1). For the HKSAR, the 

maximum elevation difference will be determined based on the research units. 
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Through the calculations of these two indicators, the slope within the research 

units can be derived. Therefore, in comparison to the exclusive use of topographic 

features such as elevation and slope, both the Melton ratio and the maximum 

elevation difference serve as relatively comprehensive topographic features for 

the debris flow susceptibility assessment (Ilinca, 2021). 

𝑀𝑒𝑙𝑡𝑜𝑛 =  
𝐸𝐷

√𝐴
                                             (2-1) 

where ED is the maximum elevation difference in a watershed (m), and A is the 

area of the watershed (m2). 

 

2.2.5 Soil data 

Soil data for the two study areas are derived from the Harmonized World Soil 

Database (HWSD) (Wieder et al., 2014). Within China, the soil data in the HWSD 

originates from a 1:1,000,000 soil map provided by the Institute of Soil Science, 

Chinese Academy of Sciences. The HWSD data type is raster, with a spatial 

resolution of 1 km, and includes parameters such as soil AWC, soil reference 

depth, and statistics on soil particle types and various physicochemical properties 

for the topsoil and subsoil layers. Globally, the database categorizes and classifies 

over 16,000 soil types. In this research, the HWSD data is solely utilized for the 

extraction of the AWC within the research units. The range of AWC in the HWSD 

dataset spans from 15 to 150 mm. The AWC is combined with meteorological 
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data to construct a surface water balance model, which is eventually used to 

calculate the dry-wet status of the research units within each study area. 

For the SMCRS, given that a watershed unit typically encompasses multiple soil 

data grids, it is feasible to adopt the mean value of several grids to represent the 

AWC of the corresponding watershed. 

 

2.2.6 Land use data 

The land use data for the SMCRS is sourced from the WorldCover provided by 

the European Space Agency (Venter et al., 2022), with a spatial resolution of 10 

m. This data set quantifies the proportion of various land use types within 

watersheds, including tree cover, shrubland, grassland, cropland, built-up, 

bare/sparse vegetation, snow and ice, permanent water bodies, herbaceous 

wetland, mangroves, moss, and lichen. The land use data for the HKSAR is 

obtained from the Planning Department, which is also mapped at a 10-meter grid 

resolution. It encompasses 27 categories that cover a range of land uses such as 

residential buildings, commercial buildings, industrial buildings, governmental 

buildings, public amenities, transport facilities including roads, railway, ports, 

and airports, agricultural areas including farmland and fish ponds, vegetation 

comprising woodland, shrubland, grassland, and mangrove/swamp, rocky shore, 

water bodies including reservoir, stream, and nullah; and other undeveloped land. 
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Land use data will be analyzed based on the area proportion of each land use 

category within the research units of the study areas, reflecting the characteristics 

of two major land use types such as human activity and vegetation cover (Huang 

et al., 2022; Xu et al., 2013). Typically, human activities are represented by 

categories such as cropland and urban development, while vegetation cover is 

indicated by land use types like woodland, shrubland, and grassland. 
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Chapter 3  Representation of Dry-wet Cycle Characteristics 

This chapter will construct a meteorological dataset related to the hydrological 

cycle based on ground meteorological monitoring data in the SMCRS and the 

HKSAR. Incorporating AWC, the study will develop long-term dry-wet indices 

for research units with and without debris flow records in each study area, 

spanning at least 20 years before debris flow events. It will then compare the 

differences in the dry-wet indices between units with and without debris flow 

records before the events. By extracting temporal characteristics of the dry-wet 

index time series, the study aims to achieve monthly predictions of these indices. 

By using methods such as autocorrelation analysis, wavelet analysis, and 

multifractal analysis, DWCC will be extracted, including EDWP and extreme 

dry-wet characteristics. By comparing the DWCC of research units with 

historical debris flow records to those without in each study area, this study 

attempts to reveal the similarities and differences of DWCC in regions with and 

without debris flow before the event occurrences. 

 

3.1 Meteorological data preprocessing 

Precipitation, temperature, solar radiation, wind speed, and humidity are 

meteorological factors that influence the hydrological cycle. To construct the 

meteorological components of the hydrological cycle for assessment units with 
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and without debris flow records, the process begins by obtaining daily data on 

meteorological factors such as precipitation, average temperature, maximum 

temperature, minimum temperature, sunshine duration, wind speed, and relative 

humidity from ground meteorological monitoring stations in the two study areas. 

Data imputation is conducted for missing daily meteorological data, and the 

accuracy of the imputations is verified. Subsequently, potential monthly 

evapotranspiration values for the meteorological stations are estimated based on 

meteorological factors like average, maximum, and minimum temperatures, 

sunshine duration, wind speed, and relative humidity. Finally, the monthly values 

of precipitation and potential evapotranspiration from the meteorological stations 

are interpolated, yielding historical data on monthly precipitation and potential 

evapotranspiration for the assessment units within both research areas for the 

study period, with the accuracy of the interpolation results being verified. 

 

3.1.1 Meteorological data imputation 

It is necessary to conduct imputation for missing meteorological data, ensuring 

data accuracy to facilitate subsequent time series analysis. Monitoring data from 

meteorological stations are often subject to missing values due to a variety of 

unavoidable factors such as instrument failure or operator errors. However, 

acquiring accurate time series results for dry-wet indices based on discontinuous 

meteorological data is challenging. Commonly employed methods for missing 
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data imputation include mean substitution, regression, expectation-maximization 

algorithm, multiple imputation, and the K-nearest neighbor (KNN) algorithm. 

Mean substitution is convenient but performs poorly when the proportion of 

missing data is large. Regression methods depend on the correlation between 

independent variables and missing values to construct equations, which can be 

time-consuming when the correlation is not accurately known in advance for 

multiple meteorological elements. The expectation-maximization algorithm and 

the multiple imputation have high accuracy in imputing missing values but may 

consume substantial computational resources for large data samples, as in this 

study. The KNN algorithm, which is based on machine learning techniques and 

does not rely on prior knowledge, estimates missing values by calculating the 

Euclidean distance between the features (such as time, geographic coordinates, 

elevations, etc.) of the missing and complete data, selecting the K-nearest 

complete data points, and performing a weighted average based on distance, 

making it suitable for efficiently and accurately filling in missing data over long 

time series and large samples (Du et al., 2020; Gan et al., 2018). 

In this study, considering both the volume of monitoring data and the accuracy of 

imputation, the KNN algorithm was chosen to fill in the missing daily 

meteorological data. Research results indicate that when the missing data 

constitutes less than 50% of the total dataset, various imputation methods (except 

for mean substitution) enhance the quality of the data (Farhangfar et al., 2008; 
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Tsai et al., 2016). However, as the proportion of missing data increases, so does 

the time consumed. Therefore, when applying KNN for data imputation, the 

proportion of missing values typically should not exceed 30% (Amiri et al., 2016; 

Xu et al., 2018). In this research, the proportions of missing values in the 

meteorological data are shown in Table 3-1. The results demonstrate that within 

the SMCRS and HKSAR, the proportion of missing values for each 

meteorological factor does not exceed 10%, with the majority being below 5%, 

making KNN suitable for accurate and efficient imputation of missing data. 

Precipitation data include observations of trace amounts less than 0.1 mm, which 

are negligible for this study when calculating the total monthly precipitation and 

thus are replaced with zero (Zhou et al., 2017). Finally, the accuracy of the 

imputations was assessed based on the total monthly precipitation and potential 

evapotranspiration to quantify the potential impacts of the imputations on the 

subsequent results of this study. 

Table 3-1. Ratio of missing meteorological data to total observations 

Study 

Area 
Year 

Precipit

ation 

Average 

Temperature 

Maximum 

Temperature 

Minimum 

Temperature 

Relative 

Humidity 

Average 

Windspeed 

Sunshine 

Duration 

SMCRS 1960-2020 <0.001 <0.001 <0.001 0.001 0.003 0.003 0.001 

HKSAR 1990-2019 0.028 0.016 0.015 0.015 0.066 0.019 0.083* 

* The sunshine duration has been recorded since July 1, 1992, with no subsequent missing observations. 
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During the imputation of meteorological data using KNN, the initial step involves 

calculating the Euclidean distance between rows with missing data and rows with 

complete data, considering various factors such as the date of observation (year, 

month, and day) and the location of the station (projected coordinates and 

elevation), which are then used as weights. Given the extensive range of 

meteorological factors, the large total volume of daily data, and there is not 

necessarily a positive correlation between the choice of K and imputation 

accuracy based on previous research (Lai et al., 2019), it was determined that the 

10 nearest complete data rows (K = 10) to the missing data row would be selected 

to calculate a weighted average for data imputation. Additionally, within the 

HKSAR, due to a significant portion of non-randomly missing sunshine duration 

data (from 1990 to June 1992), reaching a missing data ratio of 8.3%, the 

imputation was conducted using the mean substitution of the same period from 

previous years to minimize the impacts of missing sunshine duration data on the 

estimation of potential evapotranspiration for the period from January 1990 to 

June 1992. To further validate the accuracy of the employed imputation method, 

an equivalent number of complete data rows were randomly selected and imputed 

using the same technique. Fig. 3-1 presents scatter plots of the imputations versus 

observations for the precipitation and potential evapotranspiration, with both 

variables aggregated on a monthly total basis. The performance of the imputation 

model was assessed by calculating the coefficient of determination (R2) and the 

root mean square error (RMSE) between the imputed and observed values (Addi 
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et al., 2022). The calculations of R2 and RMSE are shown in equation (3-1) and 

equation (3-2). 

𝑅2 = (
∑ (𝐼𝑖−𝐼�̅�)(𝑂𝑖−𝑂𝑖̅̅ ̅)
𝑁
𝑖=1

√∑ (𝐼𝑖−𝐼�̅�)2
𝑁
𝑖=1 ∑ (𝑂𝑖−𝑂𝑖̅̅ ̅)2

𝑁
𝑖=1

)

2

                               (3-1) 

𝑅𝑀𝑆𝐸 = √𝑁−1∑ (𝐼𝑖 −𝑂𝑖)
𝑁
𝑖=1                                  (3-2) 

where 𝑖 represents the 𝑖th missing value, 𝑁 denotes the total number of missing 

values, 𝐼 stands for the imputed value, and 𝑂 signifies the observed value, with 𝐼 ̅

and �̅� being the mean of the imputed and observed values, respectively. 

 

Fig. 3-1. Validation of monthly total precipitation/potential evapotranspiration 

based on imputations 
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The results indicate that within the two study areas of the SMCRS and the 

HKSAR, the imputation of missing precipitation and meteorological factors 

(excluding sunshine duration in the HKSAR) based on the KNN method for the 

estimation of total monthly precipitation and potential evapotranspiration is 

acceptable. In the SMCRS, the imputations yielded high R2 values (0.974 - 0.999), 

with the RMSE for total monthly precipitation not exceeding 7 mm and that for 

potential evapotranspiration not exceeding 2 mm. In the HKSAR, the R2 values 

were even higher (0.988 - 0.994), with the RMSE for potential evapotranspiration 

not exceeding 3 mm, but the RMSE for total monthly precipitation reached nearly 

26 mm. Even though the RMSE value is relatively high, it remains within an 

acceptable margin of error for the total monthly precipitation. This discrepancy 

may be attributed to the coastal region typically experiencing more typhoons, 

leading to extreme precipitation events, and resulting in sudden changes in the 

distribution of precipitation data, which can affect the imputation quality. 

Therefore, the imputation of missing values for precipitation and potential 

evapotranspiration using the KNN or mean substitution proved to be highly 

effective, with the imputed values largely representative of the missing data. 

Moreover, the representativeness of the imputed values could be further enhanced 

by employing a linear regression equation between the observed values (O) and 

the imputed values (I) for adjustment. 
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3.1.2 Potential evapotranspiration estimation 

This study uses the Penman-Monteith equation for estimating potential 

evapotranspiration due to its comprehensive accuracy in various climates. The 

estimation of potential evapotranspiration is commonly based on either the 

Thornthwaite or the Penman-Monteith equation. The Thornthwaite equation 

relies on temperature and latitude (Thornthwaite, 1948), making it suitable for 

estimating potential evapotranspiration in regions with sparse meteorological 

data. However, it struggles to accurately capture the spatial and temporal 

distribution of potential evapotranspiration, particularly in arid areas (Chen et al., 

2005b). In contrast, the Penman-Monteith equation is more comprehensive as it 

considers a range of meteorological factors including average daily temperature, 

wind speed, solar radiation, and relative humidity (van der Schrier et al., 2011), 

and it has been found to align more closely with actual evapotranspiration in both 

arid and humid regions (Liu et al., 2015). Accordingly, based on the completeness 

of meteorological station data, this study employs the Penman-Monteith equation, 

as outlined in the calculation guidelines published by the Food and Agriculture 

Organization of the United Nations (Allen et al., 1998). This approach uses 

historical daily monitoring values of meteorological factors like temperature, 

relative humidity, wind speed, and sunshine duration, along with spatial 

information such as geographic coordinates and elevation of the monitoring sites, 
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and temporal information of the monitoring data, to estimate the historical daily 

potential evapotranspiration at various meteorological stations. 

Based on daily observations of maximum temperature ( 𝑇𝑚𝑎𝑥  ), minimum 

temperature (𝑇𝑚𝑖𝑛), mean temperature (𝑇𝑚𝑒𝑎𝑛), and relative humidity (𝑅ℎ), the 

daily average saturation vapor pressure (𝑒𝑠) and the actual vapor pressure (𝑒𝑎) are 

estimated according to equation (3-3): 

{
 
 

 
 𝑒𝑠 =

𝑒𝑜(𝑇𝑚𝑎𝑥)+𝑒
𝑜(𝑇𝑚𝑖𝑛)

2
         

𝑒𝑎 =
𝑅ℎ

100
𝑒𝑠                             

𝑒𝑜(𝑇) = 0.6108𝑒
17.27𝑇𝑚𝑒𝑎𝑛
𝑇𝑚𝑒𝑎𝑛+237.3

                                             (3-3) 

where 𝑒 represents the base of the natural logarithm, and 𝑒𝑜 is a function of vapor 

pressure about mean temperature, which can be calculated using equation (3-4) 

to determine the slope 𝛥 of the 𝑒𝑠 curve at various temperatures. 

𝛥 =
4098𝑒𝑜(𝑇𝑚𝑒𝑎𝑛)

(𝑇𝑚𝑒𝑎𝑛+237.3)2
                                           (3-4) 

Based on the elevation of the monitoring station (𝐻), the psychrometric constant 

(𝛾) can be obtained employing equation (3-5). 

{
𝛾 = 0.665 × 10−3𝑃            

𝑃 = 101.3(
293−0.0065𝐻

293
)5.26

                                       (3-5) 

where 𝑃 is the atmospheric pressure at the monitoring station. 

Due to the variations in wind speed measurements resulting from different 

anemometer heights, it is necessary to standardize the measurement height of 
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wind speed monitoring data in the calculation of potential evapotranspiration. In 

the Penman-Monteith equation, the wind speed is measured at a height of 2 

meters. For wind speed data recorded at different measurement heights, 

conversion can be carried out by equation (3-6): 

𝑢2 = 𝑢𝑧
4.87

𝑙𝑛 (67.8𝑧−5.42)
                                                (3-6) 

where 𝑢2 and 𝑢𝑧 are wind speeds with the anemometer height of 2 and z m above 

the ground surface accordingly. 

To estimate net radiation (𝑅𝑛), it is necessary to calculate extraterrestrial radiation 

(𝑅𝑎) based on the latitude of the monitoring station and the time of the monitoring 

data, using equation (3-7): 

{
 
 

 
 𝑅𝑎 =  24 ×

60

𝜋
𝐺𝑠𝑐𝑑𝑟[𝜔𝑠 𝑠𝑖𝑛(𝜑) 𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝛿) 𝑠𝑖𝑛(𝜔𝑠)]

𝛿 = 0.409𝑠𝑖𝑛 (
2𝜋

365
𝐽 − 1.39)                                                                  

𝜔𝑠 = 𝑎𝑟𝑐𝑐𝑜𝑠[− 𝑡𝑎𝑛(𝜑) 𝑡𝑎𝑛(𝛿)]                                                             

𝑑𝑟 = 1 + 0.033 𝑐𝑜𝑠 (
2𝜋

365
𝐽)                                                                     

    (3-7) 

where the solar constant (𝐺𝑠𝑐) is taken as 0.082 MJ/m2/min, 𝛿 represents the solar 

declination, 𝜑 denotes the latitude of the site, 𝜔𝑠 is the sunset hour angle, 𝑑𝑟 is 

the inverse relative distance Earth-Sun, and 𝐽 signifies the order of date within 

the year, with values ranging from 1 to 365 (or 366 in a leap year). 

Then, based on the sunshine duration (𝑛𝑠), solar radiation (𝑅𝑠) is estimated using 

equation (3-8): 
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{
𝑅𝑠 = (0.25 + 0.5

𝑛𝑠

𝑁
)𝑅𝑎

𝑁 =
24

𝜋
𝜔𝑠    

                                       (3-8) 

where 𝑁 is the potential sunshine duration. 

By combining temperature data with the elevation of the monitoring station, the 

net radiation (Rn) can be determined using equation (3-9): 

𝑅𝑛 = 0.77𝑅𝑠 − 𝜎 [
(𝑇𝑚𝑎𝑥−𝑇𝐾0)

4+(𝑇𝑚𝑖𝑛−𝑇𝐾0)
4

2
] ∙ (0.34 − 0.14√𝑒𝑎) ∙ [

1.35𝑅𝑠

(0.75+2×105∙𝐻)𝑅𝑎
− 0.35]  

(3-9) 

where the Stefan-Boltzmann constant (𝜎) is taken as 4.903×10-9 MJ/K4/m2/day, 

with 𝑇𝐾0 representing absolute zero. 

Eventually, the potential evapotranspiration (𝑃𝐸𝑇) is obtained based on equation 

(3-10): 

𝑃𝐸𝑇 =
0.408𝛥(𝑅𝑛−𝐺)+𝛾

900

𝑇−𝑇𝐾0
𝑢2(𝑒𝑠−𝑒𝑎)

𝛥+𝛾(1+0.34𝑢2)
                           (3-10) 

where 𝐺 represents the soil heat flux density, which is assumed to be zero in this 

study. For one thing, the estimation of 𝐺 is relatively complex, and individual 

assessment for each monitoring station would be time-consuming. For 

another, 𝐺 constitutes the smallest component of the daily surface energy balance 

models and has a minimal impact on the model (Sauer et al., 2005). Therefore, 

setting 𝐺 to zero is considered to have a negligible effect on the estimated values 

of potential evapotranspiration for this study. 
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3.1.3 Meteorological data interpolation 

This study employs universal kriging spatial interpolation based on 

meteorological data from weather stations and considers the impact of 

topographic factors to estimate precipitation and potential evapotranspiration for 

each research unit. Kriging spatial interpolation is based on geostatistical 

methods, utilizing the data from observation sites and the spatial information to 

construct a semi-variogram function of observations and spatial distances within 

the interpolation range. Based on the semi-variogram function, it estimates the 

values for sites with known spatial distances from the observation sites, as seen 

in equation (3-11). Universal kriging interpolation extends upon this by 

incorporating regionalized variables (such as topographic factors) and leveraging 

the correlation between meteorological and topographic factors to enhance the 

accuracy and reliability of the interpolation. The universal kriging spatial 

interpolation for this study is facilitated by the "sp", "gstat" , and "automap" 

packages in the R programming language (Bohling, 2005). 

𝑍(𝑢) −𝑚(𝑢) = ∑ 𝜆𝑖(𝑢𝑖)[𝑍(𝑢𝑖) − 𝑚(𝑢𝑖)]
𝑛(𝑢)
𝑖=1                        (3-11) 

where 𝑍  represents spatial attributes such as precipitation or potential 

evapotranspiration. 𝑢  and  𝑢𝑖   respectively denote the position vectors for the 

estimation point and the observation point 𝑖 . 𝑛(𝑢)  indicates the number of 
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observation points required for each interpolation. 𝜆𝑖(𝑢𝑖) represents the kriging 

weights determined based on the semi-variogram. 𝑚(𝑢) and 𝑚(𝑢𝑖) represent the 

expected values of the spatial attributes. Within the context of the "sp", "gstat", 

and "automap" packages in R, it is assumed that the topography and spatial 

location have a first-order linear relationship, where 𝑚(𝑢) is a first-order linear 

function of the spatial position. 

However, given that the HKSAR only has five meteorological stations for 

estimating potential evapotranspiration, it is not feasible to construct a variogram 

of the distances between meteorological stations and their observations based on 

geostatistical methods to fit a semi-variogram that could estimate the variability 

of observations with distance. Consequently, the interpolation of potential 

evapotranspiration in the HKSAR opted for the simpler inverse distance weighted 

interpolation method. To ensure the accuracy of the interpolation results, a leave-

one-out cross-validation was conducted for the estimated precipitation and 

potential evapotranspiration values from all meteorological stations. This 

involves interpolating the values for each meteorological station in the study area 

based on the data from all other stations, followed by creating scatter plots of the 

actual observations (O) against the estimations (E) derived from the 

interpolations and calculating R2 and RMSE between the observations and 

estimations. 
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Fig. 3-2. Validation of monthly total precipitation/potential evapotranspiration 

based on interpolation 

 

The results presented in Fig. 3-2 indicate that within the two study areas of the 

SMCRS and the HKSAR, the universal kriging spatial interpolation method that 

takes topography into consideration yields monthly total precipitation and 

potential evapotranspiration estimates. In the SMCRS, the R2 value for the 

comparison between the estimated and observed monthly total potential 

evapotranspiration reaches 0.915 with an RMSE of less than 10 mm. However, 

the R2 for the estimated monthly total precipitation compared to observed values 

is only 0.752, with an RMSE of less than 42 mm, which is still within an 

acceptable error range for monthly total precipitation. In the HKSAR, the R2 for 

the estimated monthly total precipitation versus the observed values achieves 
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0.927, but the RMSE reaches 62 mm, exceeding that of the monthly total 

precipitation estimates in the SMCRS. Meanwhile, in the HKSAR, the R2 for the 

estimated monthly total potential evapotranspiration against the observed values 

is 0.846 with an RMSE of less than 10 mm, which is close to that of the monthly 

total potential evapotranspiration estimates for the SMCRS. 

The relatively lower accuracy of spatial interpolation for monthly total 

precipitation in the SMCRS is largely due to the complex topography of the area, 

which has a more significant influence on precipitation than on potential 

evapotranspiration. This is because topographical relief can affect the flow of 

warm moist air flows, thereby altering the distribution and intensity of 

precipitation through changes. However, as indicated by equation (3-11), such 

nonlinear effects are challenging to represent in the universal kriging 

interpolation method that considers topography. In the HKSAR, the R2 between 

the estimated and observed monthly total precipitation is substantially higher than 

that in the SMCRS. Nonetheless, the RMSE of the estimated monthly total 

precipitation in the HKSAR is significantly greater than that in the SMCRS. This 

discrepancy is largely due to the coastal location of the HKSAR, which is prone 

to extreme precipitation events influenced by typhoons, and such nonlinear 

influences are still difficult to characterize through universal kriging spatial 

interpolation. 



Chapter 3 Representation of Dry-wet Cycle Characteristics 

 
62  

Overall, while estimates derived from spatial interpolation methods are subject to 

certain errors, the metrics of R2 and RMSE indicate that the estimates can still 

largely represent the true values of monthly total precipitation and potential 

evapotranspiration in areas without monitoring stations. Furthermore, the linear 

regression equation between the observed values (O) and estimated values (E) 

will be utilized to calibrate the estimates, thereby further enhancing their 

representativeness. 

 

3.2 Dry-wet index 

Following the acquisition of meteorological factors necessary for the hydrologic 

cycle in assessment units with and without debris flow records, and in 

conjunction with soil data, a surface water balance model that accounts for the 

persistent impacts of dry and wet conditions is employed to calculate dry-wet 

indicators for all assessment units. These indicators are then statistically 

compared to characterize the differences in the dry-wet status of assessment units 

with and without debris flow records. Ultimately, predictions of the dry-wet 

indicators are made based on time-series characteristics, and their accuracy is 

subsequently validated. 
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3.2.1 Dry-wet index calculation 

A well-established and widely used index is required to quantify the dry-wet 

status. Drought conditions can be reflected through various drought indices, 

which primarily take into account factors such as precipitation, temperature, solar 

radiation, evaporation, and soil moisture (Svoboda et al., 2016). To elucidate the 

relationship between drought conditions and debris flow activity in this study, 

considering soil properties is deemed necessary. The standardized precipitation 

index (SPI) is widely used to describe the dry-wet conditions in debris flow-prone 

regions due to its relatively simple data requirements and calculations, making it 

particularly suitable for areas with limited meteorological data (Chen et al., 2014; 

Hu et al., 2017). PDSI, which accounts for precipitation, potential 

evapotranspiration, AWC, and the persistent effects of dry-wet conditions, can 

more comprehensively describe the dry-wet cycles related to debris flows but 

demands a more complete set of meteorological and soil data (Chen et al., 2020; 

Mika et al., 2005). 

PDSI is a dimensionless index. The nonextreme PDSI values range from -4 to 4, 

where negative/positive values represent various degrees of drought/wet 

conditions, with larger absolute values denoting increased severity (Palmer, 

1965). However, the range can vary in practice when considering local climate 

conditions to ensure that the extreme values (-4 or 4) correspond to specific 

percentiles of the historical distribution rather than being fixed thresholds (Wells 
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et al., 2004). The historical PDSI for each research unit in the study areas is 

calculated using the "pdsi" function from the "scPDSI" package in the R 

programming language. The computation of PDSI requires the establishment of 

a surface water balance model that correlates precipitation (P) with 

evapotranspiration (ET), recharge (R), runoff (RO), and water loss (L), as seen in 

equation (3-12). This calculation necessitates data on precipitation, potential 

evapotranspiration, and AWC. 

𝑃 = 𝐸𝑇 + 𝑅 + 𝑅𝑂 − 𝐿                                      (3-12) 

The calculation process will consider the persistent effects of dry-wet conditions, 

as seen in equation (3-13). 

𝑃𝐷𝑆𝐼𝑖 = 𝑞𝑍𝑖 + 𝑝𝑃𝐷𝑆𝐼𝑖−1                                   (3-13) 

where 𝑍𝑖  represents the moisture anomaly value for the ith month, 

while 𝑝 and 𝑞  are empirical parameters. For the SMCRS and its surrounding 

areas based on data from the national meteorological stations of China, the 

empirical parameters can be determined according to the Grades of 

Meteorological Drought (GB/T 20481-2017) specified in the national standard of 

China. As for meteorological stations in the HKSAR, in addition to using the 

parameters from the national standard, it is also necessary to employ 

the "pdsi" function to calculate self-calibrating PDSI values (Wells et al., 2004).  
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Comparisons between PDSI and another commonly applied dry-wet index SPI 

have been conducted. The results (Fig. 3-3, top) show that PDSI can characterize 

more extreme values compared to SPI, which is calculated based on precipitation 

data only. 

 

Fig. 3-3. Long-term dry-wet index time series 

 

Assessment units with debris flow records were defined as debris flow samples, 

while those without debris flow records were defined as non-debris flow samples. 

Based on 1544 debris flow and non-debris flow samples from the SMCRS, PDSI 

time series for the 21 years before debris flow disasters were constructed for each 

watershed unit (Fig. 3-3, bottom-left). Similarly, using 1954 debris flow and non-

debris flow samples from the HKSAR, PDSI time series for the 20 years before 

debris flow disasters were constructed for each grid unit (Fig. 3-3, bottom-right). 
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In these series, time interval 0 represents the time of debris flow occurrences, and 

larger intervals indicate greater temporal distance from the debris flow events. 

The green dashed lines mark the maximum and minimum PDSI values for 

watersheds or grids with debris flows. The grey area represents the 95% 

confidence interval calculated using the bootstrap method, which estimates 

population statistics from data samples through repeated sampling with 

replacement. With an increasing number of samples, the bootstrap method 

reflects the population distribution of samples more accurately (Efron et al., 

1986). In this study, it was found that resampling data samples 2000 times with 

replacement could roughly reflect the overall distribution of the data. 

 

The results demonstrated the long-term dry-wet states before debris flow 

occurrences. In the SMCRS, which encompasses numerous watersheds with 

complex climate patterns, a sharp increase in PDSI was observed in the months 

of debris flow occurrence within the watersheds with debris flows. When the time 

interval was zero, the watersheds were in an extremely wet state during the 

months of debris flow events. This extreme wet, characterized by high 

precipitation surpassing low potential evapotranspiration, reflects extreme 

precipitation conditions in the subtropical monsoon region due to its simultaneous 

occurrence of heat and rain. The minimum values of PDSI, indicate the extreme 

drought events, which are occurred around 70 months (approximately 6 years) 
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before the debris flow events. Watersheds without debris flows generally 

experienced normal dry-wet states, with PDSI values ranging between -0.5 and 

0.5. In contrast, in the HKSAR, despite the highest PDSI values over 20 years 

being recorded in the months of debris flow occurrences, the driest months 

occurred approximately 99 months (about 8 years) before the events. Moreover, 

there is no significant difference in the long-term dry-wet status before the 

disaster between grids with and without debris flows. This could be attributed to 

the smaller area and less spatial variability in climatic conditions of the HKSAR. 

It is thus reasonable to infer that dry-wet cycles before debris flow disasters are a 

crucial condition for the formation and initiation of debris flows, and in areas 

with less variability in climatic conditions, the formation and occurrence of debris 

flows may also be influenced by other factors, which deserves further 

investigation. 

 

3.2.2 Dry-wet index forecast 

The SARIMA model was selected for predicting the monthly PDSI time series 

due to the obvious periodicity in PDSI and the limited number of monitoring 

station samples. The forecasted PDSI time series derived from this model can be 

applied to reflect the short-term dry-wet characteristics in the future. The 

SARIMA model is constructed using the "auto.arima" function from the 

"forecast" package in the R programming language. 
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Based on the debris flow records in the SMCRS, it was found that debris flows 

all occurred between April and November each year. Consequently, the prediction 

period for the PDSI time series in the SMCRS is set from April to November 

2020. A SARIMA model was established using PDSI time series data from a total 

of 54 monitoring stations starting from the year 1980, with the model predicting 

PDSI for only one month at a time. 

According to the debris flow records from the HKSAR, debris flows were found 

to occur every month throughout the year, hence the prediction period for the 

PDSI time series for the HKSAR is set for the entire year of 2019. Due to the lack 

of meteorological element records other than precipitation at the rain gauge 

stations in the HKSAR, which are necessary for the estimation of potential 

evapotranspiration, the potential evapotranspiration for the rain gauge stations 

was derived using the interpolation method described in Section 3.1.3. This 

allows for the construction of a PDSI time series for a combined total of 48 

meteorological and rain gauge stations. The SARIMA model was then applied to 

perform monthly PDSI predictions for these stations. 

Ultimately, scatter plots were created for each of the two study areas by plotting 

all observations (O) against the predictions (P), and the R² and RMSE were 

computed to quantify the agreement between O and P. 
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Fig. 3-4. Validation of monthly PDSI predictions using SARIMA 

(SMCRS: Left; HKSAR: Right) 

 

The results presented in Fig. 3-4 indicate that, within the SMCRS, the R² between 

the PDSI time series predictions based on the SARIMA model and the actual 

observations reaches 0.863, with an RMSE of 0.723. In the HKSAR, the R² 

between the predicted and observed values reaches 0.965, with an RMSE of 0.319. 

Consequently, the SARIMA-based PDSI time series forecasted values can largely 

represent the true values. The linear regression equation between observed values 

O and predicted values P will be used for the correction of estimated values to 

further enhance the representativeness of the forecasted values. 
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Fig. 3-5. PDSI time series monthly predictions based on SARIMA 

(SMCRS: Top; HKSAR: Bottom) 

However, it is important to note that in the SMCRS, there were significant outliers 

in the predicted values when the observed values were close to zero. Upon 

examination, these outliers were all predicted values for July. This result suggests 

that the PDSI predictions for some areas in July in the SMCRS may be 

underestimated, potentially misclassifying areas that are in a wet or normal state 

as dry regions. 

The results depicted in Fig. 3-5 show that, based on the average values from 54 

meteorological stations in the SMCRS, the forecasted PDSI values for April to 

November 2020 were generally close to the actual observed values. Similarly, 
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based on the average values from 48 meteorological stations or rain gauge 

stations in the HKSAR, the forecasted PDSI values for each month of the entire 

year of 2019 were also essentially equivalent to the actual observed values. 

Therefore, it is preliminarily considered that the application of the SARIMA-

based PDSI time series for monthly predictions reflects the PDSI for the 

forthcoming month with representativeness. Nevertheless, attention must be paid 

to the potential impact of the underestimation of PDSI in certain areas when 

applying these forecasted PDSI values. 

 

3.3 Dry-wet cycle characteristics 

Given that it is challenging to quantify the characteristics of dry and wet 

indicators solely through the PDSI time series, further time series analyses on the 

PDSI were conducted to explore the long-term dry-wet cycle periods preceding 

debris flow occurrences, as well as the severity and frequency of extreme drought 

and precipitation events in typical inland monsoon and coastal monsoon regions. 

 

3.3.1 Stationarity test 

Stationarity tests should be conducted to meet the assumptions required by certain 

time series analysis methods. The Augmented Dickey-Fuller (ADF) test is 
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employed to assess the stationarity of the PDSI time series before debris flow 

occurrences, with the null hypothesis representing non-stationarity due to a unit 

root, and the alternative hypothesis positing that the time series is stationary 

(Dickey et al., 1979). The ADF test results for 1544 samples from the SMCRS 

show that all samples have p-values less than 0.05 (Fig. 3-6, left), indicating that 

the PDSI time series before debris flow occurrences in the SMCRS is stationary, 

implying that there are no significant upward or downward trends in the dry-wet 

conditions preceding debris flow occurrences in the region. Conversely, the ADF 

test results for 1954 samples from the HKSAR reveal that approximately 86.3% 

of the samples have p-values exceeding 0.05 (Fig. 3-6, right), indicating that the 

PDSI time series before debris flow occurrences in the HKSAR is non-stationary, 

indicating the existence of significant upward or downward trends in the dry-wet 

conditions preceding debris flow occurrences within the region. 

 

Fig. 3-6. PDSI time series stationary test 

(SMCRS: Left; HKSAR: Right) 

 



Chapter 3 Representation of Dry-wet Cycle Characteristics 

 
73  

3.3.2 Autocorrelation analysis 

Autocorrelation is a statistical measure used to describe the correlation between 

data points at different times within a time series. The Autocorrelation Function 

(ACF) is a function constructed with the time lag as the independent variable and 

the autocorrelation as the dependent variable. The ACF is applicable for 

analyzing the correlation of stationary time series at given time intervals. Since 

the PDSI time series before debris flow occurrences in the HKSAR has been 

tested and found to be non-stationary, it is not suitable for autocorrelation analysis. 

Consequently, autocorrelation analysis is conducted exclusively on the PDSI time 

series before debris flow occurrences in the SMCRS. 

 

Fig. 3-7. Autocorrelation of PDSI time series 
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The PDSI time series preceding debris flow events in watersheds within the 

SMCRS has been verified to be stationary (Fig. 3-6, left). Consequently, the 

autocorrelation plot for the PDSI time series before the debris flow occurrences 

in the SMCRS is generated using the "acf" function from the "stats" package in 

the R programming language. The significance boundary value B (denoted by 

black dashed lines) is determined based on the length of the time series T using 

equation (3-14), and the autocorrelations that exceed these boundary values are 

statistically significant (Fig. 3-7). 

𝐵 =  
2

√𝑇
                                                           (3-14) 

The results indicate that out of 21 years, 14 years (66.7%) in watersheds with a 

debris flow record exhibit significant negative autocorrelation in the same years 

as those with debris flow occurrences, whereas watersheds without debris flows 

showed significant negative autocorrelation in only 3 out of 21 years (14.3%) 

corresponding with years with debris flow records. Based on the findings 

presented in Fig. 3-3, watersheds experiencing debris flow events are subjected 

to extreme precipitation conditions. It can be inferred that the greater the number 

of years with significant negative autocorrelation associated with debris flow 

events, the higher the frequency of extreme drought events and the more frequent 

the dry-wet cycles. Furthermore, the autocorrelations in watersheds with a debris 

flow record fluctuate more intensely, that is, the extremes have generally larger 

absolute values, suggesting that watersheds with debris flows have more 
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pronounced periodicity in their dry-wet cycles. Hence, watersheds that have 

experienced debris flows present a higher frequency of dry-wet cycles with more 

distinct periodic characteristics. 

 

3.3.3 Wavelet analysis 

Wavelet analysis is utilized to process PDSI time series data by extracting wavelet 

coefficients at different time scales, thereby quantifying the periodic 

characteristics of dry-wet cycles. In this study, based on the "dplR" package in 

the R programming language, the Morlet wavelet function is applied to perform 

Continuous Wavelet Transform, followed by the construction of a wavelet power 

spectrum. The wavelet power spectrum illustrates the relationship between time 

scales and the squared values of wavelet power. A higher squared value of wavelet 

power at a specific time scale suggests stronger fluctuations in the time series at 

that scale, while a lower value indicates weaker fluctuations. Hence, the time 

scales where high values are concentrated in the wavelet power spectrum can be 

identified as the observation scales of the time series. These observation scales 

serve as the maximal time scales for observing the PDSI time series and are used 

to further analyse the periodicity of the time series (Scordo et al., 2018; Zhang et 

al., 2022). 
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Fig. 3-8. PDSI wavelet power spectra in the SMCRS 

(Watershed with debris flow: Top; Watershed without debris flow: Bottom) 
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The results from the wavelet power spectrum for the SMCRS (Fig. 3-8) reveal 

that watersheds with a record of debris flows exhibit the highest power squared 

values during the 252 months (21 years) preceding the debris flow events, 

indicating that larger observation time scales are associated with more 

pronounced fluctuations in the PDSI. Consequently, the observation time scale 

for the PDSI time series is established at 21 years. Although watersheds without 

debris flow records also observed higher power squared values over the periods 

of 60 months (5 years), 120 months (10 years), and 252 months (21 years) before 

the debris flow events, to ensure the comparability of the PDSI time series 

characteristics between positive and negative debris flow samples and to maintain 

a high level of power squared values, the observation time scale for the PDSI time 

series in watersheds without debris flow records is similarly set at 21 years. 

Based on the wavelet power spectra of the HKSAR (Fig. 3-9), both the grids with 

debris flow records and those without exhibit the highest power squared values 

over the 240 months (20 years) preceding the events, suggesting also that larger 

observation time scales correlate with more intense fluctuations in the PDSI. 

Therefore, the observation time scale for the PDSI time series in the HKSAR is 

determined to be 20 years. 
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Fig. 3-9. PDSI wavelet power spectra in the HKSAR 

(Grid with debris flow: Top; Grid without debris flow: Bottom) 
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Extracting the wavelet power squared values at the observation scale, curves 

between these values and the time interval before the onset of debris flows were 

created, and the periodicity of the PDSI time series at this observation scale was 

determined based on the maximum wavelet power squared values (Fig. 3-10). 

The results indicate that the dry-wet cycle period for watersheds with debris flow 

records in the SMCRS is 8.8 years (106 months), while for those without debris 

flow records, the cycle period is 15 years (180 months). Furthermore, the power 

squared values for the positive samples are greater than those for the negative 

samples, suggesting that watersheds with debris flows experience more 

pronounced fluctuations in their dry-wet cycles. In the HKSAR, the difference in 

dry-wet cycle periods between grids with and without debris flow records is not 

significant, with both approximately around 7 years (84 - 86 months).  

 

Fig. 3-10. The relationship between the square of wavelet power and dry-wet 

cycle period (SMCRS: Left; HKSAR: Right) 

 

However, grids with debris flow records exhibit higher wavelet power squared 

values, implying that within the relatively small area of the HKSAR, where 
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spatial variability in climate conditions is less pronounced, the difference in dry-

wet cycle periods between grids with and without debris flow records is subtle, 

yet the fluctuation in extreme dry-wet conditions is more intense compared to the 

SMCRS. 

In summary, compared to research units without debris flow records, those with 

debris flow records exhibit more intense fluctuations in the PDSI, with shorter 

fluctuation periods in the SMCRS. Specifically, watersheds with debris flow 

records are characterized by more pronounced dry-wet cycles. This indicates that 

in regions with greater spatial variability in climate conditions, dry-wet cycles 

occur more frequently. 

 

3.3.4 Multifractal spectrum analysis 

Multifractal analysis divides a time series into intervals of various scales and 

characterizes the self-similarity of the time series by calculating the variations of 

moments obtained from mass functions at these different scales. To ensure 

comparability among the multifractal spectra of the PDSI time series before the 

occurrence of debris flows across all samples, equation (3-15) is used to 

standardize all PDSI time series. 

𝑇𝑆𝑛 = 
𝑇𝑆−𝑚𝑖𝑛(𝑇𝑆𝑎)

𝑚𝑎𝑥(𝑇𝑆𝑎)−𝑚𝑖𝑛(𝑇𝑆𝑎)
                                   (3-15) 
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where 𝑇𝑆  and 𝑇𝑆𝑛  respectively represent the time series before and after 

normalization, while 𝑇𝑆𝑎 denotes the matrix composed of all the time series 

under consideration. The functions 𝑚𝑎𝑥  and 𝑚𝑖𝑛  are used to obtain the 

maximum and minimum values within the time series, respectively. 

The partition function 𝑀(𝑞, 𝜀) takes the moment 𝑞 and the time resolution 𝜀 as 

independent variables, with the normalized PDSI serving as the dependent 

variable, as shown in equation (3-16). 

𝑀(𝑞, 𝜀) =  ∑ 𝑃𝐷𝑆𝐼𝑖
𝑞(𝜀)𝑛

𝑖=1                                   (3-16) 

The observation scale determined by wavelet analysis results, which is 252 

months, is taken as the length of the PDSI time series required for multifractal 

analysis. Based on this length, nine distinct time resolutions 𝜀 are established in 

ascending order according to the ratio of this length to the series {28, ..., 21, 20}. 

With the moment 𝑞 set to 10, the number of data points plotted on the multifractal 

spectrum is 20. 

Mass exponent 𝜏(𝑞)  can be obtained based on the partition function using 

equation (3-17). 

𝜏(𝑞) =
𝑙𝑛 [𝑀(𝑞,𝜀)]−𝑐

𝑙𝑛 (𝜀)
                                         (3-17) 

where 𝑐 is the intercept of least squares. 

The singularity exponent 𝛼 can be calculated based on equation (3-18). 
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𝛼 =
𝑑𝜏(𝑞)

𝑑𝑞
                                               (3-18) 

Eventually, based on Legendre Transformation, a multifractal spectrum is 

obtained. 

𝑓(𝛼) = 𝑞𝛼 − 𝜏(𝑞)                                        (3-19) 

Based on equation (3-19), the multifractal spectrum of the PDSI time series, as 

illustrated in Fig. 3-11, can be constructed. This multifractal spectrum is a 

parabolic curve, with its left end representing the transformed maximum PDSI 

value and its right end representing the transformed minimum PDSI value. The 

parameter α reflects the intensity of singularity across different time resolutions 

of the time series, while f corresponds to the probability of occurrence of this 

intensity. Therefore, this study employs multifractal parameters such as αmin, 

f(αmin), αmax, and f(αmax) to describe the severity and probability of extreme dry-

wet events in a time series. The parameter Δα = αmax - αmin reflects the degree of 

fluctuation in extreme dry-wet states, meaning that a larger Δα indicates more 

intense fluctuations, while a smaller Δα indicates milder fluctuations. The 

parameter Δf = f(αmin) - f(αmax) indicates a preference for extreme drought or 

extreme precipitation events, where Δf > 0 suggests a tendency towards extreme 

precipitation events with a larger Δf indicating a stronger preference, and Δf < 0 

suggests a tendency towards extreme drought events with a smaller Δf indicating 

a stronger preference. 
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Fig. 3-11. Multifractal spectra of PDSI  

(SMCRS: Left; HKSAR: Right) 

 

In the SMCRS, multifractal spectrum analysis results demonstrate that, in 

comparison to watersheds without debris flow records, those with debris flow 

records exhibit larger values of αmax, αmin, Δα. This indicates that extreme drought 

events in watersheds experiencing debris flows are more severe, while the extent 

of extreme precipitation events is relatively milder, and the degree of fluctuation 

between extreme dry and wet events is more pronounced. Moreover, Δf is 

consistently less than zero, and the values of f(αmin) and Δf in watersheds with 

debris flows are lower than those without debris flows, whereas their f(αmax) is 

higher. This suggests that watersheds with debris flow records have a higher 

probability of experiencing extreme drought events, but a relatively lower 

likelihood of extreme precipitation events. 
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In the HKSAR, multifractal spectrum analysis of the PDSI time series reveals 

that, compared to grids without debris flow records, those with debris flow 

records exhibit greater values of αmax and Δα, suggesting more severe extreme 

drought events before the occurrence of debris flows. However, unlike in the 

SMCRS, the multifractal spectrum Δf of the PDSI time series in the HKSAR is 

greater than 0, indicating a preference for extreme precipitation events over 

extreme drought events compared to typical inland areas. This preference is likely 

due to the potential for extreme precipitation events caused by typhoons. The 

values of f(αmax)  and f(αmin) in the HKSAR are relatively small, signifying that 

the probability of the most severe extreme dry and wet events occurring in coastal 

monsoon regions is comparatively lower. 

By comparing the multifractal spectrum parameters of assessment units with and 

without debris flow records in the two study areas, it can be observed that frequent 

and severe extreme drought events may lower the precipitation threshold for the 

initiation of debris flows. Consequently, even less severe and less frequent 

extreme precipitation events may be sufficient to trigger debris flows. This 

finding is consistent with the results of previous research (Chen et al., 2014; 

Nyman et al., 2019). 

Although the PDSI time series for grids in the HKSAR with and without debris 

flow records do not exhibit significant differences as shown in Fig. 3-3, there is 

still a marked contrast in their DWCC. Therefore, extracting DWCC is beneficial 
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for further uncovering potential information embedded within historical dry-wet 

indices. 

However, the present results only reveal from a statistical perspective the 

reduction of the precipitation threshold under the influence of dry-wet cycles. To 

interpret how dry-wet cycles affect the formation and initiation mechanisms of 

debris flows, it is necessary to collect soil samples from typical gullies within the 

study area and measure their properties. This will allow for a more in-depth 

analysis of the relationship between the debris flow susceptibility and DWCC. 

 

3.4 Summary 

In this chapter, the characteristics of dry-wet cycles are quantified: 

A comprehensive meteorological dataset, which is necessary for the calculation 

of dry-wet indices, was constructed based on daily historical meteorological data 

related to the hydrologic cycle from ground monitoring stations. To address 

missing values in meteorological monitoring data, imputation methods based on 

the KNN algorithm or mean substitution were employed. The obtained total 

monthly precipitation and potential evapotranspiration, with an R2 exceeding 

0.974, confirmed the strong representativeness of the imputations for the missing 

data. The Penman-Monteith equation was applied to estimate potential 

evapotranspiration, considering a variety of meteorological factors such as daily 
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temperature, wind speed, sunshine duration, and relative humidity, which affect 

evaporation rates comprehensively. Considering topography, kriging spatial 

interpolation was used to extend the monitoring station data on total monthly 

precipitation and potential evapotranspiration to research units with and without 

debris flow records. The interpolation results, with an R2 of 0.752 and an RMSE 

not exceeding 26 mm between imputations and observations, verified the strong 

representativeness of the interpolated results for the total monthly precipitation 

and potential evapotranspiration across the research units. 

Based on total monthly precipitation, potential evapotranspiration, and 

combining AWC while considering the sustained impact of dry-wet conditions, 

the long-term PDSI time series before debris flow events were estimated for 

research units in two typical regions. The PDSI, in comparison to the SPI that 

only considers precipitation, comprehensively reflects the surface water balance 

process and is more closely aligned with the mechanisms of debris flow formation 

and initiation. By extracting PDSI time series data for at least 20 years before 

debris flow events, a preliminary comparison between the SMCRS and the 

HKSAR revealed that extreme precipitation conditions were generally present in 

the month of debris flow occurrences. Furthermore, extreme drought events were 

observed 6 to 8 years before the debris flows, indicating that dry-wet cycles are 

a crucial condition for the formation and initiation of debris flows. In the HKSAR, 

where climatic spatial variability is relatively small, the formation and initiation 
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of debris flows may be more influenced by other factors, deserving further 

investigation. Utilizing the characteristics of the PDSI time series, the SARIMA 

model was applied to predict the PDSI for the upcoming month. The results 

showed that in both the SMCRS and the HKSAR, the R2 values for the predicted 

versus observed PDSI were 0.863 and 0.965, with RMSE of 0.723 and 0.319, 

respectively, suggesting that the PDSI predictions for the next month are 

reasonably representative. 

Focusing on the two study areas, this study explores and compares the potential 

patterns within the PDSI time series of research units with positive and negative 

debris flow samples, quantifying the differences in dry-wet conditions between 

units with and without debris flow records. Comparative analyses of the PDSI 

time series before debris flow events, including autocorrelation analysis, wavelet 

analysis, and multifractal spectrum analysis for both positive and negative 

samples, consistently indicate that units with debris flows experienced more 

severe dry-wet cycles compared to those without. In regions with greater spatial 

variability of climate conditions, there are also more frequent dry-wet cycles and 

a tendency for more frequent and severe extreme drought events. While these 

findings are consistent with previous research, further studies are required in the 

typical gullies within the study areas to elucidate the mechanisms behind the 

changes in debris flow susceptibility under the influences of dry-wet cycles. 
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Chapter 4  Impact of Dry-wet Cycle Characteristics on Debris 

Flow Susceptibility 

This chapter aims to elucidate the impact of dry-wet cycles on debris flow 

susceptibility from a mechanism perspective. Taking the SMCRS as the study 

area, two methods were proposed to estimate the ARI of debris flows in 

watersheds based on historical debris flow records, and the representativeness of 

the estimated debris flow ARI was validated. The study examined the correlation 

between debris flow ARI and DWCC including the EDWP and the extreme dry-

wet characteristics. The correlations between debris flow ARI and 

DWCC/maximum daily precipitation were compared. Soil samples collected 

from typical debris flow gullies in the SMCRS are subjected to soil experiments 

to measure their soil mechanical properties under extreme precipitation 

conditions. Combined with historical in situ dry-wet data from the debris flow 

gullies, the study quantifies the association between extreme dry-wet events and 

debris flow susceptibility. 

 

4.1 Debris flow average recurrence interval 

In this study, given the extensive area of the SMCRS, the spatial variability of 

debris flow ARI is expected to be more pronounced, making historical records 

particularly suitable for estimating the ARI of debris flows. Two distinct methods 

were adopted within the study. The first method derives from calculating the 
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equivalent diameter of a watershed, while the second method utilizes proximity 

to the nearest recorded debris flow sites. The two methods were applied to 

determine the buffer area for the debris flow recurrence in watersheds with debris 

flow records. By comparing the debris flow ARI obtained from both methods and 

integrating the existing spatiotemporal distribution patterns of debris flows in the 

SMCRS, the estimated debris flow ARI are validated for their representativeness 

in reflecting debris flow susceptibility. 

 

4.1.1 Equivalent diameter-based estimation 

A method for estimating ARI using the equivalent diameter of watersheds has 

been proposed. Based on the 772 historical debris flow events in the SMCRS, the 

area of the watershed corresponding to each debris flow event was extracted. 

Subsequently, utilizing equation (4-1), the equivalent diameter D of a circular 

area with an area A equal to that of each watershed was calculated, which serves 

as the equivalent diameter for the respective watershed. 

𝐷 = 2√
𝐴

𝜋
                                                    (4-1) 

Then, for estimating the debris flow ARI, the point of the debris flow under 

consideration, as well as all other debris flow points within a distance not 

exceeding the equivalent diameter D, were selected. The occurrence times 𝑡𝑖 for 

these n debris flow points, including the point underestimation, were extracted. 
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These times were then sequenced in the order of the debris flow occurrences to 

form an array 𝐿 = {𝑡1, … , 𝑡𝑖 , … , 𝑡𝑛} . Utilizing equation (4-2), the ARI for the 

debris flow point was estimated, which is indicative of the debris flow recurrence 

period. 

𝐴𝑅𝐼 =
𝑡𝑛−𝑡1

𝑛−1
                                                (4-2) 

 

4.1.2 The nearest site-based estimation 

Another method for estimating ARI is based on the nearest debris flow sites. For 

each of the 772 watersheds with debris flow records, its nearest debris flow 

points 𝑖 were aggregated into a corresponding group, based on which the debris 

flow ARI for this watershed was calculated by equation (4-2), and the results were 

catalogued within a list 𝐿𝑖. Eventually, 𝑁 such lists were generated as shown in 

equation (4-3). 

{
𝐿𝑖 = {𝐴𝑅𝐼1,𝑖 , 𝐴𝑅𝐼2,𝑖 , … , 𝐴𝑅𝐼772,𝑖}     

…
𝐿𝑁 = {𝐴𝑅𝐼1,𝑁 , 𝐴𝑅𝐼2,𝑁 , … , 𝐴𝑅𝐼772,𝑁}

                             (4-3) 

To obtain a more comprehensive set of debris flow ARI for watersheds while 

ensuring representativeness, an increased number of nearest neighbor points were 

selected for ARI estimation. In this study, based on preliminary results from pre-

experiments, the value for 𝑁  in equation (4-3) was established at 30. 

Subsequently, the Spearman correlation coefficient 𝑟𝑠  was calculated between 
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each pair of lists within equation (4-3). This approach was chosen since Spearman 

correlation does not require data to follow a normal distribution, thus obviating 

the need for prior analysis of data distribution before performing correlation 

analysis. Ultimately, the optimal number of nearest neighbor points, k, was 

determined based on which value yielded a higher average/median 𝑟𝑠 and a lower 

overall standard deviation. As illustrated in Fig. 4-1, k equal to 16 best satisfies 

the set criteria, indicating that the ARI estimated under these conditions is the 

most representative. 

 

Fig. 4-1. Statistics of correlations between debris flow recurrence period 

obtained based on different nearest points 
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4.1.3 Debris flow recurrence period pattern 

The estimated ARIs effectively delineate the spatiotemporal distribution of debris 

flow susceptibility across watersheds in the SMCRS. Spatiotemporal distribution 

maps of debris flow ARI for watersheds in the SMCRS were generated based on 

the results obtained from the equivalent diameter and the nearest site estimation 

methods. When the number of nearest sites was set to 1, as depicted in Fig. 4-2, 

the results of the two ARI estimation methods based on historical debris flow 

records were most closely aligned, with a Spearman correlation coefficient of 

0.81 (p < 0.001). The spatial distribution of ARI across different watersheds 

revealed that the Longmenshan fault zone, particularly the Wenchuan earthquake 

region, exhibited shorter ARI with a concentrated distribution. Similarly, shorter 

ARI were observed in the surrounding mountain areas of the Sichuan Basin and 

the Panxi region, though with a more scattered distribution. In some watersheds 

within the Longmenshan fault zone, the eastern surrounding mountain areas of 

the Sichuan basin, and the Panxi region, the ARIs were less than one, indicating 

the possibility of multiple debris flow events occurring within a single year in one 

watershed. 
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Fig. 4-2. Debris flow recurrence period estimations based on equivalent 

diameter (Left) and the nearest point (Right) in SMCRS 

 

However, further comparative analysis and discussion are required for the two 

methods of estimating debris flow ARI based on historical records to ensure that 

they can more accurately reflect the spatiotemporal distribution patterns of debris 

flows. For one thing, the estimation method based on equivalent diameter 

provides a relatively accurate estimation of ARIs for watersheds, but it may fail 

to estimate ARIs in watersheds with sparse historical debris flow records. For 

another, the nearest site-based estimation method, while reducing the precision 

of ARI estimation for each watershed, can still yield ARIs for those with limited 

historical data. Moreover, the nearest site-based method, without accounting for 

the area of the watersheds, may lead to undersampling in areas with dense debris 

flow records and oversampling in regions with sparse records, both of which can 



Chapter 4 Impact of Dry-wet Cycle Characteristics on Debris Flow Susceptibility 

 
94  

reduce the representativeness of the estimated ARIs. Therefore, in the process of 

estimating debris flow ARIs, it is necessary to carefully balance the advantages 

and disadvantages of both methods to ensure as many watershed ARIs as possible 

are obtained while maintaining the representativeness of the data for each 

watershed. 

 

4.2 Responsive pattern between recurrence periods and dry-wet cycles 

Quantifying the relationship between debris flow ARI and dry-wet cycles can 

help characterize their impacts on debris flow susceptibility. Due to the complex 

and nonlinear characteristics of debris flow formation and initiation, grasping the 

debris flow ARI is challenging. Extensive existing research has identified that 

dry-wet cycles have impacts on debris flow source material formation, triggering, 

and transport. Based on these findings, it is possible to quantitatively characterize 

the impact of DWCC on debris flow susceptibility by elucidating the relationship 

between the debris flow ARI and DWCC. To validate the feasibility of this 

approach, it is proposed to quantify the responsive relationship between debris 

flow ARI and the dry-wet cycles. 

Utilizing wavelet power spectrum analysis, the EDWP before debris flow 

occurrences was estimated for various watersheds in the SMCRS. EDWP was 

then correlated with the debris flow ARI using Spearman correlation analysis. 



Chapter 4 Impact of Dry-wet Cycle Characteristics on Debris Flow Susceptibility 

 
95  

The results indicated a correlation of 0.36 (p < 0.001) between the EDWP and the 

ARI calculated based on equivalent diameter, and a correlation of 0.34 (p < 0.001) 

with the ARI based on 16 nearest sites (Table 4-1). These outcomes, derived from 

different methods of estimating debris flow ARIs, demonstrated a significant 

moderate correlation between the EDWP and debris flow susceptibility (Ratner, 

2009), suggesting that longer EDWP correlates with longer debris flow ARI, 

thereby indicating a lower frequency and susceptibility to debris flow occurrences. 

Conversely, shorter EDWP is associated with shorter debris flow ARI, indicating 

a higher frequency and increased susceptibility to debris flow events. 

 

Table 4-1. Correlations between ARI and EDWP/maximum rainfall 

 
ARI 

(Equivalent diameter) 

ARI 

(The nearest site) 

EDWP 0.36, p < 0.001 0.34, p < 0.001 

Maximum Rainfall -0.18, p < 0.001 -0.27, p < 0.001 

 

To further validate the significant impact of EDWP on debris flow susceptibility, 

a Spearman correlation analysis was conducted between debris flow ARI and a 

commonly used triggering factor in rainfall-induced debris flow early warnings, 

namely the maximum daily rainfall in the watershed before a debris flow event. 

This correlation was compared with the relationship between debris flow ARI and 

EDWP. The results indicated a correlation of -0.18 (p < 0.001) between the 
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maximum daily rainfall and the ARI estimated based on equivalent diameter, and 

a correlation of -0.27 (p < 0.001) with the ARI based on 16 nearest sites (Table 

4-1). These findings suggest that there is only a weak yet significant correlation 

between maximum daily rainfall and the ARI. The larger the maximum daily 

rainfall before a debris flow, the shorter the ARI and the higher the frequency and 

susceptibility of debris flow occurrences. Although these results are consistent 

with the general pattern of rainfall-induced debris flow occurrences, the 

responsive relationship between maximum daily rainfall and debris flow 

susceptibility is relatively weak. 

By comparing the correlation between the EDWP and the debris flow ARI with 

that between maximum daily rainfall and debris flow ARI, it can be further 

ensured that the relationship between EDWP and debris flow susceptibility is 

significantly stronger than that between maximum daily rainfall and debris flow 

susceptibility. This implies that the DWCC may have greater potential advantages 

when applied to debris flow susceptibility assessment than the triggering factor 

of maximum daily rainfall. However, the performance of DWCC in debris flow 

susceptibility assessment still requires validation through further experimental 

investigation. 
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4.3 Mechanism analysis between debris flows and dry-wet cycles 

To further explore the mechanisms linking debris flow susceptibility and dry-wet 

cycles, soil experiments and analysis of historical dry-wet indices are proposed. 

Although the statistical relationship between debris flow susceptibility and dry-

wet cycles has been elucidated through the analysis of ARI and EDWP, the 

underlying mechanisms between debris flows and dry-wet cycles require further 

exploration. To investigate this mechanism, soil experiments are proposed to 

measure the changes in the soil mechanical properties of debris flow source 

materials under extreme dry-wet conditions. Historical dry-wet indices were 

applied to identify extreme dry-wet events preceding debris flow occurrences in 

typical gullies. 

 

4.3.1 Debris flow source material property measurements 

Field investigations and soil samplings were conducted to collect representative 

soil samples for analysis. Two typical debris flow events that occurred in the 

SMCRS in June 2020 were selected as sampling sites, namely Xiangjiao in Muli 

Tibetan Autonomous County and Damawucun in Mianning County, with a 

sampling time of October 2021. Soil samples were collected from four different 

elevations in each debris flow gully, specifically choosing soil that had moved 

downslope to ensure the samples were representative of the debris flow source 
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materials. Samples were taken from depths as close as possible to the debris flow 

gullies to better represent the characteristics of the slip surface soil. Each sample 

weighed approximately 0.85 kg, and photographs of the sampling sites were 

taken. The locations of the samples were documented using GPS, as shown in 

Fig. 4-3. 

 

Fig. 4-3. Sampling sites for typical debris flow gullies 

 

The soil particle size characteristics (i.e., gravel percentage, sand percentage, and 

fine percentage), the density of solids normalized by the density of water (𝐺𝑠), 

the water content (𝑤 ), and the void ratio (𝑒 ) were determined through sieve 

analysis, as presented in  
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Table 4-2. Soil particles were classified based on their size as gravel, sand, or fine. 

The 𝐺𝑠 is the ratio of the unit weight of the soil particles to the unit weight of 

water at 4°C. The w is the ratio of the mass of water to the mass of dry soil. The 

e represents the ratio of the volume of voids to the volume of solid particles in 

the soil. 

Table 4-2. Soil properties in typical debris flow gullies 

County-Sample Gravel percentage Sand percentage Fine percentage 𝐺𝑠 𝑤 𝑒 φ (ο) 

Muli-1 0.41 0.43 0.17 2.73 0.11 0.72 29.00 

Muli-2 0.24 0.56 0.20 2.71 0.09 0.75 29.00 

Muli-3 0.22 0.63 0.15 2.77 0.10 0.74 30.00 

Muli-4 0.00 0.72 0.28 2.75 0.12 0.77 29.00 

Mianning-1 0.23 0.75 0.02 2.75 0.17 0.91 28.00 

Mianning -2 0.25 0.73 0.02 2.70 0.16 0.87 28.00 

Mianning -3 0.12 0.84 0.04 2.72 0.18 0.90 28.00 

Mianning -4 0.00 0.95 0.05 2.79 0.15 0.89 27.00 

 

Six specimens from each sample, prepared at their in-situ densities, were 

subjected to consolidated-drained direct shear tests and consolidated-undrained 

triaxial tests under pressures of 50, 100, and 200 kPa to measure the soil shear 

stress (τ) and normal stress (σ). Furthermore, the particle size distribution from  

Table 4-2 indicates that all eight samples from the two typical debris flow gullies 

are predominantly characterized by a higher proportion of sand particles. 

Therefore, cohesion (c) can be assumed to be zero (Bai et al., 2019; Di et al., 



Chapter 4 Impact of Dry-wet Cycle Characteristics on Debris Flow Susceptibility 

 
100  

2021). Using the Mohr-Coulomb failure criterion, as shown in equation (4-4), the 

angle of internal friction (φ) for the soil mass was further calculated. 

𝜏 = 𝑐 + 𝛿𝑡𝑎𝑛𝜑                                               (4-4) 

The angle of internal friction reflects the magnitude of the frictional forces 

between soil particles within a soil sample. A larger angle of internal friction 

indicates greater soil strength and stability. This parameter will be utilized in the 

computation of slope material stability, characterizing the debris flow 

susceptibility of typical debris flow gullies. 

 

4.3.2 Factor of safety calculation 

Referring to a physical model built for assessing sandy slopes (Di et al., 2021), 

based on measured 𝐺𝑠 , 𝑤 , and 𝑒 , the moist unit weight of soil (𝛾 ) and the 

saturated unit weight of soil (𝛾𝑠𝑎𝑡) can be obtained based on equation (4-5). 

{
𝛾 =

𝛾𝑤𝐺𝑠(1+𝑤)

1+𝑒
  

𝛾𝑠𝑎𝑡 =
𝛾𝑤(𝐺𝑠+𝑒)

1+𝑒

                                              (4-5) 

Based on the angle of internal friction (𝜑), FS for the instability of slope materials 

is calculated using equation (4-6). An FS greater than 1 implies that the slope 

materials are in a stable condition, with no risk of large-scale slippage. When FS 

equals 1, it indicates that the slope materials are at the threshold of slippage. An 

FS less than 1 signifies a risk of large-scale slippage within the slope material. 
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{
𝐹𝑆𝑜 =

𝑡𝑎𝑛𝜑

𝑡𝑎𝑛𝜃
               

𝐹𝑆𝑔 =
(𝛾𝑠𝑎𝑡−𝛾𝑤)𝑡𝑎𝑛𝜑

𝛾𝑠𝑎𝑡𝑡𝑎𝑛𝜃

                                         (4-6) 

where the FS under conditions without precipitation is denoted as 𝐹𝑆𝑜, while 𝐹𝑆𝑔 

represents the safety factor under conditions of persistent heavy rainfall. The unit 

weight of water, 𝛾𝑤, is taken as 9.81 kN/m³. The inclination angle of the debris 

flow gully slopes, 𝜃, can be considered a constant within the same natural slope 

due to relatively uniform geological conditions. This angle 𝜃 can be calculated 

based on the elevation of the sampling points. 

Utilizing the calculated data from  

Table 4-2, the FS for two typical debris flow gullies under both dry conditions 

and persistent heavy rainfall conditions were computed, along with the rate of 

change in the FS, denoted as ΔFS, which is presented in Table 4-3. 

Table 4-3. FS of typical debris flow gullies 

County-Sample 𝐹𝑆𝑜 𝐹𝑆𝑔 𝛥𝐹𝑆 

Muli-1 1.52 0.75 -51% 

Muli-2 1.52 0.74 -51% 

Muli-3 1.59 0.78 -51% 

Muli-4 1.52 0.74 -51% 

Mianning-1 2.13 1.00 -53% 

Mianning -2 2.13 0.99 -54% 

Mianning -3 2.13 0.99 -54% 

Mianning -4 2.04 0.97 -52% 
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The results indicate that under dry conditions, the 𝐹𝑆𝑜 for both Muli County and 

Mianning County exceed 1, signifying that there is no substantial risk of large-

scale slippage for the slope materials. However, under rainfall conditions, the 𝐹𝑆𝑔  

for the two typical debris flow gullies decrease significantly, with all samples 

ultimately not surpassing a value of 1, implying a considerable risk of large-scale 

slippage. These findings demonstrate that persistent heavy rainfall significantly 

reduces the FS of debris flow gullies, with a reduction rate exceeding 50%. This 

outcome corroborates the reduction of FS under extreme rainfall conditions for 

the two typical debris flow gullies, indicating an increased debris flow 

susceptibility due to the occurrence of extreme precipitation events. 

 

4.3.3 Impacts of dry-wet cycles on debris flow susceptibility 

Further analysis using time series of dry-wet indices and meteorological data is 

needed to assess the impact of long-term dry-wet cycles on debris flow 

susceptibility. The soil experiments conducted so far have not taken into account 

the impacts of long-term, repetitive dry-wet cycles on debris flow susceptibility. 

Consequently, it remained necessary to perform further analysis using a time 

series of dry-wet indices based on ground monitoring sites within typical debris 

flow gullies. The meteorological monitoring data in 2021 exhibit no missing 

values, although there are no records of sunshine duration for the entire year. 
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Employing the methodology constructed for meteorological elements in Section 

3.1, the sunshine duration was initially determined using the mean substitution 

based on the same period of previous years, followed by estimating the potential 

monthly evapotranspiration data at the ground meteorological stations using the 

Penman-Monteith equation. Subsequently, the monthly total precipitation and 

total potential evapotranspiration for the typical debris flow gullies were 

estimated using universal kriging interpolation that considers topography. Finally, 

the PDSI for the typical debris flow gullies was calculated, incorporating the soil 

AWC to characterize the long-term dry-wet status at the sampling sites. The PDSI 

time series for the two typical debris flow gullies was extended to October 2021 

(i.e., the month of soil sampling) to further investigate the influence of dry-wet 

cycles on debris flow susceptibility (Fig. 4-4). 

 

Fig. 4-4. PDSI time series of typical debris flow gullies 
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The results reveal that before the debris flow occurrences, the two typical debris 

flow gullies experienced extremely dry conditions that were rare over the 

preceding 20 years, with the PDSI in the month of the debris flow occurrence 

(June 2020) reaching the lowest value in nearly two decades, contrary to the 

maximum PDSI values observed during the debris flow occurrence month 

depicted in Fig. 3-3. This is due to the first half of 2020, where, despite relatively 

stable monthly potential evapotranspiration, the monthly total precipitation in 

both gullies significantly decreased compared to the long-term average (Fig. 4-5), 

leading to a sharp decline in PDSI and the emergence of extreme drought 

conditions (PDSI < -4). This process may have lowered the rainfall threshold for 

triggering local debris flows. Consequently, even with relatively low total 

precipitation in June 2020 (less than 50 mm), the rainfall threshold for triggering 

the two typical debris flow events was met, resulting in the debris flows. These 

findings indicate that relying solely on the PDSI value of a single month is 

insufficient to accurately determine the relationship between debris flow 

susceptibility and dry-wet conditions. Therefore, the use of DWCC based on the 

PDSI time series is essential. 
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Fig. 4-5. Precipitation and potential evapotranspiration of typical debris flow 

gullies (2020 and multi-year average from 1960 to 2019) 

 

Since the FS obtained from the soil sample measurements of the debris flow 

gullies in Muli County and Mianning County are consistent with the actual 

situation, to further quantify the DWCC before sampling in the two typical debris 

flow gullies, and to reveal the relationship between the DWCC and the FS of the 

debris flow gullies, the wavelet analysis method described in Section 3.3.3 and 

the multifractal analysis method from Section 3.3.4 were employed. These 

methods were used to calculate the wavelet power spectra and multifractal 

spectrum parameters of the 252-month PDSI time series before sampling in the 

two debris flow gullies. The objective is to identify the EDWP and quantify the 

extreme dry-wet characteristics. Subsequently, the DWCC were correlated with 

the FS of the debris flow gullies under both dry conditions and persistent heavy 

rainfall conditions using Spearman correlation analysis (Table 4-4). 
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Table 4-4. Correlations between FS and DWCC 

 EDWP αmax αmin Δα f(αmax) f(αmin) Δf (all>0) 

𝐹𝑆𝑜 0.92 -0.92 0.92 -0.92 0.92 0.92 -0.92 

𝐹𝑆𝑔 0.88 -0.88 0.88 -0.88 0.88 0.88 -0.88 

 

The results demonstrate a significant and strong correlation between the FS of 

debris flow gullies under dry/persistent heavy rainfall conditions and six 

multifractal spectrum parameters (p < 0.005). Overall, the correlation between 

the FS and multifractal spectrum parameters is minimally affected by 

precipitation conditions, with a difference of 0.04, which is attributable to the 

𝛥𝐹𝑆 of all samples in Table 4-3 being close to each other. Therefore, based on the 

results in Table 4-4, the correlation between the FS and DWCC can be directly 

discussed. There is a significant positive correlation between FS and the EDWP, 

indicating that FS decreases as the EDWP shortens, which suggests that more 

frequent dry-wet cycles are closely related to the reduction in FS. The FS exhibits 

a significant negative correlation with αmax and Δα, meaning FS decreases as αmax 

and Δα increase, while there is a significant positive correlation with αmin, 

meaning FS decreases as αmin decreases, indicating that the reduction of FS in a 

typical debris flow gully is highly associated with severe extreme dry-wet events. 

FS shows a significant positive correlation with f(αmax) and f(αmin), implying that 

FS increases with the increase of f(αmax)  and f(αmin), which could be related to 

the increased frequency of dry-wet cycles caused by frequent extreme dry-wet 
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events. FS and Δf are significantly negatively correlated, with FS decreasing as 

Δf increases. Since Δf is greater than 0, this suggests that there may be a lower 

FS when the frequency of extreme dry-wet events tends to be associated with 

extreme precipitation events. In summary, the formation and initiation of debris 

flows in typical debris flow gullies exhibit a certain pattern of response to dry-

wet cycles, where severe and frequent dry-wet events play the most substantial 

role in promoting the formation and initiation of debris flows. 

The validation results from the typical debris flow gullies have ensured the 

responsive relationship between DWCC and debris flow susceptibility. It has also 

elucidated the responsive mechanism of dry-wet cycles on the debris flow 

susceptibility based on FS. The findings indicate that in the SMCRS, intense and 

frequent dry-wet cycles are highly correlated with a decrease in debris flow 

susceptibility. 

 

4.4 Summary 

This chapter investigates the relationship between debris flow susceptibility and 

climate dry-wet cycles through statistical analysis and soil mechanical 

experiments, also inferring its underlying mechanisms:  

Drawing on the historical records of debris flows in the SMCRS, two methods 

for estimating the debris flow ARI are proposed, which are based on either the 



Chapter 4 Impact of Dry-wet Cycle Characteristics on Debris Flow Susceptibility 

 
108  

equivalent diameter of watersheds or the nearest site. The validity of using debris 

flow ARI to reflect its susceptibility is confirmed through cross-verification 

between the two methods and by comparison with the spatiotemporal distribution 

patterns of debris flows in the SMCRS. 

Using wavelet power spectra, the dry-wet cycle periods before the debris flow 

occurrences in watersheds of the SMCRS are estimated, revealing a significant 

moderate positive correlation directly between the EDWP and the debris flow 

ARI. This correlation is numerically slightly stronger than the significantly weak 

negative correlation between the debris flow ARI and the maximum daily 

precipitation, suggesting that DWCC have potential advantages when applied to 

debris flow susceptibility assessment. However, this finding necessitates further 

experimental work for more comprehensive validation. 

To further validate the finding, soil sampling has been conducted in debris flow 

gullies of two typical debris flow events that occurred in June 2020 in the SMCRS. 

By calculating the soil mechanical properties of the slope source materials 

through soil experiments, an infinite slope model is constructed to compute the 

FS of the two typical debris flow gullies under conditions with and without 

extreme precipitation. The results confirm that under extreme precipitation 

conditions, the FS of debris flow gullies significantly decreases, the risk of large-

scale slip of slope source materials increases, and consequently, the susceptibility 

to debris flows rises. Dry-wet indices from January 2001 to October 2021, before 
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the sampling of the watersheds where the two debris flow gullies are located, 

show that the debris flow occurrence months are in a state of extreme drought. 

Further comparison of the total monthly precipitation and potential 

evapotranspiration of the occurrence months with the long-term average values 

revealed that the year of debris flow occurrence has experienced a rare extreme 

drought event in nearly 20 years due to reduced precipitation, potentially leading 

to a significant reduction in the rainfall threshold required to trigger debris flows. 

This outcome indicates that a direct application of monthly dry-wet indices for 

assessing debris flow susceptibility may introduce certain biases. Therefore, 

extracting DWCC from the time series of dry-wet indices is necessary. 

Correlation analysis between the FS calculated from the one-dimensional sandy 

infinite slope model and the DWCC extracted from the PDSI time series shows 

that there is a definite responsive pattern between debris flow susceptibility and 

DWCC, where more intense and frequent dry-wet cycles are significantly 

correlated with the reduction of FS and an increase in debris flow susceptibility. 
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Chapter 5  Debris Flow Susceptibility Model Based on Dry-wet 

Cycle Characteristics 

This chapter focuses on typical inland and coastal regions affected by monsoons, 

developing a machine-learning model for assessing the debris flow susceptibility 

based on DWCC indicators as well as geology, topography, meteorology, human 

activities, and vegetation cover. By comparing four representative machine 

learning models, the best-performing model is selected based on performance 

metrics, and the optimal cross-validation method is determined. The model is 

optimized through indicator trimming and parameter tuning. Its effectiveness is 

validated using cases separate from the training set, and the stability of applying 

DWCC from dry-wet index time series to debris flow susceptibility assessment 

is tested. This process ultimately verifies the effectiveness and stability of 

applying DWCC in constructing a debris flow susceptibility assessment model. 

 

5.1 Assessment factors 

The establishment of susceptibility assessment indicators for debris flows 

requires consideration of various geo-environmental factors in typical inland 

coastal monsoon-affected regions. Besides DWCC indicators and commonly 

used geological, topographical, meteorological, human activity, and vegetation 

cover indicators, geological activities in the SMCRS and typhoons in the HKSAR 

must be considered. Since geological activities can impact DWCC performance 
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in debris flow susceptibility assessment models, it is necessary to divide the 

SMCRS based on its USC and establish separate debris flow susceptibility 

assessment models for each USC zone to mitigate the impact of geological 

activities on the DWCC-based models. Due to the small spatial variability in the 

HKSAR, no subdivision is required for the HKSAR to mitigate the impacts of 

typhoons on the DWCC-based model, and the model can be constructed based on 

all assessment units in the HKSAR. All assessment indicators are extracted for 

the research units of each study area. 

 

5.1.1 USC-based zoning for inland monsoon region 

The SMCRS is chosen as a typical inland monsoon area, with 16,195 watersheds 

serving as assessment units for the debris flow susceptibility assessment model. 

This model, which assesses debris flow susceptibility based on DWCC, will also 

consider evaluation indicators such as geology, topography, meteorology, human 

activities, and vegetation cover. However, within the SMCRS, these assessment 

indicators exhibit considerable spatial variability, and applying a single debris 

flow susceptibility assessment model to the entire region would hinder accurately 

elucidating the relationships between debris flow susceptibility and the various 

assessment factors. Therefore, preliminary zoning of the SMCRS is necessary 

before constructing the debris flow susceptibility model, and the selection of 
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zoning indicators needs to significantly influence the representation of DWCC in 

the debris flow susceptibility assessment model. 

This study primarily investigates the impacts of geological activities, such as 

earthquakes, and complex topographic conditions on the performance of DWCC 

within the debris flow susceptibility assessment model. For one thing, geological 

activities like earthquakes generate loose material that accumulates the source 

materials required for debris flow outbreaks, which are challenging to 

differentiate from the source materials produced by climatic dry-wet cycles, 

thereby affecting the representation of DWCC in the debris flow susceptibility 

model. For another, complex topographic conditions, particularly elevation and 

slope, determine the gravitational potential energy of source materials during 

debris flow occurrences and the capacity to convert this potential energy into 

kinetic energy. The variability in potential energy and its conversion capacity 

dictates the ease with which loose material accumulated through climate dry-wet 

cycles can transform into debris flow source materials, thus influencing the 

contribution of DWCC in the model. Other factors within the assessment factor 

system, such as meteorology, human activities, and vegetation types, are largely 

affected by geological activity conditions and complex topographic conditions 

and are thus not included in zoning the SMCRS at this stage. 

Ultimately, it is determined that the clustering of the 16,195 watersheds in the 

SMCRS should be based on USC such as geology and topography using the K-
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means method. For this clustering, the chosen USC are the distance to fault and 

the Melton ratio, which represent the influence of seismic activity and the relief 

within the watersheds, respectively. The optimal number of clusters was 

ascertained based on the maximum value of the Silhouette Score, as depicted in 

Fig. 5-1. 

 

Fig. 5-1. The optimal number of clusters based on the Silhouette Score 

 

The results indicate that when the number of clusters is set to three, the average 

Silhouette Coefficient is maximized, thereby definitively zoning the SMCRS into 

three USC Zones, namely Zone I, Zone II, and Zone III, as illustrated in Fig. 5-2. 

The clustering algorithm ensures that within the same class, the watersheds share 

more similar geological and topographic conditions, which guarantees a stronger 

correlation between debris flow susceptibility and the constructed assessment 

factor system, thereby better identifying the different characteristics between 

positive and negative examples among debris flow susceptibility indicators 

within each region (Wu et al., 2022). Consequently, machine learning models are 
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constructed for each of the three zones within the SMCRS to assess the debris 

flow susceptibility of the individual watersheds, which will enhance the model 

performance to successfully identify watersheds that are prone to debris flows. 

 

Fig. 5-2. Zoning of the SMCRS based on USC 

 

Based on the three USC zones, a total of 1,486 debris flow positive and negative 

samples from 1981 to 2019 were respectively allocated to Zone I, Zone II, and 

Zone III. Specifically, Zone I contains 836 debris flow samples, Zone II 

comprises 604 samples, and Zone III includes 46 samples. When generating 

negative samples for debris flows, it was necessary to ensure that the number of 

positive and negative debris flow samples was equal within each zone. 
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Table 5-1. Watershed characteristics in different USC zones of the SMCRS 

USC Zone 
Distance to Faults 

(km) 
Melton Ratio Amount 

Area 

(km2) 

Debris Flow 

Record Amount 

I 4.3 460.2 5534 81827.4 418 

II 11.2 122.9 7894 141265.4 302 

III 65.9 90.9 2767 42806.3 23 

 

Table 5-1 presents the USC of the clustering centers for different zones, including 

the distance to fault and the Melton ratio. The results indicate that within Zone I, 

Zone II, and Zone III, the watersheds increase in distance from faults and decrease 

in the Melton ratio, suggesting that watersheds in Zone I are the most affected by 

geological activities such as earthquakes and possess the steepest terrain. 

Watersheds in Zone II are less influenced by geological activities compared to 

those in Class I, and the terrain is relatively flatter. Watersheds in Zone III are the 

furthest from faults and have the flattest terrain. 

Table 5-1 also provides a statistical summary of the number and area of 

watersheds within each zone, along with a record of debris flow events over the 

39 years from 1981 to 2019. Zone II has the highest number of watersheds and 

the largest area within the SMCRS, yet it has fewer recorded debris flow events 

than Zone I. Zone III has the fewest debris flow records, averaging less than one 

event per year for the entire zone. Preliminary conclusions drawn from Table 5-1 

suggest that Zone I, characterized by frequent geological activity and large 

elevation differences within watersheds, has a high frequency of debris flow 
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events. Although Zone II experiences relatively fewer geological activities and 

has smaller elevation differences in its watersheds, the large total area contributes 

to a still significant overall frequency of debris flow events. Consequently, 

research on the susceptibility of debris flows in the SMCRS should be primarily 

focused on Zone I and Zone II. 

The zoning results derived from the K-means method are largely consistent with 

the USC of the SMCRS. Zone I encompasses areas concentrated with faults, 

exemplified by the Longmenshan fault zone, where watersheds exhibit significant 

elevation differences, and the Melton ratio is notably higher compared to those in 

Zone II and Zone III. Zone II and Zone III include most areas of the Sichuan 

Basin and the Panxi region, where the watersheds in both zones have elevation 

differences similar to each other and are comparatively flatter than those in Zone 

I. However, the watersheds in the Zone II region are relatively closer to faults. 

 

5.1.2 Record-based assessment unit for coastal monsoon region 

The HKSAR was selected as a typical coastal monsoon-affected area for this 

study, with 20,451 grids serving as assessment units for the debris flow 

susceptibility assessment model. The sources of debris flow records include UAV 

imagery interpretation, which lacks precise occurrence times, and geological 

survey reports that provide relatively accurate occurrence timing. To further 
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investigate the impact of dry-wet cycles on the debris flow susceptibility in 

typical coastal monsoon-affected areas, it is necessary to construct a debris flow 

dataset with accurate occurrence time. Consequently, the debris flow records 

from the geological survey reports were utilized to build the debris flow 

susceptibility assessment model. 

Debris flow records based on the interpretation of UAV imagery, due to their 

inclusion of information such as the width of the main scarp, the length of the 

source area, and the elevation difference between the crown and toe of each debris 

flow, can be used to approximate the maximum scale of debris flows in the 

HKSAR. The largest scale identified from historical debris flow records can be 

employed to determine the highest resolution for the grid assessment units in the 

region, which was ultimately set at 250 meters. 

The method of determining the grid resolution based on the maximum scale of 

historical debris flow records ensures that each grid assessment unit can 

completely contain the majority of the debris flow gullies, and also ensures that 

the number of assessment units delineated for the HKSAR (i.e., 20,451 grids) is 

roughly on the same order of magnitude as those in the SMCRS (i.e., 16,195 

watersheds). This consistency facilitates subsequent comprehensive comparisons 

between the debris flow susceptibility assessment models of the two typical 

regions. 
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5.1.3 Assessment factor system construction 

Utilizing watersheds as the assessment unit, models were constructed for different 

regions including a total of 32 initial indicators (Table 5-2) encompassing 

geological conditions (distance to faults, and dominant rock type of igneous, 

sedimentary, or metamorphic), topographical conditions (Melton ratio, curvature, 

aspect), meteorological conditions (maximum daily rainfall, maximum 3-day 

rainfall), DWCC (EDWP, extreme dry-wet characteristics), and land use types 

representing vegetation cover or human activities (woodland, shrubland, 

grassland, cropland, built-up land, bare land/sparse vegetation, wetlands, 

mosses/lichens). Among these indicators, some exhibit weak spatial variability. 

For example, in watersheds of  Zone III, the predominant rock type is all 

sedimentary. In such cases, it becomes necessary to eliminate all indicators 

related to rock type before constructing the debris flow susceptibility assessment 

model to avoid the influence of ineffective variables on model development. 

Table 5-2 presents the factor system for assessing the debris flow susceptibility 

in the SMCRS. From a mechanistic perspective, the contribution of each index to 

the formation and initiation of debris flows, involving the three essential elements 

of debris flows, i.e., energy, source material, and water is also explained (Wei et 

al., 2015). Within the 32 indices, 11 are categorical variables, specifically rock 

type and aspect (where a value of 1 indicates the presence of the category, and 0 

indicates its absence), while the remaining 21 are continuous variables. 
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Table 5-2. Debris flow susceptibility assessment indicators for SMCRS 

Factor Abbreviation 

in figures 
Introduction Mechanism 

Category Sub-category 

Geology 

(4) 

Distance to 

faults (m) 
D 

Distance between the 

geometric center of a 

watershed and the nearest 

fault 

Geological 

activities 

generate loose 

materials 

Rock type GEO_ 

I: Igneous 

II: Sedimentary 

III: Metamorphic  

Weathering and 

erosion of rocks 

produce loose 

materials 

Terrain 

(11) 

Melton ratio Melton 

The maximum watershed 

elevation difference 

divided by the square root 

of the watershed area 

Providing 

potential energy 

Curvature CPl, CPr 

Plan curvature: 

Positive/negative values 

indicate horizontal 

convexity/concavity 

Profile curvature: 
Positive/negative values 

indicate vertical 

concavity/convexity 

Accumulation 

and retention of 

loose materials 

Aspect A_ 

I: North; II: Northeast; 

III: East;  IV: Southeast; 

V: South; VI: Southwest; 

VII: West; VIII: Northwest 

Impact on soil 

moisture due to 

sunshine 

duration 

Meteorology 

(2) 

Maximum daily 

precipitation 

(mm) 

Pre_1d 
Maximum daily 

precipitation for the month 
Trigger 

Maximum 3-day 

precipitation 

(mm) 

Pre_3d 
Maximum 3-day 

precipitation for the month 
Trigger 

DWCC 

(7) 

Extreme dry-wet 

periods (month) 
EDWP 

Period of maximum power 

squared in dry-wet index 

wavelet spectrum 

Dry-wet cycles 

promote loose 

material 

accumulation, 

with extreme 

rainfall as the 

trigger 

Extreme dry-wet 

characteristics 

α_max, 

α_min, Δα, 

f(α_max),  

f(α_min), Δf 

Multifractal spectrum 

parameters of the dry-wet 

index 

Human activity/ 

Vegetation cover 

(8) 

Proportion of 

area by land use 

type 

LU_ 

I: Woodland 

II: Shrubland 

III: Grassland 

IV: Cropland 

V: Built-up land 

VI: Bare/sparse vegetation 

VII: Wetland 

VIII: Moss/lichen 

Loose materials 

accumulation 

relates to human 

activities and 

vegetation cover 
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Due to the relatively small area, the variability of USC such as geology and 

geomorphology in the HKSAR is considerably less than that in the SMCRS. 

However, while geological activity may be negligible, the impact of typhoons, 

which occur annually, is an important factor to consider for the occurrences of 

debris flows in the HKSAR. Based on the timing of debris flow records, three 

evaluation indices, i.e., typhoon frequency, maximum typhoon intensity, and 

longest typhoon duration, are matched for each debris flow grid. If there are no 

typhoon records in the month of a debris flow occurrence, the values for typhoon 

frequency, maximum typhoon intensity, and longest typhoon duration are all set 

to zero. 

Table 5-3 shows the initial 35 factors for assessing the debris flow susceptibility 

in the HKSAR. A brief explanation of each variable related to energy, source 

material, and water is also provided. The assessment factors include geological 

conditions (dominant rock types of igneous and sedimentary), topographical 

conditions (maximum elevation difference, curvature, aspect), meteorological 

conditions (typhoon frequency, maximum typhoon intensity, longest typhoon 

duration, maximum daily rainfall, maximum 3-day rainfall), DWCC (EDWP, 

extreme dry-wet characteristics), and land use type proportions representing 

human activities or vegetation cover (reclassified into categories such as built-up 

land, agriculture land, roads/railways, ports/airports, woodland, shrubland, 

grassland, mangroves/swamps, bare land, water bodies). 
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Table 5-3. Debris flow susceptibility assessment indicators for HKSAR 

Factor Abbreviation 

in figures 
Introduction Mechanism 

Category Category 

Geology 

(2) 
Rock type GEO_ 

I: Igneous 

II: Sedimentary 

Weathering and 

erosion of rocks 

produce loose 

materials 

Terrain 

(11) 

Maximum 

elevation 

difference (m) 

ED 

The maximum elevation 

difference for an 

assessment unit 

Providing 

potential energy 

Curvature CPl, CPr 

Plan curvature: 

Positive/negative values 

indicate horizontal 

convexity/concavity 

Profile curvature: 

Positive/negative values 

indicate vertical 

concavity/convexity 

Accumulation 

and retention of 

loose materials 

Aspect A_ 

I: North; II: Northeast; 

III: East;  IV: Southeast; 

V: South; VI: Southwest; 

VII: West; VIII: Northwest 

Impact on soil 

moisture due to 

sunshine 

duration 

Meteorology 

(5) 

Typhoon 

frequency 
TY_F 

Typhoon frequency for the 

month Promoting 

extreme 

precipitation and 

transports loose 

materials 

Maximum 

typhoon level 
TY_L 

The maximum typhoon 

level for the month 

Maximum 

typhoon 

duration (h) 

TY_D 
The maximum typhoon 

duration for the month 

Maximum daily 

precipitation 

(mm) 

Pre_1d 
Maximum daily 

precipitation for the month 
Trigger 

Maximum 3-day 

precipitation 

(mm) 

Pre_3d 
Maximum 3-day 

precipitation for the month 
Trigger 

DWCC 

(7) 

Extreme dry-wet 

periods (month) 
EDWP 

Period of maximum power 

squared in dry-wet index 

wavelet spectrum 

Dry-wet cycles 

promote loose 

material 

accumulation, 

with extreme 

rainfall as the 

trigger 

Extreme dry-wet 

characteristics 

α_max, 

α_min, Δα, 

f(α_max),  

f(α_min), Δf 

Multifractal spectrum 

parameters of the dry-wet 

index 

Human activity/ 

Vegetation cover 

(10) 

Proportion of 

area by land use 

type 

LU_ 

1: Built-up land 

2: Agriculture land 

3: Roads/railways 

4: Ports/airports 

5: Woodland 

6: Shrubland 

7: Grassland 

8: Mangroves/swamps 

9: Bare land 

10: Water bodies 

Loose materials 

accumulation 

relates to human 
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According to the warning signals provided by the Hong Kong Observatory, 

typhoons are classified into Signal No. 1 (the typhoon is within 800 km of Hong 

Kong), Signal No. 3 (strong winds with sustained speeds of 41-62 km/h and gusts 

that may exceed 110 km/h), Signal No. 8 (gale or storm force winds with 

sustained speeds of 63-117 km/h and gusts that may exceed 180 km/h), Signal 

No. 9 (gale or storm force winds are increasing or expected to increase), and 

Signal No. 10 (hurricane force winds with sustained speeds exceeding 118 km/h 

and gusts that may exceed 220 km/h). For this study, the typhoon signal levels 

are standardized to ensure they are treated as continuous variables, with Signal 

No. 1, 3, 8, 9, and 10 corresponding to levels 1, 2, 3, 4, and 5, respectively. 

The debris flow susceptibility assessment factors constructed in Table 5-3 are 

largely consistent with those in Table 5-2. However, in regions affected by 

typhoons, additional consideration is given to the frequency, intensity, and 

duration of typhoons. Since the HKSAR does not have delineated watersheds but 

instead builds models based on grid assessment units, the Melton ratio is replaced 

by the maximum elevation difference within the grid. The grid resolution was 

determined based on the length of the largest source area recorded in the historical 

debris flow records. Therefore, the maximum elevation difference of a grid unit 

can approximately represent the maximum elevation difference of a debris flow 

gully. Both the Melton ratio and the maximum elevation difference of debris flow 

gullies can be converted to slopes, reflecting the ability of the source materials in 
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a debris flow gully to transform gravitational potential energy into kinetic energy. 

In terms of land use types, since the HKSAR does not have watersheds delineated 

by rivers and is a coastal area, additional land use types that reflect the 

characteristics of the coastal intertidal zone (mangroves/swamps) and those 

related to water bodies (ponds, rivers, and channels) are incorporated. Out of the 

35 assessment variables, 10 are categorical variables, which include 2 rock 

categories and 8 aspect categories, where a value of 1 indicates belonging to that 

category and a value of 0 indicates non-belonging. The remaining 25 indicators 

are continuous variables. 

 

5.2 Model selection 

After constructing the assessment factor systems for the two typical regions, it 

was necessary to select an appropriate model for assessing debris flow 

susceptibility. Initially, performance metrics for the models were established to 

evaluate the effectiveness of the models in assessing debris flow susceptibility. 

Subsequently, a comparison of four representative models was conducted, and 

the model exhibiting superior performance, as determined by these metrics, was 

chosen for the susceptibility assessment. Finally, an optimal model validation 

method was selected with an appropriate ratio of model training and validation 

datasets to ensure the model performance and generalization capability. 
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5.2.1 Model performance metrics 

This study treats debris flow susceptibility assessment as a classification problem, 

evaluating machine learning model performance using metrics based on correctly 

and incorrectly classified samples. The classifier, based on the assessment factors 

of each sample, outputs the probability that the sample is positive (ranging from 

0 to 1). After determining the classification threshold that distinguishes positive 

from negative samples, the samples can be categorized as positive or negative 

based on the output probability. Samples with an output probability greater than 

or equal to the threshold are classified as positive, whereas those with an output 

probability below the threshold are classified as negative. Correctly classified 

positive samples are termed True Positives (TP), correctly classified negative 

samples are termed True Negatives (TN), incorrectly classified positive samples 

are termed False Positives (FP), and incorrectly classified negative samples are 

termed False Negatives (FN). These classifications form the basis for deriving 

metrics to evaluate the performance of the classification model, including recall, 

precision, and accuracy, as detailed in equations (5-1), (5-2), and (5-3). 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                      (5-1) 

Recall, as a performance metric, reflects the capability of a model to correctly 

identify all positive samples without considering the negative samples. Recall is 
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particularly important when the consequence of failing to detect a positive sample 

is significant, as it emphasizes the sensitivity of the model to the presence of 

positive cases. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                        (5-2) 

Precision is a performance metric that reflects the ability of a model to accurately 

predict positive samples out of all the positive and negative samples it classifies. 

Precision is particularly relevant when the cost of a false positive is significant, 

as it measures the reliability of the classification results of a sample as positive. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                               (5-3) 

Accuracy is a performance metric that reflects the ability of a model to correctly 

predict both positive and negative samples. It represents the proportion of TP and 

TN out of the total number of samples evaluated. Accuracy is a fundamental 

metric often used to gauge the general performance of classification models in 

balanced datasets where each class is equally important. 

The metrics of recall, precision, and accuracy have a value range between 0 and 

1, with values closer to 1 indicating superior model classification performance. 

In the context of debris flow susceptibility assessment models, a high recall rate 

ensures that the model successfully predicts a greater number of debris flow 

occurrences. However, focusing solely on recall may lead to false positives or 

false alarms, which in turn could increase the response costs for debris flow 
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prevention and mitigation. A high recall rate, when combined with high precision 

and accuracy, can effectively minimize the issue of an excessive false alarm rate. 

By determining the optimal classification threshold, the recall, precision, and 

accuracy of the classification model can be enhanced, thereby its overall 

classification performance. 

To determine the optimal classification threshold, the output probability of each 

sample can be used as a potential threshold, thereby obtaining the corresponding 

TP rate and FP rate for each threshold value. These rates can be plotted with the 

TP rate on the y-axis and the FP rate on the x-axis to construct the Receiver 

Operating Characteristic (ROC) curve. The optimal classification threshold can 

be selected by balancing the TP rate to the FP rate according to the specific needs 

regarding the acceptable rate of false alarms. Moreover, the area under the ROC 

curve (AUC) serves as an additional metric for reflecting the performance of the 

classification model. When the model performance surpasses that of a random 

classifier, the AUC value ranges from 0.5 to 1, with larger AUC values indicating 

a more effective overall classification of positive and negative samples by the 

model. 
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5.2.2 Model comparisons 

A superior machine learning model for debris flow susceptibility assessment can 

be selected and optimized from four algorithm types using R programming 

packages (Anastasiadis et al., 2005; Friedman, 2001; Ripley, 2002). Based on 

model performance metrics, a machine learning model that demonstrates better 

classification performance can be selected for further optimization. The selection 

process encompasses four types of machine learning algorithms including log-

linear regression (LLR) representing linear regression models, gradient boosting 

machine (GBM) representing decision tree models, KNN representing distance-

based models, and artificial neural network (ANN) representing the application 

of neural networks in regional debris flow susceptibility assessments. The 

construction and evaluation process for these four representative machine 

learning models involves the use of packages within the R programming language, 

such as "caret", "nnet", "gbm", "neuralnet", "ROCR", and "verification". 

Taking the SMCRS as an example without USC zoning, all positive and negative 

samples are applied across the four models. The performance of a preliminary 

model is determined through 10-fold cross-validation, during which ROC curves 

are generated. The model with the best classification effect is identified based on 

the maximum average AUC value derived from the 10 ROC curves, thereby 

obtaining a robust model by using multiple iterations to account for the 

randomness. 
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Fig. 5-3. Performance comparisons among different machine learning models 

 

The results indicate that, after tuning the hyperparameters, the GBM, which is 

based on decision trees, significantly outperforms the other three models with a 

higher average AUC. Compared to the LLR and the KNN, the GBM, and the 

ANN possess a relatively larger number of hyperparameters that can be tuned to 

enhance the model performance. However, ANN is more resource-consuming 

compared to GBM when tuning the hyperparameters. Therefore, considering both 

the model classification performance and the time cost for tuning, the GBM based 
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on decision trees was ultimately selected as the machine learning model for debris 

flow susceptibility assessment. 

The GBM improves prediction by iteratively constructing new decision trees that 

estimate the residuals of debris flow susceptibility from the predictions of the 

previous tree. By increasing the number of iterations, the model successively 

minimizes the prediction error for debris flow susceptibility. The final prediction 

of debris flow susceptibility (𝑆 ) is accomplished by summing the predicted 

residuals from all the decision trees to the initial susceptibility estimate and 

adding it to the initial susceptibility (𝑆0). When constructing the GBM model 

using the "gbm" package in R, the initial susceptibility (𝑆0 ) is set to 1. After 

building a certain number of decision trees to reduce the prediction residuals, the 

final debris flow susceptibility is obtained. Subsequently, a Sigmoid function is 

applied to transform the debris flow susceptibility into a probability value ranging 

between 0 and 1. The computation of debris flow susceptibility is delineated in 

equation (5-4). 

𝑆 =
1

1+𝑒−[𝑆0+∑ 𝑓𝑚(𝑥)𝑀
𝑚=1 ]

                                          (5-4) 

where 𝑒  denotes the base of the natural logarithm, 𝑀  is the total number of 

decision trees, and 𝑓𝑚(𝑥)  represents the predicted debris flow susceptibility 

residual by the 𝑚 th decision tree based on different assessment factors 𝑥 . For 

each constructed decision tree, the gradient descent of the predicted residuals is 
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realized by determining the combination of assessment factor weights that 

minimizes the loss function, which is the binomial deviance in this context. 

 

5.2.3 Cross-validation 

Evaluating the effectiveness of different cross-validation methods is crucial for 

optimizing the model performance and tuning efficiency. The division of the 

dataset into training and validation sets affects the assessment. Therefore, it is 

imperative to further evaluate the effectiveness of the 10-fold cross-validation 

method. Using the SMCRS as an example and employing the GBM, an 

assessment is made based on Fig. 5-3 by comparing the results of cross-validation 

with different fold numbers, namely 3-fold, 5-fold, 15-fold, and 20-fold. This 

comparison is aimed at evaluating the influence of the number of folds in cross-

validation on the model classification performance and the time cost associated 

with tuning (Fig. 5-4). 
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Fig. 5-4. Evaluation of cross-validation with different folds 

 

The results demonstrate that as the number of folds in cross-validation increases, 

the validation time correspondingly escalates, and the average AUC initially rises 

and then stabilizes. Considering the 10-fold cross-validation results of the GBM 

depicted in Fig. 5-3, which exhibit a relatively optimal classification performance 

as measured by the average AUC, the 10-fold cross-validation method is selected 

for its balance of high average AUC and the lowest time cost. The optimal number 

of cross-validation folds determines a balance between training and validation 

data, thereby ensuring superior classification performance of the model during 
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the training process and its generalization capability when subsequently tested on 

different datasets. 

To ensure comparability between models for the two study areas, it is advisable 

to employ the same debris flow susceptibility assessment model and cross-

validation method in the HKSAR as chosen for the SMCRS. There are three 

reasons for conducting the established GBM and the 10-fold cross-validation 

method in the HKSAR as in the SMCRS. First, the process of model selection 

based on performance metrics does not involve constructing separate debris flow 

susceptibility models for each underlying surface subdivision within the SMCRS, 

and thus, the number of assessment units (16,195 watersheds) in the SMCRS is 

of the same order of magnitude as that in the HKSAR (20,451 grids). Second, the 

number of positive debris flow samples from 1981 to 2019 in the entire SMCRS 

(743 samples) is comparable to that in the HKSAR from 2010 to 2018 (904 

samples). Lastly, a comparison of the results from Table 5-2 and Table 5-3 

indicates that the debris flow susceptibility assessment factor systems for the 

SMCRS and the HKSAR are closely aligned. Therefore, for the construction of 

models across the whole study area of both regions, the same model and 

validation method can be appropriately utilized. 
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5.3 Model construction and optimization 

Debris flow susceptibility assessment models can be constructed for the SMCRS 

and the HKSAR based on the DWCC after determining the model choice and 

validation method. Specifically, for the SMCRS, according to the USC 

partitioning depicted in Fig. 5-2, separate debris flow susceptibility models will 

be developed for Zone I, Zone II, and Zone III. This approach aims to mitigate 

the influence of complex USC on classification effectiveness within the SMCRS 

while placing greater emphasis on the impacts of DWCC on different USC zones. 

Despite the analysis results from Table 5-1 indicating that only Zone I and Zone 

II, which are prone to debris flows, require focus, models have still been 

constructed for Zone III to ensure the completeness of the debris flow 

susceptibility assessment results for the entire study area. However, due to the 

smaller sample size in Zone III, the comparability of the debris flow susceptibility 

model for Zone III with that for Zone I or Zone II is limited. Therefore, from the 

aspects of debris flow susceptibility and data representativeness, it is advisable to 

focus more on Zone I and Zone II. 

5.3.1 Application of dry-wet cycle characteristics 

For the SMCRS and the HKSAR, models based or not based on DWCC were 

compared to evaluate the effect of using DWCC in debris flow susceptibility 

assessment (Fig. 5-5). 
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Fig. 5-5. Evaluation of DWCC-based models 

 

The results show that the AUC of models based on DWCC have been improved 

by 1.4% - 3.8% in the two study areas. Based on equation (5-3), the accuracies of 

correctly identifying the samples reach 83.6% (SMCRS) and 82.3% (HKSAR) 

after using DWCC, indicating the effectiveness of applying DWCC in debris flow 

susceptibility assessment. 
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5.3.2 Multicollinearity detection 

Addressing the multicollinearity among assessment factors is essential to ensure 

model stability and interpretability in debris flow susceptibility assessments. 

Severe multicollinearity among assessment factors, characterized by high 

intercorrelations, can significantly disrupt the weighting process of these factors, 

reducing the model interpretability and increasing model sensitivity to the 

assessment factors, thereby leading to unstable model performance. Consequently, 

it is crucial to detect and address multicollinearity among assessment factors 

before constructing the model and eliminate those with strong collinearity to 

ensure the interpretability and stability of the model performance. The diagnosis 

of multicollinearity among assessment factors is conducted using correlation 

matrices and the variance inflation factor (VIF) method. Initially, relative 

influence (RI) scores were calculated based on the structure of GBM, and 

indicators with RI scores below 1% were discarded to minimize their marginal 

contribution to debris flow susceptibility and their potential confounding impact 

on other indicators. A correlation matrix was then constructed for the remaining 

indicators. If the Spearman correlation coefficient between any two indicators 

exceeds 0.7, the indicator with the lower RI will be eliminated. Finally, the VIF 

was applied as a linear regression model to further refine the assessment factor 

system, discarding any factor with a VIF exceeding 5. The filtered set of 

assessment factors (19 for Zone I, 17 for Zone II, and 19 for Zone III) was used 
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to generate a correlation matrix, as shown in Fig. 5-6, along with the VIF values 

of each assessment factor, as presented in Fig. 5-7. 

 

Fig. 5-6. Correlation matrix of assessment variables 

 

The results indicate that, after the removal of assessment factors with high 

correlations and low RI scores from the dataset, the inter-correlations among the 

assessment factors for Zone I range between -0.54 and 0.54, for Zone II between 

-0.54 and 0.66, and Zone III between -0.69 and 0.44. Consequently, there are no 

instances where the correlation between any two assessment factors exceeds 0.7, 

thus ensuring that the assessment factor systems for the three USC zones are free 
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from severe multicollinearity. This outcome validates the robustness of the 

assessment factor systems and supports the stability and interpretability of the 

models developed for each zone. 

 

Fig. 5-7. Variance inflation factor of assessment variables 

 

The results demonstrate that after the selection process, the VIF values for the 

assessment factors within Zone I range from 1.05 to 1.71, within Zone II from 

1.07 to 4.36, and within Zone III from 1.57 to 4.34. Consequently, for Zone I, 

Zone II, and Zone III, the remaining assessment factors all exhibit VIF values 
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less than 5, signifying that multicollinearities within the refined assessment factor 

systems are not significant and can be considered negligible. 

The common and unique assessment factors of debris flow positive and negative 

samples among different USC zones can be discerned by comparing their 

similarities and differences. The common indicators reflect factors potentially 

related to the debris flow susceptibility in the SMCRS, while the unique factors 

reveal those that may influence debris flow susceptibility within each specific 

USC zone. Comparative analysis of common indicators shows that for all three 

USC zones in the SMCRS, distance to fault, maximum daily/3-day precipitation, 

Melton ratio, curvature, east-facing slopes, severity of extreme precipitation 

events, EDWP, shrub coverage, grassland coverage, and built-up land coverage 

are essential common assessment factors required for the debris flow 

susceptibility assessment model. Exclusively focusing on Zone I and Zone II, the 

probability of extreme drought events and the preference for extreme 

hydrological events are additional common factors for these two USC zones. The 

unique indicators identified for Zone I include maximum daily precipitation, bare 

land/scant vegetation coverage, moss/lichen coverage, dominance of igneous 

rocks, and dominance of metamorphic rocks. The unique indicators identified for 

Zone II include the probability of severe extreme precipitation events and the 

dominance of sedimentary rocks. The unique indicators identified for Zone III 

include northeast-facing slopes, southwest-facing slopes, west-facing slopes, and 
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the fluctuation of extreme hydrological events. When specifically considering the 

differential assessment factors for Zone I and Zone II, it is found that maximum 

daily precipitation, southeast-facing slopes, arable land coverage, bare land/scant 

vegetation coverage, moss/lichen coverage, dominance of igneous rocks, and 

dominance of metamorphic rocks in Zone I differ from those in Zone II, whereas 

maximum 3-day precipitation, north-facing slopes, south-facing slopes, the 

probability of severe extreme precipitation events, and dominance of sedimentary 

rocks in Zone II present differences from those in Zone I. 

 

Fig. 5-8. Correlation matrix (Left) and variance inflation factor (Right) for 

assessment variables 

 

For the assessment factor system of debris flow susceptibility in the HKSAR, the 

same multicollinearity detection methods as that used for the SMCRS were 

applied, resulting in a final set of 23 assessment factors. The correlation matrix 
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and the VIF values for these indicators are illustrated in Fig. 5-8. The results 

reveal that, after the removal of indicators with high intercorrelations and 

minimal impact on susceptibility assessment, the correlations between the 

remaining indicators for the HKSAR range from -0.48 to 0.69, with the highest 

correlation of 0.69 observed between the coverage ratios of shrublands and 

grasslands. Since none of the intercorrelations exceed the threshold of 0.7, the 

assessment factor system is deemed free of severe multicollinearity. Furthermore, 

the VIF values of the selected indicators range from 1.07 to 3.18, with the 

woodland coverage ratio exhibiting the highest VIF value. However, all VIF 

values are below the threshold of 5, indicating that multicollinearity within the 

assessment factor system can be considered negligible. 

Comparing the assessment factor systems before variable trimming for the 

SMCRS and the HKSAR, the common and unique assessment factors based on 

positive and negative debris flow samples in typical inland and coastal monsoon 

areas have been understood initially. It was found that in the SMCRS, indicators 

such as distance to fault, dominance of igneous rocks, dominance of metamorphic 

rocks, the probability of extreme drought events, and the probability of extreme 

precipitation events serve as unique assessment factors that were not included in 

the construction of the debris flow susceptibility assessment model for the 

HKSAR. Conversely, in the HKSAR, indicators like the highest typhoon level, 

the proportion of mangroves/swamps, and the proportion of water bodies act as 
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unique assessment factors that were not incorporated in the construction of the 

debris flow susceptibility assessment model for the SMCRS. 

However, further research is required to quantitatively assess the impact of each 

assessment factor on the debris flow susceptibility in different study areas. 

 

5.3.3 Model tuning 

Adjusting hyperparameters is crucial to prevent overfitting and underfitting while 

ensuring stable and efficient debris flow susceptibility assessment. For the GBM 

based on decision trees, four hyperparameters were adjusted, including the 

number of decision trees (NT), the depth of decision trees (DT), the learning rate 

(LR), and the minimum number of observations in terminal nodes (MNO). An 

excess in NT or DT can lead to overfitting, resulting in instability of the model 

performance, whereas insufficient values might cause underfitting, preventing the 

model from identifying the optimal solution. A high LR can accelerate the 

convergence to the optimal solution but may also lead to overfitting, while a low 

LR slows down the convergence and increases training time. An overly large 

MNO can result in underfitting, whereas an excessively small MNO tends to 

cause overfitting. Therefore, it is necessary to continuously adjust the 

combination of these four hyperparameters to avoid both overfitting and 

underfitting, while minimizing training time to construct a debris flow 
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susceptibility assessment model that is efficient, stable, and has an acceptable 

training duration. 

Given that the debris flow susceptibility assessment model prioritizes the accurate 

classification of positive samples while maintaining overall optimal performance 

for both positive and negative samples, recall is adopted as the primary model 

performance metric, with the AUC serving as a secondary metric, to ensure the 

model applicability for debris flow susceptibility assessment. However, to 

guarantee the ability of the model to correctly classify negative samples, it is still 

necessary to consider precision and accuracy as model performance metrics and 

ensure that both precision and accuracy reach sufficiently high levels. 

Based on 1,486 training samples from 1981 to 2019, hyperparameter tuning was 

conducted for the debris flow susceptibility assessment models of three USC 

zones in the SMCRS. The enhancement of model performance through the tuning 

process was quantified using four model performance metrics calculated via 10-

fold cross-validation. The changes in recall, AUC, precision, and accuracy as 

model performance indicators before and after tuning are presented in Table 5-4. 

The results indicated that after hyperparameter tuning, there is a significant 

enhancement in all four model performance metrics, demonstrating that the 

models constructed for the three different USC zones each exhibit performance 

improvements. Despite this, the model for Zone III, which has the fewest samples 

compared to Zone I and Zone II, displays the lowest performance metrics and 
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shows less pronounced improvements after hyperparameter tuning, indicating 

that the debris flow susceptibility model performance for Zone III is not as 

effective as that of Zone I and Zone II. However, the absence of debris flow 

records in Zone III for the year 2020 implies that this would not affect the 

accuracy of identifying watersheds prone to debris flows during subsequent 

model testing for that year. 

Table 5-4. Model performance metrics before and after tuning in 3 USC zones 

USC Zone 
Recall AUC Precision Accuracy 

Before After Before After Before After Before After 

I 

(836 samples) 
0.883 

0.900 

(+2%) 
0.938 

0.952 

(+1%) 
0.850 

0.877 

(+3%) 
0.862 

0.887 

(+3%) 

II 

(604 samples) 
0.857 

0.910 

(+5%) 
0.941 

0.968 

(+3%) 
0.866 

0.905 

(+4%) 
0.860 

0.907 

(+5%) 

III 

(46 samples) 
0.750 

0.800 

(+5%) 
0.850 

0.875 

(+3%) 
0.783 

0.800 

(+2%) 
0.750 

0.775 

(+3%) 

 

Focusing on Zone I and Zone II, after hyperparameter tuning, the recall rates for 

both exceed 0.9, indicating that the models could correctly identify over 90% of 

the watersheds prone to debris flows. The AUC values for both Zone I and Zone 

II after tuning are greater than 0.95, reflecting the excellent classification 

performance of the GBM model for debris flow susceptibility assessment when 

there is a balance in the number of positive and negative samples. Additionally, 

the precision and accuracy rates for both regions are around 0.9, which is a 



Chapter 5 Debris Flow Susceptibility Model Based on Dry-wet Cycle Characteristics 

 
144  

relatively high level, and are also relatively stable, further indicating a 

comparatively low FP rate for the models. 

Employing the same method as used for the SMCRS, the debris flow 

susceptibility assessment model for the HKSAR was subject to hyperparameter 

tuning. Similarly, the four model performance metrics were calculated using 10-

fold cross-validation, and the changes in these metrics before and after tuning are 

depicted in Table 5-5. 

Table 5-5. Model performance metrics before and after tuning 

Metrics Recall AUC  Precision Accuracy 

Before tuning 0.836 0.902  0.821 0.826 

After tuning 0.849 0.920  0.830 0.837 

Increase rate +1.3% +1.8%  +0.9% +1.1% 

 

The results indicate that after hyperparameter tuning, all four model performance 

metrics for the debris flow susceptibility model are improved, with the most 

significant increase observed in the recall rate. This enhancement suggests that 

the model performance, particularly its ability to recognize debris flow samples, 

is improved after tuning. The AUC reaches 0.92 after tuning, demonstrating the 

effective classification of grids susceptible to debris flows under a balanced 

distribution of positive and negative samples. The recall rate increases notably to 

0.85 following tuning, indicating that parameter adjustment effectively enhances 

the capacity of the model to identify debris flow grids, ultimately enabling it to 
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correctly recognize approximately 85% of those grids. Additionally, the model 

exhibits precision and accuracy rates above 0.8, indicating a relatively low false 

alarm rate. 

After hyperparameter tuning, the debris flow susceptibility assessment model has 

been constructed based on the training dataset. However, to assess the 

generalization ability of the model across different datasets, further tests are 

required. 

 

5.4 Debris flow susceptibility assessment 

Based on the established debris flow susceptibility assessment model, tests were 

conducted with datasets excluded from the training set to assess the model 

generalization capability and its accuracy in identifying units with recorded 

debris flow events. The performance of DWCC, constructed based on predicted 

values of dry-wet indices, was also tested within the susceptibility assessment 

model to affirm the stability and reliability of using these characteristics in 

assessing debris flow susceptibility. The debris flow susceptibilities in different 

months for two typical study areas were visualized based on the results of the 

susceptibility model. 

 



Chapter 5 Debris Flow Susceptibility Model Based on Dry-wet Cycle Characteristics 

 
146  

5.4.1 Model testing 

Model testing carried out based on 29 cases from June to September 2020 ensured 

the effectiveness and stability of using predicted DWCC for debris flow 

susceptibility assessment. Initially, the pre-disaster PDSI time series for these 

watersheds were derived from the ground meteorological monitoring data and 

characterized as DWCC for application in the model test. Subsequently, the pre-

disaster DWCC for these 29 recorded watersheds were calculated based on the 

one-month ahead forecast data from the PDSI using the SARIMA model outlined 

in Section 3.2.2, for their application in model testing. A comparison of the test 

results for DWCC derived from these two different data sources was conducted 

to explore the effectiveness of using predicted DWCC in the debris flow 

susceptibility assessment and to validate the stability of applying DWCC in the 

susceptibility assessment (Table 5-6). 

Table 5-6. Testing of susceptibility models based on DWCC in the SMCRS 

USC 

Zone 
DWCC Source 

Watershed 

Amount 

Number of Successful 

Identifications 

Identification 

Accuracy 

I From monitoring data 19 17 89.5% 

II From  monitoring data 10 10 100% 

I From  forecasting data 19 17 89.5% 

II From  forecasting data 10 10 100% 

 

The results of the model testing show that for the 29 watersheds with debris flow 

records in the SMCRS, the accuracy of the debris flow susceptibility assessment 
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model, based on actual DWCC, reached 93.1%. Specifically, the accuracy for 

Zone I is 89.5%, while for Zone II is 100%. This indicates that when using actual 

DWCC, the model could correctly identify most of the watersheds that have 

experienced debris flows in the SMCRS, and it could perfectly identify all the 

watersheds with debris flows in areas with larger distances from faults and flatter 

terrain. Moreover, when predicting the susceptibility of debris flows for the 

upcoming month using forecasted DWCC, it is found that the use of predicted 

data will not lead to a decrease in model performance, suggesting that the 

forecasts of DWCC for the coming month can be applied to predict debris flow 

susceptibility without significantly reducing the accuracy of identifying 

watersheds with high debris flow susceptibility. These findings confirm the 

effectiveness of applying DWCC in debris flow susceptibility assessment. 

The comparative results indicate that the debris flow susceptibility model, based 

on DWCC, demonstrates an excellent classification performance for identifying 

watersheds with high debris flow susceptibility in the typical inland monsoon 

region. Moreover, although there are biases in the prediction of DWCC, these 

biases have an insignificant impact on the model accuracy of identifying 

susceptible watersheds, suggesting that the DWCC extracted from the PDSI time 

series through wavelet analysis and multifractal spectrum analysis are relatively 

stable and less affected by the biases in PDSI prediction. 
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To further substantiate this discovery, the constructed debris flow susceptibility 

assessment model was tested using 73 grid samples with recorded debris flows 

from the HKSAR in 2019. Similarly, the efficacy of the model in recognizing 

grids with recorded debris flows was tested using DWCC calculated from the 

monitoring data and those predicted by the SARIMA model, as described in 

Section 3.2.2. The performance parameters of the model are presented in Table 

5-7. 

Table 5-7. Testing of susceptibility models based on DWCC in the HKSAR 

DWCC Source Recall Precision Accuracy 

From monitoring data 0.767 0.949 0.863 

From forecasting data 0.767 0.949 0.863 

 

The results, as reflected in the three model performance metrics from the test, 

reveal that the model has the lowest recall rate at 0.77, while the precision rate is 

significantly higher at 0.95. This suggests that the model can correctly identify 

over 75% of the grids with recorded debris flows and rarely misclassifies grids 

without debris flow records as having high susceptibility. In other words, the 

model is more prone to underreporting than overreporting debris flow events. 

Therefore, while substantially reducing the costs associated with false alarms for 

prevention and mitigation, still necessitates increased attention to areas with 

lower susceptibility to debris flows. Overall, these results affirm the effectiveness 
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of the debris flow susceptibility assessment model constructed based on DWCC 

in typical coastal monsoon areas. 

When employing DWCC predicted by the SARIMA model for the debris flow 

susceptibility assessment, there are no changes observed in recall rate, accuracy 

rate, or precision rate. This consistency suggests that the predicted DWCC for the 

forthcoming month have little impact on identifying the debris flow and non-

debris flow grids. Therefore, in typical coastal monsoon regions, the debris flow 

susceptibility assessment model based on DWCC maintains a strong level of 

stability. 

Based on the comparative results from two typical monsoon-affected study areas, 

it can be concluded that the debris flow susceptibility assessment model, 

predicated on DWCC, exhibits both effectiveness and stability. The effectiveness 

is reflected in the high accuracy of the model in identifying units with a very high 

susceptibility to debris flows in both typical areas, while the stability is 

demonstrated by the negligible effect of the biases in predicted DWCC on the 

debris flow susceptibility assessment. The effectiveness and stability of DWCC 

in debris flow susceptibility assessment enables the forecast of coming debris 

flows. 
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5.4.2 Assessment results 

Visualizing debris flow susceptibility using real-time or forecasted 

meteorological data is essential for debris flow early warnings. Referring to the 

visualization results, regions with higher susceptibility to debris flows can be 

identified, and debris flow warnings can be issued for areas with a high 

susceptibility. 

Given the effectiveness and stability of using forecast data to construct DWCC 

for debris flow susceptibility assessment have been verified, the forecast data is 

not applied for creating debris flow susceptibility maps. Instead, real-time 

monitoring data was applied to construct DWCC, thereby enabling dynamic 

assessment of debris flow susceptibility and the visualization of the results. 

In the SMCRS in 2020, 29 typical debris flow events were recorded between June 

and September. Consequently, an assessment and mapping of debris flow 

susceptibility were conducted for these four months to visualize the susceptibility 

of all watersheds. Utilizing a debris flow susceptibility assessment model that 

incorporates DWCC and based on the latest monthly meteorological monitoring 

station data, the assessment factors related to meteorology and DWCC were 

updated. This facilitated a dynamic assessment of debris flow susceptibility from 

June to September 2020, providing a month-by-month susceptibility assessment 

for each watershed unit within the SMCRS. The susceptibility was classified into 

five categories, namely very low, low, moderate, high, and very high, using the 



Chapter 5 Debris Flow Susceptibility Model Based on Dry-wet Cycle Characteristics 

 
151  

Jenks natural breaks, as depicted in Fig. 5-9. The natural breaks method classifies 

susceptibility by considering the distribution pattern of susceptibility values, 

ensuring maximum differences between the various categories of debris flow 

susceptibility. 

 

Fig. 5-9. Dynamic debris flow susceptibility mapping in the SMCRS 

 

The results indicate that in the SMCRS, the total area of watersheds with high 

susceptibility to debris flows exhibited a trend of initial increase followed by a 



Chapter 5 Debris Flow Susceptibility Model Based on Dry-wet Cycle Characteristics 

 
152  

decrease from June to September, with August identified by the model as having 

the largest amounts and the total area of watersheds with very high susceptibility. 

Most of these watersheds are in the Longmenshan fault zone, the surrounding 

mountain areas of the Sichuan basin, and the Panxi region, which is generally 

consistent with the spatiotemporal distribution pattern of debris flow 

susceptibility reflected by the debris flow ARI results. Furthermore, when 

considering the spatiotemporal patterns of the rainy season precipitation in the 

SMCRS, it is found that the predicted results of debris flow susceptibility for 

watersheds based on DWCC largely align with the actual conditions. 

Based on the dynamic map of debris flow susceptibility and focusing on the 29 

watersheds with typical debris flow records from 2020, it is possible to calculate 

the proportion of the total area of watersheds within different USC zones that fall 

into various debris flow susceptibility categories. If the debris flow susceptibility 

assessment model can classify most of the watersheds with typical debris flow 

records as very high susceptibility zones, and the total area of these classified 

watersheds is minimal, then the proposed model demonstrates potential 

application value for debris flow early warning. A three-dimensional histogram 

can be drawn with the five debris flow susceptibility levels on the x-axis, the four 

months with debris flow records on the y-axis, and the total area of watersheds 

corresponding to each level of debris flow susceptibility for the different months 

on the z-axis. The color of the bars represents the frequency of debris flows, with 
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frequencies that can be referred to in the legend, and the results are presented in 

Fig. 5-10. 

 

Fig. 5-10. Evaluation of debris flow susceptibility assessments in the SMCRS 

 

The results demonstrate that the majority of the 29 typical debris flow watersheds 

in the SMCRS for 2020 are identified as having very high susceptibility, 

highlighting the robust capability of the model to recognize positive samples. 

However, in Zone I, some watersheds are identified as high susceptibility rather 

than very high susceptibility in August, suggesting that debris flow prevention 

policies based on susceptibility assessment maps must consider also certain high-



Chapter 5 Debris Flow Susceptibility Model Based on Dry-wet Cycle Characteristics 

 
154  

susceptibility watersheds during months of heavy precipitation, which may 

increase the cost of implementing debris flow mitigation measures. Similarly, in 

Zone II regions, most watersheds are identified as having very high susceptibility 

in August, raising the possibility of false alarms that may also inflate mitigation 

costs. Overall, the area of very high susceptibility watersheds reaches the largest 

in August for the SMCRS, yet the case is opposite in the Zone I, potentially due 

to lower precipitation thresholds resulting from complex terrain, indicating that 

higher rainfall may not necessarily correlate with higher debris flow susceptibility. 

This suggests that spatial differences in USC may lead to temporal disparities in 

debris flow occurrence. For the whole study area in the SMCRS, nearly 50% of 

the watersheds are classified as having very high debris flow susceptibility, and 

while this accurately identified most typical debris flow events, the potential false 

alarm rate may increase the cost of implementing specific mitigation measures. 

Consequently, while utilizing dynamic debris flow susceptibility assessment 

results for early warning and guiding mitigation efforts is feasible, the specific 

complexities of watersheds necessitate the integration of real-time monitoring 

data from local rain gauges to reduce the cost of potential false alarms. 
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Fig. 5-11. Dynamic debris flow susceptibility mapping in the HKSAR 

 

To further confirm the potential application value of the debris flow susceptibility 

assessment model based on DWCC for regional debris flow early warning, a grid-

based visualization of debris flow susceptibility was conducted for the HKSAR. 

Debris flow records in the HKSAR for the year 2019 span from March to 

December. Therefore, mapping of debris flow susceptibility on a grid-cell basis 

was performed for the ten months of 2019 to facilitate the visualization of debris 
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flow susceptibility in the region. Similarly, the debris flow susceptibility of grid-

cell was classified into five categories, very low, low, moderate, high, and very 

high, using the Jenks natural breaks. By utilizing the monthly updated 

meteorological monitoring station data from the HKSAR, the latest 

meteorological data and DWCC were obtained, enabling a dynamic debris flow 

susceptibility assessment from March to December 2019, as shown in Fig. 5-11. 

The results indicate that the total area of high-susceptibility debris flow grids in 

the HKSAR exhibits a trend of increasing and then decreasing from March to 

December, with July and August showing the largest area of very high-

susceptibility grids. High-susceptibility debris flow grids in the HKSAR are 

concentrated in mountainous areas, while regions with the densest populations, 

namely the Kowloon Peninsula and the northern coast of Hong Kong Island, 

generally exhibit lower debris flow susceptibility. Furthermore, the Hong Kong 

International Airport, a key infrastructure located in the northern part of Lantau 

Island, also has very low debris flow susceptibility. These findings are largely 

consistent with previous studies conducted in Hong Kong (Fuchu et al., 1999; Ko 

et al., 2016; Ng et al., 2021). In summary, the frequency of debris flow disasters 

in the HKSAR is closely related to the spatiotemporal distribution of rainfall and 

predominantly occurs in mountainous regions, yet the threat to human life and 

property safety is usually relatively low. This reflects the substantial investment 
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and effective outcomes of slope management efforts in the HKSAR (Cheung, 

2021; Kjekstad et al., 2009). 

Based on the dynamic map of debris flow susceptibility, utilizing the 73 grids 

with typical debris flow records from 2019, the proportion of the area of grids 

with very high debris flow susceptibility can be calculated to reflect the potential 

value of applying the debris flow susceptibility assessment model based on 

DWCC to debris flow early warning in the HKSAR. A three-dimensional 

histogram is constructed also with the five debris flow susceptibility levels on the 

x-axis, the ten months with debris flow records on the y-axis, and the total area 

of grids corresponding to the susceptibility levels for different months on the z-

axis. The color of the bars represents the frequency of debris flows, with the 

frequency indicated in the legend, and the results are presented in Fig. 5-12. 

 

Fig. 5-12. Evaluation of debris flow susceptibility assessments in the HKSAR 
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The results demonstrate that, for the 73 typical debris flow grids in the HKSAR 

in 2019, the majority are identified as having very high susceptibility, with the 

total area of these grids being significantly smaller than that of the grids with very 

low susceptibility. This indicates that the model possesses a relatively high 

capability to distinguish both debris flow and non-debris flow samples. The 

smaller area of grids with very high susceptibility reflects a lower incidence of 

false alarms for the debris flow susceptibility assessment model in the HKSAR 

compared to that in the SMCRS. This is primarily due to the smaller assessment 

units in the HKSAR and a more comprehensive debris flow inventory, which 

facilitates the accurate construction of debris flow disaster samples. However, the 

HKSAR model identified 76.7% of the debris flow grids as having very high 

susceptibility in 2019, which is lower than the 93.1% recognition rate of the 

model tested in the SMCRS. This discrepancy may be influenced by both the size 

of the assessment units and the density of the samples. Regarding the assessment 

units, the HKSAR typically contains grid units with only one debris flow gully 

as opposed to the watershed units in the SMCRS that may contain multiple debris 

flow gullies, requiring higher accuracy in the debris flow susceptibility 

assessment in the HKSAR and hence increasing the difficulty of achieving 

completely accurate predictions. In terms of sample density, the SMCRS, being 

larger in area than the HKSAR and with extensive sparsely populated areas, poses 

greater challenges in comprehensively collecting debris flow disaster records, 

leading to a lower data density and potentially affecting the performance of the 
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debris flow susceptibility assessment model. Overall, the results of the dynamic 

debris flow susceptibility assessment based on DWCC can provide a scientific 

reference for identifying target areas for slope management in response to 

extreme weather events in the HKSAR. 

Based on the results of the debris flow susceptibility assessment models informed 

by DWCC for typical inland and coastal monsoon regions, it is evident that the 

application of DWCC in assessing debris flow susceptibility holds the potential 

for providing reference information for regional debris flow early warning 

systems. To further apply the results of debris flow susceptibility assessment to 

early warning systems, it is necessary to divide the susceptibility maps according 

to different levels of debris flow susceptibility, particularly targeting high-

susceptibility areas, to guide the implementation of necessary disaster prevention 

and mitigation measures in advance, thereby reducing the casualties and 

economic losses caused by debris flow occurrences. However, the rate of false 

alarms (false positive rate) inherent in the DWCC-based debris flow 

susceptibility assessment model hinders its widespread application, with the issue 

being more pronounced in inland monsoon regions where debris flow record data 

density is relatively low. For one thing, although the negative samples in the 

model are watersheds distant from historical debris flow records, incomplete 

labeling of positive samples due to unreported debris flow events in the test 

dataset may still result in positive samples being incorrectly marked as negative, 
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leading to the inclusion of positive sample characteristics within the negative 

sample set and thus affecting the classification performance of the model. For 

another, to ensure the accuracy of the classification, maintaining a balance 

between positive and negative samples in the training set is necessary, which 

inevitably leads to undersampling of the negative sample set, potentially resulting 

in incomplete characteristics labeling of the negative samples. Therefore, 

differing distributions between training and test datasets may lead to higher false 

alarm rates during model testing. While false alarm rates are difficult to avoid, 

they can be mitigated by implementing engineering measures only in assessment 

units where debris flows pose a threat to the residents or infrastructure, thus 

reducing the cost of false alarms. Furthermore, since the assessment factor system 

has not yet considered various prevention measures already implemented in each 

assessment unit, the impact of these measures on debris flow susceptibility is 

overlooked, which could lead to an overestimation of local debris flow 

susceptibility. Therefore, it is also necessary to ensure that the debris flow 

susceptibility map is integrated with the implementation status of existing local 

debris flow prevention projects to assess more accurately the susceptibility of 

local debris flows. 
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5.5 Summary 

In this chapter, a debris flow susceptibility assessment model based on DWCC 

was developed for watersheds in the SMCRS and grids in the HKSAR, and its 

potential application value for debris flow early warning was assessed from 

multiple perspectives: 

To mitigate the impact of USC on the debris flow susceptibility assessment, the 

K-means clustering method was employed to divide the SMCRS into three USC 

zones based on geological and topographical conditions, and a debris flow 

susceptibility assessment was conducted for each zone. Owing to the relatively 

small area, the high data precision, and the low spatial variability, the HKSAR 

could be modeled directly, ensuring that each model could more accurately 

extract the characteristics of positive and negative debris flow samples for each 

study area or zone. Based on the mechanism of debris flow formation and 

initiation, a preliminary debris flow susceptibility assessment factor system was 

established, which besides DWCC, also includes geological, topographical, 

meteorological, vegetation cover, and human activity conditions, with 

consideration given to the effects of earthquakes in the SMCRS and typhoons in 

the HKSAR. The performance of the models in classifying positive and negative 

debris flow samples was measured using model performance metrics such as 

recall, AUC, precision, and accuracy. A comparative analysis was conducted 

among representative machine learning algorithms, including the LLR based on 
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a linear model, the GBM based on decision trees, the KNN based on distance, 

and the ANN based on neural networks. The analysis revealed that the GBM 

demonstrated the optimal balance between classification performance and model 

construction time costs. Consequently, the GBM was selected to construct debris 

flow susceptibility assessment models for each study area or zone. Different 

cross-validation methods for the debris flow susceptibility assessment model 

were compared to determine the optimal ratio of training data to validation data, 

ensuring the classification performance and generalization ability of the model. 

DWCC-based models have effectively promoted the identification accuracy of 

debris flows by 1.4% - 3.8%. Collinearity detection and relative influence 

analysis were employed to filter assessment factors for each study area or zone, 

and models were constructed based on the selected indicators, preliminarily 

identifying common and unique assessment factors that may affect debris flow 

susceptibility in each study area or zone. Beyond the DWCC, common factors for 

both inland and coastal monsoon typical areas included rock type, maximum 

daily rainfall, human activity, vegetation type, and topographical conditions such 

as elevation difference, slope, and curvature. However, the inland monsoon 

typical area required additional consideration of the impact of earthquakes on 

debris flow susceptibility, while the coastal monsoon area required consideration 

of the impacts of typhoons and unique vegetation communities like mangroves in 

the interlaced land-sea zones. The constructed models, after hyperparameter 
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tuning, showed comprehensive improvements in classification performance on 

the training datasets, particularly in the correct classification capacity of 

assessment units with debris flow records, which increased by 1.3 - 5.0%, 

correctly identifying 80 - 91% of the assessment units with debris flow records. 

At the same time, by referring to model performance metrics such as accuracy 

and precision, the models ensured that the rate of false alarms remained at a 

relatively low level. 

To evaluate the generalization ability of the debris flow susceptibility assessment 

model based on DWCC across different datasets, assessments were conducted 

using indicators from 29 typical debris flow watersheds in the SMCRS in 2020 

and 73 typical debris flow grids in the HKSAR in 2019. The results demonstrate 

that the assessment model achieved an identification accuracy of 93.1% for the 

29 typical debris flow watersheds in the SMCRS in 2020, and an accuracy of 76.7% 

for the 73 typical debris flow grids in the HKSAR in 2019. The high identification 

accuracy rates of assessment units with debris flow records in both inland and 

coastal monsoon typical areas affirmed the effectiveness of using DWCC in 

debris flow susceptibility assessments. In the two study areas, despite some 

deviation in the predicted dry-wet indices based on the SARIMA model, the 

performance metrics of the debris flow susceptibility assessment model remained 

stable, which demonstrated the reliability of incorporating DWCC in debris flow 

susceptibility assessments. Overall, the model testing outcomes confirmed the 
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efficacy and stability of debris flow susceptibility assessments based on DWCC. 

To further apply climatic dry-wet cycles to the assessment of debris flow 

susceptibility and provide a scientific reference for regional debris flow early 

warning in response to extreme weather events, a dynamic debris flow 

susceptibility assessment based on DWCC was carried out for all assessment 

units from June to September 2020 in the SMCRS and from March to December 

2019 in the HKSAR. Monthly debris flow susceptibility maps for each typical 

area were subsequently generated. These maps accurately reflected the 

spatiotemporal patterns of debris flow occurrences in both regions. Spatially, the 

SMCRS area saw debris flow occurrences concentrated along the Longmenshan 

fault zone, the surrounding mountainous regions of the Sichuan basin, and the 

Panxi area, while in the HKSAR, debris flows were concentrated in less densely 

populated mountainous regions. Temporally, both inland and coastal monsoon 

areas exhibited the largest total area of assessment units with high susceptibility 

during the rainy season. The dynamic susceptibility maps for the two regions 

were assessed for their potential application value in regional debris flow 

warnings by considering both the classification accuracy of typical debris flow 

assessment units and the total area of units with very high susceptibility. The 

results indicated that the DWCC-based model successfully identified the most 

typical debris flow assessment units as having very high susceptibility in both 

SMCRS and HKSAR. Consequently, the dynamic susceptibility maps could 

facilitate the formulation of debris flow prevention and mitigation measures for 
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watersheds of varying susceptibility levels, aiming to minimize the impacts of 

debris flow occurrences. However, in the SMCRS, nearly 50% of the assessment 

units were identified as having very high susceptibility, a proportion significantly 

larger than that in the HKSAR, suggesting the potential for false alarms in the 

region. Therefore, when using dynamic susceptibility maps for regional debris 

flow warnings in the SMCRS, it is necessary to integrate real-time monitoring 

data from local assessment units to balance life and property safety with cost-

effective prevention and mitigation measures. 
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Chapter 6  Main Drivers of Regional Debris Flow Susceptibility 

This chapter interprets the results of the debris flow susceptibility assessment 

model previously established for the SMCRS and the HKSAR based on the model 

structure. It prioritizes the assessment factors based on their importance to debris 

flow susceptibility, thereby identifying the main drivers for assessing debris flow 

susceptibility. The chapter quantifies the characteristics of debris flow 

susceptibility in response to variations in these main drivers. By quantifying the 

impact of each driver on debris flow susceptibility, the results provide targeted 

and adaptive references for disaster prevention and mitigation for different study 

areas. A particular focus is placed on comparing the performance of DWCC in 

the debris flow susceptibility assessments of the two typical regions, to reveal the 

conditions that influence the applicability of DWCC in regional debris flow 

susceptibility assessments. 

 

6.1 Identification of main drivers  

Quantitative analysis of a GBM model structure helps identify the main drivers 

of debris flow susceptibility and formulate targeted prevention and mitigation 

measures. After validating the performance of the DWCC-based debris flow 

susceptibility assessment model in identifying assessment units with debris flow 

records, further exploration is carried out to elucidate the contributions of various 
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assessment factors to debris flow susceptibility. To determine the main drivers for 

debris flow susceptibility assessments in different typical areas, a quantitative 

interpretation can be conducted utilizing the structure of a GBM model. Based on 

the performance of various assessment factors, this approach can assist in the 

formulation of targeted pre-disaster prevention and mitigation measures for 

different study areas. 

 

Fig. 6-1. RI of main drives in different USC zones in the SMCRS 

 

For GBM, the RI of assessment factors is calculated by measuring the 

contribution of different indicators to the improvement of model performance 

during the node-splitting process in decision tree construction. By employing the 

GBM model built with the "gbm" package in the R programming language, the 

RI of assessment factors can be computed using the permutation-based approach, 

where the sum of the RI of all assessment factors amounts to 100% (Friedman, 
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2001). To focus on the main drivers affecting debris flow susceptibility, the RI 

ranking chart will not display indicators with minimal RI. Moreover, it ensures 

that the total RI of the displayed assessment factors exceeds 95%, which implies 

that these indicators are considered the main drivers for assessing debris flow 

susceptibility. 

Fig. 6-1 presents the ranking of the RI of main drivers for the debris flow 

susceptibility model in the SMCRS. In Zone I, there are 14 main drivers, of which 

four are related to DWCC, including Δf, f(αmax), EDWP, and αmin, with a 

cumulative RI of 29.37%. There are two factors related to human activities, 

encompassing the proportion of built-up land area and cropland area, with a 

cumulative RI of 21.97%. Three factors pertain to vegetation cover, including the 

proportion of grassland, shrubland, and bare/sparse vegetation land, with a 

cumulative RI of 14.44%. The RI of the distance to faults is 10.16%, the Melton 

ratio is 9.71%, and two factors related to topographic curvature, including plan 

curvature and profile curvature, have a cumulative RI of 7.67%. The maximum 

daily precipitation contributes an RI of 4.34%. In Zone II, there are 12 main 

drivers, with four related to DWCC, including Δf, f(αmax), EDWP, and f(αmin), 

accumulating an RI of 35.20%. The proportion of built-up land area has an RI of 

12.96%, two factors related to vegetation cover, including grassland and 

shrubland area proportions, accumulate to 11.83%, the distance to faults is 

11.07%, the Melton ratio is 10.60%, two factors related to topographic curvature 
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accumulate to 8.97%, and the maximum 3-day precipitation has an RI of 5.09%. 

In Zone III, there are 10 main drivers, with two related to human activity, 

including the proportion of built-up land area and cropland area, accumulating to 

34.47%. The distance to faults has an RI of 16.96%, the Melton ratio is 14.63%, 

two factors related to vegetation cover, including shrubland and grassland area 

proportions, accumulate to 12.30%, two related to DWCC, including EDWP and 

Δα, accumulate to 7.99%, the profile curvature is 6.67%, and the maximum 3-

day precipitation has an RI of 4.41%. Overall, the results indicate that in Zone I 

and Zone II, DWCC are the most significant category of assessment factors for 

evaluating debris flow susceptibility. 

By comparing the similarities and differences of the main drivers in the three 

USC zones in the SMCRS, this model interpretation can reveal the distinctive 

characteristics of assessment factors affecting debris flow susceptibility in 

regions with different USC. In all three USC zones, the proportion of built-up 

land area, distance to faults, Melton ratio, grassland area proportion, EDWP, 

profile curvature, shrubland area proportion, and maximum daily/3-day 

precipitation are common drivers across the SMCRS. In Zone I and Zone II, the 

preference for extreme dry-wet events, the probability of extreme drought events, 

and plan curvature are shared drivers. Bare/sparse vegetation and the severity of 

extreme precipitation events are unique controlling factors for Zone I, while the 

probability of extreme precipitation events is unique for Zone II, and the intensity 
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of extreme dry-wet events is a main driver for Zone III. It is evident that the debris 

flow susceptibility assessment in all three USC zones of the SMCRS is influenced 

by human activities, geological activities, and topographic factors such as 

watershed relief and profile curvature, vegetation cover, EDWP, and maximum 

daily/3-day precipitation, indicating that all these factors need to be considered 

when assessing debris flow susceptibility in the entire region. The unique drivers 

for each USC zone reflect the impact of different geological and topographical 

conditions on debris flow susceptibility. Different DWCC are included as main 

drivers for each USC zone, highlighting differences in the probability or severity 

of extreme dry-wet events across these zones. Moreover, in Zone I, the proportion 

of bare/sparse vegetation land must also be considered in the assessment, and 

among the common drivers, the maximum daily/3-day precipitation is 

specifically the maximum daily precipitation in Zone I. These unique drivers 

suggest that debris flows in Zone I are likely to occur more frequently in areas 

with lower vegetation cover and can be triggered by intense rainfall with short 

duration. These findings provide insights for conducting debris flow mitigation 

measures in Zone I, such as prioritizing eco-engineering approaches in areas 

prone to intense rainfall during the rainy season. Similarly, Zone II should focus 

on mitigating debris flows in areas with a higher probability of extreme 

precipitation events, while Region III should address debris flow prevention in 

areas where both extreme dry and wet events are severe. 
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To further reveal the main drivers of debris flow susceptibility assessment in a 

typical coastal monsoon region, the same methodology was employed to 

calculate the RI of the main drivers based on the debris flow susceptibility 

assessment model for the HKSAR, as depicted in Fig. 6-2. 

 

Fig. 6-2. RI of main drives in the HKSAR 

 

The results indicate that there are 14 main drivers for debris flow susceptibility 

in the HKSAR. Three of these drivers are related to human activities, including 

the proportion of built-up land area, agricultural land area, and the area of 

roads/railroads, which collectively contribute 23.39% to the cumulative RI. Three 

factors are associated with the DWCC, including αmin, EDWP, and Δf, with a 

cumulative RI of 20.99%. Three factors pertain to vegetation cover, 
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encompassing the proportions of woodland, shrubland, and grassland areas, 

which together account for 19.08% of the cumulative RI. Elevation differences 

account for an RI of 11.94%, while the maximum daily precipitation has an RI of 

9.01%. Two factors relate to topographic curvature, including plan curvature and 

profile curvature, with a combined RI of 8.85%. The highest typhoon level has 

an RI of 2.16%. Overall, the DWCC, aside from human activities, are the most 

significant class of indicators for predicting debris flow susceptibility in the 

HKSAR. However, the RI of typhoons is smaller, largely due to only 16.4% of 

debris flows recorded in the region from 2010 to 2019 coinciding with the period 

of typhoons, meaning that most recorded debris flows were not related to 

typhoons. Nonetheless, this does not imply that typhoons have a negligible 

impact on debris flows. According to estimates based on the volume of debris 

flow collapses published by the Civil Engineering and Development Department 

of the HKSAR from 2010 to 2019, it was shown that the scale of debris flows in 

the HKSAR increased by about 40% under the influence of typhoons. 

By comparing the main drivers of the debris flow susceptibility assessment 

models between the SMCRS and the HKSAR, common and unique factors that 

affect the debris flow susceptibility assessment in typical inland and coastal 

monsoon areas can be revealed. Common main drivers shared by both regions 

include the proportion of built-up land area, preference for extreme dry-wet 

events, elevation differences, the proportion of agricultural land area, the 
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proportion of grassland area, EDWP, topographic curvature, the proportion of 

shrubland area, maximum daily rainfall, and severity of extreme precipitation 

events. Among these, the main drivers in the HKSAR show the closest 

resemblance to those of Zone I areas in the SMCRS, with 11 common factors 

identified. However, the model in the HKSAR still possesses unique main drivers, 

including the proportion of woodland and the highest typhoon level, whereas the 

model in the SMCRS includes unique factors such as distance to faults, the 

probability of extreme drought events, and areas of bare/sparse vegetation land. 

The common drivers stress that in both typical inland and coastal monsoon areas, 

factors such as elevation differences, curvature, human activities, vegetation 

cover, maximum daily rainfall, and the EDWP are universal indicators 

influencing the debris flow susceptibility assessments. The unique main 

controlling factors highlight that for debris flow prevention, the regions in the 

SMCRS should consider frequent geological activity, high incidence of extreme 

drought events, and less vegetation cover, while the areas significantly affected 

by typhoons in the HKSAR should be focused on, without neglecting the well-

vegetated coastal areas. 

Although the RI of the main drivers enabled the identification of the primary 

influences on debris flow susceptibility in both typical inland and coastal 

monsoon regions, a quantitative analysis of how these drivers act upon the debris 

flow susceptibility required further investigation. 
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6.2 Features of main drivers  

Partial dependence (PD) plots can elucidate the mechanisms of how the main 

drivers influence the debris flow susceptibility and provide targeted disaster 

prevention and mitigation measures that are more aligned with regional 

characteristics. These plots are derived by assessing debris flow susceptibility 

corresponding to different values of a single main driver while keeping other 

assessment factors constant. PD quantifies the relationship between a single 

assessment factor and debris flow susceptibility. PD plot in this study indicates 

how the debris flow susceptibility varies with one single main driver reflecting 

the DWCC, meteorology, human activity, vegetation cover, terrain, and geology. 

Upon constructing a GBM model with the R programming language, PD plots 

for assessment factors can be generated using the "pdp" package. For the three 

USC zones in the SMCRS, PD plots are separately drawn for each zone, with the 

results presented in Fig. 6-3, Fig. 6-4, and Fig. 6-5, respectively. 
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Fig. 6-3. Partial dependence plot for main drivers in Zone I of the SMCRS 

 

Based on the results of the PD plots for DWCC and meteorological assessment 

factors, in Zone I, the PD value of debris flow susceptibility concerning EDWP 

is 0.89, indicating a strong correlation between debris flow susceptibility and the 

dry-wet cycle period. The PD value increases when the EDWP is shorter, Δf is 

slightly less than zero, and f(αmax) is larger, suggesting that a shorter dry-wet cycle 

period with a preference for a higher probability of extreme drought events is 
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associated with higher debris flow susceptibility. A larger αmin correlates with a 

larger PD value, implying that the milder the extreme precipitation event, the 

higher the susceptibility to debris flows. This observation is consistent with the 

PD plot results for maximum daily precipitation, where the PD peaks at a 

maximum daily precipitation of 49.4 mm, corresponding to the highest debris 

flow susceptibility. Furthermore, as the maximum daily precipitation increases 

beyond this value, the PD value decreases, indicating a reduction in debris flow 

susceptibility. 

According to the results of PD plots for land use types, specifically human 

activities and vegetation cover assessment factors, in Zone I, the maximum PD 

value of debris flow susceptibility about the proportion of built-up land within a 

watershed reaches 0.93. Moreover, debris flow susceptibility generally increases 

with an increased proportion of built-up land, grassland, and shrubland areas, 

indicating that regions with larger areas of built-up land, grassland, and shrubland 

are more susceptible to debris flows. The PD value is maximized when the 

proportion of cropland in a watershed is 1.9% and there are no bare/sparse 

vegetation areas. However, as the proportion of cropland and bare/sparse 

vegetation areas increases, the PD value decreases, suggesting that regions with 

larger areas of cropland and bare/sparse vegetation land are, in fact, less 

susceptible to debris flows. 
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According to the results of PD plots for topographic and geological assessment 

factors in Zone I, the maximum PD values for various factors all exceed 0.6, 

indicating a strong correlation between topographic/geological conditions and 

debris flow susceptibility. From a geological structure perspective, watersheds 

with faults exhibit the highest PD values and thus the greatest susceptibility to 

debris flows. Additionally, watersheds located at a certain distance from faults 

(i.e., approximately 60 km) also display higher PD values and are more 

susceptible to debris flows. The PD value increases and then decreases with the 

Melton ratio, suggesting that terrains that are either too flat (i.e., with a low 

Melton ratio) or too steep (i.e., with a high Melton ratio) have lower susceptibility 

to debris flows. The PD values reach their maximum when the profile curvature 

and plan curvature are slightly less than or greater than zero, indicating that slopes 

with a slight convexity or concavity along the direction of the maximum gradient 

or perpendicular to it are more susceptible to debris flows. 
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Fig. 6-4. Partial dependence plot for main drivers in Zone II of the SMCRS 

 

According to the results of PD plots for DWCC and meteorological assessment 

factors in Zone II, the maximum PD values for debris flow susceptibility about 

the DWCC factors all exceed 0.85, indicating a very strong correlation between 

debris flow susceptibility and DWCC. Similar to Zone I, in Zone II, the PD value 

increases with shorter EDWP, slightly negative Δf, and larger f(αmax), suggesting 

that a greater probability of extreme drought events, which are slightly more 
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probable than extreme precipitation events, correlates with higher debris flow 

susceptibility. However, differing from Zone I, a larger PD value occurs when 

f(αmin) is either small or large, implying that a moderate frequency of extreme 

precipitation events can reduce the susceptibility to debris flows. The extreme 

precipitation quantity can be indicated by the maximum 3-day precipitation, 

where a PD peak occurs at 87.1 mm, corresponding to the highest debris flow 

susceptibility. 

Based on the PD plots analyzing the proportion of land use types, which 

encompass human activity and vegetation cover assessment factors in Zone II, 

the maximum PD value for debris flow susceptibility concerning the proportion 

of built-up land within a watershed reaches 1. Additionally, there is an overall 

increasing trend in the PD values as the area proportions of built-up land, 

shrubland, and grassland within the watershed increase. This trend indicates that, 

similar to Zone I, watersheds with larger proportions of built-up land, shrubland, 

and grassland are more susceptible to debris flows. 

In Zone II, according to the PD plots for topographic and geological assessment 

factors, the maximum PD values for correlations with debris flow susceptibility 

are all greater than 0.9, indicating an extremely strong relationship between 

topographic and geological conditions and debris flow susceptibility. Similar to 

Zone I, the PD values in Zone II also increase and then decrease with the Melton 

ratio, suggesting that terrains that are either too flat (with a low Melton ratio) or 
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too steep (with a high Melton ratio) are less prone to debris flows. Geologically, 

in Zone II, watersheds with faults show high PD values, with the maximum PD 

value occurring at a distance of 64 km from a fault, corresponding to the highest 

debris flow susceptibility. Additionally, in Zone II, the PD values reach maximal 

points when the profile curvature and plan curvature are slightly greater than or 

less than zero, indicating that slopes with slight convexity or concavity, either 

along or perpendicular to the direction of the maximum gradient, have a higher 

susceptibility to debris flows. 

The results depicted in Fig. 6-5 indicate that in Zone III, the PD values for all 

assessment factors related to debris flow susceptibility are generally low, with the 

maximum value being 0.64. This suggests that the main drivers in Zone III have 

a weak correlation with debris flow susceptibility, which could impact the 

accuracy of susceptibility assessments in these areas. This phenomenon might be 

attributed to the limited number of samples from Zone III, as evidenced by the 

scant historical record of debris flows (i.e., only 23 incidents recorded from 1981 

to 2019). Consequently, when further interpreting the contribution of main drivers 

to debris flow susceptibility, the focus should be directed more toward Zone I and 

Zone II. However, it should be noted that some findings in Zone III are consistent 

with those in Zone I and Zone II, such as higher debris flow susceptibility in 

watersheds that have shorter EDWP, larger proportions of built-up land, grassland, 

and shrubland, and relatively flat terrain. 
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Fig. 6-5. Partial dependence plot for main drivers in Zone III of SMCRS 

 

By comparing the PD plot results for different USC zones within the SMCRS, 

which include DWCC, meteorological, human activities, vegetation coverage, 

and topographical and geological assessment factors, the characteristics of how 

various assessment factors influence debris flow susceptibility in different USC 

zones were disclosed. The objective is to clarify the characteristics of debris flow 

susceptibility variations by examining the influence of each assessment factor 
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across distinct environments, thereby providing an understanding of the 

assessment factors contributing to debris flow susceptibility in a region 

characterized by complex climatic and physical geographic conditions. 

Based on the assessment factors related to DWCC and meteorology, the results 

indicate that in Zone I and Zone II, watersheds with a higher probability of 

extreme drought events, surpassing the probability of extreme precipitation 

events, are more susceptible to debris flows. This highlights the significant role 

of extreme drought in the formation and initiation of debris flows. In Zone I, 

severe extreme precipitation events contribute substantially to debris flow 

susceptibility, while in Zone II, both high and low probabilities of extreme 

precipitation events have a notable contribution, suggesting that the triggering of 

debris flows in Zone I regions is associated with short-duration, high-intensity 

rainfall, whereas in Zone II regions, the triggers may not be limited to intense 

rainfall with short duration but could also include prolonged periods of lower 

intensity rainfall. This inference is supported by PD plots for the maximum daily 

(3-day) precipitation amount and debris flow susceptibility, where the 

precipitation thresholds related the most to trigger debris flows in watersheds of 

Zone I and Zone II are 49.4 mm (1-day) and 87.1 mm (3-day), respectively. Thus, 

extreme precipitation characteristics triggering debris flows in Zone I are short-

duration heavy rainfall, whereas in Zone II, they are longer-duration, more 

frequent rainfall. Considering the USC of Zone I and Zone II, it can be reasonably 
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inferred that in areas with more intense geological activity and steeper terrain, 

due to the relatively lower ability of the surface to intercept water flows, debris 

flows are more easily triggered by short-duration heavy rains. In contrast, in areas 

with milder geological activity and flatter terrain, prolonged precipitation is 

required to achieve saturation of the surface soil, which then triggers debris flows. 

The results based on human activity assessment factors demonstrate that human 

activities significantly influence debris flow susceptibility. Land use types 

representing human activities, such as built-up land and cropland, show that in 

Zone I, a larger proportion of cropland correlates with lower debris flow 

susceptibility. This can be interpreted as most watersheds in Zone I being steep 

and generally unsuitable for agriculture, while those suitable for agriculture tend 

to have relatively flatter terrain, thus being less prone to debris flows. However, 

in both Zone I and Zone II, an increase in the proportion of built-up land is 

associated with higher debris flow susceptibility. This phenomenon can be 

understood from two perspectives. First, large-scale construction activities may 

increase the source materials on slopes, thereby raising the susceptibility to debris 

flows. Second, historical records of debris flows tend to focus on areas affecting 

human settlements, including houses, roads, and various infrastructures, leading 

to a higher incidence of recorded debris flow events in watersheds within built-

up land, thus amplifying the perceived contribution of built-up land to debris flow 

susceptibility. 
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The results from the assessment factors of vegetation cover indicate that, in both 

Zone I and Zone II, the influence of shrubland and grassland cover on debris flow 

susceptibility is essentially consistent. The larger the proportion of shrubland and 

grassland area, the higher the debris flow susceptibility. This suggests that 

although vegetation can stabilize the material on slopes (Sujatha et al., 2017), the 

growth process of vegetation can also generate debris flow materials such as 

sandy soil, silt, and clay (Fan et al., 2018; Neave et al., 2001). Moreover, the soil 

water retention capacity of vegetation types such as shrublands and grasslands is 

relatively weaker compared to woodland (Zhang et al., 2021), making them more 

prone to debris flows under heavy rainfall conditions. Consequently, watersheds 

with a larger proportion of shrubland and grassland are at a higher susceptibility 

to debris flows. In Zone I, where watersheds are relatively steeper, the force of 

gravity plays a more intense role in the erosion process on slopes. This results in 

bare/sparse vegetation land that is less capable of accumulating substantial loose 

materials, thus oppositely reducing the likelihood of large-scale debris flow 

events. 

Results from the assessment of topographic and geologic factors reveal that in 

both Zone I and Zone II, watersheds with moderate slopes, located at a certain 

distance from faults and exhibiting slight concave or convex terrain, exhibit a 

higher susceptibility to debris flows. Moderate slopes in watersheds are more 

likely to trigger debris flows because excessively steep slopes may not 
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accumulate sufficient debris flow materials, while too flat slopes may not provide 

enough potential energy for debris flow movement (Hai et al., 2023). The distance 

to faults typically indicates more frequent geological activity, which facilitates 

the formation of the materials needed for debris flows. However, high debris flow 

susceptibility at certain distances from faults cannot be solely explained by the 

intensity of geological activity. Although geological activity may be less frequent 

at these distances, other factors such as increased human activity could contribute 

to debris flow susceptibility. The slight convex surface along the direction of 

maximum gradient descent is relatively less stable, with material on convex 

surfaces being more prone to slippage during heavy rainfall, leading to debris 

flows. Slight concave surfaces along the direction of maximum gradient descent 

are also susceptible to debris flows due to their capacity to accumulate and retain 

more loose materials. When the surface is slightly concave or convex 

perpendicular to the direction of maximum gradient descent (i.e., horizontal 

direction), debris flows are likely to occur, but the two conditions affect the debris 

flow process differently. Horizontal convex surfaces cause debris flows to diverge 

and form larger-scale debris flow events, while horizontal concave surfaces 

accelerate the convergence of debris flows to make them more destructive 

(Achour et al., 2018). 

To further elucidate the impact of main drivers on debris flow susceptibility in 

typical coastal monsoon regions and to clarify the characteristics of debris flow 
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susceptibility variations, PD plots for debris flow susceptibility assessment 

factors were constructed also for the HKSAR, as illustrated in Fig. 6-6. 

 

Fig. 6-6. Partial dependence plot for main drivers in the HKSAR 

 

According to the results of PD plots based on DWCC, the susceptibility to debris 

flows has a strong correlation with both the maximum daily precipitation and the 

maximum PD value of the DWCC, both exceeding 0.95. This indicates a very 

strong correlation between debris flow susceptibility and DWCC. Higher PD 
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values are observed when the EDWP is longer, Δf is slightly greater than 0, and 

αmin is moderate. This suggests that longer dry-wet cycles, a slightly higher 

probability of extreme precipitation events than extreme drought events, and 

moderate intensity of extreme precipitation events are associated with increased 

debris flow susceptibility. The PD plot for DWCC reflects the pattern of how 

extreme dry-wet conditions affect debris flow susceptibility, indicating that the 

longer the HKSAR experiences dry-wet cycles and the longer it is subjected to 

medium-intensity extreme precipitation conditions, the higher the likelihood of 

triggering debris flow events. This phenomenon implies that the region requires 

longer dry-wet cycle periods to accumulate sufficient source materials for debris 

flows, which can then be triggered by extreme precipitation events. 

Based on the results of PD plots from the meteorological assessment factors, there 

is a very strong correlation between debris flow susceptibility and the maximum 

daily precipitation, with the maximum PD value exceeding 0.95. This suggests 

that higher maximum daily precipitation is associated with larger PD values, 

indicating that greater amounts of daily rainfall are more likely to trigger debris 

flow events. The maximum PD value corresponding to the highest typhoon 

intensity is only 0.62, and it peaks when the typhoon reaches the highest level of 

5, which is when the typhoon is at its strongest, correlating with increased debris 

flow susceptibility. The PD plots suggest a certain consistency in the impact 

patterns of the highest level of typhoons and maximum daily precipitation on 
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debris flow susceptibility. This consistency arises since typhoons carry a 

significant amount of moisture from the ocean during their formation and landfall. 

As this moisture encounters the complex terrain of the land, it lifts and cools, 

leading to intense localized rainfall. The more severe the typhoon, the more 

moisture it transports from the ocean, resulting in greater precipitation amounts. 

According to the results of PD plots for human activity assessment factors, the 

maximum PD values for the proportion of built-up land, roads/railways, and 

agricultural land all exceed 0.9, indicating a high degree of correlation between 

human activities and the susceptibility to debris flows. Specifically, a greater 

proportion of built-up land is associated with higher debris flow susceptibility, 

which may be related to the majority of reported debris flow incidents occurring 

in areas with dense construction. The PD values increase and then decrease with 

the proportion of roads/railways and agricultural land, suggesting that regions 

with less development of roads/railways and agricultural land exhibit higher 

susceptibility to debris flows, which decreases as the developed area increases. 

This phenomenon can be attributed to the high population density and limited 

land resources of the HKSAR, which necessitates intensive development of 

slopes to increase land use efficiency, accompanied by substantial efforts in slope 

protection and management. The PD plot findings indicate that in the HKSAR, 

human activities have increased the susceptibility to debris flows, with regions of 

frequent construction activity being more prone to debris flows compared to those 
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with more agricultural activity. This is due to agricultural land typically requiring 

flatter terrain, while construction activities on slopes like hillsides contribute to 

the accumulation of slope materials, thereby increasing the debris flow 

susceptibility. 

According to the results from PD plots of the vegetation cover assessment factors, 

the maximum PD values for the proportion of shrubland and woodland area both 

exceed the level of 0.95. A larger proportion of woodland corresponds to a higher 

PD value, and the PD value is maximized with a moderate proportion of 

shrubland, indicating the highest susceptibility to debris flows. Conversely, a 

smaller proportion of grassland area results in a higher PD value, and thus, greater 

susceptibility to debris flows. Among the different types of vegetation cover, 

areas with a larger proportion of woodland have higher susceptibility to debris 

flows, whereas areas with higher proportions of shrubland and grassland show 

lower susceptibility. Although woodlands with higher vegetation cover provide 

greater slope stability and soil water retention compared to shrublands and 

grasslands, woodlands possess more transportable underlying materials, such as 

debris, trees, and rocks. Particularly after woodlands are damaged by typhoons, 

not only do they generate more debris flow material than shrublands and 

grasslands, but the reduced retention capacity to water flows also leads to a 

dramatic increase in runoff, which in turn transports the generated material, 

forming debris flows. 
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Based on the results from the PD plots for topographic and geological assessment 

factors, the maximum PD values for susceptibility to debris flows reach 0.95 with 

maximum elevation difference and profile curvature, indicating an extremely 

strong correlation between debris flow susceptibility and both elevation 

difference and profile curvature. The susceptibility to debris flows is highest at a 

medium elevation difference, specifically an elevation difference of 179 m within 

a 250 m grid cell, corresponding to an approximate slope angle of 35.6°. This 

finding is consistent with previous research in the HKSAR, where most debris 

flows occur on slopes between 30° and 40°. This is due to slopes that are too flat 

lacking the necessary conditions to convert the potential energy of loose materials 

into kinetic energy, while slopes that are too steep are mostly composed of rock 

with no loose material cover, and thus slopes with higher rock strength have a 

lower likelihood of debris flow occurrence (Fuchu et al., 1999). A profile 

curvature less than 0 correlates with a higher PD value and increased debris flow 

susceptibility, suggesting that surfaces convex in the direction of the maximum 

slope gradient are more prone to debris flow occurrences due to relatively lower 

slope stability and the ease with which loose materials can slide under heavy 

rainfall. Plan curvature values slightly greater than or less than 0 also correspond 

to maximum PD values, indicating high susceptibility to debris flows on surfaces 

that are slightly convex or concave perpendicular to the direction of the maximum 

slope gradient. However, when the surface is concave in the horizontal direction, 

debris flows are likely to accelerate and converge, increasing their destructive 
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potential, whereas when the surface is convex in the horizontal direction, the 

debris flow disperses in different directions, potentially forming larger-scale 

debris flows. 

By contrasting the PD plots of the main drivers in debris flow susceptibility 

assessment models between the SMCRS (focusing on Zone I and Zone II) and 

the HKSAR, it is possible to elucidate the mechanisms by which various 

assessment factors affect debris flow susceptibility in typical inland and coastal 

monsoon areas. This comparative analysis can clarify the characteristics of 

changes in debris flow susceptibility across different geographic and climatic 

contexts. Such an approach not only contributes to a deeper understanding of the 

regional variation in factors influencing debris flow susceptibility but also aids in 

refining the predictive accuracy of susceptibility models by accounting for the 

distinct environmental and meteorological conditions inherent to inland versus 

coastal monsoon regions. 

The findings based on the DWCC suggest that in the HKSAR, a longer duration 

of dry-wet cycles, coupled with a higher probability of extreme precipitation 

events compared to extreme droughts, is associated with increased susceptibility 

to debris flows. This relationship is in contrast to that observed in the SMCRS. 

These results indicate that, unlike typical inland monsoon areas, coastal monsoon 

regions may require longer dry-wet cycle periods to accumulate the necessary 

materials for debris flow occurrences due to the relative scarcity of extreme 
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drought events. Consequently, the occurrence of debris flows in coastal monsoon 

areas is more dependent on frequent extreme precipitation events. In line with the 

SMCRS, the severity of extreme precipitation events in the HKSAR also 

correlates with higher debris flow susceptibility. This highlights that intense 

rainfall is a significant factor in the increased susceptibility to debris flows in both 

inland and coastal monsoon typical areas. 

Results derived from meteorological assessment factors demonstrate that in the 

HKSAR, debris flow susceptibility peaks when the maximum daily precipitation 

exceeds 150 mm. This threshold is significantly higher compared to the 

maximum rainfall required to trigger debris flows in Zone I of the SMCRS at 49.4 

mm over a single day, and Zone II of the SMCRS at 87.1 mm over three days. 

This disparity suggests that typical coastal monsoon regions, such as the HKSAR, 

necessitate a higher rainfall threshold for the initiation of debris flows. 

Additionally, coastal monsoon areas are also influenced by typhoons, with the 

debris flow susceptibility reaching its peak when typhoon intensity is at its 

highest, stressing the substantial impact of severe tropical cyclones on the 

incidence of such geohazards in these regions. 

Results based on human activity assessment factors indicate that human activities 

significantly impact debris flow susceptibility in both the HKSAR and the 

SMCRS. A higher proportion of built-up land correlates with increased 

susceptibility to debris flows, while a larger proportion of agricultural land is 
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associated with lower susceptibility. Additionally, a greater coverage of roads and 

highways contributes to reduced susceptibility to debris flows. These findings 

suggest that, in both typical inland and coastal monsoon areas, construction 

activities generally lead to higher debris flow susceptibility. Specifically, in the 

HKSAR, the construction of roads and highways, similarly to the siting of 

agricultural lands, tends to occur in relatively flat terrain areas, thereby 

decreasing the susceptibility to debris flows. 

Based on the assessment factors for vegetation cover, the results reveal that in 

contrast to the SMCRS, debris flow susceptibility in the HKSAR does not 

increase with a higher proportion of shrubland and grassland areas but does 

increase with an increased proportion of woodland areas. This result may be 

related to the distinct DWCC and typhoon factors prevalent in the HKSAR. 

Shrublands and grasslands are unable to provide sufficient material for debris 

flows through frequent dry-wet cycles, whereas woodlands, despite their greater 

soil and water conservation capabilities, also contain more sources of debris flow 

source materials. Especially during typhoon landfalls, the transport and 

accumulation of source materials such as broken branches and rocks contribute 

to the loose materials required for debris flows. Consequently, in the coastal 

monsoon typical areas, the influence of typhoons results in higher debris flow 

susceptibility in woodland areas compared to shrublands and grasslands. 
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According to the assessment factors of topography and geology, the results show 

that consistent with the SMCRS, the HKSAR exhibits higher susceptibility to 

debris flows in areas with moderate slopes. This is due to excessively steep slopes 

being less capable of accumulating the materials necessary for debris flow 

occurrences, and in the HKSAR, steeper slopes are usually composed of rocks of 

greater strength, which limits material accumulation (Fuchu et al., 1999). 

Conversely, slopes that are too flat cannot provide sufficient potential energy for 

the transfer of debris flow source materials. The relationship between debris flow 

susceptibility and profile curvature in the HKSAR mirrors that seen in Zone I of 

the SMCRS. The highest susceptibility is associated with profile curvatures less 

than zero, meaning that convex slopes in the direction of maximum gradient 

descent are more prone to debris flows. The relationship between plan curvature 

and debris flow susceptibility in the HKSAR is also similar to that in the SMCRS, 

with higher susceptibility slightly above or below zero, indicating that slopes that 

are slightly convex or slightly concave perpendicular to the direction of 

maximum gradient descent are more susceptible to debris flows. 

The comparison of the PD plots for the main drivers across inland and coastal 

monsoon typical regions reveals that the latter is more significantly influenced by 

extreme precipitation events than the inland monsoon regions. In coastal 

monsoon areas, typhoons contribute to debris flow susceptibility by damaging 

vegetation and creating substantial material sources, a process that bears certain 
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similarities to the influence of earthquakes in inland monsoon regions. Besides, 

typhoons also intensify extreme precipitation, leading to more severe extreme 

rainfall events and triggering debris flows.  

However, the analysis based on PD plots also has limitations, as using a single 

factor to explain the influence on debris flow susceptibility is not comprehensive. 

This is due to the interactions that exist between multiple assessment factors, such 

as the potential correlation of greater distances to faults with other indicators like 

human activities. This correlation may arise as the siting of human settlements 

often considers the impact of geological activities. Such interactions between 

factors can affect the analysis results of individual factors and the performance of 

various factors, leading to inconsistencies in the PD results for the same factor 

across different regions. Therefore, the interpretation of PD plots should be 

integrated with regional characteristics (e.g., the specific USC of Zone I and Zone 

II in the SMCRS or the typhoon factors in the HKSAR) for a comprehensive 

analysis. This integrated approach is necessary for proposing adaptive disaster 

prevention and mitigation recommendations tailored to the characteristics of the 

study areas. 
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6.3 Factors affecting the applications of dry-wet cycle characteristics 

By comparing the debris flow susceptibility assessment models in typical inland 

and coastal mountainous regions from the aspects of the evaluation methods and 

the differences and similarities in model interpretations, the factors that may 

influence debris flow responses to climate dry-wet cycles may be identified. 

These comparisons aim to clarify the applicable conditions for constructing 

debris flow susceptibility assessment models based on the DWCC. 

 

6.3.1 Impacts of data sources 

The representativeness of debris flow records in the SMCRS and the HKSAR 

may influence the results of how debris flows respond to dry-wet cycles. The 

SMCRS, characterized by its complex terrain and abundant rainfall during the 

rainfall season, experiences large-scale and frequent debris flows. However, due 

to its vast area and uneven population distribution, it is challenging to accurately 

report all debris flow events, making the determination of positive and negative 

debris flow samples difficult. In this study, for the SMCRS, selected samples are 

those that have been identified through geological surveys, news reports, or 

scientific research, typically involving events that caused casualties or economic 

losses. In the case of the HKSAR, even though there are 7,091 historical debris 

flow records identified using UAV imagery, only those that resulted in casualties 



Chapter 6 Main Drivers of Regional Debris Flow Susceptibility 

 
197  

or road closures were selected as typical samples. Consequently, the debris flow 

susceptibility assessment results presented in this study reflect only those events 

that have impacted human society, termed as disasters, and do not encompass all 

natural phenomena, which would be considered hazards. 

However, the method of selecting debris flow samples in this manner somewhat 

diminishes the influence of the DWCC on the formation and initiation of debris 

flows. Both dry-wet cycles and debris flows are natural phenomena, 

fundamentally independent of human society. Yet, by filtering the debris flow 

samples, the study focuses solely on disaster events that affect human society, 

which limits the ability to accurately reveal how debris flows respond to the 

natural pattern of dry-wet cycles. 

 

6.3.2 Impacts of assessment unit 

The total area of the SMCRS and the HKSAR differs significantly, leading to 

distinct choices in the scale of assessment units for each study area. For the 

SMCRS, which encompasses 16,195 watersheds, the total area amounts to 

266,000 km2, whereas the land area of the HKSAR is approximately 1,100 km2, 

making the SMCRS about 240 times larger than that of the HKSAR. The division 

of the HKSAR into 20,451 grid cells based on the length of historical debris flow 

gullies considers two factors. First, the grid cells need to cover the smallest debris 
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flow assessment unit, which is the debris flow gully. Second, by aligning the 

number of assessment units in the HKSAR with those in the SMCRS, the study 

ensures that the ratio of debris flow samples to the number of assessment units is 

approximately the same for both areas, at 5%. By employing different assessment 

unit delineation methods for the two study areas, the study maintains the 

representativeness and consistency in the distribution patterns of debris flow 

samples within both study areas. 

However, due to the relatively small area of the HKSAR and the minimal climatic 

variability within it, there are only slight differences in the DWCC between 

positive and negative debris flow samples. This phenomenon is reflected in Fig. 

3-3, where the differences in the PDSI time series before debris flow occurrences 

between positive and negative samples in the HKSAR are not pronounced. The 

limited spatial variability in meteorological conditions within the HKSAR may 

also contribute to the observation in Fig. 6-2 that the DWCC have a lesser 

contribution to the debris flow susceptibility assessment compared to the 

contributions of human activities. 

 

6.3.3 Impacts of source material generation 

Differences exist in the contribution of various assessment factors to the debris 

flow susceptibility between the SMCRS and the HKSAR. For one thing, during 
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the construction of the assessment factor system, the SMCRS incorporated the 

impact of earthquakes, adding an assessment factor for the distance to faults, 

while the HKSAR considered the impact of typhoons, incorporating assessment 

factors such as frequency, highest level, and longest duration of typhoons. For 

another, there are differences in the construction of certain assessment factors, 

such as the differences in rock types between the SMCRS and the HKSAR. 

Additionally, the maximum elevation difference is calculated based on 

watersheds in the SMCRS and on grid cells in the HKSAR. Furthermore, 

regarding land use types, since the division of watersheds in the SMCRS has 

taken rivers into account, water bodies are not considered in the land use types. 

There are distinct differences in the performance of various assessment factors in 

debris flow susceptibility assessment within the two study areas. In the SMCRS, 

seismic factors are a significant assessment factor for debris flow susceptibility. 

Generally, the closer a watershed is to a fault, the higher the susceptibility to 

debris flows, due to more frequent geological activities providing a greater 

amount of source materials for debris flows in areas closer to faults. In contrast, 

typhoon factors are a dominant factor in the debris flow susceptibility assessment 

in the HKSAR, although their importance is relatively minor compared to other 

assessment factors. This may be due to not all debris flows being induced by 

typhoons, since rainfall-induced debris flows affected by monsoons remain 

predominant. However, it is undeniable that typhoons are closely associated with 
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larger-scale debris flow disasters due to the extreme precipitation they bring. The 

contribution of DWCC to debris flow susceptibility differs between the SMCRS 

and the HKSAR, with the latter requiring longer dry-wet cycle periods to form 

debris flows. This may be attributed to the lack of frequent geological activities 

in the HKSAR that generate source materials, necessitating the compensation of 

source materials through more frequent human activities or extended dry-wet 

cycle periods. 

 

6.4 Summary 

This chapter interprets the debris flow susceptibility assessment results by 

quantifying the contributions and characteristics of the main drivers and 

comparing DWCC applicability in the two study areas. 

Based on the proposed model for assessing debris flow susceptibility, the RI of 

each assessment factor was calculated and ranked to identify the main drivers in 

the debris flow susceptibility assessment for each study area or zone. A 

comparison of the performance of assessment factors in the debris flow 

susceptibility models for two typical areas reveals that DWCC are considered the 

main drivers in both areas, and they are crucial indicators for assessing 

susceptibility in regions prone to debris flows, reflecting frequent and severe dry-

wet cycles in these areas. By comparing the commonalities and uniqueness of the 
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main drivers of the debris flow susceptibility assessment models across different 

study areas or zones, the study reveals the distinctive aspects of factors that affect 

debris flow susceptibility in regions with different USC or different locations in 

inland and coastal regions. Based on these commonalities and uniqueness, the 

study proposes targeted recommendations for debris flow disaster prevention and 

mitigation. The findings suggest that in areas with frequent earthquakes and 

complex topography, ecological engineering methods should be prioritized for 

prevention and control, while in areas affected by typhoons, particularly those 

with sufficient vegetation cover along the coast, attention should be paid to the 

potential accumulation of debris flow source materials due to typhoons, which 

can lead to large-scale debris flows triggered by extreme precipitation also caused 

by typhoons. It is important to note, however, that typhoons are only related to 

larger-scale debris flows and do not significantly impact the majority of rainfall-

induced debris flows recorded. 

To elucidate the mechanisms by which the main drivers of debris flow 

susceptibility assessment models affect debris flow susceptibility in different 

study areas or zones, PD plots were constructed to quantitatively disclose the 

relationship between debris flow susceptibility and each main driver. Beyond 

DWCC, earthquakes, and typhoons, the impact of other assessment factors on 

debris flow susceptibility shows no significant difference between the typical 

inland and coastal monsoon areas. Coastal monsoon areas are subject to more 
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extreme precipitation events than inland monsoon areas. Similar to the process in 

inland monsoon areas where earthquakes generate loose materials and 

accumulate sources for debris flows, typhoons in coastal monsoon areas create a 

large amount of loose material by destroying vegetation. However, in addition to 

this, typhoons also contribute to extreme precipitation, leading to more severe 

extreme precipitation events and thus triggering debris flows. 

Comparing the application of DWCC in debris flow susceptibility assessment in 

two study areas, it has been discovered that focusing exclusively on debris flows 

that impact human society can to some extent affect the understanding of 

responsive patterns between debris flow susceptibility and DWCC. Additionally, 

if the scale of the study area is too small, the insufficient spatial variability of 

DWCC may influence the identification of debris flow units with high 

susceptibility. Moreover, the various formation mechanisms of debris flow source 

materials are a key factor influencing the impact of climate dry-wet cycles on 

debris flow susceptibility. The fewer ways for generating debris flow materials in 

the study area, the greater the demands for dry-wet cycles to compensate for 

source materials, making debris flow susceptibility more closely related to longer 

dry-wet cycle periods. 
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Chapter 7  Conclusions and Future Work 

7.1 Conclusions 

This study utilizes historical debris flow and geo-environment databases from 

inland and coastal monsoon regions affected by extreme climates to investigate 

the impact of dry-wet cycles on debris flow susceptibility and apply these patterns 

in regional assessments. Initially, the study uses the PDSI to characterize long-

term dry-wet status and extracts DWCC to describe the historical extreme events 

in the study areas. Methods are proposed to estimate debris flow ARI, revealing 

the relationship between dry-wet cycles and debris flow susceptibility. The study 

constructs and validates a model incorporating DWCC for debris flow 

susceptibility in both inland and coastal areas, interpreting main drivers and 

characteristics based on the model structure. 

The main conclusions of this study are summarized as follows: 

(1) Dry-wet cycles commonly precede debris flow occurrences.  Debris flow 

months show significant extreme precipitations, and extreme drought conditions 

are consistently observed 6 to 8 years prior, indicating extreme dry-wet events. 

Differences in dry-wet status between high- and low-susceptibility areas are 

influenced by climate spatial variability, with no significant differences noted 

where variability is low. To address this, wavelet and multifractal analyses are 

proposed, constructing DWCC that include cycle period, severity, and frequency 
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of extreme dry-wet events. These analyses explore differences in dry-wet cycle 

patterns among assessment units in regions with low climate variability. 

Comparative analyses based on DWCC consistently indicate more severe dry-

wet cycles in areas susceptible to debris flows in both inland and coastal monsoon 

regions. 

(2) A responsive relationship exists between climate dry-wet cycles and regional 

debris flow susceptibility. Using typical records from watersheds in the inland 

monsoon area, two methods are proposed to estimate debris flow recurrence 

periods, validated through comparison. The recurrence period reflects the 

spatiotemporal distribution of debris flows, showing a higher correlation with 

dry-wet cycle periods than with maximum daily precipitation, suggesting that 

dry-wet cycle characteristics may be more effective than rainfall thresholds in 

debris flow early warning systems. Susceptibility is characterized by calculating 

FS from soil samples in typical debris flow gullies, revealing that extreme 

precipitation significantly reduces FS and increases susceptibility, while extreme 

drought conditions precede debris flow occurrences. These findings 

mechanistically validate the responsive relationship between DWCC and debris 

flow susceptibility. Analyzing the correlation between DWCC and FS quantifies 

this pattern, indicating that frequent and severe extreme dry-wet events enhance 

debris flow susceptibility in the context of climate dry-wet cycles. 
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(3) Regional debris flow susceptibility assessment based on climate dry-wet 

cycles is effective and stable. The model, incorporating DWCC, empirically 

verified the responsive pattern between climate dry-wet cycles and debris flow 

susceptibility, achieving 93.1% accuracy in identifying highly susceptible inland 

areas and 76.7% in the coastal monsoon region. Monthly assessment results align 

with the spatiotemporal distribution of debris flows indicated by the recurrence 

period, validating the effectiveness of using DWCC. Despite some deviations in 

predicted dry-wet indices, these do not significantly affect the model accuracy in 

identifying areas with high susceptibility, confirming the stability of using 

DWCC in debris flow susceptibility assessment. The effectiveness and stability 

of the DWCC-based debris flow susceptibility assessment model offer new 

insights for advanced debris flow prediction based on climate dry-wet cycles. 

(4) The responsive pattern between climate dry-wet cycles and debris flow 

susceptibility is influenced by the formation mode of debris flow source materials. 

DWCC are identified as the main drivers in different areas, with a consistent PD 

relationship indicating frequent and intense dry-wet cycles in debris flow-prone 

areas. In typical inland regions like the Sichuan monsoon climate zone, shorter 

dry-wet cycle periods are enough for debris flow occurrences due to frequent 

geological activities providing source materials. In typical coastal areas like the 

Hong Kong Special Administrative Region, while dry-wet cycles contribute to 

debris flow source materials, frequent construction is the main contributor. 
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Nevertheless, substantial slope management investments have mitigated the 

impact of human activities, resulting in longer dry-wet cycle periods required for 

debris flow occurrences in the susceptible areas. 

 

7.2 Limitations and future work 

This study has revealed the responsive relationship and elucidated the responsive 

mechanism between climate dry-wet cycles and regional debris flow 

susceptibility, successfully applying this pattern to the debris flow susceptibility 

assessment. However, limitations at various stages still exist and further research 

is required. 

(1) Representativeness of debris flow records. In this study, only debris flow 

events impacting human society are selected as samples for both the SMCRS and 

HKSAR, which may not fully represent the natural phenomenon of the 

relationship between climate dry-wet cycles and debris flow susceptibility. 

Complete identification of debris flow events within the study area is quite 

challenging. Accurate timing of debris flow occurrences is needed to explore 

DWCC before the events, and debris flows without impact on human society 

generally lack reporting. 

(2) False alarm rate of the debris flow susceptibility assessment model. The model 

constructed based on DWCC exhibits fewer missed debris flow events. However, 
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due to incomplete debris flow data, particularly the lack of reports on regional 

debris flow events without impact on human society, the machine learning model 

may not fully discriminate between assessment units with and without recorded 

debris flow events. This leads to the occurrence of false alarms in predicting 

debris flow events. 

(3) Soil experiments during dry-wet cycles. This study calculates FS changes 

under extreme precipitation through soil experiments and infers historical dry-

wet conditions from surface monitoring data. However, it has not yet simulated 

debris flow susceptibility mechanisms based on soil experiments specifically 

targeting the dry-wet cycle process. 

To address shortcomings (1) and (2), future research should construct a more 

comprehensive debris flow disaster database. This can be achieved by identifying 

unreported hazards using interferometric synthetic aperture radar and integrating 

deep learning for batch identification of debris flow gullies and dynamic database 

updates. This will provide a more comprehensive understanding of the responsive 

relationship between climate dry-wet cycles and regional debris flow 

susceptibility, and reduce the false alarm rate of the susceptibility assessment 

model. For shortcoming (3), additional soil experiments simulating dry-wet 

cycles can further reveal how these cycles increase debris flow susceptibility. 
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