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Abstract

Differential Privacy (DP) offers robust guarantees for protecting individual data

against malicious attacks in both industrial sectors (e.g., Apple and Google) and ad-

ministrative sectors (e.g., the U.S. Census Bureau). In general, DP allows for efficient

statistical analysis while safeguarding privacy, making it widely adopted in various

data mining tasks such as frequency/mean estimation, private data publication, and

private learning. However, there exists a trade-off between utility and privacy: en-

hancing one typically compromises the other. Despite significant efforts to mitigate

this trade-off, critical limitations persist. Some solutions achieve high utility but are

tailored to specific DP mechanisms or data mining tasks, thus lacking generality.

Conversely, more general solutions often fail to deliver superior utility. This creates

a dilemma where achieving both generality and effectiveness simultaneously remains

challenging.

The works in this thesis together compose a platform that theoretically benchmarks

and generally enhances the utilities of various DP mechanisms in two prevalent data

mining scenarios: statistical analysis and model training. The main contributions

of this thesis are divided into three chapters, organized in a top-down order: high-

dimensional statistics estimation [7,51,84,88,104], centralized learning [6,82,85,160],

and federated learning [150].

In the first chapter, we present LDPTube, an analytical toolbox that generalizes

and enhances DP mechanisms for high-dimensional mean estimation. Specifically,

i



we leverage the Central Limit Theorem (CLT) [43, 115], one of the most recognized

theorems in statistics, to describe the mean square errors (MSEs) of various DP

mechanisms. To optimize their MSEs, HDR4ME* uses regularizations to eliminate

excessively noisy data, thereby achieving better utilities in high-dimensional mean

estimation. The second chapter focuses on the utilities of private centralized learning.

Here, we introduce GeoDP, a framework that first theoretically derives the impact

of DP noise on model efficiency. Our analysis reveals that the existing perturbation

methods introduce biased noise to the gradient direction, resulting in a sub-optimal

training process. GeoDP addresses this issue by adding unbiased noise to the gradient

direction, thereby improving model utilities. In the final chapter, we propose LDPVec,

which theoretically analyzes and enhances model utility in federated learning under

various DP mechanisms. Similar to mean estimation, the global aggregation step

in federated learning averages noisy gradients from each local party, allowing the

CLT to effectively describe model utilities. We observe that preserving the gradient

direction is crucial, while the perturbed gradient magnitude can be adjusted through

fine-tuning the learning rate or clipping. Consequently, LDPVec optimizes model

efficiency by allocating (d-1)/d of the privacy budget to the gradient direction and

1/d to the gradient magnitude.
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Chapter 1

Introduction

Data mining techniques, which discovers meaningful patterns, correlations, anomalies,

and trends in large datasets, can assist organizations to make data-driven decisions

to improve business processes, enhance customer experiences, and gain a competitive

edge. Composed of data correlation analysis, dimensionality reduction, machine/deep

learning models, and optimization methods, data mining has been flourishing in vari-

ous sectors, such as finance, healthcare, energy, and scientific researches. Nonetheless,

privacy can be compromised when data is accessed in data mining, and data leak-

age may lead to serious reputational damage and financial loss. For example, it was

revealed in 2018 that Cambridge Analytica, a political consulting firm, had utilized

private data from millions of Facebook users without their consent to provide political

advantages for clients. Also, Facebook itself faced multiple lawsuits and regulatory

scrutiny, leading to a five-billion-dollar fine for privacy violations. Both examples,

which indicate how privacy leakage affects an organization’s long-term viability and

market position, stress the significance of privacy preservation in data mining tech-

niques. Among various privacy solutions, differential privacy (DP) has at least five

unique advantages. First, subject to strong mathematical assurances, it provides ro-

bust guarantees, regardless of how and where data is utilized. Second, it demonstrates
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Chapter 1. Introduction

strong scalability to complex systems. The way that DP linearly adds noise ensures

its effectiveness across various algorithms and datasets, making it versatile for differ-

ent applications. Third, DP can control the loss of privacy due to the mathematical

definition. Fourth, random noise introduced by DP enables strong defense against

various attacks. Last but not least, the integration of DP into existing algorithms

does not significantly increase complexity. Overall, DP is one of the most powerful

tool of privacy preservation in data mining.

However, there exists a trade-off between data utility and privacy [140]. In general,

adding more noise, which certainly improves privacy level, otherwise obfuscates the

original algorithm and therefore sabotages utility. As such, how to balance these two

is perhaps the most vital problem in DP-related data mining. To fully address this

problem, this thesis presents a comprehensive system, which can analyze and enhance

utilities of DP in various data mining tasks while maintaining the same privacy level.

In terms of three common scenarios (i.e., statistics estimation, machine/deep learning,

and their crossover applications) of data mining, this system proposes respective set

of solutions.

1.1 Private Statistics Estimation

In data mining, statistics estimations, including mean and frequency estimation, are

fundamental tasks and therefore worth studying. By these two basic estimations, we

are allowed to analyze patterns of datasets and accordingly implement more com-

plex algorithms. In this thesis, we systematically analyze and enhance the utility

of differentially private statistics estimation. In specific, via Central Limit Theorem

(CLT) [43, 115], we are able to derive distributions of Mean Square Error (MSE) of

any DP mechanism in various datasets. That is, we obtain results of experiments

without conducting any experiment [30,31]. Even under extreme cases (e.g., the pop-

ulation is 1, 000 and one mediocre DP mechanism Laplace [36]), the error of analysis
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1.2. Private Machine/Deep Learning

is no more than 1.5%. This analysis further instructs how to enhance utility. By reg-

ularization, we successfully reduce dimensionality of high-dimensional data and thus

random noise per dimension. Extensive analysis and experiments the effectiveness

of this set of solutions. Our major contributions on private statistics estimation are

summarized as follows:

• We bring forward a non-parametric analytical framework to measure the util-

ities of LDP mechanisms in high-dimensional space. This framework not only

provides a theoretical baseline to benchmark existing and future LDP mech-

anisms, but also serves as a platform to compare their theoretical utilities in

high-dimensional space.

• We propose a re-calibration protocol HDR4ME* to enhance high-dimensional

mean estimation and prove its superiority to the baseline. In particular, this

protocol can be further extended to frequency estimation.

• Based on both synthetic and real datasets, we conduct extensive experiments to

validate our framework and evaluate our protocol for three state-of-the-art high-

dimensional LDP mechanisms. Results show that the theoretical benchmark is

consistent with the experimental results, and our protocol generally enhances

the utilities.

1.2 Private Machine/Deep Learning

While statics directly mines patterns from datasets, some insights are subtle and re-

quire machine/deep learning to derive. In recent years, private learning [1], which

adds noise to gradients while performing training, has been prevalent in data min-

ing by enabling the discovery of patterns and insights from large datasets. However,

DP noise still obfuscates the training process, leading even more serious model utility

degradation. To address this problem, our system proposes a general solution GeoDP,
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Chapter 1. Introduction

to analyze and enhance utilities of various DP mechanisms in different learning mod-

els. Extensive analysis and experiments confirm that the utility benefit brought by

GeoDP is rather huge under the same privacy level. Major contributions on private

learning are as follows:

• To the best of our knowledge, we are the first to prove that the perturbation of

traditional DP-SGD is actually sub-optimal from a geometric perspective.

• Within the classic DP framework, we propose a geometric perturbation strategy

GeoDP to directly add the noise on the direction of a gradient, which rigorously

guarantees a better trade-off between privacy and efficiency.

• Extensive experiments on public datasets as well as prevalent AI models validate

the generality and effectiveness of GeoDP.

1.3 Crossover Applications

There also exists a scenario where both statistics estimation and model training are ef-

fective. Locally differentially private federated learning (LDP-FL), which adds noises

to local models for privacy while performing global aggregation to make noises can-

celed out for better utility, can be considered as an intersection of private learning

and statistics estimation. This system proposes LDPVec to analyze and enhance

the model utility of LDP-FL, respectively. In specific, LDPVec analyzes the utility

of global aggregation from a perspective of mean estimation while enhancing model

utility by utilizing geometric property of a gradient. Our major contributions on this

intersection are as follows:

• To the best of our knowledge, this is the first general analytical framework

to measure LDP mechanisms in federated learning. This framework can not
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1.4. Main Objectives and Organization of Thesis

only serve as a benchmark to compare various LDP mechanisms in federated

LDP-SGD, but also point out the direction of future optimization.

• We propose a geometric perturbation strategy LDPVec, which optimizes per-

formances of various LDP mechanisms in federated SGD.

• Extensive experiments on real datasets, popular machine learning models, and

three state-of-the-art LDP mechanisms are conducted to validate the generality

and effectiveness of both framework and strategy. All results unanimously show

that the theoretical analysis is consistent with the experimental results, and

our geometric perturbation strategy significantly improves model efficiencies in

practice.

1.4 Main Objectives and Organization of Thesis

Overall, this thesis proposes a systematical solution to analyzing and enhancing per-

formances of various DP mechanisms in general data mining scenarios. In specific,

this thesis is organized as presented in the following chapters:

Chapter 2: This chapter comprehensively reviews DP mechanisms in data

mining techniques, including private mean/frequency estimation, differentially

private stochastic gradient descent (DP-SGD), and federated locally differen-

tially private stochastic gradient descent (federated LDP-SGD).

Chapter 3: This chapter provides backgrounds and preliminaries throughout

this thesis.

Chapter 4: In this chapter, we first propose an analytical framework that gen-

eralizes LDP mechanisms and derives their utilities in high-dimensional space,

namely the probability density function of the deviation between the estimated

mean and the true mean. The framework can serve as a benchmark to compare
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Chapter 1. Introduction

the utilities of various LDP mechanisms without conducting any experiment.

Furthermore, our analysis shows the sub-optimality of the naive aggregation

method of all LDP mechanisms — the utility deterioration is attributed to the

overwhelming noise caused by diluted privacy budget in high-dimensional space.

As such, our second contribution in this paper is a one-off, non-iterative re-

calibration protocol HDR4ME (acronym for High-Dimensional Re-calibration

for Mean Estimation). Through regularization and proximal gradient descent,

this protocol re-calibrates the aggregated mean obtained from any LDP mech-

anism by suppressing the overwhelming noise and thus enhances its utility.

Without any change on the LDP mechanism itself, HDR4ME can be used as a

general optimizer of existing LDP mechanisms in high-dimensional space.

On this basis, we propose a toolbox LDPTube (acronym for Theoretical Utility

Benchmark and Enhancement for LDPmechanisms) for practically utility bench-

mark and maximization. First, it consists of a non-parametric benchmark in

high-dimensional space, which relieves the burden of the data collector for choos-

ing the supremum from an unknown distribution. It not only provides mean

square error as the analytical result, but also shows the population breakpoint

where one LDP mechanism outperforms the other in terms of MSE. In addition,

for generality, this benchmark can also apply to personalized LDP, where users

are free to choose privacy budgets and privacy regions (i.e., the domain where

one’s original data remains anonymous). Besides the benchmark, the existing

HDR4ME re-calibration protocol in [30] does not perform well under low error,

which is rather common in practice. In LDPTube, we next present a utility

maximization protocol, namely HDR4ME*, to adaptively and optimally select

between L1-, L2-regularization, and no-regularization for a LDP mechanism to

maximize utilities in high-dimensional space.

Chapter 5: In this chapter, we propose a geometric perturbation strategy

GeoDP to address the inefficiency of DP mechanism in various learning tasks.
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1.4. Main Objectives and Organization of Thesis

First, we theoretically derive the impact of DP noise on the efficiency of DP-

SGD. Proved by this fine-grained analysis, the perturbation of DP-SGD, which

introduces biased noise to the direction of a gradient, is actually sub-optimal.

Inspired by this, we propose a geometric perturbation strategy GeoDP which

perturbs both the direction and the magnitude of a gradient, so as to relieve

the noisy gradient direction and optimize model efficiency with the same DP

guarantee.

Chapter 6: In this chapter, we analyze and improve model utilities of federated

LDP-SGD by first proposing an analytical framework that generalizes federated

LDP-SGD and derives the impact of LDP noise on the federated training pro-

cess, in terms of the model efficiency. Then we show that this framework can

serve as a benchmark to compare model efficiencies of federated LDP-SGD un-

der various LDP mechanisms. An interesting observation is that while existing

works preserve the gradient itself, our analysis points out that only its direc-

tion is necessary for gradient descent. As such, existing LDP-SGD strategy is

sub-optimal, as it wastes privacy budget to preserve the magnitude of gradient.

Motivated by this, our second contribution is a geometric perturbation strat-

egy LDPVec to optimize the training process. While focusing on preserving

directional information, LDPVec only perturbs the direction of a gradient, and

rearranges LDP noise to better preserve directional information. This strategy

can generally enhance federated LDP-SGD under various LDP mechanisms.

Chapter 7: We conclude the outcomes of this thesis and propose some new

directions for future works in private data mining.
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Chapter 2

Literature Review

In this chapter, we comprehensively review differential privacy in various data mining

techniques. In specific, we review private statistics estimation, private learning, and

their crossovers.

2.1 Locally Differentially Private (LDP) Statistics

Estimation

Dwork et al. [35] formally present the definition of differential privacy (DP) and

propose the first DP mechanism, i.e., Laplace mechanism. As for the local setting,

Evfimievski et al. [39] are among the first to introduce differential privacy at the side

of individuals. Then Raskhodnikova et al. [105] design a locally private mechanism

γ-amplification randomizer. Later on, Duchi et al. [32] study the trade-off between

local privacy budget and estimation utility, and derive bounds for local differential

privacy (LDP). LDP has been widely adopted in different domains, including itemset

mining [138], marginal release [26, 166], time series data release [154], graph data

analysis [121,152,153], key-value data collection [56,155,156] and private learning [168,

8



2.1. Locally Differentially Private (LDP) Statistics Estimation

169]. The most relevant problems to this paper include two aspects, namely, mean

estimation by LDP and high-dimensional LDP.

2.1.1 Mean Estimation by LDP

Dwork et al. [35] initially propose Laplace mechanism for mean estimation for cen-

tralized DP, which can also be applied to the local setting. Afterwards, several LDP

frameworks, such as a variant of Laplace mechanism referred to as SCDF [120] and

Staircase mechanism [49], perturb values with less noise. Note that the perturbed

values of these mechanisms range from negative to positive infinity, so they are clas-

sified as unbounded mechanisms in this paper. On the contrary, bounded mechanisms

perturb values into a finite domain. Duchi et al. [33] present one whose outputs are

binary. To overcome the shortcoming of binary output, Wang et al. [134] propose

Piecewise mechanism and Hybird mechanism. With continuous and bounded out-

puts, their utilities are improved. More recently, Li et al. [83] propose square wave

mechanism where the perturbation is more centered than Piecewise, and the utility

is therefore superior. As regards frequency estimation, there are a family of Random-

ized Response (RR). Considering that primitive RR is only capable of binary values,

Kairouz et al. [69] present k-RR for multiple variables. With introduction of cohort-

based hashing, Kairouz et al. [67] also bring up O-RR and O-PAPPOR. Bassily et

al. [10] then present an efficient protocol SHist to diminish the communication cost.

On this basis, Bassily et al. [9] latter design TreeHist and Bitstogram as improved

LDP heavy hitters. To generalize RR protocols and choose parameters for optimiza-

tion, Wang et al. [137] introduce a general framework, which includes prevalent RR

protocols and provides shareable error metrics.

In industry, Apple [25,27,124] applies Count Mean Sketch techniques to macOS and

iOS for collecting users’ browser hints. Meanwhile, Google [38,40] initiates RAPPOR

to collect and analyze users’ strings. Microsoft [28] also proposes such frameworks

9



Chapter 2. Literature Review

1-bit mechanisms and α-point rounding scheme for count number estimation.

2.1.2 High-Dimensional LDP

The most critical challenge to adopt LDP in high-dimensional space is the utility

degradation, a.k.a., the dimensionality curse. In general, there are two streams of

methodology to cope with it. One is dimensionality reduction. As for non-local pri-

vacy data publication, Ren et al. [106] study frequency estimation based on Lasso Re-

gression and EM algorithm. By principal components analysis (PCA), Ge et al. [48]

propose DPS-PCA for interactive LDP while Wang et al. [133] consider PCA for

non-interactive LDP. Besides, Bassily [8] studies linear queries estimation in high-

dimensional LDP. The other methodology is correlation-based privacy budget alloca-

tion. Chatzikokolakis et al. [21] use metric dh to measure the similarity between two

dimensions in DP. Larger dh indicates lower similarity, which requires more privacy

budget in those dimensions. Alvim et al. [2] extend this metric to LDP. Similarly, Li

et al. [81] calculate the respective information entropy of all dimensions while Du et

al. [29] use covariance of different dimensions to allocate privacy budget accordingly.

It is noteworthy that almost all these works have limited the application scope in

specific scenarios. Furthermore, many solutions have high computational cost at the

user side [2,21,33,48,133]. This thesis, on the other hand, enhances high-dimensional

LDP mean estimation by only involving the data collector. In addition, it is a general

optimization that is irrespective of the LDP mechanisms.

2.2 Private Learning

In this section, we review related works from three aspects: DP, SGD and their

crossover works DP-SGD.
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2.2. Private Learning

2.2.1 Differential Privacy (DP)

DP [36,140] is a framework designed to provide strong privacy guarantees for datasets

whose data is used in data analysis or machine learning models. It aims to allow any

third party, e.g., data scientists and researchers, to glean useful insights from datasets

while ensuring that the privacy of individuals cannot be compromised. The core idea

of differential privacy is that a query to a database should yield approximately the

same result whether any individual person’s data is included in the database or not.

This is achieved by adding noise to the data or the query results, which helps to

obscure the contributions of individual data points.

Since Dwork et al. [35] first introduced the definition of differential privacy (DP),

DP has been extended to various scopes, such as numerical data collection [33, 134],

set-value data collection [23, 136], key-value data collection [156], high-dimensional

data [30], graph analysis [122], time series data release [154], private learning [46,168],

federated matrix factorization [82], data mining [64], local differential privacy [5,

135, 147, 148], database query [14, 41], markov model [144] and benchmark [30, 31,

113]. Relevant to our thesis, we follow the common practice to implement Gaussian

mechanism [36] to perturb model parameters. Besides, Rényi Differential Privacy

(RDP) [92] allows us to more accurately estimate the cumulative privacy loss of the

whole training process.

2.2.2 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a fundamental optimization algorithm widely

used in machine learning and deep learning for training a wide array of models. It is

especially popular for its efficiency in dealing with large datasets and high-dimensional

optimization problems. SGD was first introduced by Herbert et al. [107], and applied

for training deep learning models [109]. The development of SGD has seen several

significant improvements over the years. Xavier et al. [52] and Yoshua [11] optimized
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deep neural networks using SGD. Momentum, a critical concept to accelerate SGD,

was emphasized by Llya et al. [123]. Diederik et al. [71] proposed Adam, a variant of

SGD that adaptively adjusts the learning rate for each parameter. Sergey et al. [65]

introduced Batch Normalization, a technique to reduce the internal covariate shift in

deep networks. Yang et al. [158] and Zhang et al. [162] further proposed large-batch

training and lookahead optimizer, respectively. These advancements have pushed the

boundaries of SGD, enabling efficient training of increasingly complex deep learning

models [139,145,146,161]. Without loss of generality, we follow the common practice

of existing works and implement SGD without momentum to better demonstrate the

efficiency of our strategy.

2.2.3 Differentially Private Stochastic Gradient Descent (DP-

SGD)

As a privacy-preserving technique for training various models, DP-SGD is an adapta-

tion of the traditional SGD algorithm to incorporate differential privacy guarantees.

This is crucial in applications where data confidentiality and user privacy are con-

cerns, such as in medical or financial data processing. The basic idea is adding DP

noise to gradients during the training process. Chaudhuri et al. [22] initially intro-

duced a DP-SGD algorithm for empirical risk minimization. Abadi et al. [1] were

one of the first to introduce DP-SGD into deep learning. Afterwards, DP-SGD has

been rapidly applied to various models, such as generative adversarial network [62],

Bayesian learning [61], federated learning [164], graph neural networks [163].

As for optimizing model efficiency of DP-SGD, there are three major streams. First,

gradient clipping can help to reduce the noise scale while still following DP framework.

For example, adaptive gradient clipping [24, 142, 164], which adaptively bounds the

sensitivity of the DP noise, can trade the clipped information for noise reduction.

Second, we can amplify the privacy bounds to save privacy budgets, such as Rényi
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Differential Privacy [55]. Last, more efficient SGD algorithms, such as DP-Adam

[125], can be introduced to DP-SGD so as to improve the training efficiency.

However, existing works still cling to numerical perturbation, and there is no work

investigating whether the numerical DP scheme is optimal for the geometric SGD in

various applications. In this thesis, we instead fill in this gap by proposing a new

DP perturbation scheme, which exclusively preserves directions of gradients so as

to improve model efficiency. As no previous works carry out optimization from this

perspective, our thesis is therefore only parallel to vanilla DP-SGD while

orthogonal to all existing works.

2.2.4 Inference Attacks (IA)

As mentioned before, DP has been introduced into SGD for defending various in-

ference attacks, which are composed of four mainstreams, i.e., membership infer-

ence [110, 118, 119], model inversion [19, 44, 45], attribute inference [3, 91, 165], and

model stealing [100, 128, 132]. The first three are designed to infer information from

the target model while the last one aims to steal model parameters.

Among the four, membership inference attack, being the most basic one, is usually

considered as the signal for the “leaky” model [87]. In particular, MIA aims to

determine whether a specific data record was used in training a machine learning

model. An adversary conducting a MIA uses access to the model (often via querying

it) to infer whether specific data points were part of the model’s training dataset.

This type of attack poses significant privacy risks, especially when sensitive data is

involved.

As one effective solution to the defense of MIA, DP [13,96] provides a robust frame-

work to protect against MIA by ensuring that the output of a computation is less

sensitive to any single individual’s data. This is achieved through mechanisms that

limit information leakage, promote generalization, and introduce randomness, thereby
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making it challenging for attackers to deduce the presence of specific individual data

in the training set.

In this thesis, we conduct extensive experiments to evaluate the defense of our pro-

posed strategy against real attacks, compared with vanilla DP-SGD.

2.3 Crossovers of Private Learning and Statistics

Estimation

In this section, while works of LDP are previously reviewed, we continue to review

related works from two aspects: federated learning and the crossover works between

LDP and federated learning. On this basis, we also introduce the base of this work.

2.3.1 Federated Learning

Federated learning [72, 150], as a decentralized machine learning paradigm, allows

participants to collectively train a global model without data transfer. Until now, a

large body of FL works have been proposed, including efficiency improvement [57,112],

federated generative adversarial network [4], medical institution collaboration [116,

117], user profiling [58], benchmark design [60], and knowledge transfer [59].

Without loss of generality, we adopt the basic algorithm of FL, a.k.a, FedAvg [90]

for both analysis and experiments in this paper. As for privacy protection, we follow

the common practice of existing works and adapt LDP to DP-SGD (LDP-SGD) [1].

The seminal work on FL convergence analysis [80] provides us with a theoretical

foundation to analyze the impact of LDP noise on FL.
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2.3.2 Integrating LDP with FL (Federated LDP-SGD)

As DP can defend federated learning against various inference attacks, their inte-

gration has led to flourishing outcomes in recent years. For example, Triastcyn et

al. [129] consider federated reinforcement learning under DP noise. Ruan et al. [108]

provide a practical federated DP-SGD framework under secure multi-party compu-

tation protocols. Geyer et al. [50] study the client-level federated DP-SGD. Seif et

al. [114] apply federated LDP-SGD to wireless systems.

Relevant to our work are those on utility analysis and enhancement. For convergence

analysis, Wei et al. [141] investigate FL convergence under LDP noise while Kim et

al. [70] propose similar analysis under LDP noise. For utility enhancement, Liu et

al. [86] optimize federated machine learning under LDP with top-k selection.

However, existing works have serious limitations. First, they are confined to Gaussian

mechanism and thus lack of generality. Second, since these works are unable to

accurately model the noisy training process, their analysis can only provide extremely

loose bounds and thus make trivial conclusions, e.g., there is a trade-off between

privacy budget and convergence rate. Third, their optimization is only effective under

a large privacy budget, but leads to controversial results when applied to real world,

where the privacy budget is usually limited.

Up to now, even under the relaxed LDP setting, there is no existing work that provides

non-trivial analysis on federated LDP-SGD, let alone a general optimizer for it. Our

thesis fits in this niche by accurately modeling the noisy training process as well as

enhancing the utility of federated LDP-SGD.
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Chapter 3

Preliminary

In this chapter, we introduce backgrounds of private data mining, and formulate

problems to be addressed. In specific, we present , respectively.

3.1 Basic Concepts

3.1.1 Differential Privacy

Differential Privacy (DP) is a mathematical framework that quantifies the privacy

preservation. Formally, (ϵ, δ)-DP is defined as follows:

Definition 1. ((ϵ,δ)-DP). A randomized algorithm M : D → R satisfies (ϵ,δ)-DP if

for all datasets D and D′ differing on a single element, and for all subsets S of R,

the following inequality always holds:

Pr[M(D) ∈ S] ≤ eϵ × Pr[M(D′) ∈ S] + δ. (3.1)

In essence, DP guarantees that given any outcome of M, it is unlikely for any third

party to infer the original record with high confidence. Privacy budget ϵ controls

the level of preservation. Namely, a lower ϵ means stricter privacy preservation and
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thus poorer efficiency, and vice versa. δ determines the probability of not satisfying

ϵ preservation.

To determine the noise scale for DP, we measure the maximum change of M in terms

of L2-norm as:

Definition 2. (L2-sensitivity). The L2-sensitivity of M is:

∆M = max
∥D−D′∥1=1

∥M(D)−M(D′)∥2. (3.2)

While tradition DP only provides a uniform privacy guarantee for all data, Rényi DP

(RDP) otherwise allows varying privacy guarantees depending on the data distribu-

tion and can therefore provide tighter privacy bounds for DP-SGD.

Definition 3. (Rényi DP). Rényi DP (RDP) is a generalization of (ϵ, δ)-DP that

uses Rényi divergence as a distance metric. The Rényi divergence of order α between

two distributions P and Q is defined as:

Dα(P ||Q) =
1

α− 1
logEx∼P

[(
P (x)

Q(x)

)α−1
]
. (3.3)

A model satisfies (α, ϵ)-RDP if

Dα(M(D)||M(D′))

=
1

α− 1
logEx∼M(D)

[(
Pr [M(D) = x]

Pr [M(D′) = x]

)α−1
]
≤ ϵ.

(3.4)

It can be proved [106] that an (α, ϵ)-RDP guarantee is equivalent to an
(
ϵ+ log(1/δ)

α−1
, δ
)
-

DP guarantee for any δ ∈ (0, 1). As log(1/δ)
α−1

> 0 always holds, RDP provides tighter

privacy bounds than (ϵ, δ)-DP.

Through out the thesis, we follow the common practice of existing works [1, 46] and

use Gaussian mechanism [36] for differentially private tasks.

Gaussian Mechanism. The perturbed value of Gaussian mechanism is g∗ = g +

Gau(0, 2∆M ln 1.25
δ
/ϵ2), where Gau denotes a random variable that follows Gaussian
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distribution with probability density function:

f(x) =
1

σ
√
2π

exp(−(x− µ)2

2σ2
). (3.5)

Referring to the standard deviation of Gau(0, 2 ln 1.25
δ
/ϵ2) as the noise multiplier

σ, the noise scale of Gaussian mechanism is ∆Mσ [36].

3.1.2 Local Differential Privacy

While DP preserves records of a dataset, local differential privacy (LDP) main-

tains each user’s information. In LDP, let n denote the number of users and tuple

ti (1 ≤ i ≤ n) denote the i-th user’s private data. To ensure privacy, each tuple ti is

locally perturbed into t∗i by a certain perturbation mechanism M. Afterwards, only

perturbed tuples {t∗i |1 ≤ i ≤ n} are sent to the data collector. Given the privacy

budget ϵ > 0 which indicates the privacy protection level, ϵ-local differential privacy

is formally defined as follows:

Definition 4. (ϵ-local differential privacy) A randomized perturbation mechanism

M satisfies ϵ-local differential privacy if and only if for any pair of tuples ti, tj, the

following inequality always holds:

Pr (M (ti) = t∗)

Pr (M (tj) = t∗)
≤ exp (ϵ) (3.6)

In essence, LDP guarantees that given prior knowledge t∗, it is unlikely for the data

collector to identify the data source with high confidence. Privacy budget ϵ controls

the trade-off between privacy protection level and utility. Lower privacy budget means

stricter privacy preservation and therefore poorer utility. We then introduce three

representative LDP mechanisms.

Laplace mechanism. As a classic LDP mechanism, the advantage of Laplace mecha-

nism [35] is its simplicity. Given a one-dimensional value ti in the range of [−1, 1], the

perturbed value is t∗i = ti + Lap(2/ϵ), where Lap(λ) denotes a random variable that
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follows Laplace distribution with probability density function f(x) = 1
2λ

exp(− |x|
λ
).

Note that the variance of Lap(λ) is 2λ2 [74]. To extend it to high-dimensional val-

ues, each dimension is perturbed independently with a random variable Lap(2m/ϵ)

to guarantee ϵ-LDP. Since Laplace noise has zero mean, the data collector only needs

to average all received tuples to achieve an unbiased mean estimation.

Generally, Laplace mechanism represents a class of LDP mechanisms [35, 49, 120],

where the noise added to the original value ranges from negative to positive infinity.

In this work, they are referred to as “unbounded mechanisms”.

Piecewise mechanism. In one-dimensional Piecewise mechanism [134], the per-

turbed value t∗ of an original value t ∈ [−1, 1] follows the distribution below:

Pr(t∗) =


eϵ−eϵ/2

2eϵ/2+2
t∗ ∈ [l(t), r(t)]

1−e−ϵ/2

2eϵ/2+2
t∗ ∈ [−Q, l(t)) ∪ (r(t), Q]

, (3.7)

where

Q =
eϵ + eϵ/2

eϵ − eϵ/2

l(t) =
Q+ 1

2
t− Q− 1

2

r(t) = l(t) +Q− 1

(3.8)

In high-dimensional space, similar to Laplace mechanism, each reporting dimension

independently carries out ϵ/m-LDP. In contrast to Laplace mechanism, Piecewise

mechanism perturbs the original value into a bounded domain [−Q,Q], so such mech-

anisms are referred to as “bounded mechanisms”.

Square wave mechanism. This is yet another “bounded” LDP mechanism that

improves Piecewise with more concentrated perturbation [83]. In its one-dimensional

form, for any original value t ∈ [0, 1], the perturbed value t∗ ∈ [−b, b+ 1] follows the

distribution as below:

Pr(t∗) =


eϵ

2beϵ+1
if |t− t∗| < b

1
2beϵ+1

otherwise

, (3.9)
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where b = ϵeϵ−eϵ+1
2eϵ(eϵ−1−ϵ)

. The ϵ-LDP is ensured by two probabilities eϵ

2beϵ+1
/ 1
2beϵ+1

= eϵ.

Similar to Piecewise mechanism, in high-dimensional space, each reporting dimension

carries out ϵ/m-LDP perturbation.

3.1.3 Differentially Private Stochastic Gradient Descent (DP-

SGD)

SGD (stochastic gradient descent) is one of the most widely used optimization tech-

niques in machine learning [15]. LetD be the private dataset, andw denote the model

parameters (a.k.a the training model). Given S ⊆ D and S =
{
s1, s2, ..., s(B−1), sB

}
(B denoting the number of data in S), the objective F (w) can be formulated as:

F (w;S) =
1

B

B∑
j=1

l(w; sj). (3.10)

where l(w; sj) is the loss function trained on one subset data sj to optimize w.

To optimize this task, we follow the common practice of existing works and use mini-

batch stochastic gradient descent (SGD) [77]. Given the total number of iterations

T , wt =
(
wt1,wt2, ...,wt(d−1),wtd

)
(0 ≤ t ≤ T − 1) denotes a d-dimensional model

weight derived from the t-th iteration (where t = 0 is the initiate state). While using

η to denote the learning rate, we have the gradient gt of the t-th iteration:

gt = ∇F (wt;S) =
1

B

B∑
j=1

∇l(w; sj) =
1

B

B∑
j=1

gtj. (3.11)

where ∇l =
(

∂l
∂w1

, ∂l
∂w2

, ..., ∂l
∂wd−1

, ∂l
∂wd

)
, and respective gradients

{
gtj|1 ≤ j ≤ B

}
are

derived from respective data {sj|1 ≤ j ≤ B} of the batch. The t-th iteration updates

the model weight wt+1 as: wt+1 = wt − ηgt.

wt+1 = wt − ηgt (3.12)

By tuning the batch size B, the analysis on this optimization technique also applies

to its variants. For example, if B = |D|, it is equivalent to the batch gradient descent
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[16]; if B = 1, it is equivalent to the stochastic gradient descent [15]. Throughout

this thesis, we abbreviate mini-batch stochastic gradient descent and its variants

collectively as SGD.

SGD is known to have an intrinsic problem of gradient explosion [101]. It often occurs

when the gradients become very large during backpropagation, and causes the model

to converge rather slowly. As the most effective solution to this problem, gradient

clipping [101] is also considered in this work. Let ∥g∥ denote the L2-norm of a d-

dimensional vector g = (g1, g2, ..., gd−1, gd), i.e., ∥g∥ =
√∑d

z=1 g
2
z. Assume that G is

the maximum L2-norm value of all possible gradients for any weight w derived from

any subset S, i.e., G = supw∈Rd,S∈D E [∥g∥]. Then each gradient g is clipped by a

clipping threshold C ∈ (0, G]. Formally, the clipped gradient g̃ is:

g̃ =
g

max {1, ∥g∥ /C}
. (3.13)

Another advantage of clipping is to reduce the sensitivity of a gradient, which there-

fore decreases the noise addition in DP-SGD. The most recent state-of-the-art work

proposes AUTO-S [17] for automatic clipping, which conducts clipping as follows:

g̃ =
g

∥g∥+ 0.01
. (3.14)

Applying Equation 3.13 to Equation 3.11, we derive the clipped gradient from the

t-th iteration as:

g̃t =
1

B

B∑
j=1

g̃tj. (3.15)

3.1.4 Federated Averaging and Optimization Techniques

This work conducts analysis on the first and perhaps the most widely used FL

algorithm, FedAvg (Federated Averaging) [90]. In FedAvg, the global objective

is the weighted average of local objectives. Let N denote the number of local

devices, and each device possesses a local dataset Dk(1 ≤ k ≤ N). Then, we
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use wk (1 ≤ k ≤ N) to denote the local parameters (a.k.a the local model) in k-

th local device. Given Sk ⊆ Dk and Sk =
{
sk1, sk2, ..., sk(B−1), skB

}
(where B

denotes the number of data in Sk), the local objective Fk(w) can be formulated

as Fk(w;Sk) = 1
B

∑B
j=1 l(w; skj), where l(w; skj) is the user-specified loss function

trained on one subset data skj to optimize wk. Given that pk is the weight of k-th

device such that pk > 0 and
∑N

k=1 pk = 1, we consider the global optimization task:

minw

{
F (w) =

∑N
k=1 pkFk(w;Sk)

}
.

To optimize this task, we follow the common practice of existing works and use mini-

batch stochastic gradient descent (SGD) [77] for further analysis and experiments.

Given the total number of local iterations T , wt
k =

(
wt

k1,w
t
k2, ...,w

t
k(d−1),w

t
kd

)
(0 ≤ t ≤ T − 1) denotes a d-dimensional local weight vector (a.k.a the local model)

derived from the t-th local iteration at the k-th local device (where t = 0 is the

initiate state). Besides, we use ηt to denote the learning rate in the t-th local iter-

ation. Then we have the gradient gt
k of the t-th local iteration: gt

k = ∇Fk(w
t
k;Sk)

, where ∇Fk(w) =
(

Fk

∂w1
, Fk

∂w2
, ..., Fk

∂wd−1
, Fk

∂wd

)
. Given ∇t

k = ∇Fk(w
t
k;Dk), we have

E(gt
k) = E(Fk(w

t
k;Sk)) = ∇t

k. The t-th local iteration updates local weight wt+1
k as:

wt+1
k = wt

k − ηtgt
k (3.16)

3.2 Problem Definition

3.2.1 High-dimensional Statistics Estimation

In high-dimensional settings, each ti consists of d numerical dimensions ti1, ti2, . . . , tid.

Without loss of generality, we focus on mean estimation throughout this thesis and

assume that the domain of any dimension ranges from [−1, 1]. Unless otherwise

specified, we respectively use E(·) and V ar(·) to denote the expectation and the

variance of a random variable.
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3.2. Problem Definition

Mean Estimation. We follow a common and general approach for LDP mechanisms

to support high-dimensional data [33, 98, 134, 137]. Given a total privacy budget ϵ,

each user randomly reports m(1 ≤ m ≤ d) dimensions of her perturbed data to the

collector, with budget ϵ/m allocated to each dimension so that ϵ-LDP still holds. Let

rj denote the number of reports that the data collector receives in the j-th dimension,

and obviously E(ri) = nm
d

because randomly reporting m out of d dimensions from n

users’ data is statistically equal to reporting d dimensions from nm
d

users. The data

collector aggregates and estimates the mean of the j-th dimension as θ̂j =
1
rj

∑rj
i=1 t

∗
ij,

so the estimated d-dimensional mean is θ̂ = (θ̂1, θ̂2, ..., θ̂d−1, θ̂d)
⊺. Note that the

original mean of users is θ̄ = 1
n

∑n
i=1 ti. Our objective is for the estimated mean θ̂

to be as close to the original mean θ̄ as possible. Therefore, we adopt the following

utility metrics which can measure their difference.

Utility Metrics. Theoretically, their difference can be measured by the Euclidean

distance, i.e.,

∥θ̂ − θ̄∥2 =

√√√√ d∑
j=1

|θ̂j − θ̄j|2 (3.17)

Following [35, 83, 134], we adopt mean square error (MSE) to measure experimental

error, namely, the average squared difference between estimated means and original

means over all dimensions, i.e.,

MSE(θ̂) =
1

d

d∑
j=1

|θ̂j − θ̄j|2 (3.18)

Applying Equation 3.17 to Equation 3.18, we have MSE(θ̂) = 1
d
∥θ̂ − θ̄∥22, which

indicates that the theoretical analysis on ∥θ̂−θ̄∥2 can predict how MSE varies without

conducting any experiment.
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Chapter 3. Preliminary

3.2.2 Private Learning Analysis and Enhancement

As shown in Algorithm 1, in each iteration of DP-SGD, wt+1 is perturbed to w∗
t+1

by adding DP noise nt to the sum of g̃tj. Let g∗
t denote the perturbed gradient.

Formally,

g∗
t =

1

B
(

B∑
j=1

g̃tj + nt) = g̃t + nt/B,

w∗
t+1 = wt − ηg∗

t .

(3.19)

Accordingly, the following definition establishes the measurement for model efficiency

(ME). Obviously, a smaller ME means a better model efficiency.

Definition 5. (Model Efficiency (ME)). Suppose there exists a global optima w⋆,

the model deficiency can be measured by the Euclidean Distance between the current

model w∗
t+1 and the optima w⋆, i.e.,

Model efficiency (ME) =
∥∥w∗

t+1 −w⋆
∥∥2 . (3.20)

Besides, it is essential to control the overall privacy cost in the whole training process.

For Laplace mechanism, only composition theorem [68] is applicable. For Gaussian

mechanism, on the other hand, the moments accountant [1] is an economic method

to measure the collective privacy cost.

Definition 6. (Moments Accountant). Suppose a model is trained for T iterations

with a batch size B on a dataset of size |D|. For any ϵ < c1B2T
N2 , there exists such

constants c1 and c2 that the model is (ϵ, δ)-DP for any δ > 0 if we choose the noise

multiplier σ to be:

σ ≥ c2
B
√
T log(1/δ)

|D|ϵ
. (3.21)

To accumulate the overall privacy cost of the training process, composition theorem

of RDP [68] is applicable. As having to validate the optimality of GeoDP over DP on

preserving the descent trend, we follow the common practice [134] and adopt mean
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3.2. Problem Definition

square error (MSE) to measure the error on perturbed directions. In general, a larger

MSE means a larger perturbation.

Definition 7. (Mean Square Error (MSE)). Considering the perturbed directions{
θ∗
1,θ

∗
2, ...,θ

∗
m−1,θ

∗
m

}
and the original directions {θ1,θ2, ...,θm−1,θm} of m gradients,

MSE of perturbed directions is defined as follows:

MSE(θ∗) =
1

m

m∑
i=1

∥θ∗
i − θi∥22. (3.22)

The problem in this work is to investigate the impact of DP noise nt on the SGD

efficiency, i.e.,
∥∥w∗

t+1 −w⋆
∥∥2, and further optimize the model efficiency by reducing

the noise on the direction of a gradient, i.e., reducing MSE(θ∗).

Algorithm 1 DP-SGD

Input: Batch size B, noise multiplier σ, clipping threshold C, learning rate η, total

number of iterations T .

Output: Trained model parameters wT .

1: Initialize a model with parameters w0.

2: for t = 0 to T − 1 do

3: Derive the average clipped gradient g̃t with respect to the sampled subset

S ∈ D and the clipping threshold C.

4: Add noise nt drawn from a zero-mean Gaussian distribution with standard

deviation σCI to g̃t, i.e., g
∗
t = g̃t+nt/B, where nt is jointly determined by both

σ and C.

5: Update w∗
t+1 by taking a step in the direction of the noisy gradient, i.e.,

w∗
t+1 = wt − ηg∗

t .

6: end for
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Chapter 3. Preliminary

3.2.3 Model Efficiency of Federated LDP-SGD

For crossovers works between private learning and statistics estimation, without loss of

generality, we consider FedAvg under SGD with LDP noise, as indicated in Algorithm

2. Before global aggregation, wt+1
k is perturbed to wt+1∗

k by adding LDP noise nt
k

to g̃t
k, before being sent to the central server. Let gt∗

k denote the perturbed local

gradient. Formally, gt∗
k = g̃t

k + nt
k. On receiving local perturbed models from all

devices, the central server aggregates them to obtain the current global model wt+1∗.

Suppose there exists a global optima w⋆, the convergence can be measured by the

Euclidean Distance between the current global model wt+1∗ and the optima w⋆,

i.e., ∥wt+1∗ −w⋆∥2. Given the convergence of federated SGD ∥wt+1 −w⋆∥2, their

difference ∥wt+1∗ −w⋆∥2 − ∥wt+1 −w⋆∥2 reflects the model efficiency of federated

LDP-SGD. In specific, the smaller difference means better efficiency, and vice versa.

The problem in this work is to first theoretically model this difference in terms of

various LDP mechanisms. Then we identify the negative impact of LDP perturbation

and accordingly optimize model efficiency.
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3.2. Problem Definition

Algorithm 2 Federated LDP-SGD

1: Input: Initiate global model w0, LDP noise nt
k, training rounds T/E, local

dataset Dk, learning rate ηt.

2: Output: The updated global model wt+1∗.

3: Initialize global model parameters w0.

4: for each round T/E = 1, 2, . . . do

5: for each local device k do

6: Send current global updates wt to device k.

7: Device k trains a local model with SGD on its dataset Dk using wt
k, and

obtains the local perturbed model wt+1∗
k = wt

k − ηt(g̃ + nt
k).

8: Send local perturbed update wt+1∗
k to the server.

9: end for

10: Server aggregates the local models using a weighted average: wt+1∗ =∑N
k=1 pkw

t+1∗
k .

11: end for

27



Chapter 4

Analyzing and Enhancing LDP

Mechanisms in High-dimensional

Space

While frequently-used notations are listed in Table 4.1, this chapter introduce our

general toolbox LDPTube (see Figure 4.1 for overview), which generally analyzes

and enhances utilities of various LDP mechanisms in high-dimensional space. In

recent years, with growing number of IoT and smart devices, a huge amount of data

becomes more accessible than ever [7, 51, 84, 88, 104]. Thanks to the advancement

of modern machine learning and deep learning technologies, service providers and

researchers nowadays can get insight into users’ behavior and intention with simple

clicks. However, together with the prevalence of these technologies emerge privacy

concerns during the collection of sensitive data about users. To balance data utility

and privacy disclosure, an effective and highly recognized solution is local differential

privacy (LDP) [32, 105, 151], where the data collector only collects perturbed data

from users.

Nevertheless, existing LDP mechanisms mostly focus on low-dimensional data, mainly
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because the statistics estimated in high-dimensional space have low accuracy. As users

only authorize a limited privacy budget to the collector, the allocated privacy budget

in each dimension is diluted as the number of dimensions increases, which leads to

more information loss and poorer statistics accuracy. Although much attention has

been paid to develop less perturbed LDP mechanisms for multi-dimensional data

[49,83,120,134], they are still not applicable in high-dimensional space.

In this chapter, we first propose an analytical framework that generalizes LDP mech-

anisms and derives their utilities in high-dimensional space, namely the probability

density function of the deviation between the estimated mean and the true mean.

The framework can serve as a benchmark to compare the utilities of various LDP

mechanisms without conducting any experiment. Furthermore, our analysis shows

the sub-optimality of the naive aggregation method of all LDP mechanisms — the

utility deterioration is attributed to the overwhelming noise caused by diluted pri-

vacy budget in high-dimensional space. As such, our second contribution in this

chapter is a one-off, non-iterative re-calibration protocol HDR4ME (acronym for

High-Dimensional Re-calibration for Mean Estimation). Through regularization and

proximal gradient descent, this protocol re-calibrates the aggregated mean obtained

from any LDP mechanism by suppressing the overwhelming noise and thus enhances

its utility. Without any change on the LDP mechanism itself, HDR4ME can be used

as a general optimizer of existing LDP mechanisms in high-dimensional space.

The rest of this chapter is organized as follows. We introduce the analytical frame-

work for high-dimensional LDP mechanisms in Section 4.1 and propose our mean

estimation protocol in Section 4.2. Extensive experimental results are demonstrated

in Section 4.3, and summaries are made in Section 4.4.
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Chapter 4. Analyzing and Enhancing LDP Mechanisms in High-dimensional Space

Table 4.1: Notations

Symbol Meaning

n number of users

d number of dimensions

M perturbation mechanism

ti user’s private tuple

t∗i user’s perturbed tuple

m number of sampled dimensions

r aggregator’s received reports

θ̄ original mean

θ̂ estimated mean

θ∗ enhanced mean

L loss function

R regularizer

λ∗ regularization weight

30



Data Collector Side 

Statistics

Advise the best  
LDP mechanism

Phase ①  Benchmark

User Side

Original Tuple
1 6 3 7 5

3 5 2 9 2

Perturbed Tuple
7 4 2 1 9

3 6 3 5 1

Perturb

Phase ②  
Enhancement
HDR4ME*

Aggregate

LDPTube

Figure 4.1: Overview of LDPTube.

31



Chapter 4. Analyzing and Enhancing LDP Mechanisms in High-dimensional Space

4.1 A General Analytical Framework

In this section, we present our general framework for high-dimensional LDP mech-

anisms. As aforementioned, we first use a boolean Bound to denote whether the

perturbation of a certain LDP mechanism M has a finite “boundary” B. Then a

d-dimensional LDP mechanism with privacy budget ϵ is generalized as follows:

• Perturbation: Each user has a private tuple ti (1 ≤ i ≤ n), among which m di-

mensional values are perturbed and reported. For each dimension j (1 ≤ j ≤ d),

the mechanism obfuscates tij to t∗ij with budget ϵ/m. If Bound(M) = 1, the

perturbed tuple satisfies t∗i = M(ti) ∈ [−B,B]d, where B is a both positive

and finite value. Otherwise, the perturbed tuple satisfies t∗i = M(ti) = ti+N i,

where N i denotes a random tuple from Rd.

• Calibration: In each dimension j, the data collector receives rj reports, where

r = E(rj) = nm
d
. Letting δij denote the bias of E(t∗ij), we have δij = E(t∗ij−tij).

Accordingly, the collector calibrates the perturbed values by δij. Note that

δij = 0 carries out unbiased estimation.

• Aggregation: For mean estimation in j-th dimension, the mechanism averages

all calibrated values to obtain the estimated mean θ̂j =
1
rj

∑rj
i=1 t

∗
ij.

Under this framework, we analyze the utility of high-dimensional LDP mechanisms

based on the theoretical distance between the original mean θ̄ and the estimated

mean θ̂ using Lindeberg–Lévy Central Limit Theorem (CLT) [43, 115]. Since each

dimension is independently perturbed, we first model the deviation θ̂j − θ̄j in one

dimension.

Lemma 1. For any M and ϵ/m, V ar(t∗ij) and δij are deterministic if Bound(M) = 0

while correlated to tij if Bound(M) = 1.
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Proof. If Bound(M) = 0, V ar(t∗ij) = V ar(tij + N ij) = V ar(tij) + V ar(N ij) =

V ar(N ij) while δij = E(t∗ij−tij) = E(N ij). Since N ij follows one perturbation, both

V ar(t∗ij) and δij are independent of tij. If Bound(M) = 1, different tij correspond

with different perturbations. Otherwise, t∗ij would be totally independent from tij.

In this case, V ar(t∗ij) and δij depend on tij.

Lemma 1 derives some common properties on V ar(t∗ij) and δij. Given M and ϵ/m,

V ar(t∗ij) and δij are certain functions of ϵ/m if Bound(M) = 0. Otherwise, they are

certain functions of both ϵ/m and tij. As long as the perturbation is known, we are

able to provide V ar(t∗ij) and δij considering V ar(t∗ij) = E(t∗ij2) − E2(t∗ij) and δij =

E(t∗ij − tij). For further utility analysis, we assume that V ar(t∗ij) and δij are already

provided given certain M and ϵ/m. Because lim
rj→∞

(
1
rj

∑rj
i=1 tij − 1

n

∑n
i=1 tij

)
= 0, the

deviation θ̂j − θ̄j can be simplified if rj → ∞:

lim
rj→∞

θ̂j − θ̄j

= lim
rj→∞

(
1

rj

rj∑
i=1

t∗ij −
1

n

n∑
i=1

tij

)

= lim
rj→∞

(
1

rj

rj∑
i=1

t∗ij −
1

rj

rj∑
i=1

tij +
1

rj

rj∑
i=1

tij −
1

n

n∑
i=1

tij

)

= lim
rj→∞

1

rj

rj∑
i=1

(
t∗ij − tij

)
.

(4.1)

Suppose that X is a random variable following standard normal distribution X ∼

N (0, 1), and its probability density function is ϕ(x) = 1√
2π

exp(−x2

2
), the following

two lemmas establish the asymptotic distribution of the deviation in one dimension.

Lemma 2. lim
rj→∞

θ̂j − θ̄j ∼ N
(
E(N ij),

V ar(N ij)

rj

)
, if Bound(M) = 0.

Proof. For ∀j,
{
t∗ij − tij|1 ≤ i ≤ rj

}
are independent and identically distributed (i.i.d.)

random variables because t∗ij−tij = N ij. According to Lindeberg–Lévy Central Limit
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Theorem [43, 115], the following probability holds:

lim
rj→∞

Pr

 1
rj

∑rj
i=1(t

∗
ij − tij)− E(t∗ij − tij)√
V ar(t∗ij − tij)/rj

≤ X


= lim

r→∞
Pr

(
θ̂j − θ̄j − E(N ij)√

V ar(N ij)/rj
≤ X

)

=

∫ X

−∞
ϕ(x)dx.

(4.2)

Thus, lim
rj→∞

θ̂j−θ̄j−E(N ij)√
V ar(N ij)/rj

follows standard normal distribution N (0, 1), by which our

claim is proven.

In Lemma 1, both V ar(t∗ij) = V ar(N ij) and δij = E(N ij) are deterministic if

Bound(M) = 0. On this basis, we could approximate θ̂j−θ̄j using a specific Gaussian

distribution N (E(N ij), V ar(N ij)/rj) if Bound(M) = 0.

However, it is rather challenging if Bound(M) = 1. Lemma 1 proves that differ-

ent original values follow different perturbations if Bound(M) = 1. Consequently,{
t∗ij − tij|1 ≤ i ≤ rj

}
are probably not identically distributed, which does not satisfy

the prerequisite of CLT [43,115].

Nevertheless, we are still able to use one Gaussian distribution to approximate the

summation of elements in any particular subset
{
t∗ij − tij

}
, where all original data

have the same value, and therefore CLT can be applied. Note that
{
t∗ij − tij|1 ≤ i ≤ rj

}
can be divided into several particular subsets by different original values. Let {vj|1 ≤ j ≤ d}

denote numbers of different original values in each dimension,
{
pzj|

∑vj
z=1 pzj = 1

}
de-

note their corresponding probabilities. As regards original data following continuous

distribution, we discretize them with sampling. The following lemma establishes the

asymptotic distribution of the deviation in one dimension if Bound(M) = 1, where

we assume
{
t∗ij|1 ≤ i ≤ rj, 1 ≤ j ≤ d

}
is in ascending order in each dimension.

Lemma 3. lim
rj→∞

θ̂j−θ̄j ∼ N
(
E(δij),

E(V ar(t∗ij))

rj

)
, where E(δij) =

∑vj
z=1 pzjδ(

∑z
o=1 rjpoj)j

and E(V ar(t∗ij)) =
∑vj

z=1 pzjV ar
(
t∗(

∑z
o=1 rjpoj)j

)
, if Bound(M) = 1.
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Proof. For 1 ≤ c ≤ vj, the original data in
{
tij|rj

∑c−1
z=1 pzj < i ≤ rj

∑c
z=1 pzj

}
share

the same value. Therefore,
{
t∗ij − tij|rj

∑c−1
z=1 pzj < i ≤ rj

∑c
z=1 pzj

}
are i.i.d. random

variables. According to Lindeberg–Lévy Central Limit Theorem [43,115], the following

probability holds if rj approaches ∞:

Pr

∑rj
∑c

z=1 pzj

i=rj
∑c−1

z=1 pzj+1

(
t∗ij − tij − E(t∗ij − tij)

)
√

V ar(t∗ij − tij)rjpcj

≤ X


= Pr

∑rj
∑c

z=1 pzj

i=rj
∑c−1

z=1 pzj+1

(
t∗ij − tij − δij

)
√
V ar(t∗ij)rjpcj

≤ X


=

∫ X

−∞
ϕ(x)dx.

(4.3)

Therefore,

∑rj
∑c

z=1 pzj

i=rj
∑c−1

z=1 pzj+1
(t∗ij−tij−δij)

√
V ar(t∗ij)rjpcj

approximately follows standard normal distribu-

tion N (0, 1). Next, we use Mathematical Induction to complete the proof.

For c = 1, Equation 4.3 establishes
∑rjp1j

i=1 (t∗ij − tij − δij) ∼ N (0, rjp1jV ar(t∗(rjp1j)j
)).

Suppose that
∑rj

∑c
z=1 pzj

i=1 (t∗ij − tij − δij) ∼ N (0,
∑c

z=1 rjpzjV ar(t∗(∑z
o=1 rjpoj)j

)) holds

for 1 < c < vj, we have the following for rj → ∞:

rj
∑c+1

z=1 pzj∑
i=1

(t∗ij − tij − δij) =

rj
∑c

z=1 pzj∑
i=1

(t∗ij − tij − δij)

+

rj
∑c+1

z=1 pzj∑
i=rj

∑c
z=1 pzj+1

(t∗ij − tij − δij).

(4.4)

According to Equation 4.3,
∑rj

∑c+1
z=1 pzj

i=rj
∑c

z=1 pzj+1(t
∗
ij−tij−δij) followsN ∼ (0, rjp(c+1)jV ar(t∗ij)).

Given Y ∼ N (µ1, σ
2
1) and Z ∼ N (µ2, σ

2
2), Y + Z ∼ N (µ1 + µ2, σ

2
1 + σ2

2) [78]. There-

fore, we prove that for 1 < c < vj and rj → ∞,

rj
∑c+1

z=1 pzj∑
i=1

(t∗ij − tij − δij)

∼ N

(
0,

c+1∑
z=1

rjpzjV ar(t∗(∑z
o=1 rpoj)j

)

)
.

(4.5)
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Letting c = vj − 1, if rj approaches ∞, we have:

Pr

 θ̂j − θ̄j − E(δij)√∑vj
z=1 pzjV ar(t∗(∑z

o=1 rjpoj)j
)/rj

≤ X


=Pr

∑rj
i=1(t

∗
ij − tij)−

∑vj
z=1 rjpzjδ(

∑z
o=1 rjpoj)j√∑vj

z=1 rjpzjV ar(t∗(∑z
o=1 rjpoj)j

)
≤ X


=Pr

 ∑rj
i=1(t

∗
ij − tij − δij)√∑vj

z=1 rjpzjV ar(t∗(∑z
o=1 rjpoj)j

)
≤ X


=

∫ X

−∞
ϕ(x)dx.

(4.6)

by which our claim is proven.

Note that E(δij) and E(V ar(t∗ij)) computes the expectations of δij and V ar(t∗ij)

in terms of t∗ij. In general, Lemma 2 and Lemma 3 establish that no matter how

the original data is distributed, θ̂j − θ̄j always approximates a normal distribution.

However, its variance is split into two cases. If Bound(M) = 0, it is only decided by

the distribution of perturbation; otherwise, it is collectively decided by distributions

of both perturbation and original data. As such, given a certain dataset and a budget,

we can model how θ̂j − θ̄j varies in terms of any mechanism.

What if multiple or even high dimensions? Note that each dimension is independently

perturbed with privacy budget ϵ/m. As each dimension of the deviation approximates

a one-dimensional normal distribution, we can model the deviation θ̂ − θ̄ with one

multivariate normal distribution. Following Lemma 2 or Lemma 3, for 1 ≤ j ≤

d, θ̂j − θ̄j approximates a normal distribution whose probability density function

is f(θ̂j − θ̄j) = 1√
2πσj

exp(− (θ̂j−θ̄j−δj)
2

2σ2
j

). Then the following theorem models the

deviation in high-dimensional space.

Theorem 1. For any high-dimensional LDP mechanism, the probability density func-
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tion (pdf) of θ̂ − θ̄ is:

lim
r→∞

f(θ̂ − θ̄) =
1

(
√
2π)d

∏d
j=1 σj

exp

(
−

d∑
j=1

(θ̂j − θ̄j − δj)
2

2σ2
j

)
. (4.7)

Proof. Since each dimension is perturbed independently, we have:

f(θ̂ − θ̄) =
d∏

j=1

f(θ̂j − θ̄j) =
d∏

j=1

1√
2πσj

exp(−
(θ̂j − θ̄j − δj)

2

2σ2
j

)

=
1

(
√
2π)d

∏d
j=1 σj

exp(−
d∑

j=1

(θ̂j − θ̄j − δj)
2

2σ2
j

).

(4.8)

As this pdf models how θ̂− θ̄ varies in high-dimensional space, we can accommodate

almost all utility metrics for comparisons, including the supremum of the deviation.

To benchmark different LDP mechanisms, intuitively the smallest supremum of the

deviation sup ∥θ̂− θ̄∥2 should have the best utility. However, due to the randomness

in LDP mechanisms, the absolute supremum can be infinity. As such, the data

collector can manually specify the supremum of deviation she wants to tolerate, and

then calculate the corresponding probability for that supremum to hold using this

pdf. Let ξ = (ξ1, ..., ξd)
⊺ =

(
sup

∣∣∣θ̂1 − θ̄1

∣∣∣ , ..., sup ∣∣∣θ̂d − θ̄d

∣∣∣)⊺ denotes the supremum

and S =
{
θ̂ − θ̄ ∈ Rd : ∀j,

∣∣∣θ̂j − θ̄j

∣∣∣ ≤ ξj

}
denotes the subspace bounded by the

supremum, then the integral of the pdf
∫
S
f(θ̂ − θ̄)d(θ̂ − θ̄) is the probability of the

deviation within the supremum. Accordingly, the LDP mechanism with the highest

probability is considered the best in high-dimensional space. Note that different

supremum settings can lead to different winners.

4.1.0.1 Saving The Burden of Choosing Parameters

There are three issues in the previous benchmark. First, the supremum of deviation

is required as an input parameter for utility benchmark and comparison. However,
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the data collector, who has no access to the original dataset, can hardly determine a

precise supremum, which makes the benchmark less practical. Second, as the popu-

lation may vary from time to time, the data collector has to constantly re-benchmark

different LDP mechanisms in order to choose the best. Third, the baseline benchmark

can only output the probability of the deviation exceeding the supremum, which is

different from the prevalent utility metrics of LDP mechanisms, such as mean square

error (MSE). The misalignment may cause wrong comparison result if MSE is the

actual utility metric aimed by the collector.

To address these issues, in this subsection we propose a non-parametric benchmark

which outputs MSE directly, as MSE is more prevalent than MAE (mean absolute

error). Furthermore, it can also derive the break-even point of two LDP mechanisms

in terms of population to avoid re-benchmark during user change.

Now that Theorem 1 models how θ̂ − θ̄ varies in high-dimensional space, we can

accommodate MSE as the utility metric for estimated mean. In each dimension j, we

have:

E
{(

θ̂j − θ̄j

)2}
=E

{[(
θ̂j − E

(
θ̂j

))
+
(
E
(
θ̂j

)
− θ̄j

)]2}
=E

{(
θ̂j − E

(
θ̂j

))2}
+ E

{(
E
(
θ̂j

)
− θ̄j

)2}
+ 2E

{(
θ̂j − E

(
θ̂j

))(
E
(
θ̂j

)
− θ̄j

)}
=E

{(
θ̂j − E

(
θ̂j

))2}
+ E

{(
E
(
θ̂j

)
− θ̄j

)2}
=V ar(θ̂j) + δ2

j .

(4.9)

In particular, E
{
(θ̂j − E(θ̂j))(E(θ̂j)− θ̄j)

}
= (E(θ̂j)−E(θ̂j))(E(θ̂j)− θ̄j) = 0. Re-

call that the deviation always approximates a Gaussian distribution in our framework.

That is to say, the variance of the estimated mean equivalently approximates that of
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a Gaussian distribution. Namely, V ar(θ̂j) = V ar(θ̂j − θ̄j) = σ2
j . On this basis, we

obtain the MSE of the estimated mean in high-dimensional space:

MSE(θ̂) =E

{
1

d

d∑
j=1

(
θ̂j − θ̄j

)2}

=

∑d
j=1 E

{(
θ̂j − θ̄j

)2}
d

=

∑d
j=1

(
V ar(θ̂j) + δ2

j

)
d

=

∑d
j=1

(
σ2

j + δ2
j

)
d

.

(4.10)

Equation 4.10 harmoniously unifies two common metrics for utility analysis, namely,

estimation bias δ [35, 83, 134], and variance of perturbed values σ [35, 134]. This

indicates that MSE, besides being a popular metric in real-life applications, can also

serve as a more comprehensive metric than bias or variance alone. Taking Square wave

and Piecewise mechanisms for example, the former is biased with a lower variance

of perturbed values [134] while the latter is unbiased with a larger variance [83].

Although a lower variance in Square wave means better utility at the first glance, its

biased estimation can accumulate errors with increasing number of users.

4.1.0.2 Computational Saving Under Population Variation in Practice

Besides relieving the burden of choosing a supremum parameter, this non-parametric

benchmark has another unprecedented advantage. In face of population variation,

it can directly derive the break-even point where two mechanisms perform the same

whereas the previous benchmark has to re-benchmark for each user change.

Recall there are three variables in Equation 3.18, i.e., the number of dimensions,

the bias and the variance of the Gaussian distribution. When deriving the MSE of

an LDP mechanism with fixed privacy budget, the number of dimensions and the

bias are fixed, and only the variance is changed according to user population. Then
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according to either Lemma 2 or Lemma 3, the numerator in the variance of Gaussian

approximation, i.e., the expectation of the perturbed value’s variance, is also fixed

due to fixed LDP mechanism and privacy budget. However, its denominator, i.e., the

number of reports, is proportional to the user population. As such, our benchmark

can be simplified as a function where the input is the number of users and the output

is MSE. By comparing the simplified utility functions of two LDP mechanisms, we

can derive the break-even point of user population, below or above which one better

than the other and vice versa. Based on this break-even point, instead of conducting

re-benchmark from time to time, the data collector could easily tell which mechanism

is better.

In what follows, we use Square wave and Piecewise mechanisms as an example to

derive this break-even point. Following Equation 3.18, the MSE of Square wave is∑d
j=1

(
E(V ar(t∗ij))/rj + δ2

j

)
d

, (4.11)

while that of Piecewise is ∑d
j=1

(
E(V ar′(t∗ij))/rj + δ′2

j

)
d

. (4.12)

Canceling the invariant term d in both MSEs, we only need to compare∑d
j=1

(
E(V ar(t∗ij))/rj + δ2

j

)
and

∑d
j=1

(
E(V ar′(t∗ij))/rj + δ′2

j

)
. Since each dimension

is independently perturbed, we further derive their MSEs in each dimension and make

them equal as the equation below:

E(V ar(t∗ij))/rj + δ2
j = E(V ar′(t∗ij))/rj + δ′2

j . (4.13)

By solving this equation, we derive the report threshold as:

r′j = E
(
V ar′(t∗ij)− V ar(t∗ij)

)
/
(
δ2
j − δ′2

j

)
. (4.14)

Considering the conversion between the number of reports and the number of users

(i.e., r = nm
d
), we finally obtain the population threshold n′

j =
r′jd

m
. That is, in j-th
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dimension, Square wave is the winner if it has a break-even point below n′
j. Otherwise,

the winner is Piecewise. The population threshold can be negative, which means that

Square wave is always better than Piecewise in such setting. The psuedo-code is

Algorithm 3 Theoretical Non-parametric Benchmark for Population Variation

Input: MSE of LDP mechanism A:
∑d

j=1(E(V ar(t∗ij))/rj+δ2j)
d

, MSE of LDP mechanism

B:
∑d

j=1(E(V ar′(t∗ij))/rj+δ′2j )
d

.

Output: The threshold population n′
j in j-th dimension, the comparison result in

high-dimensional space.

1: for j = 1 to d do

2: compute break-even point

n′
j =

E
(
V ar′(t∗ij)− V ar(t∗ij)

)(
δ2
j − δ′2

j

) × d

m
;

3: if n′
j ≤ 0 then

4: B is always the winner in j-th dimension;

5: else if n ≤ n′
j then

6: A is the winner in j-th dimension;

7: else

8: B is the winner in j-th dimension;

9: end if

10: end for

listed in Algorithm 3, which facilitates the data collector to choose the better LDP

mechanism in each dimension. In the next subsection, we provide a comprehensive

case study to demonstrate how to benchmark Square wave and Piecewise with our

benchmark.
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4.1.1 Approximation Error of Theorem 1

Our analytical framework is based on one assumption that the data collector receives

sufficiently large number of reports from users. Otherwise, the central limit theorem

provides an asymptotic approximation of the deviation. In order to find the gap

between the approximated deviation and the true one, we study the approximation

error of θ̂j − θ̄j in terms of the number of reports rj. Suppose the true pdf of θ̂j − θ̄j

is f̄j, its corresponding cumulative distribution function (cdf) would be F̄j(x) =∫ x

−∞ f̄j(θ̂j − θ̄j)d(θ̂j − θ̄j). According to Lemma 2 or Lemma 3, the approximated

pdf of θ̂j − θ̄j is f̂j(θ̂j − θ̄j) =
1√

2πσj
exp(− (θ̂j−θ̄j−δj)

2

2σ2
j

), and its corresponding cdf is

F̂j(x) =
∫ x

−∞ f̂j(θ̂j − θ̄j)d(θ̂j − θ̄j). Then we have:

Theorem 2. For any LDP mechanism, the true cdf F̄j(x) and the approximated

cdf F̂j(x) of θ̂j − θ̄j differ by no more than
0.33554(ρ+0.415(rjσj)

3)

r
7/2
j σ3

j

, where we have ρ =

E
(∣∣t∗ij − tij − δij

∣∣3).
Proof. As necessary prerequisites, E(t∗ij − tij − δij) = 0, and Lemma 2 and Lemma

3 prove that E((t∗ij − tij − δij)
2) = E(V ar(t∗ij − tij − δij) + E2(t∗ij − tij − δij)) =

E(V ar(t∗ij − tij − δij)) = E(V ar(t∗ij)) = (rjσj)
2. Besides, we have to prove ρ < ∞.

If Bound(M) = 1, it surely establishes because t∗ij, tij and δij are all finite values

in this case. If Bound(M) = 0, we can prove that Laplace mechanism satisfies this

term. Note that t∗ij − tij − δij = N ij. Therefore, we have:

ρ = E
(∣∣t∗ij − tij − δij

∣∣3) =

∫ ∞

−∞
|x|3 Lap(λ = 2m/ϵ)dx

=
1

λ

∫ ∞

0

x3 exp(−x

λ
)dx = −

∫ ∞

0

x3d(exp(−x

λ
))

= 3

∫ ∞

0

x2 exp(−x

λ
)dx− x3 exp(−x

λ
)|∞0 = 3

∫ ∞

0

x2 exp(−x

λ
)dx

=
3λ

2

∫ ∞

−∞

x2

λ
exp(−|x|

λ
)dx

=
3λ

2
E(x2) =

3λ

2
2λ2 = 3λ3 =

24m3

ϵ3
< ∞.

(4.15)
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Further, we have

F̄j(σjx+ δj) =

∫ σjx+δj

−∞
f̄j(θ̂j − θ̄j)d(θ̂j − θ̄j)

=

∫ x

−∞
f̄j(

θ̂j − θ̄j − δj

σj

)d(
θ̂j − θ̄j − δj

σj

).

(4.16)

While

F̂j(σjx+ δj) =

∫ σjx+δj

−∞
f̂j(θ̂j − θ̄j)d(θ̂j − θ̄j)

=

∫ σjx+δj

−∞

1

σj

ϕ(
θ̂j − θ̄j − δj

σj

)d(θ̂j − θ̄j)

=

∫ σjx+δj

−∞
ϕ(

θ̂j − θ̄j − δj

σj

)d(
θ̂j − θ̄j − δj

σj

)

=

∫ x

−∞
ϕ(θ̂j − θ̄j)d(θ̂j − θ̄j).

(4.17)

As such, Berry–Esseen theorem [73] establishes:

sup
x∈R

∣∣∣F̄j(x)− F̂j(x)
∣∣∣ = sup

x∈R

∣∣∣F̄j(σjx+ δj)− F̂j(σjx+ δj)
∣∣∣ ≤ 0.33554(ρ+ 0.415(rjσj)

3)

r
7/2
j σ3

j

.

(4.18)

In particular, supx∈R

∣∣∣F̄j(x)− F̂j(x)
∣∣∣ → 0 if r → ∞. Namely, the approximated

distribution converges to the real one as long as r is sufficiently large. According

to Lemma 2 and Lemma 3, the value of rjσj is irrelevant to rj. Thus, rjσj can

be taken as a fixed value, which implies that the speed of convergence rate in our

framework is at least on the order of
r3j

r
7/2
j

= 1√
rj
. That is to say, the approximation

error is still tolerable even if the number of reports is insufficient. We take Laplace

mechanism for example, where ρ = 3λ3 in Equation 4.15 and rjσj =
√

V ar(t∗ij) =√
(V ar(Lap(λ))) =

√
2λ. Suppose the data collector only receives rj = 1000 reports,

the approximation error between the true cdf and the approximated cdf of θ̂j − θ̄j is

no more than
0.33554(ρ+0.415(rjσj)

3)

r
7/2
j σ3

j

= 0.33554×(3×λ3+0.415×2×
√
2×λ3)

2×
√
2×λ3×√

rj
≈ 1.57%.

43



Chapter 4. Analyzing and Enhancing LDP Mechanisms in High-dimensional Space

4.1.2 A Case Study: How to Benchmark Piecewise Mecha-

nism and SquareWave Mechanism in High-Dimensional

Space?

Since each dimension is perturbed equivalently in high-dimensional space, we study

how to benchmark these two mechanisms in any single dimension. Suppose an original

dataset with d = 100 dimensions and n = 10000 users, there are v = 10 different

original values {0.1, 0.2, 0.3, ..., 0.8, 0.9, 1.0} in each dimension. For simplicity, we

presume that the corresponding probability of each value in each dimension is p =

10%. For each user, she reports m = 100 dimensions of her data to the data collector.

As such, the data collector receives r = nm
d

= 10000 reports. Given the collective

privacy budget ϵ = 0.1, each dimension is allocated ϵ/m = 0.001 privacy budget.

Next, we demonstrate how to obtain the pdf in Theorem 1 for each LDP mechanism.

For Piecewise mechanism, we first obtain the variance of t∗ij:

V ar(t∗ij) =E(t∗ij
2)− E2(t∗ij)

=

∫ l(t∗ij)

−Q

(1− e−ϵ/2m)x2

2eϵ/2m + 2
dx

+

∫ r(t∗ij)

l(t∗ij)

(eϵ/m − eϵ/2m)x2

2eϵ/2m + 2
dx

+

∫ Q

r(t∗ij)

(1− e−ϵ/2m)x2

2eϵ/2m + 2
dx

=
t∗ij

eϵ/2m − 1
+

eϵ/2m+3

3(eϵ/2m − 1)2
.

(4.19)

We then derive the variance σ2
j of Gaussian distribution that approximates θ̂j − θ̄j

according to Lemma 3:

σ2
j =

∑v
z=1 pV ar

(
t∗(

∑z
o=1 rp)j

)
r

=

10%×(0.1+0.2+...+1.0)

e0.001/2−1
+ e0.001/2+3

3(e0.001/2−1)2

10000

= 533.210.

(4.20)
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Due to unbiased estimation, we can derive the pdf of θ̂j − θ̄j in Piecewise mechanism

by applying d = 1, σ2
j = 533.210, and δj = 0 to Equation 4.7:

f(θ̂j − θ̄j) =
1

57.900
exp

(
−(θ̂j − θ̄j)

2

1066.420

)
. (4.21)

For the Square wave mechanism, we have the bias of E(t∗ij):

δij =E(t∗ij − tij)

=

∫ tij−b

−b

x

2beϵ/m + 1
dx+

∫ tij+b

tij−b

xeϵ/m

2beϵ/m + 1
dx

+

∫ 1+b

tij+b

x

2beϵ/m + 1
dx− tij

=
2b(eϵ/m − 1)tij
2beϵ/m + 1

+
1 + 2b

2(2beϵ/m + 1)
− tij.

(4.22)

and the variance of t∗ij:

V ar(t∗ij) =E(t∗ij
2)− E2(t∗ij)

=

∫ tij−b

−b

x2

2beϵ/m + 1
dx+

∫ tij+b

tij−b

x2eϵ/m

2beϵ/m + 1
dx

+

∫ 1+b

tij+b

x2

2beϵ/m + 1
dx− (tij + δij)

2

=
b2

3
+

(2b+ 1)(b+ 1− 3t2ij)

3(2beϵ/m + 1)
− δ2

ij − 2δijtij.

(4.23)

We then derive the bias δj and the variance σ2
j of the Gaussian distribution that

approximates θ̂j − θ̄j according to Lemma 3:

δj =
v∑

z=1

pδij = −0.049,

σ2
j =

∑v
z=1 pV ar

(
t∗(

∑z
o=1 rp)j

)
r

= 3.365× 10−5.

(4.24)

Finally, according to Theorem 1, we can derive the pdf of θ̂j − θ̄j in the Square wave

mechanism by applying Equation 4.24 and d = 1 to Equation 4.7:

f(θ̂j − θ̄j) =
1

0.015
exp

(
−105(θ̂j − θ̄j + 0.049)2

6.730

)
. (4.25)
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Now that we have derived the pdf of θ̂j − θ̄j in both LDP mechanisms, its integral∫ ξj
−ξj

f(θ̂j − θ̄j)d(θ̂j − θ̄j) is the probability that the deviation in j-th dimension is

still within the supremum ξj = sup |θ̂j − θ̄j|. The higher probability the better the

LDP mechanism. We vary ξj from 0.001 to 0.1 and show the resulted probabilities in

Table 4.2. Piecewise mechanism is better than Square wave mechanism for smaller

supremums (e.g., 0.001, 0.01), which is mainly because Piecewise is an unbiased es-

timation while Square wave is not. However, if the supremum becomes larger (e.g.,

0.05, 0.1), in other words, if the collector can tolerate larger deviation, the Square

wave mechanism is far better than the Piecewise mechanism because the variance of

Gaussian distribution that approximates θ̂j − θ̄j in the former is much smaller than

that in the latter. That is to say, whether Piecewise or Square wave should be chosen

depend on her tolerance of supremum ξj.

Table 4.2: Probabilities for the supremum to hold in one dimension

ξj 0.001 0.01 0.05 0.1

Piecewise 3.46× 10−5 3.46× 10−4 0.002 0.004

Square 2.12× 10−16 2.62× 10−11 0.644 1.000

Suppose a data collector is curious about the worst utility with confidence level

α = (α1, ...,αd)
⊺. Note that each entry of α represents her confidence level in each

dimension. Therefore, we have sup
∣∣∣θ̂j − θ̄j

∣∣∣ = argξj∈R+

{
αj =

∫ (ξj−δj)/σj

−(ξj−δj)/σj
ϕ(x)dx

}
.

Then we obtain sup ∥θ̂ − θ̄∥2 =
√∑d

j=1 sup
∣∣∣θ̂j − θ̄j

∣∣∣2 in terms of each LDP mecha-

nism. As mentioned before, one with the smallest supremum may be bench-

marked to have the most excellent general utility in high-dimensional

space.

Besides, the data collector may implement the optimal combination of LDP mech-
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anisms following our framework. That is to say, she may choose the most excel-

lent LDP mechanism in each dimension so that the collective utility is optimal.

Thus, the key point is how to benchmark LDP mechanisms in each dimension.

Given the limit of estimation error ξj or the confidence level αj in j-th dimension,∫ (ξj−δj)/σj

−(ξj−δj)/σj
ϕ(x)dx is the probability where θ̂j − θ̄j may not exceed the limit while

argξj∈R+

{
αj =

∫ (ξj−δj)/σj

−(ξj−δj)/σj
ϕ(x)dx

}
is the supremum of

∣∣∣θ̂j − θ̄j

∣∣∣ under such a confi-

dence level. Namely, the candidate with the highest probability or the small-

est supremum can be selected as the most suitable one in this dimension.

By repeating the above steps in each dimension can the data collector finally obtain

the optimal combination of LDP mechanisms in high-dimensional space.

Also, non-parametric form of benchmark can also make the same judgment. For the

Square wave, we have the bias of E(t∗ij):

δij =E(t∗ij − tij)

=

∫ tij−b

−b

x

2beϵ/m + 1
dx+

∫ tij+b

tij−b

xeϵ/m

2beϵ/m + 1
dx

+

∫ 1+b

tij+b

x

2beϵ/m + 1
dx− tij

=
2b(eϵ/m − 1)tij
2beϵ/m + 1

+
1 + 2b

2(2beϵ/m + 1)
− tij.

(4.26)

and the variance of t∗ij:

V ar(t∗ij) =E(t∗ij
2)− E2(t∗ij)

=

∫ tij−b

−b

x2

2beϵ/m + 1
dx+

∫ tij+b

tij−b

x2eϵ/m

2beϵ/m + 1
dx

+

∫ 1+b

tij+b

x2

2beϵ/m + 1
dx− (tij + δij)

2

=
b2

3
+

(2b+ 1)(b+ 1− 3t2ij)

3(2beϵ/m + 1)
− δ2

ij − 2δijtij.

(4.27)

Further, we have the expectation of the variance of t∗ij:

E(V ar(t∗ij)) =
v∑

z=1

pV ar
(
t∗(∑z

o=1 rp)j

)
= 1.483× 10−1. (4.28)
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We then derive the bias δj and the variance σ2
j of the Gaussian distribution that

approximates θ̂j − θ̄j according to Lemma 3:

δj =
v∑

z=1

pδij = −3.160× 10−2

σ2
j =

E(V ar(t∗ij))

r
= 1.483× 10−5.

(4.29)

From Equation 3.18, we have:

MSE(θ̂j) = σ2
j + δ2

j = 1.014× 10−3. (4.30)

For Piecewise, we first obtain the variance of t∗ij:

V ar′(t∗ij) =E(t∗ij
2)− E2(t∗ij)

=

∫ l(t∗ij)

−Q

(1− e−ϵ/2m)x2

2eϵ/2m + 2
dx

+

∫ r(t∗ij)

l(t∗ij)

(eϵ/m − eϵ/2m)x2

2eϵ/2m + 2
dx

+

∫ Q

r(t∗ij)

(1− e−ϵ/2m)x2

2eϵ/2m + 2
dx

=
tij

eϵ/2m − 1
+

eϵ/2m+3

3(eϵ/2m − 1)2
.

(4.31)

Further, we have the expectation of the variance of t∗ij:

E(V ar′(t∗ij)) =
v∑

z=1

pV ar′
(
t∗(

∑z
o=1 rp)j

)
=

10%× (0.1 + 0.2 + ...+ 1.0)

e1/2 − 1
+

e1/2+3

3(e1/2 − 1)2

= 27.08.

(4.32)

We then derive the variance σ′2
j of Gaussian distribution that approximates θ̂j − θ̄j

according to Lemma 3:

σ′2
j =

E(V ar′(t∗ij))

r

=
27.08

10000
= 2.708× 10−3.

(4.33)
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Note that Piecewise is unbiased [134], which means δ′
j = 0. From Equation 3.18, we

have:

MSE′(θ̂j) = σ′2
j + δ′2

j = 2.708× 10−3 > MSE(θ̂j). (4.34)

That is, Square wave is better than Piecewise in this scenario, and at least n′
j =

E(V ar′(t∗ij)−V ar(t∗ij))
(δ2j−δ′2j )

× d
m

= 26960 users are required for Piecewise to outperform Square

wave based on our benchmark, below which Square wave is always better.

4.1.3 Utility Analysis in Personalized Local Differential Pri-

vacy (PLDP)

In regular LDP, the privacy budget and the privacy region (a.k.a. the domain of

the original tuple) are normally set by the data collector. Nevertheless, it is common

that users may not be satisfied with the uniform settings and prefer to configure these

settings by themselves. PLDP, as a special case of LDP, allows each user to decide

her own privacy budget ϵ and privacy region τ [149]. With ϵ and τ configured by the

user, PLDP guarantees that the user can enjoy ϵ-LDP in the subdomain τ ⊆ DM of

the original domain. To provide general utility analysis for PLDP, we also adapt our

framework as per users’ personalized privacy preferences.

Without loss of generality, we study the utility analysis in a single dimension. Let

E denote the available privacy budgets E = {ϵ1, ϵ2, ..., ϵb−1, ϵb} and T denote the

privacy regions T = {τ1, τ2, ..., τc−1, τc}. Each user chooses her own preferable privacy

combination in this dimension and share this information with the data collector.

While users perturb their original value as per personal privacy preferences, the data

collector groups all users into b×c subgroups who have the same privacy combination

and thus the same perturbation. As such, we can implement central limit theorem

[43, 115] to each subgroup1 according to Lemma 2 or Lemma 3. Given the set Tj

1For simplicity, here we assume that each subgroup has a sufficiently large number of users. In

practice, those subgroups without enough users, e.g., fewer than 100, are ignored.
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of original data and the number of reports rj in j-th dimension, let Tjz and rjz

(1 ≤ z ≤ bc) denote the subset of original data and the number of reports in z-th

subgroup, respectively. Obviously, Tj and rj can be decomposed by Tj =
⋂b×c

z=1 Tjz

and rj =
∑b×c

z=1 rjz, respectively. Denoted as V arjz and δjz, we can then obtain the

expectation of the variance of the perturbed data
{
t∗ij|tij ∈ Tjz

}
and the bias of the

perturbed data in z-th subgroup, respectively. That is, V arjz = Etij∈Tjz
(V ar(t∗ij))

while δjz = Etij∈Tjz
(E(t∗ij) − tij). The following theorem establishes the foundation

of utility analysis in terms of deviation in any dimension j.

Theorem 3. lim
rj→∞

θ̂j − θ̄j ∼ N
(∑bc

z=1 rjzδjz
rj

,
∑bc

z=1 rjzV arjz
r2j

)
in PLDP.

Proof. Within any subgroup, any original data tij is perturbed into a perturbed data

t∗ij under the same perturbation, which is the same scenario in either Lemma 2 or

Lemma 3. On this basis, the following probability holds according to Lindeberg–Lévy

Central Limit Theorem [43, 115]:

lim
rj→∞
tij∈Tjz

Pr

(∑
(t∗ij − tij)− rjzEtij∈Tjz

(E(t∗ij)− tij)√
rjzV arjz

≤ X

)

= lim
rj→∞
tij∈Tjz

Pr

(∑
(t∗ij − tij)− rjzδjz√

rjzV arjz
≤ X

)

=

∫ X

−∞
ϕ(x)dx.

(4.35)

Thus, lim
rj→∞
tij∈Tjz

∑
(t∗ij−tij)−rjzδjz√

rjzV arjz
follows the standard normal distribution N (0, 1). Next,

we prove the theorem by mathematical induction on z.

For z = 1, Equation 4.35 establishes
∑

tij∈Tjz
(t∗ij − tij)− rjzδjz ∼ N (0, rjzV arjz).

Suppose that
∑

tij∈
⋂k

z=1 Tjz
(t∗ij − tij) −

∑k
z=1 rjzδjz ∼ N (0,

∑k
z=1 rjzV arjz) holds for
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1 < k < bc, we have the following if rj → ∞:

∑
tij∈

⋂k+1
z=1 Tjz

(t∗ij − tij)−
k+1∑
z=1

rjzδjz

=
∑

tij∈
⋂k

z=1 Tjz

(t∗ij − tij)−
k∑

z=1

rjzδjz

+

 ∑
tij∈Tj(k+1)

(t∗ij − tij)− rj(k+1)δj(k+1)

 .

(4.36)

According to Equation 6.9,
∑

tij∈Tj(k+1)
(t∗ij−tij)−rj(k+1)δj(k+1) ∼ N (0, rj(k+1)V arj(k+1)).

Given Y ∼ N (µ1, σ
2
1) and Z ∼ N (µ2, σ

2
2), Y + Z ∼ N (µ1 + µ2, σ

2
1 + σ2

2) [78]. There-

fore, we prove the following for 1 < k < bc and rj → ∞:

∑
tij∈

⋂k+1
z=1 Tjz

(t∗ij − tij)−
k+1∑
z=1

rjzδjz

∼N (0,
k+1∑
z=1

rjzV arjz).

(4.37)

Applying k = bc− 1 to Equation 4.37, we have for rj → ∞:

lim
rj→∞

tij∈
⋂bc

z=1 Tjz

Pr

 θ̂j − θ̄j −
∑bc

z=1 rjzδjz
rj√∑bc

z=1 rjzV arjz
rj

≤ X


= lim

rj→∞
tij∈

⋂bc
z=1 Tjz

Pr


∑

(t∗ij−tij)

rj
−

∑bc
z=1 rjzδjz

rj√∑bc
z=1 rjzV arjz

rj

≤ X


= lim

rj→∞
tij∈

⋂bc
z=1 Tjz

Pr

∑(t∗ij − tij)−
∑bc

z=1 rjzδjz√∑bc
z=1 rjzV arjz

≤ X


=

∫ X

−∞
ϕ(x)dx.

(4.38)

which proves the theorem.

Theorem 3 shows that the deviation in each dimension can be modeled by a Gaussian

distribution. As such, the total deviation in all dimensions follows a multivariate
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Gaussian distribution as in Theorem 1. Deriving the biases and the variances of the

deviations from Theorem 3, respectively:

δj =

∑bc
z=1 rjzδjz

rj
,

σ2
j =

∑bc
z=1 rjzV arjz

r2j
.

(4.39)

Applying them into Equation 3.18, the MSE can be obtained as:

δj =

∑d
j=1

(
σ2

j + δ2
j

)
d

=
d∑

j=1

∑bc
z=1 rjzV arjz +

(∑bc
z=1 rjzδjz

)2
r2jd

.

(4.40)

4.2 HDR4ME*: High-dimensional Re-calibration

for Mean Estimation

In our analytical framework, we observe that dimensions d has significant and direct

influence on the deviation. In specific, d dictates the privacy budget in each dimen-

sion, which directly affects the accuracy. In this section, we seize this opportunity to

reduce the effective d in the aggregation phase to improve the accuracy. The ratio-

nale of targeting at the aggregation phase instead of the perturbation or calibration

is obvious — the latter are mechanism-dependent whereas the former is universal to

all LDP mechanisms. As such, our enhancement is orthogonal to all existing LDP

optimizations.

In what follows, we first introduce regularization that can mitigate the negative in-

fluence in high dimensions. By integrating it into the aggregation, we propose a

re-calibration protocol HDR4ME* and a solver algorithm based on proximal gradient

descent. Last, we extend HDR4ME* for frequency estimation. Rigorous analysis is

provided to prove its superiority over the existing one.
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4.2.1 Regularization: Diminishing Utility Deterioration in

High-dimensional Space

Regularization is a common technique to re-calibrate the minimization tasks [16, 18,

63,97,127]. On the one hand, it directly reduces the dimensions d. On the other hand,

it also reduces the scale of the perturbed data and thus diminishes the variance, which

counteracts the utility deterioration caused by high dimensionality [33].

To explain regularization, let L(θ) denote a certain loss function regarding θ ∈ Rd

while the regularization term is R(θ). R(θ) = ∥θ∥1 and R = ∥θ∥2 are the operators

for L1-regularization (abbreviated as L1) and L2-regularization (abbreviated as L2),

respectively. Figure 4.2 illustrates the physical meaning of both regularizations in two

dimensional space, where the black curves are isopleths of any loss function L(θ). The

red square is the shape of L1, while the blue circle is the shape of L2. We notice that

L(θ) converges to θ̂ without regularization. In contrast to θ̂, L(θ) tends to cross on

coordinate axes with L1 while it tends to cross on the circle with L2. Let θ
∗ denote

the regularized results. Comparing both θ∗ with θ̂, L1 reduces both dimensions

and the scale of θ̂ while L2 just reduces the scale of θ̂. By integrating them in

the aggregation phase as a re-calibration, we can mitigate the negative influence by

high dimensionality. In the next subsection, we propose our re-calibration protocol

HDR4ME∗.

4.2.2 HDR4ME*—High Dimensional Re-calibration for Mean

Estimation

In general, we can take the estimation in high-dimensional space as an empirical error

minimization task. We define the loss of function as L(θ) = 1
2r

∑r
i=1 ∥t∗i − θ∥22. As

such, the minimization task can be defined as θ̂ = argminθ∈Rd L(θ). To minimize

the error, we just obtain its derivative ∇L(θ) = 1
r

∑r
i=1

(
θ − t∗i

)
= θ− 1

r

∑r
i=1 t

∗
i and
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(b) L2-regularization

Figure 4.2: Regularization in two dimensions.

make the derivative zero. Accordingly, we have θ̂ = 1
r

∑r
i=1 t

∗
i . Note that this result

is equivalent to that of the existing aggregation. Due to extremely large V ar(t∗ij),

there are probably some extreme values in entries of t∗i , which greatly influence the

direction of gradient descent and lead θ̂ to deviate from the true mean θ̄. In this

context, we perform re-calibration on θ̂ so as to reduce the gap between θ̂ and θ̄.

Recall that in each dimension, the data collector receives r perturbed tuples {t∗i |1 ≤ i ≤ r},

where r = nm
d
. To add regularization terms, we first define the loss function of the

aggregation L(θ) = 1
2r

∑r
i=1 ∥t∗i − θ∥22. On this basis, we add regularization terms

R(θ) to L(θ) to obtain the enhanced mean θ∗ as follows:

θ∗ = arg min
θ∈Rd

{L(θ) +R(λ∗ ◦ θ)} , (4.41)

where R(θ) = ∥θ∥1 or ∥θ∥2 and λ∗ = (λ∗
1, ...,λ

∗
d)

⊺ is the regularization weight (which

controls the degree of the involvement of regularization). In particular, λ∗ ◦ θ =

(λ∗
1θ1, ...,λ

∗
dθd)

⊺ is Hadamard product. In what follows, we provide detailed utility

analysis of HDR4ME∗ with L1- and L2-regularization, respectively, together with

the specification of λ∗.
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HDR4ME* with L1-regularization. With this re-calibration, the deviation ∥θ̂ −

θ̄∥2 can be significantly reduced by dimensionality and perturbation reduction. The

following lemma discusses the suitable choice of λ∗ and the threshold for utility en-

hancement.

For L1-regularization, it is pretty challenging for the regular gradient descent to obtain

the enhanced mean θ∗ because R = ∥θ∥1 is non-differentiable. As such, we adopt an

alternative solution, namely, proximal gradient descent (PGD) [16, 79, 99]. In what

follows, we introduce how PGD works in high-dimensional space. As a necessary

prerequisite, we have to prove that ∇L(θ) satisfies Lipschitz continuity [131].

Lemma 4. HDR4ME* with L1-regularization can improve accuracy in j-th dimension

if

λ∗
j = sup

∣∣∣θ̂j − θ̄j

∣∣∣ and
∣∣∣θ̂j − θ̄j

∣∣∣ > 1 (4.42)

where θ̂j − θ̄j is obtained from Lemma 2 or Lemma 3.

Proof. Since ∥θ∥1 is non-differentiable, we adopt an alternative solution, namely,

proximal gradient descent (PGD) [16,79,99]. Our objective is to obtain the iterative

equation to solve our protocol. First, we get the derivative of L(θ):

∇L(θ) = 1

r

r∑
i=1

(θ − t∗i ) = θ − 1

r

r∑
i=1

t∗i = θ − θ̂ (4.43)

Thus, the derivative of ∇L(θ) is d∇L(θ)
dθ

= 1. According to Cauchy mean value

theorem, we have:

∥∇L(θ)−∇L(θk)∥22 ≤ ∥θ − θk∥22, (4.44)

where θk is the result of k-th iteration. By second-order Taylor expansion around θk,

we get:

L(θ) ∼= L(θk) + ⟨∇L(θk),θ − θk⟩+
1

2
∥θ − θk∥2

=
1

2
∥θ − (θk −∇L(θk))∥22 + constant

(4.45)
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To minimize the loss function L, we get the iterative equation θk+1 = θk −∇L(θk).

We then introduce L1-regularization term into the iteration:

θk+1 = argmin
θ

1

2
∥θ − (θk −∇L(θk))∥22 + ∥λ∗ ◦ θ∥1 (4.46)

Since each dimension is independent of each other, we have the following solution for

each dimension:

(θk+1)j = argmin
θj

1

2
|θj − ((θk)j −∇L(θk)j)|22 +

∣∣λ∗
jθj

∣∣
1

(4.47)

As such, how to compute (θk+1)j really depends on whether θj is positive, zero or

negative (λj is positive). In particular, we let z = θk−∇L(θk) = θk−θk+ θ̂ = θ̂. If

θj > 0, we get the gradient of Equation 4.47 as θj − zj + λ∗
j . By making it zero, we

obtain (θk+1)j = zj − λ∗
j > 0, in which case zj > λ∗

j . If θj < 0, we similarly obtain

(θk+1)j = zj + λ∗
j < 0, in which case zj < −λ∗

j . If θj = 0, Equation 4.47 simply

converges and (θk+1)j = 0, which corresponds with |zj| ≤ λ∗
j . Accordingly, we have

the following iteration:

(θk+1)j =


zj − λ∗

j , zj > λ∗
j

0, |zj| ≤ λ∗
j

zj + λ∗
j , zj < −λ∗

j

(4.48)

Since z and λ∗ are deterministic, Equation 4.48 is actually a one-off solver. If we

set λ∗
j = sup

∣∣∣θ̂j − θ̄j

∣∣∣, for θ∗
j > 0, we have θ∗

j = zj − λ∗
j = θ̂j − sup

∣∣∣θ̂j − θ̄j

∣∣∣ ≤
θ̂j−

∣∣∣θ̂j − θ̄j

∣∣∣. Since θ∗
j is re-calibrated from zj = θ̂j, θ̂j has the same sign as θ∗

j , which

implies θ̂j >
∣∣∣θ̂j − θ̄j

∣∣∣. Suppose
∣∣∣θ̂j − θ̄j

∣∣∣ > 1, which happens frequently in high-

dimensional space, we then have θ̂j > 1. Because θ̄j ≤ 1,
∣∣∣θ̂j − θ̄j

∣∣∣ = θ̂j − θ̄j holds.

Therefore, we have 0 < θ∗
j ≤ θ̂j−

∣∣∣θ̂j − θ̄j

∣∣∣ = θ̄j ≤ 1, which proves 0 ≤
∣∣θ∗

j − θ̄j

∣∣ < 1.

As such,
∣∣θ∗

j − θ̄j

∣∣ < 1 <
∣∣∣θ̂j − θ̄j

∣∣∣ accordingly holds. Similarly, we derive
∣∣θ∗

j − θ̄j

∣∣ <
1 <

∣∣∣θ̂j − θ̄j

∣∣∣ for θ∗
j < 0. For θ∗

j = 0,
∣∣θ∗

j − θ̄j

∣∣ = ∣∣θ̄j

∣∣ ≤ 1 <
∣∣∣θ̂j − θ̄j

∣∣∣. In general,
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we have: ∣∣θ∗
j − θ̄j

∣∣ < ∣∣∣θ̂j − θ̄j

∣∣∣
if λ∗

j = sup
∣∣∣θ̂j − θ̄j

∣∣∣ and ∣∣∣θ̂j − θ̄j

∣∣∣ > 1
(4.49)

This lemma specifies the suitable regularization weight and the required threshold

for utility enhancement in one dimension. On this basis, we prove the superiority of

HDR4ME* with L1 to the current aggregation in high-dimensional space.

Theorem 4. For any high-dimensional LDP mechanism M under HDR4ME* with

L1-regularization, the following inequality holds with at least 1 −
∫ 1

−1
...
∫ 1

−1
f(θ̂ −

θ̄)d(θ̂ − θ̄) probability:

∥θ∗ − θ̄∥2 < ∥θ̂ − θ̄∥2 (4.50)

where f(θ̂ − θ̄) is obtained from Theorem 1.

Proof. Lemma 4 establishes that
∣∣θ∗

j − θ̄j

∣∣ < ∣∣∣θ̂j − θ̄j

∣∣∣ holds with one certain thresh-

old:
∣∣∣θ̂j − θ̄j

∣∣∣ > 1. Theorem 1 derives that
∣∣∣θ̂j − θ̄j

∣∣∣ > 1 holds for ∀j ∈ [1, d] with at

least the probability 1−
∫ 1

−1
...
∫ 1

−1
f(θ̂ − θ̄)d(θ̂ − θ̄). On this basis,

∥θ∗ − θ̄∥2 =

√√√√ d∑
j=1

∣∣θ∗
j − θ̄j

∣∣2 <
√√√√ d∑

j=1

∣∣∣θ̂j − θ̄j

∣∣∣2 = ∥θ̂ − θ̄∥2 (4.51)

In general, Theorem 4 derives the least probability for L1 to enhance utilities in high-

dimensional space. Nevertheless, a solver to HDR4ME* with L1 is still required.

Applying z = θ̂ and (θk+1)j = θ∗
j to Equation 4.48, we have:

θ∗
j =


θ̂j − λ∗

j , θ̂j > λ∗
j

0,
∣∣∣θ̂j

∣∣∣ ≤ λ∗
j

θ̂j + λ∗
j , θ̂j < −λ∗

j

(4.52)
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Equation 4.52 is a one-off, non-iterative solver for HDR4ME* with L1, which sim-

ply re-calibrates the estimated mean to get the enhanced mean. As such, the data

collector can enhance utilities without bearing extra computational burden.

HDR4ME* with L2-regularization. This re-calibration can obtain much devi-

ation ∥θ̂ − θ̄∥2 by scale reduction. To achieve this, λ∗ must satisfy the following

condition.

Lemma 5. HDR4ME* with L2-regularization can improve accuracy in j-th dimension

if

λ∗
j = sup

θ̂j − θ̄j

2θ̄j

and
∣∣∣θ̂j − θ̄j

∣∣∣ > 2 (4.53)

where θ̂j − θ̄j is obtained from Lemma 2 or Lemma 3, and θ̄j can select the mean of

the normal distribution that approximates θ̂j − θ̄j in our framework.

Proof. Following Equation 4.45, we add L2-regularization term into the iteration:

θk+1 = argmin
θ

1

2
∥θ − (θk −∇L(θk))∥22 + ∥λ∗ ◦ θ∥22 (4.54)

Since each dimension is perturbed independently, we have the following solution for

each dimension:

(θk+1)j = argmin
θj

1

2
|θj − ((θk)j −∇L(θk)j)|22 +

∣∣λ∗
jθj

∣∣2 (4.55)

where z = θk − ∇L(θk) = θ̂. Note that Equation 4.55 is differentiable. Applying

0 to the derivative of Equation 4.55, we have θ∗
j =

θ̂j

2λ∗
j+1

. If λ∗
j = sup

θ̂j−θ̄j

2θ̄j
, our

framework implies λ∗
j > 0. Then, we derive:

|θ∗
j | =

∣∣∣∣∣ θ̂j

2λ∗
j + 1

∣∣∣∣∣ =
∣∣∣∣∣∣ θ̂j

sup
θ̂j−θ̄j

θ̄j
+ 1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ θ̂j

θ̂j−θ̄j

θ̄j
+ 1

∣∣∣∣∣∣ = ∣∣θ̄j

∣∣ (4.56)

Therefore, we have 0 ≤ |θ∗
j | ≤

∣∣θ̄j

∣∣ ≤ 1, which implies 0 ≤
∣∣θ∗

j − θ̄j

∣∣ ≤ 2. Namely,

we have: ∣∣θ∗
j − θ̄j

∣∣ < ∣∣∣θ̂j − θ̄j

∣∣∣
if λ∗

j = sup
θ̂j − θ̄j

2θ̄j

and
∣∣∣θ̂j − θ̄j

∣∣∣ > 2
(4.57)
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Now that this lemma specifies the suitable regularization weight and the required

threshold for utility enhancement in one dimension, we further prove the superiority

of HDR4ME* with L2 to the current aggregation in high-dimensional space.

Theorem 5. For any high-dimensional LDP mechanism M under HDR4ME* with

L2-regularization, the following inequality holds with at least 1 −
∫ 2

−2
...
∫ 2

−2
f(θ̂ −

θ̄)d(θ̂ − θ̄) probability:

∥θ∗ − θ̄∥2 < ∥θ̂ − θ̄∥2 (4.58)

where f(θ̂ − θ̄) is obtained from Theorem 1.

Proof. Equation 4.49 in Lemma 5 derives that
∣∣θ∗

j − θ̄j

∣∣ < ∣∣∣θ̂j − θ̄j

∣∣∣ holds with one

certain threshold:
∣∣∣θ̂j − θ̄j

∣∣∣ > 2. Theorem 1 derives that
∣∣∣θ̂j − θ̄j

∣∣∣ > 2 holds for

∀j ∈ [1, d] with at least the probability 1−
∫ 2

−2
...
∫ 2

−2
f(θ̂− θ̄)d(θ̂− θ̄). On this basis,

∥θ∗ − θ̄∥2 =

√√√√ d∑
j=1

∣∣θ∗
j − θ̄j

∣∣2 <
√√√√ d∑

j=1

∣∣∣θ̂j − θ̄j

∣∣∣2 = ∥θ̂ − θ̄∥2 (4.59)

With our framework, Theorem 5 derives the least probability for L2 to enhance util-

ities in high-dimensional space, in which case the enhanced mean is always better

than estimated mean. To solve HDR4ME* with L2, we compute the derivative of

Equation 4.55 and set it to zero:

θ∗
j = θk −∇L(θk) =

θ̂j

2λ∗
j + 1

(4.60)

Similarly, the above is also a one-off, non-iterative solver for HDR4ME* with L2,

which does not increase the computational burden of the data collector.

As a final note, both types of HDR4ME* are designed for “high-dimensional” space

only. In such a space, the useful statistics are flooded by much larger noise, which
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provides us room to make utility enhancement. If the number of dimensions is not

high or the collective privacy budget is rather large, which generally means that the

threshold for either regularization to enhance utilities is not reached, our re-calibration

can be harmful.

Now that we provide the theoretical foundations of both regularizations. In terms

of utility, according to [30], L2 enhances utility better than L1. With either

regularization, the enhanced mean is meant to be smaller than the estimated mean

because making either regularization term small enough is part of the minimization

task. But how small it is differs. Under the same task, the absolute regularization

term ∥θ∥1 is much smaller than the squared regularization term ∥θ∥2, thus incur-

ring more zeros in dimensions. For example, under the same enhanced mean in one

dimension θ∗
j = 0.1, the L2-regularization term

∣∣θ∗
j

∣∣2 = 0.01 while L1-regularization

term
∣∣θ∗

j

∣∣ = 0.1. That is, L1 tends to push the enhanced mean to an extremely small

value, i.e. close to 0 whereas the enhanced mean in L2 can be a none-zero value. This

observation can also be validated by the solution to either L1-regularization (Equa-

tion 4.52) or L2-regularization (Equation 4.60). Note that as the enhanced mean by

L1-regularization reaches 0, it means that the regularization term overwhelms the

true information embedded in the perturbed data. In contrast, L2-regularization still

preserves such information since its enhanced mean never approaches 0. Neverthe-

less, L2 has its weakness. Lemma 5 shows that L2 is effective only if the deviation

is larger than 2, but this threshold is 1 for L1 according to Lemma 4. As such, the

prerequisite for L2-regularization to enhance utility is more stringent than

L1-regularization. Weighing the pros and cons between L1 and L2 is worth further

investigation.

In essence, both regularizations work when the true mean is not very large while

the estimated mean is too large due to the excessive perturbation noise in high di-

mensional space. By contrast, if the dimensionality is not high or the collective

privacy budget is very large, that is, the deviation threshold for neither regulariza-
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tion to enhance utilities (1 or 2) is reached, no regularization should be used. To

maximize the utility enhancement based on our former discussion, we would like to

implement L1-regularization only if the deviation is larger than 1 but no more than

2, L2-regularization only if the deviation is larger than 2 and existing aggregation

only if the deviation is no more than 1. Considering no solution always dominates in

high-dimensional space, we propose HDR4ME* in Algorithm 4 to adaptively decide

in each dimension which strategy (L1, L2, or none-regularization) should be adopted.

Supported by our framework, in each dimension, it first calculates the probabilities

(p1, p2 and p3) for L1, L2 and non-regularization to be effective in line 2, respec-

tively. Denoted as θe∗
j , θ1∗

j and θ2∗
j , Line 3 next computes the enhanced means for

L1 (from Equation 4.52), L2 (from Equation 4.60) and non-regularization (from the

existing aggregation), respectively. As presented in line 4, the weighted average of

three enhanced means is considered the optimal.

Algorithm 4 HDR4ME*

Input: the estimated mean θ̂, both regularization weights λ∗.

Output: the enhanced mean θ∗.

1: for j = 1 to d do

2: generate weights for non-regularization:

p1 =

∫ 1

−1

f(θ̂j − θ̄j)d(θ̂j − θ̄j)

L1-regularization:

p2 =

∫ 2

−2

f(θ̂j − θ̄j)d(θ̂j − θ̄j)− p1

L2-regularization:

p3 = 1− p1 − p2

3: derive the enhanced means for non-regularization: θe∗
j , L1-regularization: θ

1∗
j ,

L2-regularization: θ
2∗
j

4: compute θ∗
j = p1θ

e∗
j + p2θ

1∗
j + p3θ

2∗
j

5: end forreturn θ∗
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4.2.3 High-dimensional Re-calibration for Frequency Esti-

mation

For various LDP mechanisms, high-dimensional frequency estimation is never suffi-

ciently discussed, especially when some mechanisms claim to be applicable to both

mean and frequency estimations [134, 137]. As such, we also generalize our re-

calibration to frequency estimation. Note that any categorical value can be mapped

into a binary vector with histogram encoding [137]. Suppose there are d categorical di-

mensions and vj(1 ≤ j ≤ d) categories in each dimension, any categorical value in j-th

dimension tij(1 ≤ i ≤ rj) can be encoded to a vj-entry vector (0.0, 0.0, ..., 1.0, ..., 0.0)⊺

with only the tij-th entry to be 1.0. As such, each of d categorical dimensions is

expanded to one vj-dimensional numerical space. Note that each entry of encoded

vectors ranges from [0, 1]. If each user reports m dimensions of her perturbed data

to the data collector, the collective ϵ-LDP can be guaranteed by applying ϵ
2m

to each

entry of vectors [137] regardless of LDP mechanisms. As such, the data collector re-

ceives rj vj-entry perturbed vectors in j-th dimension. Since each entry corresponds

with one certain categorical value, the mean of rj perturbed vectors corresponds with

the estimated frequencies in j-th dimension, with each entry of the mean to be the

frequency of each categorical value. In general, we can convert one d-dimensional

frequency estimation to d high-dimensional mean estimation tasks. On this basis,

both our framework and re-calibration protocol can further apply.

4.3 Empirical Results

To verify both the analytical framework and the re-calibration protocol, we con-

duct experiments under a real dataset COV-192 and three synthetically distributed

datasets, namely Gaussian, Poisson and Uniform. The following are some descriptions

2https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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of four datasets:

• The COV-19 dataset consists of 150,000 users and 750 dimensions, where each

dimension has high correlations with others.

• The Gaussian dataset consists of tunable users and dimensions. The standard

deviation of all dimensions is set to 1/16. 10% dimensions have their mathe-

matical expectations µ = 0.9 whereas the other 90% have µ = 0.

• The Poisson dataset consists of 150,000 users and 300 dimensions, where each

dimension follows a Poisson distribution with a random expectation from 1 to

99.

• The Uniform dataset consists of tunable users and dimensions.

The aims of our experiments are twofold. First, we confirm the effectiveness of our

analytical framework, namely, θ̂j − θ̄j can be approximated with one certain Gaus-

sian distribution. Second, we compare the performances of HDR4ME on top of the

aggregation results of three state-of-the-art LDP mechanisms, i.e., Laplace [35], Piece-

wise [134], and Square wave [83]. Each dimension is normalized into [−1, 1], and each

experiment is repeated 100 times to obtain the averaged result unless otherwise indi-

cated. All our experiments are implemented in MATLAB on a laptop computer with

Intel Core i7-10750H 2.59 GHz CPU, 32G RAM on Windows 10 operation system.

To start with, in the first set of experiments, we use Uniform dataset to verify the

effectiveness of our analytical framework in terms of regular LDP, where we set 200,000

users and 5,000 dimensions. Each user sends 50 dimensions of her perturbed tuples

to the data collector. Each experiment is iterated 1,000 times, and we collect the

means of 1,000 times in the first dimension. Given the collective privacy budget

ϵ = 1, Fig. 4.3 shows how our framework models the means from experiments. In

each sub-figure, the blue line is the pdf of the deviations from our framework while

the orange squares are the pdf estimate from experiments. In all three mechanisms,
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Figure 4.3: Analysis vs. experimental results on Uniform dataset under regular LDP

(d=5,000).
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our framework effectively approximates experimental results. Recall that we provide

a case study in Section 6.1.4 to benchmark Piecewise and Square wave. To support

the benchmark results, we discretize the Uniform dataset and plot in Fig. 4.5. In

both mechanisms, the pdf functions computed in our case study perfectly align with

the experimental results, which confirms the effectiveness of the benchmark by our

framework.
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Figure 4.4: Analysis vs. experimental results on Uniform dataset under personalized

LDP (d=2,000).

Similarly, we use Uniform dataset to evaluate the effectiveness of our framework
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in PLDP. In detail, number of users is set 1,000,000 and that of dimensions is

set 2,000. For each user, the available privacy budgets and privacy regions are

{ϵ1 = 1, ϵ2 = 5, ϵ3 = 10, ϵ4 = 15, ϵ5 = 20} and τ1 = [−1.0, 0), τ2 = [0, 1.0], respectively.

As such, there are 5 × 2 = 10 subgroups. Without loss of generality, each user uni-

formly chooses one budget and one region, so we set 1,000,000/10=100,000 users in

each subgroup. As each user sends 20 dimensions of her perturbed tuple to the data

collector in each iteration, we iterate experiments 1,000 times on Laplace, Piecewise

and Square wave, respectively. Finally, we collect the means of 1,000 times in the first

dimension and therefore illustrate how our framework models experimental means for

PLDP in Fig. 4.4. In each sub-figure, the theoretical distribution (the blue line) ef-

fectively matches with experimental results (the orange squares), which confirms the

generality of our framework in PLDP.
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Figure 4.5: Analysis vs. experimental results in our case study.

In the second set of experiments, we compare HDR4ME* with HDR4ME and the

existing aggregation under different LDP mechanisms, privacy budget and dimen-

sionality. In particular, ϵ is varied in the set {0.1, 0.2, 0.4, 0.8, 1.6, 3.2} for Laplace

and Piecewise while in the set {0.1, 10, 100, 500, 1000, 5000} for Square wave. We set

a different range of ϵ for Square wave because its utility hardly varies with small ϵ [83].
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To test the limit of our candidates, each user sends all dimensions of her perturbed

tuple to the data collector. Accordingly, ϵ is partitioned according to respective di-

mensions. While using black, red, blue and green lines to reflect performances of

Non-, L1-, L2-regularization and HDR4ME*, respectively, Figs. 4.6(a)-(c) plot MSE

results with respect to ϵ under the Gaussian dataset, where users and dimensions

are respectively set 100,000 and 100. Overall, HDR4ME* performs no worse than

L1-, L2 or none-regularization. In face of Laplace and Piecewise mechanisms which

have low utilities in high-dimension, HDR4ME* tends to select the best among L1

and L2 rather than non-regularization, as indicated in Fig. 4.6. To avoid harm to

LDP mechanisms with possibly small deviations, such as Square wave, HDR4ME*

however puts heavy weight to non-regularization while still considering the necessity

of regularizations.

Similarly, we implement Poisson dataset (150,000 users, 300 dimensions), Uniform

dataset (120,000 users, 500 dimensions) and COV-19 dataset (150,000 users, 750

dimensions) to repeat the above experiments. ϵ is also partitioned according to re-

spective dimensions. Figs. 4.6(d)-(f), (g)-(i) and (j)-(l) show respective MSE results

with regard to different datasets. On contrast, Figs. 4.6(d), (e), (g), (h), (j) and (k)

still confirm that HDR4ME* can ensure the optimal utility if both regularizations are

beneficial while Figs. 4.6(f), (i) and (l) reveal that HDR4ME* can still adaptively op-

timize utility even both regularizations fail. Similar results from various real datasets

can be observed in Fig. 4.8.

In the third sets of experiments, we evaluate HDR4ME* and HDR4ME under the

COV-19 dataset, where ϵ is set 0.8, and the dimensionality varies in {50, 100, 200, 400, 800, 1600}.

Since the dataset with dimensionality like 1600 is very hard to find, we randomly sam-

ple some dimensions from COV-19 dataset to make up. Fig. 4.7 shows MSE results

of the Laplace and Piecewise, where HDR4ME* adaptively favors L2-regularization

as it dominates the enhancement in face of LDP mechanisms with large deviations,

regardless of dimensionality. As L2 excels, HDR4ME∗ also achieves much better
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Figure 4.6: MSE on various datasets and dimensions
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utilities, as opposed to both the current aggregation and L1. Most likely, the regu-

larization weights of L2 are much larger than those of L1 as dimensionality increases,

which reduces the scale of perturbation more effectively. In this sense, MSE results of

L2 in both mechanisms decrease as dimensionality increases (e.g. d = 50, 100, 200).

As the dimensionality becomes extremely large (e.g. d = 400, 800, 1600), regulariza-

tion weights of L2 become so large that each entry of enhanced mean is nearly zero.

In this sense, MSE results of L2 hardly change, so is it for HDR4ME*.
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Figure 4.7: MSE on COV-19 dataset with various dimensions.
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Figure 4.8: MSE on Real Datasets.

4.4 Summary

This chapter investigates utilities of mean estimation by LDP mechanisms in high-

dimensional space. In terms of the deviation between the estimated mean and the true

mean, we propose an analytical framework to evaluate any LDP mechanism. This

framework provides closed-form evaluation on individual LDP mechanism. In addi-

tion, we propose HDR4ME to re-calibrate the aggregation results from these LDP

mechanisms to further enhance their utilities in high-dimensional space. Through
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4.4. Summary

theoretical analysis and extensive experiments, we confirm the generality and effec-

tiveness of our analytical framework and re-calibration protocol under various datasets

and parameter settings.

For the future work, we plan to extend our work to other data type, e.g., set-value

data, and more data analysis tasks, e.g., other statistics estimation and machine

learning models. In the future, we would like to extend our work to multi-dimensional

and one-dimensional space.
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Chapter 5

Analyzing and Optimizing

Perturbation of DP-SGD

Geometrically

Although deep learning models have numerous applications in various domains, such

as personal recommendation and healthcare, the privacy leakage of training data from

these models has become a growing concern. There are already mature attacks which

successfully reveal the contents of private data from deep learning models [20, 54].

For example, a white-box membership inference attack can infer whether a single

data point belongs to the training dataset of a DenseNet with 82% test accuracy [94].

These attacks pose imminent threats to the wider adoption of deep learning in business

sectors with sensitive data, such as healthcare and fintech.

To address this concern, differential privacy (DP), which can provide quantitative

amount of privacy preservation to individuals in the training dataset, is embraced by

the most prevalent optimization technique of model training, i.e., stochastic gradient

descent (SGD). Referred to as DP-SGD [6, 82, 85, 160], this algorithm adds random

DP noise to gradients in the training process so that attackers cannot infer private
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data from model parameters with a high probability.

However, a primary drawback of DP-SGD is the ineffective training process caused by

the overwhelming noise, which extremely deteriorates the model efficiency. Although

much attention [1, 46, 92] has been paid on reducing the noise scale, the majority of

existing solutions, which numerically add DP noise to gradients, do not exploit the

geometric nature of SGD (i.e., descending gradient to locate the optima). As reviewed

in Section 2.2.3, SGD exhibits a distinctive geometric property — the direction of

a gradient rather than the magnitude determines the descent trend. By contrast,

regular DP algorithms, such as the Gaussian mechanism [36], was originally designed

to preserve numerical (scalar) values rather than vector values. As such, there is

a distinct gap between directional SGD and numerical DP perturbation, causing at

least two limitations in DP-SGD. First, existing optimization techniques of SGD

(i.e., fine-tuning clipping and learning rate), which can effectively reduce the

noise on the magnitude of a gradient, cannot alleviate the negative impact on

the direction, as illustrated by Example 1. Second, traditional DP introduces

biased noise on the direction of a gradient, even if the total noise to the gradient

is unbiased (proved in Lemma 6). As a result, the perturbation of traditional DP-SGD

is only sub-optimal from a geometric perspective.

Example 1. Suppose that we have a two-dimensional gradient g = (1,
√
3) with

its direction θ = arctan(
√
3/1) = π/3 and magnitude ∥g∥ =

√
1 + 3 = 2. Given

clipping threshold C1 = 2, we add noise n1 = (0.3, 0.15) to the clipped gradient g̃1 =

g/max {1, ∥g∥/C1} = (1,
√
3) and derive the perturbed direction θ∗

1 = arctan
√
3+0.15
1+0.3

≈

0.97. If C2 = 1, the clipped gradient and the noise would be g̃2 = g/max {1, ∥g∥/C2} =

(1
2
,
√
3
2
) and n2 = n1/(C1/C2) = (0.15, 0.075), respectively, as per DP-SGD [1]. Still,

the perturbed direction is θ∗
2 = arctan

√
3
2
+0.075

1
2
+0.15

≈ 0.97. Although the noise scale is suc-

cessfully reduced by gradient clipping (∥n2∥ < ∥n1∥), the perturbation on the direction

of a gradient remains the same (θ∗
2 = θ∗

1).

In this chapter, we propose a geometric perturbation strategy GeoDP to address these
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Figure 5.1: Comparing MSEs of GeoDP and DP on preserving directions and values

of gradients under synthetic dataset (composed of gradients from CNN training, as

introduced in Section 5.3.1). While θ and g label the MSE of perturbed directions

and gradients themselves, experimental results confirm that GeoDP achieves smaller

MSEs on perturbed directions (i.e., the red line is below the black one), while sacri-

ficing the accuracy of perturbed gradients (i.e., the green lien is above the blue one).

In general, GeoDP better preserves directions of gradients while traditional DP only

excels in preserving numerical values of gradients.
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limitations. First, we theoretically derive the impact of DP noise on the efficiency of

DP-SGD. Proved by this fine-grained analysis, the perturbation of DP-SGD, which

introduces biased noise to the direction of a gradient, is actually sub-optimal. Inspired

by this, we propose a geometric perturbation strategyGeoDP which perturbs both the

direction and the magnitude of a gradient, so as to relieve the noisy gradient direction

and optimize model efficiency with the same DP guarantee. Figure 5.1 illustrates

empirical performances of GeoDP and DP to support the superiority of GeoDP in

the perspective of geometry. Such experimental results can also be confirmed in our

theoretical analysis. Frequently-used notations are listed in Table 5.1. In summary,

our main contributions are as follows:

• To the best of our knowledge, we are the first to prove that the perturbation of

traditional DP-SGD is actually sub-optimal from a geometric perspective.

• Within the classic DP framework, we propose a geometric perturbation strategy

GeoDP to directly add the noise on the direction of a gradient, which rigorously

guarantees a better trade-off between privacy and efficiency.

• Extensive experiments on public datasets as well as prevalent AI models validate

the generality and effectiveness of GeoDP.

The rest of this chapter is organized as follows. Section 5.1 presents our theoretical

analysis on deficiency of DP-SGD while Section 5.2 presents the perturbation strategy

GeoDP. Experimental results are in Section 5.3, followed by a summary in Section

5.4.
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Symbol Meaning

ϵ privacy budget

β bounding factor

D database

S subset

s one training data

B batch size

T total number of iterations

t current iteration

C clipping threshold

σ noise multiplier

η learning rate

l loss function

w model parameters

w⋆ global optima

g original gradient

g̃ clipped gradient

n DP noise vector

g∗ perturbed gradient from traditional DP

g⋆ perturbed gradient from GeoDP

θ direction of a gradient

∥g∥ magnitude of a gradient

Table 5.1: Frequently-used notations
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5.1. Deficiency of DP-SGD: a gap between directional SGD and numerical DP

5.1 Deficiency of DP-SGD: a gap between direc-

tional SGD and numerical DP

In this section, we identify an intrinsic deficiency in DP-SGD. Let the trained models

of DP-SGD and non-private SGD be denoted by w∗
t+1 = wt − ηg̃∗

t and wt+1 =

wt − ηg̃t, respectively. The Euclidean distances between the current models and the

global optima (i.e.,
∥∥w∗

t+1 −w⋆
∥∥2 and ∥wt+1 −w⋆∥2) reflect the model efficiency of

DP-SGD and non-private SGD, respectively. Apparently, the smaller this distance

is, the better efficiency the model achieves. Their efficiency difference (ED) (i.e.,∥∥w∗
t+1 −w⋆

∥∥2 − ∥wt+1 −w⋆∥2), on the other hand, can describe the impact of DP

noise on the model efficiency, as presented by the following theorem.

Theorem 6. (Impact of DP Noise on Model Efficiency). Suppose nσ follows a noise

distribution with the standard deviation σI, ED can be measured as:∥∥w∗
t+1 −w⋆

∥∥2 − ∥wt+1 −w⋆∥2

=η2
(
2C

B
⟨nσ, g̃t⟩+

C2n2
σ

B2

)
︸ ︷︷ ︸

Item A

+
2ηC

B
⟨nσ,w

⋆ −wt⟩︸ ︷︷ ︸
Item B

. (5.1)

Proof. For DP-SGD, we have:∥∥w∗
t+1 −w⋆

∥∥2 = ∥wt −w⋆ − ηg̃∗
t∥

2

= ∥wt −w⋆∥2 + η2∥g̃∗
t∥2 + 2η⟨g̃∗

t ,w
⋆ −wt⟩.

(5.2)

While for SGD, we have:

∥wt+1 −w⋆∥2 = ∥wt −w⋆ − ηg̃t∥
2

= ∥wt −w⋆∥2 + η2∥g̃t∥2 + 2η⟨g̃t,w
⋆ −wt⟩.

(5.3)

Subtracting Equation 5.3 from Equation 5.2, we have:∥∥w∗
t+1 −w⋆

∥∥2 − ∥wt+1 −w⋆∥2

=η2
(
∥g̃∗

t∥2 − ∥g̃t∥2
)︸ ︷︷ ︸

Item A

+2η ⟨g̃∗
t − g̃t,w

⋆ −wt⟩︸ ︷︷ ︸
Item B

.
(5.4)
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Recall that nt follows a noise distribution whose standard deviation is CσI. Suppose

nσ follows a noise distribution with the standard deviation σI, we have nt = Cnσ.

For Item A:

∥g̃∗
t∥2 − ∥g̃t∥2 = (g̃∗

t − g̃t) (g̃
∗
t + g̃t)

= nt/B (2g̃t + nt/B)

= 2⟨Cnσ/B, g̃t⟩+ C2n2
σ/B

2.

(5.5)

And for Item B:

g̃∗
t − g̃t = nt/B = Cnσ/B. (5.6)

Applying Equation 5.5 and 5.6 into Equation 5.4, we have:∥∥w∗
t+1 −w⋆

∥∥2 − ∥wt+1 −w⋆∥2

=η2
(
2⟨Cnσ/B, g̃t⟩+ C2n2

σ/B
2
)︸ ︷︷ ︸

Item A

+2ηC/B ⟨nσ,w
⋆ −wt⟩︸ ︷︷ ︸

Item B

.
(5.7)

In general, we wish the efficiency of DP-SGD closer to SGD, i.e., to make ED as close

to zero as possible. This theorem coincides with many empirical findings in existing

works. Item A, for example, shows that the introduction of DP noise would cause

a bias to the global optima. That is, DP-SGD cannot stably converges to the

global optima, while sometimes reaching that point, as proved by Corollary

1. This means that the model efficiency of DP-SGD is always lower than regular

SGD [24, 125, 142, 164]. In practice, in order to provide a better model efficiency,

existing works [1, 42, 159] apply lower noise scale (i.e., smaller nσ) when DP-SGD is

about to converge. This operation makes Item A close to zero (but normally non-

zero). Anther example is that large batch size can enhance the efficiency of DP-SGD,

as it can certainly reduce both Item A and Item B [46].

Corollary 1. DP-SGD cannot stably stays at global optima.

Proof. Let us just assume DP-SGD reaches the global optima, i.e. wt = w⋆. Ac-

cordingly, Item B becomes zero while Item A is non-zero unless nσ stays zero (which
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is unlikely), as shown in Equation 5.8. That is, DP noise would immediately cause

SGD to deviate from global optima even if SGD can reach optima.

lim
wt→w⋆

∥∥w∗
t+1 −w⋆

∥∥2 − ∥wt+1 −w⋆∥2 = η2
(
2C

B
⟨nσ, g̃t⟩+

C2n2
σ

B2

)
︸ ︷︷ ︸

Item A

.
(5.8)

More importantly, this theorem reveals that DP-SGD techniques, such as adaptive

clipping and learning rate, are incapable of counteracting the impact of DP noise on

the direction of a gradient. On one hand, Item A describes how the noise scale

impacts the model efficiency. To reduce this impact, small learning rate (η2) and

clipping threshold (C and C2), or large batch size B is effective. This conclusion is

confirmed by many existing works, as reviewed in Section 2.2. On the other hand,

Item B, the inner product between the noise nt and the training process (w⋆−wt can

be considered as the distance for SGD to descend, i.e., descent trend) reflects how

the perturbation impacts the further training. While capable of reducing Item

A, fine-tuning hyper-parameters cannot reduce Item B, as proved by the following

corollary.

Corollary 2. optimization techniques of DP-SGD (i.e., fine-tuning clipping and

learning rate) cannot reduce the impact of noise on the gradient direction.

Proof. We analyze the effectiveness of DP-SGD techniques (i.e., fine-tuning clipping,

learning rate and batch size) on Item A and Item B, respectively.

• Item A.

As per learning rate, we apply different learning rate η∗ to DP-SGD, and see if

tuning η∗ can make Item A zero. Applying η∗ to Equation 5.4, we have:

Item A = η∗2∥g̃∗
t∥2 − η2∥g̃t∥2. (5.9)

79



Chapter 5. Analyzing and Optimizing Perturbation of DP-SGD Geometrically

As Equation 5.9 is only composed of numerical values, fined-tuned η∗ = η2∥g̃t∥2/∥g̃∗
t∥2

can certainly zero Item A.

As for clipping, given nσ is a random variable drawn from the noise distribution

whose standard deviation is σI, we have:

nt = Cnσ. (5.10)

As g̃∗
t = g̃t + nt/B, reducing C certainly reduces the scale of g̃∗

t . Overall,

fine-tuning of DP-SGD can certainly reduce Item A.

• Item B.

For learning rate, we have:

Item B = ⟨η∗g̃∗
t − ηg̃t,w

⋆ −wt⟩

= ∥η∗g̃∗
t − ηg̃t∥∥w⋆ −wt∥ cos θ.

(5.11)

where θ is the relative angle between two vectors. Apparently, no matter how

to fine-tune η∗, how η∗g̃∗
t − ηg̃t varies is rather random because there is no

relevance between η∗ and η∗g̃∗
t − ηg̃t as well as θ.

For clipping, we prove that it cannot change the geometric property of the

perturbed gradient, although the noise scale is indeed changed. If the clipping

thresholds C1, C2 and a gradient g(∥g∥ ≥ C1 ≥ C2), we have the clipped

gradient g̃1 = g
∥g1∥/C1

, g̃2 = g
∥g2∥/C2

as per Equation 3.13 and corresponding

noise n1 = C1nσ, n2 = C2nσ as per Equation 5.10. Accordingly, the perturbed

gradient is:

g̃∗
1 = g̃1 + n1/B =

g

∥g1∥/C1

+ C1/Bnσ.

g̃∗
2 = g̃2 + n2/B =

g

∥g2∥/C2

+ C2/Bnσ.
(5.12)

Then, we have:
g̃∗
1

C1

=
g̃∗
2

C2

.

∥g̃∗
1∥ ≥ ∥g̃∗

2∥.
(5.13)

80



5.2. Geometric perturbation: GeoDP

Namely, clipping cannot control the directions of perturbed gradients
g̃∗
1

C1
=

g̃∗
2

C2
,

while indeed reducing the noise scale (∥g̃∗
1∥ ≥ ∥g̃∗

2∥).

In general, this corollary points out an intrinsic deficiency of DP-SGD. That is, as a

gradient is actually a vector instead of a numerical array, traditional DP mecha-

nisms, which add noise to values of a gradient, cannot directly reduce the noise

on gradient direction (Item B). Even worse, DP introduces biased noise to

the direction, while adding unbiased noise to the gradient itself, as further

proved via hyper-spherical coordinate system (see Lemma 6 for rigorous proofs).

5.2 Geometric perturbation: GeoDP

In the previous analysis, we have proved the sub-optimality of traditional DP-SGD.

In this section, we seize this opportunity to perturb the direction and the mag-

nitude of a gradient, respectively, so that the noise on descent trend is

directly reduced. Within the DP framework, our strategy significantly improves

the model efficiency.

In what follows, we first introduce d-spherical coordinate system [126] in Section 5.2.1,

where one d-dimensional gradient is converted to one magnitude and one direction.

By perturbing gradients in the d-spherical coordinate system, we propose our pertur-

bation strategy GeoDP to optimize the model efficiency in Section 5.2.2. Privacy and

efficiency analysis is provided to prove its compliance with DP definition and huge

advantages over DP-SGD in Section 5.2.3.
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5.2.1 Hyper-spherical Coordinate System

The d-spherical coordinate system [126], also known as the hyper-spherical coordinate

system, is commonly used to analyze geometric objects in high-dimensional space,

e.g., the gradient. Compared to the rectangular coordinate system [126], such a

system directly represents any d-dimensional vector g = (g1, g2, ..., gd−1, gd) using a

magnitude ∥g∥ and a direction θ = (θ1,θ2, ...,θd−2,θd−1). Formally, the magnitude

is:

∥g∥ =

√√√√ d∑
z=1

g2
z. (5.14)

and its direction θ is:

θz =


arctan2

(√∑d−1
z g2

z+1, gz

)
if 1 ≤ z ≤ d− 2,

arctan2
(
gz+1, gz

)
if z = d− 1.

. (5.15)

where arctan2 is the two-argument arctangent function defined as follows:

arctan2(y, x) =



arctan
(
y
x

)
if x > 0,

arctan
(
y
x

)
+ π if x < 0 and y ≥ 0,

arctan
(
y
x

)
− π if x < 0 and y < 0,

π
2

if x = 0 and y > 0,

−π
2

if x = 0 and y < 0,

undefined if x = 0 and y = 0.

. (5.16)

While having the same functionality as arctan, arctan2 is more robust. For example,

arctan2 can deal with a zero denominator (gz = 0). Note that
√∑d−1

z g2
z+1 in Equa-

tion 5.15 is always non-negative. For 1 ≤ z ≤ d−2, the range of arctan2

(√∑d−1
z g2

z+1, gz

)
is either

(
0, π

2

]
or
(
π
2
, π
)
if gz ≥ 0 or gz < 0, as per Equation 5.16. As such, the

range of θ1≤z≤d−2 is (0, π). For z = d − 1, the range of θz is (−π, π) as per

Equation 5.16.
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We can also convert a vector (∥g∥ ,θ) in d-spherical coordinates back to rectangular

coordinates (g1, g2, ..., gd−1, gd) using the following equation:

gz =


∥g∥ cosθz, if z = 1

∥g∥
∏z−1

i=1 sinθi cosθz, if 2 ≤ z ≤ d− 1

∥g∥
∏z−1

i=1 sinθi, if z = d

. (5.17)

Figure 5.2 provides an example of conversions in three-dimensional space. Given

∥g∥ =
√

g2
1 + g2

2 + g2
3, θ1 = arctan2

(√
g2
2 + g2

3, g1

)
and θ2 = arctan2 (g3, g2), a

vector g = (g1, g2, g3) in rectangular coordinate system (marked in black) can be

represented as (∥g∥ ,θ1,θ2) in hyper-spherical coordinate system (marked in blue).

Without loss of generality, we use g ↔ (∥g∥ ,θ) to denote the reversible conversions

between two systems.

5.2.2 GeoDP—Geometric DP Perturbation for DP-SGD

GeoDP directly reduces the noise on the descent trend via d-spherical coordinate

system. Algorithm 5 describes how GeoDP works, and major steps are interpreted

as follows:

• Spherical-coordinate Conversion: Convert the clipped gradient to hyper-spherical

coordinate system according to Equation 5.14 and Equation 5.15, i.e., g →

(∥g∥ ,θ) (→ means coordinate conversion), which allows perturbation on the

magnitude and the direction of a gradient, respectively.

• Reducing the Direction Range (Sensitivity): According to Theorem 9, the av-

eraged direction of gradients
{
g̃tj|1 ≤ j ≤ B

}
should be centered at one small

range, rather than uniformly spreading the whole vector space. This conclu-

sion is also confirmed by various SGD studies [15, 159]. DP-SGD, taking the

whole direction space as the privacy region, is therefore overprotective and low
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z

y

x

𝒈1
𝒈2

𝒈3

𝒈𝜽1

𝜽2

Figure 5.2: Coordinates Conversions in Three-dimensional Space.
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efficient. In this work, a bounding factor β ∈ (0, 1] defines the privacy region

into a subspace around the original direction, which significantly reduces the

noise addition in Step 3. For 1 ≤ z < d − 1, given 0 ≤ Γ1 ≤ θz ≤ Γ2 ≤ π,

β determines the range between Γ1 and Γ2, i.e., Γ2 − Γ1 = ∆θz = βπ. Sim-

ilarly, Γ2 − Γ1 = ∆θz = 2βπ for z = d − 1. Note that β = 1 means the

full space. This parameter directly determines the sensitivity of the direction,

which consequently influences the noise addition in the following step. because

θ is essentially an array instead of a vector. Under this factor, this stage clips

directions into θ̃1≤z≤d−2 ∈ ((1− β)π, π) while θ̃d−1 ∈ (−βπ, βπ). Besides, in

terms of

√∑d−1
z g2

z+1

gz
, we observe that the numerator is normally larger than the

denominator. That is, arctan2

(√∑d−1
z g2

z+1, gz

)
is more probably located on

the right side of (0, π). As such, we prefer the range ((1− β)π, π) for θ̃1≤z≤d−2.

• Noise Addition: GeoDP allows to perturb the magnitude and the direction

of a gradient, respectively. For the magnitude, ∥g̃t∥ is already bounded by

C in the first stage. Similar to DP-SGD, the noise scale of the perturbed

magnitude is Cσ. For the direction, the noise scale is the sensitivity ∆θ times

the noise multiplier σ. Note that maximum changes of θ̃1≤z≤d−2 and θ̃d−1 are

βπ and 2βπ, respectively, due to the bounding of the direction range. Overall,

∆θ =
√
(d− 2)(βπ)2 + (2βπ)2 =

√
d+ 2βπ.

• Rectangular-coordinate Conversion: Convert the perturbed magnitude and di-

rection back to rectangular coordinates according to Equation 5.17, i.e., (∥g̃t∥
⋆ ,θ⋆

t ) →

g̃⋆
t , which allows future gradient descent.

In general, GeoDP provides better efficiency to SGD in two perspectives. First,

GeoDP adds unbiased noise, whereas traditional DP introduces biased

perturbation, to the direction of a gradient (see Lemma 6 for rigorous proofs).

This counter-intuitive conclusion is supported by the fact that tradition DP, which

adds unbiased noise to the gradient itself, however accumulates noise on different an-

85



Chapter 5. Analyzing and Optimizing Perturbation of DP-SGD Geometrically

Algorithm 5 GeoDP-SGD

Input: Batch size B, noise multiplier σ, clipping threshold C, bounding factor β(0 <

β ≤ 1), learning rate η, total number of iterations T .

Output: Trained model w⋆
T .

1: Initialize a model with parameters w0.

2: for each iteration t = 0, 1, ..., T − 2, T − 1 do

3: Derive the average clipped gradient g̃t with respect to the batch size B and

the clipping threshold C.

4: Convert g̃t to d-spherical coordinates as (∥g̃t∥ ,θt).

5: Clip θt into θ̃ as follows:

θ̃ =



θ̃1≤z≤d−2 =

θz if θz > (1− β)π,

(1− β)π if θz ≤ (1− β)π.

θ̃d−1 =


θz if ∥θz∥ < βπ,

βπ if θz ≥ βπ,

−βπ if θz ≤ −βπ.

Bound the privacy region ∆ of θ as follows:

∆θz =

∆θ1≤z≤d−2 = βπ,

∆θd−1 = 2βπ.

6: ∥g̃t∥
⋆ = ∥g̃t∥ + C

B
nσ, θ̃

⋆

t = θ̃t +
√
d+2βπ
B

nσ, where nσ follows a zero-mean

Gaussian distribution with standard deviation σ.

7: Convert
(
∥g̃t∥

⋆ , θ̃
⋆

t

)
back to rectangular coordinates as the perturbed gradient

g̃⋆
t .

8: Update w⋆
t+1 by taking a step in the direction of the noisy gradient, i.e.,

w⋆
t+1 = wt − ηg̃⋆

t .

9: end for
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gles of one direction. Example 2 demonstrates how this noise accumulation happens.

As such, numerical perturbation of DP seriously degrades the accuracy of directional

information. GeoDP, on the other hand, independently controls the noise on each

angle and therefore prevents noise accumulation.

Example 2. Suppose we have a three-dimensional gradient g = (g1, g2, g3). Fol-

lowing traditional DP, these three should be added noise n = (n1,n2,n3). For the

direction of this perturbed gradient θ, according to Equation 4, its first angle θ1 should

be arctan2
(√

(g2 + n2)2 + (g3 + n3)2, g1 + n1

)
. It is very obvious that noise of three

dimensions (n1,n2,n3) is accumulated to the first angle θ1, and this accumulation is

biased.

Second, via coordinates conversion, d-dimensional gradient is transferred to one mag-

nitude and d− 1 directions. By composition theory, d−1
d

privacy budget is allocated

to the direction by GeoDP, which can better preserves directional information.

Theorem 7. (Privacy Cost of GeoDP in (α,ϵ)-RDP). Given g̃ ↔
(
∥g̃∥ , θ̃

)
, g̃⋆

satisfies
(
α, ϵ1+(d−1)ϵ2

d

)
-DP if ∥g̃∥⋆ and θ̃

⋆
follow (α, ϵ1)- and (α, ϵ2)-DP, respectively.

Proof. Given two neighboring datasetD,D′ and their output sets (g̃⋆, θ̃
⋆
) =

{
(g̃⋆

1, θ̃
⋆

1), ...
}

of M(D), (g̃⋆′ , θ̃
⋆′

) =
{
(g̃⋆′

1 , θ̃
⋆′

1 ), ...
}
of M(D′), respectively, we have:

Dα(M(D)||M(D′))

=
1

α− 1
logEx∼M(D)

[(
Pr [M(D) = x]

Pr [M(D′) = x]

)α−1
]

=
1

α− 1
logE(g̃⋆,θ̃

⋆
)→M(D)


 Pr

[
(g̃⋆, θ̃

⋆
) → x

]
Pr
[
(g̃⋆′ , θ̃

⋆′
) → x

]
α−1

 .

(5.18)

Because ∥g̃∥ only has one dimension while θ̃ has d − 1 dimensions (d dimensions in
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total), we have:

logE(g̃⋆,θ̃
⋆
)→M(D)


 Pr

[
(g̃⋆, θ̃

⋆
) → x

]
Pr
[
(g̃⋆′ , θ̃

⋆′
) → x

]
α−1


≤1

d
logE(g̃⋆,θ̃

⋆
)→M(D)

 Pr
[
(g̃⋆, θ̃

⋆
) → x

]
Pr
[
(g̃⋆′ , θ̃

⋆
) → x

]
α

+
d− 1

d
logE(g̃⋆,θ̃

⋆
)→M(D)

 Pr
[
(g̃⋆, θ̃

⋆
) → x

]
Pr
[
(g̃⋆, θ̃

⋆′
) → x

]
α .

(5.19)

Applying Equation 5.19 to Equation 5.18, we have:

Dα(M(D)||M(D′)) ≤ ϵ1
d
+

(d− 1)ϵ2
d

=
ϵ1 + (d− 1)ϵ2

d
. (5.20)

by which this theorem is proven.

Remark 1. If both ∥g̃∥⋆ and θ̃
⋆
follow (α, ϵ)-DP, g⋆ follows (α, ϵ)-RDP.

Finally, we discuss the time complexity of GeoDP-SGD. For DP-SGD, given the size

of private dataset |D| and the number of gradient’s dimensions d, DP-SGD takes

O(|D|d) time to calculate derivatives in one epoch [159]. By contrast, coordinate

conversion costs a little time because it only involves simple geometry calculation.

Besides that, GeoDP has the same time complexity as DP-SGD.

5.2.3 Comparison between GeoDP and Traditional DP: Ef-

ficiency and Privacy

5.2.3.1 Efficiency Comparison

Via hyper-spherical coordinate system, we can identify deficiencies of traditional DP

from a geometric perspective and further understand the merits of GeoDP. If clipping

threshold is fixed, the max magnitude of a clipped gradient is determined, because
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∥g̃∥ = ∥g̃∥
max{1,∥g∥/C} ≤ C. That is, the clipped gradients are within the hyper-sphere

whose radius (abbreviated as R) is C. Figure 5.2 can help to understand this fact.

For example, g (highlighted in black) in Figure 5.2 is vector within the hyper-sphere

whose radius is ∥g∥ (highlighted in blue). By adding noise, traditional DP makes

sure that any two gradients within the hyper-sphere are indistinguishable. However,

there are two serious disadvantages.

On one hand, numerical noise addition does not respect the geometric

property of gradients, as interpreted by the following example. In gen-

eral, traditional DP seriously sabotages the geometric property of a gradient, which

eventually results in low model efficiency.

Example 3. Suppose two parallel gradients g̃1 = (1, 1), g̃2 = (2, 2) and clipping

threshold C = 2
√
2. As such, these two gradients are all within R = C = 2

√
2 hyper-

sphere, and their directions are all θ = arctan2(1, 1) = arctan2(2, 2) = π
4
. As such,

DP adds the same scale of noise to both gradients for privacy preservation. Assuming

that the noise n = (2,−1) is added to both gradients, directions of two perturbed

gradients are θ∗
1 = arctan2(1 − 1, 1 + 2) = 0 and θ∗

2 = arctan2(2 − 1, 2 + 2) ≈ 2π
25
.

Given parallel gradients (θ = π
4
), directions of perturbed gradients (θ∗

1 ̸= θ∗
2 ̸= θ) are

much different, even if the added noise (n = (2,−1)) is the same.

On the other hand, traditional DP, which preserves all directions within

the hyper-sphere, actually adds excessive noise to the gradient. Different

from regular SGD, DP-SGD usually requires very large batch size (e.g., 16,384) to

reduce the negative impact of noise [46], which makes training process less “stochas-

tic” [15, 159]. In specific, the summation of gradients
{
g̃jz|1 ≤ j ≤ B, 1 ≤ z ≤ d

}
follows Lindeberg–Lévy Central Limit Theorem (CLT) [115] as these gradients are

independently and identically distributed (each of them is derived from a single data

of the same dataset). As such, we can use Gaussian distribution to model the average

of this summation (i.e., g̃z =
1
B

∑B
j=1 g̃jz), as proved by the following theorem.
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Theorem 8. (Modeling of the Averaged Stochastic Gradients). Suppose that var(g̃jz)

and E(g̃jz) are the variance and the expectation of
{
g̃jz|1 ≤ j ≤ B, 1 ≤ z ≤ d

}
, the

probability density function (pdf) of g̃z is:

lim
B→∞

g̃ ∼ N

(
E(g̃j),

√
var(g̃j)

B

)
lim
B→∞

f(g̃z) =

√
B

2π ∗ var(g̃jz)
exp

(
−
B2 ∗

(
x− E(g̃jz)

)2
2 ∗ var(g̃jz)

)
.

(5.21)

Proof.
{
g̃j|1 ≤ j ≤ B

}
are independently and identically distributed variables be-

cause each one is derived from one data sj of the same subset S. According to CLT,

the following probability holds:

lim
B→∞

Pr

∑B
j=1 g̃jz −B ∗ E(g̃jz)√

B ∗ var(g̃jz)
≤ X


= lim

B→∞
Pr

 1
B

∑B
j=1 g̃jz − E(g̃jz)√
var(g̃jz)/B

≤ X

 =

∫ X

−∞
ϕ(x)dx.

(5.22)

where ϕ(x) = 1√
2π

exp(−x2

2
) is the pdf of the standard Gaussian distribution. As

such,
∑B

j=1 g̃jz/B−E(g̃jz)√
var(g̃jz)/B

follows standard gaussian distribution N (0, 1), by which our

claim is proved.

Indicated by Theorem 8, large batch size would incur unevenly distributed average of

gradients, making the training process less stochastic. A further conjecture proposes

that some directions within the space are also unlikely to be the direction of gradient

descent at the current state, as proved by the following theorem. Suppose that the

directions of all gradients are {θjz|1 ≤ j ≤ B, 1 ≤ z ≤ d}, we have:

Theorem 9. (Modeling of the Averaged Directions of Gradients). Suppose that

var(θ̃jz) and E(θ̃jz) are the variance and expectation of
{
θ̃jz|1 ≤ j ≤ B, 1 ≤ z ≤ d

}
,
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5.2. Geometric perturbation: GeoDP

the pdf of the averaged direction θ̃z =
1
B

∑B
j=1 θ̃jz is:

lim
B→∞

θ ∼ N

(
E(θj),

√
var(θj)

B

)
lim
B→∞

f(θ̃z) =

√
B

2π ∗ var(θ̃jz)
exp

−
B2 ∗

(
x− E(θ̃jz)

)2
2 ∗ var(θ̃jz)

 .

(5.23)

Proof.

lim
B→∞

Pr

∑B
j=1 θ̃j −B ∗ E(θ̃j)√

B ∗ var(θ̃j)
≤ X


= lim

B→∞
Pr

 1
B

∑B
j=1 θ̃j − E(θ̃j)√
var(θ̃j)/B

≤ X

 =

∫ X

−∞
ϕ(x)dx.

(5.24)

where ϕ(x) = 1√
2π

exp(−x2

2
) is the pdf of the standard Gaussian distribution. As such,∑B

j=1 θj/B−E(θj)√
var(θj)/B

follows standard gaussian distribution N (0, 1), by which our claim is

proved.

This theorem proves that the averaged direction of stochastic gradients actually con-

centrated at a certain direction, rather than spreading in the whole vector space. As

such, traditional DP-SGD, only effective in the whole vector space, actually wastes

privacy budgets to preserve unnecessary directions. In contrast, GeoDP preserves

the subspace where directions of various gradients are concentrated, and therefore

provides much better efficiency, as jointly proved by the following lemma (which

indicates the better accuracy of GeoDP on preserving directional information) and

theorem (which further indicates the superiority of GeoDP on model efficiency). Ex-

perimental results in Section 5.3.2 also confirm our analysis.

Lemma 6. Given the original direction θ, two perturbed directions θ⋆ and θ∗ from

GeoDP and DP, respectively, there always exists such a bounding factor β that MSE(θ̃
⋆

t ) <

MSE(θ̃
∗
t ) holds.
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Proof. For traditional DP (adding noise n to the gradient g), we can derive the

perturbed angle θ∗
z according to Equation 5.15, i.e.,

θ∗
z =


arctan2

(√∑d−1
z (gz+1 + nz+1)2, gz + nz

)
if 1 ≤ z ≤ d− 2,

arctan2
(
gz+1 + nz+1, gz + nz

)
if z = d− 1.

. (5.25)

Observing both acrtan2 equations above, we can conclude that the traditional

DP perturbation introduces biased noise to the original direction, i.e., E(θ∗) ̸=

θ(bias(θ∗) ̸= 0). Also, the variance of θ (var(θ∗)) is non-zero, if the noise scale

nσ > 0.

For GeoDP, we have θ⋆ = θ +
√
d+2βπ
B

nσ. Accordingly, E(θ⋆) = E(θ +
√
d+2βπ
B

nσ) =

θ(bias(θ⋆) = 0), which means that GeoDP adds unbiased noise to the direction. Be-

sides, beta directly controls the noise added to the direction. In specific, the variance

of θ⋆(var(θ⋆)) can approaching zero if β → 0, because θ⋆ = θ+
√
d+2βπ
B

nσ approaches

0 if β → 0.

Given that MSE(θ) = bias2(θ) + var(θ) [31], there always exist such one β that:

MSE(θ⋆) = bias2(θ⋆) + var(θ⋆) <= bias2(θ∗) + var(θ∗) = MSE(θ∗). (5.26)

by which our claim is proven.

Supported by this lemma, we further prove the optimality of GeoDP to tradition DP

in the efficiency of SGD tasks in the next theorem.

Theorem 10. (Optimality of GeoDP). Let w⋆
t+1 = wt − ηg̃⋆

t , w
∗
t+1 = wt − ηg̃∗

t and

g̃t, g̃
⋆
t and g̃∗

t be the clipped gradient, noisy gradients of GeoDP and DP, respectively.

Besides, g̃t →
(
∥g̃t∥ , θ̃t

)
, g̃⋆

t →
(
∥g̃t∥

⋆ , θ̃
⋆

t

)
and g̃∗

t →
(
∥g̃t∥

∗ , θ̃
∗
t

)
. The following

inequality always holds if g̃⋆
t and g̃∗

t both follow (ϵ, δ)-DP:

E
(∥∥w⋆

t+1 −w⋆
∥∥2) < E

(∥∥w∗
t+1 −w⋆

∥∥2) . (5.27)
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5.2. Geometric perturbation: GeoDP

Proof. Following Corollary 2, we just have to prove Item B of GeoDP is smaller than

Item A of DP. Different learning rates η⋆ and η∗ are applied to GeoDP and DP,

respectively. Recall from Corollary 2, we have:

Item B = ⟨η⋆g̃⋆
t − ηg̃t,w

⋆ −wt⟩

= ∥η⋆g̃⋆
t − ηg̃t∥︸ ︷︷ ︸
C

∥w⋆ −wt∥︸ ︷︷ ︸
D

cos θ︸︷︷︸
E

.
(5.28)

Note that the only way to optimize Item B is via Item C. Most likely, Item D, as

the distance between the current model and the optima, is fixed, and Item E, which

describes the relative angle between noise and the fixed distance, is too random to

handle. Therefore, we manage to zero Item C as much as possible to optimize Item

B. In general, we have:

Item C2 = (η⋆g̃⋆
t )

2 + (ηg̃t)
2 − 2η⋆η⟨g̃⋆

t , g̃t⟩. (5.29)

While (η⋆g̃⋆
t )

2 + (ηg̃t)
2 can be fine-tuned to zero by learning rates, the only way for

⟨g̃⋆
t , g̃t⟩ to be zero is that the direction of g⋆ should approximate that of g̃t (or the

opposite direction of g̃t, which rarely happens and is therefore out of question here.).

Due to MSE(θ̃
⋆

t ) < MSE(θ̃
∗
t ) in Lemma 6, GeoDP can therefore more easily make

Item B zero than DP, by which our claim is proved.

5.2.3.2 Privacy Comparison

Now that the superiority of GeoDP on model efficiency is rigorously analyzed, we

next prove its alignment with the formal DP definition. The following lemma and

theorem analyze the privacy level of perturbed gradient direction and gradient itself

of GeoDP, respectively.

Lemma 7. The perturbed direction from GeoDP θ̃
⋆
under β bounding factor satisfies

(ϵ, δ + δ′)−DP , where

1−
∫ 2βπ

0

∫ βπ

0

...

∫ βπ

0︸ ︷︷ ︸
d−1

d∏
z=1

f(θ̃z)dθ̃z ≤ δ′ ≤ 1− β. (5.30)
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Proof. While δ covers the probability where the strict DP is ineffective [34, 36, 37],

we use δ′ to denote the probability of space where (ϵ, δ)-DP is ineffective. Since θ̃
⋆
is

generally not the expectation of {θj}, we have:

δ′ ≥ 1−
∫ 2βπ

0

∫ βπ

0

...

∫ βπ

0︸ ︷︷ ︸
d−1

d∏
z=1

f(θ̃z)dθ̃z. (5.31)

Meanwhile, the space that β cannot cover is 1 − β if the directions are evenly dis-

tributed (as discussed before, they are not). As such, δ′ ≤ 1− β, by which our claim

is proved.

Theorem 11. (Privacy Level of GeoDP). Given g̃ ↔
(
∥g̃∥ , θ̃

)
, g̃⋆ satisfies (ϵ, δ + δ′)-

DP if ∥g̃∥⋆ and θ̃
⋆
follow (ϵ, δ)-DP and (ϵ, δ + δ′)-DP, respectively.

Proof. Given two neighboring datasetD,D′ and their output sets (g̃⋆, θ̃
⋆
) =

{
(g̃⋆

1, θ̃
⋆

1), ...
}

of M(D), (g̃⋆′ , θ̃
⋆′

) =
{
(g̃⋆′

1 , θ̃
⋆′

1 ), ...
}
of M(D′), respectively, we have:

Pr[M(D) ∈ S] = Pr[(g̃⋆, θ̃
⋆
) ∈ S]

≤
(
eϵ Pr[(g̃⋆′ , θ̃

⋆
) ∈ S] + δ

)
∨
(
eϵ Pr[(g̃⋆, θ̃

⋆′

) ∈ S] + δ + δ′
)

=
(
eϵ Pr[(g̃⋆′ , θ̃

⋆′

) ∈ S] + δ + δ′
)

=eϵ Pr[M(D′) ∈ S] + δ + δ′.

(5.32)

by which this theorem is proven.

Compared with traditional DP which imposes (ϵ, δ)-DP on the whole gradient, GeoDP

relieves the privacy level of gradient direction (i.e., θ̃
⋆
satisfies (ϵ, δ + δ′)-DP) while

maintaining the same privacy preservation on gradient magnitude (i.e., g̃⋆ satisfies

(ϵ, δ)-DP). In return, the model efficiency of SGD is much improved under the same

noise scale. While the privacy preservation is weaker, GeoDP imposes more pertur-

bation on gradient magnitude, making it even harder for various attacks to succeed.
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5.3 Experimental results

This section empirically evaluates our analysis as well as the perturbation strategy

GeoDP in various learning tasks. In Section 5.3.2, we first validate Lemma 6 where

GeoDP preserves directional information better than traditional DP. We then com-

pare performances of GeoDP with traditional DP in one machine learning model (i.e.,

Logistic Regression) and two deep learning models (i.e., CNN and ResNet) in Section

5.3.3 and Section 5.3.4, respectively. Since GeoDP only modifies the way to perturb,

instead of the target to be perturbed and the training process, existing optimization

techniques, such as adaptive clipping and other advanced optimizers, are orthogonal

to GeoDP. To demonstrate generality of GeoDP, we also compare the performance of

GeoDP and DP in CNN with a state-of-the-art clipping technique AUTO-S [17]. Fi-

nally, to evaluate the practical privacy risk, we implement a benchmark membership

inference attack (MIA) on both GeoDP and DP.

5.3.1 Experimental Setup

We conduct our experiments on a server with Intel Xeon Silver 4210R CPU, 128G

RAM, and Nvidia GeForce RTX 3090 GPU on Ubuntu 20.04 LTS system. All results

are repeated 100 times to obtain the average. Unless otherwise specified, we fix

C = 0.1.

5.3.1.1 Datasets and Models

For model efficiency, we use two prevalent benchmark datasets, MNIST [76] and

CIFAR-10 [75]. For MIA tests, we adopt the state-of-the-art benchmark ML-DOCTOR [118]

and use four public datasets, MNIST, CIFAR-10, CelebA [89], and FMNIST [143].

Besides, we also conduct a standalone experiment to verify that GeoDP preserves di-

rectional information better than DP (Lemma 6). Due to the lack of public gradient
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datasets, we form a synthetic one for this experiment. The details of these datasets

are as below.

MNIST. This is a dataset of 70,000 gray-scale images (28x28 pixels) of handwritten

digits from 0 to 9, commonly used for training and testing machine learning algorithms

in image recognition tasks. It consists of 60,000 training images and 10,000 testing

images, with an even distribution across the 10 digit classes.

CIFAR-10. It is a dataset of 60,000 small (32x32 pixels) color images, divided into 10

distinct classes such as animals and vehicles, used for machine learning and computer

vision tasks. It contains 50,000 training images and 10,000 testing images, with each

class having an equal number of images.

Synthetic Gradient Dataset. To synthesize a dataset of gradients, we randomly

collect 450, 000 gradients (of 20, 000 dimensions) from 9 epochs of training a non-DP

CNN (B = 1) on CIFAR-10 (i.e., 50, 000 training images). Dimensions are randomly

chosen in various experiments.

As for models, recall that our experiments aim to confirm the superiority of GeoDP

to DP on SGD, instead of yearning the best empirical accuracy over all existing ML

models. As such, we believe prevalent models such as LR, 2-layer CNN with Softmax

activation and ResNet with 3 residual block (each one containing 2 convolutional lay-

ers and 1 rectified linear unit (ReLU)) are quite adequate to confirm the effectiveness

of our strategy.

While a model’s efficiency under DP can be improved by optimizing various fac-

tors, e.g., global training strategy [46], fine-tuning parameters [167], advanced opti-

mizer [125] and model architecture [111], GeoDP is the first to focus on perturbation

strategy, and makes no change to the logic of SGD so as to maintain its universal

compatibility with any optimization that integrates SGD. As such, we believe basic

models such as LR and CNN are more appropriate, as their interpretability can more

accurately match the setting in our theoretical derivation. Such strategy has also

96



5.3. Experimental results

been adopted in a few other theoretical works, such as [80], which only utilizes LR to

verify the convergence analysis.

5.3.1.2 Competitive Methods

As GeoDP is orthogonal to existing optimization techniques as interpreted in Section

2.2.3, we do not directly compare them. Instead, we compare GeoDP with DP on

regular SGD from various perspectives, i.e., model efficiency, compatibility with ex-

isting optimization techniques. To demonstrate generality of GeoDP, we also apply

a state-of-the-art clipping technique AUTO-S [17] to observe its improvements on

GeoDP.

5.3.2 GeoDP vs. DP: Accuracy of Descent Trend

On the synthetic dataset, we perturb gradients by GeoDP and DP, respectively,

and compare their MSEs under various parameters. As illustrated in Figure 5.3,

labels θ and g represent MSEs of perturbed directions and gradients, respectively.

In Figure 5.3(a)-5.3(c), we fix dimension d = 5, 000 and batch size B = 2, 048,

while varying noise multiplier σ in {10−4, 10−3, 10−2, 10−1, 1, 10} if δ = 10−5) under

three bounding factors β = {0.01, 0.1, 1}, respectively. We have two major obser-

vations. First, GeoDP better preserves directions (the red line is below the black

line) while DP better preserves gradients (the blue line is below the green line) in

most scenarios. Second, GeoDP is sometimes not robust to large noise multiplier

and high dimensionality. When σ > 1 in Figure 5.3(a), GeoDP is instead out-

performed by DP in preserving directions. Similar results can be also observed

in Figure 5.3(d)-5.3(f) (fixing σ = 8, B = 4096 while varying dimensionality in

{500, 1000, 2000, 5000, 10000, 20000}) and Figure 5.3(g)-5.3(i) (fixing d = 10000, σ =

8 while varying batch size in {512, 1024, 2048, 4096, 8192, 163984}), respectively. For

example, Figure 5.3(d) and Figure 5.3(g), which all fix β = 1, show that GeoDP is
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outperformed by DP on preserving directions when d > 2000 and B < 8192, respec-

tively.

Before addressing this problem, we discuss reasons behind the ineffectiveness of

GeoDP. Recall from Section 5.2.2 that the perturbation of GeoDP on directions

is
√
d+2βπ
B

nσ. Obviously, both large noise multiplier (nσ) and high dimensionality

(
√
d+ 2) increase the perturbation on directions.

Nevertheless, GeoDP can overcome this shortcoming by tuning β, which controls the

sensitivity of direction. In both Figures 5.3(b) (β = 0.1) and 5.3(c) (β = 0.01), we

reduce the noise on the direction by reducing the bounding factor, and the pay-off is

very significant. Results show that GeoDP simultaneously outperforms DP in both

direction and gradient. Tuning β is also effective in Figure 5.3(e), 5.3(f) and Figure

5.3(h), 5.3(i), respectively. Most likely, smaller bounding factor reduces noise added

to the direction while does not affect the noisy magnitude. Accordingly, GeoDP

reduces both MSEs of direction and gradient, and thus perfectly outperforms DP in

preserving directional information.

To further confirm this conjecture, extensive experiments, by varying the bounding

factor in {0.1, 0.2, 0.4, 0.6, 0.8, 1.0} under different scenarios, are conducted in Figure

5.4. All experimental results show that there always exists a bounding factor (β = 0.2

in Figure 5.4(a) and β = 0.4 in Figure 5.4(b) and β = 0.8 in Figure 5.4(c)) for GeoDP

to outperform DP in preserving both direction and gradient. These results also

perfectly align with our theoretical analysis in Lemma 6 and Theorem 10,

respectively.

Also, GeoDP can improve accuracy by tuning batch size. As illustrated in Figure

5.3(g) (d = 10000, σ = 8, β = 1), we demonstrate how the performance of GeoDP is

impacted by batch size. Obviously, a large batch size can boost GeoDP to provide

optimal accuracy on directions. In contrast, the accuracy of DP on directions hardly

changes with batch size (see the black line in 5.3(g)), although the noise scale on
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gradients is reduced by larger batch size (see the blue line in 5.3(g)). These results

validate that optimization techniques of DP-SGD, such as fine-tuning learning

rate, clipping threshold and batch size, cannot reduce the noise on the direction,

as confirmed by Corollary 2.

5.3.3 GeoDP vs. DP: Logistic Regression

In the second set of experiments, we verify the effectiveness of GeoDP on Logistic

Regression (LR) under MNIST dataset. Figure 5.5 plots training losses of 350 iter-

ations, under No noise, GeoDP and DP. In Figure 5.5(a), with B = 4, 096, GeoDP

(the red line) significantly outperforms DP (the green line) and almost has the same

performance as noise-free training (black line). The green line overlaps with the pur-

ple line because losses of DP-SGD with B = 2, 048 and B = 4, 096 are almost the

same. This observation coincides with that from Figure 5.3(g), i.e., the batch size

of DP-SGD hardly impacts the noise on the descent trend and thus the model effi-

ciency. In contrast, batch size can successfully reduce the noise of GeoDP (see the

gap between the red and blue lines).

In Figure 5.5(b), we test the performance of GeoDP under large noise scale. Initially,

GeoDP (blue line) performs worse than DP (green line) with β = 1. When reducing

β to 0.5 as suggested in Section 5.3.2, the performance of GeoDP surges and leaves

DP behind. This observation confirms the superiority of GeoDP over DP even under

extreme cases.

In Figure 5.5(c), we fix the β = 1 and B = 256 while varying the noise multiplier

in σ = {0.01, 0.1}. As we can see, reducing σ cannot help DP to perform better

(see the green line). This is because DP introduces biased noise to the direction,

as confirmed by Lemma 6. Simply reducing the variance of noise cannot counteract

this bias. As such, DP is sub-optimal even under very small multiplier.

By contrast, GeoDP can achieve significant efficiency improvement with multiplier
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(a) d = 5000, B = 2048, β = 1
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(c) d = 5000, B = 2048, β =

0.01
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(d) σ = 8, B = 4096, β = 1
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(e) σ = 8, B = 4096, β = 0.1
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(f) σ = 8, B = 4096, β = 0.01
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(g) d = 10000, σ = 8, β = 1
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(h) d = 10000, σ = 8, β = 0.1
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(i) d = 10000, σ = 8, β = 0.01

Figure 5.3: GeoDP vs. DP on Preserving Gradients under Various Parameters on

Synthetic Dataset

100



5.3. Experimental results

��� ��� ��� ��� ��� �

�	��

�����

����

���

�
�
�
�

����
��
���	�������

������
���������
������
���	�����

(a) d = 20000, σ = 8, B =

4096
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(b) d = 10000, σ = 8, B =

4096
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(c) d = 5000, σ = 8, B = 4096

Figure 5.4: The Effectiveness of Bounding Factor
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(a) d = 785, σ = 1, β = 1
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(b) d = 785, σ = 10, B =

2, 048
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(c) d = 785, β = 1, B = 256
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(d) d = 785, β = 1, B = 2, 048

Figure 5.5: GeoDP versus DP on Logistic Regression under MNIST dataset
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reduction. When σ = 0.01 (see the blue line), GeoDP almost achieves noise-free

model efficiency (the blue line is only slightly above the black line).

Similar results can be also observed in Figure 5.5(d), where GeoDP even achieves

noise-free model efficiency with both σ = 0.01, 0.1 while DP cannot further achieve

better model efficiency with noise multiplier reduced.

Dataset Method σ = 10 σ = 1

MNIST

(noise-free

99.11%)

DP (B = 8192) 87.93% 94.25%

DP (B = 16384) 88.12% 95.52%

DP(B = 16384 88.40% 95.71%

+AUTO-S)

GeoDP (B = 8192, β = 0.1) 90.31% 96.47%

GeoDP (B = 16384, β = 0.1) 93.58% 98.04%

GeoDP (B = 8192, β = 0.5) 53.80% 60.31%

GeoDP (B = 16384, β = 0.1 93.64% 98.17%

+AUTO-S)

Table 5.2: GeoDP vs. DP on CNN under MNIST Dataset: Test Accuracy

5.3.4 GeoDP vs. DP: Deep Learning

To demonstrate the effectiveness of GeoDP in various learning tasks, we also con-

duct experiments on MNIST dataset with Convolutional Neural Network (CNN) and

Residual . Due to the extremely large number of parameters, we set the number of

training epochs to 20. While GeoDP pays much attention on the direction, the noisy

magnitude is also impacting the overall model efficiency. This is why GeoDP also

clips the magnitude before adding noise to it (see Step 6 in Algorithm 5). Since the

L2-norm of the gradient (i.e., the magnitude) is clipped in existing works [17, 164],

the same techniques can also be applied to GeoDP. As such, we also demonstrate
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the generality of GeoDP by integrating it to the state-of-the-art clipping technique

AUTO-S [17].

Major results are demonstrated in Table 5.2. In general, GeoDP outperforms DP

under various parameters except for large β. We can observe that the test accuracy

is dramatically reduced (e.g., 98.7% → 60.3%) when β increases from 0.1 to 0.5. The

reason behind is the extremely large sensitivity of GeoDP incurred by high dimen-

sionality (21, 840 dimensions), as discussed in 5.3.2. Overall, we can always find such

a β (β = 0.1 in this experiment) that GeoDP outperforms DP in any task. Similar

results in Table 5.3 also demonstrates the effectiveness of GeoDP on ResNet under

CIFAR-10 dataset. Similar to our observations on LR, GeoDP even better outper-

forms DP under smaller noise multiplier (e.g., GeoDP can achieve better accuracy

than DP even under β = 1.). Note that the perturbed direction of GeoDP

is unbiased while that of DP is biased, as previously confirmed in Lemma

6. As such, the optimality of GeoDP over DP under smaller noise multiplier is a

reflection of this nature.

Dataset Method σ = 0.1 σ = 0.01

CIFAR-10

(noise-free

67.43%)

DP (B = 8192) 59.39% 63.27%

DP (B = 16384) 60.12% 63.84%

DP(B = 16384 60.51% 63.91%

+AUTO-S)

GeoDP (B = 8192, β = 1) 61.47% 65.93%

GeoDP (B = 16384, β = 1) 63.38% 66.51%

GeoDP (B = 16384, β = 0.1) 65.47% 67.35%

GeoDP (B = 16384, β = 0.1 65.58% 67.37%

+AUTO-S)

Table 5.3: GeoDP vs. DP on ResNet under CIFAR-10 Dataset: Test Accuracy
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5.3.5 GeoDP versus DP: The Defense on MIA

As demonstrated earlier, GeoDP makes better trade-off than DP in SGD tasks. As

such, it is worth investigating the integrity of GeoDP in face of MIA attacks. In

particular, ML-Doctor [118] provides us a convenient platform to evaluate the ability

of GeoDP and DP against MIA attacks. In particular, we implement white-box

attack [95] of this framework with 70% random-chosen samples of the target training

dataset as the auxiliary dataset. We follow the instruction [87] and feed four inputs to

the attack model, i.e., the ranked posteriors of target samples, gradients from target

model’s last layer, classification loss and the true label. The model that is attacked

is the two-layer CNN model above. With the batch size B = 64 and the total epoch

50, major results are summarized in Table 5.4. As we can see, GeoDP does not make

MIA much more easier. Most likely, existing MIA attacks and GeoDP has different

views on “similar gradients”. For MIA, this similarity is numerical while for GeoDP,

it is directional. As such, gradients from GeoDP can better deceive the attack model

while GeoDP achieves satisfying model efficiency.

Method ϵ = 4.9 ϵ = 11.3

Original Model(CelebA) 68.3% 68.3%

DP(B=8,192) (CelebA) 50.0% 50.0%

GeoDP(B=8,192,β = 0.1) (CelebA) 49.8% 50.0%

Original Model(FMNIST) 56.2% 56.2%

DP(B=8,192) (FMNIST) 50.0% 50.0%

GeoDP(B=8,192,β = 0.1) (FMNIST) 50.0% 50.1%

Table 5.4: GeoDP versus DP on ML-Doctor: Attack Accuracy
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5.4 Summary

This chapter optimizes DP-SGD from a new perspective. We first theoretically an-

alyze the impact of DP noise on the training process of SGD, which shows that the

perturbation of DP-SGD is actually sub-optimal because it introduces biased noise

to the direction. This inspires us to reduce the noise on direction for model efficiency

improvement. We then propose our geometric perturbation mechanism GeoDP. Its

effectiveness and generality are mutually confirmed by both rigorous proofs and ex-

perimental results. As for future work, we plan to study the impact of mainstream

training optimizations, such as Adam optimizer [125], on GeoDP. Besides, we also

plan to extend GeoDP to other form of learning, such as federated learning [47].
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Chapter 6

Analyzing and Enhancing LDP

Perturbation in Federated

Learning

With the increasingly stringent legislation on personal data protection such as General

Data Protection Regulation (GDPR) [102], federated learning (FL) [150], a decen-

tralized machine learning paradigm to train a global model across multiple local de-

vices, has become increasingly popular over traditional centralized machine learning.

Besides their advantages in privacy preservation, most FL frameworks, commonly

implementing prevalent deep learning algorithms (e.g., CNN) in local devices, are

highly compatible with existing optimization techniques (i.e., mini-batch stochastic

gradient descent (SGD) and its variants). These advantages have helped FL to em-

brace wider applications in practice. However, recent studies show that the training

process in FL, especially the disclosure of local model weights or gradients, can still

leak private information and is thus vulnerable to various privacy attacks, including

membership inference attacks [91,93,118,157], attribute inference attacks [53,66], and

data extraction attacks [20, 54]. These attacks pose immediate threats to the wider
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adoption of FL in business sectors such as healthcare and finance where training data

are sensitive.

To remedy this, local differential privacy (LDP) [32], which sends the perturbed data

to any third party while reserving original information locally, is adopted in the

industry [1, 124]. Referred to as federated LDP-SGD, random noise is added to the

local gradient or other derived local parameters before sent to the central server. As

such, federated LDP-SGD effectively prevents privacy attacks on model parameters,

as true parameters always remain locally.

However, LDP-SGD is a strict privacy scheme and thus causes poor model efficiency.

There are a few works that attempt to improve its performance but they all have lim-

itations. First, among various LDP mechanisms, only Gaussian mechanism, which

merely provides a relaxed privacy guarantee, is explored [50,70,86,108,114,129,141].

Second, LDP-SGD algorithm in prior works [70, 86] is not so effective as to provide

satisfactory model efficiency even under Gaussian noise. Last but not the least, no

prior works are able to generally evaluate the performances of different LDP mecha-

nisms in federated training.

In this thesis, we address these limitations by first proposing an analytical framework

that generalizes federated LDP-SGD and derives the impact of LDP noise on the

federated training process, in terms of the model efficiency. Then we show that this

framework can serve as a benchmark to compare model efficiencies of federated LDP-

SGD under various LDPmechanisms. An interesting observation is that while existing

works preserve the gradient itself, our analysis points out that only its direction

is necessary for gradient descent. As such, existing LDP-SGD strategy is sub-

optimal, as it wastes privacy budget to preserve the magnitude of gradient. Motivated

by this, our second contribution is a geometric perturbation strategy LDPVec to

optimize the training process. While focusing on preserving directional information,

LDPVec only perturbs the direction of a gradient, and rearranges LDP

noise to better preserve directional information. This strategy can generally
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enhance federated LDP-SGD under various LDP mechanisms. To summarize, the

main contributions of this chapter are as follows.

• To the best of our knowledge, this is the first general analytical framework

to measure LDP mechanisms in federated learning. This framework can not

only serve as a benchmark to compare various LDP mechanisms in federated

LDP-SGD, but also point out the direction of future optimization.

• We propose a geometric perturbation strategy LDPVec, which optimizes per-

formances of various LDP mechanisms in federated SGD.

• Extensive experiments on real datasets, popular machine learning models, and

three state-of-the-art LDP mechanisms are conducted to validate the generality

and effectiveness of both framework and strategy. All results unanimously show

that the theoretical analysis is consistent with the experimental results, and

our geometric perturbation strategy significantly improves model efficiencies in

practice.

The rest of this chapter is organized as follows. Section 6.1 presents the analytical

framework for federated LDP-SGD while Section 6.2 proposes the perturbation strat-

egy LDPVec. Experimental results are presented in Section 6.3, and summaries are

drawn in Section 6.4.

6.1 A General Analytical Framework for Feder-

ated LDP-SGD

In this section, we propose an analytical framework to generally analyze the model

efficiency of federated LDP-SGD. In what follows, Section 6.1.1 generalizes federated

LDP-SGD tasks, based on which we further model the global aggregation in Section
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6.1.2, while conducting model efficiency analysis in Section 6.1.3. Finally, Section

6.1.4 presents a case study on federated logistic regression under Laplace, Piecewise

and Gaussian mechanisms, respectively, to demonstrate the implementation of our

framework.

6.1.1 Overview of Federated LDP-SGD

Let us assume there are T iterations in total, and one global aggregation occurs per

E iterations. As such, there are T/E rounds of federated LDP-SGD. As shown in

Figure 6.1, each round of federated LDP-SGD has five stages and finally terminates

at stage ⑥.

• Local Regular Iterations: On receiving the current global model wt∗, each local

device first updates its local model wt
k = wt∗, and then initiates E − 1 times

local SGD as wt+i
k = wt+i−1

k − ηt+i−1g̃t+i−1
k , i = 1, 2, ..., E − 1.

• Local Noisy Iteration: On the E-th iteration, the gradient of the E-th local

SGD is added by one random LDP noise. Formally,

wt+E∗
k = wt+E−1

k − ηt+E−1gt+E−1∗
k

= wt+E−1
k − ηt+E−1(g̃t+E−1

k + nt+E−1
k )

(6.1)

• To Server: The perturbed models
{
wt+E∗

k |1 ≤ k ≤ N
}
are sent to the central

server while the original models remain locally.

• Global Aggregation: On receiving perturbed models from all devices, the cen-

tral server aggregates perturbed models to derive the current global model.

Formally,

wt+E∗ =
N∑
k=1

pkw
t+E∗
k (6.2)

• Global Broadcast: The central server updates the global model to each local

device for the next round of local iterations. Namely, wt+E
k = wt+E∗.
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Figure 6.1: Overview of Federated LDP-SGD.

• Global Stop: LDP-SGD terminates when a satisfactory global model is derived.

In a complete round of federated LDP-SGD (Stages ①-⑤), Stages ①-② are “the local

iterations” and Stages ③-⑤ are “the global update”, respectively. Obviously, the LDP

noise added on the local iteration (i.e., Stage ②) directly impacts the convergence on

the global aggregation (i.e., Stage ④). The current convergence state is then passed

on to the following local iterations via the global broadcast (i.e., Stage ⑤), which

further feeds back to the future convergence. To provide a both accurate and user-

friendly benchmark, we just analyze how LDP noise impacts one complete round of

training, to compare performances of various LDP mechanisms.

6.1.2 Model of Federated LDP-SGD

As Stages ③,⑤ and ⑥ are already described in Section 6.1.1, we turn our focus Stages

①,② and ④, namely, local iterations and the global aggregation. Let ΓE denote the

set of global updates, i.e., ΓE = {nE|n = 1, 2, ..., T/E}. When t + 1 ∈ ΓE, it is the

time to perform the global update after one noisy local iteration. Otherwise, it is just

a local iteration. For simplicity, we can generalize local iterations (i.e., Stages ① and

②) in the k-th device as:

wt+1∗
k =

wt
k − ηtg̃t

k, if t+ 1 /∈ ΓE

wt
k − ηt(g̃t

k + nt
k), if t+ 1 ∈ ΓE.

(6.3)
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Following Equation 6.3, the global aggregation at Stage ④ (i.e., t+1 ∈ ΓE) is modeled

as:

wt+1∗ =
N∑
k=1

pkw
t+1∗
k . (6.4)

Applying Equation 6.3 to Equation 6.4, we have :

wt+1∗ =
N∑
k=1

pkw
t+1∗
k =

N∑
k=1

pk(w
t
k − ηt(g̃t

k + nt
k))

=
N∑
k=1

pk(w
t
k − ηtg̃t

k)− ηt
N∑
k=1

pkn
t
k︸ ︷︷ ︸

A

.
(6.5)

As indicated in Equation 6.5, in local iterations two essential terms, namely the

gradient itself and the LDP noise, jointly determine the global aggregation at Stage

④. While the gradient can be derived from the loss function, the random noise itself

cannot be modeled. On the other hand, the aggregation of LDP noise (Item A) seems

to be described by Lindeberg–Lévy Central Limit Theorem (CLT) [30]. However, since

different local devices in FL may have different weights, i.e., {pk|1 ≤ k ≤ N}, the

sampled noise pkn
t
k is non-identically distributed. This violates the prerequisite of

CLT. Fortunately, we establish the following lemma, which uses a virtual aggregation

p̄
∑N

k=1n
t
k to replace Item A, where p̄ =

∑N
k=1 pk
N

.

Lemma 8. Item A has the same distribution as p̄
∑N

k=1n
t
k.

Proof. Given g̃t
k, g

t∗
k is only decided by the LDP mechanism and the privacy budget.

Therefore, nt
k = gt∗

k − g̃t
k follows the same distribution. Suppose the pdf function of

nt
k is f(x). Then, we have:

N∑
k=1

pkn
t
k

∫ x

−∞
f(nt

k)dn
t
k =

N∑
k=1

pkn

∫ x

−∞
f(n)dn

=p̄Nn

∫ x

−∞
f(n)dn = p̄

N∑
k=1

nt
k

∫ x

−∞
f(nt

k)dn
t
k.

(6.6)

by which our claim is proven.
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Since nt
k is identically distributed, CLT [30] can describe the above virtual aggre-

gation, namely, p̄
∑N

k=1 n
t
k. The same model also describes Item A, as proven by

Lemma 8. As we respectively assume that µt
ν : {µt

νz = E (nt
νkz) |1 ≤ z ≤ d} and

σt
ν :
{
σt

νz
2
= E

(
nt

νkz
2
)
− E2 (nt

νkz) |1 ≤ z ≤ d
}
, the following theorem derives Item

A with a Gaussian distribution. However, no existing study instructs the strict LDP

mechanisms to solve nt
k given the clipped gradient g̃t

k. Following the same approach

as existing LDP-SGD works [70,86,141], given the clipped gradient g̃t
k(
∥∥g̃t

k

∥∥ ≤ C), its

normalized gradient is g̃′t
k = g̃t

k

√
d/C(

∥∥g̃′t
k

∥∥ ≤
√
d). Referring to Section 3.1.1, we can

produce the normalized LDP noise n′t
k . While the normalized noise n′t

k guarantees

that the normalized perturbed gradient g′t∗
k = g̃′t

k +n′t
k follows LDP, nt

kz = n′t
kzC/

√
d

guarantees that the perturbed gradient gt∗
kz = g̃t

kz +nt
kz also follows LDP, as guaran-

teed by the following lemma.

Lemma 9. Let M : D → R be a (ϵ, δ)-locally differentially private mechanism, and

f : J → D be a linear mapping. Then M(f) : J → R is also (ϵ, δ)-locally differentially

private.

Proof. For any pair of original data g′
i, g

′
j ∈ D, any perturbed data g′∗ ∈ R and their

respective linear mapping gi = f(g′
i), gj = f(g′

j), g
∗ = f(g′∗), we have:

Pr (f(M(g′
i)) = g∗) = Pr (M(g′

i) = g′∗)

≤ exp(ϵ) Pr
(
M(g′

j)
)
+ δ = exp(ϵ) Pr

(
f(M(g′

j)) = g∗)+ δ.
(6.7)

Then we prove the equivalency of f(M(g′
i)) and M(gi). Suppose f(x) = cx, we

have:

f(M(g′
i)) = f(g′

i + n′
i) = cg′

i + cn′
i = gi + ni = M(gi). (6.8)

Applying Equation 6.8 to Equation 6.7, we have Pr (M(gi) = g∗) ≤ exp(ϵ) Pr
(
M(gj) = g∗)+

δ , by which this lemma is proven.

Theorem 12. The distribution of Item A is N (Cp̄kNµt
ν , C

2p̄2kN(σt
ν)

2).
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Proof. For ∀k, n′t
k are independent and identically distributed (i.i.d.) random vari-

ables. As per Lindeberg–Lévy Central Limit Theorem [30,43,115], the following prob-

ability always holds if N → ∞:

Pr

(∑N
k=1 n

t
νkz −Nµt

νz√
Nσt

νz

≤ X

)
= Pr

(
1
C

∑N
k=1n

t
kz −Nµt

νz√
Nσt

νz

≤ X

)

= Pr

(∑N
k=1 n

t
kz − CNµt

νz√
NCσt

νz

≤ X

)

= Pr

(
p̄k
∑N

k=1n
t
kz − Cp̄kNµt

νz√
Np̄kCσt

νz

≤ X

)
=

∫ X

−∞
ϕ(x)dx.

(6.9)

where ϕ(x) is the pdf of the standard Gaussian distribution N (0, 1). Therefore,

lim
N→∞

p̄k
∑N

k=1 n
t
kz−Cp̄kNµt

νz√
NCp̄kσt

νz
follows standard normal distribution. Then we derive the

distribution of lim
N→∞

p̄k
∑N

k=1 n
t
kz as

lim
N→∞

p̄k

N∑
k=1

nt
kz ∼ N (

Cp̄kN√
d

µt
z,
C2p̄2kN

d
σt

z
2
). (6.10)

Due to the independence of each dimension of the clipped gradient, we can further

derive the distribution of lim
N→∞

p̄k
∑N

k=1 n
t
k:

lim
N→∞

p̄k

N∑
k=1

nt
k ∼ N (Cp̄kNµt

ν , C
2p̄2kNσt

ν
2
). (6.11)

As proven by Lemma 8, item A shares the same distribution as p̄k lim
N→∞

∑N
k=1 n

t
k, by

which this theorem is proven.

From Equation 6.9, gradient clipping, which reduces both the expectation and the

variance of LDP noise, effectively reduce the magnitude of the LDP noise. How-

ever, it remains unclear how LDP noise impacts on the convergence. Now that we

have mathematically derived a complete round of federated LDP-SGD, it is ready to

analyze its convergence.
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6.1.3 A General Analytical Framework for Federated LDP-

SGD

Let a virtual1 global gradient g̃t =
∑N

k=1 pkg̃
t
k =

∑N
k=1 pk∇Fk(w

t
k, S

t
k), a virtual

global noise nt =
∑N

k=1 pkn
t
k, and a virtual global model wt =

∑N
k=1 pkw

t
k. Then

a virtual global SGD of federated LDP-SGD wt+1∗ =
∑N

k=1 pkw
t
k − ηt

∑N
k=1 pkg̃

t∗
k =

wt− ηt
(
g̃t + nt

)
, and a virtual global model of federated SGD wt+1 =

∑N
k=1 pkw

t
k −

ηt
∑N

k=1 pkg̃
t
k = wt − ηtg̃t. Since ∇t

k = E(g̃t
k), we also have a virtual expectation of

a global gradient ∇t = E(g̃t) =
∑N

k=1 pk∇t
k. In general, the Euclidean distances be-

tween global models and the global optima (i.e., ∥wt+1∗ −w⋆∥2 and ∥wt+1 −w⋆∥2) re-

flect the model efficiency of federated LDP-SGD and federated SGD, respectively. Ap-

parently, the smaller this distance is, the better efficiency the global model achieves.

Their efficiency difference (i.e., ∥wt+1∗ −w⋆∥2 − ∥wt+1 −w⋆∥2), on the other hand,

can describe the impact of LDP noise on the global model, as presented by the fol-

lowing theorem.

Theorem 13. Given t + 1 ∈ ΓE, the impact of LDP noise on federated LDP-SGD

can be measured as:

E
(∥∥wt+1∗ −w⋆

∥∥2)− E
(∥∥wt+1 −w⋆

∥∥2)
= −2

〈
wt − ηt∇t, Cp̄kNµt

ν

〉︸ ︷︷ ︸
B

+ C2ηt
2
p̄2kN

2(µt
ν)

2 + C2ηt
2
p̄2kN(σt

ν)
2︸ ︷︷ ︸

C

+2
〈
w⋆, Cp̄kNµt

ν

〉︸ ︷︷ ︸
D

.

(6.12)

Proof. From federated LDP-SGD, we have:∥∥wt+1∗ −w⋆
∥∥2 = ∥∥wt − ηt

(
g̃t + nt

)
−w⋆

∥∥2
=
∥∥wt − ηtg̃t −w⋆

∥∥2 − 2⟨wt − ηtg̃t −w⋆,nt⟩+ ηt
2
nt2.

(6.13)

1By ”virtual”, we mean that they do not physically exist in the FL training process but are much

convenient in terms of convergence analysis.
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While for federated SGD, we have:

∥∥wt+1 −w⋆
∥∥2 = ∥∥wt − ηtg̃t −w⋆

∥∥2 . (6.14)

Subtracting Equation 6.14 from Equation 6.13, we have:∥∥wt+1∗ −w⋆
∥∥2 − ∥∥wt+1 −w⋆

∥∥2
=− 2⟨wt − ηtg̃t −w⋆,nt⟩+ ηt

2
nt2

=− 2 ⟨wt − ηtg̃t,nt⟩︸ ︷︷ ︸
B

+ ηt
2
nt2︸ ︷︷ ︸
C

+2 ⟨w⋆,nt⟩︸ ︷︷ ︸
D

.

(6.15)

Recall that from Equation 6.11, nt approximates a Gaussian distribution. That is

to say, nt = N (Cp̄kNµt
ν , C

2p̄2kNσt
ν
2
). Given a variable x, its expectation µ and its

variance σ2, the expectation of item B is:

E(B) = ⟨wt − ηtE(g̃t),E(nt)⟩ =
〈
wt − ηt∇t, Cp̄kNµt

ν

〉
. (6.16)

Given a variable x, its expectation µ and its variance σ2, since E(x− µ)2 = E(x2)−

2µE(x) + µ2 = E(x2) − µ2 = σ2, we have E(x2) = µ2 + σ2. On this basis, we derive

the expectation of Item C:

E(C) = ηt
2E(nt2) = C2ηt

2
p̄2kN

2µt
ν
2
+ C2ηt

2
p̄2kNσt

ν
2
. (6.17)

For Item D, we have:

E(D) = ⟨w⋆,E(nt)⟩ =
〈
w⋆, Cp̄kNµt

ν

〉
. (6.18)

Applying Equation 6.16, 6.17 and 6.18 into Equation 6.15, we prove this theorem.

Overall, a positive difference, i.e., E
(
∥wt+1∗ −w⋆∥2

)
> E

(
∥wt+1 −w⋆∥2

)
, means

that the efficiency of federated LDP-SGD is worse than federated SGD. This percep-

tion is highly recognized by most existing works [50,70,86,141]. Zero difference, i.e.,

µt
ν = σt

ν = 0, means no LDP perturbation. The most interesting scenario is when

the difference is negative, i.e., E
(
∥wt+1∗ −w⋆∥2

)
< E

(
∥wt+1 −w⋆∥2

)
.
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From Equation 6.15,the efficiency difference is divided into three parts. Item B, the

inner product between the noise-free global model and the noise itself, reflects how

the direction of LDP noise impacts the efficiency. Item C otherwise describes how

the magnitude of noise impacts the efficiency. While item C is mostly non-negative,

item B depends on the angle between the global gradient descent wt − ηt∇t and

the global aggregation of noise µt
ν . Item D, however, shows that the introduction of

LDP noise would definitely cause a bias to the global optima. In fact, the following

corollary indicates that federated LDP-SGD deviates from the global optima

in a statistic sense.

Corollary 3. The impact of LDP noise on federated LDP-SGD is convergent as

follows:

lim
t→∞

E
(∥∥wt+1∗ −w⋆

∥∥2)− E
(∥∥wt+1 −w⋆

∥∥2)
=C2ηt

2
p̄2kN

2µt
ν
2
+ C2ηt

2
p̄2kNσt

ν
2
.

(6.19)

Proof. After sufficient iterations, federated SGD would finally converge to the global

optima. As wt − ηt∇t models the non-LDP federated SGD, we have limt→∞wt −

ηt∇t → w⋆. Applying this to Equation 6.12, we have Item B and Item D mutually

canceled out. As such, this corollary is proven.

Since this difference has a direct impact on the model efficiency, it can benchmark the

utilities of various LDP mechanisms in federated LDP-SGD. In particular, wt− ηt∇t

and w⋆ can be derived according to the FL algorithms (e.g., FedAvg) and local

datasets, while µt
ν and σt

ν can be calculated from the LDP mechanisms. Although

w⋆ is unknown in practice, especially when the loss function is non-convex, it is a

constant throughout the above derivation. Accordingly, we can calculate respective

efficiency differences in terms of respective LDP mechanism under FedAvg. The more

negative the distance is, the better performance this mechanism achieves.

116



6.1. A General Analytical Framework for Federated LDP-SGD

6.1.4 A Case Study: Benchmarking LDP Mechanisms in

Federated Logistic Regression

To demonstrate our analytical framework, in this subsection we provide a case study

on federated logistic regression [150], where we benchmark the efficiency of federated

logistic regression under three state-of-the-art LDP mechanisms, namely, Laplace,

Piecewise and Gaussian mechanisms, in the global aggregation step, i.e., t+ 1 ∈ ΓE.

We assume an MNIST [76] dataset (60,000 28×28 images) distributed amongN = 500

devices in a non-iid fashion where each device contains 120 images of only two digits.

For simplicity, we consider a binary classification task, where digits 0− 4 are labeled

as ”0”, and digits 5 − 9 are labeled as ”1”. Since each image has 784 pixels, the

local model weight should have 785 dimensions (784 features plus 1 bias). Let skj :[
1, s1kj, s

2
kj, ..., s

783
kj , s784kj

]
and ykj respectively denote one image and its label, and wt

k :

[wt
k0,w

t
k1, ...,w

t
k783,w

t
k784] denote the local model. Then we have a linear combination

vkj = wt
k
⊤
skj =

∑785
z=1 w

t
kzs

z
kj. Given a sigmoid function f(v) = 1

1+e−v , we derive the

probability of skj being identified as ”0” and ”1”, respectively:

Pr(ykj = 1|w; s) = f(vkj), Pr(ykj = 0|w; s) = 1− f(vkj). (6.20)

Since there are 120 image in each device, we define the maximum likelihood function

in terms of skj:

L(w; skj) = lnPr(ykj|w; skj)

= ykj ln f(vkj) + (1− ykj) ln(1− f(vkj)).
(6.21)

Obviously, the larger the likelihood, the more accurate the local model is. To de-

rive the loss function l(w; skj) = −L(w; skj), the local objective function of logistic

regression is defined as follows:

Fk(w;Sk) =
1

B

B∑
j=1

l(w; skj)

= − 1

B

B∑
j=1

(ykj ln f(vkj) + (1− ykj) ln(1− f(vkj))) .

(6.22)
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where B ≤ 120. For simplicity, we let pk = 1/N = 0.002. Given f ′(v) = f(v)(1 −

f(v)), the gradient gt
k of the t-th local iteration is:

gt
k = ∇Fk(w

t
k;Sk)

= − 1

B

B∑
j=1

(
ykj

f(vkj)
− 1− ykj

1− f(vkj)

)
f ′(vkj)

∂v

∂w

= − 1

B

B∑
j=1

(ykj(1− f(vkj))− (1− ykj)f(vkj)) skj

= − 1

B

B∑
j=1

(ykj − f(vkj)) skj

= − 1

B

B∑
j=1

(
ykj − f(wt

k
⊤
skj)

)
skj.

(6.23)

For simplicity, let wt
k = wt = 0. By setting C = 1.8 and applying local datasets to

Equation 6.23, we can derive:

∇t =
N∑
k=1

pk∇t
k = E(g̃t) = E(gt)/max

{
1,
∥∥gt

k

∥∥ /C}
= − 1

500× 120

500∑
k=1

120∑
j=1

(
ykj − f(wt

k
⊤
skj)

)
skj

max {1, ∥gt
k∥ /C}

=
1

60000

500∑
k=1

120∑
j=1

(
1

2
− ykj

)
skj.

(6.24)

By setting ηt = 0.1, we can derive wt − 0.1∇t. 2 Let w⋆ denote a well-trained

model without LDP noise. In what follows, we demonstrate how to compare the

performances of federated logistic regression under different LDP mechanisms, while

allocating privacy budget ϵ = 0.1 to each dimension.

Laplace mechanism. First, we derive the expectation and the variance of the

normalized noise nt
νkz. Namely,

µt
z = E

(
nt

νkz

)
= 0, σt

z
2
= E

(
nt

νkz
2
)
− E2

(
nt

νkz

)
=

4

ϵ2
= 400. (6.25)

2We do not display ∇t and wt − 0.1∇t because each has 785 dimensions.
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Note that clipping threshold, measured with L2-norm, cannot directly considered as

the sensitivity of Laplace. In each dimension of gradients, the maximum change is

2C = 0.2. Therefore, we calibrate the sensitivity as C ′ = 785∗2C = 157. By applying

Equation 6.25 to Equation 6.12, we have:

E
(∥∥wt+1∗ −w⋆

∥∥2)− E
(∥∥wt+1 −w⋆

∥∥2)
=− 2

〈
wt − ηt∇t,0

〉
+ C ′2ηt

2
p̄2kN

2

785∑
z=1

µt
z
2

+ C ′2ηt
2
p̄2kN

785∑
z=1

σt
z
2
+ 2 ⟨w⋆,0⟩ ≈ 25, 521, 315.

(6.26)

Piecewise mechanism. According to [30], we have:

µt
z = E

(
nt

νkz

)
= 0,

σt
z
2
= E

(
nt

νkz
2
)
− E2

(
nt

νkz

)
=

∇t
z
2

2 exp(ϵ/2)− 2
+

exp(ϵ/2) + 3

6(exp(ϵ/2)− 1)2
≈ 256.7.

(6.27)

Similar to Equation 6.26, we have:

E
(∥∥wt+1∗ −w⋆

∥∥2)− E
(∥∥wt+1 −w⋆

∥∥2)
=− 2

〈
wt − ηt∇t,0

〉
+ C ′2ηt

2
p̄2kN

2

785∑
z=1

µt
z
2

+ C ′2ηt
2
p̄2kN

785∑
z=1

σt
z
2
+ 2 ⟨w⋆,0⟩ ≈ 10, 542, 640.

(6.28)

Gaussian mechanism. Based on [30], we set δ = 10−7 and derive the corresponding

expectation and variance of the normalized noise:

µt
z = E

(
nt

νkz

)
= 0,

σt
z
2
= E

(
nt

νkz
2
)
− E2

(
nt

νkz

)
= 4 ln

1.25

δ
/ϵ2 ≈ 4, 694.5.

(6.29)
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Accordingly, we have:

E
(∥∥wt+1∗ −w⋆

∥∥2)− E
(∥∥wt+1 −w⋆

∥∥2)
=− 2

〈
wt − ηt∇t,0

〉
+ C2ηt

2
p̄2kN

2

785∑
z=1

µt
z
2

+ C2ηt
2
p̄2kN

785∑
z=1

σt
z
2
+ 2 ⟨w⋆,0⟩ ≈ 170, 859.

(6.30)

Recall from Section 6.1.3 that a smaller efficiency difference means better utility.

Therefore, our benchmark reveals that Gaussian provides the best performance (i.e.,

170, 859), followed by Piecewise (i.e., 10, 542, 640), and then Gaussian (i.e., 25, 521, 314).

This case study confirms a highly-recognized perception that Gaussian performs far

better than the other mechanisms in high-dimensional tasks [103]. Still, Laplace

and Piecewise, which provide stronger privacy preservation, are much attractive to

participants of federated training. Motivated by this, we next present a geometric

perturbation strategy to enhance efficiencies of federated LDP-SGD, without changing

the LDP mechanism itself.

6.2 LDPVec: Enhancing Federated LDP-SGD from

A Geometric Perspective

In our framework, we observe that the direction of noise (see Item B) and the magni-

tude of noise (see Item C) jointly impact the model efficiency. While Item C can be

reduced by fine-tuning the clipping threshold and the learning rate, same techniques

are less capable of counteracting the impact of Item B because of the inner product

between noise µt
ν and the original model wt − ηt∇t. As a result, the direction of

a gradient is seriously obfuscated, which is the key reason of low model efficiency.

While only the direction of a gradient is essential for performing local SGD, we seize

the opportunity to only perturb the direction of a gradient, rather than the
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whole gradient as LDP-SGD, so that the noise on the direction of a gra-

dient can be directly reduced. Instead of only perturbing the local gradient as

numeric values in existing works, our strategy, without changing the underlying LDP

mechanism, only perturbs and the direction of a local gradient to preserver better

directional information while still maintaining LDP scheme. As such, this strategy is

orthogonal to all existing LDP mechanisms and LDP-SGD optimizations.

In what follows, we first introduce d-spherical coordinate system [126], where a d-

dimensional gradient is converted to one magnitude and one direction. By perturbing

the directions of local gradients in such a system, we propose our perturbation strategy

LDPVec to enhance the global model efficiency. Rigorous analysis is provided to prove

its compliance with LDP definition and huge advantages over numerical perturbation.

6.2.1 LDPVec—Vectorized Perturbation for Federated LDP-

SGD

While existing works implement numerical perturbation in the rectangular coordinate

system, our perturbation strategy LDPVec instead mitigates the negative impact of

LDP via d-spherical coordinate system. As shown in Algorithm 6, LDPVec perturbs

local gradients in five steps. First, the clipped local gradient is converted into a d-

spherical coordinate system. Afterwards, the noise multiplier nν , which determines

the level of privacy preservation, is derived as per privacy budget ϵ, probability δ and

the mechanism itself M.

To directly control the noise on the direction, we introduceAngle Clipping β {0 < β ≤ 1}

in Step 5, which bounds the range of the direction. Accordingly, the range of angles

in 1 ≤ z ≤ d−2-th dimension is βπ while that in z = d−1-th dimension is 2βπ. The

rationale between this is that any angle θz of gradients’ directions from SGD is usu-

ally concentrated in a certain range, rather than uniformly distributed in the whole

direction space, i.e., {−π, π}. As such, preserving the direction in the whole space is
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actually over-protective and therefore not always optimal. By this angle clipping, we

can reduce the sensitivity of respective mechanism and continue noise addition.

In terms of the sensitivity ∆θ of the direction θ, it is divided into two cases. As

for strict LDP mechanisms (e.g., Laplace and Piecewise), ∆θ = β(d − 2)(π − 0) +

(π − (−π)) = βdπ because of the use of L1-sensitivity [103,134]. As for relaxed LDP

mechanisms (e.g., Gaussian), ∆θ = β
√

(d− 2)(π − 0)2 + (π − (−π))2 = β
√
d+ 2π

due to the use of L2-sensitivity [103]. As a result, the noise scale for preserving each

angle is ∆θnν . As for the magnitude,
∥∥g̃t

k

∥∥ from the clipped gradient g̃t
k actually

does not contain original information. As such,
∥∥g̃t

k

∥∥ is not necessary to preserve.

Finally, we convert noise-free magnitude and perturbed direction back to rectangular-

coordinate system to derive the perturbed gradient g⋆
k (Step 9). Notably, we only

change the way to perturb the gradient, while the training process remains

the same as existing works (see Section 6.1.1).

The main challenges lie in two folds. First, whether LDPVec follows LDP definition

requires further confirmation. Second, the rationale behind LDPVec still needs in-

terpretation. To address the first challenge, we establish the following theorem to

confirm that the conversion between coordinate systems does not change the LDP

preservation.
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Algorithm 6 LDPVec

Input: the LDP mechanism M, local clipped gradient g̃t
k, privacy budget ϵ and

probability δ, bounding factor β.

Output: perturbed gradient gt⋆
k .

1: Convert g̃t
k to d-spherical coordinates as

(∥∥g̃t
k

∥∥ ,θk

)
, according to Equation ??

and Equation ??.

2: Derive the noise multiplier nν as per ϵ, δ and M.

3: Bound the privacy region ∆ of θ as follows:

∆θz =

∆θ1≤z≤d−2 = βπ,

∆θd−1 = 2βπ.

4: Add noise to the original direction as follows:

θ∗
k = θk + nk = θk +∆θnν .

where

∆θ =

βdπ for strict LDP mechanisms,

β
√
d+ 2π for relaxed LDP mechanisms .

5: Convert
(∥∥g̃t

k

∥∥ ,θ∗
k

)
back to rectangular coordinates as the perturbed gradient

gt⋆
k , according to Equation ??.

Theorem 14. Given any LDP mechanism M and g ↔ (∥g∥ ,θ), g⋆ of LDPVec is

(ϵ, δ)-locally differentially private if θ∗ are (ϵ, δ)-locally differentially private.

Proof. For any three pairs of gi, gj, ∥g∥i , ∥g∥j and θi,θj, we have:

Pr(M(gi) = g⋆)

=Pr (∥g∥i = ∥g∥ ,M(θi) = θ∗)

=Pr (∥g∥i = ∥g∥) Pr (M(θi) = θ∗)

(6.31)

Note that Pr (∥g∥i = ∥g∥) = Pr(∥g∥j = ∥g∥). By applying this to Equation 6.31, we
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have:

Pr(M(gi) = g⋆) ≤Pr(∥g∥j = ∥g∥) Pr (M(θj) = θ∗)

eϵ + δ

≤eϵ Pr(M(gj) = g⋆) + δ

(6.32)

by which this lemma is proven.

As for the superiority of LDPVec to traditional LDP on federated SGD, the intro-

duction of hyper-spherical coordinate system has two advantages. First, LDPVec

prevents noise accumulation on the direction of a gradient. For example, we have a

three-dimensional gradient g = (g1, g2, g3). Following traditional LDP, these three

should be added noise n = (n1,n2,n3). For the direction of this perturbed gradient

θ, its first angle θ1 should be arctan2
(√

(g2 + n2)2 + (g3 + n3)2, g1 + n1

)
, accord-

ing to Equation 4. It is very obvious that noise of three dimensions (n1,n2,n3) is

accumulated to the first angle θ1. As such, numerical perturbation of LDP seriously

degrades the accuracy of directional information. LDPVec otherwise independently

controls the noise on each angle and therefore prevents noise accumulation. Second,

via coordinates conversion, d-dimensional gradient is transferred to one magnitude

and d − 1 directions. Afterwards, we allocate all privacy budgets to angles, which

can better preserves directional information. Third, LDPVec, via hyper-spherical

coordinates, can directly control the noise added to the direction, while traditional

LDP cannot. In specific, “directly control” is reflected in two aspects, i.e., the noise

multiplier nν and sensitivity ∆θ. Controlling both factors in terms of direction per-

turbation, LDPVec preserves more accurate directional information of gradients, thus

providing better trade-off between efficiency and privacy.
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6.3 Experimental Evaluation

In this section, we compare LDPVec with conventional numerical perturbation (de-

noted as DP) under three state-of-the-art LDP mechanisms in federated LDP-SGD,

namely, Laplace, Piecewise and Gaussian. In addition, we also implement noise-free

federated SGD (denoted as No noise) as a baseline to demonstrate the feasibility of

LDPVec in practice. Note that although LDPVec is a brand-new mechanism, most

existing optimizations on LDP-SGD, such as [70,86,141], can also be applied to LD-

PVec. Therefore, for fair comparison, we do not implement such optimizations for

LDP-SGD.

6.3.1 Datasets and Models

We use two common benchmark datasets for federated LDP-SGD — MNIST and

CIFAR-10.

MNIST. This is a dataset of 70,000 gray-scale images (28x28 pixels) of handwritten

digits from 0 to 9, commonly used for training and testing machine learning algorithms

in image recognition tasks. As one of the de-facto benchmark for evaluating the

performance of algorithms, it consists of 60,000 training images and 10,000 testing

images, with an even distribution across the 10 digit classes.

CIFAR-10. It is a dataset of 60,000 small (32x32 pixels) color images, divided into 10

distinct classes such as animals and vehicles, used for machine learning and computer

vision tasks. It contains 50,000 training images and 10,000 testing images, with each

class having an equal number of images.

As with the settings in Section 6.1.4, both datasets are distributed to each local device

in a non-iid fashion where each device contains samples of only two classes. We adopt

two machine learning models and one deep learning models as local models, namely,

the logistic regression (LR) [150], multilayer perceptron (MLP) [12] and Convolu-
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tional Neural Network (CNN) [130]. LR is implemented in MATLAB and applied to

MNIST, while MLP and CNN are implemented in Python and applied to CIFAR-10.

Their architectures and parameters are listed in Table 6.1, Table 6.2 and Table 6.3,

respectively. The loss function in both models is cross-entropy loss.

Table 6.1: Parameters for Logistic Regression on MNIST

Layer Weights Biases Total

Output 784 1 785

Table 6.2: MLP Architecture and Parameters on CIFAR-10.

Layer Description Number of Parameters

Input 3072 dimensions (32x32x3) 0

Hidden 200 neurons, tanh activation (3072 + 1)× 200 = 614600

Output 10 classes (CIFAR-10) (200 + 1)× 10 = 2010

Total 614600 + 2010 = 616,610

Table 6.3: CNN Architecture and Parameters on CIFAR-10.

Layer Parameters

Convolutional Layer1 3× 5× 5× 10 (weights) + 10 (biases)

Convolutional Layer2 10× 5× 5× 20 (weights) + 20 (biases)

Fully Connected Layer1 8× 8× 20× 50 (weights) + 50 (biases)

Fully Connected Layer2 50× 10 (weights) + 10 (biases)

Total Parameters: 760 + 5020 + 64250 + 510 = 70, 540
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6.3.2 Parameter Settings for Federated LDP-SGD

In our experiments, we vary the privacy budget allocated to each round of fed-

erated LDP-SGD ϵ ∈ {1.5, 4.9, 15.3, 48.5}, and the number of local devices N ∈

{500, 1000}. The total number of iterations in machine learning tasks is varied in

the set {500, 5000} while the number of local iterations in each training round E is

varied in the set {20, 50}, respectively. In terms of CNN, we set the total epochs and

local epochs in each training round 100 and 10, respectively. To evaluate our strategy

objectively, we use the basic SGD without any special optimization technique (e.g.,

momentum). The batch size B is fixed to 32, and the leaning rate is decayed by the

following scheme ηt = η0

1+t
, where η0 is chosen from the set {0.1, 0.01}. Following [164],

we fix C = 0.1 and δ = 10−5.

As for privacy budget partitioning, instead of partitioning it as per the number of

dimensions, we follow DP-SGD by partitioning it as per the collective sensitivity

∆θ [1], which provides better utility than the former.

6.3.3 Effectiveness of LDPVec in Machine Learning

In terms of LR and MLP, we verify the effectiveness of our perturbation strategy

LDPVec. Due to the simplicity of these models, we do not conduct angle clipping,

i.e., β = 1. In Figure 6.2, we plot the global loss of LR on MNIST dataset, under no

perturbation (i.e., blue line), numerical perturbation (i.e., red line), and vectorized

perturbation by LDPVec (i.e., yellow line). From Figures 6.2 (a)-(i), where the privacy

budget in each training round varies from 1.5 to 15.3, we can observe that LDPVec can

help federated LDP-SGD to achieve similar performance to noise-free federated SGD.

we can observe that our perturbation strategy achieves almost the same performance

as noise-free federated SGD in most cases. The only exception is Figure 6.2 (c), where

the convergence is delayed by the Laplace noise as the Laplace noise at ϵ = 0.00001

is very large. Nevertheless, LDPVec can still converge. On the other hand, the
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performance of three LDP mechanisms under numerical perturbation is disappointing.

In most cases, the training process ceases to converge and deviate from the global

optima, especially for strict mechanisms such as Laplace and Piecewise. Even worse,

in Figures 6.2 (e), (f), gradient exposure occurs and the whole training process fails.

Obviously, these bad situations are also incurred by overwhelming LDP noise from the

numerical perturbation. We list the test accuracy of this model without LDP noise

in the most left column. As we can see, our perturbation strategy is very feasible and

robust even under cases where the numerical perturbation fails.

To test the limit of our strategy, in Figure 6.2 (j)-(k) we set the number of local par-

ities N = 5, and E = 2 (i.e., noisy aggregation happens every two local iterations).

In this extreme case of steeply declined number of local devices and surging occur-

rences of noise injection, we observe that federated LDP-SGD under the numerical

perturbation cannot converge. On the other hand, although LDPVec suffers from de-

layed convergence as in Figure 6.2 (c), the final converged model still achieves almost

similar loss to federated SGD without noise.

To demonstrate the generality of LDPVec in various machine learning applications,

we also conduct similar classification tasks on CIFAR-10 with Multilayer Perceptron

(MLP). Due to the extremely large number of parameters, we raise the privacy budget

to ϵ = 48.5 per training round and increase the total local iterations to T = 5, 000.

As shown in Figure 6.3, we obtain similar results to LR on MNIST dataset. As such,

we can conclude that LDPVec can enhance the model efficiency to the degree whereas

conventional numerical perturbation may fail.

6.3.4 Effectiveness of LDPVec in Deep Learning

To demonstrate the generality of LDPVec in deep learning, we also conduct exper-

iments on CIFAR-10 with Convolutional Neural Network (CNN). The results are

demonstrated in Table 6.4, where suffix “-Vec” denotes our perturbation strategy
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20, N = 500)
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(f) Piecewise (ϵ = 15.3, E =

20, N = 500)
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(g) Gaussian (ϵ = 1.5, E =

20, N = 500)
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(h) Gaussian (ϵ = 4.9, E =
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Figure 6.2: Global Loss of Logistic Regression on MNIST under Various ϵ, E and N
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(a) Laplace (ϵ = 48.5, E =

50, N = 1000)
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(b) Piece (ϵ = 48.5, E =

50, N = 1000)
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(c) Gaussian (ϵ = 48.5, E =

50, N = 1000)

Figure 6.3: Global Loss of Multilayer Perceptron on CIFAR-10

Table 6.4: Perturbation Comparison under Federated CNN: Testing Accuracy (N =

1000, E = 200, β = 0.05)

Dataset Method ϵ = 15.3 ϵ = 48.5

MNIST

(noise-free

95%)

Lap 43.3% 48.2%

Pie 44.9% 51.4%

Gau 71.3% 77.3%

Lap-Vec 72.1% 75.6%

Pie-Vec 76.3% 79.6%

Gau-Vec 88.4% 91.7%

and those without it means numerical perturbation. In general, LDPVec outper-

forms LDP under different privacy budgets when β is 0.05. The reason behind is

that LDPVec reduces the original sensitivity (which is extremely large due to a high

dimensionality of 70540) to 5%. By bounding the privacy region, the payoff is huge.

Not only can Gaussian mechanism achieve better model efficiency, but also Laplace

and Piecewise mechanisms can provide usable efficiency while still maintaining strict

privacy preservation in practical deep learning tasks.
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6.4 Summary

This chapter investigates the efficiencies of various LDP mechanisms in Federated

Learning. For model efficiency, we propose a general analytical framework to mea-

sure the impact of LDP noise on federated LDP-SGD, which also serve as a bench-

mark to compare federated LDP-SGD under various LDP mechanisms. For optimiza-

tion, we propose LDPVec to generally enhance the efficiency of federated LDP-SGD

while maintaining the same level of LDP protection, without changing LDP mecha-

nism itself. Through theoretical analysis and extensive experiments, we confirm the

generality and effectiveness of our framework and perturbation strategy under two

commonly-used benchmark datasets and three prevalent models.

For the future work, we plan to extend LDPVec to more complicated networks, such

as ResNet.
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Chapter 7

Conclusion and Future Works

7.1 Conclusion

This thesis comprehensively discusses the application of differential privacy (DP) in

data mining techniques, specifically focusing on mean estimation in high-dimensional

spaces, stochastic gradient descent (SGD), and federated learning. Below is a detailed

conclusion for each research area:

7.1.1 Mean Estimation in High-Dimensional Spaces by LDP

Mechanisms

Our research investigates the utilities of mean estimation by LDP mechanisms in

high-dimensional spaces and presents a general toolbox LDPTube. LDPTube pro-

posed an analytical framework that evaluates any LDP mechanism based on the de-

viation between the estimated and the true mean. Additionally, LDPTube introduced

HDR4ME*, a re-calibration protocol to enhance the utility of aggregation results from

these LDP mechanisms. Through theoretical analysis and extensive experiments, we

confirmed the generality and effectiveness of our framework and re-calibration proto-
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col.

7.1.2 Optimization of DP-SGD

We optimize DP-SGD from a novel perspective by analyzing the impact of DP noise on

the training process of SGD. Our findings revealed that the perturbations introduced

are sub-optimal as they bias the direction of updates. This insight led us to propose

theGeoDP mechanism, which reduces noise directionality to improve model efficiency.

Both rigorous proofs and experimental validations confirmed the effectiveness and

generality of GeoDP.

7.1.3 Efficiencies of LDP Mechanisms in Federated Learning

Our investigation focused on proposing a general analytical framework to measure

the impact of LDP noise on federated LDP-SGD. We also introduced LDPVec, a

strategy to enhance the efficiency of federated LDP-SGD while maintaining the same

level of LDP protection. Our analyses confirm the generality and effectiveness of our

approach.

7.2 Future Work

The future work for these research areas includes several key expansions:

• Extending Analytical Frameworks: We aim to broaden the applicability of

our frameworks to other data types and incorporate more data analysis tasks.

• Exploring Dimensional Extents: Plans include expanding research to both

multi-dimensional and one-dimensional spaces.
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• Integrating Training Optimizations: We plan to study the effects of main-

stream training optimizations (e.g., regularization) on the performance of our

proposed mechanisms.

• Applying to Complex Network Architectures: We aim to extend strate-

gies like LDPVec to more complex network architectures, such as ResNet.

This future work will contribute significantly to enhancing the privacy-security of

data mining techniques, marking substantial advancements in the robustness and

adaptability of differential privacy applications.
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[13] Franziska Boenisch, Christopher Mühl, Adam Dziedzic, Roy Rinberg, and Nico-

las Papernot. Have it your way: Individualized privacy assignment for dp-sgd.

Advances in Neural Information Processing Systems, 36, 2024.

[14] Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam

O’Neill. εpsolute: Efficiently querying databases while providing differential

privacy. In Proceedings of the 2021 ACM SIGSAC Conference on Computer

and Communications Security, pages 2262–2276, 2021.

136



References
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