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ABSTRACT 

Uncertainties in structural materials and environmental conditions are widely 

recognized for their significant impact on structural performance. For instance, 

concrete strength is statistically determined from a limited number of specimens, and 

similar variability is observed in the modulus and yield strength of steel, both of 

which should be treated as random variables. In addition, natural variability is present 

in environmental conditions, such as wind velocity. As a result, structural responses 

are inherently uncertain due to the propagation of these uncertainties from both 

structural parameters and external loads. Therefore, it is essential to thoroughly 

investigate the uncertainty propagation process.  

Structural reliability analysis plays a crucial role in assessing structural safety 

and guiding the design process. However, efficiently and accurately estimating failure 

probabilities remains a significant challenge. Over the past few decades, various 

approaches have been developed to address this issue. Among them, Monte Carlo 

simulation (MCS) is the most straightforward method, but it demands substantial 

computational resources, particularly when dealing with time-intensive performance 

functions. Although the first- and second-order reliability methods are 

computationally efficient, they often lack accuracy when applied to nonlinear 

structures. Recently, surrogate model-based methods have garnered increasing 

attention. A surrogate model serves as an efficient alternative to the original costly 

physical model. Commonly used surrogate models include the Kriging model, 

polynomial chaos expansion, support vector regression, and neural networks.  



 

iii 

The adaptive Kriging model has gained popularity in recent years due to its 

ability to be refined iteratively using active learning strategies. However, 

improvements in its efficiency for estimating failure probabilities are still needed. 

Structural failures are typically rare events, and applying adaptive Kriging with MCS 

is inefficient for estimating small failure probabilities, as training the Kriging model 

with a large number of candidate samples is time-consuming. To address this 

challenge, a distance-based subdomain approach is developed to focus on candidate 

samples near the limit state surface. During training, the Kriging model is refined 

iteratively within these subdomains, rather than across the entire Monte Carlo 

population. To further reduce the computational cost of performance function 

evaluations, a new stopping criterion is proposed. This criterion accounts for the 

accuracy of failure probability estimation, allowing the active learning process to 

terminate at an appropriate stage. Furthermore, for estimating very rare events, such 

as failure probabilities smaller than 10-6, an adaptive Kriging model with spherical 

decomposition-based Monte Carlo simulation can be employed. However, 

conventional stopping criteria are inadequate for halting the active training process at 

an appropriate stage, especially for practical engineering structures. Therefore, a new 

stopping criterion tailored to the adaptive Kriging model with spherical 

decomposition-based Monte Carlo simulation is proposed, based on the relative error 

of failure probability. 

In addition, the reliability analysis of stochastic dynamic systems, such as 

engineering structures subjected to stochastic seismic excitation or wind loads, 

remains challenging. Existing studies primarily focus on extreme value theory and the 

moments method. The first passage failure probability can be estimated from the 
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extreme value distribution of the responses of interest. However, constructing 

surrogate models for stochastic dynamic systems is difficult due to the high 

dimensionality that arises when simulating stochastic excitations. For example, the 

spectral representation method requires thousands of random phases to simulate the 

stochastic excitation. Even when only the extreme response is of concern, the Kriging 

model is unsuitable for metamodeling due to the curse of dimensionality. To enable 

the adaptive Kriging model for the reliability analysis of stochastic dynamic systems, 

a novel long short-term memory network (rLSTM) is proposed. This network 

considers both time-series stochastic excitation and random structural parameters to 

predict time history responses. The rLSTM is integrated with an autoencoder to 

identify low-dimensional latent variables for representing the approximate extreme 

value space created by the rLSTM, which are then used to construct the Kriging 

model. An active learning strategy is subsequently employed to facilitate the 

reliability analysis of stochastic dynamic systems. To improve the accuracy and 

training stability of rLSTM network, a physics-informed rLSTM is constructed by 

incorporating the uncertain governing equations of dynamics. Additionally, 

conventional adaptive Kriging model continuously require information from the 

performance function, making parallel computing infeasible. This limitation 

significantly impedes the application of the adaptive Kriging model to 

computationally expensive models. To tackle this problem, a prediction error-based 

offline learning strategy is introduced. This approach allows the adaptive Kriging 

model to be refined in a single step, significantly reducing the computational burden 

of reliability analysis for stochastic dynamic systems. 
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Overall, this research put emphasis on adaptive Kriging model for rare events 

estimation and reliability analysis of stochastic dynamic systems. The sampling 

scheme and stopping criteria are improved for small failure probabilities estimation. 

With the aid of long short-term memory networks, latent variables for constructing 

Kriging model of extreme responses are identified, making the adaptive Kriging 

model available for reliability analysis of stochastic dynamic systems.  
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CHAPTER 1 INTRODUCTION 

1.1 Research background 

Over the past few decades, uncertainties in engineering problems have become widely 

recognized for their significant impact on structural response and structural safety 

assessment. These inherent and unavoidable uncertainties are prevalent in both 

material parameters and applied loads. For instance, experimental data show 

considerable variations in the strengths of concrete and steel, and these material 

uncertainties critically affect structural resistance (Alpsten, 1972; Celik & Ellingwood, 

2010). Uncertainties are also apparent in natural loads, such as wind load, where the 

maximum wind speed follows an Extreme Value Type I distribution (Harris, 1996; 

Simiu et al., 1978). Additionally, live loads exhibit probabilistic properties, as noted 

in Culver’s survey (Culver, 1976). Uncertainties in engineering problems are 

commonly classified into two categories: aleatory uncertainties and epistemic 

uncertainties. Aleatory uncertainties refer to the inherent randomness in data and are 

irreducible; they are typically represented by precise probabilistic distributions. In 

contrast, epistemic uncertainties arise from a lack of knowledge and can be reduced 

by gathering more data or information. Several approaches have been developed to 

model epistemic uncertainty, including the theory of evidence and fuzzy set theory. 

Probability boxes have been further developed to model both aleatory and epistemic 

uncertainties (Schöbi & Sudret, 2017). In this research, the propagation of the aleatory 

uncertainty is of concern.  
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The structural responses must satisfy the predefined requirements such as 

structural safety against collapse, limitations on damage and adhering to other criteria 

(Melchers & Beck, 2018). Each requirement could be a limit state and these limit 

states are of vital importance for structural safety assessment. Denote the limit state as 

a performance function  G X , where X is a vector of random variables that describes 

uncertainties arising from external loads and materials. The failure probability can be 

defined as the probability of the failure event   0G X . Reliability is the probability 

that a system or component can perform its intended functions under specified 

operating conditions (Barlow & Proschan, 1996). Structural reliability analysis seeks 

to assess the failure probability or reliability of engineering structures using analytical 

or numerical methods. Estimating reliability is crucial for probabilistic design and for 

preventing potential structural failures (Afshari et al., 2022). 

Various approaches have been developed for efficient structural reliability 

analysis, which can be divided into four categories as illustrated in Figure 1-1. 1) The 

first/second order reliability methods are two elementary approaches for reliability 

analysis (Hasofer & Lind, 1974; Rackwitz, 2001), while they may be not applicable to 

a strongly nonlinear engineering system; 2) Sampling techniques such as the crude 

Monte Carlo simulation (MCS) are not restricted by the distribution types of input 

variables or system complexity. Despite its versatility, the crude Monte Carlo 

simulation is time-consuming for practical engineering problems. To address this 

issue, various improved versions have been proposed (Au & Beck, 2001; Engelund & 

Rackwitz, 1993); 3) surrogate model-based approaches aim to replace the original 

time-consuming complex computational models with some easy-to-run mathematical 
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models, thus avoiding the need to propagate uncertainties through the original 

complex systems. Commonly used surrogate models include the Kriging model 

(Kaymaz, 2005), polynomial chaos expansion (Sudret, 2008b), neural networks 

(Afshari et al., 2022) and so on; 4) the last category is the so-called moments-based 

methods, which employs the statistical moments of responses of engineering 

structures to fit an unknown probability density function (PDF) of interest (Zhang & 

Pandey, 2013; Zhao & Ono, 2001). Commonly used methods include the maximum 

entropy method (MEM) (Zhang & Pandey, 2013), Pearson system (Xu, Zhang, et al., 

2020), the shifted generalized lognormal distribution (SGLD) (Low, 2013) and so on. 

Then, the failure probability can be readily obtained from the fitted PDF. 

 

Figure 1-1 Approaches for structural reliability analysis 

With the growing complexity of computational models, uncertainty 

propagation process is becoming more time-consuming, necessitating the 

development of more advanced reliability analysis techniques for efficient analysis. 

Recently, surrogate models such as Kriging, polynomial chaos expansion (PCE), 
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support vector regression, and neural networks have gained attention for their ability 

to replace costly computational models and provide predictions more efficiently. 

However, achieving high accuracy in reliability analysis requires a precise metamodel, 

and a large design of experiments (DoE) to train these models remains time-

consuming. The Kriging model offers notable stochastic properties, such as local 

uncertainty in predictions, which can be leveraged for active learning approaches to 

develop an adaptive Kriging model. Active learning involves iteratively updating the 

Kriging model by adding new points to the DoE. These new points are strategically 

selected to significantly enhance the model's accuracy. An active learning reliability 

method combining Kriging and Monte Carlo simulation, known as AK-MCS, has 

demonstrated its advantages in failure probability estimation (Echard et al., 2011). 

However, iteratively updating the Kriging model with a large number of candidate 

samples is time-consuming and inefficient for estimating rare failure probabilities. To 

address this, advanced sampling techniques such as importance sampling and subset 

sampling have been integrated with the adaptive Kriging model for rare event 

estimation (Echard et al., 2013; Huang et al., 2016). Additionally, the choice of 

learning functions for selecting the next best point to improve the Kriging model 

impacts its efficiency. Stopping criteria are crucial for the accuracy of the trained 

adaptive Kriging model. However, determining when to halt the active learning 

process can be challenging, as many stopping criteria focus on the accuracy of the 

Kriging model while neglecting its impact on failure probability estimation.  

Moreover, while many improved adaptive Kriging models have proven 

effective for reliability analysis of static engineering systems, their application to 

stochastic dynamic engineering systems is less explored. For example, the reliability 
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analysis of nonlinear structures subjected to stochastic seismic excitation is a 

relatively under-investigated area (Dang et al., 2021). This limited focus may stem 

from two primary reasons. First, capturing the complex dynamics of engineering 

structures with a Kriging model is challenging. Second, simulating stochastic 

excitation often requires a large number of random variables. For example, the 

spectrum representation method (SRM) (Shinozuka & Deodatis, 1991) requires 

thousands of random phases uniformly distributed on [0, 2 ]. Treating these random 

variables as input features for stochastic dynamic systems results in high-dimensional 

systems. However, Kriging models and polynomial chaos expansion face the “curse-

of-dimensionality” and are not well-suited for such high-dimensional problems. 

Alternatively, methods like the stochastic harmonic function representation can 

simulate stochastic excitation with only a few dozen random phases (Chen et al., 

2017). Nevertheless, these random phases are mainly used for simulating stochastic 

excitation and do not serve as relevant input features for stochastic dynamic systems, 

as they have little impact on structural responses. Recently, machine learning 

techniques, such as long short-term memory (LSTM) and physics-informed LSTM, 

have been adopted for predicting time history responses of dynamic systems (R. 

Zhang et al., 2019; R. Zhang et al., 2020b). However, the accuracy of deep neural 

networks can be limited due to insufficient observations for reliability analysis. 

Consequently, the adaptive Kriging model remains a viable choice for dynamic 

reliability analysis. Identifying relevant input features for stochastic dynamic systems 

is crucial for constructing an effective adaptive Kriging model. Machine learning-

based techniques, such as autoencoders for latent space identification, offer promising 

solutions for this challenge.  
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In addition, the adaptive Kriging model is updated iteratively, with the initial 

(DoE) typically enriched by adding one point at a time. This approach impedes 

parallel computing and significantly increases the computational burden. Although 

strategies for selecting multiple samples to allow parallelization have been proposed 

(Lelièvre et al., 2018; Schöbi et al., 2017), the refinement of the Kriging model 

remains challenging to complete in a single step and continues to require information 

from the actual computational model. Consequently, the conventional adaptive 

Kriging model can be considered an online adaptive Kriging model. Online learning 

strategies may face two major issues when applied to reliability analysis of complex 

computational models, such as those built with commercial finite element software. 

First, there is the challenge of implementing parallel computing, and second, the 

potential convergence problems of complex finite element models, which can lead to 

failures in both the models’ convergence and the overall active learning process.  

Overall, adaptive Kriging model has received increasing attention over the last 

few years. However, it still encounters several drawbacks. 

1) Adaptive Kriging model has the difficulty in assessing rare failure 

probabilities. 

 2) most of the stopping criteria of learning process cannot reflect the accuracy 

of failure probability estimation. 

 3) applying adaptive Kriging model to dynamic reliability analysis of 

stochastic engineering systems remains difficult. 
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4) the updating process continuously requires information from real 

computational models and the refinement of Kriging model cannot be completed in a 

single step. 

 Addressing these issues is of significance for the application of the adaptive 

Kriging model to reliability analysis of practical engineering structures and 

probabilistic design. 

1.2 Research Objectives  

The proposed research aims to develop a more advanced adaptive Kriging 

model for rare events estimation and to enhance the application of conventional 

adaptive Kriging models for reliability analysis of engineering structures under 

stochastic excitation. The research objectives are as follows: 

1) To develop an improved sampling scheme that identifies candidate samples 

near failure domains, enabling the Kriging model to be trained with these selected 

samples instead of the entire Monte Carlo population.  

2) To propose an error-based stopping criterion that can reflect the relative 

error of failure probability estimation by the Kriging model, which can stop the active 

training process at an appropriate stage and thereby reduce the computational burden.  

3) To develop an LSTM network capable of simultaneously considering time-

variant stochastic excitation and time-invariant random structural parameters. A 

physic-informed LSTM network that can model uncertain governing equations of 

dynamics is further investigated for time history responses prediction. 
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4) To make the conventional adaptive Kriging model available for reliability 

analysis of stochastic dynamic systems, the LSTM network and autoencoder 

techniques are adopted to identify the latent space of stochastic dynamic systems for 

the construction of Kriging model. 

5) To investigate an offline learning strategy for refining the Kriging model in 

a single step, eliminating the need for iterative updates. This approach benefits the 

dynamic reliability analysis of practical engineering structures.   

1.3 Outline 

This thesis consists of eight chapters and the framework is described in Figure 1-2. 

The organization of the thesis is summarized as follows:  

Chapter 1 introduces the research background, outlining the research 

challenges and summarizing the objectives. 

Chapter 2 presents a literature review of approaches for structural reliability 

analysis, with a focus on surrogate models, particularly adaptive Kriging models. It 

reviews adaptive Kriging models for estimating rare failure probabilities and 

conducting dynamic reliability analysis. 

Chapter 3 presents an improved sampling scheme for the crude Monte Carlo 

simulation, allowing for the selection of candidate samples near the limit state surface. 

The Kriging model can be refined using these selected samples, eliminating the need 

for the entire Monte Carlo population. Additionally, an error-based stopping criterion 

is formulated to terminate the enrichment of the DoE. 



 

9 

 

Figure 1-2 Framework of the proposed research 

Chapter 4 adopts the spherical decomposition-based MCS (SDMCS) to reduce 

the number of candidate samples and the error-based stopping criterion developed in 

Chapter 3 is further reformulated for adaptive Kriging model incorporated with 

SDMCS. 

Chapter 5 introduces an rLSTM network for stochastic dynamic systems, 

capable of simultaneously considering stochastic excitation and random structural 

parameters. The rLSTM, combined with an autoencoder, identifies latent variables for 

stochastic systems from the approximate extreme responses space. These identified 

latent variables are then utilized with the adaptive Kriging model for dynamic 

reliability analysis.  

Chapter 6 shows a physics-informed rLSTM neural work (PhyrLSTM) for 

metamodeling of a highway bridge subjected to the stochastic seismic excitation, 

which can integrate the uncertain governing equation of dynamics. PhyrLSTM is then 
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combined with the autoencoder to construct an adaptive Kriging model for dynamic 

reliability analysis of the highway bridge under the stochastic seismic excitation. 

Chapter 7 develops an error-based offline learning strategy designed to refine 

the Kriging model in a single step. It introduces the offline adaptive Kriging model 

(OAK) for dynamic reliability analysis, incorporating rLSTM and autoencoder 

techniques. This chapter investigates the dynamic reliability analysis of a highway 

bridge subjected to stochastic seismic excitation and a transmission tower exposed to 

stochastic wind loads. 

Chapter 8 draws conclusions and provides possible future research.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

Over the past few years, uncertainties have been widely acknowledged, significantly 

affecting structural responses, safety, and design. Researchers have developed various 

approaches for uncertainty propagation and reliability analysis to examine how these 

inherent uncertainties influence engineering structural behavior. Commonly used 

methods include gradient-based techniques (FORM and SORM), simulation-based 

methods, surrogate models, and moments-based methods. Recently, surrogate 

modeling or metamodeling techniques such as Kriging, PCE, and deep learning tools 

have gained increasing popularity since they can replace time-consuming 

computational models with easy-to-run surrogate models. The computational burden 

primarily stems from calls to costly computational models so the application of 

surrogate models can significantly reduce computational efforts. The accuracy of 

surrogate models is remarkably affected by design of experiments. However, limited 

observations often fail to train a surrogate model with sufficient accuracy for 

structural reliability analysis. To address this, an adaptive Kriging model incorporated 

with MCS is designed for structural reliability analysis, leveraging the advantages of 

the Kriging model. The DoE of the Kriging model is iteratively enriched using 

learning functions, and the training process terminates based on a predefined stopping 

criterion. Various adaptive Kriging models have been proposed to improve sampling 

approaches, learning functions, and stopping criteria. Most research focuses on the 
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reliability analysis of static engineering problems, while adaptive Kriging models for 

stochastic dynamic systems are seldom investigated. 

2.2 The formulation of reliability analysis 

For a typical reliability analysis problem, a performance function can be defined as: 

  Y G X  (2-1) 

Where  T1 2, ,..., dX X XX  is a d-dimensional vector collecting independent random 

variables with a joint probability density function  fX x  and  G X  is a performance 

function. Then, the probability of failure gives: 

  Pr 0fP G   X  (2-2) 

where Pr denotes probability, Eq. (2-2) can be calculated by the following integral: 

  d
F

fP f


  X x x  (2-3) 

where F  denotes the failure domain.  

The analytical solution of Eq. (2-3) is usually intractable due to the implicit 

and complex failure domain. Monte Carlo simulation can be employed to circumvent 

this limitation. Generate a MC population with MCN  candidate points (CPs) and the 

failure probability can be estimated by: 

    MC

1MC

1 N
i

f
i

P I G
N 

  x  (2-4) 
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in which  I   is an indicator function such that I = 1 for   0G x  and I = 0 

otherwise. The coefficient of variation (CoV) gives: 

  
MC

1
CoV f

f
f

P
P

N P





 (2-5) 

2.3 Categories of structural reliability analysis methods 

Various approaches have been developed for efficient reliability analysis of 

engineering structures. Gradient-based methods, such as the first- and second-order 

reliability methods (FORM and SORM), are two fundamental approaches for 

reliability analysis (Hasofer & Lind, 1974; Rackwitz, 2001). However, FORM and 

SORM are based on the most probable point (MPP) and consider the limit state 

surface as a linear or quadratic function. Consequently, they may not be applicable to 

many practical cases and are prone to significant errors when the limit state surface is 

strongly nonlinear. The remaining three categories of reliability analysis methods are 

sampling-based simulation methods, moments-based methods, and surrogate model-

based methods, each of which is briefly reviewed in the following section. 

2.3.1 Sampling-based method  

Crude Monte Carlo simulation is the most direct method for uncertainty propagation 

and reliability analysis. However, its application to practical engineering structures is 

hindered by repeated evaluations of costly computational models. In engineering 

contexts with high reliability targets, the failure probability typically ranges from

6 310 10  . The size of MC population is inversely proportional to the order of failure 

probability and 5 810 10  samples are required to achieve a reliable estimation 
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(Schöbi et al., 2017), which is impractical for real-world engineering. Therefore, MCS 

is usually regarded as the reference method since it is not limited by forms of 

performance functions and types of distributions.  

Some advanced sampling techniques are developed to tackle challenges that 

MCS encounters. Importance sampling (IS) based on the variance reduction technique 

is developed (Au & Beck, 1999; Melchers, 1989), while the performance of IS relies 

on the prudent choice of the auxiliary distribution or the so-called IS density, the 

failure probability by IS can be calculated as: 

    
 

IS

1IS IS

1
iN

i
f i

i

f
P I

N q

  X x
x

x
 (2-6) 

where  ISq x  is the importance sampling density. Instead of sampling from the MC 

density, IS uses samples from the auxiliary distribution  ISq x  to reduce the 

estimator’s variance (Tabandeh et al., 2022). Although the optimal IS density is not 

realizable, a near-optimal density function may be adopted. Ang et al. (1992) found an 

IS density by minimizing the mean square error between kernel density and the 

optimal solution. Then, Au and Beck (1999) enhanced importance sampling by 

employing a more efficient sampling scheme, namely Markov Chain Monte Carlo 

simulation. More recently, a cross-entropy-based IS was proposed by minimizing the 

relative entropy between the optimal solution and Gaussian mixtures (Kurtz & Song, 

2013).  

Subset sampling (SS) transforms a rare failure event into a series of 

intermediate conditional events with higher failure probabilities. This approach 
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significantly reduces the computational effort required by Monte Carlo simulation, as 

fewer samples are needed to estimate a relatively large failure probability. (Au & 

Beck, 2001). Suppose a sequence of failure events with increasing thresholds or 

structural capacities: 

 1 2 1 2,m mF F F F b b b b          (2-7) 

The failure probability fP  can be estimated as: 
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   

1

1

1 1
1

|

m

f m m
i

m

i i
i

P P F P F

P F P F F








 
   

 

 


 (2-8) 

Therefore, the failure probability estimation depends on  1P F  and 

conditional failure probabilities  1|i iP F F  , which can be calculated by MCS and 

Markov Chain Monte Carlo simulation, respectively. In addition, line sampling 

technique (Koutsourelakis, 2004; Koutsourelakis et al., 2004; Song et al., 2020) has 

also been adopted for reliability analysis. Although these advanced sampling 

techniques can significantly reduce computational efforts compared to crude MCS, a 

considerable number of model evaluations are still required. Consequently, these 

techniques are often used in conjunction with surrogate models. 

2.3.2 Moments-based method 

The core idea of the moments-based method is to construct the underlying distribution 

of interest using the statistical moments of structural responses, such as mean, 

standard deviation, skewness, and kurtosis (Zhao & Ono, 2001). The moments-based 
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method requires neither iteration nor computation of derivatives so it can be readily 

applied to structural reliability analysis. However, the accuracy of the moments-based 

method depends on two main factors: the estimation of statistical moments and the 

selection of an appropriate distribution model for fitting. 

Univariate dimension reduction method (UDRM) and bivariate dimension 

reduction method (BDRM) are two popular approaches for statistical moments 

estimation (Rahman & Xu, 2004; Xu & Rahman, 2004). Both methods rely on Taylor 

series expansion to decompose a multi-dimensional integration for statistical moments 

estimation into a summation of several lower-dimensional integrations. However, 

UDRM may lack accuracy for nonlinear systems, and the number of integration 

points required by BDRM increases dramatically with the number of random 

variables. Recently, cubature formulae and their improvements have been also 

proposed for reliability analysis (Xu & Kong, 2018; Xu, Zhang, et al., 2020; D. Zhang 

et al., 2022). Sampling techniques such as Latin hypercube sampling, Sobol 

sequences, and Latinized Partially Stratified Sampling (LPSS) are commonly used for 

estimating statistical moments of engineering structures subjected to stochastic 

excitation (Dang et al., 2021; Dang & Xu, 2020; Shields & Zhang, 2016; Zhang, 

Dong, & Feng, 2023). Besides the estimation of statistical moments, the selection of 

distribution model for covering the PDF of interest is also of importance. Various 

distribution models have been developed such as the Johnson system (Johnson et al., 

1995), Pearson system (Xu, Zhang, et al., 2020) and Hermite model (Win t´ erstein, 

1988). The maximum entropy method is considered to be the most unbiased 

estimation of the underlying PDF given statistical moments as constrains (Jaynes, 

1957; Li & Zhang, 2011; Zhang & Pandey, 2013). Additionally, Low (2013) 
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developed a shifted generalized lognormal distribution (SGLD) for reliability analysis. 

Recently, a distribution model by mixing an inverse Gaussian distribution and a 

lognormal distribution was proposed for seismic reliability of nonlinear structures 

(Dang & Xu, 2020). Although the moments-based method is relatively 

straightforward to implement, its accuracy is significantly influenced by the 

estimation of statistical moments and the choice of distribution models. 

2.3.3 Surrogate model 

With growing complexity of computational models or simulation codes, reliability 

analysis of engineering structures is becoming more challenging. Surrogate models 

offer a faster alternative to the original computational models, reducing the need for 

extensive evaluations. Consequently, surrogate models have garnered significant 

attention in recent years. Commonly used surrogate models include Polynomial Chaos 

Expansion, Kriging, support vector regression, and neural networks.  

Polynomial chaos expansion can explicitly represent a random output in a 

suitable space spanned by polynomial basis, which has been widely used in 

uncertainty analysis. PCE originates from Wiener’s study (Wiener, 1938) and was 

initially designed for Gaussian distributions. It was later extended to a generalized 

PCE (Lucor & Karniadakis, 2004; Xiu & Karniadakis, 2002) considering to 

accommodate non-Gaussian distributions. Characterizing the PDF of the structural 

response of interest is equivalent to determining the unknown coefficients of PC 

expansions. Projection method (Le Maıtre et al., 2002) or regression approach 

(Berveiller et al., 2006; Choi et al., 2004) can be utilized to obtain coefficients of PC 

basis. It is known that the number of unknown coefficients increases dramatically 
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with the dimension of input random variables. To address this issue, the sparse PCE 

was proposed to mitigate the computational burden. A stepwise regression method 

was developed for stochastic finite element analysis and sensitivity analysis (Blatman 

& Sudret, 2010a, 2010b), which retains a small number of significant basis functions 

to construct the PCE. Blatman and Sudret (2011) proposed an adaptive algorithm 

based on least angle regression to detect important terms of PC expansion. To further 

reduce the number of unknown coefficients, Zhang and Xu (2021) used a dimension-

reduction model based on contribution-degree analysis and stepwise regression 

method to build a sparse PCE. PCE still encounters the “curse-of-dimensionality”, 

and efforts have been made to address high-dimensional problems (He et al., 2020; 

Papaioannou et al., 2019; Yue et al., 2021). PCE plays a crucial role in structural 

reliability analysis, and its performance has been extensively validated (Bhattacharyya, 

2021; Hu & Youn, 2011; Lim & Manuel, 2021; J. Zhang et al., 2022).  

The Kriging model, also known as the Gaussian process model, has drawn 

increasing attention for its ability to provide not only predicted values but also 

estimates of the local variance of predictions. Initially investigated in geostatistics and 

later by  Matheron (1973). Kriging is also applied to optimization problems due to its 

stochastic properties. For instance, the efficient global optimization (EGO) method 

utilizes an active learning strategy to enhance optimization  (Jones et al., 1998). 

Active learning means that Kriging model is updated by adding a new point to the 

DoE and this point is considered to have a significant improvement on the current 

Kriging model. Jones et al. (1998) compared the performance of Kriging model and 

PCE for uncertainty propagation. Subsequently, Kaymaz (2005) developed a 

MATLAB toolbox termed DACE for constructing Kriging model and compared its 
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performance with the response surface method in structural reliability analysis. It 

appears that the Kriging model does not consistently outperform the response surface 

method unless its parameters are carefully selected (Echard et al., 2011). On the basis 

of active learning strategy, researchers have increasingly focused on constructing 

adaptive Kriging models for reliability analysis, as these models can deliver 

satisfactory results with fewer function evaluations. A summary of adaptive Kriging 

models is presented in the following section. 

The machine learning technique such as support vector machine (SVM) is also 

employed for reliability analysis. Originally designed for classification tasks, SVM 

has been extended to address regression problems, known as support vector regression 

(SVR) (Roy & Chakraborty, 2023). In structural reliability analysis, SVM has been 

employed to frame the problem as a classification issue (Alibrandi et al., 2015; 

Bourinet et al., 2011; Pan & Dias, 2017; Zhao et al., 2017). SVR-based reliability 

analysis approaches have also been investigated (Bourinet, 2016; Dai et al., 2015; das 

Chagas Moura et al., 2011; Richard et al., 2012). Additionally, artificial neural 

networks (ANNs) are versatile machine learning tools capable of modeling highly 

nonlinear systems across the entire domain (Cardoso et al., 2008). ANNs are 

commonly used as regression tools to model limit state functions. A well-trained 

ANN can then be integrated with Monte Carlo simulation (MCS) for structural 

reliability analysis  (Kingston et al., 2011; Papadrakakis et al., 1996). Furthermore, 

FORM and SORM can be combined with ANNs for enhanced reliability analysis 

(Goh & Kulhawy, 2003). Papadopoulos et al. (2012) proposed a method that 

combines subset sampling with neural networks for reliability estimation. More 

recently, an active learning approach has been developed that integrates deep neural 
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networks with weighted sampling, allowing the neural network to be iteratively 

updated by adding new samples (Xiang et al., 2020). However, the accuracy and 

generalization ability of neural networks are highly dependent on their structure and 

the quantity of training samples, necessitating further investigation into the network 

design and selection of observed data. 

2.4 Adaptive Kriging model for reliability analysis  

Adaptive Kriging models based on active learning strategies have gained significant 

popularity in recent years. These models are refined adaptively by adding new 

samples to the design of experiments, with each new sample selected to significantly 

enhance the current Kriging model. This approach ensures high accuracy of the 

Kriging model within the domain of interest, such as the limit state surface, without 

needing to ensure accuracy across the entire domain. Bichon et al. (2008) proposed an 

efficient global reliability analysis method that leverages Kriging predictions and 

local variance within an active learning strategy. Subsequently, Echard et al. (2011) 

developed an active learning reliability analysis method combining Kriging and 

Monte Carlo simulation, known as AK-MCS. The framework for adaptive Kriging 

models was established, and many improved versions of AK-MCS have since been 

developed. Most studies focus on enhancing sampling schemes for generating 

candidate samples, refining learning functions for selecting the best samples, and 

optimizing stopping criteria for terminating the active learning process. The 

framework of adaptive Kriging model is shown in Figure 2-1. An adaptive Kriging 

model facilitates the construction of an accurate surrogate model within the domain of 
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interest, and the final refined Kriging model can then be utilized for reliability 

analysis. 

 

Figure 2-1 Framework of adaptive Kriging model 

2.4.1 Learning functions and stopping criteria 

Learning function aims to select points that can remarkably enhance the accuracy of 

the current Kriging model. A learning function termed the expected feasibility 

function (EFF) was proposed for efficient global reliability analysis (Bichon et al., 

2008), which can select points are expected to be close to the limit state surface. The 

calculation of EFF is based on the Kriging prediction  K x  and its corresponding 

local variance  2
K x : 
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standard normal density function. EFF provides an index of how well the true value at 

point x is expected to satisfy the constraint  G ax  over the domain a  . 

Obviously, a is set as 0 for reliability analysis and   is suggested as  22 K x . The 

next best point is the point with the maximum EFF value. The next best point is 

identified as the one with the highest EFF value. However, this approach may select 

points that have little impact on the results because the EFF considers the entire space, 

including regions that contribute little to the failure probability. This can lead to 

inefficient use of computational resources.  

Echard et al. (2011) proposed a so-called U learning function, which can 

reflect the probability of wrong classification on the sign of a point x: 

    
 

U K
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x
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 (2-10) 

U learning function is widely used due to its simplicity (Echard et al., 2013; Huang et 

al., 2016). A smaller U value indicates a higher probability of misclassification. 
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Therefore, the U learning function selects the point from the candidate pool with the 

smallest U value, as this point is considered to have the highest risk of crossing the 

limit state surface.  

Various learning functions have been developed from different perspectives. 

An information entropy-based learning function was developed by Lv’s work (Lv et 

al., 2015). Sun et al. (2017) proposed the least improvement function by combining 

the information provided by Kriging model and joint probability function of random 

variables. X. Zhang et al. (2019) developed a reliability-based improvement function 

called REIF. Feng et al. (2023) introduced a novel Kriging-based learning function 

designed for system reliability analysis, particularly considering correlated failure 

modes. Besides learning functions designed for the adaptive Kriging, a general 

failure-pursuing learning strategy was proposed for surrogate models (Jiang et al., 

2019). Recently, Bayesian active learning approaches have been developed for 

reliability analysis (Dang, Valdebenito, Faes, et al., 2023; Dang et al., 2022). 

Moreover, to enhance the one-by-one enrichment of DoE, parallel computing 

strategies have been investigated in conjunction with adaptive Kriging models 

(Lelièvre et al., 2018; Schöbi et al., 2017; Xiao et al., 2022; Xiong & Sampath, 2021).  

With regard to stopping criteria, most of them are based on a prescribed 

threshold for the learning function value. For instance, Bichon et al. (2008) employed 

a threshold of 0.001 for the maximum EFF value as a stopping criterion. Echard et al. 

(2011) adopted   min 2U x  as the convergence condition for the active learning 

process. Although the U stopping criterion is widely used, it has been shown to be 

overly conservative for failure probability estimation  (Schöbi et al., 2017). This can 
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lead to unnecessary evaluations of the costly performance function when using 

adaptive Kriging with the U stopping criterion. (Fauriat & Gayton, 2014) pointed out 

that the Kriging model was sufficiently accurate if 2% of the candidate samples 

satisfied the U stopping criterion. Another group of stopping criteria are constructed 

on the basis of the stabilization of a specific value during the active learning process. 

For instance, Gaspar et al. (2017) proposed a stopping criterion based on the stability 

of the estimated failure probability. Similarly, stability in the bounds of the estimated 

failure probability or the reliability index has been used as a convergence condition 

(Moustapha et al., 2022; Schöbi et al., 2017). However, these criteria also rely on a 

predefined threshold, which is typically chosen based on researchers' experience. The 

impact of this selected threshold on the accuracy of failure probability estimation 

remains unclear. Recently, stopping criteria based on the relative error of the failure 

probability have been developed. Wang and Shafieezadeh (2019) proposed an error-

based stopping criterion (ESC) considering probabilities of wrong classification of all 

Monte Carlo samples. However, the accuracy of the failure probability may have been 

in stabilization before ESC is met for some cases (J. Wang et al., 2022). Zhang et al. 

(2021) developed an approach to estimate the maximum error of the posterior failure 

probability given a confidence level. 

2.4.2 Rare event estimation 

In the context of practical engineering and a high-reliability targets, failure 

probabilities of practical cases are typically small ( 6 310 ~10  ) and sometimes very 

rare ( 610 ) (Schöbi et al., 2017). AK-MCS requires an iterative process with Monte 

Carlo (MC) sampling to refine the Kriging model, which can be time-consuming, 
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especially with large populations. To address this, advanced sampling techniques are 

often integrated with adaptive Kriging models to improve efficiency in estimating rare 

events.  

Adaptive Kriging model has been combined with importance sampling for 

small failure probabilities estimation (Guo et al., 2020; Jia & Wu, 2024; Xiao et al., 

2020). Echard et al. (2013) combined the importance sampling with the adaptive 

Kriging (AK-IS) for rare events estimation. However, traditional importance sampling, 

which relies on the most probable failure point, may not be accurate for reliability 

problems involving multiple failure regions. To address this, an improved AK-IS was 

proposed for handling multiple failure regions (Cadini et al., 2014). A method termed 

Meta-IS-AK was developed by combing adaptive Kriging based IS and IS based 

adaptive Kriging model to efficiently estimate failure probabilities in cases with 

multiple failure regions (Zhu et al., 2020). X. Zhang et al. (2020) introduced an 

adaptive Kriging-oriented importance sampling method for structural system 

reliability analysis, enhancing the sampling center through an active learning strategy. 

To further reduce the number of model evaluations, Yun et al. (2018) improved 

adaptive Kriging with a modified importance sampling by using a contributive weight 

function. Chen et al. (2019) developed a hybrid strategy by combining MCS and IS 

for small failure probabilities estimation. Additionally, Yun et al. (2020) proposed an 

improved AKMCS by using the radial-based importance sampling for reliability 

analysis. 

Subset sampling technique is also employed to generate the candidate pool for 

active learning process. Huang et al. (2016) proposed AK-SS by combining adaptive 
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Kriging model with subset sampling while the candidate pool for training is still 

generated by MCS. An active learning reliability method combining Kriging 

constructed with exploration and exploitation of failure region and subset simulation 

(AKEE-SS) is proposed (J. Zhang et al., 2019). Ling et al. (2019) proposed a coupled 

subset simulation and adaptive Kriging model for rare events estimation, where the 

adaptive Kriging model was updated for each intermediate failure event. Zhang and 

Quek (2022) also updated Kriging model at each simulation level and Kriging model 

was utilized to determine the threshold for each level. Recently, the spherical 

decomposition-based MCS was adopted to replace the crude MCS for adaptive 

Kriging (Su et al., 2020), significantly reducing the number of candidate samples. 

Additionally, line sampling has been integrated with active learning strategies for 

structural reliability analysis (Dang, Valdebenito, Song, et al., 2023; Wang et al., 

2023) 

2.4.3 Dynamic reliability analysis 

Compared to static reliability analysis problems, dynamic reliability analysis is more 

complex and time-consuming due to highly nonlinear and time-dependent structural 

behaviors. Various theories are devoted to efficiently evaluating the first passage 

failure probability of a dynamic system (Dang et al., 2021; Hu & Du, 2013; Roberts & 

Spanos, 1986; Sudret, 2008a). The out-crossing rate method is one of the most widely 

used approaches for dynamic reliability analysis, however, the joint probability 

density function of the response and its velocity required by the Rice formula (Rice, 

2013) for estimating the mean out-crossing rate is usually intractable.  
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Evaluating the first passage failure probability of dynamic systems remains 

challenging due to uncertainties arising from both structural properties and time-

variant excitations. Alternatively, this evaluation can be transformed into estimating 

the extreme value distribution (EVD) of a dynamic system's response (Chen & Li, 

2007; Lutes & Sarkani, 2004). From the EVD perspective, the complex time-

dependent dynamic reliability analysis can be simplified to a time-invariant 

counterpart, as only the extreme response within a given time interval is of interest. 

Consequently, advanced approaches for static reliability analysis, such as MCS and 

SS, can be employed to derive the EVD of the dynamic system. However, these 

methods require numerous dynamic analyses to achieve accurate results, particularly 

for rare failure events estimation. With the development of the extreme value theory, 

it is possible to use the Gumbel distribution (Næss & Gaidai, 2009; Naess & Gaidai, 

2008) and the generalized extreme value distribution (Grigoriu & Samorodnitsky, 

2014) to cover the unknown EVD of interest. Additionally, various parametric 

distributions have been developed to provide flexible approximations of the 

underlying PDF, such as the shifted generalized lognormal distribution (Low, 2013; 

Xu, Wang, et al., 2020), the recently developed fractional moments based mixture 

distribution (Dang & Xu, 2020) and the moment-generating function based mixture 

distribution (Dang et al., 2021). The maximum entropy method, using either integer 

moments (Li & Zhang, 2011) or fractional moments (Xu & Dang, 2019; Zhang & 

Pandey, 2013) can also be employed for evaluating the EVD. However, these 

moments-based methods require further investigation regarding the accuracy of 

moments estimation and the flexibility of the distribution model in fitting the EVD. 

The probability density evolution method (PDEM) has been investigated for EVD 
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estimation and is applicable to strongly nonlinear dynamic systems  (Chen & Li, 2007; 

Chen & Li, 2005), however, it may be not suitable for problems with high-

dimensional random variables and small failure probabilities (Dang et al., 2021). 

Surrogate models can be employed when extreme responses are of interest (Lu 

et al., 2018; Wang & Wang, 2015). However, surrogate models for dynamic 

reliability analysis of engineering structures subjected to stochastic excitation (e.g., 

earthquakes and wind) are rarely found. This is due to the complex dynamics and the 

simulation of stochastic excitation. For instance, seismic motions are typically 

modeled as non-stationary stochastic processes, and the spectral representation 

method (Liu et al., 2016; Shinozuka & Deodatis, 1991) can be employed. Typically, 

500-1000 or more random phases are required to characterize non-stationary seismic 

motions. If these random phases are considered input features, it results in a high-

dimensional dynamic reliability analysis problem. Hence, the surrogate model-based 

methods may be not a rational choice for dynamic reliability analysis due to the 

“curse-of-dimensionality”. One can extract the peak excitation and structural 

parameters as input features while ignoring time-dependent dynamics may lead a 

significant error. Zhou and Peng (2022) investigated the reliability analysis of a 110-

dimensional stochastic dynamic system by combining an autoencoder with an 

adaptive Gaussian process model, they employed the stochastic harmonic function 

representation method for simulating stochastic excitations (Chen et al., 2017). 

However, only extreme responses were considered when constructing the surrogate 

model and time series responses were ignored.  
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Therefore, dynamic systems subjected to the stochastic excitation have not 

been well studied in terms of metamodel construction and reliability analysis. The 

spectrum representation method results in a high-dimensional dynamic system, 

primarily due to the thousands of random phases required to simulate the stochastic 

excitations. These random phases are not the pertinent input features; instead, the 

generated time-variant stochastic excitations are. Conventional surrogate models, such 

as Kriging and PCE, cannot be directly constructed for stochastic dynamic systems, 

even if only extreme responses are of interest. Although alternative approaches for 

simulating stochastic excitation, which require fewer random variables, exist (Chen et 

al., 2017; Liu et al., 2016), constructing conventional surrogate models remains 

challenging since the pertinent input features are implicit for time-dependent 

stochastic dynamic systems. Recently, a powerful deep learning tool called the long 

short-term memory has been employed to deal with the sequence-to-sequence data, 

allowing for the circumvention of high-dimensional random phases. LSTM has been 

investigated for metamodeling of nonlinear structures (R. Zhang et al., 2019; R. 

Zhang et al., 2020b) using only the time-variant excitation as the input feature. 

However, the uncertainties of structural parameters and seismic ground motions have 

not been considered in the metamodel construction.  

Overall, adaptive Kriging model has shown its advantages in the field of static 

reliability analysis. However, Kriging model for extreme responses prediction of 

stochastic dynamic systems is challenging due to implicit input features. Therefore, 

identifying the input features of a stochastic dynamic system is necessary before 

constructing a Kriging model. Once identified, the active learning strategy can be 

employed for the dynamic reliability analysis of stochastic engineering structures. 
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2.5 Summary  

This chapter reviews several commonly used methods for structural reliability 

analysis, including sampling-based simulation, moments-based methods, and 

surrogate models. Among these, Kriging model has gained significant attention in 

recent years, particularly due to advancements in active learning strategy. This 

strategy allows for the development of adaptive Kriging models by iteratively adding 

samples to DoE. However, adaptive Kriging models still face several challenges, such 

as inefficiency in rare event estimation, limitations in reliability analysis of stochastic 

dynamic systems, and difficulties with parallel computing. Rare failure probabilities 

and structures subjected to dynamic loads are prevalent in practical engineering 

problems. Therefore, it is crucial to further explore the efficiency of adaptive Kriging 

models for rare failure estimation. In addition, developing adaptive Kriging models 

for stochastic dynamic systems and investigating parallel computing strategies are 

essential for improving reliability analysis in practical engineering applications.  
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CHAPTER 3 ADAPTIVE KRIGING MODEL WITH A 

NEW STOPPING CRITERION AND DISTANCE-BASED 

SUBDOMAINS FOR RELIABILITY ANALYSIS 

3.1 Introduction  

Reliability analysis for computationally expensive models poses significant 

challenges. Monte Carlo simulation is commonly employed in conjunction with the 

active learning assisted Kriging model (AKMCS), which can significantly reduce the 

number of model evaluations. However, updating a Kriging model with numerous 

samples is time-consuming, especially for the small failure probability estimation. To 

alleviate the computational effort induced by the active learning process, a distance-

based subdomain is first developed to select the candidate points in the vicinity of the 

limit state surface. Accordingly, a Kriging model is trained within distance-based 

subdomains and Kriging predictions on the whole population can be avoided. 

Additionally, to further mitigate the computational effort caused by time-demanding 

model evaluations, a new stopping criterion is formulated based on the expected 

upper bound of the relative error of failure probability. A reasonable target threshold 

for the new stopping criterion is suggested, grounded in the quantification of the 

selected threshold's impact on the relative error of the failure probability. One 

analytical performance function and three numerical models including a 61-bar truss, 

a reinforced concrete planar frame and a bolted steel beam-column joint are 

investigated to demonstrate the efficiency and accuracy of the proposed approach. 
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3.2 Active learning method incorporating Kriging model and MCS  

3.2.1 Kriging model 

Although MCS is a straightforward way for estimating failure probabilities, it can be 

computationally expensive, especially when dealing with time-consuming models. To 

address this issue, surrogate models are often used to reduce the computational cost. 

In this thesis, the Kriging model is adopted due to its sophisticated stochastic 

properties.  

For a performance function  Y G X , Kriging model is based on the idea 

that  G X  is a realization of Gaussian process  X  (Echard et al., 2011; Matheron, 

1973): 

      T
z X f X β X  (3-1) 

 T
f X β  is a deterministic term providing the trend of Kriging model, where 

       T

1 2, , ..., kf f f   f X X X X  are basis functions and  T
1 2, ,..., k  β  is a 

vector of regression coefficients. Note that the ordinary Kriging is usually adopted, 

i.e.,  T f X β . z(X) is a stationary Gaussian process with zero mean and 

covariance: 

            2cov , ,i j i j
zz z R θx x x x  (3-2) 



 

33 

in which 2
z  is the variance of process and  R θ  is a correlation function with respect 

to parameters θ . The anisotropic squared-exponential function is employed as the 

correlation function: 

          2

1

, exp
d

i j i j
k k k

k

R x x


     θ x x  (3-3) 

Given a design of experiment with N training points (TPs), i.e., 

      T
1 2, ,..., N   x x x  with  i dx  and  T1 2, ,..., Ny y y  with    1i

iy G x  , 

then the scalar   and process variance 2
z  can be estimated by: 

   1T 1 T 1̂
  1 K 1 1 K   (3-4) 

and 

    T2 11
ˆ z N
    1 K 1   (3-5) 

where 1 is a unit vector with the size 1N   and     ,i j
ij R θK x x . Note that scalar 

parameters θ  of correlation function can be calculated via the maximum likelihood 

estimation. Then, the Kriging mean at a new point x can be computed as (Matheron, 

1973): 

      T 1
K    x k x K 1  (3-6) 

where            T
1 2, , , , ..., , NR R R   θ θ θk x x x x x x x , and the Kriging variance can 

be analytically expressed as: 
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            1T T2 2 T 1 11K z c c 
      

x x 1 K 1 x k x K k x  (3-7) 

in which    T 1 1c  x 1 K k x . 

Kriging is an exact interpolation method, which means      i
K

iG x x  at 

observed points with a null Kriging variance. For unexplored points, the uncertainty 

of predictions can be estimated and   iG x  follows a normal distribution with mean 

  i
K x  and the standard deviation   i

K x . 

3.2.2 Adaptive Kriging model with MCS 

On the basis of local variance provided by Kriging model, an active learning method, 

incorporating Kriging model and Monte Carlo simulation termed AKMCS, is 

proposed (Echard et al., 2011). The main procedure is summarized as follows. 

(1) Generate a MC population with MCN  candidate points (CPs). 

(2) Generate an initial DoE with 0N  training points (TPs) and construct an 

initial Kriging model. 

(3) Enrich the DoE by selecting the next best point via a learning function.  

(4) Use the enriched DoE to train Kriging model until meeting the condition of 

convergence. 

(5) Estimate fP  by using Kriging predictions on CPs via the refined Kriging 

model: 
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    
1

1 MCN
i

f
iMC

KP I
N




  x  (3-8) 

Various learning functions are developed for the enrichment of DoE, among 

which the U learning function is widely used due to its simplicity: 

    
 

K

K

U




x

x
x

 (3-9) 

The probability of the wrong classification at point x can be calculated as: 

    
 w

K

K

P



 
    

 

x
x

x
 (3-10) 

where     represents the cumulative distribution function of the standard normal 

distribution. The smaller the U value, the higher the probability of incorrect 

classification. Therefore, the next best training point is selected by finding the 

minimum value of the U function. The enrichment of the DoE continues until the 

minimum U value exceeds 2, ensuring that the probability of incorrect classification is 

less than 0.0228 (Echard et al., 2011). 

3.3 Proposed adaptive Kriging model with distance-based 

subdomains 

Although AKMCS can significantly reduce the number of model evaluations for 

reliability analysis, sometimes the computational effort of the active learning strategy 

itself is expensive. This is due to the need for Kriging predictions across the entire 

MC population, especially when assessing small failure probabilities (Echard et al., 



 

36 

2013). In practice, only the failure points and the candidate points in the vicinity of 

limit state surface are of interest for reliability analysis. Therefore, the Kriging 

predictions over the entire domain are not necessary. To this end, a distance-based 

subdomain is proposed to identify candidate points around the limit state surface. The 

failure domain can be covered by several distance-based subdomains. Only the points 

within these subdomains are used to update the Kriging model. This strategy, termed 

AKDS in this thesis, focuses the training of the Kriging model within distance-based 

subdomains. Furthermore, a new stopping criterion is theoretically derived from the 

expected upper bound of the relative error of failure probability. This criterion further 

reduces the computational effort associated with time-consuming performance 

function evaluations. 

3.3.1 Distance-based subdomain  

It is known that a candidate point with a minimum value of U learning function has a 

high potential risk crossing the limit state surface (Echard et al., 2011), indicating that 

this point is close to both the LSS and the failure domain. Therefore, candidate points 

near this point contain crucial information about the failure domain and the LSS of 

interest. Based on this idea, candidate points around the point with the minimum U 

value are first identified using a distance-based strategy. In this thesis, the point with 

the minimum U value is referred to as a location point (LP), as it serves to locate a 

distance-based subdomain, as illustrated in Figure 3-1. 

Given a location point LPx  and points belong to a MC candidate pool S, e.g., 

     MC
T

1 2, ,..., N 
 x x x , the Euclidean distance can be calculated as: 
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Figure 3-1 Concepts of a distance-based subdomain and an adjacent distance-based 
subdomain 

   2

LP MC, 1,2,..,i
ir i N  x x  (3-11) 

Therefore, varying the number of candidate points around LPx  can be 

determined by setting different thresholds for Euclidean distance. The distance-based 

subdomain DS  can be given as: 

  D |S S r  x r  (3-12) 

where r is a vector collecting the Euclidean distance obtained by Eq. (3-11) and r  is 

the threshold of Euclidean distance.  

In this thesis, only the selected candidate points (SCPs) in a distance-based 

subdomain DS  are employed for updating a Kriging model. Hence, the number of 

candidate points in the distance-based subdomain should be limited and it is denoted 

as DN . To this end, an algorithm similar to the bisection method, as shown in Table 

3-1, is proposed to limit the number of candidate points within a distance-based 

S

DS

AS
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subdomain. This algorithm adaptively finds an appropriate threshold mr  to ensure that 

the number of candidate points remains at an expected level DN . Note that the final 

number of selected candidate points may not exactly match DN  due to the 

implementation of an allowable error   to facilitate the algorithm. A fluctuation of up 

to 10% is considered acceptable.  

Table 3-1 Algorithm 1 for determining subdomains 

Algorithm 1: Determine the distance-based subdomain DS  

Input: A location point LPx ; Candidate points X in S; An expected number of points in DS  denoted as 

DN . 

Output: Distance-based subdomain DS with DN  selected candidate points 

1. Calculate Euclidean distance   2

LP
i

ir  x x , 
M

T

1 2, ,....,
CNr r r   r  

2. Determine the maximum Euclidean distance  max maxr  r  

3. Determine the minimum Euclidean distance  min minr  r  

4. Initiate the upper bound of distance u maxr r  

5. Initiate the lower bound of distance L minr r  

6. Initiate an allowable error of the number of candidate points in D 1 S    

7. While 0.1   or 0.1    
8.    Calculate the medium distance  m u L / 2r r r   

9.    Obtain  D m|S S r  x r  with DN  selected candidate points 

10.   Calculate the allowable error of the number of selected points  

       /D D DN N N    

11.   if 0.1   then  

12.      Update the upper bound u mr r  

13.   else 
14.      Update the lower bound L mr r  

15.   end if 
16.End While 

 

3.3.2 Training a Kriging model within distance-based subdomains 

Given an initial DoE and a random subdomain RS  ( RS S ) with RN  candidate 

points scattered in the whole candidate pool S, a Kriging model can be constructed 
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based on the initial DoE, the first location point can be easily found by using the 

Kriging predictions on candidate points within RS :  

    
R

1
LP arg min

S
U




x
x x  (3-13) 

Note that in this step, the Kriging model does not require refinement through 

the active learning strategy, as it is used solely to identify the first location point. This 

random subdomain is employed to avoid performing a large number of Kriging 

predictions across the entire candidate pool. Hence, the number of candidate points in 

RS  can be set to 6
R 10N   to guarantee the efficiency. The effect of this parameter is 

investigated in example 1. Once the first location point is obtained, the first distance-

based subdomain  1
DS containing  1

DN  SCPs can be accordingly found via the 

proposed algorithm. Seen from Figure 3-1, the distance-based subdomain DS  covers a 

piece of the whole LSS. 

The whole LSS can be divided into pieces by several distance-based 

subdomains. Accordingly, Kriging model for LSS is updated piece-by-piece. For each 

segment, only selected candidate points within each DS  are used for the active 

learning strategy so that the efficiency of the training process can be significantly 

improved. In this thesis, a Kriging model trained within a distance-based subdomain 

 
D

jS  is referred to as a local Kriging model ˆ
jG , for the sake of simplicity in 

describing the proposed procedure.  
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The next key step is to identify the subsequent LP to determine the next 

distance-based subdomain. Due to the first local Kriging model 1Ĝ  is refined within 

 1
DS  through the active learning strategy, it may also provide insights into the LSS 

near  1
DS . Herein, a distance-based subdomain adjacent to DS , denoted as AS , is 

introduced. This adjacent distance-based subdomain AS  can also be identified using 

the algorithm outlined in Table 3-1. It is important to note that the location point used 

for this subdomain is the same as the one used for locating DS . The selected 

candidate points within DS  should be removed from the candidate pool S so that only 

candidate points around DS  are selected. The adjacent distance-based subdomain is 

defined as: 

  A m D| ,S S r S S   x r  (3-14) 

in which DS   means a new candidate pool obtained by removing DS  from S. The 

adjacent distance-based subdomain is represented by the light-yellow region shown in 

Figure 3-1. Then, the next LP  1
LP

jx  can be found by the previously trained local 

Kriging model and candidate points within  
A

jS : 

  
 

 
A

1
LP arg min , 1, 2,...

j

j

S

U j



 
x

x x  (3-15) 

Another important issue is to determine the number of distance-based 

subdomains used for detecting the whole failure domain and LSS. When getting a 
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well-trained local Kriging model for a distance-based subdomain  
D

jS , the failure 

domain belongs to  
D

jS  can be obtained as follows: 

     D
ˆ| 0 , 1, 2,jj

F jS G j     x x  (3-16) 

The number of failure points within  
D

jS  is recorded as  ˆ j
fN  and can be 

estimated as: 

      
 
D

ˆ
1

ˆ
j

j

N
j k

f G
k

N I 


  x  (3-17) 

when  ˆ 0j
fN  , it can be assumed that the previous  

D
jS s have covered the whole 

failure domain and the LSS. Consequently, the number of  
D

jS s can be determined. 

Then, the failure probability can be estimated as: 

 
MC

ˆ
ˆ f

f

N
P

N
  (3-18) 

where fN  represents the number of failure points in the whole population S, and fN  

can be estimated as: 

  

1

ˆ ˆ
n

j
f f

j

N N


   (3-19) 

where n is the number of distance-based subdomain DS  used for covering the entire 

failure domain and LSS. 
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An alternative way to approximate ˆ
fN  is using the final refined Kriging 

model ˆ
nG  and MC population, which can be calculated as: 

    MC

ˆ
1

ˆ
n

N
i

f G
i

N I 


  x  (3-20) 

the accuracy and efficiency of failure probability obtained by Eqs. (3-19) and (3-20) 

are discussed in the following illustrative examples. The training process of a local 

Kriging model for each piece of LSS within DS  follows the same procedure as the 

conventional AKMCS, a new best training point within each DS  is defined as: 

 
 

 
D

* arg min
jS

U



x

x x  (3-21) 

and  0 max 12, 2N d  initial TPs produced by Latin hypercube sampling (LHS) is 

employed for training. 

3.3.3 Proposed ε  stopping criterion for training a Kriging model 

The training process for a Kriging model stops when the following condition is met 

(Echard et al., 2011):  

  min 2
S

U



x

x  (3-22) 

However, the stopping condition for updating Kriging model expressed by Eq. 

(3-22) is overly conservative for estimating the failure probability since it solely 

draws attention to the accuracy of Kriging model for the LSS. In addition to 

considering the accuracy of the metamodel, it is also important to account for the 
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accuracy of the failure probability estimation. Therefore, the impact of points with 

high probabilities of incorrect classification on the accuracy of failure probability 

estimation should be investigated first. 

Suppose that the number of candidate points corresponding to 

  | 2S U x x  (also termed as the dangerous points) is UN . Let Z denote the event 

that k points within the domain   | 2S U x x  are in wrong classification, the 

probability of Z can be formulated as: 

    , ,
1 1 1

Pr 1

k
N UU

C Nk

i j i m
i j m k

Z k p p
   

 
   

 
    (3-23) 

in which 
 

!

! !U

k U
N

U

N
C

k N k



, ,i jp  and ,i mp  are probabilities of the wrong 

classification. On the basis of Eq. (3-10) and  0 2U x , ,i jp  and ,i mp  satisfy: 

    , ,0.023 2 , 0 0.5i j i mp p        (3-24) 

For the sake of simplicity, we assume that , ,i j i mp p p  , and then Z follows 

the binomial distribution  ~ ,UZ B N p . Thus, the probability of  Z k  gives: 

    Pr 1 U

U

N kk k
NZ k C p p

    (3-25) 

The mean and variance of Z gives: 

      , Var 1U UZ N p Z N p p    (3-26) 
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If Z k  points are in wrong classification, the range of estimated failure 

probability ˆ
fP  can be calculated as: 

 
MC MC

ˆ
f f f

Z Z
P P P

N N
     (3-27) 

The left-hand side represents the scenario where all k points are actually 

negative but are identified as positive. Conversely, the right-hand side represents the 

case where all k points are actually positive but are identified as negative. The relative 

error of failure probability can be estimated as: 

 
MC

ˆ
100% 100%f f

f f

P P Z
R

P N P


     (3-28) 

Denote the upper bound of the relative error of fP  as ( 0)U UR R  : 

 
MC

U
f

Z
R

N P
  (3-29) 

The expected upper bound of the relative error of fP  can be calculated as: 

    
MC MC

1
100%U

U
f f

N p
R Z

N P N P
     (3-30) 

where  is the expectation operator. Since MCf fN N P , and Eq. (3-30) can be 

reformulated as: 

   100% 100%U
U

f

N p
R p

N
     (3-31) 
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where   is the ratio of the number of the dangerous points to the number of points 

within the failure domain: 

 , 0U

f

N

N
    (3-32) 

The variance of the upper bound of the relative error of fP  can be calculated 

as: 

        
2 2

11 1
Var Var 1U U

f f f

p p
R Z N p p

N N N

 
     (3-33) 

Moreover, the confidence interval of UR  can be estimated by: 

 
   1 1

max ,0 ,U U U
f f

p p p p
R R p R p

N N

 
    

   
      

    
 (3-34) 

in which   is the quantile of a standard normal distribution corresponding to a 

confidence level. For instance, if the confidence level is 95%, then =1.96 . 

Seen from Eq. (3-34), the confidence interval of UR  is related to  , p and fN . 

To further estimate the confidence interval of UR , assume that 10b
fN a  , where 

,1 10a a    and b . Therefore, the lower and upper bounds of UR  gives: 

 
   1 1

max ,0 ,
10 10U Ub b

p p p p
R p R p

 
    
  
    
 
 

 (3-35) 
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where the equal sign in Eq. (3-35) works when a = 1. Subsequently, the confidence 

interval shown in Eq. (3-34) can be reformulated as: 

 
   1 1

max ,0 ,
10 10U b b

p p p p
R p p

 
   

   
    

    
 (3-36) 

Herein, we first consider the worst condition for fP  estimation, where all 

dangerous points have the maximum probability of misclassification, i.e., 

, , 0.5i j i mp p p   . Then the maximum expected UR , i.e.,  maxUR , and the 

estimated confidence interval with a 95% confidence level are presented in Table 3-2. 

As seen from the Table 3-2, for a fixed ratio  , the variation of UR  increases as b 

decreases, which results from the lack of enough MC candidate samples for the failure 

probability estimation. It is well known that to ensure a low variation of failure 

probability, the required number of MC samples increases with a descending failure 

probability. For instance, to achieve  CoV 0.1fP   given 10 t
fP   and t  , the 

following number of MC samples is required based on Eq. (2-5) (Schöbi et al., 2017): 

 
 

2
MC 2

1
10

CoV

t

f f

N
P P

 
  

 (3-37) 

which means that 2
MC 10f fN N P  , i.e., 2b  . Thus, the length of the confidence 

interval is significantly smaller when the number of Monte Carlo samples is 

sufficiently large. This conclusion is also evident from Eq. (3-36). When b is 

sufficiently large, meaning the number of Monte Carlo samples is adequate to ensure 
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a low CoV of fP , and then the bounds of the relative error of failure probability are 

given by: 

  U U UR R p R      (3-38) 

Furthermore,  UR  with respect to p is shown in Table 3-3. Given 0.1   

and  1p    , if fN  is equal to 310 , then 100U fN N   points fall into the 

domain corresponding to   | 2S U x x . These 100 points do not satisfy the U 

stopping criterion, i.e.,  min 2
S

U



x

x . But the expected upper bound of the relative 

error of failure probability is as small as 1.6%, indicating that even if 100fN   

points are exempt from the conventional U stopping criterion, the accuracy of the fP  

estimation remains reliable. Thus, the conventional U stopping criterion is 

conservative for some cases. Accordingly, the following   stopping criterion is 

proposed to exempt fN  dangerous points from the U stopping criterion: 

    (3-39) 

Note that the maximum expected upper bound of the relative error of fP  is 5% 

when 0.1  , i.e.,  max
5%UR  . Due to the expected value and all the bounds of 

UR  are derived by considering the extreme conditions, we can infer from Eq. (3-38) 

that the relative error of failure probability satisfies the following equation given 

0.1  : 

    max
5%U U UR R R R      (3-40) 
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Therefore, in this thesis, a threshold of 0.1   is suggested, ensuring that the 

expected upper bound of the relative error of failure probability remains below 5%. 

To evaluate the stopping criterion, the estimated number of failure points can be 

employed, as it will approach the true one with continued training, and at the early 

stage of training, the number of dangerous points is very large. Furthermore, the 

results in Table 3-3 can also provide a guideline for choosing different thresholds of 

the proposed stopping criterion to achieve varying levels of accuracy. 

Table 3-2 Mean and confidence interval of the upper bound of the relative 
error against   and b given p = 0.5 

Parameters  =0.05  =0.1  =0.2  =0.3  
b=0 [0%, 24.4%] [0%, 36.0%] [0%, 53.8%] [0%, 68.7%] 
b=1 [0%, 9.4%] [0%, 14.8%] [0%, 23.9%] [0%, 32.0%] 
b=2 [0.3%, 4.7%] [1.9%, 8.1%] [5.6%, 14.4%] [9.6%, 20.4%] 
b=3 [1.8%, 3.2%] [4.0%, 6.0%] [8.6%, 11.4%] [13.3%,16.7%] 
b=4 [2.3%, 2.7%] [4.7%, 5.3%] [9.6%, 10.4%] [14.5%,15.5%] 
 maxUR  2.5% 5.0% 10.0% 15.0% 

 

 

Table 3-3 The expected upper bound against   and p 

Parameters 0.05   0.1   0.2   0.3   
 0p    2.5% 5.0% 10.0% 15.0% 

 0.5p     1.5% 3.1% 6.2% 9.3% 

 1p     0.8% 1.6% 3.2% 4.8% 

 1.5p     0.3% 0.7% 1.3% 2.0% 

 2p     0.1% 0.2% 0.5% 0.7% 

 

3.3.4 Computational procedure 

Figure 2 shows the flowchart of the proposed method and the procedure is described 

in detail as follows: 
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(1) Initiate j=1, q=0 and generate a candidate sample pool MCS  with MCN  

candidate points.  

(2) Select 0N  training points via LHS as an initial training set 

0

T

0 1 2, ,.., N
    x x x   and compute the corresponding performance function 

values 
0

T

0 1 2, ,..., Ny y y      . 

(3) Let MCS S  and select a random subdomain RS  with RN  scattered 

candidate points within S. 

(4) Obtain a Kriging model 0Ĝ  by using  0 0,  . 

(5) Find the first location point  1
LPx  via 0Ĝ  and candidate points inside RS .  

(6) Determine a distance-based subdomain  
D

jS  by using algorithm 1. 

(7) Train a local Kriging model ˆ
jG  by using  ,  . 

(8) Compute U learning function values of the selected candidate points within  

 
D

jS  and enrich  ,   with the next best training point and the corresponding 

performance function value until meeting the proposed stopping condition   . 

(9) Record the number of points in the failure domain of  
D

jS  by using Eq. (3-

17), i.e.,  j
fN . 
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(10) Update the candidate sample pool S by removing selected candidate 

points inside  
D

jS . 

(11) Judge the stopping condition   0j
fN  . If the condition is met, proceed to 

step (13). Otherwise, determine an adjacent distance-based subdomain  
A

jS  using 

algorithm 1 and let 1j j  . 

(12) Obtain the next location point  
LP

jx  via 1
ˆ

jG   and the candidate points 

within  1
A

jS  , and then move to step (6). 

(13) Estimate fN  by Eq. (3-19) or Eq. (3-20), and ˆ
fP  can be obtained by 

using Eq. (3-18). 

(14) Check the coefficient of variation of ˆ
fP . If  ˆCoV 5%fP  , the proposed 

method stops, otherwise, the MC candidate pool MCS  is enlarged by Eq. (3-41). Let  

1q q  , AKDS goes back to step (3). 

In this research, to efficiently determine the final MC candidate pool MCS , the 

initial MCN  is employed as 610 . Assume that the ˆ
fP  estimated by the current MCS  is  

10 tr  , where r  , 1 10r   and t  . According to Eq. (3-37), MCS  can be 

enlarged as : 

  2
MC 10 1 0.5tN q   (3-41) 
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Figure 3-2 Flowchart of the proposed AKDS 

3.4 Discussion on the proposed method  

Active learning-based Kriging models are often combined with various sampling 

approaches, which significantly impact the efficiency and accuracy of the AK-based 

methods. Herein, the approach for selecting candidate samples used in the proposed 

method is compared with MCS, subset sampling and a spherical decomposition-based 

MCS (SDMCS) (Su et al., 2020). To demonstrate the application of different 

simulation methods, a simple 2-D problem is investigated (Echard et al., 2013): 
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      2

1 2 1 2, 0.5 2 1.5 5 1G X X X X      (3-42) 

where 1X  and 2X  are independent standard Gaussian random variables. The 

numbers of candidate points in each subdomain for SS, SDMCS and the proposed 

method are all set to 510  for comparisons. Note that the procedure for generating the 

candidate pool in the proposed method requires location points, which is different 

from the other approaches. Herein, the location points are obtained by Kriging model 

and U learning function. The failure probabilities obtained by different methods are 

listed in Table 3-4 and the candidate pools for active learning generated by different 

strategies are depicted in Figure 3-3. 

Table 3-4 Comparisons of different simulation methods 

Method callN  fP  CoV (%) R.E. (%) 

MCS 1.5 108 2.749 10-6 4.92 - 
SS 517620 2.907 10-6 3.95 5.75 
SDMCS 501879 2.875 10-6 4.95 4.58 
Proposed 289058 2.787 10-6 4.89 1.38 

 

 
(a) MCS 

 
(b) SDMCS 
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(c) SS 

 
(d) Proposed 

Figure 3-3 Strategies for generating the candidate pool 

As seen from Table 3-4 and Figure 3-3, it can be found that: (1) MCS requires 

considerable computational costs to estimate such a small failure probability due to a 

large number of function calls to the performance function. (2) SS transforms the rare 

event into six intermediate events with relatively larger failure probabilities, 

significantly reducing the number of required candidate samples to 517620. (3) 

SDMCS decomposes the whole space into six subdomains based on the spherical 

radius, also significantly reducing the required number of candidate points to 501879. 

(4) The proposed strategy only focuses on the region close to the LSS since candidate 

samples far away from the LSS, i.e., points in the grey region shown in Figure 3-3 (d), 

have no contribution to the failure domain and LSS. Two distance-based subdomains 

are sufficient to cover LSS and the failure domain of interest. Thus, the number of 

candidate samples for active learning using the proposed strategy, i.e., 289058, is 

further reduced compared to SS and SDMCS. Therefore, the proposed method 

requires fewer candidate points for active learning since it fully utilizes the location 

information of the LSS and the failure domain provided by the Kriging mean and 

variance predictions, whereas other approaches do not account for this aspect. 
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The computational effort of the Kriging metamodel arises from three main 

components: the training of Kriging model, Kriging mean and variance predictions. 

These can be approximated respectively for each subdomain  
D

jS  as follows (Su et al., 

2020): 

 
call ,

call , 1

3
1, 1

1

j

j

N

j
i N

T t i
 

   (3-43) 

 
call,

call, 1

2, 2 D
1

j

j

N

j
i N

T t N i
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   (3-44) 

 
call ,

call , 1

2
3, 3 D

1

j

j

N

j
i N

T t N i
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   (3-45) 

where 1t , 2t , 3t  are computational time for a single run of the training, mean 

and variance predictions, respectively. callN  means the number of function calls to the 

performance function and call, jN  is the number of function calls in each subdomain. 

Note that call,0 0N N  is the size of the initial DoE. Consider all subdomains, the 

computational time for training Kriging model can be estimated as: 

 

 

call ,

call , 1

call call

0

3 3
1 1 1 call,0

1 1

3 3
1 1

1

22
1 call call 4

1 call

1
0.30

4

j

j

Nn

j i N

N N

i N i

T t i t N

t i t i

t N N
t N

  

 

 

 


 

 

   (3-46) 

Similarly, we have: 
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 2
2 2 D call0.55T t N N  (3-47) 

and  

 3
3 3 D call0.39T t N N  (3-48) 

The total computational time can be estimated as: 

 
1 2 3

4 3 2
1 call 2 D call 3 D call0.30 0.39 0.55

T T T T

t N t N N t N N

  

  
 (3-49) 

Similarly, the computational time for AKMCS can be estimated as: 

 4 3 2
1 call 2 MC call 3 MC call0.30 0.39 0.55T t N t N N t N N    (3-50) 

where callN  refers to the number of true simulations by AKMCS. Therefore, the 

computational time of the AK-based method mainly depends on the number of 

candidate samples for active learning process and the number of calls to the time-

demanding performance function. For the proposed method, Kriging model is trained 

within each subdomain and the entire LSS is refined piece-by-piece. Thus, the 

computational time of the proposed method depends on the number of points in each 

subdomain, i.e., DN , rather than the total number of candidate points for the active 

learning. Clearly, DN  is much smaller than MCN  and the computational effort of 

AKMCS can be significantly reduced. Apart from the candidate pool for active 

learning, the stopping criterion also plays an important part in the AK-based 

approaches. As illustrated in the previous section, the proposed stopping criterion can 

further reduce the number of calls to the performance function. 
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3.5 Illustrative examples  

In this section, four applications, including both analytical and numerical performance 

functions, are examined to demonstrate the effectiveness of the proposed method. The 

first example is a 2-D application that illustrates how AKDS refines the entire LSS 

piece-by-piece, and a parametric study is conducted in this example. The performance 

of the proposed method is also tested on FEM related to a 61-bar truss, a three-bay 

six-story reinforced concrete planar frame, and a bolted steel beam-column joint. In 

addition to the computational cost associated with performance function calls, the 

CPU time is also considered to account for the computational effort required by active 

learning process itself in all examples. 

3.5.1 Example 1: a series system with four branches 

The first benchmark example is a series system with four branches, the performance 

function gives (Echard et al., 2011; Schueremans & Van Gemert, 2005): 

  

 
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 
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  

 (3-51) 

where 1X  and 2X  are standard normal distributed random variables. The procedure 

for the proposed AKDS is detailed in this example. The proposed procedure is 

initiated with 0N  Latin hypercube samples and a MC population with MCN  candidate 
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points. Then, an initial Kriging model can be constructed based on the initial DoE. 

The first location point can be identified by the minimum value of the U learning 

function predicted on RN  CPs. Subsequently, the first distance-based subdomain (1)
DS  

can be determined by the algorithm shown in Table 3-1 with an expected number of 

candidate points DN , as shown in Figure 3-4 (a). Next, a local Kriging model is 

trained within the first subdomain as depicted in Figure 3-4 (b). Then, an adjacent 

subdomain can be found according to the first LP, and the next location point is 

determined using the previously trained local Kriging model and the adjacent 

candidate points, which is shown in Figure 3-4 (c). Finally, the next distance-based 

subdomain can be readily determined as illustrated in Figure 3-4 (d). 

The effects of parameters in the proposed approach on the accuracy of failure 

probability are first discussed, specifically the number of CPs inside a random 

subdomain ( RN ) and the expected number of CPs within a distance-based subdomain 

( DN ). Note that all results are the average values obtained by 10 independent runs of 

the proposed method and the failure probability is estimated by Eq. (3-20). Average 

results with respect to different RN  and DN  are listed in Table 3-5, with a threshold 

of 0.1  . The results in Table 3-5 indicate that the parameter DN  plays a more 

important role in the accuracy of failure probability than RN . As DN  increases, the 

accuracy of the results improves. However, the computational cost significantly 

increases with an increasing DN . To balance the accuracy and efficiency of the 

training process, the expected number is adopted as 5
D 10N   in this thesis. 

Furthermore, RN  appears to have little effect on the failure probability since it is only 
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used for finding the first LP. Therefore, RN  is the same with the number of initial MC 

population in this thesis, i.e.,106. 

 
(a) The first subdomain 

 
(b) Training a local Kriging 

 
(c) Adjacent CPs and the next LP 

 
(d) Determine the next subdomain 

Figure 3-4 The procedure for the proposed AKDS 

Table 3-5 Parametric analysis 

Parameter  callN  fP  R.E.(%) 

MCS - 106 32.220 10  - 

Selected  6 5
R D10 , 10N N   68.6 32.215 10  0.24 

5
R D( 10 )N N   55 10  67.8 32.212 10  0.38 

 51 10  67.4 32.210 10  0.44 

 41 10  69.5 32.213 10  0.32 
6

D R( 10 )N N   45 10  67.4 32.213 10  0.32 

 42 10  64.7 32.170 10  2.24 

 41 10  63.8 32.104 10  5.24 
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The evolution of distance-based subdomains is shown in Figure 3-5 given 

6 5
R D10 , 10N N  and   stopping criterion. The first-seven distance-based 

subdomains cover all failure points, dividing the entire LSS into seven pieces. Each 

piece of LSS can be estimated by a local Kriging model, trained within a distance-

based subdomain  
D

jS  rather than the whole population. Hence, the whole LSS is 

estimated piece-by-piece, which significantly reduces the computational effort 

induced by the active learning process itself. Moreover, the number of added points 

for training the Kriging model in each distance-based subdomain with U stopping 

criterion and the proposed   stopping criterion are shown in Figure 3-6. The 

proposed   stopping criterion requires fewer training points for refining each local 

Kriging model than U stopping criterion, which means that the proposed   stopping 

criterion can mitigate the computational effort induced by the performance function 

calls. The numbers of failure points in each  
D

jS , estimated by the Kriging model with 

U stopping criterion and   stopping criterion, are shown in Figure 3-7, which are all 

in good accordance with the true ones. The results in Figure 3-7 reveal that the 

number of failure points in each subdomain can be accurately estimated by the 

proposed method. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 3-5 The evolution of distance-based subdomains 

Furthermore, the failure probabilities obtained by different methods are 

provided in Table 3-6. The number of performance function calls and the CPU time of 

the active learning process are of interest. All algorithms are performed on a computer 

with Intel (R) Core (TM) i9-11900K CPU processor at 3.5GHz with 32 GB RAM. 

Note that the original AK-MCS-U, AK-SS (Huang et al., 2016) and the proposed 

method are each replicated 10 times with different initial DoEs to provide the average 

results, respectively. AK-MCS-U and the proposed AKDS are both initiated with a 

MC population of 6
MC 10N   CPs. AKDS- 1U  means that the U stopping criterion is 

used for training Kriging model and the superscript 1 denotes that Eq. (3-19) is 

employed for estimating fN . Similarly, AKDS- 2U  represents that Eq. (3-20) is 

adopted for the failure probability estimation. Seen from the results, IS and SS require 

too many function calls and IS cannot produce an accurate result since it is only 

suitable for problems with a single MPP. By using the same U stopping criterion, the  
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Figure 3-6 The number of added training points in each subdomain by U and   
stopping criterion 

 
(a) U stopping criterion 

 
(b) proposed stopping criterion 

Figure 3-7 The number of failure points in each subdomain 

proposed AKDS-U consumes 82.9 calls to the performance function while AK-MCS-

U requires 86.8 calls, which reveals that the proposed domain decomposition can 

reduce the number of calls to the performance function. Moreover, AKDS-  requires 

fewer function calls by adopting the proposed stopping criterion, i.e., 68.6, which 

states that the proposed   stopping criterion can further mitigate the computational 

burden induced by the performance function calls. Simultaneously, the maximum 

relative error of failure probability estimated by AKDS is as small as 0.68%. AK-SS 

results in a lager relative error of failure probability compared to AKDS- , despite 
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consuming a similar computational cost. In this example, the CPU time is primarily 

caused by the active learning process itself, which involves evaluating numerous 

candidate samples, while the time spent on running an analytical performance 

function is negligible. The results show that the proposed domain decomposition 

strategy accelerates the training process by 85% at least compared to AK-MCS-U as 

the number of CPs used in the active learning process for the proposed method 

remains relatively small. Additionally, it is evident that the failure probability 

estimated using Eq. (3-20) is more accurate than that obtained by Eq. (3-19). However, 

Eq. (3-20) needs more CPU time than Eq. (3-19) because it involves using Kriging 

predictions on the entire MC population for the final failure probability estimation. 

Table 3-6 Results obtained by different methods for the series system  

Method callN  CPU time (s) fP  CoV(%) R.E.(%) 

MCS 106 - 32.220 10  2.12 - 

IS 3.6 104 - 32.510 10  2.66 13.06 

SS 2660 - 32.120 10  23.93 4.50 

AK-SS 68.3 8 32.180 10  2.14 1.79 

AK-MCS-U 86.8 48 32.220 10  2.12 0.00 

AKDS-U1 82.9 7 32.217 10  2.12 0.13 

AKDS-U2 82.9 8 32.220 10  2.12 0.01 

AKDS- 1  68.6 4 32.205 10  2.13 0.68 

AKDS- 2  68.6 5 32.215 10  2.12 0.24 

 

3.5.2 Example 2: a 61-bar truss 

To illustrate the efficiency of the proposed method for finite element models, a 61-bar 

truss shown in Figure 3-8 is first investigated. The performance function can be given 

by (Ding & Xu, 2021): 

    1~13 lim 1~13, ,G E F D D E F   (3-52) 
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where  1~13,D E F  denotes the vertical displacement at the mid-point of the truss 

structure and limD  represents a threshold of 795 mm. The circular cross section is 

used and the area is 31.229 10  m2. The elastic modulus E is a lognormally 

distributed random variable with a mean of 210 GPa and a CoV of 0.10. The vertical 

loads 1F  to 13F  are all lognormally distributed variables, each with a mean of 15 kN 

and a CoV of 0.15. fP  obtained by different approaches are summarized in Table 3-7, 

where AK-MCS-U and AKDS are both initiated with 6
MC 10N  . According to Table 

3-7, the relative errors produced by the proposed AKDS across all four cases, as well 

as by AK-MCS-U, are all less than 1%. The average number of FEM calls required by 

AKDS-  is 45.4, which is smaller than 60.8 calls required by AK-MCS-U. Although 

IS and SS obtain fair good results, they require a significantly higher number of 

function calls. Besides, AK-SS requires 49.3 function calls, which is larger than 45.4 

simulations required by the proposed method. In terms of CPU time, AKDS reduces 

computational effort by nearly 90% compared to the conventional AK-MCS-U. 

 

Figure 3-8 A 61-bar truss structure 

Table 3-7 Results obtained by different methods for the truss structure 

Method callN  CPU time (s) fP  CoV(%) R.E.(%) 

MCS 710  - 4.820 10-5 4.55 - 
IS 5144 - 4.958 10-5 2.98 2.86 
SS 23000 - 4.964 10-5 14.33 2.99 



 

64 

Table 3-7 (continued) Results obtained by different methods for the truss structure 
Method callN  CPU time (s) fP  CoV(%) R.E.(%) 

AK-SS 49.7 119 4.921 10-5 3.20 2.10 
AK-MCS-U 60.8 534 4.820 10-5 4.55 0.00 
AKDS-U1 60.6 20 4.814 10-5 4.56 0.12 
AKDS-U2 60.6 54 4.820 10-5 4.55 0.00 
AKDS- 1  45.4 13 4.856 10-5 4.54 0.74 

AKDS- 2  45.4 40 4.857 10-5 4.54 0.77 

 

3.5.3 Example 3: a planar concrete frame structure 

This example presents a three-bay six-storey planar reinforced concrete frame with 

non-linear constitutive laws, as shown in Figure 3-9. The finite element model is 

constructed by OpenSees, incorporating the Concrete01 and Steel01 constitutive laws. 

It involves 24 random variables accounting for uncertainties related to structural 

parameters and external loads, with statistical information provided in Table 3-8. The 

horizontal displacement of the top floor can be obtained through the finite element 

analysis, and the implicit performance function can be constructed as (Zhang & Xu, 

2021): 

    limitG    X X  (3-53) 

where X represents the involved 24 input random variables and the threshold 

limit 0.07m  .  

The results obtained by different approaches are shown in Table 3-9. AK-

MCS-U and AKDS achieve a comparable accuracy. By using the same U stopping 

criterion, AK-MCS-U requires 271.4 calls to the FEM whereas AKDS-U only 

consumes 219.9 FEM evaluations, which demonstrates that the proposed distance-

based domain decomposition can reduce the number of calls to the FEM. Furthermore, 
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AKDS-  reduces almost 34% of the computational cost induced by FEM evaluations 

while obtaining a failure probability similar to that of AK-MCS-U. IS and SS require 

more function calls and do not achieve the same level of accuracy as AK-MCS-U and 

AKDS. Additionally, the average CPU time for AK-MCS-U is 2953 seconds, 

compared to only 237 seconds for AKDS- 1 . Therefore, the total computational 

burden of the proposed method, encompassing both FEM evaluations and active 

learning process itself, is reduced by 92% compared to AK-MCS-U. Hence, the 

process of reliability analysis is significantly accelerated by the proposed strategy. 

Again, the number of function calls consumed by AK-SS, i.e., 195.2, is larger than 

179.5 simulations required by AKDS- .  

 

Figure 3-9 A three-bay six-storey planar reinforced concrete frame 

Moreover, two stopping criteria, i.e., ESC (Wang & Shafieezadeh, 2019) and 

the proposed   stopping criterion, are compared in this example. AK-MCS-ESC with 

a threshold of 5% terminates the training process slightly earlier, resulting in a relative 

error of 6.28%. In contrast, using a 1% threshold necessitates additional FEM 
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evaluations compared to AK-MCS-  to achieve comparable accuracy. Furthermore, 

it can be observed that AKDS-  needs fewer calls than AK-MCS- , reinforcing the 

effectiveness of the proposed domain decomposition in reducing the number of 

performance function evaluations. 

Table 3-8 Random variables for the reinforced concrete frame 

Variable  Description  Distribution  Mean  CoV 

ccf  Confined concrete compressive strength Normal 35 MPa 0.1 

cc  Confined concrete strain at maximum 
strength 

Normal 0.005 0.05 

cuf  Confined concrete crushing strength Normal 25 MPa 0.1 

cu  Confined concrete strain at crushing 
strength 

Normal 0.02 0.05 

cf  Unconfined concrete compressive strength Normal 27 MPa 0.1 

uf  Unconfined concrete crushing strength Normal 0 MPa - 

c  Unconfined concrete strain at maximum 
strength 

Deterministic 0.002 0.05 

u  Unconfined concrete strain at crushing 
strength 

Lognormal 0.006 0.05 

yf  Yield strength of rebar Lognormal 400 MPa 0.1 

0E  Initial elastic modulus of rebar Lognormal 200 GPa 0.1 
b Strain-hardening ratio of rebar Lognormal 0.007 0.05 

1q  Uniform load Lognormal 21.41 kN/m 0.25 

2q  Uniform load Lognormal 11.48 kN/m 0.25 

3q  Uniform load Lognormal 22.68 kN/m 0.25 

4q  Uniform load Lognormal 12.18 kN/m 0.25 

1F  External force Lognormal 10 kN 0.25 

2F  External force Lognormal 20 kN 0.25 

3F  External force Lognormal 30 kN 0.25 

4F  External force Lognormal 40 kN 0.25 

5F  External force Lognormal 50 kN 0.25 

6F  External force Lognormal 60 kN 0.25 

7F  External force Lognormal 42.43 kN 0.25 

8F  External force Lognormal 68.25 kN 0.25 

9F  External force Lognormal 44.03 kN 0.25 

10F  External force Lognormal 71.35 kN 0.25 
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Table 3-9 Results obtained by different methods for the reinforced concrete frame 

Method callN  CPU time (s) fP  CoV(%) R.E.(%) 

MCS 610  79786 45.130 10  4.41 - 

IS 3423 - 44.844 10  4.91 5.58 

SS 4600 - 44.895 10  21.21 4.57 

AK-SS 195.2 849 44.883 10  2.65 4.82 

AK-MCS-U 271.4 2953 45.126 10  4.42 0.08 

AK-MCS-ESC (5%) 60.7 73 44.808 10  4.56 6.28 

AK-MCS-ESC (1%) 218.4 1827 45.123 10  4.42 0.14 

AK-MCS-   197.5 1505 45.107 10  4.42 0.45 

AKDS-U1 219.9 367 45.094 10  4.43 0.70 

AKDS-U2 219.9 381 45.117 10  4.42 0.25 

AKDS- 1  179.5 237 45.102 10  4.43 0.55 

AKDS- 2  179.5 248 45.138 10  4.41 0.16 

 

3.5.4 Example 4: a bolted steel beam-column joint 

To further illustrate the performance of the proposed distance-based domain 

decomposition and the   stopping criterion for practical time-demanding engineering 

problems, a bolted steel beam-column joint shown in Figure 3-10 is investigated. The 

finite element model is constructed using ABAQUS. The dimensions of the beam, 

column and end plate are H400 180 10 20   , H600 350 20 20    and

600 200 20  , respectively, with Q235 steel. The diameter of the bolt is 22 mm and 

the grade is 10.9. The random parameters involved are shown in Table 3-10. The 

maximum Mises stress of eight bolts is of interest and the performance function gives: 

    1~2 1~2 limit Mises
1 8

, , max i

i
G E v F  

 
   (3-54) 

where the threshold limit  is specified as 1060 MPa. 

The failure probabilities by different methods are listed in Table 3-11. MCS is 

not feasible for this structural reliability analysis due to the excessive time required, 
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i.e., over 4.5 years. With the same U stopping criterion, the proposed AKDS-U 

requires an average of 100.3 calls to the finite element model, compared to 147.0 calls 

for AK-MCS-U, which illustrates that the proposed domain decomposition can 

mitigate the computational burden induced by time-demanding FEM evaluations. 

Table 3-10 Random variables for the bolted steel beam-column joint 

Variable Description  Distribution  Mean  CoV 

1E  The Young's modulus of the 
beam, column and end plate 

Lognormal 52.06 10  0.10 

2E  The Young's modulus of the 
bolt 

Lognormal 52.10 10  0.10 

1v  The Poisson's ratio of the 
beam, column and end plate 

Lognormal 0.3 0.05 

2v  The Poisson's ratio of the 
bolt 

Lognormal 0.3 0.05 

F  Displacement-controlled load Lognormal 10 mm 0.20 

 

 

Figure 3-10 FEM of the bolted steel beam-column joint 

Furthermore, using the proposed   stopping criterion significantly decreases 

the number of FEM calls to just 37.6 evaluations, reducing CPU time by 76% 

compared to AK-MCS-U, with only 6.4 hours required. Again, AK-SS consumes 

more finite element analyses than AKDS-  to evaluate the failure probability. 
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Table 3-11 Results of reliability analysis for the bolted steel beam-column joint 

Method callN  CPU time  fP  CoV(%) 

MCS 610  >4.5 years – – 

AK-MCS-U 147.0 26.6 hours 31.713 10  2.41 

AK-SS 65 11.1 hours 31.729 10  2.40 

AKDS-U1 100.3 17.6 hours 31.717 10  2.41 

AKDS-U2 100.3 17.6 hours 31.714 10  2.41 

AKDS- 1  37.6 6.4 hours 31.735 10  2.40 

AKDS- 2  37.6 6.4 hours 31.720 10  2.41 

 

3.6 Summary  

To mitigate the computational cost of AK-MCS, an accelerated active learning 

Kriging model with distance-based subdomains termed AKDS is developed in this 

chapter. The proposed approach aims to alleviate the computational burden of the 

AK-based methods from two aspects, i.e., the computational effort induced by active 

learning on a large population and the calls to the time-consuming performance 

functions. First, a distance-based subdomain is employed to select candidate points in 

the vicinity of LSS. The Kriging model is trained within distance-based subdomains 

and Kriging predictions on numerous candidate samples can be avoided, significantly 

reducing the time for training process itself. Second, the impact of candidate points 

with high probabilities of wrong classification on the relative error of failure 

probability is investigated. A new stopping criterion is derived from the expected 

upper bound of this relative error. Additionally, a threshold 0.1   is suggested to 

exempt fN  points from the U stopping criterion, ensuring that the accuracy of the 

failure probability estimation is maintained with the expected upper bound of the 

relative error remaining below 5%. Consequently, the computational cost results from 

the time-demanding model evaluations can be further alleviated. 
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The performance of the proposed AKDS is validated by both analytical and 

numerical performance functions. Comparisons across four illustrative examples 

demonstrate that the proposed approach effectively accelerates the active learning 

process and reduces the number of calls to time-consuming performance functions. 

Additionally, the accuracy of the failure probability estimation is maintained using 

this method. 
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CHAPTER 4 AN ERROR-BASED STOPPING 

CRITERION FOR SPHERICAL DECOMPOSITION-

BASED ADAPTIVE KRIGING MODEL AND RARE 

EVENT ESTIMATION 

4.1 Introduction 

 The surrogate model-based reliability analysis method, particularly the adaptive 

Kriging model, has garnered significant attention due to its high accuracy and 

efficiency in reliability analysis. In practical engineering, where high reliability is a 

design target, adaptive Kriging is combined with more efficient sampling techniques, 

such as the spherical decomposition-based Monte Carlo simulation (SDMCS). In this 

chapter, a new stopping criterion tailored for the adaptive Kriging model with 

SDMCS (AKSDMCS) is introduced. First, the relative error of the failure probability 

obtained by AKSDMCS is derived. Then, the impact of samples with high 

probabilities of misclassification on the relative error of the failure probability is 

quantified. In each sub-region of SDMCS, it can be found that the number of 

misclassified points follows a binomial distribution. Subsequently, the expected upper 

bound of the relative error of the failure probability is formulated. A new stopping 

criterion for AKSDMCS is then developed. The performance of this proposed 

stopping criterion is validated through three applications, demonstrating that adaptive 

Kriging with the proposed stopping criterion effectively halts the active training 
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process at an appropriate stage and significantly reduces the computational effort 

required for rare event estimation. 

4.2 An error-based stopping criterion for AKSDMCS 

Although AKMCS can significantly reduce the computational effort required by time-

consuming simulations, its performance in estimating small failure probabilities is 

limited. In the context of high-reliability design targets, the failure probability of an 

engineering structure is usually small (Echard et al., 2013; Schöbi et al., 2017). To 

estimate such a small failure probability, importance sampling or subset sampling 

may be preferred, as updating the Kriging model with numerous samples generated by 

MCS is also computationally expensive. Besides IS and SS, a modified MCS named 

spherical decomposition-based MCS can also be an efficient way to generate 

candidate pool for training Kriging model and the so-called AKSDMCS was proposed 

(Su et al., 2020). In this section, a new stopping criterion, which based on the effect of 

the dangerous points on the accuracy of failure probability, is tailored for the adaptive 

Kriging with the spherical decomposition-based sampling approach to stop the active 

training process at an appropriate stage. 

4.2.1 Adaptive Kriging with spherical decomposition-based MCS 

The spherical decomposition-based MCS is a modified MCS by decomposing the 

sampling space into a series of subdomains so that the number of candidate samples 

can be remarkably reduced (Su et al., 2020). Assume that the original sampling space

d  can be decomposed into n non-overlapping subdomains , 1, 2,...,i i n  :  
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1

=
n

ii
   (4-1) 

and  

 ,i j i j     (4-2) 

where  1| ,i i iR R    x x x  is a spherical ring defined by inner radius 1iR   

and outer radius iR . The descending radius sequence 0 1 nR R R     is 

appropriately selected with 0 0R   and nR   . Then, the failure probability can 

be computed as (Su et al., 2020): 

        
1 1

d dn

i i
i

n

f
i

P I f I f

 



  X Xx x x x x x  (4-3) 

Consider a truncated PDF  ifX x  corresponding to the i-th subdomain i  

and     /i
if f X Xx x , where  d

i
i f


  X x x . Accordingly, Eq. (4-3) can be 

reformulated as: 

    
1 1 1

d
i

n n n
i i

f i i i f
i i i

P I f P P 


  

     Xx x x  (4-4) 

where      d Pr |
i

i
i F i iP I f


     Xx x x  is a conditional failure probability 

associated with subdomain i . i
fP can be seen as the sub-failure probability 

contributed by i . The conditional failure probability can be estimated by the crude 

MCS: 
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 MC

( )

1 MC

ˆ
i jN

i

i i i
j

I
P P

N

  
x

 (4-5) 

where the samples  ( )
MC, 1, 2,..,j i

i j Nx  are drawn from  ifX x . Therefore, the 

estimated failure probability by SDMCS can be calculated by (Su et al., 2020): 

 
1 1

ˆ ˆ ˆ
n n

i
f i i f

i i

P P P
 

    (4-6) 

Accordingly, the associated variance of failure probability can be derived by 

(Su et al., 2020): 

      
2

1 1 MC

ˆ ˆ1
ˆ ˆ ˆvar var var

n n n
i i i i

f i i fi
i i i

P P
P P P

N




 

    
 
    (4-7) 

and the coefficient of variation of ˆ
fP  can be given by: 

    2

2
1 MC

ˆ ˆ1
ˆCoV

ˆ

n
i i i

f i
i f

P P
P

N P






   (4-8) 

The CoV is employed to determine the number of samples over the entire 

domain, ensuring a small variation of estimated failure probability. 

SDMCS is combined with the Kriging model in an adaptive manner, where 

the required number of subdomains (n) is determined adaptively. The sampling space 

is first divided into 2 spherical rings and the outmost ring is further decomposed into 

2 rings until the required number of samples in the outmost ring is smaller than a 

predefined value N . The sampling space is decomposed in the radius direction on 
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the basis of orders of magnitude of probability. The radius jR  is determined by the 

probability  Pr , 1 10 j
jR    x x  or its equivalent form 

 Pr , 10 j
jR   x x . Note that in the standard normal space, the square of the 

distance between a point U (samples corresponding to X in the standard normal space) 

and the origin point obeys the chi-square distribution  22
d U  with d degrees of 

freedom. Thus, the radius can be calculated by  2 1 1 10 j
j dR     , where  1

d
   is 

the inverse cumulative distribution of chi-square distribution. The major steps are 

summarized as follows (Su et al., 2020): 

Step 1: Specify the initial sample size N  in each subdomain and the target 

CoV of the estimated failure probability CoVtol. The radius sequence is 

0 10 nR R R       , where  2 1 1 10 j
j dR     , 1, 2,..., 1j n  . n is initialized 

as 1.  

Step 2: Decompose the outmost ring into 2 rings and let n=n+1. Generate N  

samples in 1n  following the distribution  1nf 
X x . The sampling process is 

presented as follows. First, draw a random sample following a uniform distribution 

with support on  1 2,p p , where ( 1)
1 1 10 jp     and 2 1 10 jp   . Then, calculate the 

distance  2 1
dR p   . Third, calculate the vector /V d d , where d is a standard 

normal variable. Finally, the required sample in j  can be obtained by  1T x u , 

where Ru V  and T is isoprobabilistic transformation. 
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Step 3: Train Kriging model with a learning function and a stopping criterion. 

Then, calculate the current failure probability ˆ
fP  on the basis of Eq. (4-5) and Eq. (4-

6). Note that in this step, the estimated failure probability contributed by the first- 

 1n   subdomains are of concern. 

Step 4: Compute the expected number of points MC
nN  in n  by: 

 MC MC MC 2
tol

ˆ1
,

ˆ CoV
fn

n

f

P
N N N

P



   (4-9) 

if MC
nN N  , it means that MC

nN  samples are sufficient to represent the outmost 

region, otherwise, go back to step 2. 

Step 5: Generate MC
nN  samples drawn from PDF  nfX x  in n .  

Step 6: Train Kriging model again and calculate the current failure probability 

with its CoV based on Eq. (4-6) and Eq. (4-8), respectively. 

Step 7: If   tol
ˆCoV CoVfP  , output the estimated failure probability. 

Otherwise, enrich candidate samples in the spherical ring with the largest sub-

variance: 

  * arg max var , 1,2,...,i
f

i

i P i n     (4-10) 

In this chapter, if *i n , another N  samples are generated in *i
 , if *i n , 

another MC
nN  samples are generated in *i

 . Then, return to step 6. 
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4.2.2 Proposed stopping criterion for AKSDMCS 

Although the SDMCS-based adaptive Kriging model significantly reduces the number 

of candidate samples required for training and conserves computational resources in 

small failure probability estimation, the stopping criteria used by Su et al. (2020) 

overlook the accuracy of failure probability estimates. For example, the U stopping 

criterion is often deemed too conservative for reliability analysis because it only 

considers the accuracy of the Kriging model for the limit state surface, ignoring the 

accuracy of the failure probability estimation. Additionally, there is no stopping 

criterion specifically designed for the adaptive Kriging model that incorporates the 

spherical decomposition-based sampling technique. In this section, a new stopping 

criterion based on quantifying the impact of dangerous points on the relative error of 

the failure probability is developed. 

The number of dangerous points, i.e., points with a high probability of wrong 

classification (   | 2U x x ), significantly affects the accuracy of Kriging model 

and failure probability estimation. Suppose that Z k  samples (Z is a random 

variable) in the domain   | 2U x x  are in wrong classification, then the range 

of the estimated failure probability can be calculated as: 

 
MC MC

ˆ
f f f

Z Z
P P P

N N
     (4-11) 

the left-hand side is true when k points are actually negative but classified as positive, 

and the right-hand side holds when k points are positive but identified as negative. 

The relative error of the failure probability can be calculated as: 
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MC

ˆ
f f

f f

P P Z

P N P



   (4-12) 

and the upper bound of the relative error can be denoted as u : 

 u
MC f

Z

N P
   (4-13) 

then the expected upper bound of the relative error of fP  reads: 

      u
MC

1 1

f f

Z Z
N P N

      (4-14) 

where   represents the expectation operator and MCf fN N P  denotes the number of 

points in the failure domain. 

On the basis of spherical decomposition and Eq. (4-6), Eq. (4-12) can be 

reformulated as: 

 1 1

1

ˆ
ˆ

=

n n

i i i i
f f i i

n
f

i i
i

P P
P P

P P

 




 






 


 (4-15) 

Note that for each ring generated by SDMCS, on the basis of Eq. (4-11), we 

have: 

 
MC MC

ˆi i
i i ii i

Z Z
P P P

N N
     (4-16) 
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where i iZ k  denotes that ik  points in the domain   | 2i U x x  are in wrong 

classification. Thus, the relative error of fP  satisfies: 

 11 1 MC

1 1 MC

ˆ
nn n

i
i ii i i i

ii i
n in

f
i i i i

i i

Z
P P

N

N
P

N

 


 

 

 


 

 

 
 (4-17) 

where i
fN  represents the number of points in the failure domain belonging to the i-th 

ring. Similarly, the upper bound of the relative error of fP  is 

 
1 MC

u

1 MC

n
i

i i
i

in
f

i i
i

Z

N

N

N














 (4-18) 

and its expected value can be given as: 

  

 
1 1MC MC

u

1 1MC MC

n n
ii

i ii i
i i

i in n
f f

i ii i
i i

ZZ

N N

N N

N N

 


 

 

 

 
 
  
 
 
 

 

 



   (4-19) 

iZ  is a random variable and its mean value is of interest. To this end, suppose 

that the number of dangerous points in i-th ring (   | 2i U x x ) is i
UN . Let iZ  

be the event that ik  points in the domain   | 2i U x x  are in wrong 

classification, the probability of the event  i iZ k  can be derived as: 

 



 

80 

    , ,
1 1 1

Pr 1

ki
iiN i UU

i

C
k N

i i c a c b
c a b k

Z k p p
   

 
   

  
    (4-20) 

where  
!

! !
i
i
U

i
k U
N i

i U i

N
C

k N k



. ,c ap  and ,c bp  are probabilities of wrong classification. On 

the basis of Eq. (3-9), ,c ap  and ,c bp  satisfy: 

    , ,0.023 2 , 0 0.5c a c bp p        (4-21) 

Consider the worst condition for the failure probability estimation, that is, all 

points in the domain   | 2U x x  have the largest probability of wrong 

classification, i.e., , , 0.5c a c bp p p   . Thus iZ  follows the binomial distribution 

 ~ ,i
i UZ B N p . The probability of the event  i iZ k  is: 

    Pr 1
i
U ii i

i
U

N kk k
i i N

Z k C p p
    (4-22) 

Obviously, the mean value of iZ  gives: 

   i
i UZ N p  (4-23) 

Substituting Eq. (4-23) into Eq. (4-19), results in: 

 
  1 1MC MC

u

1 1MC MC

i in n
U U

i ii i
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N N
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 
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 
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 
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 (4-24) 
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Therefore: 

 1 MC

1 MC

=

in
U

i i
i

in
f

i i
i

N

N

N

N













 (4-25) 

It can be observed that the expected upper bound of the relative error of failure 

probability is dominated by the indicator   and the probability of wrong classification 

p. If the conventional U stopping criterion is used for adaptive Kriging training, i.e.,  

  min 2,U   x x , there will be no dangerous points in the whole sampling 

domain, resulting in =0, 1,2,...,i
UN i n  and  u 0  . Hence, the traditional U 

stopping criterion can significantly ensure the accuracy of the adaptive Kriging model 

for limit state surface. However, it is usually considered too conservative for failure 

probabilities estimation as all dangerous points in sampling domain are required to be 

identified, thereby ignoring the accuracy of the failure probability.  

As aforementioned, the worst condition for estimating failure probabilities is 

considered, i.e., p = 0.5. Thus, it can be observed that the expected upper bound of the 

relative error of the failure probability is smaller than 5% given 0.1   and p=0.5, 

which is acceptable for the failure probability estimation. Hence, we have: 

   u 5% | 0.1, 0.5p     (4-26) 
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Therefore, the indicator 0.1   can be a new stopping criterion designed for 

the adaptive Kriging with SDMCS. To evaluate  , the estimated number of failure 

points ˆ i
fN  in each ring can be employed: 

 1 MC

1 MC

ˆ=
ˆ

in
U

i i
i

in
f

i i
i

N

N

N

N













 (4-27) 

The pseudo code is indicated in Algorithm 2. 

Table 4-1 Algorithm 2 for the proposed AKSDMCS 

Algorithm 2: Adaptive Kriging model with SDMCS and a new stopping criterion   for rare event 

estimation 
Input: Information of input random variables and performance function ( )G X  

Output: Failure probability fP  

1. Initiate the sample size N  in each ring, the target CoV of failure probability tolCoV  and n=1 

2. Select an initial DoE  ,   with size  max 12, 2d  via Latin hypercube sampling 

3. While MC
nN N   do 

4.    n=n+1 
5.    Draw N  samples from  ( 1)nf 

X x  and denote all samples in candidate pool   as X  

6.    While 0.1   do 

7.        Build Kriging model via DoE  ,   and evaluate X on Kriging model 

8.        Calculate   by Eq. (4-27) 

9.        Enrich DoE  ,   by U learning function with the point corresponding to  * minU



x

x x  

10.  End While 
11.      Calculate the current fP  contributed by the first 1 ~ ( 1)n  rings by Eq. (4-6). 

12.      Calculate the number of samples MC
nN  required by the outmost (n-th) ring through Eq. (4-9) 

13. End While 
14. Generate MC

nN  samples from  nfX x  in the outmost ring and put them into candidate pool   

15. While   tolCoV CoVfP   do 

16.    While 0.1   do  

17.        Build Kriging model via DoE  ,   and evaluate X on Kriging model 

18.        Calculate   by Eq. (4-27) 

19.        Enrich DoE  ,   by U learning function with the point corresponding to  * minU



x

x x  

20.    End While 

21.    Calculate the current fP  contributed by all rings through Eq. (4-6) and  CoV fP  by Eq. (4-8) 
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Table 4-1 (continued) Algorithm 2 for the proposed AKSDMCS 
Algorithm 2: Adaptive Kriging model with SDMCS and a new stopping criterion   for rare event 

estimation 

22.    Identify the ring with the largest sub-variance by  * arg max var , 1, 2,...,i
f

i

i P i n     

23.    Enrich *i -th ring with N  samples drawn from  *ifX x  if *i n , otherwise, enrich *i -th ring 

with MC
nN  samples. 

24. End While 
25. Output the failure probability fP  

 

It is known that the adaptive Kriging model with the crude MCS is not suitable 

for rare events estimation due to the involvement of numerous candidate points. 

SDMCS, requiring a much smaller candidate pool, can be combined with adaptive 

Kriging for estimating small failure probabilities. However, SDMCS may 

significantly increase the number of dangerous points, necessitating more training 

points when the active training process stops. Here, a 2-D performance function is 

employed to illustrate the importance of the proposed stopping criterion tailored for 

adaptive Kriging with SDMCS. The 2-D performance function reads (Echard et al., 

2013): 

      2 3

1 2 1 2, 0.5 2 1.5 5 1G X X X X      (4-28) 

in which 1X  and 2X  follow the standard normal distribution. Figure 4-1 (a) and (b) 

show the candidate pool and points in the domain   | 2U x x  generated by the 

crude MCS and SDMCS ( 5=10N ), receptively. Table 4-2 lists the number of 

candidate points and dangerous points. Note that the number of dangerous points is 

predicted by Kriging model with an initial DoE. As shown in Table 4-2, to achieve a 

comparable level of CoV of failure probability (CoV smaller than 5%), the crude 

MCS requires a much larger candidate pool ( 81.5 10  candidate samples are required) 
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than SDMCS (only 501879 candidate samples are needed). Thus, MCS remarkably 

impedes the process of the active training for Kriging model. SDMCS is suitable for 

rare events estimation combined with adaptive Kriging model, which can save the 

computational resources caused by the active training process itself. However, as 

listed in Table 4-2, the number of dangerous points generated by SDMCS is seriously 

increased (almost 7 times that by the crude MCS), which means that more calls to the 

real performance function may be required to identify these dangerous points. This 

issue significantly increases the computational effort for reliability analysis, especially 

when the real performance function is computationally expensive such as finite 

element models.  To address this issue, the proposed stopping criterion tailored for 

SDMCS aims to reduce the number of calls to the real performance function. 

Table 4-2 Comparisons of the crude MCS and SDMCS 

Method Candidate points Dangerous points fP  CoV 

MCS 1.5 108 717 2.787 10-6 4.89% 
SDMCS 501879 4772 2.875 10-6 4.95% 

 

 
(a) MCS 

 
(b) SDMCS 

Figure 4-1 Comparison between MCS and SDMCS 
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4.3 Illustrative examples 

In this section, three applications including analytical and numerical performance 

functions are investigated to showcase the performance of the proposed stopping 

criterion. The first example investigates a benchmark analytical example considering 

different levels of failure probabilities estimation. To validate the proposed stopping 

criterion for small failure probabilities estimation of practical engineering structures, a 

61-bar truss and a frame-shear wall structure are studied. The uncertainties associated 

with both structural parameters and external loads are of concern.  

4.3.1 Example 1: a nonlinear oscillator 

The first example investigates a nonlinear oscillator shown in Figure 4-2. The 

performance function is defined as (Echard et al., 2011; Echard et al., 2013): 

   0 11
2
0

2
3 sin

2

tF
G r

m




    
 

X  (4-29) 

 

Figure 4-2 a nonlinear oscillator 

where  0 1 2 /c c m   . The mean and CoV of the random variables are listed in 

Table 4-3. This explicit performance function is a benchmark example and widely 

investigated to validate AK-based algorithms for reliability analysis. Echard et al. 

(2011) studied the performance function for AKMCS and it was later extended for 
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small probabilities estimation (Echard et al., 2013) by revising the mean and CoV of 

the random variable 1F . Three cases are studied in this example, case 1 refers to 

1
0.6F   with a CoV of 0.2, case 2 represents 

1
1F   with a CoV of 1/6 and case 3 is 

1
0.45F   with a CoV of 1/6. 

Table 4-3 Random variables for the nonlinear oscillator 

Variable  Distribution Mean CoV 
m  Normal 1 0.05 

1c  Normal 1 0.1 

2c  Normal 0.1 0.1 

r  Normal 0.5 0.1 

1F  Normal 1,0.6,0.45 0.2,1/6,1/6 

1t  Normal 1 0.2 

 

The results by different methods (AK-IS (Echard et al., 2013), AK-SS (Ling et 

al., 2019), AK-MCS-IS (Chen et al., 2019), AKSDMCS-U (Su et al., 2020) and the 

proposed method) for reliability analysis are compared in Table 4-4, where callN  is the 

number of performance function calls and ̂  is the reliability index. Note that the 

average results over 20 independent runs are provided. Case 1 studies a relatively 

large failure probability of 22.86 10 , predicted by 51 10  MCS. AK-MCS-IS, 

AKSDMCS-U and AKSDMCS with the proposed   stopping criterion all produce 

satisfactory reliability index compared with the benchmark result provided by MCS. 

Regarding the number of performance function calls, AKSDMCS with the proposed 

  stopping criterion reduces the computational effort by at least 58% compared to the 

other AK-based approaches. The average callN  is as small as 22 while AK-MCS-IS 

takes the most, i.e., 74. 
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Table 4-4 Results obtained by different methods for the nonlinear oscillator 

Method  MCS AK-IS AK-SS 
AK-MCS-
IS 

AKSDMCS
-U 

AKSDMCS
-  

Case 1 callN  1 105 - - 74 53 22 

 ˆ
fP  2.86 10-2 - - 2.85 10-2 2.78 10-2 2.79 10-2 

 ̂  1.90 - - 1.90 1.91 1.91 
 CoV 1.84 - - 2.20 0.93 0.94 
Case 2 callN  1.8 108 67 146 95 58 30 

 ˆ
fP  9.09 10-6 9.13 10-6 9.65 10-6 9.13 10-6 8.96 10-6 9.05 10-6 

 ̂  5.54 4.29 4.27 4.29 4.29 4.29 
 CoV 2.68 2.29 3.65 2.46 1.09 1.85 
Case 3 callN  9 1010 667 162 110 68 36 

 ˆ
fP  1.55 10-8 1.53 10-8 1.53 10-8 1.56 10-8 1.50 10-8 1.47 10-8 

 ̂  5.54 5.54 5.54 5.53 5.54 5.55 

 CoV 2.68 2.70 2.83 2.67 0.64 2.37 

 

Case 2 and case 3 investigate the estimation of extremely small failure 

probability, with reference results provided by the crude MCS. The crude MCS 

requires 1.8 108 and 9 1010  candidate samples for cases 2 and 3, respectively. 

Consequently, it is impractical to use the conventional AKMCS for reliability analysis, 

as the active training on such a large number of samples is time-consuming and the 

computational capacity is also limited. AKSDMCS with both U and   stopping 

criterion achieve comparable accuracy, while the proposed   stopping criterion 

requires fewer performance function calls and mitigates computational costs by 

almost 50% compared to U stopping criterion for small failure probabilities 

estimation. AK-IS, AK-SS and AK-MCS-IS all show fair good performance, while 

they require more function calls than AKSDMCS with the proposed stopping criterion. 

Additionally, the CoV of the failure probability by AKSDMCS-  is the smallest 

among AK-IS, AK-SS and AK-MCS-IS, indicating that the proposed method can 

obtain a more stable result. 
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Figure 4-3 Comparisons of four different stopping criteria 

To further show the efficiency of the proposed   stopping criterion, different 

stopping criteria are compared in Figure 4-3, where the stopping criteria 1  and 2  

were developed on the basis of the stabilization of the failure regions (Su et al., 2020). 

1 and 2  are expressed as follows: 

 
   
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where  k
fN  represents the number of failure points at k-th iteration of the active 

learning process. CN  is the total number of candidate points and ˆ kG  refers to the 

Kriging model at the k-th iteration. The notation   denotes "exclusive OR" operation, 
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which returns true only when the signs of  1ˆ k
iG  x  and  ˆ k

iG x  differ. The 

thresholds 1e  and 2e  are suggested to be 0.001 (Su et al., 2020). 

As shown in Figure 4-3, U stopping criterion consumes the largest number of 

function calls. Thus, it is the most conservative stopping criterion. In comparison, the 

1  stopping criterion demands additional training points than the proposed stopping 

criterion when the estimated failure probability approaches the reference value. 

AKSDMCS with 2  stopping criterion terminates too early, resulting in the 

inaccuracy of the failure probability estimation. Conversely, the proposed stopping 

criterion does not require extra training points once the accuracy of the failure 

probability is achieved. This is because the proposed stopping criterion is derived 

based on the relative error of the failure probability. For stabilization-based stopping 

criteria 1  and 2 , the thresholds 1e  and 2e  are selected based on the researchers' 

experience, and the impact of these thresholds on the accuracy of the failure 

probability is not quantified. U stopping criterion focuses solely on the accuracy of 

Kriging model while disregarding the failure probability, making it the most 

conservative option. 

According to Eq. (4-20), iZ  follows a Poisson binomial distribution. By using 

the Poisson binomial distribution, the expected upper bound of the relative error of the 

failure probability can be reformulated as: 
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Table 4-5 Results obtained by using Poisson binomial distribution and binomial 
distribution 

Distribution  Case 1  Case 2 Case 3 
Binomial callN  22 50 36 

 ˆ
fP  2.79 10-2 9.05 10-6 1.47 10-8 

 CoV 0.94 1.85 2.37 
Poisson Binomial callN  15 23 28 

 ˆ
fP  2.83 10-2 8.48 10-6 1.46 10-8 

 CoV 9.31 5.59 7.87 

 

Compared to Eq. (4-32), the proposed stopping criterion is clearer and is 

directly related to the number of dangerous points and the number of failure points. 

The average results by 20 independent runs of reliability analysis for three cases in 

this example are listed in Table 4-5. The expected upper bound of the relative error 

expressed by Eq. (4-32) is adopted as 5%. Although the stopping criterion derived 

from Poisson binomial distribution is slightly more efficient than that from the 

binomial distribution, the variation of the failure probability by Eq. (4-32) is much 

larger than that by the proposed one. For instance, the CoV by the proposed stopping 

criterion is as small as 0.94% for case 1, whereas that by Eq. (4-32) is 9.31%. This is 

because the proposed stopping criterion takes into account the worst-case scenario for 

failure probability estimation and employs the maximum probability of 

misclassification. 
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4.3.2 Example 2: A 61-bar truss structure 

The second example investigates a 61-bar truss structure, as shown in Figure 4-4, 

focusing on the vertical displacement at the midpoint of the truss. The 61-bar truss is 

simulated by a finite element model and the performance function can be given as 

(Ding & Xu, 2021): 

    1~13 lim 1~13, ,G E F V V E F   (4-33) 

 

Figure 4-4 A 61-bar truss structure 

where limV  denotes the threshold of the displacement at the midpoint. The elastic 

modulus E follows the lognormal distribution with a mean of 210 GPa and a CoV of 

0.10. The vertical loads 1F  to 13F  are all lognormally distributed, and each with a 

mean of 15 (kN) and a CoV of 0.15 (Zhang, Dong, & Xu, 2023). In this example, two 

different thresholds (0.07 m and 0.09 m) corresponding to two levels of failure 

probability are studied and the results obtained by different methods are listed in 

Table 4-6. Note that AK-SS here refers to Ref. Huang et al. (2016).  

First, a relatively large failure probability is of concern given lim 0.07V  . 

AKMCS-U requires almost three times as many finite element analyses as 

AKSDMCS with the proposed   stopping criterion. AKSDMCS with the 
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conventional stopping criterion demands more computational effort (57) than the 

proposed one (37), while they achieve comparable accuracy in failure probability 

estimation. AK-SS also produces satisfactory results but it is not as efficient as the 

proposed method. Additionally, the CoV by AK-SS (3.13%) is larger than that by 

AKSDMCS-  (1.59%). 

Table 4-6 Results obtained by different methods for the truss structure in chapter 4 

Method  MCS AK-SS AKMCS-U 
AKSDMCS-
U 

AKSDMCS-
  

Case 1 callN  2 105 48 94 57 37 

 ˆ
fP  2.96 10-3 2.97 10-3 3.04 10-3 2.93 10-3 2.98 10-3 

 ̂  2.75 2.75 2.74 2.76 2.75 
 CoV 4.11 3.12 3.38 0.28 1.59 
Case 2 callN  64000(1) 78 –(2) 87 52 

 ˆ
fP  2.05 10-7 2.55 10-7 – 2.08 10-7 2.12 10-7 

 ̂  5.06 5.02 – 5.06 5.06 
 CoV 13.1 6.32 – 0.43 1.72 
(1) The result is provided by subset sampling due to the crude MCS is time-consuming.  
(2) The result is absent due to excessively computational effort of the AKMCS. 
 

Considering the extremely small failure probability with a level of 10-7, MCS 

would require 109 finite element analyses and it is impossible. Thus, subset sampling 

is employed to provide a reference result, consuming 64000 runs of the finite element 

model, with the estimated failure probability being as small as 2.05 10-7. Again, 

AKMCS is not available for the rare event estimation. AK-SS fails to produce a stable 

result, as the CoV of the failure probability from 20 independent runs is as large as 

6.32%, which is much larger than 1.72% obtained by AKSDMCS- . AKSDMCS-U 

and -  produce similar results while AKSDMCS-U requires 35 more calls to the 

finite element model than AKSDMCS with the proposed stopping criterion. 
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4.3.3 Example 3: Application to a frame-shear wall structure 

To further validate the proposed method for small failure probabilities estimation of 

practical engineering structures, a 13-storey frame-shear wall structure, considering 

non-linear constitutive laws, is investigated in the last example. The height of each 

storey is 3 m, the wall thickness is 300 mm and the floor thickness is 100 mm. The 

beam section is 300 500  mm and the column section is 500 500  mm, utilizing 

C35 concrete and HRB400 reinforcement. The geometric configuration and 

reinforcement details are shown in Figure 4-5. 

 

Figure 4-5 The geometric configuration and reinforcement information of a 13-storey 
frame-shear wall structure 

The finite element model can be constructed by OpenSees, employing the 

constitutive laws Concrete01 and Steel01. The finite element model is depicted in 

Figure 4-6. Uncertainties existing in both structural parameters and external loads are 

of concern. The external forces 1F  to 13F  are applied in the X direction at nodes (0, 0), 

(0, 5000), (0, 12000) and (0, 17000) of storeys 1 to 13, respectively. The statistical 

information is listed in Table 4-7.  
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Figure 4-6 The finite element model of the frame-shear wall structure 

The maximum inter-storey drift of the frame-shear wall structure is of interest 

and the performance function reads: 

    lim
1 13
max i

i
G

 
   X X  (4-34) 

where   i X  denotes the maximum drift of the i-th storey and the notation lim  

represents the threshold. 

Table 4-7 Random variables for the frame-shear wall structure 

Variable Description Distribution Mean CoV 

cf  Concrete compressive strength Normal  23.4 MPa 0.10 

c  Concrete strain at maximum strength Normal 0.0015 0.05 

uf  Concrete crushing strength Normal 10 MPa 0.10 

u  Concrete strain at crushing strength Normal 0.006 0.05 
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Table 4-7 (continued) Random variables for the frame-shear wall structure 
Variable Description Distribution Mean CoV 

yf  Yield strength of rebar Normal 400 MPa 0.10 

0E  Initial elastic modulus of rebar Normal 200 GPa 0.10 

b  Strain-hardening ratio of rebar Normal 0.01 0.05 

1F  External force Lognormal 5004 N 0.10 

2F  External force Lognormal 12324 N 0.10 

3F  External force Lognormal 20880 N 0.10 

4F  External force Lognormal 30348 N 0.10 

5F  External force Lognormal 40560 N 0.10 

6F  External force Lognormal 51408 N 0.10 

7F  External force Lognormal 62820 N 0.10 

8F  External force Lognormal 74724 N 0.10 

9F  External force Lognormal 87804 N 0.10 

10F  External force Lognormal 99876 N 0.10 

11F  External force Lognormal 113040 N 0.10 

12F  External force Lognormal 126588 N 0.10 

13F  External force Lognormal 140460 N 0.10 

 

Table 4-8 Results obtained by different methods for the frame-shear wall structure 

Method  MCS SS AKMCS-U 
AKSDMCS-
U 

AKSDMCS-
  

lim =30 mm callN  3 106 4600 331 399 280 

 ˆ
fP  1.41 10-4 1.42 10-4 1.28 10-4 1.41 10-4 1.39 10-4 

 ̂  3.63 3.63 3.66 3.63 3.63 
 CoV 4.87 23.34 3.51 3.73 3.80 

lim = 34 mm callN  –(1) 6400 –(2) 373 289 

 ˆ
fP  – 3.94 10-6 – 4.08 10-6 4.07 10-6 

 ̂  – 4.47 – 4.46 4.46 
 CoV – 28.01 – 1.17 1.45 
(1)The result is absent due to excessively computational effort of the MCS. 
(2)The result is absent due to excessively computational effort of the AKMCS. 
 

The results obtained by different approaches are shown in Table 4-8. Given a 

threshold of the maximum inter-storey drift of 30 mm, the reference failure 

probability obtained by 63 10  MCS is 41.41 10 . SS is more efficient than MCS but 

it still requires 4600 finite element analyses to obtain the failure probability. AKMCS-

U, AKSDMCS-U and AKSDMCS-   achieve comparable accuracy, however, 

AKMCS-U and AKSDMCS-U incur higher computational costs than AKSDMCS 
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with the proposed stopping criterion  . AKSDMCS-   saves more than 100 

structural model evaluations compared to U stopping criterion. Moreover, it can be 

found that AKSDMCS-U requires more function calls than AKMCS-U to achieve a 

comparable CoV of the failure probability, indicating that SDMCS generates more 

dangerous points than MCS. Thus, the proposed stopping criterion tailored for 

SDMCS is of great importance for improving the efficiency of adaptive Kriging with 

SDMCS. 

Given a threshold of 34 mm, the failure probabilities obtained by AKSDMCS 

with U and   stopping criterion are 4.08 10-6 and 4.07 10-6, respectively. Note that 

the target CoV in a single run is assigned as 7% for this case, as AKSDMCS with U 

stopping criterion struggles to converge when the target CoV is 5%. MCS is not 

feasible for evaluating such an extremely small failure probability since more than 108 

times of finite element analyses would be required. SS requires 6400 calls to the finite 

element model to estimate the small failure probability while the CoV is excessively 

large (28.01%). AKMCS is unsuitable for the rare event estimation due to the 

impracticality of active training with numerous candidate samples. AKSDMCS-U 

consumes 373 finite element analyses while the proposed method only takes 289 

analyses to produce comparable results. Furthermore, the CoV of results by 20 

independent runs of AKSDMCS-   is as low as 1.45%, which states that the 

proposed method is more stable than SS. 
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4.4 Summary 

To mitigate the computational effort required by adaptive Kriging model in rare 

events estimation, an error-based stopping criterion is tailored for adaptive Kriging 

with SDMCS. First, the relative error of the failure probability obtained by the 

spherical decomposition-based Monte Carlo simulation is derived. Incorporated with 

the Kriging model, the upper bound of this relative error is formulated, and its 

expected upper bound is derived by accounting for the impact of points with high 

probabilities of misclassification. In each sub-region generated by SDMCS, the 

number of samples in wrong classification follows a binomial distribution. This 

insight is then employed to determine the expected upper bound of the relative error 

of the failure probability, quantifying the effect of dangerous points on the accuracy 

of the failure probability estimation. Finally, a new error-based stopping criterion 

tailored for adaptive Kriging with SDMCS is proposed and the accuracy of failure 

probabilities estimation is taken into consideration. Three numerical examples are 

investigated to demonstrate the performance of the newly developed stopping 

criterion for AKSDMCS. The results validate that the proposed stopping criterion 

effectively halts the active training process at an appropriate stage, thereby reducing 

the computational burden associated with unnecessary, time-consuming function calls. 

It is important to note that this error-based stopping criterion is designed specifically 

for SDMCS and is not generalized for all sampling techniques. For other sampling 

approaches, the stopping criterion should be re-derived using the proposed 

computational process. 
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CHAPTER 5 RLSTM FOR METAMODELING OF 

STOCHASTIC DYNAMIC SYSTEMS AND ITS 

APPLICATION TO RELIABILITY ANALYSIS 

5.1 Introduction 

 A novel method, termed rLSTM-AE, is developed for low-dimensional latent space 

identification in stochastic dynamic systems with more than 1000 input random 

variables and active learning-based dynamic reliability analysis. First, a novel long 

short-term memory network (rLSTM) is developed to consider both time-variant 

stochastic excitation and time-invariant random variables. This network adopts the 

time-series excitation as a pertinent input feature, facilitating the metamodeling of 

high-dimensional stochastic dynamic systems. To address the issue of insufficient 

accuracy in deep neural networks for reliability analysis due to limited observations, 

an autoencoder (AE) is incorporated with the rLSTM, forming the rLSTM-AE. This 

combination is utilized to decompose the approximate extreme value space identified 

by the rLSTM into a low-dimensional latent space. The dimension of the latent space 

is adaptively determined by Kriging reconstruction error, which enables Kriging 

achieve the similar accuracy as rLSTM in extreme responses prediction. The proposed 

rLSTM-AE extracts low-dimensional features from the perspective of the output 

space decomposition and considers the time-dependent property of dynamic systems. 

Finally, the detected latent variables can be combined with the adaptive Kriging for 

high-dimensional dynamic reliability analysis. A single-degree-of-freedom system 
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and a reinforced concrete frame structure subjected to the stochastic excitation are 

investigated to validate the performance of the proposed method. 

5.2 rLSTM for modeling of stochastic dynamic systems 

5.2.1 A typical stochastic dynamic system: structures subjected to the stochastic 

seismic excitation 

The governing equation for a multi-degree-of-freedom system subjected to the 

stochastic seismic excitation can be given by: 

          ,S S S S Ea t    M X u C X u K X u F M X I X   (5-1) 

where M, C and K are the mass, damping and stiffness matrices, respectively; u , u  

and u  are acceleration, velocity and displacement vectors, respectively; F denotes 

the restoring force vector; I is the force distribution factor;  ,Ea tX  represents the 

non-stationary stochastic seismic ground motions.  
11 2, ,...,E E E EdX X XX  includes 

1d  random variables accounting for uncertainties in seismic ground motions. 

 
21 2, ,...,S S S SdX X XX  is a random vector containing 2d  random variables related 

to structural parameters. 

Various approaches have been developed for simulating the stochastic seismic 

excitation (Liu et al., 2016; Phoon et al., 2005; Shinozuka & Deodatis, 1991). Herein, 

the spectral representation method is adopted (Liu et al., 2016): 

      
1 1

0

2 2 ,
d

a k k k
k

a t S w t w w t 




    (5-2) 
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where  ,aS w t  is the double-sided evolutionary power spectral density function of 

the frequency w and time t: 

      2
, ,aS w t f w t S w  (5-3) 

in which  ,f w t  is the amplitude envelope function: 

  
2

, exp 1
5 5

t t
f w t

       
 (5-4) 

and  S w  is the one-sided power spectral density function defined by Clough-

Penzien spectrum (Dang & Xu, 2020): 

  
   

4 2 2 2 4
g g g

02 22 2 2 2 2 2 2 2 2 2
g g g

4

4 4f f f

w w w w
S w S

w w w w w w w w



 


 

   
 (5-5) 

in which 0S  is the spectral intensity of seismic acceleration processes; gw  and g  are 

the dominant frequency and damping ratio of the site soil, respectively; fw  and f  

are parameters of the second filter mainly hindering the low-frequency component of 

seismic acceleration. The discrete frequency iw  gives: 

 1, 0,1,..., 1kw k w k d     (5-6) 

where w  is the frequency interval. These parameters are specified as: g 5w   rad/s, 

g0.1fw w  rad/s, g 0.60f   , 2 3
0 48.9332 cm /sS  , 0.1w   rad/s, 1 1001d   

and t is a time sequence ranging from 0 to 20s with an interval of 0.02s. Thus, the 
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phase angles k s are 1001 independent uniformly distributed random variables over 

[0, 2 ] , leading to a high-dimensional stochastic dynamic system. Constructing 

metamodel and conducting reliability analysis for the high-dimensional stochastic 

dynamic system are challenging due to the “curse-of-dimensionality” and complex 

dynamics. 

5.2.2 Long short-term memory considering both time-variant and time-invariant 

features: rLSTM 

The primary reason for the high-dimensional problem in stochastic dynamic systems 

investigated here is the inclusion of a large number of random variables for simulating 

the stochastic excitation. Treating these random variables as input features for the 

system makes metamodeling and reliability analysis challenging. However, these 

random variables have little effect on the response of interest, as the dominant feature 

is the excitation generated by them. Therefore, by directly employing the time-series 

excitation as the input feature when building the metamodel, the high-dimensional 

problem can be circumvented. 

Long short-term memory network is a powerful deep learning tool to deal with 

the sequence-to-sequence data and has demonstrated its advantages in capturing time-

series input-output relationships (R. Zhang et al., 2019; R. Zhang et al., 2020a). A 

common LSTM unit consists of a cell c, a forget gate f, an input gate i and an output 

gate o, as shown in Figure 5-1 (a). The cell memorizes the state at the previous time 

step to capture the long-term dependency and three gates control the information into 

and out of the cell. The forget gate decides what information can be discarded, the 

input gate determines what new information to store in the current state and the output 
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gate decides what information to output according to the previous and current states. 

At time step t, the equations for the forward process of a LSTM cell can be given by: 

 

(a) LSTM cell 

 

(b) rLSTM cell 

Figure 5-1 LSTM and rLSTM cells 
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 (5-7) 

where W and b are weight matrices and bias vectors, respectively, h represents the 

hidden state and ta  denotes the input feature (seismic ground motions) at time step t. 

The notation   represents Hadamard product (element-wise product).   and “tanh” 

represent the sigmoid and hyperbolic tangent activation function, respectively. 

The LSTM is typically used to handle sequence-to-sequence data. However, in 

addition to the time-series ground motions, the input features also include time-

invariant random structural parameters. To address this, we first expand the time-
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invariant random structural parameters into a time-series sequence. At each time step t, 

the random structural parameters are the same: 

    ,0 , ,,..., ,...,S S S t S Tt x x x x  (5-8) 

where ,0 , ,S S t S T x x x . The sequence of random structural parameters is then 

concatenated with the time-series input feature, resulting in a combined input 

 ,,t S ta x . To clarify, we denote the LSTM that incorporates both time-variant 

excitation and time-invariant random parameters as rLSTM, where the letter “r” 

represents the time-invariant random variables. The diagram is shown in Figure 5-1 

(b). 

The concatenation of the random structural parameters sequence with time-

series ground motions results in input features with vastly different scales. Therefore, 

dataset normalization is necessary to ensure a stable and efficient training process. 

Consider a dataset       , ,Sa t t y t x , where  y t  is the output time history 

responses of interest. the following normalization process is applied to scale both the 

input features and output responses: 

 

   
   
    

,max

,max

/

/

/S S S S

a t a t a

y t y t y

t t



 x x μ σ









 (5-9) 

where ,maxa  and ,maxy  denotes the maximum absolute ground motion and response 

in Dataset  , respectively. Sμ  and Sσ  are mean and standard deviation vector of 
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random structural parameters SX , respectively. After preprocessing, the dataset is 

then suitable for training the rLSTM. 

 

Figure 5-2 rLSTM network 

The rLSTM network is depicted in Figure 5-2, where the notation “FC” refers 

to the fully connected neural network layers. The input feature is a concatenation of 

time-variant and time-invariant features. The network comprises l rLSTM layers and 

one fully connected layer. By utilizing the excitation as the pertinent input feature, 

rLSTM network can bypass the high-dimensional random variables for simulating the 

seismic excitation (phase angles k s). As a result, the rLSTM network is capable of 

constructing a metamodel for high-dimensional stochastic dynamic systems. 

Moreover, regardless of the approach used to simulate the stochastic excitation (e.g., 

spectral representation method and random function-based spectral representation 

(Liu et al., 2016)), the proposed rLSTM can effectively construct the metamodel, as 

the ground motions serve as the relevant input features. 
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5.3 Low-dimensional latent space identification for stochastic 

dynamic systems by rLSTM-AE 

Unlike conventional surrogate models such as Kriging, polynomial chaos expansion, 

and others, the proposed rLSTM network is capable of constructing surrogates for 

high-dimensional stochastic dynamic systems. However, performing reliability 

analysis using metamodels remains a challenging task. A high-accuracy metamodel 

across the entire space is necessary to accurately assess failure probability. Deep 

learning tools, including rLSTM, may require a substantial number of observations to 

achieve this level of accuracy across the whole domain. This challenge is also 

encountered by Kriging model and polynomial chaos expansion. To address this issue, 

the adaptive Kriging model is commonly used to transform the regression problem 

across the entire space into a classification problem that focuses on the limit state 

surface. Unfortunately, this active learning-based reliability analysis is limited to low-

dimensional problems due to the constraints of Kriging model. Therefore, extracting 

low-dimensional features from high-dimensional stochastic dynamic systems is 

crucial. In this section, we present a paradigm for detecting low-dimensional latent 

spaces, using the rLSTM with an autoencoder, termed rLSTM-AE, and demonstrate 

its application to active learning-based reliability analysis for high-dimensional 

stochastic dynamic systems. 

5.3.1 Active learning strategy for reliability analysis 

Accurate estimation often demands a large number of samples, which can be 

impractical for complex systems. To address this challenge, surrogate models are 

commonly used to replace the time-consuming performance functions. Despite this, 
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constructing an accurate surrogate model across the entire space remains difficult. 

Fortunately, the development of active learning strategies allows the metamodel to 

concentrate on accurately representing the limit state surface. 

AKMCS focuses on accurately constructing the limit state surface using the 

Kriging model. The training dataset is adaptively expanded by adding samples near 

the limit state surface through a learning function. As a result, AKMCS emphasizes 

improving the accuracy of the metamodel specifically for the limit state surface, 

rather than for the entire space. For points far from the limit state surface, it is not 

necessary for the metamodel to predict exact values accurately, as long as their signs 

are correctly identified. The active learning strategy utilizes the stochastic properties 

of the Gaussian process: Kriging not only provides the mean prediction at a point x 

but also quantifies the uncertainty associated with this prediction. The posterior 

distribution of the prediction at point x, i.e.,  Ĝ x , follows a normal distribution: 

       2ˆ ~ ,K KG  x x x  (5-10) 

where  K x  and  2
K x  are mean prediction and variance by Kriging, respectively. 

The notation   denotes the normal distribution. This property has promoted the 

proposal of various learning functions. The learning function aims to select a best next 

point that can significantly improve the accuracy of the current Kriging model. U 

learning function is widely used due to its simplicity: 

    
 

K

K

U




x

x
x

 (5-11) 
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The value of U function reflects the probability of wrong classification in 

predicting the sign of x, i.e.,   U  x . A minimum value of U refers to the 

maximum risk of misclassification in predicting the sign of x. Consequently, such 

points should be selected and evaluated using the true performance function. The 

training dataset for Kriging can then be enriched by incorporating these points along 

with their true values. Define a performance function W = G(X) in this chapter, the 

procedure of the adaptive Kriging can be summarized as the follows: 

Step 1: Generate a MC candidate pool   with MCN  samples. 

Step 2: Randomly select 0N  samples and evaluate them on the real 

performance function ( )G X  as an initial training dataset  train train, wx , 

 train trainw G x .  

Step 3: Train Kriging with the current training dataset. 

Step 4: Identify the best next point via the learning function and enrich the 

training dataset with  * *, wx : 

    * * *arg min ,U w G


 
x

x x x  (5-12) 

Step 5: Stop the active learning process when the following condition is met, 

else go back to step 3: 

   min 2,U   x x  (5-13) 
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This convergence condition represents that the maximum probability of 

misclassification on signs of all candidate samples is smaller than  2 2.3%   , 

which can ensure the accuracy of the surrogate for the limit state surface. 

Step 6: The updated Kriging is utilized to predict values of samples in   and 

then the failure probability can be estimated by Eq. (2-4). 

This active learning strategy significantly improves the accuracy and 

efficiency of Kriging for reliability analysis. Commonly, Kriging is not available for 

mapping sequence-to-sequence data. Here, the extreme value of time history 

responses is of concern: 

         ev, , max absSY t H a t Y Y t X  (5-14) 

where  Y t  represents the time history responses of interest, H denotes a high-

dimensional stochastic system and evY  is the extreme response. Given a threshold b, 

the performance function gives: 

  evW b Y G   X  (5-15) 

However, Kriging is still not capable of constructing metamodel for high-

dimensional systems even if the extreme responses are of interest. This limitation is 

especially pronounced for the stochastic dynamic systems investigated in this chapter, 

which involve more than 1000 random variables. Consequently, the adaptive Kriging 

is also not accessible to reliability analysis of high-dimensional stochastic dynamic 

systems. 
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5.3.2 rLSTM with autoencoder for the low-dimensional latent space 

identification 

To enable adaptive Kriging for high-dimensional problems, a fundamental idea is to 

use the dimension-reduction techniques. Additionally, the number of latent variables 

resulting from the dimension-reduction should be within several to dozens to ensure 

the availability and efficiency of Kriging. However, this is extremely challenging for 

stochastic dynamic systems with more than 1000 features. To deal with thousands of 

input features, neural network-based feature extraction techniques offer a promising 

solution. An autoencoder is a type of neural network used for feature extraction from 

unlabeled data and serves as an unsupervised learning tool (Hinton & Salakhutdinov, 

2006). It includes an encoding function and a decoding function. The diagram of the 

autoencoder is depicted in Figure 5-3. 

 

Figure 5-3 The diagram of autoencoder 

The encoding function aims to find efficient codes or latent variables of 

unlabeled data, i.e., :E φ X Z  characterized by φ. The decoding function recreates 

the input data via the latent variables, i.e., :D θ Z X  characterized by θ . In theory, 

this kind of unsupervised learning-based neural network is available for low-

dimensional latent variables detection from high-dimensional inputs. However, 
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regarding the stochastic dynamic systems, we cannot use the input feature 

 ,E SX X X  directly for dimension-reduction due to the following three reasons: 

Reason 1: random phases in vector EX  for generating the stochastic 

excitation are not pertinent features for a stochastic system and have little effect on 

the response of interest.  

Reason 2: random phases in vector EX  contribute equally to the system since 

they all follow the same uniform distribution. Therefore, it is challenging to detect a 

few latent variables that can represent such a high-dimensional space with over 1000 

similar features. 

Reason 3: even though the input features  ,E SX X X  could be directly 

represented by the low-dimensional latent variables Z, the time dependent property of 

the sequence-to-sequence data (time-dependent complex dynamics) would be ignored 

using detected latent variables to construct a metamodel. 

To tackle these issues, we propose a two-step low-dimensional latent variable 

detection strategy, termed rLSTM-AE, for feature extraction in high-dimensional 

stochastic dynamic systems. Typically, the extreme value of the time-series response, 

i.e.,    ev = max absY Y t , is of concern. The diagram of the proposed rLSTM-AE 

approach is depicted in Figure 5-4.  

As mentioned earlier, the proposed rLSTM network can handle both stochastic 

excitation and random structural parameters simultaneously, effectively avoiding the 

high-dimensional issue induced by random phases. Therefore, the first step of the 
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proposed rLSTM-AE is to identify an approximate extreme value space using rLSTM. 

The dimension flow of this step is illustrated as follows: 

 1 2 rLSTM rLSTM 1
ev

d d Y  X    (5-16) 

 

Figure 5-4 rLSTM-AE network 

where    rLSTM
ev

ˆmax absY Y t  and  Ŷ t  is the time-series responses predicted by 

rLSTM. In this step, rLSTM is used to build a metamodel for stochastic systems and 

construct an approximate extreme value space, i.e., rLSTM
evY . It is important to note that 

the accuracy of this approximate extreme value space is not sufficient for reliability 

analysis due to the limited observations available for training the rLSTM. High 

accuracy is not required at this stage since the purpose is to use this approximate one-

dimensional space to identify a low-dimensional latent space via an autoencoder. 

Ultimately, adaptive Kriging will refine the estimated failure probability using the 

detected latent variables Z . The loss function for training rLSTM can be defined by: 

       2

2
1

1
ˆ ,

N
i i

i

L y t y t
N 

 λ λ  (5-17) 
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where λ  denotes trainable weights and biases of the rLSTM, which can be 

determined by  ˆ arg min L
λ

λ λ . N is the size of data and  ˆ ,y tλ  is the estimated 

response. Note that the normalized data by Eq. (5-9) is utilized when training deep 

neural networks. 

The second step in the proposed rLSTM-AE approach is to detect a low-

dimensional latent space Z to decompose the one-dimensional extreme value space 

using an autoencoder. The autoencoder in the rLSTM-AE network differs from its 

conventional use. Typically, an autoencoder is an unsupervised learning method, and 

its loss function can be defined as follows: 

      2

21

1
,

N
i i

i

L D E
N 

  θ φφ θ x x  (5-18) 

where  ,φ θ  denotes the trainable weights and biases of the autoencoder, which can 

be determined by    
,

, arg min ,L
φ θ

φ θ φ θ . While for the autoencoder in rLSTM-AE 

network, the loss function gives: 

      2

ev ev
21

1
,

N
i i

i

L y D E y
N 

  θ φφ θ  (5-19) 

The encoding and decoding functions can be defined by ev:E Y φ Z  and 

ev:D Yθ Z , respectively. Obviously, autoencoder here is adopted as a supervised 

learning tool. When training the autoencoder, the actual extreme responses are used 

since they are available in the training dataset. However, for unobserved data, the real 

extreme responses are not available. Therefore, the approximate extreme responses 
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generated by rLSTM, i.e., rLSTM
evY , are employed to detect the latent space Z for 

unobserved data. The dimension flow in this step can be expressed by: 

 AutoencoderrLSTM 1
ev

zdY   Z   (5-20) 

where zd  is the dimension of the latent variable Z and 2zd  . The autoencoder here 

is to represent a 1-dimensional space by a zd -dimensional latent space, which 

constitutes a dimension-expansion step. 

A crucial step is to determine an appropriate dimension for the potential latent 

space. The latent variable is employed to construct a Kriging model so the dimension 

of Z is restricted within the interval [2, 20] to ensure the feasibility and efficiency of 

the active learning-based Kriging. The fundamental goal in determining the 

dimension zd  is to ensure the accuracy of the reconstructed Kriging model. Hence, in 

the proposed paradigm, the dimension of the latent variables zd  is adaptively 

determined by minimizing the following Kriging construction error: 

     2

ev
2

1

1
, z

N
N di i

z
i

KL d y K
N





   z z   (5-21) 

where iz  is the latent space corresponding to the observed data ev
iy , i.e.,  ev

i iE y φz . 

The notation  K   denotes a Kriging model. Then, the optimal dimension can be 

selected as: 

  
2 20

arg min
z

K
z z

d

d L d
 

  (5-22) 
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Therefore, Eq. (5-21) can assist in selecting the optimal latent space, enabling Kriging 

to reconstruct the extreme value space using the latent variable Z. 

There are three main steps for the proposed rLSTM-AE approach: 

Step 1: The trained rLSTM can provide an approximate one-dimensional 

extreme value space for unobserved data: 

            rLSTM
ev

ˆ ˆmax abs , rLSTM , SY Y t Y t a t t  X  (5-23) 

Step 2: The one-dimensional approximate extreme value space can be 

decomposed by a trained autoencoder into the low-dimensional latent variables Z: 

  rLSTM
evE Y φZ  (5-24) 

Step 3: The detected latent variables can be employed to construct a Kriging 

model, which can be used for the active learning-based reliability analysis. 

  ev
KY K Z  (5-25) 

rLSTM-AE enables Kriging to predict extreme responses with an accuracy 

comparable to that of rLSTM. This will be demonstrated in the following illustrative 

examples. Although this accuracy may not meet the requirements for reliability 

analysis, Kriging can be combined with an active learning strategy to enhance the 

accuracy of failure probability estimation, which rLSTM alone cannot achieve. The 

proposed rLSTM-AE offers three advantages based on the previously discussed 

reasons 1 to 3 regarding the limitations of using autoencoders directly: 
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Advantage 1: instead of the original high-dimensional input space X, the 

pertinent feature, i.e., stochastic excitation  a t , is concatenated with the sequential 

random structural parameters  S tX  for latent variables detection with the aid of the 

rLSTM. 

Advantage 2: it is easy for the autoencoder to represent a one-dimensional 

space by several to dozens of latent variables. 

Advantage 3: the time-dependent property in the sequence-to-sequence data 

(time-dependent complex dynamics) is accounted for by the rLSTM network during 

the dimension reduction process. 

Moreover, the proposed rLSTM-AE is not restricted by the way of generating 

stochastic excitation, as the excitation is directly employed as the input feature. The 

observed dataset   generated by the Latin hypercube sampling is divided into two 

parts to obtain the best rLSTM-AE model. Training set with trainN  samples aims to fit 

the parameters of the network. Validation set with validN  samples here is to select a 

best model during the learning process. Test set with testN  unobserved data generated 

by MCS is to assess the performance of the rLSTM-AE. Denote the dimension of 

input features as dimI , the dimension of the output feature as dimO  and the size of 

hidden state as sh . The detailed pseudo code for rLSTM-AE is indicated in algorithm 

3. 
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5.3.3 rLSTM-AE for the active learning-based reliability analysis: rLSTM-AE-

AK 

Once the latent variables are identified by the proposed rLSTM-AE, they can be 

employed to construct a Kriging model. The active learning strategy is available for 

reliability analysis of high-dimensional stochastic dynamic systems. The core steps 

for the active learning approach expressed by Eqs. (5-12) and (5-13) can be 

reformulated as: 

  * min U



Zz

z z  (5-26) 

and  

   min 2,U   Zz z  (5-27) 

where zd Z   is the latent candidate pool detected by rLSTM-AE from the original 

candidate pool 1 2d d   . Denote Kriging combined with the rLSTM-AE and the 

active learning strategy as rLSTM-AE-AK. The pseudo code of rLSTM-AE-AK is 

indicated in algorithm 4. 

The contributions of the proposed paradigm are listed as the follows: 

1. The rLSTM network utilizes stochastic excitation as a relevant input feature, 

bypassing the need to handle high-dimensional random phases for generating 

excitation. This ensures that the rLSTM is applicable regardless of the method used to 

generate the stochastic process. 
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2. The rLSTM simultaneously accounts for both time-variant stochastic 

excitation and time-invariant random structural parameters, enabling the direct 

construction of metamodels for high-dimensional stochastic dynamic systems. 

3. To address the insufficient accuracy of the rLSTM network (due to limited 

observations) for dynamic reliability analysis, the autoencoder is utilized to 

decompose the approximate one-dimensional extreme response with the aid of 

rLSTM, which brings insights for latent variables extraction from the perspective of 

output space decomposition. 

4. The rLSTM-AE network for low-dimensional latent space detection 

considers the complex time-dependent dynamics of stochastic systems by the rLSTM 

while conventional dimension-reduction techniques ignore this issue. 

5. The proposed method makes the active learning-based reliability analysis 

method available for the high-dimensional dynamic reliability analysis. 

Table 5-1 rLSTM-AE for the low-dimensional latent space detection 

Algorithm 3: rLSTM-AE for the low-dimensional latent space detection 
Input: Random structural parameters Sx , the stochastic excitation ( )a t  and observed responses 

( )y t . 

Output: rLSTM-AE model and latent variable Z. 
..1. Data normalization and concatenation: 

..2.             Eqs.(5.8) and (5.9), , , ,S Sa t t y t a t y tx x   . 

..3.             train train train, , , 1, 2,...,i i i
Sa t t y y t i N  x x     . 

..4.             valid valid train train train valid, , , 1, 2,...,i i i
Sa t t y y t i N N N N     x x     . 

..5. rLSTM training: 

..6. Specify rLSTM structure: dim 2 1I d  , dim 1O  , 2l  , 50sh   and dropout value 0.5. 

..7. for m =1:epoch (epoch=500) do 

..8.       for n=1:batch (samples in each batch batch 100N  ) do 

..9.                         batch train batch train batch batch, ; ,
n n i j

y y i j    x x x x      . 

10.                  batch batchˆ rLSTM
n n

y  x . 



 

118 

Table 5-1 (continued) rLSTM-AE for the low-dimensional latent space detection 
Algorithm 3: rLSTM-AE for the low-dimensional latent space detection 

11.                    2

train batch batch 2
batch

1
ˆ

n n
L y y

N
 λ  . 

12.               Backward  trainL λ  and optimize λ  with the optimizer “Adam” with a learning rate 

0.01. 
13.       end for 

14.           valid validˆ rLSTMy  x . 

15.             2

valid valid valid 2
valid

1
ˆL m y y

N
  . 

16. end for 
17. Find the minimum validation loss validL  and save the best rLSTM model. 

18. Autoencoder training: 

19.       ev, train ev trainmax abs , 1, 2,...,i iy y y t i N     . 

20.       ev,valid ev train train train validmax abs , 1, 2,...,i iy y y t i N N N N        . 

21. for zd =2:20 do 

22.       Specify the autoencoder structure: dim 1I  , dim 1O   and number of nodes in each layer, i.e., 

( 4 zd , 2 zd , zd ) for Eφ  and dim(2 , 4 , )z zd d O  for Dθ . 

23.       for q =1:epoch (epoch=500) do 

24.              for k =1:batch ( batch 100N  ) do 

25.                           ev,batch ev,train ev,batch ev,batch, ,
k i j

y y y y i j        . 

26.                         ev,batch ev,batchˆ
k k

y D E y θ φ  . 

27.                         
2

AE
train ev,batch ev,batch

2
batch

1
ˆ,

k k
L y y

N
 φ θ  . 

28.                   Backward  AE
train ,L φ θ  and optimize  ,φ θ  with the optimizer “Adam” and a learning 

rate 0.01. 
29.              end for 

30.                   ev,valid ev,validŷ D E y θ φ  . 

31.                    2AE
valid ev,valid ev,valid 2

batch

1
ˆL q y y

N
  . 

32.       end for 
33.       Find the minimum validation loss and save the best autoencoder as ( )zM d . 

34.       Obtain latent variables for training Kriging:   1:
train ev,zK KN d NR E y  0 0 φz z z  . 

35.       Obtain the original extreme responses for training Kriging:  

   1:
ev, train ev ev, max absKNy y y y t  . 

36.       Train Kriging and compute error:     2

ev 0 train valid
2

1

1
,

N
i i

z
K

i

L d y K N N N
N 

    z . 

37. end for 
38. Obtain the best zd  and save the best AE model among ( )zM d  by finding the minimum error 

 z
KL d . 

39. Latent variables detection by the trained rLSTM-AE given unobserved data  newa t  and 

,newSx : 
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Table 5-1 (continued) rLSTM-AE for the low-dimensional latent space detection 
Algorithm 3: rLSTM-AE for the low-dimensional latent space detection 

40.         Eqs.(5 8)and (5 9)
new ,new new ,new, ,S Sa t t a t x x  . 

41.             rLSTM
new new ,new ev newˆ ˆrLSTM , , max absSy t a t t y y t x  . 

42.  rLSTM
evE y φz . 

43. Output the rLSTM-AE model and the latent variable Z . 

 

Table 5-2 rLSTM-AE with the active learning-based Kriging: rLSTM-AE-AK 

Algorithm 4: rLSTM-AE with the active learning-based Kriging: rLSTM-AE-AK 
Input: Information of random variables, the response function H and performance function G 

Output: Failure probability ˆ
fP . 

..1. Initiate a candidate pool CP: x  with the sample size N  and the target CoV of ˆ
fP , e.g.

tolCoV 5% . 

..2. Draw train validN N  samples from  fX x  by Latin hypercube sampling, denoted as  ,E Sx x x  

..3. Generate the stochastic excitation ( )a t  by Ex  and Eq. (5-2).  

..4. Calculate the corresponding responses     , Sy t H a t x  and    ev max absy y t . 

..5. Generate the observed dataset     , ,Sa t y tx  and train rLSTM-AE via the algorithm 3. 

..6. Randomly select KN  samples from the observed dataset as the initial training set of Kriging, i.e., 

  1: 1:,K KN NGx x . 

..7. Transform the initial training set into latent space by the trained rLSTM-AE:  

       1: 1: 1: 1:, , ,K K K KN N N NG G z x x x   

..8. while   tol
ˆCoV CoVfP   do  

..9.            Transform the candidate pool into the latent space: CP CP: :  Z z x  

10.            while   CPmin 2U z  do 

11.                       Build Kriging via training set  ,   and evaluate CPz  on Kriging. 

12.                       Calculate      CP CP CP/G GU  z z z . 

13.                       Enrich  ,   by U learning function with the point corresponding to: 

  *
CPmin Uz z  

where the corresponding output is calculated in the original space, i.e.,  *G x . 

14.            end while  

15.            Calculate ˆ
fP  and  ˆCoV fP  by Eqs. (2-4) and (2-5), respectively. 

16.            Enrich the candidate pool   by adding N  samples. 
17. end while  

18. Output the failure probability ˆ
fP . 

 



 

120 

5.4 Illustrative Examples 

A single-degree-of-freedom system (SDOF) and a 3D reinforced concrete frame 

structure subjected to the stochastic excitation are investigated in this section. The 

structures of the rLSTM and autoencoder are constructed by PyTorch. The structure 

of rLSTM-AE network is specified as follows. The number of LSTM layers for 

rLSTM network is specified as 2l  , one fully connected neural network layer is 

used and the size of hidden state is set as 50sh  . The encoding function Eφ  is a fully 

connected neural network with three layers, containing 4 zd , 2 zd  and zd  nodes, 

respectively. The corresponding decoding function Dθ  is also a three-layer fully 

connected neural network, with layers containing 2 zd , 4 zd  and 1 nodes, respectively. 

The activation function is adopted as ReLU. In this thesis, 1000 observed data 

generated by Latin hypercube sampling are employed, among which train 800N   are 

used for training and valid 200N   for validation. Additionally, 10000 unobserved data 

generated by MCS is employed for testing the rLSTM-AE model.  

Regarding the reliability analysis problem of the high-dimensional stochastic 

systems investigated in this chapter, MCS is adopted as the reference method. To the 

best of the authors' knowledge, there is no existing surrogate model that can directly 

handle this high-dimensional stochastic system due to the curse of dimensionality. 

Conventional metamodels, such as polynomial chaos expansion, support vector 

regression, and Kriging, are all unsuitable. The moment-based methods can be 

employed for comparisons since the extreme responses are of interest. Herein, the 

popular maximum entropy method (MEM) and a mixture distribution approach by 
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combining inverse Gaussian and lognormal distribution termed MIGLD (Dang & Xu, 

2020) are employed for the failure probability estimation of the stochastic dynamic 

system. The failure probabilities by the proposed metamodel (rLSTM), Kriging with 

the detected latent variables by rLSTM-AE (termed rLSTM-AE-K) and the adaptive 

Kriging with the identified latent variables (called rLSTM-AE-AK) are provided. 

5.4.1 Example 1: a SDOF system subjected to stochastic excitation 

A single-degree-of-freedom system modeled by the Bouc-Wen hypothesis shown in 

Figure 5-5 is investigated (Zhang, Dong, & Feng, 2023). The restoring force F of this 

system can be expressed by: 

    , (1 )F u r k qu q r    (5-28) 

 

Figure 5-5 A SDOF system 

where k is the stiffness and r is the hysteretic displacement following the Bouc-Wen 

hypothesis: 

 
1e e

r Au B u r r Cu r
       (5-29) 

where the parameters are set as follows: 0.2q  , A=1, 55 10B C    and e=3. Three 

random variables of the SDOF, i.e., the lumped mass m, the stiffness k and the viscous 

damping c are of concern. The mass m follows a normal distribution with a mean of 
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41000 kg and a CoV of 0.1. The stiffness k follows a lognormal distribution with a 

mean of 61.5 10  N/m and a CoV of 0.2. The damping c is a lognormal distribution 

with a mean of 4.35 104 N s/m  and a CoV of 0.2. 

The detail of spectral representation method for generating the stochastic 

ground motions is provided in section 5.2.1. This system has three random structural 

parameters and 1001 random phases for generating the stochastic excitation, making it 

a high-dimensional problem with 1004 input random variables. The mean and 

standard deviation of the fully non-stationary stochastic excitation, simulated by 1000 

Latin hypercube samples, are shown in  Figure 5-6 (a) and (b), respectively. The 

simulated values are in good accordance with the target ones, indicating that the 1000 

samples generated by Latin hypercube sampling effectively simulate the stochastic 

excitation. The time history displacement of the SDOF is of interest. 

 

(a) Mean 

 

(b) Standard deviation 

Figure 5-6 Mean and standard deviation of the fully non-stationary stochastic ground 
motions 

These 1000 observations are used to train the rLSTM-AE network. The 

training and validation losses for both LSTM-GM and rLSTM are shown in Figure 

5-7, where the notation “LSTM-GM” represents that only the stochastic ground 
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motions serve as input features for training. It is evident that there is a significant gap 

between the losses of LSTM-GM and rLSTM. This gap arises because LSTM-GM 

ignores the time-invariant random structural parameters, highlighting that the 

uncertainties of structural parameters also play an important role in the stochastic 

system. The proposed rLSTM provides a direct way for metamodeling of the high-

dimensional stochastic systems considering both time-variant excitations and time-

invariant random variables. Four representative time history responses predicted by 

the rLSTM and LSTM-GM are depicted in Figure 5-8. The red dashed line, predicted 

by rLSTM, aligns well with the ground truth (the black line). In contrast, the blue line, 

predicted by LSTM-GM, shows significantly different time history responses 

compared to the true values, underscoring the importance of accounting for time-

invariant random structural parameters. 

 

Figure 5-7 Training and validation losses for the SDOF system 
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(a) Training sample 

 

(b) Validation sample 

 

(c) Test sample 1 

 

(d) Test sample 2 

Figure 5-8 Representative samples predicted by rLSTM for the SDOF system 

The extreme responses are of interest, Figure 5-9 (a) depicts predictions of 

training and validation datasets and (b) shows predictions of 10000 test samples. The 

green and black dashed lines represent relative errors of 10% and 20% compared to 

the ground truth, respectively. The determination coefficient 2R  by the rLSTM 

network is also provided in the figure. It can be observed that the trained rLSTM 

network accurately fits both the 1000 observed data points and the 10000 unobserved 

test data. The relative errors of predictions on the test set fall mainly within the 10% 

bound and the 2R  is close to 1, i.e., 0.9745. The results demonstrate that the proposed 

rLSTM network can effectively construct a metamodel for the stochastic system with 

1004 input random variables. Additionally, K-fold cross-validation (using 5 folds) is 

employed to assess the generalization ability of the rLSTM. The determination 

coefficients are 0.9710, 0.9753, 0.9769, 0.9410, and 0.9687, all of which are close to 

1. The average determination coefficient is 0.9666, indicating the strong 
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generalization ability of the proposed rLSTM. Figure 5-10 displays the PDF of the 

extreme responses and the curve of the probability of exceedance (POE) in 

logarithmic scale by the proposed rLSTM, based on predictions from 105 unobserved 

samples. The reference results are by 105 MCS. It is evident that while the rLSTM 

captures the main body of the distribution well, its accuracy in the tail regions is 

limited. This limitation arises because achieving high accuracy across the entire 

domain of a high-dimensional stochastic dynamic system with limited observations is 

challenging. Therefore, to improve failure probability estimation, it is necessary to 

identify a low-dimensional latent space and construct an adaptive Kriging model with 

the aid of the rLSTM. 

The extreme responses from the 1000 observed data are also employed to train 

the autoencoder. In algorithm 3, train 800N  , valid 200N   and the size of the training 

set for Kriging is 100KN  . To determine the optimal dimension of the latent space, 

we initially specify dimensions ranging from 2 to 20, and the autoencoder's structure 

is adjusted accordingly. The autoencoder is trained using the observed data, and the 

best autoencoder model, along with the Kriging construction error for each dimension 

zd  is saved. After training the autoencoder with dimensions from 2 to 20, the 

dimension that results in the minimum Kriging construction error is selected as the 

best latent space dimension. 

The error of the Kriging construction with respect to the dimension zd  is 

plotted in Figure 5-11 (a). The red point denotes the minimum error so the optimal 

dimension of the latent space is 11zd   in this example. Figure 5-11 illustrates the  
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(a) Training and validation (1000 samples) 

 

(b) Test (10000 samples)  

Figure 5-9 Predictions on extreme responses for the SDOF system 

 

(a) PDF 

 

(b) POE 

Figure 5-10 PDF and POE of the extreme responses predicted by rLSTM for the 
SDOF system 

accuracy of the autoencoder and Kriging in reconstructing the approximate extreme 

value space (extreme responses obtained from rLSTM). The accuracy is validated 

using 10000 test samples. The horizontal axis represents the extreme responses 

estimated by rLSTM and the vertical axis denotes predictions by the trained 

autoencoder or Kriging with the low-dimensional latent variables obtained from the 

trained autoencoder. It can be found the trained autoencoder (rLSTM-AE) can 

accurately reconstruct the extreme space approximated by rLSTM, which means that 

the detected latent variables well capture the features of the extreme space by rLSTM. 
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This accuracy is primarily due to the autoencoder's ability to efficiently detect zd  

features for a one-dimensional space.  

 

(a) Kriging construction error 

 

(b) Compared to the rLSTM 

 

(c) Compared to the ground truth 

Figure 5-11 Performance of rLSTM-AE and rLSTM-AE-K for the SDOF system 

Therefore, Kriging using the latent variables detected by rLSTM-AE, referred 

to as rLSTM-AE-K, can also accurately reconstruct the approximate extreme value 

space. This capability allows Kriging to achieve accuracy in predicting extreme 

responses comparable to that of the rLSTM network. This conclusion is further 

supported by Figure 5-11 (c), which compares the extreme responses predicted by 

rLSTM and rLSTM-AE-K with the ground truth. The accuracy of Kriging is nearly 

equivalent to that of rLSTM in estimating extreme responses. Although this accuracy 
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may be insufficient for reliability analysis, rLSTM-AE-K can utilize active learning 

strategies to enhance failure probability estimation, a capability that rLSTM alone 

does not possess. 

Two cases corresponding to the thresholds of 80 mm and 95 mm are of 

concern. The initial training set size for Kriging is set to 100KN  . The active 

learning processes are shown in Figure 5-12 (a) and (b), respectively. It can be 

observed that the estimated failure probability converges to the reference value as the 

training set is enriched. The results by different methods are listed in Table 5-3, where 

callN  represents the number of calls to the stochastic system and the notation “R.E.” 

denotes the relative error of the estimated failure probability. In Case 1, the failure 

probabilities estimated by MEM and MIGLD are less accurate compared to the 

proposed rLSTM-based methods. Both rLSTM and rLSTM-AE-K achieve the same 

level of accuracy, as Kriging constructed with the detected latent variables has 

equivalent predictive capability for extreme responses as rLSTM, which is consistent 

with the results shown in Figure 5-11 (c). However, as previously noted, the accuracy 

of the rLSTM network alone is insufficient for reliability analysis due to the limited 

observations available for constructing a metamodel across the entire domain. In Case 

1, the relative errors for both rLSTM and rLSTM-AE-K are 8.40%. By employing an 

active learning strategy, rLSTM-AE-AK provides a more accurate failure probability 

estimate, with a relative error of 4.62%. Note that 1000 observed samples are used for 

training the rLSTM-AE network, and 258 training samples are identified through the 

learning function, resulting in a total of 1258 calls for rLSTM-AE-AK.  



 

129 

 

(a) Case 1 

 

(b) Case 2 

Figure 5-12 Failure probabilities estimation for the SDOF system 

Table 5-3 Results obtained by different methods for the SDOF system 

 Method callN  fP  CoV(%) R.E. (%) 

Case 1 MCS 105 2.38 10-2 2.03 - 
 MEM 1000 2.94 10-2 - 23.53 
 MIGLD 1000 2.70 10-2 - 13.58 
 rLSTM 1000 2.58 10-2 4.35 8.4. 
 rLSTM-AE-K 1000 2.58 10-2 4.35 8.40 
 rLSTM-AE-AK 1258 2.49 10-2 4.42 4.62 
Case 2 MCS 105 6.41 10-3 3.94 - 
 MEM 1000 9.23 10-3 - 43.96 
 MIGLD 1000 7.13 10-3 - 11.25 
 rLSTM 1000 2.88 10-3 5.88 55.07 
 rLSTM-AE-K 1000 2.88 10-3 5.88 55.07 
 rLSTM-AE-AK 1487 6.72 10-3 4.96 4.78 

 

When considering a small failure probability in case 2, i.e., 6.41 10-3 by 105 

MCS, the MEM, MIGLD, rLSTM, rLSTM-AE-K yield unsatisfactory results. The 

relative errors for both rLSTM and rLSTM-AE-K are as high as 55.07%. However, 

with the assistance of the active learning approach, rLSTM-AE-AK achieves 

significantly improved accuracy, reducing the relative error from 55.07% to 4.78% by 

adaptively adding 487 samples. Additionally, for a smaller failure probability 

corresponding to a threshold of 120 mm, where 106 MCS simulations result in a 

failure probability of 6.10 10-4. The failure probabilities by rLSTM and rLSTM-AE-

K are both 0. In contrast, rLSTM-AE-AK estimates a failure probability of 42.10 10 . 
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Although the accuracy of the failure probability by the proposed method is not yet 

sufficient, the active learning strategy can improve the accuracy for small failure 

probability estimation. Indeed, Monte Carlo Simulation (MCS) is not ideal for 

generating a candidate pool for estimating small failure probabilities or for active 

learning-based reliability analysis, as it requires a substantial number of samples to 

ensure reliable estimates (Echard et al., 2013; Huang et al., 2016). Consequently, 

more advanced sampling techniques are needed to complement active learning for 

accurate small failure probability estimation. This challenge is compounded in the 

context of stochastic dynamics, where generating stochastic excitation is also time-

consuming. Therefore, further investigation into combining advanced sampling 

approaches with the proposed high-dimensional active learning strategy is essential 

for improving small failure probability estimation.  

5.4.2 Example 2: a 3D reinforced concrete frame  

To validate the proposed method for the practical engineering applications, a 3D 

reinforced concrete frame structure subjected to the fully non-stationary stochastic 

seismic excitation is investigated. The structural configuration and reinforcement 

information are shown in Figure 5-13. The finite element model is constructed using 

OpenSees, with the Concrete01 and Steel01 constitutive laws applied. Seven random 

structural variables, listed in  Table 3-1 are considered, resulting in a total of 1008 

input random variables for this example. The time history displacement at point A in 

the Figure 5-13 is of interest. 
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Figure 5-13 A 3D reinforced concrete frame structure 

Table 5-4 Random variables for the 3D concrete frame structure 

Variable Description Distribution Mean CoV 

cf  Concrete compressive strength Lognormal 26.8 MPa 0.20 

c  Concrete strain at maximum strength Lognormal 0.0015 0.05 

uf  Concrete crushing strength Lognormal 10 MPa 0.20 

u  Concrete strain at crushing strength Lognormal 0.0033 0.05 

yf  Yield strength of rebar Lognormal 400 MPa 0.20 

0E  Initial elastic modulus of rebar Lognormal 206 GPa 0.20 
b Strain-hardening ratio of rebar Lognormal 0.01 0.05 

 

Similarly, 1000 observed data are employed to train rLSTM-AE network. The 

training and validation losses for both the rLSTM and LSTM-GM models are 

presented in Figure 5-14. Throughout the training process, a consistent gap between 

LSTM-GM and rLSTM is observed, highlighting the importance of considering 

uncertainties in structural parameters for the response of interest. This underscores the 

necessity of incorporating both time-variant and time-invariant input features in the 

rLSTM for metamodel construction in stochastic dynamic systems. Figure 5-15 

showcases four representative samples, further demonstrating that rLSTM 

outperforms LSTM-GM. Figure 5-16 (a) illustrates the accuracy of extreme response 

predictions by rLSTM and LSTM-GM on the training and validation datasets. Figure 
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5-16 (b) displays the accuracy of these predictions on 10000 test samples. It is evident 

that the relative errors in the rLSTM predictions are predominantly below 20%, 

whereas the accuracy of the LSTM-GM predictions, indicated by the blue samples, is 

unsatisfactory. The determination coefficient calculated by rLSTM on the 10000 test 

samples is close to 1, indicating a high level of accuracy. To further assess the 

generalization ability of the proposed rLSTM, K-fold cross-validation is performed, 

yielding determination coefficients of 0.9414, 0.9369, 0.9445, 0.8831 and 0.9141, 

respectively. The mean 2R  is 0.9240, which is close to 1, thus further validating the 

generalization capability of rLSTM. Moreover, the PDF and POE in logarithmic scale 

by 105 MCS are depicted in Figure 5-17, demonstrating that rLSTM effectively 

captures the main body of the extreme response distribution. However, rLSTM shows 

some loss of accuracy in the distribution tail, as constructing a metamodel for a 

stochastic dynamic system across the entire domain with limited observations is 

challenging. 

 

Figure 5-14 Training and validation losses for the 3D concrete frame structure 
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(a) Training sample  

 

(b) Validation sample 

 

(c) Test sample 1 

 

(d) Test sample 2 

Figure 5-15 Representative samples predicted by rLSTM for the 3D concrete frame 
structure 

 

(a) Training and validation (1000 samples) 

 

(b) Test (10000 samples) 

Figure 5-16 Predictions on extreme responses for the 3D concrete frame structure 

Regarding the reliability analysis of this 1008-dimensional stochastic dynamic 

system, the low-dimensional latent variables are required to be identified as the 

accuracy of rLSTM remains insufficient for failure probability estimation given the 

current limited observations. To enhance the reliability analysis, an active learning-

based Kriging metamodel can then be constructed. 
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(a) PDF 

 

(b) POE 

Figure 5-17 PDF and POE of the extreme responses predicted by rLSTM for the 3D 
concrete frame structure 

Figure 5-18 (a) depicts the Kriging construction error with respect to the 

dimension of the latent variables zd . It can be found that 2zd   is the best dimension 

for constructing a Kriging metamodel in this example. Figure 5-18 (b) demonstrates 

the performance of the trained autoencoder and rLSTM-AE-K in reconstructing the 

extreme responses predicted by rLSTM. Both methods achieve high accuracy, 

indicating that Kriging, using the latent variables identified by rLSTM-AE, can 

accurately reconstruct the extreme value space predicted by rLSTM. Figure 5-18 (c) 

showcases that the rLSTM-AE-K is equivalent to the rLSTM regarding the extreme 

responses estimation. Then, rLSTM-AE-K can combine the active learning strategy 

for the failure probability estimation. In this example, two cases corresponding to the 

thresholds of 100 mm and 119 mm are of concern. Figure 5-19 shows the active 

learning process for failure probabilities estimation. With the aid of the active 

learning, the accuracy of the estimated failure probability increases with the 

enrichment of training set and the final failure probability converges to the benchmark 

by MCS. 
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(a) Kriging construction error 

 

(b) Compared to the rLSTM 

 

(c) Compared to the ground truth 

Figure 5-18 Performance of rLSTM-AE and rLSTM-AE-K for the 3D concrete frame 
structure 

 

(a) Case 1 

 

(b) Case 2 
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Figure 5-19 Failure probabilitties estimation for the 3D concrete frame structure 

Moreover, the failure probabilities by different methods are listed in Table 5-5. 

For case 1, the relative errors by MEM and MIGLD are larger than 5%. rLSTM and 

rLSTM-AE-K do not produce satisfactory results and the relative errors of the failure 

probability are as large as 33.12%, which results from the insufficient accuracy of the 

rLSTM for reliability analysis under limited observations. rLSTM-AE-AK produces 

an accurate failure probability by adaptively adding 295 samples and the relative error 

is as small as 0.86%. Regarding case 2, the reference failure probability i.e., 6.11 10-

3 is produced by 105 MCS. MIGLD obtains more accurate result than MEM by 

consuming the same number of function calls. Again, the accuracy of the rLSTM and 

rLSTM-AE-K is not sufficient for reliability analysis and the relative errors are both 

over 80%. By leveraging the active learning, the training set for Kriging construction 

is enriched by 374 samples and the accuracy of the estimated failure probability is 

significantly improved. The relative error is reduced to 1.8% from 84.62% compared 

to the rLSTM. 

Table 5-5 Results obtained by different methods for the 3D concrete frame structure 

 Method callN  fP  CoV(%) R.E. (%) 

Case 1 MCS 105 3.83 10-2 1.59 - 
 MEM 1000 3.43 10-2 - 10.28 
 MIGLD 1000 3.52 10-2 - 8.01 
 rLSTM 1000 2.56 10-2 4.36 33.12 
 rLSTM-AE-K 1000 2.56 10-2 4.36 33.12 
 rLSTM-AE-AK 1295 3.80 10-2 3.56 0.86 
Case 2 MCS 105 6.11 10-3 4.03 - 
 MEM 1000 6.49 10-3 - 6.13 
 MIGLD 1000 6.35 10-3 - 3.85 
 rLSTM 1000 9.40 10-4 10.31 84.62 
 rLSTM-AE-K 1000 9.30 10-4 10.36 84.62 
 rLSTM-AE-AK 1374 6.00 10-3 4.86 1.80 
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5.5 Summary 

In this chapter, a rLSTM network considering both time-variant and time-invariant 

input features for metamodeling of the high-dimensional stochastic dynamic systems 

is developed. The stochastic excitation is employed as the pertinent input but not the 

random phases for simulating the excitation. The proposed rLSTM is capable of 

capturing the main body of the extreme response distribution of a high-dimensional 

stochastic dynamic system by consuming the limited observations. Regarding the 

reliability analysis, it is usually hard to build a high-accuracy metamodel across the 

whole domain under the limited training samples. To surmount the insufficient 

accuracy of reliability analysis induced by the limited observations, the rLSTM is 

combined with the autoencoder to detect a low-dimensional latent space for the 

approximate extreme value space. The best latent variables for reconstructing the 

approximate extreme value space is selected by minimizing the error between the 

Kriging predictions and the ground truth. Finally, the active learning-based Kriging is 

combined with the identified latent variables to improve the accuracy of failure 

probabilities estimation. The results of a 1004-dimensional SDOF system and a 1008-

dimensional reinforced concrete frame structure subjected to the stochastic excitation 

validate that the proposed method is capable of building metamodel and accurately 

approximating the failure probability for the high-dimensional stochastic dynamic 

systems. The proposed rLSTM provides a way of metamodeling for a stochastic 

dynamic system with more than 1000 input features. The rLSTM-AE brings insights 

for the low-dimensional features extraction from the perspective of the approximate 

output space, which makes the active learning-based reliability analysis available for 

the high-dimensional stochastic dynamic systems. The future study will focus on 
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combining the more advanced sampling techniques with the proposed high-

dimensional active learning strategy for the small failure probabilities estimation. 
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CHAPTER 6 PHYSICS-INFORMED RLSTM FOR 

METAMODELING OF STOCHASTIC DYNAMIC 

SYSTEMS GOVERNED BY THE UNCERTAIN 

DIFFERENTIAL EQUATION 

6.1 Introduction 

In this chapter, a physics-informed long short-term memory (PhyrLSTM) model is 

introduced for modeling of stochastic dynamic systems. This model integrates 

physical laws into the loss function, enhancing the training process by incorporating 

fundamental principles of dynamics. Conventional deep learning models rely solely 

on observed data and often overlook physical laws, such as the governing equations of 

a dynamic system. As a result, purely data-driven models may struggle with strongly 

nonlinear systems or limited data. By embedding physical laws into the training loss, 

the PhyrLSTM can capture the underlying principles of the system, leading to more 

reliable and robust predictions. Furthermore, this chapter addresses uncertainties in 

structural parameters, which results in uncertain governing equations. The physics-

informed rLSTM is designed to learn the uncertain governing equation during the 

training process. The effectiveness of the proposed PhyrLSTM is demonstrated 

through a case study of a highway bridge subjected to the stochastic seismic 

excitation. The results show that the physics-informed rLSTM significantly 

outperforms the traditional rLSTM model. 
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6.2 Physics-informed rLSTM for metamodeling of stochastic 

dynamic systems 

Generally, the stochastic dynamic systems can be governed by the following equation: 

            ,S S S S Ea t    M X u C X u K X u F r M X I X   (6-1) 

where M , C and K are the mass, damping and stiffness matrix, respectively; u , u  

and u  are acceleration, velocity and displacement vector, respectively; F denotes the 

restoring force vector and the notation r is the hysteretic parameter; I is the force 

distribution factor;  ,Ea tX  represents the non-stationary stochastic seismic ground 

motions.  
11 2, ,...,E E E EdX X XX  includes 1d  random variables accounting for 

uncertainties in seismic ground motions.  
21 2, ,...,S S S SdX X XX  is a random vector 

containing 2d  structural random variables.  

Eq. (6-1) can be reformulated as: 

        ,S S S Ea t  M X u H X M X I X  (6-2) 

where      =S S S H X C X u K X u F . By normalizing Eq. (6-2) with mass matrix, 

we can get: 

    ,S Ea t  u g X I X  (6-3) 

where      1
S SS

g X M X H X  is called the mass-normalized restoring force (R. 

Zhang et al., 2020b). The mass-normalized restoring force is an unknown latent 
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function of state variables  T
, ,P u u r  and random structural parameters SX . Purely 

data-driven surrogate models may struggle to capture the underlying complex physics, 

particularly when uncertainties are involved.  

Surrogate models can enable rapid prediction of state variables. In the context 

of engineering structures subjected to stochastic seismic excitation, LSTM networks 

are powerful tools for time-series data prediction. The rLSTM network discussed in 

chapter 5 can be utilized for predicting state variables, especially given the concern 

for time-invariant random structural parameters. However, challenges arise in 

obtaining all state variables, such as time-series velocity and hysteretic parameters, 

with the latter often being non-observable. These state variables are determined by the 

normalized governing equation. i.e., Eq. (6-3). Thus, the governing equation can serve 

as a constraint in developing a physics-informed rLSTM network (R. Zhang et al., 

2020b). R. Zhang et al. (2020b) proposed a physics-informed multi-LSTM network, 

focusing on the deterministic governing equation and assuming that two state 

variables, i.e., the displacement and the velocity, are known. In contrast to their study, 

we assume that only the displacement is known and incorporate random structural 

parameters as additional inputs to the network. 

The three state variables ( u , u  and r) are first predicted by an rLSTM 

network. Then, these state variables can be considered the input of the second rLSTM 

network, which is utilized to predict the mass-normalized force  Sg X . Additionally, 

the relationships between state variables, where the first derivative of displacement is 

velocity and the first derivative of velocity is acceleration, are embedded into the 

physics-informed network using a central finite difference filter-based numerical 
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differentiator (R. Zhang et al., 2020b). The framework of physics-informed rLSTM 

network is shown in Figure 6-1.  

 

Figure 6-1 PhyrLSTM network 

The PhyrLSTM network comprises two rLSTM networks and a filter to 

generate derivatives. The first rLSTM network constructs a nonlinear mapping from 

stochastic ground motions and time-invariant random structural parameters to 

structural responses (u , u  and r). The input dimension of this network is 21 d  and 

the output dimension is 3. Denote the first rLSTM network as rLSTM1, then we have: 

     T 1
1 2 3 1, , =rLSTM , , |E Sa tP P P P X X θ  (6-4) 

where 1θ  is the trainable weights and biases of rLSTM1; 1 P u , 2 P u  and 3 P r . 

Note that the concatenation of input features (ground motions and random structural 

parameters) and data preprocessing follow the same procedures as described in 

chapter 5. The available training data for this step consists of displacement 

measurements du . The data loss function can be defined as: 

     2

1 1 1 2
1

dN
i i

d d
i

L


 θ p θ u  (6-5) 
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where dN  is the number of training samples. The derivatives of state variables can be 

obtained by the finite difference-based filtering. Denote the derivatives of state 

variables as  T

1 2 3, ,P P P P    , i.e.,  T
, ,u u r  . The first derivative of the displacement 

is the velocity, which can be expressed by 1 2 0 P P . Thus, we can get the so-called 

equality loss: 

       2

1 1 1 2 1 2
1

cN
i i

e
i

L


 θ p θ p θ  (6-6) 

where cN  is the number of collocation points. Another rLSTM network is utilized to 

predict the mass-normalized restoring force  Sg X , which can be denoted as: 

     2
1 2rSLTM , |S Sg X P θ X θ  (6-7) 

where 2θ  is the trainable weights and biases of the second rLSTM network. Consider 

the uncertain governing equation, we have the following governing loss function: 

       2

1 2 2 1 1 2 2
1

, ,
cN

i i
g g

i

L a


  θ θ p θ g θ θ I  (6-8) 

The total loss can be given by: 

        1 2 1 1 2 2 3 1 2, ,d e gL L L L    θ θ θ θ θ θ  (6-9) 

where 1 , 2  and 3  are user-defined weights for convergence control. The 

parameters 1 2,θ θ  can be found by solving the following optimization problem: 
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    
1 2

1 2 1 2
,

, arg min ,L
θ θ

θ θ θ θ  (6-10) 

Besides, the structure of the rLSTM network is shown in Figure 6-2: 

 

Figure 6-2 The structure of the rLSTM network in chapter 6 

where two fully-connected layers are employed in this chapter and the notations 

,t ta x   are seismic ground motions and random structural parameters, respectively, 

which are preprocessed by the normalization process stated in chapter 5. ty  represents 

the output of the rLSTM network. 

6.3 PhyrLSTM for metamodeling of a highway bridge 

6.3.1 The stochastic highway bridge model 

A three-span continuous concrete highway bridge subjected to the stochastic seismic 

excitations is investigated. The geometric configuration of the bridge is described in 

Figure 6-3. The length of this highway bridge is 30 4=120 m and the deck utilizes a 

box-girder with 8.5 m width and 1.9 m depth. Double circular cross-section columns 

with a diameter of 1.2 m are adopted to support the deck ends and the diameter of the 
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interior columns is 1.6 m. Each column is 10 m in height and is erected on a pile-

group foundation consisting of double piles with a diameter of 1.5 m. The decks and 

the footings are constructed by using the Chinese grade concrete C50 and C35, 

respectively. The columns employ the concrete C40 and HRB400 reinforcement.  

The numerical finite element model is built by the OpenSees platform 

(McKenna, 2011), the simulation model details are shown in Figure 6-4. The deck is 

modeled by the elastic beam-column elements. The bearing is simulated by the zero-

length element and the horizontal stiffness of the bearing can be calculated as

/b v yK F d , in which the friction coefficient   is equal to 0.02, the yield 

displacement is adopted as yd =0.003 m and vF  is the vertical reaction force. The yield 

force of the bearing can be given by y b yF K d . The spherical steel bearings are 

modeled by elastic-perfectly plastic material shown in Figure 6-4 (a). The soil-

structure interaction is modeled by a 6-degree-of-freedom linear soil spring shown in 

Figure 6-4 (b) and the stiffness refers to Mangalathu's study (Mangalathu et al., 2018). 

Non-linear beam-column fiber elements described in Figure 6-4 (c) are adopted to 

simulate the columns, where “Concrete04” and “Steel02” materials are employed to 

describe the constitutive laws of the concrete and reinforcement fibers, receptively. 

Rayleigh damping with appropriate coefficients 0.344m   and 0.002k   are 

adopted, where m  and k  are mass and stiffness proportional coefficients, 

respectively. The random structural parameters of this highway bridge refer to peers' 

studies (Mangalathu et al., 2018; X. Wang et al., 2022), and are listed in Table 6-1. 

These uncertainties affect the mass, damping and stiffness matrices, leading to an 

uncertain governing equation.  
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Table 6-1 Random variables for the highway bridge 

Variable Description Distribution Mean CoV 
Pier     

l  Longitudinal reinforcement ratio Uniform 0.02 0.29 

s  Transverse reinforcement ratio Uniform 0.009 0.33 

cf  (MPa) Concrete compressive strength Lognormal 40 0.12 

yf  (MPa) Rebar yield strength Lognormal 448 0.08 

Translational stiffness  

tsK  (kN/m) Single-column bent Lognormal 350300 0.001 

tdK  (kN/m) Double-column bent Lognormal 175100 0.003 

Rotational stiffness  

rsK  Single-column bent Lognormal 9040000 0.031 

rdK  Double-column bent Lognormal 1360000 0.206 

 

The pier drift is of concern, and the maximum pier drift is expressed by: 

  Pier top
max

1 7
max i

i
D

 
   (6-11) 

where Pier top
i  represents the top displacement of the i-th pier.  

The stochastic seismic can be simulated by the spectrum representation 

method (Liu et al., 2016):  

      
1 1

0

2 2 ,A k k k
k

d

a t S w t w w t 




    (6-12) 

in which  ,AS w t  is the double-sided evolutionary power spectral density function of 

time t and frequency w: 

      2
, ,AS w t A w t S w  (6-13) 

where  ,A w t  is a modulating function defined as: 
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  
2

0, exp exp 1
a a

wt t t
A w t

w t c c


              
 (6-14) 

and  S w  is the one-sided power spectral density function given as: 

  
   

4 2 2 2 4
g g g

02 22 2 2 2 2 2 2 2 2 2
g g g

4

4 4f f f

w w w w
S w S

w w w w w w w w



 


 

   
 (6-15) 

The phase angle k s follow independent uniform distributions with support on 

the interval  0,2 . In this paper, the dimension of the random variables involved in 

the stochastic seismic excitations are 1001, i.e., 1 1001n  . The other parameters 

involved in the stochastic process can be specified by the follows: 0.02t  s and T = 

30 s; 0 0.15  , 5aw  rad/s, 30at  s and c = 9; g aw w , g0.1fw w , 

0.60g f    and 0 48.9332S   cm2/s. The representative seismic excitations are 

shown in Figure 6-5. 

 

Figure 6-3 A highway bridge 
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Figure 6-4 Finite element model of the highway bridge 

 

(a) Sample 1 

 

(b) Sample 2 

Figure 6-5 Representative samples of the stochastic seismic excitation 

 

6.3.2 PhyrLSTM for metamodeling of the highway bridge 

The structures of rLSTM network 1 and network 2 are specified as follows: both 

networks have 2 LSTM layers, two fully-connected neural network layers, and a 

hidden state size of 50. The input feature size for rLSTM network 1 is 30 (comprising 

29 random structural parameters and 1 dimension for the seismic excitation), and its 

output dimension is 3. The input dimension for rLSTM network 2 is 32 (comprising 

29 random structural parameters and the 3 predicted outputs from rLSTM network 1). 

The output feature size for rLSTM network 2 is 1. A learning rate of 0.01 and the 
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Adam optimizer are adopted. The user-defined weights for data, equality, and 

governing equation losses are 1, 0.1, and 0.1, respectively. The normal rLSTM 

network used for comparisons has the same structure as rLSTM network 1. A total of 

10000 test samples are employed to validate the performance of the proposed 

PhyrLSTM network. 

First, 200 observed samples are used to train both the normal rLSTM and 

PhyrLSTM networks, with 160 samples for training and 40 for validation. The batch 

size is set to 80, and the number of epochs is specified as 2000. The samples are 

generated using the Latin hypercube sampling technique. During the training process, 

the best neural network, i.e., the one with the smallest validation loss, is saved. To 

account for variability due to the random seed, we train the rLSTM and PhyrLSTM 

networks 20 times. Figure 6-6 illustrates three representative training and validation 

loss curves, highlighting the varying accuracy of the rLSTM models. The 

determination coefficients (R2) on 200 observed samples for rLSTM, as shown in 

Figure 6-6 (a), (b), and (c), are -1.70, 0.44, and 0.85, respectively. In contrast, the 

PhyrLSTM model consistently achieves higher R2 values of 0.93, 0.92, and 0.93, 

respectively. As seen in the figures, the training loss for the normal rLSTM is nearly 

identical to that of PhyrLSTM. However, the validation loss for the normal rLSTM 

network is significantly larger than that for the PhyrLSTM. Thus, embedding physical 

knowledge into the neural network can significantly improve its generalization ability. 

To validate that PhyrLSTM can learn the underlying physics, the equality loss and 

governing equation loss are depicted in Figure 6-7. Both losses approach zero as the 

training progresses.  
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(a) Random Seed 1 

 

(b) Random Seed 2 

 

(c) Random Seed 3 

Figure 6-6 Training and validation losses (trained by 200 samples) 

 

 

(a) Random Seed 1 

 

(b) Random Seed 2 
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(c) Random Seed 3 

Figure 6-7 Physical loss (trained by 200 samples) 

Figure 6-8 presents representative training, validation, and test samples. The 

time history displacement curves predicted by the PhyrLSTM model align more 

closely with the reference results. As shown Figure 6-8 (c) and (d), the PhyrLSTM 

significantly outperforms the rLSTM. Figure 6-9 compares the extreme responses 

predicted by the three typical rLSTM and PhyrLSTM models for the training and test 

samples. The determination coefficients (R2) are provided in the figure. The 

PhyrLSTM consistently achieves higher R2 values on both the training and test sets 

compared to the rLSTM. A negative R2 value indicates that the rLSTM is not suitable 

for modeling the test data. 

 

(a) Training sample 

 

(b) Validation sample 
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(c) Test sample 1 

 

(d) Test sample 2 

Figure 6-8 Time history responses by rLSTM and PhyrLSTM (trained by 200 
samples) 

 

(a) Random Seed 1 (Training) 

 

(b) Random Seed 1 (Test) 

 

(c) Random Seed 2 (Training) 

 

(d) Random Seed 2 (Test) 
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(e) Random Seed 3 (Training) 

 

(f) Random Seed 3 (Test) 

Figure 6-9 The extreme responses by rLSTM and PhyrLSTM (trained by 200 
samples) 

Three commonly used metrics, i.e., mean absolute error (MAE), root mean 

squared error (RMSE) and the determination coefficient (R2), are utilized to assess the 

performance of rLSTM and PhyrLSTM. The boxplots of these metrics across 20 

rounds of training are shown in Figure 6-10. The notation “MAE-r” refers to the MAE 

obtained from rLSTM, while “MAE-P” corresponds to the MAE from PhyrLSTM, 

and similar notation applies to the other metrics. To clearly display boxplots of 

different metrics, each metric is normalized by its maximum absolute value. The 

normalized metrics are represented by red points in the figure. Note that R2 calculated 

by rLSTM contains negative values, so the normalization for R2 is handled separately 

for positive and negative values. The values of three metrics from 200 observed 

samples and 10000 test samples are listed in Table 6-2 and Table 6-3, respectively. 

According to the boxplots, PhyrLSTM demonstrates greater stability compared to 

rLSTM. The variation in MAE, RMSE and R2 for PhyrLSTM is minimal, whereas 

these metrics for rLSTM exhibit a wide range of scatter. Additionally, the normalized 

MAE, RMSE and R2 values are closely concentrated near 0, 0, and 1, respectively, 

indicating that PhyrLSTM offers greater accuracy compared to the standard rLSTM. 
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Note that R2 values for rLSTM include several negative values, suggesting that the 

trained rLSTM model is not well-suited for representing the observed samples. Based 

on the results in Table 6-2 and Table 6-3, R2 values by PhyrLSTM are consistently 

around 0.9 with 200 samples and around 0.7 with 10000 test samples. In most cases, 

R2 values by rLSTM are smaller than those for PhyrLSTM. 

 

(a) Training and validation sets 

 

(b) Test set 

Figure 6-10 Performance of rLSTM and PyrLSTM (trained by 200 samples) 

 

Table 6-2 The accuracy of rLSTM and PhyrLSTM on training and validation sets 
(trained by 200 samples) 

No. MAE-r MAE-P RMSE-r RMSE-P R2-r R2-P 
1 0.0077  0.0058  0.0144  0.0098  0.8430  0.9279  
2 0.0076  0.0061  0.0142  0.0093  0.8476  0.9345  
3 0.0810  0.0061  0.0889  0.0098  -4.9515  0.9282  
4 0.0528  0.0070  0.0610  0.0096  -1.8022  0.9308  
5 0.0059  0.0086  0.0124  0.0124  0.8846  0.8848  
6 0.0501  0.0073  0.0599  0.0098  -1.7038  0.9274  
7 0.0111  0.0077  0.0165  0.0104  0.7941  0.9182  
8 0.0202  0.0072  0.0273  0.0102  0.4391  0.9211  
9 0.0059  0.0067  0.0111  0.0105  0.9074  0.9164  
10 0.0072  0.0075  0.0141  0.0104  0.8509  0.9180  
11 0.0062  0.0116  0.0110  0.0151  0.9085  0.8275  
12 0.0061  0.0064  0.0116  0.0095  0.8985  0.9322  
13 0.0429  0.0081  0.0518  0.0116  -1.0181  0.8987  
14 0.0220  0.0068  0.0284  0.0097  0.3913  0.9299  
15 0.0072  0.0060  0.0123  0.0096  0.8862  0.9304  
16 0.0603  0.0073  0.0674  0.0099  -2.4191  0.9265  
17 0.0095  0.0064  0.0156  0.0103  0.8176  0.9197  
18 0.0427  0.0070  0.0523  0.0104  -1.0604  0.9186  



 

155 

Table 6-2 (continued) The accuracy of rLSTM and PhyrLSTM on training and 
validation sets (trained by 200 samples) 

No. MAE-r MAE-P RMSE-r RMSE-P R2-r R2-P 
19 0.0052  0.0096  0.0104  0.0131  0.9191  0.8717  
20 0.0088  0.0074  0.0151  0.0111  0.8288  0.9064  

 

Table 6-3 The accuracy of rLSTM and PhyrLSTM on test set (trained by 200 samples) 

No. MAE-r MAE-P RMSE-r RMSE-P R2-r R2-P 
1 0.0193  0.0125  0.0253  0.0168  0.3263  0.7025  
2 0.0181  0.0122  0.0237  0.0164  0.4094  0.7192  
3 0.0793  0.0126  0.0853  0.0168  -6.6394  0.7046  
4 0.0509  0.0109  0.0580  0.0148  -2.5369  0.7700  
5 0.0198  0.0131  0.0261  0.0174  0.2861  0.6819  
6 0.0604  0.0117  0.0679  0.0154  -3.8375  0.7500  
7 0.0218  0.0122  0.0282  0.0163  0.1660  0.7198  
8 0.0339  0.0110  0.0409  0.0147  -0.7589  0.7745  
9 0.0154  0.0139  0.0206  0.0182  0.5556  0.6521  
10 0.0181  0.0119  0.0238  0.0159  0.4057  0.7345  
11 0.0162  0.0161  0.0215  0.0206  0.5166  0.5548  
12 0.0142  0.0110  0.0191  0.0147  0.6176  0.7723  
13 0.0570  0.0118  0.0653  0.0156  -3.4782  0.7452  
14 0.0411  0.0120  0.0494  0.0160  -1.5615  0.7329  
15 0.0178  0.0108  0.0235  0.0147  0.4210  0.7734  
16 0.0632  0.0120  0.0694  0.0160  -4.0522  0.7320  
17 0.0200  0.0123  0.0257  0.0163  0.3044  0.7195  
18 0.0559  0.0122  0.0640  0.0165  -3.2964  0.7157  
19 0.0147  0.0134  0.0197  0.0176  0.5924  0.6747  
20 0.0209  0.0119  0.0271  0.0160  0.2304  0.7320  

 

Then, 1000 observed time history responses are employed for training the 

rLSTM and PhyrLSTM, among which 800 samples are allocated to training set and 

200 samples to validation set. Similarly, the rLSTM and PhyrLSTM models are each 

trained 20 times to account for variability. Three representative results are presented 

in Figure 6-11. The R2 values on 1000 training and validation samples for rLSTM, as 

indicated in Figure 6-11 (a), (b) and (c), are -4.00, 0.71 and 0.94, respectively, while 

those for PhyrLSTM are 0.95, 0.95 and 0.96, respectively. Due to the influence of 

random seeds, the training process of the rLSTM is less stable than that of the 

PhyrLSTM, even when 1000 observed samples are used for training. As shown in 
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Figure 6-12, the reduction in physical loss demonstrates that the PhyrLSTM 

effectively captures the underlying physics. The extreme responses by training and 

test samples are shown in Figure 6-13. The determination coefficients for rLSTM on 

both training set and test set are lower than those by the PhyrLSTM, indicating the 

higher accuracy of the PhyrLSTM. Additionally, the relative errors for the PhyrLSTM 

predominantly fall within the 20% error bounds, whereas those for the rLSTM are 

more unstable. 

 

(a) Random Seed 1  

 

(b) Random Seed 2 

 

(c) Random Seed 3 

Figure 6-11 Training and validation losses (trained by 1000 samples) 
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(a) Random Seed 1 

 

(b) Random Seed 2 

 

(c) Random Seed 3 

Figure 6-12 Physical loss (trained by 1000 samples) 

 

(a) Random Seed 1 (Training) 

 

(b) Random Seed 1 (Test) 



 

158 

 

(c) Random Seed 2 (Training) 

 

(d) Random Seed 2 (Test) 

 

(e) Random Seed 3 (Training) 

 

(f) Random Seed 3 (Test) 

Figure 6-13 The extreme responses by rLSTM and PhyrLSTM (trained by 1000 
samples) 

The boxplots of three metrics are depicted in Figure 6-14. The normalized 

MAE and RMSE values produced by PhyrLSTM are tightly clustered near 0, and the 

normalized R2 values are concentrated near 1. In contrast, the normalized values 

produced by rLSTM exhibit significant variability. Moreover, the values of the three 

metrics on training and test sets are listed in Table 6-4 and Table 6-5, respectively. 

The accuracy has significantly improved compared to models trained with only 200 

observed samples. The R² values obtained from PhyrLSTM consistently exceed 0.9, 

indicating a high level of accuracy in predicting time history responses. However, 

rLSTM does not achieve the same level of accuracy or stability in its predictions. It 
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can be found in Table 6-4 that 8 rLSTM models produce negative R2 values, which 

means unacceptable errors are generated by these rLSTM models. Consequently, the 

results demonstrate that even with 1000 observed samples, neural networks lacking 

physical knowledge still do not perform as well as the PhyrLSTM for metamodeling 

of the highway bridge. 

 

(a) Training and validation sets 

 

(b) Test set 

Figure 6-14 Performance of rLSTM and PyrLSTM (trained by 1000 samples) 

Table 6-4 The accuracy of rLSTM and PhyrLSTM on training and validation sets 
(trained by 1000 samples) 

No. MAE-r MAE-P RMSE-r RMSE-P R2-r R2-P 
1 0.0358  0.0056  0.0430  0.0077  -0.8002  0.9424  
2 0.0060  0.0047  0.0079  0.0063  0.9391  0.9609  
3 0.0094  0.0044  0.0124  0.0061  0.8494  0.9639  
4 0.0112  0.0041  0.0149  0.0058  0.7853  0.9669  
5 0.0093  0.0042  0.0120  0.0062  0.8609  0.9622  
6 0.0572  0.0047  0.0630  0.0064  -2.8600  0.9600  
7 0.0044  0.0044  0.0062  0.0060  0.9625  0.9654  
8 0.0647  0.0052  0.0717  0.0071  -4.0029  0.9509  
9 0.0538  0.0037  0.0620  0.0052  -2.7454  0.9741  
10 0.0041  0.0042  0.0060  0.0058  0.9655  0.9677  
11 0.0134  0.0053  0.0174  0.0071  0.7060  0.9511  
12 0.0576  0.0045  0.0653  0.0062  -3.1425  0.9630  
13 0.0045  0.0039  0.0062  0.0054  0.9632  0.9711  
14 0.0677  0.0041  0.0779  0.0058  -4.8978  0.9676  
15 0.0496  0.0040  0.0569  0.0057  -2.1513  0.9686  
16 0.0359  0.0052  0.0424  0.0071  -0.7506  0.9516  
17 0.0139  0.0052  0.0162  0.0074  0.7432  0.9467  
18 0.0069  0.0045  0.0098  0.0063  0.9069  0.9619  
19 0.0043  0.0050  0.0059  0.0073  0.9665  0.9481  
20 0.0087  0.0049  0.0112  0.0067  0.8776  0.9568  
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Table 6-5 The accuracy of rLSTM and PhyrLSTM on test set (trained by 1000 
samples) 

No. MAE-r MAE-P RMSE-r RMSE-P R2-r R2-P 
1 0.0422  0.0077  0.0504  0.0106  -1.6638  0.8815  
2 0.0075  0.0068  0.0104  0.0093  0.8868  0.9083  
3 0.0111  0.0063  0.0148  0.0086  0.7708  0.9221  
4 0.0131  0.0064  0.0174  0.0091  0.6810  0.9135  
5 0.0108  0.0065  0.0142  0.0090  0.7877  0.9143  
6 0.0573  0.0068  0.0638  0.0096  -3.2776  0.9032  
7 0.0067  0.0059  0.0095  0.0082  0.9055  0.9288  
8 0.0661  0.0071  0.0740  0.0097  -4.7486  0.9009  
9 0.0587  0.0053  0.0666  0.0076  -3.6531  0.9400  
10 0.0067  0.0058  0.0095  0.0081  0.9062  0.9316  
11 0.0157  0.0069  0.0202  0.0094  0.5716  0.9073  
12 0.0582  0.0060  0.0653  0.0084  -3.4785  0.9262  
13 0.0057  0.0058  0.0079  0.0081  0.9342  0.9311  
14 0.0690  0.0060  0.0785  0.0084  -5.4751  0.9252  
15 0.0497  0.0058  0.0567  0.0083  -2.3755  0.9282  
16 0.0374  0.0072  0.0444  0.0099  -1.0717  0.8980  
17 0.0161  0.0077  0.0194  0.0105  0.6059  0.8834  
18 0.0091  0.0064  0.0128  0.0090  0.8290  0.9152  
19 0.0058  0.0074  0.0083  0.0105  0.9273  0.8845  
20 0.0102  0.0066  0.0135  0.0091  0.8093  0.9136  

 

6.3.3 Adaptive Kriging incorporated with PhyrLSTM for dynamic reliability 

analysis of the highway bridge 

It is known that the reliability analysis requires a highly accurate surrogate model for 

failure probability estimation while the observed data is usually insufficient for 

training such a model. Active learning strategy can select the samples in the vicinity 

of the limit state surface so that we can build an adaptive Kriging model. Once the 

surrogate model for the limit state surface is constructed, the signs of samples in 

failure or safe region can be identified. Hence, a surrogate model across the entire 

region is not necessary by leveraging the adaptive Kriging model, as the exact values 

of samples far away from the limit state surface are not important as long as the signs 

of them are correctly identified.  
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Similarly, extreme responses, i.e., the maximum pier drift, are of interest. First, 

we need to reconstruct extreme responses using a Kriging model. As introduced in 

chapter 5, a low-dimensional latent space can be detected using the rLSTM-AE 

network. Herein, the rLSTM-AE is replaced by the PhyrLSTM-AE. The 

autoencoder's structure remains the same as in the rLSTM-AE. Denote the dimension 

of the detected latent variables as zd . The encoding function of AE is a fully 

connected neural network with three layers, containing 4 zd , 2 zd  and zd  nodes, 

respectively. The corresponding decoding function is also a three-layer fully 

connected neural network and each layer contains 2 zd , 4 zd  and 1 nodes, respectively. 

The activation function is adopted as ReLU. For details on implementation, please 

refer to Algorithm 3 in chapter 5. 

Herein, a PhyrLSTM network with a R2 of 0.97 on 1000 observed samples is 

selected. Figure 6-15 illustrates the accuracy of the selected PhyrLSTM on both 

training and test sets. Figure 6-15 (b) reveals that the relative errors of the predicted 

extreme responses are mostly within 20%. First, the low dimensional latent variables 

need to be identified. During the training of the autoencoder, exact extreme values 

from the 1000 observed samples can be used. For unobserved samples, approximate 

extreme values predicted by the PhyrLSTM can be employed to identify an 

approximate latent space.  

Figure 6-16 shows Kriging reconstruction error defined by Eq. (5-21), which 

calculated by 1000 observed samples. The dimension of the latent variables is 

specified from 2 to 20 when training the autoencoder. 100 training samples are 
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adopted for constructing the Kriging model. The red point denotes the minimum value 

of the construction error, with the optimal latent variable dimension being 6. 

 

(a) Training and validation (1000 samples) 

 

(b) Test (10000 samples) 

Figure 6-15 The performance of the selected PhyrLSTM network 

 

Figure 6-16 Kriging construction error 

 
The performance of the trained autoencoder and the constructed Kriging are 

plotted in Figure 6-17. The notation AE-K denotes that Kriging is built on the basis of 

detected latent variables by AE. PhyrLSTM-AE-K refers to Kriging constructed using 

latent variables detected from the approximate extreme value space by the PhyrLSTM.  
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Figure 6-17 (a) shows the accuracy of the trained autoencoder and constructed 

Kriging based on the detected latent variables from the observed extreme values 

(1000 observed samples). It can be observed that both the trained autoencoder and 

Kriging well describe the observed extreme value space. Figure 6-17 (b) reflects the 

performance of the trained autoencoder and the Kriging in reconstructing 10000 

approximate extreme values by PhyrLSTM. Both the extreme values predicted by the 

trained autoencoder and the constructed Kriging align well with those predicted by the 

PhyrLSTM, demonstrating that Kriging with the detected latent variables effectively 

reconstructs the approximate extreme value space. Compared to the true test extreme 

values, the Kriging model achieves nearly the same accuracy as the PhyrLSTM, 

indicating that Kriging can serve as a substitute for the PhyrLSTM in extreme 

response prediction. This capability enhances the applicability of the active learning 

strategy for dynamic reliability analysis of stochastic systems.  

 

(a) Compared to true training samples 

 

(b) Compared to PhyrLSTM (test samples) 
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(c) Compared to true test samples 

Figure 6-17 The accuracy of the PhyrLSTM and PhyrLSTM-AE-K 

Once the latent variables are obtained, the active learning strategy can be 

employed to build an adaptive Kriging model. The threshold of the maximum pier 

drift is set to 0.15 m in case 1 and the failure probability by 2 104 MCS is 7.07 10-2. 

The candidate pool for the active learning-based Kriging is also set to 2  104, 

allowing for comparison with the reference results provided by MCS. An initial 

Design of Experiments (DoE) for the Kriging model consists of 100 training samples. 

The U learning function and U stopping criterion defined in chapter 5 are used to 

enrich the DoE. The proposed method, which integrates PhyrLSTM with the 

autoencoder and the adaptive Kriging, is denoted as PhyrLSTM-AE-AK. The 

convergence curve for case 1 is plotted in Figure 6-18 (a). It can be observed that the 

failure probability converges to the reference line as the sample size increase. The 

enrichment process stops after adding 324 samples. The estimated failure probability 

is 7.07 10-2 with a relative error of 6.85%. Besides, two moments methods, MIGLD 

(Dang & Xu, 2020) and MEM (Li & Zhang, 2011), are adopted to estimate the failure 

probability for comparisons. Both methods consume 1000 calls to the finite element 

model and produce relative errors of 17.35% and 13.68%, respectively. PhyrLSTM 
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and PhyrLSTM-AE-K are also employed for failure probability estimation, however, 

the relative errors by them exceed 40%. The proposed PhyrLSTM-AE-AK, requiring 

1324 finite element model evaluations, achieves significantly improved accuracy with 

a relative error of 6.85%. 

Case 2 investigates a failure probability of 6.15 10-3 by 2 104 MCS. The 

convergency curve shown in Figure 6-18 (b) reveals that the accuracy is continuously 

improved by the active learning strategy. The results are listed in Table 6-6. The 

active learning process terminates when 224 samples are added into the DoE. 

PhyrLSTM-AE-AK estimates the failure probability at 5.37 10-3 with a relative error 

of 12.74%. Both MEM and MIGLD yield unsatisfactory results, with relative errors 

of 48.58% and 46.07%, respectively. The PhyrLSTM model, trained with 1000 

samples, is insufficient for reliability analysis, exhibiting a relative error of 95.12%. 

The Kriging model based on the detected latent variables performs nearly identically 

to PhyrLSTM in predicting extreme responses, resulting in the same relative error for 

PhyrLSTM-AE-K as for PhyrLSTM. 

 

(a) Case 1 

 

(b) Case 2 
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Figure 6-18 Failure probabilities estimation for the highway bridge 

Table 6-6 Results by different methods for the highway bridge 

 Method callN  fP  CoV(%) R.E. (%) 

Case 1  MCS 2 104 7.59 10-2 2.47 – 
 MEM 1000 8.91 10-2 – 17.35 
 MIGLD 1000 8.63 10-2 – 13.68 
 PhyrLSTM 1000 4.28 10-2 3.44 43.61 
 PhyrLSTM-AE-K 1000 4.30 10-2 3.34 43.41 
 PhyrLSTM-AE-AK 1324 7.07 10-2 4.42 6.85 
Case 2 MCS 2 104 6.15 10-3 8.99 – 
 MEM 1000 9.14 10-3 – 48.58 
 MIGLD 1000 8.98 10-3 – 46.07 
 PhyrLSTM 1000 3.00 10-4 40.82 95.12 
 PhyrLSTM-AE-K 1000 3.00 10-4 40.82 95.12 
 PhyrLSTM-AE-AK 1224 5.37 10-3 9.73 12.74 

 

6.4 Summary 

The metamodeling of a stochastic highway bridge system is investigated in 

this chapter. The stochastic seismic excitation is generated by the spectrum 

representation method, leading to a high-dimensional stochastic system. To build the 

surrogate model for this system, rLSTM network is utilized. However, conventional 

rLSTM networks rely solely on observed data, neglecting the underlying physical 

knowledge. To address this, a physics-informed rLSTM (PhyrLSTM) is proposed to 

incorporate the governing dynamics equations. Additionally, the PhyrLSTM can 

embed uncertain structural parameters into the network, allowing it to model an 

uncertain governing equation. When only 200 observed data points are utilized, the 

rLSTM, which lacks physical knowledge, exhibits reduced accuracy on the validation 

and test sets and the results are unstable. In contrast, the PhyrLSTM demonstrates 

superior predictive performance on the unobserved data. Even with an increase to 

1000 observed data points, the rLSTM still lacks training reliability and, in most cases, 

is not as accurate as the PhyrLSTM. Consequently, PhyrLSTM provides a more 
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reliable and accurate surrogate model for the highway bridge. However, this accuracy 

is still insufficient for dynamic reliability analysis. To address this, an autoencoder is 

used to detect a latent space for the approximate extreme value space by PhyrLSTM. 

Subsequently, an adaptive Kriging model is constructed using the active learning 

strategy. The results demonstrate that the accuracy of failure probability estimation is 

significantly improved with PhyrLSTM-AE-AK. 
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CHAPTER 7 AN ERROR-BASED OFFLINE LEARNING 

STRATEGY FOR DYNAMIC RELIABILITY ANALYSIS 

INCORPORATED WITH RLSTM 

7.1 Introduction 

Adaptive Kriging model has been widely used in structural reliability analysis since it 

can significantly reduce the computational effort by leveraging the active learning 

strategy. Typically, the design of experiments is enriched incrementally, requiring the 

computational model to provide labels for newly added points. This iterative process 

can become extremely time-consuming. Although multi-point enrichment strategies 

have been proposed, the updating process of the surrogate model cannot be completed 

in a single step, continuously requiring new information from the computational 

model, which can be regarded as an online learning strategy. This approach, however, 

impedes parallel computing and significantly increases computational effort. In this 

chapter, a so-called offline learning strategy is introduced. Kriging model can be 

updated in a single step based on the accuracy of a trained rLSTM network. First, this 

strategy is validated by a highway bridge model subjected to the stochastic seismic 

excitation. Then, metamodeling of a practical transmission tower subjected to 

stochastic wind loads is investigated. Kriging model incorporated with the rLSTM 

and the offline learning strategy is employed for the dynamic reliability analysis of a 

transmission tower subjected to stochastic wind loads. 
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7.2 A prediction error-based offline learning strategy  

7.2.1 Conventional online active leaning strategy for adaptive Kriging model 

The conventional active learning strategy aims to continuously enrich the DoE 

through learning functions until the stopping criterion is satisfied. For example, the U 

learning function reflects the risk of a point crossing the limit sate surface or the 

probability of the wrong classification: 

    
 

K

K

U




x

x
x

 (7-1) 

where  K x  and  2
K x  are mean and variance predicted by Kriging model, 

respectively. The probability of wrong classification can be calculated by: 

    
 w

K
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P

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 
    

 

x
x

x
 (7-2) 

where   is the cumulative distribution function of the standard normal distribution. 

For example,   2U x  represents that a probability of wrong classification is equal 

to 2.3%. The next best point is selected by the following: 

  * arg minU



x

x x  (7-3) 

meaning the point with the maximum probability of incorrect classification in the 

entire candidate domain   is selected as the best point. Once the best point is 

selected, the response can be obtained by running the performance function G: 
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  *w G x  (7-4) 

The U stopping criterion is defined as: 

   min 2U x  (7-5) 

when the stopping criterion is satisfied, the probability of wrong classification on 

points in the candidate domain is small than 2.3%.  

It can be seen that this strategy selects one best point in each step, and then the 

computational model is called to obtain the corresponding response. The DoE can be 

updated as: 

        * *, , , , G x x     (7-6) 

This learning process continues until the stopping criterion is satisfied, 

requiring the computational model to continuously provide new information (one 

point at a time) to update the Kriging model. This strategy does not support parallel 

computing, making the learning process time-consuming. Although some researchers 

have proposed multi-point learning strategies to allow parallel computing, such as a 

selection strategy based on the bounds of the limit state surface that considers the 

uncertainty of the Kriging model (Schöbi et al., 2017). Kriging model is still hard to 

be refined in one step and the computational model is still required for the updating 

process. Moreover, the convergence issue of complex finite element models built by 

commercial software sometimes makes the active learning process much more 

complicated. For instance, if one finite element model corresponding to the best point 

fails to converge, the whole learning process fails.  
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7.2.2 An offline learning strategy for adaptive Kriging model 

It is known that the learning process of AKMCS starts with an initial DoE and the size 

of the DoE is usually very small, e.g., 12 initial training samples are usually 

recommended (Echard et al., 2011). Therefore, the Kriging model iteratively obtains 

information from the computational model to refine itself, particularly focusing on 

samples near the limit state surface. For the reliability analysis of stochastic dynamic 

systems, an rLSTM network is first built to approximate the extreme space, which is 

then used to construct a latent space for the Kriging model. Denote the trained rLSTM 

model as  , the time history response can be obtained by: 

       ˆ ,SY t t a t X  (7-7) 

The extreme response can be obtained by: 

   ev
ˆ ˆmaxY Y t  (7-8) 

where the notation  S tX  represents expanded random structural parameters and 

 a t  denotes external stochastic loads. The latent space for building Kriging model 

can be found by the autoencoder: 

  ev
ˆE Y φZ  (7-9) 

where  E φ  is the encoder function of autoencoder and φ is the trainable weights 

and biases of autoencoder. The details of training the rLSTM and autoencoder 

networks are the same as those in chapter 5. 



 

172 

In addition to providing the approximate extreme value space, the relative 

errors of the observed data can also be obtained.: 

 ev ev

ev

ˆ
100%

i i

i i

y y

y
 
   (7-10) 

where ev
iy  is the i-th observed data. The core idea of AKMCS is to construct an 

adaptive Kriging model for the limit state surface with added samples typically 

located near this surface. However, the process of selecting these "best" points is 

time-consuming and does not support parallel computing. The limit state surface 

depends on a given threshold b. The relative error of the observed data can help 

identify samples near the limit state surface. Due to prediction errors, the bounds of 

the threshold can be defined by: 

 ˆb b b    (7-11) 

where  1b b    ,  1b b    . The choice of   depends on the relative errors 

of predictions predominantly being within specified error bounds, typically set at 10% 

or 20%. If the prediction error is too large, the trained rLSTM network may be not 

suitable for metamodeling of observed data and for latent variables detection. As the 

Kriging model with latent variables Z is ultimately employed for extreme responses 

prediction, the extreme response predicted by Kriging model is utilized to identity 

samples within threshold bounds. Denote the trained Kriging model as K : 

  ev,
ˆ

K KY  Z  (7-12) 
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The training of the Kriging model follows the same procedure as described in chapter 

5, with an initial DoE size of 100. 

Assume a MC candidate pool MC  with MCN  samples, the latent space Z  can 

be determined by Eqs. (7-7), (7-8) and (7-9). Denote samples within the threshold 

bounds as: 

  ev,ˆ| , 1,2,...,j j
b K bb y b j N   z  (7-13) 

where bz  is the latent variables identified from the approximate extreme value evŶ  

and  b Zz . ev,Kˆ jy  is the j-th extreme response predicted by the initial Kriging model. 

The notation bN  is the number of samples within the threshold bounds. Although the 

U learning function can select samples near the limit state surface, it is not very 

efficient and relies on information from the computational model. In contrast, while 

some samples far from the limit state surface may be chosen, Eq. (7-13) can select 

samples in a single step and only requires information from the surrogate model. The 

number of samples within the bounds depends on the number of candidate samples, 

i.e., MCN . To achieve a target ˆCoV 0.1fP     given a failure probability ˆ
fP , the 

number of MCS samples should satisfy: 

 

 MC 2

1 100
ˆˆ ˆCoV f

f f

N
PP P

 
  

 (7-14) 

The number of failure points can be calculated by: 

 MC
ˆ ˆ 100f fN N P   (7-15) 
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The online learning strategy primarily selects samples near the limit sate 

surface so it may require fewer calls to the computational model. The threshold 

bounds rely on the prediction error by the trained rLSTM network and the selected 

samples may include additional samples in both the safe and failure domains. If the 

bounds encompass the failure domain, the number of samples should be at least 100. 

To make a reliable estimation of failure probability, it is suggested that 100bN k  

and k can be 1, 2, and etc. Note that k should not be too large since these samples will 

be embedded into the initial DoE for training Kriging model. bN  can determine the 

number of required candidate samples, and the candidate pool Z  is enriched with 

N  samples at each step. Therefore, a threshold of bN , i.e., 100bN k , is set to 

determine the candidate pool. 

Then, the computational model is called to obtain true responses of the 

selected samples: 

  ev , 1, 2,...,j j
b by H j N x  (7-16) 

where j
bx  is a sample corresponding to the latent variable j

bz .  H   is the response 

function defined in chapter 5. Once the selected samples and their corresponding 

responses are obtained, the Kriging model can be trained in a single step and no 

longer requires the computational model. This makes it an offline learning strategy 

and enables the construction of an adaptive Kriging model in one step. Denote the 

final Kriging model as 1
K , the extreme responses on the candidate pool Z  can be 

calculated as: 
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  1
ev, MCˆ , 1, 2,...,i i

K Ky i N z  (7-17) 

Table 7-1 Offline learning strategy for dynamic reliability analysis 

Algorithm 5: offline learning strategy for dynamic reliability analysis 
Input: b, bN , max , 0bN  , and N  

Output: the estimated failure probability ˆ
fP  

1. While b bN N  

2.          Enrich the candidate pool MC  with N  samples. 

3.          Generate the corresponding N  stochastic loads  a t  and structural random variable SX . 

4.         Calculate the extreme response evˆ , 1, 2,...,iy i N   by Eqs. (7-7) and (7-8). 

5.         Determine the latent variables  evˆi iE y φz  and put them into Z  

6.          Calculate the extreme response by an initial Kriging  
ev,

ˆ
K

k k
Ky  z  

7.          Determine the samples within the bounds  ev,ˆ|b Kb y b  z  and denote the size as zN  

8.          b b zN N N   

9. End While 

10. Enrich the initial DoE o by adding   ,b bHz x  and train Kriging model 

11. Calculate the failure probability ˆ
fP  by Eq. (7-18) 

 

The failure probability can be readily estimated by: 

  
MC

ev,
1MC

1ˆ
N

f
i

i
KN

yP I


   (7-18) 

in which  I   is an indicator function such that 1I   for ev,Ky b  and I = 0 otherwise.  

The algorithm 5 for the proposed offline learning strategy is indicated in Table 

7-1. 
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7.3 Validation of the proposed offline strategy on a stochastic 

highway bridge model 

The proposed offline strategy for adaptive Kriging model construction is first 

validated on the highway bridge model investigated in chapter 6. An expanded latent 

space is introduced to facilitate the training of the offline adaptive Kriging model. 

Subsequently, samples within the threshold bounds are selected based on the 

prediction error of the PhyrLSTM model established in chapter 6, which helps 

determine the number of candidate samples. The computational model is evaluated on 

these selected samples, allowing the Kriging model to be refined in one step. The 

failure probability can then be readily calculated. 

7.3.1 Expanded latent variables for Kriging model 

In chapter 5, the latent variables Z are determined by the rLSTM-AE network, 

and are based solely on the approximate extreme value space provided by the rLSTM, 

as described in Eq. (7-9). However, if two different extreme responses predicted by 

the rLSTM are close to each other due to prediction errors, the latent variables derived 

from them will also be similar. Therefore, it is beneficial to expand the latent 

variables using additional prior knowledge. For example, incorporating structural 

parameters and peak ground motion into the latent space can create a more flexible 

representation. Note that the latent variables constructed in chapter 5 are derived from 

normalized extreme responses. Therefore, the expanded latent variable EZ can be 

defined as: 

  , ,E SZ Z X F   (7-19) 
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where SX  and F  are the normalized random structural parameters and the normalized 

extreme loads, respectively. The performance of the expanded latent variables needs 

to be validated first. In chapter 5, it was shown that the Kriging model constructed 

using the latent variables Z can achieve accuracy comparable to that of the rLSTM. 

The input variables, consisting of structural parameters and extreme external loads, 

i.e.,  0 ,SΖ X F  , are also investigated. As stated in chapter 5, the optimal dimension 

for the latent space based on the approximate extreme response space is 6. 29 random 

structural parameters are of interest for the highway bridge model so the dimensions 

of 0Z  and EZ  are 30 and 36, respectively. To validate the accuracy of the expanded 

latent variables for Kriging reconstruction, 10000 extreme responses predicted by the 

PhyrLSTM are employed for comparison. Figure 7-1 shows the performance of 

different latent variables. Kriging models based solely on structural parameters and 

extreme external loads cannot accurately reconstruct the extreme responses predicted 

by the PhyrLSTM. Both Z and EZ  are capable of accurately reconstructing these 

extreme responses. As EZ  contains more features, it will be adopted for Kriging 

construction.  
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(a) 0Z  

 

(b) Z 

 

(c) EZ  

Figure 7-1 The performance of different latent variables for the bridge 

7.3.2 The proposed offline strategy for dynamic reliability analysis 

The trained PhyrLSTM network from chapter 6 is used, and the relative errors are 

within 20% bounds. Consequently, a 20% prediction error is adopted for selecting 

samples within the threshold bounds. In algorithm 5, 300bN   and N  is specified 

as 1000.  

Case 1 considers a threshold of 0.15. The size of candidate pool is determined 

as 1000 and 207 samples are identified within the threshold bounds by algorithm 5. 

The initial Kriging is constructed by 100 training samples from the observed data with 
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the expanded latent variables EZ , referred to as Kriging- EZ . Figure 7-2 (a) displays 

the results of the initial Kriging model, showing that most points are within the 20% 

bounds. The red samples in Figure 7-2 (b) are samples within the threshold bounds. It 

can be observed that these points cover almost the whole failure domain and the 

vicinity of limit state surface, making them crucial for failure probability estimation. 

Therefore, they are incorporated into the training samples to construct the one-step 

offline adaptive Kriging model. The results of the failure probability estimation are 

summarized in Table 7-2. The notation PhyrLSTM-AE-OAK refers to the offline 

adaptive Kriging model integrated with PhyrLSTM-AE. The initial Kriging model 

produces an inaccurate result, with a relative error of 47.30%. Both PhyrLSTM-AE-

AK and PhyrLSTM-AE-OAK yield similar results, however, PhyrLSTM-AE-AK 

requires 324 iterations to obtain the failure probability while OAK only needs one 

iteration. The CoV by OAK is approximately 10%, which is consistent with Eq. (7-

14).  

 

(a) Initial Kriging 

 

(b) Offline adaptive Kriging 

Figure 7-2 Initial and offline adaptive Kriging given b = 0.15 
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Table 7-2 Failure probability estimation by different methods for the highway bridge 

 Method callN  fP  CoV(%) R.E. (%) 

Case 1  MCS 20000 7.59 10-2 2.47 – 
 MEM 1000 8.91 10-2 – 17.35 
 MIGLD 1000 8.63 10-2 – 13.68 
 Kriging- EZ  1000 4.00 10-2 15.49 47.30 
 PhyrLSTM-AE-AK 1324 7.07 10-2 4.42 6.85 
 PhyrLSTM-AE-OAK 1299 7.20 10-2 11.35 5.14 
Case 2 MCS 20000 6.15 10-3 8.99 – 
 MEM 1000 9.14 10-3 – 48.58 
 MIGLD 1000 8.98 10-3 – 46.07 
 Kriging- EZ  1000 2.14 10-4 57.73 96.52 
 PhyrLSTM-AE-AK 1224 5.37 10-3 9.73 12.74 
 PhyrLSTM-AE-OAK 1299 6.21 10-3 10.69 1.05 
Case 3 MCS 20000 3.50 10-4 37.79 – 
 MEM 1000 6.09 10-5 – – 
 MIGLD 1000 7.24 10-4 – – 
 Kriging- EZ  1000 0 – – 
 PhyrLSTM-AE-AK 1004 1.26 10-5 30.15 – 
 PhyrLSTM-AE-OAK 1300 1.51 10-4 8.70 – 

 

Case 2 investigate a threshold of 0.2. The candidate pool size is determined as 

14000, with 299 samples falling within the threshold bounds. Figure 7-3 illustrates the 

performance of both the initial Kriging model and OAK in comparison to the ground 

truth. The added samples in Figure 7-3 (b) encompass the whole failure domain and 

parts of the safety domain. Consequently, OAK, incorporating these added samples, 

achieves an accurate failure probability estimation, with a relative error as low as 

1.05%, as listed in Table 7-2. Although OAK produces some negative predictions 

within the safety domain, these values are always below the threshold b and thus do 

not impact the failure probability estimation. PhyrLSTM-AE-AK requires 224 

iterations and has a relative error in failure probability of 12.74%, which is larger than 

that of PhyrLSTM-AE-OAK. The initial Kriging model uses 1000 observed data 

points but produces an extremely large relative error of 96.52%. OAK refines the 
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initial Kriging model in one step, significantly improving the accuracy and efficiency 

of the reliability analysis. 

 

(a) Initial Kriging 

 

(b) Offline adaptive Kriging 

Figure 7-3 Initial and offline adaptive Kriging given b = 0.20 

A small failure probability is of concern in case 3 and the threshold is set to 

0.25. The failure probability by 2 104 MCS is 3.50 10-4 with a CoV of 37.79%. 

Hence, 2  104 MCS cannot provide a reliable estimation of the small failure 

probability. To estimate a failure probability of -410 , 610  MCS is required, which is 

not feasible for the highway bridge model. PhyrLSTM-AE-OAK determines 867000 

candidate samples for reliability estimation and the size of selected samples is 300. 

The distribution of selected samples is shown in Figure 7-4. It can be observed that 

most of the selected samples fall within the bounds [0.23, 0.27], which are close to the 

threshold b = 0.25. PhyrLSTM-AE-AK employs the same candidate pool as OAK. As 

seen from Table 7-2, the relative errors of failure probability are not provided since 

there is no reliable reference result. However, it can be inferred that the level of the 

failure probability should be around 10-4 based on 2 104 MCS. PhyrLSTM-AE-AK 

appears to fail in estimating the failure probability in this case. PhyrLSTM-AE-OAK 

selects samples in the vicinity of limit state surface and incorporates them into the 



 

182 

DoE, allowing for accurate predictions in this area. Therefore, OAK can provide a 

reliable estimation of the failure probability, i.e., 1.51 10-4.  

 

Figure 7-4 The distribution of the selected samples given b = 0.25 

Additionally, when threshold b = 0.25 m, the responses of 74 samples within 

the threshold bounds exceed 0.26 m, indicating that these 74 samples are in the failure 

domain given b = 0.26 m. Therefore, the OAK trained by b = 0.25 m can be also 

employed for the failure probability estimation given b=0.26 m, with a corresponding 

failure probability of 8.45  10-5 and a CoV of 11.62%. Note that the failure 

probability by 2 104 MCS is 1.50 10-4 with a CoV of 57.73%. Obviously, 2 104 

MCS cannot obtain a reliable estimation for this small failure probability. If b = 0.26 

m is adopted for training the OAK, 3191000 candidate samples are determined and 

300 samples are within the threshold bounds. The distribution of these selected 

samples is shown in Figure 7-5. The failure probability estimated by PhyrLSTM-AE-

OAK is 9.28 10-5 with a CoV of 5.81%. Moreover, 109 samples are in the failure 

domain given b = 0.27 m. This OAK model can also be used for reliability analysis 
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with b = 0.27, eliminating the need for a new OAK model. Accordingly, the failure 

probability given b = 0.27 m is 3.85 10-5 with a CoV of 9.02%. 

 

Figure 7-5 The distribution of the selected samples given b = 0.26 

7.4 Application to the dynamic reliability analysis of a transmission 

tower subjected to stochastic wind loads  

7.4.1 Structural modeling and uncertainties 

A practical 1000 kV latticed transmission tower with a height of 102 m and a square 

base of 17.99 17.99 m is investigated in this section. The geometric configuration of 

the tower is depicted in Figure 7-6. The main and diagonal members are composed of 

Q345 and Q420 steel pipes, and the detailed design is also illustrated in Figure 7-6. 

The whole tower is divided into 7 segments. The finite element model, constructed 

using ABAQUS, is shown in Figure 7-7. Beam elements (B31) are utilized to model 

tower members. The definition of wind attack angle is shown in Figure 7-7. In this 

analysis, stochastic wind loads are applied perpendicular to the transmission lines, 

resulting in an attack angle of 0 degree. We consider three uncertain material 
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parameters: the Young's modulus with a mean of 206 GPa and a CoV of 0.03, the 

yield strength of Q345 with a mean of 345 MPa and a CoV of 0.08, and the yield 

strength of Q420 with a mean of 420 MPa and a CoV of 0.08. 

 

Figure 7-6 The geometric configuration of the transmission tower (unit: mm) 

The performance of the transmission tower under stochastic wind loads is of 

interest. Wind speed is simulated as a stationary stochastic process including mean 

and fluctuating components. The mean wind speed can be simulated by a modified 

logarithmic wind profile (Bi et al., 2023): 
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where k is the Kalman constant, *u  is the friction velocity and e is the Coriolis 

parameter. The fluctuating wind speed can be simulated as a stationary Gaussian 

process. The Kaimal spectrum (Deodatis, 1996) and Davenport’s coherence function 

(Davenport, 1967) are adopted, with the linear filter method employed to simulate the 

time-series wind speed. Wind loads are calculated according to IEC standards. For 

simplicity, wind loads induced by transmission lines are also calculated and applied to 

the relevant nodes of the tower. The simulation points are indicated by red points in 

Figure 7-7. The design wind speed is 30 m/s, and the wind speed at 1st, 4th and 7th 

simulation points are shown in Figure 7-8.  

 

Figure 7-7 The stochastic FE model of the transmission tower 
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Figure 7-8 Simulated wind speed at different points 

7.4.2 rLSTM for metamodeling of a transmission tower subjected to stochastic 

wind loads 

The top displacement of the transmission tower subjected to stochastic wind loads is 

of concern. Time series wind loads simulated at eleven nodes and three random 

structural parameters are used as input features, resulting in a total of 14 input features. 

The rLSTM network architecture consists of three LSTM layers and two fully 

connected layers. The “tanh” activation function is used, with the hidden state 

dimension set to 50 and a learning rate of 0.01. Considering the complexity of FEM, 

only 200 observed time series of top displacements are collected, with 160 samples 

used for training and 40 samples used for validation. 

Representative training and validation samples are presented in Figure 7-9 and 

Figure 7-10, respectively. It can be observed that the trained rlSTM can effectively 

capture the 10-minute time series top displacements. The performance of the trained 

rLSTM on a test sample is shown in Figure 7-11. It can be seen that the maximal top 
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displacement is close to 1.4 m and this sample is actually far away from observed 

samples (the extreme response of observed samples is around 1.2 m). Consequently, 

the rLSTM prediction shows a slight deviation. Additionally, the extreme responses 

predicted by rLSTM for the observed data are depicted in Figure 7-12 and the 

determination coefficient is 0.96. The maximum relative error in predicting extreme 

responses is smaller than 10%, indicating that the trained rLSTM achieves high 

accuracy. However, as shown in Figure 7-11, the accuracy of the trained rLSTM is 

still not sufficient for some samples far away from the observed region, which 

contribute a lot to reliability analysis. It is of vital importance to build an adaptive 

Kriging model for extreme responses prediction and improve the accuracy of samples 

in the vicinity of failure domains.  

 

Figure 7-9 A representative training sample 
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Figure 7-10 A representative validation sample 

 

Figure 7-11 A representative test sample 

 

Figure 7-12 Extreme responses of observed samples 
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7.4.3 Dynamic reliability analysis by an offline adaptive Kriging model 

To build Kriging model for the stochastic transmission tower system, it is first 

necessary to identify the latent space. The rLSTM-AE network is used to extract 

latent variables from the predicted extreme top displacements. The autoencoder 

structure is the same as that used in previous sections. A total of 160 training samples 

are used to train the autoencoder, while the remaining 40 samples from the validation 

set for model selection. The dimension of latent variables ranges from 2 to 20, and the 

Kriging construction error is shown in Figure 7-13. 

 

Figure 7-13 Kriging construction error for the transmission tower 

Therefore, the optimal dimension for the latent variables is determined to be 

15. The expanded latent space EZ  includes latent variables detected form the extreme 

responses space, along with three structural parameters and extreme wind loads. To 

ensure that the Kriging model matches the rLSTM's performance in predicting 

extreme responses, the performance of Kriging model with three types of input 
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features are shown in Figure 7-14. It can be seen that Kriging with 0Z , which only 

includes structural parameters and extreme wind loads, cannot accurately reconstruct 

the extreme response space generated by the rLSTM. Kriging with Z  and EZ  achieve 

similar accuracy. Although both of them loss some accuracy when the extreme top 

displacement is smaller than 0.8 m, it does not affect the results of reliability analysis 

results under the design wind speed.  

 

(a) 0Z  

 

(b) Z  

 

(c) EZ  

Figure 7-14 The performance of different latent variables for the transmission tower 
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The relative errors of the extreme top displacement are within 10% bounds, 

and 10% is used to determine the size of candidate pool and samples for updating 

Kriging model. First, a threshold of 1.3 m is of concern. A total of 122000 candidate 

samples are identified, from which 300 samples are selected to refine the Kriging 

model using Algorithm 5. The distribution of the extreme top displacements of the 

selected 300 samples is pictured in Figure 7-15. The selected samples encompass the 

safety and failure domains, as well as the limit state surface, which will significantly 

enhance the accuracy of the Kriging model for reliability analysis. MEM and MIGLD 

are also employed for comparisons and the results are listed in Table 7-3. MCS is not 

available since evaluating this transmission tower is time-consuming. Both MIGLD 

and the proposed method estimate failure probabilities at a level of 10-4, whereas 

MEM appears to underestimate the risk. The Kriging model with the expanded latent 

variables fails to produce a reasonable result, yielding a failure probability of 0. This 

outcome also indicates that the accuracy of rLSTM is not sufficient for reliability 

analysis. 

To improve the accuracy of rLSTM for the region distant from the original 

training set, the selected 300 samples near the failure domain defined by b=1.3 m are 

added into the training set. Thus, a total of 500 observed samples are utilized for 

training. Representative training, validation and test samples are presented in Figures 

7-16~18, illustrating the improved performance of the enhanced rLSTM. Notably, 

Figure 7-18 shows the same test sample as Figure 7-11, with the extreme response 

approaching 1.4 m. The enhanced rLSTM model closely aligns with the reference 

time history response.  
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Figure 7-15 The distribution of the selected samples given b = 1.3 m 

Figure 7-19 demonstrates the enhanced rLSTM in predicting extreme top 

displacements. The determination coefficient is 0.94 and the relative errors fall mostly 

within 10% error bounds. The enhanced rSLTM is then utilized for latent variables 

identification and the Kriging model construction error is presented in Figure 7-20. 

Clearly, the optimal dimension for the latent space is still 15. Figure 7-21 illustrates 

the performance of Kriging in reconstructing the approximate extreme value space 

using the rLSTM with three different sets of latent variables. It is evident that Kriging 

with peak loads and structural parameters is not suitable for constructing the 

approximate extreme responses. In contrast, Kriging with Z and EZ  perform well in 

constructing the extreme value space, leading to the adoption of the expanded latent 

variables EZ . 

Given a threshold of 1.45 m, 300 samples near the failure domain are selected, 

and the candidate pool size is determined to be 1779000 by algorithm 5. The 

distribution of selected samples is shown in Figure 7-22, where responses ranging 
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from 1.3 to 1.65 meters are captured, crossing both the safety and failure domains. 

Thus, enriching the DoE for Kriging with the selected samples can remarkably 

improve the accuracy of reliability analysis. The estimated failure probabilities are 

listed in Table 7-3. The proposed method estimates a failure probability of 2.33 10-5 

with a CoV of 15.43%, and a corresponding reliability index of 4.07. However, 

Kriging with the expanded latent variables does not provide a reliable estimation, as it 

reflects the accuracy of the rLSTM network, which is insufficient for reliability 

analysis. Both MEM and MIGLD tend to underestimate the failure probabilities. In 

addition, the pushover analysis, as shown in Figure 7-23, indicates that the tower 

collapses when the top displacement reaches approximately 1.6 meters. The failure 

probability estimated by OAK is as small as 1.67  10-6 with a CoV of 57.73%. 

Therefore, at least 108 candidate samples are required for failure probability 

estimation. However, due to the time-consuming process of wind field simulations, 

generating such a large number of candidate samples is not feasible. It is noteworthy 

that a high level of reliability is achieved with a threshold of 1.45 meters, 

corresponding to a reliability index of 4.07. Therefore, the safety of the transmission 

tower is significantly ensured under a design wind speed of 30 m/s. 

Table 7-3 Failure probability estimation by different methods for the transmission 
tower 

 Method 
callN  fP  CoV(%) 

Case 1 MEM 200 1.27 10-5 – 
 MIGLD 200 4.50 10-5 – 
 Kriging- EZ  200 0 – 
 rLSTM-AE-OAK 500 7.34 10-4 10.54 
Case 2 MEM 200 7.40 10-16 – 
 MIGLD 200 3.00 10-6 – 
 Kriging- EZ  500 1.67 10-6 57.73 
 rLSTM-AE-OAK 800 2.33 10-5 15.43 
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Figure 7-16 A representative training sample with the enhanced rLSTM 

 

Figure 7-17 A representative validation sample with the enhanced rLSTM 

 

Figure 7-18 A representative test sample with the enhanced rLSTM 
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Figure 7-19 Extreme responses of observed samples with the enhanced rLSTM 

 

 

Figure 7-20 Kriging construction error with the enhanced rLSTM 
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(a) 0Z  

 

(b) Z  

 

(c) EZ  

Figure 7-21 The performance of different latent variables with the enhanced rLSTM 
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Figure 7-22 The distribution of the selected samples given b = 1.45 m 

 
 

 

Figure 7-23 Pushover analysis 
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7.5 Summary 

In this chapter, an offline learning strategy is proposed to refine adaptive Kriging in a 

single step. The error bounds of the constructed rLSTM for stochastic dynamic 

systems are used to identify samples that cover the limit state surface. These samples 

are then added to the DoE to refine the Kriging model. Since the samples are selected 

in a single step, parallel computing can be utilized, avoiding the need for continuous 

updates to the Kriging model. To enhance the flexibility of the latent variables, peak 

loads and random structural parameters are combined with the latent variables 

identified by the rLSTM-AE for Kriging construction. A highway bridge under 

stochastic seismic excitation is first investigated to validate the performance of the 

proposed offline learning strategy. The results show that the offline adaptive Kriging 

model can effectively estimate the failure probabilities. Furthermore, a practical 

transmission tower subjected to stochastic wind loads is studied. It is demonstrated 

that the proposed rLSTM can also capture the time history responses induced by 

stochastic wind loads. By utilizing the error bounds provided by rLSTM, the adaptive 

Kriging model can be refined in a single step, efficiently offering a more reliable 

estimation of failure probability. 
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

8.1 Main conclusions 

Efficient structural reliability analysis methods have been extensively studied in 

recent years, yet estimating failure probabilities for practical engineering structures 

remains challenging. Recently, surrogate modeling techniques, particularly the 

Kriging model, have gained significant attention due to the development of adaptive 

Kriging models, which can iteratively enrich the DoE via an active learning strategy. 

However, adaptive Kriging model encounters disadvantages for reliability analysis of 

practical engineering models such as estimating small failure probabilities, 

performing dynamic reliability analysis, and supporting parallel computing. This 

thesis focuses on addressing these challenges by improving adaptive Kriging models 

for rare failure probabilities estimation and dynamic reliability analysis. The major 

contributions of this work are as follows: 

1) Adaptive Kriging model with the crude MCS is not efficient for rare events 

estimation since a large MC population is involved. The proposed distance-based 

subdomain can detect candidate samples in the vicinity of limit state surface on the 

basis of a location point. During the active learning process, Kriging model is refined 

within each detected distance-based subdomain rather than across the entire candidate 

pool. This refinement process reduces the number of samples requiring Kriging 

predictions, thereby significantly accelerating the active learning process, particularly 

for estimating small failure probabilities. 
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2) It is known that the conventional U stopping criterion is conservative for 

failure probability estimation since it focuses too much on the accuracy of Kriging 

model. An error-based stopping criterion is particularly designed for reliability 

analysis. The effect of the candidate points with high probabilities of misclassification 

on failure probability estimation is theoretically analyzed and the expected upper 

bound of the relative error of failure probability is formulated. A new stopping 

criterion is accordingly developed based on the expected upper bound of relative error 

of failure probability. Additionally, a suitable target threshold for this criterion is 

proposed, based on the impact of the threshold on failure probability estimation. The 

proposed stopping criterion enables the active learning process to be terminated at an 

appropriate stage, thereby balancing accuracy and efficiency in reliability analysis. 

3) Regarding very rare events estimation, e.g., the failure probability is smaller 

than 10-6, a spherical decomposition-based MCS is employed to generate the 

candidate pool for training adaptive Kriging model. SDMCS has proven to be much 

more efficient than the crude Monte Carlo simulation. However, SDMCS may 

produce more samples near the limit state surface, which can complicate the 

termination of the adaptive Kriging model’s refinement process. The error-based 

stopping criterion tailored for AKMCS is reformulated for AKSDMCS. It is observed 

that the number of incorrectly classified points in each SDMCS subregion follows a 

binomial distribution, allowing for the formulation of the expected upper bound of the 

relative error in failure probability estimation. The new stopping criterion 

significantly reduces the computational burden associated with expensive model 

evaluations, compared to other criteria that do not consider the relative error in failure 

probability estimation. 
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4) Constructing surrogate models for engineering structures subjected to the 

stochastic excitation is still an open question due to the highly nonlinear structural 

behaviors and implicit input features. Long short-term memory is a powerful machine 

learning tool for modeling sequence-to-sequence data. In this work, a novel rLSTM 

network is developed for metamodeling of stochastic dynamic systems. The rLSTM 

network simultaneously accounts for time-series stochastic excitation and random 

structural parameters, effectively avoiding non-essential input features such as 

random phases used in generating stochastic excitation. Although the accuracy of 

rLSTM may be insufficient for reliability analysis due to limited observations, it 

proves valuable for detecting latent variables, which can then be used to construct an 

adaptive Kriging model. 

5) Generally, extreme responses are of primary interest, and failure 

probabilities can be estimated from the perspective of extreme value theory. The 

rLSTM network approximates the extreme value space, which can be further 

decomposed by an autoencoder with a dimension ranging from 2 to 20. The proposed 

rLSTM-AE network effectively identifies latent variables for constructing a Kriging 

model, achieving accuracy in extreme response predictions comparable to that of 

rLSTM. The rLSTM-AE approach facilitates the development of Kriging models for 

stochastic dynamic systems, enabling the use of adaptive Kriging models for 

reliability analysis of engineering structures subjected to stochastic excitations. 

6) Data-driven rLSTM may encounter instability and inaccuracy since 

underlying physical laws of a physical system are ignored when constructing the 

network. To address this, a physics-informed rLSTM network, termed PhyrLSTM, is 
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developed by incorporating the uncertain governing equation of stochastic dynamic 

systems. The PhyrLSTM network consists of two rLSTM components: one for 

predicting state variables such as displacement and velocity, and the other for 

predicting the mass-normalized restoring force. Compared to standard rLSTM models, 

PhyrLSTM offers greater stability and accuracy. Nevertheless, the accuracy of 

PhyrLSTM is not sufficient for reliability analysis. Adaptive Kriging model is 

constructed with the aid of PhyrLSRM-AE networks and the accuracy of failure 

probability estimation is remarkably improved compared to PhyrLSTM. 

7) Adaptive Kriging model continuously requires information from the 

computationally expensive performance functions and the parallel computing is 

unavailable, and the lack of parallel computing capabilities significantly hinders its 

application in the reliability analysis of practical engineering structures. Additionally, 

the convergence issues of FEM pose a challenge to active learning strategies. Besides 

providing an approximate extreme response space for latent variables identification, 

the prediction error by rLSTM is also adopted to determine candidate pool and 

samples near the limit sate surface. These selected samples, which are anticipated to 

be close to the limit state surface, are incorporated into the DoE for training the 

Kriging model. This approach, regarded as an offline learning strategy, avoids the 

requirement for iterative training and allows for parallel computing. The offline 

adaptive Kriging model thus offers a more efficient alternative by circumventing 

iterative training processes and leveraging parallel computing capabilities.  

8.2 Suggestions for future work  

Some recommendations for future work are listed as follows: 
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1) The current study primarily addresses improvements in candidate pool 

generation and stopping criteria for adaptive Kriging models. It employs the U 

learning function but does not explore the efficiency of various learning functions. 

The U learning function focuses on regions near the limit state surface or the accuracy 

of the Kriging model in those areas. For more effective reliability analysis, future 

work should explore the development of learning functions that take into account both 

the accuracy of failure probability estimation and the information from input random 

variables. 

2) Constructing surrogate models for engineering structures subjected to 

stochastic excitation is of paramount importance for the subsequent construction of 

adaptive Kriging model. Currently, long short-term memory is employed to model 

sequency-to-sequency data. To improve the accuracy of LSTM network, the attention 

mechanism can be added into the structure and the performance of attention-based 

LSTM should be explored for metamodeling of stochastic dynamic systems.  

3) In this thesis, rLSTM is incorporated with the autoencoder to identify the 

latent variables for Kriging model construction. The latent variables detection relies 

on the decomposition of the approximate extreme value space generated by rLSTM. 

The direct identification of latent variables from the original input space should be 

further explored in the future work.  

4) This thesis explores rLSTM-based surrogate models for structures subjected 

to earthquake and wind loads. Beyond individual structures, this technique can be 

extended to construct surrogate models for infrastructural networks in the context of 
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climate change, enabling real-time prediction and risk assessment of infrastructural 

networks. 
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