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ABSTRACT 

 Introduction: With the improvement in survival rates for nasopharyngeal carcinoma 

(NPC), it is increasingly important to address the impact of treatment-induced toxicity on 

patients’ quality of life. Acute oral mucositis (OM) and dysphagia are two of the most common 

toxicities resulting from NPC treatment. Severe cases cause significant suffering and pose a 

threat to treatment outcome through unexpected hospitalization, weight loss, and treatment 

interruption. This thesis harnesses high-dimensional multi-omic data to identify patients at risk 

of severe acute OM and dysphagia to better target preventative interventions and personalized 

support. 

 Methods: Four hundred and sixty-four NPC patients treated with radiotherapy (RT) at 

two Hong Kong hospitals were retrospectively recruited for analysis. Radiomic, dosiomic and 

contouromic features were extracted from planning CT images, RT dose distributions and 

tumour and organ-at-risk contours respectively. Machine learning models for predicting severe 

acute OM and dysphagia were developed. Model performance was comprehensively assessed 

and compared to that of conventional prediction models using clinical and dosimetric features 

alone. 

Results: Multi-omic prediction models for severe acute OM and dysphagia 

outperformed conventional clinical and dosimetric models developed on the same data. 

Radiomics, by describing pre-treatment tissue characteristics, dosiomics, by describing the 

spatial distribution of the planned RT dose, and contouromics, by describing the challenges 

posed by patient geometry, were demonstrated to have unique predictive value, and facilitated 
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greater model discrimination by supplementing clinical features. Importantly, this study 

conducted external validation to assess the generalizability of the models, providing a greater 

level of evidence compared to other prediction models in the literature. 

Conclusion: Multi-omic features including radiomic, dosiomic and contouromic 

features enhanced the discrimination performance of models incorporating clinical and 

dosimetric features and demonstrated independent predictive value. The findings in this project 

provide an invaluable reference for future work and include important recommendations for 

future development of multi-omics for toxicity prediction.  
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RADAR Radiotherapy data analysis and reporting 

toolkit 
RBF Radial basis function 
RF Random Forest 
RLN Retropharyngeal lymph nodes 
ROC Receiver operating characteristic 
ROI Region of interest 
RT Radiotherapy 
RTOG Radiation Therapy Oncology Group  
SHAP Shapley Additive Explanations 

SMOTE Synthetic minority over-sampling 
technique 

SNP Single nucleotide polymorphism 
SPC Superior pharyngeal constrictor 
SPCM Superior pharyngeal constrictor muscle 
SVM Support vector machine 
TNM Tumour Node Metastasis staging system 
TPN  Total parenteral nutrition 

VIF Variance inflation factor 
VMAT Volumetric modulated arc therapy 
VOI Volume of interest 
WCC White cell count 
WHO World health organization 
XGB XGBoost (eXtreme Gradient Boosting) 
XRCC X-ray repair cross-complimenting protein 
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OVERVIEW OF THESIS 

Nasopharyngeal carcinoma (NPC) has a relatively high prevalence in East and 

Southeast Asia and is a significant cause of cancer-related deaths in Hong Kong. Survival rates 

have improved in recent decades with the introduction of intensity-modulated radiotherapy 

(IMRT) and the use of concurrent chemotherapy for locally advanced cases. However, the 

prescribed radiation dose is high among head and neck cancers, and combined with 

chemotherapy, there is a significant burden on patients from treatment-induced toxicity. As 

survival rates improve, it is increasingly important to address suffering from toxicity. Acute 

oral mucositis and dysphagia are two of the most common and damaging toxicities experienced 

by NPC patients, and early identification of patients at risk of severe toxicity is crucial for 

facilitating targeted preventative intervention and management. 

Chapter 1 provides a comprehensive overview of the background of the topic, 

highlighting the unique challenges of head and neck cancer, nasopharyngeal carcinoma, and 

treatment-induced toxicity. The remainder of this chapter consists of two literature reviews. 

The first literature review, published in Cancers, investigated predictive factors for treatment-

induced OM and dysphagia, identifying the most well-supported risk factors and the 

conventional predictive models in the literature [1]. The second literature review focuses 

specifically on the existing research on multi-omics-based toxicity prediction in head and neck 

cancer, placing the thesis in context and providing evidence for the research gap. Chapter 2 

states the aim of the thesis and identifies the research gap, based on the findings from the 

literature reviews in the previous chapter. The project objectives are then stated. Chapter 3 

outlines the core methodology for multi-omic studies, reporting the key considerations and 



 

21 

 

steps which are common to all three objectives such as image acquisition, preprocessing, 

feature extraction, and feature selection. There is significant variation in the methodology for 

radiomics studies, and so the methodological considerations were discussed, and justifications 

were provided for the chosen approach. Chapter 4 reports the work conducted to complete 

objective 1, the development of a multi-omic model for severe acute OM in NPC patients 

undergoing RT. This chapter is supported by a manuscript submitted for publication. Chapter 

5 reports the work conducted to complete objective 2, the development of a multi-omic model 

for severe acute dysphagia in NPC patients undergoing RT. Chapter 6 reports the work 

conducted to complete objective 3, the development of a multi-label model for severe acute 

OM and dysphagia in NPC patients undergoing RT. This chapter is exploratory, reporting the 

results of different approaches to multi-label modelling and identifying the strengths and 

weaknesses of each, to guide future work. Chapter 7 consists of a comprehensive discussion of 

the practical considerations involved in future development of multi-omic models for 

prediction of OM and dysphagia. It addresses wide-ranging aspects of from study design to  

data analysis, synthesizing the experiences learned during this project  and strengths and 

limitations of the research to provide recommendations for future work. The clinical 

practicability of the developed models is discussed along with the current barriers to clinical 

use and recommendations for moving towards clinical implementation.  

In summary, findings show that the inclusion of multi-omic features was able to 

improve on conventional approaches to prediction of OM and dysphagia. The resulting model 

signatures had independent predictive value when compared to conventional clinical and DVH 

features. A wide range of recommendations for the future development of multi-omic 
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prediction models is provided to tackle the many challenges of achieving generalizable and 

accurate predictions of these multifaceted and complex toxicities.  
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CHAPTER 1 BACKGROUND 

1.1. Introduction 

This project focuses on nasopharyngeal carcinoma (NPC), a form of head and neck 

cancer (HNC). Before describing the unique challenges of NPC, it is important to introduce the 

context of HNC more generally, providing a foundational understanding of the broader 

category of cancers that share many of the same treatments and treatment-related toxicities. 

1.1.1. Head and neck cancer 

Epidemiology and types of HNC 

In 2020, HNC accounted for over 900,000 new cases globally, representing the seventh 

most prevalent type of cancer [2]. HNC was in the top eight cancers by mortality, with over 

400,000 deaths globally [2]. The worldwide five year survival rate for HNC is approximately 

50%, though survival depends on geographical location, tumour site, stage at diagnosis and 

other factors such as human papillomavirus (HPV) status [3]. HNC encompasses malignancies 

that originate in the oral cavity, lips, tongue, pharynx, larynx, salivary glands, as well as in the 

nasal cavity and sinuses, with some studies also including oesophageal malignancies [3]. 

Around 90% of these malignancies are head and neck squamous cell carcinoma (HNSCC), 

beginning in the mucosal epithelium [3]. The incidence of HNC is rising in both developed and 

developing countries, with a 30% increase predicted by 2030 [3]. The increase has been 

attributed to increasing rates of HPV infection in the United States and Europe, and also 

chewing of areca nut or smokeless tobacco in Southeast Asia [3]. 
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Risk factors for HNC 

HNSCC is two to four times more common in men than in women. The age at which a 

person is diagnosed with HNSCC can vary depending on whether the cancer is linked to the 

HPV or the Epstein-Barr virus (EBV). For HNSCC that is not linked to a virus, the age at 

diagnosis is 66 years old, but it drops to about 50 years old for HNSCC that is linked to HPV 

or EBV [4]. These viruses, along with tobacco and alcohol use, represent the main risk factors 

for HNC, though the specific associations vary depending on the subsite of HNC [3]. There is 

also evidence for occupational exposure and socio-economic risk factors, as well as family 

history and dietary factors [3]. Genetics have also been investigated in relation to HNC 

incidence. Genetic loci have been associated with the risk of HNC after HPV infection, and 

also with affecting metabolism of alcohol to increase HNC risk [3].   

Clinical presentation of HNC 

The clinical presentation of HNC varies by subsite, with sites like the oral cavity 

exhibiting more obvious masses and symptoms. Symptoms for HNC are varied, including 

difficulty eating or speaking, voice changes, painful swallowing, ear pain, hearing loss, 

nosebleeds, nasal obstruction, or even difficulty breathing [4]. If neck lymph nodes become 

involved, patients may present with neck masses.  

Diagnosis and staging of HNC 

A biopsy of the primary tumour or neck nodal mass is necessary to confirm the 

diagnosis of HNC and allow for the analysis of the histology. Staging is conducted according 

to the Union for International Cancer Control (UICC) and the American Joint Commission on 

Cancer (AJCC) cancer staging manual [5], which provides criteria for the TNM staging 
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including tumour stage (T1-T4), lymph node stage (N0-N3) and overall stage (I-IV). The stage 

of diagnosis varies by subsite, due to the differences in presenting symptoms and prominence 

of masses. 

Treatment for HNC 

The management of HNC is affected by subsite, stage, and patient preference. If the 

tumour is locally or locoregionally confined then surgical resection is the main line curative 

treatment, provided that the tumour is accessible [4]. Advances in surgery have expanded the 

indications of resection as a primary treatment. However, HNCs, particularly laryngeal or 

pharyngeal cancers, are located close to many vital structures. For this reason, radiation is often 

employed as the primary treatment. For more advanced disease, postoperative radiation or 

chemoradiation is employed in order to reduce the risk of recurrence or treatment failure [4]. 

Studies have also investigated the potential of immunotherapy for HNC. While combinations 

of different treatments can prove advantageous for survival, they can also pose the increased 

risk of toxicity.  

Consequences of HNC treatment 

Head and neck cancer frequently has a significant impact on daily activities and 

continues to do so even after treatment. Impairments and disabilities often persist for years 

after treatment, representing long term burdens. As a result, quality of life (QOL) is an 

important consideration in HNC treatment. Physical, functional, emotional, and social aspects 

should be considered for the patient and their caregivers. The impact of HNC and its treatment 

is sadly reflected by the statistic that survivors of HNC are almost twice as likely to die from 

suicide as other cancers [6].   
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1.1.2. Nasopharyngeal carcinoma 

Epidemiology of NPC 

Nasopharyngeal carcinoma (NPC) is a form of HNC that develops in the epithelial 

tissues of the nasopharynx, which is the top part of the throat behind the nasal cavity [7]. It has 

several important differences from other HNC in terms of the involved anatomy, epidemiology, 

risk factors, and treatment. In terms of geographic distribution, NPC has a relatively high 

prevalence in East and Southeast Asia, particularly in southern China [8]. Interestingly, the 

high incidence in that population remains present in migrant populations in other geographic 

areas, but with reduced incidence in subsequent generations [8].  It is hypothesized that the 

pathogenesis of NPC is therefore affected by genetic, cultural, and environmental factors [8].  

Risk factors for NPC 

EBV infection, family history of NPC, smoking, consumption of certain preserved 

foods, alcohol, and poor oral hygiene have been identified as risk factors [8]. The mechanism 

by which EBV or environmental carcinogens lead to NPC is through DNA damage and the 

proliferation of mutated cells. Consequently, EBV-related antibodies may be used as 

biomarkers for screening and monitoring NPC. Symptoms of NPC correspond to the pattern of 

spread of the disease and include nosebleeds, nasal obstruction, hearing loss, cranial nerve 

palsies and swelling of the cervical lymph nodes [8]. 

Diagnosis and staging of NPC 

Definitive diagnosis of NPC requires a biopsy, which is typically performed after head 

and neck evaluation using nasopharyngoscopy and magnetic resonance imaging (MRI), 

computed tomography (CT) imaging or positron-emission tomography (PET/CT) imaging. 
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MRI and PET/CT are particularly relevant for the diagnosis of distant metastasis. As with other 

HNC, staging of NPC is performed according to the UICC/AJCC TNM staging system [5]. 

Prognostic factors typically include TNM staging, EBV-related biomarkers and PET/CT 

metabolic indexes [8]. In terms of survival, the Hong Kong Cancer Registry reported a relative 

5-year survival rate of 68.7% for NPC in the period 2010-2018 [9]. An analysis on NPC 

survival trends in a United States population revealed an upward trend in 5-year survival rate 

over recent decades, from 36% in 1973-1979 to 54.7% in 2000-2007 [10]. The improvement 

in survival rates over recent decades is illustrated by Figure 1, which compares data from 

several studies in different countries. A combination of factors, including improved screening 

and advancements in treatment techniques, may be responsible for the improved survival of 

NPC. With improved survival rates, the need to address patients’ quality of life becomes 

increasingly urgent. 
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Figure 1: Trends in 5-year survival for NPC. Data was taken from the following 

publications: China [11], Korea [12], USA [10], Hong Kong [9], Taiwan [13]. OS = 

overall survival, RS = relative survival 

Radiotherapy for NPC 

The primary treatment for NPC is radiotherapy (RT), due to its sensitivity to ionising 

radiation and the close proximity of critical structures. Surgery is not typically employed as a 

treatment, except for certain recurrent cases. Radiation techniques have evolved from 

conventional two-dimensional RT to 3D conformal RT, to intensity-modulated RT (IMRT) , 

allowing more accurate targeting of the tumour and better dose sparing to the surrounding 

tissues [8]. The use of IMRT resulted in a reduction of the 5-year locoregional failure rate of 

non-metastatic NPC to 7.4% [14]. Future advancements in NPC treatment may include proton 
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or carbon ion RT, though this is currently not in widespread use. Under the current treatment 

guidelines, radiation is delivered using a total dose of 66-70Gy applied in 2Gy per fraction [7]. 

Chemotherapy for NPC 

While early-stage NPC is treated with RT alone, advanced stage cases receive 

chemotherapy concurrently with RT. Additionally, induction (neoadjuvant) chemotherapy may 

be provided before RT, and adjuvant chemotherapy may be provided after RT. The specific 

guidelines for delivery of neoadjuvant or adjuvant chemotherapy vary by institution, since the 

evidence for the benefit of one approach over the other is mixed [8]. The specific chemotherapy 

drugs and dosing schedules vary, and decisions can depend on the patient’s kidney function, 

any existing co-morbidities, and the severity of side effects experienced. More aggressive 

treatment can mitigate the risk of local, regional, or distant failure; however, this can take a 

greater toll on the patient during treatment and can result in more significant toxicity in both 

the short and long term. 

Nasopharyngeal carcinoma in Hong Kong 

NPC is particularly significant in Hong Kong, where it was among the top ten cancers 

by mortality in men in 2021 [15]. Specifically, there were 558 new diagnoses among a 

population of 7.4 million [15, 16]. This thesis focuses on NPC in Hong Kong, due to its high 

prevalence and unique challenges within the local population. Consequently, this section 

summarizes the specific context of NPC in Hong Kong, including its treatment protocols.  

There are six public oncology centres which cover more than 90% of the population in 

the region, managed by the Hong Kong Hospital Authority [17]. A retrospective, multi-centre 
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study on NPC patients from all of these centres reported statistics for patients who underwent 

definitive IMRT between 2001 and 2010 [17], which provides an overview of NPC in the 

region. Seventy-three percent of patients were male, with a median age of 50 years. The ratio 

of non-smokers to former or current smokers was about 1.35:1. Most (75%) of patients were 

diagnosed at stage III or higher. Regarding treatment, 72% of patients received chemotherapy 

in combination with IMRT. This included 28% with concurrent chemotherapy, 14% with 

concurrent-adjuvant chemotherapy, and 28% with induction-concurrent chemotherapy.  

In Hong Kong, the typical process for NPC patients is as follows: First, patients 

suspected of NPC undergo a nasal endoscopy in the Ear, Nose and Throat (ENT) department. 

If abnormalities are found, then the patient will receive an MRI and/or PET/CT to determine 

the extent and stage of cancer, including identification of distant metastases or a different 

primary cancer. The diagnosis of NPC is then verified by conducting a biopsy and performing 

an analysis of the tumour histology. Patients eligible for curative treatment are then scheduled 

for RT. This involves booking the use of the treatment machine and scheduling a planning CT 

scan. Prompt treatment is desirable; however, in practice, there may be a wait of several weeks 

between diagnosis and RT, during which some patients at advanced stage may receive 

induction chemotherapy. Patients receive a planning CT scan while lying in the treatment 

position, fitted with immobilization devices. Typically, a contrast medium is injected to 

facilitate discrimination of the tumour. The medical physics team will then contour the tumour 

and organs-at-risk (OARs) on the CT, referring to any available MRI or PET/CT previously 

acquired. Then, treatment planning software is used to create a radiation plan, ensuring that the 

required dose to the target is met and minimizing the dose to critical structures. The patient 
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then attends the RT clinic 5 times a week, receiving a treatment fraction of 2 – 2.12 Gy for 

each of the 33 fractions. Concurrent chemotherapy is also delivered during these visits for 

eligible patients, typically involving cisplatin or carboplatin. After the 66 – 70 Gy dose is 

delivered, some patients may receive adjuvant chemotherapy. Patients then receive follow-up 

nasal endoscopy to assess the condition of the nasopharynx post-treatment, along with a biopsy 

to confirm treatment outcome. If residual disease is detected, patients may be prescribed a 

radiation boost or other treatment. Patients generally receive weekly follow-up during and 

shortly after treatment. Patients are then monitored at regular intervals in the subsequent 

months and years. Generally, patients will remain with their local hospital or have records 

transferred between hospitals. Occasionally, patients receive imaging or treatment at private 

hospitals before returning to their local public hospital. Some patients may relocate out of the 

region, for instance, to mainland China, resulting in some loss of follow-up.  

1.1.3. Treatment-induced toxicity 

Mechanism of toxicity  

Radiotherapy is a major component of treatment for HNC, administered to nearly 75% 

of patients [18]. It is employed to damage tumour cells, stopping their growth and division. 

This is achieved using high-energy rays or radioactive substances to directly damage the DNA, 

or other critical cellular molecules of the tumour cells [19]. However, the same radiation will 

also damage normal cells, and so optimal delivery of RT is dependent on balancing tumour 

dose and dose to normal tissue [20]. The degree of tissue damage depends on total radiation 

dose, fractionation, and tissue properties [20]. Certain tissues are more resistant to radiation 

damage, while others may suffer from dysfunction more quickly. Radiation is frequently 
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accompanied by chemotherapy, a treatment that likewise aims to inhibit cell multiplication. As 

a systemic treatment affecting the whole body, it can mitigate the risk of tumour invasion and 

metastasis. Combination chemotherapy is often employed to minimize the risk of tumour 

resistance [21]. However, the side effects of chemotherapy are extensive, including reduced 

blood cell production, kidney toxicity and nausea and vomiting. By inhibiting cell 

multiplication, chemotherapy is particularly damaging for rapidly dividing tissues. These 

include tumour cells, but also normal tissues, such as those in the mucosa, resulting in toxicity 

[22]. Inflammation, healing rates and susceptibility to infection are also affected by 

chemotherapy.  

Grading and timeframe of toxicity 

Most patients receiving chemoradiation in the head and neck region will experience 

moderate to severe toxicity. This may occur during treatment or after treatment, with chronic 

side effects developing in some patients. The Radiation Therapy Oncology Group (RTOG) and 

National Cancer Institute Common Toxicity Criteria (NCI-CTC) define acute toxicity as 

occurring within 90 days of the commencement of RT [23]. Damage to normal tissue triggers 

inflammatory responses in the acute phase, followed by tissue repair and remodelling after 

treatment completion. Acute toxicities typically include OM, dysphagia, xerostomia, 

dysgeusia, odynophagia, and dermatitis. Most acute toxicities resolve within weeks after 

treatment, though significant suffering and risks to treatment outcome can occur in this period. 

Late toxicity, which may surface months or years later, results from irreversible damage to 

tissues and structures. Examples of late toxicities include dysphagia, xerostomia, 

osteoradionecrosis, myositis, dental caries, oral cavity necrosis, fibrosis, impaired wound 
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healing and lymphedema [24]. These are typically chronic conditions that require lifelong 

management. The severity of toxicities can range from mild to life-threatening and may require 

immediate medical intervention. Two of the most prevalent toxicities are oral mucositis (OM) 

and dysphagia, each of which poses a significant impact on patient quality of life. 

1.1.4. Oral mucositis 

Introduction to OM 

Oral mucositis refers to erythema (redness), inflammation and ulceration occurring in 

the mucosal lining of the mouth and pharynx because of chemotherapy or RT. It is a painful 

condition which affects the ability of the patient to eat and increases the risk of infection [25]. 

Almost all HNC patients treated with chemoradiotherapy experience OM [25], and a meta-

analysis by Li et al. on NPC patients found that 99% experienced OM, and 52% experienced 

severe OM [26]. Severe cases can involve haemorrhage and necrosis and can become life-

threatening, requiring hospitalization and immediate intervention. 

Pathogenesis of OM 

The pathogenesis of OM involves five phases [27]. Firstly, tissue injury results from 

damage to basal epithelial cells caused by radiation or chemotherapy, and the resultant 

generation of reactive oxygen species, or free radicals. An inflammatory phase follows, 

resulting from the increased production of pro-inflammatory cytokines caused by the reactive 

oxygen species. This further exacerbates tissue injury and cell death. The third phase involves 

the activation of molecular pathways that further amplify damage to the mucosa. The fourth 

phase is characterized by ulceration, which is partly due to the role of microorganisms that 
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colonize the damaged tissues. The final phase is a healing phase, where the production of 

epithelial cells increases, restoring the mucosa. 

Clinical presentation of OM 

The clinical presentation of OM broadly matches the five phases of pathogenesis [27]. 

The mucosa first presents with erythema, then with ulcerations, which may become colonized 

by microorganisms naturally present in the mucosa, further exacerbating the pain and 

inflammation [25]. Fungal infections, such as candidiasis, may also compound the effects of 

OM. Symptoms typically arise within two weeks of the start of treatment, and predominantly 

affect non-keratinized surfaces such as the tongue, buccal mucosa, and soft palate, as shown in 

Figure 2 [27]. Lesions typically heal within 2-4 weeks from the end of treatment [27].  

 
Figure 2: Anatomical structures involved with oral mucositis [28] 

Impact of OM 

Oral mucositis can have a detrimental effect on patients in several ways. Treatment 

outcomes may be jeopardized by treatment interruptions necessitated by severe OM [27]. The 
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increased risk of infection, especially for immunosuppressed patients, is associated with a 

higher rate of infection-related deaths [27]. Patients are also more likely to be hospitalized and 

spend more time in hospital [27]. OM is associated with higher weight loss and difficulty 

eating. The impact of the pain from OM on quality of life is also significant. Furthermore, the 

requirements for intensified care and hospitalization also pose an economic burden to the 

patient and/or hospital [27]. 

Grading of OM 

Table 1 lists the grading criteria for OM under the RTOG, CTCAEv2 and CTCAEv5 

grading systems. These criteria are broadly similar regarding the severity of each grade, 

however, the emphasis on physical presentation versus functional impact versus subjective pain 

level varies. The criteria for severe grades 3 and 4 show a significant impact on patient quality 

of life, where the pain is sufficient to interfere with oral intake and requires narcotic grade 

painkillers. Patient-reported scales for the assessment of OM have also been used to measure 

subjective pain and impact on quality of life in certain studies. In Hong Kong, assessment of 

OM for NPC patients is conducted as follows: OM is assessed using the latest CTCAE grading 

system by the doctor or nurse as part of the consultations during RT. The grade is entered into 

the typed clinical notes, for example, as “G2-3 OM” or “G3 mucosa”. During the seven weeks 

of RT, the consultations take place approximately once a week. After completion of RT, 

consultations take place less frequently, with follow up reducing to 6-monthly or yearly 

consultations. Patient-reported scales for self-reporting of OM  are not in widespread use in 

Hong Kong. 
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Interventions for prevention of OM 

Preventative measures for OM are an active area of research, but the effectiveness of 

the proposed interventions remains uncertain [25]. One area of research is the use of antioxidant 

agents, which aim to limit the damage from reactive oxygen species. This direct approach is 

well justified, but studies have reported mixed effectiveness and some adverse effects [25]. 

Another approach is the use of drugs that inhibit the production of pro-inflammatory cytokines. 

While promising, evidence for these approaches is in a preliminary phase [25]. Several natural 

agents have also been proposed for the prevention of OM, including glutamine, vitamin E, zinc, 

essential oils, herbal drugs, and topical honey. There have been a few proposed mechanisms of 

action for natural agents, and these frequently have the advantage of being well-tolerated by 

patients and posing little risk. However, further evidence is required to support their use [25]. 

Low-level laser therapy, or photobiomodulation,  employs monochromatic light in the red band 

of the spectrum to promote healing and inhibit inflammation. Research into this treatment is 

ongoing, but it is considered safe, and is recommended by MASCC/ISOO clinical guidelines 

to keep patients who are getting hematopoietic stem cell transplants from getting OM [29]. The 

use of oral cryotherapy, where ice is held in the mouth for a period of time before treatment, 

has also been explored and likewise recommended for patients undergoing certain treatments 

[25]. 

Interventions for management of OM 

Management of oral mucositis (OM) symptoms primarily involves the use of 

analgesics, with narcotics prescribed for severe cases. Pain relief can be administered through 

mouthwashes containing analgesics or anaesthetics, among other ingredients. Additionally, 
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topical treatments that form a protective barrier over ulcerations are also explored. Maintaining 

oral hygiene is crucial to minimize infection risk. The MASCC/ISOO recommends dental 

hygiene practices and the use of non-medicated mouth rinses [29]. Certain alcohol-based rinses 

or rinses with active ingredients may be difficult to tolerate and have not been found to be 

sufficiently effective [27]. 

Necessity for predictive models for OM 

While most HNC patients undergoing chemoradiation will experience OM, identifying 

those at high risk for severe OM is crucial. Early identification facilitates personalized 

management strategies, which can reduce the risk of hospitalization and treatment 

interruptions. This approach not only improves the patient's quality of life but also ensures 

better adherence to the treatment. Additionally, developing predictive models for OM can 

provide valuable insights into its risk factors and etiology, further enhancing preventive and 

therapeutic measures. Current research on the predictive factors and models for severe OM is 

outlined in Section 1.2.  

1.1.5. Dysphagia 

Introduction to dysphagia 

Dysphagia, or difficulty swallowing, refers to physical or functional impairment rather 

than pain involved in swallowing (odynophagia). Dysphagia results in difficulty with solid 

food, progressing in severity until even the intake of liquids is restricted. The risk of 

dehydration and weight loss require medical intervention, which is typically in the form of 

nasogastric tube feeding. Dysphagia also poses the risk of aspiration and choking. 
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Swallowing mechanisms 

The swallowing mechanism involves a complex coordination of different muscles and 

nerves that facilitate the transport of a bolus of food from the oral cavity into the stomach via 

the oesophagus. Matsuo et al. describe the swallowing mechanism for a liquid bolus (mass of 

a substance) and for a solid bolus [30]. In the case of liquids, the bolus is initially confined to 

the oral cavity by a seal formed by the soft palate and tongue. Next, the bolus is transported 

into the pharynx by the motion of the tongue, whereupon the pharyngeal stage of swallowing 

begins. For solid food, a bolus may accumulate in the oropharynx while chewing continues, 

and there is overlap between the oral and pharyngeal stages. Nevertheless, in the case of both 

liquids and solids, the next stage is the pharyngeal swallow. This involves the airway being 

sealed off, preventing the bolus from entering the larynx and trachea, while simultaneously 

transporting the bolus down into the oesophagus through a coordinated set of muscle 

contractions [30]. The final component of swallowing involves the transport of the bolus along 

the oesophagus into the stomach. Muscle contraction behind the bolus and relaxation in front 

of the bolus work together to achieve this [30]. The swallowing mechanism is illustrated in 

Figure 3.  
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Figure 3: Anatomical structures involved during swallowing [31] 

 

Causes of dysphagia 

Dysphagia can arise from dysfunction in various components of the swallowing 

mechanism. Pre-treatment dysphagia may result from obstruction by the tumour or infiltration 

of swallowing-related structures [32]. Dysphagia induced by RT is typically due to neural and 

soft tissue damage, along with inflammation, swelling, pain, and altered saliva production [32]. 

Acute dysphagia, which occurs during and shortly after treatment, often resolves over time. 

However, late dysphagia can develop from fibrosis and permanent neurological impairment 

[32]. 
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Diagnosis of dysphagia 

Dysphagia may be diagnosed using video fluoroscopy, where a contrast medium is 

swallowed and visualized on real-time X-ray. Endoscopy can also be used to inspect 

swallowing-related structures and action. In clinical practice, HNC patients who develop 

dysphagia during treatment are typically graded (Table 2) according to the functional impact. 

Impact of dysphagia 

A significant proportion of head and neck cancer (HNC) patients undergoing RT  

develop acute or late dysphagia [33-35]. This difficulty in swallowing can lead to serious 

complications, including an increased risk of aspiration-related infections and choking. 

Additionally, dysphagia can adversely affect treatment outcomes by impairing oral intake and 

leading to weight loss. The condition profoundly impacts patients' daily activities, causing 

significant discomfort and emotional distress. Identifying patients at high risk for severe 

dysphagia is crucial for implementing targeted support and preventative measures. Such 

interventions can help minimize weight loss, reduce the risk of aspiration or choking, and 

improve overall quality of life. The current research on the predictive factors and predictive 

models for dysphagia is outlined in Section 1.2. 

Grading of dysphagia 

Table 2 lists the grading criteria for the RTOG, CTCAEv2, and CTCAEv5 grading 

systems. All three grading systems broadly agree on the criteria for each level. Moderate 

dysphagia is indicated by diet modification to soft or liquid diet, while severe dysphagia is 

identified by difficulty consuming liquids. Consequently, dehydration, significant weight loss, 

and indication for nutrition support in the form of tube feeding all form part of the criteria for 
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severe dysphagia, which demands urgent intervention. In Hong Kong, assessment of dysphagia 

is infrequently recorded in the clinical notes from the consultations with doctors or nurses. 

However, indication for tube feeding is commonly recorded in the weekly consultation notes 

during RT. This intervention requires patient consent, and so clinical notes contain statements 

such as “tube feeding was discussed – patient strongly refuses”, or “patient agreed to tube 

feeding – scheduled for DD/MM/YYYY”. Severe dysphagia can be inferred from such 

statements which provide evidence for the indication for tube feeding. During the seven weeks 

of RT, the consultations take place approximately once a week. After completion of RT, 

consultations take place less frequently, with follow up reducing to 6-monthly or yearly 

consultations. Patient-reported scales for self-reporting of dysphagia  are not in widespread use 

in Hong Kong. 

Tube feeding 

During treatment, dysphagia results in a reduction in oral intake, causing weight loss. 

This weight loss is responsible for changes in patient geometry which risk deviation from the 

radiation treatment plan. In the worst case, the tumour may receive insufficient dose and normal 

tissues may suffer increased toxicity. Additionally, poor nutrition contributes to fatigue and 

weakness, whereupon patients may be unable to attend treatment fractions or may opt to 

discontinue part of their treatment, such as chemotherapy. To prevent severe weight loss, 

clinicians often offer patients liquid nutrition supplements for easier oral intake or recommend 

tube feeding. This is typically done using a nasogastric feeding tube, which bypasses the 

swallowing mechanism. However, the insertion of such a tube is uncomfortable, and patients 

are often reluctant to use it. Even for those who opt for tube feeding, the tube can be 
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accidentally pulled out. Alternatives to nasogastric tube include percutaneous gastrostomy, 

where a tube is passed directly into the stomach through the abdominal wall, or parenteral 

nutrition, where nutrition is provided intravenously.  

Interventions to prevent dysphagia 

To prevent RT-induced dysphagia, it is desirable to minimize the radiation dose to 

swallowing-related structures. The introduction of IMRT facilitates such dose reduction, along 

with a reduced exposure to the salivary glands [32]. Further prevention of dysphagia in HNC 

patients treated by IMRT may be possible using exercises for speech and swallowing therapy, 

though results are inconclusive [32]. Another consideration in preventing dysphagia is that 

disuse of the swallowing mechanism, such as during prolonged tube feeding, increases the risk 

of late dysphagia [32]. Severe dysphagia may also be prevented by providing interventions for 

related toxicities such as OM and xerostomia, which can exacerbate the severity of dysphagia. 
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1.1.6. Grading systems for OM and dysphagia 

 

Table 1: Grading systems for OM 

Grading 

system 

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4 Grade 

5 

RTOG 

1995 

No change 

over 

baseline 

Injection/may experience 

mild pain not requiring 

analgesic 

Patchy mucositis that may produce an 

inflammatory 

serosanguinous discharge / may 

experience moderate pain requiring 

analgesia 

Confluent fibrinous mucositis / may 

include severe pain requiring narcotic 

Ulceration, haemorrhage, 

necrosis  

Death 

CTCAEv2 None Erythema of the mucosa Patchy pseudomembranous reaction 

(patches generally ≤ 1.5 cm in diameter 

and non-contiguous) 

Confluent pseudomembranous 

reaction (contiguous patches generally 

>1.5 cm in diameter) 

Necrosis or deep ulceration; may 

include bleeding not induced by 

minor trauma or abrasion 

Death 

CTCAEv5 None Asymptomatic or mild 

symptoms; intervention 
not 

indicated 

Moderate pain or ulcer that 

does not interfere with oral intake; 
modified diet indicated 

Severe pain; interfering with oral 

intake 

Life-threatening consequences; 

urgent intervention indicated 

Death 

Table 2: Grading systems for (acute) dysphagia 

Grading 

system 

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4 Grade 

5 

RTOG 1995 No change 

over baseline 

Mild dysphagia / 

may require soft diet 

Moderate dysphagia / may 

require puree or liquid 

diet 

Severe dysphagia with 

dehydration or weight loss > 

15% from pretreatment baseline 

requiring N-G 

feeding tube, iv. fluids or 
hyperalimentation 

Complete obstruction, 

ulceration, perforation, 

fistula 

Death 

CTCAEv2 None Mild dysphagia, but 

can 

eat regular diet 

Dysphagia, requiring 

predominantly pureed, soft, or 

liquid diet 

Dysphagia, requiring feeding 

tube, IV hydration or 

hyperalimentation 

Complete obstruction (cannot swallow saliva); 

ulceration with bleeding not induced by minor 

trauma or abrasion or perforation 

Death 

CTCAEv5 None Symptomatic, able to 

eat 

regular diet 

Symptomatic and altered 

eating/swallowing 

Severely altered eating / 

swallowing; tube 

feeding, TPN, or hospitalization 

indicated 

Life-threatening consequences; urgent 

intervention indicated 

Death 
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1.1.7. Multi-omics 

With the advent of DNA sequencing, it became possible to map the entire genome of 

an organism. Global analysis of a genome was termed ‘genomics’, which along with 

proteomics, transcriptomics metabolomics, lipidomics and epigenomics, represent global 

analyses of biological data [36]. The suffix ‘omics’ is therefore associated with high-

throughput analysis of large quantities of data that describe a biological system [37]. In 2012, 

a new form of omics derived from medical imaging was termed ‘radiomics’, under the premise 

that these images contain information about biological processes [38, 39]. More recently, 

similar kinds of quantitative data was extracted from the RT dose plan in ‘dosiomics’ [40] and 

from the geometric relationships between tumour and organ contours in ‘contouromics’ [41]. 

In this thesis, the role of radiomics, dosiomic and contouromics in toxicity prediction is 

explored, representing a ‘multi-omic’ analysis.  

Radiomics 

Radiomics is a quantitative approach to medical imaging, which aims at enhancing the 

existing data available to clinicians by means of advanced mathematical analysis [39]. Through 

this analysis, patterns not readily visible to the human eye may be identified. Specifically, 

radiomics involves the extraction of numerical features from an area or volume-of-interest 

within a medical image. The distribution of voxel intensities is described in a set of first order 

‘intensity’ features. The geometry of the volume-of-interest is described by a class of ‘shape’ 

features. The texture within the volume is quantified using a set of matrices: grey-level co-

occurrence matrix (GLCM), grey-level difference matrix (GLDM), grey-level run-length 

matrix (GLRLM), grey-level size zone matrix (GLSZM), and neighbouring grey-tone 
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difference matrix (NGTDM). Additionally, the medical image may be filtered prior to feature 

extraction for better discrimination of patterns. Filters include smoothing, edge detection and 

high and low pass filters. There are over 100 standard radiomic features, which can amount to 

thousands of individual features once combined with different image filters, volumes-of-

interest, and image modalities. Together, the set of radiomic features can provide a 

comprehensive description of the medical imaging data pertaining to a biological volume. 

Importantly, each radiomic feature has an established mathematical definition to facilitate 

accurate reproduction across patients, scans, and centres. To ensure reproducibility of these 

features, the Image Biomarker Standardization Initiative (IBSI) published a protocol to which 

the various suppliers of software for radiomic feature extraction can comply [42]. A review by 

Gul et al. in 2021 identified several applications of radiomics in HNC, including prediction of 

survival, HPV status and treatment response, as well as models for diagnosis and staging [43]. 

Radiomic features have also been reported in connection with toxicity prediction models. This 

is discussed further in Section 1.3. 

Dosiomics 

The development of dosiomics was motivated by the desire to comprehensively 

characterize the planned RT dose in order to predict xerostomia in HNC patients [40]. Similarly 

to radiomics, features describing the intensity and texture of the dose map may be extracted, as 

well as features describing the dose gradient and dose moments. Together, these features can 

describe the intensity and spatial distribution of the planned radiation dose. Dosiomics expands 

on the simple dose statistics which are commonly calculated during RT planning. During 

planning, a dose-volume histogram (DVH) is often plotted as a plan evaluation tool. The DVH 
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summarizes a complex 3D dose distribution by plotting the relative or absolute volume of a 

tumour or organ receiving a particular dose over a range of dose bins. While the DVH can 

show the intensity and overall homogeneity of the dose to a volume, it does not provide 

information on the spatial distribution of the dose. Conventional toxicity prediction models 

often utilize DVH parameters, however the interest in dosiomics is motivated by the potential 

to better characterize the dose distribution and thereby obtain more personalized and accurate 

prediction of toxicity. 

Contouromics 

Contouromics was introduced in a study that developed a prediction model for adaptive 

RT eligibility for NPC [41].  Pre-treatment radiomic and dosiomic features were combined 

with the newly developed contouromic features, which characterized the complex geometric 

relationships between pairs of organ-at-risk (OAR) and tumour volumes. Each patient has 

unique geometry, which poses a challenge in radiation planning, where the radiation must be 

targeted at the tumour while minimizing the dose to organs-at-risk (OARs). Contouromic 

features quantify the distance and angular relationships between these pairs. Description of 

distance between two volumes is not as simple as for two points. Therefore, a distance overlap 

volume histogram (OVH) was computed for the pair of volumes. This histogram ranged from 

the minimum separation between the volumes, to the maximum separation between any two 

points in the volumes. It represents the distance by which the tumour would have to be 

uniformly expanded to overlap a given fraction of the organ volume. Therefore, the OVH 

contains comprehensive distance information, including the minimum, maximum and median 

separation, as well as all points in between. Additionally, the angular relationship was 
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characterized by a projection overlap volume histogram (POV) which indicates the fraction of 

the organ which is masked by the tumour when viewed from a given angle about the selected 

rotation axis. This concept relates to the beam’s eye view of a linear accelerator treatment 

machine, where the tumour and organ contours will appear to be overlapping at certain gantry 

rotation angles. Together, these features describing distance and angular relationships offer the 

potential to characterize the patient’s geometry and the consequent difficulty of dose sparing. 

Inclusion of contouromic features is motivated by the hypothesis that patients whose geometry 

poses a greater challenge may consequently receive more radiation to normal tissues and may 

therefore experience more severe toxicity. 

Artificial intelligence, machine learning, and deep learning 

Artificial intelligence (AI) is a topic of profound importance and widespread attention 

in the present day. However, the term is very broad, as reflected by the definition by European 

Commission High-level Expert Group on Artificial Intelligence [44]:  

“Artificial intelligence (AI) systems are software (and possibly also hardware) systems 

designed by humans that, given a complex goal, act in the physical or digital dimension by 

perceiving their environment through data acquisition, interpreting the collected structured or 

unstructured data, reasoning on the knowledge, or processing the information, derived from 

this data and deciding the best action(s) to take to achieve the given goal. AI systems can either 

use symbolic rules or learn a numeric model, and they can also adapt their behaviour by 

analysing how the environment is affected by their previous actions.” 
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Machine learning, commonly considered a subdomain of AI, is concerned with 

algorithms that learn from data and can generalize to unseen data. As with AI, the term 

‘learning’ is prone to anthropomorphism. A lay person may relate this to a “thinking machine”, 

however a simple definition is that the algorithm “learns” to perform a task if its performance 

in conducting the task improves with experience [45]. Generally, machine learning can be 

classified into three approaches: supervised learning, where the algorithm learns by comparing 

its output to a reference ‘ground truth’, unsupervised learning, where the algorithm only has 

access to the unlabelled training data and attempts to learn patterns in the data without human 

input, and reinforcement learning, where feedback is used to guide the learning process rather 

than a specific ground truth. Generally, the input data may be represented in the form of a p x 

n array of p predictors or “features” and n samples. In this way, tasks from a wide range of 

fields of study can be expressed as a machine learning task. Many ‘omics’ utilize machine 

learning for model development, and this is especially true for the selected multi-omics in this 

thesis: radiomics, dosiomics and contouromics. Machine learning is used to learn patterns in 

the large number of features in a training set and develop a model which can generalize to the 

test set. Many different algorithms have been explored in the context of radiomics and related 

omics, including traditional logistic regression, decision tree, support vector machine (SVM) 

and many more.  

Deep learning is a subdomain of machine learning which is increasingly familiar to the 

public through its applications in natural language processing and generative AI. Generated 

images and video are increasingly prevalent in digital media, while tools such as ChatGPT and 

Google Gemini have been groundbreaking developments. The term ‘deep learning’ refers to 
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the use of a neural network with three or more layers [46]. Neural networks are algorithms 

which draw inspiration from the networks of neurons in the brain by having interconnected 

nodes which transmit signals based on the input from connected nodes. Developments in 

technology have facilitated the development of highly complex neural networks with vast 

numbers of parameters. Deep learning is typically more computationally expensive and involve 

many more parameters than other machine learning models. Consequently, they tend to require 

much larger sample sizes. The structure of deep learning models allows highly complex 

representations of the input to be learned, permitting the analysis of images or text. However, 

unlike in more conventional machine learning models, each parameter does not have a 

predefined meaning. Combined with the huge number of parameters, interpretation of deep 

learning models is not possible in the conventional way. For this reason, deep learning models 

are often considered as ‘black box’ methods. While methods for the interpretation and 

explainability of deep learning models have been explored in the literature, these tend to be 

qualitative. Deep learning can achieve excellent results but is limited by available sample size 

and interpretability. In relation to multi-omics, the medical image data, radiation dose data and 

contour data can be put into deep learning models directly, however the learned parameters 

will not be interpretable as the pre-defined mathematical features included in radiomics, 

dosiomics and contouromics. Alternatively, it is possible to develop deep learning models 

using the aforementioned omics as inputs. In this case, the deep learning model can be used 

much like any other machine learning model. However, the limitations on sample size and may 

limit the complexity of such a model and restrict its performance. In this situation, there is 

limited justification for using a deep learning model. For these reasons, this work focused on 
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machine learning applications of multi-omics in the prediction of severe acute OM and 

dysphagia 
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1.2. Predictive factors for chemoradiotherapy-induced 

OM and dysphagia in HNC 

This chapter reports a systematic scoping review on predictive factors for 

chemoradiation-induced OM and dysphagia in HNC that was published in Cancers [1]. 

1.2.1. Introduction 

OM and dysphagia are two of the most prevalent toxicities experienced by HNC 

patients undergoing RT and have a systemic impact on patients, hampering treatment outcome 

and harming quality of life. A study on 212 HNC patients undergoing IMRT reported that 50% 

of patients suffered from moderate-to-severe OM, while 75% faced moderate-to-severe 

dysphagia [47]. The consequences of severe toxicity can be life-threatening: another study 

found that 9% of HNC patients were hospitalized or sought emergency care due to acute OM 

toxicity, and an even higher 19% for dysphagia-related issues [48]. The pain and discomfort 

which directly result from these toxicities are combined with the frustration over impairments 

to everyday actions such as eating and drinking. Interventions to maintain nutrition, such as 

nasogastric tube feeding, can also induce discomfort. The impact on QoL should not be 

underestimated, with these conditions inflicting a toll on the patient’s physical, emotional, and 

psychosocial health. Accurate prediction of patients at risk of severe toxicity is crucial for 

improving management strategies and ultimately, patient outcomes.  

This scoping review aimed to systematically map current literature on predictive factors 

for chemoradiation-induced OM and dysphagia among HNC patients, providing quantitative 

as well as qualitative synthesis. This study sought to address two primary research questions: 

1) Which factors are recognized as predictors for treatment-induced OM and dysphagia in HNC 
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patients? 2) How efficacious are the prevailing predictive models in forecasting the severity of 

these toxicities? This review synthesized current evidence to offer clinicians and researchers 

insights for enhancing predictive model development. 

1.2.2. Materials and methods 

To identify studies on predictive factors for chemoradiation-induced OM and dysphagia 

in HNC patients, a systematic literature search was conducted in accordance with the Preferred 

Reporting Items for Systematic Review and Meta-Analysis Protocols Extension for Scoping 

Reviews (PRISMA-ScR) guidelines [49]. Data were collected through Embase, PubMed, 

Scopus, and Web of Science from year 2000 to September 2023. The detailed search strategy 

for each database is provided in Search strategy for literature review 

Table 58. A flowchart of the study search and screening process is illustrated in Figure 

4. 

Eligible studies included those that reported predictive factors for OM or dysphagia. If 

both toxicities were reported, separate records were created for each. The outcome measures 

related to the severity, incidence or duration of OM or dysphagia. Measures of dysphagia 

included objective and subjective severity scales and indicators including diagnoses of stricture 

or aspiration based on video fluoroscopy or modified barium swallow. Aspiration pneumonia, 

as a secondary consequence of dysphagia, was not included as an outcome measure. Included 

studies reported statistically significant factors or predictive models for the outcome. Study 

subjects were restricted to patients with head and neck cancer who received RT and/or 

chemotherapy. Consequently, studies using animal or in vitro models were excluded. Studies 
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with 10 or fewer subjects were excluded, as were those not available in English, or those 

published before the year 2000.  

After removing duplicates, screening was performed in two phases. The first phase 

involved screening by the title and abstract, followed by full text screening in the second phase. 

Any non-full-length articles were excluded, due to limited detail and lower quality of evidence. 

A critical appraisal of individual sources of evidence was not conducted, considering the 

diversity in study designs and the volume of literature included. Moreover, the primary purpose 

of the review was to map the existing research rather than assess the level of evidence of each 

study. 

Data charting was conducted separately for OM and dysphagia. For each outcome, 

details of each study were tabulated in a spreadsheet. Data items included sample size, 

treatment regimen, outcome measure, outcome incidence, and timeframe. Factors reported to 

be significantly correlated with the outcome (p-value < 0.05) were recorded under the 

appropriate category, along with an indication of whether the factor was significant in 

univariate analysis, multivariate analysis, or was reported as a model feature. To quantify the 

amount of evidence for each factor, the number of studies reporting it as significant in 

multivariate or model analysis was calculated for each toxicity outcome. Univariate analyses 

were not included because of concerns over multiple testing bias and confounding variables. 

Factors for each toxicity outcome were grouped by factor type and ranked by the number of 

studies reporting it as significant in multivariate or model analysis. The number of studies 

reporting each factor as significant in any analysis (univariate, multivariate or model) was also 

included for comparison. 
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Additionally, a subset of the included studies that reported predictive models for OM 

or dysphagia were investigated. Studies were included in this subset if they provided some 

form of validation performance score. The time frame, endpoint definition, model features, 

sample size and validation type were recorded, along with the test performance score. This was 

typically reported in the form of the area under the receiver operating characteristic curve 

(AUC). An AUC close to 0.5 indicated that the prediction was equivalent to random chance, 

while a value close to 1.0 indicated a perfect prediction. 

1.2.3. Results 

Identification and selection of studies 

 

Figure 4: Flow diagram of selection of sources of evidence. 
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Records identified through database searching: 

Database N records Date 

Web of Science 797 Sep 2023 

Embase 1093 Sep 2023 

Scopus 701 Sep 2023 

PubMed 553 Sep 2023 

 

Records after duplicates removed: 

N = 1,704 

Records after initial screening: 

N = 613 

Records after in-depth screening: 

N = 285 

Full-text articles included: 

N = 176 

Records excluded  

(duplicates): N = 1091 

Records excluded 

(criteria not met): N = 328 

Abstracts excluded 

(not full-text article): N = 109 
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The literature search resulted in 1704 unique records, of which 1528 were excluded 

during the screening process. A total of 176 full-text articles were included for this review. 

Seventy-three articles reported predictors for OM [50-122], five reported predictors for both 

OM and dysphagia [123-126], and ninety-eight reported predictors for dysphagia alone [33, 

54, 127-222]. 

Overview of included studies 

Table 3 summarizes the 176 full-text articles included in this review. Some articles 

reported predictors for both OM and dysphagia, so were treated as separate records in each 

analysis. The median number of HNC patients in each study were similar for OM (n=91) and 

dysphagia (n=100). The overall frequency of RT, chemotherapy, and surgery as treatments is 

also listed. Almost all the patients received RT, and most patients received chemotherapy. It 

should be noted that 81% of studies did not report the incidence of surgery as a treatment, so 

the proportion of patients with surgical history for OM studies (54%) and dysphagia studies 

(24%) may be inaccurate. Clinician-rated outcomes were most reported for both OM and 

dysphagia. OM was almost exclusively investigated in the acute period using clinician-rated 

gradings. Dysphagia was investigated at both the acute and late periods, with the majority 

focused on late dysphagia. Note that some studies reported predictors for both acute and late 

toxicities, and some without the timeframe specified. Among studies on OM, 59% included 

only univariate analysis, while 41% utilized multivariate analysis or developed a predictive 

model. Among studies on dysphagia, 37% included only univariate analysis, while 63% 

utilized multivariate analysis or developed a predictive model. 
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Table 3: Summary statistics of included studies 

Summary statistic OM Dysphagia 

Full-text articles (N) 78 103 

Patient cohort size (median) 91 100 

Patient cohort with RT history (%) 100 100 

Patient cohort with chemotherapy history (%) 80 88 

Patient cohort with surgical history (%) 54 24 

Clinician rated outcome (%) 85 84 

Patient reported outcome* (%) 4 21 

Investigated acute toxicity (%) 80 40 

Investigated late toxicity (%) 1 62 

Studies with univariate analysis only (%) 59 37 

* Patient reported outcome refers to toxicity outcomes defined by results of questionnaires or scales completed 

by the patient, such as pain rating, oral intake, swallowing ability or quality of life scales. 

Table 4 describes the incidence of the top-reported OM and dysphagia outcomes. The 

most frequently reported OM outcome was RTOG/CTCAE/WHO grade 3+ (severe). 

Approximately 56% and 42% of patients endured grade 2+ (moderate-or-higher) and grade 3+ 

(severe-or-higher) OM during their treatment respectively. Among dysphagia outcomes, severe 

dysphagia (as indicated by tube feeding or RTOG/CTCAE grade 3+) was very common in the 

acute period. 

Table 4: Toxicity outcome incidences 

Toxicity Timeframe OM outcome Incidence Reported by N studies 

OM Acute 
RTOG/CTCAE/WHO grade 3+ 42% 47 

RTOG/CTCAE/WHO grade 2+ 56% 8 

Dysphagia 

Acute 

Tube feeding(use/indication/dependence) 37% 13 

RTOG/CTCAE grade 3+ 37% 11 

RTOG/CTCAE grade 2+ 49% 2 

Late 

 

Tube feeding(use/indication/dependence) 17% 14 

RTOG/CTCAE grade 3+ 23% 7 

RTOG/CTCAE grade 2+ 28% 4 

Table 5, Table 6, and Table 7 detail the analysis of predictive factors for acute OM, 

acute dysphagia, and late dysphagia. Univariate analysis does not account for relationships 

between factors and may be influenced by confounding. Therefore, factors were ranked by the 

number of studies that identified them as significant in multivariate analysis or predictive 

models. The factors can be classified into seven categories: patient, tumour, treatment, organ-
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at-risk (OAR) dose, clinical laboratory test results, genetic expression, and “other”. Patient 

factors include demographics; tumour factors include TNM staging and tumour site; treatment 

factors include treatment modalities and regimen. Dose factors pertain to the radiation 

delivered to the organ-at-risk (OAR); genetic factors refer to single nucleotide polymorphisms 

of genes which were found to be correlated with toxicity; clinical laboratory test results include 

the results of blood, saliva, or stool tests. 

Predictors of oral mucositis 

For acute oral mucositis (OM, Table 5), smoking was the patient factor most frequently 

reported as significant in multivariate analysis, followed by sex, body mass index and age. 

Other factors included weight loss, performance status score and number of teeth. Alcohol was 

reported by two studies in univariate analysis. The tumour factors most reported in multivariate 

analysis were tumour site, T-stage, and N-stage. Interestingly, the primary tumour volume was 

reported by one study in univariate analysis. Treatment factors were led by use of concurrent 

chemotherapy, followed by chemotherapy drug, RT fractionation, , neoadjuvant chemotherapy, 

retropharyngeal lymph node irradiation, RT delivery time, RT field size, RT modality and 

surgery related factors. The dose factor most reported in multivariate analysis was the radiation 

dose to the oral cavity or extended oral cavity, followed by the dose to the oral mucosal surface, 

parotid glands, and pharyngeal space. Additionally, the dose to the tongue and pharyngeal 

constrictor muscles were identified in univariate analysis. Many studies investigated the role 

of clinical laboratory test results, including white blood cell lymphocyte count, erythrocyte 

sediment rate (ESR) and γ-H2AX (protein marker) and presence of candida fungus. The role 

of RADIODTECT blood assay, epidermal growth factor and neutrophil-to-lymphocyte ratio 
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were also reported. Fourteen studies reported genetic factors as predictors of OM. However, 

only four adopted multivariate analysis. Tumour necrosis factor alpha was reported by two 

studies, but with different genotypes reported by each study (TT and GG) [67, 104]. Single 

nucleotide polymorphisms of XRCC1, a gene involved with DNA repair, were reported by two 

studies [85, 115]. The remaining ten studies that reported genetic factors each returned a 

different factor. Beyond the previously mentioned categories, one study crafted a prediction 

model employing radiomic and dosiomic features derived from the primary tumour volume 

[57]. Two studies highlighted a significant correction between bioelectrical impedance 

measurements and OM in univariate analyses [68, 106], while another study identified 

perfusion parameters as a significant determinant in a univariate analysis [103]. The most 

robust factors, significant in multivariate or model analysis, include RT dose to the oral cavity 

/ oral mucosa, concurrent chemotherapy, smoking, tumour site, gender, and RT dose to the 

parotid glands. 
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Table 5: Number of studies demonstrating significant correlations between acute OM and various factors. 

Factor Type Factor Multivariate or model  All analyses 

Clinical laboratory tests Blood, saliva, or stool properties 14  26 

Dose 

RT dose to oral cavity (entire volume) 10  11 

RT dose to oral mucosa (surface only) 6  7 

RT dose to parotid glands 4  4 

RT dose to pharyngeal space 1  1 

RT dose to constrictor muscle 0  1 

RT dose to tongue 0  1 

Treatment 

Concurrent chemotherapy 8  13 

Chemotherapy drug 2  2 

RT fractionation 2  3 

Neoadjuvant chemotherapy 2  2 

Retropharyngeal lymph node irradiation 1  1 

RT delivery time 1  3 

RT field size 1  1 

RT modality 1  1 

Surgery related factors 1  2 

Number of chemotherapy cycles 0  1 

Use of tongue immobilizer 0  1 

Patient 

Smoking 6  9 

Sex 4  6 

Body mass index 3  6 

Age 3  9 

Baseline weight loss 2  3 

Performance status score 1  3 

Number of teeth 1  1 

Alcohol-related 0  2 

Tumor 

Tumor site 5  7 

T-stage 3  5 

N-stage 3  3 

Primary tumor volume 0  1 

Genetic Genetic factors 4  14 

Other 

Radiomic / dosiomic features 1  1 

Bioelectrical impedance measurement 0  2 

Perfusion / blood flow measurement 0  1 
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Table 6: Number of studies demonstrating significant correlations between acute dysphagia and various 

factors. 

Factor type Factor 
Multivariate or 

model 
All analyses 

Tumor 

T-stage 9 11 

Tumor site 8 14 

N-stage 6 8 

Treatment 

Concurrent chemotherapy 9 11 

RT fractionation 4 7 

Chemotherapy drug type 3 4 

Neck irradiation regimen 3 6 

RT field size 2 3 

Surgery related factors 2 2 

Adjuvant chemotherapy 1 1 

Brachytherapy 1 1 

Neoadjuvant chemotherapy 1 1 

RT modality 1 2 

Dose 

RT dose to constrictor muscles 8 13 

RT dose to inferior pharyngeal constrictor (IPC) 6 7 

RT dose to superior pharyngeal constrictor (SPC) 6 9 

RT dose to middle pharyngeal constrictor (MPC) 4 6 

RT dose to oral cavity volume / oral mucosa surface 4 5 

RT dose to parotids 3 3 

RT dose to larynx 3 6 

RT dose to esophageal inlet / cricopharnygeus 2 3 

RT dose to esophagus 1 2 

RT dose to pharyngeal mucosa 1 1 

RT dose to pharynx 1 1 

RT dose to submandibular glands 1 1 

RT dose to primary tumor 1 1 

Patient 

Age 6 8 

Body mass index 4 4 

Performance status score 4 5 

Baseline weight loss 3 5 

Sex 3 5 

Smoking history 3 5 

Pretreatment dysphagia 2 4 

Constrictor muscle geometry 1 1 

Clinical laboratory 

tests 
Blood or saliva properties 3 3 

Genetic Genetic factors 3 3 
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Table 7: Number of studies demonstrating significant correlations between late dysphagia and various 

factors. 

Factor type Factor 
Multivariate or 

model 
 

All 

analyses 

Dose 

RT dose to constrictor muscles 16  26 

RT dose to superior pharyngeal constrictor (SPC) 16  18 

RT dose to larynx 10  16 

RT dose to middle pharyngeal constrictor (MPC) 10  12 

RT dose to inferior pharyngeal constrictor (IPC) 9  12 

RT dose to esophageal inlet / cricopharnygeus 5  8 

RT dose to oral cavity volume / oral mucosa surface 4  5 

RT dose to parotids 3  7 

RT dose to tongue or base of tongue 3  6 

RT dose to esophagus 2  4 

RT dose to inferior brain stem 1  1 

RT dose to submandibular glands 0  2 

Tumor 

T-stage 13  21 

Tumor site 11  18 

N-stage 8  12 

Patient 

Age 12  14 

Smoking history 6  6 

Baseline / acute weight loss 5  8 

Pretreatment or acute dysphagia 3  7 

Body mass index 1  2 

Performance status score 1  4 

Sex 1  3 

Constrictor muscle geometry 1  1 

Alcohol use 0  1 

Treatment 

Concurrent chemotherapy 9  9 

Surgery related factors 4  6 

RT fractionation 3  11 

Neck irradiation regimen 2  8 

Chemotherapy drug type 1  3 

Neoadjuvant chemotherapy 1  3 

Adjuvant chemotherapy 1  2 

RT modality 1  2 

Brachytherapy 1  1 

RT field size 0  2 

Clinical laboratory 

tests 
Blood or saliva properties 1  1 

Predictors of dysphagia 

Regarding acute dysphagia (Table 4), the most reported patient factor in multivariate 

analysis was age, followed by body mass index and performance status score. In terms of 

tumour factors, T-stage was the most reported, followed by tumour site and N-stage. For 

treatment factors, most reported was the use of concurrent chemotherapy, followed by RT 
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fractionation, chemotherapy drug and neck irradiation regimen. The most reported dose factor 

was the accumulated radiation dose to the pharyngeal constrictor muscles, specifically the 

superior and inferior pharyngeal constrictors. This was followed by the dose to the medial 

constrictor, oral cavity or oral mucosa, parotid glands, larynx, and oesophageal inlet or 

cricopharnygeus. Three studies [126, 127, 217] reported genetic factors regarding single 

nucleotide polymorphisms. Two studies [123, 203] reported clinical laboratory test results, 

including the presence of oral candidiasis and the result of the RADIODTECT blood assay. 

The most well-supported factors, significant in multivariate or model analysis, were T-stage, 

concurrent chemotherapy, tumour site, RT dose to constrictor muscles, N-stage, and patient 

age. 

With respect to late dysphagia (Table 5), the most common patient factor in 

multivariate analysis was age, followed by smoking history, and baseline or acute weight loss. 

The most reported tumour factor was T-stage, followed by tumour site and N-stage. The most 

reported treatment factor was the use of concurrent chemotherapy, followed by surgery related 

factors, RT fractionation, and neck irradiation regimen. The most reported dose factor was the 

radiation dose to the pharyngeal constrictor muscles, specifically the superior pharyngeal 

constrictor, dose to the larynx, medial and inferior constrictors, oesophageal inlet or 

cricopharnygeus, oral cavity or oral mucosa, parotid glands, tongue or base of tongue, and 

oesophagus. The doses received by the inferior brain stem and the submandibular glands were 

also reported. HPV status was the only clinical laboratory test result factor identified [192]. No 

genetic factors were identified as significantly correlated with late dysphagia. The most well-

supported factors, significant in multivariate or model analysis, were RT dose to constrictor 
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muscles, T-stage, patient age, tumour site, RT dose to larynx, concurrent chemotherapy, and 

N-stage.  

Table 8: Predictive models for OM. 

Ref 
Time 

frame 
Endpoint Model features* 

Sample 

size 

Validation 

type 

Test 

AUC 

[50] Acute 
Increase from 

RTOG G1-G2 
Oral bacteria genetic information 41 Internal 0.646 

[51] Acute 
CTCAE G3+ 

OM 
BMI, Combined parotid glands EUD, Oral cavity EUD 132 Internal 0.67 

[52] Acute 
CTCAE G3+ 

OM 

Oral cavity Dmean, Mean RT dose at which 50% of 

patients experience toxicity (51 Gy), Slope of dose 

response curve 
169 External 0.67 

[53] Acute 
CTCAE G3+ 

OM 

Definitive RT, Male, Age, Chemotherapy modality, 

Chemotherapy drug, Tumour site, Volumes of oral cavity 

receiving 20-260cGy per fraction in 20cGy/fraction 

increments 

351 Internal 0.71 

[54] Acute 
WHO G3+ 

OM 
Age, N-stage, # of cycles of neoadjuvant chemotherapy, 

V40 (oral cavity)  
190 Internal 0.759 

[55] Acute 
RTOG G3+ 

OM 
BMI, RLN irradiation, Mucosa surface contour V55 270 Internal 0.782 

[56] Acute 
DAHANCA 

G3+ OM 
Extended oral cavity DVH parameters converted into 2 

Principal Components, Treatment acceleration 
802 Internal 0.808 

[57] Acute 
CTCAE G3+ 

OM 

4 cT1-w MR and 1 CECT radiomic texture features 

extracted from gross tumour volume (primary and nodal 

tumour) 
242 Internal 0.81 

* Dmean = mean dose, BMI = body mass index, DVH = dose volume histogram, Vx = volume receiving x Gy 

dose, RLN = retropharyngeal lymph nodes, EUD = equivalent uniform dose, cT1-w MR = contrast T1 weighted 

magnetic resonance image, CECT = contrast enhanced CT image. 

 

Predictive models for oral mucositis and dysphagia 

Table 8, Table 9 and Table 10 present predictive models from the included studies that 

underwent either internal or external validation, providing insights into the current predictive 

performance of published models. Internally validated models were evaluated using hold-out 

test sets, cross-validation or bootstrapping comprised of samples from the same centre as the 

training set. External validated models were evaluated on a hold-out test set taken from a 
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separate centre to assess the generalizability of the model. The details of the outcome measure, 

model features and type of validation are also tabulated.  

All the validated predictive models for OM were specific to the acute period. Severe-

or-higher OM (≥ grade 3), as scored by RTOG, CTCAE or WHO, was used as an out-come by 

6 out of 8 models [51-55, 57]. Alternatively, an increase in RTOG grade from mild (grade 1) 

to moderate (grade 2) was used by Zhu et al. [50] and DAHANCA grade 3+ was used by 

Hansen et al. [56]. The validation performance, as measured by AUC, ranged from 0.65 to 

0.81. Clinical features used in the models include sex, age, BMI, tumour site, N-stage, use of 

chemotherapy, chemotherapy drug, number of cycles of neoadjuvant chemotherapy, treatment 

acceleration, retropharyngeal lymph node irradiation, and treatment dose parameters. Dose 

volume histogram (DVH) parameters used in the models included dose to the oral cavity and 

dose to the mucosa surface contour. Zhu et al. reported a model using genetic information from 

oral bacteria [50]. Dong et al. reported a model using MR and CECT radiomic features 

extracted from the gross tumour volume [57]. The model size ranged between 2 to 19 features. 

Among the validated predictive models for dysphagia, five predicted acute dysphagia 

and nine predicted late dysphagia. For acute dysphagia, outcomes were defined as tube feeding 

dependence [128-130] or CTCAE grading severe or higher (≥ grade 3) [127, 131]. The 

validation performance, as measured by the AUC, ranged from 0.60 to 0.82. Clinical features 

used in the models included sex, age, BMI, texture modified diet, tumour site, T-stage, N-stage, 

performance status, pre-treatment weight loss, use of chemotherapy versus RT alone, use of 

concurrent chemotherapy, use of induction chemotherapy, and chemotherapy drug. DVH 

parameters used in the models included dose to the superior and inferior pharyngeal constrictor 
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muscles, dose to the pharyngeal mucosa, dose to the contralateral parotid gland, dose to the 

oral cavity, and dose to the contralateral submandibular gland. De Ruyck et al. also 

incorporated a genetic polymorphism feature into their model [127]. The model size ranged 

from a single feature up to 20 features.  

For late dysphagia, outcomes were defined as tube feeding dependence [137, 140], 

occurrence of a dysphagia criteria (including tube feeding, aspiration, stricture, aspiration 

pneumonia) [133, 138, 139], RTOG/CTCAE moderate-or-higher dysphagia (≥ grade 2) [134-

136], or improvement in dysphagia grading [132]. The validation performance, as measured 

by the AUC, ranged from 0.70 to 0.85. Clinical features used in the models included age, T-

stage, N-stage, tumour site, HPV status, smoking status, baseline weight loss, baseline 

dysphagia score, treatment acceleration, use of chemotherapy versus RT alone, neck dissection, 

and total dose to tumour. DVH parameters used in the models included dose to the pharyngeal 

constrictor muscles, dose to the larynx, dose to the contralateral parotid, dose to the 

cricopharyngeal muscle, dose to the mylogeniohyoid, and dose to the oral cavity. The model 

size ranged from a single feature up to 9 features. 

 



 

66 

 

Table 9: Predictive models for acute dysphagia 

Ref 
Time 

frame 
Endpoint Model features* 

Sample 

size 

Validation 

type 

Test 

AUC 

[127] Acute 
CTCAE G3+ 

dysphagia 
CCT, D2 SPCM, 

Rs321345_TC(XRCC1) polymorphism 
189 Internal 0.6 

[128] Acute 
Tube feeding use 

≥ 4 weeks 

Pre-treatment weight change %, 

Texture modified diet., ECOG > 0, 

Tumor site, N-stage ≥ 2, Dmean 

contralateral parotid, Dmean oral cavity 

334 External 0.624 

[129] Acute 
Tube feeding use 

≥ 4 weeks 

Tumor site, T-stage ≥ 3, Chemotherapy 

(vs RT alone), Dmean contralateral 

parotid 
225 Internal 0.708 

[130] Acute 
Tube feeding use 

≥ 4 weeks 

BMI, Texture modified diet, WHO 

performance scale > 0, Tumor site, T-

stage ≥ 2, N-stage ≥ 2, CCT (vs RT 

alone), Dmean contralateral 
submandibular gland, Dmean 

contralateral parotid  

450 Internal 0.723 

[131] Acute 
CTCAE G3+ 

dysphagia 

Definitive RT, Male, Age, IC, No CCT, 

Chemotherapy drug, Tumor site, 

Volumes of Pharyngeal mucosa 

receiving 20-260cGy per fraction in 

20cGy/fraction increments 

90 External 0.82 

* ECOG = Eastern Cooperative Oncology Group performance status, Dmean = mean dose, Dx = dose to x% of 

volume, BMI = body mass index, IC = induction chemotherapy, CRT = chemoradiation, CCT = concurrent 

chemotherapy, [S/M/I]PCM = superior/medial/inferior constrictor muscle, Vx = volume receiving x Gy dose. 
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Table 10: Predictive models for late dysphagia. 

Ref 
Time 

frame 
Endpoint Model features* 

Sample 

size 

Validation 

type 

Test 

AUC 

[132] Late 

Dysphagia 

improvement 

(reduction of at 

least one grade 

from CTCAE 

grade ≥3) 

Dmin larynx 90 Internal 0.697 

[133] Late 
Aspiration (>25 

months) 
Age, Neck dissection, Dmean MPCM 107 Internal 0.73 

[134] Late 
RTOG G2+ 

dysphagia (6 

months) 
Dmean SPCM, Dmean supraglottic larynx 186 External 0.75 

[135] Late 
CTCAE G2+ 

dysphagia (6 
months) 

Dmean oral cavity, Dmean SPCM, Dmean 

MPCM, Dmean IPCM, Tumor site, 
Baseline dysphagia score 

277 External 0.8 

[136] Late 
RTOG G2+ 

dysphagia (6 

months) 
Dmean SPCM, Dmean supraglottic larynx 354 Internal 0.8 

[137] Late 
Tube feeding 

dependence (6 

months) 

T-stage ≥ 3, N-stage > 0, Baseline 

weight loss, Accelerated RT, CRT, 

Neck irradiation 
183 External 0.82 

[138] Late 

Aspiration or 

stricture or tube 

feeding or 

aspiration 

pneumonia (> 12 

months) 

Age, V69 Mylo/geniohyoid complex 300 Internal 0.835 

[139] Late 

Feeding tube 

insertion or 

aspiration (6 

months) 

Tumor-organ distances for superior, 

inferior and medial pharyngeal 

constrictors, plus mylogeniohyoid, 
cricopharyngeal muscle and 

supraglottic larynx, Clinical feature 

clusters comprised of smoking status, 

T-stage, N-stage, HPV status, 

Pathological grade, tumor site, CRT 

combination, tumor laterality, age, total 

dose to tumor 

200 Internal 0.84 

[140] Late 
Tube feeding 

dependence (6 

months) 

T-stage ≥ 3, Baseline weight loss > 

10%, RT + cetuximab, Accelerated RT, 

CCT, Dmean SPCM, Dmean IPCM, Dmean 

contralateral parotid, Dmean 

cricopharyngeal muscle 

355 Internal 0.85 

* ECOG = Eastern Cooperative Oncology Group performance status, Dmean = mean dose, Dx = dose to x% of 
volume, BMI = body mass index, IC = induction chemotherapy, CRT = chemoradiation, CCT = concurrent 

chemotherapy, [S/M/I]PCM = superior/medial/inferior constrictor muscle, Vx = volume receiving x Gy dose. 
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1.2.4. Discussion 

To our knowledge, this was the first scoping review to map current literature on 

predictors of and predictive models for the severity of OM and dysphagia in HNC patients. 

One hundred and seventy-six studies were included in this review. The reported predictors were 

categorized, grouped by toxicity and timeframe, and the numbers reported in univariate and 

multivariate analysis were analysed (Table 5, Table 6, Table 7). Additionally, eight, five and 

nine studies that reported predictive models for the severity of acute OM, acute dysphagia and 

late dysphagia were analysed (Table 8, Table 9, Table 10). 

Predictors of OM and dysphagia 

A broad range of predictors for the severity of OM and dysphagia have been identified, 

indicating the multifactorial and complex aetiology of these conditions. Ranking predictors by 

the number of studies where they were significant in multivariate analysis is indicative of the 

quantity of evidence per predictor. Some predictor types, such as genetic factors for OM, were 

frequently reported as significant in univariate analyses, but not in multivariate analyses. For 

example, genome-wide association studies reported genetic variants associated with acute OM 

[108, 120]. Even in other studies where multivariate analysis was performed, a limited set of 

predictor types were included. Further investigation is required to confirm the independent 

value of predictors and identify combined or interactive effects among a comprehensive range 

of predictor types. 

 Performance of predictive models 

Predictive models mostly focused on severe toxicity, indicating their intended use for 

identifying high-risk patients who can be targeted for closer monitoring and more aggressive 
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preventative measures. For acute OM, eight models were identified with AUCs ranging from 

0.65 to 0.81 [50-57]. Five models emerged for acute dysphagia (AUC: 0.60-0.82) [127-131], 

and nine for late dysphagia (AUC: 0.70-0.85) [132-140]. Considerable variability in model 

performance was evident, suggesting opportunities for further improvement. The best 

performing models tended to incorporate multiple predictor types. For example, for OM, 

Hansen et al. included treatment acceleration alongside DVH parameters of the extended oral 

cavity [56], and Dong et al. included texture features from multiple imaging modalities [57]. 

For dysphagia, Dean et al. included patient, tumour, treatment and DVH parameters of the 

pharyngeal mucosa [131]. Wopken et al. included tumour, treatment and DVH parameters from 

multiple organs at risk (OARs) [140]. Investigation of a broader range of factor types offers 

potential to capture more of the multifactorial nature of these toxicities and further improve 

performance, provided that the challenges of increased dimensionality and interactive effects 

can be addressed. 

Limitations of predictive models 

External validation on data from a separate centre provides a higher level of evidence. 

However, less than one third of the models were externally validated. Many of the studies 

reporting these models highlighted the lack of external validation and small sample size as 

limitations.  

One of the main challenges involved in developing a predictive model for OM or 

dysphagia is in its generalizability to other clinical centres. The differences between centres 

may explain why only 27% of the studies utilized external validation. The grading system used 

for assessing toxicity can vary, as can the criteria for interventions such as tube feeding, a 
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common outcome measure for dysphagia. For example, Dean et al. observed a difference in 

the scoring system for dysphagia between their training data and their validation data [131], 

and Willemsen et al noted that individual and in-situational preferences in feeding tube 

insertion policy may affect the apparent incidence of dysphagia [128]. Furthermore, the 

treatment regimen can also vary between centres. For example, there may be different 

guidelines for the use of neoadjuvant, concurrent or adjuvant chemotherapy depending on 

tumour site and staging, and different guidelines for choice of chemotherapy drug or radiation 

delivery. Sharabiani et. al. recognized that the normal tissue complication probability (NTCP) 

models they used were not fully up to date with current treatment regimens, and so the 

generalizability of the models would be reduced [52]. The contouring of OARs may also vary 

between centres, especially for organs which are not commonly delineated during standard 

practice such as the oral mucosa surface [53].  

Models generally did not incorporate all types of predictors. For example, clinical 

laboratory test results and genetic factors were underrepresented in the models and may offer 

potential to enhance prediction. For example, blood tests have an established role in patient 

monitoring. Information such as blood cell counts, and presence of inflammatory markers have 

been highlighted as potential predictors of severe toxicity. Incorporation of factors such as 

blood group type and its relationship with head and neck cancer subtypes may also offer 

potential for more personalized models [223]. Regarding genetic factors, Hansen et al. suggest 

that characterizing normal tissue radiosensitivity through genomic or microbiomic data might 

improve prediction of OM [56]. Regarding the role of DVH parameters, some studies did not 

include all relevant OARs in their analysis, such as the oral cavity for OM [57]. In some models, 
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social factors such as smoking status and alcohol use were omitted [131]. Additionally, Dean 

et al. suggested that subjective patient-reported factors such as pain tolerance should also be 

investigated [131].  

Another limitation was in terms of the reporting. Most studies did not display the 

receiver-operator curve for the validation set, preventing the comparison of sensitivity and 

specificity across different prediction thresholds. Where performance metrics were re-ported, 

it was sometimes unclear whether the value applied to a training set or validation set. Moreover, 

often insufficient information was provided to independently validate the findings. Such 

information might include definitions of all model features, coefficient values and model 

hyperparameters. 

Recommendations for future model development 

Based on the limitations identified in the studies reporting predictive models, some 

recommendations are warranted. Studies should endeavour to recruit sufficiently large sample 

sizes to better identify patterns and reduce the impact of overfitting. Models should be 

externally validated to achieve a higher level of evidence, though the differences between 

centres should also be identified and discussed. Study methodology should be reported 

comprehensively, including details on patient selection criteria, variable and outcome 

definitions, preprocessing, feature selection and the validation approach. Guidelines for OAR 

delineation should be followed wherever possible to facilitate reproducibility. Likewise, 

greater standardization in the reporting of results is also desirable. Sufficient information 

should be provided to reproduce the model for validation purposes.  
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Certain types of predictors merit further investigation, particularly the role of clinical 

laboratory tests and genetic factors. Furthermore, exploration of radiomic and dosiomic 

features may be beneficial through their ability to quantify textural properties and spatial dose 

distribution within OARs. It should be noted that toxicity has a subjective component. While 

most of the studies in this review have investigated clinician-rated toxicity, further exploration 

of patient-reported toxicity outcomes and psychosocial factors as predictors of severe toxicity 

is warranted. 

Future development of predictive models for OM and dysphagia should include 

prospective studies. These may allow for a more comprehensive range of predictors to be 

measured and would improve the level of evidence by reducing the risk of selection bias. 

However, cross-institutional prospective studies would still face issues from differences in 

toxicity grading and treatment regimen between centres. This presents a bottleneck in the 

further development of models to predict severe toxicity. 

Limitations of this review 

A limitation of this review is the broad definition of dysphagia, which includes not just 

dysfunction in the swallowing mechanism but also impaired oral intake and indication for tube 

feeding, which in turn is often determined by weight loss. Analysing predictors for each aspect 

separately might yield more specific findings. However, collecting a range of specific 

dysphagia outcomes is not typical in clinical practice, so the quantity of results would be 

reduced. 
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1.2.5. Conclusion 

After reviewing 176 studies on OM and dysphagia, predictors were systematically 

assessed. Discrepancies observed between the findings from univariate and multivariate 

analyses suggest the need for deeper investigation into the relationships between different 

predictors. While several predictive models for the severity of OM or dysphagia have been 

proposed, the variability in their performance indicates potential for enhancement. This review 

identified several areas for improvement. Future studies should prioritize larger sample sizes, 

external validation, standardized predictor and outcome definitions, and comprehensive 

reporting to facilitate reproducibility. A broad range of predictor types should be collected to 

capture the multifactorial aetiology of OM and dysphagia. Careful design of prospective studies 

will mitigate selection bias and allow some of the challenges of obtaining standardized and 

comprehensive predictor data to be overcome. 

Only one prediction model for acute OM was externally validated, indicating the 

limited level of evidence among existing models and their unknown generalizability. Among 

the models for acute dysphagia, two models were externally validated. However, both of these 

were trained on multi-site HNC data and were not specific to NPC patients. While a general 

HNC toxicity prediction model is useful, NPC has key differences in its treatment which make 

further exploration in NPC-only cohorts desirable. For late dysphagia, three models were 

externally validated. Interestingly, discrimination scores were generally higher for late 

dysphagia than for acute OM or acute dysphagia.  
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1.3. Multi-omics for toxicity prediction in HNC 

1.3.1. Introduction 

The integration of radiomics, dosiomics and contouromics into the clinical management 

of HNC promises advancements in precision oncology by offering enhanced toxicity prediction 

and personalized preventative management. Treatment of HNC is complicated by the presence 

of various vital structures in proximity to the target, and by the differences in tumour site and 

histology. Traditional approaches to toxicity prediction can struggle to fully capture this 

complexity, limiting their use in personalized medicine and underscoring the need for more 

sophisticated predictive tools. Radiomics provides a non-invasive method for characterizing 

phenotypic characteristics of tumours or OARs which are associated with higher risk of toxicity 

or more severe toxicity. Similarly, dosiomics provides a means to quantify the spatial 

distribution of the planned radiation dose, allowing characterization of the dose delivery 

beyond the aggregate values of DVH parameters. Contouromics, a newly emerging field, may 

represent a way to describe the difficulty of dose sparing by quantifying the geometric 

relationships between tumour and OAR. Together, these tools can harness three-dimensional 

medical imaging and RT data and machine learning to utilize tumour and treatment 

characteristics which are invisible to the naked eye.  

A growing number of studies have reported multi-omics-based toxicity prediction 

models for HNC. A systematic review by Carbonara et al. reported eight studies that predicted 

HNC toxicities including xerostomia, radiation-induced brain injury, parotid shrinkage, trismus 

and hearing loss using radiomics [224]. A subsequent systematic review by Araújo reported 

sixteen studies that utilized radiomic features in combination with clinical, dosimetric, or 
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dosiomic features for toxicity prediction in HNC [225]. Additionally, a systematic review by 

Tan et al. reported thirteen studies that utilized delta radiomics for toxicity prediction [226]. 

Limitations of the studies were discussed. In particular, Araújo reported that a majority of the 

included studies were at high risk of bias according to the TRIPOD checklist and failed to find 

an overall benefit of imaging biomarkers over conventional approaches in a meta-analysis on 

a subset of three studies. Furthermore, only three of the models utilized external validation. 

The authors also noted the need for more comprehensive reporting. 

The aim of this section was to conduct a systematic literature search for studies which 

reported multi-omic models for HNC toxicity prediction, and perform a scoping review in 

accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis 

Protocols Extension for Scoping Reviews (PRISMA-ScR) guidelines [49]. These guidelines 

were selected in order to ensure a systematic approach with comprehensive reporting. 

1.3.2. Methods 

Search strategy 

Four databases, Web of Science, Embase, Scopus, and PubMed, were searched in 

November 2023 using the search terms outlined in Table 11. 
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Table 11: Search strategy 

Fields Search String 

Title, abstract, 

keywords 

(“radiomic*" OR "dosiomic*" OR "textur* analy*" OR "textur* feat*") 

AND 

(“head and neck" OR "HNC" OR "nasopharyn*" OR "esophag*" OR "oesophag*" OR 

"lip" OR "lips" OR "tongue*" OR "pharyn*" OR "hypopharyn*" OR "laryn*" OR 

"salivar*" OR "nasal" OR "sinus*") 

Title "toxi*" OR "morbi*" OR "side effect*" OR "mucositis" OR "dysphagia" OR 

"xerostomia" OR "saliva" OR "dysgeusia" OR "necro" OR "hearing" OR "caries" OR 

"weight loss" OR "thyroid" OR "feeding tube" OR "tube feeding" OR "Ryle" OR 

"stricture" OR "aspiration" OR "osteo*" OR "hypothyroid*" OR "trismus" OR "fibrosis" 
OR "stenosis" OR "edema" OR "oedema" 

Document type Article / full text 

Inclusion and exclusion criteria 

The inclusion criteria comprised full-text English-language articles reporting 

radiomics, dosiomics or contouromics-based toxicity prediction models for head and neck 

cancer. Abstracts and reviews were excluded. 

Selection of studies based on PRISMA 

Figure 5 shows the PRISMA flow diagram for the selection of sources of evidence. 

Sixty-two studies were identified after removing duplicates. After screening, twenty-seven 

studies were initially included for analysis. 
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Figure 5: PRISMA flow diagram of selection of sources of evidence. 

Data charting and analysis 

Data charting was conducted by tabulating key details from each study. This included 

the toxicity outcome, timeframe, feature types investigated, image modality, sample size, use 

of external validation, feature extraction settings, feature selection method, model type, model 

size, outcome incidence, and details of any feature stability assessment. Additionally, the 

included studies were also assessed using items from the CheckList for EvaluAtion of 

Radiomics research (CLEAR) [227]. This checklist identifies many important aspects of 

radiomics research which will facilitate reproducibility if reported. Items 1-7, referring to the 

title, abstract, keywords and introduction, were excluded in order to focus on the methodology. 

Items 49-58, referring to the discussion and data availability, were also excluded for the same 

reason. Analysis of these aspects was performed in order to identify strengths, weaknesses, and 
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standard practice of studies in this research area, which in turn would provide recommendations 

for the rest of this project. 
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1.3.3. Results 

The twenty-seven included studies reported prediction models for a broad range of 

radiation-induced toxicities, particularly focusing on xerostomia. The number of studies 

predicting each toxicity is listed in Table 12. Fourteen studies reported prediction models for 

xerostomia and three reported prediction models for hypothyroidism. The remaining studies 

each reported prediction models for different toxicities: saliva amount reduction, parotid 

shrinkage, hearing loss, trismus, dysgeusia, weight loss, fibrosis, stenosis, osteoradionecrosis, 

and OM. Many toxicities were the focus of only a single study, indicating potential for further 

exploration.  

Table 12: Toxicities predicted by included studies 

Toxicity Number of studies 

Xerostomia 14 

Hypothyroidism 3 

Saliva amount reduction 1 

Parotid shrinkage 1 

Hearing loss 1 
Trismus 1 

Dysgeusia 1 

Weight loss 1 

Fibrosis 1 

Stenosis 1 

Osteoradionecrosis 1 

OM 1 

Table 13 shows that the included studies focused on radiomic features, often in 

combination with clinical and DVH features. Studies extracted radiomic features from CT 

images (70%), MRI (22%) and PET (7%). Dosiomics, a more recently developed field, was 

explored by 19% of the studies.  
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Table 13: Feature types analysed by included studies 

Feature type Number of studies 

Clinical 19 (70%) 

Radiomics 25 (93%) 

DVH 19 (70%) 

Dosiomics 5 (19%) 

Table 14 describes the characteristics of the included studies. The median sample size 

was small, at 93 patients, and only 4 studies were externally validated (15%). The majority of 

studies focused on late toxicity (70%), with 10 studies focusing on acute toxicity (37%). 

Table 14: Characteristics of included studies 

Characteristic 

Sample size 20-337 (median = 93) 

External validation 4 (15%) 

Acute toxicity 10 (37%) 

Late toxicity 19 (70%) 

Details of the included studies are provided in Table 15. Most of the models used pre-

treatment features (56%), however some models used imaging data taken during treatment to 

predict the subsequent evolution of toxicity, for example by using the change in feature values 

over time. The feature selection method varied extensively across studies. Some used logistic 

regression with Least Absolute Shrinkage and Selection Operator (LASSO), some used model-

based wrapper methods such as forward selection or recursive feature elimination, some used 

filter methods such as Maximum Relevance Minimum Redundancy (MRMR) or filtering by 

statistical tests for relevance and pairwise  correlation between features, while others used tree-

based models such as Random Forest or XGBoost to perform feature selection. The type of 

model reported also varied significantly. Logistic regression was the most frequently reported, 

but other models included Random Forest, XGBoost, Likelihood Fuzzy Analysis, SVM, K-

nearest neighbours, extra-trees, and Gaussian Naïve Bayes. The model complexity, as  
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indicated by the model size, varied significantly across models, ranging from single-feature 

models to  a model consisting of  30 features. 

The number of studies reporting each aspect of selected items from the CLEAR 

guidelines is displayed in Table 16.  Only 19% of studies reported adherence to guidelines or 

checklists, and among those that did, such guidelines were not necessarily specific to 

radiomics-related studies. Instead, guidelines such as TRIPOD were referenced, which are 

general to diagnostic or prognostic studies [228]. While ethics or institutional approval was 

generally well-reported alongside study nature as retrospective or prospective, the sample size 

was rarely justified with a calculation based on statistical power. It can be assumed that most 

sample sizes were chosen based on convenience or availability. Eligibility criteria was reported 

by all studies, and most identified the origin of the data, for example by providing the name of 

the institution. Data overlap refers to use of data from a previous publication, which was 

specified by four studies. Most studies reported the data split methodology, with the exception 

of exploratory studies that did not perform validation. Reporting of imaging protocol and 

definition of predictors and outcomes was also included by most studies. While the 

segmentation strategy was usually outlined, 26% of studies did not identify who performed the 

delineation. Image pre-processing and feature extraction settings were not well reported. Key 

settings such as discretization, normalization and resampling were omitted from the main text 

and also from the supplementary data. Image filters were also rarely reported. The feature 

extraction method refers to reporting the software used for feature extraction. Studies did not 

always specify the exact software version, and insufficient information was usually provided 

for reproduction of features if  in-house or custom software was used. 
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Table 15: Details of included studies 
 

Pre-

treatment 

features 

Toxicity Acute 

vs Late 

Clinical 

features 

Radiomic 

features 

DVH 

features 

Dosiomic 

features 

Image 

modality 

Sample 

size 

External 

validation 

Model 

size 

Nardone, 2018 [229] Y Xerostomia Late Y Y Y N CT 78 No 4 

Zhou, 2022 [230] N Saliva reduction Acute Y Y Y N CT 52 No 17 

Pota, 2017 [231] N Parotid shrinkage unclear Y Y N N CT 37 No 9 

Abdollahi, 2018 [232] Y Hearing loss Either N Y N N CT 47 No 10 

Ren, 2021 [233] Y Hypothyroidism Late Y N Y Y Dose 145 No 3 

Wu, 2018 [234] N Xerostomia Acute N Y Y N CT 59 Yes 2 

Thor, 2017 [235] N Trismus Either N Y Y N MRI  20 No - 

Berger, 2022 [236] N Xerostomia Late N Y Y N Daily 

MVCT 

337 No 3 

Qin, 2023 [237] N Xerostomia Late Y Y N N MRI 123 No 20 

van Dijk, 2018 [238] Y Xerostomia Late Y Y Y N PET 161 No 3 

van Dijk, 2018 [239] Y Xerostomia Late Y Y Y N MRI 93 Yes 4 

Li, 2023 [240] Y Xerostomia Late Y Y Y N PET 137 Yes 3 

Busato, 2023 [241] Y Dysgeusia Late N N Y Y Dose 80 No 5 

van Dijk, 2019 [242] N Xerostomia Late Y Y Y N CT 68 No 3 

Ritlumlert, 2023 [243] Y Hypothyroidism Late Y Y Y N CT 220 No 30 

Berger, 2023 [244] N Xerostomia Late Y Y Y N Daily 
MVCT  

117 No 1 

Abdollahi, 2023 [245] N Xerostomia Late Y Y Y Y CT 31 No varies 

Sheikh, 2019 [246] Y Xerostomia Acute Y Y Y N CT, MRI 266 No ≤ 17 

Cheng, 2019 [247] Y Weight loss Acute Y Y Y N CT 163 No 18 

Liu, 2019 [248] N Xerostomia Acute Y Y N N CT 35 No 14 

Wang, 2020 [249] Y Fibrosis Late N Y N N CT, MRI 186 No NA 

Gabrys, 2018 [40] Y Xerostomia Either Y Y Y Y CT 153 No ≤ 5 

Liu, 2022 [250] Y Stenosis Late Y Y N N CT 65 No 7 

Barua, 2021 [251] N Osteoradionecrosis Late N Y N N CT 21 No 6 

Calamandrei, 2023 [252] N Xerostomia Acute N Y N N MRI 27 No NA 

Smycznska, 2021 [253] Y Hypothyroidism Late Y Y Y N CT 98 Yes ≤ 6 

Dong, 2023 [57] Y OM Acute Y Y Y Y CT, MRI 242 No ≤ 19 
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Table 16: Reporting of CLEAR items across included studies. 

CLEAR 

item 

number 

Description Number of 

studies 

Percent 

7 Adherence to guidelines or checklists (e.g. CLEAR checklist) 5 19% 

8 Ethical details (e.g., approval, consent, data protection) 22 81% 

9 Sample size calculation 2 7% 

10 Study nature (e.g., retrospective, prospective) 23 85% 

11 Eligibility criteria 27 100% 

12 Flowchart for technical pipeline 12 44% 

13 Data source (e.g., private, public) 22 81% 

14 Data overlap 4 15% 

15 Data split methodology 24 89% 

16 Imaging protocol (i.e., image acquisition and processing) 27 100% 

17 Definition of non-radiomic predictor variables 25 93% 

18 Definition of the reference standard (i.e., outcome variable) 26 96% 

19 Segmentation strategy 24 89% 

20 Details of operators performing segmentation 20 74% 

21 Image pre-processing details 6 22% 

22 Resampling method and its parameters 10 37% 

23 Discretization method and its parameters 5 19% 

24 Image types (e.g., original, filtered, transformed) 9 33% 

25 Feature extraction method 20 74% 

26 Feature classes 27 100% 

27 Number of features 22 81% 

28 Default configuration statement for remaining parameters 2 7% 

29 Handling of missing data 4 15% 

30 Details of class imbalance 23 85% 

31 Details of segmentation reliability analysis 3 11% 

32 Feature scaling details (e.g., normalization, standardization) 8 30% 

33 Dimension reduction details 23 85% 

34 Algorithm details 25 93% 

35 Training and tuning details 25 93% 

36 Handling of confounders 2 7% 

37 Model selection strategy (defined as choosing between model types) 12 44% 

38 Testing technique (e.g., internal, external) 24 89% 

39 Performance metrics and rationale for choosing 5 19% 

40 Uncertainty evaluation and measures (e.g., confidence intervals) 16 59% 

41 Statistical performance comparison (e.g., DeLong's test) 5 19% 

42 Comparison with non-radiomic and combined methods 15 56% 

43 Interpretability and explainability methods 3 11% 

44 Baseline demographic and clinical characteristics 26 96% 

45 Flowchart for eligibility criteria 6 22% 

46 Feature statistics (e.g., reproducibility, feature selection) 3 11% 

47 Model performance evaluation 25 93% 

48 Comparison with non-radiomic and combined approaches 16 59% 
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1.3.4. Discussion 

Over half of the included studies focused on xerostomia; other toxicities were less well 

explored. Most studies focused on late toxicity, though the impact of acute toxicity should not 

be ignored. The focus on CT radiomics may have been because the planning CT is typically 

used for tumour and organ-at-risk (OAR) segmentation and so would provide the most accurate 

VOIs. Other imaging modalities require careful registration to align with the planning CT, and 

even then, differences  in geometry remain due to differences in patient position and from 

morphological changes during the time between acquisitions. The role of dosimetric data such 

as dose-volume-histogram parameters in toxicity prediction is well established. However, 

relatively few studies explored the role of dosiomics, which can further characterise the dose 

information with more sophisticated intensity features and second-order texture features. The 

potential role of contouromic features, which may be able to characterize the difficulty of dose 

sparing, remains unexplored. 

The level of evidence across the studies was generally low, reflecting their exploratory 

nature. The median sample size was small, at less than 100 cases, and over 80% of the studies 

were not externally validated. The results demonstrate a lack of standardization in the 

methodology and reporting of multi-omics models. This is also reflected by the 81% of studies 

which did not report adherence to any guidelines or checklists for reporting. While there are 

differences in the items included by different checklists, and authors may not agree with the 

necessity to include all items, future studies should refer to reporting guidelines wherever 

possible in order to avoid omission of information and improve the transparency and 

reproducibility of research. 
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Sample size calculation was often omitted. Justification of the sample size is less 

important for a retrospective study where the risk to the recruited patients is low, though such 

a calculation can ensure that the sample size is large enough to achieve the desired power. 

However, there are often practical limitations which ultimately determine the sample size. 

Clear reporting of the inclusion and exclusion criteria, along with the method of identifying 

patients to include, should be provided even if a sample size calculation was not performed. 

In terms of the analysis of feature data, studies rarely reported how missing data was 

handled, even though this can introduce bias and merits discussion. Analysis of segmentation 

reliability was also rarely performed, likely due to the resource cost of delineating multiple sets 

of contours. However, simulating perturbations to contours can be used to achieve the same 

effect [254]. Normalization or scaling of feature data was only reported by a minority of 

studies, even though this is an important step which can bias the results if performed 

incorrectly. All preprocessing and feature extraction settings must be reported to ensure 

reproducible research. Additionally, the software used for feature extraction should be 

compliant with the IBSI to ensure reproducibility [42]. Most studies reported their 

methodology for dimension reduction and model optimization, but handling of confounders 

was rarely addressed. Studies stated the metrics used for performance evaluation, but rarely 

justified their choice of metric. Given that the use of AUC for classification is so widespread, 

this may have been seen as unnecessary. Most, but not all studies reported confidence intervals 

for their performance metrics. Often these were obtained from cross validation or 

bootstrapping. However, only rarely was a statistical test used to compare between the 

performance of different models. Many studies did include a comparison with conventional 
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(clinical or DVH-based) approaches. Such baseline clinical characteristics were generally well 

reported. 

Omission of image pre-processing and feature extraction settings makes accurate 

reproduction of the models very difficult. It may be assumed that only original features were 

used if no image filters were mentioned, however it would be better to clarify this explicitly. 

Given the lack of reporting of feature extraction settings, it is difficult to identify any trends or 

standards in terms of gray-level discretization, normalization, or resampling. Since most 

studies investigated CT radiomics, normalization was likely not applied to the images, because 

the voxel values have physical meaning as Hounsfield Units. 

Another point of difference between studies is from variations in the outcome 

definition. This must be clearly stated, and it should be noted that the interpretation of the 

findings of a study should consider the incidence and clinical relevance of the outcome 

definition. For example, prediction of moderate-or-higher toxicity may be of less clinical 

relevance, since most patients will experience such toxicity, and any intervention would need 

to be applied to most patients.  

When analysing the results, statistical performance comparison was rarely performed. 

Instead, comparison tended to be based on direct comparison of the performance metric without 

considering the variability or confidence interval. Methods for interpreting and explaining the 

resulting models were limited, with the discussion mostly focusing on the discrimination 

performance. Comparisons with non-radiomic and combined approaches was not always 

conducted. Studies should compare their model with conventional approaches and any related 

literature, to better clarify the novelty and advantages of their approach. 
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A summary of the strengths and weaknesses of existing prediction models for acute 

OM and dysphagia are provided in Table 17. 

Table 17: Summary of strengths and weaknesses of existing prediction models 

for acute OM and dysphagia 

Strengths Weaknesses 

• Utilize readily available features: clinical 

and DVH 

• Several models utilize multi-center training 

data – more generalizable 

• Broad range of clinical and treatment 

features included 

• Some use custom VOIs to attempt to better 

capture the region relevant to the toxicity 

• Often lacking external validation 

• Rarely include multiple organs at risk in model 

• Variations in contouring between institutions 

• Rarely adhere to a reporting guideline e.g., 

TRIPOD 

• Limited interpretation of model features 

• Limited comparison with conventional 

approaches 

 

1.3.5. Conclusion 

In conclusion, the use of radiomics and dosiomics for toxicity prediction in HNC is a 

developing field. Prediction of toxicities other than xerostomia remain relatively unexplored, 

and research tends to focus on late toxicity. Studies focused particularly on CT radiomics, and 

the role of dosiomics remains to be further explored. The level of evidence of these studies is 

generally low, with small sample sizes and a lack of external validation. There is significant 

variation in the methodology for model development. Comprehensiveness of reporting is 

mixed, with studies rarely following reporting guidelines. This consequently limits the 

reproducibility of the results since insufficient information is available to extract equivalent 

features and build equivalent models. There is also a need to include stability assessment of 

features to ensure more reproducible models. Study findings should be compared with related 

literature and conventional approaches, and statistical performance comparison should be 

utilized rather than comparing single valued measures of  the discrimination performance. 
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Inclusion of the items in the CLEAR guidelines should greatly improve the standardization of 

reporting and result in more reproducible and transparent research. 
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CHAPTER 2 RESEARCH AIMS & OBJECTIVES 

2.1. Research aim 

‘With improvements in the survival rates of NPC patients, it is increasingly important 

to develop holistic clinical decision-making strategies that address quality of life for patients 

suffering from treatment-induced toxicities. This project harnesses high-dimensional multi-

omic data to identify patients at risk of severe acute OM and dysphagia, two of the most 

common and debilitating toxicities, thereby facilitating the targeting of preventative 

interventions and support.’ 

2.2. Research gap 

Literature reviews in Section 1.2 and 1.3 provided a comprehensive overview of the 

published prediction models for OM and dysphagia in HNC patients. Among these studies, 

very few investigated radiomics, dosiomics or contouromics in this context. Specifically, no 

full text articles reported externally validated prediction models for OM and dysphagia using 

radiomic, dosiomic or contouromic features. No full-text articles investigating multi-omics for 

dysphagia were found. Furthermore, there was a general lack of external validation across all 

prediction models for OM and dysphagia, with studies mostly based on single-centre cohorts. 

Many studies investigated mixed cohorts consisting of multiple HNC subsites. The 

development of NPC-specific prediction models represents another under-explored area of 

research. Given the distinct challenges and treatment guidelines associated with NPC, and its 

significant prevalence in Hong Kong where it is one of the most prevalent cancers in men, the 

development of tailored prediction models for NPC is particularly important. Furthermore, 
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treatment for NPC has a particularly high burden on patients, with a relatively high radiation 

dose, close proximity of critical structures in the tumour region, and the simultaneous effects 

of concurrent chemotherapy.  

2.3. Research objectives 

2.3.1. Objective 1 

To develop and externally validate a multi-omic prediction model for severe 

acute OM in NPC patients undergoing RT, analysing clinical, DVH, radiomic, 

dosiomic and contouromic features.  

Severe OM has a major impact on patients’ quality of life and poses the risk of treatment 

interruption and unplanned hospitalization. Accurate prediction of severe OM is important for 

the delivery of personalized prevention and management strategies. As identified in the 

literature review (Sections 1.2 and 1.3), prediction of OM using radiomic, dosiomic or 

contouromic features is underexplored. Two studies reported models utilizing radiomic 

features, however neither were externally validated. Furthermore, conventional clinical and 

DVH-based models for OM were also lacking external validation. Multi-centre data from two 

hospitals was therefore used to develop and externally validate a multi-omic prediction model 

for severe acute OM in NPC patients undergoing RT. This was motivated by the need for 

generalizable models with a higher level of evidence. To the best of our knowledge, this 

represented the first externally validated model for treatment-induced OM using multi-omic 

features. 
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2.3.2. Objective 2 

To develop and externally validate a multi-omic prediction model for severe 

acute dysphagia in NPC patients undergoing RT, analysing clinical, DVH, 

radiomic, dosiomic and contouromic features.  

Severe acute dysphagia harms patients’ quality of life and poses the risk of weight loss 

which can result in deviations from the RT plan, threatening worsened treatment outcome and 

additional toxicity. Accurate prediction of severe acute dysphagia would allow for earlier 

intervention to mitigate these risks. The literature review in  Sections 1.2 and 1.3 highlighted 

the absence of radiomic, dosiomic or contouromic models for this toxicity. Multi-centre data 

from two hospitals was therefore used to develop and externally validate a multi-omic 

prediction model for severe acute dysphagia in NPC patients undergoing RT. This was 

motivated by the need for generalizable models with a higher level of evidence. To the best of 

our knowledge, this represented the first full-length article reporting a model for treatment-

induced severe acute dysphagia using multi-omic features. 

2.3.3. Objective 3 

To develop and externally validate a multi-omic, multi-label combined model 

to predict both severe acute OM and dysphagia, utilizing the interaction 

between the two toxicities to further improve performance. 

OM and dysphagia are related conditions which both impact oral intake. Severe OM is 

correlated with severe acute dysphagia and is thought to contribute to difficulty swallowing 

through the pain that it causes. A multi-label model may be able to improve on the accuracy of 

predictions of each toxicity by incorporating information about the relationship or interaction 

between the two toxicities. Different approaches for multi-label modelling were evaluated on 
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the combined data for OM and dysphagia. To the best of our knowledge, no such multi-label 

model for acute OM and dysphagia had been published. 
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CHAPTER 3 CORE METHODOLOGY IN MULTI-

OMIC STUDIES 

Predictive models for OM and dysphagia  are reported in subsequent chapters. This 

chapter reports the methodology common to those chapters, including the steps listed in the 

flowchart in Figure 6. The technical workflow is illustrated visually in Figure 7. 

 
Figure 6: Core methodology flowchart 
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Figure 7: Technical workflow 
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3.1. Study population 

Patients with biopsy-proven primary NPC treated with RT were retrospectively 

collected from two public hospitals in Hong Kong. Data from 397 patients who received RT at 

Hong Kong Queen Elizabeth Hospital (QEH) between 2008 and 2018 had previously been 

collected for the investigation of adaptive RT eligibility prediction [41]. In order to perform 

external validation, data from 109 patients who received RT at Hong Kong Prince of Wales 

Hospital (PWH) between 2020 and 2021 were collected as part of this project. Patients were 

recruited consecutively by scheduled start date of RT. The sample size for the external 

validation set was determined using MedCalc v22.018, to detect an AUC of 0.7 versus a null 

hypothesis value of 0.5 with 80% power and 0.05 significance level, assuming an incidence of 

severe OM of 40% as observed from the literature search  [1, 255]. The expected incidence of 

severe acute dysphagia was similar or higher than that for severe OM.  

The patients from both datasets were screened for study eligibility. Exclusion criteria 

consisted of distant metastasis at diagnosis, missing planning CT image, missing RT dose map, 

and missing primary tumour contour. The patient recruitment diagram is shown in Figure 8. 

Institutional review board ethics approval was obtained from each institution, and patient 

informed consent was waived due to the retrospective nature of the study. 
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Figure 8: Eligibility flowchart. See Section 3.8.1 for missing data handling 

3.2. Radiotherapy data acquisition 

Imaging acquisition parameters 

For both datasets, planning contrast-enhanced CT (CECT) images were acquired with 

16-slice Brilliance Big Bore CT scanners (Philips Medical Systems, Cleveland, OH). 

Acquisition parameters were as follows: scan mode = helical, voltage = 120 kVp, pixel spacing 

= 1.2x1.2mm, slice thickness = 3mm, matrix = 512x512px. The X-ray tube current was 

typically 264mA for QEH patients, and typically 165 mA for PWH patients. Information on 

the reconstruction kernel was not collected. Patients were scanned in a supine position, wearing 

a thermoplastic immobilization mask. Intravenous contrast agents were injected 30 seconds 

prior to scanning.  

Radiation dose distribution 

All patients received IMRT. In the QEH dataset, 92% of patients received helical 

tomotherapy, while in the PWH dataset, all patients were treated with volumetric modulated 

arc therapy (VMAT) on a linear accelerator. The standard treatment protocol was for 70Gy to 

GTVp and GTVn delivered in 33 fractions of 2.12 Gy. After treatment planning on the 
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respective software, the planned radiation dose distribution was calculated and saved as a 

DICOM file.  

Helical tomotherapy is a form of IMRT in which radiation is delivered continuously in 

a fan-shaped beam moving in a helical pattern around the patient. The shape of the beam is 

adjusted by a binary (open or closed) multi-leaf collimator (MLC). VMAT, another form of 

IMRT, also involves continuous delivery of radiation as the gantry rotates, however the multi-

leaf collimator allows for intermediate positions and more complex beam shaping. VMAT can 

be administered either in step-and-shoot mode, where the beam is only delivered after the MLC 

has been adjusted to a desired, stationary position, or in sliding window, where the radiation 

beam is maintained while the MLC leaves move across the aperture at varied rates. 

Additionally, unlike helical tomotherapy, VMAT involves multiple arcs around the patient, 

rather than following a helical path.  

It would be desirable to compare the dose features extracted from patients treated with 

VMAT and tomotherapy to examine the effect of RT modality. However, because almost all 

(92%) QEH patients were treated with tomotherapy, and all PWH patients were treated with 

VMAT, such a comparison would be confounded by other differences between the institutions. 

Comparison of the performance of models trained on patients treated with each modality would 

also be confounded by inter-institutional differences, and the number of samples for model 

development would have to be limited such that both datasets had the same sample size, for a 

fair comparison. This would likely reduce model performance. 
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Contours from radiotherapy planning 

All of the contours created during the RT planning process were extracted in the form 

of a DICOM RT structure set. There were typically a large number of contours per patient, 

since these included some pseudo structure such as margin expansion for planning purposes. 

Usually these included the GTVp, GTVn and several OARs, but naming conventions varied 

and data cleaning was required. 

Collection of DICOM files 

DICOM files containing the CT images, radiation dose distributions and VOI contours 

were provided on compact discs (CDs) by hospital staff. All data was anonymized to remove 

identifying information. 

3.3. Clinical data collection 

Clinical data for the QEH dataset had previously been manually extracted from the 

patient records and digitised into a spreadsheet by other members of the research group. The 

data had previously been included in a publication on  prediction of adaptive RT in NPC 

patients [41]. The data included age, gender, height, weight at CT simulation, TNM staging 

according to 8th Edition of UICC/AJCC [5, 256], chemotherapy regimen, and details of RT 

delivery. Additionally, the raw text from the mid-treatment consultation notes had been 

extracted and stored in the spreadsheet, organized into the 7 weeks of RT per patient. This raw 

text was analysed by the author to extract the toxicity outcome labels for QEH. Specifically, 

the text was manually searched for OM gradings and for information about tube feeding.  
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The PWH dataset was collected for the purposes of this project. Informed by the 

existing QEH dataset, clinical data was recorded onto a spreadsheet during visits to the hospital. 

Data was organized into two tabs: one including the per-patient data such as age at RT start, 

gender, weight at CT simulation, and another including separate records for each consultation 

note. Data from collection notes were collected from the start of RT to the end of the acute time 

period (90 days after the start of RT) for each patient. Data collection involved careful 

inspection of the entire RT patient folder. Consultation notes, which had been typed by the 

clinician, included data such as weight, blood test results, toxicity grades, tube feeding 

information and also key events such as changes in treatment regimen and results of biopsies. 

Relevant information about each factor was recorded within separate columns in the 

consultation notes tab in the spreadsheet. 

Details of the toxicity outcome definitions are provided in the respective chapters on 

OM and dysphagia. 

3.4. Data cleaning 

Planning contrast-enhanced CT images, radiation dose distributions and contours were 

collected in Digital Imaging and Communications in Medicine (DICOM) format. Data cleaning 

was required to identify the corresponding sets of DICOM files for each patient and identify 

the relevant contours. GTV and organ contours were identified by their name field, however 

the naming convention varied significantly across patients and multiple contours with similar 

names were present for several patients. Therefore, manual checking of the contours was 
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required along with VOI name standardization. Having performed this step, the number of 

patients with each contour could be tabulated.  

The cleaned CT, dose and contour files were extracted into .mha files, a format based 

on the open-source Insight Toolkit (ITK) which allowed for more flexible analysis and 

visualization. Available contours included the GTVp, GTVn, parotid glands, larynx, and 

oesophagus. However, there were significant differences in the contouring guidelines for OARs 

across the two centres, especially for the larynx and oesophagus, with different anatomy 

included in each centre.  

3.5. VOI segmentation 

A deep learning auto-segmentation model was used to generate segmentations for the 

extended oral cavity and the pharyngeal constrictor muscles from the contrast-enhanced 

planning CT image. The open-source model, nnU-Net, had demonstrated good performance on 

several organ segmentation tasks and so was selected for this purpose [257]. The source code 

enabled a segmentation pipeline to be automatically configured for a dataset, provided that the 

data was structured in a specified manner. The software identified the optimal model 

architecture and parameters based on five-fold cross validation and returned a trained model 

for inference. 



 

101 

 

 
Figure 9: nnU-Net workflow [257] 

3.5.1. Extended oral cavity 

The oral cavity contour was only clinically available for a few patients in the QEH and 

PWH cohorts. Furthermore, the clinical segmentation of the oral cavity varied within and 

across cohorts. For some cases, it only covered a few axial slices or only covered the oral 

immobilization device held in the patient’s mouth. Based on the literature search detailed in 

Section 1.2, the oral cavity and tongue are relevant to OM prediction, and these can be 

contoured according to different guidelines. The extended oral cavity, as defined by Brouwer 

et al., was selected as a relevant VOI, since it included many of the areas where OM can present 

[258]. 

Initially, an approximate VOI for the extended oral cavity was obtained by performing 

binary morphological operations on the contour of the mandible, which was present for almost 

all cases. A convex hull operation was used to find the minimum convex volume that covered 

the whole mandible. This volume would contain large sections of the oral cavity and tongue, 

as in the extended oral cavity definition. Initial exploratory analysis utilized this approximate 
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contour. However, to obtain a more accurate set of contours, the nnU-Net AI segmentation 

model was employed [257]. An additional set of imaging and contour data was available for 

NPC patients from Hong Kong Queen Mary Hospital (QMH). This dataset included a larger 

quantity of oral cavity contours, with some variation in the definitions used. A subset of forty-

seven contours which covered the oral cavity and tongue, extending towards the back of the 

pharynx but not including the pharynx, were selected for training the nnU-Net model. These 

contours appeared consistent with the definition of the extended oral cavity by Brouwer et al. 

[258]. The nnU-Net software evaluated a 2D model architecture, a 3D model architecture and 

a 3D cascade architecture, comparing the cross-validation performance. Ensembles of these 

models are also evaluated to determine the best configuration (see Figure 9). The optimal model 

configuration was an ensemble of the 2D and the 3D full resolution models. The mean 

performance metrics across the five-fold cross validation were as follows: 0.843 (Dice), 0.732 

(IoU). An example of this VOI is shown in Figure 10. 
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Figure 10: Example of extended oral cavity segmentation in axial (upper left), 

sagittal (upper right), and coronal (bottom right) planes, with 3D projection (bottom 

left). 

3.5.2. Pharyngeal constrictor muscles 

As identified in the literature search, the radiation dose to the pharyngeal constrictor 

muscles has been identified as a predictor of dysphagia. However, many of the included cases 

lacked contours of the pharyngeal constrictor muscles. The nnU-Net model was also used to 

generate contours for those cases. The model was trained on the thirty-nine cases from QEH 

which had separate contours of the superior, middle, and inferior pharyngeal constrictors. The 

separate VOIs produced by the model were later combined into a single pharyngeal constrictor 

muscle VOI for subsequent analysis. This was done because the individual muscles constituted 

VOIs with small volumes, which would increase their susceptibility to perturbations and any 
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inaccuracies in the automatic segmentation. This hypothesis was confirmed by the observation 

that the stability of the independent muscles in the perturbations analysis was lower than that 

for the combined VOI. Furthermore, exploration of model development using the separate 

VOIs did not suggest that using any of the individual muscles would give better results than 

using the combined VOI. 

The optimal model configuration was a 3D full resolution model. The mean 

performance metrics across the five-fold cross validation were 0.742 (Dice) / 0.595 (IoU), 

0.773 (Dice) / 0.636 (IoU), 0.766 (Dice) / 0.625 (IoU) for the superior, middle, and inferior 

constrictor muscles respectively. An example of this VOI is shown in Figure 11. 
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Figure 11: Example of pharyngeal constrictor (PC) segmentation in axial (upper 

left), sagittal (upper right), and coronal (bottom right) planes, with 3D projection 

(bottom left). 

3.5.3. Parotid glands and larynx 

Statistically significant differences in the volume of the parotids contour and the larynx 

contour were observed between the QEH and PWH datasets. The contouring guidelines for the 

larynx were noticeably different for each centre. These differences would severely affect the 

generalizability of models and made inclusion of these OARs inadvisable. However, given that 

the radiation doses to these OARs were reported as predictors of OM and dysphagia, the AI 

segmentation model was utilized to standardize the contours between datasets. The contours 

from the PWH dataset were selected as training data. These contours, being performed more 

recently, would conform more closely to the latest contouring guidelines. Additionally, the 
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definition of the larynx was more consistent across cases. The model was trained on 111 cases 

from the PWH dataset with contours of the larynx and parotid glands available. The model 

configuration was a 3D full resolution model. The mean performance metrics across the five-

fold cross validation were 0.874 (Dice) / 0.778 (IoU) and 0.896 (Dice) / 0.818 (IoU) for the 

parotid glands and larynx respectively. Examples of the parotid glands and larynx VOIs are 

shown in Figure 12. 

  
Figure 12: Examples of parotid glands segmentation (left) and larynx 

segmentation (right).  

3.5.4. Oesophagus 

The collected RT data included contours of other OARs beyond those highlighted in 

the previous sections. Some of these, like the spinal cord, were not considered to be sufficiently 

related to OM or dysphagia for inclusion in the analysis. However, the cervical oesophagus 

had been contoured for many patients, and is part of the swallowing anatomy that could affect 

dysphagia. Despite this, there were substantial variations in the contouring of this OAR across 
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patients and institutions that precluded its use. Particularly, the axial limits of the contour, and 

its diameter and margin varied extensively. The exclusion of this VOI was likely to be less 

impactful for acute dysphagia than for late dysphagia, since narrowing and stiffness of the 

oesophagus result from fibrosis, which is recognised as a late treatment toxicity that worsens 

with time [259]. 

3.5.5. Tumour volumes 

The primary gross tumour volume (GTVp) and neck nodal gross tumour volume 

(GTVn) were extracted from the DICOM files collected from the treatment planning system. 

These contours were delineated by experienced radiation oncologists on the contrast-enhanced 

planning CT with reference to registered planning MRI. 

Aside from the gross tumour volume, the peritumoral region has been proposed as an 

important VOI for NPC prognosis prediction [260, 261]. This may be defined as a shell of 3mm 

thickness expanding uniformly from the gross tumour volume [260]. Given the simplicity of 

obtaining such peritumoral VOIs, their connection with toxicity was also investigated. Initial 

findings were not suggestive of predictive value of these VOIs, and without strong justification 

for their subsequent inclusion, these peritumoral VOIs were not incorporated into the model 

development in subsequent chapters. 
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3.6. Preprocessing and feature extraction 

Feature extraction was performed using in-house software “Radiotherapy data analysis 

and reporting (RADAR) toolkit” as developed by Zhang [262]. This software utilized the 

PyRadiomics v3.0.1 [263] package for Python v3.8.15 , which is compliant with the Image 

Biomarker Standardization Initiative (IBSI) [42]. The software extracted features from a 

database of CT, radiation dose and contour .mha files according to a set of user-defined feature 

extraction settings. 

CT images were resampled to isotropic 1mm x 1mm x 1mm resolution during 

preprocessing. No normalization was applied to the image intensity, whose values represented 

Hounsfield Units (HU). A resegmentation range of -150 HU to 180 HU was selected to restrict 

the VOI to relevant soft tissues and exclude air and bone. Features were extracted from the 

original CT images, as well as from Laplacian of Gaussian filtered images, using radius 

parameters of 1mm, 2mm and 3mm. These filters had been previously found to give reasonably 

stable features compared to other filters such as Wavelet and offered additional information 

from their edge-detection effect. The HU values were discretized using a fixed bin count of 50 

bins. Within the wider research group, the effect of bin count on feature stability had been 

investigated for counts between 16 and 128. For original and Laplacian-of-Gaussian filtered 

images, the stability was not strongly affected by bin count. Preliminary experiments were 

conducted with different bin counts and no clear optimal bin count was apparent, therefore a 

bin count of 50 was selected, representing a mid-range value that had been previously used in 

other projects. 
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Radiation dose distribution maps were resampled to isotropic 2.5mm x 2.5mm x 2.5mm 

resolution to match the original pixel spacing of the dose distribution map. Again, no 

normalization was applied to the intensity, whose values represented the planned dose in gray 

(Gy). For the dose features, a fixed bin width of 1.00 Gy was used, in accordance with previous 

dosiomics studies [57, 264]. A resegmentation range of 0 to 100 Gy was selected to exclude 

any erroneous dose values. Features were extracted from the original dose maps, as well as 

from Laplacian of Gaussian filtered maps, using the same parameters as the CT image filters. 

All dosiomic and DVH features were extracted from the standardized contours obtained from 

the nnU-Net model, except for the contours selected for training the model, and the contours 

of the GTVp and GTVn, which were contoured by clinicians. 

Image pre-processing and feature extraction was performed by in-house software which 

utilized PyRadiomics v3.0.1  and SimpleITK v2.2.0 [36, 37]. Feature extraction was compliant 

with a well-established protocol of the Image Biomarker Standardization Initiative (IBSI) [38]. 

Radiomic features were extracted from the planning CECT, including shape, first order, and 

texture features. The texture features included grey-level co-occurrence matrix (GLCM), grey-

level difference matrix (GLDM), grey-level run-length matrix (GLRLM), grey-level size zone 

matrix (GLSZM), and neighbouring grey-tone difference matrix (NGTDM) features. Dosiomic 

features were extracted from the planned radiation dose, including first order and texture 

features. Features were extracted from the original and Laplacian-of-Gaussian filtered CECT 

image and dose distribution. Original first order mean, median, minimum, and maximum dose 

features were categorized as DVH parameter features in subsequent analysis. Additional DVH 

features were calculated, including Dx%, the dose in Gy received by x% of the VOI and VxGy, 
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the fractional volume receiving at least x Gy, as defined by Gabryś et al. [21]. Vx%, the 

fractional volume receiving at least x% of the maximum dose to the volume, was also 

calculated. 

Contouromic features were calculated using the method outlined by Lam et al. [41]. 

Here, the pairs of VOIs were GTVp and extended oral cavity, GTVp and parotid glands, GTVp 

and pharyngeal constrictor muscles, GTvn and extended oral cavity, GTVn and parotid glands, 

GTVn and pharyngeal constrictor muscles. As detailed in the study by Lam et al., overlap-

volume histogram (OVH) and projection-overlap-volume (POV) features were extracted. The 

OVH features describe the distance between the pair of contours, specifically the fractional 

volume of the OAR within a certain distance of the GTV. The POV features describe the 

fractional volume of the OAR which is masked by the GTV at a certain angle about a given 

rotation axis. Additionally, the integrals of the OVH and POV curves were included as features 

since the area under each curve is descriptive of the overall separation or masking.  

Two types of contouromic features were extracted: overlap volume histogram (OVH) 

and projection overlap volume (POV), as defined in the paper by Zhang et al. [265]. The OVH 

features described the distance between an OAR and a GTV, by quantifying how far the GTV 

had to be expanded to overlap with a given proportion of the OAR volume. Mean OVH curves 

for the included VOIs are shown in Figure 13. 
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Figure 13: Mean OVH curves for GTVp-OAR pairs in the development dataset 

 POV features describe the angular relationship between tumour volumes and OARs. 

Specifically, they quantify the proportion of the OAR that is masked by the GTV from a given 

projection angle about the rotation axis. In this study, features were extracted for two different 

rotation axes: rotation in the sagittal plane (dim = 0) and rotation in the axial plane (dim = 2), 

which corresponds to the rotation axis of the RT gantry. For the rotation in the axial plane, the 

POV features can be illustrated by the beam’s eye view Figure 15. The value of the POV 

feature indicates the fraction of the OAR masked by the GTV in the beam’s eye view at that 

angle. Figure 16 shows the mean POV features for GTVp-OAR pairs for rotation in the sagittal 

and axial planes. As an example, consider the POV curve for the larynx. The curve for rotation 

in the sagittal plane has a single peak, representing the range of angles where the GTVp will 

mask the larynx. However, the corresponding curve for rotation in the axial plane is zero 

everywhere, indicating that the GTVp does not mask the larynx at any rotation angle because 

it is located superior to the larynx.  
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Figure 14: Rotation in sagittal plane (dim=0, left) and rotation in axial plane 

(dim = 2, right) for POV features 

 
Figure 15: Example of beam’ eye view showing the masking of organs-at-risk 

(OARs) by the tumour volume 

  
Figure 16: POV curves for GTVp-OAR pairs for rotation in the sagittal plane 

(left) and axial plane (right) 

Additionally, the sum of each set of OVH and POV features was calculated and 

included as OVH integral and POV integral features, representing the area under the curves. 

These integral features were theorized to contain additional information about the distance and 

angular relationship between GTV and OAR. 
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3.7. Perturbation-based stability assessment 

To develop a reproducible, repeatable and robust toxicity model, it is important to 

ensure that the model features are stable and robust to common sources of variations. Feature 

stability was assessed using the perturbation-based approach outlined by Zwanenburg et al. 

[266]. The approach involves generating synthetic perturbations to the image and contour 

which replicates the effects of test-retest scanning or inter-observer variation in contouring. 

The aim of this step is to develop reproducible models by ensuring that each feature included 

in model development is stable and reproducible with respect to random changes or noise. 

Random translations, rotations and contour deformation using a deformation vector field 

(DVF) were applied, and all features were re-calculated. Forty random perturbations were 

applied, resulting in 40 sets of perturbed features. These perturbations were applied to a subset 

of the patients in the development (QEH) dataset. The perturbation settings were identical to 

those in the publication by Zhang et al. [254].  

The perturbations should replicate the effect of inter-observer variability. To verify that 

the selected perturbation settings resulted in a similar level of variability, the Dice similarity 

coefficient was calculated between each perturbation and the original segmentation for an 

example patient. The mean and standard deviation in the Dice coefficient across the forty 

perturbations was calculated and is shown in Table 18. The similarity varied by VOI, being 

highest for the extended oral cavity and larynx, and lowest for the pharyngeal constrictors. The 

size and surface-to-volume ratio were calculated to see how these factors impact the similarity 

of the perturbations. A linear trend between higher surface to volume ratio and higher Dice 

similarity was observed (R2=0.86), as well as a linear trend between higher volume and higher 
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Dice similarity (R2=0.58). However, insufficient data was available to tailor the perturbation 

settings to each VOI. The mean Dice coefficient for the GTVp was 0.78, which compares to a 

value of 0.72 ± 0.15 as reported in a thesis by Panyura, in which five radiation oncologists 

contoured the GTV for each of 30 NPC patients, and the mean Dice was computed [267]. The 

Dice score for the selected perturbation settings is therefore approximately in line with the 

similarity observed between 5 radiation oncologists’ contours.  

Table 18: Dice similarity coefficient across original-perturbed pairs of contours for an example case 

 Mean Dice 
Standard 

deviation 
Volume (cc) 

Surface 

Volume 

Ratio 
GTVp 0.78 0.07 30 0.34 

GTVn 0.80 0.03 75 0.36 

extOralCavity 0.92 0.02 152 0.14 

PC 0.75 0.06 20 0.59 

Larynx 0.91 0.02 67 0.17 

Parotids 0.89 0.02 71 0.23 

Having computed the sets of perturbed features, the stability was assessed by 

calculating the intraclass correlation coefficient (ICC) for each feature. The stability was 

assessed by calculating the one-way, random, absolute, single rater intraclass correlation 

coefficient (ICC) for each feature using the Python package Pingouin v0.5.3 [268]. Features 

with poor stability against the effect of perturbations were removed, using an ICC threshold of 

0.7 in the development dataset. Publications investigating repeatable or reproducible radiomic 

features previously utilized various ICC thresholds between 0.5 and 0.9 to identify stable 

features [269-271]. 

Figure 17 shows 10 example perturbations to each VOI for a single patient, shown in 

the axial and lateral planes. The differences between contours should approximate typical inter-

observer variations in contouring. The regions where perturbed contours disagree form a 



 

115 

 

smaller proportion of the total volume for larger, more uniform VOIs such as the extended oral 

cavity, larynx, and parotids, agreeing with the observations from the Dice scores. Conversely, 

VOIs such as the pharyngeal constrictors and GTVn were more significantly affected by the 

perturbations.  
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GTVp 

 
Pharyngeal constrictor muscles 

 
GTVn 

 
Parotids 

 
Extended oral cavity 

 
Larynx 

Figure 17: Examples of perturbations to VOI contours 

Figure 18 shows the feature stability in ICC as calculated from the image perturbation 

features. This includes the original features and the Laplacian-of-Gaussian filtered features. 

Contouromic features had high stability because the geometric changes from the perturbations 

had a small effect on the geometric relationships between tumour and OAR. The DVH features 

were mostly stable, especially for the OAR VOIs. Dosiomic features were moderately stable, 

and radiomic features were the least stable, particularly for OARs like the PC muscles, parotid 

glands and extended oral cavity. The reduced stability of DVH features for GTVn and GTVp 

may have been due to the steep dose fall-off around these volumes. Likewise, the low stability 
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of features for the PC muscles, parotid glands and extended oral cavity may have been due to 

the close presence of air/bone or other tissue with significantly different radiodensity to the 

OAR. The shape of each OAR may also have played a role, for example the PC muscles had a 

high surface to volume ratio and low sphericity compared to the GTVp. 

 

 
Figure 18: Feature stability by feature type and VOI, for original features (top 

pair) and Laplacian-of-Gaussian filtered features (bottom pair) 
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3.8. Model development and validation 

Model development was conducted using JupyterLab, a browser-based interactive 

notebook interface for Python programming [272]. The entire workflow from data loading and 

preprocessing to visualization of the final model performance was conducted within this 

interface. All JupyterLab interactive notebook scripts for model development, evaluation and 

visualization were developed by the author. Figure 19 outlines the key steps in model 

development and validation. Each step will be discussed in this section. 

 

Figure 19: Flowchart for model development and validation 

3.8.1. Preprocessing 

The pre-extracted features, stored as  CSV files for the development (QEH) and external 

validation (PWH) datasets, were loaded into the notebook in preparation for preprocessing. 

Data tables were stored and manipulated using the Pandas package for Python. The data for the 

QEH and PWH datasets were stored as Pandas DataFrames, and a MultiIndex was created for 
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the table columns in order to allow for grouping by feature type, feature class, VOI, and 

individual feature name. The DataFrame rows each represented a unique patient. 

The first preprocessing step was to exclude any cases with metastases, in accordance 

with the exclusion criteria. Next, cases were excluded if consultation notes were available for 

fewer than three of the seven weeks of RT and if no severe toxicity was observed. This 

approach is similar to the missing data handling approach detailed by Dean et al., designed to 

compensate for the under-reporting effect of missing weekly gradings [131]. The three-week 

threshold was chosen to balance statistical power against mitigation of the under-reporting 

effect. 

Strategies were also employed for handling missing feature data. Patients who were 

missing any categorical clinical features (gender, chemotherapy regimen, TNM stage) were 

removed. The small number of remaining missing values, such as missing BMI values, were 

imputed by the median feature value to minimize the impact of outliers and be suitable for 

various value distributions. Constant or quasi-constant continuous-valued features which were 

more than 20% single-valued were removed since their low variance would limit their 

predictive value. 

Not all features were normally distributed, or even symmetrically distributed. Features 

with high skewness may distort the results of many machine learning models. The resulting 

predictions may be unduly influenced by highly skewed features, which may obtain an inflated 

importance in the model. Therefore, experiments were performed where features were 

excluded if their Pearson skewness exceeded a given threshold. Some benefit was observed; 



 

120 

 

however, this was partly due to the reduction in the number of features and the dimensionality 

of the prediction task. After reviewing related radiomics literature, this approach did not appear 

to be in widespread use, and risks discarding important toxicity-related information. Therefore, 

the skewness filter was not utilized in subsequent chapters. 

Another aspect considered was the variance of features. Features with low variance may 

be considered to have less information and can therefore be discarded prior to model building. 

However, due to the wide range of feature magnitudes, and the variation in the shape of feature 

value distributions, using the mathematical variance (the square of the standard deviation), does 

not permit valid comparisons between features. Scaling of features prior to computing the 

variance should also be undertaken with great care, since the scaling can be affected by outliers 

or skewness in the feature values. For this reason, a more robust measure of the ‘spread’ in the 

feature values was selected. The quartile coefficient of variance, defined in terms of the median 

and interquartile range, was investigated as a way to filter features. Different threshold values 

were applied, and the resulting performance of the developed models were compared. 

However, as with the skewness filter, this approach could not be observed in other radiomic-

related studies. Furthermore, there was insufficient evidence for the improvement of 

performance from this approach to justify including it in subsequent chapters. 

3.8.2. Feature set definition 

When developing a model, the starting feature set must first be defined. This includes 

the type of features: clinical, DVH, radiomics, dosiomics or contouromics, and also the choice 

of which VOIs to include. Additionally, one can choose to include features only from the 
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original image / dose map, or from images with specific filters applied. The decisions about 

each of these aspects can be informed by evidence from the literature or from a hypothesis 

about the potential value of these features. Including all possible filters, VOIs, feature types 

and feature classes for exploratory purposes is inadvisable because of the very large number of 

features that will result, compared to the relatively small number of samples. This results in 

high complexity and high redundancy / intercorrelation, while not necessarily increasing the 

useful information. Certain feature types or feature classes may be quantifying similar image 

characteristics, and so a balance had to be struck between including useful information and 

excluding features which were likely to be redundant. Some studies may conduct a pre-

screening of features using a statistical test of association with the outcome label. However, if 

this is performed before splitting the data into training and validation sets then information 

about the validation set will effectively be leaked. This will result in an optimistic bias in the 

performance on the validation set. Similarly, fitting separate models for each feature type and 

then subsequently performing data/model fusion will also result in information leakage unless 

the validation set is separate. Given the limited number of samples, the model development for 

this project utilized cross validation as the internal validation method. Data fusion was 

performed prior to cross validation, in order to avoid these issues. A benchmarking study on 

feature selection methods likewise recommended the data fusion approach, selecting features 

concurrently from all feature types rather than performing feature selection separately for each 

[273]. 

To evaluate the relative performance of different combinations of VOIs and feature 

types, the model development process was repeated using the combinations in Table 19. The 
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table shows the combinations of VOIs and feature types for the initial feature sets. These were 

not an exhaustive list since this would amount to thousands of unique combinations. Rather, 

these include the combinations of individual VOIs and individual feature types, plus pairs of 

VOIs and feature types, plus some selected cases such as inclusion of all VOIs and all feature 

types. Together, this resulted in 330 combinations of initial feature sets. For each initial feature 

set, the dimensionality reduction approach could involve hierarchical clustering or VIF, and in 

each case, 6 different machine models were evaluated using a cross-validated grid search. 

Analysis of all initial feature set combinations for a given dimensionality reduction approach 

and resampling approach took between 8 – 24 hours, after employing the efficiency methods 

outlined in the other sections in this chapter. These aspects may also be referred to as model 

development parameters. 
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Table 19: Initial feature set combinations: CLI = clinical features, RAD = radiomic features, DOS = 

dosiomic features, CON_GTVP = contouromic features based on GTVp, CON_GTVN = contouromic 

features based on GTVn 

VOI combinations (N = 22) Feature type combinations (N = 15) 

extOralCavity 

PC 

GTVp 

GTVn 

Larynx 

Parotids 

extOralCavity + PC 

extOralCavity + GTVp 

extOralCavity + GTVn 

extOralCavity + Larynx 

extOralCavity + Parotids 

PC + GTVp 
PC + GTVn 

PC + Larynx 

PC + Parotids 

GTVp + GTVn 

GTVp + Larynx 

GTVp + Parotids 

GTVn + Larynx 

GTVn + Parotids 

Larynx + Parotids 

extOralCavity + PC + GTVp + GTVn + Larynx + Parotids 

CLI + DVH 

CLI + RAD 

CLI + DOS 

CLI + CON_GTVP 

CLI + CON_GTVN 

CLI + CON_GTVP + CON_GTVN 

CLI + DVH + RAD 

CLI + DVH + DOS 

CLI + DVH + CON_GTVP + CON_GTVN 

CLI + RAD + DOS 

CLI + RAD + CON_GTVP + CON_GTVN 

CLI + DOS + CON_GTVP + CON_GTVN 
CLI + RAD + CON_GTVP + CON_GTVN 

CLI + RAD + DOS + CON_GTVP + CON_GTVN 

CLI + DVH + RAD + CON_GTVP + CON_GTVN 

 

3.8.3. Feature stability assessment 

After defining the initial feature set, unstable features were excluded. This served two 

purposes. Firstly, it was intended to increase the repeatability of the resulting models, and 

secondly, it would reduce the dimensionality of the prediction problem. Unstable features were 

identified by their robustness to the simulated perturbations, as measured by the ICC. A 

threshold of 0.7 was used to remove unstable features. This value was one of the frequently 

reported thresholds identified in a systematic review by Xue et al. [274].  

3.8.4. Unsupervised dimensionality reduction 

The datasets in this project are representative of other datasets in radiomics and related 

fields which tackle high-dimensional data. Specifically, there are a large number of extracted 
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features and comparatively few samples. By contrast, many applications of deep learning 

utilize vast amounts of data consisting of many orders of magnitude more samples. With many 

more features than samples, machine learning models may struggle to discern patterns amidst 

the noise. For this reason, feature selection and dimensionality reduction methods are 

employed. Supervised methods which utilize the outcome variable to determine relevance 

should be applied to the training data only, to avoid introducing bias in the results from 

information leakage. However, unsupervised methods can remove redundant or low-variance 

features prior to data partitioning. 

Multicollinearity is the phenomenon where several features are linearly correlated with 

each other. If they are also correlated with the outcome variable, then during model building, 

it is unclear which feature to select. This redundant information can result in multiple correlated 

features being selected, resulting in an overly complex model that may also risk overfitting. 

Pairwise tests such as the Pearson correlation coefficient can determine how strongly correlated 

two features are, and a matrix of these coefficients can be computed for any feature set. 

However, identifying and removing redundant features can be performed in many different 

ways. One approach explored in this project was to identify clusters of correlated features using 

these coefficients. Then, the most stable and conceptually simplest feature was selected from 

each cluster. An alternative approach to detecting multicollinearity was performed by 

calculating Variance Inflation Factors (VIFs) [275]. VIFs are calculated by fitting a regression 

model for the selected feature using only that feature as input, then fitting a regression model 

for the same feature using all of the available features as inputs. The VIF is the factor by which 

the variance in the estimate is inflated in the multi-feature model versus the single-feature 
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model. This is indicative of the amount of collinearity or redundancy between the features in 

the set. The VIF can be calculated for each feature in a feature set. The higher the VIF, the 

greater the multicollinearity. A cutoff value for VIF can be applied to remove features with 

high multicollinearity. A cutoff value of 10 has previously been proposed [275]. 

Two different approaches to dimensionality reduction were employed, each with the 

aim of reducing the amount of multicollinearity and redundant features. The first approach was 

based on hierarchical clustering using correlation coefficient. The second approach used a 

combination of correlation coefficients and VIF calculations. The motivation of this second 

approach was to build up a set of non-redundant, non collinear features using VIF that would 

make subsequent model building easier. The logic is similar to that described in the paper by 

Cheng et al., except that it is used for unsupervised feature selection instead of supervised 

feature selection [276]. The initial feature set is sorted in order of perturbation stability by ICC, 

then by complexity of features, from clinical to DVH, radiomic, dosiomic, and contouromic. 

Then, features are iteratively added to the reduced feature set on two conditions: 1) The 

maximum pairwise Pearson correlation coefficient between any two features in the resulting 

set is less than a given threshold, and 2) The maximum VIF of the features in the resulting set 

is less than the VIF cutoff value. This results in a reduced feature set with low redundancy. No 

information is provided about the outcome variable, however, so this can be applied to the 

whole development dataset. 

To summarize, two different unsupervised dimensionality reduction methods were 

investigated in this project: 1) a hierarchical clustering approach using Pearson correlation, and 
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2) a VIF-based approach: iteratively selecting features while Pearson correlation and VIF 

thresholds were met. The pseudocode for these two approaches is displayed in Table 20. 

Table 20: Pseudocode for unsupervised dimensionality reduction approaches 

Hierarchical clustering VIF approach 

1. Calculate Pearson correlation matrix R for 

input features 

2. Define distance as 1 - |R| 

3. Calculate feature clusters based on distance 

and distance threshold (0.9) 

4. Sort each cluster by feature type (clinical-

DVH-radiomic-dosiomic-contouromic) then 

by feature stability (ICC) 

5. Select first feature from each cluster 

6. Return reduced feature set 

1. Sort features by feature type (clinical-DVH-

radiomic-dosiomic-contouromic) then by 

feature stability (ICC) 

2. Add first feature to set of reduced features 

3. Iterate over remaining features 

4. Check whether each feature meets the 

following criteria: 

a. The feature is not highly correlated 

(R > 0.9) with any feature in the 

reduced set 

b. The resulting maximum VIF does 

not exceed the threshold (10) 

5. If the criteria are met, add the feature to the 

reduced feature set 

 

3.8.5. Model pipeline 

Supervised feature selection, scaling and model fitting steps were incorporated into a 

Pipeline object from the Scikit-learn package for Python [277]. The Pipeline object was 

selected because it provided a convenient encapsulation of the series of steps needed to fit or 

conduct inference on a model, while also avoiding information leakage by ensuring the correct 

treatment of training and test data. The Pipeline object was called with the ‘fit’ method during 

training, which resulted in the feature selection, scaling and model fitting being applied in a 

supervised manner on labelled data. Then, during validation (either within cross-validation or 
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on the external validation set), the object was called with the ‘predict’ method. This method 

evaluated each step of the pipeline on the input data without changing the fitted coefficients, 

as should be the case for inference, thereby preventing information leakage to the test set. 

Another important use of the Pipeline object was the ‘memory’ argument. This would 

store the results of each step in the pipeline in temporary memory, so that it could be recalled 

later if an identical step was performed. The model pipeline would be fitted and evaluated 

thousands of times during the optimization process, and therefore it was critical to employ this 

functionality to reduce the computational burden and increase the time efficiency. Using the 

memory argument allowed these results to be recalled, saving computation time.  

3.8.6. Oversampling 

Data imbalance, referring to differences in the incidence of each output label, is a 

common consideration in machine learning. As class imbalance increases, models may be less 

able to learn to identify or separate classes, since they learn from fewer examples compared to 

the majority class. If the sample size is small, there may also be very few samples for the 

minority class, risking overfitting. There are several ways to address this issue. Firstly, most 

machine learning models allow for a weighting parameter for each sample, which can be 

adjusted to better balance the impact of each sample based on the rarity of the class it belongs 

to. In Sci-kit Learn, this is performed using the ‘class_weight’ parameter. By default, this 

weights samples proportionally to their incidence.  However, adjusting weightings alone may 

be insufficient, because there may be too few samples for the minority class for the model to 

learn meaningful patterns. Another approach is to use sampling.  
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Imbalanced datasets may be under-sampled in order to remove samples of the majority 

class, or over-sampled to increase the number of samples of the minority class. Typically, 

under-sampling is more appropriate for a large dataset, where the loss of data is less impactful. 

Over-sampling may be performed using bootstrapping, or using more sophisticated techniques 

which generate synthetic samples of the minority class. Synthetic Minority Over-sampling 

(SMOTE) is one such approach [278]. SMOTE identifies k nearest neighbours to each minority 

sample and uses them to generate a synthetic sample, which yields more generalizable results 

than over-sampling with bootstrapping.  

Model development explored two different approaches: no under/oversampling, and 

SMOTE. The performance of each approach was compared. This oversampling step was 

incorporated into the front of the model pipeline, so that it would be applied before any of the 

other steps. By including it in the model pipeline, the correct application of oversampling was 

ensured. Namely, oversampling would only be applied to the training set or training folds 

during cross validation. SMOTE was implemented using the Imbalanced-Learn package for 

Python [279]. Additionally, the Imbalanced-Learn version of the Pipeline object was used to 

ensure compatibility. Initial experiments explored performing SMOTE oversampling as the 

first step of the model pipeline, however no benefit was observed. Therefore,  no oversampling 

was used for subsequent modelling. 

3.8.7. Supervised feature selection 

Supervised feature selection generally refers to the identification of a subset of relevant 

features for model building. This serves several purposes. It identifies the features which have 
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strong associations with the outcome, removes irrelevant features and reduces the 

dimensionality of the problem. This results in simpler, more interpretable models, reduces the 

computational burden, and even mitigates the risk of overfitting. Within multi-omics literature, 

a wide range of feature selection approaches have been conducted, and no consensus has yet 

been reached on a standard feature selection approach. Feature selection approaches can 

broadly be categorized into filter-based, embedded, and wrapper-based methods [280]:  

Filter-based feature selection methods are conducted prior to model fitting and are 

therefore independent of the model algorithm [280]. Examples include selecting features based 

on tests of association with the outcome, screening out redundant features, information gain, 

and minimum redundancy maximum relevance (MRMR).  

Embedded methods undergo feature selection as part of the model training [280]. 

Typically, the trained model will learn coefficients or feature importance values which can go 

to zero or be compared against a threshold in order to exclude features. Examples include 

logistic regression with using the least absolute shrinkage and selection operator (LASSO) and 

linear support vector machine (SVM) with recursive feature elimination.  

Wrapper-based feature selection methods are based on optimizing the feature set based 

on a performance score from the prediction model [280]. The performance score would 

typically be based on the average score from cross validation of the model using a given subset 

of features. Forward selection approaches involve iteratively adding to the subset of selected 

features until the improvement in performance falls below some threshold. Backward selection 

approaches involve iteratively removing features until an optimal feature set is reached [280].  
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A review on feature selection methods for machine learning by Bolón-Canedo 

recommended the use of filter-based methods, having conducted experiments on synthesized 

data [280]. They argued that they have good generalization ability and are faster than embedded 

or wrapper-based methods. Additionally, because they are independent of the model algorithm, 

they may be more interpretable and more robust. This project utilizes MRMR, a filter-based 

feature selection method, following the recommendations of a benchmark study [273].  

MRMR is a feature selection framework first proposed by Ding et al [281]. Rather than 

ranking features by their individual correlation with the target outcome, MRMR seeks to 

minimize the redundant features that would be selected using this approach, while still 

maximizing the ability of the features to separate the target outcome labels. The framework can 

be used for categorical or continuous variables.  

The relevance is scored by performing a statistical test on the feature data and target. 

For discrete-valued features, the mutual information can be used as a statistic. For continuous 

features, the F-statistic can be used. The redundancy is scored by quantifying the correlation 

between features. For discrete-valued features, this can be found using the mutual information 

between features. For continuous features, this can be done using the Pearson correlation 

coefficients, or Euclidean distances between features. The overall MRMR score can then be 

assigned by combining the relevance and redundancy scores. They can be combined using 

either the difference or the quotient of the relevance and the redundancy score. The choice of 

difference or quotient, and the type of data (discrete vs continuous) results in a set of possible 

MRMR calculations which are assigned the following names: Mutual Information Difference, 
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Mutual Information Quotient, F-test correlation difference and F-test correlation quotient 

[281].  

The MRMR method can also be modified to use different measures of relevance such 

as the Kolmogorov-Smirnov statistic or Random Forest feature importance. The Python 

module ‘mrmr-selection’ was used to implement MRMR in this project [282]. It uses the F-

statistic as a default relevance scorer and Pearson correlation as a default redundancy scorer. 

Given that the feature data was not necessarily normally distributed, the use of this function 

with non-parametric tests was investigated, with the Kolmogorov-Smirnov test for relevance 

and the Spearman correlation for redundancy. However, performance was reduced with these 

scorers, and therefore the default settings were used.  

To improve the efficiency of the model pipeline during the grid search optimization, 

rather than computing MRMR separately for different numbers of features to select k, MRMR 

was computed for the maximum number of features to select, and then the top k chosen features 

were simply selected from that according to the grid search. This is because the MRMR object 

returned the top k features in order of importance. 

3.8.8. Data scaling 

The extracted multi-omic features had extensive variation in the scale and distribution 

of values. Scaling features is a standard preprocessing step for the development of machine 

learning models, ensuring that the coefficients for each feature are more directly comparable 

and can be optimized more easily. Different scaling methods are available, including 

normalization to a range of 0 to 1 or scaling to zero mean and unit variance. The advantage of 
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the latter approach is that it will centre normally distributed data. However, many features are 

not normally distributed, and may contain outliers that could distort the mean and standard 

deviation. For these reasons, features were instead scaled by the median and interquartile range, 

which would be less susceptible to the effect of outliers [283]. This was implemented using the 

RobustScaler object from the Scikit-learn package. 

3.8.9. Machine learning models 

A number of different machine learning algorithms are commonly employed for 

radiomic models. Typically, studies compare performance and select an optimal algorithm for 

their application, rather than selecting the algorithm in advance. The exception to this would 

be where the algorithm is selected for simplicity or for its use in a specific embedded feature 

selection approach. 

Six types of model algorithms were investigated in this project: 

1. Ridge logistic regression 

2. Support vector machine (SVM) classifier with linear kernel 

3. Support vector machine (SVM) classifier with radial basis function kernel 

4. Random Forest classifier (RF) 

5. XGBoost classifier (XGB) 

6. Gaussian Naïve Bayes classifier (GNB) 

Ridge logistic regression 

This algorithm refers to logistic regression with a regularization penalty proportional to 

the square of the model coefficients [284]. Regularization is desirable in order to limit model 
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complexity and control overfitting. Ridge regression differs from Lasso logistic regression,  

where the penalty is proportional to the absolute values of the model coefficients. Lasso 

regression is commonly used for feature selection since it commonly sets coefficients to zero. 

Ridge regression was selected for this project in order to restrict the feature selection to the 

MRMR algorithm. 

Support Vector Machine 

This algorithm works by identifying a hyperplane in the feature space which best 

separates between classes. The hyperplane parameters are optimized by maximizing the 

distance between the hyperplane and the nearest data points from each class. A kernel function 

may be used to transform the feature space to a higher-dimensional space, so that a non-linear 

decision surface can be represented [285]. 

Random Forest 

A decision tree is a method for classifying data, where each sample begins at the root 

node, a test is performed in which a feature value is compared to a threshold, and the sample 

passes to the next node, where further tests are performed. This continues until each sample 

has reached a leaf node with an associated class label. The tests at each node are optimized by 

using a statistical measure such as information gain or Gini index. Random forest is an 

ensemble method which generates a number of decision trees each with a random subset of the 

data [285]. The output is determined from the combination of the output of all the decision 

trees in the random forest.  
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XGBoost 

Extreme Gradient Boosting algorithm, or XGBoost, is an ensemble method similar to 

Random Forest, in that it also uses decision trees as base learners [286]. The algorithm 

sequentially adds weak learners to the ensemble, with subsequent learners further minimizing 

the loss from previous learners. The minimization of the loss function is performed using a 

gradient descent approach. 

Gaussian Naïve Bayes 

This algorithm uses Bayes’ Theorem of probability, where posterior probabilities of an 

event are calculated according to prior probabilities of other events [285]. Gaussian Naïve 

Bayes assumes that each class follows a normal distribution, and that each feature is 

independent. 

3.8.10.  Cross validation 

Determining the optimum MRMR K and model hyperparameters for a given model was 

performed using a cross validated grid search. For each combination of parameters, the model 

pipeline was fitted and evaluated using cross validation. The mean performance across 

validation folds was then used to identify the best set of parameters. Cross validation was used 

instead of a single train test split in order to consider the variability within the development 

dataset and better utilize the limited number of samples.  

When performing the grid search, 20-fold stratified cross validation was used. It was 

observed that increasing the number of folds gave improved performance, which was likely 

due to increasing the effective size of the training data. Some studies perform leave-one-out 
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cross validation, which is the extreme case of using all but one sample for training for each 

fold, however this is computationally expensive and mostly applied to studies with very small 

datasets. 20-fold cross validation was selected as a balance between computation time and 

maximizing the size of training folds. The random state was fixed in order to ensure 

reproducibility of results.  

Nested cross validation 

Some studies utilize nested cross validation. This involves conducting a second cross 

validation procedure within the training folds of an outer cross validation structure, and then 

taking the mean performance of the resulting models on the outer validation folds. It can further 

reduce the optimism bias in the internal validation score, however performing the grid search 

within a nested CV is extremely computationally expensive and was unnecessary due to the 

availability of an external validation set. The bias from having non-nested cross validation is 

minimal, since scaling, feature selection and model optimization all take place within the cross-

validation training folds. 

Leave-one-out cross validation 

There was significant variability in the model development process across different training 

folds when 5, 10 or 20-fold cross validation was used. If the sample size were very large, for 

example in the tens of thousands, then such differences would be much less significant. One 

approach which could address this issue is leave-one-out cross-validation, where all but one 

sample are used as training folds, and a single sample is reserved for validation. There are 

consequently as many folds as there are samples. This approach results in less variability 

between training folds and has been employed by several radiomics-related studies with small 
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sample sizes. However, this method results in a substantial increase in computational burden, 

by a factor of 10 or more. When comparing models constructed using different combinations 

of VOIs and feature types, the multiplicative effect of this computational burden prevented the 

use of this approach.  Moreover, a simulation study by Geroldinger et al. found that the leave-

one-out strategy was strongly negatively biased for measures of discrimination [287]. 

3.8.11.  Grid search optimization 

Hyperparameter grid 

A hyperparameter grid was defined for each model, providing a range of values for 

performance optimization. For example, the logistic regression models had a hyperparameter 

C which controlled the strength of the regularization, and Random Forest models had 

hyperparameters which controlled the depth of the trees and the minimum leaf size. The range 

of values defined for each model is shown in Table 21. There are potentially a large number 

of hyperparameters to choose from in models such as Random Forest, but the ranges were 

chosen to give reasonable coverage from simple / highly penalized models to more complex 

models.  
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Table 21: Model hyperparameter grid ranges 

Model type Hyperparameter grid 

Ridge logistic regression MRMR k : [1, 2, 3, 4, 5, … kmax] 

C : [0.001, 0.01, 0.1, 1, 10, 100, 1000] 

class weight: [equal, balanced] 

SVM linear MRMR k : [1, 2, 3, 4, 5, 6, 7, 8, 9] 

C : [0.001, 0.01, 0.1, 1, 10, 100, 1000] 

class weight: [equal, balanced] 

SVM RBF MRMR k : [1, 2, 3, 4, 5, 6, 7, 8, 9] 

C : [0.001, 0.01, 0.1, 1, 10, 100, 1000] 

class weight: [equal, balanced] 

Random Forest MRMR k : [1, 2, 3, 4, 5, 6, 7, 8, 9] 

n estimators : [50] 

max depth : [1, 2, 3, 4, 5, 6, 7, 8, 9] 
max features: [sqrt, log2, none] 

class weight: [equal, balanced] 

XGBoost MRMR k : [1, 2, 3, 4, 5, 6, 7, 8, 9] 

n estimators : [50] 

max depth : [1, 2, 3, 4, 5, 6, 7, 8, 9] 

learning rate: [0.01, 0.1, 0.3] 

Gaussian Naïve Bayes MRMR k : [1, 2, 3, 4, 5, 6, 7, 8, 9] 

var smoothing : [1e-9,1e-7,1e-11] 

Obtaining a final model 

The best-performing set of hyperparameters in the cross validated grid search were 

applied to the model pipeline. It should be noted that each of the models fitted using these 

hyperparameters within each training fold of the cross validation were different. To obtain a 

final model with a single set of coefficients, the pipeline was fit to the entire development 

dataset (QEH). The training or “apparent” performance was indicated by comparing the 

predictions of the model on the development dataset with the corresponding labels. This 

performance score is not a validation score but indicates the degree of overfitting of the model 

when compared to the internal and external validation scores.  

The internal validation performance was calculated from the mean performance across 

the cross-validation folds. The development dataset was used for cross validation, and therefore 

the validation folds and training folds were from the same centre. This represents an estimate 
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of the generalization performance; however, it does not consider any structural differences 

between centres. Alternative approaches to internal validation include a single train-test split 

or bootstrapping. Using a single train-test split does not capture the variability within the 

dataset and the results can be highly dependent on which samples are included in the training 

and test sets. Bootstrapping involves resampling from the dataset with replacement and is more 

often used for estimating the standard error on a performance estimate.  

3.8.12.  External validation 

The external validation performance was calculated using the data from PWH and was 

completely separate from all of the previous model development steps: stability filtering, 

unsupervised dimensionality reduction, and grid search optimization of the model pipeline.  

3.9. Results visualization and analysis 

Bootstrapped confidence intervals 

Confidence intervals on the training and external validation scores were obtained by 

bootstrapping. 1000 bootstrapped samples were generated for each dataset, along with the 

corresponding model predictions. The resulting performance metrics were computed, and the 

confidence intervals were calculated from the standard error. 

Statistical tests 

To test for statistically significant differences in the performance of two models on the 

same data, the DeLong test was employed. For example, this allowed comparison of multi-

omic models against conventional clinical and DVH-based models. Additionally, multivariate 

analysis of the model signatures, that is, the predicted probabilities from the model, against the 
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outcome variable was also employed to determine whether the model signatures were 

independently associated with the outcome. 

Feature importance assessment 

Feature importance was assessed in two ways: Firstly the Shapley Additive 

exPlanations (SHAP) approach was used [288]. This method quantifies the impact of each 

feature on the model output. Secondly, the impact of each model feature on model performance 

was also assessed using a model-agnostic permutation variable importance procedure [289]. 

The effect of removing each feature from the model was assessed by calculating the AUC on 

1000 sets of bootstrapped samples after shuffling the values of the selected feature. The greater 

the impact of the feature, the larger the difference between the original AUC and the AUC after 

shuffling the feature. 

Receiver Operating Characteristic curves 

Receiver Operating Characteristic (ROC) curves were plotted, indicating the true 

positive rate and false positive rate for different probability thresholds. The true positive rate 

indicates the sensitivity, and the false positive rate is equivalent to 1 – specificity. For the 

internal validation performance from cross-validation, the mean false positive rates and true 

positive rates from each fold were used to plot the curve, and the standard deviations were used 

to plot a boundary indicating the variability in the ROC curve in cross-validation. The curves 

for training and external validation were also plotted. 
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Calibration curve 

The machine learning models developed in this project were optimized for 

discrimination performance, which does not guarantee good calibration. Different machine 

learning algorithms are known to have different distortions in the distribution of predicted 

probabilities, necessitating calibration [290]. Therefore, models were re-calibrated using the 

Scikit-learn CalibratedClassifierCV object. Prior to assessing the calibration and performing 

decision curve analysis, a dataset-specific logistic probability mapping was applied to the 

model. The feature coefficients of the underlying model were unchanged, and therefore the 

discrimination performance in AUC was also unchanged by this calibration. 

Model calibration was assessed by plotting calibration curves and calculating the Brier 

score. For the calibration curves, the raw model predictions were binned into 5 quantiles, 

averaged, and plotted against the ratio of positive cases in each bin. The slope and intercept of 

the resulting curves could then be compared to the ideally calibrated line. The Brier score 

ranged from 1, indicating a completely incorrect calibration, to 0, indicating a perfect 

calibration. Considering both the curve and the Brier score allowed for assessment of the 

overall calibration. Predicted probability bins were defined using quantiles rather than being 

uniformly distributed, in order to ensure an equal number of samples per bin and an equal 

significance of each point on the curve.  

Optimal threshold, sensitivity, and specificity 

An optimum prediction threshold was determined from the calibrated models using the 

Youden index, that is, the point which maximizes the sensitivity and specificity [291]. The 

resulting confusion matrices were calculated, along with the resulting sensitivity, specificity, 
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and overall accuracy. While the threshold can be adjusted depending on clinical requirements, 

these metrics serve as an additional means of comparison between models for a reasonable 

prediction threshold.  

Decision curve analysis 

Decision curve analysis was conducted for the calibrated models. The net benefit, as 

defined in equation (1), was plotted against the threshold probability (pt) [292]. This indicates 

the clinical usefulness of the model in comparison to assigning all patients to be at risk of severe 

toxicity or assigning no patients to be at risk of severe toxicity, for different thresholds of the 

predicted probabilities. Clinicians may use the decision curve to choose the best model for a 

given threshold probability determined by the utility of the intervention [293]. 

𝑁𝑒𝑡 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠−𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠× 

𝑝𝑡
1−𝑝𝑡

𝑁
     (1)

   

3.10. Data description 

Table 22 displays the baseline characteristics for the two datasets. The mean value of 

each characteristic is reported, along with the p-value significance according to either the 

Mann-Whitney U test or Fisher’s Exact Test, depending on whether the variable was 

continuous or categorical. Cases in QEH had a higher proportion of advanced disease (T3, T4, 

N2). The contour of the gross tumour volume was smaller on average, however. The voxel 

volumes of the larynx, parotids, extended oral cavity and PC muscles were not significantly 

different between institutions, due to the use of AI segmentation. Different contouring 

guidelines in each institution meant that use of the original contours would have resulted in 

significant differences between institutions. The mean HU in the GTVp, larynx, extended oral 
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cavity and PC muscles were significantly different between datasets. This may have been a 

result of differences relating to the CT contrast and its timing in relation to CT acquisition. 

Statistically significant differences in the mean dose to the GTVp and OARs between 

institutions was likely a result of treatment planning differences. Different dose sparing 

guidelines were likely used, as evidenced by the differences in the original OAR contours prior 

to automatic segmentation. Additionally, there were likely differences in dose distribution due 

to the different RT modality used in each institution: QEH used helical tomotherapy while 

PWH used VMAT. The differences in dose distribution within institutions was less than that 

across institutions, explaining the statistical significance. These differences may not be 

clinically significant though since the difference in mean dose was less than 10% for each VOI. 
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Table 22: Baseline characteristics 

Characteristic QEH PWH Sig 

Sex_Male 0.738 0.782 0.437 

Chemotherapy (vs RT only) 0.848 0.851 1.000 

Neoadjuvant chemotherapy  0.127 0.287 <0.001* 

Adjuvant chemotherapy 0.179 0.020 <0.001* 

T4 0.201 0.168 0.569 

T3 0.667 0.426 <0.001* 

N2 0.736 0.347 <0.001* 

AgeAtRTStart 54.317 55.505 0.358 

BMI_CTsim 23.709 24.552 0.073 
BW_CTsim 63.824 68.018 0.013 

GTVn Voxel Volume (cc) 25.166 19.097 0.257 

GTVp Voxel Volume (cc) 46.760 55.215 0.005* 

Larynx Voxel Volume (cc) 67.663 69.496 0.360 

Parotids Voxel Volume (cc) 68.382 73.349 0.054 

extOralCavity Voxel Volume (cc) 137.601 137.237 0.684 

PC Voxel Volume (cc) 19.547 20.269 0.051 

GTVn mean HU 45.025 46.017 0.171 

GTVp mean HU 50.482 53.794 0.032* 

Larynx mean HU 39.938 46.103 <0.001* 

Parotids mean HU 8.751 13.701 0.219 

extOralCavity mean HU 46.854 57.065 <0.001* 
PC mean HU 46.487 55.605 <0.001* 

GTVn mean dose (Gy) 72.169 71.894 0.104 

GTVp mean dose (Gy) 73.315 72.044 <0.001* 

Larynx mean dose (Gy) 46.526 43.999 <0.001* 

Parotids mean dose (Gy) 41.524 37.918 <0.001* 

extOralCavity mean dose (Gy) 51.413 48.640 <0.001* 

PC mean dose (Gy) 56.526 60.076 <0.001* 

Some clinical features were excluded from the analysis due to sparsity of data. Smoking 

status and alcohol consumption were only available for a minority of patients in the QEH 

dataset, and so could not be included in model development. Other social factors such as marital 

status, financial status, education status, and accommodation co-inhabitants were likewise 

available only for a minority of cases. Performance status score, as measured by the Eastern 

Cooperative Oncology Group (ECOG) scale, indicated patients’ level of function for daily life. 

However, this information was missing for a substantial proportion of patients, and so could 

not be included. Blood tests results from the consultation notes were available for a subset of 
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patients in the PWH dataset. These were not included in model development but correlations 

between pre-treatment blood test results and toxicity were also explored. 
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CHAPTER 4 MULTI-OMIC PREDICTION MODELS 

FOR SEVERE ACUTE ORAL MUCOSITIS 

4.1. Introduction 

Oral mucositis (OM) is one of the most prevalent and crippling toxicities experienced 

by NPC patients receiving RT, posing a tremendous adverse impact on quality of life. Severe 

cases threaten treatment outcome by causing unplanned hospitalization or treatment 

interruption. Accurate pre-treatment prediction of severe OM is highly desirable, offering the 

potential for more targeted care and enhanced clinical decision-making. Published prediction 

models for severe OM in HNC generally use conventional clinical and DVH features. This 

chapter expands on the results from the submitted research article [294] in order to address 

Objective 1. Specifically, multi-omic prediction models for severe acute oral mucositis (OM) 

in NPC patients undergoing RT were developed and externally validated. Clinical, DVH, 

radiomic, dosiomic and contouromic features were investigated, along with a range of VOIs 

covering the GTVs and OARs. Investigation of the optimal combination of VOIs and feature 

types was conducted to further improve the discrimination performance. Correlations with pre-

treatment blood tests, which had been reported as potential predictors of severe OM in the 

literature, were also investigated prior to model development. To the best of our knowledge, 

this represented the first externally validated model to use the specified multi-omics for OM 

prediction in HNC. 
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4.2. Methodology 

4.2.1. Definition of severe acute OM 

As discussed in Section 1.1.4, OM can be graded according to different severity scales. 

In both institutions (QEH and PWH), the CTCAE grading system was used for assessing the 

severity of OM, with grade 3  or higher indicating severe toxicity. The severe acute OM 

outcome label was defined as the occurrence of CTCAE grade 3 or higher during RT. 

4.2.2. Statistical analysis of baseline characteristics 

Patients were grouped by severe and non-severe OM outcome label within each dataset. 

Differences between baseline characteristics in severe and non-severe OM groups were 

assessed for statistical significance using Fisher’s Exact test for categorical features, and Mann 

Whitney U test for continuous features.  The non-parametric Mann Whitney U test was selected 

because a significant proportion of the features were not normally distributed, with Shapiro test 

p-value < 0.05. The univariate analysis was conducted separately from model development, 

and served to verify whether there were any clinical or DVH features significantly correlated 

with severe acute OM in both datasets. 

4.2.3. Analysis of pre-treatment blood tests as predictors of 

severe OM 

As discussed in Section 1.2, blood test results such as white blood cell lymphocyte 

count, erythrocyte sediment rate (ESR), and neutrophil-to-lymphocyte ratio were reported in 

association with OM. Since blood tests are routinely performed for NPC patients, particularly 

those undergoing chemotherapy, they would potentially represent valuable and convenient 

biomarkers for estimating the risk of severe OM if their predictive value was confirmed. 

Laboratory test results were identified from the clinical records of patients in the PWH dataset 
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during the data collection process. These included the results of blood tests conducted before 

the start of RT. Measures of blood pressure and pulse rate were also included for completeness. 

The number of patients with pre-RT blood test data available varied, depending on the test 

result. Most patients with blood test results received concurrent chemotherapy, and 

approximately half received neoadjuvant chemotherapy.  

Pre-radiotherapy blood test results were only available for a minority of PWH patients, 

and were not available for the QEH dataset, therefore these factors were not included in model 

development. Indeed, during the literature review in Section 1.2, no validated prediction 

models for OM included blood test results (other than genetic properties of oral bacteria). 

Nevertheless, statistical analysis of the blood test results was conducted in order to provide 

recommendations for future studies. To identify correlations between these pre-treatment blood 

test results and severe OM, the median pre-treatment test result was calculated for each patient. 

The median value was selected to minimize the impact of outliers across pre-treatment test 

results. The mean blood test result in the severe OM and non-severe OM groups were  

computed, along with the effect size from Cohen’s D. The statistical significance was reported 

using the Mann Whitney U test. 

4.2.4. Model development 

Predictive models for severe OM were developed from two feature sets: 1) conventional 

clinical and DVH features only, and 2) multi-omic features including clinical, DVH, radiomic, 

dosiomic and contouromic features.  

In the work submitted for publication, the extended oral cavity and pharyngeal 

constrictor (PC) muscles were selected as VOIs [294]. Several studies have previously 
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investigated the extended oral cavity for predicting OM [54, 56, 295]. This VOI, as defined by 

the guidelines by Brouwer et al. [258], contained several areas that typically exhibit the most 

severe mucosal changes, including the soft palate, tongue, and floor of the mouth [296]. The 

PC VOI, consisting of the superior, middle, and inferior muscles, was frequently contoured as 

part of the RT planning process, and included part of the mucosa at risk of severe reaction. 

Specifically, the hypopharyngeal mucosa was reported as the region experiencing the most 

severe OM after the soft palate [296]. Moreover, Tao et al. reported the radiation dose to the 

pharyngeal space as a significant predictor of OM [113].  

In this chapter, a broader range of VOIs were explored to determine the optimal 

combination for OM prediction. Several VOIs were available for the included patients: GTVp, 

GTVn, extended oral cavity, PC muscles, parotid glands, and larynx. It was hypothesized that 

some of these VOIs could further enhance the model discrimination performance. Particularly, 

the GTVp and GTVn VOIs had been utilized by Dong et al. for OM prediction [57], while the 

parotid glands’ role in saliva production could influence OM through its impact on oral health. 

The larynx VOI, located inferior to the oral cavity, was also included to explore whether its 

geometry or dose profile could be linked to higher severity of OM. 

Data preprocessing, model development and performance evaluation was conducted as 

described in CHAPTER 3. As described in Section 3.8.2, different combinations of VOIs and 

feature types were investigated. Six different machine learning models were fitted for each 

combination: Ridge regression, Support Vector Machine (SVM) with linear and radial basis 

function kernels, Random Forest, XGBoost and Gaussian Naïve Bayes classifier. Additionally, 

all combinations were explored using two different dimensionality reduction approaches: 

hierarchical clustering and VIF-based dimensionality reduction. Figure 20 displays an 
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overview of the model development parameters. For each combination, the model pipeline was 

optimized using cross-validation on the QEH dataset, then externally validated on the PWH 

dataset. This resulted in AUC scores for training, internal validation and external validation for 

each combination of model development parameters. 

 
Figure 20: Overview of model development parameters 

 The optimization of each model pipeline was performed using a cross-validated grid 

search across the range of hyperparameters defined in Section 3.8.11. For the MRMR feature 

selection algorithm, the maximum number of features to select, kmax, was set to 9, since this 

would correspond to an event-per-variable rate of approximately 10, in line with the rule of 

thumb [131]. The optimal number of features to select was varied in the grid search from 1 up 

to a maximum of kmax. 

To determine the most generalizable combination of VOI, omics and model algorithm, 

the training, internal validation and external validation AUCs were compared. For each 

combination, the specific models had been optimized using the cross-validated grid search on 

the internal validation dataset.  Low training scores indicated that the model had insufficient 

complexity to capture the patterns in the data. Low internal validation scores indicated that the 

•Hierarchical clustering

•VIF approach
Dimensionality reduction

•22 different combinationsVOIs

•7 different combinationsFeature types

•6 different machine learning modelsModel algorithm
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model was overfitting to the training set. Low external validation scores indicated that the 

model had poor generalizability and was highly institution specific. The optimal model 

development parameters were identified by finding the models with the highest AUC across 

training, internal validation and external validation. An aggregate of the three scores was used 

for comparison. The mean or maximum were unsuitable as aggregate measures, because a high 

training score or internal validation score could obscure overfitted or poorly generalizing 

models. Therefore, the minimum of the three scores was selected as an aggregate score. The 

aggregate score was used to rank the model performances and identify the top-performing 

model. It is common for studies to compare training, internal and external validation scores to 

select the best model. The aggregate score provides a means to quantify this comparison. 

Having identified the best-performing conventional and multi-omic models, the DeLong test 

was used to test for statistically significant differences in AUC, and a multivariate analysis was 

conducted with both model signatures against the severe OM label to determine independent 

predictive value. Feature importance within each model was assessed using the SHAP approach 

and the permutation feature importance approach. The calibration of each model was assessed, 

and the clinical utility was compared using decision curve analysis. 

Additionally, the developed models were compared to the only externally validated 

prediction model for severe OM in the literature. This literature model was also evaluated on 

the QEH and PWH datasets to assess its generalizability. 
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4.3. Results 

4.3.1. Baseline demographic and clinical characteristics 

Severe OM occurred in 90 (25%) of patients in the QEH dataset and in 30 (30%) of 

patients in the PWH dataset. Comparison of features between severe OM groups in each dataset 

is shown in Table 23, along with univariate analysis. It should be noted that this was not 

performed for the purpose of feature selection and did not influence model development. 

Instead, this was conducted as a separate verification of the role of clinical and mean dose DVH 

features. Effect size was calculated from 
1

1.81
ln (odds ratio) for categorical features [297], and 

from Cohen’s d for continuous features. P values were calculated from Fisher's Exact test for 

categorical features, and from the Mann Whitney U test for continuous features. No correction 

for multiple comparisons was applied. Chemotherapy and the mean dose to the GTVn were the 

only significant features in the development dataset. Only chemotherapy remained significant 

in the external validation dataset.  

Table 23:Univariate analysis of clinical and mean dose DVH features. Incidence is shown for categorical 

features, and median value is shown for continuous features.   
Development (QEH) External validation (PWH) 

Feature Severe 

OM 

No 

Severe 

OM 

Effect 

size 

P value Severe 

OM 

No 

Severe 

OM 

Effect 

size 

P 

value 

Age at start of RT 54.5 54.0 -0.21 0.180 55.5 58.0 -0.40 0.132 

BMI at CT simulation 23.528 23.528 -0.13 0.548 24.351 23.932 0.22 0.169 

Weight at CT simulation (kg) 62.5 62.5 -0.01 0.728 71.7 65.9 0.20 0.167 

Chemotherapy (vs RT only) 87 (97%) 221 (81%) 0.44 <0.001* 29 (97%) 57 (80%) 0.46 0.036* 

N stage = 2 67 (74%) 200 (73%) 0.03 0.891 10 (33%) 25 (35%) -0.04 1.000 

Male sex 73 (81%) 195 (71%) 0.22 0.074 24 (80%) 55 (77%) 0.06 1.000 

T stage = 3 55 (61%) 187 (68%) -0.16 0.200 16 (53%) 27 (38%) 0.31 0.189 

T stage = 4 21 (23%) 52 (19%) 0.11 0.368 1 (3%) 16 (23%) -0.52 0.019* 

GTVn Dmean (Gy) 72.4 72.1 0.21 0.018* 72.3 72.3 0.01 0.266 

GTVp Dmean (Gy) 73.6 73.4 0.10 0.279 72.3 72.4 0.07 0.540 

Larynx Dmean (Gy) 47.0 47.2 -0.03 0.892 42.8 43.2 0.05 0.856 

PC Dmean (Gy) 56.2 56.7 -0.12 0.462 60.7 60.3 0.23 0.359 

Parotid glands Dmean (Gy) 40.8 41.5 0.03 0.673 37.8 37.8 0.04 0.685 

Ext. oral cavity Dmean (Gy) 51.9 51.6 0.10 0.403 50.4 47.8 0.55 0.010* 
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4.3.2. Correlations with pre-treatment blood tests 

The median pre-RT value of each blood test result was computed for patients in the 

PWH dataset. The Mann-Whitney U test was used to check for statistically significant 

differences in these blood test results between severe and non-severe OM groups. The effect 

size was also calculated using Cohen’s d, and the resulting achieved statistical power was 

computed. The results are shown in Table 24. Only blood test results collected before the start 

of RT were included. Significant correlations were found with potassium level, white blood 

cell count, and creating clearance. The achieved power was low for all tests, at less than 80%, 

indicating that the likelihood of the test detecting a true effect was not high, and therefore that 

real correlations might be missed by these tests, due to the small sample size.   

Table 24: Correlations between pre-treatment blood tests and severe OM 

Blood test result Severe 

OM 

No severe 

OM 

Effect 

size 

Power Sig. Sample 

size 

Pulse pressure 47.2 53.8 -0.48 0.18 0.288 38 

Mean arterial pressure 106.4 101.2 0.34 0.11 0.317 38 

Rate pressure product 11229.5 11003.3 0.10 0.06 0.983 35 

Systolic blood pressure 137.8 137.2 0.03 0.05 0.984 38 

Diastolic blood pressure 90.7 83.1 0.52 0.21 0.149 38 

Pulse 80.7 80.4 0.02 0.05 0.930 35 

Sodium (Na) 139.9 138.0 0.17 0.08 0.500 43 

Potassium (K) 4.4 4.1 0.77 0.58 0.029* 44 

Urea 5.2 5.6 -0.23 0.10 0.385 41 

Creatinine (Cr) 74.3 83.1 -0.56 0.39 0.084 54 

White cell count (WCC) 6.5 5.2 0.63 0.51 0.026* 53 

Platelet (plt) 268.3 299.9 -0.38 0.23 0.309 54 

Creatinine clearance (CrCl) 98.4 80.5 0.77 0.61 0.024* 48 

Haemoglobin (Hb) 12.7 12.8 -0.06 0.05 0.588 55 

The univariate correlations did not adjust for confounding factors. Neoadjuvant 

chemotherapy was likely the most impactful factor on pre-treatment blood test results. A 

multivariate logistic regression analysis of the significant blood test results and neoadjuvant 

chemotherapy was conducted. Missing values were removed, resulting in a sample size of 24. 

Thirteen of these patients received neoadjuvant chemotherapy, and seven experienced severe 
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OM. The results of this analysis are shown in Table 25. None of the blood test results remained 

significant when accounting for the impact of neoadjuvant chemotherapy.  

Table 25: Multivariate logistic regression for blood test results against severe 

OM 

Factor z P>|z| 

const -1.142 0.254 

Neoadjuvant -0.002 0.999 

preRT_median_Blood_K 1.188 0.235 

preRT_median_Blood_WCC 0.913 0.361 

preRT_median_Blood_CrCl -1.088 0.277 

4.3.3. Conventional and multi-omic prediction models for severe 

OM 

Table 26 lists the top 5 conventional prediction models developed for severe OM, 

consisting only of clinical and DVH features. The ranking was determined by the minimum of 

the training, internal validation and external validation scores, to ensure that the most internally 

valid and most generalizable models were selected. 

Table 26: Top 5 conventional prediction models for severe OM 

Rank 
Dimensionality 

reduction 
VOIs Algorithm Model size 

Train 

AUC 

Int. 

AUC 

Ext. 

AUC 

1 Hierarchical GTVp, Larynx SVM Linear 4 0.662 0.655 0.656 

2 VIF Ext. oral cavity Random Forest 3 0.676 0.646 0.740 

3 Hierarchical GTVp, Larynx Ridge 4 0.655 0.643 0.646 

4 VIF Ext. oral cavity XGBoost 3 0.808 0.653 0.642 

5 VIF Ext. oral cavity Random Forest 3 0.676 0.639 0.740 

Table 27 lists the top 5 multi-omic prediction models for severe OM, with the same 

ranking mechanism as the previous table. Notably, models containing radiomic, dosiomic and 

contouromic features were present in the top 5 models. All of the top 5 models outperformed 

the best conventional model in internal and external validation. The extended oral cavity and 

larynx were the most frequently selected VOIs in the top-performing models.  
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Table 27: Top 5 multi-omic prediction models for severe OM. CLI = clinical, 

RAD = radiomic, DOS = dosiomic, CON = contouromic 

Rank 
Dimensionality 

reduction 
VOIs CLI DVH RAD DOS CON Algorithm 

Model 

size 

Train 

AUC 

Int. 

AUC 

Ext. 

AUC 

1 Hierarchical 
Ext. oral 
cavity, 
Larynx 

✓  
✓   XGBoost 5 0.954 0.684 0.688 

2 VIF 
Ext. oral 
cavity 

✓    
✓ 

Random 
Forest 

4 0.751 0.678 0.699 

3 VIF 
GTVn, 
Larynx 

✓   
✓  XGBoost 9 0.849 0.691 0.677 

4 VIF 
Ext. oral 

cavity, PC 
✓    

✓ Ridge 8 0.673 0.674 0.682 

5 Hierarchical 
Ext. oral 
cavity, 
Larynx 

✓  
✓ ✓  XGBoost 8 0.788 0.690 0.673 

 

Best-performing conventional prediction model for severe OM 

The highest performing model using only clinical and DVH features was a SVM model 

with linear kernel fitted after using the hierarchical clustering approach. It consisted of features 

from the GTVp and the larynx. The model achieved a training AUC of 0.662 (95% CI: 0.602, 

0.725), internal validation AUC of 0.655 (95% CI: 0.593, 0.718) and external validation AUC 

of 0.656 (95% CI: 0.539, 0.768). It consisted of four features: male sex, chemotherapy, the 

fractional volume receiving at least 90% of the maximum dose to the GTVp, and the fractional 

volume receiving at least 20% of the maximum dose to the larynx. Figure 21 shows the ROC 

curves for the conventional model, along with the impact of each feature on the model output, 

calculated using SHAP analysis.  
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Table 28: Conventional model for severe acute OM 

Initial feature set Clinical, DVH 

VOIs GTVp 

Larynx 

N features after ICC filter 

and hierarchical clustering 

37 

MRMR K 4 

Model SVM linear 

balanced class weights 
C = 1 

 

 

 

Figure 21: ROC curve and SHAP feature analysis for conventional model 

Best-performing multi-omic model for severe OM 

The highest multi-omic model performance was achieved using clinical and radiomic 

features extracted from the extended oral cavity and larynx, filtered using the hierarchical 

clustering approach. The XGBoost model consisted of features from the extended oral cavity 

and the larynx. The model achieved a training AUC of 0.954 (95% CI: 0.929, 0.974), internal 

validation AUC of 0.684 (95% CI: 0.613, 0.754) and external validation AUC of 0.688 (95% 

CI: 0.580, 0.791). It consisted of 5 features: the sphericity of the larynx VOI, the HU intensity 

within the extended oral cavity, two features describing CT texture within the extended oral 

cavity, and chemotherapy. Figure 22 shows the ROC curves for multi-omic model A, along 

with the impact of each feature on the model output, calculated using SHAP analysis. None of 
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the radiomic features in the multi-omic model were highly correlated (Pearson |R| > 0.7) with 

any clinical or DVH feature in either dataset. 

Table 29: Multi-omic model for severe acute OM 

Initial feature set Clinical, radiomic 

VOIs Extended oral cavity 

Larynx 

N features after ICC filter 

and hierarchical clustering 

243 

MRMR K 5 

Model XGBoost 

balanced class weights 
learning rate = 0.3 

max depth = 2 

n estimators = 50 

 

 

 

Figure 22: ROC curve and SHAP feature analysis for multi-omic model 

4.3.4. Model comparisons 

Feature correlations and model signature correlations 

The Pearson correlation coefficient between the conventional model signature and the 

multi-omic model signature was 0.28, indicating that the two signatures were not highly 

correlated. Additionally, none of the radiomic features were highly correlated (Pearson |R| > 

0.7) with any of the features in the conventional model, in either dataset. 
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Comparison of discrimination performance 

Table 30 shows the discrimination performance, as measured by the AUC, for training, 

internal validation, and external validation. The mean AUC and its 95% confidence interval 

are shown. This information is also visualized in Figure 23. A discrepancy between the training 

score and the internal validation score is apparent for multi-omic model A. The internal and 

external validation scores for the multi-omic model are greater than those for the conventional 

model. As evidenced by the 95% confidence intervals, both models significantly outperformed 

random chance (AUC=0.5) in both internal and external validation (p < 0.05). 

Table 30: Comparison of discrimination performance across models for severe 

OM.  
 

Training (refit) AUC Internal validation AUC External validation AUC 

Mean and 95% CI 

(1000 bootstraps) 

Mean and 95% CI 

(cross validation) 

Mean and 95% CI 

(1000 bootstraps) 

Conventional model 0.662 (0.602, 0.725) 0.655 (0.593, 0.718) 0.656 (0.539, 0.768) 

Multi-omic model 0.954 (0.929, 0.974) 0.684 (0.613, 0.754) 0.688 (0.580, 0.791) 

 
Figure 23: Comparison of discrimination performance for severe OM models 
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Table 31 shows the results of a multivariate logistic regression analysis of the 

conventional and multi-omic model signatures against the severe OM outcome label. The 

multi-omic model signature had a statistically significant association with severe OM in both 

datasets when controlling for the effects of the conventional model, indicating its independent 

predictive value. The lack of significance for the conventional model suggests that it does not 

provide any additional benefit for prediction of severe OM beyond the multi-omic model.  

However, it should be noted that both the multi-omic model signature and the conventional 

model signature were significantly associated with the outcome in univariate analysis in both 

datasets using the Mann Whitney U test (p < 0.05).  

Table 31: Multivariate logistic regression of model signatures 

 Variable P value 

Development dataset 

(QEH) 

Multi-omic model <0.001* 

Conventional model 0.964 

External validation 

dataset (PWH) 

Multi-omic model 0.009* 

Conventional model 0.317 

Statistical significance of the results 

The DeLong test was used to calculate the statistical significance of the differences 

between the conventional and multi-omic models in the training and external validation 

datasets. The results are shown in Table 32. Neither the training nor external validation 

differences were statistically significant at the level of 0.05. This may have been partly due to 

the limited sample size in this study, resulting in insufficient power for the test. Despite the 

bootstrapped confidence intervals showing that the training AUCs were much higher for the 

multi-omic model, the p-value was still non-significant. The improvement in external 

validation would likely require a much larger sample size to reach statistical significance.  



 

159 

 

Table 32: DeLong test p-values for top OM models 

Dataset P-value 

Development (QEH) 0.0547 

External validation (PWH) 0.5729 

An alternative approach to investigating the statistical significance of the results was 

performed by taking bootstrapped samples from the training and external validation sets, then 

calculating the performance of each model on the bootstraps. The difference between the 

performance of each model was recorded and the distribution over 1000 bootstraps was plotted, 

as shown in Figure 24. This approach allowed a confidence interval in the improvement in the 

AUC from the multi-omic model to be calculated. These confidence intervals and resulting p-

values are shown in Table 33. This analysis showed a significant improvement in the training 

score, but not in the external validation score, although the multi-omic model had a net 

improvement in the performance over the conventional model across bootstraps. 
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Figure 24: Distribution of performance improvement across bootstraps for OM 

Table 33: Performance improvement across bootstraps 

Dataset 95% CI P-value 

Development (QEH) (0.231, 0.351) 0.000* 

External validation (PWH) (-0.122,0.195) 0.318 

Comparison with externally validated model from the literature 

The only externally validated prediction model for severe OM in the literature consisted 

of a single feature: the mean dose to the oral mucosa. The definition of this VOI was similar to 

that defined for the extended oral cavity in this study, including both the tongue and oral cavity. 

Table 34 shows the performance of this logistic regression model by Otter et al. [295] in their 

original study, in external validation conducted by Sharabiani et al. [52], and in external 

validation on the two datasets in this study. Relatively good discrimination is observed on the 

data from Sharabiani and from PWH, however the discrimination on the original dataset and 

on the QEH dataset is relatively poor. The results exhibit a wide range in AUC, from 0.53 to 
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0.67. The multi-omic model outperformed the model by Otter in internal and external 

validation. 

Table 34: Performance of logistic regression model by Otter et al. 

Internal validation – original study [295] 0.62 AUC 

External validation by Sharabiani et al. [52]  0.67 AUC 

External validation – QEH dataset 0.53 AUC 

External validation – PWH dataset 0.66 AUC 

Calibration 

Figure 25 shows the calibration curves for the conventional model and for the multi-

omic model. The calibration curve for the multi-omic model on the training dataset was very 

close to the ideal calibration. The calibration on the external validation set also closely follows 

the ideal curve, albeit over a shorter range of predicted probabilities. The Brier scores for the 

multi-omic model were better than for the conventional model, and the range of predicted 

probabilities was larger in all cases. 

 
Conventional model 

 
Multi-omic model A 

Figure 25: Calibration curves for severe OM models 
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Decision curve analyses 

Figure 26 shows the decision curves for the multi-omic model and the conventional 

model in both QEH (development) and PWH (external validation) datasets. The multi-omic 

model demonstrated a greater net benefit over the conventional model in both datasets. The 

important range for the threshold probability corresponds to the range of expected incidences 

of severe OM. These range from around 0.25 to around 0.5, as identified from the datasets 

included in this study and from the literature.  

 

 
 

Figure 26: Decision curve analysis for severe OM models 

 

Permutation feature importance 

Figure 27 shows the permutation feature importance for the best conventional model 

and multi-omic model. Unlike for the conventional model , all of the features in the multi-omic 

model had positive permutation feature importance for both training and external validation 

datasets, indicating that the model discrimination score was reduced when that feature was 

removed from the model. 
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Conventional model  

 
Multi-omic model 

 

 Figure 27: Permutation feature importance for severe OM models 

 

4.3.5. Frequently selected features in top 5% of models 

The conventional and multi-omic models with the highest discrimination performance 

were identified in the previous section. Some models with different VOI, feature type, 

dimensionality reduction approach and algorithm combinations achieved reasonable internal 

and external validation performance but selected different features. To identify trends in the 

types of features selected, an analysis of the model features across the top 5% of developed 

models was conducted. The top 5% was chosen in order to focus only on the models with the 

highest discrimination performance. This analysis was conducted in two ways: firstly, counting 

the number of models where each feature was selected (Table 35), and secondly, by weighting 

each feature by the aggregate AUC (minimum of training, internal, external validation) of its 

corresponding model and finding the sum for each feature (Table 36). The Pearson correlation 

matrices for the frequently selected features are shown in APPENDIX (Figure 41 and Figure 

42).  
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Table 35: Feature counts across top 5% of models for severe OM 

Feature Number of models 
clinical_Chemotherapy 189 

clinical_Sex_Male 142 

clinical_AgeAtRTStart 56 

clinical_T3 47 

extOralCavity_radiomic_log-sigma-3-0-mm-3D_firstorder_Mean 38 

clinical_T4 21 

extOralCavity_dosiomic_original_glcm_MaximumProbability 20 

extOralCavity_radiomic_original_glszm_ZoneEntropy 16 

extOralCavity_dvh_RelativeVolume_At_RelativeDose_0.94 16 

extOralCavity_dosiomic_original_gldm_LargeDependenceLowGrayLevelEmphasis 15 

PC_radiomic_original_glszm_ZoneEntropy 15 

Larynx_radiomic_original_shape_Sphericity 14 

extOralCavity_dvh_RelativeVolume_At_RelativeDose_0.97 14 

PC_radiomic_original_glcm_Autocorrelation 13 

extOralCavity_contouromic_GTVn_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-20.00 13 

GTVp_dvh_RelativeVolume_At_RelativeDose_0.95 12 

extOralCavity_dosiomic_log-sigma-2-0-mm-3D_glszm_LargeAreaLowGrayLevelEmphasis 10 

GTVn_dvh_RelativeVolume_At_AbsoluteDose_72.00 10 

GTVp_radiomic_original_glszm_ZoneEntropy 9 

Larynx_dosiomic_original_glszm_LargeAreaEmphasis 9 

 

Table 36: Weighted feature counts across top 5% of models for severe OM 

Feature Weighted sum 
clinical_Chemotherapy 121.4 

clinical_Sex_Male 91.1 

clinical_AgeAtRTStart 36.0 

clinical_T3 30.4 

extOralCavity_radiomic_log-sigma-3-0-mm-3D_firstorder_Mean 24.3 

clinical_T4 13.6 

extOralCavity_dosiomic_original_glcm_MaximumProbability 13.0 

extOralCavity_radiomic_original_glszm_ZoneEntropy 10.4 

extOralCavity_dvh_RelativeVolume_At_RelativeDose_0.94 10.2 

extOralCavity_dosiomic_original_gldm_LargeDependenceLowGrayLevelEmphasis 9.6 

PC_radiomic_original_glszm_ZoneEntropy 9.6 

Larynx_radiomic_original_shape_Sphericity 9.1 

extOralCavity_dvh_RelativeVolume_At_RelativeDose_0.97 9.0 

extOralCavity_contouromic_GTVn_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-20.00 8.6 

PC_radiomic_original_glcm_Autocorrelation 8.3 

GTVp_dvh_RelativeVolume_At_RelativeDose_0.95 7.6 

extOralCavity_dosiomic_log-sigma-2-0-mm-3D_glszm_LargeAreaLowGrayLevelEmphasis 6.6 

GTVn_dvh_RelativeVolume_At_AbsoluteDose_72.00 6.4 

Larynx_dosiomic_original_glszm_LargeAreaEmphasis 5.8 

GTVp_radiomic_original_glszm_ZoneEntropy 5.8 

4.4. Discussion 

Severe OM has a significant negative impact on quality life and also threatens treatment 

outcome by causing unplanned hospitalization or treatment interruptions. Identification of 

patients at high risk of severe OM is desirable to enable targeted interventions for prevention 

and management. This study pioneered the development of integrated multi-omic prediction 
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models for severe OM by identifying the best combinations of feature types and VOIs. 

Specifically, clinical, DVH, radiomic, dosiomic and contouromic features were investigated. 

To our best knowledge, this represented the first externally validated model to use these omics 

for severe OM prediction in NPC or other HNCs.  

Prior to model development, univariate analysis of baseline characteristics  was 

conducted in each dataset. Among the conventional clinical and mean dose DVH features, only 

chemotherapy status was significantly associated with severe OM in both datasets, highlighting 

the inadequacy of these conventional features for severe OM prediction.  

Pre-treatment blood tests were investigated for their role as potential predictors of 

severe OM. Sparsity of pre-treatment blood tests prevented their inclusion in models and also 

limited the statistical power for identifying correlations with OM. Pre-treatment potassium, 

white blood cell count and creatinine clearance were significant in univariate analysis, however 

none of these factors remained statistically significant when included in multivariate analysis 

alongside neoadjuvant chemotherapy status. It was likely that neoadjuvant chemotherapy was 

a confounding factor affecting these pre-treatment blood test results. Further investigation 

would be required to determine the independent association of each blood test result with 

severe OM. The lack of available blood test data precluded the inclusion of these features in 

the model development. It should be noted that the sample size for all of the blood test analyses 

was small, and the associated statistical power was often low, therefore some true correlations 

between pre-treatment blood tests and severe OM may not have been detected. Neoadjuvant 

chemotherapy was not included as a feature in model development due to the significant 

differences in usage between the two institutions, preventing models from learning a 

generalizable association between feature and outcome. 



 

166 

 

 

 

Models were developed and evaluated for different combinations of VOIs, feature 

types, dimensionality reduction approaches and machine learning algorithms. For each 

combination, the model hyperparameters were optimized using cross-validation. It was 

hypothesized that comparing these models would uncover the most relevant VOI and feature 

type combination for severe OM prediction. The discrimination performance of the models was 

compared by ranking an aggregate AUC, calculated by taking the minimum of the training, 

internal validation and external validation score for a given model. This would ensure that only 

models with good performance on both datasets would be ranked highly. 

Comparison of the discrimination scores reveals that all of the top 5 multi-omic models 

outperformed the top 5 conventional models in internal and external validation. Interestingly, 

clinical, radiomic, dosiomic and contouromic features were represented in these top 5 models, 

suggesting that each of these omics holds predictive value for severe OM.  

The top-performing conventional model consisted of male sex, chemotherapy status, 

and DVH parameters for the GTVp and larynx. The identification of chemotherapy as a critical 

factor increasing the risk of severe OM aligned with prior research [298]. Male sex was also 

associated with higher incidence of severe OM, as identified in other literature [53, 98]. 

Interestingly, no DVH features for the extended oral cavity were present, unlike the mean dose 

feature used in the model by Otter et al. [295]. The GTVp DVH feature indicated that patients 

with a higher fraction of the GTVp volume with high relative dose were assigned lower 

predicted probabilities for severe OM. This could represent greater dose conformity within the 
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GTVp. Lower values of this feature could represent cases with lower conformity, where more 

dose was delivered to the oral mucosa tissues. The larynx DVH feature had a smaller impact 

on the model output, as indicated by the SHAP analysis, and its interpretation is less clear. 

The top-performing multi-omic model consisted of chemotherapy status and four 

radiomic features from the extended oral cavity and larynx. The training AUC was significantly 

higher than the internal or external validation AUCs. This would typically be indicative of 

over-fitting. In this case, the optimal hyperparameters from the cross-validated grid search 

likely resulted in excess model complexity. Such discrepancies between training and validation 

scores were typical of the XGBoost algorithm in the results. However, it should be noted that 

the grid search evaluated a range model hyperparameters and model sizes ranging from 1 

feature to 9 features, and the selected settings yielded the best internal validation score. The 

discrepancy between the training score and internal validation score should not invalidate the 

model, instead, clinicians should be aware that the training score is not representative of the 

expected performance on data from the same or different institutions. A possible solution that 

could be employed in future model development would be to manually restrict the range of 

model hyperparameters to enforce simpler models.  

The feature in the multi-omic model with the greatest impact on the model output, as 

identified by the SHAP analysis, was the sphericity of the larynx VOI. Higher sphericity was 

associated with lower probability of severe OM. There are many factors which could affect this 

property, including patient anatomy, patient neck position, and even variability within the auto-

segmentation model, and it is difficult to explain the specific connection with severe OM. The 

90th percentile of the Laplacian-of-Gaussian-filtered CT intensity was the feature with the next 

greatest impact on the model output. The image filter is an edge-detection filter, indicating the 
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rate-of-change in HU values. It indicates that patients with greater rate-of-change in HU were 

allocated a higher probability of severe OM. The GLSZM zone entropy feature indicates that 

patients with greater textural heterogeneity in the CT volume had greater probability of 

experiencing severe OM. The GLSZM high gray level zone emphasis feature represents the 

number of zones with higher CT intensity in the volume. Higher values of this feature were 

associated with greater probability of severe OM. Together, these three features describe the 

pre-treatment tissue characteristics in the oral cavity. Aside from the mucosa itself, these 

features could be influenced by the number of teeth, presence of dental fillings, and the 

corresponding scattering artifacts which were visually apparent on the CT images. In this way, 

these features could indicate poorer oral health in correlation with severe OM. Finally, 

chemotherapy status was included in the model, in agreement with the conventional model. 

The multi-omic model signature was not strongly correlated with the conventional 

model signature, and the radiomic features included in the model were not strongly correlated 

with any clinical or DVH features. This indicates that the multi-omic model had independent 

predictive value for severe OM and was not simply an alternative representation of 

conventional features. While the multi-omic model outperformed the conventional model in 

discrimination performance, the DeLong test did not find a statistically significant difference 

in AUC. However, due to the relatively small increase in AUC and the limited sample size for 

external validation, this test had low statistical power. Retrospective sample size calculation 

indicated that thousands of patients would be required to achieve 80% power in detecting the 

observed difference in AUC. Multivariate analysis of the conventional and multi-omic 

signatures against the severe OM label found that only the multi-omic model achieved 

significance in the external validation dataset, further confirming its independent predictive 
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value separate from the conventional model. The multi-omic model also outperformed the 

externally validated model by Otter et al. [295], which utilized a similar VOI for the oral cavity,  

in internal and external validation. Independent validation of the multi-omic signature by other 

studies would be desirable to confirm this finding. Particularly noteworthy is the low 

performance of the Otter model on the QEH dataset, where the mean dose to the extended oral 

cavity does not appear to be a good predictor of severe OM, unlike in other institutions. This 

may result from the differences in the RT modality and dose sparing guidelines. 

The calibration and clinical utility of the conventional and multi-omic models were also 

analysed. The calibration of both models was comparable in the external validation set, though 

the range of predicted probabilities was quite limited. Good calibration is desirable for clinical 

implementation, since it provides predicted probabilities that accurately match the observed 

incidence. However, the discrimination performance for severe OM prediction was still 

relatively low, and combined with the limited sample size, this makes achieving a good 

calibration across the full range of predicted probabilities quite difficult. However, for future 

clinical implementation, models may be calibrated to specific institutions with the use of 

additional data. Decision curve analysis indicated the increased utility of the multi-omic model 

in both training and external validation datasets. The overfitting to the training data makes 

comparison of the net benefit in the QEH dataset less informative, however in the external 

validation dataset the multi-omic model consistently had higher net benefit, making it the 

preferable model out of the two options. 

Permutation feature importance analysis revealed that all of the features in the multi-

omic model had a positive contribution to the AUC in both datasets, reinforcing their relevance. 

Conversely the analysis for the conventional model suggested that male sex and the DVH 
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feature for the larynx were less relevant in the PWH dataset, resulting in improved AUC when 

negating the contribution of these features. 

Apart from comparing the highest-scoring conventional model and multi-omic model, 

the features selected across the top 5% of models were also analysed. Given the large number 

of evaluated models, this would still capture much of the variability of feature selection, while 

restricting the results to the highest-scoring models. This provided a qualitative impression of 

the most relevant features. However, since clinical features were included in all of the evaluated 

feature sets, their importance may be over-estimated in this analysis. Features were ranked by 

their frequency in the top 5% of models, and an alternative analysis also weighted these results 

by the aggregate AUC of each model. The results for each approach were similar. The most 

relevant clinical features broadly aligned with those reported in the literature: chemotherapy 

status, sex, age and T-stage. The extended oral cavity was the most frequently selected VOI, 

as is expected for OM. Interestingly, DVH, radiomic, dosiomic, and contouromic features were 

represented in the top 20. When the pairwise Pearson correlations were measured for these top 

20 features (see APPENDIX Figure 41 & Figure 42), very few features were strongly 

correlated (|R| > 0.7), indicating that these features each have independent predictive value for 

severe OM and that the selected radiomic, dosiomic and contouromic features were not 

interchangeable. 

Subsequent development of models using these frequently selected features is 

inadvisable without collecting additional external validation data, since information leakage 

would result in over-inflated performance estimates. These results emphasize the variability in 

feature selection, and the significant impact of the choice of VOIs and feature types. However, 



 

171 

 

these features can serve as a starting point for future studies to decide on which VOIs and 

features to include.  

Published prediction models for severe OM suffered from variable performance and a 

lack of external validation, with the exception of a single conventional model developed by 

Otter et al., [295] and validated by Sharabiani et al., [52] which consisted of only one DVH 

feature. The performance of this model on the QEH dataset was poor, demonstrating the 

difficulty of developing a generalizable model. Other prediction models for severe OM have 

achieved high internal validation scores but have a low level of evidence and unknown 

generalizability without validation in external datasets [53-57]. Nevertheless, studies 

conducted by Dean, Liu and Hansen incorporated additional treatment-related variables such 

as chemotherapy modality, specific chemotherapeutic agents, number of chemotherapy cycles, 

and treatment acceleration, which may have enhanced the predictive value of their models [53, 

54, 56]. However, it is crucial to acknowledge that treatment protocols often differ substantially 

between institutions and across HNCs, potentially affecting the generalizability of these 

findings. 

Despite the promising outcomes of this analysis, it is important to recognize several 

limitations. The severe OM label used in this study was confined to the first seven weeks from 

the onset of RT and did not encompass the entire 90-day period typically used to evaluate acute 

toxicity. However, as OM generally peaks during the fourth to fifth weeks of therapy, extending 

the observation period beyond seven weeks is unlikely to significantly affect the accuracy of 

the severe OM label [299]. This temporal boundary ensures that the critical peak of mucositis 

is captured, minimizing the impact of this limitation on the study’s findings. Another limitation 

is the exclusion of social determinants like smoking and alcohol consumption from the 
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analysis, attributed to the limited availability of such in the dataset. These factors have 

previously been identified as predictors of OM [56, 67, 70, 77, 300]. The data imbalance 

observed restricted the use of these features in our model development. While the external 

validation approach employed in this study allowed for some assessment of model 

generalizability, the lack of multi-centre training meant that the generalizability of the models 

could not be optimized. Future studies employing multi-centre cohorts should aim to construct 

models that more effectively generalize across the inherent structural variations between 

centres, thereby enhancing predictive accuracy and clinical applicability. This approach will 

be vital in advancing the field and improving patient outcomes. 

4.5. Conclusion 

This study pioneered the development of integrated multi-omic prediction models for 

severe OM, identifying the most effective combinations of clinical, DVH, radiomic, dosiomic, 

and contouromic features. Multi-omic models outperformed conventional models developed 

on the same dataset and also outperformed the only externally validated conventional model 

from the literature. The limited performance of conventional models demonstrated the 

inadequacy of clinical and DVH features  to fully capture the complex correlations with  severe 

OM. Radiomics, by describing pre-treatment tissue characteristics, dosiomics, by describing 

the spatial distribution of the planned RT dose, and contouromics, by describing the challenges 

posed by patient geometry, were shown to achieve greater discrimination by supplementing 

clinical features. Importantly, this study conducted external validation to assess the 

generalizability of the models to another local institution, providing a greater level  of evidence 

compared to other prediction models in the literature. To the best of our knowledge, this 

represented the first externally validated model for treatment-induced OM using multi-omic 
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features. Future studies can build on these results to further enhance the stability, 

generalizability and discriminative performance of prediction models, leading the way towards 

clinical implementation for achieving early intervention and personalized management of OM.
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CHAPTER 5 MULTI-OMIC PREDICTION MODELS 

FOR SEVERE ACUTE DYSPHAGIA 

5.1. Introduction 

Acute dysphagia is a common and debilitating toxicity among NPC patients undergoing 

RT. In addition to the major detrimental impact on quality of life, severe acute dysphagia 

threatens treatment outcome through weight loss and treatment interruption. Pre-treatment 

prediction of severe acute dysphagia offers the potential to deliver more targeted care for the 

prevention and management of the condition. This study sought to harness high-dimensional 

multi-omic data (radiomics, dosiomics and contouromics) for enhanced prediction of severe 

acute dysphagia.  Published prediction models for dysphagia, utilizing conventional clinical 

and DVH features, have frequently focused on mixed cohorts of HNC patients, rather than 

being specific to NPC. Additionally, to the best of our knowledge, there are no full-length 

articles published on the prediction of severe acute dysphagia using radiomics, dosiomics or 

contouromics.  

5.2. Methodology 

5.2.1. Definition of severe acute dysphagia 

As discussed in Section 1.1.5, dysphagia can be graded according to different severity 

scales. In this retrospective study, patient-reported outcomes were not available, nor were 

videofluoroscopy assessments. CTCAE and RTOG are two commonly used grading scales for 

clinician assessment of dysphagia, focusing on the functional impact of the condition. Both 

scales include the indication for tube feeding as part of the criteria for severe dysphagia. While 
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specific gradings of dysphagia were rarely included in the clinical notes, tube feeding was well-

reported. Clinicians noted when tube feeding was initially offered to the patient, based on their 

observations of reduced dietary intake, weight loss or other dysphagia-related symptoms. The 

patient’s response was also noted – with many patients initially refusing tube feeding and 

choosing to continue with milk supplements. A minority of patients offered tube feeding did 

go on to have a nasogastric feeding tube fitted, and this was recorded in the clinical notes. Since 

the indication for tube feeding was in the criteria for severe dysphagia, rather than the delivery 

of tube feeding, this indication was selected as the outcome definition for severe dysphagia in 

this study. Specifically, the severe acute dysphagia label was defined as the indication for tube 

feeding during RT, as identified from the clinical consultation notes. The evidence for an 

indication of tube feeding was determined from statements such as “patient agreed to receive 

tube feeding”, “patient declined tube feeding”, or “feeding tube inserted on DD/MM/YYY”. 

The specific wording varied extensively, and great care had to be taken during data collection 

to check for all synonyms of tube feeding, including: “R/T feeding”, “Ryle’s tube”, “N-G 

tube”, “nasogastric tube”, “enteral feeding”, “PEG insertion”, and “Entriflex”. To ensure that 

all tube feeding indication events were captured, all consultation notes, discharge summaries 

and nursing consultation notes were inspected from diagnosis up to the end of RT. Data post-

RT was not available for the QEH dataset. While events after the end of RT were not included 

in the outcome label, the frequency of consultations was significantly reduced post-RT. 

Additionally, tube feeding was not typically offered after RT, or even towards the end of RT, 

because the motivation for tube feeding was primarily to mitigate the detrimental impact of 
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weight loss on treatment outcome from deviations to the radiation plan from changes in 

geometry. 

5.2.2. Statistical analysis of baseline characteristics 

Patients were grouped by severe and non-severe acute dysphagia outcome label within 

each dataset. Differences between baseline characteristics in severe and non-severe acute 

dysphagia groups were assessed for statistical significance using Fisher’s Exact test for 

categorical features, and Mann Whitney U test for continuous features.  The non-parametric 

Mann Whitney U test was selected because a significant proportion of the features were not 

normally distributed, with a Shapiro test p-value < 0.05. The univariate analysis was conducted 

separately from model development, and served to verify whether there were any clinical or 

DVH features significantly correlated with severe acute dysphagia in both datasets.  

5.2.3. Model development 

Predictive models for severe acute dysphagia were developed from two feature sets: 1) 

conventional clinical and DVH features only, and 2) multi-omic features including clinical, 

DVH, radiomic, dosiomic and contouromic features.  

The model development process outlined in CHAPTER 3 was conducted for different 

combinations of VOIs and feature types. The discrimination performance in AUC was 

compared for each feature set and model type. The VOI and feature type combination that gave 

the highest discrimination performance across training, internal and external validation was 

selected for further analysis. Conventional models and multi-omic models were developed 

using this set of VOIs and compared. 
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In this chapter, several VOIs were explored to determine the optimal combination for 

severe acute dysphagia prediction: GTVp, GTVn, extended oral cavity, PC muscles, parotid 

glands, and larynx. It was hypothesized that some of these VOIs could further enhance the 

model discrimination performance. Particularly, DVH features from PC muscles, oral cavity, 

parotids, and larynx had been reported as predictors in the literature [1]. The PC muscles are 

directly involved in the swallowing mechanism, so radiation damage could directly impact 

dysphagia. Radiation dose to the oral cavity has been associated with OM, as in the previous 

chapter, and the resulting pain can impact dysphagia through its effect on swallowing and oral 

intake. The parotid glands are the largest of the salivary glands and radiation damage to this 

OAR could result in xerostomia. A lack of saliva, or changes in its consistency, could 

contribute to difficulty swallowing. Additionally, the epiglottis, situated at the top of the larynx, 

moves downward during swallowing to seal off the entrance to the larynx, thereby preventing 

food or liquid from entering the airway. The inclusion of the larynx VOI may therefore be 

relevant to prediction of severe dysphagia. The proximity of the GTVp and GTVn to key 

swallowing anatomy justifies their inclusion in models. 

Data preprocessing, model development and performance evaluation was conducted as 

described in CHAPTER 3. Specifically, the model development process was repeated for 

different combinations of VOI and different combinations of feature types as described in 

Section 4.2.4.  The optimization of each model pipeline was performed using a cross-validated 

grid search across the range of hyperparameters defined in Section 3.8.11. For the MRMR 

feature selection algorithm, the maximum number of features to select, kmax, was set to 11, since 

this would correspond to an event-per-variable rate of approximately 10, in line with the rule 
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of thumb [131]. Within the grid search optimization, the number of features to select was varied 

from 1 to kmax. Validation and analysis of the resulting models was conducted in a similar 

manner to that described in Section 3.8.11.  

5.2.4. Experiment: removing perturbation stability filter 

To explore whether the perturbation stability filter was overly stringent and removing 

relevant features, model development was repeated with the stability filter removed. As 

discussed in Section 3.7, the settings used for perturbation were not known to be optimal for 

every VOI. The proportion of stable features varied across VOIs and across feature types 

(radiomic, dosiomic, contouromic). This suggests that some component of feature stability is 

dependent on the shape, intensity, and texture of the VOI rather than inherent to the calculation 

of the feature itself. For example, the extended oral cavity and GTVp had relatively high 

stability compared to the GTVn and PC muscles. In terms of the geometry, the extended oral 

cavity and GTVp are larger and more spherical, with a lower surface-to-volume ratio. The 

GTVn typically consisted of multiple small sub-volumes, and the PC VOI was a longer, flatter 

volume. Certain features may be inherently more sensitive to VOIs with smaller volumes or 

larger surface-to-volume ratios. Additionally, the choice of perturbation parameters may have 

a greater impact on such volumes. Whether this is commensurate with the impact of inter-

observer variation from real experts’ segmentations remains to be seen. However, this section 

addresses the hypothesis that the feature stability filter based on perturbation ICC may be too 

punishing, particularly for VOIs such as the GTVn and PC muscles. By removing the filter, the 

predictive potential of these VOIs might be observed more clearly. To explore this hypothesis, 

the model development process outlined in the previous Section 5.2.3 was repeated with the 
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ICC stability threshold set to 0. That is, no features were excluded on the basis of apparent 

stability. The best performing conventional and multi-omic models were identified and 

compared to those obtained under the previous model development process. 

5.3. Results 

5.3.1. Baseline demographic and clinical characteristics 

Severe acute dysphagia occurred in 122 (34%) of patients in the QEH dataset and in 53 

(52%) of patients in the PWH dataset. Comparison of clinical and mean dose DVH features 

against severe acute dysphagia in each dataset is shown in Table 37, along with univariate 

analysis. Effect size was calculated from 
1

1.81
ln (odds ratio) for categorical features [297], and 

from Cohen’s d for continuous features. P values were calculated from Fisher’s Exact test for 

categorical features, and from the Mann-Whitney U test for continuous features. Body weight 

at CT simulation, male sex, and mean dose to the neck nodal GTV were the only significant 

features in the development dataset. None of these features were significant in the external 

validation dataset. 
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Table 37: Univariate analysis of clinical and mean dose DVH features against severe acute dysphagia. 

Incidence is shown for binary features, and median value is shown for categorical features.  

 Development (QEH) External validation (PWH)  
Severe 

acute 

dysphagia 

No severe 

acute 

dysphagia 

Effect 

size 

P value Severe 

acute 

dysphagia 

No severe 

acute 

dysphagia 

Effect 

size 

P value 

Age at RT start 53 55 -0.05 0.617 53 61 -0.44 0.050 

BMI at CT simulation 23.8 23.5 0.13 0.132 24.2 23.8 0.03 0.629 

Weight at CT simulation 
(kg) 

64.4 61.8 0.21 0.037* 67.0 66.3 0.14 0.426 

Chemotherapy 109 (89%) 199 (83%) 0.19 0.120 52 (98%) 34 (71%) 0.82 <0.001* 

N stage = 2 93 (76%) 174 (72%) 0.09 0.451 23 (43%) 12 (25%) 0.39 0.062 

Male sex 100 (82%) 168 (70%) 0.28 0.012* 41 (77%) 38 (79%) -0.04 1.000 

T stage = 3 76 (62%) 166 (69%) -0.14 0.239 30 (57%) 13 (27%) 0.61 0.005* 

T stage = 4 29 (24%) 44 (18%) 0.14 0.216 6 (11%) 11 (23%) -0.31 0.182 

GTVn Dmean (Gy) 72.3 72.1 0.30 0.001* 72.3 72.4 -0.19 0.152 

GTVp Dmean (Gy) 73.7 73.4 0.22 0.106 72.4 72.4 -0.23 0.731 

Larynx Dmean (Gy) 47.1 47.2 0.16 0.559 43.5 42.9 0.08 0.783 

PC Dmean (Gy) 56.8 56.6 0.11 0.981 60.6 60.3 0.04 0.525 

Parotids Dmean(Gy) 40.8 41.2 -0.04 0.603 38.7 37.1 0.18 0.353 

extOralCavity Dmean (Gy) 51.3 51.7 0.14 0.724 48.8 48.1 0.33 0.134 

5.3.2. Correlations with pre-treatment blood tests 

Pre-treatment blood test results were analysed in a similar manner to Section 4.2.3. The 

Mann-Whitney U test was used to check for statistically significant differences in the median 

pre-treatment value of each blood test result against severe dysphagia incidence. The results 

are shown in Table 38. Only blood test results collected before the start of RT were included. 

No significant correlations were observed between blood test results and dysphagia. 
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Table 38: Correlations between pre-treatment blood tests and severe dysphagia 

Blood test result Severe dysphagia No severe dysphagia MWU p Number of cases 

Pulse pressure 51.9 53.9 0.848 38 

Mean arterial pressure 103.8 99.8 0.437 38 

Rate pressure product 11002.8 11088.7 0.908 35 

Systolic blood pressure 138.5 135.9 0.567 38 

Diastolic blood pressure 86.4 81.8 0.547 38 

Pulse 80.2 80.7 0.868 35 

Sodium (Na) 139.4 137.7 0.703 43 

Potassium (K) 4.1 4.2 0.436 44 

Urea 5.7 5.3 0.574 41 

Creatinine (Cr) 79.6 82.4 0.639 54 

White cell count (WCC) 5.7 5.3 0.438 53 

Platelet (plt) 287.7 296.7 0.560 54 

Creatinine clearance (CrCl) 87.9 81.5 0.357 48 

Haemoglobin (Hb) 12.5 13.0 0.357 55 

 

5.3.3. Conventional and multi-omic prediction models 

 

Table 39 lists the top 5 conventional prediction models for severe acute dysphagia, 

consisting only of clinical and DVH features. The ranking was determined by the minimum of 

the training, internal validation and external validation scores, to ensure that the most internally 

valid and most generalizable models were selected. 

Table 39: Top 5 conventional prediction models for severe acute dysphagia 

Rank 
Dimensionality 

reduction 
VOIs Algorithm 

Model 

size 

Train 

AUC 
Int. AUC Ext. AUC 

1 VIF Larynx SVM RBF 6 0.733 0.598 0.597 

2 VIF Ext. oral cavity, PC Gaussian Naive Bayes 8 0.617 0.599 0.593 

3 VIF GTVn, Larynx SVM RBF 9 0.897 0.638 0.592 

4 VIF NA SVM Linear 5 0.594 0.588 0.610 

5 Hierarchical Larynx SVM RBF 8 0.742 0.587 0.624 

Table 40 lists the top 5 multi-omic prediction models for severe acute dysphagia, with 

the same ranking mechanism as the previous table. Notably, models containing radiomic, 

dosiomic and contouromic features were all present in the top 5 models. All of the top 5 models 
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outperformed the best conventional model in internal and external validation. The GTVn was 

the most frequently selected VOI in the top-performing models.  

Table 40: Top 5 multi-omic prediction models for severe acute dysphagia 

Rank 
Dimensionality 

reduction 
VOIs CLI DVH RAD DOS CON Algorithm 

Model 

size 

Train 

AUC 

Int. 

AUC 

Ext. 

AUC 

1 Hierarchical 
GTVn, 

Parotids 
  

✓ ✓  Random 

Forest 
4 0.970 0.633 0.625 

2 Hierarchical GTVn   
✓   Random 

Forest 
2 0.644 0.621 0.614 

3 VIF 
Ext. oral 
cavity 

✓    
✓ SVM RBF 3 0.661 0.613 0.649 

4 Hierarchical GTVn   
✓   Ridge 2 0.612 0.637 0.613 

5 VIF 
Ext. oral 
cavity 

✓    
✓ 

Gaussian 
Naive Bayes 

5 0.622 0.612 0.648 

Best-performing conventional prediction model for severe acute dysphagia 

The best-performing conventional model for severe acute dysphagia, using only clinical 

and DVH features, was a SVM model with RBF kernel, developed using the VIF 

dimensionality reduction approach. The starting feature set included clinical features and DVH 

features from the larynx VOI. The model achieved a training AUC of 0.733 (95% CI: 0.682, 

0.789), internal validation AUC of 0.585 (95% CI: 0.546, 0.650), and external validation AUC 

of 0.597 (95% CI: 0.482, 0.705). It consisted of 6 features: chemotherapy status, T-stage = 3, 

T-stage = 4, N-stage = 2, male sex, and the fractional volume of the larynx receiving 63Gy or 

higher. Figure 28 shows the ROC curves for the conventional model along with the impact of 

each feature on the model output, calculated using SHAP analysis.  
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Table 41: Conventional model for severe acute dysphagia 

Initial feature set Clinical, DVH 

VOIs Larynx 

N features after ICC filter 

and VIF clustering 

9 

MRMR K 6 

Model SVM with RBF kernel 

No class weighting 

C = 1000 

  

Figure 28: ROC curve and SHAP feature analysis for conventional model for 

severe acute dysphagia 

 

Best-performing multi-omic model for severe acute dysphagia 

The best-performing multi-omic model was a Random Forest model developed using 

the hierarchical clustering dimensionality reduction approach. The initial feature set consisted 

of clinical, DVH, radiomic and dosiomic features from the GTVn and parotid glands VOIs. 

The model achieved a training AUC of 0.970 (95% CI: 0.954, 0.982), internal validation AUC 

of 0.633 (95% CI: 0.577, 0.688), and external validation AUC of 0.625 (95% CI:0.512, 0.725). 

The final model consisted of 4 features: 2 radiomic features and 2 dosiomic features. Figure 

29 shows the ROC curves for the conventional model along with the impact of each feature on 

the model output, calculated using SHAP analysis.  
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Table 42: Multi-omic model for severe acute dysphagia 

Initial feature set Clinical (N = 8) 

DVH (N = 126) 

Radiomic (N = 784) 

Dosiomic (N = 712) 

VOIs GTVn 

Parotids 

N features after ICC filter 

and hierarchical clustering 

460 

MRMR K 4 

Model Random Forest Classifier 

balanced class weights 

max depth = 6 

n_estimators = 50 

 

Figure 29: ROC curve and SHAP feature analysis for multi-omic model for 

severe acute dysphagia 

 

5.3.4. Model comparisons 

Feature correlations and model signature correlations 

The Pearson correlation coefficient between the conventional model signature and the 

multi-omic model signature was -0.07, indicating that the two signatures were not correlated. 

Additionally, none of the radiomic or dosiomic features in the multi-omic model were highly 
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correlated (Pearson |R| > 0.7) with any of the features in the conventional model, in either 

dataset. 

Comparison of discrimination performance 

Table 30 shows the discrimination performance, as measured by the AUC, for training, 

internal validation, and external validation. The mean AUC and its 95% confidence interval 

are shown. This information is also visualized in Figure 30. The internal and external 

validation scores for the multi-omic model are greater than those for the conventional model, 

however this difference was not statistically significant according to the DeLong test. As 

evidenced by the 95% confidence intervals, both models significantly outperformed random 

chance (AUC=0.5) in internal validation (p < 0.05). However, only the multi-omic model 

significantly outperformed random chance in external validation (p < 0.05). The training scores 

for both models were significantly higher than the validation scores. 

Table 43: Comparison of discrimination performance across models for severe 

acute dysphagia.  
 

Training (refit) AUC Internal validation AUC External validation AUC 

Mean and 95% CI 

(1000 bootstraps) 

Mean and 95% CI 

(cross validation) 

Mean and 95% CI 

(1000 bootstraps) 

Conventional model 0.733 (0.682, 0.789) 0.585 (0.546, 0.650) 0.597 (0.482, 0.705) 

Multi-omic model 0.970 (0.954, 0.982) 0.633 (0.577, 0.688) 0.625 (0.512, 0.725) 
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Figure 30: Comparison of discrimination performance for severe acute 

dysphagia models 

Table 44 shows the results of a multivariate logistic regression analysis of the 

conventional and multi-omic model signatures against the severe acute dysphagia outcome 

label. Both models were significantly associated with severe acute dysphagia in both datasets, 

indicating that the multi-omic model had independent predictive value separate from the 

conventional model. 

Table 44: Multivariate logistic regression of model signatures 

Dataset Variable P value 

Development 

(QEH) 

Multi-omic model <0.001* 

Conventional model <0.001* 

External validation 

(PWH) 

Multi-omic model 0.040* 

Conventional model 0.034* 

Statistical significance of the results 

As in the chapter on OM, the DeLong test was used to calculate the statistical 

significance of the differences between the conventional and multi-omic models in the training 

and external validation datasets. The results are shown in Table 45. Only the difference in 
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training score was statistically significant at the level of 0.05. The improvement in external 

validation would likely require a much larger sample size to reach statistical significance.  

Table 45: DeLong test p-values for top dysphagia models 

Dataset P-value 

Development (QEH) 0.0000* 

External validation (PWH) 0.8783 

An alternative approach to investigating the statistical significance of the results was 

performed by taking bootstrapped samples from the training and external validation sets, then 

calculating the performance of each model on the bootstraps. The difference between the 

performance of each model was recorded and the distribution over 1000 bootstraps was plotted, 

as shown in Figure 31. This approach allowed a confidence interval in the improvement in the 

AUC from the multi-omic model to be calculated. These confidence intervals and resulting p-

values are shown in Table 46. This analysis showed a significant improvement in the training 

score, but not in the external validation score, although the multi-omic model had a net 

improvement in the performance over the conventional model across bootstraps. 
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Figure 31: Distribution of performance improvement across bootstraps for 

dysphagia 

Table 46: Performance improvement across bootstraps for dysphagia top models 

Dataset 95% CI P-value 

Development (QEH) (0.179, 0.293) 0.000* 

External validation (PWH) (-0.128,0.183) 0.390 

Calibration 

Figure 32 shows the calibration curves for the conventional model and for the multi-

omic model. Calibration on the training dataset was better than on the external validation 

dataset. The Brier scores for the multi-omic model and conventional model were comparable 

for the external validation dataset. 
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Figure 32: Calibration curves for models for severe acute dysphagia 

Decision curve analyses 

Figure 33 shows the decision curves for the multi-omic model and the conventional 

model in both QEH (development) and PWH (external validation) datasets. The multi-omic 

model demonstrated a greater net benefit over the conventional model in the development 

dataset, however the net benefit was similar for both models in the external validation dataset. 

The net benefit in the external validation dataset was greater for the conventional model in the 

range of threshold probabilities between 0.3 and 0.5 and was greater for the multi-omic model 

in the range 0.5-0.65. The incidence of dysphagia in the external validation set was 0.52, 

therefore the multi-omic model had superior clinical utility at this incidence level. 
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Figure 33: Decision curves for the training dataset (left) and external validation 

dataset (right) 

Permutation feature importance 

Figure 34 shows the SHAP feature importance  for each model on the training dataset. 

The feature with greatest impact on the multi-omic model was the radiomic GLSZM zone 

entropy for the pharyngeal constrictor muscle. The plot indicates that higher heterogeneity in 

the texture in this volume resulted in a higher predicted probability for severe OM. 
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Conventional model 

 
Multi-omic model 

 
Figure 34: Permutation feature importance for the multi-omic model 

 

5.3.5. Frequently selected features in top 5% of models 

The conventional and multi-omic models with the highest discrimination performance 

were identified in the previous section. Some models with different VOI, feature type, 

dimensionality reduction approach and algorithm combinations achieved reasonable internal 

and external validation performance but selected different features. To identify trends in the 

types of features selected, an analysis of the model features across the top 5% of developed 

models was conducted. The top 5% was chosen in order to focus only on the models with the 

highest discrimination performance. This analysis was conducted in two ways: firstly, counting 

the number of models where each feature was selected (Table 47), and secondly, by weighting 

each feature by the aggregate AUC (minimum of training, internal, external validation) of its 

corresponding model and finding the sum for each feature (Table 48). The Pearson correlation 
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matrices for the frequently selected features are shown in APPENDIX (Figure 43 & Figure 

44). These matrices show that the most frequently selected features were not highly correlated, 

indicating that the selected radiomic, dosiomic and contouromic features held independent 

predictive value and were not interchangeable. 

Table 47: Feature counts across top 5% of models for severe acute dysphagia 

Feature Number of models 
clinical_Sex_Male 129 

clinical_Chemotherapy 120 

GTVn_radiomic_original_glrlm_LongRunHighGrayLevelEmphasis 77 

clinical_T4 52 

clinical_T3 52 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-150.00 35 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_0_AbsoluteDegree_-100.00 34 

clinical_N2 33 

clinical_AgeAtRTStart 27 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-170.00 16 

Parotids_radiomic_original_glszm_LargeAreaLowGrayLevelEmphasis 16 

GTVn_radiomic_log-sigma-3-0-mm-3D_firstorder_Skewness 14 

Parotids_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_30.00 8 

Parotids_dosiomic_original_glszm_SizeZoneNonUniformityNormalized 6 

PC_dvh_RelativeVolume_At_RelativeDose_0.97 5 

GTVp_radiomic_log-sigma-2-0-mm-3D_gldm_LargeDependenceEmphasis 5 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-20.00 5 

GTVp_radiomic_original_glszm_SizeZoneNonUniformity 5 

extOralCavity_radiomic_log-sigma-3-0-mm-3D_firstorder_Maximum 4 

extOralCavity_dvh_RelativeVolume_At_AbsoluteDose_69.00 4 
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Table 48: Weighted feature counts across top 5% of models for severe acute 

dysphagia 

Feature 
Weighted 

sum 

clinical_Sex_Male 77.5 

clinical_Chemotherapy 72.1 

GTVn_radiomic_original_glrlm_LongRunHighGrayLevelEmphasis 46.6 

clinical_T3 31.3 

clinical_T4 31.2 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-150.00 21.1 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_0_AbsoluteDegree_-100.00 20.5 

clinical_N2 19.9 

clinical_AgeAtRTStart 16.3 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-170.00 9.6 

Parotids_radiomic_original_glszm_LargeAreaLowGrayLevelEmphasis 9.6 

GTVn_radiomic_log-sigma-3-0-mm-3D_firstorder_Skewness 8.5 

Parotids_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_30.00 4.8 

Parotids_dosiomic_original_glszm_SizeZoneNonUniformityNormalized 3.6 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-20.00 3.0 

GTVp_radiomic_original_glszm_SizeZoneNonUniformity 3.0 

GTVp_radiomic_log-sigma-2-0-mm-3D_gldm_LargeDependenceEmphasis 3.0 

PC_dvh_RelativeVolume_At_RelativeDose_0.97 3.0 

GTVn_dosiomic_log-sigma-1-0-mm-3D_glcm_Idmn 2.4 

GTVn_dosiomic_original_glcm_MCC 2.4 

 

5.3.6. Experiment: removing perturbation stability filter 

After removing the perturbation stability filter and evaluating the performance of 

models with different combinations of VOIs and feature types, the top-performing multi-omic 

model was identified. The best-performing multi-omic model was a SVM model with RBF 

kernel consisting of 5 features, including 4 radiomic features and 1 dosiomic feature. The 

selected VOIs were the GTVn and parotid glands. The model achieved a training AUC of 

0.915 (0.879, 0.945), internal validation of 0.658 (0.586, 0.730) and external validation of 

0.639 (0.209, 0.355). The receiver operating characteristic curve and SHAP feature analysis 

for this model are shown in . The features with ICC < 0.7 were: GTVn_radiomic_log-sigma-

2-0-mm-3D_glcm_Autocorrelation (ICC = 0.61), Parotids_radiomic_log-sigma-2-0-mm-
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3D_firstorder_Range (ICC = 0.21), Parotids_radiomic_log-sigma-1-0-mm-

3D_glszm_SmallAreaLowGrayLevelEmphasis (ICC = 0.11). 

  

Figure 35: ROC curve and SHAP feature analysis for best-performing multi-

omic model after removing perturbation stability filter 

 

5.4. Discussion 

Severe acute dysphagia has a devastating impact on patients’ quality of life and 

threatens treatment outcome. Without urgent intervention, it risks significant weight loss and 

treatment interruptions. Early identification of patients at risk of severe acute dysphagia is 

crucial for targeted preventative treatment and management. This study pioneered the 

development of integrated multi-omic prediction models for severe acute dysphagia by 

identifying the best combinations of feature types and VOIs. Specifically, clinical, DVH, 

radiomic, dosiomic and contouromic features were investigated. To our best knowledge, this 

represented the first model to use these omics for the prediction of severe acute dysphagia in 

NPC or other HNCs.  
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Prior to model development, univariate analysis of baseline characteristics was 

conducted in each dataset. No clinical or mean dose DVH features were significantly correlated 

with severe acute dysphagia in both datasets. This contrasts with the findings from the 

literature, where associations with concurrent chemotherapy,  T-stage, N-stage, age, sex, BMI 

and RT dose to OARs such as the PC muscles have been reported [1]. The statistical power for 

each univariate test varied depending on the sample size of each dataset, the incidence of severe 

dysphagia in each dataset and the effect size for correlations with each feature, therefore the 

lack of significance for some of these features may have been due to small effect size and 

insufficient power. However, comparison of the magnitude and direction of effect sizes does 

not suggest any common predictors of severe dysphagia in both datasets either. This suggests 

that the traditional clinical and mean dose DVH features may be of limited value for the 

prediction of severe acute dysphagia in NPC. 

Correlations between pre-treatment blood tests and severe acute dysphagia were 

investigated as was conducted for severe OM in the previous chapter. No significant 

correlations were identified. While the statistical power of these tests was limited by the small 

number of available samples, these factors were also absent from the set of predictors of severe 

acute dysphagia listed in the literature. As in the previous chapter, these factors were not 

included in the model development process due to substantial missing data. 

Models were developed and evaluated for different combinations of VOIs, feature 

types, dimensionality reduction approaches and machine learning algorithms. For each 

combination, the model hyperparameters were optimized using cross-validation. It was 

hypothesized that comparing these models would uncover the most relevant VOI and feature 
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type combination for severe acute dysphagia prediction. The discrimination performance of the 

models was compared by ranking an aggregate AUC, calculated by taking the minimum of the 

training, internal validation and external validation score for a given model. This would ensure 

that only models with good performance on both datasets would be ranked highly. 

Comparison of the discrimination scores reveals that all of the top 5 multi-omic models 

outperformed the top 5 conventional models in internal and external validation. Interestingly, 

clinical, radiomic, dosiomic and contouromic features were represented in these top 5 models, 

suggesting that each of these omics holds predictive value for severe acute dysphagia. The 

GTVn was frequently included as a VOI in the top 5 multi-omic models. 

The top-performing conventional model consisted of 1 DVH feature and 5 clinical 

features. The internal and external validation AUCs were comparable and were significantly 

lower than the training AUC. This discrepancy likely resulted from the complexity of the 

optimal model from the cross-validated grid search. This was a SVM model with RBF kernel, 

which transformed the feature space into a higher-dimensional space, allowing for a more 

complex decision boundary that was able to fit to the training data model closely. However, 

these model hyperparameters did result in the best internal validation score. Simpler models 

with reduced number of features and stronger regularization did not improve the internal 

validation score. In terms of the model features, higher fractional volume of the larynx 

receiving 63Gy or higher was associated with lower predicted probabilities for severe acute 

dysphagia. Aside from this DVH feature, male sex, chemotherapy and higher T-stage were 

associated with higher predicted probabilities for severe acute dysphagia. The association with 

male sex agrees with the study by Dean et al. [131], but not with the study by Willemsen et al. 
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which found a correlation in the opposite direction. The correlation with chemotherapy agrees 

with that reported by Dean et al., while the association with higher T-stage agrees with that 

reported by Willemsen et al. The model also included an N-stage feature, highlighting the role 

of the nodal spread.  

The top-performing multi-omic model consisted of 2 radiomic features and 2 dosiomic 

features, extracted from the GTVn and parotid glands. No clinical or DVH features were 

selected, despite these features being included in the initial feature set for the best performing 

model. This reinforces the findings from the analysis of baseline characteristics, suggesting the 

limited predictive value of the conventional features. Regarding discrimination performance, 

the training AUC was significantly higher than the internal or external validation AUCs. This 

would typically be indicative of over-fitting. In this case, the optimal hyperparameters for the 

Random Forest model selected in the cross-validated grid search included a maximum tree 

depth of 6, resulting in a complex model that fit too closely to the training data. Nevertheless, 

these model hyperparameters did yield the best internal validation performance and were 

selected accordingly. As was the case in the chapter on severe OM, the discrepancy between 

the training score and internal validation score should not invalidate the model, instead, 

clinicians should be aware that the training score is not representative of the expected 

performance on data from the same or different institutions. A possible solution that could be 

employed in future model development would be to manually restrict the range of model 

hyperparameters to enforce simpler models. 

SHAP analysis indicated the impact of each of the features on the output of the multi-

omic model. Higher values for the radiomic long run high gray level emphasis within the GTVn 
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was associated with higher predicted probabilities for severe acute dysphagia. This feature 

describes the size of regions of voxels with high CT values within the GTVn. This could 

potentially describe some tumour properties which are indirectly associated with greater 

toxicity through their impact on the dose received by organs-at-risk (OARs). The other 

radiomic feature in the model was the GLCM joint energy for the parotid glands VOI. This 

feature, associated with higher homogeneity in the radiodensity within the parotid glands, 

resulted in higher predicted probabilities of severe acute dysphagia. This could associate pre-

treatment tissue characteristics of the parotid glands with greater susceptibility to radiation 

damage, resulting in worsened dysphagia from the impact on saliva production. Aside from 

these two radiomic features, the dosiomic features describing the variance in the dose within 

the GTVn and the normalized GLSZM size zone non uniformity for the dose within the parotid 

glands were each associated with higher predicted probabilities for severe acute dysphagia. 

These features describe the spread and heterogeneity in the dose within these OARs, suggesting 

that greater dose uniformity, and possibly greater dose conformity to the GTVs, is associated 

with reduced risk of swallowing-related toxicity. 

The multi-omic model developed in this study outperformed the conventional model in 

both internal and external validation. While the improvement in AUC was not significant 

according to the DeLong test, both model signatures were significantly correlated with the 

outcome in each dataset in multivariate analysis, demonstrating their independent predictive 

value. The 95% confidence intervals on the discrimination performance indicated that only the 

multi-omic model significantly outperformed chance level, providing further evidence for the 

improved performance of this model. Furthermore, the radiomic and dosiomic features 
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included in the multi-omic model were not correlated with any clinical or DVH parameters, 

and the two model signatures were not strongly correlated,  demonstrating the independent 

predictive value of the multi-omic model.  

The calibration and clinical utility of the conventional and multi-omic models were also 

analysed. Calibration was comparable for both models. Decision curve analysis demonstrated 

superior clinical utility of the multi-omic model in both datasets. These findings are 

encouraging for the further exploration of radiomics and dosiomics in connection with severe 

acute dysphagia prediction, providing a non-invasive way to better identify patients at risk of 

severe acute dysphagia before treatment. 

Comparison of the discrimination performance of the multi-omic model with the 

externally validated predictive models in the literature reveals that one model by Willemsen et 

al. achieved comparable performance in external validation (AUC = 0.624) [128], while 

another by Dean et al. greatly outperformed the multi-omic model (AUC = 0.82) [131]. Both 

of the literature models significantly outperformed the conventional model, despite also using 

clinical and DVH features. However, there are some important differences between the studies 

to consider. 

Firstly, both of the highlighted models from the literature were developed using mixed 

cohorts of head and neck cancers, which included several different disease subsites. This 

diversity was incorporated into the models as a tumour site feature, potentially enhancing 

discrimination performance. This improvement may stem from the ability to capture the 

variation in severe dysphagia incidence across subsites, which results from the differing 
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distribution of radiation to healthy tissues depending on tumour location. Additionally, 

variations in radiation plans across tumour sites likely enhanced the discriminative ability of 

DVH features compared to those in our study’s NPC-only cohorts, where DVH parameters 

variation is significantly less. This could explain the poor performance of the conventional 

clinical and DVH features in our datasets. In principle, a prediction model specific to NPC 

would provide a more precise and specialized solution. It is also important to recognize that 

other HNCs often involve surgery as part of their treatment, which can have a separate impact 

on dysphagia.  

Secondly, both models used multi-centre data for training, in addition to having 

separate external validation. This is desirable for developing a generalizable model and may 

have helped their models to better handle the structural differences between institutions. Both 

the multi-omic model developed in this study and the model by Willemsen et al. utilized 

features extracted from the parotid glands, reinforcing the role of this VOI for dysphagia 

prediction. Conversely, the model by Dean et al. utilized features extracted from a custom 

pharyngeal mucosa contour. This volume may represent some dysphagia-specific information; 

however, this volume was not contoured by clinicians during RT planning, and it was not 

possible enrol experts to retrospectively contour this volume for the patients in this study. 

Another difference between our study and those in the literature is regarding the outcome 

definition. Willemsen et al. defined their outcome as the use of tube feeding for 4 weeks or 

more [128], whereas Dean et al. defined their outcome as CTCAE grade 3 or higher [131]. 

Interestingly, the incidence of tube feeding duration ≥ 4 weeks was 59% in the Willemsen 

study, whereas in the QEH and PWH data, only a minority of patients received tube feeding of 
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any duration. This suggests that the impact of hospital policy on tube feeding is a significant 

factor in study design and definition of dysphagia outcomes. In both of these studies, and also 

in this study, there were significant differences in the outcome incidence between training and 

external validation sets, presenting a further challenge for the development of predictive 

models. Willemsen et al. excluded cases where the patient declined tube feeding despite the 

clinician’s recommendation, whereas in this study such cases were included as severe 

dysphagia cases. In both the training and development datasets, only a small proportion of 

patients agreed to receive tube feeding, and so excluding cases where tube feeding was refused 

would be significantly detrimental to the clinical applicability of the model. One further point 

of difference compared to the literature models is the number of features in each model. The 

high-performing model by Dean et al. consisted of 26 different features. This compares to 114 

patients with severe dysphagia in their training set, resulting in an events-per-variable ratio of 

only 4.4, less than the rule of thumb of 10 events per variable [131]. Furthermore, their model 

was significantly larger than of the other models reported in this chapter. The model by 

Willemsen et al., by contrast, consisted of only 7 features despite being developed on a much 

larger dataset, resulting in an events-per-variable ratio of 37 [128]. The multi-omic model 

developed in this study consisted of 4 features, representing a comparable events-per-variable 

ratio of 30.5. Having a large model with a low events-per-variable ratio increases the risk of 

overfitting and hinders interpretability due to the resulting complexity of the model. 

There were also differences in the clinical features included in each model. Willemsen 

et al. included the pre-treatment percentage weight change in their prediction model. Inclusion 

of this feature in general models for dysphagia is difficult, because some patients may receive 



 

202 

 

neoadjuvant chemotherapy, which could potentially affect the calculation of baseline weight 

loss. Additionally, the availability of sufficient pre-treatment weight measurements in our 

datasets was limited. However, if detailed assessment of pre-treatment weight loss was 

included in standard practice, then this feature could be quite informative for dysphagia 

prediction. Dean et al. included features which characterized the chemotherapy regimen in 

greater detail, specifying neoadjuvant chemotherapy status and chemotherapy drug. Inclusion 

of these features would be desirable in a larger study with multi-centre training but was not 

practical in this study due to missing drug data for the QEH dataset and the differences in policy 

on neoadjuvant chemotherapy between centres. 

Ranking of the top 20 most-selected features in the top-scoring 5% of models revealed 

some trends. Male sex and chemotherapy were frequently selected, along with T-stage. One 

radiomic feature was ranked higher than other multi-omic features: the GLRLM long run high 

gray level emphasis feature for the GTVn VOI. This feature was also selected by the top-

performing multi-omic model, where higher feature values were associated with higher risk of 

severe dysphagia. Other top features included contouromic features describing the masking of 

the extended oral cavity by the GTVP, and radiomic features describing the GTVn, parotids, 

extended oral cavity and GTVp. Findings were quite similar between weighted and unweighted 

counts. However, two of the features in the best-performing multi-omic model were not present 

in the tables of top features: the dosiomic first order variance feature for the GTVn and the 

radiomic GLCM joint energy feature for the parotid glands were not listed in the top 20 

unweighted or weighted features. This shows the high variability in feature selection and the 

difficulty of identifying relevant features. 
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Removing the feature stability filter resulted in improvements in the discrimination of 

the best-performing models. This may be because the previously used stability filter was too 

strict, and relevant information was lost. Indeed, the article by Wennmann et al. found that 

using reproducible radiomic features did not always improve the external validation score, and 

in fact worsened the external validation performance in some cases [301]. After removing the 

stability filter,  the best VOI and feature type combination was the same, while two of the same 

features were selected. The remaining 3 features in the updated model were similar to the 

previous model but described texture and intensity of the LoG-filtered image rather than the 

original image. These findings suggest that the stability filter could be too strict for the GTVn: 

The radiomic GLRLM long run high gray level emphasis feature and the dosiomic first order 

variance feature were included in the model despite having ICC values of 0.82 and 0.73 

respectively. While these features may be more sensitive than others to the kind of 

perturbations applied, they appear to provide relevant information regarding severe dysphagia. 

The lack of a feature stability filter in the model development would mean that future studies 

would need to confirm whether the features selected by the models are adequately stable and 

repeatable. Also, future investigation with multiple sets of manually delineated contours by 

different radiologists would be required to determine the optimal perturbation settings for each 

VOI in order to replicate inter-observer variation. 

Interestingly, the PC muscles VOI did not yield high-performing models even after 

removal of the ICC filter, despite the dose to the PC muscles being frequently reported as 

correlated with dysphagia in the literature. However, the externally validated models from the 

literature did not use the PC muscle VOIs either. Instead, Dean et al. included dose features 
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from a pharyngeal mucosa VOI, while Willemsen et al. included the mean dose to the parotid 

glands and oral cavity. The role of the PC muscles in prediction models for severe acute 

dysphagia remains to be seen. 

 This study had some limitations. Several of these applied to the definition of the 

outcome label. Firstly, there was likely to be some degree of under-estimation of the frequency 

of the severe dysphagia outcome. While consultations were typically conducted weekly during 

RT, the interval between consultations could be irregular and many patients had fewer than 6 

sets of consultation notes over the RT period. This could cause a reduction in the apparent 

incidence of severe dysphagia, especially if consultations closer to the start of RT were absent. 

Clinicians may have been less likely to offer tube feeding to patients who experienced weight 

loss and reduced oral intake towards the end of RT, since fewer fractions of radiation remained 

to be delivered and the impact of weight loss would be less damaging. Furthermore, dysphagia 

may have been under-reported as a result of the lack of a standardized assessment according to 

a grading system. As outlined in Section 5.2.1, severe dysphagia was defined as the indication 

for tube feeding as recorded in the clinical notes.  In many cases, clinicians may only have 

identified the indication for tube feeding based on recognizing a significant drop in body weight 

or based on feedback from the patient. Some patients may not have actively reported their 

symptoms, and this could lead to an under-reporting of dysphagia. There was also the risk of 

missing outcome data due to human error during the data collection process. Identification of 

severe dysphagia was based on manual inspection of the consultation notes for specific 

keywords relating to tube feeding. Consultation notes were not structured in a standardized 

way, and variations in the wording and use of abbreviations could have resulted in the omission 
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of some events, despite the precautions taken. Under-reporting of severe dysphagia would 

result in inaccuracy of the outcome label, reducing the validity of the results and increasing the 

difficulty of achieving a high discrimination score. However, steps were taken to mitigate this 

factor, such as excluding cases with less than 3 weeks of consultation notes.  

 The lack of specificity of the dysphagia label is another limitation. Whether severe 

dysphagia is defined as the indication for tube feeding or as CTCAE grade 3 or higher, the 

label does not distinguish between impairment of the swallowing mechanism and reduced oral 

intake due to other reasons, such as pain or xerostomia. However, assessment of the swallowing 

mechanism was not part of the routine clinical practice and would require a prospective study 

with a specialized assessment protocol that included videofluoroscopy studies. 

 The incidence of tube feeding indication was significantly different between the two 

institutions. This difference could partly result from differences in the record-keeping and 

frequency of consultations. Additionally, differences in tube feeding indication could have 

resulted from different conventions or policies regarding the provision of tube feeding. The 

decision to offer tube feeding depended on several factors: the amount of weight loss, which 

could be measured as the percentage change from baseline, swallowing difficulty reported by 

the patient, the recent dietary intake, and the number of RT fractions remaining. Even if both 

institutions used the same threshold weight loss, such as 10%, the definition of the baseline 

weight could be affected by many factors. The weight was typically recorded at the time of CT 

simulation, however the time interval between CT simulation and RT varied between patients. 

Furthermore, the provision of neoadjuvant chemotherapy would affect this weight 

measurement.  
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5.5. Conclusion 

This study pioneered the development of integrated multi-omic prediction models for 

severe acute dysphagia, identifying the most effective combinations of radiomic, dosiomic and 

contouromic features. A multi-omic model consisting of radiomic and dosiomic features 

demonstrated improved predictive performance for identifying NPC patients at risk of severe 

acute dysphagia compared a conventional model consisting of clinical and DVH features 

developed on the same dataset. To the best of our knowledge, the multi-omic model represented 

the first externally validated model employing radiomic or dosiomic features for the prediction 

of severe acute dysphagia in NPC. However, the multi-omic model did not outperform the  

externally validated conventional models from the literature. The reasons for the superior 

performance of the literature models were explored, including the role of multi-site HNC 

training data instead of NPC-only cohorts, multi-centre training data, and more comprehensive 

characterization of chemotherapy regimen. While further improvement for the prediction of 

severe acute dysphagia is desirable, the findings indicate that multi-omic features have 

independent predictive value and can supplement clinical features for enhanced discrimination. 

  



 

207 

 

CHAPTER 6 MULTI-OMIC, MULTI-LABEL 

PREDICTION MODELS FOR ORAL MUCOSITIS AND 

DYSPHAGIA 

6.1. Introduction 

Treatment-induced OM and dysphagia are interrelated conditions. This chapter 

explores the hypothesis that combining these toxicities into a multi-label problem, 

complimentary information about their relationship can enhance the discrimination 

performance of prediction models. One aspect of the relationship between OM and dysphagia 

is the impact of OM on increasing the severity of dysphagia. OM can exacerbate dysphagia by 

making swallowing more painful due to ulcerations occurring across multiple parts of the 

swallowing anatomy, including oral cavity, tongue, and pharyngeal mucosa. Patients may seek 

to minimize contact between food and the irritated mucosa, restricting the ability to chew food 

[302], which can result in greater difficulty in swallowing and the need for dietary 

modification. Another aspect of the relationship between OM and dysphagia is that they have 

predictive factors in common, as identified in the literature review in Section 1.2. Furthermore, 

there is an overlap in the CTCAEv5 grading criteria for these toxicities, resulting from the 

shared impact on oral intake [303]. The association between OM and dysphagia is reported in 

the literature [304], which was further confirmed by the significant correlation between severe 

OM and severe dysphagia in the data collected for this thesis (p < 0.05 in both datasets under 

Fisher’s Exact Test). Multi-label models may be able to harness the relationship between the 

severity of each condition to enhance the accuracy of predictions. This chapter investigates 
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different approaches to multi-label models and explores whether this approach can facilitate 

more accurate prediction of severe OM and dysphagia. 

Traditional supervised learning methods involve learning a mapping from a feature 

space to a label space, allowing the prediction of a label for each sample. This process assumes 

that each sample has a single label, and that all labels are mutually exclusive. In contrast, multi-

label methods involve samples that each have a set of associated labels [305]. Multi-label 

classification using machine learning is less common than single-label classification. However, 

it has been utilized in specific applications, including the classification of colon cancer 

histological subtypes from histopathological images [306], prediction of cardiovascular events 

from carotid plaque ultrasound images [307], prediagnosis of cervical cancer from clinical 

record data [308], automatic categorization of pathology report text [309], prediction of 

antimicrobial resistances from bacterial genomics [310], and  prediction of drug toxicity from 

assay results  [311]. In each of these applications, each sample was associated with multiple 

non mutually exclusive labels, and machine learning models were trained to predict these labels 

from the input feature data. To our best knowledge, this study is the first to report multi-label 

models for predicting severe acute OM and dysphagia in cancer patients treated with 

radiotherapy.  

6.2. Methodology 

A common approach to multi-label learning involves problem transformation, where 

the problem is converted into binary or multi-class tasks, making the labels mutually exclusive 

[305]. For the multi-label prediction of severe acute OM and dysphagia, the simplest approach 
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would be to develop separate binary classification models for each outcome, as reported in 

CHAPTER 4 and CHAPTER 5. However, this approach does not consider label correlations 

or the interaction between labels [305]. 

The first multi-label approach explored in this study was the Label Powerset approach. 

This method converts the problem into a multi-class task with mutually exclusive classes 

corresponding to every possible combination of labels. As the number of labels increases, this 

approach results in exponentially many classes, resulting in higher complexity, computational 

cost and overfitting [308]. However, only two labels were investigated in this study, therefore 

this approach resulted in just four mutually exclusive classes. This approach therefore remained 

feasible for multi-label modelling. 

The second multi-label approach explored in this study was the Classifier Chain 

approach. This method converts the problem into two binary classification tasks performed 

sequentially. The key aspect is that the predictions from the first model in the chain are passed 

into the second model in the chain as an additional input, allowing the model to learn from the 

correlation between toxicities. 

There are other approaches to multi-label models that involve more complex tasks or 

specialized algorithms [305], however the two selected approaches were chosen as a well-

established starting point. Additionally, each approach was compatible with the six machine 

learning algorithms used for model development in previous chapters. 
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6.2.1. Label powerset approach 

Under this approach, the severe OM and severe dysphagia outcome labels were 

combined into a single target representing the four possible outcomes, as shown in Table 49. 

These were automatically encoded as integers 0-3 using the Pandas library for Python. 

Consequently, the problem became a multi-class classification with four mutually exclusive 

labels. The MRMR feature selection function and machine learning algorithms supported this 

kind of multi-class task by default, and therefore this constructed label was directly used for 

model development. For model optimization, the AUC was computed using the ‘one-versus-

rest’ approach for multi-class data, where each label was scored against all other labels, e.g., 

severe OM and severe dysphagia versus all other combinations. The final score was the mean 

AUC across all combinations. For evaluation purposes, as well as the multi-class ‘one-versus-

rest’ AUC as defined above, the AUC for each individual toxicity was also computed.  

Comparison between algorithm, VOI and feature type combinations was performed using the 

AUC for each individual toxicity, rather than the multi-class ‘one-versus-rest’ AUC, to 

facilitate comparison with the previous chapters and ensure that the discrimination was 

adequate for both toxicities. 

Table 49: Multiclass target values 

No severe OM 

No severe dysphagia 

Severe OM 

No severe dysphagia 

No severe OM 
Severe dysphagia 

Severe OM 
Severe dysphagia 

6.2.2. Classifier chain approach 

Classifiers for severe acute OM and dysphagia were combined into a classifier chain 

under this approach, with the chain consisting of the OM model followed by the dysphagia 
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model. That is, the predicted probabilities from the OM model were fed into the dysphagia 

model, aligning with the hypothesized causal relationship between the two toxicities. While 

dysphagia might exacerbate OM indirectly through the consequent reduction in nutrition 

impacting tissue repair and resilience to infection, the more direct link would be through the 

impact of pain and discomfort from OM on dysphagia. Discussions with clinicians suggested 

that dysphagia might be worsened by the shedding of dead tissue or pseudo membrane that 

occurs in the latter phases of OM development.  

The Scikit-Learn library for Python provides a classifier chain function wrapper which 

was used to evaluate this approach. However, the MRMR feature selection step in the pipeline 

required further modification. The input was provided in the form of an N x 2 vector, 

representing the binary outcomes for OM and dysphagia. MRMR feature selection could be 

approached in two ways: firstly, to treat the outcome labels as being multi-class and find the 

optimal feature set for this pooled label. Secondly, to perform MRMR separately for each 

outcome label, then take the set, or union, of features that were selected, to prevent duplicate 

features. Experiments showed that these two approaches gave similar results, so the first 

approach was used for model development for simplicity. 

An alternative variant of the classifier chain approach was also conducted, where the 

whole model pipeline was connected in series in the chain – having separate feature selection, 

scaling and model fitting for each classifier. This variant allowed only the most relevant 

features, including the predictions from the previous model in the chain, to be selected for each 

classification task in the chain, rather than sharing the same features in each model. 
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The classifier chain models were optimized in a similar manner to that employed in 

previous chapters, with a cross-validated grid search over the previously defined range of 

model hyperparameters. The maximum value of k for the MRMR feature selection was set to 

9, as with the model development for severe OM. The optimum hyperparameters were 

identified by the model that gave the highest mean AUC across both severe OM and severe 

acute dysphagia labels. 

Multi-omic models were previously developed for severe acute OM and dysphagia in 

CHAPTER 4 and CHAPTER 5. These models could not be combined into a classifier chain 

for several reasons. Firstly, selecting the final feature set from the two models would result in 

information leakage about the internal validation set, resulting in bias if the resulting classifier 

chain were cross validated on the development dataset. Secondly, at least one of the models 

would have to be re-trained with the predictions of the previous model in the chain as input, 

otherwise the results would be identical to having two separate binary classifiers. Thirdly, the 

Scikit-learn classifier chain class did not support freezing the parameters of one of the models 

in the chain, which would mean that both models in the chain would be re-trained. Also, the 

model hyperparameters were optimized with respect to the mean of the AUCs for each toxicity, 

instead of being optimized for a single toxicity, which would result in different model 

coefficients being fitted compared to the two original models. For these reasons, multi-label 

models were trained on the development dataset without reference to the models in CHAPTER 

4 and CHAPTER 5. 
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6.3. Results 

The incidence of each label in the label powerset approach is shown in Table 50. These 

four labels were used for model training and optimization. Patients who experienced neither 

severe OM nor severe dysphagia were the largest group in both datasets. 

Table 50: Label incidences for label powerset approach 

Severe OM Severe acute dysphagia Development dataset (QEH) External validation dataset (PWH) 

✓ ✓ 44 (12%) 22 (22%) 
✓  46 (13%) 8 (8%) 

 ✓ 78 (21%) 31 (31%) 

  195 (54%) 40 (40%) 

For each multi-label approach, models were evaluated for different combinations of 

VOIs and feature types, as performed in previous chapters. Six different machine learning 

algorithms were also evaluated.  The performance of the different models was ranked by an 

aggregate AUC score, calculated by taking the minimum of the training, internal validation and 

external validation AUCs across both severe OM and severe dysphagia. If any one of these 

scores were low, it would indicate poor reproducibility or generalizability of the model.  

Table 51 displays the top 5 multi-label models developed using the label powerset 

approach. Table 52 displays the top 5 multi-label models developed using the classifier chain 

approach with shared feature selection. Table 53 displays the top 5 multi-label models 

developed using the classifier chain approach with separate pipelines. Among the top scoring 

models, VIF dimensionality reduction was the most frequently selected approach. The 

extended oral cavity was the most frequently selected VOI, distantly followed by the GTVn. 

The most frequently selected feature types were clinical features, contouromic features, 

radiomic features and DVH features. Interestingly, dosiomic features were not selected in the 
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top performing models. Gaussian Naive Bayes was the most frequently selected algorithm 

among the top scoring models. The model size ranged from 3 features to 9 features. Validation 

AUC scores were generally higher for OM than for dysphagia. Overall, there was not any 

obvious difference in the performance between the different multi-label approaches. 

 



 

 

Table 51: Top 5 multi-label prediction models for label powerset approach 

Rank 
Dimensionality 

reduction 
VOIs CLI DVH RAD DOS CON Algorithm 

Model 

size 

Severe OM Severe dysphagia 

Train 

AUC 

Int. 

AUC 

Ext. 

AUC 

Train 

AUC 

Int. 

AUC 

Ext. 

AUC 

1 VIF Ext. oral cavity, parotids ✓  
✓  

✓ Gaussian Naïve Bayes 4 0.633 0.636 0.623 0.635 0.617 0.657 

2 VIF Ext. oral cavity ✓    
✓ Gaussian Naïve Bayes 3 0.650 0.624 0.621 0.616 0.612 0.646 

3 VIF Ext. oral cavity, GTVn ✓ ✓   
✓ SVM Linear 7 0.623 0.66 0.625 0.630 0.634 0.611 

4 VIF Ext. oral cavity ✓  
✓  

✓ Random Forest 4 0.671 0.64 0.666 0.661 0.61 0.645 

5 VIF GTVp ✓ ✓    XGBoost 9 0.667 0.635 0.651 0.637 0.617 0.609 

 

Table 52: Top 5 multi-label prediction models for classifier chain approach with shared feature selection 

Rank 
Dimensionality 

reduction 
VOIs CLI DVH RAD DOS CON Algorithm 

Model 

size 

Severe OM Severe dysphagia 

Train 

AUC 

Int. 

AUC 

Ext. 

AUC 

Train 

AUC 

Int. 

AUC 

Ext. 

AUC 

1 VIF Ext. oral cavity ✓  ✓  ✓ Gaussian Naïve Bayes 4 0.660 0.632 0.673 0.632 0.618 0.675 

2 Hierarchical Ext. oral cavity, GTVn ✓ ✓ ✓   Gaussian Naïve Bayes 9 0.711 0.628 0.627 0.685 0.613 0.615 

3 VIF Ext. oral cavity, PC ✓ ✓ ✓   Gaussian Naïve Bayes 7 0.657 0.634 0.638 0.631 0.613 0.615 

4 VIF Ext. oral cavity ✓    ✓ Gaussian Naïve Bayes 6 0.644 0.629 0.628 0.629 0.611 0.647 

5 VIF Ext. oral cavity ✓    ✓ Gaussian Naïve Bayes 3 0.652 0.65 0.610 0.615 0.615 0.647 

 

Table 53: Top 5 multi-label prediction models for classifier chain approach with separate pipelines 

Rank 
Dimensionality 

reduction 
VOIs CLI DVH RAD DOS CON Algorithm 

Model 

size 

Severe OM Severe dysphagia 

Train 

AUC 

Int. 

AUC 

Ext. 

AUC 

Train 

AUC 

Int. 

AUC 

Ext. 

AUC 

1 VIF Ext. oral cavity ✓    ✓ Ridge 3 0.644 0.644 0.644 0.609 0.611 0.649 

2 VIF Ext. oral cavity, PC ✓  ✓  ✓ Ridge 7 0.673 0.652 0.608 0.622 0.616 0.636 

3 VIF Ext. oral cavity ✓    ✓ Gaussian Naïve Bayes 5 0.648 0.635 0.625 0.626 0.607 0.643 

4 VIF Ext. oral cavity ✓  ✓  ✓ Gaussian Naïve Bayes 3 0.651 0.656 0.635 0.638 0.609 0.604 

5 Hierarchical Ext. oral cavity, larynx ✓    ✓ Gaussian Naïve Bayes 7 0.690 0.624 0.638 0.618 0.604 0.654 
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6.3.1. Label powerset 

Best label powerset model 

A Gaussian Naïve Bayes model constructed from the set of clinical, radiomic, and 

contouromic features extracted from the extended oral cavity and parotids glands VOIs after 

applying the VIF dimensionality reduction approach achieved the best performance. The model 

consisted of only 4 features: chemotherapy status, male sex,  radiomic GLSZM large area low 

gray level emphasis within the parotid glands, and a contouromic projection overlap volume 

feature between the extended oral cavity and GTVp. For severe OM, the model achieved AUCs 

of 0.633 (95% CI: 0.567, 0.694), 0.636 (95% CI: 0.567, 0.705) and 0.623 (95% CI: 0.505, 

0.743) in training, internal validation and external validation. For severe dysphagia, the model 

achieved AUCs of 0.635 (95% CI: 0.572, 0.696), 0.617 (95% CI: 0.568, 0.665) and 0.657 (95% 

CI: 0.550, 0.759) respectively. Details of the model settings are shown in APPENDIX, Table 

59. 

Figure 36 shows the SHAP analysis for the label powerset model. SHAP values were 

calculated for each of the four labels, indicating the impact of each feature on the prediction of 

that label. To facilitate comparison with other models, the values corresponding to labels 

representing severe OM were added together, and the values corresponding to  labels 

representing severe acute dysphagia were added together. The resulting analyses indicated the 

impact of each feature on the model predictions for each toxicity. The direction of correlation 

for each feature was comparable for each plot. Chemotherapy and male sex increased the risk 

of severe toxicity, as did the contouromic feature and radiomic feature. The ranking of each 

feature, indicating the overall importance of that feature, differed between toxicities. 
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Figure 36: SHAP analysis for the best multi-label model developed using the 

label powerset approach, for severe OM (top) and severe acute dysphagia (bottom) 

6.3.2. Classifier chain with shared scaling and feature selection 

Best classifier chain with shared scaling and feature selection 

A Gaussian Naïve Bayes model constructed using clinical, radiomic and contouromic 

features using the extended oral cavity VOI after applying the VIF dimensionality approach 

achieved the best performance. The model consisted of 4 features: chemotherapy status, male 

sex, radiomic LoG-filtered image mean intensity within the extended oral cavity and a 

contouromic projection overlap volume filter between the extended oral cavity and GTVp. For 

severe OM, the model achieved AUCs of 0.660 (95% CI: 0.595, 0.719), 0.632 (95% CI: 0.558, 

0.707) and 0.673 (95% CI: 0.544, 0.787) in training, internal validation, and external validation. 
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For severe dysphagia, the model achieved AUCs of 0.632 (95% CI: 0.568, 0.696), 0.618 (0.551, 

0.685) and 0.675 (95% CI: 0.565, 0.782) respectively. Details of the model settings are shown 

in APPENDIX, Table 60. 

Figure 37 shows the SHAP analysis for the classifier chain model developed using 

combined scaling and feature selection. In this case, the SHAP values were calculated for 

severe OM and for severe acute dysphagia separately. The same set of features was used for 

the prediction of each toxicity, though the relative importance of features differed, as shown 

by the different ordering. The direction of correlation between each feature and toxicity was 

consistent between toxicities. 

 

 
Figure 37: SHAP analysis for the best multi-label classifier chain developed 

using shared feature selection, for severe OM (top) and severe acute dysphagia (bottom) 
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6.3.3. Classifier chain with separate pipelines 

Best classifier chain model with separate pipelines 

A logistic ridge regression  model constructed using clinical and contouromic features 

using the extended oral cavity VOI after applying the VIF dimensionality approach achieved 

the best performance. The classifier chain consisted of two models: The OM model consisted 

of 3 features: chemotherapy status, male sex, and a contouromic overlap volume histogram 

feature describing the distance between the GTVp and extended oral cavity. The dysphagia 

model consisted of 3 features: the predicted probabilities from the severe OM model, a 

contouromic projection overlap volume feature describing the masking of the extended oral 

cavity by the GTVp, and male sex. For severe OM, the model achieved AUCs of 0.644 (95% 

CI: 0.579, 0.706), 0.644 (95% CI: 0.581, 0.707) and 0.644 (95% CI: 0.522, 0.759) in training, 

internal validation, and external validation. For severe dysphagia, the model achieved AUCs 

of 0.609 (95% CI: 0.546, 0.667), 0.611 (0.552, 0.670) and 0.649 (95% CI: 0.536, 0.756) 

respectively. Details of the model settings are shown in APPENDIX, Table 61. 

Figure 38 shows the SHAP analysis for the classifier chain model developed using 

separate pipelines. The SHAP values were calculated for severe OM and for severe acute 

dysphagia separately. Only features with nonzero SHAP values were included in the plots. 

Since different feature sets were selected for each model in the chain, the set of features in each 

plot is different. The severe acute dysphagia model utilized the predicted probabilities from the 

severe OM model, therefore the SHAP values for features in the severe OM model were also 

nonzero for the dysphagia model. 



 

220 

 

 

 

 
Figure 38: SHAP analysis for the best classifier chain developed using separate 

model pipelines, for severe OM (top) and severe acute dysphagia (bottom) 

6.3.4. Comparison of top-performing multi-label models 

Table 54 compares the top-performing multi-label models. For all three approaches, 

the highest performance was obtained using the VIF dimensionality reduction approach. 

Discrimination performance in training, internal validation and external validation was 

generally higher for OM than for dysphagia. However, none of the models out-performed both 

of the top-performing single-toxicity models from CHAPTER 4 and CHAPTER 5. There were 

no significant differences between the three models according to the DeLong test. 
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Table 54: Comparison of top-performing multi-label models 

 Approach 
Dimensionality 

reduction 

Model 

type 

OM train / internal / 

external AUC 

Dysphagia train / 

internal / external AUC 

Label powerset VIF GNB 0.633 / 0.636 / 0.623 0.635 / 0.617 / 0.657 

Classifier chain - 

shared 
VIF GNB 0.660 / 0.632 / 0.673 0.632 / 0.618 / 0.675 

Classifier chain - 

separate 
VIF Ridge 0.644 / 0.644 / 0.644 0.609 / 0.611 / 0.649 

 

 
Figure 39: Graphical comparison of top-performing multi-label models 
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Table 55: Comparison of AUC scores for best multi-label model and best binary 

classification models for OM and dysphagia 

 Classifier chain 

(OM) 

Previous OM 

model 

Classifier chain 

(Dysphagia) 

Previous dysphagia 

model 

Training 0.660 0.954 0.632 0.970 

Internal validation 0.632 0.684 0.618 0.633 

External validation 0.673 0.688 0.675 0.625 

Table 55 shows the comparison of AUC scores for the best-performing multi-label 

model and the best-performing binary classification models for OM and dysphagia. The multi-

label classifier chain model did not improve on the performance of the OM model, however 

the external validation score for the dysphagia prediction was markedly improved. 

Table 56 shows the top features in the highest-scoring 5% of classifier chain models 

using shared feature selection, as this was the approach that gave the highest-scoring model. 

Apart from chemotherapy status, sex and T-stage, contouromic features were ranked highly. 

The extended oral cavity was frequently selected as a VOI.  
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Table 56: Top features in highest-scoring 5% of Classifier Chain models using 

shared feature selection 

Feature 
Number of 

models 

clinical_Chemotherapy 191 

clinical_Sex_Male 184 

clinical_T3 48 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-

170.00 

33 

Parotids_contouromic_GTVn_POV_RelativeVolume_At_Dim_0_AbsoluteDegree_20.00 30 

clinical_AgeAtRTStart 23 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-

150.00 

23 

extOralCavity_dvh_RelativeVolume_At_RelativeDose_0.94 17 

extOralCavity_dosiomic_original_gldm_LargeDependenceLowGrayLevelEmphasis 17 

extOralCavity_radiomic_log-sigma-3-0-mm-3D_firstorder_Mean 17 

extOralCavity_contouromic_GTVp_OVH_RelativeVolume_At_AbsoluteDistance_5.00 12 

GTVp_radiomic_original_glszm_ZoneEntropy 11 

Parotids_contouromic_GTVn_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_130.00 10 

GTVp_radiomic_log-sigma-2-0-mm-3D_glcm_Imc2 10 

GTVn_dosiomic_log-sigma-1-0-mm-3D_firstorder_10Percentile 9 

GTVn_dvh_RelativeVolume_At_AbsoluteDose_72.00 7 

extOralCavity_contouromic_GTVp_POV_RelativeVolume_At_Dim_2_AbsoluteDegree_-

10.00 

7 

Parotids_radiomic_original_glszm_LargeAreaLowGrayLevelEmphasis 7 

GTVn_dosiomic_log-sigma-1-0-mm-3D_gldm_DependenceNonUniformityNormalized 6 

GTVp_dosiomic_log-sigma-1-0-mm-3D_glcm_ClusterProminence 6 

6.4. Discussion 

Multi-label models were developed for severe OM and severe acute dysphagia, 

harnessing the complimentary information from the relationship between toxicities. Two types 

of multi-label models were explored: multi-class models using the label powerset approach, 

and classifier chains which passed the predicted probabilities of severe OM into the model for 

severe acute dysphagia. In the classifier chain approach, two variants were evaluated: 

performing shared scaling and feature selection for both models in the chain and performing 

separate scaling and feature selection for each model in the chain. As in the previous chapters, 

combinations of different feature types, VOIs and model algorithms were evaluated to 

determine the best model. 
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The top 5 multi-label models developed under each approach were identified. The 

extended oral cavity was the most frequently selected VOI across these models, suggesting that 

it contained the most relevant information for both OM and dysphagia, and inclusion of other 

VOIs provided little additional benefit. Clinical and contouromic features were frequently 

selected, along with some radiomic features. DVH and dosiomic features were less frequently 

selected. The role of contouromic features may be to quantify the difficulty of dose sparing of 

the oral cavity, which could be a shared risk factor for both severe OM and severe dysphagia. 

The top-performing model from each of the 3 multi-label approaches was identified. 

None of the resulting models were able to outperform both best-performing binary 

classification models from CHAPTER 4 and CHAPTER 5. However, all three of the 

highlighted multi-label models significantly outperformed random chance, as indicated by their 

95% confidence intervals. There were no significant differences between the three models 

according to the DeLong test, but the classifier chain model with shared scaling and feature 

selection achieved the best internal and external validation scores, outperforming the label 

powerset model in external validation and the classifier chain model with separate pipelines in 

internal validation. It did not outperform the top-scoring model for severe OM from CHAPTER 

4, but did outperform the top-scoring model for severe acute dysphagia from CHAPTER 5 in 

external validation. Additionally, the discrepancy between training score and internal and 

external validation scores was reduced. Further investigation in future studies would be 

required to confirm the preferred multi-label approach. Studies could also include a wider range 

of multi-label approaches, including ensembles of classifier chains or specialized multi-label 
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algorithms [305], though larger sample sizes would be desirable to avoid overfitting from 

higher model complexity. 

The comparison of the three top-performing multi-label models revealed that 

chemotherapy status, male sex and a contouromic POV feature for the GTVp - extended oral 

cavity pair for rotation in the axial plane were independently selected in all three models. The 

direction of correlation for chemotherapy status and male sex was consistent across the models 

and agreed with findings from previous chapters. The POV features were also frequently 

selected in the top-performing models for severe acute dysphagia (Table 47). The POV 

features corresponded to the same rotation plane as that of the LINAC gantry, suggesting its 

connection to the difficulty of dose sparing. The specific POV feature differed between the 

models, indicating that the overlap at a different angle was selected. However, inspection of 

the POV curve for the extended oral cavity in Figure 14, Section 3.7 shows that both features 

correspond to points near the tails of the distribution rather than points at the peak of the curve. 

These features suggest that if the GTVp masked the extended oral cavity over a wider angular 

range,  the risk of severe toxicity would be increased. Therefore, patients whose geometry 

resulted in greater dose sparing difficulty for the extended oral cavity were associated with 

higher risk of severe OM and severe dysphagia. Interestingly, no DVH features or dosiomic 

features were selected. These features would be more strongly affected by differences in RT 

planning and RT modality between institutions. The identified contouromic features may 

represent an underlying aspect of the patient geometry that is associated with greater risk of 

toxicity from greater difficulty in dose sparing.  
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This study had some limitations. One limitation concerns the optimization of classifier 

chain models. The classifier chains had shared hyperparameters: MRMR k, model algorithm, 

and model settings. Independent optimization of hyperparameters for each model could further 

improve performance. However, this would drastically increase computational complexity due 

to the resulting large number of combinations of hyperparameters to be investigated. Another 

limitation was that the label powerset approach suffered from lower number of samples per 

target label and a greater degree of imbalance between labels. Having fewer examples per label 

would restrict the ability of the model to adequately learn feature correlations without 

overfitting. However, over-sampling using the SMOTE approach was not observed to improve 

the results, possibly because there were too few samples in the minority classes for generation 

of generalizable synthetic samples. 

6.5. Conclusion 

This chapter demonstrated the feasibility of developing multi-label models for severe 

acute OM and dysphagia. As two interconnected toxicities experienced by NPC patients, 

having a single model that harnesses predictive factors for both toxicities offers the potential 

to be more efficient and more accurate. However, having explored different approaches for 

multi-label modelling, none of the developed models were able to outperform both highest-

scoring models for the individual toxicities. Even so, the methods evaluated in this chapter 

could be useful for future research into multi-label model development. With larger sample 

sizes, multi-centre training data, and more detailed clinical data about the chemotherapy 

regimen, it would be possible to construct more complex models that identify more subtle 

patterns and relationships between features. This study also emphasized the potential role of 
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contouromic features, being less susceptible to differences between institutions. Contouromic 

features, like POV features that describe how the GTVp masks the extended oral cavity for 

rotation around the gantry axis, could identify variations in the underlying difficulty of dose 

sparing that are caused by the shape of the patient and their tumour. Contouromic features are 

a relatively recent development, and further exploration and standardization is merited to better 

understand this geometric information. The potential for these features to be less affected by 

differences between institutions could be highly desirable for more generalizable models. 

Further development of multi-label models is warranted to explore their potential for improving 

the discrimination of severe acute OM and dysphagia. 
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CHAPTER 7 PRACTICAL CONSIDERATIONS FOR 

FUTURE DEVELOPMENT 

7.1. Introduction 

The aim of this project was to investigate the role of multi-omics in facilitating early 

intervention for severe acute OM and dysphagia in NPC patients receiving RT, to alleviate 

suffering and improve their quality of life. Three objectives were defined to achieve this aim. 

Firstly, to develop and externally validate a multi-omic prediction model for severe acute OM 

in NPC patients undergoing RT, which was reported in CHAPTER 4. Secondly, to develop and 

externally validate a multi-omic prediction model for severe acute dysphagia, in NPC patients 

undergoing RT, which was reported in CHAPTER 5. Thirdly, to develop and externally 

validate a multi-omic, multi-label model to predict severe acute OM and dysphagia, which was 

reported in CHAPTER 6. These models demonstrated the potential of multi-omic features to 

improve on the performance of conventional and clinical features in predicting these common 

and damaging toxicities. However, to alleviate suffering and improve patients’ quality of life, 

models must be implemented in clinical practice. This chapter focuses on two key aspects. 

Firstly, it provides recommendations for further improvement in the performance of multi-omic 

models, emphasising the need for greater discrimination ability and a stronger level of evidence 

to advance towards clinical implementation. Secondly, it directly addresses the challenges 

associated with clinical implementation, offering insights and potential solutions. 
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7.2. How can the performance of multi-omic models be 

improved? 

7.2.1. Defining model performance 

The performance of multi-omic models can be measured in several ways: 

discrimination, calibration, generalizability, and repeatability.  

Discrimination quantifies how well the model can separate the severe and non-severe 

cases. This is typically measured using the AUC score and is the primary way to compare 

models because it is independent of the prediction threshold and the incidence of severe cases. 

A higher AUC is desirable, but the other aspects of model performance should also be 

considered. Model discrimination can also be measured using the sensitivity, specificity, 

precision and recall. These aspects are important for assessing the clinical utility of a model 

but are less useful for comparing the overall performance because they depend on the choice 

of probability threshold. 

Model calibration refers to how well the predicted probabilities match the real incidence 

of severe toxicity. For the output of a model to be meaningful and useful, the predicted 

probabilities must be well-calibrated, otherwise the predicted probabilities will be misleading. 

Calibration is assessed using calibration curves and metrics such as the Brier score.  

Generalizability refers to the ability of the model to perform well on new, unseen data. 

The validity of the model can only be determined by testing it on unseen data, whether from 

hold-out testing or cross-validation techniques. External validation is the gold standard of 

evidence for model validity, since it will penalize models that are over-fitted to the training 
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data or those that cannot cope with structural differences between datasets. With regards to 

clinical implementation, generalizability refers to the robustness of the model across different 

institutions with different scanner hardware, treatment regimen, and population demographics. 

Developing a generalizable model is challenging, while a hospital-specific model can 

potentially achieve higher discrimination. However, a generalizable model should be the 

starting point, even for hospital specific models, because a generalizable model should be able 

to identify underlying, common factors associated with toxicity while also providing a higher 

level of evidence. Hospital specific models risk overfitting, due to the  inherent limitations on 

sample size and the lack of external validation.  

Repeatability refers to how well the predicted probabilities from the model can be 

reproduced on the same patients using the same hardware for scanning and treatment. A high 

performing model should provide consistent predictions and not be strongly affected by small 

changes in the conditions at the time of data acquisition. Examples of factors that can affect 

repeatability include inter- and intra-observer variations in VOI segmentation, scanner noise, 

and breathing motion during scanning. 

Each aspect must be considered to provide recommendations for future development of 

multi-omic models for prediction of severe acute OM and dysphagia. 

7.2.2. Challenges in model development 

Variability in imaging acquisition parameters 

A generalizable model should be resilient to changes in imaging acquisition across 

institutions such as different scanner machines, different reconstruction parameters and 
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contrast media. In some cases, differences in the time-to-scan from diagnosis or the time 

interval between scanning and start of RT must be considered. The differences in CT 

acquisition parameters between institutions is shown in Table 57. Differences in X-ray tube 

current and reconstruction kernel may lead to variations in noise levels and could therefore 

affect the values of extracted features. 

Table 57: Differences in CT acquisition parameters between institutions  

Parameter QEH PWH 

Scan mode Helical Helical 

Voltage 120 kVp 120 kVp 

Pixel spacing 1.2 x 1.2 mm 1.2 x 1.2 mm 

Slice thickness 3 mm 3 mm 

Matrix 512 x 512 512 x 512 

X-ray tube current 264 mA 165 mA 

Reconstruction kernel Not collected Not collected 

Variability in radiotherapy modalities and planning 

Radiation may be delivered using fixed-field IMRT, volumetric modulated arc therapy 

(VMAT) or helical tomotherapy. The decision of which modality to provide depends on the 

availability of treatment machines in the hospital, but there is evidence that the dose sparing 

for normal tissues differs between each modality [312]. The development of a model using data 

based on a single modality may struggle to generalize to other modalities, where the dose 

distribution in organs-at-risk (OARs) may vary. This reinforces the need for multi-centre 

training, as the RT modality varies between centres. It is desirable to uncover the causes of 

toxicity that result from these variations, such as differences in dosimetric features. 

In terms of variations in contouring between institutions, there are differences in the 

anatomy included in contoured organs-at-risk (OARs) resulting from following different 

contouring guidelines. Furthermore, intra-, and inter-observer variation in contouring will 
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cause significant variability in the VOIs used for feature extraction. This aspect can affect 

feature repeatability and generalizability and must be investigated by conducting multiple sets 

of contouring or by utilizing the perturbation approach.  

Variation in dose sparing guidelines presents another challenge for generalizability. 

The Chinese Society of Clinical Oncology reported guidelines for normal tissue delineation 

and dose limitation for OARs including the parotid glands, oral cavity, PC muscles, and 

larynx[7]. The mean dose to each of these organs in the QEH and PWH datasets exceeded these 

limits. Furthermore, there were significant differences in the mean dose to each of these OARs 

between the two datasets. This may partly be explained  by the different RT modalities used in 

each dataset, and partly from differences in the contouring guidelines used for each OAR. 

However, there may also be differences in the set of OARs included in the dose sparing 

guidelines used by each institution. It should be noted that many patients were missing contours 

of the oral cavity, larynx and PC muscles, which suggests that dose constraints for these OARs 

were less consistently applied than for tissues such as the brain stem and spinal cord.  

Finally, different dose calculation algorithms used by the treatment planning software 

are another source of variation that could impact the generalizability of DVH and dosiomic 

features [313].  

Variability in chemotherapy treatment protocols 

Variability in chemotherapy treatment protocols presents significant challenges for 

developing generalizable toxicity prediction models. The Chinese Society of Clinical 

Oncology has reported strong evidence supporting the benefit of concurrent chemotherapy for 
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locoregionally advanced NPC [7]. However, they did not reach a conclusion on whether 

concurrent chemotherapy should be combined with neoadjuvant chemotherapy or with 

adjuvant chemotherapy. Accordingly, the provision of neoadjuvant and adjuvant chemotherapy 

varied significantly between the two institutions in this study. Furthermore, there were 

additional variations in the choice of chemotherapy drug, the number of cycles of 

chemotherapy, and the dose of chemotherapy drug. Some of these variations were required due 

to the presence of contraindications in patients indicated for chemotherapy. These variations 

present a challenge for the development of  generalizable toxicity prediction models because 

of the difficulty in characterizing a wide range of possible chemotherapy regimens in the 

training data and model bias from imbalance in the distribution of chemotherapy-related 

features across datasets. Furthermore, neoadjuvant chemotherapy is delivered prior to CT 

simulation and RT planning, therefore it represents a confounding factor that could influence 

the values of multi-omic features.   

Variability in clinical assessment and follow-up schedule 

The availability of clinical and toxicity data represents another challenge for model 

development. Much of the clinical and toxicity data is typically recorded in the clinical notes 

by clinicians during consultation with patients. The frequency and completeness of these 

consultation notes can vary. The notes for the institutions in this study were in the form of raw 

text and did not generally have a fixed structure or fixed data items to collect. While certain 

measurements were performed routinely, other assessments were only conducted or noted if 

the patient visibly presented with or complained of issues. There was therefore the risk of 

under-reporting, particularly of toxicity outcomes. Variations in record keeping, assessment 
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and grading between clinicians would also affect the clinical and toxicity data. While hospitals 

may officially utilize a specific grading system, the toxicity grades were often recorded without 

reference to a grading system and may have been influenced by the clinician’s experience with 

past or alternative grading systems. This was evidenced by the presence of text that matched 

grading criteria from earlier grading systems such as RTOG. 

Epstein-Barr virus (EBV) and HPV can influence the development of NPC. Future 

studies may be able to investigate whether they can influence the risk of severe acute OM or 

dysphagia. The role of HPV status as a predictor of late dysphagia was already reported [139]. 

The policy for pre-treatment testing for EBV or HPV varies across institutions and is not 

routinely conducted for all NPC patients. This precludes the inclusion of these factors in model 

development. Hospitals should consider the cost of additional tests and balance this with the 

potential benefits. Similarly, the availability of pre-RT blood tests in the PWH dataset varied 

across patients, depending on their chemotherapy regimen, limiting the availability of blood 

test data for predictive model development. In general, pre-radiotherapy blood test results were 

less frequently recorded in the clinical notes unless the patient was receiving neoadjuvant 

chemotherapy. 

Social factors, including smoking status, alcohol consumption, marital status, living 

conditions, financial status, education level, and family information were generally recorded 

during the initial consultation with clinicians. However, there was no standardized form for 

collecting this information, except for a nursing consultation form that was not used for all 

patients. Consequently, much of this information was missing, and where it was present, there 
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were significant variations in reporting. The lack of data validation complicated digitization of 

this data for model development.  

Variability and ambiguity in clinical data from consultation notes 

Another challenge for model development is the extraction of quantitative feature data 

from clinical notes. As a result of clinical notes being  recorded as raw text / free text, there 

were substantial variations in abbreviations, use of symbols, and spelling between clinicians. 

This led to ambiguity in the interpretation of the notes and made extracting quantitative features 

difficult. For example, toxicity outcomes were sometimes indicated by the name of a condition 

accompanied by a ‘+’ or ‘++’, or the negative equivalents. This could be interpreted in different 

ways: the positive sign could indicate the severity or the rate of change of the condition, and 

reference to a baseline or past consultations made interpretation difficult. Extraction of clinical 

data from consultation notes generally requires manual inspection and interpretation, checking 

the record date, considering past records, and the treatment history of the patient. In this study, 

the median time taken for a researcher to extract the clinical data from a single patient folder 

was 50 minutes. Therefore, scaling up the sample size requires significant time investment. 

Any attempt to automate this process would need to ensure accuracy and avoid 

misinterpretation of the notes. There are common aspects to the structure of each consultation 

note, however the notes are recorded on different types of forms with inter- and intra-clinician 

variation in the style of reporting. 

Determining accurate sample size requirements 

 In developing a toxicity prediction model, determination of the required sample size 

may be based on detection of a statistically significant improvement in the discrimination 
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performance compared to a reference AUC. Alternatively, the null hypothesis may be that the 

model discrimination is equivalent to random chance, though this does not ensure sufficient 

power for statistical comparison between models. 

 Different methods for sample size calculation for ROC analysis have been proposed in 

the literature [314, 315]. The equations for the sample size tend to be highly complex and 

depend on estimation of variance for each AUC. The resulting sample size estimate will depend 

not only on the expected difference in AUCs, desired significance level, and power, but also 

on the expected incidence of the outcome, the correlation between models, and the standard 

deviation within each group. Accurate estimation of the additional parameters is challenging 

when designing a study, especially if pilot data is not available. The expected difference in 

AUCs may be set at the minimum clinically significant improvement in the absence of 

preliminary results from pilot data, though this determination is quite subjective. In practice, 

the limitations on sample size are more often determined by the number of available patients 

per institution, and the number of institutions which can feasibly be included. But this approach 

is useful at the initial stages of study design or protocol development to determine the feasibility 

of the project. 

Handling model selection bias 

In  CHAPTER 4, CHAPTER 5, and CHAPTER 6, the optimal combination of feature 

types (clinical, DVH, radiomic, dosiomic, contouromic) and VOIs was investigated by 

performing model development and evaluation for each combination. The hyperparameters for 

the model pipeline were optimized for each combination, and the resulting internal and external 

validation scores were obtained. Higher scores indicated that the selected combination 
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contained more relevant, generalizable features and fewer irrelevant, non-generalizable 

features. However, evaluating multiple feature combinations with the same external validation 

set can result in implicitly tuning the feature set to match the specific properties of the external 

validation set, rather than obtaining models which would also be generalizable to other 

institutions. This is a form of selection bias and can result in over-optimistic estimates of 

external validation performance. The best performing models may happen to be best suited to 

the PWH dataset but would not be equally generalizable to other hospitals. Therefore, there 

was a trade-off between identifying the best feature type and VOI combination and the 

selection bias from multiple comparisons using the same external validation data. However, 

eliminating this form of bias altogether would have prevented exploration of the role of choice 

of VOIs and feature types on model generalizability. 

7.2.3. Proposed solutions for improving performance 

Multi-centre study design 

Future development of multi-omic models must be based on multi-centre studies. One 

reason for this is the need for larger sample sizes; there is a limit to the number of recruitable 

NPC cases treated at a single institution, and combining cohorts from different institutions and 

countries may be necessary to reach large sample sizes. Such studies will provide more reliable 

results with greater power and less risk of false positive or false negative errors. The effect of 

confounding factors can be more easily addressed in studies with larger sample sizes. Another 

reason for performing multi-centre studies is the need for external validation. Ideally, models 

would be tested on data from multiple external institutions, to better evaluate the 

generalizability and robustness to inter-institutional differences. Furthermore, having multi-
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centre training data would facilitate the selection of more generalizable models, since 

performance optimization would be affected by how well the models can perform across 

different institutions. An example of such a study design is shown in Figure 40. However, use 

of multi-centre data involves additional challenges. Advanced data harmonization techniques, 

such as ComBat harmonization, may be necessary for overcoming the effect of differences in 

scan parameters on radiomic features [316]. Differences in treatment regimen between 

institutions also pose a significant challenge. If the development dataset has sufficient samples 

to capture these differences without overfitting, models may be able to learn patterns resulting 

from these differences in treatment regimen. For example, including three centres for model 

development and three centres for external validation, each with 200 cases, would provide a 

significant advantage for developing generalizable models while providing greater statistical 

power to detect a significant improvement in AUC. 

 
Figure 40: Example of proposed multi-centre study design 

Further development of VOI auto-segmentation 

Deep learning-based auto-segmentation of VOIs is a valuable tool for obtaining a 

complete and consistent set of contours without requiring additional work from experts. In this 

work, auto-segmentation models were used to standardize the segmentation of the extended 

oral cavity, larynx, parotids and pharyngeal constrictor muscles. Prior to auto-segmentation, 
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there were significant differences in the boundaries of the contours and large differences in the 

voxel volume, particularly for the larynx and parotid glands. The differences in voxel volume 

across institutions were not statistically significant after applying auto-segmentation. The auto-

segmented VOIs were visually inspected to qualitatively assess their accuracy. 

One area of future development for VOI auto-segmentation is quantitative validation 

of the accuracy of the auto-segmentation contours. Ideally, pre-trained public models with 

published validation findings should be used. Ideally, if a custom model is trained, quantitative 

comparison should be made with example contours by clinicians. Such comparisons should 

include measures of overlap such as the Dice coefficient, and measures of inter- or intra- rater 

variability using the ICC. 

Another area of future development of VOI auto-segmentation is to expand the set of 

VOIs beyond those included in the guidelines for RT planning for NPC. It may be possible to 

further optimize the VOIs to be more specific and relevant to discrimination of the risk of 

severe toxicities. However, because of the limited number of published studies on the 

prediction of severe OM and dysphagia, there is not a strong consensus on the optimal VOI 

delineation that should be used. Exploration of a range of VOI variations could be explored. 

For example, sub-dividing the extended oral cavity into its sub-regions, or including mucosal 

surface contours of different thicknesses, or converting 2D features from the surface contour. 

A study on prediction of OM extracted DVH features from a 3mm thick oral mucosa contour 

[55]. Such a contour may provide more specific information than a VOI including all the oral 

cavity or extended oral cavity. However, extraction of multi-omic features would involve some 

additional considerations. Firstly, many shape features would be redundant with the whole-
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volume equivalent. Secondly, the extraction of textural features would need to be carefully 

justified. The thickness of the surface contour would impact on the calculation and 

interpretation of 3D texture features. Alternatively, the contour could be unfolded into a 2D 

region-of-interest (ROI) for 2D texture feature extraction. Contouring thin surfaces can involve 

additional challenges. The surface may be on the boundary of tissue changes, which could 

increase the impact of inaccurate contouring and reduce the stability of features to inter-

observer variation or simulated perturbations to the contours. Resegmentation based on the HU 

range of the tissues of interest could be applied to address this, but this might lead to a 

fragmented VOI in the case of inaccurate contours. The use of surface VOIs may hold potential, 

but careful consideration, clinical justification and review by experts are recommended.  

Improvements to model development methodology 

While this project aimed to conduct model development carefully and avoid 

information leakage to the validation set, there remain further improvements which could be 

implemented in future. One of these pertains to the model selection process, where the machine 

learning algorithm with the highest discrimination score across training, internal validation, 

and external validation was selected. Bias could be further minimized by ensuring that model 

selection is conducted within the model optimization stage and without reference to the external 

validation score. The external validation score should ideally be evaluated only once after the 

final model has been selected based on its internal validation performance. This approach 

ensures that the reported generalization performance reflects the model's true predictive ability, 

rather than a model that appears to perform better on the external validation set due to random 

fluctuations or because it has been inadvertently tailored to the specific institution providing 
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the validation data. However, selecting the model based on the test set is still frequently 

performed in the literature [317]. Selecting the final model based on the internal validation 

performance also would require further minimizing the bias in the internal validation score. 

This results from cross-validation, where the same data is used to identify the best set of 

hyperparameters and estimate the generalizability of the model on unseen data. Nested cross-

validation can reduce this type of bias, albeit at a substantially higher computational cost. With 

a sufficiently large dataset, the number of folds might be restricted, allowing for a less drastic 

increase in the computational cost. However, with a limited sample size, 3-fold or 5-fold nested 

cross validation would leave insufficient data for training, thereby limiting the model’s ability 

to identify patterns. This project only consisted of a single development dataset and a single 

validation dataset. Exploring different combinations of preprocessing settings, such as the 

threshold for the hierarchical clustering and feature stability ICC, might lead to some bias in 

the results. The chosen settings might be optimized for those particular datasets, or yield better 

results due to statistical fluctuations, but they may not be generalizable. This issue should be 

less impactful if the datasets included training and testing data each from multiple centres.  

Further refinement of image perturbation feature stability assessment 

Feature stability is essential for reproducible, reliable models. The simulated 

perturbations approach has been proposed as a method to assess feature stability without the 

need for employing multiple different experts to assess inter-observer variability or taking 

additional scans to assess test-retest reproducibility [266]. However, as seen in Section 3.7, the 

feature stability varied across VOIs. This may be inherent to the challenges of contouring the 

VOI, but conversely there is the possibility that the perturbation parameters may not be optimal 
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and require further fine-tuning to fit each VOI. Future studies would benefit from a detailed 

comparison between features extracted from manual contours by different experts and features 

extracted from a given set of perturbation settings. This would ensure that only unstable 

features were excluded. 

The study that introduced the image perturbation approach for radiomic feature 

robustness assessment also proposed a second method of harnessing the perturbations [266]. 

In this approach, the mean values of the robust features across all perturbations are used for 

modelling, rather than the features extracted from the original image and VOI. The authors 

acknowledged that this approach requires calculation of perturbations for all images in the 

model development cohort and is therefore more computationally expensive. This approach 

could, however, improve the robustness of the features included in model development.  

In the study by Teng et al., the features extracted from the perturbations were treated as 

separate internal validation cohorts and were used to validate the reliability of the model [318]. 

The ICC was also calculated across model prediction outcomes to assess the consistency of 

models across perturbations. This approach could be beneficial in future studies to further 

assess the model reliability, though comparisons should be made to similar approaches 

conducted using bootstrapping to determine whether the additional computational cost is 

merited.  

Finally, image perturbations could be used for data augmentation for model 

development. Since sample size is frequently reported as a limitation in radiomic, dosiomic or 

contouromic studies, this approach could be used to increase the number of training samples. 
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Each perturbation could be treated as a separate patient with different multi-omic feature 

values. Clinical features could be handled by repeating values for binary features and by adding 

noise for continuous features. This approach would likely result in reduced variability in the 

development data because of the lower variability between perturbations compared to that 

between patients. Performance estimates based on the augmented data would therefore be less 

reliable. However, if sufficient external validation data were available, this approach might 

help to mitigate the challenges of limited sample sizes, allowing for more subtle patterns to be 

detected and more complex relationships to be modelled. 

Comprehensive reporting and data sharing 

In addition to having individual studies with high quality and high levels of evidence, 

the development of multi-omics for prediction of severe OM and dysphagia would benefit from 

having consensus between independently conducted studies. Such studies could perform 

validation of existing models or produce independent findings. In either case, comprehensive 

reporting is of critical importance to achieve reproducible and transparent research. Insufficient 

detail in the methodology or results evaluation prevents adequate critique and comparison 

across the literature. Sharing of imaging, clinical, multi-omic or model data, is often 

recommended in guidelines such as the CheckList for EvaluAtion of Radiomics research 

(CLEAR) [227]. It would facilitate independent validation and increase the availability of data 

for model development. However, sharing of imaging data may not be possible for patient 

privacy reasons, unless sufficient removal of identifying features is conducted.  Feature data 

should be less affected by privacy concerns; however, authors may be reluctant to make the 

first generous step, over concerns that other authors may not follow. Research groups may also 
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be inclined to retain control over their datasets to avoid facilitating competition with other 

groups on the same research topics. Public datasets remain a useful tool for researchers. Such 

datasets may be published by government organizations who wish to promote greater 

cooperation and research activity using local data. 

Ensuring accurate and comprehensive toxicity outcome data 

Ensuring accurate and comprehensive toxicity outcome data is essential. Toxicity 

grading must be consistent and adhere to a specific version of a grading system, as criteria can 

vary over time with different emphases on visual presentation or functional impact. 

Additionally, it is crucial to ensure that there is sufficient follow-up, covering the relevant 

period. There is a risk of under-estimating toxicity outcomes when consultation records are 

insufficient. This issue may stem from data collection practices, limitations of hospital record 

keeping, or patients repeatedly missing scheduled consultations. Identifying patients with such 

missing data is advisable to ensure a representative dataset and avoid diluting the incidence of 

severe toxicity outcomes. Dean et al. discussed a method to mitigate this under-reporting [131]. 

Prospective studies may offer greater potential to standardize assessment of toxicities within 

and across institutions. A more standardized assessment schedule could facilitate more in-depth 

analysis of the time evolution of OM and dysphagia, providing an additional dimension to 

capture the complex interaction between these toxicities. 

Inclusion of genetic and biological information 

Increasing the scope of data collection to include genetic information is advisable, given 

the evidence for the role of particular SNPs in connection with severe OM and dysphagia [67, 

85, 104, 115, 126, 127, 217]. This may facilitate radiogenomic analysis, identifying 
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correlations between radiomic and genomic features to give a more holistic understanding of 

toxicity and provide a biological explanation for the characterization of tissue provided by 

radiomics. This would require a prospective study unless a cohort of retrospectively recruited 

patients had already been enrolled in another trial where genomic data had been collected. In 

this case, there would be a risk of selection bias from the inclusion criteria of the prior study, 

if it differed from the intended inclusion criteria. Likewise, comprehensive collection of blood 

test results or saliva test results, which have also been associated with severe OM and dysphagia 

[79, 81, 123, 203], would be best achieved in a prospective study design, because in standard 

clinical practice, the clinical laboratory tests were performed on patients based on their specific 

needs and conditions. Similarly, the investigation of the role of EBV and HPV in the 

development of severe toxicity could be further explored in prospective studies, where all 

included patients could be tested before treatment. In standard clinical practice, this was not 

the case. 

More comprehensive collection of patient-related factors 

A more in-depth collection of patient factors would be desirable. Data on pre-treatment 

performance status was sparse, but this indication of the general physical condition of the 

patient was reported as a predictive factor for severe OM and dysphagia by several studies 

[128, 130]. Prospective studies could collect this data as well as data on the pre-treatment dental 

condition and oral health, such as number of teeth, which have been reported in connection 

with OM. Quantification of pre-treatment appetite, eating habits, and difficulty swallowing is 

challenging, but this would be advisable. It would represent a set of risk factors that could be 

associated with higher chance of severe dysphagia. Subjective factors such as pain perception 
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could also be measured, providing a link between psychology and development of severe 

toxicity. 

Greater characterization of chemotherapy regimen 

A limitation of this work was the lack of in-depth characterization of the chemotherapy 

regimen received by patients. Specifically, analysis of the differing impact of neoadjuvant and 

adjuvant chemotherapy, and the role of different chemotherapy drugs, doses, and numbers of 

cycles. While models did account for the use of chemotherapy versus radiotherapy alone, the 

significant differences in the usage of neoadjuvant and adjuvant chemotherapy in each centre 

precluded the inclusion of these features, due to the imbalance between centres and the 

resulting lack of generalizability of these features. With a multi-centre development cohort, 

more generalizable models incorporating further chemotherapy characterization could be 

developed. Information on drug type, dosage, and numbers of cycles was stored in the form of 

handwritten text that was often very difficult to interpret and had a high level of complexity, 

precluding straightforward conversion into categorical or continuous feature data. 

Standardization of chemotherapy regimen is infeasible, since the differences have important 

clinical justifications, such as using carboplatin instead of cisplatin for patients with reduced 

renal function. Larger sample sizes would enable development of more complex models that 

could incorporate a wider range of features characterizing chemotherapy regimen. 

Inclusion of radiomic features from MRI 

Extraction of radiomic features from magnetic resonance imaging (MRI) may offer 

additional predictive value. MRI are often acquired prior to RT and are inspected when 

determining grading and performing VOI segmentation. However, for patients included in this 
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study, the MRI were typically acquired several weeks before the planning CT, and patients 

generally received their MRI before neoadjuvant chemotherapy, if applicable. There may 

therefore be additional morphological changes in the tumour due to this time gap and from the 

impact of neoadjuvant chemotherapy on weight loss and tumour size. Additionally, MRI were 

acquired in a different patient position, without immobilization, and there were significant 

geometric differences between MRI and planning CT. Furthermore, geometric distortion is 

inherent to MRI. Therefore, extraction of MRI radiomic features necessitates careful geometric 

registration and checking of each VOI, which would require clinical expertise or a specially 

trained and validated AI model. Additionally, there may be variation across patients and across 

institutions in the specific MRI sequences and parameters used for acquisition, resulting in 

greater challenges in obtaining stable and robust radiomic features. The enhanced soft tissue 

contrast offered by MRI might offer advantages for model development, though there would 

also be a trade-off with the resulting increase in dimensionality from having a larger number 

of extracted features. Exploration of the role of MRI is desirable, provided that these challenges 

can be overcome. 

Development of models with prospective data 

Prospective studies could facilitate more structured data collection and enable easier 

data validation and conversion into categorical or continuous features. Clinicians could be 

provided with specialized forms during consultations, with separate multi-point scales for 

assessing toxicities, diet, performance status score and other factors, as well as space to record 

continuous valued features like weight. If the form were provided in a digital format, then data 

validation could be provided to prevent variations in spelling and minimize the impact of typos. 
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Implementation of such a form would need to consider the clinical resources required, such as 

the clinician’s time. Additionally, questionnaires could be provided to obtain information on 

patient reported toxicity and quality-of-life outcomes. If clinical resources permit, more 

comprehensive assessment of dysphagia could be conducted using video fluoroscopy 

swallowing studies or endoscopic evaluation. These would provide more direct assessment of 

the mechanism of swallowing, in greater isolation from the impact of pain, discomfort or 

appetite. Prospective studies would also allow the scope of data collection to be expanded 

include genetic and biological information, as discussed previously. 

Use of centralized medical data services 

Increasingly, countries are investing in centralized medical data services where ‘big 

data’ from hospitals can be stored and analysed under one system. This follows the move 

towards digitalization of healthcare records. Such services offer a huge potential for the 

development of AI models, including machine learning-based multi-omic models. Such 

services offer access to imaging and clinical data from multiple centres, addressing many of 

the issues raised in this chapter. In Hong Kong, this service is provided by the Hospital 

Authority Data Collaboration Lab [319]. However, patient privacy and data security is 

paramount, and there are consequently several measures in place to safeguard the data. Such 

measures include only allowing data access at specified secure locations. This means that all 

exploratory analysis, data collection, preprocessing, modelling, and evaluation would typically 

have to be performed on site, with only aggregate data such as mean performance scores or 

mean clinical feature values being able to be exported out of the secure site. In practice, this 

would necessitate many visits to the site by research personnel with strong programming and 
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database management skills, or extensive preparation of research tools that could facilitate data 

cleaning and analysis. Such an endeavour would be best achieved by a medium to large 

research group over a longer time frame. The project would need a highly thorough and detailed 

protocol, extensive ethics approval steps, and enough time to meet the administrative 

requirements of the Hospital Authority. These limiting factors have been discussed by local 

researchers and there may be some future developments to further facilitate and streamline the 

process of conducting such projects, to better utilize the vast amounts of available data for 

increased research and development output.  

7.3. How can multi-omic models be implemented in clinical 

practice? 

7.3.1. Requirements for published literature 

Strong evidence of the performance of multi-omic models is critical for any move 

towards clinical implementation. Such evidence would come from prospective studies, or even 

better, randomized controlled trials. These types of studies would reduce the risk of selection 

bias and information bias, and demonstrate a higher level of evidence, while also allowing for 

greater control of confounders. Establishing this level of evidence would provide confidence 

that the proposed models can accurately predict severe OM and dysphagia.  

The aim of developing predictive models for severe acute OM and dysphagia is to 

facilitate targeted interventions for prevention and management. In addition to improving 

model discrimination, the benefit of the intervention must also be demonstrated. This depends 

on the type of intervention proposed. Photobiomodulation therapy (PBMT), also known as Low 



 

250 

 

level laser therapy (LLLT), is an intervention proposed for the prevention and treatment of 

OM. A systematic review and meta-analysis found a beneficial effect of PBMT on OM in HNC, 

though the authors recommended that future studies should investigate the most effective 

parameters for PBMT in the management of OM [320]. While PBMT is thought to be safe, 

there would be costs associated with equipment and hospital personnel to deliver the treatment, 

as well as the burden on patient in terms of time spent during treatment. Clinicians would need 

to assess the efficacy, cost, and benefits of a proposed treatment once a set of optimal 

parameters is determined. PBMT may also have a secondary benefit in reducing the severity 

of acute dysphagia by tackling the OM symptoms. Additionally, speech and language therapy 

has been proposed for managing dysphagia [321]. The costs and benefits of providing these 

services to patients would need to be assessed, considering the expected performance of the 

prediction model and comparing it to the treat-all and treat-none approaches. 

A further consideration is the explainability and interpretability of the model. An 

advantage of the multi-omics approaches used in this project is that, unlike deep learning ‘black 

box’ models, each feature has a pre-defined mathematical definition that corresponds to a 

known property. However, the interpretation of radiomic, dosiomic or contouromic features 

can still be difficult, particularly in the case of second-order textural features. Clinicians may 

be reluctant to employ a model which does not have an intuitive explanation, or which does 

not use omics which have an established close connection to biology, such as genomics or 

proteomics. Future development of predictive models for toxicity may involve a broader set of 

omics, where connections between different omics may provide a more holistic understanding. 
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For example, radiogenomics promises to uncover links between macro-scale imaging features 

and micro-scale genetic properties.  

While this project focused on acute OM and dysphagia, it is important to acknowledge 

that late and chronic toxicity are also important, for their impact on quality-of-life post-

treatment. For a model to be considered for clinical implementation, it would also be helpful 

for it to include some investigation of late toxicity. The link between acute and late toxicity has 

been reported for dysphagia [213], and future studies may be able to further characterize the 

link between the two.  

7.3.2. Aspects of implementation 

Clinical implementation must allow for the prediction of the risk of severe OM and 

dysphagia without incurring significant clinical time or resources beyond the standard of care. 

As such, the implementation must be in the form of integrated software requiring minimal input 

from the clinician. The software must be able to access the medical imaging data (CT or MRI) 

as well as the dose distribution from the treatment planning system. Any required VOI contours 

from RT planning should also be accessible. Next, any automatic segmentation would be 

performed, features would be extracted, and models would be evaluated. The predicted 

probability of severe OM and dysphagia could then be displayed for the clinician, along with 

the recommended intervention based on previous risk and cost analysis. It is unlikely that these 

model predictions could be used to further refine RT plans to improve dose sparing, because 

well-established dose sparing guidelines already exist, and any change would need to be well 
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justified. The priority of RT planning is to meet the required dose to the tumour along with the 

dose constraints, to prioritise the patient’s survival. 

A clinically implemented model should continue to be updated based on new data. The 

model may be further calibrated and fine-tuned for that specific institution. Alternatively, a 

federated learning approach could be employed, where models implemented at different 

institutions each send back model weight updates to further improve the master model. Any 

such approach must ensure that the security of hospital networks is maintained, and patient 

privacy is respected by avoiding any identifying information being at risk of interception. 

7.4. Predicting other treatment-induced toxicities 

Multi-omic models have been published for some other treatment-induced toxicities in 

HNC, as identified in Section 1.3.3. These include models for predicting late xerostomia, acute 

xerostomia, and late hypothyroidism. It would be particularly valuable to incorporate 

xerostomia into a multi-label toxicity prediction model for severe acute OM and dysphagia, 

because of the impact of saliva production on these conditions. Multi-omics might also offer 

potential for the prediction of dysgeusia, radiation dermatitis, hearing loss, and 

osteoradionecrosis. Inclusion of other toxicities was not possible in this project because of the 

limitations in the retrospectively collected consultation records. For many of these toxicities, 

severity gradings were not regularly recorded. Instead, there was reference to the condition 

accompanied by an indication of whether it was worsening or improving. This was insufficient 

for determining a severity cutoff. Prospective studies could ensure a standardized assessment 

during follow-up, and could include additional measurements such as hearing tests, 
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photographs of radiation dermatitis symptoms, and patient-reported questionnaires on 

dysgeusia.  
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CHAPTER 8 CONCLUSIONS 

Severe acute OM and dysphagia, as two of the most common and devastating treatment-

induced toxicities for NPC patients, pose a significant adverse impact on patient quality of life, 

as well as threatening treatment outcome because of pain, weight loss and treatment 

interruption. With the improvement in survival rates for NPC, it is increasingly important to 

address the burden of toxicity on patients. Accurate prediction of patients at high risk of severe 

toxicity should enable more personalised and targeted prevention and management strategies. 

In Chapter 1, a detailed literature review was conducted to identify risk factors for 

severe acute OM and dysphagia. Additionally, published prediction models for each toxicity 

were identified. Most models lacked external validation, and multi-omic features were under-

explored. Furthermore, many studies were developed on mixed cohorts of multiple HNCs, with 

very few highlighting the unique challenges within NPC. A literature review on the use of 

multi-omics for toxicity prediction in head and neck cancer confirmed the research gap. This 

informed the aim and objectives, as outlined in Chapter 2.  

In Chapter 3, a comprehensive methodology for model development and assessment 

was devised, including important steps such as assessment of feature stability, as recommended 

by the CLEAR guidelines [227]. 

Chapter 4 reported the development of  multi-omic models for pre-treatment prediction 

of severe acute OM in NPC patients undergoing RT. To our best knowledge, these represent 

the only externally validated prediction models for severe acute OM to utilize radiomic, 

dosiomic or contouromic features. Multi-omic models outperformed models developed using 
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conventional clinical and dosimetric features on the same dataset, and also outperformed the 

only externally validated model for severe acute OM in the literature. The results suggested 

that multi-omic features hold predictive value for severe acute OM independently of clinical 

and dosimetric features and can contribute to improved discrimination. 

Chapter 5 reported the development of multi-omic models for pre-treatment prediction 

of severe acute dysphagia in NPC patients undergoing RT. To our best knowledge, no full-

length articles reporting radiomic, dosiomic or contouromic models for severe acute dysphagia 

have been published. Multi-omic models outperformed models developed using conventional 

clinical and dosimetric features on the same dataset but did not surpass the performance of the 

models reported in the literature. Nevertheless, the results suggested that multi-omic features 

hold predictive value for severe acute dysphagia independently of clinical and dosimetric 

features and can contribute to improved discrimination, though to a lesser extent than for OM. 

Severity of OM can contribute to higher risk of severe dysphagia through its impact on 

pain during swallowing. Chapter 6 reported the development of multi-label prediction models 

for severe acute OM and dysphagia with the objective of further improving discrimination by 

harnessing information about the relationship between the two toxicities. To the extent of our 

understanding, this work was the first to report  multi-label models for predicting multiple 

toxicities resulting from radiotherapy. While the multi-label models did not outperform the top-

scoring models from Chapter 4 and Chapter 5, moderate discrimination scores were achieved 

in a proof-of-concept. Furthermore, evidence for the role of contouromics was highlighted by 

the results in accordance with findings from earlier chapters, providing further justification for 

future research into the role of features that quantify patient geometry. 
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Limitations identified in this study and related work highlight significant challenges in 

developing prediction models for severe acute OM and dysphagia. Chapter 7 provided a 

comprehensive discussion of practical considerations for future research, identifying the key 

challenges in improving model discrimination and proposing solutions based on the 

experiences gained during the development of this thesis. Additionally, special consideration 

was given to the key challenges involved in moving towards clinical implementation. 

Further research is required to improve the performance and level of evidence of multi-

omic prediction models for severe acute OM and dysphagia prior to their clinical 

implementation. This thesis serves as a critical foundation for future research towards 

achieving the aim of targeting preventative interventions and personalized management to 

patients at high risk of severe toxicities. The comprehensive assessment of the related literature, 

risk factors, published prediction models, and different approaches to model development, as 

well as the discussion of the limitations, proposed solutions and recommendations for future 

research, provide invaluable insights for the design of future studies.  
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APPENDIX 

Search strategy for literature review 
Table 58: Search strategy for Section 1.2 

Database Search String N results Date 

Embase TITLE = (toxicit* OR morbidit* OR "side effect*" OR mucositis OR 
dysphagia OR deglutition OR swallow* OR "tube feed*" OR ryle* OR enteral 

OR nasogastric OR intubation OR aspiration OR stricture* OR gastronom* 
OR "oral intake") AND (predict* OR model* OR correlat* OR corresp* OR 
depend* OR assoc* OR relation* OR interact* OR link* OR "risk factors") 
TI/AB/KW = (mucositis OR dysphagia OR deglutition OR swallow* OR 

"tube feed*" OR ryle* OR enteral OR nasogastric OR intubation OR 
gastronom* OR "oral intake") AND (radiation OR chemotherap* OR 

radiotherap* OR chemoradiation OR chemoradiotherap* OR 
radiochemotherap* OR pharmacotherap* OR "IMRT" OR "VMAT" OR 

"3DCRT" OR "CRT") 
Publication Year >= 2000 

Abstract OR Article 

1093 9/2023 

PubMed ((("Stomatitis"[Mesh] OR "Deglutition Disorders"[Mesh]) AND 
("Radiotherapy"[Mesh] OR "Drug Therapy"[Mesh]))) AND ((predict*[Title] 
OR model*[Title] OR correlat*[Title] OR corresp*[Title] OR depend*[Title] 

OR assoc*[Title] OR relat*[Title] OR interact*[Title] OR link*[Title] OR 
"risk*"[Title])) 

FILTERS 
Publication Year >= 2000 

553 9/2023 

Scopus TITLE = (toxicit* OR morbidit* OR "side effect*" OR mucositis OR 

dysphagia OR deglutition OR swallow* OR "tube feed*" OR ryle* OR enteral 
OR nasogastric OR intubation OR aspiration OR stricture* OR gastronom* 
OR "oral intake") AND (predict* OR model* OR correlat* OR corresp* OR 
depend* OR assoc* OR relation* OR interact* OR link* OR "risk factors") 
TI/AB/KW = (mucositis OR dysphagia OR deglutition OR swallow* OR 

"tube feed*" OR ryle* OR enteral OR nasogastric OR intubation OR 
gastronom* OR "oral intake") AND (radiation OR chemotherap* OR 

radiotherap* OR chemoradiation OR chemoradiotherap* OR 

radiochemotherap* OR pharmacotherap* OR "IMRT" OR "VMAT" OR 
"3DCRT" OR "CRT") 

Publication Year >= 2000 
Abstract OR Article 

701 9/2023 

Web of 
Science 

TITLE = (toxicit* OR morbidit* OR "side effect*" OR mucositis OR 
dysphagia OR deglutition OR swallow* OR "tube feed*" OR ryle* OR enteral 

OR nasogastric OR intubation OR aspiration OR stricture* OR gastronom* 
OR "oral intake") AND (predict* OR model* OR correlat* OR corresp* OR 

depend* OR assoc* OR relation* OR interact* OR link* OR "risk factors") 
TOPIC = (mucositis OR dysphagia OR deglutition OR swallow* OR "tube 

feed*" OR ryle* OR enteral OR nasogastric OR intubation OR gastronom* OR 
"oral intake") AND (radiation OR chemotherap* OR radiotherap* OR 
chemoradiation OR chemoradiotherap* OR radiochemotherap* OR 

pharmacotherap* OR "IMRT" OR "VMAT" OR "3DCRT" OR "CRT") 
Publication Year >= 2000 

Abstract OR Article 

797 9/2023 
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Pearson correlation heatmaps for most frequently selected 

features for severe OM and dysphagia prediction 

 

Figure 41: Pearson correlation coefficients for the most frequently selected 

features in the top 5% of models for severe acute OM in the development dataset 
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Figure 42: Pearson correlation coefficients for the most frequently selected 

features weighted by model AUC in the top 5% of models for severe acute OM in the 

development dataset 
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Figure 43: Pearson correlation coefficients for the most frequently selected 

features in the top 5% of models for severe acute dysphagia in the development dataset 
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Figure 44: Pearson correlation coefficients for the most frequently selected 

features weighted by model AUC in the top 5% of models for severe acute dysphagia in 

the development dataset 

Multi-label model settings 

Table 59: Top multi-label model settings for label powerset approach 

Initial feature set Clinical, radiomic, contouromic 

VOIs Extended oral cavity, parotid glands 

N features after ICC filter 

and VIF clustering 

23 

MRMR K 4 

Model Gaussian Naïve Bayes 

Var_smoothing = 1e-9 
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Table 60: Top multi-label model settings for classifier chain approach with 

shared feature selection 

Initial feature set Clinical, radiomic, contouromic 

VOIs Extended oral cavity 

N features after ICC filter 

and VIF clustering 

18 

MRMR K 4 

Model Gaussian Naïve Bayes 

Var_smoothing = 1e-9 

 

Table 61: Top multi-label model settings for classifier chain approach with 

separate feature selection 

Initial feature set Clinical, contouromic 

VOIs Extended oral cavity 

N features after ICC filter 

and VIF clustering 

23 

MRMR K 3 

Model Ridge regression 

Class weights = balanced 

C = 1 
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