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I 

Abstract  

Since the Second Industrial Revolution, rapid industrialization and urbanization 

have significantly increased global carbon dioxide emissions. In response, the 

international community has reached a consensus on the urgent need to reduce carbon 

emissions. As the largest developing country, China is undergoing rapid urbanization 

and industrialization, making it the world’s largest emitter of carbon dioxide. 

Investigating the patterns of China’s carbon emissions is therefore crucial for global 

climate change mitigation. Urban spatial structure, as a key element of urbanization, 

plays a significant role in shaping carbon emissions and provides valuable insights for 

low-carbon urban planning, with implications for global sustainable development. 

Despite its importance, research on the impact of urban spatial structure on carbon 

emissions in China remains limited. Most studies rely on correlation analyses and lack 

in-depth exploration. This thesis systematically examines the relationship between 

urban spatial structure and carbon emissions using remote sensing data, geographic 

information systems (GIS), and econometric methods. The research is framed within 

the thematic framework of "spatial distribution—quantitative impact—planning 

strategy." 

The study is structured into four main components: First, a literature review 

synthesizes existing research on urban spatial structure and related theories, 

establishing the focus of this study. Second, a multi-tiered indicator system is developed 

to analyze the impact of urban spatial structure on carbon emissions, incorporating 

factors such as population size, land area, land form, and green space. Third, an 
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empirical investigation is conducted using spatial analysis, principal component 

analysis, and mediation effect analysis to evaluate the characteristics of urban spatial 

structure and its effects on carbon emissions from multiple sources. Fourth, urban 

planning and management strategies for carbon reduction are formulated, grounded in 

the empirical findings. 

Using prefecture-level cities in China as the study sample, this research examines 

the spatio-temporal distribution characteristics of carbon emissions, urban land 

expansion, and spatial morphology. It further explores the impact of urban spatial 

structure on carbon emissions and proposes carbon reduction planning strategies from 

the perspective of urban spatial structure. The following conclusions are drawn: 

First, a sub-linear relationship between city size and total carbon emissions is 

observed, with emissions increasing at a slower rate than city size. City innovation 

mediates the relationship between city size and industrial emissions, producing both 

increasing and decreasing effects. In less developed cities, the effect of city size on 

innovation increases emissions, whereas in more developed cities, the reduction effect 

is yet to be fully realized. Scale effects are evident in heating carbon emissions, with 

increasing urban population density potentially mitigating heating emissions for the 

same city size. Larger cities exhibit greater transportation efficiency due to developed 

public transit systems, although the overall effect remains limited. 

Second, a super-linear relationship between urban land area and carbon emissions 

is found, with regional disparities. The western region is most affected, followed by the 

northeast, central, and eastern regions in China. Urban land area has a stronger impact 
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on transportation emissions in small- and medium-sized cities, while higher urban 

density significantly reduces heating-related emissions in colder regions. 

Third, greater complexity in urban land shape is associated with lower 

transportation emissions but may hinder urban development efficiency, making it a less 

viable strategy. Conversely, compact urban land form reduce transportation emissions, 

particularly in smaller cities. Polycentric urban structures lower transportation 

emissions but increase residential emissions. Urban green space ratios show mixed 

effects, positively influencing transportation emissions while negatively impacting 

residential emissions. Compact green space layouts mitigate transportation emissions, 

while balanced distributions reduce residential emissions. 

Finally, based on the empirical findings, spatial planning strategies for carbon 

emission reduction are proposed, with recommendations focused on urban population 

size and urban land area/form. 

In conclusion, this research provides a comprehensive analysis of the relationship 

between urban spatial structure and carbon emissions in China. The findings contribute 

empirical evidence and multidimensional strategies for carbon reduction, supporting 

China’s sustainable development and global climate mitigation efforts. 
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Chapter 1. Introduction 

1.1 Background 

Global climate change has gained widespread attention in recent years. 

Commencing with the Industrial Revolution in the 18th century, humanity has 

witnessed unparalleled growth in economic and technological realms. A significant 

escalation in energy demand accompanied this progress. The widespread utilization of 

fossil fuels has led to substantial carbon dioxide and other greenhouse gas emissions. 

At the same time, urbanization has led to a rapid increase in urban populations. 

Activities related to urban infrastructure and transportation have become prominent 

sources of carbon emissions. Notably, since 1950, there has been a steep ascent in global 

cumulative carbon emissions (Figure 1-1). Carbon dioxide emissions increased from 

approximately 200 billion tons in 1950 to 1.6 trillion tons by 2021. Such sustained and 

rapid surge in the accumulation of carbon dioxide signifies that the increase in global 

carbon emissions has reached a level of concern, with its implications for global climate 

change and environmental impact becoming increasingly pronounced. Consequently, 

this issue has drawn considerable attention worldwide, gradually initiating international 

efforts to curb carbon emissions. 
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Figure 1-1 Accumulated carbon emissions of the world and major countries1 

1.1.1 Carbon Emission Reduction: A Key Aspect of Carbon Neutrality and Peak 

Emissions 

The world is currently on a trajectory of rapid carbon dioxide accumulation. 

Reducing carbon dioxide emissions and mitigating climate change has become a 

consensus among societies worldwide. Carbon dioxide is a byproduct of urbanization, 

and its excess can lead to the greenhouse effect, causing systemic global climate change 

and severe ecological and environmental damage. Since 1990, global carbon dioxide 

(CO2) emissions have increased by nearly 50%. From 1880 to 2012, global temperature 

rose by 0.85°C2. The United Nations' new flagship report indicates that harmful carbon 

 
1 Data source: “Data Page: Annual CO₂ emissions”, part of the following publication: Hannah Ritchie, Pablo Rosado 

and Max Roser (2023) - “CO₂ and Greenhouse Gas Emissions”. Data adapted from Global Carbon Project. Retrieved 

from https://ourworldindata.org/grapher/annual-co2-emissions-per-country [online resource] 

2 https://www.un.org/sustainabledevelopment/zh/climate-change-2/ 
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emissions from 2010 to 2019 were unprecedented in human history. It warns that the 

world is on the fast track to disaster and immediate action is needed to limit global 

warming to within 1.5°C3 . Specifically, Goal 13 of the United Nations Sustainable 

Development Goals calls for integrating climate change measures into national policies, 

strategies, and planning. 

In 1988, the United Nations Environment Programme and the World 

Meteorological Organization established a specialized agency to address climate 

change, the Intergovernmental Panel on Climate Change (IPCC). This organization 

serves as a significant platform for international cooperation on climate change, with 

its third working group focusing on climate response strategies to limit greenhouse gas 

emissions. In December 1997, the Kyoto Protocol, the first treaty to reduce greenhouse 

gases was established in Kyoto, Japan. This protocol is a supplement to the United 

Nations Framework Convention on Climate Change (UNFCCC). Since the signing of 

the Kyoto Protocol, there has been a deepening consensus among nations on addressing 

climate change and reducing carbon dioxide emissions. Building on this momentum, 

the Paris Agreement was later adopted in 2015, aiming to further unite countries in the 

battle against climate change by setting more ambitious climate goals and enhancing 

support to meet these objectives globally. According to the 2023 Global Carbon 

Neutrality Annual Progress Report, more than 150 countries had announced or planned 

carbon neutrality targets. These countries account for 88% of the world's total carbon 

emissions, 85% of the world's population, and 90% of the global economy. For example, 

 
3 https://news.un.org/en/story/2022/04/1115452 
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China has proposed achieving carbon neutrality by 2060, while the United States, Japan, 

the United Kingdom, Canada, and the European Union aim for carbon neutrality by 

2050. Other countries with carbon neutrality targets are listed in the table. 

Table 1-1 Carbon neutrality goals of major countries around the world 

Country 
Target 

Year 

Policy or Occasion 

Proposed 
Details of Carbon Neutrality Goal 

China 2060 75th United Nations General 

Assembly Debate 

Achieve peak carbon emissions before 

2030, carbon neutrality by 2060, and strive 

for a transition to low-carbon development. 

USA 2050 Earth Day Leaders Climate 

Summit (April 22, 2021) 

Achieve net-zero carbon emissions by 

2050, vigorously develop clean energy and 

infrastructure, and improve energy 

efficiency. 

EU 2050 European Green Deal 

(December 2019) 

Achieve climate neutrality by 2050, 

including increasing the proportion of 

renewable energy, enhancing energy 

efficiency, and reducing greenhouse gas 

emissions 

Japan 2050 Parliamentary Speech 

(October 26, 2020) 

Achieve carbon neutrality by 2050, 

promote green energy technology, and 

reduce dependence on fossil fuels 

UK 2050 Carbon Neutrality Legislation 

(June 27, 2019) 

Achieve carbon neutrality by 2050, reduce 

greenhouse gas emissions, improve energy 

efficiency, and expand renewable energy 

use 

Canada 2050 Canada's Climate Plan 

(November 19, 2020) 

Achieve carbon neutrality by 2050, 

strengthen carbon pricing mechanisms, 

develop clean technologies, and improve 

energy efficiency 

South 

Korea 

2050 Presidential Address (October 

28, 2020) 

Achieve carbon neutrality by 2050, expand 

renewable energy use, enhance energy 

efficiency, and reduce coal use 

India 2070 26th United Nations Climate 

Change Conference (COP26, 

November 2021) 

Achieve carbon neutrality by 2070, 

vigorously develop clean energy, enhance 

energy efficiency, and strengthen carbon 

sink forestry 

Brazil 2060 Earth Day Leaders Climate 

Summit (April 22, 2021) 

Achieve carbon neutrality by 2060, reduce 

deforestation, improve energy efficiency, 

and develop sustainable agriculture 

The Chinese government has also long been attentive to energy saving and carbon 
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reduction. In June 2007, the State Council of China officially issued the "National 

Climate Change Program," with controlling greenhouse gas emissions being a key 

component. In September 2007, Hu Jintao, then President of China, advocated the 

development of a "low-carbon economy" at the Asia-Pacific Economic Cooperation 

(APEC) meeting. In 2008, China's Ministry of Construction, in conjunction with the 

World Wildlife Fund, initiated pilot projects for "low-carbon cities" in Baoding and 

Shanghai, drawing increasing attention to the practice and theory of low-carbon cities 

from both Chinese governments at all levels and the world. In July 2010, the National 

Development and Reform Commission (NDRC) officially issued a notice on launching 

pilot projects for low-carbon provinces and cities, initially identifying Guangdong, 

Liaoning, Hubei, Shaanxi, Yunnan, and the cities of Tianjin, Chongqing, Shenzhen, 

Xiamen, Hangzhou, Nanchang, Guiyang, and Baoding as pilot areas. This initiative 

expanded with the second and third batches of low-carbon city pilots in 2012 and 2017, 

respectively. 

On September 22, 2020, Xi Jinping, the President of China, put forward a 

significant strategic at the 75th United Nations General Assembly, proposing to achieve 

"carbon peak" by 2030 and "carbon neutrality" before 2060. The goals of carbon 

neutrality and carbon peaking have become a societal consensus and represent a further 

deepening of the concept of green development among the five development 

concepts(innovation, harmonization, green, openness and sharing). This initiative aims 

to build a community with a shared future for humanity and achieve harmonious 

development between humans and nature. 
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1.1.2 Urban Carbon Emission Reduction: A Broad Consensus in Tackling 

Climate Change 

Under the dominance of "anthropocentrism," urban spatial planning has long been 

oriented towards specific socioeconomic objectives. In China, while socioeconomic 

development has made significant strides under the push of urbanization, the ecological 

environment has also been compromised. Urban ecology and sustainability have 

become important contents and objectives of urban development, and studying the 

carbon emission effects of urban spatial structure is a crucial component of urban 

ecological planning. 

Cities, as the focal points of human social development, are engines of economic 

growth and significant sources of carbon emissions. Urbanization encompasses 

complex socioeconomic evolution processes, including population, land use, 

infrastructure, and the built environment. Currently, about 55% of the global population 

lives in urban areas, which is expected to rise to 70% by the middle of this century. In 

China, over 40 years of reform and opening-up, the socio-economic pattern has rapidly 

developed, urbanization levels have continuously increased, and the size and number 

of cities have grown. Data from the National Bureau of Statistics show that from 1978 

to 2020, China's urbanization rate increased from 17.9% to 63.89%, with the urban 

permanent population exceeding 900 million. The operation and development of cities 

require raw materials from the natural environment for production and life, and they 

discharge waste into it. Carbon dioxide is one of the primary gaseous wastes, leading 

to global climate warming. Cities are a principal aspect of carbon emissions, with 
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studies showing that they consume 66% of energy and emit over 70% of carbon dioxide 

(Yu et al., 2020). 

Therefore, studying urban carbon emissions is crucial to the development-emission 

reduction paradox. An essential part of urban planning is the organization and 

arrangement of urban space. Urban design and planning can is regarded as an efficient 

way for reducing carbon dioxide emissions (Falahatkar & Rezaei, 2020). For example, 

improving public transportation efficiency through rational land planning, and 

promoting low-carbon innovation through population planning. Technological 

Reduction involves developing and implementing advanced technologies to reduce 

emissions. Examples include carbon capture and storage (CCS), improving energy 

efficiency in industrial processes, buildings, and transportation, and transitioning to 

renewable energy sources like solar and wind. Moreover, some scholars believe that the 

space for technical emission reduction is gradually limited (Shen et al., 2021). Market-

based approaches use economic incentives to reduce emissions. These include carbon 

trading schemes, where companies can buy and sell emission allowances, and carbon 

taxes that put a price on emitting carbon. Both mechanisms aim to encourage businesses 

to invest in cleaner alternatives by making pollution more costly. Urban planning is 

often seen as a third option for carbon reduction outside of technology and the market 

(Liu et al., 2020). Additionally, urban design and planning can significantly reduce 

carbon dioxide emissions, thereby achieving low-carbon cities(Falahatkar & Rezaei, 

2020). 
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Figure 1-2 Evolution of total carbon emissions and urbanization rate in 

China(source:created by author) 

1.1.3 The Relationship Between Urban Spatial Structure and Carbon Emissions: 

Scientific Basis for Planning Emission Reductions 

As the core areas of economic and social development, cities are major sources of 

carbon emissions. In the fields of urban planning and environmental management, the 

relationship between urban spatial structure and carbon emissions has been receiving 

increasing attention. Not only does urban spatial structure affect residents' daily lives 

and socioeconomic activities but it also profoundly impacts urban energy consumption 

patterns and carbon emission levels. Planning emission reduction refers to reducing 

urban carbon emissions and minimizing environmental impacts through urban planning, 

design, and management, enhancing urban sustainability. Theoretical and empirical 

research provides the basis for planning. Before undertaking planning emission 

reduction efforts, it is essential to thoroughly study the impact of urban spatial structure 
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on carbon emissions, as this forms the premise and scientific foundation for planning 

emission reduction. 

1.2 Literature Review 

1.2.1 Review of Theories Related to Urban Spatial Structure 

1.2.1.1 Garden City Theory — The Enlightenment of Modern Urban Planning 

Thought 

Addressing the progressively deteriorating urban environment was a primary 

objective in the early urban planning and development stages. Urban planning during 

this phase pursued an ideal city, considering various urban diseases from the perspective 

of urban spatial structure. In 1898, Ebenezer Howard proposed the Garden City theory 

in response to the issues of overcrowding and poor sanitary conditions arising during 

urban development. This theory stemmed from dissatisfaction with the environmental 

destruction caused by 19th-century industrialized cities. Howard focused on the 

problems of urban spatial structure, believing that the deterioration of the urban 

environment was due to uncontrolled urban expansion, and he advocated for preventing 

disorderly urban sprawl. 

Howard introduced pioneering planning ideas, presenting significant viewpoints 

from key aspects of urban planning such as urban size, structure, population density, 

and greening. His contributions enlightened modern urban planning thought. 

Subsequently, ideal urban models were proposed, such as the Radiant City (representing 

urban centralism), Neighborhood Unit, Plug-In City, and Walking City et al. (Huang & 
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Du, 2009). 

1.2.1.2 Sustainable Development Theory — Focusing on Human-Environment 

Relationships 

The theory of human-environment relations delves into the dynamic interaction 

between human development and the Earth's ecological environment. Humans rely on 

the natural resources and energy provided by the Earth to sustain life and must address 

the impacts of their activities on the environment. As society, economy, culture, and 

politics advance, maintaining and protecting the natural environment increasingly 

comes to the fore. The core of this interaction is to promote harmonious coexistence 

between humans and the natural environment. 

Sustainable development theory focuses on the balance between human 

socioeconomic activities and the natural environment. Early on, in 1798, Thomas 

Malthus, through analyzing the relationship between food production and population 

growth, pointed out the potential conflict between the finiteness of natural resources 

and economic development. In 1962, Rachel Carson's book "Silent Spring" revealed 

the threats of pesticides to birds and other animal groups and the destructive impact on 

ecosystems, emphasizing that humans should coexist harmoniously with nature rather 

than exploit it unilaterally. 

The 1972 United Nations Conference on the Human Environment and subsequent 

international discussions heightened the focus on the impact of industrialization on the 

environment. The book "Careless Technology: Ecology and International 

Development" included case studies showing that while technological advancement 
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increased the efficiency of resource exploitation, it also led to over-extraction of natural 

resources. Later, the United Nations Environment Programme, in its 1978 report, first 

introduced the concept of "eco-development," further advancing the development of 

the sustainable development concept. 

In 1987, the World Commission on Environment and Development (WCED) 

explicitly defined sustainable development in its report "Our Common Future," 

emphasizing the importance of meeting current needs without compromising the ability 

of future generations to meet their own. Reducing carbon dioxide emissions and 

combating the greenhouse effect have become key tasks in achieving sustainable 

development. 

1.2.1.3 Composite Ecosystem Theory — Systematic Perspective on Urban Issues 

The Composite Ecosystem Theory is a critical theoretical foundation for 

sustainable development. This theory was first proposed in 1984 in response to the 

worsening ecological environment(Ma & Wang, 1984). It emerged from the recognition 

that human-centered methodologies were no longer sufficient to guide the sustainable 

development of society and the economy. The Composite Ecosystem Theory posits that 

cities and regions form a comprehensive ecosystem where human behavior is dominant 

and supported by the natural environment. In this system, the flow of resources is vital, 

with social and cultural elements interwoven like meridians. This system comprises 

social, economic, and natural subsystems, each following its unique operational rules, 

yet they are intertwined to form an interactive whole(Wang & Ouyang, 2012). This 
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theory emphasizes the coupled relationship between humans and nature, providing a 

new perspective for studying their interaction. 

1.2.1.4 Urban Metabolism/Urban Organism Theory — An Analogous 

Perspective 

As cities increasingly face severe ecological challenges, the immense pressure on 

resources and environmental degradation have limited urban development. Researchers 

have attempted to draw analogies between urban systems and living organisms or 

ecosystems to seek solutions for urban ecological problems(Lu & Chen, 2015). 

The concept of Urban Metabolism was introduced by Wolman in 1965. It can be 

understood as a comprehensive process involving materials inflow and energy into a 

city (inputs) and the outflow of products and waste (outputs), illustrating the city's 

impact on and interaction with its surrounding environment(Lu & Chen, 2015; Wolman, 

1965). The Urban Organism theory is more direct, viewing the city as a living entity. It 

borrows the concept of "metabolism" from ecology to describe and analyze the 

functions and processes of a city. The core of this theory is to understand how a city 

consumes inputs like energy, water resources, and food and produces outputs like waste 

and carbon dioxide, analogous to the metabolic processes in a biological organism. To 

some extent, research on the relationship between urban spatial structure and carbon 

emissions can also be considered a type of urban metabolism study. If the city is viewed 

as a living organism, this research analyzes the intensity and efficiency of carbon 

emissions under different urban spatial characteristics from an overall urban 

perspective. 
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1.2.2 Studies on the Relationship Between Urban Spatial Structure and Carbon 

Emissions 

Urban researchers have conducted extensive studies on urban spatial structure, 

exploring its influencing factors and impacts on social, economic, and ecological 

aspects in identifying and studying the current state of urban spatial structures. Yuan 

and Qiao (2023) analyzed the evolving trends of spatial structures in over 290 Chinese 

cities at or above the prefectural level. Lan et al. (2023) examined the evolution of 

Xi'an's multi-centered urban spatial structure. Studies on the environmental impact of 

urban spatial structures include research on the effects of urban spatial structure on 

PM2.5 (Han et al., 2020), and the impact of urban spatial structure on carbon emission 

efficiency (Dong & Zhang, 2023). Research on the urban economic aspect includes 

analysis of urban spatial structure and the upgrading of the global value chain(Fan et 

al., 2023), the impact of urban spatial structure on labor skill bargaining(Luo et al., 

2023), the influence of urban spatial structure on co-creation spaces(Zhu & Zhang, 

2023), and its effect on corporate innovation(Han & Zhuang, 2023). 

In summary, research on the role of urban spatial structure at various levels of urban 

systems, including social, economic, and ecological aspects, has garnered widespread 

attention. Scholars generally agree that as the basic framework of urban development, 

urban spatial structure broadly impacts all aspects of urban operation. Exploring the 

relationship between urban spatial structure and other urban system variables is 

fundamental to urban planning and policy development. 

Urban spatial structure research encompasses two main aspects: the scale of the 
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city and its geometric form. This thesis reviews the relationship between urban spatial 

structure and carbon emissions from these two perspectives. 

1.2.2.1 City Size and Carbon Emissions 

Size is the most significant characteristic of urban agglomerations and cities. 

Ranked before history, geography, and design, size determines most of a city's features 

(Bettencourt & West, 2010). For example, doubling a city's population requires only an 

85% increase in infrastructures, such as roads and power poles (Bettencourt et al., 2007). 

The reason may be that cities benefit from economies of scale, the concentration of 

people, and large-scale infrastructure, which promotes innovation and 

efficiency(Fragkias et al., 2013). In studies of urban carbon emissions, urban size is 

mainly defined by population and land, two key dimensions of urbanization. Population 

urbanization is the driving force of land urbanization, the spatial carrier of population 

urbanization. 

Studies on the relationships between city size and carbon emissions were often 

based on the urban scaling hypothesis: Is there a scaling relationship between city size 

and carbon dioxide? Is it possible to explain the relationship in simple mathematics? In 

what ways does city size affect carbon emission efficiency? Given the trade-offs 

between carbon emissions and socioeconomic development, what is the optimal size 

for a city? Those answers to these questions form the basic framework of quantitative 

theoretical research on the relationship between city size and carbon emissions. 

Efficiency and aggregate perspectives are two main directions for research. 
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(1) The aggregate perspective 

Increasing urban population sizes is believed to increase carbon dioxide emissions, 

so limiting urban size has been advocated. Human activities cause urban carbon 

emissions, so there is no doubt that the number of people living in cities affects carbon 

dioxide emissions and economic activities(Murtaugh & Schlax, 2009). Thirteen cities 

in the Yangtze River Delta were selected as the study area, the panel regression model 

was used to analyze the effect of urban population size on the aggregate amount of 

urban carbon emissions. The results showed that an increase in urban population would 

increase aggregate carbon emissions, so controlling urban populations and urban land 

expansion was proposed(Xia et al., 2019). 

Urban land use affects urban carbon emissions by influencing the number of carbon 

sinks and sources(Arneth et al., 2017). Urbanization is when forestland, grassland, and 

other vegetation-covered lands are replaced by built-up areas, thus resulting in urban 

expansion and reductions in carbon sinks, which means the land has less capacity to 

absorb carbon dioxide. A 12.5 percent increase in CO2 emissions between 1990 and 

2010 is thought to be the indirect result of land use changes(Houghton, 2017). Similarly, 

a positive correlation between urban areas and CO2 emissions has been 

found(Falahatkar & Rezaei, 2020).  

Expanding urban built-up areas increases transportation infrastructure, production, 

and living activities, thus directly bringing energy demand and carbon dioxide 

emissions. Controlling urban area expansion can directly reduce carbon dioxide 

emissions. Meanwhile, The influences of urban area distributions and spatial 



 16 / 254 

arrangements on carbon dioxide emissions should be examined. Through the 

adjustment of the spatial distribution of urban size, urban expansion can reduce carbon 

emissions on the premise of meeting the needs of human life. 

(2) The efficiency perspective 

With the expansion of city size, the aggregate carbon emissions of a city increase, 

but carbon emission efficiency may also be improved. As the size of urban population 

increases, per capita CO2 emissions decrease(Liu Jianghua et al., 2021). This scaling 

relationship becomes a tool for understanding the holistic relationship between urban 

expansion and carbon emissions. From a global perspective, urban population growth 

may also be a way to reduce emissions owing to a nonlinear relationship between urban 

population size and energy consumption(Gately et al., 2015). Likewise, Wang et al. 

(2016)found that urban carbon dioxide increased by only 0.2% when a city's population 

increased by 1%. One of the reasons may be that an increasing urban population size 

promoted technological advances and improved the efficiency of public facilities, 

thereby reducing carbon dioxide emissions to some extent(Zhou et al., 2019; Zhou & 

Liu, 2016). However, this result seems to differ from the following study. Using 366 

metropolitan statistical areas and 576 micropolitan areas in the United States, the elastic 

coefficient method was employed to analyze the relationship between CO2 emissions 

and population size. Yet, no relationship involving economies of scale was 

found(Fragkias et al., 2013). From the perspective of dynamic changes in urban 

population scales, another study examined the relationship between shrinking cities and 

carbon emissions. The study found that carbon emission efficiency was lower in 
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shrinking cities and a changing population size had a key effect on carbon emission 

efficiency(Liu et al., 2020). 

In sum, population and land use are the roots of urban carbon emission demand, so 

there is a significant relationship between urban size and urban carbon emissions. There 

is no doubt that the growth of city size leads to an increase in carbon dioxide emissions. 

This level of understanding has limited guiding significance for urban planning and 

management practice. If a single city reduced its carbon emissions by controlling its 

size, the carbon emissions of the city itself would fall. Increases in urban size result 

from migrations between cities or from rural areas to the cities. Population mobility 

leads to an increase in carbon emissions in a city after population inflow, but the 

aggregate global carbon emissions do not necessarily increase. Increases in carbon 

emissions may be determined by the difference between the carbon emission 

efficiencies resulting from the relative rates of population inflow and population 

outflow. This implication leads to the following two questions. First, are there any 

carbon savings resulting from urban population growth? Second, does the change in 

urban population size bring about changes in carbon emission efficiency, especially for 

shrinking cities? 

1.2.2.2 Urban Form and Carbon Emissions 

Urban form, which generally refers to the two-dimensional spatial layout of land 

use in cities, can significantly impact urban areas' socioeconomic conditions and 

environmental aspects. The Environmental Protection Agency (2001) highlighted that 
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urban form could influence habitats, ecosystems, endangered species, and water 

quality(Rafeq, 2006). Due to its potential in promoting urban sustainability and 

reducing carbon dioxide emissions, urban form is increasingly gaining attention from 

researchers(Fang et al., 2015). Moreover, it can affect the socioeconomic conditions 

and environment in urban settings(Camagni et al., 2002; Ou et al., 2013). Urban spatial 

layout is a crucial component of urban spatial structure(Mariaflavia, 2020).  Its 

planning should also be considered in developing low-carbon cities. 

(1) Urban land shape 

Scholars have used landscape metrics to analyze the relationship between urban 

spatial structure and carbon emissions(Wang G. et al., 2019; Zhang et al., 2018). They 

have focused on the relationships between morphology complexity, irregularity, 

fragmentation, and carbon dioxide emissions. Studies in several countries consistently 

show that urban fragmentation and irregularity increase carbon dioxide emissions. 

Number of Patches, Edge Density, Mean Perimeter-Area Ratio, Percentage of Similar 

Adjacencies, Patch Cohesion Index and Largest Patch Index were used to quantify 

urban form, while panel data were employed for the analyses of carbon emissions in 

Beijing, Tianjin, Shanghai, and Guangzhou. The results showed that fragmentation and 

irregularity would increase carbon emissions(Ou et al., 2013). Satellite remote sensing 

was used to extract urban built-up areas and the landscape index was used to quantify 

urban forms in 55 Japanese cities. The results revealed that a less fragmented public 

transportation sector emitted less carbon dioxide than sprawling cities, but urban form 

complexity had little effect on carbon emissions(Yasuyo et al., 2012). Using data from 
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30 provincial capitals in China from 1990 to 2010, Fang et al. (2015) found that 

increased urban complexity and irregularity led to increased carbon dioxide emissions. 

The fragmentation and compactness of cities, for example, in northern Iran were found 

to increase carbon dioxide emissions(Falahatkar & Rezaei, 2020). 

Urban sprawl leads to fragmentation, complexity, and irregularity in urban spatial 

forms. Wang Shaojian et al. (2019)found that urban sprawl has adverse effects on both 

the economic and social efficiency of carbon emissions. The complexity of urban forms 

was significantly correlated with the carbon emissions of all cities and the effect 

increased with the size of urban population(Shi et al., 2020). 

In sum, landscape metrics are mostly combined with remote sensing images to 

explore urban spatial forms' complexity, irregularity, continuity, connectivity, and 

fragmentation. A basic consensus has been reached. The irregularity, fragmentation, and 

complexity of cities lead to increases in urban carbon emissions, while contiguous and 

connected urban areas have higher carbon dioxide emission efficiency. However, urban 

form was measured only at the level of urban area contours, and its influence 

mechanism is seldom analyzed. Many empirical studies have revealed the relationship 

between urban form and carbon emissions. However, the question remains: how does 

urban form, as measured by landscape metrics, affect urban socioeconomic functions 

and, ultimately, carbon emissions? 

(2) The compactness of urban land use 

Landscape metrics are commonly used to quantify urban compactness. Four 

landscape indicators were used to measure the compactness of a city: the Aggregation 
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Index, Percentage of Similar Adjacencies, Patch Cohesion Index, and Proximity Index. 

The higher the degree of urban compactness, the lower the carbon dioxide 

emissions(Falahatkar & Rezaei, 2020). Other researchers found similar results (Yasuyo 

et al., 2012). 

Quantified by the ratio of the urban area to the smallest circumcircle, urban 

compactness is found to be negatively correlated with the social efficiency of its carbon 

emissions. Specifically, the smallest circumcircle is positively correlated with 

economic efficiency. Urban compactness is related to higher private costs, although it 

can reduce environmental costs(Veneri, 2010). It is believed that policymakers should 

recognize compactness as a trade-off between social and economic efficiency(Liu et al., 

2014). The study found that in high-density cities, compact urban development reduces 

traffic emissions but increases air pollution, so environmental exposure should be 

considered when adopting such methods(Yuan et al., 2017). 

Urban compactness may reduce CO2 emissions by improving the connectivity of 

cities. This idea is supported by Mariaflavia (2020), who states that less compact cities 

have longer commuting distances and times, resulting in lower quality of life and higher 

potential costs for family welfare. An analysis of the patch cohesion index found that a 

1% increase in connectivity could reduce CO2 emissions nationwide by 28.5 tons per 

hectare(Shi et al., 2020). Therefore, the degree of a city's compactness is considered by 

researchers to be an effective measure for low-carbon city construction. In contrast, 

compactness may raise the temperature of a city, thus increasing the pressure for carbon 

emissions. Climate factors may influence carbon emissions by influencing fossil energy 
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consumption(Liu Quanwen et al., 2021). For example, temperature differences can lead 

to differences in demand for fossil fuels. Improvements in city contiguity would 

enhance urban heat islands(Debbage & Shepherd, 2015), thus reducing carbon 

emissions. 

First, the definition of urban compactness mainly uses planar urban area 

measurements, but this lacks the analysis of urban architectural indicators such as 

building density, floor area ratio, and building height. The compactness measured by 

different indicators varies greatly in an urban built-up area. Future studies must quantify 

urban density or compactness through urban building indicators and investigate its 

effect on carbon emissions. Second, most existing studies agree that increasing urban 

compactness would reduce urban carbon emissions and improve carbon emission 

efficiency(Falahatkar & Rezaei, 2020; Yi et al., 2021). However, studies found that high 

compactness may bring about lower social efficiency, more environmental 

exposure(Yuan et al., 2017), and other factors negatively affecting the quality of life. In 

addition, the quantitative relationship between the degree of compactness and carbon 

emissions is still unclear. Previous studies have found that the degree of compactness 

would also increase the urban heat island effect(Debbage & Shepherd, 2015; Zhou et 

al., 2017) that can result in more carbon emissions. The influence mechanism should 

be investigated for the positive and negative effects of the degree of compactness on 

carbon emissions. Third, it is necessary to study the mechanism of how urban 

compactness affects carbon emissions. 

(3) Polycentricity/monocentricity 
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The urban center is a key element of a city. Monocentric and polycentric urban 

forms are universal perspectives of urban spatial structure(Han et al., 2020). 

"Polycentricity refers to balanced hierarchical relationships among centers in a regional 

system" (Burgalassi & Luzzati, 2015). Polycentricity can be defined by morphological 

polycentricity and functional multi-centroidism(Burger & Meijers, 2011). For 

morphological polycentricity, economy, population, and employment are indicators that 

are usually used to describe the concentration degree(Wang et al., 2022). For example, 

as the opposite of compactness, polycentricity is seen as a description of uniformed and 

centralized population distributions, including the distance of a city's sub-centers to the 

main center, the number of a city's centers, the population distribution between the main 

center and the sub-centers(Sha et al., 2020). Meanwhile, the functional approach is 

usually quantified by the interactions among centers (Green, 2016). Besides, two 

Common quantitative methods of polycentricity are the urban primacy index (Meijers, 

2008) and the rank-size distribution(Meijers & Burger, 2010; Wang et al., 2022). 

Although not well defined(Veneri, 2010) and regarded as a fuzzy concept(Taubenböck 

et al., 2017), polycentricity has been promoted as a planning tool to enhance 

competitiveness and sustainability. There were two opposite views about the effect of 

polycentricity on carbon emissions. 

Polycentric development is often believed to be conducive to higher CO2 emission 

efficiency(Sha et al., 2020; Wang et al., 2022). Similarly, it is confirmed that polycentric 

structures help reduce the mean CO2 concentrations(Sun et al., 2020). Polycentric 

spatial planning can reduce ecological footprint(Muñiz & Garcia-López, 2019). A step 
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forward, the effect of polycentricity on carbon reduction was believed to be regulated 

by urban distance and transportation infrastructure(Chen et al., 2021).  Furthermore, 

the carbon reduction effect of polycentric structures lies in the reductions in commuting 

duration(Sun et al., 2020). In a study on the effect of urban polycentricity on commuting 

costs, it is empirically found that a higher degree of polycentricity benefits the reduction 

of private and external mobility costs (Veneri, 2010).  

On the contrary, some studies found no evidence of the effect of polycentricity 

leading to carbon reduction. In the 2000s, the proxies for polycentricity were found to 

have significant and positive coefficients for CO2 in the NUTS-3 of Italian(Burgalassi 

& Luzzati, 2015). In 24 metropolitan areas, a study did not find significant nexus 

between polycentricity and driving or energy consumption(Lo, 2016). Similar results 

were found at the NUTS-5 regional level in Turkey(Sat, 2018). Polycentric structures 

have only a moderate impact on GHG emissions in the 125 largest urbanized areas in 

the United States(Lee & Lee, 2014). One of the core reasons for disparities in those 

analyses can be attributed to selections of spatial scale. Urban polycentricity is sensitive 

to spatial scale. What looks monocentric on a lower scale may be polycentric on a 

higher scale. 

1.2.3 Literature Summary 

After a review of literature on urban spatial structure, the research findings are 

summarized as follows: 

Firstly, this chapter begins by summarizing theories related to this topic, including 
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the Garden City Theory, Sustainable Development Theory, Composite Ecosystem 

Theory, and Urban Metabolism Theory. Historical developments in urban planning 

show that early urban planning primarily aimed to address the gradual deterioration of 

the natural environment. The Garden City Theory, a classic example of early urban 

planning, reflected concerns about environmental degradation in industrialized cities 

and proposed improving urban environments by controlling urban expansion. The 

introduction of this theory not only marked the beginning of modern urban planning 

thought but also laid the foundation for subsequent development in urban planning. 

Subsequently, the introduction of Sustainable Development Theory and Composite 

Ecosystem Theory further emphasized the balance between human activities and the 

natural environment in urban planning. These theories suggest that cities are not only 

centers of socioeconomic activity but also parts of the natural environment. Thus, urban 

development should be coordinated with environmental protection. The Composite 

Ecosystem Theory mainly provides a more comprehensive perspective to understand 

the workings of cities as socio-economic-natural complexes. In this context, the 

introduction of Urban Metabolism or Urban Organism Theory provides an essential 

theoretical basis for understanding the relationship between urban spatial structure and 

carbon emissions. Urban Metabolism Theory views the city as an ecosystem, 

emphasizing the consumption of resources and generation of waste in cities, closely 

related to carbon emissions. This theory helps us understand how cities consume energy 

and produce carbon emissions and offers a perspective for analyzing carbon emissions 

under different urban spatial characteristics. 
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Secondly, the study of urban spatial structure has received attention in urban 

planning, covering its impacts on the environment, economy, and society. Research 

shows that urban spatial layouts influence environmental quality, such as air pollution 

and carbon emissions, and play a significant role in economic activities and urban 

competitiveness. These findings underscore the critical role of optimizing urban spatial 

structure in promoting sustainable development and improving urban functionality. As 

the basic framework of urban development, urban spatial structure broadly impacts 

various aspects of city operations, forming an essential basis for urban planning and 

policy development. These research outcomes provide new perspectives for 

understanding the impacts of urban spatial structure and offer theoretical foundations 

for formulating effective urban development strategies. 

Thirdly, a review of studies on the relationship between urban spatial structure and 

carbon emissions reveals that urban size is one of the most critical factors of urban 

spatial structure, pre-determining most of the city's characteristics. (1) urban land 

expansion increases carbon sources but decreases carbon sinks, thereby increasing 

carbon dioxide emissions. Urban planners and policy makers should carefully consider 

urban land expansion. However, controlling urban population size seems less effective 

than reducing land size for carbon emissions. Shrinking cities have lower carbon 

emission efficiency than growing cities. (2) Compact cities have higher connectivity, 

which helps reduce carbon emissions by reducing commuting distances and times. 

However, these cities also have negative impacts, such as the heat island effect and 

reduced social efficiency. (3) Studies on the impact of urban density on carbon 
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emissions are still inconsistent. Research on the impact of polycentricity on carbon 

reduction is relatively limited, with opposite results. (4) Studies on urban form focus 

on the relationship between carbon emissions and urban surface characteristics (such 

as complexity, irregularity, and fragmentation), which are believed to increase carbon 

emissions. Landscape metrics are the most widely used method to quantify urban spatial 

form. 

Existing research in this field, while comprehensive, presents certain areas for 

further exploration and development. There are several research gaps as following. 

(1) The research on the impact of urban population size on carbon emissions is 

limited in depth. Currently, many studies primarily focus on exploring the quantitative 

relationship between urban population size, age, household structure, and carbon 

emissions. Although some studies have investigated the effects of urban population size 

on urban system variables (such as education and technological innovation), the 

specific impact on carbon emissions has not been thoroughly explored. This constitutes 

the research gaps for the thesis. 

(2) Existing research on the impact of urban spatial structure on carbon emissions 

mainly focuses on the "total amount," while studies that consider multiple carbon 

emission sources are still relatively few. The breadth of research needs to be further 

expanded. The nature of different carbon emission sources and urban connotations 

within cities exhibit significant differences. Conducting comprehensive analyses of 

multiple carbon emission sources, such as industrial carbon emissions, transportation 

carbon emissions, and residential carbon emissions, can not only improve the accuracy, 
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relevance, and effectiveness of the research results but also help compare the impact of 

urban spatial structure on different carbon emission sources. This, in turn, facilitates a 

comprehensive understanding of the focal points, which is beneficial for making 

balanced planning and decision-making. 

(3) Urban spatial structure should encompass both the "quantity" and "form" of 

land. Existing studies generally emphasize "form" over "scale," and discussing urban 

land morphology without considering the scale of urban land is of limited significance 

to planning practice. Empirical research typically remains at the level of determining 

the positive or negative impacts of land area and land morphology on carbon emissions. 

It fails to discuss the influence of different urban land "forms" on carbon emissions 

from the "quantity" perspective, taking into account various urban land areas. 

1.3 Research Purpose and Significance 

1.3.1 Research Purpose 

The impact of urban spatial structure on carbon emissions is one of the key 

scientific propositions in low-carbon urban planning(Ye, Chen, et al., 2012). This study 

aims to define the concept of urban spatial structure further and systematically construct 

an index system for it based on the theoretical and practical research of urban spatial 

structure both domestically and internationally. By employing quantitative methods 

such as statistical and geographical spatial analysis, this study seeks to delve into and 

reveal the influence of urban spatial structure on carbon emissions, thereby enriching 

the foundational theoretical system of urban planning. Following this foundational 
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research, the study will explore planning strategies using urban planning tools to 

achieve carbon reduction and provide theoretical and empirical support for mitigating 

climate change. The specific research objectives are as follows: 

(1) Clarify the concept of urban spatial structure, further explore and clarify its 

connotation and extension, and further clarify the research direction. 

(2) Reveal from multiple dimensions the extent and mechanisms of the impact of 

urban spatial structure(both urban size and urban land form) on carbon emissions, 

summarizing and refining these to enhance the advancement of urban planning theory. 

(3) From the perspective of "structural carbon reduction," propose planning 

strategies to improve carbon emission efficiency and mitigate climate change, thereby 

enriching the existing toolkit for urban planning. 

1.3.2 Research Significance 

Research on the impact of urban spatial structure on carbon emissions, based on 

the "population-land" nexus, tightly integrates urban planning theory and practice and 

plays a pivotal role in advancing the quantification and measurement of the ecological 

effects of urban spatial structure. 

Studies on how urban spatial structure affects carbon emissions include 

summarizing the concept of urban spatial structure and systematically constructing an 

index system and revealing whether and how urban spatial structure impacts carbon 

emissions. This research area, fundamental to urban planning and management, aims to 

clarify the concept and indicators of urban spatial structure and unveil the interaction 
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between urban systems and natural ecosystems. It falls within the realm of theoretical 

foundational research. Building on this theoretical groundwork and exploring specific 

strategies for urban carbon reduction through planning and management approaches are 

also key focuses of this study, belonging to the domain of planning practice. Based on 

this, the theoretical and practical significance of this study is as follows: 

Theoretical Significance: This research reveals the impact of urban spatial structure 

on carbon emissions and synthesizes findings, addressing the value orientation and 

development pathways of urban spatial development from the perspective of carbon 

emissions. It can provide reference material for sustainable development, ecological 

planning, and composite ecosystem theories. 

Practical Application Value: Firstly, from the perspective of the carbon reduction 

effects of urban space, the findings of this study can directly provide guidance for urban 

planning practitioners in carbon reduction planning, offer ecological considerations for 

government departments responsible for economic development planning, and 

facilitate the construction of low-carbon cities. Secondly, the specific planning 

strategies derived from this study for reducing urban carbon dioxide emissions through 

spatial adjustments can serve as practical references for healthy, harmonious, and 

sustainable urban development, contributing to constructing low-carbon and livable 

cities. 

1.4 Research Content 

Population and land are key components of urban spatial structure. This study 
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systematically investigates the impact of changes in urban spatial structure on carbon 

emissions during the urbanization process from the perspective of "population size - 

land area - land morphology." Building upon a synthesis and summary of existing 

research, it examines the influence of urban space on changes in carbon emissions. 

From the perspective of spatial structure adjustment, the study aims to provide 

theoretical underpinnings and practical planning strategies for carbon reduction in 

urban planning and development. 

 

Figure 1-3 Research framework(source:created by author) 

Chapter 1: Introduction. This chapter serves as the foundation for practical research, 

acting as a preliminary study that provides reference and guidance for subsequent 
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sections. It primarily introduces the research background related to urban carbon 

emissions, the objectives and significance of this study. It reviews the theories and 

practices related to urban carbon emissions, including a review of theories related to 

cities and existing research on the impact of urban spatial structure on carbon emissions. 

This chapter also constructs the research content and framework. 

Chapter 2: Urban spatial structure and related concepts. This chapter elaborated 

related concepts, consist of urban spatial structure, urban spatial form, urban built 

environment and urban land use. Through this chapter, we can achieve the research 

objective to a certain extent, laying the foundation for subsequent research. Through 

this chapter, we can achieve the research objective 1 to a certain extent, laying the 

foundation for subsequent research. 

Chapter 3: The Spatiotemporal Evolution Characteristics of Carbon Emissions in 

Chinese Cities. This chapter aims to provide data support for the entire study. Firstly, it 

calculates and obtains all the data required for this research. Secondly, it conducts a 

spatiotemporal dynamic analysis of carbon emissions in Chinese cities, thereby 

clarifying the current state of carbon emissions within the Chinese urban system. This 

serves to provide a foundational understanding for the subsequent empirical research 

and planning strategy studies.  

Chapter 4: The Impact of Urban Size on Carbon Emissions. This chapter first 

explores the scaling relationships between urban size and total carbon emissions, 

industrial carbon emissions, transportation carbon emissions, and residential carbon 

emissions. It then examines the impact of urban population size on each of these 
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emission sources separately. By this chapter, We can answer some of the content of 

research objective 2 from the perspective of urban size. 

Chapter 5. The Impact of Urban Form on Carbon Emissions. Based on the study of 

the impact of urban size on carbon emissions, this study investigates the impact of urban 

spatial form on industrial carbon emissions, transportation carbon emissions, and 

residential carbon emissions. The heterogeneity of the impact of urban morphology on 

carbon emissions under different land area constraints. Finally, the impact of urban 

green space scale on carbon emissions was analyzed. By this chapter, We can answer 

some of the content of research objective 2 from the perspective of urban land form. 

Chapter 6. Urban Carbon Reduction Strategies Based on Urban Spatial Structure. 

This chapter combines the previous analysis and empirical research on carbon 

emissions to propose strategies for urban carbon reduction. By this chapter, We can 

answer some of the content of research objective 3. 

Chapter 7. provides a summary of the thesis. 

1.5 Summary of This Chapter 

Population and land are key components of urban spatial structure. This study 

systematically investigates the impact of changes in urban spatial structure on carbon 

emissions during the urbanization process from the perspective of "population size - 

land area - land morphology." Building upon a synthesis and summary of existing 

research, it examines the influence of urban space on changes in carbon emissions. 

From the perspective of spatial structure adjustment, the study aims to provide 
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theoretical underpinnings and practical planning strategies for carbon reduction in 

urban planning and development. 



 34 / 254 

Chapter 2. Urban spatial structure and related concepts 

This section analyzes the concepts of urban spatial structure, urban morphology, 

built environment, and land use, and further defines the specific meaning of urban 

spatial structure within the context of this study. 

2.1 Urban Spatial Structure: Elements and Their Relationships 

Urban spatial structure is an interdisciplinary research subject, and many scholars 

have sought to define it. Among the earliest attempts to conceptualize urban spatial 

structure, Foley divided it into four levels(Foley, 1964). First, urban spatial structure 

encompasses the physical environment, functional activities, and cultural values. 

Second, it includes not only spatial attributes, which are the spatial characteristics of 

the three elements above but also non-spatial attributes, which refer to cultural and 

social activities that occur in space. Third, urban spatial structure comprises both form 

and process. Building on Foley's framework, Webber Melvin (1964) believed that form 

and process refer to the distribution and interaction of material and activities in space. 

Fourth, urban spatial structure has a temporal aspect, necessitating a focus on its 

evolution over time(Foley, 1964). 

Bourne (1982) adopted a systems theory perspective to define urban spatial 

structure, constructing three core concepts of the urban system. The first is urban form 

(urban form), referring to the spatial layout patterns among various elements within the 

urban system, including physical facilities, social groups, economic activities, and 

public institutions. The second is the interaction of urban elements (Interaction), which 
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realize the functions of a city and form functional entities or subsystems. Lastly, urban 

spatial structure is a set of spatial organization rules that determine urban elements' 

spatial distribution and interaction, thereby combining various subsystems into the 

entire urban system. The first level can be seen as the spatial characteristics of places 

where urban functions are realized, providing a framework for human activities in cities. 

The second level is the interaction patterns generated by human activities in urban 

spaces. The third level explains the formation and development of the first layer's form 

and the second layer's connections.  

In recent years, the definition of urban spatial structure has become akin to that of 

spatial form. It refers to the distribution of phenomena in geographical space(Horton & 

Reynolds, 1971). Similar definitions have emerged in recent research, with urban 

spatial structure being defined as the layout of city components(Yousefi & Dadashpoor, 

2019). Some studies on urban spatial structure, even without providing a conceptual 

definition, focus on the physical spatial structure of cities(Camagni et al., 2002; Hankey 

& Marshall, 2010; Lemoy & Caruso, 2020), typically characterized from a 

morphological perspective. For instance, some scholars use "hand-shaped" or "fan-

shaped" to describe the internal spatial structure of cities(Feng & Zhou, 2013). As a 

measurable unit and substitute for changes in landscape composition(Seitz et al., 2011), 

landscape metrics are a typical and widely used method for quantifying urban spatial 

structure, such as land use patterns(Herold et al., 2016). 

In a broader definition of urban spatial structure, the interaction of different urban 

components is also part of the spatial structure, related to Webber's concept of "process" 
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and Bourne's interactive models. This definition mainly involves human elements, with 

the spatial layout or patterns of interaction in the movement of people, goods, materials, 

and information often considered part of urban spatial structure(Zhong et al., 2014). 

Important factors include population distribution and migration, with related research 

using population distribution to quantify urban polycentricity and dispersion(Li & Liu, 

2018), as well as urban density(Kim & Kim, 2013). With the development of data 

analysis techniques, large datasets like social media and commuting data are being used 

to analyze urban connected spatial structures. Urban spatial structure is defined as the 

spatial layout of internal elements (physical environment) and their interaction within 

the city system (perceived environment) (Chen et al., 2019). 

In summary, urban spatial structure (Urban Spatial Structure) is a core concept in 

urban planning and geography, involving elements within and between cities and their 

spatial organization, functional distribution, and relationships. On a macro scale, it 

encompasses how various elements are distributed within urban geographical space, 

such as concentrated, dispersed, or uniform spatial distribution patterns. From the 

perspective of land and people relationships, it includes elements like urban population 

size and density. 

2.2 Urban Spatial Form: Attribute Concepts 

The term "Morphology" originates from the Greek words "Morphe" (form) and 

"Logos" (logic). Initially, morphological studies were primarily in biology, focusing on 

human anatomy to understand organisms' structure, size, and shape and, thereby, their 
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functions. The application of the morphological perspective in urban studies began to 

emerge in the early 19th century, viewing cities as organisms and studying their growth 

mechanisms(Duan & Qiu, 2008). 

In 1894, the French historian J. Fritz heavily utilized town plans in his publication 

"German Town Facilities," studying the spatial characteristics of German towns from a 

morphological perspective, which influenced urban research. In 1898, Howard 

published "Tomorrow: A Peaceful Path to Real Reform," proposing the idea of "Garden 

Cities" to address urban congestion and environmental degradation. He attributed urban 

environmental deterioration to urban expansion. 

The birth of Urban Morphology as a field occurred in 1899, primarily using the 

terms 'urban morphology' (predominantly in Europe) and 'urban form' (mainly in the 

USA). A landmark in its development was the publication of "Urban Layouts" by the 

German geographer O. Schlüter. In 1960, Conzenian established the framework for 

urban morphological research in "Town Plan Analysis: Alnwick, Northumberland," 

introducing innovative concepts like 'plan unit,' 'morphological regions,' and 'fringe 

belts' for analyzing urban form(Duan & Qiu, 2008). Conzenian classified the physical 

landscape of cities into three levels: town plan, buildings, and land use, with the town 

plan being the most stable and land use the most changeable(Zhang et al., 2012). The 

Urban Morphology Research Group (UMRG) was founded in 1971 by Slater and 

Whitehand, followed by the International Seminar on Urban Form (ISUF) in 1994, 

gradually forming the Conzenian school. 

In architectural studies, the focus is often on micro variables like buildings and 
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streets. For example, Ding et al. (2012) explored the impact of micro-urban texture 

morphology on thermal comfort, including indicators like sky view factor and urban 

roughness. On the other hand, urban planners and geographers tend to study macro 

aspects of urban form, such as town land use layout patterns, scale, and density(Xiu et 

al., 2018). In recent years, urban spatial morphology has broadened beyond physical 

space to describe economic, work-residence, and population movement characteristics 

in space. 

2.3 Urban Built Environment: A Relative Concept 

As a multi-dimensional concept, the urban built environment has not yet attained a 

unified definition in academic research. It is often perceived as a relative concept 

closely linked to human perception and interaction. This concept encompasses not only 

the physical elements of a city, such as land use, architectural structures, and green 

spaces but also includes dynamic factors of urban operation, like traffic flow and 

environmental temperature. Thus, the urban built environment is a composite of 

physical and functional characteristics and people's perceptions and responses to these 

characteristics. 

In research on the built environment at the metropolitan scale, the urban built 

environment includes features of polycentric spatial structure(Yang & Zhou, 2020). 

Wang and Mei (2018) describe variables of the built environment at the campus scale, 

including road network connectivity, facility functionality, public transportation quality, 

and land use mix. In the study by Shen et al. (2022) on the relationship between 
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characteristics of the urban built environment and carbon emissions, the concept is 

broader, encompassing key factors of urban form (such as urban density, size, sprawl, 

and work-residence balance), urban functions (industrial and commercial levels), urban 

traffic conditions, and urban greening. Boarnet et al. (2009), in their research on driving 

behavior and the built environment, primarily focus on the city's compactness as the 

primary variable of the built environment. 

Therefore, as a concept relative to "people," the urban built environment has a 

wide-ranging scope in academic research yet faces challenges in being precisely 

defined. Its application often merges with concepts such as urban form, land use, and 

spatial structure. As research progresses, the concept of the urban built environment 

increasingly tends to integrate these spatial concepts, such as the city's physical layout, 

functional allocation of land, and the organizational structure of various spaces. 

2.4 Urban Land Use: Functional Zoning 

The concept of urban land use focuses on "utilization." Practical research mainly 

concentrates on assessing the current state of urban land use, such as functional zoning. 

Li Linchao et al. (2023) utilized remote sensing imagery and Points of Interest (POI) 

data to classify urban land use, identifying categories such as commercial service land 

and public administration land. Tan et al. (2023) further employed land use 

classification data for ecosystem service assessments. On a more granular scale, Yang 

et al. (2023) analyzed the impact of land uses such as finance, office buildings, hotels, 

and commercial services on subway passenger flow. Although these studies often do 
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not fully define "urban land use," they generally accept a unified concept scope. This 

concept refers to the functional characteristics and macro-zoning attributes of land in 

an urban environment, representing the outcomes of human utilization of land, and 

emphasizing the human element. 

Therefore, in the study of land use, the focus is on the outcomes of land utilization 

and their impacts on the environment and society, mainly revolving around human 

activities. This contrasts with the concept of urban form, which concentrates more on 

the spatial form and physical attributes of land. Research on land use emphasizes the 

comprehensive effects of land utilization methods on urban ecology, economy, and 

social structure, while studies on urban form focus on understanding the arrangement 

and allocation of land within spatial structures. In summary, land use represents the 

spatial characteristics projected by human activities in space. 

2.5 Summary of This Chapter 

The above analysis shows that while the concepts of urban spatial structure, urban 

spatial morphology, urban built environment, and urban land use often overlap in 

practical research, distinguishing the relationships among these concepts is beneficial 

for this and future studies. Such distinction aids in fostering academic dialogue. 

Space is a broad concept; defining this element is key to unifying the above 

concepts. Space is an ambiguous term that can refer to both the perceived space of 

socio-economic activities and the physical space of urban land use. In this thesis, 'space' 

is called 'physical space.' 
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In studying urban spatial structure, research includes the intrinsic characteristics of 

urban space and the relationships between urban spatial elements. Studying urban 

spatial characteristics forms the foundation for analyzing relationships between these 

elements. In empirical research, urban spatial morphology often encompasses both the 

physical and perceived spatial forms of cities. However, this study specifically refers to 

the physical spatial form of cities. Urban land use typically refers to functional elements. 

The functionality of a city is a manifestation of human activities in space, which bears 

similarities to the perceived space within cities. Therefore, in this study, the concept of 

urban spatial structure encapsulates the research content more aptly. 
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Chapter 3. The Spatiotemporal Evolution Characteristics of 

Carbon Emissions in Chinese Cities 

This chapter aims to provide data support for the entire study. Firstly, it calculates 

and collects all the data necessary for this research. Second, the chapter conducts a 

spatio-temporal dynamic analysis of carbon emissions in Chinese cities. This analysis 

serves as a foundational reference for examining the impact of urban spatial structures 

on carbon emissions and formulating relevant planning strategies. 

3.1 General Methods and Data for Carbon Emission Calculation 

Production-based emissions (PBE) primarily focus on emissions generated within 

a city's boundaries from producing goods and services(Shan et al., 2018). This approach 

emphasizes the environmental impact of urban production activities, including 

emissions from energy production and consumption, industrial processes, 

transportation, and buildings. PBE is commonly used to assess a city's contribution to 

global greenhouse gas emissions and the effectiveness of local-level emission reduction 

policies. The PBE method concentrates on emissions from local production activities, 

overlooking the impact of urban consumption activities on global emissions. For 

instance, it does not account for emissions generated by city residents purchasing and 

consuming goods produced in other regions, potentially leading to emission 

responsibility shifting and inequities in emission reduction policies. 

Researchers have proposed Consumption-based emissions (CBE) to address this 
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issue, linking local consumption to emissions across the entire supply chain, including 

input-output or life cycle analysis(Mi et al., 2016). This method considers the impact 

of urban residents' consumption activities on global emissions, encompassing local and 

cross-border emissions. 

The IPCC Administrative Scope approach captures direct emissions from human 

economic activities within a city's boundaries but excludes emissions from international 

aviation or maritime transport. The Administrative Scope approach focuses on direct 

emissions within a city's boundaries. This method helps governments understand local 

emissions and provides a basis for formulating and monitoring local emission reduction 

policies. 

This thesis focuses on the impact of urban spatial structure on carbon emissions, 

specifically direct carbon emissions. The Administrative Scope approach, which 

focuses on direct emissions within a city's boundaries, aids in analyzing how urban 

spatial structure affects energy consumption and carbon emissions. For example, 

different building types, transportation modes, and land use practices can lead to 

varying energy demands and emissions. This approach provides a foundation for 

formulating and monitoring local emission reduction planning policies. 

Existing research on carbon emission inventories in China includes national, 

provincial, city, and county studies, with smaller-scale studies facing data acquisition 

challenges. National and provincial energy use statistics are more readily available, 

making carbon emission data relatively complete at these levels. However, city and 

county-level carbon emission data are relatively scarce. Some scholars use high-scale 
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carbon emission data from provincial or national levels and allocate it to lower-scale 

regions, a process known as Down-Scaling. This method spatially decomposes high-

scale carbon emission data based on socio-economic statistical data related to emissions, 

such as population density, GDP(Shan et al., 2019), land use, and nighttime lights(Chen 

et al., 2020). Using these emission proxy variables is questionable(Zheng et al., 2021). 

Moreover, since this study focuses on the impact of urban spatial structure on carbon 

emissions, using such data could lead to circular reasoning problems, as some proxy 

variables are also research variables of urban spatial structure. Therefore, this study 

excludes such data sources in its data utilization. 

3.2 Data Selection and Calculation in This Study 

This study utilizes urban carbon emission data compiled by the China Greenhouse 

Gas Working Group, which is detailed at the city scale and differentiated by sector. The 

foundational data of the China Greenhouse Gas Working Group integrates three sources. 

First is the CHRED 3.0 database, a bottom-up compiled database from survey and point 

source data, ensuring high precision and accuracy(Gao et al., 2022). Second, city-scale 

government statistical data, such as published statistical yearbooks, government 

documents, and research reports. Third, data obtained by the China City Greenhouse 

Gas Working Group (CCG) through field surveys, interviews, telephone consultations, 

and correspondence with relevant departments(Cai et al., 2019), providing comparable 

and highly reliable primary data for city-level carbon reduction research. 

The dataset includes sectoral urban carbon emissions data for agriculture, services, 



 45 / 254 

industrial energy, industrial processes, urban life, rural life, transportation, and indirect 

carbon emissions (net electricity trade). For urban spatial structure research, emissions 

from agriculture and rural life fall outside the scope of urban study. Industrial carbon 

emission data encompasses energy data during industrial production processes and 

carbon emissions from industrial processes, primarily cement and lime production. The 

carbon emissions from these production processes largely depend on chemical reaction 

norms and have a weak correlation with urban operational status. Therefore, in this 

study, emissions from the industrial system are calculated only based on energy data 

during industrial production processes. Carbon emissions from traded electricity are 

apportioned into industrial and urban living carbon emissions based on the proportion 

of electricity consumption data for each city as reported in the "China City Statistical 

Yearbook." 

3.3 Calculation of Residential Heating Carbon Emissions 

Given that heating carbon emissions are a significant component of residential 

carbon emissions and that urban spatial structure has a considerable impact on them, 

existing research on heating carbon emissions is relatively scarce. Furthermore, current 

urban carbon emission data products do not separately calculate urban heating carbon 

emissions. Therefore, this chapter calculates heating carbon emissions. The heating data 

in this study come from the China City Statistical Yearbook and various provincial 

statistical yearbooks, calculated using the following method: 

According to the "People's Republic of China Environmental Protection Standards" 
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by the Ministry of Ecology and Environment, the carbon dioxide emission factor for 

the combustion of fossil fuels is calculated using the formula: 

Equation 3.1 

EFi=CCi*OFi*
44

12
 

Where EFi is the carbon dioxide emission factor of the ith type of fossil fuel, 

measured in tons of carbon dioxide per gigajoule (tCO2/GJ). CCi is the carbon content 

per unit calorific value of the ith type of fossil fuel, measured in tons of carbon per 

gigajoule (tC/GJ). OFi is the carbon oxidation rate of the ith type of fossil fuel, expressed 

as a percentage. The carbon oxidation rate is the ratio of carbon in the fuel that combines 

with oxygen to form carbon dioxide. Theoretically, the carbon oxidation rate is 100% 

under complete combustion. However, in actual combustion processes, carbon in coal 

may not fully convert into carbon dioxide due to various reasons (e.g., insufficient 

oxygen supply, presence of impurities in fuel). According to the standards, the carbon 

oxidation rates for crude oil, fuel oil, gasoline, kerosene, diesel, liquefied petroleum gas, 

and natural gas are 98% and 99%, respectively. The factor 44/12 is the ratio of the 

molecular mass of carbon dioxide to carbon, used to convert the mass of carbon into 

the mass of carbon dioxide, with the molecular mass of carbon dioxide (44) divided by 

the atomic mass of carbon (12). 

The formula for calculating carbon dioxide emissions from the combustion of fossil 

fuels is: 

Equation 3.2 

Efuel= ∑ (ADi*EFi)
n

i=1

 

Where Efuel is the carbon dioxide emission from the combustion of fossil fuels, 
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measured in tons of carbon dioxide (tCO2); ADi is the activity data for the EFi type of 

fossil fuel, measured in gigajoules (GJ); EFi is the carbon dioxide emission factor for 

the ith type of fossil fuel, measured in tons of carbon dioxide per gigajoule (tCO2/GJ); i 

represents the type of fossil fuel. 

According to the "China Clean Heating Industry Development Report (2020)," the 

main energy sources for heating in northern China are coal, natural gas, natural gas, 

electricity and other energy sources accounting for 56%, 30%, 8%, and 6% respectively. 

For the sake of simplifying carbon emission calculations in this study, the 6% from 

other energy sources is included with coal usage, making coal usage 62%, natural gas 

30%, and electricity 8%. The coal used for heating is bituminous coal. 

The formula for calculating heating emissions in northern Chinese cities is: 

Equation 3.3 

E
heating，m

= ∑ (ADm*EPi*EFi)
n

i=1

 

Where Eheating，m is the carbon dioxide emission from heating energy sources in city 

m, measured in tons of carbon dioxide (tCO2); ADm is the total heating amount, 

measured in gigajoules (GJ); EPm is the proportion of energy source i used for heating, 

measured as a percentage; EFi is the carbon dioxide emission factor for the ith type of 

fossil fuel, measured in tons of carbon dioxide per gigajoule (tCO2/GJ); i represents the 

type of fossil fuel. 
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Table 3-1 Energy-related carbon emission factors 

Energy Type 

Carbon Content per 

Unit Calorific Value 

CC (tC/TJ) 

Carbon 

Oxidation 

Factor (OF) 

Average CO2 Emissions 

per Unit of Electricity 

Generated (kg/kWh) 

CO2 Emission 

Factor (tCO2/GJ) 

Natural Gas 15.32a 99%a  0.05617b 

Bituminous 

Coal 

25.77a 83%a  0.09277b 

Electricity / / 1.0096a 0.28 

Data sources: a. "Provincial Greenhouse Gas Inventory Compilation Guide (Trial)" Climate Change Office [2011] 

No. 1041; b. Calculated based on the formula; 1 kWh = 0.0036GJ. 

3.4 Spatio-Temporal Evolution of Carbon Emissions at the Urban Level in 

China 

This chapter utilizes GIS spatial analysis methods to reveal the spatiotemporal 

evolution of urban carbon emissions in China, laying a crucial foundation for 

subsequent research on the impact of urban spatial structure on carbon emissions. After 

understanding the spatiotemporal evolution of total carbon dioxide emissions, per 

capita carbon dioxide emissions, and carbon dioxide emissions per unit of GDP, we can 

reveal the fundamental laws and patterns of urban carbon emissions. First, from a total 

volume perspective, we will analyze the overall trend of urban carbon emissions in 

China from the standpoint of total carbon dioxide emissions. Then, from an efficiency 

perspective, we will examine per capita and carbon dioxide emissions per unit of GDP 

to analyze the spatiotemporal evolution of urban carbon emissions in China from an 

efficiency standpoint. 

(1) Total Carbon Dioxide Emissions 
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China's total carbon dioxide emissions display a "high in the North and low in the 

South" distribution characteristic (Figure 3-1). In 2005, cities with high carbon 

emissions in the North were mainly concentrated in the more developed Bohai Rim 

region, such as Beijing, Tianjin, Tangshan, and other developed central cities. The 

highest emissions in the Yangtze River Delta were in Shanghai and Suzhou. Chongqing 

and Wuhan had the highest emissions in the central and western regions. The regions 

south of the Yangtze River generally had lower emissions, with Guangzhou being the 

area with the highest emissions. From 2005 to 2020, carbon emissions generally 

showed an upward trend, especially in economically rapidly developing urban 

agglomerations. The overall carbon emission intensity in the Bohai Rim region 

increased. Cities in the western region began to show dark areas, indicating an increase 

in carbon emissions, which may be related to the Western Development Strategy and 

the increased level of industrialization in the region, with typical cities including Ordos 

and Yulin. High carbon emission areas in the Northeast were mainly concentrated in the 

Liaodong Peninsula region and Harbin. In the Yangtze River Delta region, high carbon 

emission areas were centered around Shanghai, including core cities such as Suzhou, 

Wuxi, Hangzhou, and Ningbo. In the southern region, Guangdong Province's 

Guangzhou, Dongguan, and Fujian Province's Quanzhou showed significant increases 

in carbon emissions. 
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Figure 3-1 Temporal and spatial pattern of total carbon dioxide emissions in Chinese 

cities 

(2) Per capita carbon emissions 

Urban per capita carbon emissions show a more pronounced spatial distribution of 

differences between the north and the south. The northwest region is a high-value area 

for national per capita carbon emissions. Typical high-value per capita carbon emissions 

areas are centered around Ordos City in the northwest region, including Yulin City, 

Yinchuan, and Baotou City. These areas' economies are relatively dependent on 

resource-based industries, especially energy industries such as coal, oil, and natural gas. 
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These industries are typically energy-intensive and high in carbon emissions. With its 

rich coal resources, the Ordos Basin is one of China's largest coal production bases. 

Large-scale coal mining and consumption have led to high carbon emissions. 

Simultaneously, the development of the coal chemical industry has also contributed to 

the increase in carbon emissions in the region. Yulin, similarly dominated by the coal 

industry, sees coal mining, processing, and use as the area's main sources of carbon 

emissions. Yinchuan and its surrounding areas, while not as dominated by the coal 

industry as Ordos City and Yulin City, have a relatively weak industrial base, with heavy 

industry and energy-intensive industries still occupying a large proportion, which is one 

of the reasons for the high carbon emissions. 

 

Figure 3-2 Temporal and spatial pattern of per capita carbon dioxide emissions in Chinese cities 
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(3) Carbon emissions per unit of GDP 

From 2005 to 2020, China's overall carbon emissions per unit of GDP showed a 

downward trend, benefiting from rapid economic growth. The spatial distribution of 

carbon emissions per unit of GDP still exhibits significant differences between the north 

and the south. By 2020, the intensity of carbon emissions per unit of GDP presented a 

clear north-south dividing line, with cities with higher carbon emissions mainly located 

in the northeast and northwest regions. 

Developed regions have relatively lower carbon emissions per unit of GDP. For 

example, in 2005, the eastern coastal regions generally had lower carbon emissions per 

unit of GDP than other areas, indicating that the environmental pressure per unit of 

output is lower in the eastern coastal areas. Possible reasons include the eastern coastal 

regions having experienced earlier and faster industrial restructuring and upgrading. 

These areas typically have a higher proportion of services and high-tech industries, 

which, compared to traditional manufacturing and heavy industry, have lower energy 

consumption and carbon emissions. Secondly, developed regions often have higher 

innovation capabilities, more advanced technologies and equipment, higher energy use 

efficiency, and consequently lower energy consumption and carbon emissions per unit 

of output. Furthermore, due to their developed economies, the eastern coastal regions 

have stronger financial capabilities, allowing for investment in environmental 

protection infrastructure and technology, implementing stricter environmental 

regulations and policies, promoting clean production and low-carbon technologies, and 

avoiding becoming "pollution havens." 
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Figure 3-3 Temporal and spatial pattern of carbon dioxide emissions per unit GDP in Chinese 

cities 

3.5 Summary of This Chapter 

Appropriate and rational data use is a crucial starting point for research, 

determining the accuracy and rigor of scientific investigations. This chapter, aligning 

with the research needs, conducted a comparative analysis of existing carbon emission 

data products, ultimately selecting the city-scale, sector-specific carbon emission data 

compiled by the China Greenhouse Gas Working Group as the foundational data for 
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this study. This data, combining bottom-up surveys and point-source data, offers high 

accuracy. Since this study explores the relationship between urban spatial structure and 

carbon emissions, the data collection method avoids biases in the research results that 

could arise from relying on elements of urban spatial structure in the data calculation 

process. 

Urban heating carbon emissions are a significant component of residential carbon 

emissions. From the perspective of urban systems, existing research has not sufficiently 

focused on the relationship between urban spatial structure and urban heating carbon 

emissions. Therefore, this study investigated the impact of urban spatial structure on 

heating carbon emissions from an urban system perspective. This section calculated 

urban heating carbon emissions based on the method for calculating carbon dioxide 

emissions from fossil fuel combustion outlined in the "People's Republic of China 

Environmental Protection Standards" by the Ministry of Ecology and Environment, 

combined with the proportion of energy used for heating in Northern China. 

After obtaining a complete urban carbon emission dataset, this section examined 

the overall carbon emissions, per capita carbon emissions, and carbon emissions per 

unit of GDP within the Chinese urban system, capturing the basic spatial patterns of 

carbon emissions in Chinese cities. This overview helps to understand and grasp the 

current comprehensive status of urban carbon emissions in China, laying the foundation 

for proposing carbon reduction planning strategies. The research findings indicate that 

total carbon emissions, per capita carbon emissions, and carbon emissions per unit of 

GDP exhibit a significant "high in the North and low in the South" spatial distribution 
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pattern, particularly with a clear north-south dividing line in carbon emissions per unit 

of GDP. Developed areas, represented by the eastern coastal regions, generally have 

lower carbon emissions per unit of GDP. 
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Chapter 4. The Impact of Urban Size on Carbon Emissions 

Population is the most fundamental element of a city. The size of a city's population 

determines the intensity of socio-economic activities in urban spaces. Urban population 

size is an essential aspect of research into urban spatial structures, reflecting the 

structural relationship between 'people' and 'land.' Discussing land use without 

considering the population significantly diminishes the relevance and guidance of 

planning practice. However, the research focus on the impact of urban spatial structure 

on carbon emissions has been primarily on the spatial aspects, with insufficient 

attention to the size of the urban population. Therefore, it is crucial first to explore the 

impact of city size on carbon emissions in studies concerning urban spatial structure 

and its effects on carbon emissions. 

4.1 Analysis of the Overall Impact of Urban Size on Carbon Emissions 

4.1.1 Theoretical Foundation: Urban Scale Law 

The city is a complex mega-system with intricate spatial structures that influence 

urban metabolism. The foundation of urban planning is understanding complex systems 

and their dynamic regulation. Among these, the scaling law provides an important 

theoretical perspective for understanding the relationship between urban size and 

carbon emission patterns. The renowned theoretical physicist Geoffrey West posited 

that everything in the world can be measured by immutable standards, known as the 

Scaling Law. The scaling law is mathematically expressed as: 
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Equation 4.1: 

Y～X^β 

Here, Y represents a quantifiable indicator within the system, X represents the 

system's size (e.g., weight, urban population), and β reflects the system's properties. 

This formula shows that the system's variable Y is directly proportional to the size X 

raised to the power of β. Depending on the value of β, the scaling law can interpret 

"sub-linear," "linear," and "super-linear" scenarios. If β<1, the system is in a sub-linear 

growth mode, where doubling the system size results in less than double the increase in 

system variable Y, say an 80% increase. β=1 denotes a linear growth mode, where the 

system variable Y grows in direct proportion to the size X. When β>1, the indicator Y 

grows at a rate faster than the city size. 

One well-known application is Kleiber's Law, which describes the relationship 

between an animal's metabolic rate and body weight, indicating that an organism's basal 

metabolic rate is proportional to the three-quarters power of its body weight. This law 

can be summarized by the formula: B=a*M^b. Here, B represents the animal's 

metabolic rate, M signifies the animal's weight, and a and b are constants, often referred 

to as Kleiber constants. In daily life, we often fall into the "linear intuition trap," 

assuming system variables and system size develop linearly. Kleiber's Law helps us 

escape this trap by viewing the system from the perspective of scaling laws, which is 

especially necessary for urban systems. Scale is one of the most prominent features of 

urban spatial structure and is at the core of urban economics and urban planning. Urban 

size precedes history, geography, and design as determining factors of most city 
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characteristics(Bettencourt & West, 2010). 

Research in urban size and socio-economic environments has garnered widespread 

attention, yielding many results. From a value judgment perspective, the primary 

intention behind studying the relationship between urban size and other urban system 

variables is to assist in determining the optimal urban size. The primary debate revolves 

around whether an optimal city size exists, which has been confirmed to exist(Wang, 

2010), originating from Howard's Garden City planning idea and theoretical birth in 

urban economics of the 1960s. The issue of optimal city size has received broad 

attention in the socio-economic field, including studies on the relationship between city 

size and labor productivity(Chen & Zhou, 2017), and the environmental effects of urban 

size, such as the impact of urban size distribution on PM2.5(Zhao et al., 2022), and the 

relationship between population size and environmental quality(Deng et al., 2020). 

From the perspective of the scaling law, research indicates that when the urban 

population doubles, urban infrastructure only needs to increase by 85% such as roads 

and cables(Bettencourt et al., 2007), demonstrating the infrastructure-saving effect of 

urban size growth. 

The Urban Scaling Law is widely used to examine the attributes of urban systems, 

gradually becoming the cornerstone of new urban science. The Urban Scaling Law 

shows how urban attributes change with city size(Lei et al., 2021; Rybski et al., 2019), 

providing a framework for understanding the relationship between carbon emissions 

and city size. Urban Scaling Law is suitable for examining the relationship between 

carbon emissions and urban size because it captures the nonlinear dynamics and 
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efficiencies that arise as cities grow, providing insights into how increased urban 

density and infrastructure scale with population, which in turn affects carbon emissions. 

Globally, based on a previous study showing a scaling relationship between urban 

population size and energy consumption(Gately et al., 2015). 

In summary, based on existing research(Bettencourt et al., 2010), this chapter 

adopts the perspective of the urban scaling law to study the relationship between urban 

size and carbon emissions from the significant characteristic of urban spatial structure 

(size). Using a power function, the urban scaling exponent for carbon emissions was 

calculated: 

Equation 4.2: 

CE=a*US
β
 

Here, CE represents the attribute characteristic of the urban system—that is, carbon 

emissions. US is the urban population size andβ is the urban scaling exponent. Since 

"scale" in English conveys not only the concept of size but also implies stretching or 

scaling, it expresses the dynamic perspective of urban size; hence, theβvalue (Urban 

Scaling Exponents) is translated as urban scaling index in subsequent discussions. 

In a sub-linear scenario, urban carbon emissions' growth rate is less than urban 

size's growth rate. If the city size doubles, the increase in urban carbon emissions is less 

than double, say 80%, indicating a 20% carbon-saving effect due to urban growth. 

Conversely, whenβ>1, the growth rate of urban carbon emissions exceeds the growth 

rate of urban size, indicating that growth at this stage leads to a faster increase in urban 

carbon emissions, i.e., a super-linear mode. 
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Figure 4-1 Three models of urban carbon emissions with increasing urban size 

4.1.2 Empirical Analysis of the Overall Effect of Urban Size on Total Carbon 

Emissions 

In this research, we applied panel data models for our analysis, specifically 

adopting fixed-effects regression methods. Our panel data encompasses the years 2005, 

2010, 2015, and 2020. This data format efficiently leverages both time series and cross-

sectional information to enhance the estimation accuracy of the model. In our model, 

the dependent variable is the total carbon emissions of cities, with urban population size 

as the independent variable. We also introduced time-fixed effects (year) to control for 

potential temporal trends that might affect the dependent variable. The regression 

equation is defined as: 

Equation 4.3 

ln(Carbon emission) =α+βln(pop)+ε 

where α represents the intercept, β signifies the impact of population size on total 

carbon emissions, essentially the focus of our study, which is the urban size-carbon 

emission scaling index, and ε is the error term. The regression was performed using a 

fixed-effects model, assuming unobserved individual-specific effects correlate with 

explanatory variables within the model. This approach helps eliminate biases caused by 



 61 / 254 

unobserved individual differences, yielding more accurate estimations. Furthermore, 

robustness checks were conducted on the regression outcomes to reduce 

heteroscedasticity's impact on standard errors, ensuring more stable results.  

The urban size-carbon emission scaling coefficient results are as follows: Overall, 

the relationship between urban size and urban activities (carbon emissions) exhibits a 

sub-linear pattern. After adjusting for temperature variables, the coefficients for urban 

population size (Population) across four different models (total carbon emissions, 

household carbon emissions, transportation carbon emissions, and industrial carbon 

emissions) are 0.528, 0.971, 0.780, and 0.528, respectively. The scaling indices for total 

carbon emissions, transportation carbon emissions, and industrial carbon emissions are 

below 1, indicating a "sub-linear" relationship. The variance in urban scaling indices 

between transportation and industrial carbon emissions is notable. The coefficient for 

urban size and transportation emissions is 0.780, implying that a doubling in urban size 

results in only a 78% increase in transportation carbon emissions. A doubling of urban 

size leads to only a 52.8% industrial carbon emissions increase. This discrepancy might 

be attributed to changes in industrial structure rather than the efficiency gains associated 

with urban size growth, necessitating further analysis to exclude factors related to 

industrial upgrades. The scaling index for household carbon emissions is nearly 1, 

suggesting that a doubling of urban size results in a 97.1% increase in household carbon 

emissions, almost a linear growth pattern. 
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Table 4-1 Results of urban population size-carbon emission scaling index 

Variables Total Emission Household Transport Industrial 

Population 0.528*** 0.971*** 0.780*** 0.528*** 

 (-0.0329) (-0.0218) (-0.0531) (-0.0367) 

Constant 4.557*** -1.602*** 0.392 4.232*** 

 (-0.194) (-0.129) (-0.313) (-0.217) 

Observations 1,114 1,114 1,114 1,114 

R-squared 0.143 0.279 0.371 0.089 

Number of years 4 4 4 4 

Robust standard error in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

Scale-Adjusted Metropolitan Indicators (SAMIs) were used for the deviations of 

the individual city and the predicted value by scaling law(Bettencourt et al., 2010; Lei 

et al., 2021). Unlike other per capita indicators, SAMIs are Dimensionless, which means 

the value of SAMIs has nothing to do with the scale of an individual city. This indicator 

can be used for a more meaningful ranking of a single city in a city system, including 

carbon emissions. SAMIs index was calculated as follows： 

Equation 4.4 

ξi=ln(
CEi

K*Si
β

) 

Where ξi is SAMIs of the i city, CEi is the observed value of carbon emission of 

the i city, K*Si
β
  is the predicted value of carbon emission of i city through urban 

scaling law. We can classify cities of diverse carbon emissions efficiency by comparing 

ξi . When the observed CEi greater than the predicted K*Si
β
, ξi >0, that means carbon 

emissions in city i is greater than counterparts, called “low carbon emissions efficiency” 

city. When ξi =0, we call city i an “Average carbon emission efficiency” city. When ξi 
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<0, we call city i “high carbon emissions efficiency” city.  

SAMIs is an evaluation of urban efficiency based on urban scaling law. The core 

point of SAMIs is that urban index and population size have a nonlinear scaling 

relationship. The comparison of urban carbon efficiency based on SAMIs is based on 

relative quantity rather than an absolute quantity and does not depend on the initial city 

size value. Such comparison gives up the assumption that urban carbon emission has a 

linear relationship with city size, which is therefore more meaningful.    

SAMIs were calculated to estimate carbon emissions efficiency based on the urban 

scaling perspective. Figure 4-2 reveals the urban CO2 emission efficiency based on 

SAMIs. For total carbon emissions efficiency, cities in northern China showed more 

“low CO2 emission efficiency” mode than those in southern China, especially when 

SAMIs were greater than 0.797, meaning that cities in northern China produced more 

CO2 on average than their similar-sized cities in southern China. For industrial carbon 

emissions, cities with “low industrial CO2 emission efficiency” mode mainly lay in 

Guangxi and Guizhou that is to the northwest of Guangdong, Jilin in the northeast of 

China, and Shanxi, Shaanxi, the south of Gansu in the Loess Plateau. For household 

carbon emissions, cities with "Low CO2 emission efficiency" mode were mainly 

distributed in inland and northeast China, including Hunan, Guizhou, Jilin, and 

Heilongjiang, relatively underdeveloped areas in China. Meanwhile, household carbon 

emissions are relatively highly efficient in Beijing, the Pearl River Delta. For 

transportation carbon emission, the Pearl River Delta, the Yangtze River delta, and Jilin 

were agglomeration zones of Cities with "Low CO2 Emission efficiency" modes.  
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Figure 4-2 Urban CO2 emission efficiency based on SAMIs 

To further detect spatial patterns of carbon emissions efficiency, we calculated the 

local moran I of SAMIs(LISA cluster map)(Figure 4-3) in ArcGIS. "High-high 

cluster(HH)" represents the urban spatial agglomeration distribution of "Low CO2 

Emission efficiency" modes. A city with a “High-Low cluster(HL)” characteristic 

means this city has a low carbon emission efficiency(high in SAMIs) and is surrounded 

by cities with high CO2 Emission efficiency" modes. Shanxi, Shaanxi, Ningxia, and 

Inner Mongolia of the Loess Plateau are HH areas of total and industrial CO2 emissions, 

which denotes that total and industrial carbon emission efficiency in this region is lower 
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than its surroundings. For household carbon emissions, HH and HL modes are 

distributed in northwest Guizhou, the middle of Hunan and Hubei, northeast Jiangxi, 

and Jilin Heilongjiang in northeast China. For transportation carbon emission, the Pearl 

River Delta, the southeast and northwest Guangxi, the north of Zhejiang, and so on. 

 

Figure 4-3 LISA cluster map of SAMIs 

4.2 The Influence of Urban Size on Industrial Carbon Emissions: An Analysis 

Based on Mediating Effects 

Carbon emissions from industrial production are more complex than household and 

transportation carbon emissions, as they involve factors such as the level and structure 
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of economic development and urban innovation. Understanding the relationship 

between urban size and industrial carbon emissions necessitates a mechanism analysis 

of how urban size affects industrial carbon emissions. 

Mediation effect analysis is employed in exploring the influence of variable X on 

variable Y, particularly in assessing whether X affects Y by indirectly affecting another 

variable, M, a phenomenon referred to as the “mediation effect.” Pathway analysis 

frequently applies mediation effect analysis to capture direct and indirect effects (Peng 

et al., 2019). Various scholars have used mediation effect analysis to dissect the 

interrelationships among the natural environment, socio-economic factors, and health. 

Liu et al. (2022) examined the mediating role of nature contact in the relationship 

between nature connection and happiness. Triguero-Mas et al. (2017) investigated how 

natural exposure could influence mental health by modulating stress levels. Guo et al. 

(2022) inquired as to whether exposure to environmental air pollution mediated socio-

economic indicators with health outcomes. In studies closely related to carbon 

emissions, the intermediary role of innovation between economic development and the 

ecological environment was evaluated (Wang et al., 2021). 

Consequently, mediation effect analysis has been extensively adopted for 

delineating processes and mechanisms, especially for establishing links between 

disparate systems such as natural environments and economies. An increase in urban 

population size does not directly affect a city's carbon emissions, so there must be 

intermediary factors that influence them. Moreover, identifying the intermediary factors 

between urban size and carbon emissions is more instructive for understanding the 
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nature of urban systems and for urban planning. The relationship between urban size 

and carbon emissions is a typical problem for mediation effect analysis. 

4.2.1 Theoretical Analysis and Model Construction 

Urban spatial structure includes urban size, density, form, and spatial layouts and 

relationships of urban elements. The main objective of studies on urban spatial structure 

is to explore the relationship between the spatial distribution of the urban elements and 

the socio-economic environment of a city to optimize the spatial structure for urban 

development. Urban operations include city functions and services covering aspects 

such as the city’s society, economy, and culture. The efficiency of urban operations 

profoundly affects the factors of urban metabolism, such as pollution emissions and 

energy utilization. Urban spatial structure is the framework that plays a fundamental 

role in urban operations, while urban metabolism is an interactive process with the 

natural environment. This study constructed the Spatial-Operational-Metabolic (SOM) 

Framework as a basic theoretical framework for examining the environmental effects 

of urban spatial structures. This framework emphasizes the continuity and 

interdependence between the spatial structures of cities and their metabolic processes, 

thus highlighting the bridging role of urban operational elements. 
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Figure 4-4 Spatial-Operational-Metabolic (SOM) framework 

According to this theoretical framework, urban size is the most fundamental 

element of urban spatial structure. The most direct effect on industrial carbon emissions 

is the production scale and structure. Industrial carbon emissions are a component of 

urban metabolism. The elements of urban operations that directly affect industrial 

carbon emissions include production scale, production structure, and the level of 

production innovation. Industrial carbon emissions are a critical factor in urban 

metabolism. The overall innovation capacity of a city is closely related to its size. We 

believe urban expansion affects industrial carbon emissions through three main 

pathways: production scale expansion, industrial structure upgrading, and innovation. 

The expansion of urban size leads to increased industrial carbon emissions through 

production scale expansion and structural effects. Expanding the industrial production 

scale will increase pollution emissions (Yang et al., 2019). Because of superior 

conditions such as labor supply, product market size, and infrastructure, the expansion 

of urban size is often accompanied by the expansion of production scale. Firstly, larger 

cities have larger and higher-quality labor forces, which can support larger industrial 

enterprises, thereby aggregating more industrial production. Larger cities also have 

higher labor demands (Huang et al., 2021). Secondly, larger cities usually have larger 
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markets, including urban residents and consumers outside the cities. 

Moreover, larger cities tend to have more developed infrastructure and a wider 

range of services, including transportation infrastructure, public utilities, and financial 

and consulting services. These factors support larger-scale production. From the 

perspective of structural upgrading, urban population expansion facilitates industrial 

upgrading, thereby reducing industrial carbon emissions. The tertiary sector, or the 

service industry, is generally more carbon-efficient than the primary (agriculture) and 

secondary (manufacturing) sectors. The service industry primarily relies on knowledge 

and technology rather than physical resources, resulting in lower carbon emissions. As 

urban populations grow, the proportion of the tertiary sector typically increases, 

contributing to a reduction in overall carbon emissions. 

The increase in urban size is conducive to the accumulation of innovation. 

According to Cai et al. (2021), there is a significant positive correlation between urban 

size and the level of innovation. Regional central cities often have better technical and 

knowledge bases (Wang & Yang, 2022). Although the sources and degrees of this 

advantage in innovation in large cities are still controversial, empirical research has 

shown that the outputs of innovation in large cities are significantly higher, and this 

relationship is often super-linear to a considerable extent (Broekel et al., 2023; Gomez-

Lievano et al., 2016). From a macro-perspective, a larger urban size can attract more 

innovative elements such as talent, corporate headquarters, and research institutions to 

promote urban innovation (Zhai & Zhang, 2020). From a micro-perspective, enterprises 

or institutions in larger cities are more likely to make world-leading innovations than 
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those in smaller cities (Therrien, 2005). 

Innovation is a crucial factor affecting carbon emissions, especially industrial 

carbon emissions. At the national scale, Jiang et al. (2022)found that innovation did not 

reduce carbon dioxide emissions in low- and middle-income countries. Fernández et al. 

(2018) found that innovation reduced carbon emissions in high-income countries. In a 

study of sub-sectors, Erdogan et al. (2020) surveyed G20 countries and found that 

innovation significantly reduced industrial carbon emissions but had no significant 

effect on transportation carbon emissions. The sectoral variations in innovation's 

influence on carbon emissions may be due to its effect being more pronounced at the 

production end. Zhou et al. (2023) used the number of patents to quantify technological 

innovation at the provincial level. The empirical results showed that every 1% increase 

in technological innovation at the provincial level reduced regional carbon emissions 

by 0.17%. A study at the city level, Gu (2022) examined 275 cities in China and found 

that technological innovation was conducive to carbon emission reduction and inhibited 

the growth of carbon emissions. Scholars agree that innovation is an essential factor 

affecting carbon emissions, but the direction of influence needs further research and 

discussion. 

Innovation can directly promote carbon reduction by developing carbon capture 

and sequestration technologies. Moreover, it can indirectly mitigate carbon dioxide 

emissions through clean production techniques and management (Xu et al., 2021). Jin 

et al. (2014) proposed that the influence of technological innovation on carbon 

emissions exhibited a double-edged effect. On the one hand, it escalates carbon 
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emissions by stimulating economic growth; conversely, it curtails emissions through 

enhanced energy efficiency. The adjustments in industrial structure directly affect 

energy consumption (Li Tao. et al., 2023). As urban size expands, the city witnesses a 

decline in its secondary industry but a rise in its tertiary industry. As levels of urban 

innovation ascend, the application of advanced technologies gradually elevates the 

proportion of the tertiary industry and promotes industrial upgrading (Li & Zhao, 2023). 

Su et al. (2023) employed a mediation effect model to analyze how innovation affects 

carbon emissions via economic growth and industrial structure transformation. In 

summary, scientific research has a widespread consensus that innovation can affect 

carbon emissions and plays a dual role. It increases emissions by expanding production 

scale but may also concurrently reduce emissions by fostering industrial structure 

upgrading. 

In summary, this study posits that urban size influences industrial carbon emissions 

through innovation, which affects carbon emissions through two chain mediation 

processes: expanding production scale and upgrading industrial structure. Drawing 

upon (Wen & Ye, 2014), we constructed a mediating effect model between urban size 

and industrial carbon emissions(Figure 4-5). Urban size can significantly affect the 

expansion of production and the upgrading of industrial structures, thereby affecting 

industrial carbon emissions. We established a chain multiple mediation model. In 

Figure 4-5, a, b, and c are path coefficients denoting degrees of influence. Expressly, a1, 

a21, and a22 represent the path coefficients of urban size’s effect on innovation, industrial 

structure upgrading, and production expansion. a31 and a32 are the path coefficients of 
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innovation’s effect on industrial structure upgrading and production expansion. The 

coefficients b1, b21, and b22 represent the influences of innovation, industrial structure 

upgrading, and production expansion on carbon emissions. Lastly, 'c' represents the 

direct effect of urban size on industrial carbon emissions after the mediation effects 

have been considered. 

 

Figure 4-5 Chain multiple mediation model 

Compared with the single mediation effect model, the chain multiple mediation 

effect model has the following advantages. First, the chain mediation effect model can 

describe academic relationships and processes that are more complex than a single path. 

Second, the chain model is more flexible because it can capture multiple, possible, and 

intermediary pathways between variables. Third, chain models allow for comparability 

and ranking among multiple mediating effects by assessing the effect size of each 

mediation pathway. 

4.2.2 Model and Data Sources 

In alignment with the proposed theoretical model, we formulated a chain multiple 

mediation model as follows: 
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Equation 4.5 

ln(ICE) =c ln(US) +e1 

 

Equation 4.6 

ln(UI) =a1 ln(US) +e2 

 

Equation 4.7 

ln(PE) =a22 ln(US) +a32 ln(UI) +e4 

 

Equation 4.8 

ln(ISU) =a21 ln(US) +a31 ln(UI) +e3 

 

Equation 4.9 

ln(ICE) =c' ln(US) +b1 ln(UI) + b21ln(ISU) +b22 ln(PE) +e
5
 

 

ICE (Industrial Carbon Emissions) represents the industrial carbon emissions 

produced within a given urban area. US (Urban Size) represents the urban population 

size. UI (Urban Innovation) denotes the area's level of innovation. PE (Production 

Expansion) represents the growth or expansion of industrial production. ISU (Industrial 

Structure Upgrading) describes the transformation of industrial structure from the 

economy's secondary sector to the economy's tertiary sector, which is measured by the 

proportion of the tertiary sector in the economy. 

To better grasp the link between urban size and carbon emissions, this study 

formulated carbon emission efficiency to determine an exponent for industrial carbon 

emissions relative to urban size: 

Equation 4.10 

ln(CEE) =α+β*ln(US)+ε 

 

where CEE (Carbon Emission Efficiency) represents the city's carbon emission 

efficiency per unit of GDP and β is the scaling coefficient, which represents the power-
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law relationship between urban size and carbon emission efficiency. 

The bootstrap method is a statistical technique that repeatedly resamples subsets of 

data from their original dataset. The advantage of this approach is its ability to operate 

without assuming that the data conform to a specific probability distribution. This 

method is particularly useful for addressing complex issues or those where classical 

statistical methods may not directly apply, so it is more effective than other methods for 

testing mediation effects (Alfons et al., 2021). Traditional tests like the Sobel test may 

yield inaccurate results if certain data distribution assumptions are unmet. Therefore, 

we employed the bootstrap method to assess the significance of mediation effects, 

which are prevalent in social science, medical, and business research. They occur when 

a variable influences an outcome by affecting one or more other variables. 

This study's carbon emission data were sourced from the city-scale sector-specific 

carbon emission dataset collated and curated by the China Greenhouse Gas Working 

Group. This dataset (available at http://www.cityghg.com/toCauses?id=4) provides 

data on city-scale sector-specific carbon emissions for 2005, 2010, 2015, and 2020. 137 

researchers from 76 institutes gathered and analyzed the data, then cross-validated for 

accuracy and precision. According to the industrial electricity consumption ratios from 

the China Urban Statistical Yearbooks, indirect emission data were proportionally 

allocated to industrial carbon emissions. The employment figures of the secondary 

industry denoted the production expansion indicator. Population scale, industrial 

structure data, and employment numbers in the secondary sector were all extracted from 

the China Urban Statistical Yearbooks. Data on urban innovation were taken from the 
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innovation index in the "Report on Chinese City and Industry Innovation 

Capacity"(Kou & Liu, 2017), which quantified levels of urban innovation from output-

side data. 

4.2.3 Empirical Study Results 

4.2.3.1 the Impact Mechanism of Urban Size on Industrial Carbon Emissions 

In general, an expansion in urban size leads to an increase in industrial carbon 

emissions according to a sub-linear pattern. The scaling exponent of urban size to 

industrial carbon emissions is only 0.528, implying that a 100% increase in city size 

leads to only 52.8% growth in industrial carbon emissions and indicates a growth gap 

of 47.2% compared to a linear increase pattern. Hence, industrial carbon emissions in 

cities exhibit sub-linear growth trends, which suggest that as city size expands, the 

growth rate of industrial carbon emissions slows down. However, the relationship 

between city size and industrial carbon emission efficiency is a sub-linear scaling with 

a scaling coefficient of -0.409 (as per Eq. 4.10). Therefore, even though the expansion 

of city size results in a rise in the total volume of industrial carbon emissions in China, 

the overall efficiency of carbon emissions improves. 

Table 4-2 Regression results for mediation effects 

Variable 

Equation 4.5 Equation 4.6 Equation 4.7 Equation 4.8 Equation 4.9 Equation 4.10 

ln(ICE) ln(UI) ln(PE) ln(ISU) ln(ICE) ln(CEE) 

ln(US) 0.528*** 1.326*** 0.342*** -0.096** -0.149** -0.409*** 
 

(0.0367) (0.0553) (0.0593) (0.011) (0.028) (0.049) 

ln(UI) 

  

0.436*** 0.055*** 0.111*  
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Variable 

Equation 4.5 Equation 4.6 Equation 4.7 Equation 4.8 Equation 4.9 Equation 4.10 

ln(ICE) ln(UI) ln(PE) ln(ISU) ln(ICE) ln(CEE) 
   

(0.00926) (0.0110) (0.0479)  

ln(PE) 

   

 0.597**  
    

 (0.124)  

ln(ISU) 

    

-0.573*  
     

(0.202)  

_cons 4.232*** -7.425*** 9.609*** 3.891*** 3.246 3.155 
 

(0.217) (0.326) (0.346) (0.064) (1.812) (0.287) 

N 1114 1114 1114 1114 1114 1114 

R-sq 0.089 0.255 0.708 0.152 0.386 0.128 

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are in parentheses 

Table 4-3 is a summary of results generated by the Bootstrap test, and presents the 

results of the coefficient test for the chain multiple mediation model, by which we 

examined the mediating effects of various paths in the model on the relationship 

between industrial carbon emissions and urban size. We employed the bootstrap method 

for 1,000 resamples and calculated the mediating effect for each sample. The p-value 

associated with our mediating effect is less than 0.001 and the confidence interval does 

not encompass zero. Therefore, our mediating effect is statistically significant and 

offers robust evidence to support our hypothesis. 
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Table 4-3 Summary of mediation effect analysis 

For every 1% expansion in city size, urban innovation increases super-linearly by 

1.326%(Table 4-2). The effect of innovation on industrial carbon emissions is double-

edged, as it embodies both emission-increasing and emission-reducing effects, with the 

former significantly outweighing the latter. The overall effect of city size on urban 

industrial carbon emissions via elevation of the overall level of urban innovation is 

0.45(Pathway 2,5,6 in Table 4-3). Overall, the effect coefficient of city size on 

innovation to industrial carbon emissions is positive, thus signifying that city size 

propels industrial carbon emissions through innovation. With a 1% growth in 

population size, industrial carbon emissions increase by 0.45% through the mediation 

Effect Pathways Effect 

Standard 

Error 

z p LLCI ULCI 

Direct effect 1. Urban size ⇒ Industrial CO2 -0.149 0.051 -2.91 0.004 -0.250 -0.049 

Mediation 

Effects 

2. Urban size ⇒ Innovation ⇒ 

Industrial CO2 

0.147 0.042 3.50 0.000 0.065 0.229 

3. Urban size ⇒ Production 

expansion ⇒ Industrial CO2 

0.204 0.027 7.52 0.000 0.151 0.258 

4. Urban size ⇒ Industrial 

upgrading ⇒ Industrial CO2 

0.023 0.010 2.19 0.028 0.002 0.043 

Chain 

Mediation 

Model 

5. Urban size ⇒ Innovation ⇒ 

Industrial Structure Upgrading ⇒ 

Industrial CO2 

-0.042 0.012 -3.51 0.000 -0.065 -0.018 

6. Urban size ⇒ Innovation ⇒ 

Production expansion ⇒ 

Industrial CO2 

0.345 0.037 9.20 0.000 0.271 0.418 

Note: LLCI and ULCI refer to the lower and upper limits, respectively, of the 95% confidence interval. 
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mechanism of innovation. 

Innovation's effect on industrial carbon emissions predominantly manifests as a 

significant emission-increasing factor with an effect magnitude of 0.492, which 

encompasses the drive of innovation toward production expansion (as seen in Pathway 

6 Table 4-3) and other unaccounted factors (in Pathway 2 in Table 4-3). Of the 

innovation emission-increasing effects, 70.12% are generated through stimulating 

production expansion (highlighted in Pathway in Table 4-3). Conversely, the emission-

reducing effect of innovation is seen in its fostering of industrial structure upgrading. 

When controlling for the city size variable, a 1% surge in the level of innovation results 

in a 0.055% increase in industrial upgrading. This industrial structural evolution, in turn, 

contributes to a decline in urban industrial carbon emissions. 

Innovation’s emission-reducing effect is primarily evident in promoting industrial 

structure upgrading (as seen in Pathway 5 in Table 4-3). Theoretically, besides 

facilitating industrial structure upgrading, innovation harbors other emission-reducing 

mechanisms. For instance, innovation can introduce more advanced and cleaner 

production technologies and better management practices, leading to energy 

conservation in industrial production. Nevertheless, excluding the factors of production 

expansion and industrial structure upgrading, the direct effect of city size on industrial 

carbon emissions via innovation is positive with an effect magnitude of 0.147 ((as seen 

in Pathway 2 in Table 4-3)). This positive coefficient implies a masking effect. 

Specifically, the emission-increasing effects associated with innovation overshadow the 

emission-reducing effects of cleaner production resulting from innovation.  
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The expansion of city size increases industrial carbon emissions primarily through 

the pathway of production expansion, with a total effect of 0.549 (Paths 3 and 6), which 

indicates that this increase has been achieved mainly through production expansion. 

The emission-increasing effect from city size expansion is 0.719 (Paths 2–4 and 6), of 

which the effect of production expansion accounted for 76.3%. Excluding the 

production expansion effect brought about by innovation, the effect of city size 

expansion on industrial carbon emissions through the production expansion path is 

0.204. 

The expansion of city size results in a slight carbon emission reduction effect in 

urban industries through industrial structure upgrading primarily achieved via 

innovation. For every 1% increase in city size, industrial carbon emissions decrease by 

0.042% because of the industrial structure upgrading brought about by innovation (Path 

5). However, excluding innovation, the mediation effect of city size through industrial 

structure upgrading has positively affected industrial carbon emissions (Path 4) because, 

without the innovation factor, the growth in city size would not have been conducive to 

industrial upgrading. When controlling for innovation, every 1% increase in city size 

decreases industrial upgrading by 0.096%. When excluding the mediating effects of 

innovation, production expansion, and industrial structure upgrading, the direct effect 

of city size on industrial carbon emissions is negative, with a value of -0.149, which 

suggests other unobserved effects. Specifically, for every 1% growth in city size, 

industrial carbon emissions decrease by 0.149%. 
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4.2.3.2 Heterogeneity analysis of the impact of urban size on carbon emissions 

through innovation 

Previous studies have found that urban size boosts urban innovation in a super-

linear manner and leads to an overall increase in industrial carbon emissions. On the 

other hand, research has shown that innovation's effects on carbon emissions display 

significant heterogeneity. A policy-focused study by Wei and Kong (2022) examined 

the effects of innovative city construction on carbon emissions. They found that the 

effects of innovative urban construction on carbon emissions were more pronounced in 

the western regions, which are poorer and have smaller populations. At the national 

scale, innovation has had carbon reduction effects in both low- and high-income 

countries (Ali et al., 2016; Fernández et al., 2018). The effects of urban innovation on 

carbon emissions seem to differ significantly across regions with varying levels of 

development. Hence, to better understand the differences in the mediation effects of 

urban-size-innovation-emissions across regions with different levels of development, 

we used per capita GDP data from 2020 and divided the sample into four groups using 

the quartile method. As shown in Table 4-4, the quartiles’ average per capita GDP is 

2.825, 4.069, 6.281, and 14.835 ten thousand yuan, respectively. 

Table 4-4 Descriptive statistics of GDP per capita by quartiles (in 10,000 yuan) 

Subgroup N Mean Min Max 

0% to 25% percentile 282 2.825 1.451 3.428 

25% to 50% percentile 276 4.069 3.436 4.835 

50% to 75% percentile 280 6.281 4.935 8.268 

75% to 100% percentile 276 14.835 8.460 50.218 
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To delve deeper into the variations in the mediation effects, we employed the 

bootstrap method for grouped mediation effect testing, the results of which are shown 

in Table 4-5. After controlling for factors such as industry structure and production scale 

expansion, the population sizes of cities still exerted significant positive effects on 

industrial carbon emissions via innovation, with a specific effect coefficient of 0.147. 

Further subgroup analysis revealed the disparity in these mediation effects. Notably, for 

the sample group of the first quartile, the path coefficient of this mediation effect is 

0.363, which considerably exceeds 0.147 of the ungrouped tests. This finding suggests 

that the emission-increasing effects of innovation have been primarily concentrated in 

cities with lower levels of development. Specifically, the emission-increasing effects 

driven by innovation are particularly pronounced for cities with a per capita GDP of 

about 30,000 yuan. However, the mediation effects are insignificant for the other three 

quartile groups. Cities in the highest income group do not show the anticipated carbon 

reduction due to innovation. This outcome does not imply that urban innovation has 

had no effect on carbon emissions, but the carbon-reducing effects brought about by 

innovations in green production technologies and management may have been masked 

by the emission-increasing effects. 

Cities with relatively high levels of development primarily benefit from carbon 

emission reduction when urban growth fosters innovation and upgrades the industrial 

structure. As shown in Table 4-5, the mediation effects via Pathway 5 are insignificant 

in the first three percentiles. However, in the fourth quartile, the mediation effect is 

significant at -0.144(Pathway 5 Table 4-5). This group's minimum and average GDP 
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per capita are 84,600 and 148,300 yuan, respectively, which shows that in cities with 

higher levels of development, using innovation to drive industrial structure upgrading 

is a practical approach to achieving carbon reduction as city size expands. 

By promoting innovation and stimulating production expansion, urban-scale 

expansion increases carbon emissions in cities with low and medium levels of 

development more significantly than in cities with high levels of development. Path 6 

of Table 4-5 shows that the mediating effects are significant in all grouped cities. In the 

city samples in the first and second quartiles, the mediating effects are nearly twice as 

large as those in the third and fourth quartiles, thus implying that green production 

should receive more attention in small and medium-sized cities. 

In cities with low and medium levels of development, urban size expansion reduces 

carbon emissions by fostering innovation and boosting production. These effects are 

more pronounced than in cities with higher levels of development. Path 6 of Table 4 

indicates that these mediating effects are significant across all city groups. For samples 

in the first and second quartiles, the mediating effects are nearly double those in the 

third and fourth quartiles, thus implying that green production should be prioritized in 

smaller cities. 

Table 4-5 Mediation effects of innovation across subgroups 

Subgroup Effect 

Standard 

Error 

z p LLCI ULCI 

Pathway 2. Urban size ⇒ Innovation ⇒ Industrial CO2 

0% to 25% percentile 0.363 0.086 4.21 0.000 0.194 0.532 

25% to 50% percentile 0.111 0.093 1.20 0.232 -0.071 0.292 
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Subgroup Effect 

Standard 

Error 

z p LLCI ULCI 

Pathway 2. Urban size ⇒ Innovation ⇒ Industrial CO2 

0% to 25% percentile 0.363 0.086 4.21 0.000 0.194 0.532 

50% to 75% percentile 0.138 0.097 1.41 0.157 -0.053 0.329 

75% to 100% percentile 0.104 0.096 1.09 0.278 -0.084 0.291 

Pathway 5. Urban size ⇒ Innovation ⇒ Industrial Structure Upgrading ⇒ Industrial CO2 

0% to 25% percentile -0.040 0.024 -1.66 0.097 -0.086 0.007 

25% to 50% percentile 0.005 0.008 0.65 0.516 -0.011 0.022 

50% to 75% percentile -0.0003 0.028 -0.01 0.991 -0.546 0.540 

75% to 100% percentile -0.144 0.047 -3.06 0.002 -0.237 -0.052 

Pathway 6. Urban size ⇒ Innovation ⇒ Production expansion ⇒ Industrial CO2 

0% to 25% percentile 0.179 0.046 3.88 0.000 0.089 0.270 

25% to 50% percentile 0.207 0.048 4.27 0.000 0.112 0.302 

50% to 75% percentile 0.117 0.044 2.66 0.008 0.031 0.204 

75% to 100% percentile 0.121 0.061 2.00 0.045 0.003 0.240 

Note: LLCI and ULCI refer to the lower and upper limits, respectively, of the 95% confidence interval. 

The impact of urban population size on carbon emissions is examined under 

different industrial structures. According to the descriptive statistics of industrial 

structure proportions in Chinese cities, most cities have entered a stage dominated by 

the secondary and tertiary industries. The average proportions of the secondary and 

tertiary industries are 45.13% and 40.84%, respectively. To explore the differences in 

the impact of urban population size on industrial carbon emissions under varying 

industrial structures, this study classifies city samples into secondary industry-dominant 

and tertiary industry-dominant categories using the maximum value comparison 
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method. Specifically, cities where the proportion of the secondary industry exceeds that 

of the tertiary industry are categorized as secondary industry-dominant, while those 

where the tertiary industry proportion is higher are classified as tertiary industry-

dominant. 

Table 4-6 Descriptive statistics of industrial structure proportions in Chinese cities 

Industrial structure Mean(%) Standard Error Maximum (%) Minimum (%) 

Primary Industry 14.01 8.86 0.04 48.7 

Secondary Industry 45.13 11.17 9 85.92 

Tertiary Industry 40.84 9.97 11.05 85.34 

The research findings indicate that in cities with a higher proportion of the tertiary 

industry, the increase in urban population size has a more pronounced effect on 

industrial CO₂ emissions through innovation. Specifically, in secondary industry-

dominant cities, the impact of innovation on industrial CO₂ emissions remains relatively 

limited as urban population size increases. However, in tertiary industry-dominant cities, 

this effect becomes more significant. This suggests that in cities where the tertiary 

industry accounts for a larger proportion, the expansion of urban population size 

enhances the role of innovation in driving industrial CO₂ emissions. The growth of 

urban population size is typically accompanied by greater resource agglomeration, 

higher talent density, and broader market demand, all of which provide a more favorable 

environment for innovation activities. As a result, larger cities tend to better 

accommodate and support innovation, further driving industrial development and 

expansion. This finding is also empirically validated in both secondary and tertiary 

industry-dominant cities. As industries grow and expand, CO₂ emissions generally 
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increase correspondingly. 

Table 4-7 Bootstrap industrial structure grouping test for mediating effects 

Subgroup Effect 

Standard 

Error 

z p LLCI ULCI 

Pathway 2. Urban size ⇒ Innovation ⇒ Industrial CO2 

Secondary Industry-Dominant 0.082 0.037 2.26 0.024 0.011 0.155 

Tertiary Industry-Dominant 0.182 0.102 1.79 0.074 -0.017 0.383 

Pathway 6. Urban size ⇒ Innovation ⇒ Production expansion ⇒ Industrial CO2 

Secondary Industry-Dominant 0.217 0.032 6.65 0.000 0.153 0.281 

Tertiary Industry-Dominant 0.476 0.083 5.72 0.000 0.312 0.638 

Note: LLCI and ULCI refer to the lower and upper limits, respectively, of the 95% confidence interval. 

There is a sub-linear relationship between urban size expansion and industrial 

carbon emissions. Such relationship suggests that urban size expansion inevitably 

increases total industrial emissions while improving carbon emission efficiency. This 

finding is consistent with the research on urban size and industrial carbon emissions at 

the provincial level in China (Li, 2016). However, carbon emission intensity is also 

believed to increase when the urban size increases excessively. Most cities in China are 

still not large enough. Although the increase in a city’s size would lead to an increase 

in its carbon emissions, the growth of urban size has improved the overall carbon 

emission efficiency of the entire urban system and reduced the total carbon emissions 

to a certain extent. 

Our study preliminarily found that the effects of innovation on carbon emissions 
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are heterogeneous among cities at different levels of development and contradicts other 

studies that have found that urban innovation has promoted carbon emission reduction 

(Fernández et al., 2018). Previous studies have also confirmed the super-linear 

relationship between urban size and innovation (Bettencourt et al., 2007; Broekel et al., 

2023). However, China's urban innovation has not generally shown a significant carbon 

emission reduction effect. Our findings are consistent with previous research that has 

found technological innovation to increase carbon dioxide emissions directly or 

indirectly (Su et al., 2023). The reason may be China’s current stage of rapid 

development in which investment in urban production expansion is given priority over 

urban innovation. Innovation in green production technology is still in its infancy. 

Moreover, green innovations have the attributes of public goods and often generate 

positive environmental externalities, such as reduced pollution, improved resource 

efficiency, or lower greenhouse gas emissions. These positive effects benefit society 

but usually do not directly bring economic returns to innovators. Therefore, such 

positive externalities may lead to the underestimation of green innovation, market 

failure, and insufficient supply. To encourage green innovation, the government and 

other public institutions must provide incentives and subsidies to ensure that green 

innovation is fully supported and promoted. Future research should further explore the 

effects of innovation on industrial carbon emissions at different levels of urban 

development. 

Why is the indirect effect of urban size affecting carbon emissions through 

innovation only significant in smaller cities? First, small cities' initial levels of 
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industrial technology may be relatively backward, and innovations are more likely to 

focus on improving production performance rather than focusing on environmental 

benefits, thus resulting in increased carbon emissions in the short term. Second, small 

cities may have relatively loose environmental standards and enforcement compared to 

larger cities, so the former may attract some high-polluting enterprises. This 

phenomenon aligns with the Pollution Paradise Hypothesis and has been confirmed in 

China (Wu & Zhang, 2021). Nie et al. (2022) more directly verified the hypothesis by 

analyzing China's spatial transfers of carbon emissions. Therefore, small and medium-

sized cities should pay more attention to their increases in carbon emissions due to 

innovation. It is necessary to consider innovation's positive and negative effects 

comprehensively. In such light, the local governments should strengthen the relevant 

policies and regulations to ensure that innovation contributes to reducing carbon 

emissions. 

4.3 Analysis of the Impact of Urban Size on Household Heating Carbon 

Emissions 

4.3.1 The Necessity of Studying Urban Heating Carbon Emissions 

Urban heating is a basic necessity for the residents of towns and cities in the colder 

northern regions. The household heating system in China has undergone four stages. 

From 1952 to 1970, the first stage was the initial phase, where heating was 

predominantly decentralized, characterized by low thermal efficiency and high 

pollution. The second stage, from 1971 to 2002, saw a gradual increase in the 
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construction of thermal power plants and an expansion in heating demand, but it was 

still a rough expansion phase, lacking long-term planning. The third stage, from 2003 

to the present, marked the cessation of welfare heating and the beginning of the 

commercialization of heating. The document "Guiding Opinions on the Pilot Work of 

Reforming the Urban Heating System (Jiancheng [2003] No. 148)" pointed out the need 

to promote the commercialization and socialization of heating. After that, the 

construction of heating infrastructure and urbanization process advanced rapidly. This 

eventually led to a pattern of centralized heating in the north, roughly divided by the 

Qinling-Huaihe line. The demand for heating in northern China is enormous, and its 

relationship with urban space has not yet received widespread attention. Heating carbon 

emissions have not yet peaked. The heating industry lacks "dual carbon" planning, 

specific carbon reduction targets, and top-level guidance(Zhu, 2023). Due to their 

individuality and dispersion, planning for emission reduction in residential energy use 

lacks focus. Unlike the individual characteristics of carbon emissions from cooking and 

lighting, China's centralized heating has a strong public characteristic, providing 

convenient conditions for the operability of carbon reduction planning. 

In urban carbon emission reduction research, at the macro scale, there are many 

studies on the reduction of total carbon emissions, household carbon emissions, and 

even transportation carbon emissions. However, due to its strong regional nature, 

heating is adopted only in some areas of China in the form of centralized heating, 

making research relatively rare. At the macro level of urban research, Zheng et al. (2011) 

carried out income-heating carbon emission elasticity estimation as a sub-item of 
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household carbon emissions. This is a beneficial attempt to understand how the urban 

economic system affects urban metabolism. Most research on heating carbon emissions 

focuses on the micro level, such as studies on air-source heat pumps and gas 

boilers(Yang et al., 2018) and groundwater-source heat pumps(Chai & Ma, 2012) at the 

engineering and technical level, which are not part of urban planning research. Research 

on how urban spatial structure affects heating carbon emissions is still lacking. 

Theoretically and practically, an urgent need is to understand the interaction between 

urban heating carbon emissions and urban spatial characteristics to support planning 

practice. 

Therefore, the following study focuses on heating, a key yet under-researched area 

within household carbon emissions, exploring how urban spatial structure affects 

household heating carbon emissions. 

4.3.2 Theoretical Analysis and Model Construction 

From the perspective of heating carbon emissions, the total carbon emissions and 

per capita carbon emissions of heating cities nationwide generally show an upward 

trend. The total carbon emissions increased from 150 million tons in 2006 to nearly 300 

million tons in 2019, and the per capita heating carbon emissions rose from 1 ton per 

person to close to 1.5 tons per person. This results from the gradual improvement of 

China's heating infrastructure and the expansion of the heating coverage area, showing 

a trend over time. This study focuses on the impact of urban spatial structure on heating 

carbon emissions, and controlling for time trends can effectively control the impact of 
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gradually increasing total heating volumes, thereby comparing the impact of urban 

heating volumes under different city sizes and densities. In the Stata statistical software, 

the "i(year)" command is used as an indicator variable (also known as a dummy variable 

or categorical variable) in models to control for specific effects of the year. Each year 

has an indicator variable (except for a base year, usually the first year in your data). 

This approach allows the model to capture potential fixed effects for each year, thereby 

controlling for time trends. For instance, if policies, economic environments, or other 

macro variables changed in specific years, causing systemic changes in heating carbon 

emissions, then by using i(year), you can capture these effects. This can ensure that the 

model estimates are not disturbed by these unobserved factors. 

 

Figure 4-6 Trend of heating carbon emissions in China from 2006 to 2019 

Looking at the carbon emissions from heating across cities, urban heating carbon 

emissions are significantly correlated with city levels. According to the spatial pattern 

map of urban heating carbon emissions classified by natural breakpoints, the cities with 

the highest household heating carbon emissions, exceeding 9.73 million tons, were 
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mainly provincial capitals and cities of higher levels. For example, Beijing (18.15 

million tons), Tianjin (16.90 million tons), Harbin (17.64 million tons), Shenyang 

(15.94 million tons), and Changchun (9.73 million tons). This result is related to the 

larger city size, which comes with a greater demand for heating. The heating carbon 

emissions in North China and Northeast China are significantly higher than those in 

regions with lower latitudes, such as Henan and Anhui, which are significantly 

influenced by temperature. Areas with lower local temperatures have significantly more 

heating days and a higher heating intensity than the warmer southern regions. Future 

research should exclude the impact of temperature as a factor. 

 

Figure 4-7 Urban heating carbon emission pattern(2019) 

Urban size is often significantly related to its infrastructure and energy demands, 

especially heating requirements, which in turn affect the carbon emissions level of the 

heating system. In large cities, the heating system is usually more complex and 
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extensive. Urban density refers to the spatial layout of urban elements, often affecting 

the nature of the city. Cities of the same size may exhibit different heating carbon 

emissions characteristics due to their varying urban densities. For example, high density 

could lead to more concentrated heating demands, less loss in heat during transportation, 

or a slower overall rate of urban heat dissipation, resulting in improving heating 

efficiency and reducing carbon emissions. Therefore, this study posits that urban size 

is a key factor affecting heating carbon emissions, while urban density determines the 

extent of the impact of urban size on heating carbon emissions, acting as a moderating 

effect. Therefore, this chapter use moderation effect analysis instead of mediation effect 

analysis. 

 

Figure 4-8 Theoretical models of urban size, density, and heating carbon emissions 

Based on the theoretical model presented above (Fig 4-8), we employ multiple 

linear regression models, specifically fixed-effects models, to assess the impact of 

urban size (measured by population), population density, and temperature on heating 

carbon emissions. All models underwent robustness checks and utilized year as a 

grouping variable for error clustering. This chapter also considered logarithmic 

regression models. Logarithmic regression models are advantageous for explaining 

how a 1% change in spatial structure indicators translates into a percentage change in 
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carbon emissions. 

The multiple linear regression models are as follows: 

Equation 4.11 
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For the logarithmic form regression models: 
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For the moderation effect regression: 

Equation 4.15 
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Combining for the polynomial form: 

Equation 4.16 
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Deriving the partial derivative of heating carbon emissions (HeatingCO2) with 

respect to urban size (US) yields: 

Equation 4.17 
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In the above equations: 

Heating_CO2it represents the heating carbon emissions of city i in year t. 

USit represents the urban size of city i in year t, measured by population indicators. 
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UDit represents the urban density of city i in year t, measured by the ratio of 

population to land area. 

Tit represents the average temperature of city i in year t, serving as a control variable. 

The moderation effect provides insights into how urban density (UD) influences 

the impact of urban size (US) on heating carbon emissions (HeatingCO2). If β53 is 

positive, an increase in urban density enhances the impact of urban size on heating 

carbon emissions; conversely, it weakens the impact. This could mean that in high-

density cities, there might be more efficient heating systems or other emission reduction 

measures in place, leading to an increase in urban size that does not result in a 

proportional increase in carbon emissions. Furthermore, the moderation effect could 

provide important implications for urban planning and environmental policy, especially 

in terms of balancing urban growth with sustainability. For example, if β53 is positive, 

this might imply that heating carbon emissions management in high-density cities 

should receive more attention. 

4.3.3 Empirical Study Results 

Heating carbon emissions exhibit sub-linear growth with the increase in urban size. 

The scaling exponent for heating carbon emissions is 0.945, which means that when 

the urban size increases by 100%, the average increase in urban heating carbon 

emissions is 94.5%, resulting in a 5.5% carbon emission saving effect. This 

phenomenon can be attributed to several factors. First, larger cities typically have 

higher energy efficiency, especially in heating systems. Technologies such as 
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centralized heating, geothermal heating, or heat recovery are more easily implemented 

and popularized in larger cities. Second, large cities are more likely to implement 

carbon emission controls, such as setting stricter building standards or using renewable 

energy sources. Lastly, large cities are more likely to invest in new technologies and 

infrastructure that improve energy efficiency due to economies of scale. 

Second, the sublinear relationship between heating-related carbon emissions and 

urban population size is stronger than that for total household carbon emissions. As 

analyzed in Section 4.1, the scaling exponent for household carbon emissions is 0.971, 

whereas that for heating-related emissions is 0.945, indicating that heating emissions 

are more sensitive to urban population expansion. Other components of household 

carbon emissions, such as lighting and cooking, are relatively independent of urban 

population size. Regardless of city size, people’s cooking habits and methods tend to 

remain consistent, and the fuels (e.g., natural gas or electricity) and appliances (e.g., 

kitchen stoves) used in different-sized cities exhibit little variation. Similarly, lighting 

demand remains relatively uniform across cities of varying sizes. Thanks to the 

widespread adoption of energy-efficient technologies, lighting efficiency has 

significantly improved across diverse urban environments. Compared to heating, 

cooking and lighting are typically managed within individual households and thus do 

not benefit significantly from efficiency gains associated with urban population growth. 

As a result, the effect of urban population size on carbon emissions from lighting and 

cooking is relatively small. Instead, these emissions are primarily driven by individual 

household behaviors and choices rather than the direct influence of overall urban scale. 
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These findings highlight the importance of considering the heterogeneity and 

complexity of emissions from various household activities in low-carbon urban 

planning. 

Table 4-8 Empirical results of the impact of urban size on heating carbon emissions 

Variables 

Equation 4.11 Equation 4.12 Equation 4.13 Equation 4.14 Equation 4.15 

Heating_CO2 Heating_CO2 ln(Heating_CO2) ln(Heating_CO2) Heating_CO2 

Urban Size 1.798*** 1.800***   2.196*** 

 (0.0750) (0.0770)   (0.0967) 

Urban Density  -0.00303   0.0515*** 

  (0.00424)   (0.00516) 

Urban Size* 

Urban Density 

    -0.000364*** 

     (2.36e-05) 

Ln(Urban Size)   0.945*** 0.930***  

   (0.0222) (0.0173)  

Ln(Temprature)   -1.254*** -1.288***  

   (0.0441) (0.0602)  

Ln(Urban 

Density) 

   0.0286  

    (0.0225)  

Temprature -21.71*** -21.39***   -22.50*** 

 (1.279) (1.428)   (1.516) 

Constant 216.1*** 214.7*** 3.283*** 3.253*** 179.4*** 

 (17.65) (18.84) (0.142) (0.148) (19.71) 

Observations 1,761 1,761 1,761 1,761 1,761 

R-squared 0.747 0.747 0.411 0.411 0.766 

Number of years 14 14 14 14 14 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 
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The impact of urban size on heating carbon emissions is moderated by urban 

density. The term −0.000364×UD in the partial derivative indicates that urban density 

(UD) reduces the impact of urban size (US) on heating carbon emissions (HeatingCO2). 

Specifically, each unit increase in urban density reduces the impact of urban size on 

heating carbon emissions by 0.000364 units. In practical terms, an increase in urban 

population density by 1000 people per square kilometer results in a relative decrease of 

0.364 tons in heating carbon emissions for every increase of 10,000 people in urban 

size. The growth in urban density weakens the positive growth effect of urban size on 

heating carbon emissions. The concentration of population from low-density cities to 

high-density cities overall reduces the level of heating carbon emissions. 

∂HeatingCO2

∂US
=2.196-0.000364*UD 

This study employs a non-parametric estimation method for cross-validation of the 

conclusion. Interflex, utilizing non-parametric kernel estimation, offers a flexible and 

intuitive approach to examine moderating effects or interaction effects. It does not rely 

on any preset functional form. Thus, it can capture more complex relational dynamics. 

According to Figure 4.9, the impact of urban density on the effect of urban size on 

heating carbon emissions shows a U-shaped relationship, with the turning point at a 

density of 7500 people per square kilometer. The population density of most cities in 

China is far below this threshold. This means that, in the context of China, the increase 

in urban population density weakens the demand for heating carbon emissions driven 

by urban size growth (at least up to such a turning point). 
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Figure 4-9 Adjusting marginal effect estimation (Interflex plot) 

In general, expanding high-density cities exerts less pressure on heating carbon 

emissions. In contrast, the expansion of low-density cities contributes more 

significantly to the pressure on heating carbon emissions. Equation 4.11 results show 

that the current expansion of Chinese cities leads to an average increase in heating 

carbon emissions of 17.98 tons of CO2 per 10,000 people. By incorporating this into 

the partial derivative equation, it is determined that when urban density is 

approximately 1093 people per square kilometer, urban size and the consequent growth 

in heating carbon emissions align with the national average level. The expansion of 

cities with a population density lower than 1093 people per square kilometer will 

elevate the overall level of heating carbon emissions. Conversely, increasing the 

population size of cities with a density higher than 1093 people per square kilometer 

will reduce heating emissions. To reach the 2019 average heating carbon emissions 

growth rate of 15 tons per 10,000 people, the population density must be 1912 people 

per square kilometer. 
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From the perspective of the human-environment relationship, urban density serves 

as a moderating variable in the impact of urban population size on heating-related 

carbon emissions, reflecting the interaction between human activities and spatial 

configurations and their environmental implications. The human-environment 

relationship theory emphasizes the interplay between population distribution, land use 

patterns, and geographical conditions, which collectively shape urban energy 

consumption patterns and carbon emissions levels. 

In high-density cities, residents and buildings are more spatially concentrated, 

optimizing the energy distribution efficiency of centralized heating systems. The 

shorter transmission distances reduce heat loss during distribution, leading to higher 

overall heating efficiency. Additionally, high-density areas are often associated with 

stricter building standards, including better insulation performance and the adoption of 

advanced energy technologies, further lowering per-unit heating demand and carbon 

emissions. 

In contrast, low-density cities are characterized by more dispersed populations and 

buildings, making it more challenging to implement centralized heating systems 

efficiently. In these areas, heating demand is widespread yet scattered, and independent 

heating systems—such as electric heaters or gas boilers—are commonly used. These 

systems typically have lower efficiency and higher carbon emissions due to energy 

conversion losses and less effective energy utilization. Moreover, urban planning and 

building design in low-density areas may not fully integrate energy-saving 

considerations, resulting in lower energy efficiency and higher heating-related carbon 
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emissions. 

From a heating perspective, urban planning and land-use strategies in regions with 

significant heating demand should consider how to optimize population distribution 

and urban spatial organization to reduce heating-related carbon emissions. While the 

practical application of this study’s findings in heating carbon emission planning may 

face certain limitations, they provide valuable insights for understanding the dynamics 

of heating emissions from the perspectives of urban scale and density. This 

understanding is crucial for accurately identifying and assessing planning targets, 

thereby enhancing the practical value of planning efforts. 

4.4 The Impact of Urban Size on Transportation Carbon Emissions 

4.4.1 Theoretical Analysis of Urban Transportation Carbon Emissions 

Previous research on urban transportation carbon emissions has primarily focused 

on the quantitative measurement of carbon emissions and analyzing influencing factors. 

The goal of the studies on the quantitative measurement of transportation carbon 

emissions is to precisely calculate the current status of carbon dioxide emissions from 

various transportation components. For example, there are calculations of carbon 

emissions from public transportation(Chen et al., 2023; Wang & Zheng, 2023), as well 

as specific measurements of carbon emissions in areas such as the Yangtze River 

Economic Belt(Jiang et al., 2020) and Gansu Province(Wu et al., 2015). The research 

on measuring transportation carbon emissions is a foundation for understanding the 

current state of regional and urban transportation carbon emissions.  However, 
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planning for carbon emission reduction also requires an understanding of the 

connections between transportation carbon emissions and other factors. Many studies 

have been conducted on the factors influencing transportation carbon emissions. 

Neverthelss, a framework has not yet been established for studying urban transportation 

carbon emissions from the perspective of the urban system. 

Research on transportation carbon emissions can be conducted in three dimensions: 

demand side, supply side, and supply efficiency. First, the larger the city size, the greater 

the total demand for transportation carbon emissions. The number of people is 

positively correlated with transportation demand; more people mean more demand for 

passenger and freight transport(Su et al., 2011), thus increasing carbon emissions. 

Second, the higher the level of affluence, the greater the demand for transportation and, 

consequently, the higher the demand for transportation carbon emissions. Wu et al. 

(2015)found that the level of economic development has a greater pull on transportation 

carbon emissions than the factor of population size. 

Moreover, as income levels increase, people tend to buy and use personal 

transportation (such as cars) rather than public transportation. Higher incomes can 

afford higher travel costs and may lead to more frequent and longer-distance travel, 

thereby increasing carbon emissions. Third, the supply of transportation services affects 

carbon emissions. It has been found that developed public transportation helps to reduce 

carbon emissions(Su et al., 2011). Fourth, elements of urban spatial structure affect the 

efficiency of transportation supply, which in turn affects the demand for transportation 

carbon emissions. For example, the larger the city, the longer the commuting distance. 
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The denser the city, the more pronounced the congestion effect. 

The first and second dimensions represent the demand-side analysis of factors 

driving transportation carbon emissions. At the same time, the third point analyzes the 

pressure on transportation carbon emissions from the perspective of transportation 

supply structure. The fourth point suggests that urban spatial structure is the 

fundamental framework for socio-economic activities and transportation carbon 

emissions, constraining transportation supply efficiency and impacting carbon 

emissions. Through this comprehensive theoretical framework, we can understand the 

multifaceted factors affecting transportation carbon emissions more comprehensively 

and provide more accurate evidence for policy-making. This framework can also serve 

as a basis for more in-depth quantitative research. Based on the analysis of the 

spatiotemporal pattern of urban transportation carbon emissions in China, this chapter 

explores the impact of city size on transportation carbon emissions. 

4.4.2 Current Status of Urban Transportation Carbon Emissions in China 

China's transportation carbon emissions have shown a significant upward trend. In 

2020, the carbon emissions from transportation amounted to 894 million tons, 2.58 

times the amount in 2005. Looking at the per capita level, the per capita transportation 

carbon emissions for 2005, 2010, 2015, and 2020 were 0.291, 0.410, 0.557, and 0.676 

tons per person, respectively. The level of per capita transportation carbon emissions 

also shows an increasing trend. 
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Figure 4-10 Urban transportation carbon emission pattern 

The spatial distribution of transportation carbon emissions in China exhibits 

characteristics of "dense in the east and sparse in the west, continuous along the coast, 

and clustered at four poles." The east-west disparity indicates that the coastal areas in 

the eastern part of China have significantly higher transportation carbon emissions 

compared to the central and western regions. The continuous coastal zone in the east 

essentially forms a contiguous area of high transportation carbon emissions, making it 

a hotspot for China's transportation carbon emissions. Regarding clustering at four 

poles, in 2020, the eight cities with the highest transportation carbon emissions were 

Beijing and Tianjin, Shanghai and Suzhou, Guangzhou and Shenzhen, Chengdu and 

Chongqing. These areas are essential centers within their respective regions or 

economic sectors, serving as growth poles for the economy and as high points for 

transportation carbon emissions. 
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Figure 4-11Temporal and spatial characteristics of urban transportation carbon emissions 

in China 

4.4.3 Analysis of the Impact Mechanism of Urban Size on Transportation 

Carbon Emissions 

In the overall analysis presented in Section 4.1, transportation-related carbon 

emissions exhibit a significant sublinear relationship with urban population size. The 

scaling exponent for the relationship between urban population size and transportation 

carbon emissions is 0.78, indicating that when the urban population doubles, 

transportation carbon emissions increase by 78%. From an efficiency perspective, 
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urban population growth leads to a reduction in per capita transportation carbon 

emissions. This sublinear relationship is primarily attributed to the well-developed 

public transportation systems in large, densely populated cities, which reduce residents' 

dependence on private vehicles. Due to their larger population base, these cities can 

support extensive and efficient public transportation networks, such as subways, buses, 

and light rail systems. These systems provide convenient and widely accessible 

mobility options, effectively reducing vehicle miles traveled and alleviating traffic 

congestion, thereby lowering carbon emissions. Additionally, population growth is 

often accompanied by higher levels of urban development and more advanced 

transportation management technologies, such as intelligent traffic systems, which 

enhance road usage efficiency and further reduce emissions. Thus, the expansion of 

urban population size not only fosters greater economic and social activity but also 

facilitates relative reductions in transportation-related carbon emissions through 

efficient public transit systems, demonstrating the synergy between population growth 

and environmental sustainability. 

It is widely recognized that larger cities tend to have more developed public 

transportation systems, which contribute to lower transportation-related carbon 

emissions. This understanding is well-supported both theoretically and empirically. As 

urban populations grow, improvements in transportation infrastructure, such as the 

expansion of subway lines and the increase in bus fleets, help accommodate larger 

populations while reducing reliance on private vehicles, thereby mitigating carbon 

emissions. 
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However, relatively few studies have empirically tested the mediating effect of 

public transportation systems in the relationship between urban population size and 

transportation carbon emissions. Moreover, public transportation systems are a key 

component of urban planning and can be influenced through policy interventions. 

While individual travel behaviors—such as trip frequency, mode choice, and travel 

distance—also affect carbon emissions, they are more challenging to regulate directly 

through urban planning tools. 

Considering this, this section aims to construct and empirically test a mediation 

model to examine the role of public transportation systems in mitigating transportation-

related carbon emissions in Chinese cities. Specifically, the model explores how urban 

population growth potentially reduces transportation carbon emissions by improving 

public transportation systems. This analysis considers both direct effects and indirect 

effects, in which public transportation usage mediates this relationship. The study thus 

seeks to verify whether, in the Chinese context, the expansion of public transportation 

can effectively contribute to reducing transportation carbon emissions, as 

conceptualized in the mediation model illustrated in Figure 4-12. 

 

Figure 4-12 Mediating effect model of urban size on transportation carbon emissions. 

Based on the mediation effect theoretical framework mentioned above, this study 
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will establish a corresponding econometric model to quantitatively assess the effect of 

the mediating variable—urban public transportation—on the relationship between city 

size expansion and transportation carbon emissions reduction. 
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Equation 4.20 
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In the formula, US represents the urban population size, GDP per capita is used as 

a control variable for per capita carbon emissions, Transport emission refers to the 

amount of carbon emissions from transportation, and the total volume of bus and 

trolleybus passengers represents Public Transportation. The mediating effect is denoted 

as ab, the direct effect as c′, and the total effect as ab + c′. 

The regression results show that urban public transportation acts as a mediating 

variable in the impact of city size on transportation carbon emissions. According to the 

regression results in Table 4-9, after controlling for the city's wealth level (per capita 

GDP), the regression coefficient for city size is 0.81, and this coefficient has passed the 

1% significance test. This means that the total effect of city size on transportation 

carbon emissions is 0.81, with a 1% increase in city size leading to a 0.81% increase in 

urban transportation carbon emissions. The regression results from Equation 4.19, with 

the total volume of urban passenger transportation as the dependent variable, show that 
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the coefficient for city size is 0.834, which has passed the 1% significance test. In 

China's urban system, city size positively affects urban public transportation. With a 1% 

increase in urban population size, the scale of urban public transportation increases by 

0.834%, i.e., a=0.834. In Equation 4.20, the regression coefficient for public 

transportation is -0.0354, which has passed the significance test at the 5% level (b=-

0.0354). This means that, after controlling for urban population size and wealth level, 

urban public transportation can reduce transportation carbon emissions to a certain 

extent. The value of the mediating effect a*b is -0.0295. This indicates that with the 

growth of city size, increasing the use of urban public transportation can reduce urban 

transportation carbon emissions. With a 1% increase in city size, transportation carbon 

emissions can be reduced by 0.0295% through the mediation pathway of urban public 

transportation. 

Table 4-9 Regression results of the mediating effect of urban size on transportation 

carbon emissions 

Variables 

Equation 4.18 Equation 4.19 Equation 4.20 

ln(Transport 

Emission) 

ln(Public 

Transportation) 

ln(Transport 

Emission) 

ln(US) 0.810*** 0.834*** 0.840*** 

 
(0.0244) (0.0468) (0.0277) 

ln(Public 

Transportation) 
  

-0.0354** 

   
(0.0157) 

ln(GDP per capita) 0.568*** 1.299*** 0.613*** 

 
(0.0227) (0.0438) (0.0307) 

Constant -0.406*** 2.429*** -0.320** 

 
(0.148) (0.284) (0.153) 
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Variables 

Equation 4.18 Equation 4.19 Equation 4.20 

ln(Transport 

Emission) 

ln(Public 

Transportation) 

ln(Transport 

Emission) 

Observations 1,114 1,110 1,110 

R-squared 0.598 0.511 0.599 

Number of years 4 4 4 

Note: Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

In China, the growth of urban population size leads to an increase in public 

transportation usage, which, to some extent, mitigates the growth of transportation-

related carbon emissions. As a result, the relationship between urban population size 

and transportation carbon emissions exhibits a sublinear growth pattern. This finding 

aligns with empirical observations. Urban population growth is often accompanied by 

the development and expansion of public transportation systems, encouraging residents 

to adopt more environmental friendly travel modes. As cities grow in both population 

and economic activity, governments and urban planners tend to allocate more resources 

to the construction and optimization of public transportation infrastructure, such as 

subways, buses, and light rail systems. These investments not only enhance urban 

transport efficiency but also reduce residents' reliance on private vehicles. Such 

measures effectively improve per capita travel efficiency and decrease carbon 

emissions per trip. Consequently, while urban expansion increases economic activities 

and transportation demand, a well-developed public transportation system enables the 

growth of urban population size to outpace the rise in transportation carbon emissions. 

This sublinear relationship suggests that with sound urban planning and policy 

guidance, cities can achieve both economic growth and environmental sustainability by 
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controlling and slowing the increase in transportation-related carbon emissions. 

However, the coefficient of this mediation effect is small, indicating that the effect 

on reducing transportation carbon emissions is limited. This means that urban public 

transportation has not yet been able to fully provide sufficient convenience for residents' 

travel and meet their living needs, resulting in public transportation being unable to 

replace private modes of transport on a large scale. One reason might also be the 

inefficiency of public transportation systems, especially the subway, due to the rush to 

launch subway projects without adequate planning. Firstly, public transportation, 

especially subways, also requires carbon emissions during operation. In the rush to 

build subway projects, there might be a push to reclassify counties as districts without 

fully considering the actual socio-economic development, making the urban population 

meet the criteria needed for constructing subways. However, the functional connections 

between different urban areas remain relatively weak. In such cases, the subway system 

may operate inefficiently due to insufficient passenger numbers. This affects the 

financial sustainability of the subway system itself and may also reduce the potential 

contribution of the entire urban public transportation system to carbon emission 

reduction. 

4.5 Summary of This Chapter 

This chapter first analyzes the relationship between urban population size and total 

carbon emissions, industrial carbon emissions, transportation carbon emissions, and 

household carbon emissions from the perspective of urban scaling laws. It further 
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examines the differences in urban carbon emission efficiency in China using Scale-

Adjusted Metropolitan Indicators (SAMIs) (Section 4.1). Subsequently, the 

mechanisms and heterogeneity of industrial carbon emissions (Section 4.2), household 

carbon emissions (Section 4.3), and transportation carbon emissions (Section 4.4) are 

analyzed in detail based on different emission sources. The findings indicate a sublinear 

relationship between urban population size and carbon emissions, with urban 

population size affecting industrial, heating, and transportation carbon emissions 

through different pathways. The key research findings are summarized as follows: 

First, Urban population size influences industrial carbon emissions through 

innovation, production expansion, and industrial upgrading. 

(1) Overall, urban innovation in China has not yet demonstrated a significant 

carbon reduction effect. (2) Innovation has a dual impact on industrial carbon emissions, 

exhibiting both emission-promoting and emission-reducing effects, with the former 

significantly outweighing the latter. As urban population size grows, innovation levels 

rise, driving production and increasing industrial carbon emissions. This effect is 

particularly pronounced in cities with lower development levels. (3) The expansion of 

urban population size not only stimulates industrial carbon emissions through 

production growth but also generates a limited carbon reduction effect through 

industrial upgrading. 

Second, Higher urban population density weakens the heating carbon 

emission demand associated with urban population growth. 

This section examines the impact of urban population size on heating carbon 
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emissions and the moderating role of urban density. The findings reveal that the scale 

effect of heating carbon emissions is stronger than that of overall household carbon 

emissions. The influence of urban population size on heating carbon emissions exhibits 

a U-shaped relationship with urban density. In general, increasing urban density 

mitigates the demand for heating carbon emissions resulting from population growth. 

Third, Urban population growth reduces transportation carbon emissions 

through public transportation systems, but the effect is limited. 

A mediation model is constructed to empirically test the relationship between urban 

population size, public transportation, and transportation carbon emissions. The results 

show that as urban population size increases, the use of public transportation also rises, 

contributing to a reduction in transportation carbon emissions. However, the overall 

effect of this reduction remains limited. 
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Chapter 5. The Impact of Urban Form on Carbon Emissions 

The size of a city determines the demand volume for urban metabolism. In contrast, 

the urban spatial form, serving as the skeleton of urban operations, has a specific 

locking effect on urban metabolism. Research in the field of urban carbon reduction is 

gradually gaining attention. In the domain of urban studies, many researchers believe 

that urban spatial form is strongly associated with urban elements such as the heat island 

effect (Liang et al., 2020; Ramirez-Aguilar & Souza, 2019), air quality (Lu & Liu, 2016; 

McCarty & Kaza, 2015), and the housing market (Jones et al., 2009). Urban spatial 

form is an indispensable link in analyzing and understanding the impact of urban spatial 

structure on carbon emissions. Moreover, the real-world relationship between urban 

spatial form and carbon emissions provides direct and operational guidance for urban 

planning. It has long-term and structural characteristics regarding its impact on carbon 

emissions(Qin & Shao, 2012). Therefore, building on the foundation of research into 

the impact of city size on carbon emissions, this chapter investigates the effects of urban 

spatial form on industrial, transportation, and household carbon emissions. 

5.1 Quantification of Urban Geometric Morphology and Its Spatio-Temporal 

Evolution 

5.1.1 Selection of Urban Geometric Morphology Indicators 

The selection of indicators for the geometric morphology of cities begins from the 

dimensions of "land area-spatial allocation," choosing key variables that reflect the 

geometric characteristics of urban land use space. These are quantified across four 
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dimensions: the scale of the built-up area, shape complexity, compactness, and 

polycentricity/monocentricity. The built-up area's land use size reflects the scale of land 

utilization, serving as the basic framework for urban production and living, and 

constitutes a fundamental premise for urban development. The complexity of urban 

land use is represented by the area-weighted mean shape index and the area-weighted 

mean patch fractal dimension. The description of the compactness of urban built-up 

areas utilizes the Compactness Index (AI), Largest Size Index (LSI), and Average 

Nearest Neighbor Distance (ENN_AM). Characterizing urban 

polycentricity/monocentricity employs the Central Area Index and the Coefficient of 

Variation of the Central Area. This establishes a quantified indicator system for urban 

spatial morphology, measuring the geometric form of urban land use from the 

dimensions of built-up area scale, shape complexity, compactness, and the degree of 

polycentricity or monocentricity. 

(1) City Area： CA 

Land serves as the spatial foundation for socio-economic activities, as the carrier 

for various production activities and as the living space for humans. The utilization and 

management of land are directly related to a region's economic development, 

environmental quality, and social progress. Therefore, the reasonable use and effective 

management of land resources play a crucial role in promoting the sustainable 

development of socio-economic. The urban land area (CA: City Area) determines urban 

development's spatial capacity and boundaries, representing the most significant and 

intuitive spatial form characteristic of urban space. This study employs land use vector 



 115 / 254 

data to extract the urban land area, ensuring data heterogeneity and comparability. The 

precision of land use vector data extraction is high, though there may be some 

discrepancies with the statistical data of various cities. 

(2) Urban Built-up Area Shape 

a. Area-Weighted Mean Shape Index (SHAPE_AM) 

The Area-Weighted Mean Shape Index (Shape Index - Area Weighted Mean, 

SHAPE_AM) is a landscape index used to measure the shape complexity of landscape 

patches. This index focuses on expressing the complexity of a patch's shape, taking into 

account the size of the patch. SHAPE_AM is calculated by summing the product of each 

patch's shape complexity and its relative area, then dividing by the total area of all 

patches. Thus, the shape index of larger patches has greater weight in SHAPE_AM. 

Equation 5.1 

 SHAPE_AM=
∑ (Ai*p

i
/(4√Ai)

n
i=1

∑ (Ai)
n
i=1 *n

 

In the formula, n is the total number of patches. Ai is the area of the ith patch. pi is 

the perimeter of a single patch. SHAPE_AM describes the degree of clustering, with 

values of SHAPE_AM being equal to or greater than 1. When it equals 1, it indicates 

that there is only one patch of that type in the landscape and it is close to square. As the 

dispersion and irregularity of patch types increase, the Area-Weighted Mean Shape 

Index gradually increases without an upper limit. 

b. Area-Weighted Mean Fractal Dimension (FRAC_AM) 

The Area-Weighted Mean Fractal Dimension (Fractal Dimension Index Area 

Weighted Mean: FRAC_AM) is an indicator used to describe the complexity and shape 
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of urban construction land patches (see Equation 5.2). The value of FRAC_AM ranges 

between 1 and 2, with values closer to 1 indicating more regular urban built-up area 

edges. Higher Area-Weighted Mean Fractal Dimensions suggest more complex, 

unplanned urban expansion, while lower fractal dimensions may be associated with 

well-planned, orderly urban expansion. 

Equation 5.2 

 FRAC_AM=

(∑
2 ln 0.25p

i

lnAi

n
i=1 ) *Ai

n* ∑ Ai
n
i=1

 

(3) Urban Built-up Area Aggregation characteristic 

a. Urban Construction Land Aggregation Index (AI) 

The Landscape Aggregation Index (AI) indicates the probability of different patch 

types (including similar nodes among the same type) appearing adjacent in a landscape 

map. Its unit is a percentage ranging from 0 to 100. When the fragmentation level of a 

certain patch type is maximized, its Aggregation Index is 0. As the degree of 

aggregation increases, the Aggregation Index increases, reaching 100 when the patch 

type aggregates into a compact whole. A higher Aggregation Index for a city's built-up 

area typically implies that buildings or built-up blocks are spatially closer, forming a 

more continuous and compact built environment. Conversely, a lower Aggregation 

Index may indicate that built-up blocks are relatively dispersed in space, potentially 

showing higher fragmentation. 

b. Largest Patch Index (LPI) 

The Largest Patch Index (LPI) of urban construction land is the ratio of the largest 

construction land patch to the total construction land area, reflecting the intensity of 
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urban construction land aggregation towards a single plot. High LPI values usually 

correspond to higher compactness, where the city's largest patch is dominant. 

Conversely, low LPI values may indicate a relative dispersion among urban plots. 

c.Area-Weighted Mean Nearest Neighbor Distance (ENN_AM) 

The Area-Weighted Mean Nearest Neighbor Distance (Euclidean Nearest 

Neighbor Distance-Area Weighted: ENN_AM) is used in landscape ecology to describe 

the compactness among landscape elements. This index measures the average distance 

from each landscape patch or specific land use type to its nearest neighbor of the same 

type. Shorter nearest-neighbor distances for a patch suggest that patches are closer to 

each other, making the urban land landscape potentially more compact. 

Equation 5.3 

ENNMN=
∑ di*Ai

n
i=1

n* ∑ Ai
n
i=1

 

In the formula, di is the distance from urban land patch i to the nearest other patch, 

and Ai is the area of the ith patch. 

(4) Urban Land Polycentric/Monocentric Structure Characteristics 

Urban structure often encompasses considerations of both morphological 

polycentric structures and functional polycentric structures. In this study, the focus is 

on morphological polycentricity. Urban polycentric and monocentric structures are 

characterized by center intensity, the number of centers, and distribution evenness. The 

leading indicators include the Largest Patch Index (LPI) of urban construction land, the 

Number of Core Areas (NCA), and the Coefficient of Variation of Core Areas. To ensure 

comparability among different cities, the urban core areas in this study are determined 
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based on land use data. Empirically, areas within a boundary of 1000 meters are 

considered core areas. 

a. Core Area Percentage of Landscape (CAPL) 

The Core Area Percentage of Landscape (CAPL) refers to the proportion of the 

central area of urban construction land relative to the total area of construction land. A 

higher CAPL value indicates that the urban central area occupies a more significant 

proportion of the total built-up area, typically suggesting that the city's core area or 

central district dominates, showing a monocentric spatial structure of urban 

development. Conversely, a lower CAPL suggests a trend towards a polycentric urban 

form. In a polycentric structure, in addition to the main urban core area, multiple 

auxiliary central areas or sub-centers may have relatively independent structures. 

b. Number of Core Areas (NCA) 

The Number of Core Areas (NCA) reflects a city's single/polycentric structure 

characteristics. In urban planning, the relationship between urban land use and 

infrastructure determines that the urban core areas are the heart of the built-up area. The 

number of urban core areas intuitively reflects a city's monocentric or polycentric 

structural features. 

c. Core Area Coefficient of Variation (CACV) 

The Core Area Coefficient of Variation (CACV) is the ratio of the standard 

deviation of the areas of various core areas to the average area of these core areas. This 

indicator reflects the degree of variation and unevenness in the sizes of different core 

areas within a city. A higher CACV indicates a larger difference in patch sizes, which, 
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in urban planning practice, generally means that the central urban area is much larger 

than the surrounding smaller centers, presenting a monocentric urban spatial structure. 

Conversely, a lower CACV indicates that urban core areas are more evenly distributed 

with more minor differences in size, showing the characteristics of a polycentric urban 

spatial structure. 

In addition to these morphological variables of urban land (McGarigal et al., 2012), 

this chapter explores the impact of urban green spaces and the relationship between 

green spaces and construction land on carbon emissions, with the selection of indicators 

discussed in section 5.2.5. 

5.1.2 Data Sources and Processing Procedures 

(1) Data source 

The National Oceanic and Atmospheric Administration (NOAA) provides the 

nighttime light data through the NPP-VIIRS (National Polar-orbiting Partnership-

Visible Infrared Imaging Radiometer Suite) monthly composite nighttime light remote 

sensing imagery. VIIRS, a scanning imaging radiometer, collects radiation images in 

visible and infrared wavelengths of land, atmosphere, ice, and oceans. This data filters 

out interference from stray light, lightning, lunar illumination, and cloud cover. The 

NPP-VIIRS nighttime light data is one of the important products, including monthly 

composite nighttime light data and daily nighttime light data. Utilizing polar orbits, the 

NPP-VIIRS nighttime light data is stitched together from multiple cloud-free images to 

form global nighttime light remote sensing imagery, sensitively capturing nighttime 
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lights on Earth, especially in urban areas with high light intensity. 

Wuhan University provides a 30m high-precision land use dataset derived from 

many Landsat images (335,709 images), ensuring a broad representation of land cover. 

The dataset was trained using stable samples extracted from the China Land Use/Cover 

Dataset (CLUDs) and samples interpreted visually through satellite time series data, 

Google Earth, and Google Maps, ensuring the reliability and verifiability of its training 

data (Yang & Huang, 2021). Therefore, this study adopts this dataset as the foundation 

for this research segment and combines it with the advantages of nighttime lights in 

determining urban extents to acquire the dataset for this study. The latest dataset is from 

2019. Due to minimal urban morphology changes within a year, this study uses 2019 

instead of 2020. 

(2) Data Processing Procedure 

This study aims to quantify urban spatial morphology, where an essential step 

involves extracting spatial data on urban form and determining the accuracy of related 

index calculations for urban spatial form. The methods to delineate urban built-up areas 

in calculating urban spatial morphology mainly include using nighttime light data for 

extracting urban built-up areas and utilizing existing land use data. 

Nighttime light data has advantages in delineating boundaries and studying urban 

expansion at a coarse granularity, but it has certain limitations in describing the internal 

morphology of cities. Nighttime lights serve as a valuable data source for urban studies, 

extensively used by scholars for built-up area extraction research in various locations 

and at different scales, such as global scale(Sharma et al., 2016), four major 
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metropolitan areas in Eurasia(Liu et al., 2019). In summary, nighttime light data can 

achieve an error within 5% at the urban area quantity level, satisfying the needs for the 

general area, expansion direction, and rough shape calculation. Therefore, nighttime 

lights can broadly reflect the intensity of human activity in urban and non-urban areas, 

especially in urban peripheries and transition zones. However, due to the overflow 

characteristic of nighttime lights, they often do not well represent the internal 

morphology of cities. For example, large green areas like Wanshi Mountain and 

Dongping Mountain inside Xiamen Island cannot be well identified in nighttime light 

data. 

Figure 5-1 Example Comparison of Nighttime Lights and the Urban Built-up Area Extracted 

in This Study (Xiamen). 

High-precision land use data can compensate for the shortcomings of nighttime 

light data. Impervious surfaces mainly refer to hardened surfaces on the land, such as 

buildings, roads, squares, et al. This method primarily uses remote sensing technology, 
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such as high-resolution satellite imagery, to determine. Land use vector data can more 

accurately reflect urban buildings and hardened ground distribution. In studying the 

internal morphology of cities, land use vector data has significant advantages that 

nighttime light data cannot achieve. However, land use data also includes rural lands. 

Therefore, this study combines the advantages of nighttime light data and land use data 

to generate a foundational dataset for urban built-up areas. The process for handling 

this study's foundational dataset for urban built-up areas is as follows. 

 

Figure 5-2 The process of extracting urban built-up areas scope 

(2) Data Processing Procedure 

Firstly, processing of nighttime light data. The NPP-VIIRS nighttime light data is 

released monthly, but due to differences in the months of capture, there can be seasonal 

systematic differences in city nighttime lights. Additionally, higher latitude areas may 

experience poorer quality in global nighttime light data, sometimes resulting in 

"truncated" data loss. Firstly, considering both data month consistency and quality, data 
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from January, April, and December are chosen. Secondly, for ease of later statistical 

calculations, the NPP-VIIRS nighttime light data undergo projection transformation to 

Albers equal-area conic projection, and the grid size is resampled to 100 meters by 100 

meters. Thirdly, NPP-VIIRS nighttime light data contains background noise, and in 

pitch-black non-urban spaces, there might be negative DN values, which would produce 

errors if directly included in calculations. Thus, negative DN values were set as 0. To 

eliminate the excessively high-intensity outliers in NPP-VIIRS nighttime light data, this 

study placed the pixel DN values from lowest to highest, selecting the DN value at the 

99.9% percentile of light-emitting pixels as the threshold DNmax and brightness above 

this threshold were set as DNmax, thus eliminating excessively bright outliers. Fourthly, 

not involving quarterly analysis, using monthly data can introduce bias. 

Additionally, nighttime light data can have random errors in each capture, which 

can be eliminated through annual synthesis. Therefore, this study uses the "Raster 

Calculator" to average the cropped monthly Bohai Rim area nighttime light data into 

an annual composite, obtaining yearly data. Fifthly, since this study uses nighttime light 

data only to extract urban extents and reference existing research(Liu et al., 2018), it 

adopts a generic threshold of nighttime light DN value greater than or equal to 6 for 

urban areas. 

Second, processing of land use data. Since this study aims to explore urban spatial 

morphology, requiring area statistics and using 30-meter spatial resolution data does 

not significantly enhance the study results, and large data volumes pose a considerable 

test to hardware. (1) Considering the difficulty of data processing, the China Land 
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Use/Cover Dataset (CLUDs) is resampled to 100 meters by 100 meters grid data. (2) 

Resampling. Since urban built-up areas are mostly impervious surfaces, this study 

replaces urban built-up areas with impervious surfaces. The impervious surface data is 

resampled, assigning a value of 1 to impervious surface grids and 0 to others. (3)  

Filtering. Since there is sporadic white noise in the data, which is not conducive to 

grasping the overall morphology of the city, the image undergoes filtering. (4) 

Nighttime light data was used to clip, excluding non-urban impervious areas, thus 

obtaining this study's foundational urban built-up area dataset. Data examples are 

shown as follows for China's three major urban agglomerations. It should be noted that 

there is a quantitative difference between the land use vector data and statistical data 

used in this study. 

 

Figure 5-3 Example of Urban Built-up Area Data 

(3) Urban form Indicators Calculation 

Firstly, this study uses vector data at the scale of Chinese prefecture-level city 

administrative districts as the boundary to clip the urban built-up area data obtained 

from previous calculations, resulting in over 300 independent urban built-up area raster 

datasets for calculating morphology indices. 
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Secondly, these 300 urban built-up area vector datasets are imported into the 

landscape index calculation software Fragstats to calculate the landscape indices 

selected in the previous sections. The final output includes landscape index data for the 

years 2005-2020. 

 

Figure 5-4 Urban Built-up Area Landscape Indicators Calculation Process(source：

created by author) 

Before formally initiating the analysis, given that the units and magnitudes of the 

spatial morphology indices vary, to increase the comparability between data and reduce 

errors, this study adopts the Max-Min (MAX-MIN) method to normalize the calculated 

data on urban spatial morphology to a range between 1 and 11. 
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Equation 5.4 

Y=
X-MIN(X)

MAX(X)-MIN(X)
+1 

In this formula, Y represents the normalized dimensionless data, which can be used 

for regression analysis; X is the original data for a certain spatial form index of a city; 

min(X) and max(X) respectively denote that variable's minimum and maximum values. 

5.1.3 Spatio-Temporal Evolution Characteristics of Urban Land Use Geometry 

in China 

Understanding the geometric morphology of Chinese cities and their 

spatiotemporal evolutionary characteristics is beneficial for grasping the current state 

of urbanization in China from a spatial perspective, thereby proposing targeted spatial 

arrangement strategies for carbon emission reduction. This section will reveal several 

morphological characteristics of Chinese cities through urban built-up area (CA), 

morphological complexity, aggregation, and polycentricity. 

(1) Overall Significant Growth in Urban Land Area in China from 2005-2020 

At a national level, the urban built-up area in China shows a steady growth trend 

from 2005 to 2020. In 2005, the urban built-up area was 46,348.62 square kilometers. 

By 2010, this figure had grown to 59,466.05 square kilometers, representing an 

approximate 28.3% increase over five years. In the following five years, the urban built-

up area continued to grow, reaching 72,225.46 square kilometers by 2015, an increase 

of about 21.4% compared to 2010. However, from 2015 to 2020, although the urban 

built-up area increased to 78,099.36 square kilometers, the growth rate slightly slowed 

down. Overall, in the 15 years from 2005 to 2020, the urban built-up area increased by 
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about 68.5%, with an average annual growth rate of about 4.6%. This data reveals the 

continuous advancement of urbanization in China and the stable expansion of the urban 

size. 

From a provincial perspective, the distribution of urban construction land in China 

is significantly more concentrated in the eastern regions than in the central and western 

regions. Provinces such as Jiangsu, Zhejiang, and Guangdong have significant and 

dense urban built-up areas, which aligns with the higher economic development and 

population density in these areas. Coastal areas, due to their economic, transportation, 

and logistics conveniences, have fostered a larger demand for urban construction land. 

In central provinces, such as Hubei, Henan, and Anhui, the development of urban built-

up areas is also relatively significant. However, their distribution is slightly sparser 

compared to the eastern regions. Sichuan Province has seen a major increase in urban 

construction land in the western region. 
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Figure 5-5 Urban Construction Land Area and Growth in Chinese Provinces, 2005-

2020(source:created by author) 

Paying attention to the recent trends in urban construction land expansion is 

beneficial for understanding the current situation and serving urban policy formulation. 

Therefore, this study calculated the growth trend of urban construction land from 2015 

to 2020. The top ten provinces in terms of urban construction land growth rate over the 

past five years are Chongqing (20.68%), Guizhou (18.68%), Jiangxi (15.10%), Yunnan 

(14.96%), Guangxi (13.48%), Sichuan (13.03%), Hunan (12.27%), Anhui (12.13%), 

Hubei (11.17%), and Henan (11.15%). The spatial distribution shows that although the 

total amount of urban construction land in the central and western regions is lower than 

in the eastern region, the growth rate is faster. The spatial distribution mainly includes 

the southwestern regions of Yunnan, Guizhou, Sichuan, Chongqing, and Guangxi and 

the central regions of Jiangxi, Anhui, Hunan, Hubei, and Henan. The southwestern 
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region, represented by Chongqing, has the fastest growth rate, while in the central 

region, Jiangxi has the fastest growth rate. 

 

Figure 5-6 The spatial pattern of construction land in prefecture-level cities in China 

from 2005 to 2020(source:created by author) 

Over the past two decades, urban construction land expansion in China has shown 

significant regional differences, especially in the eastern coastal areas. The Yangtze 

River Delta, Pearl River Delta, and Bohai Rim region, as China's most economically 

active regions, have experienced urbanization processes that are significantly faster and 

larger in scale than other regions. Urban construction land growth speed is particularly 
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prominent in provincial capitals and regional central cities, reflecting their role as 

engines in the regional urbanization process. In 2005, the urban construction land size 

in the Bohai Rim and the Yangtze River Delta had already reached a certain scale and 

continued to grow rapidly in the subsequent twenty years or so. This growth trend 

gradually spread to inland cities, with the expansion of cities in the central region, such 

as Zhengzhou, Chengdu, and Chongqing, being particularly notable. By 2020, the 

Yangtze River Delta, Pearl River Delta, Bohai Rim, and Chengdu-Chongqing area 

became the main highlands of urban construction land. 

 

Figure 5-7 Trend of urban construction land use over time in Chinese 

cities(source:created by author) 

The center of gravity for urban construction land in China has been moving towards 

the southwest. The movement of the urban construction land's center of gravity reveals 

China's urbanization development dynamics. To intuitively display the trend of change 

in urban construction land, this chapter calculated the net growth of urban construction 

land from 2005 to 2020 and the migration trend of the center of gravity of China's urban 
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construction land. As shown, the period 2005 to 2010 witnessed the largest movement 

of the urban construction land's center of gravity, showing a significant trend of moving 

southward. After 2010, the center of gravity continued to move southward but with an 

enhanced trend towards the west. Considering the net growth of urban construction land, 

the Yangtze River Delta has seen a trend of dense and rapid growth of urban 

construction land over the past twenty years, with cities around Shanghai in Jiangsu 

and Zhejiang also rapidly expanding. In the southern Pearl River Delta region, 

including Guangzhou, Foshan, Dongguan, Zhuhai, and Shenzhen. In the western region, 

Chengdu, Chongqing, and Xi'an experienced rapid growth. In the central region, 

Zhengzhou, Hefei, Wuhan, and Changsha ranked the highest. 

Overall, the growth of urban construction land in China shows a trend of gradual 

diffusion from east to west and from the coast to the inland. This change maps the 

spatial pattern of China's economic development and reflects the effects of regional 

development strategies and policy orientations. Future urban planning and land use 

policies must consider this dynamic trend to achieve more balanced and sustainable 

urban development. 

(2) Spatiotemporal Evolution Characteristics of Urban Land Shape Complexity in 

China 

This chapter employs the Area-Weighted Mean Shape Index (AWMS) and Area-

Weighted Patch Fractal Dimension (AWMPFD) to quantify the complexity of urban 

shapes. To present the current state and evolution trend of shape complexity within the 

Chinese urban system, this chapter visualizes the Area-Weighted Mean Shape Index 
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(AWMS) and Area-Weighted Patch Fractal Dimension (AWMPFD) for 2020. It 

calculates the changes in these indices from 2005 to 2020. This allows for a better 

understanding of the complexity of urban land shapes in terms of spatial patterns and 

temporal trends. Although there are some differences in the research results of the two 

indices, the overall outcomes are largely consistent and corroborate each other. The 

study finds that the shape complexity of land use in large cities in China is higher than 

those in medium and small cities. 

Moreover, the complexity of urban land north of the Yangtze River is higher than 

in the region south. Typical examples include the Yangtze River Delta, encompassing 

Shanghai, the Suzhou-Wuxi-Changzhou to Hefei area, the Hangzhou-centered urban 

cluster; the Shandong Peninsula urban cluster; and the Beijing-Tianjin area. In the south, 

urban land shapes in the Pearl River Delta urban cluster tend to be more complex. Other 

regions are primarily represented by central cities such as Wuhan, Nanchang, Changsha, 

Zhengzhou, and Chongqing. 

Between 2005 and 2020, the shape complexity of urban land in the vast majority 

of cities showed an increasing trend(Figure 5-8). However, a small portion of cities, 

mainly medium- and small-sized, exhibited a declining trend in land complexity. Cities 

where urban land shape complexity increased rapidly from 2005 to 2020 are primarily 

new first-tier or second-tier cities, such as Zhengzhou, Xi'an, Quanzhou, Kunming, 

Dongguan, Foshan, Nanchang, Suzhou, et al. A possible reason is that these cities, 

following the development of first-tier cities, are rapidly urbanizing and expanding. 

Economic development, diversification of industries, and increased commercial 
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activities have led to a growth in urban spatial demand, further driving the complexity 

of urban spatial structures. New first-tier and second-tier cities might be more flexible 

and proactive in urban planning and land use policies to support rapid urban 

development, leading to continuous changes and complexity in urban shapes. Regions 

with a significant decrease in land complexity include Qingdao and its surrounding 

cities like Rizhao and Weifang, as well as the northern Guangdong cities of Qingyuan 

and Zhaoqing. The smoothness of the peripheries in these cities is reducing, and the 

regularity of urban land use is increasing. This may reflect a gradual transition to more 

planned, orderly, and infill stages of development in these cities, emphasizing the 

effective use of urban land and spatial planning. 

 

Figure 5-8 Spatial-temporal pattern of urban land shape complexity in Chinese 

cities(source:created by author) 
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(3) Spatiotemporal Evolution Characteristics of Urban Land Compactness in China 

The compactness of urban development has always been an important direction in 

the study of urban spatial structure. This research uses the Urban Land Aggregation 

Index (AI) and the Core Area Percentage of Landscape (CAPL) to quantify the 

compactness of urban land. As illustrated below, the research results indicate significant 

spatial differences in the compactness of urban land across China. Regions such as 

Shandong, Henan, the Beijing-Tianjin-Hebei area, and cities in the Northeast exhibit 

higher levels of land aggregation, where urban plots are closer to each other, facilitating 

the formation of a compact entity. Combined with the Core Area Percentage Index, 

cities in Henan, Shandong, and the Yangtze River Delta exhibit higher compactness. 

The possible reason for the Beijing-Tianjin area is its long history, dense population, 

and concentrated economic development, which tends to maintain or increase land 

compactness during urban planning and expansion. The urban development in the 

Northeastern region is influenced by its industrial base and historical development 

pattern, resulting in a more concentrated urban land spatial structure. 

In the southern regions, such as Fujian, Guangdong, and the Southwest, the 

compactness of cities is relatively lower compared to the Central and Northern regions. 

The southern region, especially Fujian and the Southwest features complex terrain 

dominated by mountains and hills. This mountainous and hilly terrain restricts the 

spatial expansion of cities, leading to more dispersed urban development and making it 

difficult to form a compact urban structure. For example, the mountains surrounding 

the Sichuan Basin and the terrain of the Yunnan-Guizhou Plateau have a significant 
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impact on urban layout. Numerous rivers and lakes in Guangdong Province's and Fujian 

Province's coastal areas also influence urban development and expansion to some 

extent. Cities must plan around these natural geographical conditions, which may lead 

to more dispersed urban land use. 

 

Figure 5-9 Spatial-temporal pattern of urban land form agglomeration in 

China(source:created by author) 

From the perspective of change trends, from 2005 to 2020, urban land in China has 

evolved towards a more compact development model. Only a few cities still developed 

towards a looser urban spatial structure, all located in the central and western regions, 
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such as Xiaogan in Guizhou, Qinzhou in Guangxi, and Jingzhou in Hubei. The 

relatively lagging economic development and slower urbanization processes in these 

areas may have resulted in less concentrated urban planning and construction. Regions 

where urban compactness significantly increased are mainly in the central and eastern 

areas, such as Jiangxi, Anhui, Henan, and Zhejiang. 

(4)Spatiotemporal Evolution Characteristics of Urban Land Polycentricity in China 

This study uses the Number of Core Areas (NCA) and the Coefficient of Variation 

of Core Areas (CACV) to characterize the polycentric nature of cities. A smaller number 

of core areas and a higher CACV mean a city tends towards a monocentric spatial 

structure. Conversely, a larger number of core areas and a smaller CACV mean that a 

city tends towards a polycentric spatial structure development model. 

The eastern coastal region to the Bohai Rim area has a high value of core area 

numbers, indicating that urban functions and activities are distributed across multiple 

areas. In polycentric cities, commercial, administrative, cultural, and entertainment 

facilities are not concentrated in a single central area but are spread across multiple city 

areas. Northern Jiangsu, Jiangsu, and Henan exhibit low CACV, meaning these areas 

feature a balanced distribution of polycentric characteristics. The Yangtze River Delta 

area has a high CACV, indicating that although there are multiple centers in these areas, 

there is a significant difference in the scale and function of these centers, comprising a 

polycentric urban spatial structure with high-grade urban core areas and other lower-

grade urban sub-centers. 

The southeastern coastal region generally shows a low number of core areas and a 
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high CACV, meaning these cities typically have fewer urban centers, and there is a 

significant difference in the scale and function of these urban centers, with the main 

urban area occupying an absolute core position, showing monocentric development 

spatial structure characteristics. A possible reason is the geographical condition of 

"eight mountains, one water, and one field" in the southeastern coastal region, limiting 

cities' ability to expand in all directions. Especially in some coastal cities, the 

topography (such as mountains and bodies of water) limits the city's spatial layout, 

leading to a high concentration of urban core areas. 

 

Figure 5-10 Spatial-temporal pattern of poly-centric/mono-centric spatial structure 

characteristics in Chinese cities(source:created by author) 
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Observing the changes in core areas, the number of core areas in most cities 

generally increases, while in some regions, the number of core areas decreases. For 

instance, the number of core areas is declining in the western part of Fujian, northern 

Guangdong, Guangxi, and the northeastern region. Cities experiencing a significant 

increase in the number of core areas include Shanghai, Suzhou, Hangzhou, Ningbo, 

Hefei in the Yangtze River Delta; Qingdao in Shandong; Zhengzhou in Henan; 

Chengdu in Sichuan; Beijing, Tianjin, and Harbin. These relatively developed cities 

within their regions serve as economic centers that have undergone rapid economic 

growth. Economic prosperity has brought more commercial activities, job opportunities, 

and population aggregation, which has promoted the development of new commercial 

and household areas, thereby increasing the number of urban core areas. 

5.2 Empirical Analysis of the Impact of Urban Geometric Morphology on 

Carbon Emissions 

Urban construction land's expansion and morphological expression manifest urban 

socio-economic activities in space. Building on the overall understanding of urban 

spatial geometry obtained in the previous sections, this chapter constructs a quantitative 

model to explore the impact of urban spatial structure characteristics—land area, land 

shape complexity, land compactness, and polycentric/monocentric structure—on total 

carbon emissions, industrial carbon emissions, transportation carbon emissions, and 

household carbon emissions. 

As a foundational element of urban spatial structure, urban land area plays a 

fundamental role in influencing urban carbon emissions. Research on the urban land 
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area has focused chiefly on provincial-level and economic development studies, with 

fewer studies directly exploring the relationship between urban construction land 

expansion and its effects on energy consumption and carbon emissions(Zhang & Chen, 

2017), and even fewer conducting a systematic analysis of the impact of urban 

construction land expansion on the detailed sectors of industrial carbon emissions, 

transportation carbon emissions, and household carbon emissions. Therefore, this study 

begins by exploring the impact of urban geometry on carbon emissions, starting with 

urban land area. 

5.2.1 Impact of Urban Land Area on Carbon Emissions 

The size of urban land(CA: City Area) determines the capacity of urban space and, 

to a certain extent, determines the carrying capacity of urban socio-economic activities, 

making it the most basic characteristic of urban spatial structure. From the total urban 

land area perspective, this section first explores its scaling relationship with carbon 

emissions. The study uses a panel data model for analysis, including observations from 

2005, 2010, 2015, and 2020, totaling 984 observations. The panel data model was 

constructed as follows： 

Total carbon emissions: 

Equation 5.5 

ln(Total_Emission)
it
=β

01
+β

11
ln(CA)

it
+μ

i1
+γ

t1
+ϵit1 

Industrial carbon emissions: 

Equation 5.6 

ln(Industrial_Emission)
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=β

02
+β
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Transportation carbon emissions: 

Equation 5.7 
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=β
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+ϵit3 

Household carbon emission: 

Equation 5.8 
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The research results show a strong positive correlation between urban land use and 

carbon emissions. The R-squared values in the study results are 0.416, 0.284, 0.469, 

and 0.338, corresponding to total, household, transportation, and industrial carbon 

emissions, respectively. This means that the model has successfully explained the 

variability of various types of carbon emission data to different extents. For example, 

an R-squared value of 0.416 for the total carbon emissions model indicates that the 

model explains 41.6% of the variability in total carbon emissions. Contrary to the sub-

linear relationship between urban population size and carbon emissions discussed 

earlier, there is a super-linear relationship between urban land area and carbon 

emissions. From the preliminary super-linear relationship between urban land use and 

carbon emissions, it can be found that the expansion of urban land use overall 

contributes to a significant increase in urban carbon emissions. 

Table 5-1 Results of urban land area carbon emission scaling index 

Variable 

Equation 5.5 Equation 5.6 Equation 5.7 Equation 5.8 

ln(Total 

Emission) 

ln(Household 

Emission) 

ln(Transport 

Emission) 

ln(Industrial 

Emission) 

ln(CA) 1.277*** 1.465*** 1.280*** 1.388*** 

 
(0.0974) (0.00814) (0.0980) (0.111) 
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Variable 

Equation 5.5 Equation 5.6 Equation 5.7 Equation 5.8 

ln(Total 

Emission) 

ln(Household 

Emission) 

ln(Transport 

Emission) 

ln(Industrial 

Emission) 

Constant 7.132*** 3.369*** 4.371*** 6.718*** 

 
(0.0554) (0.00463) (0.0557) (0.0631) 

Observations 984 984 984 984 

R-squared 0.416 0.284 0.469 0.338 

Number of years 4 4 4 4 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

（1）Total carbon emission 

The regression coefficient between total carbon emissions and urban land area is 

1.277, indicating that for every 1% increase in urban land area, the total carbon 

emissions of a city will correspondingly increase by 1.277%. This result suggests that 

as urban land area expands, related economic activities likely increase, including 

expanding industries such as construction, manufacturing, and transportation, thereby 

leading to higher energy consumption and carbon emissions. 

To gain a more comprehensive understanding of the dynamics between urban 

spatial structure and carbon emissions, this chapter further explores the relationship 

between urban land area and carbon emission efficiency. The econometric model 

constructed is as follows: 

Equation 5.9 

ln(Carbon Efficiency)
it
=β

01
+β

11
ln(CA)

it
+Xitβ+μ

i1
+γ

t1
+ϵit1 

Formula 10 establishes the relationship between urban land area and GDP, helping 

to determine the economic reasons for changes in carbon emission efficiency caused by 

variations in urban land area. 
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Equation 5.10 

ln(GDP)
it
=β

01
+β

11
ln(CA)

it
+Xitβ+μ

i1
+γ

t1
+ϵit1 

In the formula, carbon emission efficiency is represented by carbon emissions per 

unit of gross domestic product (GDP), meaning that lower carbon emissions per unit of 

GDP indicate less environmental pressure to achieve a unit of societal welfare. "X" 

includes other control variables that may influence carbon emissions or carbon emission 

efficiency. This chapter controls for population (pop) and industrial structure (the 

proportion of the tertiary sector) as two fundamental variables affecting the urban 

economy and carbon emissions. 

Table 5-2 Results of urban land use and carbon emission efficiency 

Variables 

Equation 5.9 Equation 5.10 

ln(Carbon Efficiency) ln(Carbon Efficiency) ln(GDP) ln(GDP) 

ln(CA) -0.486*** -0.183** 1.761*** 1.520*** 

 
(0.0287) (0.0322) (0.0804) (0.106) 

ln(pop) 
 

-0.372** 
 

0.335*** 

  
(0.0660) 

 
(0.0510) 

ln(Industrial structure) 
 

-0.168 
 

0.00230 

  
(0.114) 

 
(0.0585) 

Constant 0.996*** 3.667*** 6.137*** 4.266*** 

 
(0.0163) (0.615) (0.0458) (0.300) 

Observations 984 984 984 984 

R-squared 0.080 0.156 0.762 0.806 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

From the regression results, while the growth of urban land area has led to a rapid 

increase in total carbon emissions, it has also achieved improvements in carbon 
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emission efficiency, mainly due to the city's economy growing faster than its carbon 

emissions. The regression analysis shows that urban land area is negatively correlated 

with carbon emissions per unit of GDP, even after controlling for population and 

industrial structure variables. This indicates that the expansion of urban land area has 

contributed to the rapid growth of urban GDP. The R-squared values reach nearly 80%, 

suggesting the model can explain 80% of the variability in carbon emission efficiency, 

which is relatively high explanatory power. This may imply that a city's economic 

growth is largely related to land development. In China, land finance—where the 

government raises fiscal revenue by selling land use rights—has been an essential 

source of city income. Thus, this high correlation may reflect the close link between 

urban economic growth and land expansion, highlighting the significance of land 

expansion in driving urban economic growth. This could also suggest a pattern where 

the expansion of urban land use is a key driver of economic growth. 

In analyzing the overall relationship between urban land area and carbon emissions 

in China, this study aims to provide empirical support for urban low-carbon spatial 

planning. To this end, we will explore the spatial heterogeneity of the impact of urban 

land area on carbon emissions, conducting grouped regression analysis for China's 

eastern, central, western, and northeastern regions. Research results show the impact of 

urban land expansion on carbon emissions in descending order: Western (1.678) > 

Northeastern (1.405) > Central (1.359) > Eastern (1.268) regions. 

The highest elasticity coefficient in the western region (1.678) may relate to the 

area's economic development mode, energy structure, and industrial layout. Due to 
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geographical location, historical factors, and socio-cultural influences, the western 

region has long been socio-economically underdeveloped. The Western Development 

Strategy, implemented in 1999 and further promoted by the "Guidelines for Further 

Promoting the Development of the West in the New Era" issued by the State Council in 

2020, aimed to address these imbalances. From 1999 to 2020, the regional GDP of the 

western area increased from 1.58 trillion to 21.3 trillion. However, according to the 

Western Blue Book: China Western Development Report, despite overall innovation 

insufficiency, lower levels of industrial structure, higher pollutant emissions, lower 

levels of green production, and insufficient supply of ecological products in the western 

region, which confirms the research finding that urban development in the western 

region tends to follow a "high-carbon expansion" trend. Combined with the findings 

that innovation has both emission reduction and increase effects, the western region 

should consider green innovation in urban expansion, especially in transferring state-

owned land, to break away from the high-carbon model. 

The elasticity coefficient for the northeastern region (1.405) follows, historically a 

base for China's heavy industry. Although industrial restructuring has been ongoing in 

recent years, the proportion of heavy industry remains substantial. In recent years, the 

traditional place-based economy, driven by resource endowments, has gradually been 

replaced by an economy driven by dynamic factors such as innovation, location, and 

talent, leading to regional urban shrinkage in the Northeast, an objective geographical 

reality(Sun et al., 2023). With significant urban population outflow in the Northeast, 

research using census data found urban shrinkage in 32 out of 34 prefecture-level 
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cities(Gong et al., 2022). When dynamic factors withdraw from urban land, the land 

cannot reduce accordingly, often resulting in an anchoring effect on energy 

consumption and carbon emissions. The research found a paradox of "population 

shrinkage-space expansion" in shrinking cities, where urban populations decrease, but 

construction land further increases, leading to inefficient land use and development 

issues(Long et al., 2015). Against general shrinkage, the Northeast should strictly 

review and cautiously expand urban construction land. Identifying elements that still 

have comparative advantages in the region, revitalizing resources, achieving economic 

increments based on stock construction land, and avoiding ineffective land expansion 

could prevent economic stagnation and maintain high carbon emissions. 

The lowest elasticity coefficient in the eastern region (1.268) may reflect the 

maturity and advancement of urban planning and low-carbon development. Cities in 

the eastern region, usually with higher economic development, might invest more in 

new energy and clean technologies, helping reduce carbon emissions per unit of land 

area. 

Table 5-3 Results of urban land area carbon emissions grouping 

Variable 

Eastern China Central China Western China Northeast China 

ln(Total Emission) ln(Total Emission) ln(Total Emission) ln(Total Emission) 

ln(CA) 1.268*** 1.359*** 1.678*** 1.405*** 

 
(0.117) (0.177) (0.207) (0.116) 

Constant 7.089*** 7.104*** 7.074*** 7.057*** 

 
(0.0990) (0.0793) (0.0715) (0.0566) 

Observations 340 308 200 136 

R-squared 0.519 0.267 0.234 0.475 
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Variable 

Eastern China Central China Western China Northeast China 

ln(Total Emission) ln(Total Emission) ln(Total Emission) ln(Total Emission) 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

Urban population density plays a vital role in the impact of land expansion on 

carbon emissions. It directly reflects the intensity of population aggregation and other 

productive factors in urban space, directly affecting urban land's utilization intensity 

and efficiency. Therefore, the impact of urban land expansion on carbon emissions 

varies under different urban population densities. Current research in urban planning 

has focused more on the characteristics and driving mechanisms of urban construction 

land expansion, with less attention given to the impact of urban carbon emissions under 

different urban population densities. This chapter categorizes cities into quartiles based 

on urban population density—sorting cities from low to high density and dividing them 

into groups 0-25%, 25%-50%, 50%-75%, and 75%-100%. 

Table 5-4 Urban land area and carbon emissions: quantile regression results 

Variable 

1st quartile 2nd quartile 3rd quartile 4th quartile 

ln(Total 

Emission) 

ln(Total 

Emission) 

ln(Total 

Emission) 

ln(Total 

Emission) 

ln(CA) 1.809** 1.336*** 1.229*** 1.192*** 

 (0.237) (0.0879) (0.106) (0.0245) 

Constant 6.933*** 7.018*** 7.168*** 7.289*** 

 (0.0790) (0.0503) (0.0737) (0.0162) 

Observations 246 245 245 245 

R-squared 0.234 0.479 0.419 0.447 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 
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The research findings indicate that as urban density increases, the impact of urban 

land expansion on carbon emissions diminishes. In cities within the 1st quartile (cities 

with the lowest density), the coefficient for ln(CA) is the highest (1.809), significant at 

the 5% level, indicating that in cities with the lowest population density, each 1% 

increase in urban land area leads to a 1.809% increase in carbon emissions. This may 

reflect the greater environmental pressure of land use in expanding low-density cities. 

In cities within the 2nd quartile, the coefficient for ln(CA) is 1.336, significant at the 1% 

level, indicating that the impact of urban land area increase on carbon emissions in 

cities with lower population density is reduced compared to the 1st quartile. In the 3rd 

quartile cities, the coefficient for ln(CA) further decreases to 1.229, significant at the 1% 

level, showing that as urban population density increases, the impact of urban land area 

increase on carbon emissions becomes progressively smaller. In the 4th quartile cities 

(cities with the highest density), the coefficient for ln(CA) is the smallest (1.192), 

significant at the 1% level, indicating that in cities with the highest population density, 

the impact of urban land area increase on carbon emissions is the smallest. This could 

be due to more compact urban planning, efficient energy use, and more developed 

public transportation systems in high-density cities. Urban spatial structure 

arrangements should comprehensively consider urban population density to align land 

supply with population flow, carefully evaluating the land demand of low-density cities. 

Low-density cities should focus on intensification, maximizing benefits on existing 

land to avoid extensive expansion. 

(2) Industrial carbon emission 
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Research on the impact of industrial carbon emissions tends to analyze socio-

economic factors such as industrial and energy structures(Yuan et al., 2019), 

technological progress(Ma et al., 2019), et al. There is a lack of exploration from the 

perspective of urban physical space—construction land—on its impact on industrial 

carbon emissions. This section explores the relationship between urban land area and 

industrial carbon emissions, providing theoretical and empirical support for urban 

planning and sustainable development strategies. In this research, three fixed-effect 

regression models were constructed to explore the impact of urban land area and 

population size on industrial carbon emissions. Equation 5.11 aims to depict the 

quantitative relationship between urban land area and industrial carbon emissions. 

Equation 5.12 controls for population size, i.e., exploring how urban land area impacts 

industrial carbon emissions when population size remains constant. Equation 5.13 uses 

industrial carbon emissions per unit output (industrial carbon emissions/total value of 

secondary and tertiary industries) as a variable to explore how urban land affects 

changes in industrial carbon emission efficiency. 

Equation 5.11 

ln(Industrial emission)it=β
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Equation 5.12 
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Table 5-5  The impact of urban land area on industrial carbon emissions 

Variable 

Equation 5.11 Equation 5.12 Equation 5.13 

ln(Industrial 

Emission) 

ln(Industrial 

Emission) 

ln(Industrial emission 

per unit output) 

ln(CA) 1.388*** 1.535*** -0.159 

 
(0.111) (0.0728) (0.0678) 

ln(pop)  -0.204** -0.477** 

 

 (0.0626) (0.115) 

Constant 6.718*** 7.855*** 3.458** 

 
(0.0631) (0.407) (0.652) 

Observations 984 984 984 

R-squared 0.338 0.350 0.134 

Number of years 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

The research finds that the coefficient for ln(CA) (the logarithm of urban land area) 

is 1.53, indicating that a 1% increase in urban land area is expected to lead to an 

approximate 1.53% increase in industrial carbon emissions. This might be because 

expanding urban land area provides more space for industrial and commercial activities. 

Such expansion may accompany the construction of new industrial facilities, increased 

production capacity, and broader logistics demands. On the expanded land, there could 

be more energy-intensive industrial activities, such as manufacturing and processing 

industries, which are usually closely associated with higher carbon emissions. In 

Equation 5.12, the coefficient for ln(pop) (the logarithm of urban population) is -0.20, 

suggesting that with every 1% increase in urban population (on a logarithmic scale), 
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after controlling for land area, industrial carbon emissions are expected to decrease by 

about 0.20%. After controlling for population size, the coefficient for ln(CA) increases 

to 1.535, meaning that expanding urban land area increases industrial carbon emissions 

to a greater extent when the population size remains constant. Since the population 

remains unchanged, expanding urban land also implies a decrease in urban density, so 

the research results also mean that the expansion of low-density urban land is a cause 

of more industrial carbon emissions. In Equation 5.13, the value of ln(pop) is negative, 

indicating that increasing the population on the constant urban land reduces the 

industrial carbon emissions per unit output. This suggests that, overall, in the Chinese 

urban system, maintaining efficient use of urban land helps to improve energy use 

efficiency and reduce carbon emissions. 

(3) Transportation carbon emission 

Urban transportation emissions, as one of the major sources of carbon emissions, 

have become a key area for reducing greenhouse gas emissions and achieving 

sustainable development goals. The scale of urban land sets the geographical 

boundaries for urban socio-economic activities. This section constructs the following 

models to analyze the relationship between urban land area and transportation carbon 

emissions. Equation 5.14 explores the quantitative relationship between urban land area 

and the evolution of transportation carbon emissions in a sample of Chinese cities. 

Population is the source of carbon emissions, and urban transportation carbon emissions 

result from the metabolism of human or goods movement activities. Controlling the 

population size variable can further reveal the impact of urban land expansion on carbon 
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emissions under constant population size. Therefore, Equation 5.15 controls for the 

urban population variable. 

Equation 5.14 

ln(Transport Emission)it=β
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Equation 5.15 
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Table 5-6 Results of the impact of urban land area on transportation carbon emissions 

Variable 

Equation 5.14 Equation 5.15 

ln(Transport Emission) ln(Transport Emission) 

ln(CA) 1.280*** 0.969*** 

 
(0.0980) (0.0913) 

ln(pop) 
 

0.432*** 

  
(0.0377) 

Constant 4.371*** 1.964*** 

 
(0.0557) (0.223) 

Observations 984 984 

R-squared 0.469 0.554 

Number of years 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

The study finds that the impact of urban land expansion on transportation carbon 

emissions is not homogeneous across cities of different urban land sizes; significant 

variations in the impact may exist. To further explore the influence of urban land area 

on transportation carbon emissions from the perspective of urban diversity, this research 

first categorized urban land area into quartiles and then conducted regression analyses 

separately for each. The results exhibit a "high at both ends, low in the middle" 

characteristic, meaning that the regression coefficients for the 1st and 4th quartile 



 152 / 254 

groups are significantly higher than those for the middle two quartiles. This indicates 

that overall, urban land area expansion in cities with both smaller and larger land sizes 

generally leads to faster growth in transportation carbon emissions. The reason may be 

that in smaller cities, urban land expansion could accompany an increase in private car 

usage and a relative lack of public transportation services, resulting in a larger amount 

of transportation carbon emissions. While larger cities might have a more 

comprehensive public transportation system, further expansion of urban land area could 

lead to the development of new suburbs and satellite towns that may not be close to 

efficient public transportation networks. These results suggest that when formulating 

urban planning and transportation strategies, cities must consider specific conditions 

and development stages to achieve more effective carbon reduction and sustainable 

development. 

Table 5-7 Group regression results of the impact of urban land area on transportation carbon 

emissions 

Variable 

1st quartile 2nd quartile 3rd quartile 4th quartile 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(CA) 3.785*** 1.137 0.989** 1.462*** 

 
(0.453) (0.944) (0.227) (0.0564) 

Constant 3.746*** 4.515*** 4.584*** 4.175*** 

 
(0.0843) (0.325) (0.129) (0.0663) 

Observations 246 246 246 246 

R-squared 0.064 0.008 0.044 0.611 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

（4）Household carbon emission 
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This section discusses the impact of urban land area on household carbon emissions. 

This study designed a series of fixed-effect regression models to quantify these impacts 

systematically. Through these models, we can statistically analyze the impact of urban 

land area on household carbon dioxide emissions. This research first comprehensively 

grasps the quantitative relationship between urban land area and household carbon 

emissions in Chinese cities (Equation 5.16). According to general laws and experiences 

of urban development, the growth of urban land area often accompanies the aggregation 

of the urban population. In Equation 5.17, urban population size is introduced to explore 

the impact of urban land area on carbon emissions, excluding the influence of 

population size. A significant portion of household carbon emissions comes from 

carbon emissions due to temperature regulation, including carbon emissions from air 

conditioning in summer and heating in northern cities during winter. This part of 

household carbon emissions is directly affected by urban temperature. Therefore, in 

Equation 5.18, the temperature variable is controlled. The economic level also 

influences household carbon emissions. Thus, in Equation 5.19, per capita Gross 

Domestic Product (GDP) is further included as a control variable. 

Equation 5.16 

ln(Household Emission)it=β
01

+β
11

l n(CA)it +μ
i1

+γ
t1

+ϵit1 

Equation 5.17 

ln(Household Emission)it=β
02

+β
12

l n(CA)it +β
12

l n(pop)it +μ
i2

+γ
t2

+ϵit2 

Equation 5.18 

ln(Household Emission)it=β
03

+β
13

l n(CA)it +β
23

l n(pop)it +β
33

l n(Temperature)it +μ
i3

+γ
t3

+ϵit3 
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Equation 5.19 

ln(Household Emission)it=β
04

+β
14

l n(CA)it +β
24

l n(pop)it +β
34

l n(Temperature)it 

                                                       +β
44
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it
+μ

i4
+γ

t4
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The study finds a significant correlation between urban land area and household 

carbon emissions, showing a super-linear relationship. In Equation 5.16, a 1% increase 

in urban land area leads to a 1.465% increase in household carbon emissions. This value 

is significantly higher than the quantitative relationships between urban land area and 

both transportation and industrial carbon emissions. After controlling for the population 

variable, the ln(CA) regression coefficient remains significant but decreases to 0.971, 

transitioning to a sub-linear relationship. This suggests that part of the quantitative 

relationship between urban land expansion and household carbon emissions is due to 

the increase in urban population size. After controlling for the temperature variable, the 

regression coefficient for ln(CA) further reduces but remains significant and relatively 

high. Overall, the impact of average temperature on household carbon emissions is 

negative, meaning higher urban average temperatures result in lower household carbon 

emissions. Notably, the effects of cooling and heating due to average temperature are 

opposite, and the impact on household carbon emissions is the result of this dual balance. 

After further controlling for per capita GDP, the coefficient for ln(CA) remains 

significant but decreases from 0.904 to 0.355. This implies that in larger cities, higher 

incomes lead to lifestyle changes, further increasing energy use and thus causing 

increased carbon emissions. Related research has found that this difference in carbon 

emissions tends to diminish with economic growth (Mi et al., 2020). 

 



 155 / 254 

Table 5-8 Results of the impact of urban land area on household carbon emissions 

Variable 

Equation 5.16 Equation 5.17 Equation 5.18 Equation 5.19 

ln(Household 

Emission) 

ln(Household 

Emission) 

ln(Household 

Emission) 

ln(Household 

Emission) 

ln(CA) 1.465*** 0.971*** 0.904*** 0.355** 

 
(0.00814) (0.0305) (0.0383) (0.0781) 

ln(pop) 
 

0.687*** 0.804*** 1.061*** 

  
(0.0486) (0.0689) (0.0834) 

ln(Temperature) 
  

-0.637** -0.757*** 

   
(0.141) (0.109) 

ln(GDP per 

capita) 
   

0.353*** 

    
(0.0433) 

Constant 3.369*** -0.454 0.685 -0.607 

 
(0.00463) (0.276) (0.444) (0.606) 

Observations 984 984 984 984 

R-squared 0.284 0.384 0.423 0.434 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

After controlling for population, economic level, and temperature variables, the 

urban land area remains significantly related to the level of household carbon emissions. 

This impact likely mainly stems from carbon emissions due to temperature adjustment, 

including cooling and heating. Cities with larger urban land area experience more 

severe urban heat island effects in the summer, requiring more cooling energy 

consumption and thus leading to higher carbon emissions. Meanwhile, the scale of land 

in cities within heating regions might affect the efficiency of heating systems. Based on 

this, the study conducted group regression on Equation 5.19 based on whether heating 
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is provided, with the following results. Although the ln(CA) coefficient in group 

regression is insignificant, its coefficients show opposite characteristics. In the heating 

group, urban land area and household carbon emissions are positively correlated, which 

may reflect that cities with larger areas require more household carbon emissions for 

heating under the same conditions. The non-heating group presents a negative value, 

contrary to our hypothesis that more cooling energy consumption due to the heat island 

effect leads to more carbon emissions. However, these regression results are 

insignificant, and their explanatory power is limited. The lack of significance could be 

due to the reduced sample size after grouping, which might lead to decreased statistical 

power, making it difficult to detect the true relationship between variables. More 

importantly, the dependent variable includes all household carbon emissions, mixing 

non-temperature-regulated carbon emissions, which affects the statistical significance. 

Table 5-9 Impact of urban land area on household carbon emissions: grouped results 

Variable 

Groups of cities with heating Group of unheated cities 

ln(Household Emission) ln(Household Emission) 

ln(CA) 0.379 -0.0942 

 
(0.190) (0.217) 

ln(pop) 0.947*** 1.218*** 

 
(0.0949) (0.161) 

ln(Temperature) 0.0116 -1.237 

 
(0.0717) (0.574) 

ln(GDP per capita) 0.231 0.602** 

 
(0.138) (0.167) 

Constant -1.618* -0.280 

 
(0.566) (1.210) 
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Variable 

Groups of cities with heating Group of unheated cities 

ln(Household Emission) ln(Household Emission) 

Observations 444 540 

R-squared 0.586 0.369 

Number of years 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

Based on the availability of heating data, this section further analyzes the 

relationship between urban land area and heating carbon emissions, using heating 

carbon emissions as the dependent variable instead of the total household carbon 

emissions to construct the following model. Through this analysis, we can understand 

the relationship between household carbon emissions and urban land area from the 

decomposition of household carbon emissions. Similarly, we first examine the 

quantitative relationship between urban land area and heating carbon 

emissions(Equation 5.20).  Population size to some extent determines the scale of 

heating needed. The level of economic development determines the coverage of heating. 

Temperature determines the intensity of heating; theoretically, the lower the 

temperature, the higher the heating intensity and carbon emissions, and vice versa, the 

higher the temperature, the lower the heating intensity and carbon emissions. Therefore, 

we have progressively controlled these three variables. 

Equation 5.20 

ln(Heating Emission)it=β
01

+β
11

l n(CA)it +μ
i1

+γ
t1

+ϵit1 

Equation 5.21 

ln(Heating Emission)it=β
02

+β
12

l n(CA)it +β
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i2

+γ
t2

+ϵit2 
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Equation 5.22 

ln(Heating Emission)it=β
03

+β
13

l n(CA)it +β
23

l n(pop)it +β
33

l n(Temperature)it +μ
i3

+γ
t3

+ϵit3 

The regression results show a strong correlation between urban land area and 

heating carbon emissions. Overall, a 1% increase in urban land area leads to a 1.641% 

increase in heating carbon emissions. After adding control variables, the coefficient did 

not decrease but instead increased. In Equation 5.21, the ln(CA) coefficient reaches 

2.663, indicating that after controlling for population factors, the expansion of urban 

land area leads to a significant increase in urban heating. This implies that the low-

density expansion of cities puts greater pressure on heating carbon emissions. In regions 

requiring heating, the importance of compact urban development is significant. 

Temperature is an important factor affecting heating carbon emissions. With all other 

conditions being constant, a 1% increase in temperature reduces the carbon emissions 

required for heating by 1.11%. 

Table 5-10 Results of the impact of urban land area on household carbon emissions (heating) 

Variable 

Equation 5.20 Equation 5.21 Equation 5.22 

ln(Heating Emission) ln(Heating Emission) ln(Heating Emission) 

ln(CA) 1.641*** 2.663*** 2.590*** 

 
(0.133) (0.108) (0.0952) 

ln(pop) 
 

-0.917*** -0.631** 

  
(0.0376) (0.123) 

ln(Temperature) 
  

-1.111*** 

   
(0.0768) 

Constant 3.571*** 8.339*** 9.540*** 

 
(0.0830) (0.261) (0.556) 

Observations 444 444 444 
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Variable 

Equation 5.20 Equation 5.21 Equation 5.22 

ln(Heating Emission) ln(Heating Emission) ln(Heating Emission) 

R-squared 0.302 0.427 0.519 

Number of years 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 
 

5.2.2 Influence of Urban Land Shape Complexity on Carbon Emissions 

Researchers often include many related explanatory variables in quantitative 

research in statistical models to consider influencing factors and comprehensively 

describe phenomena. Although this approach makes the analysis more comprehensive, 

it also introduces complexity. This is particularly the case where multicollinearity 

among these variables can lead to overlapping information reflected in the data. To 

address this issue, Principal Component Analysis (PCA) is often used to simplify a large 

set of indicators into a few independent principal components. Therefore, to extract the 

main information about urban spatial forms and reduce redundancy and 

multicollinearity issues, this study first conducts a principal component analysis on 

various spatial form indicators and then carries out subsequent quantitative regression 

analysis based on this. 

This section first conducted a principal component analysis on the complexity 

indicators of urban land area form, specifically the Area-Weighted Mean Shape Index 

(AWMS) and the Area-Weighted Mean Patch Fractal Dimension (AWMPFD). The 

results show that the first principal component, Component1_Complexity, explains 

96.03% of the information of the two variables. From the factor loading matrix, it is 

known that the Area-Weighted Mean Shape Index (AWMS) and the Area-Weighted 
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Mean Patch Fractal Dimension (AWMPFD) are highly correlated in explaining the 

complexity of urban land form, with both variables contributing equally and 

symmetrically distributed across the two principal components. Therefore, this chapter 

uses the first principal component, which reflects the majority of the complexity of 

urban land, for regression analysis. Before conducting the regression analysis, the same 

standardization and logarithmic transformation were applied. 

Table 5-11 Total variance explained by the principal component of urban land complexity 

Principal Component Eigenvalue 

Percentage of 

Variance（%） 

Cumulative 

Percentage（%） 

Component1_Complexity 1.921 96.03 96.03 

Component2_Complexity 0.0786 3.93 100 

 

Table 5-12 Factor loading matrix for urban land complexity 

Variable Component1_Complexity Component1_Complexity 

AWMS 0.7071 0.7071 

AWMPFD 0.7071 -0.7071 

(1) Total Carbon Emissions 

This section first analyzes the impact of urban land complexity on total carbon 

emissions from an overall perspective. The following quantitative regression models 

are constructed. Equation 5.23 includes only the indicator of urban land complexity, 

which helps understand the dynamic quantitative relationship between urban land 

complexity and total carbon emissions. Equation 5.24 further controls for population 

size, a fundamental variable affecting urban carbon emissions. 
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Equation 5.23 
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The research results show that the increase in urban land complexity generally 

promotes an increase in total urban carbon emissions. Overall, a 1% increase in urban 

land complexity leads to a 0.96% increase in total urban carbon emissions. After 

controlling for the total population factor, the urban land complexity regression 

coefficient decreases but remains significant. 

Table 5-13 Impact of urban land complexity on carbon emissions 

Variables 

Equation 5.23 Equation 5.24 

ln(Total Emission) ln(Total Emission) 

ln(Component1_Complexity) 0.960*** 0.838*** 

 
(0.0971) (0.101) 

ln(pop) 
 

0.241*** 

  
(0.0282) 

Constant 6.734*** 5.438*** 

 
(0.114) (0.246) 

Observations 984 984 

R-squared 0.194 0.222 

Number of years 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 
 

The evolution of urban land shape complexity might be related to the expansion of 

urban land area. Rapid expansion of urban boundaries can lead to more complex urban 

shapes in the early stages of urbanization. However, urban development enters a filling 

phase as urbanization progresses, affecting urban edges. Therefore, the shape of urban 
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land under different urban land area varies, and the impact on carbon emissions differs. 

Based on this, this section categorizes urban land area into quartiles and conducts 

regression analysis accordingly. The research results show that the impact of urban land 

complexity on carbon emissions is not significant for cities in the 1st to 3rd quartiles. 

Significance is only found in the 4th quartile group of cities, with a positive value. This 

indicates that in cities with higher levels of urbanization, urban land complexity has a 

greater impact on carbon emissions. The possible reason is that in cities with larger 

urban land area, the density of socio-economic activities is high, urban land use 

intensity is significant, and there are higher requirements for transportation accessibility 

and insulation. Other sections of this chapter analyze carbon emissions split into 

industrial, transportation, and household carbon emissions. 

Table 5-14 Impact of urban land shape complexity on total carbon emissions: grouped results 

Variable 

1st quartile 2nd quartile 3rd quartile 4th quartile 

ln(Total Emission) ln(Total Emission) ln(Total Emission) ln(Total Emission) 

ln(Component1

_Complexity) 0.297 -0.133 -0.315 0.484** 

 
(0.200) (0.199) (0.173) (0.125) 

ln(pop) 0.0137 -0.241** -0.226* 0.475*** 

 
(0.0256) (0.0652) (0.0753) (0.0760) 

Constant 6.802*** 9.201*** 9.766*** 4.834*** 

 
(0.253) (0.343) (0.630) (0.675) 

Observations 246 246 246 246 

R-squared 0.016 0.040 0.037 0.224 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

(2) Industrial carbon emissions 
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The research identified urban land area as a significant determinant influencing 

industrial carbon emissions. Initially, the analysis incorporated urban land area as a 

control variable within the first model (Equation 5.25). Subsequently, Equation 5.26 

extended the analysis by additionally controlling for the size of the urban population. 

In Equation 5.27, the investigation delved into the effects exerted by the number of 

employees engaged in urban industries and the composition of the industrial sector, 

specifically focusing on the share of the tertiary sector. 

Equation 5.25 
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=β

01
+β

11
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Equation 5.27 
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The research results indicate that among the factors of urban spatial structure, the 

impact of urban land complexity on industrial carbon emissions is generally 

insignificant. In the first model, with urban land area controlled, the impact of urban 

land complexity on industrial carbon emissions was insignificant (P=0.444). When the 

population was further controlled, the regression coefficient increased but still did not 

pass the significance test. After controlling for industrial structure and the number of 

industrial employees, the regression coefficient for urban land complexity on industrial 

carbon emissions increased further, with a P-value of 0.11, significantly narrowing. The 
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coefficient is negative, which may be because the increase in urban land complexity 

affects transportation efficiency and the synergy between industries, possibly leading 

to a relative reduction in industrial activities. This "hindrance effect" on industrial 

production activities could result in relatively lower industrial carbon emissions. 

Table 5-15 Impact of urban land shape complexity on industrial carbon emissions 

Variable 

Equation 5.25 Equation 5.26 Equation 5.27 

ln(Industrial Emission) ln(Industrial Emission) ln(Industrial Emission) 

ln(Component1_Complexity) -0.194 -0.220 -0.366 

 
(0.220) (0.217) (0.168) 

ln(CA) 1.514*** 1.683*** 1.408** 

 
(0.0321) (0.0681) (0.270) 

ln(pop) 
 

-0.211** -0.291*** 

  
(0.0660) (0.0491) 

ln(Industrial Employment) 
  

0.301 

   
(0.145) 

ln(Industrial Structure) 
  

-0.433** 

   
(0.0882) 

Constant 6.873*** 8.069*** 6.861** 

 
(0.242) (0.593) (2.017) 

Observations 984 984 984 

R-squared 0.341 0.353 0.386 

Number of years 4 4 4 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

(3)Transportation Carbon Emission 

Research on urban transportation carbon emissions primarily focuses on 

measurement, spatial patterns, and the impact analysis of socio-economic factors. Jiang 

et al. (2020) analyzed the spatial pattern of urban transportation carbon emissions in the 
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Yangtze River Economic Belt. Scholars have also analyzed the impact of population 

size and Gross Domestic Product (GDP) on transportation carbon emissions(Su et al., 

2011). In studies based on major metropolitan areas in the United States, urban spatial 

structure is considered an important factor affecting transportation carbon 

emissions(Sevtuk & Amindarbari, 2021). Scholars in China have likewise focused on 

the impact of urban spatial structure on transportation carbon emissions from a case 

study perspective(Ye, Zhang, et al., 2012). There is a lack of comprehensive 

examination from the perspective of urban space on how urban spatial structure affects 

transportation carbon emissions. This section focuses on one of the indicators of urban 

spatial structure—urban land complexity and its impact on transportation carbon 

emissions, constructing the following model. 

Equation 5.28 
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Equation 5.28 includes only indicators of urban spatial structure, namely land 

complexity and urban land area. Equation 5.29 includes two fundamental variables 

influencing transportation demand: population and GDP. The regression results show 

that the coefficient for urban land shape complexity (ln(Component1_Complexity)) is -

0.225, but this impact is not significant (P-value greater than 0.1). This means that, 

without controlling for other factors, the negative impact of urban land shape 

complexity on transportation carbon emissions has not reached statistical significance. 

In Equation 5.29, when controlling for population and GDP factors, the impact of urban 

land shape complexity on transportation carbon emissions becomes significant (P<0.1), 
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with the coefficient increasing to -0.401(Table 5-16). This indicates that after 

considering basic economic and population factors, the role of urban land shape 

complexity in reducing transportation carbon emissions becomes more apparent. 

Population growth and economic expansion are foundational factors that increase 

transportation carbon emissions. A larger population and greater economic growth 

typically lead to higher transportation demand, which is reflected in the positive 

regression coefficients in Equation 5.29. The negative impact of urban land complexity 

on carbon emissions might be due to the more complex urban forms reducing 

transportation accessibility and suppressing traffic activities. 

Table 5-16 Impact of urban land shape complexity on transportation carbon emissions 

Variable 

Equation 5.28 Equation 5.29 

ln(Transport Emission) ln(Transport Emission) 

ln(Component1_Complexity) -0.225 -0.401* 

 
(0.187) (0.170) 

ln(CA) 1.427*** 0.498** 

 
(0.145) (0.134) 

ln(pop) 
 

0.257** 

  
(0.0502) 

ln(GDP) 
 

0.487** 

  
(0.0956) 

Constant 4.551*** 0.273 

 
(0.168) (0.226) 

Observations 984 984 

R-squared 0.474 0.605 

Number of years 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 
 

 After verifying that urban land shape complexity has a certain suppressive effect 

on transportation-related carbon emissions, this study further explores the heterogeneity 

of this effect under urban land area constraints. To investigate how the impact of land 



 167 / 254 

shape complexity on urban transportation carbon emissions varies with different urban 

land sizes, this section classifies the sample cities into quartiles based on land area and 

conducts a quartile regression analysis. The descriptive statistics for urban land area 

quartiles are as follows. 

Table5-17  Descriptive statistics of urban land area in the quartile 

Quartile Mean (km²) Standard 

Deviation 

Minimum Maximum 

1st Quartile 52.08 14.56 21.49 76.48 

2nd Quartile 104.62 17.66 76.52 137.45 

3rd Quartile 196.70 42.04 137.51 284.23 

4th Quartile 630.59 409.13 285.71 2532.83 

The quartile regression analysis reveals that in cities with an urban land area of 

approximately 100 square kilometers, transportation carbon emissions are more 

significantly influenced by land shape complexity. From a value-oriented perspective, 

urban land shape complexity imposes certain constraints on travel behavior, which may 

reduce social welfare and lower overall societal efficiency. The outcomes associated 

with increasing land shape complexity run counter to the objectives of ecological 

civilization development. Therefore, urban land shape complexity cannot serve as a 

viable planning tool for reducing transportation carbon emissions. On the contrary, this 

finding suggests that urban land shape complexity has a considerable impact on urban 

transportation efficiency. Consequently, for cities with an urban land area of 

approximately 100 square kilometers, special attention should be given to ensuring the 

smooth operation of urban transportation in course of urban development. 
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Table5-18 Impact of urban land shape complexity on transportation carbon emissions: 

grouped results 

Variable 

1st quartile 2nd quartile 3rd quartile 4th quartile 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Component1_Co

mplexity) -0.403 -0.763*** -0.193 -0.141 

 
(0.225) (0.0720) (0.181) (0.180) 

ln(CA) 2.269*** 0.540 0.357 0.477** 

 
(0.208) (1.126) (0.244) (0.112) 

ln(pop) 0.398*** 0.165** 0.198* 0.309** 

 
(0.0673) (0.0401) (0.0838) (0.0614) 

ln(GDP) 0.477*** 0.491* 0.342** 0.590*** 

 
(0.0750) (0.189) (0.0676) (0.0914) 

Constant -0.800*** 1.191 1.502** -1.341* 

 
(0.101) (0.707) (0.390) (0.442) 

Observations 246 246 246 246 

R-squared 0.389 0.209 0.232 0.754 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

（4）Household Carbon Emission 

The construction of regression models analyzing the impact of urban land 

complexity on carbon emissions is as follows. Equation 5.30 incorporates the principal 

component of urban land complexity indicators and urban land area as basic variables. 

Since household carbon emissions are constrained by population size and the level of 

economic development, Equation 5.31 includes population size and Gross Domestic 

Product (GDP) as control variables. Temperature is an important factor influencing 



 169 / 254 

household carbon emissions, and this study also includes it as a control variable. 

Heating carbon emissions are a major component of household carbon emissions in the 

north, and this chapter explores the relationship between urban land complexity and 

heating carbon emissions in Equation 5.32. Since heating is commonly implemented in 

northern cities and has a smaller correlation with the level of economic development, 

Equation 5.32 only includes urban land area, urban population size, and temperature as 

control variables. 
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Overall, urban land complexity has increased household carbon emissions. The 

coefficient for ln(Component1_Complexity) is 0.115, but not significant (p>0.1), 

indicating an uncertain statistical relationship between urban land shape complexity and 

household carbon emissions. This might be due to missing important variables. In the 

regression results of Equation 5.31, the coefficient for ln(Component1_Complexity) is 

0.643, and it passes the significance test. The R-squared value of the equation is 0.441, 

a significant improvement compared to the results of Equation 5.30, indicating that the 

model can explain a considerable portion of the causes of household carbon emissions. 
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Overall, a 1% increase in urban land complexity leads to a 0.643% increase in urban 

household carbon emissions. 

Heating carbon emissions are significantly affected by urban land complexity. 

Heating carbon emissions are an important component of household carbon emissions. 

The regression results of Equation 5.32 show that the coefficient for ln(Heating 

Emission) is 0.856, and it passes the 1% significance test. This means that for every 1% 

increase in urban land complexity, heating carbon emissions increase by 0.856%. 

Complex urban land may mean that heating infrastructure (such as pipelines and 

thermal power stations) is more dispersed, which could lead to decreased heating 

efficiency. Heat loss during energy transmission might increase, leading to higher 

carbon emissions. In complex urban lands, buildings may be more exposed to wind and 

shade, possibly increasing the demand for indoor heating, especially in winter. To 

maintain a comfortable indoor temperature, more energy consumption is required. 

Table 5-19 Results of the impact of the complexity of urban land shape on household carbon 

emissions 

Variable 

Equation 5.30 Equation 5.31 Equation 5.32 

ln(Household 

Emission) 

ln(Household 

Emission) 

ln(Heating 

Emission) 

ln(Component1_Complexity) 0.115 0.643*** 0.856*** 

 
(0.101) (0.0840) (0.0754) 

ln(CA) 1.391*** 0.450** 1.871*** 

 
(0.0697) (0.110) (0.0567) 

ln(pop) 
 

0.859*** -0.495** 

  
(0.0786) (0.145) 

ln(Temperature) 
 

-0.826** -1.412*** 
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Variable 

Equation 5.30 Equation 5.31 Equation 5.32 

ln(Household 

Emission) 

ln(Household 

Emission) 

ln(Heating 

Emission) 

  
(0.148) (0.0680) 

Constant 3.277*** 0.395 8.983*** 

 
(0.0782) (0.517) (0.751) 

Observations 984 984 444 

R-squared 0.285 0.441 0.551 

Number of years 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

To explore the impact of urban land complexity on urban carbon emissions across 

different urban land sizes, this section divides the research sample into quartiles based 

on urban land area and then conducts quartile regression analysis. The descriptive 

statistics for the quartiles of urban land area are as follows. 

Table 5-20 Descriptive statistics of urban land area in the quartile 

 Mean (km²) Standard Deviation Minimum Value Maximum Value 

1st quartile 52.08 14.56 21.49 76.48 

2nd quartile 104.62 17.66 76.52 137.45 

3rd quartile 196.70 42.04 137.51 284.23 

4th quartile 630.59 409.13 285.71 2532.83 

The results of the quantile regression analysis on the impact of urban land area on 

carbon emissions are as follows: The regression coefficients for urban land complexity 

are consistent in sign with the ungrouped results, indicating that urban land complexity 

leads to an increase in heating carbon emissions across all scenarios of urban land area. 

From a significance-level perspective, the regression coefficients of urban land 



 172 / 254 

complexity are statistically significant in the regressions for the second and fourth 

quartiles. In the second quartile, for every 1% increase in urban land complexity, urban 

heating carbon emissions increase by 1.238%. In cities within the fourth quartile, for 

every 1% increase in urban land complexity, heating carbon emissions increase by 

0.713%. 

In the descriptive statistics table for urban land area quartiles, the average urban 

land area for cities in the second quartile is 104.62 square kilometers. The average urban 

land area for cities in the fourth quartile is 630.59 square kilometers. Thus, from the 

perspective of urban land complexity, urban planning efforts aimed at reducing heating 

carbon emissions should mainly focus on reducing the complexity of urban land use in 

cities with areas around 100 square kilometers and 600 square kilometers. 

Table 5-21 Quartile regression results of urban land shape complexity on transportation 

carbon emissions 

Variable 

1st quartile 2nd quartile 3rd quartile 4th quartile 

ln(Heating 

Emission) 

ln(Heating 

Emission) 

ln(Heating 

Emission) 

ln(Heating 

Emission) 

ln(Component1_Complexity) 0.184 1.238** 0.441 0.713* 

 
(0.192) (0.301) (0.207) (0.298) 

ln(CA) 4.213** 2.280 2.806** 1.579*** 

 
(1.202) (1.032) (0.579) (0.214) 

ln(pop) -0.343* -0.436 -0.854** -0.313 

 
(0.123) (0.224) (0.242) (0.188) 

ln(Temperature) -0.734* -1.430*** -1.703** -1.767*** 

 
(0.294) (0.146) (0.307) (0.145) 

Constant 6.458*** 8.205*** 11.82*** 9.446*** 

 
(0.408) (1.337) (1.297) (0.673) 
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Variable 

1st quartile 2nd quartile 3rd quartile 4th quartile 

ln(Heating 

Emission) 

ln(Heating 

Emission) 

ln(Heating 

Emission) 

ln(Heating 

Emission) 

Observations 67 110 145 122 

R-squared 0.344 0.258 0.472 0.630 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

5.2.3 Impact of Urban Land Compactness on Carbon Emissions 

The Principal Component Analysis (PCA) method is advantageous for extracting 

sufficient information among variables while eliminating the impact of redundant 

information. This section first uses the PCA method to analyze indicators of urban land 

compactness. Indicators used to describe urban land compactness include the 

Compactness Index (AI), Largest Patch Index (LSI), and Average Nearest Neighbor 

Distance (ENN_AM). The higher the Compactness Index (AI), the more the urban land 

tends to form a cohesive whole, indicating higher urban land compactness. A larger 

Largest Patch Index suggests that urban patches tend to be more centrally distributed, 

which also explains urban land compactness to some extent. The Average Nearest 

Neighbor Distance more intuitively explains the distance of urban land distribution. 

The closer the average distance between patches, the higher the compactness of urban 

land. 

In the total variance explained by the principal component of urban land 

compactness, Principal Component 1 (Component1_Compactness) accounts for 41.67% 

of the information. In the factor loading matrix of urban land compactness, Principal 
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Component 1 (Component1_Compactness) is positively related to the Compactness 

Index (AI) and the Largest Patch Index (LSI), and negatively related to the Average 

Nearest Neighbor Distance (ENN_AM). Such a quantitative relationship reflects the 

content of urban land compactness, where higher values of Principal Component 1 

(Component1_Compactness) indicate greater urban compactness. In regression 

analysis, we use Principal Component 1 (Component1_Compactness) as the variable 

reflecting urban compactness. 

Table 5-22 Total variance explained by the principal component of urban land compactness 

Principal Component Eigenvalue Percentage of Variance Cumulative Percentage 

Component1_Compactness 1.249 41.67 41.67 

Component2_Compactness 1.048 34.96 76.63 

Component3_Compactness 0.701 23.37 100 

 

Table 5-23 Factor loading matrix for urban land compactness 

Variable Component1_Compactness Component2_Compactness Component3_Compactness 

AI 0.4637 0.7212 -0.5146 

LSI 0.7379 0.0072 0.6749 

ENN_AM -0.4905 0.6927 0.5288 

After extracting and reducing the variable information on urban compactness using 

Principal Component Analysis, this section first analyzes the impact of urban land 

compactness on carbon emissions from the perspective of total carbon emissions. 

Equation 5.33 controls for the basic urban spatial structure indicator related to urban 

carbon emissions—urban land area. Equation 5.34 further controls for the urban 

population size. 
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The research results show that after controlling for urban population and land area, 

the regression results of urban land compactness with total urban carbon emissions are 

insignificant. In Equation 5.33, the coefficient for the logarithmic transformation of 

urban compactness, ln(Component1_Compactness), is -0.254, with a standard error of 

0.124. In Equation 5.34, this coefficient is -0.296, with a standard error of 0.162. In 

both models, this indicates that the impact of urban compactness on overall carbon 

emissions is statistically insignificant. Considering urban land area and population, the 

impact of urban land compactness on total carbon emissions is statistically insignificant. 

The lack of significant impact on the aggregate level does not mean that urban 

compactness has no effect on carbon emissions. Below, the research on urban land 

compactness and carbon emissions will be carried out from the perspectives of 

industrial carbon emissions, transportation carbon emissions, and household carbon 

emissions. 

Table 5-24 The impact of urban land use shape complexity on total carbon emissions 

Variable 

Equation 5.33 Equation 5.34 

ln(Total Emission) ln(Total Emission) 

ln(Component1_Compactness) -0.254 -0.296 

 
(0.124) (0.162) 

ln(CA) 1.339*** 1.388*** 
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Variable 

Equation 5.33 Equation 5.34 

ln(Total Emission) ln(Total Emission) 

 
(0.0782) (0.0518) 

ln(pop) 
 

-0.0533 

  
(0.0426) 

Constant 7.481*** 7.835*** 

 
(0.216) (0.502) 

Observations 984 984 

R-squared 0.418 0.419 

Number of years 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 
 

（2）Industrial Carbon Emission 

The study of the relationship between urban compactness and industrial carbon 

emissions constructs the following econometric models. Equation 5.35 includes only 

urban compactness (ln(Component1_Compactness)) and urban land area (ln(CA)) as 

indicators of urban spatial structure, aiming to reveal the direct quantitative relationship 

between urban land compactness and carbon emissions. Equation 5.36 further controls 

for the population variable, as population size may affect the scale and intensity of 

industrial activities, thereby influencing carbon emissions. Equation 5.37 adds variables 

affecting industrial carbon emissions, such as the number of industrial employees and 

industrial structure. 

Equation 5.35 
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The study results indicate that the regression results for urban land compactness 

and industrial carbon emissions are insignificant, but the signs are negative. The results 

show that urban land area, population size, and industrial structure are important factors 

affecting industrial carbon emissions. However, the regression results for urban land 

compactness did not pass the significance test. From Equation 5.35 to Equation 5.37, it 

can still be observed that the regression coefficient between urban land compactness 

and industrial carbon emissions gradually increases and is negative. This may explain 

to some extent that an increase in urban land compactness is beneficial for reducing 

industrial carbon emissions, but the impact is limited. A compact urban layout promotes 

the agglomeration of economic activities, which can bring benefits of scale and scope 

economies. Agglomeration economies, by sharing resources and facilities and 

improving production efficiency, help reduce carbon emissions per output unit. Areas 

with higher urban compactness often mean shorter commutes and transportation 

distances, reducing energy consumption and related carbon emissions. The close layout 

of industrial units and supply chains can reduce logistics costs, improving energy 

efficiency. 
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Table 5-25 The impact of urban land compactness on household carbon emissions. 

Variable 

Equation 5.35 Equation 5.36 Equation 5.37 

ln(Industrial 

Emission) 

ln(Industrial 

Emission) 

ln(Industrial 

Emission) 

ln(Component1_Compactness) -0.140 -0.315 -0.357 

 
(0.134) (0.209) (0.213) 

ln(CA) 1.422*** 1.624*** 1.349** 

 
(0.0876) (0.0326) (0.273) 

ln(pop) 
 

-0.221* -0.289** 

  
(0.0725) (0.0525) 

ln(Industrial Employment) 
  

0.253 

   
(0.174) 

ln(Industrial Structure) 
  

-0.488** 

   
(0.105) 

Constant 6.910*** 8.380*** 7.768* 

 
(0.238) (0.727) (2.586) 

Observations 984 984 984 

R-squared 0.338 0.352 0.379 

Number of years 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

（3）Transportation Carbon Emission 

The urban spatial structure most directly influences transportation carbon 

emissions. In this section, the study constructs a quantitative model with urban land 

compactness as the independent variable and transportation carbon emissions as the 

dependent variable. Equation 5.38 includes urban land area as a control variable. 

Equation 5.39 incorporates city population size and Gross Domestic Product (GDP), 
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two fundamental variables affecting urban transportation demand, into the regression. 

Equation 5.38 
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The research results show that urban land compactness is an important factor 

affecting transportation carbon emissions. In both regression models, the regression 

coefficient of urban land compactness (ln(Component1_Compactness)) passed the 

significance test, with coefficients of -1.189 and -0.815, both statistically significant 

(p<0.05). This indicates that the more compact the urban land, the lower the 

transportation carbon emissions. Specifically, for every 1% increase in urban 

compactness, transportation carbon emissions are expected to decrease by about 

0.815%. Possible reasons include: (1) A compact urban layout usually means proximity 

of household areas, work areas, and commercial zones, reducing residents' commuting 

distance and time. Shorter commuting distances directly lead to reduced transportation 

energy consumption and, thus lower transportation carbon emissions. (2) In compact 

cities, public transportation systems (such as subway buses) are easier to build and 

maintain and are more efficient. This improves the convenience and attractiveness of 

public transport for residents and reduces the use of private cars, thereby reducing 

carbon emissions. (3) Good urban planning and compact city structure help to reduce 

traffic congestion. Traffic congestion increases energy consumption and leads to 

vehicles emitting more carbon dioxide in inefficient states. Our research is consistent 
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with existing studies; Qiao and Jiao (2023) found that the compactness of urban spaces 

contributes to reducing transportation carbon emissions. 

Table 5-26 The impact of urban land compactness on transportation carbon emissions. 

Variable 

Equation 5.38 Equation 5.39 

ln(Transport Emission) ln(Transport Emission) 

ln(Component1_Compactness) -1.189** -0.815** 

 
(0.206) (0.220) 

ln(CA) 1.572*** 0.635*** 

 
(0.0740) (0.108) 

ln(pop) 
 

0.264** 

  
(0.0481) 

ln(GDP) 
 

0.372*** 

  
(0.0547) 

Constant 6.004*** 1.735*** 

 
(0.324) (0.234) 

Observations 984 984 

R-squared 0.512 0.608 

Number of years 4 4 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
 

The impact of urban spatial structure on transportation carbon emissions 

demonstrates significant scale effects, indicating that the impact of compactness varies 

significantly across cities with different land use scales. This study adopted a grouped 

regression analysis method to delve deeper into this phenomenon, dividing the urban 

land area by quartiles. This approach allows exploring how spatial structure 

compactness affects transportation carbon emissions in cities of different land area. 

The research findings reveal that the impact of urban land compactness on 
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transportation carbon emissions varies significantly in cities of different land area. In 

smaller-scale cities (the 1st and 2nd quartiles), urban compactness is significantly 

negatively correlated with transportation carbon emissions, indicating that increasing 

urban compactness helps reduce transportation carbon emissions in these cities. 

Specifically, a 1% increase in urban land compactness leads to decreased transportation 

carbon emissions by 1.017% and 1.167% in cities of the 1st and 2nd quartiles, 

respectively. The impact of urban compactness on transportation carbon emissions is 

more significant in cities of the second quartile. From the descriptive statistics of urban 

land area quartiles, the average urban land area in cities of the 1st and 2nd quartiles is 

52 square kilometers and 104 square kilometers, respectively. In terms of reducing 

transportation carbon emissions, urban planning practices should pay more attention to 

cities with an urban land area of 100 square kilometers and below, emphasizing urban 

land compactness. Urban land patches should be as close as possible to form a compact 

whole. 

However, in larger-scale cities (the 3rd and 4th quartiles), the impact of urban 

compactness on transportation carbon emissions is no longer significant. This may 

reflect that complex transportation networks and diversified travel modes in these cities 

make urban compactness no longer a significant factor for transportation carbon 

emissions, which are more influenced by other factors. 
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Table 5-27 Quartile regression results of urban land compactness on transportation carbon 

emissions 

Variable 

1st quartile 2nd quartile 3rd quartile 4th quartile 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Component1_Com

pactness) -1.017** -1.167*** -1.304 0.0155 

 
(0.272) (0.181) (0.786) (0.202) 

ln(CA) 3.573*** 0.719 0.728* 0.411** 

 
(0.544) (1.154) (0.259) (0.0845) 

ln(pop) 0.414*** 0.205*** 0.188 0.341*** 

 
(0.0485) (0.0200) (0.0888) (0.0477) 

ln(GDP) 0.290** 0.248 0.264** 0.566*** 

 
(0.0558) (0.156) (0.0576) (0.0741) 

Constant 1.089 3.478** 3.686* -1.503** 

 
(0.647) (0.986) (1.508) (0.340) 

Observations 246 246 246 246 

R-squared 0.406 0.205 0.297 0.752 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

(4) Household Carbon Emissions 

The impact of urban land compactness on carbon emissions is constructed from 

two dimensions: total household and heating carbon emissions. Equation 5.40 includes 

indicators of urban spatial structure. Equation 5.41 incorporates population size, gross 

domestic product (GDP), and temperature as control variables. Equation 5.42 uses 

heating carbon emissions as the dependent variable, with urban compactness as the 

independent variable, and controls for population size, GDP, and temperature. 
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The research findings indicate a positive correlation between urban land 

compactness and household carbon emissions. A possible reason is that a compact 

urban environment may promote high socio-economic vitality, which could lead to 

increased energy consumption and, consequently, more carbon emissions. The impact 

of urban compactness on heating carbon emissions is not significant. 

Table 5-28  Results of the impact of urban land compactness on household carbon emissions 

Variable 

Equation 5.40 Equation 5.41 Equation 5.42 

ln(Household 

Emission) 

ln(Household 

Emission) 

ln(Heating 

Emission) 

ln(Component1_Compactness) -0.127 0.872*** 0.926 

 
(0.239) (0.148) (0.453) 

ln(CA) 1.497*** 0.648*** 2.333*** 

 
(0.0595) (0.0384) (0.169) 

ln(pop) 
 

0.864*** -0.564** 

  
(0.0617) (0.165) 

ln(Temperature) 
 

-0.712** -1.314*** 

  
(0.141) (0.173) 

Constant 3.543*** -0.637* 8.404*** 
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Variable 

Equation 5.40 Equation 5.41 Equation 5.42 

ln(Household 

Emission) 

ln(Household 

Emission) 

ln(Heating 

Emission) 

 
(0.329) (0.259) (1.138) 

Observations 984 984 444 

R-squared 0.284 0.433 0.529 

Number of years 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

5.2.4 Effect of Urban Poly/mono-centricity Spatial Structure on Carbon 

Emissions 

The indicators for measuring urban polycentric characteristics include (1) the 

central area coefficient and (2) the coefficient of variation of central areas. A larger 

central area coefficient suggests a tendency towards a monocentric spatial structure. A 

larger coefficient of variation of central areas indicates greater differences between the 

central areas' patches, with the core patch dominating, suggesting a tendency towards a 

monocentric spatial structure; conversely, it indicates a polycentric structure. Before 

conducting econometric analysis, principal component analysis was used to analyze 

these two variables reflecting urban polycentric/monocentric spatial characteristics, 

extracting the principal component. According to the table explaining the total variance 

of urban land polycentricity's principal component, the first principal component 

(Component1_Polycentricity) explains 74.59% of the variance, reflecting most of the 

information (data). From the factor loading matrix of urban land polycentricity, both 

the central area index and the coefficient of variation of central areas are positively 
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related to the first principal component, indicating that the larger 

Component1_Polycentricity, the more evident is the monocentric spatial structure 

characteristics. 

Table 5-29 Total variance explained by the principal component of poly-/mono-centricity 

Principal Component Eigenvalue Percentage of Variance 

Cumulative 

Percentage 

Component1_Polycentricity 1.491 74.59 74.59 

Component2_Polycentricity 0.581 25.41 100 

 

Table 5-30 Factor loading matrix for poly-/mono-centricity 

Variable Component1_Polycentricity Component2_Polycentricity 

CPLAND 0.7071 0.7071 

CORE_CV 0.7071 -0.7071 

(1) Total Carbon Emissions 

This section explores the relationship between urban polycentric/monocentric 

spatial structures and total carbon emissions through the following two models. 

Equation 5.43 incorporates the urban polycentric/monocentric indicators along with the 

most fundamental characteristics of urban spatial structure. Equation 5.44 includes a 

population control variable. 
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The research findings indicate that after controlling for urban population and urban 
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land area, the degree of urban polycentric spatial structure is not significantly correlated 

with total urban carbon emissions. In both models, the coefficient of the logarithmic 

transformation of urban polycentric spatial structure, ln(Component1_Polycentricity), 

was 0.0436 and 0.0397, respectively, but these results were not statistically significant 

(with high p-values). This suggests that the relationship between the degree of a city's 

polycentric or monocentric spatial structure and its total carbon emissions is not 

significant after accounting for urban land area and population size. The potential 

reason for the insignificance in total carbon emissions may be that the effects of a 

polycentric structure are more pronounced in specific sectors (such as transportation 

carbon emissions) rather than in overall carbon emissions. The following sections will 

explore the impact of polycentric spatial structure on carbon emissions from industrial, 

transportation, and household carbon emissions perspectives. 

Table 5-31 The impact of urban land polycentric/monocentric structure on household carbon 

emissions 

Variable 

Equation 5.43 Equation 5.44 

ln(Total Emission) ln(Total Emission) 

ln(Component1_Polycentricity) 0.0436 0.0397 

 
(0.131) (0.134) 

ln(CA) 1.239*** 1.269*** 

 
(0.121) (0.118) 

ln(pop) 
 

-0.0366 

  
(0.0351) 

Constant 7.118*** 7.322*** 

 
(0.0797) (0.273) 

Observations 984 984 

R-squared 0.416 0.417 
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Variable 

Equation 5.43 Equation 5.44 

ln(Total Emission) ln(Total Emission) 

Number of years 4 4 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
 

(2) Industrial Carbon Emissions 

The econometric model for the impact of urban polycentric spatial structure on 

industrial carbon emissions is as follows. Equation 5.45 takes the principal component 

analysis of urban polycentricity as the main independent variable, with industrial 

carbon emissions as the dependent variable, and includes urban land area as a control 

variable. Equation 5.46 further controls for urban population size. Equation 5.47 

additionally controls for the number of employees in the secondary sector of the city 

and the industrial structure. 
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Equation 5.47 
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The study found that the degree of polycentricity in cities is generally insignificant 

concerning total industrial carbon emissions. The regression coefficients in all three 

models are less than 0.1, specifically 0.0852, 0.0636, and 0.0324, and none passed the 
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significance test of the models. The variables ln(CA) (urban land area) and ln(pop) 

(population) are significant in the models. Urban land area positively correlates with 

industrial carbon emissions, possibly because larger urban land area indicate more 

extensive industrial activities. The impact of population on industrial carbon emissions 

is significant and negatively correlated in Equation 5.46 and Equation 5.47, which may 

reflect that industrial activities are more concentrated and efficient in cities with higher 

population densities. 

Table 5-32 The impact of urban land polycentric/monocentric structures on industrial 

carbon emissions 

Variable 

Equation 5.45 Equation 5.46 Equation 5.47 

ln(Industrial 

Emission) 

ln(Industrial 

Emission) 

ln(Industrial 

Emission) 

ln(Component1_Polycentri

city) 0.0852 0.0636 0.0324 

 
(0.169) (0.177) (0.160) 

ln(CA) 1.314*** 1.479*** 1.223** 

 
(0.149) (0.129) (0.267) 

ln(pop) 
 

-0.203** -0.268*** 

  
(0.0629) (0.0422) 

ln(Industrial Employment) 
  

0.250 

   
(0.177) 

ln(Industrial Structure) 
  

-0.483** 

   
(0.108) 

Constant 6.690*** 7.825*** 7.170* 

 
(0.0948) (0.432) (2.336) 

Observations 984 984 984 

R-squared 0.339 0.350 0.377 
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Variable 

Equation 5.45 Equation 5.46 Equation 5.47 

ln(Industrial 

Emission) 

ln(Industrial 

Emission) 

ln(Industrial 

Emission) 

Number of years 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

(3) Transportation Carbon Emissions 

The econometric research framework for the impact of urban polycentric spatial 

structures on transportation carbon emissions is structured as follows. Equation 5.48 

incorporates the principal component indicators of urban polycentric structure and 

urban land area. Equation 5.49 further controls for factors affecting urban transportation 

demand, such as population (pop) and economic development (GDP). 

Equation 5.48 
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Equation 5.49 
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In both models, the coefficients for the logarithmic transformation of urban 

polycentric structure ln(Component1_Polycentricity) were -0.171 and -0.163, 

respectively, neither of which reached statistical significance. This indicates that, after 

controlling for other variables, the direct correlation between the city's polycentric 

structure and transportation carbon emissions is insignificant. The growth in population 

and economic activity directly drives the increase in transportation carbon emissions, 

while the expansion of urban land area reflects the spatial diffusion effects in the 

process of industrialization and urbanization. The impact of a polycentric urban spatial 
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structure on transportation carbon emissions may exhibit different effects in cities with 

different urban land area. Therefore, the entire sample is divided into quartiles based on 

urban land area, and regression analysis is conducted accordingly. 

Table 5-33 Impact of urban land polycentric/monocentric structure on transportation Carbon 

Emissions Results 

Variable 

Equation 5.48 Equation 5.49 

ln(Transport Emission) ln(Transport Emission) 

ln(Component1_Polycentricity) -0.171 -0.163 

 
(0.0811) (0.0814) 

ln(CA) 1.428*** 0.507** 

 
(0.0601) (0.107) 

ln(pop) 
 

0.295*** 

  
(0.0396) 

ln(GDP) 
 

0.399*** 

  
(0.0654) 

Constant 4.427*** 0.335 

 
(0.0800) (0.236) 

Observations 984 984 

R-squared 0.471 0.591 

Number of years 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

The quartile regression results indicate that in the first quartile, the coefficient for 

urban polycentricity (ln(Component1_Polycentricity)) is -0.201. This suggests a 

negative correlation between urban polycentric structures and transportation carbon 

emissions in the smallest urban land area group, significant at the 10% level. This may 

imply that in relatively smaller cities, a polycentric structure can reduce transportation 

carbon emissions. In the second quartile, the coefficient for urban polycentricity is -
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0.266, but not significant, indicating that the relationship between urban polycentric 

structure and transportation carbon emissions is unclear in cities of the second quartile. 

In cities of the third quartile, the coefficient for urban polycentricity is -0.549, 

significant at the 5% level (** p<0.05), suggesting that urban polycentric structures 

significantly reduce transportation carbon emissions in the medium urban land area 

group. The coefficient for urban polycentricity in the fourth quartile is 0.08, but not 

significant, indicating that in the largest urban land area group, the impact of urban 

polycentric structures on transportation carbon emissions is not significant. 

Table 5-34 Grouped regression results of the impact of urban polycentric/monocentric 

structure on transportation carbon emissions 

Variable 

1st quartile 2nd quartile 3rd quartile 4th quartile 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Component1_Polyc

entricity) -0.201* -0.266 -0.549** 0.0800 

 
(0.0745) (0.289) (0.170) (0.140) 

ln(CA) 3.179*** 0.556 0.689 0.364* 

 
(0.198) (1.018) (0.309) (0.118) 

ln(pop) 0.426*** 0.212*** 0.189* 0.339*** 

 
(0.0443) (0.0303) (0.0739) (0.0380) 

ln(GDP) 0.311*** 0.355 0.337** 0.561*** 

 
(0.0216) (0.162) (0.0578) (0.0802) 

Constant -0.376* 1.239 1.678*** -1.477* 

 
(0.142) (0.747) (0.243) (0.545) 

Observations 246 246 246 246 

R-squared 0.370 0.133 0.257 0.753 
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Variable 

1st quartile 2nd quartile 3rd quartile 4th quartile 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

ln(Transport 

Emission) 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

（4）Household Carbon Emission 

Econometric models for the impact of urban polycentric spatial structure on 

household Carbon Emissions. Equation 5.50 incorporates indicators of urban spatial 

structure, including the main component of urban polycentricity and urban land area. 

Equation 5.51 adds control variables for population size and temperature. Equation 5.52 

focuses on heating carbon emissions, a significant component of household carbon 

emissions, to explore the impact of urban polycentric spatial structure on heating carbon 

emissions. 

Equation 5.50 
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Equation 5.51 
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Equation 5.52 
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The regression results indicate that in the model, the coefficient for urban 

polycentric structure is 0.262, but it does not reach the traditional level of significance. 
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After further controlling for temperature and population variables, in Equation 5.51, the 

coefficient for polycentric structure is 0.411 and is significant at the 10% level (* p<0.1), 

suggesting a positive correlation between urban polycentric structure and household 

carbon emissions. This implies that an increase in the degree of polycentricity may 

increase household carbon emissions. Regarding heating carbon emissions, in Equation 

5.52, the coefficient for polycentric structure is -0.0140, indicating that its impact on 

heating carbon emissions is not significant. 

Table 5-35 Regression results of the impact of urban land polycentric/monocentric structure 

on household carbon emissions 

Variable 

Equation 5.50 Equation 5.51 Equation 5.52 

ln(Household 

Emission) 

ln(Household 

Emission) 

ln(Heating 

Emission) 

ln(Component1_Polycentricity) 0.262 0.411* -0.0140 

 
(0.230) (0.153) (0.201) 

ln(CA) 1.239*** 0.538** 2.602*** 

 
(0.208) (0.165) (0.227) 

ln(pop) 
 

0.818*** -0.632** 

  
(0.0636) (0.127) 

ln(Temperature) 
 

-0.660** -1.109*** 

  
(0.138) (0.104) 

Constant 3.282*** 0.535 9.542*** 

 
(0.0715) (0.428) (0.573) 

Observations 984 984 444 

R-squared 0.287 0.431 0.519 

Number of years 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 
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5.2.5 Analysis of the Impact of Urban Green Spaces on Carbon Emissions 

Urban green spaces, as an essential component of urban ecosystems, play a crucial 

role in absorbing carbon dioxide, mitigating climate change, improving urban 

environments, and enhancing the quality of life for residents. Understanding the 

relationship between green space morphology and urban carbon dioxide emissions can 

help us better plan and manage urban green systems, achieve urban carbon reduction, 

and thus promote sustainable development. This study selects indicators such as urban 

green space area, urban green coverage rate, and Shannon diversity index to explore 

their relationship with carbon dioxide emissions. 

5.2.5.1 Indicator Selection 

a. Urban Green Space Ratio (UGSR) 

Urban Green Space Ratio (UGSR) is an indicator used to quantify and describe the 

coverage of green spaces within a city or other areas. Green spaces include parks, 

grasslands, trees, gardens, and other areas that positively impact the environment and 

quality of life. The green space ratio is expressed as a percentage based on the 

proportion of all green space areas to the total urban built-up area. 

b. Green Space - Built-up Land - Shannon Diversity Index (SHDI) 

Green Space - Built-up Land - Shannon Diversity Index (SHDI) calculates the total 

sum of the area proportion of each patch type in the landscape multiplied by its natural 

logarithm, then takes the negative of that sum. It is unitless, with a range of SHDI ≥ 

0. When the landscape contains only one patch type, Shannon's diversity is 0. As the 
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number of patch types in the landscape increases and the area proportion of each type 

becomes more balanced, Shannon's diversity increases. 

Equation 5.53 

 SHDI=- ∑ Pi ln (Pi)

n

i=1

 

Where n is the number of patch types, focusing here on the combination of urban 

green space and built-up land, making n=2. Pi represents the area proportion of each 

patch type. In this study, it represents the proportion of built-up land and green space. 

This study uses it to calculate the distribution state of green space and built-up land, 

whether mixed or balanced. 

c. Urban Green Space Spatial Compactness Index (AI_UGS) 

Urban Green Space Spatial Compactness Index (AI_UGS) indicates the spatial 

distribution pattern of urban green spaces, significantly affecting their ecological 

regulation functions. The Aggregation Index of Urban Green Space (AI_UGS) 

describes the spatial distribution relationship of urban green spaces. A lower AI_UGS 

value indicates fragmented, dispersed green space distribution. Conversely, a higher 

AI_UGS value indicates urban green spaces are forming a more compact whole. 

5.2.5.2 Data Source and Processing 

This study's data on urban green space area was sourced from the "China City 

Statistical Yearbook." The Urban Green Space Ratio (UGSR) was calculated by 

dividing the urban green space area by the urban built-up area. 

Shi et al. (2023) utilized deep learning methods to calculate urban green space data 
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for 31 major cities in China, providing urban green space data with a spatial resolution 

of 1 meter, representing highly accurate urban green space data. This study employs 

this data to analyze urban green space spatial morphology. 

 

Figure 5-11 Example of Local Urban Green Space Data (Beijing) 

Before calculating the spatial morphology of urban land use, this chapter matched 

the spatial resolution of urban green space data with urban built-up land data, uniformly 

setting it to a spatial resolution of 50m*50m. This data was then imported into Fragstats 

to calculate the Urban Green Space-Built-up Land Shannon Diversity Index (SHDI) 

and the green space compactness index. 
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5.2.5.3 Empirical Research Results on the Impact of Urban Green Spaces on 

Carbon Emissions 

5.2.5.3.1 Research on the Impact of Urban Green Coverage Rate on Carbon 

Emissions 

To explore the impact of urban green space ratio on carbon emissions, this section 

constructs the following econometric model to analyze the influence of urban green 

space ratio (UGS_Rate) on urban carbon emissions (Carbon Emission), including total 

carbon emissions (Total Emission), industrial carbon emissions (Industrial Emission), 

transportation carbon emissions (Transport Emission), and household carbon emissions 

(Household Emission). Control variables include factors affecting urban population size 

(pop), urban land area (CA), and affluence level (AGDP). Such a model design helps 

accurately assess the impact of various urban factors on carbon emissions, providing 

data support for urban planning and environmental policies. 

Equation 5.54 
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The impact of urban green space ratio on different components of carbon emissions 

shows certain heterogeneity. For total carbon emissions (Total Emission): The 

regression coefficient of UGS_Rate is -0.126, but its p-value is greater than 0.1 

(standard error is 0.108), indicating it is not statistically significant(Table 5-36). For 

industrial carbon emissions (Industrial Emission): The regression coefficient of 

UGS_Rate is -0.199, but also not statistically significant (standard error is 0.135), 
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suggesting the impact of urban green space ratio on industrial carbon emissions is not 

statistically meaningful. 

For transportation carbon emissions (Transport Emission), the regression 

coefficient of UGS_Rate is 0.270, with a p-value less than 0.1 (standard error is 0.0890), 

showing a positive correlation between urban green space ratio and transportation 

carbon emissions, passing the significance test. This indicates that in the urban system 

of China, cities with a larger urban green space ratio have relatively higher 

transportation carbon emissions. Cities with a higher green space ratio might focus on 

the layout of green spaces in urban planning, but this does not necessarily mean that 

transportation planning is equally efficient. The regression results suggest that 

population size and affluence level are the main factors affecting transportation carbon 

emissions, with regression coefficients of 0.695 and 0.373, respectively, passing the 

significance test. First, larger population sizes in cities typically mean higher 

transportation demand. As population numbers increase, the frequency and distance of 

travel and the usage of transportation vehicles all increase, leading to higher 

transportation carbon emissions. 

Moreover, densely populated areas may experience traffic congestion, further 

increasing car carbon emissions. Second, cities with higher levels of economic 

development usually have higher personal or household income levels, which may 

affect residents' travel choices. For instance, residents may prefer private cars over 

public transportation in more economically developed areas, thereby increasing 

transportation carbon emissions. Economic development can also lead to more business 
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activities and logistics needs, similarly increasing transportation carbon emissions. 

The impact of the urban green space ratio on household carbon emissions is 

significant and opposite to its impact on transportation carbon emissions. The 

regression coefficient of UGS_Rate is -0.663, with a p-value less than 0.1 (standard 

error is 0.209), indicating a negative correlation between urban green space ratio and 

household carbon emissions, with a strong correlation. In cities with more green spaces, 

households may reduce reliance on air conditioning and heating devices due to better 

natural shading and cooling effects brought by urban greening. In other words, this 

lowers energy consumption and related carbon emissions. Among the factors affecting 

household carbon emissions, urban land area, population, and affluence level are also 

important, with regression coefficients being 0.797, 0.764, and 0.161, respectively, and 

all passing the significance level tests. 

Table 5-36 Regression results of the impact of urban green space ratio on carbon emissions 

Variable 
Total 

Emission 

Industrial 

Emission 

Transport 

Emission 

Household 

Emission 

ln(UGS_Rate) -0.126 -0.199 0.270* -0.663* 

 
(0.108) (0.135) (0.0890) (0.209) 

ln(CA) 0.755** 1.010** 0.370 0.797*** 

 
(0.190) (0.276) (0.176) (0.0931) 

ln(pop) 0.201 0.0235 0.695*** 0.764*** 

 
(0.139) (0.206) (0.0424) (0.0723) 

ln(AGDP) 0.377* 0.368 0.373** 0.161** 

 
(0.147) (0.196) (0.0693) (0.0463) 

Constant 5.845*** 6.453** 0.187 -0.717 

 
(0.864) (1.273) (0.215) (0.420) 
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Variable 
Total 

Emission 

Industrial 

Emission 

Transport 

Emission 

Household 

Emission 

Observations 982 982 982 982 

R-squared 0.446 0.369 0.592 0.397 

Number of years 4 4 4 4 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

5.2.5.3.2 Research on the Impact of Urban Green Space Morphology on Carbon 

Emissions 

To explore the impact of urban green space morphology on carbon emissions, 

considering the characteristics of the sample, this study constructs an ordinary least 

squares regression model: 

Equation 5.55 

ln(carbon emission) =β
0
+β

1
· ln(AI_UGS) +β

2
· ln(SHDI) +β

3
· ln(CA) +β

4
· ln(pop) 

+β
5
· ln(A_GDP) 

In this formula, carbon emission refers to the total urban carbon emissions. 

Subsequent studies will conduct regression analysis on four dimensions: total carbon 

emissions (Total Emission), industrial carbon emissions (Industrial Emission), 

transportation carbon emissions (Transport Emission), and household carbon emissions 

(Household Emission). AI_UGS is an index of urban green space compactness, 

indicating whether urban green spaces are fragmented and evenly distributed or large 

and compactly concentrated. SHDI represents the balance of urban green spaces and 

built-up areas. The model includes control variables, such as urban land area (CA), 

population size (pop), and per capita GDP. Regression results show that the R-squared 
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values of the models are relatively high, at 0.644, 0.652, 0.803, and 0.766, respectively, 

indicating that the model adequately explains the factors affecting urban carbon 

emissions and fits well. 

Table 5-37 Impact of urban green space morphology on carbon emission: regression results 

Variable 

(1) (2) (3) (4) 

Total Emission Industrial Emission Transport Emission Household Emission 

ln(AI_UGS) -0.0478 -0.225 -0.164 0.725*** 

 
(0.105) (0.174) (0.170) (0.117) 

ln(SHDI) 0.125 0.224 0.0667 -0.670*** 

 
(0.189) (0.256) (0.169) (0.135) 

ln(CA) 1.324*** 2.130*** 0.797* 0.134 

 
(0.239) (0.319) (0.430) (0.356) 

ln(pop) -0.782*** -1.604*** 0.394 0.965*** 

 
(0.202) (0.282) (0.253) (0.266) 

ln(AGDP) -0.179 -0.460 0.296 0.750*** 

 
(0.201) (0.284) (0.255) (0.249) 

Constant 12.58*** 17.28*** 2.483 -3.027* 

 
(1.425) (2.041) (1.952) (1.465) 

Observations 26 26 26 26 

R-squared 0.644 0.652 0.803 0.776 

Robust standard errors in parentheses；*** p<0.01, ** p<0.05, * p<0.1 

From the regression results, the impact of urban green space morphology on carbon 

emissions mainly manifests in its effect on household carbon emissions. In models (1), 

(2), and (3), neither the compactness of urban green spaces nor the Shannon diversity 

index of green and built-up areas showed significant regression coefficients. However, 

looking at the regression coefficients, the impact of urban green space morphology on 

industrial and transportation carbon emissions is opposite to that on household 
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emissions, suggesting that compact green space layouts may reduce industrial and 

transportation emissions. For industrial emissions, compact green layouts can make 

urban spaces more organized, reducing fragmentation and improving land use 

efficiency. This is particularly important for industrial area planning as it helps reduce 

necessary transportation distances, thus reducing energy consumption and increasing 

production efficiency. For transportation emissions, the compact and centralized layout 

of urban green spaces allows for less urban space being squeezed by green areas, 

thereby reducing transportation carbon emission efficiency. 

Model (4) shows significant effects of urban green space morphology on household 

carbon emissions. The logarithmic regression coefficient for the compactness index 

(AI_UGS) is 0.725, significant at the 1% level. This indicates that urban green spaces' 

compact and centralized distribution somehow increases household carbon emissions. 

Firstly, a compact distribution of urban green spaces also means a compact and dense 

distribution of urban built-up land, which in some cases might reduce energy efficiency. 

Dense building layouts may lead to poor ventilation and heat island effects, increasing 

reliance on air conditioning and cooling systems, thereby increasing energy 

consumption and carbon emissions. Secondly, under compact, centralized green layouts, 

due to the limited regulatory effect of heat island phenomena, residents may need to 

rely more on air conditioning and cooling devices to regulate indoor temperatures, 

leading to increased energy consumption and carbon emissions. In contrast, a dispersed 

and balanced green layout might more effectively reduce the city's average temperature, 

reducing reliance on air conditioning and cooling devices, thus helping to reduce 
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household energy consumption and carbon emissions. 

In model (4), the regression coefficient for the balance index of green and built-up 

land distribution (SHDI) is -0.67%, significant at the 1% level. A balanced quantitative 

allocation of urban green spaces and built-up land helps reduce household carbon 

emissions. This result emphasizes the importance of achieving a balanced allocation of 

green and built-up areas in urban planning. Urban green spaces provide ecological 

services such as air purification, temperature regulation, rainwater management, and 

biodiversity protection but also play a crucial role in reducing urban heat islands and 

improving the urban microclimate. Green spaces help lower household energy 

consumption and carbon emissions by reducing reliance on air conditioning and cooling 

systems. This finding corroborates with related research; for instance, Yao et al. (2023) 

discovered that the reduction of urban green space area led to intensified heat island 

effects in Hefei's urbanization process. Therefore, balanced green space layouts are vital 

for achieving sustainable urban development. 

5.3 Summary of This Chapter 

The selection of indicators for urban geometric morphology starts from the "land 

area-spatial allocation" dimension, choosing key variables that reflect the geometric 

morphological characteristics of urban land use. These variables quantify urban 

geometric morphology from four dimensions: built-up area size, shape complexity, 

compactness, and polycentricity/mono-centricity, exploring their impact on carbon 

emissions and urban green space morphology. This study leverages the advantages of 
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nighttime light data and land use data to generate a foundational dataset for urban built-

up areas. With the help of ArcGIS and Fragstats software, geometric morphological 

indices are calculated to explore their relationship with carbon emissions after 

analyzing urban geometric morphology spatiotemporal patterns. 

First, Urban land growth and carbon emissions exhibit a "super-linear" 

relationship, with improvements in carbon emission efficiency. 

Previous research in this chapter found a "sub-linear" relationship between urban 

population growth and carbon emissions. However, studies on urban land show a 

"super-linear" relationship between urban land growth and carbon emissions, meaning 

that as urban land grows, carbon emissions increase at a faster rate. 

The improvement in carbon emission efficiency mainly comes from the city's 

economy growing faster than its carbon emissions. Measuring carbon emission 

efficiency with carbon emissions per unit of GDP, carbon emission efficiency improves 

as urban land area grows, largely due to land finance playing a significant role in driving 

urban economic growth. 

Research on different sources of carbon emissions found that (1) increasing urban 

population density can improve carbon emissions per unit of industrial output. (2) urban 

land growth has a more pronounced effect on transportation carbon emissions in smaller 

and larger cities. (3) For household carbon emissions, urban land expansion has the 

greatest impact on heating carbon emissions. In heating areas, moderately increasing 

urban density significantly reduces heating carbon emissions. 

Second, Complex urban land inhibits transportation carbon emissions but 
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increases household emissions, especially heating carbon emissions. 

This section selects the Area-Weighted Mean Shape Index (AWMS) and Area-

Weighted Mean Patch Fractal Dimension (AWMPFD) as indicators of urban land 

complexity. Principal Component Analysis (PCA) extracts effective information and 

eliminates redundant information. Research findings indicate: (1) Urban land 

complexity does not significantly impact total and industrial carbon emissions. (2) 

Urban land shape complexity is more evident in reducing transportation carbon 

emissions, possibly because more complex urban forms reduce transportation 

accessibility, inhibiting traffic activities. (3) Urban land complexity increases 

household carbon emissions but to a lesser extent. Complex urban land significantly 

impacts heating carbon emissions, possibly because complex urban land means heating 

infrastructure (like pipelines and thermal power stations) is more dispersed, leading to 

reduced heating efficiency. 

Third, Compact urban land is beneficial for reducing transportation carbon 

emissions and positively correlates with household carbon emissions. 

The section has selected the Compactness Index (AI), Largest Patch Index (LSI), 

and Mean Nearest Neighbor Distance (ENN_AM) as indicators of urban land 

compactness. PCA is used to reduce dimensions and eliminate redundant information. 

Research shows: (1) Urban land compactness does not significantly impact total or 

industrial carbon emissions. (2) Compact urban land helps reduce transportation carbon 

emissions, especially in small and medium-sized cities. Urban planning practices 

should pay more attention to cities with an urban land area of 100 square kilometers or 
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less, emphasizing urban land compactness. (3) Urban land compactness positively 

correlates with household carbon emissions but is not significantly related to heating 

carbon emissions. 

Fourth, The impact of polycentric/monocentric spatial structures on carbon 

emissions is generally insignificant. 

Urban polycentricity/mono-centricity spatial structure characteristics are depicted 

using the Center Area Coefficient and Center Area Variation Coefficient, with PCA used 

to extract principal components and reduce redundancy. Research shows: (1) 

Polycentric/monocentric spatial structures do not significantly impact total carbon 

emissions or industrial carbon emissions. (2) urban polycentric spatial structures in 

smaller cities can reduce transportation carbon emissions. (3) Urban polycentric 

structures are positively correlated with household carbon emissions, meaning that an 

increase in polycentricity may lead to an increase in household carbon emissions. The 

impact of the city's polycentric/monocentric spatial structure features on heating carbon 

emissions is insignificant. 

Fifth, An increase in urban green space ratio increases transportation carbon 

emissions but reduces household carbon emissions. 

Urban green space, a key element of urban spatial components, can regulate the 

urban microclimate, impacting carbon emissions. This chapter selects the urban green 

space ratio to describe the supply level of urban greening; the Urban Green Space-Built-

up Land-Shannon Diversity Index (SHDI) to measure the balanced relationship 

between urban green space and built-up land; and the Urban Green Space Spatial 
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Compactness Index (AI_UGS) to describe the spatial distribution characteristics of 

urban green space as compact or dispersed. Research findings show: (1) The urban 

green space ratio does not significantly impact total or industrial carbon emissions. (2) 

In the Chinese urban system, cities with a larger urban green space ratio also have 

relatively larger urban transportation carbon emissions. (3) Increasing the urban green 

space ratio helps reduce household carbon emissions. (4) Cities with a more balanced 

distribution of green space and built-up land have lower household carbon emissions. 

Cities with a more evenly distributed green space have lower household carbon 

emissions. 



 208 / 254 

Chapter 6. Urban Carbon Reduction Strategies Based on 

Urban Spatial Structure 

This article combines the analysis results from the previous chapters of empirical 

research and proposes urban carbon reduction planning strategies from two dimensions: 

urban size and urban form. 

6.1 Urban Carbon Reduction Strategies from the Perspective of Urban Size 

Dimension 

6.1.1 Improving Carbon Emission Efficiency by Urban Population 

Agglomeration 

According to the National Bureau of Statistics of China, the urbanization rate in 

China has reached 65.22%. The phase of large-scale rural population migration to cities 

has passed, and the future will see an increase in population movement between cities, 

with adjustments in urban size occurring nationwide. Initially, urbanization was 

characterized by rural-to-urban migration, with inter-city migration playing a secondary 

role, mainly manifesting as rural population aggregation in towns. However, in the later 

stages of urbanization, the dynamics of "rural-to-urban" and "urban-to-urban" 

population movements change, with the speed and scale of inter-city population 

movement exceeding that of rural-to-urban migration. Rational inter-city population 

movement can enhance urban efficiency, including carbon emission efficiency. Chapter 

3 has found a "sub-linear" relationship between urban population size and carbon 
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emissions, meaning the growth rate of urban carbon emissions is slower than that of 

urban population growth. As urban size increases, carbon emissions per unit of GDP 

decrease, indicating that the carbon emission pressure associated with producing the 

material life humans require is diminishing. 

Population policy planning should be adaptive, scientifically predicting future 

population and socio-economic development trends, and rationally guiding population 

concentration towards cities with higher quality of regional development. This 

optimizes the allocation of resources and thus reduces carbon emissions. Leveraging 

the scale effect of urban population aggregation can improve energy efficiency and 

reduce carbon emissions. Cities experiencing population inflow should focus on 

enhancing regional development efficiency. Zhong Yuejun et al. (2023)[194] similarly 

believe that entering the post-industrial development stage, reallocating resources 

towards more efficient areas can improve economic growth while also enhancing 

energy utilization efficiency and reducing energy consumption per unit of GDP through 

scale effects and reallocation effects. 

To promote rational population mobility, bridging the gap between the inevitable 

growth assumed in overall urban planning and the reality that urban populations may 

decrease is necessary. Inevitably, inter-city population movement results in growth in 

some cities and decline in others, i.e., the central cities' suction effect on surrounding 

cities. However, in overall urban planning, cities experiencing population decline are 

often still planned for growth. This creates a scenario of shrinking cities but expanding 

plans[182]. Urban planners and managers should base their decisions on the laws of 
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urban development and reality, considering constraints of resources and environmental 

carrying capacity to rationally predict and plan future urban populations, thereby 

effectively guiding urban development. 

Urban carbon neutrality planning should consider the regional urban system as the 

basic unit, not individual cities. As China's urbanization level increases, the growth of 

one city is, to some extent, at the expense of shrinkage in other cities, marking an 

adjustment in the urban system's scale distribution in the middle and later stages of 

urbanization. The growth in urban size that leads to increased industrial production also 

accompanies industrial shrinkage in other regions. Although this study finds that 

industrial carbon emissions in growing cities are increasing, carbon emission efficiency 

is improving. Therefore, when planning for carbon reduction, urban planning and 

management should consider the entire urban system, taking into account the 

distribution of urban size. 

6.1.2 Urban innovative Agglomeration Promotes Industrial Carbon Reduction 

This thesis has identified a mechanism through which urban size growth facilitates 

industrial carbon reduction by promoting urban innovation and upgrading industrial 

structures(section 4.2). However, these studies also highlight the dual nature of urban 

innovation in reducing industrial carbon emissions. On one hand, innovation leads to 

increased production and, consequently, more industrial carbon emissions. On the other 

hand, innovation contributes to carbon emission reduction by advancing the upgrade of 

urban industrial structures. Nevertheless, it was also found that even in cities with 
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higher income levels, the carbon reduction driven by innovation is insufficient due to a 

lack of green innovation supply. 

Therefore, cities should be guided towards innovative agglomeration focusing on 

green innovation, which often suffers from market failure and insufficient supply due 

to its public good characteristics. To ensure sustainable urban development, the 

government provides specific green innovation subsidies and policy support to growing 

small cities to promote the development of green production and management 

technologies. This policy aims to balance urban expansion with industrial carbon 

emissions while recognizing the positive impact of innovation on carbon emissions, 

ensuring that cities can achieve carbon reduction while pursuing economic growth. 

Cities with a per capita GDP of over 80,000 RMB should focus on promoting industrial 

structure upgrades through innovation to achieve carbon reduction. 

There should be a collaborative effort towards green innovation in the urban system 

among large, medium, and small cities. Large cities should guide and drive the 

development of green innovation in medium and small cities. Previous research has 

also found that the promotive effect of innovation on carbon emissions is primarily 

observed in cities with lower levels of development. Specifically, for cities with a per 

capita GDP of about 30,000 RMB, the effect of innovation on increasing industrial 

carbon emissions is particularly pronounced(Section 4.2.3.2). Large cities, with their 

rich experience in balancing economic development and environmental protection, 

should lead in providing technological support and collaborative guidance to smaller 

cities. Smaller cities, which may have more lenient environmental standards and 
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insufficient motivation for green innovation, should avoid becoming "pollution havens" 

through the spatial transfer of carbon emissions. 

6.1.3 Heating Cities Increase Population Density to Reduce Heating Carbon 

Emissions 

In China, the per capita carbon emission is 7.8 tons, while in cities with heating 

systems, the per capita heating carbon emission reaches 1.5 tons, accounting for about 

20% of the total. Research on carbon reduction in heating from the perspective of spatial 

structure is relatively scarce. This study finds that the scale effect of heating carbon 

emissions is larger than that of household carbon emissions, and increasing urban 

density can reduce the impact of urban size growth on heating carbon emissions. 

Therefore, for heating cities, it is necessary to reasonably guide the concentrated 

distribution of urban population and improve urban population density. Large cities, 

with their more complete infrastructure and technology, can adopt more efficient and 

cleaner heating systems, which helps reduce carbon emissions.  

Moreover, under the current overall urban density in China, there should be a 

general increase in the population density of cities with heating needs, guiding 

population concentration towards core areas. Increased urban density helps improve 

heating efficiency by reducing thermal energy loss during transmission. A high-density 

urban layout can also promote more concentrated energy use, reduce energy waste, and 

thus lower carbon emissions. This is especially important in cities with lower 

temperatures, where their levels of heating carbon emissions are high. 



 213 / 254 

6.1.4 Large cities Should Focus on Improving Public Transportation Efficiency 

to Reduce Transportation Carbon Emission 

Based on the intuitive experience that using urban public transportation systems in 

large cities helps reduce overall carbon emissions, this study constructs a mediation 

effect model to test the impact mechanism of "urban size-public transportation-

transportation carbon emissions". The research finds that the increase in urban size does 

indeed reduce transportation carbon emissions to a certain extent-- through the use of 

urban public transportation. However, the impact is still relatively small, indicating that 

in China's urban system, the role of public transportation systems has not been 

effectively played, and efficiency is low. 

Therefore, it is recommended to reduce transportation carbon emissions from the 

following aspects: (1) Efforts should be made to improve the coverage and accessibility 

of the public transportation system, expand the public transportation network, 

especially in densely populated areas, to ensure that transportation services cover a 

broader area. Improve the convenience of public transportation, such as reducing 

waiting times, increasing the frequency of services, and optimizing route design. (2) In 

small and medium-sized cities, further promote the concentrated distribution of the 

population and shorten the distance of urban populations to urban public services, 

thereby reducing transportation demand. (3) For cities where the urban population and 

economic development level are not yet developed, a detailed assessment of the city's 

public transportation needs should be conducted before approving subway planning. 

For cities with lower population and economic development levels, more economical 
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and efficient public transportation solutions, such as Bus Rapid Transit (BRT), trams, 

or enhanced bus services, can be considered. 

6.2 Urban Carbon Reduction Planning Strategies from the Urban Land 

Morphology 

6.2.1 Reducing Land shape Complexity to Promote Household Carbon Emission 

Reduction in Cities of 100 and 600 km² 

The study finds that urban land shape complexity suppresses urban transportation 

carbon emissions to some extent but increases carbon emissions from urban residents, 

particularly those related to heating (Section 5.4). Although greater urban complexity 

reduces transportation-related carbon emissions, it also inhibits urban transportation 

activities and reduces overall economic development efficiency when considering 

urban development comprehensively. Additionally, increased land-use complexity 

leads to higher residential carbon emissions, especially from heating. 

Considering these factors, this study suggests that urban planning should aim to 

reduce the complexity of urban land morphology to lower carbon emissions from the 

residential sector. This is particularly important for northern cities with heating 

demands, where land morphology should be designed to be more regular. Preventing 

urban sprawl and the resulting increase in land complexity is crucial, especially for 

cities with land area of approximately 100 and 600 square kilometers.. 
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6.2.2 Enhancing Land-Use Compactness in Small and Medium-Sized Cities to 

Reduce Transportation Carbon Emissions 

The research on urban land compactness found that compact and close-knit urban 

land layouts are conducive to reducing transportation carbon emissions. Therefore, 

from the perspective of enhancing land compactness and aiming to reduce urban 

transportation carbon emissions, this chapter proposes the following planning 

suggestions:  

1. urban land expansion should be closely integrated geographically and 

functionally with the existing urban core areas to achieve a positive interaction between 

new urban land and urban functions and the existing urban core. 

2. Newly Added new construction land in cities should prioritize "infill 

development" over "outward expansion." Urban built-up areas often do not exhibit 

completely continuous spatial characteristics, and "urban voids" may exist internally. 

These urban voids are often characterized by irregularity, fragmentation, and abundance, 

frequently becoming socio-economic-ecological grey spaces, representing potential 

resources for enhancing urban sustainability. These urban voids can be redeveloped as 

incremental construction land, revitalizing and supplementing the need for new 

outward expansion of construction land, enhancing urban land compactness, and 

reducing transportation carbon emissions. 

3. Strict control over creating "urban enclaves" is necessary. Urban enclaves, being 

geographically distant from the main urban area, not only increase the difficulty of 

interaction with the main urban area, but hindering the improvement of urban economic 
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development performance and increase transportation carbon emissions. Therefore, the 

approval of urban enclaves should be strictly controlled. 

6.2.3 Increasing Urban Green Space Supply and Optimizing Spatial Patterns to 

Reduce Household Carbon Emissions 

Urban green spaces, as "quasi-natural" elements in urban spaces, play a regulatory 

role in urban climate. This research on the impact of urban green spaces on urban carbon 

emissions found that cities with a higher ratio of green space have relatively lower 

household carbon emissions. This indicates that increasing the urban green space ratio 

can effectively reduce carbon emissions from the urban household sector. In urban land 

planning, improving urban spatial order through constructing urban green spaces and 

appropriately increasing the urban green space ratio can create urban green spaces in 

fragmented vacant lands and link these green spaces to form a beneficially interactive 

urban green space system. Particularly in cities with higher summer temperatures and 

larger urban built-up areas, an adequate urban green space ratio can effectively mitigate 

the urban heat island effect in summer, reducing the increase in carbon emissions 

caused by indoor cooling. The study also found that an increase in the urban green space 

ratio relatively increases transportation and industrial carbon emissions. During the 

construction of urban green spaces, it is also necessary to consider the positive 

interaction between urban green spaces and other land uses, avoiding the inefficiencies 

caused by urban fragmentation due to urban green spaces. 

From the perspective of green space spatial allocation, the research found that an 

overly concentrated distribution of urban green spaces is not conducive to reducing 



 217 / 254 

carbon emissions in the household sector, while a relatively uniform spatial distribution 

has a greater effect on reducing household carbon emissions. Therefore, when planning 

urban green space layouts, the balanced integration of urban construction land and 

urban green spaces should be considered, avoiding the spatial imbalance between urban 

construction land and green spaces to reduce the regulatory effects of urban green 

spaces. 

6.3 Summary of This Chapter 

This chapter, based on the empirical research results regarding the impact of urban 

spatial structure on industrial carbon emissions, transportation carbon emissions, and 

household carbon emissions, proposes spatial planning strategies for carbon reduction 

from four dimensions: urban population size, urban land area, urban land form, and 

urban green space. 
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Chapter 7. Conclusions and Discussion 

7.1 Major Conclusions of the thesis 

This study utilizes remote sensing, geographic information systems (GIS), and 

econometric methods to investigate the impact of urban spatial structure on carbon 

emissions, framed within the "spatial distribution-quantitative impact-planning 

strategies" framework. The analysis draws on data from over 220 Chinese cities to 

examine the systemic effects of urban spatial structure on various categories of carbon 

emissions, including total emissions, transportation, industrial, and household 

emissions. The study develops a multi-tiered indicator system for urban spatial structure 

in relation to carbon emissions, incorporating factors such as population size, land area, 

land form, and urban green space. 

Second, through spatial analysis, principal component analysis, and mediation 

effect analysis, this thesis provides an empirical assessment of the current state of 

China’s urban spatial structure and its impact on various sources of carbon emissions. 

The findings offer valuable insights for urban planning and management strategies 

aimed at carbon reduction. The chapter also proposes practical planning and 

management approaches that leverage urban spatial structures to mitigate carbon 

emissions, serving as useful references for sustainable urban development in China. 

Lastly, the research advocates for a holistic approach to urban planning, focusing 

on low-carbon and efficient urban performance. It emphasizes the need to rethink urban 

land use expansion, optimize citizen-engaged planning processes, and prioritize 
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sustainable urban spatial structures in achieving these goals. The key findings highlight 

the importance of integrating urban spatial planning with carbon reduction objectives 

to promote sustainable urban development. The main conclusions are as follows: 

(1) Urban Population Size and Carbon Emissions 

This section explores the impact of urban population size on carbon emissions and 

finds that the relationship between urban population size and carbon emissions is 

sublinear. Furthermore, urban population size influences industrial, heating, and 

transportation carbon emissions through distinct pathways. 

First, urban population size affects industrial carbon emissions through innovation, 

production expansion, and industrial upgrading. As the urban population grows, it leads 

to superlinear innovation agglomeration, which, in turn, stimulates production and 

increases industrial carbon emissions. This effect is particularly pronounced in less 

developed cities. Meanwhile, the carbon reduction effect of innovation is mainly 

reflected in its role in industrial upgrading, which leads to emission reductions—an 

effect more evident in highly developed cities. Thus, while urban expansion drives 

industrial carbon emissions through increased production, industrial upgrading has only 

a limited mitigating effect. 

Second, the scale effect of heating carbon emissions is more pronounced than that 

of overall household carbon emissions. The impact of urban density on the relationship 

between urban size and heating carbon emissions follows a U-shaped pattern. Overall, 

increasing urban population density weakens the demand for heating-related carbon 

emissions associated with urban expansion. 



 220 / 254 

Third, urban expansion reduces transportation carbon emissions through 

improvements in the public transportation system, but this effect remains limited. The 

potential of urban public transportation systems to mitigate transportation-related 

carbon emissions has not been fully realized, constraining their effectiveness. 

(2) Urban Land Form and Carbon Emissions 

This study also examines the overall impact of urban land area on industrial, 

transportation, and household carbon emissions, as well as the influence of land form 

under land area constraints on multi-source carbon emissions. The findings indicate that 

urban land area has a superlinear effect on carbon emissions and that land area 

constraints limit the impact of urban land morphology on multi-source carbon 

emissions. 

First, urban land expansion is the primary driver of significant increases in total 

urban carbon emissions, following a superlinear relationship. The impact of land 

expansion on carbon emissions varies by region, with the ranking as follows: Western 

China > Northeastern China > Central China > Eastern China. Regarding multi-source 

carbon emissions, land expansion has the greatest impact on transportation carbon 

emissions in both small and large cities, while for household carbon emissions, land 

expansion primarily influences heating carbon emissions. In regions with heating 

demand, moderate increases in urban density can significantly reduce heating carbon 

emissions. 

Second, greater complexity in land morphology leads to higher household carbon 

emissions, though the effect is relatively minor. However, complex land morphology 
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has a more significant impact on heating carbon emissions, especially in cities with land 

areas of 100 km² and 600 km². A more fragmented land morphology results in a more 

dispersed distribution of heating infrastructure (e.g., pipelines and cogeneration plants), 

leading to lower heating efficiency and higher carbon emissions. 

Third, higher urban land compactness is beneficial for reducing transportation 

carbon emissions, with stronger effects observed in small and medium-sized cities. 

Urban planning should place greater emphasis on enhancing land compactness in cities 

with land areas of 100 km² or less, as this can significantly improve transportation 

efficiency and reduce emissions. 

7.2 Innovative Points of the Thesis 

(1) This study examines the impact of urban spatial structure on multi-source 

carbon emissions from the perspective of urban population size and land morphology, 

yielding a more comprehensive set of findings. Compared to previous studies that 

focused solely on total carbon emissions, this research provides a more nuanced and 

detailed understanding of the relationship between urban form and carbon emissions. 

(2) A multiple mediation model was constructed to quantify the impact of urban 

population size on carbon emissions through urban system variables, expanding the 

research framework. An innovative finding of this study is that urban population size 

influences industrial carbon emissions through innovation activities in a dual manner, 

exhibiting both emission-promoting and emission-reducing effects. 

(3) The study explores the impact of urban land morphology on carbon emissions 
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under land area constraints, offering an innovative perspective compared to previous 

research that treated the "shape" and "size" of urban land independently. The findings 

reveal that the effects of urban land morphology on carbon emissions vary across 

different land area, providing deeper insights into the relationship between urban land 

use and carbon emissions. 

7.3 Discussions 

The carbon emission reduction effects of urban innovation require certain urban 

development conditions. In this study, it was found that, overall, urban innovation in 

China has led to an increase in industrial carbon emissions, with a more significant 

effect observed in middle- and low-income cities, while no significant carbon reduction 

effects were observed in high-income cities. This finding is consistent with the research 

of Jiang et al. (2022), which showed that urban innovation reduced carbon emissions in 

high-income countries, while no carbon reduction effects were observed in middle- and 

low-income countries. The study by Ali et al. (2016) found that in the developing 

country of Malaysia, the relationship between technological innovation and carbon 

emissions was not significant. In Bangladesh, Raihan et al. (2022) showed that 

technological innovation could reduce carbon emissions and achieve environmental 

sustainability. In the BRICS countries, Erdogan (2021) found that increased 

technological innovation could reduce carbon emissions in the construction industry. 

Awan et al. (2022) found that in 33 high-income countries, innovation reduced carbon 

dioxide emissions in the transportation sector. 
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The study by Lin and Ma (2022) provides a deeper explanation of this 

phenomenon, suggesting that the marginal alleviating effect of green technological 

innovation on carbon emissions becomes significant only when the level of human 

capital in a city reaches a certain threshold. The Pollution Haven Effect suggests that in 

developing cities or countries with relatively lax environmental regulations and lower 

production costs, high-pollution industries tend to cluster more easily, while in high-

income regions, stricter environmental standards lead some high-pollution industries to 

shift to middle- and low-income areas. 

By comparing our results with those of other developed and developing countries, 

we find that the carbon emission reduction effects of innovation are influenced by the 

Pollution Haven Effect. Future research should explore the Pollution Haven Effect of 

innovation and identify how technological innovation can play a role in carbon 

emission reduction in cities at different levels of development. 

 

Figure 7-1 Exploratory research process for urban innovation effects 

The physical spatial structure of urban land includes not only the total "quantity" 

of land but also its spatial "form". The area and morphology of urban land together 

constitute the physical framework of urban socio-economic life. This study confirms 

that, under different urban land areas, urban form has a significantly varied impact on 

carbon emissions. Urban spatial form refers to the spatial distribution of urban land 
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scale. The scale of urban land often constrains the intensity of the impact that urban 

form has on carbon emissions. Most existing studies tend to overlook the role of land 

scale when discussing the effect of urban spatial form on carbon emissions. Urban land 

scale and form are not isolated concepts; they are closely intertwined. While much 

attention has been paid to the shape or morphology of urban spaces, particularly in 

relation to urban expansion and land use intensity, less emphasis has been placed on 

role quantity of urban land. 

This study highlights that urban spatial form plays a crucial role in shaping carbon 

emissions, but its impact is moderated by the size of the urban land area. For example, 

cities with larger land areas may face different challenges related to urban sprawl, 

resulting in higher carbon emissions due to increased travel distances, whereas cities 

with more compact forms may have reduced emissions as a result of more efficient land 

use and transportation systems. 

In fact, the physical structure of urban space—how land is utilized and organized—

directly affects carbon efficiency. In larger cities, the spatial spread of land may lead to 

greater dependence on private transportation and energy-intensive infrastructure. In 

contrast, smaller cities or those with a more integrated urban form may benefit from 

more sustainable practices, such as higher-density development, mixed land use, and 

better public transportation networks. 

Thus, it is crucial for future research to not only consider the spatial arrangement 

and form of urban areas but also the constraint of urban land quantity when examining 

their impact on carbon emissions(Figure 7-2). A more nuanced understanding of how 
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land size interacts with spatial distribution can provide valuable insights for 

policymakers aiming to create more sustainable urban environments. 

 

Figure 7-2 Research framework on the indirect impact of urban land on carbon emissions 

This thesis, with the support of remote sensing and geographic information systems, 

combined with quantitative methods and focusing on the theme of "spatial distribution 

- quantitative impact - planning strategies," analyzes the relationship between urban 

spatial structure and carbon emissions in more than 200 Chinese cities, in light of the 

stages of urban development in China. It explores planning strategies that align with 

low-carbon development and supporting strategies for planning implementation. 

However, due to space limitations, this study still has the following needed further 

research in the future: 

First, this study carefully selected carbon emission data, excluding those derived 

using urban spatial structure indicators, to prevent biased or invalid analyses. However, 

the reliance on discontinuous data points from the years 2005, 2010, 2015, and 2020, 

while statistically valid for exploring the impacts of urban spatial structure on carbon 

emissions, limits the ability to conduct a time series analysis. Consequently, this 
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approach does not fully capture the dynamic evolution of the relationship between 

urban spatial structure and carbon emissions in China. For future studies, conducting a 

continuous time series analysis could offer deeper insights and more robust empirical 

evidence on how urban spatial structure influences carbon emissions over time. 

Second, this study acknowledges the significance of the interplay between urban 

green spaces and urban construction land within urban spatial structures. This thesis 

ventures into analyzing the effects of urban green space ratio, form, and its interaction 

with urban construction land on carbon emissions. Nonetheless, due to the constraints 

of acquiring high-precision data for urban green spaces, the analysis was limited to a 

sample of 26 cities, all of which are provincial capital cities. While the results are 

statistically significant, their applicability is mainly relevant to larger urban contexts 

similar to provincial capital cities, and caution should be exercised when extrapolating 

these findings to smaller cities. Future studies should aim to dissect the underlying 

mechanisms linking urban green spaces with carbon emissions, potentially broadening 

the scope to include diverse urban settings and enhancing the granularity of the data 

used.
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