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Abstract 

Intensive interactions among vehicles at freeway on-ramp merging areas frequently cause 
congestion and accidents. The collaboration of connected automated vehicles (CAVs) is promising to 
effectively coordinate these conflicts. However, CAV-based control encounters significant challenges 
in real-time optimization of vehicle scheduling and trajectory planning, especially in scenarios 
involving multiple lanes and a large number of vehicles. To tackle these challenges, this dissertation 
mathematically models the freeway merging problem and develops three algorithms to solve the 
problem.  

The first work proposes a mixed integer nonlinear programming (MINLP) model for the 
cooperative merging of two traffic streams at a single-mainline freeway on-ramp merging section. The 
proposed model simultaneously optimizes multiple vehicles’ trajectories and their merging sequence to 
improve traffic efficiency and ensure safety. Unlike conventional treatments, which match one mainline 
facilitating vehicle with one merging vehicle, the proposed model determines the optimal number of 
facilitating vehicles and which mainline vehicles should serve as the facilitating vehicles to 
cooperatively minimize disruption from ramps. The safety and feasibility of the planned vehicle 
trajectories are guaranteed at any time. To solve the model rapidly, we propose a solution algorithm that 
incorporates an iterative linear programming method into a novel search process based on a necessary 
condition for optimality that we identify and prove. The algorithm is highly efficient because it enjoys 
a significantly reduced search space. The proposed approach, consisting of the MINLP model and the 
solution algorithm, is evaluated under different traffic demands and mainline-ramp demand ratios and 
real vehicle arrival patterns from the NGSIM dataset. The performance of the proposed method 
outperforms benchmark CAV control algorithms, and the computational efficiency is promising for real-
time automated merging tasks. 

The second work considers a multi-lane freeway on-ramp merging section, focusing on the 
simultaneous decision-making of lane changes, vehicle sequences, and trajectories. To this end, an 
integrated MINLP optimization model is proposed to jointly optimize lane change decisions, vehicle 
sequences, and vehicle trajectories, with the objective of maximizing traffic efficiency and driving 
comfort. However, such a complicated model cannot be directly solved by existing optimization 
software. To rapidly obtain solutions, this study develops a Generalized Benders decomposition (GBD)-
based solution algorithm to tackle the challenges of multi-vehicle combinatorial optimization and 
nonlinear trajectory optimization problems. Meanwhile, the property of finite convergence is proved. 
Numerical experimental results turn out that the traffic performance of the proposed model outperforms 
benchmark CAV control methods under different traffic demands and mainline-ramp demand ratios, 
demonstrating significant traffic benefits from jointly regulating lane changes, driving sequences, and 
utilizing microscopic vehicle information. Also, this study analyses traffic delays and the number of 
lane changes by the proposed model under varying road lengths, i.e., the lengths of lane-changing and 
merging areas. 

The third work introduces a bi-level approach that nests optimization modelling within deep 
reinforcement learning to jointly optimize vehicle sequences, lane selection, and trajectories, aiming to 
provide a rapid, safe, and high-quality solution for the problem of multi-lane freeway merging. In the 
upper level, we develop an attention-based sequential policy network to sequentially construct driving 
sequences and lane selections for multiple vehicles. Specifically, we employ an attention mechanism to 



  

learn dynamic inter-dependencies with other vehicles, thus facilitating more informed and adaptive 
decision-making. In the lower level, we utilize a nonlinear model predictive controller to generate safe 
trajectories and use total travel delay to guide upper-level learning for optimizing long-term traffic 
efficiency. Additionally, we introduce a leader-and-lane specific credit assignment mechanism to 
address global credit assignment for the multi-vehicle merging problem. Computational results 
demonstrate that our method outperforms rule-based and searching-based methods in terms of solution 
quality, and the computation efficiency of the proposed approach is promising for real-time automated 
merging tasks. 

 

Keywords: Connected Automated Vehicles; On-Ramp Merging; Mixed-Integer Nonlinear 
Programming; Sequencing Planning; Trajectory Planning. 

 

 

  



  

Publications 

The thesis is composed of the following three papers: 

[A] Chen, J., Zhang, Y., Zhou, Y., Guillaume, S., Chung, E., and Wu, Y. (2024) Learning Lane 
Selection and Driving Orders for Connected Automated Vehicles at Multi-lane Freeway Merging 
Sections. IEEE Transactions on Intelligent Transportation Systems (under review). 

[B] Chen, J., Wu, Y., Zhou, Y., Chung, E., and Wang, S. (2024) Solving Connected Automated Vehicle 
Merging Problems: A Generalized Benders Decomposition-based Approach for Mixed-Integer 
Nonlinear Programming. Transportation Research Part B (under review). 

[C] Chen, J., Zhou, Y., and Chung, E. (2023) An Integrated Approach to Optimal Merging Sequence 
Generation and Trajectory Planning of Connected Automated Vehicles for Freeway On-Ramp Merging 
Sections.  IEEE Transactions on Intelligent Transportation Systems. 

Other papers during my Ph.D. study, not included in this thesis, are: 

[D] Fan, T., Chen, J., and Chung, E. (2025) CAV lane change protocol with CTH safety guarantee for 
cooperative driving on dedicated highways. Communications in Transportation Research (under 
review). 

[E] Zhang, Y., Chen, J., Zhou, T., and Guillaume, S. (2025) COIN: collaborative interaction-aware 
multi-agent reinforcement learning for self-driving systems. International Conference on Robotics and 
Automation (ready to submit). 

[F] Fan, X., Chen, J. , Wang, Q., and Chung, E. (2024) CAV lane change protocol with CTH safety 
guarantee for cooperative driving on dedicated highways. IEEE Transactions on Mobile Computing 
(under review). 

[G] Zhou, Y., Chen, J., Chung, E., and Ozbay, K. (2023) CAV-Enabled Active Resolving of Temporary 
Mainline Congestion Caused by Gap Creation for On-Ramp Merging Vehicles. IEEE Transactions on 
Intelligent Transportation Systems. 

[H] Chen, J., Chen, X., and Liu, S. (2023) Trajectory Planning of Autonomous Mobile Robot using 
Model Predictive Control in Human-Robot Shared Workspace. In 2023 IEEE 3rd International 
Conference on Electronic Technology, Communication and Information (ICETCI) 

[I] Chen, J., Zhou, Y., Chung, E., and Ozbay, K. (2022) CAV-Based Active Congestion Resolving for 
Improving Mainline Traffic Flow Efficiency of A Freeway On-Ramp Merging Section. In 2022 IEEE 
25th International Conference on Intelligent Transportation Systems (ITSC) 

 

 

 

 
  



  

Acknowledgments 

I would like to express my deepest gratitude to my supervisor, Prof. Edward CHUNG, for 
providing me with the opportunity to pursue my Ph.D. studies and for his invaluable guidance over the 
past three years. During my time at HK PolyU, I am particularly thankful to Prof. Chung for supporting 
me in exploring research areas of my interest. Even more valuable was his emphasis on the importance 
of clear communication and his regular meetings, which greatly improved my skills in communication, 
presentations, and writing. I also deeply appreciate Prof. Chung for organizing hiking trips and 
supporting my exchange in Singapore, allowing me to experience diverse landscapes, meet new people, 
and enrich my life experiences. 

I would like to extend my sincere thanks to Dr. Yue ZHOU. Under the guidance of Prof. Chung 
and Dr. Zhou, I completed the submission, revision, and acceptance of my first paper. I sincerely 
appreciate his willingness to help me, which greatly strengthened my foundation in academic writing. 

I am also thankful to Prof. Guillaume SARTORETTI, my supervisor at the National University of 
Singapore, for giving me the opportunity to join his lab. This experience exposed me to a wider range 
of research areas and expanded my problem-solving methodologies. I also appreciate him for taking the 
time to discuss my work and provide valuable suggestions. Additionally, I am very grateful to the friends 
I met at NUS, including Yifeng ZHANG, Yibing YANG, Jianghong DONG, Jingqiang LIU, Derek TAN, 
Yizhuo WANG, Peizhuo LI, Weiheng DAI, and everyone in MARMOTLAB. 

My thanks also go to the research team and colleagues at PolyU, including Dr. Weihua GU, Dr. 
Hongbo YE, Dr. Xiaowen BI, Dr. Zhuang XIAO, Dr. Xiao YANG, Dr. Jiaxin WEN, Xiexin ZOU, Meng 
LONG, Rong ZHAO, Chaoyun WANG, Ruoheng WANG, Chuang XU,Yun LI, Zhixian TANG, 
Tingting FAN, Li ZHEN, and everyone else in EF113. I am truly grateful to have met you all and to 
have become friends. 

Last but not least, I extend my heartfelt thanks to my parents for their love and support. I am also 
deeply grateful to my wife, who has always believed in me. Wishing everyone all the best in their 
endeavours. 

  



  

Contents 
Chapter 1 Introduction ........................................................................................................................ 1 

1.1 Background .............................................................................................................................. 1 

1.2 Motivations and Objectives ..................................................................................................... 2 

1.3 Organization of thesis .............................................................................................................. 3 

Chapter 2 Literature review ................................................................................................................ 5 

2.1 Trajectory Planning ................................................................................................................. 5 

2.2 Vehicle Sequence Planning ..................................................................................................... 6 

2.3 Lane Change Planning ............................................................................................................. 8 

2.4 Summary .................................................................................................................................. 8 

Chapter 3 Integrated Optimization of Merging Sequences and Trajectories ................................... 10 

3.1 Preliminaries .......................................................................................................................... 10 

3.2 Model Formulation ................................................................................................................ 13 

3.3 An Integrated Solution Algorithm ......................................................................................... 16 

3.4 Numerical Experiments ......................................................................................................... 21 

3.5 Summary ................................................................................................................................ 30 

Chapter 4 Decomposition of  Vehicle Scheduling and Trajectory Planning .................................... 31 

4.1 Model Formulation ................................................................................................................ 31 

4.2 Solution Algorithm ................................................................................................................ 39 

4.3 Computational Experiments .................................................................................................. 46 

4.4 Summary ................................................................................................................................ 58 

Chapter 5 Learning Lane Selection and Driving Orders for Multi-Lane Freeway Merging ............ 59 

5.1 Problem Description .............................................................................................................. 59 

5.2 Bi-level Control Framework .................................................................................................. 62 

5.3 VORLA Policy Network ....................................................................................................... 62 

5.4 Low-level Nonlinear Model Predictive Controller ................................................................ 67 

5.5 Experiments ........................................................................................................................... 69 

5.6 Summary ................................................................................................................................ 73 

Chapter 6 Conclusion ....................................................................................................................... 75 

6.1 Summary ................................................................................................................................ 75 

6.2 Contributions ......................................................................................................................... 75 

6.3 Future work ............................................................................................................................ 77 

Appendix 79 

Appendix A ...................................................................................................................................... 79 



  

Appendix B ....................................................................................................................................... 80 

Appendix C ....................................................................................................................................... 81 

Appendix D ...................................................................................................................................... 82 

Appendix E ....................................................................................................................................... 83 

 
 
 



  

List of Figures 

Figure 1.1.  Four vehicle types in on-ramp merging scenarios. ............................................................... 2 
Figure 2.1.  Categorization of Strategies for CAV-Based Control Tasks ................................................. 9 
Figure 3.1.  The on-ramp merging scenario. .......................................................................................... 11 
Figure 3.2.  Merging sequence description. ........................................................................................... 12 
Figure 3.3.  The search tree of merging sequences. ............................................................................... 18 
Figure 3.4.  Road setting. ....................................................................................................................... 21 
Figure 3.5.  Speed contour in the mainline ............................................................................................ 24 
Figure 3.6.  Time gap distribution in the mainline ................................................................................ 25 
Figure 3.7.  Vehicle trajectories for the high on-ramp vehicle’s speed scenario ................................... 26 
Figure 3.8. Vehicle trajectories for the low on-ramp vehicle’s speed scenario ..................................... 26 
Figure 3.9. Travel delay under different combinations of (𝑤𝑚,𝑤𝑟) .................................................... 27 
Figure 3.10.  Computation time of various mainline and on-ramp CAVs number ................................ 28 
Figure 3.11. Merging speed profile for the unexpected lane change ..................................................... 29 
Figure 3.12. Merging position profile for the unexpected lane change ................................................. 29 
Figure 4.1. The multi-lane freeway on-ramp merging scenario. ........................................................... 32 
Figure 4.2. Schematic illustration of vehicles and candidate gaps in a control cycle. .......................... 33 
Figure 4.3. Schematic illustration of the connection between RMP and PS. ........................................ 40 
Figure 4.4. Transformation of nonlinear kinematic equations. .............................................................. 46 
Figure 4.5. Road setting. ........................................................................................................................ 47 
Figure 4.6. The heatmap of average CAV speed. .................................................................................. 51 
Figure 4.7. Lateral and longitudinal positions of CAVs in case study 1. ............................................... 53 
Figure 4.8. Longitudinal position and velocity trajectories of CAVs in case study 1. .......................... 54 
Figure 4.9. Lateral and longitudinal positions of CAVs in case study 2. ............................................... 55 
Figure 4.10. Longitudinal position and velocity trajectories of CAVs in case study 2. ........................ 55 
Figure 4.11. Sensitivity analysis ............................................................................................................ 56 
Figure 4.12. Structures of the two-step approach and the integrated approach ..................................... 57 
Figure 5.1.  Multi-lane freeway merging scenario ................................................................................. 59 
Figure 5.2.  Hybrid bi-level control framework. ................................................................................... 62 
Figure 5.3.  The network structure of proposed VORLA-PN ............................................................... 64 
Figure 5.4.  Road layout ........................................................................................................................ 69 
Figure 5.5.  Learning curves under different credit assignment approaches. ........................................ 71 
Figure 5.6.  Ablation study. .................................................................................................................... 71 
Figure 5.7.  Vehicle and lane selection at each step. .............................................................................. 73 
 
  



  

List of Tables 

Table 3.1.  Proposed integrated solution algorithm. .............................................................................. 17 
Table 3.2.  The iterative LP method ....................................................................................................... 20 
Table 3.3.  Parameter setting .................................................................................................................. 21 
Table 3.4. Total travel delay comparison with ramp metering .............................................................. 23 
Table 3.5. Total travel delay comparison without ramp metering ......................................................... 23 
Table 3.6.  Safety and delay comparison with different cooperation ranges ......................................... 26 
Table 3.7.  Performance comparison on real dataset. ............................................................................ 28 
Table 4.1. GBD-based solution algorithm. ............................................................................................ 41 
Table 4.2. Parameter setting summary. .................................................................................................. 47 
Table 4.3. Comparison of the proposed GBD-based algorithm and the Gurobi solver. ........................ 48 
Table 4.4.  Comparison of travel delays. ............................................................................................... 49 
Table 4.5. Comparison of travel delays by the balanced flow model and proposed model .................. 52 
Table 4.6. Initial vehicle states and output of the proposed model in case study 1. .............................. 53 
Table 4.7. Initial vehicle states and output of the proposed model in case study 2. .............................. 54 
Table 4.8. Comparison of travel delays by the two-step approach and proposed integrated approach . 57 
Table 4.9. Comparison of computation time by the two-step model and proposed integrated model .. 58 
Table 5.1.  Notations in the general model. ........................................................................................... 60 
Table 5.2.  Training process for VORLA network. ................................................................................ 67 
Table 5.3.  Vehicle Parameters and hyperparameters for training DRLs. .............................................. 69 
Table 5.4.  Performance comparison. .................................................................................................... 70 
 
  



  

List of Abbreviations 

AV Autonomous Vehicle 
ACC Adaptive Cruise Control 
CACC Cooperative Adaptive Cruise Control 
CAV Connected Automated Vehicle 
CF Car Following 
DNN Deep Neural Networks 
DRL Deep Reinforcement Learning 
FIFO First In First Out 
FSM Finite State Machine 
GBD Generalized Benders Decomposition 
GCN Graph Convolutional Network 
IP Integer Programming 
ITS Intelligent Transportation System 
LLM Large Language Model 
LQR Linear Quadratic Regulator 
MARL Multi-Agent Reinforcement Learning  
MCTS Monte Carlo Tree Search 
MDP Markov Decision Process 
MILP Mixed Integer Linear Programming 
MINLP Mixed Integer Nonlinear Programming 
MPC Model Predictive Control 
NLP Nonlinear Programming 
OCP Optimal Control Problem 
PMP Pontryagin’s Minimum Principle 
RL Reinforcement Learning 
RSU Roadside Unit 
SA Simulated Annealing 
SCP Sequential Convex Programming 
SQP Sequential Quadratic Programming 
SUMO Simulation of Urban Mobility 
VORLA Vehicle Ordering and Lane Selection 
V2X Vehicle-to-Everything 



 1 

 

Chapter 1  

Introduction 

1.1 Background 

Freeway on-ramp merging areas are recognized as typical bottlenecks where multiple traffic 
streams compete for limited roadway capacity. Frequent lane-changing manoeuvres of mainline 
vehicles and merging manoeuvres of on-ramp vehicles disrupt the smooth mainline traffic flow, 
resulting in traffic congestion, increased fuel consumption, and traffic accidents (Zhang et al., 2011; He 
et al., 2017; Xiao et al., 2017). Conventional traffic control and management solutions for merging 
sections typically employ flow-based strategies, such as ramp metering (Papageorgiou and Kotsialos, 
2002), variable speed limit (Chen et al., 2014), and the combination of variable speed limits and ramp 
metering (Carlson et al., 2010). These flow-based methods take a macroscopic perspective and 
modulate traffic at an aggregate level. However, these methods cannot directly coordinate individual 
vehicle behaviours, and uncontrollable microscopic vehicle behaviours may still lead to negative 
macroscopic phenomena, such as traffic paralysis (Yuan et al., 2017; Han and Ahn, 2018). 

Significant advances in computation, perception, and control technologies over the last decade 
have increasingly integrated autonomous vehicles (AVs) into people's lives. AVs make driving decisions 
based on data from on-board sensors, enabling microscopic control of vehicles’ trajectories. Alongside 
electrification and shared mobility, AVs are considered as one of the three major revolutions in 
intelligent transportation system (ITS), expected to enhance people's mobility by reducing travel time, 
lowering fuel consumption, decreasing parking demand, and improving accessibility. (Tengilimoglu et 
al., 2023). Moreover, AVs are expected to improve road safety by preventing accidents caused by 
speeding, distraction, and fatigue. However, there are concerns about potential negative impacts, such 
as increased congestion from higher vehicle miles travelled and more empty trips, as discussed in 
several studies (Tengilimoglu and Wadud, 2022). 

Based on AV and emerging vehicle-to-everything (V2X) communication technologies, connected 
automated vehicles (CAVs) are enabled to communicate with each other and share information with 
traffic infrastructures. The direct and fully cooperative control properties of CAVs have introduced a 
new perspective in microscopic traffic control (van Arem et al., 2006; Talebpour et al., 2016; Wang et 
al., 2016; Rios-Torres et al., 2017; Rios-Torres et al., 2018; Sun et al., 2018). Its direct control 
capabilities, such as adaptive car-following control, are highlighted by various studies (e.g., Ni et al., 
2016; Zhou et al., 2019b; Li et al., 2021b; Shi et al., 2023a). Additionally, its cooperative driving 
capabilities enhance the synchronization of vehicle movements, which is particularly beneficial for 
traffic efficiency, notably in platoon control (e.g., Chen et al., 2018; Li et al., 2018; Zhang et al., 2022; 
Shen et al., 2022), ramp merging (e.g., Jing et al., 2019; Karimi et al., 2020; Chen et al., 2021), and 
driving at unsignalized intersections (e.g., Li and Zhou, 2017; Wang et al., 2021). 
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 Merging on-ramp CAV traffic into multilane freeway CAV traffic is an integrated problem that 
involves decisions on lane changes, vehicle driving sequences, and trajectory planning to optimize 
traffic performance and driving comfort. Specifically, the lane-changing decision is to determine lane-
changing vehicles among mainline vehicles to accommodate on-ramp vehicles or avoid downstream 
disturbances. Then, the vehicle sequencing decision is to determine the passing order of vehicles 
targeting the same lane. This is achieved by selecting the target followers of lane-changing and merging 
vehicles, which are also called facilitating vehicles in this study. Lastly, to implement a scheduling plan 
that includes lane changes and vehicle sequences, the multi-vehicle trajectory planning is involved to 
generate collision-free and physically feasible trajectories. Following the planned trajectories, 
designated facilitating vehicles create adequate gaps, while lane-changing and merging vehicles 
coordinate their movements to align with these gaps. Additionally, the remaining vehicles adjust their 
speeds to maintain safe distances from the vehicles ahead. For example, as shown in Figure 1, the 
mainline vehicles are designated as lane-changing, facilitating, and lane-keeping vehicles. Then, the 
corresponding trajectories are generated to implement designated lane choices and vehicle sequences. 

 

 

Figure 1.1.  Four vehicle types in on-ramp merging scenarios. 

1.2 Motivations and Objectives 

(1) Advantages by CAV-based Control 

The development of CAV-based control has emerged as a promising solution to address the 
escalating traffic congestion. It offers two key advantages for intelligent transportation control: 

1) Precise Control: This approach enables precise control over each vehicle’s behaviour, leading 
to a safer and more efficient ITS. Unlike traditional traffic management methods that focus on 
controlling traffic flow at a macroscopic level, CAV-based control operates at the individual vehicle 
level, allowing for more granular adjustments. 

2) Optimality: In fully CAV environments, a primary focus is on achieving optimal scheduling 
decisions to maximize traffic performance. Since the number of vehicles at a moment is finite, it is 
feasible to employ advanced mathematical techniques, such as integer programming, as the foundation 
for finding the best strategies. By optimizing key factors such as lane assignment, right-of-way 
decisions, and vehicle speeds, the system can significantly enhance overall traffic efficiency and safety.  

(2) Challenges by the CAV-based Control 

However, coordinating multiple CAV presents some challenges due to the following conflicting 
factors: 



 3 

1) Stringent Real-Time Requirements: The continuous movement of vehicles imposes extremely 
stringent real-time requirements, making it difficult to achieve timely and effective control. 

2) Exponential Complexity: Coordinating multiple CAVs involves solving an integer 
programming (IP) problem for scheduling. As the number of CAVs in the system increases, the 
complexity of coordinating them grows exponentially. This complexity not only demands significant 
computational resources but also poses challenges in maintaining scalability and responsiveness in 
large-scale deployments. 

3) MINLP Problem: Trajectory planning introduces a nonlinear programming (NLP) problem, 
along with the scheduling IP problem, resulting in a mixed-integer nonlinear programming (MINLP) 
problem for CAV-based control, which is NP-hard. This inherent difficulty requires sophisticated 
optimization techniques and often necessitates trade-offs between optimality and computational 
feasibility. Moreover, the real-world implementation of these solutions must account for dynamic and 
unpredictable traffic conditions, further complicating the problem. 

(3) Objectives 

Based on these advantages and challenges, the objectives of this study are as follows:  

§ Mathematically model the CAV-based merging problem including scheduling-related and 
trajectory-related decisions, to enable a comprehensive description and analysis. 

§ Design efficient solution algorithms based on the characteristics of the problem to rapidly 
solve this MINLP problem. 

1.3 Organization of thesis 

Based on the above research backgrounds and objectives, the rest of the thesis is structured as 
follows: 

§ Chapter 2 presents a comprehensive literature review of three parts: trajectory planning, 
vehicle sequence planning, and lane change planning. 

§ Chapter 3 models the cooperative merging of an on-ramp CAV stream and a mainline 
CAV stream at a single-lane freeway on-ramp merging section as an MINLP model. It 
considers passing orders and detailed trajectories of two streams of CAVs, aiming to 
minimize total travel time. To solve the proposed model, we propose an integrated solution 
algorithm that includes a sequential search process for rapidly determining the optimal 
merging sequence and an iterative linear programming method for generating nonlinear 
trajectories. Numerical experiments are conducted to demonstrate the good performance 
of the proposed approach, highlighting the benefits of optimizing both merging sequences 
and trajectories. 

§ Chapter 4 formulates the problem of merging on-ramp CAV flows into multiple mainline 
CAV flows as an MINLP model. It considers spatiotemporal relationships between 
vehicles, vehicle kinematics, and road geometry, with the aim of maximizing traffic 
efficiency, avoiding unnecessary lane changes, and generating the smoothest vehicle 
trajectories. To efficiently solve the proposed MINLP model, we develop a 
decomposition-based solution algorithm. The benefits from considering vehicle 
sequencing, multilane utilization, and microscopic vehicle information, are highlighted 
through comparative analyses with three baseline models. Additionally, this chapter 
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discusses the most time-efficient lengths for cooperation areas. 
§ Chapter 5 also addresses the multi-lane freeway merging problem and proposes a hybrid 

bi-level control approach that integrates deep reinforcement learning with optimization 
modelling. This approach aims to combine the fast inference capabilities of learning-based 
methods with the explainable safety guarantees of optimization-based methods. The 
vehicle sequences, lane selections, and trajectories are optimized to minimize total travel 
delay. Specifically, the upper level serves as the scheduling planner, where we design an 
attention-based neural network to make decisions on target lanes and right-of-way. The 
lower level employs a nonlinear model predictive controller to continuously update 
trajectories, ensuring vehicles reach the designated lanes and follow the planned sequence. 
Experiments demonstrate that our method quickly achieves superior solution quality 
compared to other meta-heuristic and rule-based methods. It effectively balances 
computational time with solution quality while also offering promising scalability across 
scenarios with varying numbers of vehicles. 

§ Chapter 6 concludes the thesis by summarizing the ideas of algorithm design, specifying 
contributions, and discussing future works. 
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Chapter 2  

Literature review 

CAV-based merging control involves three key tasks: trajectory planning, vehicle sequence 
planning, and lane change planning. Trajectory planning generates collision-free paths through merging 
sections. Vehicle sequence planning optimizes the passing orders (i.e., right-of-way) of CAVs, and lane 
change planning assigns target mainline lanes for CAVs. This chapter first reviews and categorizes 
existing methods for these three tasks, and then identifies current challenges and limitations in CAV-
based control. 

2.1 Trajectory Planning 

Trajectory planning is essential for safe cooperative merging process, adjusting the speeds of some 
mainline and on-ramp vehicles to create adequate spacing. In these studies, the mainline facilitating 
vehicles are predetermined. This can be categorized into two main strategies: reactive control, and look-
ahead control. 

(1) Reactive Control 

Reactive control generates actions based on the error between the actual and reference states. 
Commonly used linear feedback controllers, such as adaptive cruise control (ACC) and cooperative 
adaptive cruise control (CACC), aim to maintain a predefined constant time headway or spacing. Xu et 
al. (2003) controlled a mainline facilitating vehicle with adaptive cruise control (ACC) and cooperative 
adaptive cruise control (CACC) to form enough space for a merging vehicle and assessed performance 
of both control methods. Milanes et al. (2011) designed a fuzzy controller incorporating human 
procedural knowledge to track a linear reference distance function for a merging vehicle and a trailing 
mainline vehicle. Chen et al. (2021) enhanced an ACC controller with a feedforward component to 
ensure smooth merging behaviours and string stability. Due to the simplicity and effectiveness of ACC 
and CACC, numerous studies explored its broader impacts on traffic dynamics. For instance, Xiao et 
al. (2018) studied how deactivating CACC affects congestion and flow heterogeneity at traffic 
bottlenecks. Li et al. (2021) investigated a high-risk ACC pattern characterized by strong braking 
followed by rapid acceleration. 

(2) Look-ahead Control 

Look-ahead control incorporates dynamic models to optimize current and near-future decisions. 
The multi-step planning problem can be regarded as an optimal control problem (OCP), applying 
Pontryagin’s minimum principle (PMP) to derive analytic solutions. Ntousakis et al. (2016) formulated 
an OCP for a merging vehicle to minimize multi-order derivatives of speed. Zhou et al. (2018) addressed 
two separate OCPs: one for a mainline vehicle to decelerate and create a gap, and another for an on-
ramp vehicle to follow and merge into this gap. Subsequently, Zhou et al. (2019a) further studied this 



 6 

problem by considering the minimum speed constraints of the facilitating manoeuvre. The advantage 
of this method is that the problem can be expressed as a linear quadratic controller clearly, and 
continuous-time optimal trajectories can be derived analytically. However, it is difficult to deal with 
complicated constraints, such as nonlinear kinematic equations and collision avoidance. 

Alternatively, look-ahead control can also be formulated as a nonlinear programming (NLP) 
optimization model which can address more complex constraints numerically. Nilsson et al. (2016) 
proposed two loosely coupled convex quadratic programs to obtain longitudinal and lateral motion 
trajectories over a finite discrete time horizon, respectively. Letter et al. (2017) described trajectories in 
discrete-time form and optimized vehicle states in each moment. Similarly, Hu and Sun (2019) adopted 
the discrete-time form and developed two optimization models, one for cooperative lane-changing and 
another for merging manoeuvres. Karimi et al. (2020) formulated centralized quadratic problems for 
different triplets of vehicles composed of both conventional vehicles and CAV. 

Additionally, model predictive control (MPC) is an advanced optimization-based control approach 
that has gained significant attention in recent years because its short horizon characteristic makes it 
well-suited for a real-time vehicle control, such as the scenarios of on-ramp merging. Shen et al. (2022a) 
and Shen et al. (2022b) studied fully distributed optimization-based control schemes using a platoon-
centred MPC approaches, which consider both linear and nonlinear vehicle dynamics. They proposed 
a sequential convex programming (SCP)-based distributed scheme, based on operator splitting methods. 
Li et al. (2023) employed a longitudinal distributed MPC with a virtual car-following (CF) concept to 
expand the initial feasible set and to ensure three key aspects: asymptotic local stability, 𝑙! norm string 
stability, and safety. Chen et al. (2023b) adopted the sequential quadratic programming (SQP) method 
to solve the MPC-based 2D trajectory planning model. 

2.2 Vehicle Sequence Planning 

Sequencing planning is critical for determining the passing order of vehicles on mainline and on-
ramp lanes to enhance traffic efficiency. Related studies mainly focus on merging scenarios involving 
a single mainline lane and a single on-ramp lane, and these strategies can be categorized into rule-based 
strategies, tree search-based strategies, integer programming-based strategies, and learning-based 
strategies.  

(1) Rule-based Strategies 

Rule-based strategies typically ensure completeness and can be executed within polynomial time. 
However, they often struggle with global optimality. With the concept of virtual vehicles proposed by 
Uno et al. (1999), Rios-Torres et al. (2017) adopted the first-in-first-out (FIFO) principle was used to 
assign merging time instants to all vehicles. Similarly, Chen et al. (2021) proposed a heuristic virtual 
rotation approach to align vehicles from different lanes into a virtual single line, thereby sorting vehicles 
based on their initial positions. 

(2) Tree Search-based Strategies 

Search-based strategies treat different vehicle orders as nodes (or states) and adopt various 
methods to search for optimal or suboptimal solutions. Pei et al. (2019) adopted dynamic programming 
to find the optimal solution, but the travel delay for each node was estimated rather than derived from 
actual trajectories. Chen et al. (2020) formulated an optimization model that incorporates three driving 
modes. All possible driving modes of multiple vehicles were enumerated and fed into the model to find 
the best solution. Tang et al. (2022) utilized the Monte Carlo Tree Search (MCTS) to find a suboptimal 



 7 

sequence within a limited time. Shi et al. (2023b) used a depth-first search approach with heuristic 
pruning rules to obtain solutions. 

(3) Optimization-based Strategies 

Optimization-based approaches, which formulate the problem as mixed integer programming, can 
achieve optimal solutions, but their inherent NP-hard nature hinders real-time applications. Cao et al. 
(2014) implemented an MPC scheme to optimize the movements of both mainline and on-ramp vehicles, 
incorporating a nonlinear constraint to maintain a minimum relative distance. This approach also 
determined vehicle sequencing when generating trajectories but applying this nonlinear constraint to 
multiple vehicles proved challenging. Similarly, Xie et al. (2017) utilized a mixed-integer linear 
programming (MILP) model specifying absolute spacing between vehicles to maximize speed over a 
fixed number of time steps. This model considered all possible vehicle sequences, simplifying the 
problem by assuming a known duration for merging cooperation. Ye et al. (2019) introduced a bi-level 
optimization model where the upper level featured an MILP model aimed at minimizing travel delays 
and determining optimal merging times for each vehicle at the merge point. Subsequent trajectory 
planning was executed using either a discrete-time or a heuristic continuous-time trajectory planner, 
based on these optimal merging times. Mu et al. (2021) developed a complex MINLP model for merging 
two platoons and proposed a heuristic algorithm to solve it. However, this algorithm primarily searched 
solutions close to the sequence generated by the first-in-first-out rule, which does not guarantee 
optimality. Chen et al. (2021) proposed a hierarchical controller with tactical and operational layers. 
The tactical layer used a mixed integer programming model that employed the Helly car-following 
model and a proportional controller to determine vehicle acceleration, sequence, and terminal time 
instants. This layer enumerated all sequences and sampled terminal time instants to identify the best 
solution. The operational layer then utilized an OCP to generate the corresponding trajectories. In a 
subsequent study, Chen et al. (2022) applied cooperative game theory to model decision-making for the 
merging sequence. 

(4) Learning-based Strategies 

Learning-based approaches can learn a responsive approximation solution through trails and errors 
by constantly interacting with environments, while the safety and feasibility certificates for such 
methods cannot always be guaranteed due to the complexity of deep neural network structures.  

Most studies attempt to directly control the high-level actions (e.g., yield, lane change) or low-
level actions (acceleration or velocity value) of each vehicle using deep reinforcement learning (DRL). 
Hwang et al. (2022) proposed a finite state machine (FSM) containing four phases (ready for safe gap 
selection, gap approach, negotiation, and lane-change execution), in which the DRL policy is employed 
to execute lane changes.  Chen et al. (2023a) formulated the mixed-traffic highway on-ramp merging 
problem as a multi-agent reinforcement learning (MARL) problem, where each vehicle makes high-
level control decisions, such as turning left, turning right, cruising, speeding up, and slowing down. Hu 
et al. (2024) employed a Graph Convolutional Network (GCN) with Attention to capture high-
dimensional features of CAV states and model their interactions. They designed an action space 
containing discrete manoeuvres, including acceleration, deceleration, and lane changes for a group of 
CAVs, and used DRL to learn an optimal policy.  

Some studies treat the problem of CAVs navigating through conflicting areas as a combinatorial 
problem, using a sequence-to-sequence modelling approach combined with DRL to optimize vehicle 
right-of-way and reduce traffic delays. Zhang et al. (2023) adopted a pointer network structure to 



 8 

determine the driving order of multiple CAVs crossing an intersection and then used MCTS to further 
refine the solutions. Jiang et al. (2024) applied the same structure to the single-lane freeway merging 
scenario. 

2.3 Lane Change Planning 

Lane changes are a fundamental aspect of multilane freeway merging, with research primarily 
focusing on both macroscopic and microscopic control strategies. Macroscopic strategies stem from the 
perspective of traffic flow management, aiming to fully utilize multi-lane  capacities and balance the 
flow across multiple mainline lanes. In contrast, microscopic strategies focus on the detailed actions of 
individual vehicles, including lane-changing moments, gap acceptance, and vehicle velocity profiles 
during changing lanes. 

(1) Macroscopic Control 

Macroscopic Control focuses on managing the total number of lane changes to enhance traffic 
efficiency and reduce congestion. Hang et al. (2021) formulated the cooperative decision-making 
problem for CAVs using a coalitional game approach. They analysed lane-changing and lane-keeping 
decisions involving three to five CAVs based on four types of coalitions. Pan et al. (2021) proposed a 
control framework that combines ramp metering, variable speed limits, and lane changing controls for 
mixed freeway traffic, aiming to optimize traffic throughput. Tajdari et al. (2022) simplified the 
conservation law model into a linear time-invariant traffic flow model, applying a linear quadratic 
regulator (LQR) as the feedback controller to adjust lateral flows (i.e., lane changes) and the flow from 
an on-ramp to maximize throughput and prevent congestion. 

(2) Microscopic Control 

Microscopic Control focuses on the lane-changing decisions of individual vehicles. Li et al. (2021) 
defined reachable and attainable sets based on domain knowledge to determine whether a lane change 
should be executed. Zhang et al. (2022) proposed a hybrid model predictive control for platoon-based 
cooperative lane-changing control, with a machine learning-aided algorithm speeding up solution 
process. Liu et al. (2022) trained a policy network for lane selection using deep reinforcement learning, 
which aims to evenly distribute traffic flow across lanes and enhance individual vehicle speeds. Chen 
et al. (2022) modelled car-following, cruising, and cooperative lane- changing manoeuvres for a group 
of vehicles and determined the optimal manoeuvres through enumeration. Yang et al. (2023) modelled 
vehicle interactions as a cooperative game, with lane-changing decisions determined by a game cost 
matrix. Hence, decisions for a group of vehicles are comprised of a series of decisions between each 
pair of vehicles. Hu et al. (2023) designed safety-critical control method to conduct lane-changing 
manoeuvres for platooning CAVs using Control Barrier Functions (CBFs) and Control Lyapunov 
Functions (CLFs).  

2.4 Summary 

In summary, different strategies for CAV-based control across the three tasks are categorized as 
shown in Fig. 2.1. Trajectory planning is classified into reactive control and look-ahead control. Vehicle 
sequence planning can be approached using four methods: rule-based strategies, tree search-based 
strategies, integer programming-based strategies, and learning-based strategies. Lane change planning 
can be divided into macroscopic flow control and individual lane change decisions. 
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Figure 2.1.  Categorization of Strategies for CAV-Based Control Tasks 

Despite the variety of methods available, critical challenges still remain: 

1) Integration of Multi-Task Strategies: While various strategies exist for each task, there is a 
lack of comprehensive frameworks that effectively integrate all three tasks. Most 
approaches treat these tasks independently, which prevents fully leveraging the potential of 
CAVs. Recent research has increasingly focused on integrating trajectory and sequence 
planning, but a holistic approach that considers all three tasks together in multi-lane 
scenarios is still lacking. 

2) Scalability and Real-Time Application: Many existing methods struggle with scalability, 
particularly when applied to large numbers of vehicles, and face difficulties in real-time 
operation. There is a pressing need for more efficient algorithms capable of handling high-
density traffic scenarios without compromising performance. 

Motivated by the above gaps, this thesis focuses on designing efficient solution algorithms to 
address the challenges of the complicated problem by leveraging the inherent structure of the tasks 
involved. By enhancing scalability for real-time applications, the proposed methods aim to overcome 
the limitations of existing approaches, enabling more effective and practical CAV-based control. 
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Chapter 3  1 

Integrated Optimization of Merging Sequences 2 

and Trajectories 3 

This chapter models the task of cooperative merging of an on-ramp CAV stream and a mainline 4 
CAV stream as a mixed integer nonlinear programming problem that integrally optimizes merging 5 
sequences and vehicle trajectories. To solve the proposed model, we propose an integrated solution 6 
algorithm that includes a sequential search process for rapidly determining the optimal merge-in gaps 7 
and an iterative linear programming method for generating nonlinear trajectories and determining 8 
merging positions and moments. This chapter is organized as follows. Section 3.1 provides the 9 
preliminaries of considered scenarios, merging sequences and trajectories; Section 3.2 describes the 10 
modelling of cooperative merging of a mainline and an on-ramp traffic streams at a freeway on-ramp 11 
merging section as a MINLP problem; Section 3.3 develops a computationally efficient algorithm to 12 
solve the model; Section 3.4 validates the proposed method by numerical experiments; Section 3.5 13 
concludes this chapter.  14 

3.1 Preliminaries 15 

We first introduce the merging scenario considered in this study, and then define two key notions 16 
that will be used in the formulation of the optimization problem, namely the merging sequence and the 17 
mathematical representation of trajectories. 18 

(1) The Single-mainline Freeway Merging Scenario Considered in This Chapter 19 

This chapter is oriented toward merging two streams of vehicles at a freeway on-ramp section. 20 
Fig.3.1 shows a typical freeway on-ramp merging section consisting of one mainline lane and one on-21 
ramp lane connected with one acceleration lane. Initially, vehicles are assumed to be in a car-following 22 
mode. A roadside unit (RSU) is placed upstream of the intersection of the mainline and on-ramp lanes. 23 
RSU receives nearby CAVs’ information, executes the proposed model, and then sends 24 
acceleration/deceleration commands to CAVs. In addition, a trigger point (TP), enabled by, for example, 25 
a loop detector, is placed at a suitable location of the on-ramp. Every time an on-ramp vehicle arrives 26 
at the TP, RSU starts a new control cycle and regards nearby mainline and on-ramp vehicles as a batch 27 
of planned vehicles. It means that, instead of driving in a car-following mode, these planned vehicles 28 
follow the instructions of the proposed model. After completing merging tasks, these vehicles revert to 29 
the car-following mode again. Fig. 3.1 shows two batches of planned vehicles. The formation of planned 30 
vehicles includes grouping on-ramp vehicles and mainline vehicles. In addition to the on-ramp vehicle 31 
that drives through the TP, its following on-ramp vehicles will be grouped if their time headway is less 32 
than a specified threshold. Then, the first and last on-ramp vehicles are mapped onto the mainline lane 33 
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to determine the planned mainline vehicles in this control cycle. 34 

In this chapter, we only consider the longitudinal motion of merging vehicles, in line with many 35 
previous studies. In addition, the model proposed in this paper is not limited to single-mainline merging 36 
scenarios because in generalized multi-mainline ramp merging scenarios, lane-changing and on-ramp 37 
merging manoeuvres are usually expected to be performed on different segments of roads (Gao et al., 38 
2022; Sharma et al., 2022). This means that we assume that the lane-changing behaviours of the 39 
mainline vehicles has already taken place before the cooperative merge starts. Therefore, to focus on 40 
the merging behaviours, we consider the scenario with one mainline lane and one on-ramp lane. 41 

 42 
Figure 3.1.  The on-ramp merging scenario. 43 

As aforementioned, merging two streams of vehicles consists of two tasks: merging sequence 44 
scheduling and merging trajectory planning. Merging sequence scheduling determines the order of the 45 
controlled vehicles in the merged stream, i.e., after the merging is completed. Merging trajectory 46 
planning is responsible for generating trajectories for the mainline facilitating vehicles to create desired 47 
gaps and for the on-ramp vehicles to coordinate with these gaps adhering to the determined merging 48 
sequence. Furthermore, these two tasks are coupled with each other in the sense that the outcome of 49 
one of them can influence the outcome of the other. That is, the merging sequence influences the design 50 
of the trajectories, and the cost associated with these trajectories will in turn influence the determination 51 
of the merging sequence.  52 

(2) Merging Sequence 53 

The merging sequence refers to the order of the controlled vehicles right after the merging of the 54 
two streams of vehicles. It reflects the result of merge-in gap selections of on-ramp vehicles. In this 55 
paper, a merge-in gap refers to the gap between two mainline vehicles into which one or more on-ramp 56 
vehicles can merge. It ought to be noted that under our method, it is not necessary that each candidate 57 
merge-in gap will be selected. As shown in Fig. 3.2, let 𝐿 ≔ {𝑚, 𝑟} denote the set of lanes, in which 𝑚 58 
and 𝑟 refer to the mainline lane and on-ramp lane, respectively. Then, 𝐼"  and 𝐼#  represent a set of 59 
planned vehicles in the mainline lane and on-ramp lane, respectively, which means there are |𝐼"| 60 
planned mainline vehicles and |𝐼#| planned on-ramp vehicles in this control cycle. Besides, there may 61 
be a leading vehicle for these planned vehicles. Note that the leading vehicle can be either a mainline 62 
or on-ramp vehicle. It tracks designed trajectories from the previous control cycle, thereby not being 63 
involved in this control cycle. Then, let 𝐼"$ ∶= {1,… , |𝐼"| + 1} denote the set of these merge-in gaps on 64 
the mainline lane. Both indexes of planned vehicles in each lane and merge-in gaps increase from one 65 
against the direction of traffic travel. 66 

For on-ramp vehicle 𝑖 , we define a binary vector 𝜸% ≔ [𝛾%,', … , 𝛾%,( , … , 𝛾%,|*!|$']
+  where each 67 

element 𝛾%,(  represents whether on-ramp vehicle 𝑖 , 𝑖 ∈ 𝐼# , chooses the merge-in gap 𝑘 , 𝑘 ∈ 𝐼"$ , to 68 
merge. Thus, the existence of binary variables leads to the gap selection problem as an integer 69 

...

... Trigger point
RSU
Planned CAV group in current control cycle 
Planned CAV group in previous control cycle
Car-following CAV



 12 

programming problem. 70 

 71 

Figure 3.2.  Merging sequence description. 72 

The choice of merge-in gaps determines terminal positions of all vehicles. Specifically, if the 73 
𝑖,-	on-ramp vehicle merges into the 𝑘,- merge-in gap, then on-ramp vehicle 𝑖 must keep a safe distance 74 
from both the 𝑘 − 1,- and 𝑘,- mainline vehicles at the terminal time. Thus, 𝜸% is closely coupled with 75 
vehicles’ trajectories. 76 

(3)  Mathematical Representation of Vehicle Trajectories 77 

We consider a second-order model as the vehicles’ kinematic model: 78 

�̇�.,%(𝑡) = 𝑣.,%(𝑡), (3.1) 79 

�̇�.,%(𝑡) = 𝑎.,%(𝑡), (3.2) 80 

where 𝑙 , 𝑙 ∈ 𝐿 , refers to lanes; 𝑖 , 𝑖 ∈ 𝐼. , refers to the vehicle index; 𝑡  refers to time; 𝑎.,%(𝑡) is the 81 
acceleration; 𝑣.,%(𝑡) is the velocity; 𝑥.,%(𝑡) is the position. The nonholonomic property of vehicles is 82 
omitted since we focus on the longitudinal motion. The coordinate system adopted in this paper is the 83 
Frenet coordinate system with the road center line as the reference line (Werling et al., 2010). The 84 
longitudinal distance refers to the distance along the road center line. 85 

Polynomial functions up to the third order are adopted to prescribe the solution space of the model 86 
(3.1)–(3.2): 87 

D
𝑥.,%(𝑡)
𝑣.,%(𝑡)
𝑎.,%(𝑡)

E = F
𝑡/ 𝑡! 𝑡 1
3𝑡! 2𝑡 1 0
6𝑡 2 0 0

I

⎣
⎢
⎢
⎡
𝜃.,%,/
𝜃.,%,!
𝜃.,%,'
𝜃.,%,0⎦

⎥
⎥
⎤
, (3.3) 94 

where 𝜽.,%: = S𝜃.,%,/, 𝜃.,%,!, 𝜃.,%,', 𝜃.,%,0T
+ is the parameter vector of the polynomial curve of vehicle 𝑖 on 88 

lane 𝑙. The employment of polynomials allows a reduced search space. However, the polynomial basis 89 
has difficulty in handling some constraints, such as velocity constraints and minimum distance between 90 
the positions of two adjacent vehicles at any time along the entire position trajectories. In order to 91 
incorporate these constraints into the polynomial representations of the trajectories, we introduce the 92 
Bézier curves.   93 

A Bézier curve is defined by a set of control points. The control points include a start point, a 95 
terminal point, and shape-defined points. The first and last control points are always the endpoints of 96 
the curve. The order of a Bézier curve depends on the number of control points. A Bézier curve 𝑃(𝑠) of 97 
order 𝑛, obtained from 𝑛 + 1 control points, is written as: 98 

A leading CAV

Planned CAVs

Candidate merge-in gaps

Car-following CAVs
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𝑃(𝑠) =X𝐵12(𝑠)𝑃1

2

130

			𝑠 ∈ [0, 1], (3.4) 99 

where 𝐵12(𝑠) is the 𝑗𝑡ℎ Bernstein polynomial of degree 𝑛, which can be defined by: 100 

𝐵12(𝑠) = ]
𝑛
𝑗^ 𝑠

1(1 − 𝑠)241 =
𝑛!

𝑗! (𝑛 − 𝑗)!
𝑠1(1 − 𝑠)241 . (3.5) 101 

From (3.4), 𝑃(𝑠) is a linear combination of 𝑛 Bernstein polynomial bases, and 𝑃1 is the coefficient of 102 
each 𝐵12(𝑠) . 𝑃1  can regulate the magnitude of a basis. Hence, the shape of a curve 𝑃(𝑠)  can be 103 
manipulated by the control points. 104 

A Bernstein polynomial has a convex hull property, which means that a Bernstein polynomial is 105 
confined within the convex hull of its control points (Cichella et al., 2018). Therefore, we can enforce 106 
continuous trajectory functions to be within a specified feasible set by setting the control points. Then, 107 
polynomial basis (3.3) can be equivalently rewritten in terms of the Bernstein basis, and the control 108 
points of 𝑥.,%(𝑡), denoted by 𝑷.,%5 , can be represented by 𝜽.,%: 109 

⎣
⎢
⎢
⎢
⎡𝑃.,%,/

5

𝑃.,%,!5 	
𝑃.,%,'5

𝑃.,%,05 ⎦
⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡𝑡6
/ 𝑡6! 𝑡6 1
0 𝑡6!/3 2𝑡6/3 1
0 0 𝑡6/3 1
0 0 0 1⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡
𝜃.,%,/
𝜃.,%,!
𝜃.,%,'
𝜃.,%,0⎦

⎥
⎥
⎤

, (3.6) 110 

where 𝑡6 is terminal time of the trajectories. Similarly, the control points of 𝑣.,%(𝑡), denoted by 𝑷.,%7 , are 111 
written as: 112 

D
𝑃.,%,!7 	
𝑃.,%,'7

𝑃.,%,07
E = D

3𝑡6! 2𝑡6 1 0
0 𝑡6 1 0
0 0 1 0

E

⎣
⎢
⎢
⎡
𝜃.,%,/
𝜃.,%,!
𝜃.,%,'
𝜃.,%,0⎦

⎥
⎥
⎤

. (3.7) 113 

The detailed derivation of (3.6) and (3.7) is given in Appendix B. 114 

In our problem, 𝑡6 and the terminal states of vehicles are unknown, which causes (3.3, 3.6, 3.7) to 115 
be nonlinear equations and results in a nonlinear programming problem. 116 

3.2 Model Formulation 117 

A MINLP is formulated in this subsection to model the problem of integrated optimization of 118 
merging sequence generation and trajectory planning for cooperative on-ramp merging. The notation 119 
used in this paper is listed as follows. 120 

Indices and Sets 
𝐿 set of lanes, 𝑙 ∈ 𝐿, 𝑙 = {𝑚, 𝑟}, where 𝑚 and 𝑟 refer to the mainline lane and on-ramp lane. 
𝐼" set of planned mainline vehicles, 𝑖	(𝑜𝑟	𝑗) ∈ 𝐼". 
𝐼# set of planned on-ramp vehicles, 𝑖	(𝑜𝑟	𝑗) ∈ 𝐼#. 
𝐼"$  set of merge-in gaps on the mainline lane, 𝑘 ∈ 𝐼"$ . 
Input Parameters 
𝑣e desired terminal speed, e.g., the free-flow speed or initial speed of CAVs. 
𝜏 minimum allowable time gap between vehicles. 
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𝑠0 buffer distance. 
𝑙7 length of a vehicle. 
𝑙892: length of the cooperation zone.  
𝑤" weighting factor for the travel delay of mainline vehicles. 
𝑤# weighting factor for the travel delay of on-ramp vehicles. 
𝑏h, 𝑎h maximum deceleration and acceleration. 
𝑣, �̅� minimum and maximum speeds. 
𝑥.,%%2%, initial position of vehicle 𝑖 on lane 𝑙. 
𝑣.,%%2%, initial velocity of vehicle 𝑖 on lane 𝑙. 
Decision Variables 
𝑡6 terminal time when merging cooperation is finished. continuous variable. 
𝜽.,% vector of trajectory parameters of vehicle 𝑖  on lane 𝑙.  𝜽.,% = S𝜃.,%,/, 𝜃.,%,!, 𝜃.,%,', 𝜃.,%,0T

+ .  
continuous variables. 

𝜸% vector indicating merge-in gap selection of on-ramp vehicle 𝑖, 𝑖 ∈ 𝐼#. 
𝜸% = [𝛾%,', … , 𝛾%,|*!|$']

+ in which 𝛾%,(, 𝑖 ∈ 𝐼# , 𝑘 ∈ 𝐼"$ , equals 1, if and only if the 𝑘,- 
candidate merge-in gap is chosen by the 𝑖,- on-ramp vehicle; 0, otherwise. binary 
variables. 

Our objective is to have the two streams of vehicles merge safely and meanwhile minimize their 121 
total delay, through planning the trajectories for all these vehicles. As introduced earlier, we are aiming 122 
at a joint optimization task that can yield the optimal merging sequence and trajectories simultaneously. 123 
Therefore, our decision variables include 𝜽.,%, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.; 𝜸%, 𝑖 ∈ 𝐼#; and 𝑡6. The model is detailed as 124 
follows. 125 

min
𝜸",𝜽#,",,%

𝑤" ∑ ∫ ]𝑣e − 𝑣",%(𝑡)^ 𝑑𝑡
,%
0%∈*! 		+ 𝑤# ∑ ∫ ]𝑣e − 𝑣#,%(𝑡)^ 𝑑𝑡

,%
0%∈*&   (3.8) 

subject to:   

𝑥.,%(𝑡6) ≥ 𝑥.,%$'(𝑡6) + 𝜏 ⋅ 𝑣.,%$'(𝑡6) + 𝑙7 + 𝑠0 ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.\{|𝐼.|}  (3.9) 

𝑥.:>?(𝑡6) ≥ 𝑥",'(𝑡6) + 𝜏 ⋅ 𝑣",'(𝑡6) + 𝑙7 + 𝑠0   (3.10) 

𝑥#,'(𝑡6) ≤ 𝑥#,'(0) + 𝑙892:  (3.11) 

∑ 𝛾%,((∈*!' = 1  ∀𝑖 ∈ 𝐼# (3.12) 

𝛾%$',( ≤ ∑ 𝛾%,2(
230   ∀𝑖 ∈ 𝐼#\{|𝐼#|}, 𝑘 ∈ 𝐼"$  (3.13) 

𝑥#,%u𝑡6v ≥ 𝒙"+ 	𝜸x% + 𝜏 ⋅ 𝑣#,%u𝑡6v + 𝑙7 + 𝑠0 ∀𝑖 ∈ 𝐼# (3.14) 

𝑥#,%(𝑡6) ≤ y𝑥.:>?(𝑡6)𝒙"
z
+
𝛄% − 𝜏 ⋅ 𝑣#,%(𝑡6) − 𝑙7 − 𝑠0  

∀𝑖 ∈ 𝐼#  
(3.15) 

𝑥.,%(𝑡) − 𝑥.,%$'(𝑡) ≥ 𝑙7 + 𝑠0	 ∀𝑡 ∈ [0, 𝑡6), 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.\{|𝐼.|} (3.16) 

𝑏h ≤ 𝑎.,%(𝑡) ≤ 𝑎h ∀𝑡 ∈ S0, 𝑡6T, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. (3.17) 

𝑣 ≤ 𝑣.,%(𝑡) ≤ �̅� ∀𝑡 ∈ S0, 𝑡6T, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. (3.18) 

𝑥.,%(0) −	𝑥.,%%2%, = 0;	∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.   (3.19) 

𝑣.,%(0) −	𝑣.,%%2%, = 0;	∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. .   (3.20) 

1) Cost Function: To improve traffic efficiency, the objective function (3.8) is to minimize the 126 
difference between all vehicles’ speeds and the desired speed, cumulated over the entire control horizon. 127 
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Moreover, consecutive tiny speed drops at the merging point can incur traffic breakdown [37]. Therefore, 128 
the cost function helps avoid breakdown. 129 

2) Terminal Constraints: Constraints (3.9) ensure that terminal spacings between vehicles within 130 
the same lane must be greater than or equal to the distance corresponding to the minimum allowable 131 
time gap plus a vehicle length and buffer distance. Similarly, constraint (3.10) considers that the leading 132 
vehicle restricts the terminal position of the first mainline vehicle following behind it. In (3.10), 133 
𝑥.:>?(𝑡6) refers to the terminal position of the leading vehicle. Note that if the leading vehicle is planned 134 
in the last control cycle, its trajectory is known; otherwise, it can be predicted by rolling out the car-135 
following model. Additionally, constraint (3.11) enforces that the merging positions of on-ramp vehicles 136 
must be within the range of the cooperation zone, 𝑙892:, due to the limited acceleration lane. 137 

3) Constraints for Gap Selection: Obviously, each on-ramp vehicle can only merge into one merge-138 
in gap, as constraints (3.12). Moreover, because overtaking is not allowed, constraints (3.13) state that 139 
an on-ramp vehicle can only choose a gap from the merge-in gap chosen by its preceding on-ramp 140 
vehicle and the following upstream merge-in gaps. Note that adjacent on-ramp vehicles can choose the 141 
same merge-in gap, i.e., it is permissible for a mainline vehicle to facilitate several on-ramp vehicles. 142 
Furthermore, when a merge-in gap is selected, the on-ramp vehicle and two mainline vehicles ahead 143 
and behind the selected gap are linked spatially. Correspondingly, constraints (3.14) and (3.15) impose 144 
that at the terminal time, if the 𝑘,- gap is chosen by the 𝑖,- on-ramp vehicle, both the 𝑘 − 1,- and 𝑘,- 145 
mainline vehicles need to spatially form a minimum distance from the 𝑖,- on-ramp vehicle, respectively. 146 
This minimum distance corresponds to the minimum allowable time gap plus a vehicle length and buffer 147 
distance. Constraints (3.14) are for the spatial relation between on-ramp vehicles and mainline vehicles 148 
behind merge-in gaps. In (3.14), the vector 𝒙" ≔ [𝑥",'u𝑡6v, … , 𝑥",|*!|(𝑡6)]

+  contains terminal 149 
positions of all mainline vehicles; 𝜸x% ≔ [𝛾%,', … , 𝛾%,|*!|]

+ contains all merge-in gap options except the 150 
last one, 𝛾%,|*!|$'. Likewise, constraints (3.15) are for the spatial relation between on-ramp vehicles and 151 
mainline vehicles ahead of merge-in gaps. The physical implication of keeping at least one minimum 152 
allowable time gap is to smoothly switch to the car-following strategy (constant time-gap CACC or 153 
ACC) when the merging process is completed. 154 

4) Constraints of Collision Avoidance: During the cooperation, constraints (3.16) guarantee that 155 
collision will not happen between vehicles within the same lane. To ensure safety at any time, rather 156 
than only at discrete time nodes, the spacing between two trajectories, 𝑥.,%(𝑡) − 𝑥.,%$'(𝑡), is represented 157 
by the Bézier basis. Thanks to its convex hull property, constraints (3.16) can be concisely expressed as 158 
the control points of  𝑥.,%(𝑡) − 𝑥.,%$'(𝑡) must be greater than or equal to the vehicle length plus the 159 
minimum spacing. Corresponding inequality equations are written as: 160 

𝑃.,%,'5 − 𝑃.,%$','5 ≥ 𝑙7 + 𝑠0, (3.21) 161 

𝑃.,%,!5 − 𝑃.,%$',!5 ≥ 𝑙7 + 𝑠0, (3.22) 162 

where control points are expressed as (3.6). 163 

5) Constraints on Vehicle Speeds and Accelerations: Constraints (3.17) and (3.18) bound the 164 
acceleration and velocity of all vehicles at any time. Because the acceleration of a vehicle is linear in 165 
time, referring to constraint (3.3), acceleration constraints only need to be imposed at the initial time 166 
and terminal time. Therefore, constraints (3.17) can be equivalently re-written as: 167 

𝑏h ≤ 𝑎.,%(0) ≤ 𝑎h, (3.23) 168 
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𝑏h ≤ 𝑎.,%u𝑡6v ≤ 𝑎h. (3.24) 169 

To ensure velocity constraints at any time, control points of velocity functions are restricted to the lower 170 
and upper bounds of velocity, and constraints (3.18) are rewritten as: 171 

𝑣 ≤ 𝑃.,%,'7 ≤ �̅�, (3.25) 172 

𝑣 ≤ 𝑃.,%,!7 ≤ �̅�, (3.26) 173 

where control points are expressed as (3.7).  174 

6) Constraints of Initial Conditions: The starting position and speed of each vehicle are specified 175 
in constraints (3.19) and (3.20). 176 

In sum, constraints (3.8–3.20) represent the proposed mathematical problem formulation. 177 
Substantial nonlinearities exist in the cost function and the constraints. Furthermore, constraints (3.14) 178 
and (3.15) introduce binary vectors. These render the optimization problem difficult to solve. Hence, 179 
we propose a solution algorithm to solve it efficiently. 180 

3.3 An Integrated Solution Algorithm 181 

In the above, we have formulated the task of merging sequence optimization and the task of vehicle 182 
trajectory optimization into one single mathematical model, i.e. the proposed MINLP, where 𝜽.,%, 𝑙 ∈ 𝐿, 183 
𝑖 ∈ 𝐼., and 𝑡6 are continuous decision variables defining trajectories, and 𝜸%, 𝑖 ∈ 𝐼#, are binary decision 184 
variables defining merging sequence. When solving the proposed MINLP, the trajectory variables and 185 
the merging sequence variables must be solved jointly, in the sense that neither of them can be 186 
determined independently of the other or can be determined earlier than the other. Only if this can be 187 
achieved, can we say that the proposed method is an integrated approach to optimal merging sequence 188 
generation and trajectory planning. 189 

(1) Overview 190 

We present an overview of the proposed algorithm, how we simultaneously solve the merging 191 
sequence optimization and trajectory optimization tasks in an integrated way, rather than a heuristic 192 
two-stage approach that first deals with merging sequence optimization and then trajectory optimization. 193 
First, for a group of on-ramp vehicles, the proposed algorithm determines their optimal merge-in gaps 194 
one by one, starting from the first on-ramp vehicle (i.e., the most downstream one) and moving upstream. 195 
Second, for a certain on-ramp vehicle, its optimal merge-in gap is determined from all the candidate 196 
merge-in gaps for this on-ramp vehicle. Last, for each candidate merge-in gap, we optimize the 197 
trajectory parameters of all mainline vehicles, this on-ramp vehicle and all the on-ramp vehicles ahead 198 
of this on-ramp vehicle. The incurred cost is computed and recorded. Therefore, the optimal merge-in 199 
gap can be selected as the one that has incurred the lowest cost among all the candidate gaps. 200 

The above approach implies: 1) the results of trajectory optimization have influences on the 201 
selection of optimal merge-in gaps, and vice versa; 2) if and only if the optimal merge-in gap for the 202 
last on-ramp vehicle in this CAV group is determined, both the optimal merging sequence and 203 
corresponding trajectories of all involved vehicles in this CAV group are determined jointly and 204 
simultaneously. Neither of them can be determined independently of the other or can be determined 205 
earlier than the other. It is in such a way that the proposed solution algorithm integrates the task of 206 
merging sequence optimization and the task of trajectory optimization into one unified process. 207 
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The algorithm is formally presented in TABLE 3.1, where the embedded Algorithm 2 optimizes 208 
vehicle trajectories, which will be introduced in Section III. E. 209 

In Section III. B., we describe in detail by a simple case how the proposed algorithm determines 210 
the optimal merge-in gaps for a group of on-ramp vehicles one by one. In Section III. C., we explain 211 
the advantage of such a sequential determination of on-ramp vehicles’ optimal merge-in gaps – the size 212 
of search space can be reduced. In Section III. D., we prove that such a sequential way will indeed 213 
generate the same optimal results as one that considers all the on-ramp vehicles simultaneously, so have 214 
we verified by experiment in Section IV. H. Finally, in Section III. E., we present the iterative linear 215 
programming method, which is responsible for the trajectory generation, i.e., Algorithm 2 embedded in 216 
the integrated solution algorithm. 217 

Table 3.1.  Proposed integrated solution algorithm. 218 

Algorithm 1. Integrated Solution Algorithm for Joint Optimization of Merging Sequence and 
Vehicle Trajectories 
Input: |𝐼"| mainline CAVs and |𝐼#| on-ramp CAVs 
Output: Optimal merging sequence {𝜸'∗ , 𝜸'∗ , … , 𝜸|*&|

∗ } 
1 Algorithm 2 returns the cost and the trajectories for the first on-ramp CAV and the |𝐼"| mainline 

CAVs under different 𝜸', to obtain 𝜸'∗ . 
2 for 𝑖 ∶= 2	to	|𝐼#| do 
3  Algorithm 2 returns the cost and the trajectories for 𝑖 (from the 1A, to 𝑖,-) on-ramp CAVs 

and the |𝐼"| mainline CAVs under different 𝜸%, with 𝜸'∗ , … , 𝜸%4'∗  as conditions, selecting 𝜸%∗ 
that yields the lowest cost. 

4 end for 
5 return {𝜸'∗ , 𝜸!∗ , … , 𝜸|*&|

∗ } 

 219 

(2) Determining Optimal Merge-in Gaps for On-Ramp Vehicles One by One 220 

Mixed integer problems can be solved by the classic branch-and-bound (B&B) method. However, 221 
the size of the B&B’s solution space in this problem is 2(|*!|$')|*&|, where |𝐼"| and |𝐼#| are the number 222 
of mainline and on-ramp vehicles respectively. This implies that the size of the search space grows 223 
exponentially as the number of involved vehicles increases. To overcome this issue and exploit the 224 
characteristics of the merging scenario, the proposed process determines the optimal merge-in gap for 225 
each on-ramp vehicle one by one, starting from the first (i.e., the most downstream) on-ramp vehicle 226 
and moving upstream. 227 

Specifically, in the first step, all the combinations of 𝜸', i.e., all possible merge-in gap selections 228 
for the first on-ramp vehicle, are enumerated, and the trajectories of the first on-ramp vehicle and all 229 
mainline vehicles are planned under each combination to determine 𝜸'∗ . Then, the first and the second 230 
on-ramp vehicles and all the mainline vehicles are planned conditioning on 𝜸'∗  to determine 𝜸!∗ . 231 
Analogously, the first to the 𝑖,- on-ramp vehicles and all the mainline vehicles are planned conditioning 232 
on 𝜸'∗ , … , 𝜸%4'∗  to determine 𝜸%∗. This process terminates until the best merge-in gap selection of the last 233 
on-ramp vehicle, i.e., 𝜸|*&|

∗ , is decided.  234 

Take the example of there being two mainline and two on-ramp vehicles in a control cycle. The 235 
corresponding searching process for this example is illustrated in Fig. 3.3. Obviously, there exist three 236 
merge-in gaps for merging vehicles because there are two mainline vehicles. Fig. 3.3(a) depicts that all 237 
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possible merge-in gaps of the first merging vehicle will be enumerated to find 𝜸'∗ . Fig. 3.3(b) shows 238 
that all the three possible gaps need to be searched again for the second merging vehicle if the first 239 
merging vehicle chooses the first gap, i.e., 𝜸'∗ = [1, 0, 0]+ . Similarly, Fig. 3.3(c) illustrates that the 240 
search space of the second merging vehicle narrowed to two options when the first merging vehicle 241 
chooses the second gap. Lastly, Fig. 3.3(d) shows that the second on-ramp vehicle has only one merging 242 
order option, i.e., [0, 0, 1]+, if its leading on-ramp vehicle chooses the last merge-in gap. In Step 3 of 243 
Algorithm 1, when determining the merging sequence of the remaining vehicles, the merging sequence 244 
of the preceding vehicles has already been fixed, but their trajectories would be replanned to obtain a 245 
unified 𝑡6  and optimal trajectories for all vehicles. Moreover, under Algorithm 1, thanks to the 246 
sequential determination of optimal merge-in gaps for the on-ramp vehicles described above, the 247 
original MINLP is reduced to nonlinear program (NLP) to optimize vehicle trajectories, as in Step 1 248 
and Step 3 of Algorithm 1. 249 

 250 
Figure 3.3.  The search tree of merging sequences. 251 

(a) the search space for the first on-ramp vehicle; (b) (c) (d) three possible search cases for the 252 
second on-ramp vehicle 253 

 254 
(3) Reduced Search  255 

The proposed optimal sequential searching process can efficiently reduce the search space due to 256 
the following three reasons. First, the number of combinations of 𝜸%, 𝑖 ∈ 𝐼#, is |𝐼"| + 1 since (3.12) 257 
imposes that only one element in [𝛾%,', 𝛾%,!, … , 𝛾%,|*!|$']

+ can be one. This greatly reduces the solution 258 
space from 2|*!|$' to |𝐼"| + 1 for on-ramp vehicle 𝑖. Hence, for all |𝐼#| on-ramp vehicles, the search 259 
space is reduced to (|𝐼"| + 1)|*&| , instead of 2(|*!|$')|*&| . Second, (3.13) indicates that an on-ramp 260 
vehicle can only select the same mainline gap chosen by its preceding on-ramp vehicle or the following 261 
gaps. In other words, an on-ramp vehicle cannot choose a mainline gap downstream of the mainline gap 262 
chosen by its preceding on-ramp vehicle. Third, as presented in Algorithm 1, the merging sequence is 263 
sequentially solved from 𝜸' to 𝜸|*&| so that a tree-structured search space is constituted, and the tree’s 264 
depth is |𝐼#|. As an illustration, Fig. 3.3 shows a tree with depth two when there are two mainline and 265 
two on-ramp vehicles. 266 

(4) Optimality 267 

Now we prove that the proposed optimal sequential searching process can indeed generate the 268 

[1, 0, 0] [0, 1, 0] [0, 0, 1]

[0, 1, 0] [0, 0, 1]

[1, 0, 0] [0, 1, 0] [0, 0, 1]

[0, 0, 1]

[1, 0, 0] [0, 1, 0] [0, 0, 1]

[1, 0, 0] [0, 1, 0] [0, 0, 1]

[1, 0, 0] [0, 1, 0] [0, 0, 1]

(b)(a)

(d)(c)
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optimal merging sequence. To this end, rather than work with the original objective function, (3.8), we 269 
instead work with an equivalent objective function: 270 

{𝜸'∗ , 𝜸!∗ , … , 𝜸|*&|
∗ } 	= argmin

𝜸(,…,𝜸|*&|
X 𝑡",%

%∈*!
+X 𝑡#,1

1∈*&
, (3.27) 271 

where 𝑡",% , 𝑡#,1 are the travel time of the 𝑖,- mainline vehicle and the 𝑗,- on-ramp vehicle, respectively.  272 

To see the equivalency between (3.8) and (3.27), first we note that (3.8) is actually to maximize 273 
the speeds of all the vehicles over the whole cooperation zone. This is because in (3.8), although the 274 
time to complete the cooperative merging maneuver, 𝑡6, is not pre-determined, but before this time, all 275 
the vehicles will try to stay close to the maximum speed, 𝑣e, and after this time, all the vehicles will 276 
traverse the remained part of the cooperation zone at the maximum speed,  𝑣e. On the other hand, (3.27) 277 
minimizes the total travel time of all the vehicles over the whole cooperation zone, which is equivalent 278 
to maximizing the speeds of all the vehicles over the whole cooperation zone.  279 

Note that (3.27) does not explicitly involve the continuous decision variables, 𝑡6 and 𝜽.,%, but only 280 
the binary variables 𝜸% , 𝑖 ∈ 𝐼# , which will greatly simplify the following analysis. This is justified 281 
because, per the proposed optimal sequential search algorithm, to determine 𝜸%∗ , 𝑖 ∈ 𝐼# , for every 282 
enumerated 𝜸%, 𝑖 ∈ 𝐼#, 𝑡6 and 𝜽.,% will be solved from a nonlinear program to be explained in Section 283 
III.B., so the associated trajectory cost can be computed; 𝜸%∗  will then be determined after all the 284 
enumerations. 285 

Now we utilize the characteristics of single-lane merging problem to derive a necessary condition 286 
for the optimality of (3.27). In below, we claim this necessary condition and then prove it. 287 

Proposition 1: The merge-in gap selection of an on-ramp vehicle can be optimal only if the merge-288 
in gap selections of all the preceding on-ramp vehicles are optimal. That is, 𝜸'∗ , … , 𝜸E4'∗  is a necessary 289 
condition for 𝜸E∗ , ∀𝑝 ∈ 𝐼#. 290 

Proof: It is straightforward that after merging, mainline and on-ramp vehicles form a platoon, 291 
which means that at this time, the leading vehicle of an on-ramp vehicle is either its initial preceding 292 
on-ramp vehicle or a mainline vehicle, and the same goes for the leading vehicle of a mainline vehicle. 293 
Therefore, the relation between the travel time of two consecutive vehicles after merging is given by 294 
(3.28) and (3.29). 295 

𝑡#,1$' = 𝑡#,1 +𝑚𝑖𝑛{𝜏, 𝜏0} 	𝑜𝑟	𝑡",% +𝑚𝑖𝑛{𝜏, 𝜏0} (3.28) 296 

𝑡",% = 𝑡",%4' +𝑚𝑖𝑛{𝜏, 𝜏0} 	𝑜𝑟	𝑡#,1 +𝑚𝑖𝑛{𝜏, 𝜏0}	, (3.29) 297 

where 𝜏 is the minimum allowable time gap; 𝜏0 is initial time gap between these two vehicles. 298 
(3.28) and (3.29) indicate that the travel time of a vehicle is dependent on its leading vehicle. Moreover, 299 
(3.28) consists of two cases. In the first case, the 𝑗,- on-ramp vehicle is the leading vehicle of the 𝑗 +300 
1,- on-ramp vehicle, and therefore, the optimal t#,1, t#,1∗ , is the necessary condition for 𝑡#,1$'∗ . In the 301 
second case, the leading vehicle is the 𝑖,- mainline vehicle. Likewise, 𝑡#,1$'∗  requires  t",%∗ . Then, t",%∗  302 
implies t#,1∗  because the 𝑗,-  on-ramp vehicle must be downstream of the 𝑖,- mainline vehicle, as 303 
reflected by (3.29). Therefore, in both cases, 𝑡#,1∗  is a necessary condition for 𝑡#,1$'∗ . Similarly, a 304 
necessary condition for  𝑡",%$'∗  is 𝑡",%∗ .  305 

Based on the necessary condition  and the assumption that 𝜸'∗ , … , 𝜸E4'∗  corresponds to minimum 306 
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∑ 𝑡",% +∑ 𝑡#,1
E4'
13'

|*!|
%3' , we deduce that the𝜸'∗ , … , 𝜸E4'∗  is a necessary condition for 𝜸E∗ . Therefore, 307 

Proposition 1 holds.            □ 308 

The above necessary condition leads to the proposed sequential searching algorithm, which 309 
iteratively solves problem (3.30) for each on-ramp vehicle, from the most downstream on-ramp vehicle 310 
to the most upstream on-ramp vehicle, to determine the optimal merging sequence and the trajectories.  311 

𝜸x'∗ , … , 𝜸xE∗ = argmin
𝜸(,…,𝜸+	

X𝑡",% +X𝑡#,1

E

13'

|*!|

%3'

 

subject to: 𝜸' = 𝜸x'∗ , … , 𝜸E4' = 𝜸xE4'∗ ; ∀𝑝 ∈ 𝐼# 

 

(3.30) 

Problem (3.30) can be considered as to determine the optimal merge-in gap of the 𝑝,- on-ramp vehicle, 312 
𝜸xE∗ , conditioning on fixed 𝜸x'∗ , … 𝜸xE4'∗ . We have added “~” over 𝜸%∗,, 𝑖 ∈ 𝐼# to be rigorous, i.e., to honour 313 
the subtle fact that although problem (3.30) is the consequence of a necessary optimality condition of 314 
problem (3.27), but they are two different problems. In Appendix A, we offer an alternative way to show 315 
Proposition 1. 316 

(5) An Iterative LP Method for Solving the NLP Trajectory Planning Model 317 

Integer variables are searched by above sequential searching algorithm, but each subproblem in 318 
the search tree is still nonlinear w.r.t. the continuous variables 𝜽.,% and 𝑡6. It can be observed that the 319 
cost function (3.8) and constraints (3.9–3.20) are linear combinations of nonlinear (3.3, 3.6, 3.7). 320 
However, (3.3, 3.6, 3.7) can be treated as linear functions with respect to 𝜽.,% if 𝑡6 is known. Based on 321 
this point, each node in the search space can be seen as a LP problem when a feasible 𝑡6 is given. 322 
Therefore, the gradient descent method is adopted to iteratively update 𝑡6 .  Concretely, the LP 323 
subproblem associated to the 𝑡6( in 𝑘th iteration is first solved to obtain the optimal 𝜽.,%( , and then the 324 
resulting objective value can provide gradient direction for the subsequent 𝑡6($' update. The detailed 325 
procedure to solve each subproblem is summarized in Table 3.2. We can see that the gradient of 326 
objective function is calculated numerically, and the step size is determined with the Armijo rule.  327 

Table 3.2.  The iterative LP method 328 

Algorithm 2. An Iterative LP Method for Trajectory Optimization 
Input: A node 𝑜e in the search tree 
Output: Optimal time 𝑡6∗; trajectories 𝜽.,%∗ ; cost value 𝐽∗ for node 𝑜e 
1 𝑘 ← 0 
2 Given a feasible 𝑡60, solve 𝑜e to obtain 𝐽0. 
3 Repeat 
4  Given 𝑡6(, solve 𝑜e to obtain the 𝜽.,%(  and the cost value 𝐽(𝑡6() 
5  Given 𝑡6( + 𝜖, solve 𝑜e to obtain the cost value 𝐽u𝑡6( + 𝜖v 
6  𝑑( ←	−(𝐽u𝑡6( + 𝜖v − 𝐽(𝑡6())/𝜖 
7  Pick step size 𝛼( according to the Armijo rule. 
8  𝑡6($' ← 𝑡6( + 𝛼(𝑑( 
9  Given 𝑡6($', solve 𝑜e to obtain 𝐽($' 
10  𝑘 ← 𝑘 + 1 
11 until �𝐽( − 𝐽(4'� > 𝜉  
12 return 𝑡6∗ ← 𝑡6(, 𝜽.,%∗ ← 𝜽.,%( , 𝐽∗ ← 𝐽( 
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 329 
(6) Recursive Implementation for Feedback 330 

In practical implementation, it is crucial to deal with various disturbances that may occur, such as 331 
variations in vehicle speed or unexpected events such as vehicles abruptly changing lanes from other 332 
main lanes. Therefore, a feedback loop is necessary to deal with these disturbances.  333 

To this end, the trajectories of CAV groups that have passed the trigger point (TP) are updated 334 
periodically. Specifically, within a predefined update interval, denoted as 𝑡GE, the proposed approach 335 
replans trajectories based on the updated surrounding vehicles information, including their positions 336 
and speeds. This process continues until the cooperative merge task is successfully completed. 337 

3.4 Numerical Experiments 338 

To evaluate the proposed methodology, the computational experiments are performed on a 339 
workstation (16 cores of CPUs; 3.2GHz). The mathematical models and algorithms proposed in this 340 
study are implemented in Python (CasADi).  341 

(1) Experimental Settings 342 

Experiments are simulated in SUMO1.14, a microscopic traffic simulation tool. The SUMO 343 
internal model, the Wiedemann 99 model, is applied to simulate the car-following behaviour. The 344 
adjusted driving behaviour and vehicles’ parameter values are listed in Table 3.3. All other parameters 345 
assume default values. 346 

Table 3.3.  Parameter setting 347 

Parameter Value Unit 
𝑣6 120 km/h 
𝑎h 2.75 m/s! 
𝑏h 2.75 m/s! 
𝑠0 1.5 𝑚 
𝑙7 4.37 𝑚 
𝜏 1.5 𝑠 

 348 

As shown in Fig. 3.4, the simulated freeway segment consists of one mainline lane and one on-349 
ramp. The mainline is 4.1 kilometres long, which contains a 2-kilometer ‘warm-up’ segment. The 350 
cooperation zone, which includes the merging and preparation sections, is 800 meters long. The so-351 
called preparation section is from the on-ramp node up to the position in the mainline as a mapping of 352 
the trigger point in the on-ramp. The downstream segment is 1.5 kilometres, so that affected road 353 
sections are fully covered. 354 

 355 
Figure 3.4.  Road setting. 356 

Downstream segment
1.5km

Warm-up segment
2km

Cooperation  zone
800m
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To evaluate the effectiveness of the proposed method, we test different combinations of 357 
mainline/on-ramp demand ratio and the total demand. The three tested mainline/on-ramp demand ratios 358 
are 4/1, 3/1, and 2/1. The four tested total demand values (1932, 2082, 2147, 2190) are respectively 359 
90%, 97%, 100%, and 102% of the theoretical capacity. Therefore, in total there are 12 scenarios to be 360 
tested. The experiment for each scenario runs for one hour in SUMO. 361 

The proposed method is compared with three baseline methods to evaluate its performance: 362 

• VROCP: the virtual rotation optimal control problem. First, the merging sequence is determined 363 
by a heuristic first-in-first-out way, and then the optimal control is applied to generate optimal 364 
vehicle trajectories (Zhou et al. 2018). 365 

• FTOCP: the fixed-time optimal control problem. First, a vehicle sequence is determined using 366 
the FIFO method, and then trajectories are planned over a fixed merge time. 367 

• MCTS-DA: Monte Carlo Tree Search-based decomposition algorithm to find the optimal 368 
vehicle sequence. The time-optimal merge sequence is obtained by repeatedly solving a mixed 369 
integer programming model using the MCTS method (Tang et al. 2018). 370 

(2) Cooperative Merging in the Presence of a Metering Signal 371 

Ramp metering signal control (one-car-per-green) can make on-ramp vehicles arrive uniformly at 372 
the event trigger point to avoid inputting large disturbances to the mainline. Both the proposed approach 373 
and the benchmark method, VROCP, are tested assuming the presence of such a ramp metering signal 374 
control. The results are in Table 3.4. The third and fourth columns present travel delays of the two 375 
methods, respectively. The last column shows the percentage of reduction of delay. 376 

Table 3.4 shows that the proposed approach has similar travel delay to VROCP when the 377 
mainline/on-ramp demand split ratio is 4:1. On the other hand, the proposed approach has significant 378 
improvement when the split ratio is 3:1 and 2:1.  379 

When the ratio is 4:1, on-ramp vehicles are sparsely distributed. There is little mutual influence 380 
between on-ramp vehicles, and adjacent on-ramp vehicles do not affect the choice of each other’s 381 
facilitating mainline vehicles. The proposed approach chooses the same merging sequence, i.e., FIFO 382 
as VROCP does. Therefore, both methods yield similar delays.  383 

When the on-ramp demand is high, with a ratio of 2:1, intense interactions occur. This means that 384 
the arrival of the following on-ramp vehicles coincides with the ongoing merging and deceleration 385 
process of the preceding on-ramp and mainline vehicles. As a result, more severe slowdowns and a 386 
significant increase in delay occurs.  387 

In this intensive interaction scenario, the delay improvement (𝐷. 𝐼. ) becomes much more evident, 388 
due to the multi-vehicle cooperation advantage of the proposed model. More specifically, the proposed 389 
model considers cooperation between two streams of vehicles, rather than just one on-ramp vehicle 390 
merging into two mainline vehicles. For example, a facilitating mainline vehicle can create a large gap 391 
to accommodate multiple on-ramp merging vehicles as a group to minimize the overall delay. 392 
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Table 3.4. Total travel delay comparison with ramp metering 393 

Mainline/ 
On-Ramp 

Demand Ratio 

Total Demand  
(veh/hour) 

Proposed VROCP 𝐷. 𝐼. 
 𝐷'	(𝑠)  𝐷!	(𝑠)  

4:1 1932 828.4 832.5 0.5% 
4:1 2082 886.1 909.8 2.6% 
4:1 2147 915.2 922.9 0.8% 
4:1 2190 938.0 948.5 1.1% 
3:1 1932 912.1 918.7 0.7% 
3:1 2082 1115.3 1244.3 10.4% 
3:1 2147 1182.8 1310.8 9.8% 
3:1 2190 1226.3 1413.3 13.2% 
2:1 1932 956.0 956.57 0% 
2:1 2082 1182.8 2432.3 51.4% 
2:1 2147 2981.8 4048.2 26.3% 
2:1 2190 3362.4 4212.7 20.2% 

Note: (1) 𝐷' and 𝐷! refer to total travel delay by the proposed approach and VROCP, respectively; (2) 394 
D.I. refers to delay improvement and is defined as	𝐷. 𝐼.≔ H,4H(

H,
. 395 

(3) Cooperative Merging Without a Metering Signal 396 

Without metering control, on-ramp vehicles arrive at the on-ramp randomly, so they may form a 397 
big disturbance to the mainline traffic. In this case, we also compare the proposed approach with 398 
VROCP under the same traffic conditions.  399 

Table 3.5. Total travel delay comparison without ramp metering 400 

Mainline/ 
On-Ramp Demand Ratio 

Total Demand  
(veh/hour) 

Proposed VROCP 𝐷. 𝐼. 
 𝐷!	(𝑠)  𝐷"	(𝑠)  

4:1 1932 1658.1 1958.1 15.3% 
4:1 2082 1866.7 2203.1 15.3% 
4:1 2147 1916.9 2242.6 14.5% 
4:1 2190 2008.3 2366.3 15.1% 
3:1 1932 2061.3 2355.4 12.5% 
3:1 2082 2704.1 3065.1 11.8% 
3:1 2147 2976.2 3484.7 14.6% 
3:1 2190 3150.1 3590.7 12.3% 
2:1 1932 1989.5 Failure — 
2:1 2082 3199.7 Failure — 
2:1 2147 4235.4 Failure — 
2:1 2190 4962.9 Failure — 

Note: (1) 𝐷', 𝐷! refer to total travel delay; (2)	𝐷. 𝐼.≔ H,4H(
H,

. 401 

From Table 3.5, we see that travel delay increases both as the inflow demand increases and as the 402 
number of on-ramp vehicles increases. Also, the proposed approach has at least an 11% improvement 403 
over the baseline under any condition. Moreover, when the split ratio is 2:1, VROCP would even lead 404 
to collisions because it only considers the leading mainline vehicle and ignores the leading on-ramp 405 
vehicle when planning trajectories. 406 

In addition to delay reduction, the proposed approach also reduces the variation of speed (VS). 407 
High VS is found to be a precursor of collision accidents (Aashto (2001); Lee et al. (2003); Lee et al. 408 
(2005)). To illustrate the improvement in VS achieved by the proposed approach, we compare the speed 409 
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contour achieved by the proposed approach with the speed contour achieved by the SUMO default 410 
control. The evaluation time-space region is specified as [1800, 2500] sec × [1500, 3500] m.  411 

Fig. 3.5(a) is the speed contour of the SUMO default control. The intersection of mainline and 412 
ramp is at 2.0 km, and we can observe that speed fluctuation starts from here and extends to the 413 
downstream, with significant velocity drops at 1900 and 2350 seconds. Fig. 3.5(b) presents the speed 414 
contour plot of the proposed approach. We see that deceleration occurs at 1.5 km since the event trigger 415 
point is set there. Obviously, the proposed approach can mitigate speed variance. As a result, VS and 416 
travel delays are all reduced.  417 

 418 
Figure 3.5.  Speed contour in the mainline 419 

(a) with SUMO default control; (b) with the proposed approach. 420 

In addition to traffic efficiency, we validate that the proposed approach guarantees CTH rules since 421 
safety is an essential consideration. Fig. 3.6 shows the time gap statistics for all CAVs at multiple 422 
locations on the mainline in a one-hour simulation period. Fig. 3.6(a) illustrates time gap distributions 423 
under the SUMO default behaviour, and we can observe that time gaps downstream of the 2.0 km 424 
location are much less than the desired time gap (1.5s) and even close to 0, which is risky and 425 
unreasonable. On the contrary, under the control of the proposed approach, time gaps can always be no 426 
less than the desired gap as shown in Fig. 3.6(b). Fig. 3.6(b) also indicates that before vehicles drive 427 
through the trigger point (at 1.5 km location), the initial time gaps are concentrated around 2.2 seconds. 428 
Over the coordination zone, i.e., from 1.5 km to 2 km, some of the time gaps increase to between 3 and 429 
4 seconds, which corresponds to the slowing down of the facilitating mainline vehicles to generate gaps 430 
for the on-ramp traffic; downstream of the 2.0 km location, the gaps reduce to around 1.5 seconds 431 
because the on-ramp merging vehicles have merged into the mainline.  432 

(4) Analyses on Vehicles’ Trajectories 433 

One advantage of the proposed model is the ability to allow multiple on-ramp vehicles to merge 434 
into the gap between two mainline vehicles rather than to allow only one on-ramp vehicle, which can 435 
be clearly demonstrated by plotting individual trajectories. 436 

As shown in Fig. 3.7 (a), the second and third on-ramp vehicles choose to merge in between the 437 
second and the third mainline vehicles when the initial positions of these two on-ramp vehicles are 438 
exactly between these two mainline vehicles, and there is not much difference in all vehicles’ velocities. 439 
The third mainline vehicle carries out a larger slowdown to generate a larger gap. However, as illustrated 440 
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by Fig. 8 (a), the third on-ramp vehicle merges behind the third mainline vehicle when the initial speed 441 
of the third on-ramp vehicle is low. This is reasonable because when the initial speed of a merging 442 
vehicle is close to mainline vehicles’ speed, if a far upstream mainline vehicle is selected as a facilitating 443 
vehicle, the on-ramp merging vehicle will have to wage an extra deceleration and then acceleration in 444 
order to wait for the arrival of the mainline facilitating vehicle. Thus, nearby mainline vehicles should 445 
be chosen. Conversely, when the initial speed of a merging vehicle is low, choosing a nearby mainline 446 
vehicle to generate a gap would cause significant speed drop of facilitating and its following vehicles. 447 
Consequently, a relatively more upstream mainline vehicle should be selected, and the on-ramp vehicle 448 
could accelerate first to mitigate this negative effect. Chen et al. (2021)’s results drew similar 449 
conclusions: When the on-ramp vehicle’s speed is low, it would merge to the back of mainline platoon. 450 
When the on-ramp vehicle’s speed gets close to mainline vehicles’ speeds, the mainline vehicle close 451 
to the initial position of the merging vehicle is selected. Speed profiles, shown in Fig. 7 (b) and 8 (b), 452 
are parabolic or linear, because we describe the trajectory by cubic polynomial functions. Similarly, 453 
acceleration trajectories, shown in Fig. 7 (c) and 8 (c), are linear or constant. The upper and lower limits 454 
of the state variable velocity and the control input acceleration are always obeyed at any time instant.  455 

 456 
Figure 3.6.  Time gap distribution in the mainline 457 

(a) with SUMO default control; (b) with the proposed approach. 458 

(5) The effect of the Length of the Cooperation Zone 459 

We are interested in the impact of different lengths of the cooperative zone on ramp merging. Thus, 460 
we test the safety and traffic efficiency of our proposed model and the baseline model under a 350-461 
meter-long, 325-meter-long, and 300-meter-long zone (including the acceleration lane), respectively. 462 
Table 3.6 summarizes the average time gap between merging and facilitating vehicles, and the total 463 
travel delay, resulting from the proposed approach and VROCP, under different lengths of the 464 
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cooperation zone. 465 

From Table 3.6, we see that the baseline method, i.e., VROCP, achieves desired time gap (no less 466 

than 1.5 seconds) when the cooperation zone is sufficiently long (350m). However, when the zone 467 
reduces to 325m, VROCP cannot guarantee the safe time gap anymore and significantly increases travel 468 
delay. Moreover, VROCP would lead to accidents when the zone further reduces to 300m. In contrast, 469 
the proposed approach still ensures the target time gap even when the zone is so short that the baseline 470 
fails. Inevitably, travel delay would increase as zone shortens.  471 

Table 3.6.  Safety and delay comparison with different cooperation ranges 472 

Cooperation Zone [m] Proposed VROCP 
𝜏̅[𝑠] 𝐷[𝑠] 𝜏̅[𝑠] 𝐷[𝑠] 

350 1.50 1186.95 1.66 1311.78 
325 1.50 1292.37 1.47 1714.62 
300 1.50 1998.20 Failure Failure 

Note: (1) �̅� refers to mean time gap; (2)	𝐷 refers to total travel delay. 473 

The reason why the proposed approach can ensure safety in the limited ramp length case is that 474 
we formulate the constant time headway rule for terminal spacing between vehicles as hard constraints, 475 
while the baseline method puts the terminal spacing between on-ramp vehicles and facilitating vehicles 476 
in the objective function, which leads to unsafe solution in restricted scenarios. Furthermore, when the 477 
cooperation zone is short, the cooperation pair chosen by FIFO cannot generate enough space for 478 
merging, but in contrast, the proposed approach can choose an upstream mainline vehicle to generate a 479 
feasible gap in advance albeit at the cost of on-ramp vehicles’ delay. 480 

 
Figure 3.7.  Vehicle trajectories for the high on-ramp vehicle’s speed scenario 

(a) positions; (b) speeds; (c) acceleration. 

 

 
Figure 3.8. Vehicle trajectories for the low on-ramp vehicle’s speed scenario 

(a) positions; (b) speeds; (c) acceleration. 
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(6) The Effect of Weight Factors 481 

The effect of weighting factors, i.e., 𝑤" and 𝑤# , on travel delay is investigated. Five combinations 482 
of (𝑤", 𝑤#) are tested: (0.1, 0.9), (0.3, 0.7), (0.5, 0.5), (0.7, 0.3) and (0.9, 0.1). A total of 300 mainline 483 
and 150 on-ramp CAVs enter the simulation within 15 minutes. 484 

 485 

 486 
Figure 3.9. Travel delay under different combinations of (𝑤", 𝑤#) 487 

As shown in Fig. 3.9, increasing 𝑤" can reduce the delay of mainline CAVs. Similarly, increasing 488 
𝑤#  reduces the delay of on-ramp CAVs. In addition, when 𝑤"  is equal to 𝑤# , the objective is to 489 
minimize the delay of all CAVs, and therefore the minimum total delay of all CAVs is obtained under 490 
the case. 491 

(7) Computational Efficiency 492 

The computation time of different numbers of mainline vehicles and on-ramp vehicles is tested. 493 
The tested numbers of mainline vehicles are 1, 5, 10, 15, and 20, and the tested numbers of on-ramp 494 
vehicles are 1, 2, and 3.  495 

As a result, Fig. 3.10 shows that with 20 mainline vehicles and 1 on-ramp vehicle, the computation 496 
time is 0.63 seconds. With 20 mainline vehicles and 2 on-ramp vehicles, the computation time increases 497 
to 1.1 seconds. Similarly, with 20 mainline vehicles and 3 on-ramp vehicles, the computation time 498 
increases further to 1.8 seconds. 499 
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 500 
Figure 3.10.  Computation time of various mainline and on-ramp CAVs number 501 

We can see that the proposed method can handle a large number of mainline vehicles within 1 502 
second, but the computation time increases quickly as the number of on-ramp vehicles increases. This 503 
result is consistent with the analysis of the search space of the vehicle sequences in Section III.B. That 504 
is, the search space is (|𝐼"| + 1)|*&|. As the number of on-ramp vehicles increases, the size of the search 505 
space grows exponentially. This means that increasing the number of vehicles on the ramp will have a 506 
greater impact on the computation time. Nevertheless, in most practical ramp merge scenarios, the 507 
number of ramp vehicles is usually less than the number of mainline vehicles. 508 

(8) Real-world Data Validation 509 

The proposed method is validated using real-world data from the Next Generation Simulation 510 
(NGSIM) Open Data, specifically the Interstate 80 (I-80) Freeway Dataset (U.S. (2016)) , which 511 
contains ramp merge scenarios. We extract both on-ramp vehicles and the rightmost mainline vehicles 512 
from the I-80 dataset, resulting in a total of 850 vehicles observed over a 45-minute period. These 513 
vehicles enter the simulation with the initial position and speed provided by the dataset and then are 514 
guided through the cooperative merging zone under the control of the following different methods: the 515 
proposed approach and the three alternative methods for comparison, namely, MCTS-DA, VROCP, and 516 
FTOCP. We compare the performance of the proposed approach with these alternative methods in terms 517 
of travel delay and total computation time. 518 

Table 3.7.  Performance comparison on real dataset. 519 

 Proposed Enumeration FIFO-OCP FT-OCP 

𝐷	(𝑠) 469 469 562 666 

𝐷"	(𝑠) 285 285 411 456 

𝐶	(𝑠) 13.9 441 5.9 3.9 

Note: (1)	𝐷 refers to total delay of all vehicles; (2) 𝐷" refers to total delay of mainline vehicles; (3) 𝐶 520 
refers to total computation time. 521 

As shown in Table 3.7, the proposed approach outperforms the three alternatives. Specifically, the 522 
proposed approach achieves the same total travel delay as MCTS-DA, which can also obtain the time-523 
optimal vehicle sequence by enumerating all vehicle sequences and repeatedly solving a MILP model 524 
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to obtain the travel time of vehicles. However, the proposed approach requires way less computation 525 
time than MCTS-DA thanks to the reduced search space of the proposed method. The other two 526 
alternatives, VROCP and FTOCP, spend less total computation time, but their travel delays are larger 527 
because they do not allow for flexible merging sequence and merging time, respectively. In addition, 528 
the lower total delay of mainline vehicles shows that the better merging sequence mitigates the impact 529 
of on-ramp vehicles on mainline traffic. In the 45-minute traffic simulation, the accumulated total 530 
computation time differences between the proposed method and these two alternative methods are 8 531 
seconds and 10 seconds respectively, but during this time, each method is triggered and solved for many 532 
times, and the single computation time difference is only at the magnitude of 0.1 seconds on average. 533 

(9) Impact of Human-driven Vehicles on CAVs 534 

We use a real lane-changing trajectory of a human-driven vehicle (HDV), followed by two 535 
mainline CAVs and an on-ramp CAV. Every 0.5 seconds, the model would re-plan these three CAVs 536 
based on the updated information of the human-driven vehicle. At each replanning step, the future speed 537 
of the human-driven vehicle is assumed to remain its current speed, a typical treatment in relevant 538 
studies. The below results show that the proposed approach successfully fulfilled the merging task under 539 
the influence of an uncontrolled, perturbing HDV. 540 

 541 

 542 
Figure 3.11. Merging speed profile for the unexpected lane change 543 

  544 
Figure 3.12. Merging position profile for the unexpected lane change 545 
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As depicted in Fig. 3.11, the human driver initiates the lane change at a higher speed than the 546 
vehicles in the target lane and then gradually reduces the speed back to normal. The following mainline 547 
CAV first reduces speed slightly and then gradually accelerates to achieve the desired spacing with the 548 
leading human-driven vehicle. Similarly, the merging CAV also undergoes a noticeable deceleration to 549 
achieve sufficient merging distances (33m) to the leading and following mainline CAVs, respectively. 550 
Eventually, the speeds of all the CAVs reach the steady-state speed of the leading human-driven vehicle. 551 

3.5 Summary 552 

In this chapter, we model the task of cooperative merging of an on-ramp CAV stream and a 553 
mainline CAV stream at a freeway on-ramp merging section as a mixed integer nonlinear programming 554 
problem that guarantees safety and enjoys high-quality vehicle trajectories. The total travel delay is 555 
minimized by simultaneously optimizing the merging sequence and the continuous-time vehicle 556 
trajectories. Such a treatment can avoid generating a merging sequence that would result in infeasible 557 
or low-quality trajectories. Moreover, the merging positions and time are outcomes of the optimization 558 
model rather than heuristically pre-defined. In addition, trajectories are described in continuous-time 559 
form so that safety is guaranteed at any time. 560 

To efficiently solve the proposed MINLP model, on-ramp merging vehicles’ optimal merge-in gaps 561 
are determined one by one. This sequential search process was built based on a necessary condition of 562 
optimality of the proposed MINLP model which we identified and proved. Therefore, the sequential 563 
search process can generate the true optimal merging sequence, that is, the one that is obtained by 564 
considering all the on-ramp merging vehicles together. Thanks to the sequential feature, the search space 565 
is significantly reduced. Subproblems are NLP and are efficiently solved by the iterative LP method to 566 
generate planned trajectories. 567 

The traffic efficiency, safety and computational efficiency of the proposed approach are 568 
demonstrated under different traffic conditions and compared with three alternative methods on the 569 
NGSIM dataset. In addition, the impact of the length of the cooperative zone and the weighting factors 570 
on the traffic efficiency and safety is investigated. The computational efficiency is also evaluated. 571 
Furthermore, the proposed method is implemented in a feedback loop to complete the cooperative 572 
merging task under a real HDV trajectory. 573 

  574 
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Chapter 4  575 

Decomposition of  Vehicle Scheduling and 576 

Trajectory Planning 577 

This chapter formulates the problem of merging on-ramp CAV flows into multiple mainline CAV 578 
flows as an MINLP model, which considers spatiotemporal relationships between vehicles, vehicle 579 
kinematics, and road geometry, with the aim of maximizing traffic efficiency, avoiding unnecessary 580 
lane changes, and generating the smoothest vehicle trajectories. there is a notable absence of fast 581 
solution algorithms for the joint decision-making concerning lane changes, vehicle sequences, and 582 
trajectories. The computational challenges posed by complex mathematical models, coupled with 583 
stringent real-time requirements, lead many studies to rely on heuristic rules or simplified surrogate 584 
motion planning for lane-changing and sequencing decisions. These approaches often yield suboptimal 585 
solutions (e.g., Hu and Sun, 2019). Additionally, enumeration methods, though commonly employed in 586 
small-scale multi-vehicle games, inevitably lead to significant computational delays (e.g., 5Hang et al., 587 
2021; Yang et al., 2023).To efficiently solve the proposed MINLP model, we develop a decomposition-588 
based solution algorithm to decouple the integer programming model and nonlinear programming 589 
model. This chapter is organized as follows. Section 4.1 formulates the problem of cooperative lane 590 
changes and merging of mainline and an on-ramp traffic streams at a multi-lane freeway on-ramp 591 
merging section as an MINLP model. Sections 4.2 develops a computationally efficient decomposition-592 
based algorithm to solve the model. Section 4.3 presents the simulation setup and validates the proposed 593 
method through numerical experiments. Section 4.4 concludes this study. 594 

4.1 Model Formulation 595 

Section 4.1 first introduces the problem background, i.e., the merging scenario. Before formulating 596 
a mixed-integer nonlinear programming (MINLP) model for the cooperative merging problem at 597 
multilane freeway merging sections in Section 4.4, Sections 4.2, and 4.3 give mathematical descriptions 598 
for vehicle scheduling, and vehicle trajectories used in the model formulation, respectively. 599 

(1) Multilane Freeway Merging Scenario 600 

Figure 4.1 illustrates a typical freeway on-ramp merging section that consists of two mainline lanes 601 
(an inside lane and an outside lane) and an on-ramp lane connected with an acceleration lane. Multiple 602 
vehicles drive on the two mainline lanes, and several on-ramp vehicles intend to merge into the freeway. 603 
As shown in Figure 2, the merging section also includes a roadside unit (RSU) and a trigger point. 604 
Specifically, the trigger point is located on the on-ramp lane to trigger the controller (i.e., the proposed 605 
optimization model) when an on-ramp vehicle arrives; the RSU is placed upstream of the intersection 606 
between the outside mainline lane and the on-ramp lane to collect vehicle information, execute specific 607 
controllers, and send commands to vehicles. Before any vehicle passes the trigger point, all vehicles 608 
operate in a car-following mode. When an on-ramp vehicle passes the trigger point, the RSU initiates a 609 
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control cycle. Within this control cycle, the on-ramp vehicle that passes the trigger point, along with the 610 
following on-ramp vehicles and nearby mainline vehicles are grouped together to form the current 611 
planned connected automated vehicle (CAV) group. These CAVs in the current control cycle no longer 612 
operate in the car-following mode but follow the recommended controller instructions to execute the 613 
lane-changing and merging manoeuvres and planned trajectories. After completing commands, these 614 
CAVs revert to the car-following mode. Here, note that to avoid the risk associated with both lane-615 
changing and merging manoeuvres occurring in the same area, these two types of manoeuvres are 616 
executed separately in their respective lane-changing and merging area. In order for CAVs to obey this 617 
separate execution rule, the corresponding mathematical expression is incorporated into our proposed 618 
model. 619 

 620 

 621 
Figure 4.1. The multi-lane freeway on-ramp merging scenario. 622 

Two assumptions used in this study are summarized as follows. The first assumption is that this 623 
study allows for a fully CAV environment, which is widely used in the existing literature (e.g., Yang et 624 
al., 2022; Chen et al., 2023). In this case, all CAVs within a group share kinematic information and are 625 
fully controllable. The second assumption is that the aforementioned lane-changing area adopts a one-626 
side lane-changing prohibition rule, which allows CAVs in the outside lane to change lanes to the inside 627 
lane once, while prohibiting CAVs in the inside lane from changing lanes to the outside lane. This 628 
assumption is also widely used in literature, such as Hu and Sun (2019), and can help increase the safety 629 
of the entire system. 630 

(2) Mathematical Description for Vehicle Sequences and Lane Changes  631 

As depicted in Figure 4.2, let 𝐿:= {1, 2, 3} denote the set of lanes, where indices 1, 2, and 3 632 
correspond to the on-ramp, outside lane, and inside lane, respectively. Let 𝐼. represent the set of planned 633 
vehicles initially in lane 𝑙 (𝑙 ∈ 𝐿) within a control cycle, which implies that lane 𝑙 initially has |𝐼.| 634 
planned vehicles within the control cycle. In addition, two dummy vehicles are conceptually positioned 635 
after the last planned vehicles in outside and inside lanes, respectively, indexed as |𝐼!| + 1 and |𝐼/| + 1. 636 
It should be noted that dummy vehicles are just for model formulation. We therefore have an extended 637 
set 𝐼.$ ≔ 𝐼. ∪ {|𝐼.| + 1}, 𝑙 ∈ {2, 3}.  638 

Trigger point
RSU
Uncontrolled car-following CAVs
Planned CAV group in the current control cycle
Planned CAV group in the previous control cycle

Lane 3, inside lane
Lane 2, outside lane

Lane 1, on-ramp and acceleration lane

Merging areaLane-changing area



 33 

 639 
Figure 4.2. Schematic illustration of vehicles and candidate gaps in a control cycle. 640 

Lane 𝑙, 𝑙 ∈ {2, 3}, has |𝐼.| planned vehicles and a dummy vehicle, resulting in a total of |𝐼.| + 1 641 
candidate gaps in front of |𝐼.| + 1 vehicles. Hence, selecting a gap from candidate gaps to merge or 642 
change lanes can be regarded as selecting a facilitating vehicle from |𝐼.| + 1 vehicles. Finally, the 643 
current control cycle also includes two leading vehicles whose trajectories are planned in the last control 644 
cycle, each located in front of the first planned vehicles in their respective lanes. Since these two leading 645 
vehicles are already planned in the last control cycle, they are not planned again in the current control 646 
cycle.  647 

To establish vehicle sequences driving through the end of the freeway merging area, each on-ramp 648 
vehicle must select one outside-lane vehicle (including the dummy vehicle) acting as its facilitating 649 
vehicle. Similarly, outside-lane lane-changing vehicles must also select inside-lane vehicles (including 650 
dummy one) as facilitating vehicles. Here, note that choosing the dummy vehicle is intended to follow 651 
the last outside-lane (or inside-lane) vehicles. Also, a facilitating vehicle can help multiple vehicles to 652 
cut in. Let 𝛼%,1  represent a binary variable, which equals 1 if and only if on-ramp vehicle 𝑖, 𝑖 ∈ 𝐼' , 653 
chooses the 	𝑗IJ  outside-lane vehicle, 𝑗 ∈ 𝐼!$ , as its facilitating vehicle for merging, and equals 0 654 
otherwise. Similarly, 𝛽%.1  is defined as a binary variable, which equals 1 if and only if outside-lane 655 
vehicle 𝑖, 𝑖 ∈ 𝐼!, chooses the 𝑗IJ inside-lane vehicle, 𝑗 ∈ 𝐼/$, as its facilitating vehicle for a lane change. 656 
In addition, 𝛾% is defined as a binary variable, which equals 1 if and only if outside-lane vehicle 𝑖, 𝑖 ∈657 
𝐼!, changes to the inside lane, and equals 0 otherwise. That is, 𝛾% represents the lane change decision for 658 
outside-lane vehicle 𝑖, 𝑖 ∈ 𝐼!. It should be noted that an outside-lane vehicle can simultaneously act as 659 
a facilitating vehicle and a lane-changing vehicle, which means that the corresponding 𝛼%,1 and 𝛽%.1 can 660 
equal 1 at the same time. Lastly, let 𝜏.,% denote the terminal time when the vehicle 𝑖, 𝑖 ∈ 𝐼., initially in 661 
lane 𝑙, 𝑙 ∈ 𝐿, passes the end of the merging area. Terminal time (𝜏.,%) implies the passing sequence of 662 
each vehicle. Terminal time difference between two consecutive vehicles in the same lane must keep at 663 
least a minimum time headway denoted by ℎ seconds whose value can be calculated by: 664 

ℎ	 = 	 𝑡LMN 	+
𝑙OPJ 	+ 𝑠0

𝑣Q
, (4.1) 665 

where 𝑡LMN,  𝑙OPJ, 𝑠0, and 𝑣Q represent a specified minimum time gap, a vehicle length, a standstill 666 
distance, and a free-flow speed, respectively.  667 

(3) Mathematical description for vehicle trajectories 668 

Let 𝑠RS, 𝑠T, and 𝑆 represent the end of cooperative lane-changing area, the end of cooperative 669 
merging area, and the set of discrete points along mainline lanes (𝑆:= {1,… , 𝑠RS, … , 𝑠T}), respectively. 670 
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The interval distance between two consecutive discrete points is denoted by 𝛥. Following the idea of 671 
planning in the space domain (Thomas and Boyd, 2014; Karlsson et al., 2020), vehicle trajectories are 672 
typically described with respect to discrete point 𝑠 ∈ 𝑆 (i.e., 𝑠 is regarded as an independent variable). 673 
Therefore, in this study, for vehicle 𝑖 initially in lane 𝑙 (𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.), its trajectory consists of the control 674 
input variable and state variables. Specifically, the control input variable is the change of acceleration 675 
in space coordinates, represented by 𝑏.,%(𝑠); the state variables record the profiles of time, kinetic energy 676 
per unit mass, and acceleration at different positions, defined as state variables 𝑡.,%(𝑠), 𝐸.,%(𝑠), and 677 
𝑎.,%(𝑠), respectively. Then, the longitudinal kinematic equations are formulated as Equations (4.2)–(4.4), 678 
whose detailed derivation can be found in Hamednia et al. (2022). In the following sections of this study, 679 
we use 𝑏.,%,A , 𝑎.,%,A , 𝐸.,%,A , and 𝑡.,%,A  (𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ 𝑆) to represent the jerk, acceleration, kinematic 680 
energy, and time profiles of vehicle 𝑖 initially in lane 𝑙 at position point 𝑠.  681 

𝑑𝑡.,%(𝑠)
𝑑𝑠

=
1

𝑣.,%(𝑠)
=

1
�2𝐸.,%(𝑠)

(4.2) 682 

𝑑𝐸.,%(𝑠)
𝑑𝑠

= 𝑎.,%(𝑠) (4.3) 683 

𝑑𝑎.,%(𝑠)
𝑑𝑠

= 𝑏.,%(𝑠). (4.4) 684 

This study adopts the finite difference equations of discrete Equations (4.2), (4.3), and (4.4). This 685 
treatment would lead numeric error. However, this way helps transform an intractable functional 686 
optimization problem to a tractable numeric optimization problem. Moreover, Equation (4.2) requires 687 
that the velocity must be greater than zero, so the proposed model cannot be used for full stop cases.  688 

 689 

(4) Mathematical Model 690 

Before introducing the proposed MINLP model, notation used in this study is first 691 

summarized as follows. 692 

Sets and indices: 693 

𝐿  set of all lanes, 𝑙 ∈ 𝐿 = {1,2,3}, where indices 1, 2, and 3 refer to the on-ramp lane, outside 694 

lane, and inside lane, respectively. 695 

𝐼.  set of planned vehicles initially in lane 𝑙 (𝑙 ∈ 𝐿), 𝑖	(𝑗) ∈ 𝐼.. 696 

𝐼.$  extended set of planned and dummy vehicles initially in lane 𝑙 (𝑙 ∈ 𝐿\{1}), 𝑖	 ∈ 𝐼.$. 697 

𝑆  set of discrete points along mainline lanes, 𝑠 ∈ 𝑆 = {1,⋯ , 𝑠RS, ⋯ , 𝑠T}. 698 

Parameters: 699 

𝑎.,%UVUI  acceleration of vehicle 𝑖 initially in lane 𝑙 at its initial position. 700 

𝑎, 𝑎  minimum and maximum acceleration values. 701 

𝑏, 𝑏  minimum and maximum jerk values. 702 

𝐸, 𝐸 minimum and maximum kinetic energy values; 𝐸 = '
!
𝑣Q
!. 703 

ℎ  minimum time headway between two consecutive vehicles in a lane. 704 
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𝑀    big-M constant parameter. 705 

𝑝.,%    initial position of vehicle 𝑖 initially in lane 𝑙; 𝑝.,% ∈ 𝑆\{𝑠RS, ⋯ , 𝑠T}. 706 

𝑠T   end of the merging section. 707 

𝑠RS   end of the lane-changing section. 708 

�̂�. time that a leading vehicle of the planned CAV group in mainline lane 𝑙 passes the end of 709 

merging area,  𝑙 ∈ 𝐿\{1}; a leading vehicle is referred to as the vehicle preceding the most 710 

downstream vehicle in current planned CAV group. 711 

𝑡.,%, 𝑡.̅,% lower and upper bounds of the time that vehicle 𝑖 in lane 𝑙 passes the end of merging area, 𝑙 ∈712 

𝐿, 𝑖 ∈ 𝐼.. 713 

𝑣Q  free flow speed. 714 

𝑣.,%UVUI  velocity of vehicle 𝑖 initially in lane 𝑙 at its initial position. 715 

𝑤RS  weighting factor for lane changes. 716 

𝑤M, 𝑤W weighting factors for the cost of acceleration and jerk. 717 

𝑤X  weighting factor for difference from the maximum kinetic energy value. 718 

𝛥  distance interval between two discrete consecutive points. 719 

Decision variables: 720 

Sequencing and lane-changing related decision variables: 721 

𝜏.,% continuous, terminal time that vehicle 𝑖 in lane 𝑙 passes the end of the merging section, 𝑙 ∈ 𝐿, 𝑖 ∈722 

𝐼.. 723 

𝛼%,1 binary, equals 1 if and only if on-ramp vehicle 𝑖 chooses outside-lane vehicle 𝑗 as its facilitating 724 

vehicle for merging, 0 otherwise; 𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!$. 725 

𝛽%,1 binary, equals 1 if and only if outside-lane vehicle 𝑖 chooses inside-lane vehicle 𝑗 as its 726 

facilitating vehicle for a lane change, 0 otherwise; 𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/$. 727 

𝛾% binary, equals 1 if and only if outside-lane vehicle 𝑖 decide to change to the inside lane, 0 728 
otherwise; 𝑖 ∈ 𝐼!. 729 

𝛺 binary, equals 1 if and only if all outside-lane vehicles in the control cycle decide to change to 730 
the inside lane; 0 otherwise. 731 

Trajectory related decision variables: 732 

𝑎.,%,A  continuous, acceleration that vehicle 𝑖 in lane 𝑙 passes the 𝑠IJ point, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ 𝑆. 733 

𝑏.,%,A continuous, jerk that vehicle 𝑖 in lane 𝑙 passes the 𝑠IJ point. 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ 𝑆. 734 

𝐸.,%,A continuous, kinetic energy per unit mass that vehicle 𝑖 in lane 𝑙 passes the 𝑠IJ point, 𝑙 ∈ 𝐿, 𝑖 ∈735 

𝐼. , 𝑠 ∈ 𝑆. 736 

𝑡.,%,A continuous, time that vehicle 𝑖 in lane 𝑙 passes the 𝑠IJ point, 𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ 𝑆. 737 
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According to the notation introduced, an MINLP model [MVO] is formulated, which incorporates 738 

both vehicle scheduling and trajectory planning to achieve optimality in traffic efficiency and 739 

trajectory metrics at a multi-lane merging section. 740 

[MVO]	 	741 

min∑ ∑ 𝜏.,%%∈*#.∈Y +𝑤RS ∑ 𝛾%%∈*, + ∑ ∑ ∑ �𝑤M𝑎.,%,A! +𝑤W𝑏.,%,A! +𝑤Xu𝐸h − 𝐸.,%,Av
! A∈{E#,",⋯,A-}%∈*#.∈Y (4.5)	742 

subject to 743 
𝑡.,% ≤ 𝜏.,% ≤ 𝑡.̅,%      ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. 	              (4.6) 744 

𝜏.,%$' − 𝜏.,% − ℎ ≥ 0     ∀𝑙 ∈ {1,3}, 𝑖 ∈ 𝐼.\{|𝐼.|}             (4.7) 745 

�𝛾% − 𝛾1�𝑀 + u𝜏!,% − 𝜏!,1 − ℎv ≥ 0   ∀𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1,⋯ , 𝑖 − 1}            (4.8) 746 

𝜏',' − �̂�! − ℎ ≥ 0                    (4.9) 747 

𝜏/,' − �̂�/ − ℎ ≥ 0                  (4.10) 748 

𝜏!,% − [(1 − 𝛾%)�̂�! + 𝛾% �̂�/	] − ℎ ≥ 0   ∀𝑖 ∈ 𝐼!             (4.11) 749 

𝛾%𝑀 + 𝜏!,% −∑ 𝛽%,1𝜏/,14' − ℎ
|*.|$'
13! ≥ 0   ∀𝑖 ∈ 𝐼!              (4.12) 750 

𝛾%𝑀 + u∑ 𝛽%,1𝜏/,11∈*. − 𝜏!,% − ℎv|𝐼/| ≥ 0  ∀𝑖 ∈ 𝐼!                         (4.13) 751 
∑ 𝛽%,11∈*.' = 𝛾%      ∀𝑖 ∈ 𝐼!             (4.14) 752 

∑ 𝛼%,"
1
"3' ≥ 𝛼%$',1     ∀𝑖 ∈ 𝐼'\{|𝐼'|}, 𝑗 ∈ 𝐼!$           (4.15) 753 

u𝛼%,1 − 𝛼%,1$'v𝛾1 = 0     ∀𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!\{|𝐼!|}           (4.16) 754 
∑ 𝛼%,11∈*,' = 1 + ∑ 𝛾1𝛼%,11∈*,      ∀𝑖 ∈ 𝐼'             (4.17) 755 

𝜏',% −∑ 𝛼%,1𝜏!,14'u1 − 𝛾14'v
|*,|$'
13! − ℎ ≥ 0	  ∀𝑖 ∈ 𝐼'             (4.18) 756 

∑ 𝛼%,1𝜏!,1u1 − 𝛾1v1∈*, − 𝜏',% − ℎ	 + 𝛺𝑀 ≥ 0  ∀𝑖 ∈ 𝐼'             (4.19) 757 

𝛺 = ¡
∑ ^//∈*,
|*,|

¢                   (4.20) 758 

𝑎.,%,A$' = 𝑎.,%,A + 𝑏.,%,A ⋅ 𝛥    ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠T − 1}      (4.21) 759 
𝐸.,%,A$' = 𝐸.,%,A + 𝑎.,%,A ⋅ 𝛥     ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠T − 1}      (4.22) 760 

𝑡.,%,A$' = 𝑡.,%,A +
'

_!`#,",1
⋅ 𝛥    ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠T − 1}      (4.23) 761 

𝑎.,%,E#," = 𝑎.,%UVUI		 	 	 	 	 	 ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.             (4.24) 762 

𝐸.,%,E#," =
'
!
(𝑣.,%UVUI)!		 	 	 	 	 ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.             (4.25) 763 

𝑡.,%,E#," = 0      ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.             (4.26) 764 

𝑡.,%,A- = 𝜏.,%      ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.             (4.27) 765 
𝑡/,14',A − 𝑡!,%,A − ℎ +𝑀 ⋅ (1 − 𝛽%,1) ≥ 0   ∀𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/\{1}, 𝑠 ∈ {𝑠RS, ⋯ , 𝑠T}     (4.28) 766 
𝑡!,%,A − 𝑡/,1,A − ℎ +𝑀 ⋅ (1 − 𝛽%,1) ≥ 0   ∀	𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/, 𝑠 ∈ {𝑠RS, ⋯ , 𝑠T}           (4.29) 767 
𝑡.,%,A − 𝑡.,%4',A − ℎ ≥ 0     ∀𝑙 ∈ {1,3}, 𝑖 ∈ 𝐼.\{1}, 𝑠 ∈ {𝑝.,% , … , 𝑠"}(4.30) 768 
𝑡!,%,A − 𝑡!,%4',A − ℎ ≥ 0     ∀𝑖 ∈ 𝐼!\{1}, 𝑠 ∈ {𝑝!,% , ⋯ , 𝑠RS}           (4.31) 769 
|𝛾% − 𝛾1|𝑀 +	𝑡!,%,A − 𝑡!,1,A − ℎ ≥ 0  ∀𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1,⋯ , 𝑖 − 1}	𝑠 ∈ {𝑠RS, ⋯ , 𝑠T} (4.32) 770 
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𝑏 ≤ 𝑏.,%,A ≤ 𝑏      ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠"}           (4.33) 771 
𝑎 ≤ 𝑎.,%,A ≤ 𝑎      ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. 	, 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠"}           (4.34) 772 
𝐸 ≤ 𝐸.,%,A ≤ 𝐸h      ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠"}           (4.35) 773 
𝑡.,%,A ≥ 0      ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠"}           (4.36) 774 
𝜏.,% ≥ 0       ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.             (4.37) 775 
𝛼%,1 ∈ {0,1}      ∀	𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!             (4.38) 776 
𝛽%,1 ∈ {0,1}      ∀	𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/             (4.39) 777 
𝛾% ∈ {0,1}      ∀𝑖 ∈ 𝐼!              (4.40) 778 
𝛺 ∈ {0,1}.                    (4.41) 779 

Objective:  The objective function (4.5) aims to optimize both traffic performance and vehicle 780 
trajectory metrics by minimizing the sum of three terms. The first two terms (i.e., ∑ ∑ 𝜏.,%%∈*#.∈Y  and 781 
∑ 𝛾%%∈*, ) are traffic performance metrics including the total travel time and the number of lane-changing 782 
manoeuvres. The purpose of this setup is to minimize the total travel delay of CAVs and to avoid 783 
unnecessary lane changes. The third term contains two trajectory metrics, namely, the smoothness of 784 
acceleration and jerk, i.e., ∑ ∑ ∑ (𝑤M𝑎.,%,A!

A∈a%∈*#.∈Y +𝑤W𝑏.,%,A! ), and the kinetic energy difference relative 785 

to the maximum kinetic energy 𝐸h at each position, i.e., ∑ ∑ ∑ 𝑤Xu𝐸h − 𝐸.,%,Av
!

A∈a%∈*#.∈Y . This kinetic 786 
energy-related objective helps make vehicle speeds close to the free flow speed. 787 

Sequencing and lane-changing related constraints: To ensure the feasibility of vehicle sequences, 788 
lane changes, and terminal time of vehicles), constraints (4.6)–(4.20) and (4.37)–(4.41) incorporates 789 
several factors, including terminal time limits, terminal time relationships between vehicles, selection 790 
rules of facilitating vehicles, and connection between lane-changing and facilitating decisions. 791 

(1) Terminal time constrained by velocity and acceleration limits: Constraints (4.6) set feasible 792 
terminal time limits, i.e., the minimum and maximum time required for each vehicle to pass the end of 793 
the merging section, considering the given speed, acceleration, and deceleration limits. The lower and 794 
upper bounds of 𝜏.,% can be calculated by Equations (4.42)–(4.43). 795 

𝑡.,% =

⎩
⎪
⎨

⎪
⎧b7#,",2, $!>c?#,",2	4	7#,",2
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(4.43) 

where 𝑎 and 𝑎h represent the maximum deceleration and acceleration; 𝑣 and vQ represent the minimum 796 
speed and maximum free flow speed; 𝑣.,%,0	and 𝑑.,%,0 represent the initial speed and initial distance of 797 
vehicle 𝑖 in lane	𝑙 to the end of merging section. The shortest time is calculated based on the vehicle 798 
accelerating to its maximum speed with the maximum acceleration and maintaining this speed 799 
throughout the cooperative section. Conversely, the longest time is determined by the vehicle 800 
decelerating to its minimum speed with the maximum deceleration and maintaining this speed 801 
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throughout the cooperative section.  802 

(2) Terminal time constraints related to CAVs in the same lane: Constraints (4.7) state that two 803 
consecutive on-ramp or inside-lane vehicles must maintain their initial vehicle sequences and keep at 804 
least a minimum time headway between their terminal time. In other word, downstream on-ramp and 805 
inside-lane vehicles must reach the end point of the merging section before upstream on-ramp and 806 
inside-lane vehicles. However, since outside-lane vehicles can change lanes to overtake their preceding 807 
vehicles, constraints (4.8) state that only if any two outside-lane vehicles choose the same lane do they 808 
have to satisfy the requirements of initial sequences and minimum time headway. Moreover, constraints 809 
(4.9) and (4.10) guarantee that the terminal time of on-ramp and inside-lane vehicles is respectively 810 
limited by their mainline leading vehicles. In addition, which mainline leading vehicle limits the 811 
terminal time of outside-lane vehicles depends on their lane-changing decisions, as stated in constraints 812 
(4.11). 813 

(3) Terminal time constraints related to lane-changing and facilitating CAVs: Any lane-changing 814 
vehicle may be between two inside-lane vehicles after changing lanes, i.e., between a specified 815 
facilitating vehicle and a preceding vehicle in the inside lane. This permutation determines their terminal 816 
time relationship. Specifically, constraints (4.12) and (4.13) impose that the terminal time of a lane-817 
changing vehicle must maintain at least a minimum time headway from that of corresponding 818 
facilitating and preceding vehicles, respectively. Here, note that the left side of constraints (4.13) needs 819 
|𝐼/|. This is because if the total number of planned vehicles initially in lane 3 is zero, constraints (4.13) 820 
need not to be considered, as in the case where there are no vehicles initially in lane 3, decision variable 821 
𝜏 related to lane 3 does not exist. 822 

(4) Constraints related to facilitating CAV selection for lane-changing CAVs: Constraints (4.14) 823 
ensure that when an outside-lane vehicle is assigned to change lanes, only one inside-lane vehicle can 824 
be chosen as its facilitating vehicle. Conversely, if this outside-lane vehicle is not a lane-changing 825 
vehicle, no inside-lane vehicle will be its facilitating vehicle. 826 

(5) Constraints related to facilitating CAV selection for merging CAVs: Each on-ramp vehicle 827 
needs to choose a facilitating vehicle in the outside lane. Constraints (4.15) state that an on-ramp vehicle 828 
can only choose its facilitating vehicle from the group of outside-lane vehicles starting from the one 829 
selected by the previous on-ramp vehicle and extending through all following outside-lane vehicles. It 830 
should be noted that adjacent on-ramp vehicles can choose the same facilitating vehicle, i.e., it is 831 
possible for a mainline vehicle to facilitate several on-ramp vehicles. 832 

(6) Connection between lane-changing and merging decisions: Constraints (4.16) indicate that 833 
when an outside-lane vehicle is both a facilitating vehicle and a lane-changing vehicle, the following 834 
outside-lane vehicle also becomes a facilitating vehicle for on-ramp vehicles, thereby replacing the 835 
previous facilitator. Therefore, the number of facilitating vehicles required for a merging vehicle 836 
depends on whether the selected facilitating vehicles change lanes, as stated in constraints (4.17). 837 

(7) Terminal time constraints related to merging and facilitating CAVs: Constraints (4.18) and 838 
(4.19) define the minimum time headway requirement for each on-ramp vehicle with the two related 839 
vehicles in the outside lane (facilitating and preceding vehicles). Moreover, these constraints account 840 
for a particular case, i.e., if the related outside-lane vehicles are assigned to change lanes, the terminal 841 
time constraints are no longer needed because they are in different lanes. Furthermore, the term 𝛺𝑀 in 842 
constraints (4.19) is added to ensure that when all outside-lane vehicles change lanes, the constraints 843 
still hold. The binary variable 𝛺 indicates whether all outside-lane vehicles change lanes as constraint 844 
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(4.20). 845 

(8) Range of variables: Constraints (4.37)–(4.41) state the range of schedule-related variables. 846 

Trajectory-related constraints: To generate feasible vehicle trajectories (i.e., jerk, acceleration, 847 
kinematic energy, and time curves along position points), constraints (4.21)–(4.36) takes several factors 848 
into account, including the kinematic equations of vehicles, the time relationships between vehicles, the 849 
safety requirement for lane changes, the initial state of vehicles, and limits of vehicle capabilities. 850 

(1) Constraints related to vehicle kinematics: Constraints (4.21)–(4.23) describe the discretised 851 
equations of vehicle kinematics, linking the state of vehicles (i.e., acceleration, kinematic energy, and 852 
time) at every position. 853 

(2) Constraints related to initial and terminal conditions: Constraints (4.24)–(4.26) set the initial 854 
values of acceleration, kinematic energy, and time for each vehicle at its starting position, respectively. 855 
Constraints (4.27) state that the final point on the time curve and the terminal time are the same because 856 
both represent the moment a vehicle passes the end of the merging section. 857 

(3) Constraints related to safe lane changes: Lane-changing maneuvers are executed at the end of 858 
the lane-changing section, namely, point 𝑠RS. Minimum headway constraints are established to ensure 859 
safe lane changes. Specifically, constraints (4.28) and (4.29) impose a minimum time headway that 860 
lane-changing vehicles must maintain with their facilitating and preceding vehicles in the inside lane 861 
after lane changes.  862 

(4) Constraints related to minimum time headway: Constraints (4.30) state that any two 863 
consecutive on-ramp or inside-lane vehicles must maintain at least a minimum time headway at every 864 
discrete point along their paths. Similarly, within the cooperative lane-changing area, all outside-lane 865 
vehicles must comply with the minimum headway rule, as stated in constraints (4.31). However, within 866 
the cooperative merging area, those outside-lane vehicles are distributed across two mainline lanes after 867 
changing lanes. Only those in the same lane must obey the minimum headway rule at each point. 868 

(5) Bounded physical constraints: Constraints (4.33)–(4.36) restrict jerk, acceleration, energy, and 869 
time for all vehicles at each discrete position point, respectively, ensuring that these physical quantities 870 
remain within acceptable ranges throughout the motion of vehicles. 871 

In summary, the objective function of the model [MVO] contains the total travel delay, the number 872 
of lane changes, and the smoothness of vehicle trajectories. Sequencing and lane-changing related 873 
constraints link the vehicles’ terminal time with lane selection and sequence decisions. Trajectory-874 
related constraints are also necessary to obey kinematic equations, bounded physical speed, and 875 
minimum time headway requirements between vehicles during whole movements. 876 

4.2 Solution Algorithm 877 

This study designs an efficient decomposition algorithm to deal with the MINLP nature of the 878 
proposed model [MVO]. Section 4.3.1 introduces the framework of the proposed Generalized Benders 879 
Decomposition-based solution algorithm. Sections 4.3.2, 4.3.3, and 4.3.4 introduce the decomposed 880 
primal subproblem, its feasible-guaranteed version, and the cuts yielded from the primal subproblem, 881 
respectively. Then, sections 4.3.5 and 4.3.6 introduce the relaxed master problem and its linearization, 882 
respectively. Finally, section 4.3.7 proves finite convergence property of the algorithm. 883 
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(1) GBD-Based Solution Algorithm  884 

Generalized Benders Decomposition (GBD) is a partitioning framework for large-scale MINLP 885 
problems (Geoffrion, 1972; Cai et al., 2001; Gao et al., 2023), which decomposes an MINLP model 886 
into a relaxed master problem (RMP) and a primal subproblem (PS). An important step in GBD is to 887 
select appropriate decision variables as complicating variables whose values are first obtained in RMP, 888 
and the values of complicating variables are then passed into PS as given parameters for the PS solving 889 
process. The RMP and PS are solved iteratively until the upper and lower bounds of the original problem 890 
converge. 891 

Utilizing the concept of GBD, the proposed MINLP model in this study can be divided into an 892 
MILP multi-vehicle scheduling optimization model (serving as RMP) and a nonlinear programming 893 
(NLP) multi-vehicle trajectory optimization model (serving as PS). Specifically, constraints in RMP are 894 
sequencing and lane-changing related constraints, i.e. constraints (4.6)–(4.20) and (4.37)–(4.41). Some 895 
of such constraints are nonlinear and thus linearized in Section 4.5. RMP includes all variables related 896 
to sequencing and lane-changing (𝝉 , 𝜶 , 𝜷 , 𝜸 , and 𝛀 ), with 𝝉 , 𝜸 , and 𝜷  specifically selected as 897 
complicating variables that are also presented in PS. When the complicating variables in PS are 898 
presented as fixed parameters, PS becomes a structure comprising linear constraints (i.e., constraints 899 
(4.21)–(4.22), (4.24)–(4.36)) and non-convex constraints (4.23). All variables related to trajectories (𝒂, 900 
𝒃, 𝑬, and 𝒕) are contained in PS. 901 

RMP provides a scheduling plan (i.e., lane-changing decisions, facilitating vehicle choices, and 902 
terminal time), and PS aims to find trajectories to fulfill the fixed scheduling plan. The feasibility-903 
guaranteed PS is further derived by introducing slack variables, which is introduced in Section 4.3.3. 904 
Figure 4.3 illustrates the connection between RMP and PS. Specifically, PS is first transformed to the 905 
feasibility-guaranteed PS, and then the so-called optimality cuts are formed through the Lagrange 906 
function which is detailed in Section 4.3.4. In essence, the Lagrange function comprises the objective 907 
function and the product of optimal Lagrange multipliers with the constraints, under the fixed 908 
scheduling plan. 909 

 910 
Figure 4.3. Schematic illustration of the connection between RMP and PS. 911 

The procedure of the GBD-based solution algorithm is provided in Algorithm 1. The algorithm 912 
iteratively solves RMP and PS until the lower and upper bounds of the objective function in the original 913 
problem converge. Specifically, under a given scheduling plan, the optimality cuts from the feasibility-914 
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guaranteed PS are added to RMP at each iteration. If the scheduling plan is feasible, the result of PS 915 
provides an upper bound for the original minimization model. The objective function value of RMP 916 
provides a lower bound for the original problem. 917 

Table 4.1. GBD-based solution algorithm. 918 

 919 

(2) Primal Subproblem: Multi-Vehicle Trajectory Optimization Model 920 

Given the fixed values of complicating variables (i.e., terminal time 𝝉, lane selection variable 𝜸, 921 
and facilitating vehicle selection 𝜷), the resulting PS model is a convex NLP model that determines 922 
trajectories, including longitudinal jerk 𝒃, acceleration 𝒂, kinetic energy 𝑬, and time 𝒕. For convenience, 923 
we define a set of trajectory-related variables as 𝒙 ≔ (𝑏.,%,A, 𝑎.,%,A, 𝐸.,%,A, 𝑡.,%,A|𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ 𝑆) and a 924 
set of complicating variables as 𝒚 ≔ (𝜏.,% , 𝛾% , 𝛽.,%|𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.).  925 

The PS model given the fixed value of scheduling-related variables, i.e., �́� = (𝜏.̅,% , �̅�% , �̅�.,% 	|𝑙 ∈926 
𝐿, 𝑖 ∈ 𝐼.), can be formulated as follows: 927 

[PS]𝑓de(𝒙, �́�) = min∑ ∑ �̅�.,%%∈*#.∈Y +𝑤RS ∑ �̅�%%∈*, + ∑ ∑ ∑ [𝑤M𝑎.,%,A! +𝑤W𝑏.,%,A! +A∈{E#,",⋯,A-}%∈*#.∈Y928 

𝑤`u𝐸h − 𝐸.,%,Av
!]                   (4.44) 929 

Algorithm 1. GBD-based solution algorithm 
1 Set the lower and upper bounds, LB(0) ← −∞,UB(0) ← ∞. 

Set two tolerance thresholds, 	𝜖 ← 1 × 104f , 𝜖g ← 1 × 104h.	
2 Obtain initial values of complicating variables in RMP according to heuristic rules, denoted by 
𝒚(0) ∶= (𝜏.,%

(0), 𝛾%
(0), 𝛽.,%

(0)), 		𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.,	𝑠 ∈ 𝑆 // 𝒚(0) denotes	the	value	set	of	complicating	
variables	at	beginning. 

3 Set iteration index, 𝑘 ← 0. 

4 While UB(() − LB(() ≥ 𝜖 do 
5   �́� ∶= 𝒚(() 
6   Solve the feasibility-guaranteed PS model under fixed complicating variables �́�. 

7   
Obtain the value of slack variables, denoted by 	𝝃(() ← (�̇�.,%

((), �̈�%,1,A
(() , 𝜉Ã%,1,A

(() 	, 𝜉Ä%,1,A
(() ), 𝑙 ∈ 𝐿,	𝑖 ∈ 𝐼. ,		

𝑠 ∈ 𝑆.   

8   Obtain the trajectory solution, 𝒙(() ← (𝑏.,%,A
(() , 𝑎.,%,A

(() , 𝐸.,%,A
(() , 𝑡.,%,A

(() ), 𝑙 ∈ 𝐿,	𝑖 ∈ 𝐼. ,		𝑠 ∈ 𝑆  // for	
simplicity,	𝒙 

   denotes	(𝒃, 𝒂, 𝑬, 𝒕). 
9   Obtain the Lagrange multipliers 𝝁(() and Lagrange function ℒ(𝒙((), �́�, 𝝃(()	, 𝝁(()). 
10   Generate the optimality cut, represented by 𝐶((). 
11   If 𝝃(() ≤ 𝜖g then // check	the	feasibility	of	PS. 
12     UB(($') ← min	{UB((), 𝑂𝐵𝐽de(𝒙(())} // 𝑂𝐵𝐽de	records	the	objective	value	of	PS	under	

solution	𝒙(𝒌). 
13   End if 
14   Add generated cut 𝐶(() into RMP. 
15   Solve RMP to update the values of complicating variables 𝒚(($') ← (𝜏.,%

(($'), 𝛾!,%
(($'), 𝛽.,%

(($')). 
16   LB(($') ← 𝑂𝐵𝐽jkdu𝒚(($')v. 
17   𝑘 ← 𝑘 + 1. 
18 End while 
19 The algorithm terminates as the optimal solution is found. 
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subject to 930 

constraints (4.21)–(4.26), (4.30)–(4.31), (4.33)–(4.36), 931 

𝑡.,%,A! = �̅�.,%     ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.              (4.45) 932 

𝑡/,14',A − 𝑡!,%,A − ℎ +𝑀 ⋅ (1 − �̅�%,1) ≥ 0  ∀𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/\{1}, 𝑠 ∈ {𝑠RS, ⋯ , 𝑠T}           (4.46) 933 

𝑡!,%,A − 𝑡/,1,A − ℎ +𝑀 ⋅ (1 − �̅�%,1) ≥ 0  ∀	𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/, 𝑠 ∈ {𝑠RS, ⋯ , 𝑠T}            (4.47) 934 

|�̅�% − �̅�1|𝑀 +	𝑡!,%,A − 𝑡!,1,A − ℎ ≥ 0  ∀𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1,⋯ , 𝑖 − 1}	𝑠 ∈ {𝑠RS, ⋯ , 𝑠T}.(4.48) 935 

Given the fixed value of complicating variables, the model [PS] solves the corresponding trajectories. 936 
Objective function (4.44) optimizes smoothness of vehicle acceleration as well as jerk profiles, while 937 
striving to keep vehicle speeds close to the free-flow speed. Constraints (4.45)–(4.48), called coupling 938 
constraints, update constraints (4.27), (4.28), (4.29) and (4.32), respectively. 939 

(3) Acceleration through the Feasibility-Guaranteed Primal Subproblem  940 

For some scheduling solutions of RMP, such as some vehicle sequences, terminal time, and lane 941 
changes decisions, PS fails to find feasible trajectories, due to the constraints of limited cooperation 942 
areas, bounded acceleration and deceleration, and minimum time headway requirement between 943 
vehicles. To avoid such infeasibilities, we relax subproblem’s coupling constraints by introducing 944 
elastic slack variables and penalize these slacks in the objective function. In a final solution, these slacks 945 
are sufficiently close to zero. 946 

By introducing four non-negative elastic slack variables (𝝃 = (𝜉.̇,% , 𝜉%̈,1,A, 𝜉Ã%,1,A, 𝜉Ä%,1,A)), coupling 947 
constraints (4.45)–(4.48) are transformed into constraints (4.49)–(4.52), respectively, along with 948 
constraints (4.53)–(4.56). Also, the objective function of PS is transformed into objective (4.57). 949 
Consequently, the GBD procedure only requires optimality cuts, simplifying the process significantly. 950 
This significantly improves the efficiency of the algorithm by eliminating the need for feasibility cuts 951 
and ensuring that each iteration directly contributes to converging to the optimal solution. 952 

−�̇�.,% ≤ 𝑡.,%,A! − �̅�.,% ≤ �̇�.,%   ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.               (4.49) 953 

𝑡/,14',A − 𝑡!,%,A − ℎ +𝑀 ⋅ (1 − �̅�%,1) + 𝜉%̈,1,A ≥ 0  ∀𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/\{1}, 𝑠 ∈ {𝑠RS, ⋯ , 𝑠T}           (4.50) 954 

𝑡!,%,A − 𝑡/,1,A − ℎ +𝑀 ⋅ (1 − �̅�%,1) + 𝜉Ã%,1,A ≥ 0 ∀	𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/, 𝑠 ∈ {𝑠RS, ⋯ , 𝑠T}            (4.51) 955 

|�̅�% − �̅�1|𝑀 +	𝑡!,%,A − 𝑡!,1,A − ℎ + 𝜉Ã%,1,A ≥ 0 ∀𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1,⋯ , 𝑖 − 1}	𝑠 ∈ {𝑠RS, ⋯ , 𝑠T} (4.52) 956 

�̇�.,% ≥ 0      ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼.              (4.53) 957 

�̈�%,1,A ≥ 0        ∀𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/\{1}, 𝑠 ∈ {𝑠RS, ⋯ , 𝑠T}           (4.54) 958 

𝜉Ã%,1,A ≥ 0     ∀	𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/, 𝑠 ∈ {𝑠RS, ⋯ , 𝑠T}            (4.55) 959 

𝜉Ä%,1,A ≥ 0     ∀𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1,⋯ , 𝑖 − 1}	𝑠 ∈ {𝑠RS, ⋯ , 𝑠T} (4.56) 960 

𝑓de
QPMlUWURUIm(𝒙, 𝝃, �́�) = min∑ ∑ �̅�.,%%∈*#.∈Y +𝑤RS∑ �̅�%%∈*, + ∑ ∑ ∑ [𝑤M𝑎.,%,A! +𝑤W𝑏.,%,A! +A∈{E#,",⋯,A-}%∈*#.∈Y961 

𝑤Xu𝐸h − 𝐸.,%,Av
!] + 𝑀[∑ ∑ �̇�.,%%∈*#.∈Y + ∑ ∑ ∑ �̈�%,1,AA∈{A9:,⋯,A-}1∈*.\{'}%∈*, +962 

∑ ∑ ∑ 𝜉Ã%,1,AA∈{A9:,⋯,A-}1∈*.%∈*, + ∑ ∑ ∑ 𝜉Ä%,1,AA∈{A9:,⋯,A-}1∈{',⋯,%4'}%∈*,\{'} ].               (4.57) 963 
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(4) GBD Cuts from the Feasibility-Guaranteed PS Model 964 

At 𝑘IJ algorithm iteration, 𝒙(() records the values of trajectory-related variables, its optimality cut 965 
can be written as follows: 966 

𝜂 ≥ ℒu𝒙((), �́�, 𝝃((), 𝝁(()v + ∇𝐲+ℒu𝒙((), �́�, 𝝃((), 𝝁(()v ⋅ (𝒚 − �́�),              (4.58) 967 

where 𝜂 and 𝒚 are variables in the model [RMP] which is introduced in Section 4.5; �́� is the given 968 
values of complicating variables from the 𝑘IJ  iteration, i.e., �́�: = 𝒚(() ; 𝝁(()  records the values of 969 
optimal Lagrange multipliers obtained in the 𝑘IJ iteration; ℒu𝒙((), �́�, 𝝃((), 𝝁(()v denotes the Lagrange 970 
function of the feasibility-guaranteed PS and is calculated as follows: 971 

ℒu𝒙((), �́�, 𝝃((), 𝝁(()v = 𝑓de
QPMlUWURUImu𝒙((), �́�, 𝝃(()v + (𝝁(())+𝑮u𝒙((), �́�, 𝝃(()v,            (4.59) 972 

where 𝑓de
QPMlUWURUIm represents the objective function (4.57); 𝑮 denotes the vector of coupling constraints 973 

(4.49)–(4.52) under 𝒙((), �́�, and 𝝃((). ∇𝒚ℒ denotes the Jacobian of the Lagrange function with respect 974 
to the set of complicating variables 𝒚. 975 

(5) Relaxed Master Problem: Multi-Vehicle Scheduling Optimization Model 976 

RMP needs to determine the terminal time (𝝉), facilitating vehicle selection for merging and lane-977 
changing vehicles (𝜶,𝜷), lane-changing decision (𝜸, 𝜴), and an auxiliary variable (𝜂). Recall that (𝝉, 978 
𝜸, 𝜷) are selected as complicating variables 𝒚. The model [RMP] is therefore formulated as follows: 979 

[RMP]  𝑓(𝒚, 𝜶, 𝜂) = 	min 𝜂                 (4.60) 980 

subject to constraints (4.6)–(4.20), (4.37)–(4.41), optimality cut (4.58). 981 

(6) Linearization of the Relaxed Master Problem 982 

The model [RMP] contains nonlinear constraints (4.8), (4.12)–(4.13), (4.16)–(4.20), such as the 983 
absolute function, the rounding down function, the multiplication of binary and continuous variables, 984 
as well as the multiplication of binary variables. To address these nonlinear parts, we apply specific 985 
linearization techniques to transform the model [RMP] into an MILP model. Before linearizing the 986 
model [RMP], newly needed parameters and variables are defined as follows. 987 

Newly defined parameters 

𝑀" big-M for linearization; 𝑚 ∈ {1,… ,3}. 

𝑟 number infinitesimally close to 1 but still less than 1. 

Newly defined variables 

𝜋%1 binary, equal to the value of �𝛾% − 𝛾1�; 𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1, … , 𝑖 − 1}. 

𝜖%1" binary, equal to 1 if and only if both 𝛼%1 and 𝛾", 0 otherwise; 𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!, 𝑚 ∈ 𝐼!. 

𝜃%1" continuous, equal to 𝜏/," if and only if 𝛽%,1 is 1, 0 otherwise; 𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/ ∪ {|𝐼/| + 1},𝑚 ∈
𝐼/. 

𝜎%1" continuous, equal to 𝜏!," if and only if 𝛼%1 is 1, 0 otherwise; 𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!$, 𝑚 ∈ 𝐼!. 

𝛿%"1 continuous, equal to 𝜏!,1 if and only if 𝜖%,",1 is 1, 0 otherwise; 𝑖 ∈ 𝐼', 𝑚 ∈ 𝐼!$, 𝑗 ∈ 𝐼!. 
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(1): Linearization of the absolute function: To linearize constraints (4.8) containing the absolute 988 
function, a new binary variable 𝜋%1  is first defined to replace �𝛾% − 𝛾1� with the help of constraints 989 
(4.61)–(4.63).  990 

𝜋%1 ≥ 𝛾% − 𝛾1     ∀𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1, … , 𝑖 − 1}            (4.61) 991 

𝜋%1 ≥ 𝛾1 − 𝛾%     ∀𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1, … , 𝑖 − 1}           (4.62) 992 

𝜋%1 ∈ {0, 1}     ∀𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1, … , 𝑖 − 1}.           (4.63) 993 

Then, constraints (4.8) can be transformed into linear constraints (4.64). 994 

𝜋%1𝑀 + u𝜏!,% − 𝜏!,1 − ℎv ≥ 0           ∀𝑖 ∈ 𝐼!\{1}, 𝑗 ∈ {1, … , 𝑖 − 1}.           (4.64) 995 

(2) Linearization of the product of two binary variables: Constraints (4.16) and (4.17) contain the 996 
product of binary 𝜸 and binary 𝜶. A new binary variable 𝜖%1" is defined to replace this type of nonlinear 997 
term, and newly defined constraints are summarized as constraints (4.65)–(4.68).  998 

𝜖%1" ≤ 𝛾"      ∀𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!, 𝑚 ∈ 𝐼!            (4.65) 999 

𝜖%1" ≤ 𝛼%1      ∀𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!, 𝑚 ∈ 𝐼!            (4.66) 1000 

𝜖%1" ≥ 𝛾" + 𝛼%1 − 1    ∀𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!, 𝑚 ∈ 𝐼!            (4.67) 1001 

𝜖%1" ∈ {0,1}             ∀𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!, 𝑚 ∈ 𝐼!.            (4.68) 1002 

Therefore, constraints (4.16) and (4.17) are replaced with (4.69) and (4.70), respectively. 1003 

𝜖%11 − 𝜖%,(1$'),1 = 0    ∀𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!\{|𝐼!|}            (4.69) 1004 

∑ 𝛼%,11∈*,' = 1 +∑ 𝜖%111∈*,      ∀𝑖 ∈ 𝐼'.              (4.70) 1005 

(3) Linearization of the product of a continuous variable and a binary variable: To linearize 1006 
constraints (4.12)–(4.13) containing the product of a binary variable and a continuous variable, a new 1007 
continuous variable 𝜃%1" is defined, and constraints (4.71)–(4.73) are needed.  1008 

𝜃%1" ≥ 𝜏/," + (𝛽%,1 − 1)𝑀'   ∀𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/ ∪ {|𝐼/| + 1},𝑚 ∈ 𝐼/       (4.71) 1009 

𝜃%1" ≤ 𝜏/,"     ∀𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/ ∪ {|𝐼/| + 1},𝑚 ∈ 𝐼/       (4.72) 1010 

𝜃%1" ≥ 0      ∀𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼/ ∪ {|𝐼/| + 1},𝑚 ∈ 𝐼/.      (4.73) 1011 

Hence, constraints (4.12)–(4.13) are transformed into constraints (4.74)–(4.75). 1012 

𝛾%𝑀 + 𝜏!,% −∑ 𝜃%,1,14' − ℎ
|*.|$'
13! ≥ 0  ∀𝑖 ∈ 𝐼!               (4.74) 1013 

𝛾%𝑀 + u∑ 𝜃%,1,11∈*. − 𝜏!,% − ℎv|𝐼/| ≥ 0  ∀𝑖 ∈ 𝐼!.              (4.75) 1014 

(4) Linearization of the product of a continuous variable and two binary variables: To linearize a 1015 
multiplication of three variables. We first deal with the product of two binary variables and then deal 1016 
with the multiplication of a binary variable and a continuous variable. Constraints (4.18) and (4.19) are 1017 
linearized sequentially. First, constraints (4.18)–(4.19) can be rewritten as constraints (4.76)–(4.77) with 1018 
the help of 𝜖%1" . Continuous variables 𝜎%1"  and 𝛿%"1  are then defined to replace 𝛼%,1𝜏!,14'  and 1019 
𝜖%,1,(14')𝜏!,14', respectively, and related constraints (4.78)–(4.83) are added. Constraints (4.18)–(4.19) 1020 
are therefore replaced with constraints (4.84)–(4.85), respectively: 1021 
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𝜏',% − ℎ ≥ ∑ (𝛼%,1𝜏!,14' − 𝜖%,1,14'𝜏!,14')
|*,|$'
13! 	 ∀𝑖 ∈ 𝐼'               (4.76) 1022 

∑ (𝛼%,1𝜏!,1 − 𝜖%,1,1𝜏!,1)1∈*, − 𝜏',% − ℎ	 + 𝛺𝑀 ≥ 0 ∀𝑖 ∈ 𝐼'              (4.77) 1023 

𝜎%1" ≥ 𝜏!," + (𝛼%1 − 1)𝑀!   ∀𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!$, 𝑚 ∈ 𝐼!            (4.78) 1024 

𝜎%1" ≤ 𝜏!,"     ∀𝑖 ∈ 𝐼', 𝑗 ∈ 𝐼!$, 𝑚 ∈ 𝐼!            (4.79) 1025 

𝜎%1" ≥ 0      ∀𝑖 ∈ 𝐼!, 𝑗 ∈ 𝐼!$, 𝑚 ∈ 𝐼!            (4.80) 1026 

𝛿%"1 ≥ 𝜏!,1 + u𝜖%,",1 − 1v𝑀/   ∀𝑖 ∈ 𝐼', 𝑚 ∈ 𝐼!$, 𝑗 ∈ 𝐼!            (4.81) 1027 

𝛿%"1 ≤ 𝜏!,1     ∀𝑖 ∈ 𝐼', 𝑚 ∈ 𝐼!$, 𝑗 ∈ 𝐼!            (4.82) 1028 

𝛿%"1 ≥ 0      ∀𝑖 ∈ 𝐼', 𝑚 ∈ 𝐼!$, 𝑗 ∈ 𝐼!            (4.83) 1029 

𝜏',% − ℎ ≥ ∑ u𝜎%,(1$'),1 − 𝛿%,(1$'),1v.1∈*,    ∀𝑖 ∈ 𝐼'              (4.84) 1030 

∑ (𝜎%,1,1 − 𝛿%,1,1)1∈*, − 𝜏',% − ℎ	 + 𝛺𝑀 ≥ 0  ∀𝑖 ∈ 𝐼'.              (4.85) 1031 

Finally, constraints (4.16) are first rewritten with 𝜖%1" and 𝜎%1" as constraints (4.86). Then, since 1032 
the existing of 𝜂%"1, constraints (4.86) can be further translated into linear constraints (4.87). 1033 

∑ 𝜎%111∈*, −∑ 𝜖%11𝜏!,11∈*, + 𝛺𝑀 ≥ 𝜏',% + ℎ ∀𝑖 ∈ 𝐼'               (4.86) 1034 

∑ 𝜎%111∈*, −∑ 𝜂%111∈*, + 𝛺𝑀 ≥ 𝜏',% + ℎ  ∀𝑖 ∈ 𝐼'.              (4.87) 1035 

(5) Linearization of the floor function: constraint (4.20) contains the floor function and can be 1036 
rewritten as follows: 1037 

∑ ^//∈*,
|*,|

− 𝑟 ≤ 𝛺 ≤
∑ ^//∈*,
|*,|

 .                  (4.88) 1038 

In summary, the linear model of RMP is summarized as follows:  1039 

Objective (4.60) 1040 

subject to constraints (4.6), (4.7), (4.9)–(4.11), (4.14)–(4.15), (4.37)–(4.41), (4.58), (4.61)–(4.75), 1041 
(4.78)–(4.85), (4.87)–(4.88). 1042 

(7) Finite Convergence Guarantee 1043 

Proposition 1: The finite convergence of the GBD algorithm applied in this problem is guaranteed. 1044 

Proof: To guarantee the finite convergence of the GBD algorithm, the following issues need to be 1045 
checked. 1046 

In subproblem [PS], the feasible region (represented by 𝛸 ) of the subproblem variables is 1047 
nonempty and convex. 𝑋 is defined by a combination of linear constraints (4.21)–(4.22), (4.24)–(4.36), 1048 
and non-convex equality constraints (4.23), i.e. 𝑡.,%,A$' − 𝑡.,%,A −

'
_!`#,",1

⋅ 𝛥 = 0 . By introducing 1049 

nonnegative slack variables 𝜂.,%,A, constraints (4.23) are relaxed to the following constraints,  1050 

𝑡.,%,A$' − 𝑡.,%,A − 𝜂.,%,A 	= 0    ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠T − 1}       (4.89) 1051 

𝜂.,%,A 	≥
'

_!`#,",1
⋅ 𝛥     ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠T − 1}       (4.90) 1052 

𝜂.,%,A ≥ 0      ∀𝑙 ∈ 𝐿, 𝑖 ∈ 𝐼. , 𝑠 ∈ {𝑝.,% , ⋯ , 𝑠T − 1}.      (4.91) 1053 
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This relaxation transfers non-convex constraints (4.23) to convex constraints (4.89)–(4.90), as 1054 
illustrated in Figure 4.4. Moreover, a penalty term for 𝜂.,%,A is added in the objective function to 1055 
encourage 𝜼 to equal '

√!𝑬
⋅ 𝛥, thereby ensuring adherence to the original equality constraints. Note that 1056 

penalizing 𝜼 results in a smaller value for 𝜼, corresponding to larger 𝑬, which means to maximizing 1057 
vehicle speeds. Through this transformation, the transformed feasibility domain 𝛸 becomes a convex 1058 
set. 1059 

 

(a) Non-convex set of 𝑡.,%,A$' − 𝑡.,%,A −
'

_!`#,",1
⋅

𝛥 = 0 

 

(b) Convex set of 𝜂.,%,A ≥
'

_!`#,",1
⋅ 𝛥 

Figure 4.4. Transformation of nonlinear kinematic equations. 1060 

(a) Non-convex set formed by the equality constraints (4.23); (b) Convex set formed by the 1061 
relaxed inequality constraints (4.90). 1062 

In subproblem [PS], the objective function (denoted as 𝑓de), and the coupling constraint functions 1063 
(represented by 𝑮) are convex on the subproblem variables for each fixed complicating variables. This 1064 
convexity criterion is satisfied because the objective function 𝑓de (i.e., Equation (4.44)) is formulated 1065 
as a quadratic function form and the coupling constraints 𝑮 (i.e., constraints (4.45)–(4.48)) are linear 1066 
with respect to the subproblem variables when complicating variables become constant. The relaxed 1067 
master problem [RMP] can be solved to optimality in each iteration. This optimality criterion is met 1068 
because the model [RMP] is a mixed-integer linear programming model.           £ 1069 

4.3 Computational Experiments 1070 

Section 4.3.1 introduces the setup of the numerical experiments. Section 4.3.2 compares the 1071 
proposed algorithm with the state-of-the-art solver Gurobi to evaluate algorithm performance in terms 1072 
of solution quality and time. Section 4.3.3 introduces the baseline methods. Section 4.3.4 and 4.3.5 1073 
compares the proposed model with several commonly used models to assess the enhancement on traffic 1074 
performance. Section 4.4.6 presents two case studies to analyse generated trajectories as well as merging 1075 
and lane-changing decisions. Section 4.4.7 presents sensitivity analyses exploring the effects of 1076 
different lengths of cooperative areas and the costs associated with lane changes. Finally, Section 4.4.8 1077 
discusses the benefits of the proposed integrated model. 1078 

(1) Experimental Setting 1079 

Numerical experiments are conducted using a microscopic traffic simulation tool named by 1080 
SUMO. The simulation employs the Wiedemann 99 model to replicate car-following behaviour. Table 1081 
4.2 lists the vehicle parameter values used in the simulations. 1082 
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Table 4.2. Parameter setting summary. 1083 

Parameters Value 
Vehicle length (𝑙#) 4.37	m 
Standstill distance (𝑠$) 1.5	m 
Discrete distance interval (Δ) 5	m 
Minimum headway (ℎ) 1.5	s 
Free flow speed (𝑣%) 100	km/h 
Maximum and minimum jerks (𝑏, 𝑏)              2	m/s&, −2	m/s& 
Maximum acceleration and deceleration (𝑎<, 𝑎) 2.75	m/s", −2.75	m/s"	

 1084 

As shown in Figure 4.5, the simulated freeway segment comprises two mainline lanes and one on-1085 
ramp, partitioned into a cooperative lane-changing area, a cooperative merging area, and a downstream 1086 
segment. The cooperative area, including both the lane-changing and merging areas, spans 700 meters, 1087 
while the downstream segment extends one kilometre to fully cover impacted road sections. A trigger 1088 
point is placed on the on-ramp lane. 1089 

 1090 
Figure 4.5. Road setting. 1091 

(2) Comparison of the Proposed Algorithm and the State-of-the-Art Solver  1092 

The proposed GBD-based algorithm is compared with the Gurobi solver in terms of objective 1093 
function values and solution time for different scale instances ranging from three to nine vehicles. Table 1094 
4.3 compares the performance of the proposed GBD-based algorithm against the Gurobi solver across 1095 
varying numbers of vehicles, ranging from three to nine. Let OBJd, and OBJs represent the objective 1096 
function values obtained by the proposed algorithm, and the Gurobi solver, respectively; Td, and Ts 1097 
represent the solution time required by the proposed algorithm, and the Gurobi solver, respectively. As 1098 
shown in Table 4.3, the proposed algorithm can solve all instances ranging from three to nine vehicles 1099 
within 3.1 seconds. However, the solution time of the Gurobi solver is significantly longer. For small-1100 
scale instances with three to four vehicles, the Gurobi solver can find optimal solutions within a few 1101 
seconds; for medium-scale instances with five to eight vehicles, it requires several hundred seconds to 1102 
reach optimality; for large-scale instances with nine vehicles, it takes almost eight hours. Clearly, our 1103 
algorithm significantly outperforms the Gurobi solver in terms of solution time, which further advances 1104 
practical applications. The inefficiency of the method directly using the Gurobi solver arises from the 1105 
fact that each additional vehicle not only introduces corresponding binary variables into the model, but 1106 
also brings in hundreds of continuous trajectory variables and numerous convex nonlinear kinematic 1107 
constraints. These extra variables and constraints greatly increase the model’s complexity, making it 1108 
extremely hard to solve. In contrast, the proposed GBD-based algorithm adds only a minimal number 1109 
of essential constraints to the MILP master problem, thereby significantly enhancing solution efficiency. 1110 
Consequently, our GBD-based algorithm can converge and find the optimal solution within 3.1 seconds 1111 
for the large-scale instances where the Gurobi solver cannot find the optimal solution within eight hours.  1112 

Cooperative lane-changing area
400m

Downstream segment
1km

Cooperative merge area
300m

Trigger point

Lane 1
Lane 2
Lane 3

Traffic flow direction
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Table 4.3. Comparison of the proposed GBD-based algorithm and the Gurobi solver. 1113 

Number of 
vehicles 

Objective function value Solution time (second) 
OBJd OBJs Td Ts 

3 
4 

25.829 25.829 0.8 5.3 
28.044 28.044 1.3 11.3 

5 
6 

25.527 25.527   1.5 245.6 
27.120 27.120 1.8 447.3 

7 
8 

27.863 27.863 2.2 482.7 
27.952 27.952 3.0 597.4 

9 27.228 27.228 3.1 28707.9 
Notes: (1) 𝑂𝐵𝐽t and 𝑂𝐵𝐽u  represent the objective function value obtained by the proposed GBD-1114 
based algorithm, and the Gurobi solver, respectively; (2) 𝑇t and 𝑇u  represent the solution time of the 1115 
proposed GBD-based algorithm, and the Gurobi solver, respectively. 1116 
(3) Baseline approaches 1117 

The proposed model has three primary characteristics: (1) sequencing optimization, (2) lane 1118 
change optimization, and (3) utilization of microscopic position and speed information. To evaluate the 1119 
advantages of these three characteristics, the proposed model is compared with the following three 1120 
models: 1121 

(i) FIFO_NLC model: A heuristic first-in-first-out (FIFO) approach that schedules the sequences 1122 
of on-ramp and outside-lane vehicles without permitting lane changes. Here, note that the rule of no 1123 
lane changes (NLC) is strictly enforced. 1124 

(ii) OPT_SEQ_NLC model: An optimization method adapted from the proposed model, 1125 
determining the optimal sequences of on-ramp and outside-lane vehicles (OPT_SEQ) while maintaining 1126 
the rule of NLC. 1127 

(iii) Balanced flow model: An optimization-based method focused on balancing traffic flow 1128 
distribution by controlling the number of lane-changing vehicles. This method combines heuristics for 1129 
selecting lane-changing vehicles and an optimization model for sequencing on-ramp and outside-lane 1130 
vehicles. 1131 

The experiments are conducted under various demand scenarios, including different demand ratios 1132 
between lanes 2 to 1, total demands of lanes 2 and 1 (in vehicles per hour), and total demands of lane 3 1133 
(in vehicles per hour). Traffic performance metrics used in the comparison include total delay (in 1134 
seconds) and average lane delay (in seconds), denoted by 𝐷% and �́�./

% , respectively. Here, the superscript 1135 
represents different methods, with F, O, B, and P corresponding to FIFO_NLC, OPT_SEQ_NLC, the 1136 
balanced flow model, and the proposed model, respectively; the subscript specifies lanes 1, 2, and 3 by 1137 
𝑙', 𝑙!, and 𝑙/, respectively. Additionally, “D. I.”, and “No. lc” represent the delay improvement ratio 1138 
(%), and the number of lane changes, respectively.  1139 

(4) Comparative analysis: Benefits of sequencing and lane-changing optimization 1140 

Table 4.4 shows 18 demand scenarios with varying demand ratios and levels, each simulated in 1141 
SUMO for one hour. Specifically, for the on-ramp and outside lane (i.e., lanes 1 and 2), two demand 1142 
ratios, 2:1 and 3:1, between lane 2 to lane 1 are considered, along with three demand totals for lanes 1 1143 
and 2, 1,400, 1,600, and 1,800 vehicles per hour. For the inside lane (i.e., lane 3), three demand levels 1144 
are set accordingly. Due to the interactions between the on-ramp and mainline flow, the lane capacity 1145 
under each demand ratio varies. Here, note that, in principle, 1,400 vehicles/hour represents free flow, 1146 
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1,600 vehicles/hour indicates near saturation, and 1,800 vehicles/hour is saturated or oversaturated. 1147 

Numerical experiments are conducted on two models that prohibit lane changes (i.e., FIFO_NLC and 1148 
OPT_SEQ_NLC), and the proposed model in Table 4.4. The performance comparison between 1149 
FIFO_NLC and OPT_SEQ_NLC investigates the influence of the first characteristic, namely the 1150 
sequencing optimization. Then the comparison among FIFO_NLC, OPT_SEQ_NLC, and the proposed 1151 
model examines the effect of the second characteristic, i.e., the lane change optimization. 1152 

Table 4.4.  Comparison of travel delays. 1153 

Demand 
ratio 

  Lane 2 
/ Lane 1 

Demand  
of 

Lane1&2  
veh/hour 

Demand 
of 

Lane 3 
veh/hour 

FIFO_NLC OPT_SEQ_NLC 
 

Proposed model 

𝐷v 
(s) 

�́�.(
v  

(s) 
�́�.,
v  

(s) 
𝐷w 
(s) 

�́�.(
w 

(s) 
�́�.,
w 

(s) 
𝐷d (s) D. I. �́�.(

d  
(s) 

�́�.,
d  

(s) 
�́�..
d  

(s) 
No.lc 

 
 
 
 

2:1 

 
1,400 

1,300  
846 

 
0.76 

 
0.53 

 
839 

 
1.12 

 
0.3
4 

512 40% 0.43 0.18 0.11 154 
1,400 576 32% 0.50 0.18 0.12 130 
1,500 635 25% 0.56 0.21 0.12 106 

 
1,600 

1,500  
1,20

3 

 
0.84 

 
0.71 

 
1,19

6 

 
1.27 

 
0.4
9 

845 30% 0.54 0.28 0.18 146 
1,600 949 21% 0.66 0.28 0.18 120 
1,700 1,123 7% 0.96 0.39 0.12 55 

 
1,800 

1,700  
1,85

0 

 
1.00 

 
1.04 

 
1,83

8 

 
1.61 

 
0.7
3 

1,538 17% 0.98 0.49 0.21 99 
1,800 1,762 5% 1.51 0.63 0.06 19 
1,900 1,827 1% 1.63 0.68 0.01 3 

 
 
 

 
3:1 

 
1,400 

1,300  
773 

 
0.86 

 
0.45 

 
770 

 
1.32 

 
0.3
0 

419 46% 0.43 0.13 0.10 142 
1,400 480 38% 0.48 0.17 0.09 114 
1,500 568 27% 0.58 0.18 0.12 102 

 
1,600 

1,500  
1,10

6 

 
0.95 

 
0.60 

 
1,09

9 

 
1.47 

 
0.4
3 

748 32% 0.62 0.21 0.16 127 
1,600 838 24% 0.68 0.24 0.18 110 
1,700 971 12% 0.90 0.29 0.15 75 

 
1,800 

1,700  
1,79

0 

 
1.12 

 
0.95 

 
1,77

6 

 
2.05 

 
0.6
3 

1,404 22% 
5% 
1% 

1.15 0.42 0.19 109 
1,800 1,696 1.35 0.48 0.20 32 
1,900 1,776 2.05 0.63 0.00 0 

Notes: (1) the superscripts 𝐹 , 𝑂 , and 𝑃  represent the three methods: FIFO_NLC, 1154 
OPT_SEQ_NLC, and the proposed model, respectively; the subscripts 𝑙!, 𝑙", and 𝑙# refer to the 1155 
on-ramp, outside lane, and inside lane, respectively; (2) 𝐷 denotes the total delay in seconds; 1156 
(3) 𝐷)$!, 𝐷)$", and 𝐷)$# represent the average lane delays of the related lanes; (4) D. I. refers to 1157 

the delay improvement ratio and can be calculated by %
$&%%

%$
; (4) No. lc refers to the number 1158 

of lane changes; (5) “vehicles per hour” is abbreviated as “veh/hour”. 1159 
 1160 

In the comparison of the methods without lane changes, namely FIFO_NLC and OPT_SEQ_NLC, 1161 
the impact of sequencing optimization is evaluated. From Table 4.4, all values in the column 𝐷w are 1162 
smaller than values in the column 𝐷v , indicating that OPT_SEQ_NLC has less total delay than 1163 
FIFO_NLC. More importantly, values in the column �́�.,

w are notably lower than those in the column �́�.,
v , 1164 

highlighting that the average delay in the outside mainline lane by OPT_SEQ_NLC is significantly 1165 
lower compared to that by FIFO_NLC. This comparison reflects that better vehicle sequencing can 1166 
significantly mitigate disruptions from ramps, reducing them by up to 35.8%. 1167 

Then, to evaluate the impact of lane change optimization, the proposed model is compared with 1168 
two other models. From the columns 𝐷d, 	�́�.(

d , and �́�.,
d , we can see the significant improvements in the 1169 

total and average lane delays. Additionally, there is a slight increase in average delay (0.1–0.2 seconds) 1170 
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from inside-lane vehicles (column �́�..
d ). Here, note that the proposed model significantly decreases the 1171 

total delay 𝐷d by 12% to 46% when the inside lane is not saturated (i.e., when the demand of lane 3 is 1172 
less than 1,800 vehicles per hour). On the other hand, the improvement ranges from 1% to 4% when 1173 
the demand of the inside lane is near or exceeds capacity (i.e., when the demand of lane 3 is 1,800 to 1174 
1,900 vehicles per hour). This decrease in improvement is expected because there is no free (extra) 1175 
space available in the inside lane to help absorb disruptions from ramps under the saturated condition. 1176 
This demonstrates that the proposed model makes lane-changing decisions based on the consideration 1177 
of the overall traffic efficiency. Moreover, the average outside lane delay �́�.,

d  is further reduced, 1178 
indicating that leveraging multilane capacity enhances system resilience against disturbances from 1179 
ramps. 1180 

Moreover, we illustrate the improvement in speed variation achieved by the proposed model 1181 
compared with FIFO_NLC and OPT_SEQ_NLC. High variation of speed is a known precursor to 1182 
collision accidents (Tian et al., 2019). In Figure 4.6, the time-space region under evaluation is defined 1183 
as [2400, 3200] seconds by [1750, 2750] meters. The cooperative control area starts at 2 kilometers, 1184 
and the merge gore is at 2.4 kilometers. Figures 4.6(a), 4.6(c), and 4.6(e) depict the heatmap of the 1185 
average speed in the outside lane under the control of FIFO_NLC, OPT_SEQ_NLC, and the proposed 1186 
model, respectively. Similarly, Figures 4.6(b), 4.6(d), and 4.6(f) present the velocity heatmap in the 1187 
ramp and acceleration lane under these three control methods. Observations indicate that in the outside 1188 
lane, velocity fluctuations start from two kilometers and extend downstream. Although 1189 
OPT_SEQ_NLC produces fewer fluctuations in the outside lane compared to FIFO_NLC, it leads to 1190 
larger fluctuations in on-ramp. Importantly, the proposed model significantly reduces velocity variance 1191 
in both the outside and on-ramp lanes. 1192 

In summary, the benefits of the proposed model’s two features, i.e., sequencing optimization and 1193 
lane change optimization, are validated by comparing its total and average lane delays with those 1194 
obtained from approaches without lane changes. 1195 

 
(a) FIFO_NLC; outside lane 

 
(b) FIFO_NLC; ramp and acceleration lane 

 
(c) OPT_SEQ_NLC; outside lane 

 
(d) OPT_SEQ_NLC; ramp and acceleration lane 
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(e) Proposed model; outside lane 

 
(f) Proposed model; ramp and acceleration lane 

Figure 4.6. The heatmap of average CAV speed. 1196 

 Average speed in different lanes by FIFO_NLC, OPT_SEQ_NLC, and Proposed model, 1197 
respectively. (a), (c), (e): average CAV speed in the outside lane by the three methods; (b), (d), (f): 1198 

average CAV speed in the ramp and acceleration lane by the three methods. 1199 

(5) Comparative Analysis: Utilization of Microscopic Vehicle Information 1200 

To evaluate the third characteristic of the proposed model, i.e., utilization of microscopic position 1201 
and speed information, this study further compares the proposed model with the balanced flow model. 1202 
The balanced flow model determines lane-changing volumes based on the macroscopic lane demand 1203 
parity. 1204 

The results presented in Table 4.5 show that values in columns 𝐷d, �́�.(
d , and �́�.,

d  are consistently 1205 
lower than those in columns 𝐷x, �́�.(

x , and �́�.,
x , which indicates that the proposed model significantly 1206 

reduces total delays, average ramp delays, and average outside-lane delays compared to the balanced 1207 
flow model. Notably, the most significant reduction in the total delay observed is 35%, as shown in 1208 
column D. I. Nevertheless, the improvement in delay becomes 0 when the demand in lane 3 reaches 1209 
1,900 vehicles per hour, exceeding its capacity. In this case, the numbers of lane changes (values in 1210 
columns No. lcd and No. lcx) decided from both the macroscopic balanced flow perspective and the 1211 
microscopic vehicle information perspective are zero, thereby no difference in travel delays. 1212 

Meanwhile, values in column No. lcd are higher than those in column No. lcx, suggesting that the 1213 
proposed model facilitates more lane changes compared to the balanced flow model. This enhancement 1214 
enables the proposed model to better exploit lane-changing opportunities, thereby outperforming the 1215 
balanced flow model.  1216 

The balanced flow model determines the number of lane changes (i.e., No. lcx) based on the 1217 
difference in the number of vehicles between the inside and outside lanes. In the scenarios tested, the 1218 
maximum vehicle number difference in the inside and outside lanes is 100, resulting in a peak of 1219 
approximately 50 lane changes. When there is almost no difference in the vehicle numbers (i.e., when 1220 
demands in the inside and outside lanes are nearly identical), the number of lane changes drops to fewer 1221 
than 10. On the other hand, the proposed model dynamically adjusts lane-changing decisions by 1222 
leveraging microscopic vehicle position and speed information, aiming to minimize the total travel 1223 
delay rather than merely equalizing traffic flow between lanes. 1224 

In summary, by incorporating microscopic vehicle spacing and speed data into the decision-1225 
making process, our proposed model not only reduces both total and average lane delays, but also 1226 
outperforms methods that rely solely on macroscopic flow statistics. This demonstrates the efficiency 1227 
of the proposed approach in enhancing traffic management through more precise and adaptive usage of 1228 
lane changes. 1229 
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Table 4.5. Comparison of travel delays by the balanced flow model and proposed model 1230 

Demand 
ratio 

  Lane 2 / 
Lane 1 

Demand 
of Lanes 

 1&2 
(veh/hour) 

Demand 
of Lane  

3 
(veh/hour) 

Balanced flow model Proposed model 

 
𝐷x 

 
�́�.(
x  

 
�́�.,
x  

 
�́�..
x  

 
No. lcx 

 
			𝐷d 

 
D. I. 

 
�́�.(
d  

 
�́�.,
d  

 
�́�..
d  

 
No. lcd 

(s) (s) (s) (s) (s) (s) (s) (s) 
 
 
 
 

3:1 

 
1,400 

1,300 634 1.01 0.22 0.04 54 419 34% 0.43 0.13 0.10 142 
1,400 742 1.25 0.28 0.01 6 480 35% 0.48 0.17 0.09 114 
1,500 770 1.32 0.30 0.00 0 568 26% 0.58 0.18 0.12 102 

 
1,600 

1,500 918 1.14 0.31 0.06 53 748 19% 0.62 0.21 0.16 127 
1,600 1,080 1.49 0.40 0.01 5 838 22% 0.68 0.24 0.18 110 
1,700 1,099 1.47 0.43 0.00 0 971 12% 0.90 0.29 0.15 75 

 
1,800 

1,700 1,608 1.58 0.52 0.12 51 1,404 13% 1.15 0.42 0.19 109 
1,800 1,770 2.02 0.63 0.01 2 1,696 4% 1.35 0.48 0.20 32 
1,900 1,776 2.05 0.63 0.00 0 1,776 0% 2.05 0.63 0.00 0 

 
 
 
 

4:1 

 
1,400 

1,300 537 1.00 0.19 0.03 52 396 26% 0.58 0.12 0.08 107 
1,400 669 1.37 0.25 0.004 5 436 35% 0.57 0.13 0.10 100 
1,500 688 1.41 0.26 0.00 0 453 34% 0.60 0.13 0.10 95 

 
1,600 

1,500 854 1.31 0.26 0.07 52 670 22% 0.64 0.18 0.16 118 
1,600 1,036 1.83 0.34 0.01 3 781 25% 0.76 0.21 0.17 98 
1,700 1,043 1.86 0.35 0.00 0 874 16% 0.99 0.24 0.14 69 

 
1,800 

1,700 1,501 1.62 0.51 0.11 48 1,290 14% 0.96 0.37 0.24 104 
1,800 1,689 2.18 0.63 0.00 0 1,557 8% 1.61 0.51 0.13 44 
1,900 1,689 2.18 0.63 0.00 0 1,689 0% 2.18 0.63 0.00 0 

Notes: (1) the superscripts 𝐵 and 𝑃 represent the balanced flow model and the proposed model, 1231 
respectively; the subscripts 𝑙!, 𝑙", and 𝑙# refer to the on-ramp, outside lane, and inside lane, 1232 
respectively; (2) 𝐷  denotes the total delay in seconds; (3)  𝐷)$! , 𝐷)$" , and 𝐷)$#  represent the 1233 
average lane delays of the related lanes; (3) D. I. refers to the delay improvement ratio and 1234 
can be calculated by (𝐷' − 𝐷() 𝐷'⁄ ; (4) No. lc refers to number of lane changes; (5) “vehicles 1235 
per hour” is abbreviated as “veh/hour”. 1236 
 1237 
(6) Vehicle Trajectory Analysis 1238 

To fully understand under what conditions the proposed model decides certain outside-lane CAVs 1239 
to change to the inside lane, and instruct which CAVs to do so, this study conducts two case studies and 1240 
analyzes the results of the proposed model: sequencing as well as lane-changing optimization, and the 1241 
detailed trajectories. 1242 

Case study 1 1243 

The first case study examines the interactions among two inside-lane CAVs, two outside-lane 1244 
CAVs, and one on-ramp CAV, with their initial states and results of this case study presented in Table 1245 
4.6. Figure 4.7 illustrates the longitudinal and lateral position trajectories of these five CAVs at different 1246 
time points, obtained by solving the proposed model. Circled numbers in Figure 4.7 indicate specific 1247 
time moments, and number 1 represents the beginning time moment. As detailed in Table 4.6 and 1248 
depicted in Figure 4.7, the on-ramp CAV is assigned to merge ahead of outside-lane CAV 1, and outside-1249 
lane CAV 2 is assigned as the lane-changing vehicle to follow the two inside-lane CAVs. 1250 
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Table 4.6. Initial vehicle states and output of the proposed model in case study 1. 1251 

 Inside-lane 
CAV 1 

Inside-
lane 

CAV 2 

Outside-
lane  

CAV 1 

Outside-lane 
CAV 2 

On-ramp 
CAV 

Initial position (m) 630 590 590 550 600 
Initial velocity (m/s) 28 27 28 27 26 
Lane change decisions - - No Yes - 
Inside-lane sequence 
decisions  

1st 2nd - 3rd - 

Outside-lane sequence 
decisions  

- - 2nd - 1st 

Planned driving time (s) 12.82 14.53 15.62 16.24 13.91 
Note: - means not applicable. 1252 

 1253 
Figure 4.7. Lateral and longitudinal positions of CAVs in case study 1. 1254 

The reasons behind the above decisions are detailed as follows. Initially, the on-ramp CAV is 1255 
already positioned some distance ahead of outside-lane CAV 1, with both CAVs driving at similar 1256 
speeds. This observation indicates that the on-ramp CAV can move through the merging section earlier, 1257 
thereby allowing the following outside-lane CAVs to pass earlier as well. Therefore, having the on-1258 
ramp CAV merge in front of the two outside-lane CAVs can save their total travel time. After making 1259 
this merging decision, outside-lane CAV 1 opts to remain in its original lane to facilitate the merging of 1260 
the on-ramp vehicle by creating the necessary gape. This decision to maintain its lane is driven by the 1261 
fact that outside-lane CAV 1 is behind the on-ramp CAV and aligned longitudinally with inside-lane 1262 
CAV 2. If outside-lane CAV 1 changes lanes, it will decelerate more to create a safe gap with inside-1263 
lane CAV 2. Outside-lane CAV 2 is then determined to change to the inside lane, following inside-lane 1264 
CAV 2 to avoid the speed fluctuations from its preceding outside-lane CAV 1. 1265 

To illustrate the process of creating the required spacing among the merging CAVs, the lane-1266 
changing CAVs, and their facilitating CAVs, Figures 4.8(a) and 4.8(b) display the longitudinal position 1267 
and time curves of CAVs in the outside and inside lanes, respectively. Specifically, Figure 4.8(a) shows 1268 
the formation of the time headway between the on-ramp CAV and outside-lane CAV 1; Figure 4.8(b) 1269 
depicts the positional relationships between lane-changing CAV (outside-lane CAV 2) and the targeting 1270 
preceding and facilitating CAVs in the inside lane. A required time headway of 1.5 seconds is achieved 1271 
at the end of the merging section (positioned at 1,000 meters). We can see that at beginning, there is a 1272 
subtle time headway between the on-ramp CAV and outside-lane CAV 1, as shown in Figure 4.8(a), but 1273 



 54 

a clear time headway between inside-lane CAV 2 and outside-lane CAV 2, as shown in Figure 4.8(b). 1274 
This suggests that outside-lane CAV 1 must undergo a greater speed reduction than outside-lane CAV 1275 
2 to create the necessary time headway. Correspondingly, Figure 4.8(c) depicts the vehicle speeds along 1276 
their longitudinal positions, highlighting that while the on-ramp CAV directly accelerates to free-flow 1277 
speed due to its priority, outside-lane CAV 1 decelerates significantly (around 4 m/s) to help the on-1278 
ramp CAV merge. Then, outside-lane CAV 2 also decelerates slightly, i.e., approximately 0.5 m/s, to 1279 
ensure a safe time headway with its target preceding CAV, i.e., inside-lane CAV 1. 1280 

 
(a)  

 
(b) 

 
(c) 

Figure 4.8. Longitudinal position and velocity trajectories of CAVs in case study 1. 1281 

 (a) Time and longitudinal position trajectories of the on-ramp and facilitating outside-lane CAVs; (b) 1282 

Time and longitudinal position trajectories of the lane-changing and inside-lane CAVs; (c) 1283 

Longitudinal position and speed trajectories of all CAVs. 1284 

Case study 2 1285 

The second case study presents different decisions for the five CAVs with slightly different initial 1286 
states, as summarized in Table 4.7. A key difference from the first case study is the initial position of 1287 
inside-lane CAV 2, which is at 550 meters instead of 590 meters. This adjustment creates a free gap 1288 
between the two inside-lane CAVs initially, thereby enabling outside-lane CAV 1 to change lanes to 1289 
avoid the influence of the on-ramp vehicle. 1290 

Table 4.7. Initial vehicle states and output of the proposed model in case study 2. 1291 

 Inside-lane 
CAV 1 

Inside-lane 
CAV 2 

Outside-
lane  

CAV 1 

Outside-
lane 

CAV 2 

On-ramp 
CAV 

Initial position (m) 630 550 590 550 600 
Initial velocity (m/s) 28 27 28 27 26 
Lane change decisions - - Yes No - 
Inside-lane sequence 
decisions 

1st 3rd 2nd - - 

Outside-lane sequence 
decisions 

- - - 2nd 1st 

Planned driving time (s) 12.82 16.24 14.53 15.69 13.91 
Note: - means not applicable.  1292 

As detailed in Table 4.7 and illustrated in Figure 4.9, the on-ramp CAV still drives through the 1293 

merging section before both outside-lane CAVs. Unlike the decisions in Case study 1, outside-lane CAV 1294 

1 decides to move to the inside lane to utilize the available gap there, consequently leaving a substantial 1295 

gap in the outside lane. This strategic lane-changing maneuver allows outside-lane CAV 2 to remain in 1296 
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the outside lane without being affected by the on-ramp vehicle. Figures 4.10(a), 4.10(b), and 4.10(c) 1297 

demonstrate that with the help of the proposed model, the on-ramp CAV can directly accelerate to merge, 1298 

and outside-lane CAV 2 remains unaffected. The lane change maneuver executed by outside-lane CAV 1299 

1 results in a minor speed reduction of 0.8m/s for itself and a speed decrease of 0.4 m/s for inside-lane 1300 

CAV 2. 1301 

 1302 
Figure 4.9. Lateral and longitudinal positions of CAVs in case study 2. 1303 

 
(a)  

 
(b) 

 
(c) 

Figure 4.10. Longitudinal position and velocity trajectories of CAVs in case study 2. 1304 

(a) Time and longitudinal position trajectories of the on-ramp and facilitating outside-lane CAVs;  1305 
(b) Time and longitudinal position trajectories of the lane-changing and inside-lane CAVs;  1306 

(c) Longitudinal position and speed trajectories of all CAVs. 1307 

(7)  Sensitivity analyses  1308 

The lengths of the cooperative lane-changing area (𝐿RS), the merging area (𝐿TPyLP), and the lane-1309 
changing cost (𝑤RS) are three important predefined parameters. To further investigate the proposed 1310 
model, sensitivity analyses are conducted on the above mentioned three parameters under the on-ramp 1311 
and outside mainline lane demand at 1,800 vehicles/hour and the inside mainline lane demand at 1,700 1312 
vehicles/hour. 1313 

Figures 4.11(a), 4.11(b), and 4.11(c) illustrate the total travel delay and the number of lane changes 1314 
for different values of 𝐿RS , 𝐿TPyLP , and 𝑤RS , respectively. Specifically, Figure 4.11(a) highlights the 1315 
positive effect of 𝐿RS on travel delay. As 𝐿RS increases, the total travel delay decreases significantly, 1316 
dropping from 1,600 seconds to 1,400 seconds. Meanwhile, the number of lane changes increases 1317 
greatly, from 30 to 90, until reaching a 𝐿RS threshold at 350 meters, beyond which the number of lane 1318 
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changes stabilizes. Figure 4.11(b) demonstrates the beneficial influence of 𝐿TPyLP on travel delay, with 1319 
the total delay reducing sharply up to 𝐿TPyLP = 200 meters. Beyond 200 meters, the total travel delay 1320 
tends to a stable value. Also, 𝐿TPyLP almost has no influence on the number of lane changes which 1321 
ranges from 103 to 105. Hence, we can conclude that the number of lane changes is primarily influenced 1322 
by 𝐿RS. Finally, Figure 4.11(c) explores the impact of 𝑤RS, showing that as the cost of changing lanes 1323 
increases, lane-changing maneuvers that only yield minor efficiency improvements are no longer 1324 
adopted, consequently leading to an increase in total travel delay. Overall, the results suggest that 1325 
increasing the values of 𝐿RS and 𝐿TPyLP, while decreasing the value of 𝑤RS, generally leads to reduced 1326 
travel delays. Meanwhile, the number of lane changes is directly affected by 𝐿RS and indirectly by 𝑤RS. 1327 

 

(a) 

 

(b) 

 1328 
(c) 1329 

Figure 4.11. Sensitivity analysis 1330 

(a) Impact of 𝐿RS on travel delay and lane changes; (b) Impact of 𝐿TPyLP on travel delay and lane 1331 
changes; (c) Impact of 𝑤RS on travel delay and lane changes. 1332 

(8) Benefits of integration 1333 

In this paper, we develop an original approach that integrates scheduling (i.e., lane selection and 1334 
vehicle sequencing) optimization and trajectory optimization. In this section, we compare the proposed 1335 
integrated approach with a two-step approach that separately solves the scheduling optimization and 1336 
trajectory optimization, in consecutive steps. Figure 4.12 illustrates the differences between the two 1337 
approaches. Essentially, the integrated approach iteratively solves the problem multiple times, whereas 1338 
the two-step approach performs the optimization process only once. 1339 
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 1340 
(a) Structure of the two-step approach. 1341 

 1342 
(b) Structure of the integrated approach. 1343 

Figure 4.12. Structures of the two-step approach and the integrated approach 1344 

Table 4.8. Comparison of travel delays by the two-step approach and proposed integrated approach 1345 

Demand 
ratio 

  Lane 2 / 
Lane 1 

Demand of 
Lanes 
 1&2 

(veh/hour) 

Demand of 
Lane  

3 
(veh/hour) 

Two-step approach Proposed integrated approach 
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(s) (s) (s) (s) (s) (s) (s) (s) 
 
 
 
 

3:1 

 
1,400 

1,300 566 0.72 0.21 0.07 90 496 12% 0.65 0.18 0.06 93 
1,400 629 0.76 0.23 0.08 77 553 12% 0.70 0.21 0.06 80 
1,500 668 0.84 0.26 0.07 60 602 10% 0.80 0.23 0.05 62 

 
1,600 

1,500 900 0.84 0.31 0.13 109 795 12% 0.78 0.27 0.11 115 
1,600 994 0.89 0.36 0.13 86 889 11% 0.83 0.31 0.11 95 
1,700 1,093 0.98 0.40 0.13 66 988 10% 0.93 0.36 0.11 74 

 
1,800 

1,700 1,460 1.06 0.52 0.17 96 1,330 9% 1.04 0.46 0.14 101 
1,800 1,683 1.25 0.61 0.17 66 1,556 8% 1.21 0.54 0.16 75 
1,900 1,792 1.56 0.70 0.07 18 1,739 3% 1.55 0.65 0.09 28 

  1,900 2739 1.91 1.09 0.08 19 2,648 3% 2.06 0.96 0.09 30 
 2,000 2,000 2784 2.03 1.18 0.00 1 2,747 1% 2.29 1.05 0.01 3 
  2,100 2783 2.09 1.16 0.00 1 2,769 1% 2.34 1.06 0.00 1 
 
 
 
 

4:1 

 
1,400 

1,300 492 0.73 0.18 0.07 82 431 12% 0.66 0.16 0.05 83  
1,400 530 0.77 0.19 0.07 68 471 11% 0.73 0.16 0.06 70 
1,500 555 0.81 0.21 0.06 59 497 11% 0.77 0.19 0.05 61 

 
1,600 

1,500 772 0.85 0.25 0.12 94 682 12% 0.76 0.22 0.10 100 
1,600 858 1.00 0.27 0.12 79 766 11% 0.90 0.23 0.11 88 
1,700 936 1.02 0.32 0.12 64 846 10% 0.99 0.27 0.11 69 

 
1,800 

1,700 1,323 1.00 0.43 0.20 102 1,187 10% 0.96 0.38 0.17 109 
1,800 1,522 1.35 0.53 0.15 60 1,397 8% 1.32 0.46 0.14 69 
1,900 1,670 1.69 0.67 0.05 14 1,630 2% 1.72 0.60 0.08 24 

  1,900 2,586 1.88 1.03 0.10 25 2,465 5% 2.00 0.92 0.10 33 
 2,000 2,000 2,648 2.11 1.13 0.00 1 2,616 1% 2.31 1.04 0.02 3 
  2,100 2,646 2.12 1.12 0.00 1 2,631 1% 2.35 1.05 0.00 1 

Notes: (1) the superscripts 𝑇 and 𝑃 represent the two-step approach and the proposed integrated 1346 
approach, respectively; the subscripts 𝑙', 𝑙!, and 𝑙/ refer to the on-ramp, outside lane, and inside 1347 
lane, respectively; (2) 𝐷 denotes the total delay in seconds; (3)  �́�.(, �́�.,, and �́�.. represent the 1348 
average lane delays of the related lanes; (3) D. I. refers to the delay improvement ratio and can be 1349 
calculated by (𝐷+ − 𝐷t) 𝐷+⁄ ; (4) No. lc refers to number of lane changes; (5) “vehicles per hour” is 1350 
abbreviated as “veh/hour 1351 

Table 4.8 and Table 4.9 record comparison results between the integrated model and the two-step 1352 
model in terms of traffic performance, and computational efficacy, respectively. From Table 7, we can 1353 
see that, compared to the two-step model, the integrated model can reduce the total delay by up to 12%. 1354 
Moreover, when comparing the delays of outside-lane vehicles (based on the values in columns �́�.,

z  and 1355 
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�́�.,
d ), the integrated model achieves an obvious delay reduction for outside-lane vehicles, showing its 1356 

effectiveness in mitigating disturbances caused by on-ramp vehicles to mainline traffic. Additionally, 1357 
the integrated model exhibits more lane changes (see the values in columns No. lcz and No. lcd) while 1358 
maintaining similar or even lower delays for inside-lane vehicles (based on the values in columns �́�..

z  1359 
and �́�..

d ). This result indicates that the integrated model can effectively identify more advantageous 1360 
lane-changing opportunities.  On the other hand, as shown in Table 4.8, which records the computation 1361 
time for both methods under different number of vehicles, ranging from three to ten vehicles (each 1362 
contains ten random computational instances). While the two-step method requires less computation 1363 
time, both methods complete the computation within approximately one second, with no big difference. 1364 
This is because the integrated model only takes a few iterations to obtain a solution. Therefore, the 1365 
computation time for the integrated model is considered acceptable. 1366 

Table 4.9. Comparison of computation time by the two-step model and proposed integrated model 1367 

Number of CAVs 3 4 5 6 7 8 9 10 

Mean value of  
computation time (second)  

Two-step model 0.18 0.25 0.33 0.42 0.51 0.65 0.75 0.97 

Integrated model 0.28 0.39 0.56 0.68 0.83 0.91 1.06 1.52 

4.4 Summary 1368 

This chapter investigates the enhancement of traffic performance through the joint optimization of 1369 
lane assignment, vehicle sequences, and trajectories in multilane freeway merging scenarios. To this 1370 
end, we formulate the problem of merging on-ramp CAV flows into multiple mainline CAV flows as an 1371 
MINLP model, which incorporates spatiotemporal relationships between vehicles, vehicle kinematics, 1372 
and road geometry, with the aim of maximizing traffic efficiency, avoiding unnecessary lane changes, 1373 
and generating the smoothest vehicle trajectories. Here, note that lane-changing and merging time points 1374 
are determined optimally by the model, thereby achieving superior performance compared to those 1375 
heuristically predefined methods. Furthermore, the feature of joint determination of trajectories and 1376 
scheduling decisions (lane changes and sequences) ensures that scheduling solutions are contingent on 1377 
the existence of feasible trajectories, and the costs associated with these trajectories can influence 1378 
scheduling decision.  1379 

To efficiently solve the proposed MINLP model, we develop a GBD-based solution algorithm. 1380 
This approach subtly decomposes the model into a relaxed master problem and a primal subproblem. 1381 
This decomposition allows for a more efficient handling by standard solvers and significantly 1382 
accelerates the computation by reducing the number of variables and constraints required, compared 1383 
with solving the original problem directly. Furthermore, a feasibility-guaranteed primal subproblem is 1384 
developed by introducing additional elastic slack variables and penalizing these slacks in the objective 1385 
function to enhance the efficiency of the GBD-based solution algorithm in this study. The effectiveness 1386 
and efficiency of the proposed algorithm are validated through a comparison with the state-of-the-art 1387 
solver Gurobi. 1388 

Demonstrations under different traffic conditions show notable enhancements in traffic efficiency. 1389 
The model’s benefits, e.g., vehicle sequencing, maximizing multilane utilization, and leveraging 1390 
microscopic vehicle information, are highlighted through comparative analyses with three baseline 1391 
models. In addition, our findings suggest that the most time-efficient setting includes a cooperative lane-1392 
changing area of 300-to-350 meters and a cooperative merging area of 150-to-200 meter.1393 
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Chapter 5  

Learning Lane Selection and Driving Orders for 

Multi-Lane Freeway Merging 

This chapter also addresses the multi-lane freeway merging problem and proposes a hybrid bi-
level control approach that integrates deep reinforcement learning with optimization modelling. The 
vehicle sequences, lane selections, and trajectories are optimized to minimize total travel delay. 
Specifically, the upper level serves as the scheduling planner, where we design an attention-based neural 
network to make decisions on target lanes and right-of-way. The lower level employs a nonlinear model 
predictive controller to continuously update trajectories, ensuring vehicles reach the designated lanes 
and follow the planned sequence. The chapter is organized as follows. Section 5.1 mathematically 
describes the cooperative merging of mainline and on-ramp traffic streams at a multi-lane freeway on-
ramp merging section; Section 5.2 introduces the proposed hybrid bi-level controller; Section 5.3 
introduces the upper-level learning-based scheduling planner; Section 5.4 introduces the low-level 
optimization-based trajectory planner; Section 5.5 validates the proposed method by numerical 
experiments; Section 5.5 concludes this chapter. 

5.1 Problem Description 

We first introduce the multi-lane freeway merging scenario considered in this chapter and then 
formulate a general mathematical programming model to describe the problem. 

(1) Multi-lane Freeway Merging Scenario 

This chapter also consider a typical freeway on-ramp merging section, which includes two 
mainline lanes (an inside lane and an outside lane) and an on-ramp lane that extends into an acceleration 
lane, as shown in Fig. 5.1.  

 
Figure 5.1.  Multi-lane freeway merging scenario 
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This merging section also includes a roadside unit (RSU) and a trigger point. Specifically, the RSU 
is positioned upstream of the merge gore, serving to collect CAV information and transmit commands 
to CAVs; the trigger point is located on the on-ramp lane to activate the controller when an on-ramp 
vehicle approaches. Before any vehicle approaches the trigger point, all CAVs operate in a car-following 
mode. Once an on-ramp vehicle passes the trigger point, the RSU initiates a control cycle. Within each 
control cycle, a planned CAV group is formed by grouping together the on-ramp vehicle passing the 
trigger point, the following on-ramp vehicles and nearby mainline vehicles. This CAV group no longer 
operates in the car-following mode but instead follows the controller's instructions to adjust speed and 
perform the lane-changing and merging manoeuvres. Upon completing commands, these CAVs revert 
to the car-following mode. 

(2) Mathematical Problem Description 

Controlling multiple CAV streams includes three tasks: lane selection, vehicle sequencing, and 
trajectory planning. Lane selection and vehicle sequencing are responsible for determining target lanes 
and passing orders for CAVs that drive through the merging section. Trajectory planning is responsible 
for generating trajectories from their initial positions to the end of the merging section, ensuring that 
CAVs reach selected lanes, follow assigned sequences, and keep safe throughout the process. 

These tasks are interrelated in the sense that lane selection and vehicle sequences influence the 
trajectory design. Meanwhile, trajectory cost, in turn, affects the determination of the optimal lane 
selection and vehicle sequences. 

To formally describe this complex decision problem, we introduce some notations in Table 5.1. 

Let 𝐿 ≔ 1,2,3 denote the set of lanes, corresponding to the on-ramp, outside lane, and inside lane, 
respectively; let 𝐼 ≔ 1,2, … , |𝐼| represent a group of |𝐼| planned CAVs. The variables 𝑝%,,, 𝑣%,,, and 𝑢%,, 
respectively denote the longitudinal position, speed, and acceleration of vehicle 𝑖 ∈ 𝐼 at time 𝑡, where 
longitudinal positions refer to the positions along each lane. 

Table 5.1.  Notations in the general model. 

Indices and Sets 
𝐿 set of lanes, 𝑙 ∈ 𝐿. 
𝐼 set of all CAVs, 𝑖, 𝑗 ∈ 𝐼. 
Input Parameters 
𝑝%,%2%, initial position of vehicle 𝑖 ∈ 𝐼. 
𝑣%,%2%, initial velocity of vehicle 𝑖 ∈ 	𝐼. 
𝑝QUVMR end position of acceleration lane. 
Decision Variables 
𝛾%,1 binary, equals 1 if CAV 𝑖 ∈ 𝐼 is assigned to lane 𝑙	 ∈ 	𝐿	\	{	1	}, 0 otherwise. 
δ%,1 
 

binary, equals 1 if CAVs 𝑖  and 		𝑗	(𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼, 𝑖	 < 	𝑗)	are assigned to the same lane, 0 
otherwise. 

𝛼%,1	
 

binary, equals 1 if CAV 𝑖 ∈ 𝐼 is assigned in front of CAV 𝑗	(𝑗 ∈ 	𝐼, 𝑗	 > 	𝑖), and both are 
assigned to the same lane, 0 otherwise. 

𝑇% continuous, travel time for CAV 𝑖 ∈ 𝐼. 
𝑝%,, continuous, the longitudinal position of CAV 𝑖 ∈ 𝐼 at time 𝑡. 
𝑣%,, continuous, the longitudinal velocity of CAV 𝑖 ∈ 𝐼 at time 𝑡. 
𝑢%,, continuous, the control input of CAV 𝑖 ∈ 𝐼 at time 𝑡. 

 

According to the notation introduced, the mixed integer nonlinear programming (MINLP) model 



 61 

is formulated as follows: 

minX𝑇%
%∈*

 (5.1) 

subject to:   

∑ 𝛾%,..∈Y\{'} = 1  ∀𝑖 ∈ 𝐼 (5.2) 

X |γ%,.
.∈Y{'}

− γ1,.| = 1 − δ%,1 ∀𝑖 ∈ 𝐼 (5.3) 

α%,1 + α1,% = δ%,1 ∀𝑖, 𝑗 ∈ 𝐼 (5.4) 

𝑝%,0 = 𝑝%,init ∀𝑖 ∈ 𝐼 (5.5) 

𝑣%,0 = 𝑣%,init ∀𝑖 ∈ 𝐼 (5.6) 

𝑝%,+" ≤ 𝑝final ∀𝑖 ∈ 𝐼 (5.7) 

𝛿%,1Su2𝛼%,1 − 1vu𝑝%,+" − 𝑝1,+"v − ℎT ≥ 0 ∀𝑖, 𝑗 ∈ 𝐼 (5.8) 

𝑂u𝑝%,,v ∩ 𝑂u𝑝1,,v = Ø ∀𝑖, 𝑗 ∈ 𝐼, 𝑡 ≤ 𝑇% (5.9) 

𝑣%,,$' = 𝑣%,, + 𝑢%,,Δ𝑡 ∀𝑖 ∈ 𝐼, 𝑡 ≤ 𝑇% − 1 (5.10) 

𝑝%,,$' = 𝑝%,, +
𝑣%,, + 𝑣%,,$'

2
Δ𝑡 ∀𝑖 ∈ 𝐼, 𝑡 ≤ 𝑇% − 1 (5.11) 

𝛾%,. ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝐼 (5.12) 

𝛿%,1 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝐼 (5.13) 

𝛼%,1 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝐼 (5.14) 

𝑢%,( ∈ 𝒰 ∀𝑖 ∈ 𝐼, 𝑡 < 𝑇% (5.15) 

𝑣%,( ∈ 𝒱 ∀𝑖 ∈ 𝐼, 𝑡 < 𝑇% (5.16) 

𝑝%,( ∈ 𝒫 ∀𝑖 ∈ 𝐼, 𝑡 < 𝑇% (5.17) 

1) Objective Function: The goal is to minimize total travel time of a CAV group. 

2) Combinatorial Constraints: Constraints 2–4 ensure the orderly distribution of traffic flow on 
the mainline lanes. Specifically, constraints 1 state that each CAV must select a target lane from the 
mainline lanes. Constraints 2 and 3 indicate that if any two CAVs select the same target lane, they need 
to establish a unique driving sequence. Additionally, constraints 4–6 state the binary nature of related 
variables. 

3) Trajectory Constraints: Constraints 5–11 define the vehicle’s motion from its initial state to the 
final state that completes merging and lane-changing manoeuvres. Constraints 5 and 6 specify the initial 
position and speed conditions of the vehicles. Constraints 7 and 8 outline the terminal conditions. 
Specifically, constraints 7 require that the merging and lane changes must be completed before the end 
of the merging section. Constraints 8 ensure that the timing of vehicles driving through the end of the 
merging section is consistent with the decision variables for lane selection and vehicle orders. 
Constraints 9 guarantee no collisions at any time step, in which OuxU,Iv represents the space occupied 
by vehicle 𝑖 at time 𝑡. Constraints 10 and 11 describe the kinematic equations. Finally, constraints 15–
17 define the permissible ranges for control inputs, speeds, and positions, respectively. 

In summary, CAV-based merging control involves strategic scheduling decisions aimed at 
minimizing total travel time, along with multi-vehicle trajectory planning that ensures safe movement 
through the merging section while adhering to specified target lanes and vehicle sequences. 
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5.2 Bi-level Control Framework 

To solve the above mentioned MINLP model in real time, we design a hybrid bi-level control 
framework that combines the rapid inference capabilities of neural networks with the safety guarantees 
provided by mathematical models, as depicted in Figure 5.2. The upper-level module handles 
scheduling-related decisions, and the lower-level module determines trajectory-related variables. 

 
Figure 5.2.  Hybrid bi-level control framework. 

 
In the upper-level scheduling problem, we introduce a novel Vehicle Ordering and Lane 

Assignment Policy Network (VORLA-PN) to determine passing orders and lane selections for a fleet 
of CAVs, given the position, speed, and lane information of a CAV group. 

In the lower-level trajectory planning problem, a nonlinear model predictive control (NMPC) 
planner is developed to generate collision-free trajectories, in compliance with the sequence and lane 
decisions specified by the VORLA-PN. Also, it provides total travel delay to guide the learning process 
of VORLA-PN towards improving overall traffic efficiency. 

5.3 VORLA Policy Network 

(1) Markov Decision Process Formulation 

We formulate the problem of determining vehicle orders and lane assignments as an |𝐼|-step 
Markov Decision Process (MDP), denoted as a tuple ⟨𝐼, 𝑆, 𝐴, 𝑅, 𝑇⟩, where 𝐼 denote the set of CAVs, 
𝑆 the state space, 𝐴 the action space, 𝑅 the reward function, and 𝑇 the state transition function. The key 
MDP elements are defined as follows: 

 State: The state at each decision step 𝑘, defined as 𝑠( 	= {𝑿,𝑵() ∈ 	𝑆, comprises two parts: the 

initial CAV states 𝑿 and the dynamic occupation vector 𝑵(. 𝑋 = S𝑋('), … , 𝑋(|*|)T
+

 contains all CAVs’ 

information at the moment the trigger point is activated, where 𝑋(%) = S𝑝(%), 𝑣(%), ℓ(%)T
+

 captures the 

longitudinal position, velocity, and lane ID of CAV 𝑖 ∈ 𝐼. 𝑁( = S𝑁(
., , 𝑁(

..T
+

represents the occupation 
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status of the mainline lanes 2 and 3. Each column vector, 𝑁(
.,𝑎𝑛𝑑𝑁(

.., is a one-hot vector of length |𝐼| 
consisting entirely of zeros except for a single cell. The single cell is marked as one to uniquely indicate 
the current occupant of the corresponding mainline lane at step 𝑘. For instance, if CAV 𝑖 was assigned 
to lane 2 at the last decision step 𝑘 − 1, then 𝑁(

., would become [0, … , 1, … , 0]+ where 1 is located in 
the 𝑖th cell. 

Action: The action is represented as 𝑎( = (𝑐( , 𝑙() ∈ 𝐴, where 𝑐( ∈ 𝐶( denotes the selection of 
one CAV from a set of available CAVs at step 𝑘, and 𝑙( ∈ 𝐿( refers to the selection of a target lane from 
a set of permissible target mainline lanes. Thus, each decision step involves choosing a CAV and 
assigning it a target lane, until all CAVs are assigned. It is important to note that the sequence in which 
the CAVs are selected forms a "driving order". 

Then, the available CAV set 𝐶( is determined by the following two masking rules: 

• Each CAV can be assigned only once during the process. 
• Based on the initial order of vehicles in each lane, the leading CAV must be assigned before the 

subsequent CAVs. 

The permissible lane set 𝐿( is dependent on the initial lane ID of the selected vehicle. 

Mainline vehicles can freely choose between the two mainline lanes (i.e., lane 1 and lane 2), 
whereas on-ramp vehicles are restricted to choose the outside lane (i.e., lane 2).  

Then, the corresponding masking 𝑀(
� ∈ ℝ|�| and 𝑀(

Y ∈ ℝ!×|*| are constructed based on the rules 
of 𝐶( and 𝐿(, to prohibit invalid actions. 

Reward: The objective is to minimize the total travel delay for a group of CAVs. Accordingly, the 
reward function includes a sparse termination reward at the final decision step, denoted by 𝑅|*| =
−∑ 𝑇%%∈* , which corresponds to the negative of the objective function (Equation 1). The rewards for all 
preceding decision steps are set to zero. Hence, the reward function is written as: 

𝑅( = ó 0, ∀𝑘 ∈ {1,… , |𝐼| − 1}
				−∑ 𝑇%%∈* , 𝑘 = |𝐼|                  (5.18) 

State transition: Executing action 𝑎( in state 𝑠( results in the next state 𝑠($', based on the state 
transition rules 𝑇(𝑠($'|𝑠( , 𝑎(). Specifically, given the action (𝑐( , 𝑙(), the corresponding column of 𝑵( 
is updated, while the other column remains unchanged from the previous state. The updates are as 
follows: 

𝑁($'. 	= ô
𝑒�; , 𝑙 = 𝑙(

	
					𝑁(. , ∀𝑙	 ≠ 𝑙(

                      (5.19) 

where 𝑁($'.  reflects the updated assignment of vehicles and lanes; 𝑒�; is a one-hot vector with a 1 at 
𝑡ℎ𝑒	𝑐(th position and 0s elsewhere. At each step, one column is updated because only a single CAV is 
assigned to one of the mainline lanes. Also, 𝑋, which includes initial positions, velocities, and lane 
information, stays constant. If all CAVs have been assigned, the next state is the terminal state. 

(2) Sequential Decision-Making 

Given initial CAV states 𝐗, the policy network VORLA approximates a stochastic policy π� , 
which outputs the probability of a solution 𝒂. A complete solution, 𝒂 = u𝑎', … , 𝑎|*|v, compromises a 
series of decisions 𝑎( = (𝑐( , 𝑙() at each step 𝑘. Here, 𝑐( represents the selection of a vehicle, and 𝑙( 
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denotes the assignment of that vehicle to a specific lane. The resulting sequence u𝑐', … , 𝑐|*|v forms the 
driving order for |𝐼| CAVs. 

The process of generating a complete 𝑎 can be factorized into a chain of conditional probabilities: 

𝜋�(𝑎|𝑋) =ù𝜋�(𝑎(|𝑁(4', 𝑋)
|*|

(3'

(5.20) 

This factorization implies that the solution can be constructed incrementally, with the decision at each 
step 𝑎(  depending on the decisions from previous steps  𝑁(4'  and 𝑿 . Consequently, a sequential 
decision-making process is developed to generate each partial solution 𝑎(  iteratively, thereby 
constructing the complete solution 𝑎. 

The proposed VORLA network comprises a policy network π� and a baseline network 𝑏�. The 
policy network π� utilizes a transformer encoder to learn the interrelationships among a group of CAVs. 
Additionally, it includes a decoder that is repeatedly executed during the sequential decision-making 
process to produce the action sequence 𝑎. The baseline network 𝑏� is employed to facilitate learning 
by variance reduction.  Fig. 5.3 illustrates the VORLA network structure, which is explained as follows. 

 

 

Figure 5.3.  The network structure of proposed VORLA-PN 

Feature encoder: This encoder takes in the initial CAV states 𝐗 ∈ 𝑅|*|×𝟛 and attends to information 
from all CAVs. The resulting vehicle state embedding 𝑯𝒗 is represented as: 

𝑯𝒗 ∈ 𝑅|*|×? = TransformerEnc(𝑋), (5.21) 

where 𝑑 denotes the embedding dimensions, and the transformer encoder, introduced in Appendix D, 
is adopted to process the input states. 

Sequential decoder: The decoding process executes the decoder repeatedly, with each step 
inferring the correlation between lane situations and CAV states and generating a joint probability 
distribution for the CAVs and mainline lanes.  
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(i) Lane specified feature extractor: Given the lane occupation states 𝑵𝒌, the two feature vectors 
ℎ. , 𝑙 ∈ {𝑙!, 𝑙/}, are first selected from the output of encoder 𝑯7: 

ℎ. ∈ 𝑅? = u𝑁(.v
+ ⋅ 𝑯7 , 	 𝑙 ∈ {𝑙!, 𝑙/} (5.22) 

ℎ. provides information about which CAVs are currently assigned to the mainline lanes. Also, note that 
when a mainline lane has not yet been selected, the corresponding ℎ. is filled with trainable parameters 
since no CAVs have been assigned to this lane. 

(ii) Lane and CAV feature fuser: Next, we mine the correlation between the current lane occupation 
and candidate CAVs. We input the lane-specific features ℎ. as the query source and the candidate CAV 
features as the key-value source into cross-attention layers to output ℎ.g ∈ ℝ?, effectively encoding the 
contextual information of the lane occupation and candidate CAVs. 

Multi-head attention (MHA), as a vital component of our network, is detailed in Appendix C. The 
candidate CAV features are extracted using the operation 𝑯7 ⊙𝑀(

� , where the symbol ⊙ represents 
the element-wise product, and the mask 𝑀(

�  is broadcasted across each column of 𝑯7  to filter the 
relevant CAVs from. The resulting lane feature vector ℎ.g is computed as:         

ℎ.g ∈ ℝ? = CrossAttentionuℎ. , 𝑯7 ⊙𝑀(
�v, 	 𝑙 ∈ {𝑙!, 𝑙/} (5.23) 

Note that two lane occupation features are separately processed with candidate CAV features, each 
through its dedicated MHA layer. 

(iii) Lane feature fuser: Subsequently, we concatenate the features of both lanes and pass them 
into a self-attention layer to produce the output ℎls , representing the implicit context of the entire 
mainline lanes: 

ℎls ∈ ℝ!? = SelfAttention(ℎc, ℎc) (5.24) 

where ℎc ∈ ℝ!? = Concatuℎ.,
g , ℎ..

g v. 

Then, we compute the attention scores 𝑈. ∈ ℝ|*|, 𝑙 ∈ {𝑙!, 𝑙/}, among the mainline lanes and 
candidate CAV representations using Equation5.25 and clip the result (before masking) within 
[−𝐶, 𝐶]	(𝐶 = 10) using the tanh function before applying the mask (Bello et al., 2016): 

𝑈. ∈ 𝑅|*| = 𝐶 ⋅ tanh !-ls
(#)(𝑯4)@

√?
" , 	 𝑙 ∈ {𝑙!, 𝑙/} (5.25) 

where ℎls
(.,) and ℎls

(..) ∈ ℝ? are spitted from ℎls.  

Lastly, 𝑈.,and 𝑈.. are concatenated together to obtain 𝑈 ∈ 𝑅𝟚×|*|, and processed by the SoftMax 
operation to represent the target lane and vehicle probability matrix 𝑷 ∈ 𝑅𝟚×|*|. Each column of 𝑈 
contains two values, corresponding to the scores of assigning a CAV to each of the two mainline lanes. 
Hence, the next passing CAV and the associated lane selection are determined by 𝑷. The decoder uses 
the dependencies between lane situations and candidate CAV features to produce a selection probability 
matrix. During the training phase, actions are sampled from this multinomial probability distributions; 
during the inference phase, actions are selected greedily. 

(3) Leader-and-Lane-specific Credit Assignment 

During training, it is important yet challenging to correctly attribute the sparse termination cost, 
i.e., the total delay, to a sequence of vehicle and lane selections. We propose a leader-and-lane-specific 
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credit assignment rule to compute return 𝐺 at each step, as outlined by the equation: 

𝐺 $𝑠( , 𝑐( , 𝑙(%
>;

& = −D𝑇(𝑐() + X 𝑇(𝑐(A)
|*|

(A3(

⋅ 𝕀(𝑙(A = 𝑙()E , (5.26) 

where action 𝑎( contains two terms: 𝐶( and 𝐿(, which respectively denote the selected vehicle and lane 
at step 𝑘; 𝑇 represents the travel time of the selected vehicle; and 𝕀1𝑙𝑘′ = 𝑙𝑘2 is an indicator function 
that equals 1 solely when 𝑙(A equals 𝑙(. This equation means that the return calculation only sums the 
travel time cost of subsequent CAVs assigned to the same lane, rather than summing subsequent all 
costs. 

This rule associates an action only with the rewards obtained afterward, as prior rewards have no 
bearing on how good the action is, which is also consistent with microscopic traffic flow models: the 
leader's driving behaviour can influence the followers, but the followers cannot influence the leader. 

Moreover, this rule differentiates the mutual vehicle influences from different lanes. For example, 
lane-changing CAVs direct impact the target-lane subsequent vehicles, without impacting those in the 
previous lane. Also, for inside-lane CAVs, the impact of assignment of on-ramp CAVs on them is 
challenging to assess. However, the influence of CAVs moving from the outside lane to the inside lane 
is evident. 

(4) Policy Optimization 

The REINFORCE algorithm (Williams 1992) is utilized to update the policy network π�, with a 
learnable baseline network 𝑏� to reduce the variance of gradient estimates. The REINFORCE loss, ℒj�, 
is formulated as follows: 

ℒRL = −𝔼�∼�C �]𝐺(τ) − 𝑏�(τ)^ ⋅ log π� (τ)  , (5.27) 

where 𝔼�∼�D denotes the expectation over the trajectories τ = (𝑠0, 𝑎0, 𝑠', 𝑎', … ) (i.e., the sequences of 
actions, states, and rewards) sampled from 𝜋�; 𝐺( refers to the return at step 𝑘, which is calculated 
based on Equation (5.26); 𝑏� is the baseline reward of instance calculated by the baseline network and 
π� is the action probability by the policy network.  To discourage premature convergence, a negative 
entropy loss is integrated as follows: 

ℒentropy = −Entropy(𝜋�) = 𝔼�∼�D FX 𝜋�(𝑎|𝑠)
A,>∈�

logu𝜋�(𝑎|𝑠)vI (5.28) 

Consequently, the total loss for the policy network denoted as ℒ�, combines both the REINFORCE 
loss and the entropy loss:  

ℒ� = ℒRL + 𝑐' ⋅ ℒentropy (5.29) 

where 𝑐'  is the coefficient of entropy loss. By minimizing ℒ� , the policy distribution is optimized 
towards minimizing total travel delay. 

Regarding the baseline network, its loss is defined as follows: 

ℒ� = 𝔼�∼�C y]𝐺(τ) − 𝑏�(τ)^
!
z , (5.30) 

which aims to minimize the mean squared error (MSE) between the unbiased returns from the 
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environment 𝐺(τ) and the estimated baseline values 𝑏�(τ). 

Lastly, the details of training procedure are outlined in Algorithm 1. 

Table 5.2.  Training process for VORLA network. 

Algorithm 1. Training process for VORLA network 
Input: Training dataset 𝐷, number of epochs 𝐸, numbers of CAVs per epoch 𝐼, batch size 𝐵. 
Output: Network parameters 𝜃 and 𝜙 
1 
2 

for epoch∶= 1	to	𝐸 do  
        Sample 𝐵 instances from dataset 𝐷. 

3 
4 
5 

        for instance∶= 1	to	𝐵 do 
                set initial CAV states 𝑿. 
                set initial lane selection states 𝑵'. 

6                 set step counter 𝑘 ← 1. 
7 
8 

         while  𝑘 < 𝐼  
                𝒂( ← 𝜋((𝑵( , 𝑿). 

9                  end while 
10          Execute actions (𝒂', … , 𝒂+) by low-level NMPC and obtain the delays of all CAVs. 
11          Calculate returns (𝐺', ⋯ ,𝐺|*|) based on Equation (5.26). 
12        end for 
13        Calculate loss ℒ� based on (5.29). 
14        Calculate loss ℒ� based on (5.30). 
15        𝜃 ← ADAM(𝜃, ∇ℒ�). 
16        𝜙 ← ADAM(𝜙, ∇ℒ�).	
17 end for 
18 return 𝜃 and 𝜙 

 

5.4 Low-level Nonlinear Model Predictive Controller 

We formulate the trajectory generation for a short horizon as an unconstrained optimization 
problem, which is solved by an open-source library LBFGS-Lite. 

min
�",�",t"

S𝐽: , 𝐽A, 𝐽> , 𝐽% , 𝐽( , 𝐽6T 	 ⋅ 𝜆 (31) 

where 𝑈% = {𝑢%,,},30+ , 𝑉% = {𝑣%,,},30+ ,  and 𝑃% = {𝑝%,,},30+ 	describe the trajectory of CAV 𝑖;  𝜆  is the 
weight vector used to trade off each cost term. 

(1) Traffic Efficiency 𝑱𝒆  

To optimize traffic efficiency, we minimize the cumulative difference between each vehicle's speed 
and the desired speed over the entire time horizon. This is defined as: 

𝐽:   =  ∑ u𝑣%,,  −  �̅�v
!+

,30 (5.32)  

(2) Target Sequence and Lane 𝑱𝒔 

The upper-level controller decides the target mainline lane and vehicle order for navigating 
through the end of the merging section, which consequently determines the target leading vehicle for 
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each CAV. Hence, NMPC must form the minimum spacing between any CAV 𝑖	and its target leading 
vehicle over the time horizon: 

𝐽A =X𝜓u𝑝%,, , 𝑣%,, , �̂�,v
!

+

,30

(5.33) 

where �̂�,  represents the position of the target leading vehicle at time 𝑡, and 𝜏 is the minimum time 
headway. Note that the leading vehicle is determined by the upper-level controller. ψu𝑝%,, , 𝑣%,,v =
min{�̂�, − 𝑝%,, − 𝑣%,, − 𝑑0 ⋅ τ, 0} indicates insufficient spacing, where the gap is smaller than the product 
of the follower's velocity and the minimum time headway, plus the standstill distance 𝑑0. 

(3) Reciprocal Avoidance 𝑱𝒂 

The points which are close to the current leader are selected and penalized: 

𝐽> =X𝜓u𝑝%,, , 𝑣%,, , 𝑝e,v
!

+

,30

(5.34) 

where 𝑝e, represents the position of current leading vehicle in the same lane at time 𝑡,. 𝜓u𝑝%,, , 𝑣%,,v =
min{𝑝e, − 𝑝%,, − 𝑣%,, − 𝑑0 ⋅ 𝜏, 0}  indicates insufficient spacing. 𝑝e, denotes the position of current 
leading vehicle. 

(4) Initial Condition 𝑱𝒊 

 We specify the starting position and speed conditions for the trajectory of each CAV. 

𝐽% = u𝑝%,0 − 𝑝%,initv
! + u𝑣%,0 − 𝑣%,initv

! (5.35) 

(5) Kinematic Condition 𝑱𝒌 

𝐽(  links the control inputs, velocities, and positions between consecutive time steps, which is 
defined by the following equation: 

𝐽( =X		u𝑣%,,$' − 𝑣%,, − 𝑢%,,Δ𝑡v
!

+

,30

+ u𝑝%,,$' − 𝑝%,, − 0.5u𝑣%,, + 𝑣%,,$'v ⋅ Δ𝑡v
! (5.36) 

Here, the difference in velocities is linearly dependent on the control input, while the difference in 
positions has a parabolic relationship with velocity. 

(6) Feasibility Condition 𝑱𝒇 

We limit the value of velocity and control input within feasible regions. 

𝐽6 =Xψ7u𝑣%,,v
+

,30

+ ψGu𝑢%,,v, (5.37) 

where 𝜓7 and 𝜓G are calculated as: 

𝜑u𝑥%,,v = 2
u𝑥%,, − 𝑥v

!, 𝑥%,, < 𝑥
0, 𝑥 ≤ 𝑥%,, ≤ �́�

u𝑥%,, − �̅�v
!
, 𝑥%,, ≥ �̅�

(5.38) 
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5.5 Experiments 

Extensive numerical experiments are conducted to evaluate and analyse our approach. Section 
5.4.1 describes the experimental settings. Section 5.4.2 assesses the efficacy of our method by 
comparing it with three baseline methods in terms of traffic performance and computation time. Section 
5.4.3 evaluates the effectiveness of the proposed leader-and-lane specific credit assignment mechanism. 
Section 5.4.4 presents an ablation study conducted to assess the impact of a key component of our 
method. Lastly, Section 5.4.5 provides a case study to illustrate the decision process and the trajectories 
generated. 

(1) Experimental Settings 

The microscopic traffic simulator SUMO is adopted to conduct numerical experiments. The 
simulated freeway segment consists of two mainline lanes and one on-ramp, as depicted in Fig. 5.4. The 
mainline lanes extend for 1.8 kilometres, comprising three sections: the upstream segment, where CAVs 
are randomly generated; the cooperation segment for merges and lane changes; and the downstream 
segment, which fully covers the affected areas. 

 

Figure 5.4.  Road layout 

During training, each episode randomly generates a group of 12–15 CAVs filling the upstream 
segment, with 25–30% on the on-ramp, 35–40% on the outside lane, and 30–40% on the inside lane. 
The initial time headway between any two CAVs in one lane is distributed within 1.2–2 seconds, with 
1.2 seconds being the minimum time headway. The initial speeds of mainline CAVs and on-ramp CAVs 
are randomized between 100–120 km/h and 80–104 km/h, respectively. Table 5.2 provides the values 
of vehicle parameters and the hyper-parameters for training DRL methods. 

Table 5.3.  Vehicle Parameters and hyperparameters for training DRLs. 

Vehicle parameter Value Hyper-parameter Value 

Minimum time headway τ 1.2s Batch size |𝐵| 64 

Standstill distance 𝑑0 10m Learning rate η� 1e-5 

Maximum speed �̅� 120 km/h Learning rate η� 1e-5 

Maximum acceleration 𝑎h 5m/s4! Entropy weight 𝑐' 5e-3 

Maximum deceleration 𝑏h 8m/s4! Embedding dim 128 

 

(2) Comparative Analysis 

We compare our method with following two methods to evaluate its performance: 

• SA: Simulated Annealing (SA) is a metaheuristic method with guided neighbourhood search to 
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approximate global optimization. Here, it is employed to search for vehicle orders and lane 
assignments. Specifically, each solution is generated by randomly picking some vehicles from 
different lanes and then assigning them to new target lanes. The process of SA detailed in 
Appendix E is respectively run within time limits for stopping: 10 minutes (SA-10) and 40 
minutes (SA-40). 

• FIFO: First rotate CAVs from the ramp and outside lanes to a shared straight line and then 
orders them based on the first-in-first-out (FIFO) way. 

Table 5.3 presents the results of different methods on 128 instances. These instances are randomly 
generated using the RL training seed and other random seeds, respectively. Each instance randomly 
generates 15 vehicles, resulting in a total of 1920 vehicles. The evaluation metrics include average 
vehicle delay and running time. Lower average vehicle delay indicates a higher quality solution, and 
shorter computation time reflects better suitability for real-time applications.  

Table 5.4.  Performance comparison. 

  Ours SA-10 SA-40 FIFO 

Training 
seeds 

Average travel 
time (s) 

4.23 4.41 4.36 5.01 

Computation time 
(s) 

< 0.01 600 2400 < 0.01 

Validation 
seeds 

Average travel 
time (s) 

4.33 5.08 4.92 5.28 

Computation time 
(s) 

< 0.01 600 2400 < 0.01 

 

The data in the table demonstrates that our method outperforms the SA-10, SA-40, and FIFO 
approaches in both average travel time and computation time. Our method achieves the lowest average 
travel time in both training (4.23s) and validation (4.33s) phases, indicating more efficient traffic 
management. Moreover, the computation time is significantly lower than that of the SA-10 and SA-40 
methods, which take 600s and 2400s, respectively. This suggests that our method is not only more 
effective in reducing travel time but also far more computationally efficient, making it highly suitable 
for real-time applications. 

(3) Analysis on credit assignment methods 

To demonstrate the effectiveness of our proposed leader-and-lane-specific credit assignment 
mechanism, we compare it with other reward shaping approaches: 

• Terminal reward: An entire sequence of actions is associated with a sparse terminal reward, i.e., 
the negative average travel delay of a CAV group. 

• Vehicle-specific reward: Each action is only associated with the negative travel delay of the 
selected vehicle. 
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Figure 5.5.  Learning curves under different credit assignment approaches. 

As illustrated in Figure 5.5, under various credit assignment approaches, the policy network 
converges stably but achieves different performance. The proposed assignment approach significantly 
helps the policy network converge to solutions with lower average delays. It is noteworthy that this 
approach explicitly associates each action with the delays of a selected vehicle and those subsequently 
affected, rather than with the delays of all vehicles. In contrast, the terminal reward approach attempts 
to directly optimize an entire action sequence towards the minimum overall delay. However, the 
network struggles to learn effective solutions due to the difficulty of understanding the impact of each 
vehicle and lane choice on the delays of subsequent vehicles. Another vehicle-specific approach 
associates each action solely with the delay of the selected vehicle. Due to its explicitness, the network 
converges to a local optimum more effectively than with the terminal reward approach. However, 
because it does not account for the costs to following vehicles, the resulting traffic performance is 
inferior to that achieved by our proposed assignment approach. 

(4) Ablation studies 

Our DRL method incorporates learnable baseline and entropy regulation techniques. We 
conducted ablation studies to assess the effectiveness of these techniques. Fig. 5.6 displays the learning 
curves under three conditions: with baseline and entropy regulation, without the baseline, and without 
entropy. 

 
Figure 5.6.  Ablation study. 

The key observations are as follows: First, the learning curve, aided by the two technologies, 
achieves noticeably lower cost (i.e., average delay), demonstrating their effectiveness in converging to 
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superior solutions. Second, in the absence of the baseline, variance increases, exerting adverse effects 
on the learning process. Lastly, without entropy regulation, the learning curve exhibits a pronounced 
bend after 500 episodes, indicating rapid and premature convergence. 

(5) Case study 

To visualize the decision process and detailed trajectories generated by the proposed approach, a 
case study on a group of six CAVs making lane-changing and merging decisions is carried out. Figure 
5.7 (a)-(f) displays how attention mechanisms are applied to different lanes and vehicles to make 
merging decisions. The attention values help prioritize which vehicles and lanes should be focused on 
during the merging process. For target lane selection, each vehicle has two scores for two mainline lanes, 
referred to as the lane attention (L.A.) values. For vehicle selection, each vehicle attention (V.A.) score 
is calculated by summing the two L.A. values. Higher V.A. and L.A. values correspond to a higher 
probability of choosing and assigning the vehicle to the lane. 

In the first step, as shown in Figure 5.7(a), based on their initial positions and velocities, CAV5 is 
the first vehicle to be selected and assigned to the inside lane. CAV3 has the second highest vehicle 
attention value, making it a strong candidate for selection as the first vehicle. Unsurprisingly, in the 
second step, CAV3 is then selected and assigned to the outside lane, consistent with the decision made 
in the first step. In the third step, both CAV1 and CAV6 are strong candidates for selection, especially 
compared to CAV4, due to their more downstream positions. The policy network selects CAV1 first, 
followed by CAV6 in the subsequent step. Finally, CAV4 and CAV2 are selected in order, with CAV4 
chosen first because of its higher speed and more downstream position. Notably, CAV4 changes to the 
inside lane to avoid the influence of the two on-ramp vehicles, which is a preferred decision for 
optimizing overall traffic efficiency. 

 

 

(a) Step 1: CAV5 is selected and assigned to the inside mainline lane. 

 

(b) Step 2: CAV3 is selected and remains in the outside mainline lane. 
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(c) Step 3: CAV1 is selected and assigned to the outside mainline lane. 

 

(d) Step 4: CAV6 is selected and assigned to the inside mainline lane. 

 

(e) Step 5: CAV4 is selected and changed to the inside mainline lane. 

 

(f) Step 6: CAV2 is selected and assigned to the outside mainline lane. 

Figure 5.7.  Vehicle and lane selection at each step. 

 

5.6 Summary 

In this chapter, we mathematically describe and define CAV-based multi-lane freeway merging 
control, clarifying the connections between scheduling decisions and trajectory planning. We then 
propose a hybrid bi-level control approach that integrates deep reinforcement learning with optimization 
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modelling to optimize vehicle sequences, lane selections, and trajectories, aiming to combine the 
strengths of both methods. Thanks to the low-level NMPC providing accurate delay data, the upper-
level policy network can correctly and unbiasedly estimate the impact of scheduling decisions under 
various vehicle scenarios. 

By incorporating NMPC into DRL methods, we achieve comprehensive strategies for various 
decision combinations, significantly improving traffic efficiency rather than focusing solely on 
individual vehicles. Additionally, by formulating the scheduling problem as a MDP, our method enables 
a more informed and effective search process for the merging problem. 

Experiments demonstrate that our method quickly achieves superior solution quality compared to 
other meta-heuristic and rule-based methods. It effectively balances computational time with solution 
quality while also offering promising scalability across scenarios with varying numbers of vehicles. 
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Chapter 6  

Conclusion 

6.1 Summary 

This thesis presents three CAV-based control strategies aimed at improving overall traffic 
efficiency, covering scenarios from single-lane freeway merging sections to multi-lane freeway merging 
sections. Mathematical models are formulated for each case, revealing the close coupling between 
vehicle scheduling and trajectory planning, which introduces significant computational challenges. To 
address these challenges, the solution algorithms are developed from the following three perspectives 
to expedite the solving process: 

In Chapter 3, seeking the optimal vehicle sequence is treated as a tree search problem, with the 
straightforward strategy to expedite the search process being the pruning of tree branches. Motivated 
by this idea, an optimal condition is derived based on the properties of single-lane freeway merging 
scenarios, effectively narrowing down the search nodes. 

In Chapter 4, the scope is extended to the multi-lane freeway merging problem, making the 
formulated model more complex compared to the model in Chapter 1. It is noted that, although the 
overall model is complex, it can be more easily solved by existing solvers if certain variables are fixed. 
To leverage this, a GBD-based decomposition method is designed to iteratively solve two more 
manageable sub-models. 

In Chapter 5, inspired by the application of deep reinforcement learning (DRL) in combinatorial 
optimization, a DRL-based method is designed to directly search for effective scheduling decisions, 
while low-level trajectories are generated by optimization methods to ensure safety. 

6.2 Contributions 

The contribution of this thesis can be summarized according to the three main works above. 

The first work in Chapter 3 for the single-lane freeway merging problem has the following six 
contributions.  

§ A mixed integer nonlinear programming (MINLP) model is formulated to model the 
cooperative merging of on-ramp and mainline traffic streams. The proposed model jointly 
determines both the optimal merging sequence of these vehicles and their trajectories to 
minimize the disruption of on-ramp merging traffic to mainline traffic. 

§ An integrated solution algorithm is proposed to simultaneously obtain the optimal merging 
sequence and detailed trajectories. The vehicle sequence search process is designed based 
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on the necessary optimality condition of the model that we identify and prove, so that the 
solution space for integer variables, i.e., merging sequences, is greatly refined, while 
ensuring optimality. During the search process, the relaxed nonlinear programming (NLP) 
model is solved efficiently by an iterative linear programming method. Thus, the proposed 
methods can satisfy real-time computation. 

§ The proposed approach, composed of the proposed model and algorithm, is an integrated 
approach so that the resulting merging sequence can guarantee feasible and high-quality 
trajectories. Moreover, the optimal traffic efficiency is obtained by the resulting optimal 
merging sequence, rather than heuristically assigning a facilitating vehicle to an on-ramp 
vehicle, as in many existing studies. 

§ Trajectories are characterized by continuous-time functions so that artificial setting of 
numerous discrete points is avoided, and the number of decision variables is reduced. The 
convex hull property of the Bernstein basis is incorporated to ensure that all constraints, 
such as car-following, merging safety and constraints on vehicle speeds and accelerations, 
are guaranteed at any time, rather than only at discrete time points. 

§ The merging time and locations are determined by the model instead of relying on external 
computational procedures. In other words, the merging time and locations are part of the 
outcome of the proposed model. 

§ The traffic efficiency, safety, and computational efficiency of the proposed approach are 
demonstrated under different traffic conditions and compared with three alternative 
methods, on the NGSIM dataset. 

The second work discussed in Chapter 4, which focuses on decomposing scheduling and trajectory 
planning decisions for the multi-lane freeway merging problem, makes three key contributions. 

§ This chapter proposes a mixed integer nonlinear programming (MINLP) model that can 
simultaneously optimize lane changes, vehicle sequences, and detailed trajectories. The 
proposed model optimizes not only traffic performance (i.e., minimizing the total travel 
time and reducing unnecessary lane-changing manoeuvres) but also trajectory quality (i.e., 
maximizing the smoothness of speed and acceleration profiles). Thus, from the 
macroscopic perspective, the proposed model fully utilizes the capacity of multiple lanes; 
from the microscopic perspective, the proposed model comprehensively evaluates the 
impact of each role of vehicles, i.e., as a facilitating, lane-changing, or car-following 
vehicle, on the overall system benefit. This comprehensive evaluation helps determine the 
most cost-effective driving manoeuvres and trajectories for each vehicle.  

§ To solve the proposed model, we have designed a Generalized Benders Decomposition 
(GBD)-based algorithm. A relaxed master problem and a primal subproblem are derived 
from the proposed MINLP model. To accelerate convergence, the feasibility-guaranteed 
primal subproblem is introduced. Moreover, the property of finite convergence is 
proved. The proposed algorithm significantly reduces computational time compared to 
Gurobi due to this subtle decomposition of the nonlinear programming problem and the 
integer programming problem. 

§ A series of comprehensive evaluation experiments using the open-source SUMO 
simulator over various traffic conditions are conducted. Our model outperforms all 
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benchmark models, demonstrating the benefits of optimal vehicle lane-changing and 
sequencing decisions, and leveraging microscopic vehicle information. Additionally, we 
analyse the impact of the lengths of cooperative areas on our model’s performance and 
determine the recommended lengths for the optimal traffic efficiency. 

The third work discussed in Chapter 5, which integrates the rapid inference capabilities of DRL 
for vehicle scheduling decisions with explainable and safe optimization modelling for vehicle trajectory 
planning, makes five key contributions. 

§ A novel hybrid paradigm that combines DRL for solving vehicle combinatorial scheduling 
decisions with optimization methods for trajectory generation is introduced. In this 
approach, the trajectory optimization provides accurate delay information to the DRL 
during the training phase, allowing the policy network to unbiasedly evaluate the impact 
of scheduling decisions. 

§ The VORLA policy network is designed to determine the target lanes and right-of-way 
for a group of vehicles. A sequential decoding process is proposed to generate the 
passing order and lane assignment one vehicle at a time. 

§ The leader-and-lane specific credit assignment mechanism is developed, leveraging 
domain knowledge to effectively learn a sequence of actions that minimize overall travel 
delay. 

§ The nonlinear model predictive controller is formulated to safely accomplish the 
scheduling tasks, ensuring that the vehicles follow the required sequence and lane 
assignments. 

§ Experiments demonstrate that our method consistently achieves superior solution quality 
compared to other meta-heuristic and rule-based methods. It effectively balances 
computational time with solution quality and shows promising scalability across scenarios 
with varying numbers of vehicles. 

6.3 Future work 

The following directions can be further explored in the future.  

§ As a future endeavour, first, it would be desirable to extend the current method to more 
complex multi-lane scenarios (with three or more mainline lanes), where intricate vehicle 
interactions, such as consecutive lane-changing behaviours, need to be considered. 

§ Second, the assumption of 100% CAVs can be relaxed to accommodate mixed traffic 
conditions, better aligning with near-future reality. One perspective could be to secure safe 
and efficient CAV decision-making with the consideration of uncertain human-driven 
vehicles. 

§ Third, the combination of microscopic trajectory generation methods and flow-based 
merging control methods appear to be promising in mitigating congestion and may deserve 
further examination. By integrating these approaches, it is potential to create a more 
seamless and efficient merging process, particularly in over-saturated traffic scenarios, 
which could lead to significant improvements in overall traffic flow and congestion 
reduction. 

§ Fourth, more efficient trajectory planners can be investigated to further reduce the 
computation time, making real-time applications more feasible. Improving the planners 
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enhances the responsiveness and reliability of CAV systems, particularly in dynamic 
traffic environments.  

§ Fifth, integrating multi-vehicle cooperation, trajectory planning, and environmental 
perception is crucial to fully leveraging the capabilities of connected communication. This 
approach would enable real-time optimization of driving behaviours and the detection of 
the surrounding driving environment. 

§ Last but not least, Large Language Models (LLMs) could offer powerful generalization 
capabilities for designing algorithms applicable to various merging sections. Additionally, 
LLMs could facilitate natural language interactions between controllers and humans, 
enhancing communication and safety in complex traffic scenarios. 
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Appendix 

Appendix A 

Direct Deduction of Proposition 1 in chapter 3: 

All on-ramp vehicles are split into two groups: {1A, , … , 𝑘,-}  on-ramp vehicles and {𝑘 +
1,- , … , |𝐼#|,-} on-ramp vehicles. Correspondingly, the mainline vehicles can be two associated groups: 
1A, , … , 𝑛,-} mainline vehicles and {𝑛 + 1,- , … , |𝐼"|,-} mainline vehicles. Note that the 𝑛,- mainline 
vehicle refers to the one in front of the 𝑘,-on-ramp vehicle, although the “𝑛” is unknown.  

Minimizing the first group of on-ramp and mainline vehicles can be written as: 

min
𝜸(,…,𝜸|*&|	

u∑ 𝑡#,1(
13' +∑ 𝑡",%2

%3' v   (A.1) 

Then, it is straightforward that the decision variables 𝜸($', … , 𝜸|*&| do not affect (A.1). Hence, 
(A.1) can be express as (A.2). 

min
𝜸(,…,𝜸;	

u∑ 𝑡#,1(
13' +∑ 𝑡",%2

%3' v  

= 𝑡#,'∗ +⋯+ 𝑡#,(∗ + 𝑡",'∗ +⋯+ 𝑡",2∗   

 

(A.2) 

Similarly, minimizing another group of on-ramp and mainline vehicles can be written as (A.3) and 
can be extended as (A.6): 

min
𝜸(,…,𝜸|*&|	

]∑ 𝑡#,1
|*&|
13($' +∑ 𝑡",%

|*!|
%32$' ^  (A.3) 

= min
𝜸(,…,𝜸|*&|	

y∑ (△ 𝑡#,1
|*&|
13($' + min

𝜸(,…,𝜸;	
𝑡#,() + ∑ (△ 𝑡",%

|*!|
%32$' + min

𝜸(,…,𝜸;	
𝑡",2)z  

(A.4) 

= min
𝜸(,…,𝜸|*&|	

�∑ (△ 𝑡#,1
|*&|
13($' + 𝑡#,(∗ ) + ∑ (△ 𝑡",%

|*!|
%32$' + 𝑡",2∗ )   (A.5) 

= min
𝜸;'(,…,𝜸|*&|	

�∑ (△ 𝑡#,1
|*&|
13($' + 𝑡#,(∗ ) + ∑ (△ 𝑡",%

|*!|
%32$' + 𝑡",2∗ )   (A.6) 

= 𝑡#,($'∗ +⋯+ 𝑡#,|*&|
∗ + 𝑡",2$'∗ +⋯+ 𝑡",|*!|

∗   (A.7) 

where △ 𝑡#,1 and △ 𝑡",% are the part of time delay of the 𝑗,- on-ramp vehicle and 𝑖,- mainline vehicle 
caused by the on-ramp vehicles after the 𝑘,- on-ramp vehicle, respectively. From (A.6), we can see that 
the optimal time of following vehicles, i.e., 𝑡#,($'∗ +⋯+ 𝑡#,|*&|

∗ and 𝑡",2$'∗ +⋯+ 𝑡",|*!|
∗ , requires the 

optimal time of preceding vehicles 𝑡#,(∗  and 𝑡",2∗ . Therefore, Proposition 1 is obtained. 
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Appendix B 

Derivation of Equation (6) in Chapter 3: 

The polynomial position equation in (3) can be transformed as follows: 

𝑥(𝑡) = 𝜃/ ⋅ 𝑡/ + 𝜃! ⋅ 𝑡! + 𝜃' ⋅ 𝑡 + 𝜃0 = 𝑡6/𝜃/ !
,
,%
"
/
+ 𝑡6!𝜃! !

,
,%
"
!
+ 𝑡6𝜃'

,
,%
+ 𝜃0,  

 ,
,%
∈ (0, 1]      (B.1) 

The related three order Bézier curve can be expanded as follows: 

𝑃5(𝑠) = ∑ 𝐵1/(𝑠)𝑃15/
130   

													= 𝐵0/(𝑠)𝑃05 + 𝐵'/(𝑠)𝑃'5 + 𝐵!/(𝑠)𝑃!5 + 𝐵//(𝑠)𝑃/5	
													= (1 − 𝑠)/𝑃05 + 3𝑠(1 − 𝑠)!𝑃'5 + 3𝑠!(1 − 𝑠)𝑃!5 + 𝑠/𝑃/5	
													= (𝑃/5 − 3𝑃!5 + 3𝑃'5 − 𝑃05)𝑠/ + (3𝑃!5 − 6𝑃'5 + 3𝑃05)𝑠! + (3𝑃'5 − 3𝑃05)𝑠 + 𝑃05,   

𝑠 ∈ [0, 1]       (B.2) 

Then, a set of equations can be written to build the relationship between 𝜽 and 𝑃5: 

⎩
⎪
⎨

⎪
⎧𝑃#

) − 3𝑃") + 3𝑃!) − 𝑃*) = 𝑡+#𝜃#
3𝑃") − 6𝑃!) + 3𝑃*) = 𝑡+"𝜃"
3𝑃!) − 3𝑃*) = 𝑡+𝜃!
𝑃*, = 𝜃*

  

(B.3) 

(B.4) 

(B.5) 

(B.6) 

By solving (B.3)–(B.6), Equation (6) is derived. 

Derivation of Equation (7) in Chapter 3. 

Similarly, the polynomial velocity equation in (3) can be transformed as follows: 

𝑣(𝑡) = 3𝜃/ ⋅ 𝑡! + 2𝜃! ⋅ 𝑡 + 𝜃' 

= 3𝜃/𝑡6! !
,
,%
"
!
+ 2𝜃!𝑡6

,
,%
+ 𝜃',  ,

,%
∈ (0, 1]                                         (B.7) 

The related two order Bézier curve can be expanded as follows: 

𝑃7(𝑠) = ∑ 𝐵1!(𝑠)𝑃17!
130   

												= 𝐵0!(𝑠)𝑃07 + 𝐵'!(𝑠)𝑃'7 + 𝐵!!(𝑠)𝑃!7  

												= (𝑃07 − 2𝑃'7 + 𝑃!7)𝑠! + (2𝑃'7 − 2𝑃07)𝑠 + 𝑃07                (B.8) 

Then, a set of equations can be written as: 

5
𝑃07 − 2𝑃'7 + 𝑃!7 = 3𝜃/𝑡6!

2𝑃'7 − 2𝑃07 = 2𝜃!𝑡6
𝑃07 = 𝜃'

 
(B.9) 

(B.10) 

(B.11) 

By solving (B.9)–(B.11), Equation (7) is derived. 
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Appendix C 

The multi-head attention (MHA) module in Chapter 5. 

The multi-head attention (MHA) module (Vaswani et al. 2017) is a crucial component of our 
network. The MHA module takes in a query source, ℎ� ∈ ℝ?, and a key-value source, ℎ(,7 ∈ ℝ?. 

Both ℎ�  and ℎ(,7  are projected 𝐻  times into different subspaces using linear layers, where 𝐻 
refers to the number of heads. For each head ℎ	 ∈ {	1, 2, … ,𝐻	}, the query, key, and value vectors are 
calculated as follows: 

𝑄- =𝑊-
 ℎ�                     (C.1) 

𝐾- =𝑊-
¡ℎ(,7                                                                                                     (C.2) 

𝑉- =𝑊-
�ℎ(,7 ,                                                                                   (C.3) 

where ℎ�  is the query source; ℎ(,7is the key-value source; 𝐖𝐡
𝐐, 𝐖𝐡

𝐊, and 𝐖𝐡
𝐕 ∈ 𝑅?E×?  are learnable 

weight matrices, and 𝑑- = 𝑑/𝐻.  

Each attention-based head α- is then determined through the scaled-dot product operation:  

α- = Attention(𝑄- ,𝐾- ,𝑉-) = Softmax ! E¡E
F

_?E
" 𝑉-                                                                         (C.4) 

The last operation of the MHA module is to concatenate all heads together: 

MHAuℎ� , ℎ(,7v = Concat(α', α!, ⋯ , α¦)𝑾§                                                                                  (C.5) 

where 𝑾§ ∈ ℝ?×? is the learnable matrix for the output layer. Hence, the output of MHA aggregates 
the key/value, guided by the query. 
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Appendix D 

Transformer Encoder module in Chapter 5. 

The core elements of the Transformer encoder are the multi-head attention (MHA) mechanism, 
position-wise feed-forward network (FFN), residual connections, and layer normalization. 

The multi-head attention sublayer is responsible for facilitating communication between tokens 
(input elements) to effectively capture their relationships. Each token may have multiple semantics or 
functions depending on the surrounding tokens. MHA modules allow the model to focus on various 
aspects of the input simultaneously, enriching the token embeddings with contextual information. 

Following the MHA sublayer, (FFN) further processes the embeddings. The FFN consists of two 
linear projection layers with a ReLU activation function in between. The dimensionality of the 
embeddings is first expanded and then reduced, enhancing the model’s ability to introduce non-linearity 
while preserving information. 

Then, residual connections play a crucial role in the encoder by carrying over the previous 
embeddings to subsequent layers. This is done through an element-wise addition of the original input 
with the output of each sublayer (either MHA or FFN). These connections help mitigate the vanishing 
gradient problem, ensuring that the model continues to learn effectively as layers deepen. 

After each residual connection, layer normalization is applied to stabilize the training process. 
Unlike batch normalization, which operates across batches, layer normalization normalizes the 
activations within each embedding vector. This reduces the effect of covariant shift, making training 
more stable and allowing for faster convergence. 
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Appendix E 

Pseudo code of simulated annealing in Chapter 5. 

 Simulated Annealing (SA) 

1 Initialize current solution 𝑆	and temperature 𝑇. 

2 Initialize best solution 𝑆∗ 

3 Set time limit 𝑡' 

4 Set cooling factor 𝛼 (0.95). 

5 For 𝑡 = 0, 𝑡' Do 

6     Generate a new solution 𝑆′ in the neighbourhood of 𝑆. 

7     Compare the total delay with the best solution 𝛥𝐷 = 𝐷(𝑆g) − 𝐷(𝑆∗) 

8     If ΔD	 < 	0 

9         𝑆∗ ← 𝑆g 

10     Else if random (0, 1) < 𝑒4
GH
F 	   

11         𝑆 ← 𝑆g 

12     End if 

13     Decrease the temperature  𝑇 = 𝛼 ⋅ 𝑇. 

14 End for 

15 Return  𝑆∗ 
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