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Abstract 

In recent years, with the wide utilization of renewable energies, conventional power 

systems are undergoing the transformation into renewable penetrated power systems. 

However, the high penetration of renewable energy generations (RPGs) greatly 

threatens the frequency stability of modern power systems since the integration of 

RPGs introduces uncertainties into systems and decreases system inertia. Therefore, 

uncertainty quantification (UQ) methods for frequency stability of renewable 

penetrated power systems are urgently needed. 

In this thesis, firstly, methods for probabilistic frequency stability analysis (PFSA) 

considering the dynamics of RPGs with different control strategies are proposed. Based 

on the system frequency response (SFR) model, the frequency response affected by 

different control strategies of RPGs is analyzed, which reveals the necessity of 

considering the dynamics of RPGs in PFSA. Moreover, a multi-interval sensitivity 

(MIS) method is proposed to reduce the simulation time of PFSA, thereby improving 

efficiency. And then, a multi-element low-rank approximation (MELRA) method is 

proposed to conduct uncertainty propagation analysis (UPA) while considering the 

frequency response characteristics, thereby increasing the accuracy of PFSA. 

Additionally, based on the Gaussian mixture model (GMM), the limitation of moment-

based UPA methods is discussed by investigating the relationship between moments 
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and probability distributions of uncertainties. 

Secondly, to tackle the heterogeneity and interactions of wind power generations 

(WPGs), i.e., wake effects (WEs) in wind farms (WFs), an analytical WE model 

suitable for PFSA is proposed, which considers multiple factors, including terrain, wind 

direction, and time delay of wind flow, and thus can reflect the WEs in WFs more 

realistically. Moreover, a multiple output Gaussian process regression (MOGPR) for 

PFSA considering the WEs in WFs is proposed, where the implicit relationship among 

system frequency response and area-level frequency responses is utilized so that the 

accuracy of PFSA is improved. Furthermore, the impact of terrain, wind direction, and 

WF layout on PFSA is investigated based on the proposed WE model and MOGPR. 

Thirdly, to quantify the frequency response trajectory affected by uncertainties more 

efficiently, a generic multi-output polynomial chaos expansion (GMPCE) based on 

multi-task Elastic Net is proposed. GMPCE has multiple outputs, the sparse structure, 

and polynomial chaos bases suitable for independent uncertainties with arbitrary 

probability distributions. Thus, it is suitable for large-scale uncertainties, avoids the 

curse of dimensionality, and can quantify the system frequency response at each time 

point simultaneously. Also, a generic transformation method based on independent 

component analysis (ICA) is proposed, which can transform the uncertainties with 

complicated correlations into independent ones and thus broadens the application of 

proposed GMPCE. 

Finally, to tackle slow timescale characterizations of uncertainties (STCUs) and fast 

timescale characterizations of uncertainties (FTCUs) simultaneously, the FTCU 
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transformation method based on Karhunen-Loève expansion (KLE) is proposed, which 

enables STCUs and FTCUs to be formulated by probability distribution methods in a 

unified form. Moreover, a scalable polynomial chaos expansion (PCE) method is 

proposed to improve the efficiency of UPA of power system frequency stability 

considering STCUs and FTCUs. And then, a comprehensive UQ framework based on 

the proposed FTCU transformation method and scalable PCE is proposed, where 

frequency stability indices, frequency response trajectories, and the sensitivity between 

stability indices and uncertainties are quantified. These results will provide constructive 

guidance for system operators to ensure the frequency stability of renewable penetrated 

power systems. 
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Chapter 1 Introduction 

1.1 Background 

In recent years, sustainable development and environmental protection have been 

concerned worldwide. Many countries have issued relevant policies to promote 

renewable energies [1]. For example, in 2019, Britain promised to develop a power 

system with zero or nearly zero carbon dioxide emission in 2035 by legislation [2]. In 

2021, China promised to achieve peak carbon dioxide emission in 2030 and carbon 

neutrality in 2060 in the report on the work of the government [3]. Fig. 1.1 shows 

countries with policies for promoting renewable power generations (RPGs) and 

restricting the utilization of fossil fuels. 

 

Fig. 1.1 Countries with climate change policies by 2022 [4]. 
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Meanwhile, with the growth of power demand, the utilization of RPGs in power 

systems has developed rapidly. Since 2014, the increased installed generation capacity 

of wind power and photovoltaic (PV) in the world has exceeded that of fossil fuels. It 

is expected that in 2025, RPGs will be the largest source of power generation. And in 

2028, RPGs are expected to account for over 42% of global power generation. The 

share growth of RPGs from 2000 to 2028 is presented in Fig. 1.2. Therefore, the 

traditional power systems are undergoing a tremendous transformation into modern 

power systems with high penetration of RPGs. 

 

Fig. 1.2 RPG share from 2000 to 2028 [5]. 

However, the utilization of RPGs is a double-edged sword for modern power 

systems. On the one hand, it accelerates the decarbonization of power systems. On the 

other hand, it poses a huge threat to system stability, including frequency stability [6]. 

In the research area of power system stability, frequency stability refers to the ability of 

power systems to maintain the frequency, i.e., synchronism, and mitigate the frequency 

deviation [7, 8]. Hence, the frequency response, including the rate of change of 
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frequency (RoCoF) and the frequency nadir/vertex (FN/FV), are the main frequency 

stability indices [7, 9]. Also, RPGs dominated by wind power generations (WPGs) and 

PVs have the characteristics of intermittent and fluctuation due to the change of weather 

conditions. After a large quantity of RPGs is integrated into power systems, numerous 

uncertainties will be injected into systems, which will cause the power imbalance 

between the power generation and power demand, thereby contributing to the 

fluctuation of frequency and the degradation of frequency stability [7]. One of the most 

serious frequency stability incidents induced by RPGs happened in London in 2019. 

The sudden generation reduction of wind power caused by extreme weather contributes 

to the outage of approximately 1 million customers [10]. Moreover, RPGs with 

conventional control schemes do not provide any inertia or frequency response like 

traditional synchronous generators, and their integration has significantly reduced the 

power system inertia, thereby further degrading the frequency stability [11]. 

In light of the randomness and low inertia caused by the integration of PRGs into 

power systems, developing effective methods to quantify the impact of RPG 

uncertainties is an essential task to ensure the frequency stability of power systems, 

which is worthy of investigation. 

 

1.2 Literature Review 

In terms of uncertainty quantification (UQ) for power system stability, two 

timescale characterizations of uncertainties are typically concerned: 1) slow timescale 
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characterization of uncertainty (STCU), and 2) fast timescale characterization of 

uncertainty (FTCU). STCUs mainly focus on the uncertainty sources varying slowly 

and infrequently with time, and the fast time-varying properties of them are usually 

ignored to reduce computational complexity. Thus, they are characterized as the 

randomness of steady-state operating points. By comparison, FTCUs focus on fast 

time-varying properties of uncertainty sources varying rapidly and frequently during 

the concerned time period. Moreover, the comprehensive UQ usually contains three 

tasks: 1) uncertainty modeling, i.e., characterizing the randomness or fluctuation of 

uncertainties; 2) uncertainty propagation analysis (UPA), i.e., quantifying the 

relationship between uncertainties and concerned system outputs; 3) uncertainty 

sensitivity analysis, i.e., identifying the uncertainties significantly affecting concerned 

system outputs. In the following, existing studies on UQ for power system stability are 

summarized according to different timescale characterizations of uncertainties, 

including studies on different UQ tasks. 

1.2.1 Uncertainty Quantification for Power System Stability with Slow Timescale 

Characterization of Uncertainty 

Regarding the modeling of STCU of RPGs, different models have been proposed. 

These models characterize the relationship between the output power of RPGs and 

weather conditions, e.g., wind speed and solar irradiance. And the uncertainties of 

weather conditions are described by different probability distributions or historical data. 

Since there are various types of probability distribution functions with simple forms, 
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probability distribution methods are widely applied in power system stability to model 

the possible values of uncertainties at the specific time point [6, 7]. And power system 

stability considering STCUs is commonly called probabilistic power system stability. 

To further improve the precision of probability distribution methods in modeling 

uncertainties, the Gaussian mixed model (GMM) [12, 13] and kernel density estimation 

(KDE) [14] are proposed to model uncertainties with complex probability distributions, 

especially when probability density functions (PDFs) have multiple peaks. Furthermore, 

to characterize uncertainties with spatial correlations, the Copula functions are 

proposed [15]. Additionally, to adequately characterize the uncertainties in specific 

scenarios, some empirical PDFs are developed. Typical PDF developing methods 

include forming a versatile PDF [16] and introducing the truncated interval [17]. 

Models characterizing the relationship between RPG outputs and weather 

conditions can be summarized as two types, i.e., simplified RPG models and detailed 

RPG models. The simplified RPG models usually utilize the simplified maximum 

power point tracking (MPPT) functions to calculate the RPG outputs under different 

weather conditions [18]. Since the calculation complexity is significantly reduced, these 

simplified RPG models are widely adopted in the probabilistic power flow [19], 

economical operation [20], and probabilistic stability analysis [6, 7, 21-26]. For 

probabilistic power flow and economical operation, applying the simplified RPG 

models is relevantly reasonable since these issues commonly focus on the steady state 

of power systems. However, for probabilistic stability analysis, the above models are 

oversimplified since the dynamics of RPGs are ignored. Although some researchers 
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have tried to use detailed RPG models in probabilistic stability analysis [27-29], the 

studies have focused on small-signal stability and voltage stability issues rather than 

frequency stability. Moreover, apart from the conventional grid-following control 

strategy [30-33], to mitigate the negative impact of low inertia on system stability 

caused by the large-scale integration of RPGs, control strategies providing inertia have 

been proposed, such as virtual synchronous generator (VSG) [34-45], which is also 

treated as a type of grid-forming control strategies. Since different control strategies of 

RPGs have distinct dynamics and provide diverse inertia, the impacts on frequency 

stability are different, which is worthy of being investigated. 

Additionally, some RPGs have their unique characteristics. For example, in a wind 

farm (WF), wind turbines (WTs) at the wind downstream position are affected by the 

wake of upstream WTs, resulting in the deficit of downstream wind speed, i.e., wake 

effects (WEs). However, existing studies on probabilistic frequency stability affected 

by WPG uncertainties ignore the WEs of WFs. Thus, it is worth investigating whether 

this model simplification is reasonable and whether it will contribute to the inaccurate 

results of probabilistic frequency stability analysis (PFSA). Moreover, to characterize 

the WEs of WFs, different models have been proposed, which can be mainly divided 

into numerical WE models and analytical WE models. Numerical WE models are based 

on computational fluid dynamics (CFD) [46-48], the results of which usually have high 

accuracy. However, the computation of these models costs an enormous amount of time, 

which are not suitable for probabilistic stability analysis. By comparison, the significant 

merit of analytical WE models is that the computational time is quite limited. Among 



7 

the analytical WE models widely applied, the Jensen WE model is based on the 

principle of conservation of mass [49-51], while the Frandsen WE model is based on 

the principle of conservation of mass and momentum [52]. However, these two WE 

models assume that the wind speed at the same streamwise section in the wake region 

is identical, which is not in line with actual WEs. To overcome the above shortcoming, 

the Gaussian WE model is proposed, where the Gaussian shape is applied to depict the 

wind speed deficit [53]. Also, some improved analytical WE models have been 

proposed to consider the impact of different factors on WEs, including the wind 

direction [54-58], single complex terrain [54, 59], and the time delay of wind flow [60]. 

However, these existing studies only consider the above factors partly rather than 

entirely and only consider one type of complex terrain rather than multiple types. 

Moreover, most of the existing analytical WE models considering different factors are 

based on the Jensen WE model [50, 54-59], the accuracy of which is limited. Thus, a 

WE model suitable for PFSA and comprehensively considering the multiple factors 

affecting the WEs of WFs with high accuracy is required. 

Regarding UPA, many review papers have summarized the typical methods [7, 61-

76]. For UPA methods suitable for STCUs, they can be classified as numerical methods, 

analytical methods, and approximation methods. Among the numerical UPA methods, 

Monte Carlo simulation (MCS) is one of the representative methods [18], the results of 

which are commonly treated as the baseline of other methods. Moreover, improved 

MCS methods have been proposed for different purposes, for example, sequential MCS 

suitable for chronological data [77], Markov Chain MCS and quasi MCS (QMCS) 
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aiming at improving the sampling efficiency [7]. Also, other numerical methods, 

represented by Latin hypercube sampling (LHS) [78], have been proposed to improve 

the sampling efficiency. However, at least thousands of sampling data are required for 

numerical methods, which indicates their time-consuming characteristic. 

By comparison, analytical UPA methods significantly reduce the computation time. 

In analytical UPA methods, convolution methods can only handle the independent 

uncertainties, unscented transformation can only derive the mean and variance of the 

concerned system outputs, and Taylor series expansion requires the derivative operation 

with respect to concerned system outputs, which leads to the limited application of these 

methods in power systems [61, 79]. By comparison, moment-based methods, including 

point estimation methods (PEMs) and cumulant-based methods (CBMs), are relatively 

widely applied in probabilistic stability analysis of power systems, including transient 

stability [7], small-signal stability [27-29, 80-82], voltage stability [83], and frequency 

stability [21]. Both of them adopt the moments of uncertainties to obtain those of 

concerned system outputs and utilize series expansion to calculate the PDFs. The 

differences are that PEMs adopt central moments, while CBMs adopt cumulants, and 

the required sampling data of CBMs are usually less than those of PEMs [84]. However, 

CBMs are effective only when there is an approximately proportional relationship 

between concerned system outputs and uncertainties. Whether the above relationship 

between frequency stability indices and uncertainties of RPGs exists when considering 

the dynamics of RPGs requires to be studied. Also, according to the forms of series 

expansion, uncertainties with close moments should have similar shapes of PDFs. 
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However, it should be discussed whether there are situations violating the above 

relationship, which may affect the calculation accuracy of stability analysis. Thus, the 

effectiveness of conventional CBMs in analyzing frequency stability considering the 

dynamics of RPGs is undetermined and should be investigated. 

Recently, the emerging approximation UPA methods have found a balance 

between efficiency and accuracy, which are the focused methods and mainly include 

polynomial chaos expansion (PCE) methods, low-rank approximation (LRA) methods, 

and Gaussian process regression (GPR) methods. PCE is formed by the superposition 

of orthogonal polynomials related to probability distributions of uncertainties, which 

has been widely applied in power flow [85-96] and adopted in voltage stability [14] and 

transient stability [97-99] recently. However, the relationship between the number of 

undetermined coefficients and that of uncertainties is factorial, leading to the curse of 

dimensionality when considering numerous uncertainties. Apart from PCE, LRA is also 

based on orthogonal polynomials. The relationship between the number of 

undetermined coefficients and that of uncertainties is linear [100], indicating that LRA 

is suitable for large-scale UPA. Some researchers have used LRA in probabilistic power 

flow [101, 102]. However, to the best of our knowledge, there has been no attempt to 

use LRA in PFSA. Additionally, the explicit correlation expression of uncertainties is 

required for PCE and LRA, as well as analytical UPA methods, and the complicated 

correlations of realistic data of RPG uncertainties and WEs cannot be characterized as 

expected. Thus, they are not suitable for probabilistic stability analysis considering 

complicated correlations. By comparison, GPR only requires sampling points of 
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uncertainties, which has been applied in voltage stability [78] and transient stability 

[103]. However, to the best of our knowledge, there has been no attempt at PFSA by 

applying GPR. Moreover, approximation UPA methods in the existing studies are 

generic frameworks, which means the accuracy of specific issues is reduced due to the 

ignorance of the characteristics of concerned outputs. Thus, it is necessary to consider 

the frequency characteristics when designing the UPA method for the PFSA. Also, both 

the system frequency and area-level frequency are concerned in PFSA, and there is an 

implicit relationship among the system and area-level frequency responses. However, 

existing approximation UPA methods can only analyze the probabilistic stability of 

system and area-level frequency responses individually, the implicit relationship will 

be overlooked. Therefore, to improve analysis accuracy, UPA methods considering the 

relationship among the frequency responses is required. Furthermore, existing 

approximation UPA methods only have one output, which means that if system 

response trajectories are needed to be quantified, they can only quantify the system 

response at each time point separately. This indicates that the number of constructed 

UPA models equals the concerned system response duration divided by the step length, 

which is cumbersome and time-consuming. Thus, UPA methods with multiple outputs 

are needed to improve efficiency. Additionally, recently, neural networks have been 

applied to conduct UPA. In [104], gated recurrent units are used to analyze the transient 

stability affected by trip uncertainties. Authors in [105] have proposed a multi-stability 

analysis method based on graph neural networks for power systems affected by WPG 

and trip uncertainties. In [106], the graph neural network and the physics-informed 
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neural network are combined to analyze the transient stability affected by WPG and trip 

uncertainties. And authors in [107] have combined the physics-informed neural 

network and the deep Koopman operator to investigate the transient stability. However, 

though neural network-based methods can tackle complicated issues, the training of 

them requires massive simulations and thus is time-consuming. 

Regarding the STCU sensitivity analysis methods, they can be classified as local 

sensitivity analysis (LSA) methods and global sensitivity analysis (GSA) methods. LSA 

methods are only valid for a small region of variations and thus have limited 

applications [108]. By comparison, GSA methods analyze the impact of uncertainties 

in a full region of variations and consider the nonlinear relation, which is receiving 

increasing concerns. In [109], the factors of voltage stability are investigated based on 

GSA under the framework of analysis of variance (ANOVA). Besides, authors in [15] 

have studied the voltage and transient stability affected by RPG uncertainties based on 

GSA. However, GSA usually requires results for MCS-based UPA methods, which 

indicates it is time-consuming. To improve the efficiency of uncertainty sensitivity 

analysis, approximation UPA methods have been adopted in GSA, which significantly 

reduce the calculation time [110, 111]. Additionally, in probabilistic stability analysis, 

the stability indices, system response trajectories, and the sensitivity between stability 

indices and uncertainties play different roles. Specifically, stability indices indicate the 

instability probability of systems, system response trajectories describe system states at 

different time points, and the sensitivity between stability indices and uncertainties 

identifies the uncertainties significantly affecting the system stability. However, there 
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has been no comprehensive framework for power system stability affected by 

uncertainties containing all the indices mentioned above. 

1.2.2 Uncertainty Quantification for Power System Stability with Fast Timescale 

Characterization of Uncertainty 

Regarding the modeling of FTCU, FTCUs are usually formulated as stochastic 

processes, and thus power system stability affected by FTCUs is usually called 

stochastic power system stability. Continuous FTCUs are usually characterized by the 

continuous Wiener process [112, 113]. And discrete FTCUs are typically modeled as 

the jumping compound Poisson process [114]. Since the dynamic response of the power 

system is normally modeled as the differential equations, after FTCUs modeled by 

stochastic processes are introduced, the differential equations of power systems will 

transform into stochastic differential equations (SDEs) [115]. Authors in [116] have 

proposed a systematic method for modeling stochastic power systems with SDEs. 

Power systems affected by FTCUs of loads and RPGs are formulated by SDEs in [117]. 

In [118], the FTCUs of transmission lines and loads are considered, and power systems 

under these FTCUs are formulated as SDEs. In [119], SDEs are used to model power 

systems with FTCUs of WPGs. Authors in [120] have adopted SDEs to model power 

systems with FTCUs of loads and WPGs. Moreover, apart from the research area of 

stochastic stability analysis of power systems affected by FTCUs of loads and WPGs, 

SDEs are also used in the modeling of power systems affected by FTCUs of PVs and 

electricity prices for investigating optimal control [121-123] and optimal market 
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participation [124]. 

Regarding dynamic UPA methods, one of the most common methods is MCS, 

where a large number of simulations are conducted to obtain system responses [125, 

126]. Some studies conduct UPA by analyzing the mean value and variance of state 

variables in the system differential equations [112, 127]. In [113], the stochastic 

stability is analyzed by calculating the mean value of the small-signal stability indices. 

Authors in [99] have applied the PCE to quantify the relationship between FTCUs and 

transient stability indices. However, the proposed method in [99] is only applicable to 

continuous stochastic processes modeled by the Wiener process and is not applicable 

to discrete FTCUs. Thus, time-saving dynamic UPA methods for stochastic stability of 

power systems are lacking. Also, there is a lack of uncertainty sensitivity analysis 

methods for FTCUs. 

Moreover, the specific choice of the timescale characterization of uncertainties is 

based on focused tasks and nature of uncertainty sources. Only using STCUs to model 

uncertainties will completely ignore the fast time-varying properties of some 

uncertainties, resulting in inaccurate UPA results. And only adopting FTCUs will 

increase unnecessary computational costs due to their complicated forms, thereby 

decreasing UPA efficiency. However, since STCUs and FTCUs are based on different 

methods and have different forms, general models suitable for STCUs and FTCUs are 

required to conduct UQ. Additionally, apart from the time-consuming MCS, no UPA 

methods are suitable for simultaneously investigating STCUs and FTCUs. Although 

authors in [99] have attempted to use the approximation UPA method to deal with 
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FTCUs, which greatly reduces the time cost and has the potential to be extended to deal 

with STCUs and FTCUs, the proposed method is only suitable for one type of FTCUs 

and thus not generic. Thus, the time-saving UPA method can tackle STCUs and FTCUs 

is needed. And since the outputs of UPA methods are the inputs of uncertainty 

sensitivity analysis methods, they need to match with each other. Therefore, effective 

uncertainty sensitivity analysis methods suitable for STCUs and FTCUs are also 

lacking. 

1.2.3 Limitation Summary of Existing Studies on Uncertainty Quantification for 

Frequency Stability of Power Systems 

In view of the aforementioned background, the limitations of existing studies on 

UQ methods for frequency stability of renewable penetrated power systems can be 

summarized as follows, which are the major foci and also the issues to be tackled in 

this thesis. 

1) RPGs are usually simplified in UQ of PFSA, where different control strategies 

and dynamics are ignored. The rationality of simplification should be discussed, and 

the impact of different control strategies on probabilistic frequency stability needs to be 

investigated. 

2) There is a lack of UQ methods for frequency stability with a balance between 

accuracy and efficiency. 

3) Time-saving UQ methods for frequency stability suitable for large-scale 

uncertainties are lacking. 
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4) Existing UQ methods for probabilistic stability are too generic, which means 

that frequency characteristics are not utilized in the methods, and thus the accuracy of 

them is limited. 

5) The heterogeneity and interactions of RPG uncertainties are ignored in existing 

studies for UQ of PFSA, which will contribute to inaccurate UQ results. 

6) Existing approximation UQ methods for probabilistic stability ignore the 

relationship among multiple concerned stability indices and thus have limited accuracy. 

7). There is a lack of approximation UQ methods for probabilistic stability with 

multi-output structure to improve UQ efficiency. 

8) Existing time-saving UQ methods for frequency stability cannot tackle 

uncertainties with complicated correlations. 

9) STCUs and FTCUs may be simultaneously used in UQ of power system 

frequency stability. However, they cannot be simultaneously dealt with by existing 

methods effectively. 

10) Stability indices, system response trajectories, and the sensitivity between 

stability indices and uncertainties are all concerned in UQ. However, existing UQ 

methods for frequency stability do not consider them comprehensively. 

 

1.3 Primary Contributions 

Considering the limitations of existing studies summarized in Chapter 1.2.3, this 

thesis proposes a series of UQ methods for power system frequency stability, the 
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contributions of which are summarized as follows. 

1) Considering Limitation 1, the necessity of considering the dynamics of RPGs 

in PFSA is revealed by investigating the differences between considering and ignoring 

the dynamics of RPGs with different control strategies, i.e., the conventional grid-

following control and VSG-based grid-forming control. The main difference is that the 

existence of RPG dynamics leads to the unfixed occurrence time of frequency stability 

indices, which increases the difficulty in analyzing frequency stability. (In Chapter 2) 

2) Considering Limitation 2, 3, and 4, a multi-interval sensitivity (MIS) method 

for calculating frequency response is proposed, which greatly reduces the calculation 

time and can be applied to calculate both the system frequency and the area-level 

frequency. Moreover, a multi-element LRA (MELRA) method is proposed for UPA, 

which has quite a few outstanding advantages: (1) It considers different types of 

frequency response trends, thereby improving the analysis accuracy for the LRA-based 

methods; (2) The construction of polynomial bases in MELRA is suitable for arbitrary 

distributions unlike other LRA-based methods; (3) Compared with PCE, as another 

orthogonal polynomial-based method, the number of unknown coefficients of the 

proposed method has a linear relationship with the number of uncertainties, rather than 

a factorial relationship, so that it is more suitable for large-scale UPA. (In Chapter 2) 

3) Considering Limitation 5, the necessity of considering the WEs of WFs in PFSA 

is revealed based on the proposed WE model, which is ignored in the existing studies. 

This model possesses many merits: (1) It only brings a slight increase in terms of the 

computational time in PFSA; (2) Based on the Gaussian WE model, it comprehensively 
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considers multiple types of terrain, the wind direction, and the time delay of wind flow, 

which can be applied to study the impact of different factors on probabilistic frequency 

stability; (3) It can be easily integrated into the frequency response models of power 

systems ignoring WEs without any modifications. Thus, it is very suitable for PFSA 

and realistically reflects the WEs in WFs. (In Chapter 3) 

4) Considering Limitation 2, 3, and 6, a multiple output GPR (MOGPR) is 

proposed to analyze the probabilistic stability of system frequency and area-level 

frequency simultaneously and consider the relationship among them, which improves 

the analysis accuracy and efficiency. Furthermore, since GPR-based methods only 

require the sampling points of uncertainties, both MOGPR and GPR are suitable for the 

correlation caused by WEs. (In Chapter 3) 

5) Considering Limitation 2, 3, 7, and 8, a generic multi-output PCE (GMPCE) is 

proposed to deal with correlated uncertainties that cannot be accurately characterized 

by standard PDFs and to quantify the system frequency response at each time point 

simultaneously. Moreover, the proposed GMPCE has other merits, including being 

applicable to independent uncertainties with arbitrary probability distributions and 

having sparse structure, thereby avoiding the curse of dimensionality. (In Chapter 4) 

6) Considering Limitation 9, FTCUs formulated by stochastic processes are 

innovatively approximated by the superposition of a finite number of STCUs 

formulated by probability distribution methods, which clearly reveals the relationship 

between STCUs and FTCUs and effectively transforms STCUs and FTCUs into a 

general form by only using probability distribution methods. (In Chapter 5) 
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7) Considering Limitation 2, 3, 9, and 10, a generic UQ method is proposed based 

on the developed scalable PCE, which comprehensively integrates the modeling of 

STCU and FTCU, UPA, and sensitivity analysis in a time-saving and effective manner 

and analyzes stability indices, system response trajectories, and the sensitivity between 

stability indices and uncertainties. In the scalable PCE, the construction of polynomial 

chaos basis of uncertainties is based on the properties of orthogonal polynomials and 

thus suitable for arbitrary PDFs. Moreover, sparse methods are applied to avoid the 

curse of dimensionality. (In Chapter 5) 

 

1.4 Thesis Layout 

This thesis consists of six chapters. The remaining chapters are organized as 

follows. 

Chapter 2-Chapter 4 focus on frequency stability affected by STCUs, i.e., PFSA. 

Specifically, in Chapter 2, the necessity of considering the dynamics of RPGs with 

different control strategies in PFSA is discussed. Moreover, the time-saving MIS 

method for calculating the system and area-level frequency responses is proposed. And 

the MELRA method is proposed to improve the accuracy of PFSA considering the 

dynamics of RPGs. 

Chapter 3 proposes a WE model of WF considering multiple factors to improve 

the accuracy of uncertainty modeling. Also, MOGPR for PFSA is proposed to improve 

accuracy and efficiency, which considers the relationship among stability indices of the 
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system and area-level frequency responses. 

Chapter 4 proposes a generic uncertainty transformation method, which can tackle 

uncertainties with complicated correlations. Meanwhile, GMPCE is designed to 

improve the efficiency in quantifying the system frequency response trajectories 

affected by uncertainties. 

Chapter 5 focuses on the frequency stability affected by STCUs and FTCUs. A 

comprehensive UQ framework is proposed, where STCUs and FTCUs are formulated 

and transformed in a generic form. And the frequency stability indices, frequency 

response trajectories, and the sensitivity between frequency stability indices are 

quantified based on the proposed scalable PCE in a time-saving manner. 

Chapter 6 draws conclusions and makes suggestions for future research. 
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Fig. 1.3 Illustration of thesis layout. 
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Chapter 2 Probabilistic Frequency Stability Analysis 

Considering Dynamics of Renewable Power Generations with 

Different Control Strategies 

2.1 Introduction 

As stated in Chapter 1.2.3, most existing studies on PFSA ignore the dynamics of 

RPGs and thus result in inaccurate analysis results, especially when the fast frequency 

response of RPGs is expected. To overcome this limitation, this chapter proposes PFSA 

methods that consider the dynamics of RPGs with different control strategies. The 

proposed methods include MIS and MELRA for saving the simulation time and 

improving the accuracy. Also, the limitations of moment-based UPA methods are 

analyzed. 

 

2.2 Multi-Interval Sensitivity for Frequency Response Considering 

Dynamics of Renewable Power Generations with Different Control 

Strategies 

2.2.1 Control Strategies of Wind Power Generations 

In this chapter, WPGs are selected as the example RPGs. Two typical control 

strategies of WPGs are considered in this chapter, including the conventional grid-
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following control [32] and VSG-based grid-forming control [39], as examples. The 

grid-following control strategy makes the phase angle of the bus connecting the WPG 

follow the phase angle of the external grid voltage through a phase-locked loop and 

controls the output current. By comparison, the grid-forming control strategy controls 

the voltage of the bus connecting the WPG and contributes to the forming of a voltage-

source grid [128]. However, the following proposed method is not limited to the 

example control strategies and uncertainties of WPGs. Commonly, power electronic-

interfaced WPG consists of three parts: the permanent magnet synchronous generator 

(PMSG), the machine side converter (MSC), and the grid side converter (GSC) [39, 

129], which is illustrated in Fig. 2.1. It should be noted that only the control strategy 

of converters is considered in converter modeling. And phenomena related to 

electromagnetic transient are ignored to reduce the computational complexity since the 

timescale concerned in frequency stability is different from that concerned in 

electromagnetic transient. 
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Fig. 2.1 Configuration of grid-connected WPG: (a) Physical structure; (b) 

Conventional grid-following control; (c) VSG-based grid-forming control. 

The mechanical power pmP  extracted by WPG from wind can be expressed by 

[130] 

 2 3( , ) /2pm p w wP R C vϖπ λ β=   (2.1) 

where ϖ  is the air density. pR  denotes the radius of turbine. wv  represents the wind 

speed. ( ),wC λ β  is the wind energy utilization coefficient with respect to the tip speed 

ratio λ  and the pitch angle β , there is 
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 21/( , ) 0.5176(116 / 0.4 5) 0.0068i
w iC e λλ β λ β λ−= − − +  (2.2) 

where /pr p wR vλ ω=  , and prω   is the rotor speed of WPG. 

31/ 1/ ( 0.08 ) 0.035 / ( 1)iλ λ β β= + − + . 

The motion equation of the rotor of PMSG can be expressed as [33] 

 /pr pr pm peJ d dt T Tω = −   (2.3) 

where prJ   is the constant of inertia of the rotor. /pm pm prT P ω=   denotes the 

mechanical torque. /pm pm prT P ω=  is the electromagnetic torque. 

The reference signal of active power affected by wind speed variation is calculated 

based on the MPPT strategy, which can be expressed as [130] 

 3

0 , or
,
,

w ci w co

mppt mppt pr ci w rat

rat rat w co

v v v v
P k v v v

P v v v
ω

< ≥
= ≤ ≤
 < <

  (2.1) 

where civ  , cov  , and ratv   are the cut-in, furling, and rated wind speed, respectively. 

ratP  denotes the rated output power of WPG. mpptk  is the coefficient of MPPT. mpptP  

is the MPPT reference signal. 

Thus, the variation of wind speed will affect the MPPT reference signal mpptP . And 

then, the actual output of WPG pP  will change. Finally, due to the power imbalance 

between the generation and loads, the frequency will be affected. Also, from Fig. 2.1 

(b) and Fig. 2.1(c), the main difference between these two strategies in frequency 

response is that for the VSG-based grid-forming control strategy, there is a signal of 

virtual rotor speed for mimicking the rotor dynamics of the synchronous generator 

(SG), thereby providing inertia support to the system and governing the output power 

of WPGs. By comparison, the conventional grid-following control cannot provide 
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inertia support. 

2.2.2 Frequency Response Analysis Considering Dynamics of Wind Power Generation 

with Different Control Strategies based on System Frequency Response Model 

The aggregated system frequency response (SFR) model [109, 131] is applied to 

analyze the system frequency response, which reflects the average frequency response 

of all generators after a disturbance of load-generation unbalance. And the system 

frequency of the power system is usually regarded as the frequency of an equivalent 

generator, i.e., the center of inertia, that can reflect the average behavior of all the 

generators within the system [132]. The dynamics of WPGs are modeled as first-order 

transfer functions [133], where the equivalent time constants of different control 

strategies are different. And the inertia provided by VSG control is added to the system 

inertia [134], while the conventional grid-following control strategy cannot provide the 

inertia. The modified aggregated SFR model is shown in Fig. 2.2. 

Δf+

－...

ΔPpl

+

ΔPpsl

G(s)
+

ΔPp1ΔPps1

ΔPpNΔPpsNP

...

P

1
1+Tpls

1
1+TpNps

1
1+Tp1s

1+FhTrs
1+Trs

1
2Hs+D

Km
R

 

Fig. 2.2 Aggregated SFR model considering dynamics of WPGs and different control 

strategies. 

In Fig. 2.2, mK , R , hF , rT  denote the aggregated gain of governors, governor 

speed regulation, high-pressure turbine fraction, and reheat time constant, respectively. 

D  is the load damping factor. plT  is the time constant of the dynamic response of the 
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l-th WPG. plP∆  represents the l-th WPG output deviation after and before wind speed 

changes. Moreover, system inertia H  can be derived as 

 
1 1

( ) /
S VN N

sc sc pc pc sys
c c

H H S H S S
= =

= +∑ ∑   (2.2) 

where SN  is the number of SGs. scH and scS denote the inertia and the rated apparent 

power of c-th SG. VN  is the number of WPGs with the VSG control. VcH and VcS  

denote the inertia and the rated apparent power of c-th WPG with the VSG control. sysS  

is the system installed generation capacity without WPGs with grid-following control. 

The frequency response without the WPG dynamics ( )G s  is 
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ω +
= , 2

2( )
r m h r
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HR DRT K F T
DR K

ς ω+ +
=

+
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Thus, the system frequency response f∆   considering the output variation of 

WPGs in the s-domain can be derived as 

 
1

1( ) ( ) ( ).
1

PN

psl
pll

f s G s P s
T s=

∆ = ∆
+∑   (2.4) 

Since the dynamics are considered as first-order transfer functions, ( )pslP s∆  can 

be treated as a step signal from 0 to steady-state deviation of active power pslP∆ . 

Substituting (2.6) into (2.7), ( )f s∆  can be transformed into  

 
2

2 2
1

1( ) .
( 2 )(1 )

PN
psl n r

m n n pll

P R T sf s
DR K s s T s s

ω
ςω ω=

∆ +
∆ =

+ + + +∑   (2.5) 

The partial fraction expansion of (2.8) can be written as 
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2

1 2 3 4
2 2

1
( ) ( )

2 1

PN
psl n l l l

m n n pll

P R sf s
DR K s s T s s

ω η η η η
ςω ω=

∆ +
∆ = + +

+ + + +∑  (2.6) 

where 1lη  , 2lη  , 3lη  , and 4η   are the undetermined coefficients of partial fraction 

expansion corresponding to the l-th WPG, which have no physical meaning and are 

introduced for simplifying the form of the following equations. 

Transforming (2.8) into a common denominator and comparing it with (2.9), 1lη , 

2lη , 3lη , and 4η  can be derived as 
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  (2.7) 

Transforming (2.9) from the s-domain to the time domain, the system frequency 

response in the time domain ( )f t∆  is 

 

1

1 2 3
1

1

( ) [ sin( ) ]

( )

P
pln

P

N t
Tt

l r l l psl
l
N

l psl
l

f t e t e P

C t P

ςωκ ω ϕ κ κ
−

−

=

=

∆ = + + + ∆

= ∆

∑

∑
 (2.8) 

where 
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Moreover, it should be noted that the above relationship is not only suitable for the 

frequency response considering the dynamics of WPGs with conventional grid-

following control and VSG-based grid-forming control, but also suitable for more 

general scenarios, for example, considering the droop control of RPGs and uncertainties 

of loads and the power loss caused by contingencies. The droop control can be 
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equivalent to an addition of the first-order negative-feedback transfer function in ( )G s  

[134]. And the variation of load and the power loss caused by contingencies can be 

equivalent to the addition of disturbance [132]. After the similar derivation presented 

above, the relationship in (2.11) is still valid, and just the form of ( )lC t  becomes more 

complicated. 

Comparing (2.11) with the frequency response without the dynamics and different 

control strategies of WPGs in [131], the most significant difference is the introduction 

of the second term in (2.11), and the forms of the rest two items in (2.11) have the 

similar forms of those without the dynamics and different control strategies of WPGs. 

This indicates that RoCoF no longer occurs at the time when wind speed changes. Thus, 

to obtain frequency stability indices, the occurrence time of frequency stability indices 

should be derived firstly, where the derivative of frequency equaling to 0 should be 

solved. However, due to the introduction of the second term of (2.11), it becomes a 

transcendental equation without an explicit solution [135]. Thus, the closed-form 

relationship between frequency stability indices, i.e., RoCoF and FN/FV, and pslP∆  

cannot be derived. 

The disappearance of the closed-form relationship brings difficulties in 

quantifying frequency stability indices under uncertainties. Since the second term of 

(2.11) is the main difference between the frequency with and without dynamics of 

WPGs, its response trend can greatly affect ( )f t∆ . To analyze the response trend of the 

second term of (2.11), 1psP∆  , 2psP∆  ,   , PpsNP∆   are divided into two groups: 

. 0psP∆ ≥  and . 0psP∆ < . Applying the aggregated model of the WPG [136], the second 
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term of (2.11) can be transformed into 
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where l+  and l−  are the indexes of . 0psP∆ ≥  and . 0psP∆ < , respectively. PN +  and 

PN −  denote the numbers of WPGs with . 0psP∆ ≥  and . 0psP∆ < , separately. 
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If parameters in Fig. 2.2 are selected as reasonable values [132], 2lκ   will be 

negative. The derivative of (2.12) indicates that, if all . 0psP∆ ≥  , (2.12) is 

monotonically increasing with t ; if all . 0psP∆ < , (2.12) is monotonically decreasing; 

if part of . 0psP∆ ≥  and the rest of . 0psP∆ < , there are situations that the derivative of 

(2.12) crosses through zero. Thus, the second term of (2.11) has 4 possible types of 

response trends, which contributes to 4 types of response trends of ( )f t∆ . Therefore, 

.psP∆   is divided into 4 elements, i.e., 1) all . 0psP∆ ≥  , 2) all . 0psP∆ <  , 3) 

1 1
| |

P PN N

psl psl
l l

P P
+ −

+ −

+ −
= =

∆ ≥ ∆∑ ∑  , and 4) 
1 1

| |
P PN N

psl psl
l l

P P
+ −

+ −

+ −
= =

∆ < ∆∑ ∑  , corresponding to different 

response trends. 

2.2.3 Multi-Interval Sensitivity for System Frequency Response 

According to (2.11), based on the SFR model illustrated in Fig. 2.2, the explicit 

solution of FN/FV and RoCoF no longer exists after considering the dynamics of 

WPGs, which challenges the existing methods of probabilistic frequency stability 

analysis. And the relationship between the deviation of system frequency from the base 
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frequency ( )f t∆  and the steady-state output deviation of the l-th WPG after and before 

wind speed changes pslP∆  can be expressed as: 

 
1

( )= ( )
PN

l psl
l

f t C t P
=

∆ ∆∑   (2.10) 

where PN  is the number of WPGs. ( )lC t  denotes the time-varying sensitivity. 

Motivated by (2.13), if the time-varying sensitivity ( )lC t   can be derived, 

frequency response ( )f t∆   with any combinations of 1psP∆  , 2psP∆  ,   , PpsNP∆   can 

be calculated. This will greatly reduce the simulation number of the detailed system 

model in probabilistic frequency analysis. However, different from the SFR model 

presented in Fig. 2.2, as a simplified model, where ( )lC t  is fixed, for the actual system, 

( )lC t  may be unfixed due to the complicated interaction and the existence of nonlinear 

blocks. Thus, to approximate the unfixed ( )lC t   and reflect the nonlinearity of the 

actual system, MIS is proposed. The core of MIS is to divide pslP∆   into multiple 

intervals with respect to ( )lC t , suppose the sensitivity between ( )f t∆  and pslP∆  in 

each interval is fixed, and calculate the sensitivity in each interval to approximate the 

unfixed ( )lC t . 

The calculation of interval sensitivity , ( )l qC t   in q-th interval with respect to 

,psl qP∆  can be summarized as follows. 

1) Divide the range of pslP∆  into IN  intervals. The midpoint of q-th interval is 

,psl qP∆ . 

2) Conduct the simulation at ,psl psl qP P∆ = ∆   and other 

1 2 0Pps ps psNP P P∆ = ∆ = = ∆ =   to calculate sensitivity , ( )l qC t   in q-th interval with 
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respect to ,psl qP∆  as 

 , , ,( ) ( ) /l q l q psl qC t f t P= ∆ ∆   (2.11) 

where , ( )l qf t∆  is the frequency response when the system is only under the variation 

of wind speed in the l-th WPG without the variation of wind speed in other WPGs. 

3) Repeat Step 1)-Step 2) to calculate all sensitivities with respect to 1psP∆  , 

2psP∆ ,  , PpsNP∆ . 

4) Based on (2.15), generate the sampling data for the UPA. 

 , ,
1 1

( ) ( )
P IN N

l q l q psl
l q

f t C t I P
= =

∆ ≈ ∆∑∑    (2.12) 

where ,
1, in - th interval
0, otherwise

psl
l q

P qI ∆= 


. 

The interval splitting of pslP∆  and the calculation of ( )lC t  are presented in Fig. 

2.3, which are the illustrations of Step 1) and Step 2) of MIS, respectively. 

t

Δf(t)

Cl,1(t)=Δfl,1(t)/ΔPpsl,1

Cl,2(t)=Δfl,2(t)/ΔPpsl,2

Cl,N    (t)=Δfl,N    (t)/ΔPpsl,N  I-1 I-1 I-1

Cl,N (t)=Δfl,N (t)/ΔPpsl,N  I I I

PD
F ...

ΔPpsl,1ΔPpsl,2 ΔPpsl,NI-1ΔPpsl,NIΔPpsl

...

(b)(a)  

Fig. 2.3 (a) Interval splitting of pslP∆  (Step 1)); (b) Calculation of ( )lC t  (Step 2)). 

2.2.4 Multi-Interval Sensitivity for Area-Level Frequency Response 

In power systems, when there is an active power disturbance, the disturbance will 

be shared by every generator. Thus, pslP∆  allocated to u-th SGs or WPGs with VSG 

control ,tl uP∆  can be depicted as [22] 
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 , ,tl u l u pslP B P∆ = ∆   (2.13) 

where ,l uB   is the distribution coefficient, which is only determined by system 

parameters and not affected by pslP∆   [22]. And the area-level center of inertia is 

aggregated by the generators within the area. The area-level frequency is calculated by 

aggregating the generator frequency within the area, where the inertia ratio between the 

generator and the area center of inertia is the aggregation weight [22, 24, 132]. Thus, 

the frequency ( ) ( )af t∆  of the a-th area can be calculated as 

 ( ) ( ) ( ) ( )

1 1
( ) ( ) /

a aN N
a a a a

u u u
u u

f t H f t H
= =

∆ = ∆∑ ∑   (2.14) 

where aN  is the number of generators in the a-th area. ( )a
uH  and ( ) ( )a

uf t∆  denote the 

inertia and frequency of u-th generator in the a-th area, respectively. 

Since ( ) ( )a
uf t∆   and pslP∆   has the similar relationship presented in (2.13), 

substituting (2.13) and (2.16) into (2.17), the area-level frequency response can be 

derived as 

 ( ) ( ) ( )
,

1 1 1
( ) [ ( ) ] / .

a P aN N N
a a a

u l l u psl u
u l u

f t H C t B P H
= = =

∆ = ∆∑ ∑ ∑   (2.15) 

Similarly, MIS can be applied to approximate the sensitivity ( )lC t   in (2.18). 

Thus, the approximated area-level frequency response ( ) ( )af t∆  based on MIS can be 

derived as 

 ( ) ( ) ( )
, , ,

1 1 1 1
( ) [ ( ) ] / .

a P I aN N N N
a a a

u l q l q l u psl u
u l q u

f t H C t I B P H
= = = =

∆ ≈ ∆∑ ∑∑ ∑  (2.16) 

It should be noted that in the actual system, where the inter-area oscillation is 

considered, ( )lC t  may be unfixed. And the introduction of the multi-interval in the 
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proposed MIS is to cope with the scenario that ( )lC t  is unfixed due to the complicated 

interaction and nonlinearity. Thus, the proposed MIS with the form of (2.19) is 

effective when considering inter-area oscillation. The procedure of area-level frequency 

calculation considering output variations of WPGs is illustrated in Fig. 2.4. 
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Fig. 2.4 Area-level frequency calculation considering output variation of WPGs. 

 

2.3 Multi-Element Low-Rank Approximation for Probabilistic 

Frequency Stability Analysis 

2.3.1 Uncertainty Modeling of Wind Power Generation 

Uncertainties of WPGs are characterized by the PDFs of wind speed variation, and 

the steady-state active power after the fluctuation of wind speed is calculated based on 

the MPPT strategy [130]. The PDF (.)Copp  of uncertainties 1 2, , , Cc c cNξ ξ ξ  with 

correlation is modeled by the Copula function as [109] 
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where CN  is the number of wind speed with correlation. 1~c NCξρ  denotes the 
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correlation matrix of 1 2, , , Cc c cNξ ξ ξ . (.)P  is the integral of .( )p ⋅ . (.)p  denotes the 

PDF. (.)ψ  is the generator function of Copula, selected as the Gaussian function. 

Since the input uncertainties of LRA-based methods are required to be 

uncorrelated, 1 2, , , Cc c cNξ ξ ξ  should be transformed into uncorrelated ones 

1 2, , , CNξ ξ ξ , where Cholesky decomposition is adopted [109]. 

 1−= cξ C ξ   (2.18) 

where 1 2, , , Cc c cNξ ξ ξ  and 1 2, , , CNξ ξ ξ  are the elements of cξ  and ξ , 

respectively. C  is the Cholesky decomposition matrix, which can be calculated from 

1~c NC
T

ξ =ρ CC . 

2.3.2 Multi-Element Low-Rank Approximation 

LRA-based UPA methods apply a series of orthogonal polynomials corresponding 

to the PDFs of uncertainty ξ  to approximate the relationship ( )M ξ  between the 

concerned output y  and ξ . In this chapter, ξ  refers to the uncertainty of WPGs and 

y  stands for frequency stability indices. 

 
1

ˆˆ( ) ( ) ( )
RN

i i
i

y M y M b w
=

= ≈ = =∑ξ ξ ξ   (2.19) 

where RN  is the rank, which is the number of rank-one function ( )iw ξ . ib  denotes 

the i-th normalizing weighting coefficient. Superscript ^  is the approximated value or 

function from UPA methods. ( )iw ξ  represents i-th rank-one function of ξ , which has 

the following form. 
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U DN N
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w z φ ξ
==

= ∑∏ξ   (2.20) 
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where UN  is the number of uncertainties. ( )k jφ ξ  denotes the k-th degree univariate 

polynomial basis of jξ . DN  is the maximum degree of ( )k jφ ξ . ( )
,
j

k iz  represents the 

coefficient of k-th degree univariate polynomial of jξ  in the i-th rank-one component. 

Thus, the main work of constructing the LRA model is to determine ib , ( )
,
j

k iz , and 

( )k jφ ξ . 

1) Multi-Element Decomposition 

Based on the analysis in Chapter 2.2.2, the frequency response has different 

possible trends when considering the dynamics of WPGs. Thus, MELRA is proposed 

aiming at suitable for the concerned output with multiple response trends. In this 

chapter, the elements in MELRA correspond to the elements of WPG outputs divided 

in Chapter 2.2.2. 

The random space Ω  formed by the value range of uncertainty ξ  is divided into 

EN  elements as 

 
1

, ,
EN

n n n
n

n n
=

= = ∅ ≠ Ω Ω Ω Ω   (2.21) 

where nΩ  is the n-th element of Ω . 

The indicator function nFΩ  is defined as 

 
1, if .
0 otherwisen
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Thus, the probability Pr( )nFΩ  of ξ  in nΩ  can be calculated as: 

 
1
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After considering multiple elements, the form in (2.22) is transformed into 
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It should be noted that the summation form of different elements is not the 

aggregation of distinct potential trends of frequency response but the combination of 

separate elements of random space, i.e., random subspaces, into a whole random space 

with a concise form. And each sampled data of uncertainties only corresponds to one 

trend of frequency response. 

2) Construction of Polynomial Bases for Arbitrary Distributions 

The conventional construction of polynomial bases is based on the Askey scheme 

[97], which is only suitable for several typical PDFs. However, Weibull distribution is not 

included in the Askey scheme, which is usually applied to model the uncertainty of wind 

speed. Thus, a generic construction principle of polynomial bases for arbitrary 

distributions based on the orthogonality of polynomial bases is proposed. 

The polynomial basis ( )k jφ ξ  can be described as 

 
0

( )
k

g
k j g j

g
φ ξ α ξ

=

=∑   (2.25) 

where gα  is the coefficient of the g-th power of jξ . 

According to the orthogonality, there is: 

 ( ) ( ) ( ) 0, 0 .v j k j j jp d v kφ ξ φ ξ ξ ξ = ≤ <∫   (2.26) 

Substituting , , 10,1, 2 kv −=   into (2.29) in turns, 0 1 1, , , kα α α −  can be 

calculated orderly. 

The above procedure can be summarized as: 

 1
0 1 1 1 2[ , , , ] [ , , , ]T T

k kα α α χ χ χ−
− = Θ   (2.27) 
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where ( )vs k kθ ×=Θ . 2( ) ,1 ,v s
vs j j jp d v s kθ ξ ξ ξ+ −= ≤ ≤∫ . 

1( ) ,1v k
v j j jp d v kχ ξ ξ ξ+ += − ≤ ≤∫ . 

3) Computation of Undetermined Coefficients 

Firstly, LHS [103] is conducted to acquire a set of samples (1~ )LNξ  and the 

corresponding (1~ )LNy , where LN  is the number of sampled data. 

During the computation of undetermined coefficients ib  and ( )
,
j

k iz , the correction 

step and updating step are conducted in turns and stopped until the number of iterations 

is greater than the threshold of iteration number or the error 2
(1~ ) (1~ )ˆ|| ||L LN Ny y−  is 

smaller than the error threshold. In the r-th correction step, a new ( )rw ξ  is determined. 

And in the r-th updating step, 1 2, , , rb b b  are updated. 

Correction Step: The objective of the r-th correction step is to find new ( )rw ξ  

and minimize the residual error between sampled data and the outputs of the current 

LRA model, which can be described as 

 2
(1~ ) 1 (1~ ) (1~ )ˆ( ) arg min || ( ) ( ) ||L L Lr N r N N

W
w y M

ω
ω−

∈
= − −ξ ξξ  (2.28) 

where W  is the space of rank-one function ω . 1ˆ (.)rM −  is the LRA model with 1r −  

rank. To solve (2.31), alternated least-square minimization is applied [100]. 

Updating Step: After the r-th correction step, rb  corresponding to ( )rw ξ  needs 

to be calculated. Also, 1 2 1, , , rb b b −  should be updated. 1 2, , , rb b b  are the elements 

of rb , and the determination of rb  can be achieved by solving the following 

optimization problem 

 2
(1~ ) (1~ )

1
arg min || ( ) || .L Lr

r

r N i i N
i

y wβ
∈ℜ =

= −∑
β

b ξ   (2.29) 
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4) Selection of Optimal Number of Rank and Degree 

To select the optimal numbers of ranks and degrees, the leave-one-out (LOO) error 

LOOe  is introduced. The error of all ˆ ( )M ξ  satisfying maxR RN N≤  and maxD DN N≤  

is calculated, where maxRN  and maxDN  are the maximum of available RN  and DN , 

respectively. RN  and DN  corresponding to the lowest LOOε  are chosen as the 

optimal numbers of ranks and degrees. LOOε  can be calculated as [102]: 

 ( ) ( ) 2 2
( ) (1~ )

1 1

ˆ
( ) / ( ( ))

1

L L

L

N N
h h

LOO h N
hh h

y y y yε
λ= =

−
= −

−∑ ∑ E   (2.30) 

where hλ  is the h-th element of 1( ( ) )T Tdiag −= Λ Λ Λ Λλ . ( )iw ξ  is the i-th element of 

Λ . (.)E  is the expectation operator. 

To ensure the accuracy of the model, LOOε  of the model corresponding to the 

optimal numbers of ranks and degrees is required to be lower than the preset maxLOOε ; 

otherwise maxRN  and maxDN  will be increased to select the numbers of ranks and 

degrees meeting the error requirement. 

Finally, the estimated PDF ˆ ˆ( )p y  of ŷ  can be calculated based on KDE 

 ( )
1

ˆ ˆ ˆ ˆ( ) (( ) / ) / ( )
KN

K u K K K
u

p y p y y Nδ δ
=

= −∑   (2.31) 

where KN  is the sample number of KDE. (.)Kp  represents the kernel function, 

chosen as the Gaussian kernel. Kδ  is the bandwidth of KDE. 

Based on Chapter 2.2 and Chapter 2.3, the overall procedure of the proposed PFSA 

based on MIS-MELRA can be summarized in Fig. 2.5. 
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Fig. 2.5 Overall procedure of proposed PFSA based on MIS-MELRA. 

 

2.4 Discussion on Superiority of LRA-based Uncertainty Propagation 

Analysis Methods 

2.4.1 Limitation of Moment-Based Uncertainty Propagation Analysis Methods 

Moment-based UPA methods (e.g., CBMs, PEMs) adopt limited moments to 

obtain PDFs of uncertainties based on series expansion. However, normally, limited 

moments of uncertainties can only reflect finite characteristics of uncertainties, while 

PDFs contain more detailed characteristics. Due to the unequal quantity of 

characteristics reflected by PDFs and limited moments, the effectiveness of moment-

based UPA methods is worth discussing. Since GMM can describe arbitrary PDFs 

[137], it is applied to discuss the above issue in this chapter. 
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GMM can be modeled as 

 
1

( ) ( | , )
GN

G Gm Gm Gm
m

p Gauξ ω ξ µ σ
=

=∑   (2.32) 

 
1

1, 0, 0
GN

Gm Gm Gm
m
ω ω σ

=

= ≥ >∑   (2.33) 

where ξ  is the uncertainty. ( )Gp ξ  denotes the PDF of ξ  modeled by GMM. Gmω , 

Gmµ , and Gmσ  represent the weight coefficient, the mean, and the standard deviation 

of m-th Gaussian component, respectively. 

The d-th order origin moment of GMM Gdo  can be calculated as 

 ( )/2
1 0

!
2 ![( ) / 2]!

GN d
e d e

Gd Gm Gm Gmd e
m e

do
e d e

ω µ σ −
−

= =

=
−∑ ∑   (2.34) 

where d e−  is even. 

Thus, the estimation of the actual PDF ( )p ξ  based on moments and GMM can 

be transformed into the following nonlinear optimization problem. 

 
2

1
, , arg min ( )

. . (2.36)

ON

Gd d
d

o o

s t
=

= −∑G G Gω μ σ   (2.35) 

where Gmω , Gmµ , and Gmσ  are the m-th elements of Gω , Gμ , and Gσ . do  is the d-

th order origin moment of ( )p ξ . ON  is the considered number of moments. 

Also, the estimation of the actual PDF ( )p ξ  based on the shape difference of 

PDFs and GMM can be transformed into 

 
2, , arg min || ( ) ( )|| .

. . (2.36)
Gp p

s t
ξ ξ= −G G Gω μ σ   (2.36) 

Due to the utilization of series expansion in moment-based UPA methods, if the 

limited moments of uncertainties are close, the shapes of expanded PDFs will also be 
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similar. If the above relationship truly exists, within moment errors, all the feasible 

solutions of (2.38) should converge around the actual values, and the shapes of 

corresponding PDFs should be similar. To verify the existence of the above relationship, 

we take the standard Gaussian distribution as an example. To visualize the results in 3D 

space, the number of parameters should be reduced to 3. Thus, GN  is selected as 2, 

1 1Go o=  , and 1 2G Gσ σ=  . Parameters satisfying the first 5-order origin moments 

2( ) 0.05Gd do o− ≤  are drawn in Fig. 2.6(a). Among the results, two PDFs with close 

moments are presented in Fig. 2.6(b) as examples. The origin moments of PDFs in Fig. 

2.6(b) are presented in Table 2.1. 

 

Fig. 2.6 Estimation results of GMM: (a) Feasible values satisfying the requirement of 

moment error; (b) PDFs with close moments. 

Table 2.1 Comparison of origin moments 

 Order of moment 

 1st 2nd 3rd 4th 5th 

PDF1 0 1.2219 0.0333 2.9120 0 

PDF2 0 1.2211 0.0338 2.9242 0 

From Fig. 2.6(a), the possible values are distributed and do not converge around 

the actual values. This indicates that the possible shapes of GMM are diverse, which 
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can be further confirmed based on the results in Fig. 2.6(b) and Table 2.1. From Fig. 

2.6(b) and Table 2.1, the moments of PDF1 and PDF2 are very close. However, the 

shapes of PDF1 and PDF2 are quite different. This indicates that there is a possibility 

that PDFs with close moments may have very different shapes. Moreover, the moment-

based methods calculate the moments first and then apply the derived moments to 

calculate PDFs. Thus, even if the limited moments calculated by moment-based 

methods are within an acceptable error range, the PDFs generated by moment-based 

methods are not reliable and may be quite different from the actual PDFs. 

To further investigate the relationship between the moment and shape differences 

of PDFs, the values of GMM coefficients are traversed. And the scatter figure about the 

moment difference and shape difference is presented in Fig. 2.7. 

 

Fig. 2.7 Relationship between moment difference and shape difference. 

In Fig. 2.7, data are scattered, and there is no obvious approximately linear 

relationship between the moment difference and the shape difference of PDF, which 

indicates that the moments of PDFs with similar shapes may be greatly different, while 

the shapes of PDFs with similar moments may also differ significantly. The results 

suggest that the UPA methods based on finite moments have limitations to some extent. 
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Since the finite moments do not fully reflect the statistical characteristics of 

uncertainties, and even if the accurate results of moments can be obtained, the accuracy 

of PDFs cannot be guaranteed. 

2.4.2 Connections and Differences between LRA and PCE 

LRA and PCE are both surrogate models based on polynomial bases. The 

construction of polynomial bases is the same. However, the differences of the forms 

between LRA and PCE result in LRA being more suitable for propagation analysis on 

numerous uncertainties. ˆ ( )EM ξ  of conventional PCE can be described as: 

 1 2

1

1 2
0 1

ˆ ( ) ( ) ( ) ( ), { | }
PCE U

N UU

N N

E i i i i N j j D
i j

M i i Nγ φ ξ φ ξ φ ξ
−

= =

= ⊗ ⊗ ⊗ ≤∑ ∑ξ   (2.37) 

where PCEN  is the number of undetermined coefficients iγ . ⊗  denotes the tensor 

product. 

By comparison, (2.22) is the tensor-product form, whereas (2.40) is the expanded 

form. Thus, the number of undetermined coefficients of LRA LRAN  is much smaller 

than that of PCE PCEN  when considering numerous uncertainties since RN  and DN  

are normally small. Based on (2.41), the increase of LRAN  and PCEN  with the rise of 

UN  is illustrated in Fig. 2.8(a) when 3DN = . From Fig. 2.8(a) LRAN  rises linearly 

with the increase of UN , where the curse of dimensionality is avoided. 

 
( 1) .

( )!/ ( ! !)
LRA R D U

PCE U D U D

N N N N
N N N N N

= +
 = +

  (2.38) 

Furthermore, under the same DN , more high-order cross terms of polynomial 

bases are considered in LRA, which contributes to the better performance of LRA in 
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the approximation of high-order nonlinear relationships. The order combinations of 

polynomials are presented in Fig. 2.8(b) when 3DN = , 3UN = . 

 

Fig. 2.8 Differences between LRA and PCE: (a) Number of undetermined coefficients 

corresponding to UN ; (b) Order combinations of polynomials. 

 

2.5 Case Study 

2.5.1 Case 1: IEEE 68-Bus Benchmark System 

1) Example System 

Numerous results are conducted in the IEEE 68-bus benchmark system [22] based 

on the detailed models of WPGs illustrated in Chapter 2.2.1 and the power system. The 

full-order governor model with a limiter is applied [132]. The system is divided into 5 

areas based on the geographical location [138]. The parameters of different control 

strategies refer to [30, 39]. The line diagram and the parameters of uncertainties are 

presented in Fig. 2.9 and Table 2.2, respectively. It should be noted that the sudden 

changes of wind speeds are regarded as uncertainties, which is a relatively common 

phenomenon in reality. And to ensure that the uncertainty settings in case studies are 

similar to the actual situation, the random degree of wind speed change in case studies 
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is set to a similar level of the measurement in [139]. 
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Fig. 2.9 Line diagram of IEEE 68-bus system with uncertainties. 

Table 2.2 Parameters of uncertainties in Case 1 

WPG No. Control strategy Parameters 

W1, 2 Normal, VSG Weibull(2.5, 4.5, 4), 0.7ρ =ξc  

W3, 4 Normal, VSG Weibull(2, 5, 3.5), 0.5ρ =ξc  

W5, 6 Normal, VSG Weibull(2.5, 2.4, 4) 

W7, 8 Normal, VSG Weibull(2, 3, 3.5) 

2) Validation of Probabilistic Frequency Stability Analysis 

The performance of the proposed MIS is verified first. Sensitivity analysis of 

calculation error of FN/FV and RoCoF based on MIS with respect to IN  is conducted, 

where mean absolute percentage error (MAPE) [111] is selected as the evaluation 

indicator. The results of sensitivity analysis are presented in Fig. 2.10(a), where the 

MAPE units of FN/FV and RoCoF are 110− % and %, respectively. 
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Fig. 2.10 Performance of MIS: (a) Sensitivity analysis of IN ; (b) Comparison of 

actual system frequency response and that calculated by MIS when =2IN . 

From Fig. 2.10, both the MAPE of FN/FV and that of RoCoF are small when IN  

is set as different values. Moreover, MAPEs of FN/FV and RoCoF decrease with the 

increase of IN . The results of the sensitivity analysis demonstrate the high accuracy 

of the proposed MIS. Also, though the larger value selection of IN  will obtain more 

accurate results, the number of simulations will linearly increase with IN  

simultaneously. Thus, a relatively small value selection of IN   will utilize the 

advantage of MIS in reducing the number of simulations more sufficiently. And IN  is 

selected as 2 not 1 in the following case studies for enabling the MIS to characterize 

the nonlinear relationship between the frequency response and the output power of 

WPGs. Moreover, the actual system frequency response and that calculated by MIS 

when =2IN  are drawn in Fig. 2.10(b), where all wind speeds change to 6m/s as an 

example. Two frequency trajectories almost overlap, which illustrates that setting IN  

as 2 can serve the purpose of accurate calculation. 

The performance of the proposed MIS-MELRA is compared with cumulant-based 

Gram-Charlier expansion [27] (CGCE), PCE, and LRA. The expansion order of CGCE 
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is selected as 8 [27]. The expansion order of PCE is chosen as 4 [97]. The rank and 

degree of LRA are 1 and 4, respectively [102]. The parameters of MIS-MELRA are set 

as: max 2RN = , max 4DN = , and 3
max 10LOOε −= . The number of sampling data of PCE, 

LRA, and MIS-MELRA is 200 [100]. MCS considering the dynamics of WPGs 

(denoted as MCS-DR) is conducted 5000 times [21], and the results are regarded as the 

baseline. Also, MCS without the dynamics of WPGs (denoted as MCS-NDR) is carried 

out. The simulation time St , method execution time Mt , and total time Tt  of different 

methods are presented in Table 2.3. 

Table 2.3 Time comparison of different methods in analyzing FN/FV and RoCoF in 

Case 1 

Time Index St  (s) Mt  (s) Tt  (s) 

MCS-NDR 42889.01 - 42889.01 

MCS-DR 44256.15 - 44256.15 

CGCE 70.65 0.72 71.37 

PCE 
1770.15 

1.49 1771.64 

LRA 0.66 1770.81 

MIS-MELRA 146.65 4.80 151.45 

From Table 2.3, since the detailed model of WPGs is not considered in MCS-NDR, 

Tt  of MCS-NDR is less than that of MCS-DR, but both of them are time-consuming. 

Besides, from the perspective of Mt , CGCE is the fastest, while MIS-MELRA takes 

the longest time due to the more complex calculation process. However, Mt  only takes 

a small amount of Tt , which mainly depends on St . By comparison, CGCE only needs 

UN  simulations, leading to it being the most time-saving method. Although PCE, LRA, 
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and MIS-MELRA need 200 simulations, only the I UN N   simulations of the actual 

system are conducted to obtain (2.15) in MIS-MELRA. And most simulations are 

carried out based on (2.15), which makes MIS-MELRA save much St  compared with 

other surrogate models.  

Furthermore, the PDF results of FN/FV and RoCoF are presented in Fig. 2.11, 

respectively. The shape differences of the corresponding PDFs are illustrated in Table 2.4. 

The shape difference is defined as the Euclidean distance between the actual PDF ( )p y  

and the estimated PDF ˆ ˆ( )p y  same as (2.39), i.e., ˆ ˆ|| ( ) ( )||p y p y− . For saving space, only 

the results of Area 1, Area 2, and system are presented. .d  is the shape difference of 

PDF. The FN/FV and RoCoF of frequency in Area a  are denoted as AaF  and AaR , 

respectively. The FN/FV and RoCoF of system frequency are denoted as sysF  and sysR . 

 

Fig. 2.11 PDF of FN/FV and RoCoF in Case 1: (a) FN/FV of Area 1; (b) FN/FV of Area 

2; (c) FN/FV of system; (d) RoCoF of Area 1; (e) RoCoF of Area 2; (f) RoCoF of 

system. 



49 

Table 2.4 Performance of different methods in analyzing FN/FV and RoCoF in Case 1 

Shape difference  1AFd  2AFd  sysFd  1ARd  2ARd  sysRd  

CGCE 2.07 2.06 2.06 8.13 7.25 5.83 

PCE 1.53 1.52 1.50 8.08 7.19 5.82 

LRA 1.52 1.51 1.50 8.11 7.20 5.88 

MIS-MELRA 0.93 0.95 0.96 4.01 3.73 3.27 

As presented in Fig. 2.11, there are two peaks of FN/FV and RoCoF PDFs based 

on the results of MCS-DR. By comparison, shapes of PDFs of FN/FV and RoCoF under 

MCS-NDR are approximated one-peak and have fatter tails. The reason is that when 

ignoring the dynamics of WPGs, the injected power from WPGs will not change gradually 

but suddenly, leading to a bigger deviation of frequency, FN/FV, and RoCoF. Moreover, 

when ignoring the dynamics of WPGs, if the sum of the steady-state output power of 

WPGs after the variation of wind speed is close to 0, the deviation of frequency will also 

be close to 0. However, since WPGs have different dynamics, the sum of the output power 

of WPGs is not close to 0 from the moment when wind speed changes to the end of the 

dynamic process, which contributes to the occurrence of two peaks in the PDFs of FN/FV 

and RoCoF. This indicates the necessity of considering the dynamics of WPGs in PFSA. 

Furthermore, from Fig. 2.11 and Table 2.4, compared with PDFs of other methods, 

the PDFs from MIS-MELRA have the highest similarity with the PDFs from MCS-DR 

in both FN/FV and RoCoF. After MIS-MELRA, the performance of LRA is slightly 

better than that of PCE. The performance of CGCE is the worst since CGCE is based on 

the premise that there is a proportional relationship between pslP∆   and FN/FV or 

RoCoF, which does not exist based on the analysis in Chapter 2.2.2. 
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Moreover, a risk assessment matrix (RAM) can be formed based on the results in 

Fig. 2.11 to calculate the occurrence probability of the frequency instability risk, which 

are presented in Table 2.5 and Table 2.6, where ‘Red’, ‘Yellow’, and ‘Green’ region 

represent ‘High Risk’, ‘Medium Risk’, and ‘Low Risk’, separately [21]. The 

classification criterion used in Table 2.5 and Table 2.6 is according to the operational 

limit and statutory limit of frequency stability indices in the industry standard [140]. 

Results listed in the row of ‘MCS-DR’ are the occurrence probability of the frequency 

instability risk, while results listed in the row of rest methods are the absolute errors 

(AEs) between the occurrence probability calculated by different methods and that from 

MCS-DR. The mean absolute errors (MAEs) of different methods are shown in the last 

column to present the overall accuracy of different methods. The units of results shown 

in Table 2.5 and Table 2.6 are %. 
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Table 2.5 RAM in analyzing FN/FV in Case 1 

FN/FV (Hz) <49.5 49.5~49.8 49.8~50.2 50.2~50.5 >50.5 MAE 

Area 1 

MCS-DR 3.41 18.15 32.04 21.57 24.82 - 

CGCE 3.94 1.29 1.30 0.01 3.94 2.10 

PCE 0.86 0.88 0.68 1.29 0.63 0.87 

LRA 0.61 1.36 1.25 1.07 0.57 0.97 

MIS-MELRA 0.19 0.35 0.44 0.15 0.43 0.31 

Area 2 

MCS-DR 3.39 18.13 32.11 21.56 24.80 - 

CGCE 3.95 1.59 1.58 0.01 3.93 2.21 

PCE 0.87 0.88 0.64 1.26 0.63 0.87 

LRA 0.61 1.34 1.21 1.05 0.57 0.96 

MIS-MELRA 0.18 0.28 0.54 0.19 0.44 0.33 

System 

MCS-DR 3.34 18.06 32.26 21.59 24.74 - 

CGCE 4.01 1.53 1.41 0.03 3.86 2.16 

PCE 0.85 0.82 0.59 1.23 0.61 0.82 

LRA 0.65 1.31 1.11 1.02 0.57 0.93 

MIS-MELRA 0.18 0.26 0.55 0.20 0.44 0.33 
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Table 2.6 RAM in analyzing RoCoF in Case 1 

ROCOF (Hz/s) <-0.5 -0.5~-0.4 -0.4~0.4 0.4~0.5 >0.5 MAE 

Area 1 

MCS-DR 0.00 0.36 88.82 6.03 4.79 - 

CGCE 0.28 0.71 2.17 1.71 1.46 1.26 

PCE 0.81 1.03 5.32 0.25 3.24 2.13 

LRA 0.10 0.55 1.67 0.06 1.08 0.69 

MIS-MELRA 0.00 0.08 1.13 0.07 0.97 0.45 

Area 2 

MCS-DR 0.00 0.14 90.26 5.66 3.95 - 

CGCE 0.14 0.67 2.37 1.83 1.36 1.27 

PCE 0.37 0.46 3.12 0.41 1.90 1.25 

LRA 0.03 0.33 1.19 0.01 0.83 0.47 

MIS-MELRA 0.00 0.01 0.95 0.13 0.81 0.38 

System 

MCS-DR 0.00 0.06 91.43 5.24 3.27 - 

CGCE 0.09 0.57 2.09 1.65 1.10 1.10 

PCE 0.01 0.19 2.34 0.61 1.53 0.94 

LRA 0.02 0.24 1.48 0.15 1.07 0.59 

MIS-MELRA 0.00 0.02 0.86 0.13 0.71 0.34 

From Table 2.5 and Table 2.6, the estimation error of MIS-MELRA is not the 

smallest at all levels. The reason is that the inaccuracy of other methods is mainly 

presented in the estimation of PDF at the middle region, while there are the stability 

ranges of frequency indices located at the tail of PDFs, which weakens the negative 

impact of the PDF estimation error on frequency stability risk assessment. Thus, it 

should be acknowledged that there exists a small possibility that the estimation error of 

MELRA may be slightly greater than those of other methods when the stability level of 

frequency indices is located at the tail of PDFs, and the interval of stability level is 

narrow, for example, 50.2~50.5Hz of FN/FV and 0.4~0.5Hz/s of RoCoF. However, 
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even in this scenario, the AEs of MIS-MELRA are still small, with the maximal AE of 

0.20%. And in the rest scenarios, the estimation errors of MELRA are the smallest. 

Moreover, from the perspective of overall accuracy, MIS-MELRA presents the highest 

accuracy in the risk assessment of both FN/FV and RoCoF with the maximal MAE of 

0.45%. After MIS-MELRA, the accuracy of LRA is better than that of PCE, with the 

maximal MAE of 0.97% and 2.13%, respectively. And CGCE has the highest 

estimation errors. Additionally, it should be noted that a relatively high error of 

probabilistic frequency stability analysis may result in a conservative stability 

enhancement strategy, thereby increasing the reserve cost. Thus, estimation errors are 

expected to be as small as possible. Although all methods compared in the case studies 

have errors, according to the existing studies [21-24], the AE in estimating RAM is 

generally lower than 5%. By comparison, the estimation error of MIS-MELRA is lower 

than it, the accuracy of which is acceptable. 

2.5.2 Case 2: Industrial Provincial Large-Scale Power System 

To verify the performance of the proposed MIS-MELRA in the industrial large-

scale power system, a practical provincial system at the East China is adopted. The 

practical system is divided into 2 areas according to the geographical location of power 

grids of 2 provinces, including 1958 buses, 840 loads, 56 SGs, 3260 branches, and 14 

WPGs according to actual real-world data. The uncertainty parameters of WPGs and 

the structure diagram of the system are presented in Table 2.7 and Fig. 2.12, respectively. 
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Table 2.7 Parameters of uncertainties in Case 2 

WPG No. Control strategy Parameters 

W1, 2 Normal Weibull(2.5, 4.5, 4), 0.7ρ =ξc  

W3, 4 Normal Weibull(2, 3, 3.5), 0.5ρ =ξc  

W5, 6 VSG Weibull(2.5, 4.5, 4), 0.7ρ =ξc  

W7, 8 VSG Weibull(2, 3, 3.5), 0.5ρ =ξc  

W9, 10 Normal, VSG Weibull(1.5, 2, 4) 

W11, 12 Normal, VSG Weibull(2, 5, 5) 

W13, 14 Normal, VSG Weibull(1.5, 3.5, 5) 

 

Fig. 2.12 Structure diagram of provincial large-scale power system. 

The performance of the proposed MIS-MELRA is compared with CGCE, PCE 

with the sparse method and hyperbolic truncation (denoted as SPCE) [141], and LRA 

since conventional PCE encounters the curse of dimensionality in Case 2 due to the 

increase of uncertainty number compared with Case 1. Parameters are set to be the same 
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as those in Case 1. The time costs of different methods in analyzing the frequency 

stability indices are compared in Table 2.8. 

Table 2.8 Time comparison of different methods in analyzing FN/FV and RoCoF in 

Case 2 

Time Index St  (s) Mt  (s) Tt  (s) 

MCS-NDR 142537.66 - 142537.66 

MCS-DR 150672.40 - 150672.40 

CGCE 421.12 0.92 422.04 

SPCE 
6024.84 

1.90 6026.74 

LRA 0.74 6025.58 

MIS-MELRA 850.93 4.83 855.76 

In Table 2.8, the time costs of methods are similar to the results in Case 1. More 

specifically, CGCE is the most time-saving method. MIS-MELRA is the second. And 

due to the introduction of MIS, much simulation time is reduced in MIS-MELRA 

compared with LRA and SPCE. Moreover, Mt   does not experience a significant 

increase with the rise of the uncertainty number. The results demonstrate the time-

saving advantage of LRA-based methods in large-scale UPA. Additionally, it should be 

noted that there is an approximately proportional relationship between Tt   of MIS-

MELRA and UN  since S SS I Ut t N N≈  accounts for the major proportion of Tt , where 

SSt  is the time cost of a single simulation of the actual system. Thus, MIS-MELRA will 

cost more time than SPCE and LRA when 100UN >  . However, 100UN >   is not 

common in the existing studies on probabilistic frequency stability analysis since it is 

a common practice that uncertainties are aggregated to reduce system complexity [6, 
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21-24]. Also, MIS for reducing the time cost and MELRA for improving the accuracy 

are separate methods. Even if 100UN > , MELRA can be used individually to analyze 

probabilistic frequency stability with higher accuracy and almost the same time cost of 

SPCE and LRA. 

Next, the PDFs of frequency stability indices are shown in Fig. 2.13. The shape 

differences of the corresponding PDFs are displayed in Table 2.9. Also, the RAM is 

formed based on the results in Fig. 2.13, presented in Table 2.10. Since the risk 

probability of RoCoF in the range of -0.4~0.4Hz/s is 100%, only the RAM of FN/FV 

is presented for saving space. 

 

Fig. 2.13 PDF of FN/FV and RoCoF in Case 2: (a) FN/FV of Area 1; (b) FN/FV of Area 

2; (c) FN/FV of system; (d) RoCoF of Area 1; (e) RoCoF of Area 2; (f) RoCoF of 

system. 

 



57 

Table 2.9 Performance of different methods in analyzing FN/FV and RoCoF in Case 2 

Shape difference  1AFd  2AFd  sysFd  1ARd  2ARd  sysRd  

CGCE 3.83 3.87 3.85 17.12 14.53 13.85 

SPCE 3.64 3.77 3.66 10.03 8.47 8.10 

LRA 3.60 3.41 3.41 10.56 9.07 8.45 

MIS-MELRA 1.51 1.54 1.53 3.46 4.19 4.48 

Table 2.10 RAM in analyzing FN/FV in Case 2 

FN/FV (Hz) <49.5 49.5~49.8 49.8~50.2 50.2~50.5 >50.5 MAE 

Area 1 

MCS-DR 0.53 31.16 63.62 4.62 0.08 - 

CGCE 0.38 1.86 0.45 1.73 0.06 0.90 

SPCE 0.20 0.86 0.24 0.77 0.05 0.42 

LRA 0.14 0.12 0.70 0.90 0.05 0.38 

MIS-MELRA 0.07 0.11 0.24 0.11 0.04 0.11 

Area 2 

MCS-DR 0.53 31.14 63.63 4.62 0.08 - 

CGCE 0.43 2.44 0.99 1.82 0.06 1.15 

SPCE 0.22 1.11 0.46 0.81 0.05 0.53 

LRA 0.11 0.13 0.74 0.93 0.05 0.39 

MIS-MELRA 0.07 0.02 0.16 0.12 0.04 0.08 

System 

MCS-DR 0.53 31.13 63.64 4.62 0.08 - 

CGCE 0.40 2.02 0.62 1.74 0.06 0.97 

SPCE 0.16 0.99 0.26 0.84 0.05 0.46 

LRA 0.11 0.14 0.74 0.92 0.05 0.39 

MIS-MELRA 0.07 0.05 0.18 0.11 0.04 0.09 

From Fig. 2.13, there are significant differences between the PDFs obtained by 

MCS-NDR in both FN/FV and RoCoF and those from MCS-DR. Also, the PDFs 

calculated by MIS-MELRA have the highest similarity with the PDFs from MCS-DR 

in both FN/FV and RoCoF. After MIS-MELRA, the accuracy degrees of estimated 
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PDFs from SPCE and LRA are similar, and that of CGCE is the worst. Moreover, owing 

to the high PDF similarity, MIS-MELRA has the lowest estimation errors at all levels 

of frequency risk in RAM, as illustrated in Table 2.10. Regarding the overall accuracy, 

the maximal MAE of MIS-MELRA is 0.11%. By comparison, those of LRA, SPCE, 

and CGCE are 0.39%, 0.53%, and 1.15%, separately. Thus, the results indicate the high 

accuracy advantage of the proposed MIS-MELRA in large-scale UPA. 

 

2.6 Summary 

This chapter proposes methods of PFSA that consider the dynamics of RPGs with 

different control strategies. Firstly, the MIS method is proposed to simulate the 

frequency response, thereby significantly saving the simulation time. Then, the 

MELRA method for UPA suitable for large-scale uncertainty analysis is proposed. And 

the introduction of multi-element effectively improves the accuracy. In addition, by 

applying the GMM, the limitations of moment-based UPA methods are discussed, 

demonstrating the comparative superiority of the proposed method. Also, the necessity 

of considering the dynamics of RPGs in PFSA is revealed by analyzing the differences 

between frequency responses with and without dynamics of RPGs using different 

control strategies. The results of case studies demonstrate the effectiveness of the 

proposed methods. 
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Chapter 3 Probabilistic Frequency Stability Analysis 

Considering Wake Effects of Wind Farms 

3.1 Introduction 

Most existing studies on probabilistic frequency stability affected by WPG 

uncertainties ignore the heterogeneity and interactions of WTs inside WFs, i.e., WEs, 

which will lead to inaccurate results. This chapter proposes a method of PFSA 

considering the WEs of WFs. Also, an analytical WE model considering different 

factors and suitable for PFSA is proposed. Moreover, the impact of different factors on 

WEs and probabilistic frequency stability is studied. 

 

3.2 Wake Effect Model of Wind Farm Considering Multiple Factors 

for Frequency Response 

3.2.1 Wake Effect Model of Wind Farm Considering Multiple Factors 

1) Basic WE Model 

The WE of WT based on Gaussian WE model is shown in Fig. 3.1. 
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Fig. 3.1 WE of WT based on Gaussian WE model. 

In Fig. 3.1, uv  is the incoming upstream wind speed. dv  is the downstream wind 

speed in the wind direction, which is lower than uv  due to the WE of WT. ( , , )u u ux y h  

and ( , , )d d dx y h   are the positions of the upstream and indicated downstream WTs 

separately. wD  is the diameter of the upstream WT blade. 

According to the mass and momentum conservation, there is 

 2( ) / 2u u d T w uv v v dS C S vρ ρ− =∫   (3.1) 

where ρ  is the air density. S  denotes the cross-sectional area of the wake. TC  is the 

thrust coefficient of the WT. wS  denotes the area swept by the WT blades, which has 

the following relationship with the cross-sectional area of the wake just after the initial 

wake expansion 0S  [53] 

 0wS Sα=   (3.2) 

where (1 1 ) / (2 1 )T TC Cα = + − − . 

The Gaussian WE model assumes that the wind speed deficit has a Gaussian shape 

[53]. Thus, the normalized downstream wind speed deficit wd  can be expressed as 

 ( ) / ( )w u d u d ud v v v g x x e λ−= − = −   (3.3) 

where 2 2 2 2[( ) ( ) ] / (2 )ud d u w wy y h h Dλ σ= − + −  . wσ   denotes the width of the wake. 
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(.)g  is the function of wind speed deficit at each downstream location at the center of 

the wake. 

Thus, the downstream wind speed dv  can be expressed as 

 [1 ( ) ] .d d u uv g x x e vλ−= − −   (3.4) 

Substituting (3.4) into (3.1), there is 

 2 2 28( / ) ( ) 16( / ) ( ) 0.w w d u w w d u TD g x x D g x x Cσ σ− − − + =  (3.5) 

Solving (3.5) and taking the solution in line with the actual situation, (.)g  can be 

derived as 

 2( ) 1 1 / [8( / ) ].d u T w wg x x C Dσ− = − −   (3.6) 

Usually, the wake region is regarded as the linear expansion. Thus, /w wDσ  can 

be expressed as 

 / ( )w w w d u wD k x xσ ε= − +   (3.7) 

where wk  is the wake region growth rate. 0.25wε α=  [53]. 

Substituting (3.6) and (3.7) into (3.4), dv  can be derived as 

 2[1 (1 1 /{8[ ( ) ] }) ] .d T w d u w uv C k x x e vλε −= − − − − +  (3.8) 

2) Considering Terrain 

In the basic Gaussian WE model, the impact of terrain is ignored. According to the 

Lissaman model [59], the nature wind speed varies at different heights, which can be 

described as 

 / ( / )dn u d uv v h h γ′ =    (3.9) 

where dnv′   is the nature wind speed at height dh   ignoring the terrain. γ   is the 

coefficient of wind speed variation with height. 
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Also, according to the lossless Bernoulli equation, the relationship between the 

wind speed deficits corresponding to different wind speeds can be described as [54] 

 2/ ( / )w wn dn ud d v v′=   (3.10) 

where wnd  is the normalized wind speed deficit corresponding to dnv′ . 

Moreover, after considering the airflow of different terrains, the nature wind speed 

dnv  at height dh  can be expressed as [142] 

 2 /
1(1 / )dc h L

dn dnv c H Le v− ′= +   (3.11) 

where H  and L  are the height and length of the terrain, separately. 1c  and 2c  are 

the airflow coefficients of different terrains. 

Apart from the flat terrain, three complex terrains are included in this WE model, 

which can be formulated as [142] 

 2 2 2

2 2

ln 2[ ]/

2 2

/ (1 / ), Ridge
, Circular hill

[1 cos( / (2 ))] / 2, Rolling terrain

c c

c

x y L
c

c c

H x L
h He

H x y Lπ

− +

 +
= 
 + +

 (3.12) 

where ( , , )c c chx y  is a relative position from the terrain center. 

Substituting (3.9)-(3.12) into (3.8), the WE considering the terrain can be 

expressed as 

 
2

2

[1 (1 1 /{8[ ( ) ] })
( / ) ]( / ) .

d T w d u w

u d d u u

v C k x x
e h h h h vλ γ γ

ε
−

= − − − − + ⋅   (3.13) 

3) Considering Wind Direction 

When the wind direction changes, the relative position of the WT changes, and the 

original upstream WT may become a downstream WT. Therefore, it is necessary to 

convert the relative position of the WT from its geographical location to its relative 
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position along the wind direction. Assume that the angle between the wind direction 

and the positive direction of the x-axis on the x-y plane is xyθ , and the angle between 

the wind direction and the positive direction of the y-axis on the y-h plane is yhθ . The 

conversion between the position of WTs in the wind speed coordinate system 

. . .( , , )w w wx y h  and the position in the geographic coordinate system . . .( , , )x y h  is [50] 

 . . . . . .( , , ) ( , , )w w w yh xyx y h x y h T T=   (3.14) 

where 
1 0 0
0 cos sin
0 sin cos

yh yh yh

yh yh

T θ θ
θ θ

 
 = −
 
 

. 
cos sin 0
sin cos 0

0 0 1

xy

xy xy

xy

xyT
θ θ
θ θ

− 
 =
 
 

. 

Substituting (3.14) into (3.13), the WE considering the wind direction can be 

derived as 

 
2

2

[1 (1 1 /{8[ ( ) ] })
( / ) ]( / )w

d T w dw uw w

u d d u u

v C k x x
e h h h h vλ γ γ

ε
−

= − − − − + ⋅   (3.15) 

where wλ  is λ  calculated in the wind speed coordinate system. 

4) Considering WEs of Multiple Upstream Wind Turbines 

The above WE model only considers the WE of one upstream WT on the wind 

speed of downstream WT. In reality, all upstream WTs affect the downstream wind 

speed, and the downstream wind speed deficit is the superposition of the WEs of all 

upstream WTs, which can be described as [55] 

 2

1
(1 )

uN

d dn wj
j

v v d
=

= − ∑   (3.16) 

where uN  is the number of upstream WTs. 

Substituting (3.15) into (3.16), the WEs considering multiple upstream WTs can 

be derived as 
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2

2 21

{[(1 1 /{8[ ( ) ] })

( / ) ]( / ) }

u

wj

N
T w dw uwj w

d dn
j uj d d uj uj

C k x x
v v

e h h h h vλ γ γ

ε
−

=

− − − + ⋅
= − ∑  (3.17) 

where wjλ  is the wλ  of j-th upstream WT. 

5) Considering Time Delay of Wind Flow 

Since WFs usually cover large geographic areas, it may take an unignorable time 

period for the wind to pass through WFs. If there is a wind speed change at time t  

from the upstream position, the downstream wind speed ( )dv t   will change 

correspondingly after a time delay τ   rather than simultaneously. Thus, ( )dv t   is 

calculated based on the wind speed at t τ− , and the time delay can be determined by 

the integral of the downstream distance divided by the wind speed, i.e., 
0

1/
dwx

dv dxτ = ∫  

[50]. Thus, after considering the time delay of wind flow and WEs, the wind speed can 

be expressed as 

 

2

2 2
1

{[(1 1 /{8[ ( ) ] })
( ) ( ) .

( ) ]( ) ( )}

u

wj

T w dw uwj wN

d dn uj d
j uj

d uj

C k x x
v t v t h he v t

h h
λ γ γ

ε
τ

τ−
=

− − − + ⋅
= − −

−
∑  (3.18) 

3.2.2 System and Area-Level Frequency Response 

In this chapter, WTs adopt PMSGs as examples. The power electronic-interfaced 

PMSG includes three parts: the PMSG, the MSC, and the GSC [33], as presented in 

Fig. 3.2(a). MSC and GSC controllers are shown in Fig. 3.2(b), where the droop control 

is flexibly equipped as the additional frequency regulation control for WTs. Also, the 

primary frequency regulation for SGs and automatic generation control (AGC) are 

considered [143], as shown in Fig. 3.2(c). The area-level frequency is determined by 

the frequency of SGs within the area, which can be calculated as [22] 
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1 1

/
g gN N

ai sq sq sq
q q

f H f H
= =

=∑ ∑   (3.19) 

where aif  is the frequency of the i-th area. gN  denotes the number of SGs in the i-th 

area. sqH  and sqf  are the inertia and frequency of the q-th SG, respectively. 

From Fig. 3.2, the variation of nature wind speed will change the received wind 

speed of WTs in WFs in different degrees due to WEs, which will lead to the output 

power variations of WTs according to MPPT. Thus, the power imbalance will occur and 

result in the speed regulation of SGs, thereby affecting the frequency. Similarly, the 

system frequency sysf   is determined by the area-level frequency, which can be 

calculated as 

 
1 1

/
a aN N

sys ai ai ai
i i

f H f H
= =

=∑ ∑   (3.20) 

where aN  denotes the number of areas. aiH  and aif  are the inertia and frequency of 

the i-th area respectively. 

Additionally, from Fig. 3.2, the proposed WE model and the frequency response 

of power systems are calculated individually, where the WE model outputs are the 

inputs of the power system model. Thus, this WE model can be easily integrated into 

PFSA without any modifications to the power system model ignoring WEs. 
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Fig. 3.2 (a) WF model; (b) Control strategy of WT; (c) System and area-level 

frequency response. 

 

3.3 Multiple Output Gaussian Process Regression for Probabilistic 

Frequency Stability Analysis 

3.3.1 Multiple Output Gaussian Process Regression 
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GPR-based UPA adopts a reduced model (.)M   to describe the relationship 

between the uncertainties lrξ={ }ξ   and the concerned system response brz={ }z  , 

where lrξ  is the r-th sampling point of l-th uncertainty, and brz  is the r-th observation 

point of b-th output, where 1b =  in conventional GPR. In this chapter, ξ  is the wind 

speed, and z  is the frequency stability index. 

 ˆ ( ) +≈ =M ξ εz z   (3.21) 

where superscript ^ denotes the estimated output by GPR-based method. ε  is the error 

from the observation of z , which follows Gaussian distribution 2~ ( , )εσ0Nε I  with 

the standard deviation of εσ . I  is the identity matrix. ( )M ξ  is the Gaussian process 

(GP) defined by the mean m  and the covariance kernel function ( , ; )k ξ ξ θ  as [103] 

 ( )~ ( , ( , ; ))M GP m kξ ξ ξ θ   (3.22) 

where θ  are the parameters of the kernel function. 

It should be noted that GP is used to characterize the sampling points of 

uncertainties and the observation points of the corresponding frequency stability index 

rather than uncertainties and corresponding frequency stability index themselves. Thus, 

GPR does not require that uncertainties and corresponding frequency stability index 

have to follow Gaussian distributions and is suitable for arbitrary distributions. It can 

be seen in (3.21) that conventional GPR has only one output. However, both system 

frequency and area-level frequency are concerned and need to be analyzed in 

probabilistic frequency stability. If conventional GPR is applied to analyze them, 

multiple GPR models will be built, which is time-consuming. Moreover, there are 

implicit relationships among system and area-level frequency responses. One of the 
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obvious relationships is that the system frequency is the weighted average of area-level 

frequency, as shown in (3.20). However, building individual GPR models will not 

consider these relationships and may lead to inaccurate PFSA results. Thus, to quantify 

the probabilistic system frequency and area-level frequency simultaneously and 

characterize the implicit relationships among them, thereby improving accuracy and 

efficiency, MOGPR suitable for PFSA is designed. 

1) Model Construction of MOGPR 

Motivated by the combination relationship of frequency presented in (3.20), oN  

outputs 1( ) [ ( ), , ( )]o
T

N= M Mξ ξ ξM   are designed similarly to be formed by the 

combination of lN   latent factors 1( ) [ ( ), , ( )] ~ ( , ( , ; ))l
T

N= u u GPξ ξ ξ ξ ξ θu m k  

modeled by GP as [144] 

 
1 11 1 1

1

( ) ( )

( ) ( )

l

o o o l l

N

N N N N N

a a

a a

     
     =
     
     



    



M u

M u

ξ ξ

ξ ξ
  (3.23) 

where .a  is the element of coefficient matrix A . 

From (3.23), the connection of all outputs is established by the introduction of 

( )ξu  , and the implicit relationship among outputs is reflected in A  . Thus, the 

proposed MOGPR for PFSA can reflect the relationship between the system frequency 

and the area-level frequency. Applying 1 , ,[ ]o
T

n N na a= na   to represent the n-th 

column vector of A , the covariance of outputs can be calculated as 

 
1

( , ) [ ( ) ( ) ] [ ( )] [ ( )]

[ ( ) ( )] [ ( )] [ ( )]}

( , ; )

l

T T

N
T

n n n n
n

T

=

= −

= ⊗ −

= ⊗

∑

E E E

{E E En n

C

a a

AA

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ θ

M M M M

k

u u u u  (3.24) 
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Thus, the joint prior distribution of the observed system outputs sZ  

corresponding to the sampling points of uncertainties ξ s  and ( )ξeM  corresponding 

to the points of uncertainties to be analyzed ξe  is 

 
2+~ ,

( )

T T

T T
εσ ⊗ ⊗    

      ⊗ ⊗      
N

ξ
s s ss se

e e es ee

Z AA I AA
AA AA

m K K
M m K K

 (3.25) 

where sm   and em   are the means corresponding to ( )ξ sM   and ( )ξeM  

respectively. seK  denotes ( , ; )ξ ξ θs ek . 

Thus, the posterior mean pem  and covariance peeK  of ( )ξeM  can be derived 

as 

 
2 1

2 1
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( ) ( ) .
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( ) ( )

T

T

T

T T

ε
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−

−
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  (3.26) 

2) Calculation of Undetermined Coefficients 

According to (3.26), θ  and A  are undetermined, which need to be calculated. 

According to the Bayesian theorem, there is 

 ( , | , ) ( | , , ) ( , ) / ( | )=p p p pθ ξ ξ θ θ ξs s s s s sA Z Z A A Z  (3.27) 

where ( , | , )p θ ξs sA Z   is the posterior probability of θ   and A  . ( | , , )p ξ θs sZ A  

denotes the likelihood function. ( , )p θ A   is the prior probability of θ   and A  . 

( | )p ξs sZ  denotes the evidence. 

The optimization of θ   and A   is equivalent to maximizing ( , | , )p θ ξs sA Z  , 

i.e., maximum likelihood estimation. Since ( | )p ξs sZ  is fixed when sZ  and ξ s  are 

given, and ( , )p θ A   is known in advance, ( , | , )p θ ξs sA Z   is proportional to 

( | , , )p ξ θs sZ A . For the convenience of calculation, the optimization objective L  is 
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transformed into minimizing the log ( | , , )− p ξ θs sZ A  as 

 2

2

log ( | , , )

( ) / 2
log | | /2 log 2 / 2

T T

T
sN

ε

ε

σ
σ π

= −

= ⊗ +
+ ⊗ + +

L p ξ θs s

s ee s

ee

Z A

Z AA I Z
AA I

K
K

  (3.28) 

where sN  is the number of sampling points ξ s .  

In summary, MOGPR ( , ); Aξ θM   approximates the relationship between 

uncertainties and frequency stability indices with the sampling points of uncertainties 

as inputs and those of frequency stability indices as outputs in the form of (3.25), which 

is a regression task. To calculate the undetermined coefficients θ  and A  in (3.25), 

maximum likelihood estimation is adopted, which can be transformed into minimizing 

(3.28). After θ  and A  are calculated, MOGPR can be used to estimate frequency 

stability indices corresponding to the points of uncertainties to be analyzed eξ , which 

are ( , );e Aξ θM   with the highest probabilities, i.e., pem  , in the form of (3.26). 

Additionally, in this paper, L-BFGS is used to solve (3.28). And to improve the 

sampling efficiency, LHS [103] is applied to acquire ξ s . 

3.3.2 Probabilistic Frequency Stability Analysis 

In PFSA, the PDFs of frequency stability indices are primarily concerned. RoCoF 

RFSI  and FN/FV FFSI  are typical frequency stability indices, which are considered 

in this chapter as the example indices. And after the MOGPR is constructed, the data 

of estimated frequency stability indices pem  when the system is under the sampling 

points of uncertainties ξ s  can be directly calculated according to (3.26). Then, to 

estimate the closed-form PDFs of frequency stability indices based on the data pem , 
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KDE [103] is adopted, which is a nonparametric method using the kernels 

corresponding to data as components to form PDFs and can be formulated as 

 ˆ
1

ˆ ˆ( ) [( ) / ] / ( )
e

b

N

z b K b pebr Kb e Kb
r

p z p z Nδ δ
=

= −∑ m   (3.29) 

where eN  is the number of data ξe . pebrm  denotes the r-th sampling point of pem  

corresponding to b-th output. [.]Kp  denotes the kernel function of KDE, which is 

selected as the Gaussian kernel, i.e., 2 2ˆ( ) /(2 )ˆ[( ) / ] b pebr Kbz
K b pebr Kbp z e δδ − −− = mm . Kbδ  is 

the bandwidth of kernels. 

Moreover, apart from PDFs, the RAM [21] is also concerned in PFSA, which is 

used to assess the occurrence probability of the frequency instability risk. In this chapter, 

frequency stability risk regions are partitioned as ‘Low Risk’ marked in green, ‘Medium 

Risk’ marked in yellow, and ‘High Risk’ marked in red, according to the industry 

standard [140]. Based on the derived PDFs, the probability of the system in different 

risk regions Pr(.)  can be estimated as 

 
max

min
ˆmin maxˆ ˆ ˆPr( ) ( )

m

b
m

m b m z b bz p z dz
ϑ

ϑ
ϑ ϑ≤ ≤ = ∫   (3.30) 

where minmϑ  and maxmϑ  are the upper and lower bounds of m-th risk region, 

respectively. 

According to Chapter 3.2 and Chapter 3.3, the proposed PFSA method considering 

WEs of WFs can be summarized in Fig. 3.3. 
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Construct the model of 
MOGPR based on (3.25)

Start

End

ξs ξe

Frequency response 
considering WE 

PFSA based 
on MOGPR

Acquire the sampling point of 
nature wind speed based on LHS

Apply WE model (3.18) to calculate 
the wind speed of WTs ξs and ξe

Calculate the system and area-
level frequency responses 
based on model in Fig. 3.2

Calculate frequency 
stability indices 

Calculate undetermined 
coefficients of MOGPR 

Compute PDFs and RAMs of 
frequency stability indices 
based on  (3.29) and (3.30)

Calculate the estimated frequency 
stability indices corresponding to 

ξe based on (3.26)

 

Fig. 3.3 Procedure of the proposed PFSA method considering WEs of WFs. 

 

3.4 Case Study 

3.4.1 Case 1: IEEE 68-Bus Benchmark System 

1) Example System 

Case 1 is conducted in the IEEE 68-bus benchmark system [22], where the power 

system dynamic models [33, 143], as presented in Fig. 2, are used. WTs are not equipped 

with additional frequency regulation control in Case 1 to show the obvious impact of 

WPG uncertainties on probabilistic frequency stability. Three WFs are integrated into the 

system, as illustrated in Fig. 3.4. 20 WTs are in each WF. The layout of WTs is set as 

4 5×  with the interval of 200m at the height of 50m. The wind direction is consistent 

with the positive direction of the x-axis of the geographical coordinate system. The 

initial nature wind speeds of WFs are 8m/s. The nature wind speeds change at 0.1s 

randomly [23]. AGC starts after 30s [145]. The uncertainties of the changed nature wind 

speeds obey the following probabilistic distribution: The nature wind speed of WF1 
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follows Weibull(2, 5, 3.5); Those of WF2 and WF3 follow Weibull(2.5, 4.5, 4) with the 

correlation coefficient of 0.7. The rest of the parameters are set as: WE parameters: 

=0.42TC  , =0.042wk  , =50 mdh  , 40 mwD =  , 0.143γ =  ; WT parameters (p.u.): 

10pC =  , 0.02pfX =  , 0.2pdX =  , 0.2pqX =  , 0psdrefI =  , 1dcrefV =  ; frequency 

regulation parameters (p.u.): . 0.05R =  , 0.416β =  , 0.2ijT =  , 1PaK =  , 0.5IaK =  . It 

should be noted that the proposed WE model and PFSA method are generic and suitable 

for both short-term and long-term studies. In this chapter, the widely-used Weibull 

function is selected for demonstration, which is usually used to quantify the uncertainty 

of the nature wind speed in long-term planning [22]. 
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Fig. 3.4 IEEE 68-bus system integrated with three WFs. 

2) Validation of Multiple Output Gaussian Process Regression for Probabilistic 

Frequency Stability Analysis Considering Wake Effects of Wind Farms 

Firstly, the accuracy of the proposed WE model is verified by comparing it with 

the measurements, CFD, and Jensen and Gaussian analytical WE models presented in 
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Fig. 3.5, where the measurements and results of CFD are from [146]. 

 

Fig. 3.5 Calculation results of WEs in the scenarios of [146]: (a) Single WT in 

Wieringermeer East; (b) WTs in Lillgrund WF. 

From Fig. 3.5, compared with other analytical WE models, the results of the 

proposed model are closer to measurements, which demonstrates the accuracy of the 

proposed model. Although the results of the proposed model are less accurate than those 

of CFD, CFD is not suitable for PFSA since its simulation time is much greater than 

that of power systems. Additionally, it can be seen in Fig. 3.5(b) that the calculation 

errors of the proposed model associated with WTs located further along the wind 

direction are lower than those of WTs located closer. This observation does not mean 

that the proposed model has the higher accuracy for further WTs. And it is just caused 

by the possible occurrence of positive and negative error offset since there are both 

positive errors and negative errors when the proposed model is used to calculate the 

WE of one WT. For example, as shown in Fig. 3.5(a), positive error at / 1wy D =  and 

negative error at / 0.4wy D = − . And the wind speed of the downstream WT is affected 

by WEs of all upstream WTs. Thus, calculation errors are accumulated. When errors 

with the opposite nature happen to be accumulated, the overall error may be very small. 
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To verify the effectiveness of the proposed MOGPR, MCS considering the WEs 

of WFs (denoted as MCS-WE) is conducted 5000 times [21], the results of which are 

regarded as the baseline. Also, MCS ignoring the WEs of WFs (denoted as MCS-NWE) 

[21] is carried out to demonstrate the impact of the WEs on probabilistic frequency 

stability. Moreover, the performance of the proposed MOGPR is compared with GPR. 

The Gaussian kernel is selected as the covariance kernel function, and the number of 

sampling data is chosen as 400 [103]. It should be noted that it is the first time to apply 

the GPR-based method in PFSA. Thus, both GPR and MOGPR are novel methods in 

PFSA. The time of frequency response simulation St  , WE calculation time Wt  , 

execution time of UPA methods Mt , and total time Tt  are illustrated in Table 3.1. 

Table 3.1 Time cost in analyzing FN/FV and RoCoF in Case 1 

Time cost St  (s) Wt  (s) Mt  (s) Tt  (s) 

MCS-NWE 191173.94 - - 191173.94 

MCS-WE 202927.13 257.28 - 203184.41 

GPR 16233.77 20.70 26.63 16281.10 

MOGPR 16234.42 20.54 8.32 16263.28 

From Table 3.1, Wt  is significantly less than St , which means that the proposed 

WE model only brings a slight rise of the computational time in PFSA and thus is 

suitable for PFSA. Also, MCS-based methods are quite time-consuming. By 

comparison, St   of GPR-based methods is greatly shorter than that of MCS-based 

methods. Furthermore, since MOGPR can calculate the frequency stability indices of 

different areas simultaneously, Mt   of MOGPR is shorter than that of GPR, which 

indicates the advantage of MOGPR in improving efficiency. Additionally, since the 
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efficient scenario-based methods for analyzing the worst-case scenarios of power 

system frequency stability considering WPG uncertainties and WE are lacking, the 

worst-case scenarios need to be found from a large quantity of possible scenarios. Thus, 

the time cost of worst scenario (WS) selection nearly equals that of MCS. 

Moreover, the PDFs of FN/FV and RoCoF are shown in Fig. 3.6 to verify the 

accuracy of the proposed method, where WSs are also drawn. To save space, only the 

results of Area1, Area2, and the system are presented. 

 

Fig. 3.6 PDF of FN/FV and RoCoF in Case 1: (a) FN/FV of Area 1; (b) FN/FV of 

Area 2; (c) FN/FV of system; (d) RoCoF of Area 1; (e) RoCoF of Area 2; (f) RoCoF 

of system. 

As shown in Fig. 3.6, there are significant differences between the results from 

MCS-NWE and those from MCS-WE in both FN/FV and RoCoF, which indicates that 

ignoring the WEs of WFs in PFSA is inaccurate. The PDFs of FN/FV and RoCoF from 

MCS-NWE have fatter tails, which means FN/FV and RoCoF are more separated when 
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ignoring the WEs of WFs, leading to a higher probability of frequency instability. To 

further illustrate the differences between considering and ignoring WEs, the wind speed 

of WF considering WEs and frequency responses when all nature wind speeds change 

to 7m/s as an example are drawn in Fig. 3.7. 

 

Fig. 3.7 (a) Wind speed of WFs considering WEs; (b) Frequency trajectories affected 

by wind speed change. 

From Fig. 3.7(a), there are wind speed deficits at downstream WTs when 

considering WEs, which results in smaller power fluctuations under the same changes 

of wind speed compared with those ignoring WEs. This contributes to a smaller 

frequency fluctuation, making the PDFs of FN/FV and RoCoF more concentrated. 

Moreover, from Fig. 3.7(b), due to the time delay of WEs, the change time points of 

wind speed of WTs at different positions are different, which also leads to PDFs of 

RoCoF being more concentrated. Thus, the results illustrate the significant impact of 

WEs on probabilistic frequency stability and demonstrate the necessity of considering 

the WEs of WFs in PFSA. 

Moreover, to quantify the accuracy of different methods in calculating the PDFs 
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of FN/FV and RoCoF presented in Fig. 3.6, the PDF shape difference .s  is introduced. 

It is defined as the Euclidean distance between the actual PDF ( )zp z  and the estimated 

PDF ˆ ˆ( )zp z , i.e., ˆ ˆ|| ( ) ( ) ||z zp z p z− , as shown in Table 3.2. The subscript of .s  is the 

frequency stability index of the system and areas. For example, the FN/FV and RoCoF 

of frequency of Area a /system are denoted as AaF / sysF  and AaR / sysR , respectively. 

Table 3.2 Shape difference of PDFs of FN/FV and RoCoF in Case 1 

Shape difference  1AFs  2AFs  sysFs  1ARs  2ARs  sysRs  

GPR 2.02 2.01 2.01 4.08 4.18 4.18 

MOGPR 1.01 1.02 1.02 2.14 1.72 2.23 

From Table 3.2, the PDFs from MOGPR have the higher similarity with the PDFs 

from MCS-WE in both FN/FV and RoCoF, compared with those from GPR. The results 

indicate the high accuracy merit of the proposed MOGPR in calculating the PDFs of 

frequency stability indices. Moreover, from Fig. 3.6, although scenario-based WS 

selection gives the boundaries of frequency stability indices, it cannot reflect the 

probability of WSs, which is also concerned in probabilistic frequency stability, since 

preparing excessively for frequency violation scenarios with very low occurrence 

probabilities will greatly increase unnecessary reserve costs. By comparison, GPR and 

MOGPR use limited sampling points, i.e., scenarios, to build the corresponding models, 

thereby analyzing frequency stability of power systems in all possible scenarios. Also, 

the RAM can be formed based on the results in Fig. 3.6, as shown in Table 3.3, where 

‘Green’, ‘Yellow’, and ‘Red’ regions denote ‘Low Risk’, ‘Medium Risk’, and ‘High 

Risk’, respectively. Results presented in the row of ‘MCS-WE’ are the risk occurrence 
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probability of frequency. Results shown in the row of rest methods are the AEs between 

the risk occurrence probability from different methods and that from MCS-WE. To 

show the overall accuracy, the MAEs are listed in the last column. The units of results 

in Table 3.3 are %. 

Table 3.3 RAM of FN/FV and RoCoF in Case 1 

FN/FV (Hz) <49.5 49.5~49.8 49.8~50.2 50.2~50.5 >50.5 MAE 

Area 1 

MCS-WE 0.00 11.05 62.23 19.38 7.33 - 

GPR 0.00 2.32 6.06 0.96 4.70 2.80 

MOGPR 0.00 0.83 2.12 0.66 0.63 0.85 

Area 2 

MCS-WE 0.00 11.02 62.27 19.37 7.34 - 

GPR 0.00 2.31 6.05 0.96 4.69 2.80 

MOGPR 0.00 0.83 2.12 0.67 0.62 0.84 

System 

MCS-WE 0.00 10.97 62.36 19.37 7.30 - 

GPR 0.00 2.21 6.14 0.90 4.68 2.80 

MOGPR 0.00 0.82 2.13 0.70 0.62 0.85 

ROCOF (HZ/S) <-0.5 -0.5~-0.4 -0.4~0.4 0.4~0.5 >0.5 MAE 

Area 1 

MCS-WE 0.00 0.00 99.70 0.30 0.00 - 

GPR 0.00 0.00 0.30 0.30 0.00 0.12 

MOGPR 0.00 0.00 0.13 0.13 0.00 0.05 

Area 2 

MCS-WE 0.00 0.00 99.86 0.14 0.00 - 

GPR 0.00 0.00 0.14 0.14 0.00 0.06 

MOGPR 0.00 0.00 0.04 0.04 0.00 0.02 

System 

MCS-WE 0.00 0.00 99.89 0.11 0.00 - 

GPR 0.00 0.00 0.11 0.11 0.00 0.04 

MOGPR 0.00 0.00 0.04 0.04 0.00 0.01 

In Table 3.3, the risk occurrence probability of FN/FV is mainly concentrated in 

the low and medium-risk regions. The occurrence probability of high-risk regions is 
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relatively low. The maximal AE of RAM of FN/FV from GPR is 6.14%, while that from 

MOGPR is 2.13%. And the maximal MAE of RAM of FN/FV from GPR is 2.80%, 

while that from MOGPR is 0.85%. The results indicate that the accuracy of MOGPR 

in analyzing the RAM of FN/FV is better than that of GPR. For RAM of RoCoF, the 

risk occurrence probability is mainly concentrated in the low-risk region, rarely in the 

medium-risk regions. The maximal AE from GPR is 0.30%, while that from MOGPR 

is 0.13%. And the maximal MAE from GPR is 0.12%, while that from MOGPR is 

0.05%. Thus, the results demonstrate the high accuracy merit of the proposed MOGPR 

in analyzing the RAMs of frequency stability indices compared with GPR. 

3) Impact of Different Factors on Probabilistic Frequency Stability 

(1) Wind Direction 

The angle between the wind direction and the positive direction of the x-axis is set 

as 30°, 45°, and 90°, respectively, to investigate the impact of wind direction on 

probabilistic frequency stability. Firstly, the accuracy of different methods in 

calculating PDFs of FN/FV and RoCoF and analyzing the RAM are shown in Table 3.4. 
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Table 3.4 Performance in analyzing FN/FV and RoCoF affected by wind direction 

Shape difference 1AFs  2AFs  sysFs  1ARs  2ARs  sysRs  

=30xyθ °  
GPR 2.58 2.58 2.57 8.18 7.91 8.22 

MOGPR 1.98 1.98 1.98 4.25 4.62 4.67 

=45xyθ °  
GPR 2.85 2.83 2.81 5.47 5.47 5.67 

MOGPR 1.68 1.71 1.65 2.14 2.02 2.29 

=90xyθ °  
GPR 2.33 2.32 2.32 4.76 4.94 4.82 

MOGPR 1.18 1.19 1.19 2.33 1.87 2.45 

MAE 1AFe  2AFe  sysFe  1ARe  2ARe  sysRe  

=30xyθ °  
GPR 2.17 2.17 2.17 0.00 0.00 0.00 

MOGPR 1.01 1.01 1.02 0.00 0.00 0.00 

=45xyθ °  
GPR 3.03 3.02 3.01 0.00 0.00 0.00 

MOGPR 0.45 0.38 0.44 0.00 0.00 0.00 

=90xyθ °  
GPR 1.89 1.89 2.88 0.00 0.00 0.00 

MOGPR 0.63 0.63 0.63 0.00 0.00 0.00 

As shown in Table 3.4, the maximal PDF shape difference of FN/FV and RoCoF 

from GPR is 8.22, while that from MOGPR is 4.67. For the RAM results, the maximal 

MAE of FN/FV from GPR is 3.03%, while that from MOGPR is 1.02%. And the 

maximal MAE of RoCoF from both GPR and MOGPR is 0.00%, since the risk 

occurrence probability of the low-risk region is 100.00%. The results verify the 

accuracy of the proposed MOGPR in PFSA. 

Moreover, the wind speed of WF at the height of 50m and RAM results are 

presented in Fig. 3.8 and Fig. 3.9 to show the impact of wind direction on probabilistic 

frequency stability. Since the risk probability of RoCoF in the low-risk region is 

100.00%, only the RAMs of FN/FV are drawn in Fig. 3.9 to save space. 
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Fig. 3.8 WEs of WFs at different wind directions: (a) 30° ; (b) 45° ; (c) 90° . 

 

Fig. 3.9 RAM of FN/FV at different wind directions: (a) 30° ; (b) 45° ; (c) 90° . 

From Fig. 3.8 and Fig. 3.9, the change of wind direction leads to the distance 

change of WTs in the wind direction. Taking the WT at the position (100, 100, 50) as 

an example, the nearest WTs directly below in the wind direction are the WT at (500, 

300, 50) (approximately below when =30xyθ °  ), the WT at (300, 300, 50) (when 

=45xyθ ° ), and the WT at (300, 300, 50) (when =90xyθ ° ), respectively. The streamwise 

distances are 446.41m, 282.84m, and 200m, separately. The wind speed deficit will 

increase with the rise of wind direction due to the rise of the WE strength. Under the 

same change of nature wind speed, before AGC starts, the number of WTs experiencing 

power fluctuations is most when =90xyθ ° , while that is least when =30xyθ ° . Thus, the 

risk occurrence probability of FN/FV is mainly in the low-risk region when =30xyθ ° . 

When =45xyθ ° , the probability in the low-risk region reduces, and the probability in 
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medium-risk regions rises. And when =90xyθ °  , the risk occurrence probability of 

FN/FV is more separated, and there is the probability of being in the high-risk region. 

(2) Terrain 

The ridge, the circular hill, and the rolling terrain are involved in the case studies 

to study the impact of different terrains on probabilistic frequency stability. The terrain 

parameters of height and length are set as 50m and 150m. The accuracy of different 

methods, the wind speed of WF, and the RAM results are illustrated in Table 3.5, Fig. 

3.10, and Fig. 3.11, separately. 

Table 3.5 Performance in analyzing FN/FV and RoCoF affected by terrain 

Shape difference 1AFs  2AFs  sysFs  1ARs  2ARs  sysRs  

Ridge 
GPR 2.99 2.99 2.99 5.22 5.36 5.46 

MOGPR 1.42 1.42 1.42 2.40 2.60 2.63 

Circular 

hill 

GPR 2.19 2.19 2.19 4.27 4.38 4.64 

MOGPR 0.70 0.71 0.71 1.70 1.65 1.77 

Rolling 

terrain 

GPR 2.29 2.29 2.29 4.65 4.70 4.88 

MOGPR 0.95 0.96 0.96 1.15 1.21 1.26 

MAE 
1AFe  2AFe  sysFe  1ARe  2ARe  sysRe  

Ridge 
GPR 4.19 4.18 4.17 0.79 0.36 0.32 

MOGPR 0.53 0.53 0.52 0.06 0.11 0.11 

Circular 

hill 

GPR 2.33 2.32 2.31 0.02 0.00 0.00 

MOGPR 1.08 1.08 1.08 0.01 0.00 0.00 

Rolling 

terrain 

GPR 2.79 2.78 2.77 0.00 0.00 0.00 

MOGPR 1.11 1.11 1.11 0.00 0.00 0.00 
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Fig. 3.10 WEs of WFs at different terrains: (a) Ridge; (b) Circular hill; (c) Rolling 

terrain. 

 

Fig. 3.11 RAM of FN/FV at different terrains: (a) Ridge; (b) Circular hill; (c) Rolling 

terrain. 

According to Table 3.5, the PDF shape differences and the MAEs of RAM from 

MOGPR are lower than those from GPR, which indicates that the accuracy of MOGPR 

is higher than that of GPR. From Fig. 3.10 and Fig. 3.11, after considering different 

terrains, the level of nature wind speed and the WE strength are affected. In case studies, 

the wind speed deficit at the ridge is the smallest. And the level of nature wind speed at 

the ridge is the highest, while those at the circular hill and the rolling terrain are 

relatively low, which can be regarded as the difference of wind power penetration. Thus, 

when the wind speed changes, the power fluctuations of WTs are most obvious at the 

ridge. As a result, the risk occurrence probability of FN/FV is separated in different risk 
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regions at the ridge. At the circular hill and the rolling terrain, the probability in high-

risk and medium-risk regions reduces, and the probability in the low-risk region rises. 

(3) Wind Turbine Layout 

The position of WTs in every WF is changed to 2 10× , 5 4× , and the optimized 

layout with the objective of minimizing the unit generation cost [147], respectively, to 

demonstrate the impact of layout on probabilistic frequency stability. The accuracy of 

different methods, the wind speed of WF, and the RAM results are presented in Table 

3.6, Fig. 3.12, and Fig. 3.13, separately. 

Table 3.6 Performance in analyzing FN/FV and RoCoF affected by wind turbine 

layout 

Shape difference 1AFs  2AFs  sysFs  1ARs  2ARs  sysRs  

2 10×  
GPR 3.98 3.97 3.97 7.06 6.93 6.79 

MOGPR 1.99 2.00 2.00 3.08 3.15 3.21 

5 4×  
GPR 2.33 2.32 2.32 4.76 4.94 4.82 

MOGPR 1.18 1.19 1.19 2.33 1.87 2.45 

Optimized 

layout 

GPR 2.26 2.26 2.24 5.95 6.06 6.52 

MOGPR 1.64 1.66 1.65 2.52 2.66 2.68 

MAE 
1AFe  2AFe  sysFe  1ARe  2ARe  sysRe  

2 10×  
GPR 0.97 0.97 0.97 0.00 0.00 0.00 

MOGPR 0.59 0.68 0.59 0.00 0.00 0.00 

5 4×  
GPR 2.89 2.89 2.88 0.00 0.00 0.00 

MOGPR 0.63 0.63 0.63 0.00 0.00 0.00 

Optimized 

layout 

GPR 2.14 2.14 2.12 0.00 0.00 0.00 

MOGPR 0.81 0.83 0.81 0.00 0.00 0.00 
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Fig. 3.12 WEs of WFs with different layouts: (a) 2 10× ; (b) 5 4× ; (c) Optimized 

layout. 

 

Fig. 3.13 RAM of FN/FV with different layouts: (a) 2 10× ; (b) 5 4× ; (c) Optimized 

layout. 

Results in Table 3.6 show that both the PDF shape differences and the MAEs of 

RAM from MOGPR are lower than those from GPR. Based on Fig. 3.12 and Fig. 3.13, 

different layouts change the relative position of WTs, thereby changing the strength of 

the WEs in WFs, which results in more wind speed deficits, as illustrated in Fig. 3.12, 

and less conspicuous power fluctuations of WTs with a narrower layout. Thus, the risk 

occurrence probability of FN/FV is almost all in the low-risk region with 2 10×  layout 

due to the high WE strength. When the layout is separated, since the WE strength is 

low, the probability in the low-risk region reduces, that in medium-risk regions 

increases, and even that in high-risk regions occurs. 
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It should be noted that though the wind direction, terrain, and WT layout are 

independent factors with different properties, i.e., meteorological, geographical, and 

operational planning factors, respectively, their impacts on WEs and probabilistic 

frequency stability are not independent. The reason is that the relative distance between 

WTs directly affects WEs and then probabilistic frequency stability. And any one of 

these three factors can affect the relative distance. Thus, though the change of one factor 

will not contribute to the change of another factor, it will affect the impact of another 

factor on WEs and probabilistic frequency stability. Since their impacts on WEs and 

probabilistic frequency stability are interwoven with each other, the impact analysis of 

individual factors is beneficial for revealing the general patterns of their impacts. 

3.4.2 Case 2: Industrial Provincial Large-Scale Power System 

1) Example System 

Case 2 is conducted in a large-scale power system modified based on the realistic 

two-area system in East China, including 1958 buses and 56 generators, to demonstrate 

the scalability of the proposed method. Five WFs are integrated into the system, as 

presented in Fig. 14, where WF1, WF2, and WF5 are onshore. And WF3 and WF4 are 

offshore. The nature wind speeds of WF1 and WF2 follow Weibull(2.5, 4.5, 4) with the 

correlation coefficient of 0.7. Those of WF3, WF4, and WF5 follow Weibull(2, 5, 3.5), 

Weibull(1.5, 2, 4), and Weibull(1.5, 3.5, 5), respectively. The rest settings of WFs, MCS, 

GPR, and MOGPR are the same as those in Case 1. 
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Fig. 3.14 Large-scale power system integrated with five WFs. 

2) Scenario 1: Probabilistic Frequency Stability Analysis Considering Wake 

Effects of Wind Farms Without Additional Frequency Regulation Control 

Firstly, the case study is carried out under the scenario that WFs are not equipped 

with additional frequency regulation control. And the time costs of different methods 

in conducting PFSA are listed in Table 3.7. 

Table 3.7 Time cost in analyzing FN/FV and RoCoF in Scenario 1 Case 2 

Time cost St  (s) Wt  (s) Mt  (s) Tt  (s) 

MCS 692876.29 430.71 - 693307.00 

GPR 55428.08 34.55 13.35 55475.98 

MOGPR 55428.73 34.64 3.89 55467.26 

From Table 3.7, similar observations as those in Case 1 can be obtained, i.e., the 

total time costs of GPR and MOGPR are significantly lower than that of MCS, and the 

execution time of MOGPR is shorter than that of GPR due to the multi-output structure. 
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Also, since the system in Case 1 has 5 areas, whereas that in Case 2 has 2 areas, the 

number of analyzed frequency stability indices in Case 2 is fewer than that in Case 1. 

Thus, the execution time of GPR and MOGPR in Case 2 is shorter than that in Case 1. 

Next, the PDFs of frequency stability indices calculated based on different 

methods are presented in Fig. 3.15, where WSs are also drawn. And the shape 

differences of PDFs are computed to assess the accuracy of different methods in 

calculating PDFs, as illustrated in Table 3.8. Also, RAM derived from the results shown 

in Fig. 3.15 are listed in Table 3.9. Since the probability of RoCoF in the low-risk region 

is 100%, and all methods obtain the same results, only the RAM results of FN/FV are 

presented for saving space. 

 

Fig. 3.15 PDF of FN/FV and RoCoF in Scenario 1 Case 2: (a) FN/FV of Area 1; (b) 

FN/FV of Area 2; (c) FN/FV of system; (d) RoCoF of Area 1; (e) RoCoF of Area 2; 

(f) RoCoF of system. 
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Table 3.8 Shape difference of PDFs of FN/FV and RoCoF in Scenario 1 Case 2 

Shape difference  1AFs  2AFs  sysFs  1ARs  2ARs  sysRs  

GPR 2.38 2.39 2.39 4.04 3.31 3.58 

MOGPR 1.58 1.59 1.59 2.52 2.52 2.59 

Table 3.9 RAM of FN/FV in Scenario 1 Case 2 

FN/FV (Hz) <49.5 49.5~49.8 49.8~50.2 50.2~50.5 >50.5 MAE 

Area 1 

MCS-WE 0.00 3.27 85.72 10.79 0.22 - 

GPR 0.00 1.04 3.84 2.61 0.19 1.53 

MOGPR 0.00 0.15 0.46 0.77 0.15 0.30 

Area 2 

MCS-WE 0.00 3.22 85.85 10.72 0.21 - 

GPR 0.00 1.03 3.83 2.62 0.19 1.54 

MOGPR 0.00 0.15 0.45 0.75 0.15 0.31 

System 

MCS-WE 0.00 3.22 85.81 10.75 0.22 - 

GPR 0.00 1.04 3.84 2.61 0.19 1.53 

MOGPR 0.00 0.15 0.46 0.76 0.15 0.30 

By comparing the results in Table 3.8 with those in Table 3.2, though the system 

in Case 2 is much larger than those in Case 1 and with more uncertainties, the accuracy 

of the proposed method in calculating the PDFs of frequency stability indices in Case 

2 is close to that in Case 1. Moreover, the RAM results in Case 2, as illustrated in Table 

3.9, also demonstrate the high accuracy of MOGPR, with 0.31% maximal MAE. These 

results indicate the scalability of MOGPR in analyzing large-scale power systems with 

more uncertainties considering both onshore and offshore WFs and WEs. 

3) Scenario 2: Probabilistic Frequency Stability Analysis Considering Wake 

Effects of Wind Farms with Additional Frequency Regulation Control 

It can be seen in Table 3.9 that FN/FV has the probability to be in the medium-risk 
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and even high-risk regions when there is no frequency regulation control in WFs. Thus, 

to improve the probabilistic frequency stability of the system, additional frequency 

regulation control is equipped in Scenario 2. And different methods are adopted to 

conduct PFSA in this scenario. The comparison of time costs, FN/FV PDFs, shape 

difference of FN/FV PDFs, and the RAM of FN/FV among different methods are 

presented in Table 3.10, Fig. 3.16, Table 3.11, and  

Table 3.12, separately. 

Table 3.10 Time cost in analyzing FN/FV and RoCoF in Scenario 2 Case 2 

Time cost St  (s) Wt  (s) Mt  (s) Tt  (s) 

MCS 692897.42 431.03 - 693328.45 

GPR 55430.76 34.62 13.30 55478.68 

MOGPR 55431.28 34.59 3.91 55469.78 

 

Fig. 3.16 PDF of FN/FV and RoCoF in Scenario 2 Case 2: (a) FN/FV of Area 1; (b) 

FN/FV of Area 2; (c) FN/FV of system. 

Table 3.11 Shape difference of FN/FV PDFs in Scenario 2 Case 2 

Shape difference  1AFs  2AFs  sysFs  

GPR 3.67 3.69 3.69 

MOGPR 2.55 2.56 2.56 
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Table 3.12 RAM of FN/FV in Scenario 2 Case 2 

FN/FV (Hz) <49.5 49.5~49.8 49.8~50.2 50.2~50.5 >50.5 MAE 

Area 1/ 

Area 2/ 

System 

MCS-WE 0.00 0.00 100.00 0.00 0.00 - 

GPR 0.00 0.00 0.00 0.00 0.00 0.00 

MOGPR 0.00 0.00 0.00 0.00 0.00 0.00 

According to the results, the time costs and errors of MOGPR are close to those in 

Scenario 1, which demonstrates MOGPR is applicable for PFSA of power systems 

integrated with WFs with additional frequency regulation control. Moreover, by 

comparing Table 3.9 with  

Table 3.12, after applying additional frequency regulation control, the probability 

of FN/FV in the medium-risk and high-risk regions is greatly reduced to 0%, and 

FN/FV only exists in the low-risk region. The results illustrate that applying additional 

frequency regulation control in WFs can effectively enhance the probabilistic frequency 

stability of power systems affected by WPG uncertainties. 

 

3.5 Summary 

This chapter proposes a method of PFSA considering the WEs of WFs based on 

the proposed WE model. Firstly, an analytical WE model suitable for PFSA is proposed. 

The proposed time-saving WE model can be easily integrated into the frequency 

response model of power systems and comprehensively considers multiple types of 

terrain, wind direction, and time delay of wind flow, reflecting the WEs of WFs more 

realistically. Then, for analyzing the system frequency and the area-level frequency 
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simultaneously and considering the implicit relationship between them, the MOGPR is 

proposed to improve efficiency and accuracy. The results of case studies verify the 

effectiveness of the proposed method and demonstrate the necessity of considering the 

WEs of WFs in PFSA. And the impact of wind direction, terrain, and layout on 

probabilistic frequency stability is also investigated. 
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Chapter 4 Probabilistic Frequency Stability Analysis 

Aiming at Frequency Response Trajectories 

4.1 Introduction 

Existing PCE-based PFSA methods aiming at system dynamic responses require 

that joint probability distributions of uncertainties can be accurately characterized or 

approximated by existing Copula functions when dealing with correlated uncertainties. 

Also, since existing PCE-based PFSA methods have only one output, they can only 

estimate the frequency response at each time point separately. However, PFSA for 

power system frequency responses focuses on the frequency response trajectories at all 

time points during the concerned period of time. This means that massive PCE models 

need to be constructed, which is cumbersome. Thus, they are time-consuming and have 

limited accuracy. In view of this background, this chapter proposes a generic correlation 

transformation method for uncertainties with complicated correlations and GMPCE to 

quantify the system frequency response at each time point simultaneously. 

 

4.2 Generic Multi-Output Polynomial Chaos Expansion for 

Probabilistic Frequency Stability Analysis Aiming at Frequency 

Response Trajectories 
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The proposed GMPCE utilizes weight summation of orthogonal polynomials to 

approximate the relationship ( )M ξ   between independent uncertainties ξ   and the 

system response [ ( ), , ( ), , ( )]T
dy t y i t y T= ∆ ∆ y , which can be expressed as 

 
1

1 1 1

ˆˆ( ) ( ) ( )

[ ( ), , ( ), , ( )]
g g g

y

N N N
T

j j ij j N j j
j j j

ϕ ϕ ϕ
= = =

= ≈ = =

= ∑ ∑ ∑ 

y M y M Wξ ξ ϕ ξ

ω ξ ω ξ ω ξ
 (4.1) 

where dT  denotes the concerned system response duration. t∆  is the step length. gN  

is the number of expansion items. /y dN T t= ∆  is the number of GMPCE outputs y . 

Superscript ^ represents the approximation derived from GMPCE. ( )jϕ ξ  is the j-th 

item of ( )ϕ ξ , which denotes the polynomial and is arranged in ascending order. ijω  

is the entry in i-th row and j-th column of the weight coefficient matrix W . 

From (4.1), one of the major differences between the form of GMPCE and that of 

existing PCE is that GMPCE has multiple outputs, while existing PCE has one output. 

Also, according to (4.1), the main tasks of deriving the GMPCE model can be 

summarized as: 1) Transformation of correlated uncertainties into independent ones ξ ; 

2) Construction of polynomials ( )ϕ ξ  ; 3) Calculation of weight coefficients W  . It 

should be noted that W   is directly derived in GMPCE as a whole rather than 

calculating .iω   separately and combining them into W  . Otherwise (4.1) is only a 

combination of existing PCE models. 

4.2.1 Generic Transformation for Correlated Uncertainties 

There are similarities between uncertainty transformation and blind source 

separation. In detail, correlated uncertainties are similar to the observed and mixed 
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signals in blind source separation. And transforming correlated uncertainties into 

independent ones is similar to restoring the observed signals to the original signals. 

Thus, methods of blind source separation have the potential to be used in uncertainty 

transformation. And the basic idea of independent component analysis (ICA) that can 

effectively separate mixed signals into not only uncorrelated but also independent 

signals is applied in this chapter. 

For a set of correlated uncertainties 1 2=[ , , , ]cNς ς ςς  , where cN   denotes the 

number of correlated uncertainties, the sN   sampling data of ς   is expressed as 

(1~ )sNς  . Firstly, whitening processing is conducted to transform the correlated 

uncertainties into uncorrelated ones ς   with unit variance based on eigenvalue 

decomposition, which can be formulated as 

 (1~ ) 1/2 (1~ )s sN T N−=ς ςUS U   (4.2) 

where U  is the right eigenvector of (1~ ) (1~ )[ ]s sN N Tς ς . The diagonal entries of S  are 

the eigenvalues of (1~ ) (1~ )[ ]s sN N Tς ς . 

Then, based on ICA, the transformation from uncorrelated uncertainties into 

independent ones can be regarded as finding a transformation matrix 

1 2=[ , , , ]c
T

NB b b b   that can maximize the non-Gaussianity [148], which can be 

formulated as 

 

(1~ ) 2

1

(1~ ) (1~ )

max { [ ( )] [ ( )]}

1,. . [( ) ( )]
0,
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s

s s

N
T N
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n

T N T N
n n
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n ns t
n n

υ
=

′ ′′

−

′ ′′==  ′ ′′≠

∑ E E

E



 

ς

ς ς

B
b

b b
 (4.3) 

where υ  is an uncertainty following the standard Gaussian distribution. ( )G ⋅  is the 
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contrast function, which can be chosen as logcosh.    is the Hadamard product 

operator. 

To solve (4.3), the fixed-point algorithm [149], as presented in (4.4), is used to 

update nb  iteratively until it converges so that the fast ICA can be implemented. 

 
(1~ ) (1~ ) (1~ )

( 1) ( 1) ( 1)

2

[ ( )] [ ( )]
/ || ||

s s sN T N T N
nv n v n v n v

nv nv nv

G G′ − − −

′ ′

 = −
 =

E E   ς ς ςb b b b
b b b

  (4.4) 

where ( )G ⋅  and ( )G ⋅  are the first and second order derivatives of ( )G ⋅ . nvb  and 

nv′b  are the updated nb  at v-th iteration with and without normalization, respectively. 

2|| ||⋅  is the 2  norm. 

After B   is calculated, the transformation from correlated uncertainties ς   to 

independent ones ξ  can be derived as 

 1/2 .T−=ξ ςBUS U   (4.5) 

4.2.2 Polynomial Construction for Uncertainties with Arbitrary Probability 

Distributions 

Polynomials are formed by orthogonal bases. For the orthogonal basis [ ] ( )mj
mψ ξ  

with respect to mξ  with the order of mj , it can be expressed as 

 [ ]

0
( ) , 1

m
m

m

j
j n

m n m j
n

ψ ξ κ ξ κ
=

= =∑   (4.6) 

where nκ  is the coefficient of n
mξ . 

To construct bases applicable to uncertainties with arbitrary probability 

distributions, the orthogonality is used, which is 

 [ ][ ] ( ) ( ) ( )

1
( ) ( ) / 0, 0 .

s
qm

N
jj h h h

m m m s q m
h

N j jψ ξ ψ ξ ξ
=

= ≤ <∑   (4.7) 
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By substituting 0,1, , 1q mj j= −   into (4.7) in turns, 0 1 1, , , mjκ κ κ −   can be 

derived, which can be formulated as 

 1
0 1 1 1 2[ , , , ] [ , , , ]m m

T T
j jκ κ κ χ χ χ−
− = Θ   (4.8) 

where 1, ( )

1
/ ,1

s
u m

u

N
j j h

j m s u m
h

N j jχ ξ + −

=

= ≤ ≤∑  . ( )u q m mj j j jθ ×=Θ  . 

2, ( )

1
,/ ,1

s
u q

u q

N
j j h

j j m s u q m
h

N j j jθ ξ + −

=

= − ≤ ≤∑ . 

After determining orthogonal bases according to (4.6) and (4.8), polynomials can 

be constructed. And to alleviate the curse of dimensionality, the hyperbolic truncation 

is introduced. Thus, ( )jϕ ξ  can be formed as 

 

1[ ] [ ] [ ]
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m Nc
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 ξ
  (4.9) 

where oN  expresses the order of GMPCE. rc  is the hyperbolic truncation coefficient. 

4.2.3 Weight Coefficient Calculation 

The calculation of W  as a whole in (4.1) can be regarded as the multiple linear 

regression (MLR), where the sampling data of system response (1~ )sNy   and 

polynomials (1~ )( ) sNϕ ξ  have already been derived. To avoid overfitting and reduce the 

complexity of W , the form of multi-task Elastic Net [150] is introduced in calculating 

W , which can be formulated as the following optimization problem 

 (1~ ) (1~ ) 2
F 21 Fmin || ( ) || /2 || || (1 ) || || /2s sN N

sN λρ λ ρ− + + −ϕ ξ
W

y W W W   (4.10) 

where λ   is the penalty factor of the complexity of W  . ρ   denotes the weight 

coefficient of different norms. || ||F⋅   and 21|| ||⋅   are Frobenius norm and 1 2    norm, 
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respectively, which are expressed as 

 
,

2 2
21 . 2|| || , || || || ||

k l

F kl kl k
k l k

a a a= = =∑ ∑ ∑ ∑A A   (4.11) 

where kla  is the entry in k-th row and l-th column of the indicated matrix A . 

To solve (4.10), the coordinate descent algorithm can be used. And the 

introduction of F|| ||W   in (4.10) is for avoiding overfitting. The introduction of 

21|| ||W  in (4.10) is for reducing the 2  norm of A  in every row, which restricts the 

complexity of W  in every row, i.e., ensuring the sparse structure of GMPCE, thereby 

avoiding the curse of dimensionality. 

4.2.4 Probabilistic Analysis of GMPCE Outputs 

After deriving the GMPCE model in (4.1), the mean iµ   and variance 2
iσ   of 

( )y i t∆  can be estimated based on GMPCE as 

 ( ) 2 ( ) 2 2

1 1

ˆ ˆ ˆ ˆ ˆ( ) / , [ ( ) ] /
p pN N

h h
i p i p i

h h
y i t N y i t Nµ σ µ

= =

= ∆ = ∆ −∑ ∑   (4.12) 

where pN  is the number of sampling data derived from GMPCE. 

Based on KDE, the PDF ( )p ⋅  of ( )y i t∆  can be estimated as 

 ( )

1

ˆ ˆ ˆ ˆ( ( )) [( ( ) ( ) ) / ] / ( )
KN

h
i K i

h
p y i t y i t y i t Nδ δ

=

∆ = Φ ∆ − ∆∑   (4.13) 

where [ ]Φ ⋅  is the kernel function of KDE. KN  is the number of KDE sampling data 

derived from GMPCE. iδ  is the bandwidth of KDE with respect to ( )y i t∆ , which can 

be chosen as 0.2ˆ1.06 i KNσ −  [98]. 

 

4.3 Case Study 
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4.3.1 Case 1: IEEE 68-Bus Benchmark System 

1) Example System 

Case 1 is conducted in the IEEE 68-bus benchmark system. 3 WPGs, 3 PVs, and 3 

loads with realistic uncertainties based on measurements in [151] are connected at Bus 

29, 31, 41, Bus 6, 10, 36, and 27, 47, 48, respectively, as presented in Fig. 4.1. The 

frequency response ( )f t  of the system with the trip of the largest infeed generator at 

0.1s is analyzed, where 10sdT = , 0.01st∆ = . 
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Fig. 4.1 IEEE 68-bus system with uncertainties of WPGs, PVs, and loads. 

Moreover, to illustrate the probability distributions and the correlations among 

uncertainties, their PDFs after normalization are drawn in Fig. 4.2, and the correlation 

coefficients of pairwise uncertainties are listed in the upper triangular units of Table 

4.1. The correlation coefficients and the independence hypothesis test results of 

uncertainties after conducting the proposed uncertainty transformation are listed in the 

lower triangular units of Table 4.1 to show the performance of the uncertainty 

transformation. In Table 4.1, “0/Y” denotes that the correlation coefficient is 0, and the 
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independence hypothesis is accepted at a 5% level of significance. 

 

Fig. 4.2 PDFs of uncertainties. 

Table 4.1 Correlations and independence among uncertainties before and after 

transformation 

 U1 U2 U3 U4 U5 U6 U7 U8 U9 

U1 - 0.01 0.02 -0.24 -0.08 -0.06 0.04 0.16 0.08 

U2 0/Y - 0.54 -0.03 -0.22 -0.25 0.08 0.17 0.09 

U3 0/Y 0/Y - 0.01 -0.30 -0.29 0.15 0.07 0.12 

U4 0/Y 0/Y 0/Y - 0.40 0.41 -0.07 -0.33 -0.14 

U5 0/Y 0/Y 0/Y 0/Y - 0.89 -0.09 -0.47 -0.23 

U6 0/Y 0/Y 0/Y 0/Y 0/Y - -0.10 -0.48 -0.23 

U7 0/Y 0/Y 0/Y 0/Y 0/Y 0/Y - 0.53 0.82 

U8 0/Y 0/Y 0/Y 0/Y 0/Y 0/Y 0/Y - 0.81 

U9 0/Y 0/Y 0/Y 0/Y 0/Y 0/Y 0/Y 0/Y - 

From Fig. 4.2, the PDFs of realistic uncertainties are complicated, especially PV3 

and Load 3, the shapes of which are quite different from the standard PDFs. And in 

Table 4.1, the correlation coefficients between different pairwise uncertainties are 

various. By comparison, after uncertainty transformation, all correlation coefficients 

among uncertainties are close to 0, and all independence hypothesis tests are passed. 

The results demonstrate the effectiveness of the proposed uncertainty transformation in 
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transforming the correlated uncertainty into independent ones. 

2) Validation of Generic Multi-Output Polynomial Chaos Expansion for 

Probabilistic Frequency Stability Analysis Aiming at Frequency Response 

Trajectories 

The results of 5000 MCSs are regarded as the baselines. The performance of the 

proposed GMPCE in efficiency and accuracy is compared with those of SPCE and LRA 

[100] with the setting as: 200sN = , 4oN = , 1/ (2 )sNλ = , 0.5ρ = . The selection of 

λ  and ρ  is to equally consider the sparsity and generalization. And SPCE is chosen 

as the comparison method since the conventional PCE is infeasible with the above 

setting due to the curse of dimensionality. 

Firstly, the efficiency of different methods is compared, as illustrated in Table 4.2. 

From Table 4.2, since SPCE, LRA, and GMPCE only require 200 simulations, whereas 

MCS requires 5000 simulations, the simulation time needed for SPCE, LRA, and 

GMPCE is significantly shorter than that needed for MCS. Moreover, the efficiency of 

GMPCE is greatly superior to that of SPCE and LRA. The method execution time of 

GMPCE is more than 40 times shorter than that of SPCE and LRA. The reason is that 

SPCE and LRA models only have one output. To analyze ( )f t   at each time point, 

/ 1000y dN T t= ∆ =  models are required to be constructed separately. By comparison, 

GMPCE has multiple outputs, and the number of the constructed GMPCE model is 

only one, indicating the time-saving merit. 
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Table 4.2 Efficiency comparison of different methods in Case 1 

Method Simulation time (s) Method execution time (s) Total time (s) 

MCS 9852.744 - 9852.744 

SPCE 

391.659 

110.944 502.603 

LRA 101.016 492.675 

GMPCE 2.320 393.979 

Moreover, the accuracy of methods in estimating the moments, i.e., mean and 

standard deviation (Std.), of ( )f t  is compared, as shown in Fig. 4.3. According to Fig. 

4.3(a) and Fig. 4.3(b), the overlapping degree between the moment curves derived from 

MCS and those from GMCPE are higher than those from SPCE and LRA. Moreover, 

from Fig. 4.3(b), the Std. curve from GMCPE is smoother since each time point 

corresponds to one SPCE or LRA model, iω  of which are calculated separately. By 

comparison, W  of GMPCE is calculated as a whole. 

 

Fig. 4.3 Accuracy comparison of ( )f t  moment estimation: (a) Mean; (b) Std.. 

To quantify and compare the overall accuracy of different methods, PDFs of AEs 

of moments are introduced and presented in Fig. 4.4. As seen in Fig. 4.4(a) and Fig. 

4.4(b), the AE PDFs from GMCPE have higher peaks and thinner tails, the peaks of 

which are closer to 0. The results indicate that GMCPE has higher accuracy in 
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estimating moments of system responses. And the reason is that the complicated 

correlations among realistic uncertainties cannot be transformed accurately in SPCE 

and LRA, which decreases their estimation accuracy. 

 

Fig. 4.4 PDF comparison of moment AEs in Case 1: (a) Mean; (b) Std.. 

Also, to assess the accuracy of methods in estimating ( )f t  PDFs at each time 

point, AEs of PDFs are presented in Fig. 4.5. 

 

Fig. 4.5 AE of PDF of ( )f t  from (a) SPCE; (b) LRA; (c) GMPCE. 
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From Fig. 4.5, the PDF AE of ( )f t  from GMPCE is much smaller than those 

from SPCE and LRA, indicating its higher accuracy at different time points, which can 

be observed more clearly when the results at only one time point are shown, as drawn 

in Fig. 4.6. It can be seen in Fig. 4.6 that the overlapping degree between the PDF from 

MCS and the PDF from GMPCE is higher than those from SPCE and LRA. 

 

Fig. 4.6 PDFs of ( )f t  at 5st = . 

Furthermore, to quantify and compare the overall accuracy of methods in 

calculating the PDFs of ( )f t  , the shape difference of PDFs ε  , i.e., 

2
ˆˆ|| ( ( )) ( ( )) ||p f t p f tε = − , is introduced, the PDFs of which are drawn in Fig. 4.7. From 

Fig. 4.7, the PDF of ε  from GMCPE is with higher peaks closer to 0 and thinner tails, 

showing higher overall accuracy of GMPCE in calculating the PDFs of ( )f t . 

 

Fig. 4.7 PDF of the shape difference of PDFs in Case 1. 

4.3.2 Case 2: 240-Bus WECC System 
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To verify the scalability and applicability of GMPCE in the larger power system 

with numerous uncertainties, case studies implemented in the 240-bus WECC system 

are conducted, where 37 RPGs are integrated [152]. Also, the top 13 loads with the 

highest active power are selected as uncertainties as examples. Thus, the total 

uncertainty quantity of RPGs and loads in the system is 50. These uncertainties are 

based on the measurements in [153]. PFSA is conducted by using GMPCE to analyze 

the system frequency response ( )Wsysf t  and area-level frequency response in Area 1 

1( )Waf t  of the system with the trip of the largest infeed generator at 0.1s. Firstly, the 

efficiency comparison among different methods is presented in Table 4.3. Compared 

with the time cost shown in Table 4.2, the simulation time rises around 4.5 times with 

the increase of the analyzed system scale. And since GMPCE, as a nonintrusive method, 

only needs the data of uncertainties and data of system dynamic responses as inputs and 

outputs to determine its structure and calculate the coefficients, the method execution 

time of GMPCE rises around 3.5 times with the increase of uncertainty quantity rather 

than that of analyzed system scale. Moreover, similar time cost increases can be found 

in other methods, and the increase of method execution time of GMPCE is limited 

compared with other methods. Thus, these results demonstrate that GMPCE possesses 

the time-saving merit in UPA of the large-scale power system with numerous 

uncertainties. 
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Table 4.3 Efficiency comparison of different methods in Case 2 

Method Simulation time (s) Method execution time (s) Total time (s) 

MCS 43932.563 - 43932.563 

SPCE 

1750.381 

308.453 2058.834 

LRA 236.691 1987.072 

GMPCE 8.179 1758.560 

Then, the accuracy of methods in estimating the moments and PDFs of frequency 

responses are compared and drawn in Fig. 4.8, Fig. 4.9 and Fig. 4.10, Fig. 4.11, 

respectively. From Fig. 4.8(a), Fig. 4.8(c), for mean of frequency responses, all mean 

curves derived from different methods are very close to the curves from MCS, which 

illustrates their high accuracy in estimating the mean of frequency responses. Moreover, 

from Fig. 4.9(a) and Fig. 4.9(c), though the peaks of AE PDFs from LRA are closer to 0 

than those from GMPCE, the values of their peaks are lower than those from GMPCE, 

and the tails of AE PDFs from LRA are fatter. This means that the errors of LRA in 

estimating the mean of frequency responses will fluctuate in a relatively large range 

compared with GMPCE. And for Std. of frequency responses presented in Fig. 4.9(b) 

and Fig. 4.9(d), the peaks of AE PDFs from GMPCE are much higher and closer to 0 

compared with those from SPCE and LRA, which means that the Std. curves from 

GMPCE are closer to those from MCS, as drawn in Fig. 4.8(b) and Fig. 4.8(d). 

Moreover, for PDFs of frequency responses, it can be clearly observed that AEs of 

frequency response PDFs from GMPCE are much smaller than those from SPCE and 

LRA, as presented in Fig. 4.10, and the shape differences of frequency response PDFs 

from GMPCE are also smaller, as illustrated in Fig. 4.11(b) and Fig. 4.11(d). These 
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results indicate the high accuracy of GMPCE in estimating the moments and PDFs of 

frequency responses of the large-scale power system with numerous uncertainties. 

 
Fig. 4.8 (a) Mean of ( )Wsysf t ; (b) Std. of ( )Wsysf t ; (c) Mean of 1( )Waf t ; (d) Std. of 

1( )Waf t . 

 

Fig. 4.9 (a) AE PDF of ( )Wsysf t  mean; (b) AE PDF of ( )Wsysf t  Std.; (c) AE PDF of 

1( )Waf t  mean; (d) AE PDF of 1( )Waf t  Std.. 
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Fig. 4.10 AE of ( )Wsysf t  PDF from (a) SPCE; (c) LRA; (e) GMPCE; AE of 1( )Waf t  

PDF from (b) SPCE; (d) LRA; (f) GMPCE. 

 

Fig. 4.11 (a) PDF of ( )Wsysf t  at 5st = ; (b) PDF of ε  of ( )Wsysf t ; (c) PDF of 

1( )Waf t  at 5st = ; (d) PDF of ε  of 1( )Waf t . 
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4.4 Summary 

In this chapter, firstly, a generic transformation based on ICA is proposed to 

transform uncertainties with complicated correlations into independent ones. Secondly, 

GMPCE is proposed to quantify the system frequency response in an efficient manner, 

the polynomial construction of which is suitable for uncertainties with arbitrary 

probability distributions. And GMPCE has the sparse structure and thus avoids the 

curse of dimensionality, thereby being capable of tackling large-scale uncertainties. The 

results of case studies demonstrated the superiority of the proposed method in accuracy 

and efficiency. 
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Chapter 5 Comprehensive Uncertainty Quantification 

for Frequency Stability Considering Different Timescale 

Characterizations of Uncertainties 

5.1 Introduction 

Chapter 2-Chapter 4 focus on PFSA, i.e., the impact of STCUs on power system 

frequency stability, which is also the concerned issue in most existing studies on UQ 

for frequency stability of power systems. However, the specific choice of the timescale 

characterization of uncertainties is based on focused tasks and nature of uncertainty 

sources. FTCUs may be used in UQ of power system stability, which need to be 

considered together with STCUs simultaneously to ensure accurate UQ results. And 

there is a lack of an effective method capable of addressing STCUs and FTCUs, which 

is in a pressing need. To fill the research gap, this chapter proposes a comprehensive 

UQ method for frequency stability considering STCUs and FTCUs. 

 

5.2 Different Timescale Characterizations of Uncertainties and Their 

Transformations 

5.2.1 Slow Timescale Characterizations of Uncertainties 

STCUs refer to the randomness of steady-state operating points of uncertain 
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sources varying with time slowly and infrequently, the values of which are considered 

to be constant in the dynamic response during a short time generally. Thus, STCUs can 

also be regarded as the randomness of initial values. Normally, STCUs can be treated 

as random variables. For the independent random variable vgξ , PDF ( )vg vgpξ ξ  can be 

adopted to characterize the probability of them. Also, some STCUs may be correlated, 

for example, wind speeds of wind power generations with close spatial distance [27]. 

The PDF 1 1 2( , , , )c GCop c c cGp ξ ξ ξ ξ−    of correlated random variables 1 2, , ,c c cGξ ξ ξ  

with correlation matrix 1c Gξ −ρ  can be modeled by the Copula function as [109] 
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





ρ   (5.1) 

where .( )p ⋅  is the marginal PDF. .( )P ⋅  denotes the integral of .( )p ⋅ . ϕ  represents 

the Gaussian generator function of Copula. G   is the number of correlated random 

variables. 

Since only the independent random variables are acceptable for the PCE-based 

UPA method, the correlated random variables cξ   should be transformed into the 

independent ones vξ  , where Cholesky decomposition is applied [109] to obtain the 

transformation matrix cCξ  as 

 T
c c c

= C Cξ ξ ξρ   (5.2) 

where cξρ  is the correlation matrix of cξ . 

vξ  can be derived as 

 1 .−=
cv cCξξ ξ   (5.3) 

5.2.2 Fast Timescale Characterizations of Uncertainties 
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FTCUs focus on the time-varying characteristics of uncertain sources varying 

rapidly and frequently during a short time. In power systems, it is usually modeled as 

the SDE with standard stochastic processes [125]. 

 ( ) ( )s ss S s S s tdS S dt S dSµ σ= +   (5.4) 

where sS  is the dynamic stochastic process. .( )µ ⋅  and .( )σ ⋅  are drift and diffusion 

terms, separately. tS   is the typical stochastic process. When sS   is a continuous 

FTCU, tS  is often selected as the Winner process tW , which can be used to model the 

fluctuation of RPG [112], error in measurement, and noise in communication [127]. 

When sS  is a discrete jump FTCU, tS  can be described by the compound Poisson 

process tC  [114] 

 
1

tN

t k
k

C ς
=

=∑   (5.5) 

where tN  is the Poisson process, kς  denotes the independent identically distributed 

random variable. 

5.2.3 Transformation of Fast Timescale Characterizations of Uncertainties to Slow 

Timescale Characterizations of Uncertainties 

The modeling form in (5.4) cannot directly match the PCE-based UPA method. 

Taking uncertainty modeled by the Winner process as an example, tW   has the 

characteristic that the values in the current time and those in the historical time follow 

a Gaussian probability distribution. In every time step, a new random variable will be 

introduced. If PCE-based methods are directly adopted to approximate the system 

response, the number of random variables to be considered equals the concerned system 
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response duration divided by the step length. This will result in the curse of 

dimensionality, leading to the failure to obtain the expected results in a limited time. 

Thus, if we want to retain the time-saving advantage of the PCE-based UPA method, 

tS  should be transformed into the form expressed by the limited number of independent 

random variables. 

It has been proved that the continuous Winner process tW , can be transformed as 

(5.6) [99, 154]. And the approximation of tW  can be derived by taking the first WI  

terms of (5.6). 

 
1

2 ( 1/ 2)sin[ ]
( 1/ 2)

t Wn
n

T n tW
n T

πξ
π

∞

=

−
=

−∑   (5.6) 

where [0, ]t T∈  . T   is the concerned period of system dynamics. Wnξ   is the 

independent identically distributed random variable. 

Thus, the main work in the following is to transform the compound Poisson 

process tC  into the superposition of random variables. 

According to Karhunen-Loève expansion (KLE) and Mercer’s Theorem [155], if 

a stochastic process ( )r t   on the interval (0, )t T∈   with a mean ( )r tµ  , a bounded 

variance ( )r tσ , and a bounded, symmetric, and positive definite covariance function 

( , )rK s t , ( )r t  can be obtained as 

 
1

( ) ( ) ( )r vn n n
n

r t t e tµ ξ λ
∞

=

= +∑   (5.7) 

where .λ  is the nonnegative eigenvalue of eigenfunction .( )e t , and items are arranged 

in descending order according to the value of .λ  . vnξ   is the independent random 

variable. 
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Additionally, the variables and functions in (5.7) satisfy the following 

relationship. 

 
0

2
0

0

( , ) ( ) ( )
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∫
∫

∫

  (5.8) 

Assume that the mean and the variance of kς  are ςµ  and ςσ , and the parameter 

of Poisson process tN  is Nσ . For the compound Poisson process tC , the mean ( )C tµ  

and variance ( )C tσ  can be derived according to the double expectation theorem: 

 2 2( ) , ( ) ( ) .C N C Nt t t tς ς ςµ µ σ σ µ σ σ= = +   (5.9) 

Equation (5.9) indicates the existence of ( )C tµ   and ( )C tσ  . Also, due to 

(0, )t T∈  , ( )C tσ   is bounded. Moreover, according to (5.9), the covariance function 

( , )CK s t  can be derived as 

 2 2 2 2( , ) ( ) min{ , } .C N NK s t s t stς ς ςµ σ σ µ σ= + +   (5.10) 

Due to , (0, )s t T∈  and 0Nσ > , ( , )CK s t  is bounded, symmetric, and positive 

definite. Thus, (5.9) and (5.10) indicate that compound Poisson process tC   can be 

expanded as the form of (5.7). 

Substituting (5.10) into the first equation of (5.8), it can be transformed as 

 
2 2

0

2 2 2 2
0

( ) ( )

( ) ( ) ( ) ( ).

t
N n

T T
N n N n n n

t

se s ds

t e s ds t se s ds e t

ς ς

ς ς ς

µ σ σ

µ σ σ µ σ λ

+

+ + + =

∫
∫ ∫

  (5.11) 

The derivation of (5.11) with respect to t  can be obtained by 

 2 2 2 2
0

( ) ( ) ( ) ( ) / .
T T

N n N n n n
t

e s ds se s ds de t dtς ς ςµ σ σ µ σ λ+ + =∫ ∫   (5.12) 

The derivation of (5.12) with respect to t  can be computed as 
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 2 2 2( ) / ( ) ( ) 0.n n N nd e t dt e tς ςλ µ σ σ+ + =   (5.13) 

The general solution of (5.13) can be derived as 

 
2 2 2 2

1 2
( ) ( )( ) sin[ ] cos[ ].N N

n n n
n n

e t c t c tς ς ς ςµ σ σ µ σ σ
λ λ
+ +

= +  (5.14) 

where 1nc  and 2nc  are undetermined coefficients. 

According to (5.11) and (5.12), the boundary conditions can be calculated as 

 2 2
0

(0) 0
.

( ) / ( ) /
n

T
n N n n

e

de T dt se s dsςµ σ λ

=
 = ∫

  (5.15) 

Substituting (5.15) into (5.14), 2nc  and nλ  are derived as 
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  (5.16) 

Substituting (5.14) and (5.16) into the second equation of (5.8), 1nc  is computed 

as 
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Thus, tC  has the following transformation form as 
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where the distribution of independent random variable Cnξ  can be derived according 
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to the third equation of (5.8). 

The approximation of tC  can be derived by taking the first CI  terms of (5.18). 

After substituting the truncated (5.6) and (5.18) into (5.4), the number of the 

introduced random variables will not increase with the number of simulation steps, 

which can alleviate the curse of dimensionality when applying the PCE-based UPA 

method. 

 

5.3 Uncertainty Propagation Analysis with Different Timescale 

Characterizations Based on Scalable Polynomial Chaos Expansion 

Due to the time-saving advantage of the PCE, the UPA in this chapter is based on the 

PCE. PCE-based UPA adopts a truncated series of orthogonal polynomials associated with 

the probability distribution of ξ   to approximate the relationship ( )q ⋅   between the 

independent random variables 1 2= [ , , , ]Nξξ ξ ξξ   (short for 1 2= [ , , , ]vv v vNξξ ξ ξvξ  ), 

where Nξ   is the number of independent random variables, and the concerned system 

outputs z . z  can be chosen as the system responses or the stability indices. The PCE 

model can be derived as 

 
1

0 0

ˆˆ( ) ( ) ( ) ( )
pN

i i i i
i i

z q a z q aψ ψ
−∞

= =

= = ≈ = =∑ ∑ξ ξ ξ ξ   (5.19) 

where pN   is the truncated number. ia   denotes the undetermined coefficient. 

Polynomial ( )iψ ξ  is the tensor product ⊗  of polynomial chaos basis ( )iφ ξ⋅  

 1 2( ) ( ) ( ) ( ).i i i i Nξψ φ ξ φ ξ φ ξ= ⊗ ⊗ ⊗ξ   (5.20) 

Thus, the design of the PCE-based uncertainty propagation analysis method is to 
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determine polynomial chaos basis ( )iφ ξ⋅  and coefficient ia . 

5.3.1 Construction of Polynomial Chaos Bases for Arbitrary Distributions 

The forms of polynomial chaos bases are determined by the probability 

distributions of random variables. The conventional construction of polynomial chaos 

bases is only suitable for some typical probability distributions listed in the Askey scheme 

[156]. However, there are still some typical probability distributions not included in the 

Askey scheme, for example, the Weibull distribution. Moreover, after KLE or the 

transformation of correlated random variables into independent ones, random variables 

may not follow any typical probability distributions. And the actual data of random 

variables can be complicated and cannot be characterized by existing probability 

distributions accurately. Thus, the Askey scheme is not applicable to these random 

variables. To tackle the above situation, a generic construction principle of polynomial 

chaos basis associated with the independent random variable ξ , PDF of which is ( )pξ ξ , 

is given as follows. 

The j-th order orthogonal polynomial , ( )i jφ ξ  can be expressed as 

 2 1
, 0 1 2 1( ) .j j

i j jφ ξ α α ξ α ξ α ξ ξ−
−= + + + + +   (5.21) 

According to orthogonality, there is 

 , ,( ) ( ) ( ) 0, 0 .i j i l p d l jξφ ξ φ ξ ξ ξ = ≤ <∫   (5.22) 

Substituting , , 10,1, 2 jl −=    in turns into (5.22), 0 1 1, , , jα α α −   can be 

derived sequentially. 

The above computation procedure can be summarized as 



119 

 1
0 1 1 1 2[ , , , ] [ , , , ]T T

j jα α α γ γ γ−
− = Β   (5.23) 

where ( )kl j jβ ×=Β  . 2( ) ,1 ,k l
kl p d k l jξβ ξ ξ ξ+ −= ≤ ≤∫  . 

1( ) ,1k j
k p d k jξγ ξ ξ ξ+ −= − ≤ ≤∫ . 

In the actual conditions, the sampled historical data of ξ  may be available, not PDF 

( )pξ ξ . Then, the expression of klβ  and kγ  will be the summation form of sampled data. 

5.3.2 Scale Reduction of Polynomial Chaos Expansion and Computation of Coefficients 

of Polynomial Chaos 

According to (5.19) and (5.20), the number of undetermined coefficients of the 

full-order PCE is 

 ( )!/ ( ! !)p o oN N N N Nξ ξ= +   (5.24) 

where oN  denotes the order number of expansion. 

According to (5.24) and [97], if the normal method for calculating coefficients is 

applied, pN  samples are required at least to obtain a PCE model with acceptable 

accuracy. However, pN  will increase rapidly with the rise of Nξ . Moreover, when 

FTCUs are considered, multiple random variables will be introduced based on KLE. 

Thus, the number of undetermined coefficients is required to reduce to avoid the curse 

of dimensionality under the premise of ensuring the accuracy of the UQ method. 

Since the low-order interactions of inputs usually lead to the main effects 

compared with the high-order interactions [157], hyperbolic truncation is applied to 

remove the items of high-order interactions. 
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where ,i lv  is the order of random variable lξ  in ( )i lφ ξ . hc  denotes the truncation 

coefficient. When 1hc = , (5.25) has the same expression of the full-order PCE. 

After the preliminary truncation, the orthogonal polynomials ( )iψ ξ  with the 

relatively main effect on the output are selected. To further reduce the number of 

undetermined coefficients, least angle regression (LAR) [158] is applied. Before the 

selection of ( )iψ ξ , random variables are sampled based on LHS [103] to improve the 

sampling efficiency, forming the sampled dataset ( )sNξ , where sN  is the number of 

sampled data. The procedure of selecting ( )iψ ξ  based on LAR can be summarized as 

follows. 

1) Initialize 0 1 1, , , 0pNa a a − = , and define the initial candidate set cΓ  as 

0 1 1{ ( ), ( ), , ( )}pNψ ψ ψ −ξ ξ ξ  and the initial selected set sΓ  as ∅ . 

2) Calculate the correlation function ˆ( ( )) ( )T
fC z z= −ψ ξ ψ  and move ( )iψ ξ  

with largest fC  from cΓ  to sΓ . 

3) Diagonally move coefficients of orthogonal polynomials in sΓ  until there is 

an orthogonal polynomial ( )iψ ξ  in cΓ , the correlation function of which equals to the 

sum of the correlation function in sΓ . And move ( )iψ ξ  from cΓ  to sΓ . 

4) Compute the LOO error LOOε  of ẑ . The LOO error can be obtained as [141] 

 ( ) ( ) 2 2
( ) ( )

1 1 1

ˆ 1( ) / ( )
1

s s sN N N
m m

LOO m k
m sm m k

z z z z
d N

ε
= = =

−
= −

−∑ ∑ ∑   (5.26) 

where md  is the m-th element in 1( ( ) )T Tdiag −=d ψ ψ ψ ψ . 

5) Repeat Step 3)-Step 4) until the number of orthogonal polynomials in sΓ  

equals to min{ , 1}p sN N − . Then, select sΓ  with the lowest LOOε  as the selected 
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orthogonal polynomials. 

After conducting the ( )iψ ξ  selection procedure, the number of undetermined 

coefficients has been reduced, which will not continuously increase with the number of 

STCUs and FTCUs. Thus, the curse of dimensionality is avoided, thereby indicating 

that the proposed method can be feasible when the number of STCUs and FTCUs is 

large. And the undetermined coefficients can be calculated by minimizing the 

estimation error of the PCE 2
( ) ( )

1

ˆ( )
sN

m m
m

z z
=

−∑ . 

After calculating coefficients, the mean ẑµ  and the variance 2
ẑσ  of ẑ  can be 

determined as follows: 
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Moreover, the estimated PDF ˆˆ ˆ( )zp z  of ẑ  can be derived based on KDE as 

 ˆ ( )
1

ˆ ˆ ˆ ˆ( ) [( ) / ] / ( )
KN

z K m K K K
m

p z p z z b N b
=

= −∑   (5.28) 

where KN  is the sample number of KDE. Kp  denotes the kernel function, which is 

selected as the Gaussian kernel. Kb  represents the bandwidth, which can be 

determined via 0.2
ˆ1.06 z KNσ −  [98]. 

 

5.4 Uncertainty Sensitivity Analysis with Different Timescale 

Characterizations Based on Analysis of Variance 

Sensitivity analysis of power system dynamics under STCUs and FTCUs aims to 

quantify the impact of uncertainties on system stability indices and identify the critical 
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uncertainties. In this thesis, frequency stability is considered as an example, where FN 

and RoCoF are selected as the frequency stability indices, but the proposed method is not 

limited to the frequency stability issues. 

ANOVA is applied to conduct sensitivity analysis. For random variables 

= [ , ]lξ lξ ξ , where lξ  are the rest of the random variables of ξ  apart from lξ . The 

total variance ( )z zD  of z  can be derived as [159] 

 ( ) [ ( | )] [ ( | )].l ll lz z z zξ ξξ ξ= +E ED D Dl lξ ξ   (5.29) 

Equation (5.29) can be transformed into 

 1 [ ( | )] / ( ) [ ( | )] / ( ).l ll lz zz z z zξ ξξ ξ= +D D D E D Dl lξ ξ   (5.30) 

The first item of (5.30) is the first-order sensitivity index (FSI) lSξ  of lξ . The 

second item of (5.30) is known as the total SI of lξ . lSξ  indicates the impact of lξ  

on z . Normally, lSξ  is calculated based on the time-consuming MCS [109, 160]. To 

save calculation time, the proposed PCE-based UPA method in Chapter 5.3 is applied 

to estimate lSξ  . Assuming that 1( )= [ , ]G
lξ 11 ( )( ) GG

lξ ξ   and 2( )= [ , ]G
lξ 22 ( )( ) GG

lξ ξ   are two 

independently sampled data of random variables and the response are 1( )Gz   and 2( )Gz  , 

respectively, the estimated FSI ˆ
lSξ  can be calculated as follows. 
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 (5.31) 

 ˆˆ ˆ ˆ( ) / ( )ˆ ˆ
ll zS z zξ ξ= D D   (5.32) 

where SIN   is the number of sampled data in 1G   or 2G  . (.)v   represents the 
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transformation from independent random variables to the dependent presented in 

Chapter 5.2.1. 

The overall procedure of the comprehensive UQ method for power system frequency 

stability considering STCUs and FTCUs proposed in Chapter 5.2-Chapter 5.4 is 

summarized in Fig. 5.1. From Fig. 5.1, the inputs of the proposed UQ method are 

uncertainties, as external excitations, which are not affected by the inner structure of 

power systems. Thus, the proposed method is nonintrusive, the complexity of which is 

not affected by the structure of power systems. 

Uncertainty 
sensitivity 
analysis

Start

Independent 
STCUs

Dependent 
STCUs

Types of uncertainties

Continuous 
FTCUs

Discrete 
FTCUs
Obtain SDEs in 
the form of (5.4)

Obtain SDEs in 
the form of (5.4)

Obtain PDFs in 
the form of (5.1)

Obtain PDFs 

Transform into 
the form (5.6)

Transform into 
the form (5.18) 
based on KLE

Transform into 
independent ones 

based on (5.3)

Uncertainty modeling 
and transformation

Sample two groups ξ(G1),  ξ(G2)             

Calculate FSIs based on (5.32)

Uncertainty 
propagation
analysis

Conduct LHS for random variables and 
obtain system responses and stability indices 

Random variables 
in Askey scheme

Build polynomial chaos basis 
based on Askey scheme

Yes No
Build polynomial chaos basis 

based on (5.23)

Apply hyperbolic truncation in 
(5.25) to move high-order items

Reduce the scale of PCE based 
on LAR and LOO error in (5.26)

Calculate coefficients by 
minimizing the estimation error

Acquire means and 
variances based on (5.27)

Compute PDFs based on 
KDE in (5.28)

End

ξ

q(ξ)^

 

Fig. 5.1 Overall procedure of the comprehensive UQ method for power system 

frequency stability considering STCUs and FTCUs. 
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5.5 Case Study 

5.5.1 Example System 

Numerical results are conducted on the IEEE 39-bus benchmark system [21] to 

demonstrate the performance of the proposed UQ method. The simplified three-order 

synchronous generator model and first-order automatic voltage regulator model are 

utilized for simulations [30]. The concerned period of system dynamics is set as 10 sT =  

[97]. Eight STCUs and FTCUs of active power are injected. Ones at the buses with loads 

reflect uncertainties of loads, while others simulate the generation uncertainties. The 

uncertainties of PVs with slow and infrequent variations are modeled as STCUs formed 

by Beta distributions [103]. The uncertainties of WPGs with rapid and frequent 

fluctuations are modeled as FTCUs formed by SDEs with Wiener processes [112]. The 

uncertainties of loads with slow and infrequent variations are modeled as STCUs formed 

by Gaussian distributions [7], whereas those with rapid and frequent fluctuations are 

modeled as FTCUs formed by SDEs with compound Poisson processes [114]. The 

schematic and the detailed parameters are illustrated in Fig. 5.2 and Table 5.1, respectively. 
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Fig. 5.2 Schematic of IEEE 39-bus system with STCUs. 

Table 5.1 Parameters of uncertainties 

Bus No. Types 
Uncertainty 

characteristics 
Parameters 

2, 19 PV Independent STCU cξ ~2×Beta(2, 3), 0.7ρ =cξ  

5, 9 WPG Continuous FTCU 0.01sξµ = − , 2sξσ =  

8, 20 Load Dependent STCU vξ ~Gaussian(0, 1) 

21, 24 Load Discrete FTCU 

0sξµ = , 2sξσ = , 

tN ~Poisson(0.6), 

ς ~Gaussian(0, 20.2 ) 

5.5.2 Transformation Validation of Fast Timescale Characterizations of Uncertainties 

Accurate transformation of FTCUs is the premise to ensure the effectiveness of 

UQ. Hence, the performance of FTCU transformation is verified firstly, where the root-

mean square error (RMSE) [111] is introduced to compare the error of transformation. 
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The numerical results of the continuous Winner process tW   and discrete jump 

compound Poisson process tC  are presented in Fig. 5.3. As illustrated in Fig. 5.3(a) 

and Fig. 5.3(b), RMSEs keep reducing with the increase of the expansion order, which 

indicates that the higher the order of expansion is, the closer the transformation result is to 

the actual FTCUs. 

 

Fig. 5.3 (a) Change of RMSE with expansion order of tW ; (b) Change of RMSE with 

expansion order of tC . 

Moreover, to further quantify the errors of FTCU transformation, the PDFs of 

RMSE with different expansion orders are compared in Fig. 5.4. From Fig. 5.4(a) and 

Fig. 5.4(b), the PDF of RMSE with a higher expansion order has a thinner tail, which 

demonstrates a smaller variance. The decreasing variance and mean of RMSE with the 

increase of expansion order indicate the effectiveness of the proposed in the approximation 

of FTCUs. 



127 

 

Fig. 5.4 (a) PDF of expansion RMSE of tW ; (b) PDF of expansion RMSE of tC . 

Although using a high-order expansion will increase the accuracy, considering the 

computation time in the subsequent quantification, a relatively low-order expansion is 

more suitable under the premise of ensuring accuracy. From Fig. 5.5(a) and Fig. 5.5(b), 

5-order and 10-order expansions are already close to the actual fluctuation of tW  and 

tC , respectively. Thus, 5WI = , 10CI =  are chosen as the expansion order of tW  and 

tC  in the following calculation. 

 

Fig. 5.5 (a) Fitting results of tW ; (b) Fitting results of tC . 

5.5.3 Comprehensive Uncertainty Quantification Considering Different Timescale 

Characterizations of Uncertainties in Analyzing Frequency Stability 

The proposed method is applied to conduct the frequency stability analysis where 
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the generator with the largest output power is tripped from 0.1s. The results of 5000 

times MCSs are considered as the baseline to present the performance of the proposed 

method [27]. The parameters are set as follows: 0.8hc = , 3oN = , 5000K SIN N= = , 

200sN =  [103]. Also, the results of Halton QMCS and Sobol QMCS are presented to 

compare with the proposed method, the sampled data number of which is selected as 

500. The PDF results of FN and RoCoF are presented in Fig. 5.6, and the performance of 

the proposed method is listed in Table 5.2. From Table 5.2 and Fig. 5.6, the maximal 

error of eµ  and eσ  is 5.44%, whereas that of Halton and Sobol are 10.39% and 9.04%, 

respectively. Compared with Halton and Sobol, PDFs calculated by the proposed 

method have higher overlaps with the actual PDFs. And the computation time of the 

proposed method is shortened by more than 25 times than MCS and more than 2.5 times 

than Halton and Sobol, showing the accuracy of the proposed method in quantifying 

frequency stability indices affected by uncertainties and the time-saving merit. 

 

Fig. 5.6 PDF results of frequency stability indices: (a) PDF of FN; (b) PDF of RoCoF. 
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Table 5.2 Performance of different methods in the calculation of frequency stability 

indices 

Method eµ (×10-2%) eσ (%) St  (s) Mt  (s) Tt  (s) 

MCS – – 4181.66 – 4181.66 

Halton 2.34 10.39 413.66 0.31 413.97 

Sobol 3.03 9.04 413.70 0.47 414.17 

Proposed method 0.05 5.44 160.26 3.67 163.93 

Similarly, quantification results of the dynamic response of sysf   affected by 

uncertainties are computed and shown in Fig. 5.7. From Fig. 5.7(a), the curve of the 

mean of sysf  calculated by the proposed method and that obtained from the MCS are 

nearly overlapped. Moreover, the MAPE PDF of the mean of sysf  derived from the 

proposed method has a thinner tail and taller peak close to 0 compared with those from 

Halton and Sobol. Although the MAPE PDF peaks of the Std. of sysf   from the 

proposed method, Halton, and Sobol are near, the PDF tail from the proposed method 

ends closer to 0. Thus, the proposed method presents a higher accuracy in quantifying 

the total trend of sysf . 
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Fig. 5.7 Statistical results of frequency: (a) Mean of sysf ; (b) Std. of sysf ; (c) MAPE of 

mean of sysf ; (d) MAPE of Std. of sysf . 

Besides, the PDFs of sysf   are calculated based on the proposed method. For 

saving space, sysf  at 3st =  and 6st =  are presented in Fig. 5.8(a) and Fig. 5.8(b) 

as examples. From Fig. 5.8, the PDFs of sysf   at different time points from the 

proposed method also have a higher overlap than those from Halton and Sobol, 

indicating the good performance of the proposed method in quantifying sysf   at 

different time points. 
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Fig. 5.8 (a) PDF of sysf  at 3s; (b) PDF of sysf  at 6s. 

Finally, the sensitivities of FN and RoCoF with respect to uncertainties are 

calculated to quantify the impact of uncertainties on the frequency stability. Table 5.3 

and Fig. 5.9 present the performance and results of the proposed method in calculating 

the FSI of FN and RoCoF separately. 

Table 5.3 Performance of different methods in the FSI calculation of frequency 

stability indices 

Method FSIe  (×10-2) Tt  (s) 

MCS – 18834.11 

Halton 13.11 1880.08 

Sobol 17.69 1880.76 

Proposed method 2.01 17.91 

 

Fig. 5.9 FSI results of frequency stability indices: (a) FSI of FN; (b) FSI of RoCoF. 
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From Table 5.3, the calculation time of the proposed method is reduced by more 

than 1000 times compared to that of MCS and more than 100 times compared to that 

of Halton and Sobol. Although there is a deviation between the FSIs of STCU and 

FTCU in Bus 9 and 20 estimated by the proposed method and those based on the MCS 

in Fig. 5.9(a), since these FSIs are tiny, the same results can be obtained from the 

proposed method and the MCS, i.e., STCU and FTCU in Bus 9 and 20 have little effect 

on the FN. Besides, the maximal RMSE of frequency stability indices of the proposed 

method is 0.0201, which is much lower than those of Halton (0.1311) and Sobol 

(0.1769), illustrating the effectiveness of the proposed method in frequency stability 

analysis. Moreover, from Fig. 5.9, for FN, the STCU in Bus 2 has the highest FSI, and 

FSIs corresponding to FTCUs in Bus 21 and 24 also have relatively high values. Apart 

from them, STCU and FTCU in Bus 19 and 5 also affect FN, and the impact of others 

is limited. For RoCoF, all FSIs corresponding to STCUs and FTCUs have relatively 

remarkable values, which indicates that all STCUs and FTCUs affect RoCoF and 

frequency stability, and among them, the STCU in Bus 2 has the most serious impact. 

Thus, the results also reflect the limitation of only considering the STCUs or FTCUs in 

current research. Both the STCUs and FTCUs have a significant impact on system 

stability. Considering only one timescale characterization type of uncertainties is 

inaccurate and not in line with the actual operation state of power systems. Thus, it is 

necessary to consider STCUs and FTCUs in the dynamics of power systems. 

 

5.6 Summary 
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In this chapter, firstly, STCUs are formulated by probability distribution methods. 

FTCUs formulated by stochastic processes are approximated by the superposition of 

the finite number of STCUs based on KLE so that STCUs and FTCUs are firstly 

transformed into a unified form modeled by probability distribution methods. Then, to 

effectively quantify the relationship between the power system frequency stability and 

STCUs and FTCUs, the scalable PCE is proposed. Moreover, sensitivity analysis is 

conducted to study the impact of STCUs and FTCUs on power system frequency 

stability. The results of case studies demonstrate the effectiveness of the proposed 

method and reveal the necessity of considering STCUs and FTCUs in UQ for power 

system frequency stability. 
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Chapter 6 Conclusions and Suggestions for Future 

Research 

6.1 Conclusions 

Since sustainable development has become a widespread concern recently, RPGs 

have been widely installed in power systems, which contributes to the high penetration 

of renewable energies in modern power systems. However, the uncertainties of RPGs 

and the decreasing inertia of power systems caused by the integration of large-scale 

RPGs degrade the power system frequency stability. And there is a pressing need to 

quantify the impact of RPG uncertainties on frequency stability. Therefore, this thesis 

proposes a series of UQ methods for frequency stability, the conclusions of which are 

drawn as follows. 

1) Study on PFSA Considering Dynamics of RPGs with Different Control 

Strategies 

(1) When considering different control strategies of RPGs in frequency response, 

the RPGs with VSG-based grid-forming control strategy can provide inertia to the 

system, while RPGs with conventional grid-following control strategy cannot, thereby 

changing the frequency response of the system. Thus, considering the different control 

strategies of RPGs is necessary for PFSA. 
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(2) When considering the dynamics of RPGs in frequency response, the explicit 

solution of FN/FV and RoCoF time of the SFR model no longer exists. Thus, the closed-

form relationship between frequency stability indices and outputs of RPGs cannot be 

derived. The difficulty of analyzing probabilistic frequency stability increases, and a 

novel UPA method is required. 

(3) The simulation results illustrate that two PDFs with the limited number of 

similar moments may have significant differences in shapes, while PDFs with similar 

shapes may also have great differences in their finite number of moments. Thus, even 

if the finite moments calculated by moment-based methods are within an acceptable 

error range, the accuracy of PDFs generated by moment-based methods cannot be 

guaranteed, which is the limitation of moment-based UPA methods. By comparison, the 

proposed MIS-MELRA is an approximation method, avoiding the limitations of 

moment-based methods. 

(4) The proposed MIS-MELRA can effectively analyze the frequency stability 

considering the dynamics of RPGs. The utilization of LRA contributes to the proposed 

method being suitable for large-scale uncertainty analysis. The proposed MIS greatly 

reduces the simulation time, while the introduction of ME considers different trends of 

frequency response, thereby improving the accuracy of PFSA. 

2) Study on PFSA Considering WEs of WFs 

(1) Compared with the numerical uncertainty propagation analysis methods, the 

proposed MOGPR greatly improves the efficiency of PFSA. Compared with GPR, 

MOGPR can simultaneously analyze the probabilistic stability of system frequency and 
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area-level frequency and consider the relationship among them with higher efficiency 

and accuracy. Compared with other approximation methods, both MOGPR and GPR 

only require sampling data, which are more suitable for analyzing uncertainties with 

complicated correlations, including the WEs of WFs. 

(2) Compared with conventional analytical WE models, the proposed WE model 

considers multiple factors, which can reflect the WEs of WFs more realistically and can 

be easily integrated into PFSA. Also, the time cost of the proposed model is greatly 

shorter than that of the frequency response simulation, which is suitable for PFSA. 

(3) The impacts of multiple factors related to WEs on PFSA are studied. The results 

of case studies reveal that the change of the wind direction, the terrain, and the layout 

will contribute to the change of the WE strength. And a lower wind speed deficit and a 

higher level of nature wind speed will lead to higher WPG penetrations, more obvious 

power fluctuations of WTs, and more distributed PDFs of frequency stability indices, 

increasing the probability of frequency in high and medium-risk regions of instability. 

(4) The necessity and significance of considering the WEs of WFs in PFSA are 

revealed based on case studies. The ignorance of the WEs of WFs in PFSA will result 

in a higher probability of frequency instability, which is inaccurate and leads to a 

conservative frequency regulation strategy and increased frequency reserve costs. To 

mitigate the degradation of probabilistic frequency stability caused by WPG 

uncertainties considering WEs, additional frequency regulation control for WTs can be 

adopted based on PFSA results. 

3) Study on PFSA Aiming at Frequency Response Trajectories 
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(1) A generic transformation method for correlated uncertainties based on ICA is 

proposed, which can effectively transform uncertainties with complicated correlations 

into independent ones. Thus, it can be integrated into other PCE-based UPA methods, 

which require independent uncertainties as inputs. 

(2) The proposed GMPCE has multiple outputs and thus can quantify the 

frequency response trajectory at different time points simultaneously, which greatly 

improves efficiency. Additionally, GMPCE possesses other merits, i.e., being 

applicable to uncertainties with arbitrary probability distributions and avoiding the 

curse of dimensionality. It can be expected that GMPCE can be applied not only in 

system dynamic response trajectory at multiple time points but also in multiple 

concerned system indicators. 

4) Study on Comprehensive UQ for Frequency Stability Considering 

Different Timescale Characterizations of Uncertainties 

(1) FTCUS formulated by stochastic processes can be approximated by the 

superposition of the limited number of STCUs formulated by probability distribution 

methods based on KLE. Thus, STCUs and FTCUs can be expressed by only applying 

probability distribution methods without stochastic process methods. 

(2) The proposed UQ method is based on the scalable PCE, which is suitable for 

uncertainties with arbitrary distributions and can prevent the curse of dimensionality. 

Additionally, sensitivity analysis provides a reference for locating the uncertainties that 

significantly affect the system dynamics. The numerical results of case studies illustrate 

that the proposed method has high accuracy and significantly reduces the computation 
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time. Moreover, the results of sensitivity analysis indicate the necessity of considering 

the STCUs and FTCUs in the frequency stability of power systems. 

(3) The proposed UQ method has wide applications in power system dynamics 

since most of the uncertainties in power systems can be formulated as STCUs or FTCUs. 

In addition, the frequency stability issue conducted in the case studies is just an example 

scenario of the proposed UQ method, which can be extended to other stability issues 

related to system dynamics. 

 

6.2 Suggestions for Future Research 

This thesis has proposed a series of UQ methods for frequency stability of 

renewable penetrated power systems. To enrich the current work, the following research 

topics are suggested and deserve to be investigated in the future. 

1) Since the proposed methods are data-based methods, how to use less data to 

achieve accurate analysis needs to be studied. Also, the improvement of robustness to 

data quality and quantity, scalability to different types of uncertainties and system scale, 

and accuracy guarantee within an acceptable range in different scenarios deserve to be 

studied. 

2) Apart from frequency stability, there are other stability issues of power systems 

that need to be concerned. It is necessary to investigate the impact of uncertainties on 

other stability issues and propose methods to quantify the impact on multi-stability 

simultaneously. 



139 

3) Studies in this thesis only focus on the frequency stability of AC transmission 

power systems. Thus, UQ for other types of power systems is also necessary, such as 

AC/DC systems, distribution systems, microgrids, and cyber physical power systems. 

4) With the development of RPGs, apart from WPGs and PVs, novel forms of 

RPGs have been gradually integrated into modern power systems. Developing 

uncertainty modeling and quantification methods targeting these novel RPGs is one of 

the research topics in the future. Also, specific combined impacts of STCUs and FTCUs, 

as well as their separate impacts, deserve to be further studied since only the 

sensitivities associated with uncertainties are calculated in the thesis. 

5) Studies in this thesis only give the impacts of uncertainties on frequency 

stability, which is not enough to provide guidance for the system operators to tackle 

these uncertainties. Hence, frequency stability enhancement strategies based on the 

results derived in this thesis need to be developed. 

6) System planning considering the frequency stability affected by RPG 

uncertainties and the operational efficiency improvement of RPGs based on the 

proposed methods in this thesis deserve to be investigated, for example, RPG siting, 

sizing, and coordinated control. 

7) Studies in this thesis only reveal the necessity of considering RPG dynamics in 

PFSA. Thus, the comprehensive comparison on the impact of different control 

strategies of RPGs on probabilistic frequency stability based on the proposed methods 

in this thesis is needed, which could provide guidance in selecting the optimal control 

strategy for enhancing probabilistic frequency stability. 
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8) Apart from existing frequency stability indices, including FN, FV, and RoCoF, 

inertia is one of the major factors affecting system stability and can provide additional 

information to indicate system states related to frequency. Thus, novel frequency 

stability indices associated with inertia deserve to be studied and designed to assist in 

analyzing probabilistic frequency stability. 
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