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Abstract

In recent years, end-to-end networks have emerged as a promising approach

to achieving advanced autonomous driving in self-driving vehicles. Unlike modu-

lar pipelines, which divide autonomous driving into separate modules, this approach

learns to drive by directly mapping raw sensory data to driving decisions (or control

outputs). Compared to modular systems, end-to-end networks can avoid the accumu-

lation of errors across different modules and are more scalable to complex scenarios.

Despite these advantages, a major limitation of this approach is its lack of explain-

ability. The outputs of end-to-end networks are generally not interpretable, making it

difficult to understand why a specific input produces a given output. This limitation

raises significant concerns about the safety and reliability of such systems, hindering

their broader application and acceptance in real-world traffic environments.

Within this context, this study develops three methods to enhance the explain-

ability of end-to-end autonomous driving networks. First, natural-language explana-

tions are proposed to improve explainability. A novel explainable network, named the

Natural-Language Explanation for Decision Making (NLE-DM), is designed to jointly
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predict driving decisions and natural-language explanations. While natural-language

explanations serve as an effective way to explain driving decisions, they often fall

short of revealing the internal processes of the network. In contrast, visual explana-

tions can provide insights into the network’s inner workings. Therefore, to further

enhance explainability, we propose combining natural-language and visual explana-

tions as a multimodal approach. An explainable end-to-end network, named Mul-

timodal Explainable Autonomous Driving (Multimodal-XAD), is designed to jointly

predict driving decisions and multimodal environment descriptions. Finally, we re-

visit the concept of visual explanations and introduce an innovative Bird’s-Eye-View

(BEV) perception method, named PolarPoint-BEV. This method leverages a polar

coordinate-based approach to better illustrate how the network perceives spatial re-

lationships in the driving environment.

The three methods proposed in this study not only enhance the explainability of

end-to-end networks but also address distinct key scientific problems in autonomous

driving. For NLE-DM, the effect of natural-language explanations on driving decision

prediction performance is investigated. The results demonstrate that the existence

of natural-language explanations improves the accuracy of driving decision predic-

tions. For Multimodal-XAD, the issue of error accumulation in downstream tasks of

vision-based BEV perception is addressed by incorporating both context and local

information before predicting driving decisions and environment descriptions. Ex-

perimental results show that combining context and local information enhances the
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prediction performance of both tasks. For PolarPoint-BEV, the limitations of tra-

ditional BEV maps are identified and effectively addressed. Specifically, traditional

BEV maps treat all regions equally, risking oversight of critical safety details, and use

dense grids, resulting in high computational costs. To overcome these limitations,

PolarPoint-BEV prioritizes regions closer to the ego vehicle, ensuring greater atten-

tion is given to critical areas while providing a more lightweight representation due to

its sparse structure. To evaluate the impact of PolarPoint-BEV on explainability and

driving performance, a multi-task end-to-end driving network, XPlan, is proposed to

jointly predict control commands and polar point BEV maps.

Keywords: Autonomous Driving, end-to-end networks, Explainable AI (XAI),

BEV Perception
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Chapter 1

Introduction

In recent years, end-to-end autonomous driving has gained significant attention

in both academia and industry, resulting in numerous advancements [1–12]. Un-

like traditional modular pipelines, where the driving task is divided into separate

modules such as perception, prediction, tracking, planning, and control, end-to-end

networks directly map raw sensory data—such as camera images, radar, and LiDAR

point clouds—into driving decisions or control commands (e.g., steering, throttle,

and braking). The end-to-end design offers several key advantages: i) In modular

pipelines, information loss and feature mismatches between modules can occur, and

errors in one module can propagate throughout the pipeline, degrading the overall

performance of the autonomous driving system [5]. In contrast, end-to-end networks

generate control commands directly from raw sensor inputs through a unified neural

network, reducing information transfer loss, feature mismatches, and error accumu-
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Figure 1.1: The robotaxi (left) and robovan (right) from Tesla company. The figures

come from the official Tesla website..

lation, while simplifying system design and implementation. ii) modular pipelines

operate with independent objectives, which can result in conflicting goals and sub-

optimal coordination between modules. In contrast, end-to-end networks align all

components towards a single, cohesive objective [11], minimizing the risk of subopti-

mal performance due to conflicting goals, and improving efficiency and reliability. iii)

end-to-end networks optimize the driving task holistically, capturing complex, non-

linear relationships between sensor inputs and network outputs. This adaptability

allows end-to-end networks to better handle diverse driving conditions and scenar-

ios, which is critical for safe navigation in complex and dynamic environments. iv)

end-to-end networks facilitate efficient training and rapid iteration, improving gener-

alization capabilities and reducing reliance on manually annotated data for specific

driving scenarios. Given these advantages, many companies—such as Tesla, Huawei,

Momenta, Motional, Xiaopeng, NIO, Zeekr, and Xiaomi—have adopted or are plan-

ning to implement end-to-end autonomous driving approaches. Fig. 1.1 shows the

picture of Tesla’s robotaxi and robovan.
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Despite the benefits, a significant drawback of end-to-end networks is their lack

of explainability [13–15]. First, explainability needs to be defined in the context of au-

tonomous driving. There are several terms in the field of Explainable AI (XAI)—such

as interpretability and transparency—that are similar to explainability and are often

misused [16]. Interpretability refers to a passive and intrinsic property of a network,

reflecting the degree to which its internal mechanisms or decision-making processes

can be intuitively understood by humans. Transparency is conceptually similar to

interpretability. Specifically, a network is considered transparent if it can be under-

stood by humans. In contrast, explainability can be viewed as an active property

of a network, encompassing externally directed methods, tools, or post hoc tech-

niques designed to clarify its operations or outputs. Explainability is often associated

with the concept of explanations serving as a bridge or communication layer between

humans and the network, facilitating a clearer understanding of its processes and de-

cisions [17]. Therefore, in the context of autonomous driving, explainability is defined

as the network’s ability to provide accurate and understandable explanations for its

outputs, which is crucial for building trust and ensuring safety. Explainable end-to-

end autonomous driving refers to a network that takes in raw sensor data, processes

it through a deep learning architecture to generate driving commands, and provides

clear explanations that help humans understand its decisions.”

There are several reasons why explainability is essential: i) Trust: When users can

comprehend how an autonomous system makes decisions, they are more likely to trust

3



and adopt these systems. ii) Safety: Explainability enables developers and testers to

better assess and verify system behavior, improving overall safety. iii) Regulation: As

autonomous technology evolves, regulatory agencies require transparency to ensure

compliance with traffic laws and safety standards. Explainability offers a method

for validating adherence to these regulations. iv) Accident analysis: In the event of

an accident, explainability helps determine the cause and assigns responsibility when

necessary.

There are two primary reasons why explainability in end-to-end networks is lim-

ited. First, these systems are based on deep neural networks, such as Convolutional

Neural Networks (CNNs) [18], Recurrent Neural Networks (RNNs) [19], and trans-

formers [20], which are inherently complex and often function as “black boxes” that

are difficult for humans to interpret. Second, unlike modular pipelines, end-to-end ap-

proaches lack intermediate outputs (such as object detection, semantic segmentation

or occupancy prediction) that provide human-understandable insights into how the

system processes data. End-to-end networks output only driving decisions or control

values, further reducing explainability. This lack of explainability makes it challeng-

ing to identify and correct errors, understand system behavior, and build trust in

its decisions. As autonomous driving is a safety-critical application, the absence of

transparency in end-to-end networks limits their wider application. To address this

issue, several techniques have been developed to explain the outputs of autonomous

driving systems, falling into two main categories: visual explanations [21–28] and

4



natural-language explanations [29–37].

Visual explanations [21–28] refer to methods and techniques that clarify how

autonomous driving networks perceive, interpret, and make decisions by using visual

representations. These methods visualize the inner workings of deep neural networks

so that humans can better comprehend them. For instance, attention heatmaps can

highlight the areas of visual input that influenced the decision-making process, al-

lowing humans to understand which parts of the scene contributed to specific driving

actions. Additionally, latent high-dimensional features can be decoded into mean-

ingful visual representations, such as semantic segmentation or depth estimation,

to improve the explainability of deep neural networks. Natural-language explana-

tions [29–37], on the other hand, are textual descriptions that explain the network’s

actions, decisions, and reasoning in human-understandable language. They help users

and developers comprehend how the network interprets its environment, makes driv-

ing choices, and responds to situations. These natural-language explanations are often

more straightforward and easier to interpret than visual explanations. Moreover, with

the rapid development of Large Language Models (LLMs), there is potential for us-

ing LLMs to generate text-rich, human-readable explanations for autonomous driving

decisions [38].

However, despite efforts to improve explainability, several limitations remain.

First, current methods for generating natural-language explanations often lack pre-

cision and fail to provide objective or comprehensive explanations. This reduces

5



their overall clarity and practical utility. Second, most explanation approaches rely

on a single modality—either visual or natural-language explanations—each with its

strengths and weaknesses. Visual explanations can be difficult to interpret for end

users, while natural-language explanations do not reveal the internal workings of the

network. Combining both modalities could offer a more balanced and interpretable

solution. Finally, traditional BEV perception methods, although widely used to ex-

plain how the network understands the surrounding environment, face limitations in

focusing on safety-critical regions and tend to be computationally expensive, reducing

their efficiency for real-time applications.

To address these challenges, we proposed three approaches [39–41] to improve

the explainability of end-to-end autonomous driving networks. Firstly, to address the

limitation of existing natural-language explanations, a deep neural network (named

NLE-DM [39]) is introduced to jointly predicts decision-making actions and natural-

language explanations based on semantic scene understanding. This network provides

explanations in two forms: the reasons for driving actions and descriptions of the ego

vehicle’s surrounding environment. Comparative experiments demonstrate that the

proposed approach outperforms state-of-the-art (SOTA) methods on both publicly

available datasets [29] and our own datasets, significantly improving both the pre-

diction performance of decision-making actions and explainability. In addition, to

overcome the limitations of unimodal explanations, a network (named Multimodal-

XAD [40]) is proposed that generates explanations in multimodal formats, including
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BEV maps and natural-language environment descriptions. By incorporating both

context information from BEV perception and local information from semantic per-

ception, the proposed network improves the prediction performance of both driving

actions and environment descriptions. This combination enhances the safety and ex-

plainability of the autonomous driving network. Finally, to address the limitations

of the traditional BEV method, a novel BEV perception method (named PolarPoint-

BEV [41]) is proposed to focus on areas near the ego vehicle, which are more critical

for safety. Unlike traditional dense BEV maps, PolarPoint-BEV provides a sparse

representation of traffic scenes, improving computational efficiency. This approach

is integrated into an end-to-end network called XPlan, which jointly predicts control

commands and polar point BEV maps. Experiments in the CARLA simulator [42]

demonstrate that PolarPoint-BEV enhances both driving performance and explain-

ability. In summary, the main contributions of this thesis are as follows:

1. We propose NLE-DM, a novel explainable decision-making network based on

semantic scene understanding for autonomous driving. In this network, both

the natural-language reasons for driving actions and the descriptions for ego-

vehicle’s surrounding environment are applied to explain the decision-making

actions. The superiority of the proposed network over other SOTA networks is

demonstrated on both the publicly available dataset and our released datasets.

2. We introduce Multimodal-XAD, a multimodal explainable network that lever-

ages both BEV maps and natural-language environment descriptions to explain
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driving actions. In this work, driving actions and natural-language environ-

ment descriptions are predicted based on both the context information from

BEV perception and local information from semantic perception. The superi-

ority of the proposed network over other SOTA networks is demonstrated on

different datasets.

3. We develop PolarPoint-BEV, a lightweight BEV perception method that priori-

tizes critical regions near the ego vehicle. Furthermore, to evaluate the influence

of the PolarPoint-BEV on the driving performance in an end-to-end network,

a multi-task explainable network is designed to jointly predict the control com-

mands and the polar point BEV maps. The experimental results show that the

proposed PolarPoint-BEV can improve the driving performance and explain-

ability of the proposed network.

4. The codes and datasets for the above works are publicly available, including

NLE-DM1, Multimodal-XAD2 and PolarPoint-BEV3.

The chapters of the thesis are organized as follows:

Chapter 1 shows the introduction and background of the research.

Chapter 2 gives a literature review of end-to-end autonomous driving networks,

explainable AI techniques, explanation methods in autonomous driving, BEV per-

1NLE-DM: https://github.com/lab-sun/NLE-DM
2Multimodal-XAD: https://github.com/lab-sun/Multimodal-XAD
3PolarPoint-BEV: https://github.com/lab-sun/PolarPoint-BEV
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ception methods and existing datasets of autonomous driving.

Chapter 3 introduces the proposed NLE-DM. The network architecture and train-

ing details are first presented. Then, comparative results are provided, demonstrating

the superiority of NLE-DM. Finally, the relationship between decision-making actions

and natural-language explanations is investigated in the ablation study.

Chapter 4 introduces the proposed Multimodal-XAD. The network architecture

and training details are first presented. Then, comparative results are provided,

demonstrating the superiority of Multimodal-XAD. Finally, the impact of combining

context and local information on the prediction performance of driving actions and

multimodal environment descriptions is investigated in the ablation study.

Chapter 5 introduces the proposed PolarPoint-BEV. The details of polar point

BEV map, network architecture and training details are first presented. Then, com-

parative results are provided, demonstrating the superiority of PolarPoint-BEV. Fi-

nally, the prediction performance of polar point BEV maps with different configura-

tions is investigated in the ablation study.

Chapter 6 presents the conclusions and suggestions for future research.
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Chapter 2

Literature Review

2.1 End-to-end Autonomous Driving

In recent years, end-to-end autonomous driving networks have garnered signif-

icant attention in the field of self-driving technology. Unlike traditional modular

pipelines, these end-to-end networks eliminate the problem of error propagation be-

tween different modules, making them more robust and scalable when handling the

complexity of real-world driving scenarios. Their capacity to adapt to diverse and in-

tricate environments makes them particularly well-suited for deployment in real-world

autonomous driving applications.

Numerous end-to-end autonomous driving networks have been developed, demon-

strating substantial advancements in this domain [1–12]. For instance, Prakash et
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al. [4] introduced an innovative end-to-end framework that leverages transformer at-

tention mechanisms to effectively combine image and LiDAR data. Chen et al. [6]

introduced a method known as Learning from All Vehicles (LAV), an end-to-end net-

work designed to derive driving policies by learning from the collective experiences

of nearby vehicles. This network processes multi-modal sensory data and generates

predictive trajectories for every vehicle it detects. Another notable example is the

Trajectory-guided Control Prediction (TCP) network developed byWu et al. [7]. TCP

integrates two key components: a trajectory branch and a multi-step control branch,

offering enhanced prediction and control capabilities by fusing information from these

branches. Chitta et al. [10] proposed a transformer-based model to enhance the abil-

ity to process complex sensory inputs in an integrated manner. This architecture

demonstrates the growing importance of advanced attention mechanisms in improv-

ing decision-making accuracy in autonomous systems. Hu et al. [11] introduced a

planning-centric approach called Unified Autonomous Driving (UniAD), which fea-

tures a novel query design. This design acts as a cohesive interface, allowing various

components of the system to communicate effectively. Through this query-based

mechanism, knowledge from intermediate tasks can be shared and utilized to refine

the planning process, resulting in more effective driving strategies.
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2.2 Explainable AI

Explainable Artificial Intelligence (XAI) seeks to equip humans with the ability

to interpret and build appropriate levels of trust in the decisions and operations of

AI systems [16, 43]. To date, a wide array of XAI methods have been developed

and implemented across diverse models, serving various tasks. These approaches

include transparent models [44, 45], local explanations [46, 47], simplification-based

explanations [48], feature relevance-based interpretations [49], visual explanations

[50–52], and architectural modifications [53–57], etc.

A transparent model, by definition, is inherently explainable without the need

for additional interpretation techniques. Depending on the level of explainability, it

can generally be classified into three types: simulatable models, decomposable mod-

els, and algorithmically transparent models [58]. Simulatable models are those simple

enough for a human to fully understand, decomposable models allow for explanation

by breaking down their components, and algorithmically transparent models enable

users to grasp how the algorithm operates in practice. In local explanation techniques,

the solution space of the model is segmented, allowing explanations to be generated

for smaller, less complex subspaces. This process helps provide insights into the be-

havior of a model for specific predictions [16]. Explanation by simplification typically

involves approximating complex models with simpler, more interpretable ones. A

common approach here is the use of Local Interpretable Model-Agnostic Explana-

tions (LIME) and its variations [59], which generate local linear models around the
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predictions to help explain them. The core concept behind LIME is to focus on lo-

calized sections of the predictions, making them more understandable by creating a

linear approximation for a specific instance. Feature relevance explanation methods

go deeper by analyzing the internal mechanics of a model. They assign relevance

scores to the input features based on their contribution to the output. This assigns

weights to each input, reflecting how significant each feature is for predicting the

target variable [16]. Visual explanation techniques are often used in conjunction with

other XAI methods to provide a graphical representation of the behavior of models.

These visual tools help users more intuitively grasp how a model operates by display-

ing which parts of the input data were most influential in the decision-making process.

Architecture modification focuses on altering the structure of neural networks to en-

hance their explainability. This can be achieved using various techniques, such as

modifying layers [53], combining models [54], using attention mechanisms [55,56], or

modifying the loss function [57]. For example, in [55], a global average pooling layer

was added between the last convolutional layer and the fully connected layer. This

architectural change enabled the creation of an attention map that highlights regions

in an image associated with a specific object class, thus making the decision process

more transparent.
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2.3 Explanations in Autonomous Driving

Given the critical role of explainability in autonomous driving networks, a large

number of research studies have emerged in recent years focusing on explainable

autonomous driving methods. As mentioned earlier, there are two primary categories

of explanation techniques employed in this area: visual explanations [21–28] and

natural-language explanations [29–37]. Both approaches are applied to enhance the

transparency of autonomous driving networks and increase user trust.

Visual explanations are typically generated by revealing the internal processes

of the network through visual representations. For instance, Kim et al. [22] utilized

visual attention heatmaps to highlight areas of an image that significantly influence

driving decisions, allowing users to understand which regions of the input data are

pivotal in the reasoning of the network. Similarly, Chen et al. [23] proposed a method

within deep reinforcement learning for end-to-end autonomous driving, providing in-

terpretability by generating BEV semantic masks that visually describe the environ-

ment. Another noteworthy approach is presented by Teng et al. [25], who developed

the Hierarchical Interpretable Imitation Learning (HIIL) model designed for complex

driving scenarios. In HIIL, traditional semantic BEV maps are employed to explain

the surrounding environment and identify failure cases involving the ego vehicle. Renz

et al. [26] introduced PlanT, an explainable planning transformer. By extracting and

visualizing attention weights, PlanT identifies objects that are crucial for the agent’s

decision-making process, thereby improving transparency and explainability.
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In addition to visual-based techniques, natural-language explanations are gaining

attraction within explainable autonomous driving networks [29–37]. One advantage

of natural-language explanations is their intuitive clarity, making them more acces-

sible to end users. Moreover, natural-language explanations hold the potential to be

integrated with Large Language Models (LLMs), leveraging their commonsense rea-

soning abilities to enhance both interpretability and the generalization capabilities of

autonomous driving systems [38]. This combination could enable models to provide

more comprehensive and understandable explanations for their decisions. Several

notable contributions have been made in the area of natural-language explanations.

Xu et al. [29] introduced a multi-task model that predicts driving actions and gen-

erates corresponding natural-language explanations by combining reasoning about

action-inducing objects and global scene understanding. Meanwhile, Dong et al. [31]

developed an explainable end-to-end model based on the Transformer architecture,

which maps visual inputs to driving actions while producing natural-language justi-

fications. Additionally, Ben-Younes et al. [36] proposed the BEhavior Explanation

with Fusion (BEEF) model, an explainable autonomous driving framework. The key

innovation in BEEF is the fusion of multi-level features to simultaneously predict

both vehicle trajectories and natural-language explanations, offering a more holistic

understanding of the decision-making process in autonomous driving.
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2.4 BEV Perception

The BEV maps have long been an essential tool in autonomous driving, primarily

for enhancing the explainability of system behaviors. Moreover, the BEV maps serve

as a foundation for numerous downstream tasks, which depend heavily on precise

BEV perception. BEV perception approaches can be generally divided into three

categories: point cloud-based methods [60–65], visual image-based methods [66–86],

and multimodal methods [87–91].

Point cloud-based methods rely on radar or LiDAR sensors to generate BEV

maps. Sless et al. [60], for example, introduced a learnable inverse sensor model that

transforms sparse and noisy radar data into binary occupancy grid maps using a data-

driven approach. Yang et al. [61] proposed a method that improves the perception

of dynamic objects by integrating radar and LiDAR data, enhancing robustness in

challenging autonomous driving scenarios. Similarly, Kempen et al. [64] developed a

novel network that focuses on generating occupancy grid maps using LiDAR point

clouds, thereby enabling accurate spatial understanding for autonomous navigation.

Multimodal methods, in contrast, integrate multiple sensor inputs—such as cam-

era, LiDAR, and radar data—into a unified BEV perception system. Liang et al. [88]

presented a straightforward yet effective network that encodes raw data from both

cameras and LiDAR sensors into the same BEV space, ensuring that the system

leverages complementary features from each sensor type. Building on this, Liu et
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al. [89] proposed a multi-task, multi-sensor fusion framework that unifies multimodal

features in a shared BEV representation space, preserving both geometric and seman-

tic information. Man et al. [90] introduced a novel BEV learning framework capable

of unifying a variety of sensors—including cameras, LiDAR, and radar—under direct

BEV supervision in an end-to-end manner, increasing the efficiency of sensor fusion.

Vision-based methods, which use RGB images from visual cameras, require trans-

forming perspective view (PV) inputs into BEV format. While these methods tend

to be more cost-effective compared to point cloud-based and multimodal approaches,

they often suffer from lower semantic perception performance [92]. Kim et al. [66], for

instance, employed inverse perspective mapping to estimate distances from monocular

images by assuming that all image pixels are on the ground plane, but this assumption

reduces height discrimination accuracy. To address this limitation, Philion et al. [70]

introduced a network that can infer BEV representations from multiple camera inputs,

offering a more flexible and accurate solution for complex driving environments. Pan

et al. [75] developed the View Parsing Network (VPN) for cross-view semantic seg-

mentation, parsing first-person view observations into BEV semantic maps. This was

further refined by Zhou et al. [78], who introduced Cross-View Transformers (CVT),

an efficient attention-based model designed to perform map-view semantic segmenta-

tion using multiple camera inputs. Liu et al. [81] proposed the Position Embedding

Transformation (PETR) for 3D object detection, which encodes 3D positional infor-

mation directly into image features, generating position-aware representations that
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improve detection performance.

Most visual image-based methods rasterize the BEV space along Cartesian co-

ordinates to create uniformly distributed rectangular maps. However, to mitigate

the foreshortening effect inherent in camera imaging, some vision-based approaches

[84–86] apply the Polar coordinate system when rasterizing BEV spaces. For exam-

ple, Liu et al. [84] introduced a method that rasterizes BEV spaces angularly and

radially, then rearranges and maps the relationships between polar grids to form an

array-like representation. In a similar way, Jiang et al. [85] proposed PolarFormer,

a 3D object detection framework in BEV that features a cross-attention-based Polar

detection head designed to handle the irregular structure of polar grids.

2.5 Datasets in Autonomous Driving

Autonomous driving heavily relies on datasets to develop, test, and validate

algorithms before deploying them on public roads. A variety of autonomous driving

datasets have been created so far [29, 93–98], containing both vision-based data and

information from multiple sensors, such as GPS, radar, LiDAR, and IMU data. One of

the most well-known datasets, KITTI [93], focuses on tasks like stereo vision, optical

flow, visual odometry, and 3D object detection. CityScapes [94], on the other hand,

is designed for evaluating semantic urban scene understanding, with high-quality

annotations provided for 5,000 frames and an additional 20,000 weakly annotated
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frames. Apolloscape [95] offers a rich dataset with 144,000 frames collected from four

regions in China under varying times of day and weather conditions. nuScenes [96]

contains a vast amount of data, including 1.4 million camera images, 390,000 LiDAR

sweeps, 1.4 million radar sweeps, and 1.4 million object bounding boxes across 1,000

scenes. BDD100K [97], one of the largest video datasets for autonomous driving,

comprises 100,000 videos and supports a range of tasks, including object detection,

semantic segmentation, and lane detection.

Despite their size and diversity, these datasets are still limited in scope, partic-

ularly when it comes to corner cases and long-tail scenarios that may not be ade-

quately represented. To address these gaps, synthetic datasets generated via sim-

ulators [42, 99–102] and world models [103, 104] have emerged as low-cost alterna-

tives for producing specific scenarios. For instance, The CARLA simulator [42] is an

open-source, high-fidelity autonomous driving simulator that uses photorealistic ur-

ban and rural environments to train, test, and validate autonomous driving networks

in diverse driving conditions. DriveDreamer [103] can generate high-quality driv-

ing videos depicting realistic traffic scenes, while also simulating reasonable driving

policies. However, whether the datasets are derived from real-world driving or gener-

ated synthetically, they often fall short in their applicability to training explainable

autonomous driving networks.

To address the need for developing and testing explainable autonomous driving

networks, several explainable datasets have been introduced [29,30,105,106]. For ex-

19



ample, the BDD-X dataset [30] includes annotations for driving actions (e.g., “the car

slows down”) along with corresponding natural-language explanations (e.g., “because

it is about to merge onto a busy highway”). Similarly, the BDD-OIA dataset [29]

contains approximately 23,000 front-view images sourced from BDD100K, where each

image is annotated with driving actions and their respective natural-language justi-

fications. Although these explainable datasets contribute significantly to the field,

they are primarily focused on natural-language explanations. To further enhance the

level of explainability, a combination of both visual and natural-language explana-

tions could offer a more comprehensive understanding of autonomous driving network

outputs.
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Chapter 3

NLE-DM: Natural-Language

Explanations for Decision Making

of Autonomous Driving

3.1 Introduction

Autonomous driving presents a promising solution to reducing road accidents and

enhancing traffic safety, which has sparked considerable interest in both robotics and

computer vision communities in recent years. According to a report from the Ameri-

can National Highway Traffic Safety Administration (NHTSA), around 94% of traffic

accidents are caused by human-related factors such as distractions and violations of

traffic regulations [107]. By removing the potential for human error, autonomous
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driving systems have the potential to drastically improve driving safety. Despite ex-

tensive research progress over the past decade, the technology is still not reach this

expectation. Conventional methods have not yet achieved significant breakthroughs.

On the other hand, the rise of deep learning has led to groundbreaking advancements

across various research fields. By leveraging deep learning, the field of autonomous

driving has advanced considerably. Deep neural networks have been successfully ap-

plied to a broad range of autonomous driving tasks, such as object detection [108],

semantic scene interpretation [109,110], localization [111], motion planning [112,113],

trajectory forecasting [114,115], vehicle control [116,117], and decision making [118].

The decision-making process in autonomous driving entails choosing a specific

control action (e.g., driving straight, turning left, turning right or stop to avoid col-

lision) based on both the state of the ego-vehicle and its surrounding context [119].

As a fundamental component of autonomous driving, decision making plays a crucial

role in ensuring the vehicle’s safe operation. Various decision-making strategies have

been introduced, which can broadly be divided into traditional techniques and deep

learning-based approaches. Traditional methods include rule-based, optimization-

driven, and probabilistic frameworks. However, due to the complexity and dynamic

nature of real-world traffic scenarios, classical approaches often struggle to perform

well in such environments. In contrast, deep learning-based methods have shown

more robust results in managing these challenges [119,120].

Although deep learning-based techniques have demonstrated impressive perfor-
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mance, they suffer from a critical limitation: their lack of explainability. One of the

main reasons is that deep neural networks function as “black boxes”, making it diffi-

cult to decipher how or why a particular driving decision was made based on a given

input. This opacity poses a challenge when deploying such systems in real-world ap-

plications, as the unpredictability and complexity of real environments make it unsafe

to blindly trust the model’s outputs without understanding the rationale behind its

actions. This is particularly true in unforeseen or highly variable environments, where

the model’s decisions may become unreliable without a clear explanation.

To tackle this problem, we propose a novel deep neural network that not only pre-

dicts decision-making actions but also provides natural-language explanations based

on semantic scene understanding. Specifically, two types of explanations are gen-

erated: reasons for the selected driving actions and descriptions of the surrounding

environment relevant to the ego-vehicle. To train and test the proposed network, a

large-scale dataset have annotated by consisting of 10, 000 images from the BDD-OIA

dataset [29], labeled with 4 distinct driving actions and 6 environmental descriptions.

In addition, to further assess the network’s ability to generalize to new driving scene,

a subset of 1, 500 frames from the nuScenes dataset [96], have been selected and

labeled with 4 driving actions and corresponding natural-language explanations. Ex-

perimental results from both publicly available datasets [29] and our own datasets

demonstrate the effectiveness of the proposed model. The proposed network signifi-

cantly improves both the accuracy of predictions and the explainability.
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Figure 3.1: The architecture of the proposed NLE-DM network. The action-

explanation module takes the feature maps from the semantic scene understanding

module as input, and outputs the decision-making actions and the corresponding

natural-language explanations.

3.2 Methodology

3.2.1 The Network Architecture

Fig. 3.1 shows the structure of the proposed NLE-DM model, which is composed

of two main modules: the semantic scene understanding module and the action-

explanation module. The network processes front-view images as input and generates

both driving decisions and corresponding natural-language explanations.

Let the frame set be defined as X = {X1, . . . , Xi, . . . , XN}, where each frame

Xi ∈ Rh×w×c represents an image with height h, width w, and c channels. The

total number of frames is represented by N . The driving decisions are grouped into

four categories: “move forward”, “stop/slow down”, “turn left/change to left lane”

and “turn right/change to right lane”. For the explanations, two kinds of natural-
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language descriptions are provided: reasons for driving actions and descriptions of

the surrounding environment. Specifically, the reasons for actions are divided into 21

distinct categories, while environmental conditions are categorized into 6 groups. The

action reasons are adapted from the approach introduced in [29], and the complete

list of 21 categories is available in Table 3.2. The environmental descriptions include

categories of: “traffic light allows”, “front area is free of obstruction”, “left/left-turn

area is clear”, “right/right-turn area is clear”, “left side has solid line” and “right side

has solid line” as detailed in Table 3.5. The overall behavior of the NLE-DM network

can be expressed through the following representations:

X → (A,R) ∈ {0, 1}4 × {0, 1}21,

or

X → (A,D) ∈ {0, 1}4 × {0, 1}6,

(3.1)

where A represents driving actions, R refers to the reasons for those actions, and D

is the descriptions of the surrounding environment.

The semantic scene understanding (S-S) module is designed based on the DeepLabv3

semantic segmentation network [121]. More technical details regarding DeepLabv3

can be found in [121]. This module extracts a semantic feature map Mi ∈ Rh×w×n

from each input image Xi, where h and w are the spatial dimensions, and n is the

number of semantic classes. The process is formalized as:

S-S Module: Xi −→ Mi ∈ Rh×w×n, 1 ≤ i ≤ N, (3.2)

where N is the number of frames in the frame set X.
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The action-explanation (A-E) module is composed of three primary components:

the embedding module, the Act-Rea sub-network, and the Act-Desc sub-network.

First, the semantic feature maps generated by the S-S module are passed into the

embedding module, where the resolution and dimensionality are reduced. The re-

sulting embedding feature map has a size of 64× 18× 32, where 64 is the number of

channels, and 18×32 represents the downscaled resolution. For reference, the original

resolution of the input image is 720× 1280 with 3 channels (RGB format). Once the

feature map is embedded, it is flattened and passed into the Act-Rea and Act-Desc

sub-networks, which are responsible for predicting the driving decisions and produc-

ing the corresponding natural language explanations. This process is represented as

Mi −→ Vi, where Vi is the resulting flattened feature vector.

Both the reasons for the driving decisions and the environmental descriptions aim

to explain the driving actions, and thus, the A-E module is designed to output both

actions and their respective natural-language explanations. The Act-Rea sub-network

includes two branches: one that predicts driving actions and another that generates

natural-language reasons for those actions. The Act-Rea sub-network’s functionality

is expressed as follows:

Act-Rea: Vi → (A,R) ∈ {0, 1}4 × {0, 1}21, 1 ≤ i ≤ N, (3.3)

where N is the total number of frames in the sequence X. Similarly, the Act-Desc

sub-network includes both an action-prediction branch and an environmental descrip-

tion branch, enabling it to provide natural-language descriptions of the surrounding
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environment in addition to the predicted driving actions. The Act-Desc sub-network

process is described as:

Act-Desc: Vi → (A,D) ∈ {0, 1}4 × {0, 1}6, 1 ≤ i ≤ N, (3.4)

where N refers to the total number of frames in the set X.

3.2.2 Training Details

We begin by pre-training the S-S module on the BDD10K dataset, which is a

subset of the larger BDD100K dataset [97]. This pre-training process equips the S-S

module with the ability to perform pixel-wise semantic scene understanding. Subse-

quently, the entire network is trained using the pre-trained weights. For the Act-Rea

sub-network, the training and evaluation are conducted on the BDD-OIA dataset [29],

while the Act-Desc sub-network is trained on a newly created dataset, named BDD

Actions and Descriptions (BDD-AD). The BDD-AD dataset comprises images se-

lected from BDD-OIA, annotated with driving actions and natural-language descrip-

tions of the ego-vehicle’s surrounding environment. Further details on the BDD-AD

dataset can be found in the following section. To further assess the performance

and generalization capability of the proposed network, both the Act-Rea and Act-

Desc sub-networks are evaluated on 1, 500 frames from the nuScenes dataset [96],

annotated with driving actions and associated natural-language explanations, which

include both reasons and descriptions.
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The stochastic gradient descent (SGD) optimizer is utilized with an initial learn-

ing rate of 0.001, momentum set to 0.9, and a weight decay of 1× 10−4. It should be

noted that the BDD10K and BDD-OIA datasets are not fully overlapping. There-

fore, to ensure adaptability to new scenes, the weights of the S-S module, though

pre-trained on BDD10K, are allowed to be fine-tuned during training with BDD-OIA

or BDD-AD. The proposed network is optimized using a multi-task loss function,

which is defined as follows:

Ltotal = Lact + λLrea, (3.5)

Ltotal = Lact + λLdesc, (3.6)

where Ltotal represents the total loss, Lact, Lrea, and Ldesc correspond to the binary

cross-entropy losses for action, reason, and description predictions, respectively. The

loss function in equation (3.5) is applied to the Act-Rea sub-network, and equation

(3.6) is applied to the Act-Desc sub-network. The parameter λ controls the bal-

ance between the importance of the decision-making actions and the accompanying

natural-language explanations.

In the case of the Act-Rea sub-network, we adopt the 4 categories of driving

actions and the 21 categories of natural-language reasons utilized in [29]. It is impor-

tant to note that, in [29], the 21 categories of natural-language reasons are termed

as “explanations”. The two loss terms, Lact and Lrea, are computed as follows:

Lact =
∑4

i=1 L[Âi, Ai] and Lrea =
∑21

j=1 L[R̂j, Rj], where Âi and Ai are the pre-

dicted and ground-truth driving actions, respectively, while R̂j and Rj denote the
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predicted and true reasons. For the Act-Desc sub-network, the 4 driving actions are

also predicted, but the network predicts 6 categories of natural-language descriptions

instead. Therefore, in addition to Lact, the description loss Ldesc is calculated as:

Ldesc =
∑6

k=1 L[D̂k, Dk], where D̂k and Dk represent the predicted and ground-truth

descriptions, respectively.

3.3 Experimental Results and Discussions

3.3.1 Evaluation Metrics

To quantitatively assess the prediction performance of the decision-making ac-

tions, the reasons behind those actions, and the descriptions of the surrounding envi-

ronment, the standard F1 score is utilized as the evaluation metric. Two variants of

the F1 score are employed: F1oval (overall F1 score) and F1m (mean F1 score). The

overall F1 score, F1oval, is computed as follows:

F1actoval =
1

N

N∑
i=1

F1(Âi, Ai), (3.7)

F1reaoval =
1

M

M∑
j=1

F1(R̂j, Rj), (3.8)

F1descoval =
1

Q

Q∑
k=1

F1(D̂k, Dk), (3.9)

In the equations above, F1actoval, F1
rea
oval, and F1descoval represent the overall F1 scores for

action predictions, reason predictions, and description predictions, respectively. The
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variables N , M , and Q denote the total number of action predictions, reason predic-

tions, and description predictions, respectively.

Given the imbalance in the BDD-OIA and BDD-AD datasets, the mean F1 score

is also computed, F1m, to mitigate the impact of class imbalance. The mean F1 score

is defined as follows:

F1actm =
1

4
(F1F + F1S + F1L + F1R), (3.10)

F1ream =
1

21

21∑
j=1

F1reaj , (3.11)

F1descm =
1

6

6∑
k=1

F1desck , (3.12)

In these equations, F1actm , F1ream , and F1descm are the mean F1 scores for action, reason,

and description predictions, respectively. For action prediction, F1F, F1S, F1L, and

F1R represent the F1 scores for predicting “move forward”, “stop/slow down”, “turn

left/change to left lane” and “turn right/change to right lane” respectively. Similarly,

F1reaj and F1desck refer to the F1 scores for each reason and description category.

3.3.2 Jointly Predicting Actions and Reasons

We first present and analyze the experimental results for the Act-Rea sub-

network, which jointly predicts driving actions and their corresponding natural-language

reasons. Tab. 3.1 compares the quantitative performance of Act-Rea sub-network

against several other models, including those presented in [29, 32–34, 122]. As men-
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Table 3.1: Comparative results of the prediction performance for different networks.

The F/S/L/R refer to “move forward”, “stop/slow down”, “turn left/change to left

lane” and “turn right/change to right lane” respectively. The best and second-best

results are highlighted in bold font and italic font.

Methods F S L R F1actm F1actoval F1ream F1reaoval

Act-Rea (λ = 1.0) 0.827 0.760 0.651 0.653 0.723 0.733 0.312 0.517

Act-Rea (λ = 2.0) 0.813 0.768 0.649 0.643 0.718 0.728 0.350 0.546

OIA [29] 0.829 0.781 0.630 0.634 0.718 0.734 0.208 0.422

Local selector [122] 0.810 0.762 0.600 0.624 0.699 0.711 0.196 0.406

C-SENN [33] 0.772 0.744 0.469 0.486 0.618 – – –

CBM [34] 0.795 0.732 0.483 0.431 0.610 0.661 0.292 0.412

CBM-AUC [32] 0.803 0.751 0.551 0.525 0.658 0.704 0.342 0.522

tioned earlier, the parameter λ in the loss function (3.5) controls the relative impor-

tance between action predictions and reason explanations. The effect of λ on per-

formance is further explored in the ablation study. The OIA network [29] combines

object reasoning with global scene analysis to emphasize objects that induce actions.

Wang et al. [122], as modified by Xu et al. [29], proposed a local selector network that

predicts actions and reasons, serving as a variant of OIA that focuses only on local

object reasoning. The contrastive self-explaining neural network (C-SENN) [33] in-

tegrates contrastive and concept learning to enhance the accuracy and explainability

of driving actions. Meanwhile, the concept bottleneck model (CBM) [34], developed
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Figure 3.2: Sample comparative results of action and reason predictions for the OIA

network and the proposed network. The GT and Pre refer to the ground truth and

prediction of reason predictions.

by Kon et al. [34] and later modified by Sawada et al. [32], jointly predicts actions

and reasons. An extension of CBM, the CBM with additional unsupervised concepts

(CBM-AUC) [32], incorporates both supervised and unsupervised concepts to further

boost performance.

As displayed in Tab. 3.1, Act-Rea sub-network (with λ = 1.0 and λ = 2.0)

achieves action prediction performance comparable to that of the OIA network, out-

performing the remaining models. In terms of reason prediction, the proposed network

(λ = 1.0 and λ = 2.0) and CBM-AUC demonstrate similar results, both surpassing

the other methods. These comparative results clearly highlight the superior perfor-
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mance of Act-Rea sub-network for predicting both driving actions and the associated

reasons.

Additionally, the qualitative analysis further validates the superiority of the pro-

posed model, as illustrated in Fig. 3.2. To ensure fairness, identical examples from

the OIA paper [29] have been selected. In Fig. 3.2, although the predicted driving

actions of the Act-Rea sub-network (λ = 1.0) and the OIA network are identical,

the accuracy of reason predictions differs. For the OIA network, the true positive

ratios for reason prediction in the four examples are 100%, 33.3%, 50%, and 66.7%,

respectively. In contrast, Act-Rea sub-network achieves 100%, 50%, 75%, and 100%

for the same examples.

We hypothesize that the improved performance of the proposed network over

OIA can be attributed to the following reasons:

• The proposed model leverages atrous spatial pyramid pooling (ASPP) [121]

to capture multi-scale features, whereas the OIA network only integrates global

and local features. In complex driving environments, where objects vary in size,

the absence of multi-scale perception in OIA can lead to errors in identifying

objects across scales, resulting in incorrect reason predictions.

• The OIA network employs object detection (Faster R-CNN) to generate feature

maps and identify action-inducing objects. In contrast, the proposed model

utilizes semantic segmentation (DeepLabv3), which provides finer, pixel-level
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Table 3.2: The prediction performance of the natural-language reasons.

Action Category Reason Category F1 Score

Move forward

follow traffic 0.645

the road is clear 0.447

the traffic light is green 0.528

Stop/Slow down

obstacle: car 0.599

obstacle: person/pedestrian 0.440

obstacle: rider 0.000

obstacle: others 0.000

the traffic light 0.768

the traffic sign 0.000

Turn left

front car turning left 0.000

on the left-turn lane 0.000

traffic light allows 0.000

Turn right

front car turning right 0.000

on the right-turn lane 0.053

traffic light allows 0.000

Can’t change to left lane

obstacles on the left lane 0.585

no lane on the left 0.472

solid line on the left 0.474

Can’t change to right lane

obstacles on the right lane 0.624

no lane on the right 0.474

solid line on the right 0.442
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details from the scene. Semantic segmentation offers a more detailed under-

standing of the environment, as it labels objects at the pixel level, whereas

object detection works at a coarser bounding-box level.

We also examine the prediction performance of the proposed model with respect

to natural-language reasons. Tab. 3.2 reports the F1 scores for each reason category

predicted by the Act-Rea sub-network (λ = 1.0). Unlike the action predictions, the

reason prediction results show some bias. For certain reason categories, the F1 scores

are zero, indicating the network’s inability to predict those reasons. We believe the

poor performance in some cases can be explained by the following factors:

• The network is pre-trained on the BDD10K dataset for semantic segmentation,

and poor segmentation performance for specific object classes could lead to

unsatisfactory reason predictions. For instance, the intersection over union

(IoU) for the “rider” class is only 13.4% (see Tab. 3.3), which may prevent the

A-E module from recognizing the “rider” correctly, and thus fail to associate the

reason “obstacle: rider” with the action “Stop/Slow down.” Similarly, the IoU

for “obstacle: others” is poor, as evidenced by IoUs of 0.0% for trains, 36.3%

for motorcycles, and 36.2% for bicycles.

• Some reasons are inherently abstract or ambiguous, which can lead to incorrect

predictions. For example, even though the IoU for the “car” class is relatively

high (89.5%), the network still struggles to predict reasons such as “front car
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Table 3.3: The predicted IOU (%) for each class on the BDD10K dataset.

Class road sidewalk building wall fence pole light sign vegetation

IoU 94.2 64.2 84.7 41.6 52.1 36.9 46.4 47.2 85.7

Class sky person rider car truck bus train motocycle bicycle

IoU 94.5 59.8 13.4 89.5 57.1 78.5 0.00 36.3 36.2

Table 3.4: Comparative results on BDD-OIA and nu-AR for the prediction perfor-

mance of the Act-Rea sub-network.

Test Set F1actm F1actoval F1ream F1reaoval

BDD-OIA 0.723 0.733 0.312 0.517

nu-AR 0.688 0.722 0.308 0.499

turning left/right” as it cannot easily infer the direction of the front car’s move-

ment.

To further evaluate the generalization ability of the Act-Rea sub-network, we

tested it on a new dataset of 1, 500 images selected from the nuScenes dataset [96],

which is labeled with 4 driving actions and 21 reasons. This dataset, named nuScenes

Actions and Reasons (nu-AR), uses the same action and reason categories as the BDD-

OIA dataset [29]. We then evaluated the proposed model, pre-trained on BDD-OIA,

on the nu-AR dataset. Tab. 3.4 presents the comparative results. As shown, the

prediction performance of Act-Rea on BDD-OIA is slightly better than on nu-AR.
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For F1actm and F1reaoval, the results on BDD-OIA are around 5% higher than those on

nu-AR. Similarly, for F1actoval and F1ream , the performance on BDD-OIA is about 1%

higher than on nu-AR. These findings confirm the strong generalization capability of

Act-Rea sub-network.

3.3.3 Jointly Predicting Actions and Descriptions

To further enhance the explainability of decision-making processes, a new ap-

proach is introduced to leverage natural-language descriptions of the ego-vehicle’s

surrounding environment to explain its decision-making actions. As depicted in

Fig. 3.3, this method employs comprehensive descriptions of the surroundings, fo-

cusing on categories such as “traffic light allows”, “front area is free of obstruction”,

“left/left-turn area is clear”, “right/right-turn area is clear”, “left side has solid line”

and “right side has solid line”. The “left/left-turn area is clear” category encompasses

both “left area of the ego-vehicle is clear” and “left-turn area of crossroads is clear”,

while the “right/right-turn area is clear” description includes both “right area of the

ego-vehicle is clear” and “right-turn area of crossroads is clear”. Since the relative

occurrence of “left/right-turn area of crossroads is clear” is low, the “left/right area of

ego-vehicle is clear” and “left/right-turn area of crossroads is clear” are merged into

a single category, namely “left/left-turn (right/right-turn) area is clear”, to avoid un-

even data distribution. Compared to the natural-language reasons for driving actions,

the descriptions of the surrounding environment are more direct and objective.
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traffic light allows

front area is free of 
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Figure 3.3: The schematic diagram for surrounding environment descriptions of the

ego-vehicle.

To utilize these environmental descriptions in explaining decision-making, the

Act-Desc sub-network jointly predicts both the driving actions and natural-language

environment descriptions. Consequently, the descriptions serve as explanations for

the actions taken. For instance, if the natural-language descriptions indicate “traffic

light allows” and “front area is free of obstruction”, the action “move forward” can

be clearly justified.

To train the Act-Desc sub-network to simultaneously predict decision-making

actions and describe the ego-vehicle’s surrounding environment, a large-scale dataset

is constructed, containing manually labeled driving actions and natural-language de-

scriptions. This dataset, termed BDD Actions and Descriptions (BDD-AD), is de-
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Table 3.5: The categories of the actions and descriptions in the proposed BDD-AD

dataset. The ratio refers to the percentage of each category in the dataset.

Annotation Category Ratio

Action

Move forward 73.68%

Stop/slow down 24.78%

Turn left/change to left lane 39.42%

Turn right/change to right lane 44.34%

Description

Traffic light allows 73.02%

Front area is free of obstruction 82.37%

Left/left-turn area is clear 65.00%

Right/right-turn area is clear 59.10%

Left side has solid line 28.83%

Right side has solid line 18.15%

rived from 10,000 images selected from the BDD-OIA dataset [29], representing a

range of weather conditions and times of day. Each image in BDD-AD is anno-

tated with four possible driving actions (“move forward”, “stop/slow down”, “turn

left/change to left lane”, “turn right/change to right lane”) and six descriptive la-

bels of the ego-vehicle’s environment. Additionally, every image includes at least five

pedestrians or cyclists, along with more than five vehicles, reflecting the complexity

of real-world driving scenarios. Multiple actions and descriptions are assigned to each

image to capture these complexities. Tab. 3.5 provides a breakdown of the number
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of instances for each category of actions and descriptions. Both the driving actions

and environment descriptions are represented in the one-hot encoding. For exam-

ple, if the vehicle’s actions are “move forward” and “change to right lane” and the

environment descriptions include “traffic light allows”, “front area is free of obstruc-

tion”, “left/left-turn area is clear”, “right/right-turn area is clear”, “left side has solid

line” and “right side has no solid line”, the corresponding annotations for actions and

descriptions would be [1, 0, 0, 1]T and [1, 1, 1, 1, 1, 0]T , respectively.

Tab. 3.6 presents a comparative analysis between the Act-Rea (λ = 1.0) and

Act-Desc (λ = 1.0) sub-networks. The Act-Rea sub-network jointly predicts decision-

making actions alongside natural-language reasons, whereas the Act-Desc sub-network

outputs decision-making actions and natural-language descriptions of the surround-

ing environment. Since both datasets (BDD-OIA for Act-Rea and BDD-AD for

Act-Desc) share similar levels of scene complexity and traffic conditions, the two

sub-networks are directly comparable. As demonstrated in Tab. 3.6, the Act-Desc

sub-network outperforms the Act-Rea sub-network in terms of decision-making action

predictions, with F1actm and F1actoval scores approximately 20% higher. Regarding the

natural-language explanations, the F1descm score of Act-Desc sub-network exceeds the

F1ream of the Act-Rea sub-network by around 200%, while its F1descoval score is about 70%

higher. Thus, the Act-Desc sub-network demonstrates superior performance in both

decision-making and explanation tasks.

There are several possible explanations for why the Act-Desc sub-network achieves
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Table 3.6: Comparative results of the prediction performance for the Act-Desc sub-

network and Act-Rea sub-network.

Networks F1actm F1actoval F1descm F1descoval F1ream F1reaoval

Act-Desc 0.876 0.877 0.907 0.880 – –

Act-Rea 0.723 0.733 – – 0.312 0.517

better results than the Act-Rea sub-network:

• The six natural-language descriptions of the ego-vehicle’s surroundings are more

specific and direct than some of the reasons used in Act-Rea (e.g., “follow

traffic”, “front car turning left/right”, “on the left/right turn lane”). This

specificity likely contributes to the superior performance of the Act-Desc sub-

network in generating natural-language explanations.

• The availability of clear, well-defined natural-language explanations improves

the accuracy of decision-making action predictions. This correlation between

better natural-language explanations and improved decision-making performance

is further supported by the ablation study discussed below.

Fig. 3.4 displays qualitative examples showing the Act-Desc sub-network’s ability

to predict both decision-making actions and environment descriptions. The examples

span various weather conditions and times of day, highlighting the robustness of the

proposed model. As illustrated, the predictions for decision-making actions are highly

accurate, and most of the predicted descriptions match the ground truth, underscoring
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Table 3.7: Comparative results on BDD-AD and nu-AD of the Act-Desc sub-network.

Test Set F1actm F1actoval F1descm F1descoval

BDD-AD 0.876 0.877 0.907 0.880

nu-AD 0.760 0.836 0.882 0.879

the network’s strong performance.

To further evaluate the generalization capability of the Act-Desc sub-network, a

subset of 1.5k images from the nuScenes dataset is manually labeled with the same

four driving actions and six natural-language descriptions as in BDD-AD. This new

dataset, referred to as nuScenes Actions and Descriptions (nu-AD), was used to

assess how well the Act-Desc sub-network trained on BDD-AD generalizes to new

data. The results, summarized in Tab. 3.7, show that the Act-Desc sub-network

achieves around 10% higher action prediction accuracy on BDD-AD compared to

nu-AD, with description prediction performance being slightly better on BDD-AD.

The F1descm score is approximately 3% higher on BDD-AD, while the F1descoval scores

for both datasets are almost identical. These findings confirm the effectiveness and

generalization capability of the proposed Act-Desc sub-network.

3.3.4 Ablation Study

In the ablation study, we initially examine the relationship between decision-

making actions and the associated natural-language explanations. Tab. 3.8 presents
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Figure 3.4: The sample prediction results of the decision-making actions and the

surrounding environment descriptions of the ego-vehicle.
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the prediction performance of the Act-Rea sub-network under different values of λ in

the loss function (3.5). As previously mentioned, λ serves as the weighting parameter,

adjusting the relative importance between decision-making actions and their corre-

sponding reasons. Setting λ = 0.0 for the Act-Rea sub-network implies that reason

prediction is excluded. Conversely, λ = ∞ represents a model focused solely on rea-

son prediction, without considering action prediction. As shown in Tab. 3.8, the

Act-Rea sub-network with λ = 0.0 (i.e., action prediction only) demonstrates poorer

action prediction performance compared to the Act-Rea with λ = 1.0 (joint action

and reason prediction). This suggests that incorporating reason predictions enhances

the accuracy of decision-making action predictions. Similarly, for the Act-Rea sub-

network with λ = 0.5, the action prediction performance exceeds that of the λ = 0.0

variant but falls short of the λ = 1.0 configuration. This further confirms the positive

influence of reason predictions on action accuracy. However, it is essential to note

that this improvement has limits. The Act-Rea with λ = 2.0 exhibits weaker action

prediction performance compared to the model with λ = 1.0, implying diminishing

returns from increased emphasis on reasons.

For the Act-Rea sub-network with λ = ∞ (reason prediction only), the prediction

performance of reasons surpasses that of the Act-Rea with λ = 1.0, indicating that

action predictions do not contribute positively to reason prediction. Additionally, the

Act-Rea with λ = 2.0 outperforms the λ = 1.0 variant in reason prediction but is

less effective than the λ = ∞ model, which further supports the inference that action
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Table 3.8: The ablation study results of prediction performance for Act-Rea sub-

networks with the different relative importance of action and reason. The best and

second-best results are highlighted in bold font and italic font.

λ F S L R F1actm F1actoval F1ream F1reaoval

0.0 0.808 0.710 0.609 0.631 0.690 0.697 – –

0.5 0.815 0.769 0.646 0.644 0.718 0.725 0.302 0.506

1.0 0.827 0.760 0.651 0.653 0.723 0.733 0.312 0.517

2.0 0.813 0.768 0.649 0.643 0.718 0.728 0.350 0.546

∞ – – – – – – 0.372 0.568

predictions do not aid reason predictions.

A similar pattern emerges in the Act-Desc sub-network when examining the rela-

tionship between decision-making actions and surrounding environment descriptions

(see the top rows of Tab. 3.9). The Act-Desc sub-network with λ = 0.0 (solely pre-

dicting actions) delivers lower accuracy in decision-making compared to the model

with λ = 1.0 (predicting both actions and descriptions), indicating that environment

descriptions improve action prediction. Similarly, the Act-Desc with λ = 0.5 out-

performs the model with λ = 0.0 but underperforms relative to the λ = 1.0 variant,

further confirming the beneficial effect of descriptions on action prediction. For the

Act-Desc sub-network with λ = ∞ (description prediction only), its performance in

predicting descriptions exceeds that of the λ = 1.0 version, suggesting that action pre-

dictions do not enhance description accuracy. The prediction accuracy of descriptions
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Table 3.9: The ablation study results of the Act-Desc sub-network. The best and

second-best results are highlighted in bold font and italic font.

λ /Encoder F S L R F1actm F1actoval F1descm F1descoval

0.0 0.913 0.753 0.725 0.751 0.785 0.794 – –

0.5 0.941 0.845 0.830 0.836 0.863 0.865 0.900 0.876

1.0 0.949 0.858 0.832 0.866 0.876 0.877 0.907 0.880

2.0 0.938 0.848 0.829 0.836 0.862 0.863 0.909 0.889

∞ – – – – – – 0.921 0.894

ResNet50 0.949 0.858 0.832 0.866 0.876 0.877 0.907 0.880

ResNet101 0.955 0.859 0.836 0.870 0.880 0.881 0.916 0.892

MobileNetV3-Small 0.921 0.782 0.780 0.788 0.818 0.821 0.824 0.827

MobileNetV3-Large 0.950 0.854 0.840 0.870 0.878 0.880 0.903 0.885

in the Act-Desc sub-network with λ = 2.0 is superior to that of λ = 1.0 but lower

than λ = ∞, again validating that action predictions do not contribute to description

prediction.

We hypothesize that these outcomes are driven by the intrinsic relationship be-

tween decision-making actions and their corresponding explanations. Although the

architecture processes action and explanation predictions in parallel, there are in-

teractions or dependencies between them. Decision-making actions can be seen as

the outcome of the associated explanations, implying that accurate explanation pre-
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dictions help improve action predictions. However, the reverse—action predictions

influencing explanation accuracy—does not hold.

In this section, we also evaluate various feature extraction backbones, includ-

ing ResNet50 (baseline), ResNet101 [123], MobileNetV3-Small, and MobileNetV3-

Large [124], within the Act-Desc sub-network (λ = 1.0) to compare their prediction

performance. As shown in the lower portion of Tab. 3.9, the Act-Desc sub-network

with the ResNet101 backbone achieves the best prediction results in both decision-

making actions and environment descriptions. The performance of the Act-Desc

sub-network with the MobileNetV3-Large backbone is comparable to that of the

ResNet50-based variant. Despite the Act-Desc sub-network with the MobileNetV3-

Small backbone delivering the lowest prediction performance among the tested mod-

els, its results remain acceptable, indicating that the Act-Desc sub-network could

potentially be deployed on resource-limited mobile devices.

3.3.5 Limitations

Although the proposed proposed network demonstrates significant advantages, it

still has certain limitations. Firstly, the current model relies on a single image frame

for decision-making, whereas human drivers typically use a sequence of visual infor-

mation to guide their decisions. Incorporating a sequence of frames, rather than just

one, could potentially enhance the accuracy of predicted actions. Furthermore, both

the Act-Rea and Act-Desc sub-networks are limited to predicting decision-making ac-
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tions from only four predefined categories. Expanding the range of action categories

would allow the network to handle more complex situations and function effectively

in real-world environments.

3.4 Summary

In summary, we have developed an explainable end-to-end network capable of

explaining decision-making actions in autonomous driving by simultaneously predict-

ing both the actions and corresponding natural-language explanations. Two distinct

forms of natural-language explanations are provided: the reasons behind the actions

and detailed descriptions of the ego-vehicle’s surrounding environment. Additionally,

we present a dataset that contains manually annotated ground truth, featuring four

types of driving actions and six categories of natural-language descriptions of the en-

vironment. Through extensive experiments, we demonstrated the effectiveness of the

proposed network, outperforming other approaches on both our datasets and a pub-

licly available dataset. Finally, ablation studies shed light on the relationship between

decision-making actions and their associated natural-language explanations.
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Chapter 4

Multimodal-XAD: Multimodal

Explanations for Driving Decisions

of Autonomous Driving

4.1 Introduction

In recent years, autonomous driving research has significantly advanced, largely

due to breakthroughs in deep learning technologies [125–129]. Despite this progress,

most deep learning-based autonomous driving models still struggle with a lack of

explainability, as deep neural networks function like black boxes. Without clear ex-

planations for the generated control commands, deploying these systems in real-world

scenarios poses safety risks. To address this issue, various methods have been pro-

49



posed to make autonomous driving networks more explainable. Broadly speaking,

these methods offer two types of explanations: visual and natural-language. Vi-

sual explanations, such as saliency maps and attention heatmaps, reveal the inter-

nal workings of a network [130–132], while natural-language explanations describe

network outputs through phrases, including reasons for driving actions or intended

goals. Natural-language explanations are often easier for end users to understand

compared to visual explanations, providing clearer insights into why a particular ac-

tion was taken [30]. However, they lack the ability to shed light on the internal

processes driving network outputs. As a result, integrating both visual and natural-

language explanations may offer a more comprehensive way to interpret the decisions

of autonomous driving systems. In this work, an explainable deep neural network

is proposed to jointly predict driving actions and explanations in a multimodal for-

mat, combining bird-eye-view (BEV) maps with natural-language descriptions of the

traffic environment.

BEV perception in traffic scenes has recently garnered significant attention, as

BEV maps offer a clear, useful representation for various downstream tasks, such as

motion planning and prediction [92]. Current BEV perception methods can be clas-

sified based on the sensors used: point cloud-based, vision-based, and multimodal.

Point cloud-based methods, which utilize radar or LiDAR, typically do not require

view transformation. Vision-based methods, using RGB images from cameras, trans-

form information from the Perspective View (PV) to BEV. Meanwhile, multimodal
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approaches combine inputs from multiple sensors (radar, LiDAR, cameras, etc.) to

achieve BEV perception. While vision-based methods are more cost-effective than

their point cloud and multimodal counterparts, their semantic perception performance

tends to be inferior [92]. Moreover, errors in BEV segmentation from vision-based

systems may propagate to downstream tasks, exacerbating error accumulation and

diminishing overall performance.

To mitigate these challenges, the proposed network incorporates both context

information from BEV perception and local information from semantic segmentation

(derived from surrounding images) before predicting driving actions and natural-

language environment descriptions. This approach aims to reduce error accumu-

lation and improve prediction accuracy. To facilitate the training and evaluation

of the proposed model, we introduce a dataset of 12,000 image sequences, each se-

quence contains images from multiple cameras, along with hand-annotated ground

truth for driving actions and multimodal traffic scene descriptions. Experimental

results demonstrate that combining context and local information enhances the pre-

diction performance of both driving actions and environment descriptions, leading to

improved safety and explainability in autonomous driving systems.
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Figure 4.1: The architecture of proposed network. (a) The workflow of the network.

(b) Details of the S-U module, context/embedding block and predictors.

4.2 Methodology

4.2.1 The Network Architecture

As illustrated in Fig. 4.1, the proposed Multimodal-XAD network is composed

of five key components: the encoder, BEV module, semantic understanding (S-U)

module, context embedding (C-E) module, and action-description (A-D) module.

The network takes as input images along with the intrinsic and extrinsic parameters

from multiple monocular cameras positioned around the vehicle (front, front left, front

right, back, back left, and back right). Its objective is to predict driving actions and

provide multimodal environmental descriptions, specifically BEV maps and natural-
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language descriptions of traffic scenes.

Let Xi[k] represent the k-th image within the sequence Xi[1 : n], where i refers

to the sequence index and n is the number of surrounding cameras. Each image is

associated with an intrinsic matrix Ii[k] ∈ R3×3 and an extrinsic matrix Ei[k] ∈ R3×4.

Here, Xi[k] has dimensions h × w × c, corresponding to image height, width, and

channels. Given the complexity of traffic environments, multiple driving actions might

be suitable. Consequently, Multimodal-XAD is designed to predict multiple driving

actions, denoted by Ai. Four categories of driving actions are considered: “move

forward”, “turn left/change to left lane”, “turn right/change to right lane”, and

“stop/slow down”, with each action represented as Ai ∈ {0, 1}4.

For environment descriptions, the network predicts both BEV maps Dbev
i and

natural-language descriptions Dnl
i . The BEV map is a multi-class semantic grid rep-

resenting traffic scenes, with a spatial resolution of 0.5 meters per grid in a 100

meter× 100 meter area. Four semantic classes are used: road, vehicle, road/lane di-

vider, and background, which results in Dbev
i ∈ {0, 1, 2, 3}200×200. On the other hand,

the natural-language environment description Dnl
i consists of eight categories, such

as “traffic light allows”, “front area is clear” and “solid line on the left” with each

description represented as Dnl
i ∈ {0, 1}8. The overall process of Multimodal-XAD

(fxad) is summarized as:

fxad(Xi, Ii, Ei) → (Ai, D
bev
i , Dnl

i ), 1 ≤ i ≤ T, (4.1)

where i is the index and T denotes the total number of image sequences.
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EfficientNet [133] is utilized as the encoder due to its favorable balance between

efficiency and accuracy [134]. This encoder processes the image sequence Xi and

extracts image features Fi from the six cameras. These features are then passed to

both the BEV module and the S-U module.

The BEV module, inspired by Lift-Splat [70], consists of a BEV decoder (fdec)

and a BEV generator (fgen). Its role is to generate BEV maps Dbev
i of traffic scenes.

The BEV module operates as:

fgen(fdec(Fi, Ii, Ei)) → Dbev
i , 1 ≤ i ≤ T, (4.2)

where i and T represent the index and total number of sequences. The BEV maps

provide a holistic view of the traffic environment in a 100 meter× 100 meter grid.

The S-U module, responsible for understanding traffic scenes at a finer gran-

ularity, leverages Atrous Spatial Pyramid Pooling (ASPP, faspp) [121], along with

convolutional (fconv), batch normalization (fbn), ReLu activation (frelu), and dropout

layers (fdrop). Further details on ASPP can be found in [121]. The inputs to the S-U

module are features Fi[1 : 5] from the five cameras (front, front left, front right, back

left, and back right), while the back camera feature Fi[6] is excluded. The output is

a set of semantic features Si[1 : 5], which focuses on local road details captured by

the cameras. The S-U module’s process can be expressed as:

fdrop(frelu(fbn(fconv(faspp(Fi[1 : 5]))))) → Si[1 : 5], 1 ≤ i ≤ T, (4.3)

where i and T represent the sequence index and total number of sequences, respec-
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tively.

Next, the BEV maps Dbev
i and semantic features Si[1 : 5] are processed by the

C-E module. The C-E module comprises a context block (fcb) and an embedding

block (feb). The context block includes convolutional, batch normalization, ReLu,

and pooling layers, while the embedding block consists of convolutional, batch nor-

malization, and ReLu layers. The context and local information from the BEV maps

and semantic features are encoded into Gi and Li[1 : 5], respectively, and then con-

catenated to produce the final features Ci:

(fcb(D
bev
i )⊕ feb(Si[1 : 5])) → Ci, 1 ≤ i ≤ T, (4.4)

where i and T indicate the index and total number of sequences.

Finally, the concatenated features Ci are passed to the A-D module, which pre-

dicts both the driving actions and natural-language environment descriptions. This

module includes the action predictor (fap) and the description predictor (fdp), both

containing two fully connected layers (ffc) with Sigmoid activation (fsgm). The final

process of the A-D module is:

(fap(Ci), fdp(Ci)) → (Ai, D
nl
i ), 1 ≤ i ≤ T, (4.5)

where i and T represent the index and total number of sequences in the dataset.
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4.2.2 Training Details

The training of the networks is conducted on an NVIDIA GeForce RTX 3090

GPU. Initially, the encoder and BEV module are pre-trained using the nuScenes

dataset for 30 epochs with a batch size of 12. After this, the Multimodal-XAD model

is trained on our custom dataset for an additional 60 epochs, using a batch size of

8. It is important to note that not all nuScenes image sequences are utilized during

the pre-training phase. The sequences included in the proposed dataset are excluded

to avoid overlap. For optimization, the Adam optimizer is employed with an initial

learning rate of 1×10−4 and a weight decay of 1×10−8. The network training process

is governed by a multi-task loss function, which is defined as:

Ltotal = λ1Lact + λ2Lnl
desc + λ3Lbev

desc, (4.6)

where Ltotal represents the total loss. The terms Lact and Lnl
desc correspond to the

binary cross entropy losses for driving action and natural-language environment de-

scription predictions, respectively, while Lbev
desc denotes the cross entropy loss for BEV

map predictions. The parameters λ1, λ2, and λ3 control the relative weighting of the

losses for driving actions, natural-language descriptions, and BEV maps, respectively.

56



Table 4.1: Explainable datasets for autonomous driving. The size refers to the number

of explanations in the dataset. The action refers to the driving action.

Dataset Size Action Explanation

BDD-X [30] 26,228 ✓ Textual justification

BDD-OIA [29] 23,000 ✓ Natural-language reasons

BDD-AD [39] 10,000 ✓ Natural-language descriptions

HDD [105] 47,533 ✓ Textual causal reasoning

PSI [106] 11,902 ✓ Text-based reasons

nu-A2D 12,000 ✓ Multimodal environment descriptions

4.3 Experimental Results and Discussions

4.3.1 The Dataset

Tab. 4.1 presents a comparison of various explainable autonomous driving datasets.

Existing datasets primarily focus on providing natural-language explanations. How-

ever, to enhance explainability, combining both visual and natural-language expla-

nations offers a more comprehensive approach for interpreting the outputs of au-

tonomous driving systems. With this goal in mind, we introduce the nuScenes Action

and Multimodal Environment Descriptions (nu-A2D) dataset, which includes driving

actions as well as multimodal environmental descriptions.
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The nu-A2D dataset consists of 12,000 image sequences selected from the nuScenes

[96] dataset. Each sequence contains six images captured by surrounding cameras,

along with ground truth data for driving actions, natural-language descriptions, and

BEV maps depicting traffic scenes. The driving actions and natural-language descrip-

tions were manually annotated by our team. To label each sequence, we carefully

analyzed the six surrounding camera images to assign the correct driving actions and

corresponding environment descriptions. Specifically, the nu-A2D dataset includes

four driving action categories and eight types of natural-language environment de-

scriptions. Tab. 4.2 outlines the categories and distribution ratios for both driving

actions and natural-language descriptions. The BEV map ground truth is generated

by projecting the 3D bounding boxes of objects onto the BEV plane and converting

the nuScenes map layers into the ego-vehicle frame.

4.3.2 Evaluation Metrics

To assess the accuracy of the predicted BEV maps, the Intersection over Union

(IoU) values for the semantic classes of road, vehicle, and road/lane divider is calcu-

lated. For instance, the IoU value for the road class is determined as follows:

IoU =
Area of Intersection

Area of Union
× 100%, (4.7)

where the intersection refers to the region where both the predicted BEV map and

the ground truth label the semantic class as road, while the union represents the

total area where either the prediction or the ground truth identifies the road class.
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Table 4.2: The categories of the proposed nu-A2D dataset.

Annotation Category Ratio (%)

Driving Action

Move forward 80.76

Stop/slow down 19.23

Turn left/change to left lane 29.43

Turn right/change to right lane 38.07

NL Description

Traffic light allows 84.14

Front area is clear 89.64

Solid line on the left 27.61

Solid line on the right 23.74

Front left area is clear 41.57

Back left area is clear 42.91

Front right area is clear 46.93

Back right area is clear 50.54

Additionally, the mean IoU (mIoU) is calculated to provide the average IoU value

across all semantic categories.

To measure the prediction performance for both driving actions and natural-

language environment descriptions, the standard F1 score metric is used. Specifically,

the overall and mean F1 scores are employed. The overall F1 score for driving actions
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is computed as:

F1actoval =
1

N

N∑
i=1

F1(Ai, Âi), (4.8)

while for natural-language environment descriptions, it is given by:

F1descoval =
1

M

M∑
j=1

F1(Dj, D̂j), (4.9)

where F1actoval and F1descoval represent the overall F1 scores for driving actions and natural-

language descriptions, respectively. Here, Ai and Âi are the predicted and actual

driving actions, and Dj and D̂j are the predicted and actual natural-language en-

vironment descriptions. The total numbers of predictions for driving actions and

natural-language descriptions are denoted by N and M , respectively.

Given the class imbalance in the nu-A2D dataset, where the ratios of different

driving actions and natural-language descriptions vary (as detailed in Tab. 4.2),

the mean F1 score for both driving actions and natural-language descriptions is also

calculate. The mean F1 score for driving actions is computed as:

F1actm =
1

4
(
1

N f

N f∑
i=1

F1(Af
i, Â

f
i) +

1

N s

Ns∑
j=1

F1(As
j, Â

s
j)

+
1

N l

N l∑
k=1

F1(Al
k, Â

l
k) +

1

N r

Nr∑
p=1

F1(Ar
p, Â

r
p)),

(4.10)

where F1actm is the mean F1 score for driving actions. The number of predictions for

each action category, including “move forward”, “stop/slow down”, “turn left/change

to left lane” and “turn right/change to right lane”, are denoted by N f, N s, N l, and

N r, respectively. The symbols Af
i, Â

f
i, and similarly for the other actions, represent

the predicted and ground truth actions for each respective category.
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Table 4.3: Comparative results of the prediction performance of driving actions for

different networks. Label F denotes “move forward”, label S denotes “stop/slow

down”, label L denotes “turn left/change to left lane” and label R denotes “turn

right/change to right lane”. The best results are highlighted in bold font.

Networks F S L R F1actm F1actoval

Decision Model [37] 0.927 0.621 0.805 0.805 0.790 0.863

VPN [71] 0.916 0.280 0.806 0.866 0.717 0.859

CVT [78] 0.936 0.743 0.835 0.880 0.849 0.898

Multimodal-XAD 0.959 0.798 0.847 0.875 0.870 0.913

Similarly, the mean F1 score for natural-language environment descriptions is

computed as:

F1descm =
1

8

8∑
e=1

(
1

M e

Me∑
i=1

F1(De
i , D̂

e
i )), (4.11)

where F1descm is the mean F1 score for natural-language environment descriptions

across the eight categories. The number of predictions for each description category

is denoted by M e, and De
i and D̂e

i represent the prediction and ground truth for each

category.

4.3.3 Comparative Results

Tab. 4.3 and Tab. 4.4 present comparative results on the prediction performance

of driving actions and multimodal environment descriptions, respectively. The De-

cision Model [37], which was trained on the A2D dataset (without BEV maps), is
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Table 4.4: Comparative results of the prediction performance of multimodal environ-

ment descriptions for different networks. The natural-language environment descrip-

tion is labelled as NLD. The best results are highlighted in bold font.

Descriptions Categories

F1 Score / IoU (%)

Decision Model [37] VPN [71] CVT [78] Multimodal-XAD

NLD

Traffic light allows 0.934 0.900 0.928 0.952

Front area is clear 0.955 0.958 0.970 0.973

Solid line on the left 0.892 0.907 0.893 0.886

Solid line on the right 0.876 0.920 0.784 0.811

Front left area is clear 0.794 0.869 0.862 0.893

Back left area is clear – 0.730 0.891 0.899

Front right area is clear 0.623 0.820 0.877 0.885

Back right area is clear – 0.844 0.810 0.750

F1descm 0.846 0.869 0.877 0.881

F1descoval 0.857 0.859 0.893 0.897

BEV Map

Road – 60.6 57.5 59.5

Vehicle – 25.1 22.8 25.7

Road/lane divider – 21.8 26.0 31.0

mIoU – 35.8 35.4 38.7

designed to jointly predict both driving actions and natural-language environment

descriptions. VPN [71] and CVT [78] were modified and trained on the nu-A2D

dataset to perform the same task of predicting driving actions and multimodal de-

scriptions. In both VPN and CVT, predictions rely solely on the context information

62



of traffic scenes. To ensure a fair comparison, all models, including VPN, CVT, and

Multimodal-XAD, were pre-trained for the same number of epochs on the nuScenes

dataset before being trained on the nu-A2D dataset.

As shown in Tab. 4.3, Multimodal-XAD outperforms the other models in terms

of both F1actm and F1actoval. Specifically, F1actm for Multimodal-XAD is approximately

10%, 21%, and 2% higher than those for Decision Model, VPN, and CVT, respectively.

The overall F1 score, F1actoval, is similarly higher for Multimodal-XAD, with increases

of 6%, 6%, and 2% over Decision Model, VPN, and CVT, respectively. These results

indicate that Multimodal-XAD delivers superior driving action prediction, which is

crucial for enhancing safety in autonomous driving.

Tab. 4.4 compares the prediction performance for multimodal environment de-

scriptions across models. The F1descm and F1descoval values for Multimodal-XAD and CVT

are very similar, with both outperforming the Decision Model and VPN. In particular,

F1descm for Multimodal-XAD is about 4% and 1% higher than for Decision Model and

VPN, respectively, while F1descoval is 5% and 4% higher. Additionally, the mIoU of BEV

maps for Multimodal-XAD exceeds those of VPN and CVT by approximately 8% and

9%, respectively. The enhanced performance in predicting multimodal descriptions

provides more accurate and effective explanations for driving actions.

As discussed earlier, the performance of vision-based BEV perception is inher-

ently limited, and this can negatively impact downstream tasks. Unlike VPN and

CVT, which rely solely on context information from traffic scenes, Multimodal-XAD
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Table 4.5: Computational complexity for different networks on the nu-A2D dataset.

The inference speed is tested using an NVIDIA GeForce RTX 3060 GPU.

Configuration Param FLOPs FPS

Decision Model [37] 6.96M 82.91G 18.06

VPN [71] 82.92M 263.79G 13.91

CVT [78] 6.82M 69.40G 19.96

Multimodal-XAD 14.78M 41.57G 21.14

leverages both context from BEV perception and local information from semantic

segmentation. This combination helps mitigate error accumulation, which may ex-

plain the superior performance of Multimodal-XAD compared to VPN and CVT. On

the other hand, the Decision Model depends exclusively on local information, with-

out access to broader context, which limits its ability to comprehensively understand

traffic scenes. This may account for its lower prediction performance compared to

Multimodal-XAD.

To assess the computational complexity of each model, three key metrics are

compared: the number of parameters (Param), Floating Point Operations (FLOPs),

and Frames Per Second (FPS) during inference. As shown in Tab. 4.5, while the

number of parameters for the Decision Model and CVT are similar and lower than

Multimodal-XAD, Multimodal-XAD has the fewest FLOPs, resulting in the highest

FPS, indicating superior efficiency during inference.
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Table 4.6: Comparative results of the prediction performance for different networks

on the BDD-OIA dataset. The best results are highlighted in bold font.

Methods F S L R F1actm F1actoval F1ream F1reaoval

OIA [29] 0.829 0.781 0.630 0.634 0.718 0.734 0.208 0.422

CBM-AUC [32] 0.803 0.751 0.551 0.525 0.658 0.704 0.342 0.522

C-SENN [33] 0.772 0.744 0.469 0.486 0.618 – – –

CBM [34] 0.795 0.732 0.483 0.431 0.610 0.661 0.292 0.412

Interrelation Model [35] 0.802 0.753 0.619 0.625 0.701 0.722 0.335 0.537

Multimodal-XAD 0.822 0.789 0.638 0.641 0.723 0.743 0.360 0.535

Fig. 4.2 illustrates sample qualitative results from the different networks. Chal-

lenging traffic scenes were selected to test the models’ prediction performance and

generalization capabilities. Unlike other models, Multimodal-XAD correctly pre-

dicts all driving actions and most natural-language descriptions, closely matching

the ground truth. This demonstrates its robust ability to perceive traffic scenes

and accurately predict corresponding driving actions and environment descriptions.

Regarding BEV map visualization, Multimodal-XAD generates more detailed and

accurate BEV maps than the other networks, particularly in identifying vehicles and

road/lane dividers—critical elements for safe navigation.

To further validate the effectiveness of Multimodal-XAD, we tested it on the

BDD-OIA dataset [29], which contains images labeled with four driving actions and

21 natural-language reasons. For this experiment, Multimodal-XAD was adapted to
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Table 4.7: Ablation study results of the prediction performance of driving actions for

different networks. The best results are highlighted in bold font.

Networks F S L R F1actm F1actoval

Multimodal-XAD 0.959 0.798 0.847 0.875 0.870 0.913

No Context 0.932 0.584 0.827 0.847 0.798 0.879

No Local 0.940 0.618 0.835 0.848 0.810 0.887

No NLD 0.938 0.655 0.820 0.868 0.820 0.887

predict both driving actions and corresponding reasons. Tab. 4.6 provides compar-

ative results on the BDD-OIA dataset, showing that Multimodal-XAD achieved the

highest F1actm , F1actoval, and F1ream scores among the models. For F1reaoval, Multimodal-

XAD and the Interrelation Model performed similarly, both outperforming the other

networks. These results demonstrate that Multimodal-XAD consistently outperforms

the alternatives in predicting both driving actions and their corresponding natural-

language explanations.

4.3.4 Ablation Study

In the ablation study, we first examine the impact of combining context and

local information on the prediction performance of driving actions and multimodal

environment descriptions. Tab. 4.7 displays the results of this study for various

networks. In the No Context network, context information is excluded from the C-E
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Figure 4.2: Sample qualitative results of predictions of driving actions and multimodal

environment descriptions for different networks.
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Table 4.8: Ablation study results of the prediction performance of multimodal en-

vironment descriptions for different networks. The natural-language environment

description is labelled as NL Description. The best results are highlighted in bold

font.

Descriptions Categories

F1 Score / IoU (%)

Multimodal-XAD No Context No Local No NLD

NL Description

Traffic light allows 0.952 0.933 0.928 –

Front area is clear 0.973 0.969 0.966 –

Solid line on the left 0.886 0.860 0.826 –

Solid line on the right 0.811 0.802 0.835 –

Front left area is clear 0.893 0.901 0.882 –

Back left area is clear 0.899 0.878 0.835 –

Front right area is clear 0.885 0.856 0.820 –

Back right area is clear 0.750 0.752 0.782 –

F1descm 0.881 0.869 0.859 –

F1descoval 0.897 0.884 0.869 –

BEV Map

Road 59.5 59.2 60.7 61.3

Vehicle 25.7 25.8 26.2 27.6

Road/lane divider 31.0 31.1 29.0 31.6

mIoU 38.7 38.7 38.6 40.2
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Module, meaning only local information from semantic perception is used to predict

driving actions and natural-language environment descriptions. Conversely, in the

No Local network, local information is omitted, and predictions are based solely on

context information from BEV perception. As shown in Tab. 4.7, both the F1actm and

F1actoval values of Multimodal-XAD outperform those of the No Context and No Local

networks. These findings confirm that integrating both context and local information

significantly enhances the prediction performance for driving actions.

Similarly, Tab. 4.8 presents the results for the prediction performance of mul-

timodal environment descriptions. As with driving actions, the F1descm and F1descoval

scores for Multimodal-XAD are higher than those of the No Context and No Local

models. This further validates the advantage of using both context and local infor-

mation in improving natural-language environment description predictions. For the

BEV maps, the mIoU values for Multimodal-XAD, No Context, and No Local net-

works are comparable, indicating that the use of context and local information has

minimal effect on BEV map prediction performance.

We also explore the role of natural-language environment descriptions in pre-

dicting driving actions and BEV maps. As shown in Tab. 4.7, both the F1actm and

F1actoval values for Multimodal-XAD surpass those of the No NLD network (which lacks

natural-language descriptions). This suggests that incorporating natural-language

environment descriptions improves the prediction of driving actions. However, for

BEV map prediction (Tab. 4.8), the mIoU for Multimodal-XAD is lower than for
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Figure 4.3: Ablation study results of the prediction performance of Multimodal-XAD

with different encoders of the EfficientNet family. The left figure shows the F1 scores

of the driving action and natural-language environment description predictions. The

right figure shows the IoU of predictions of BEV maps. EffNet is the short for

EfficientNet.

the No NLD network, indicating that natural-language descriptions do not contribute

positively to BEV map prediction performance.

Fig. 4.2 also provides qualitative results for the No Context, No Local, and No

NLD networks. The prediction performance of driving actions and natural-language

environment descriptions for both the No Context and No Local models is notably

lower than that of Multimodal-XAD. This highlights the importance of integrating

both context and local information in improving the accuracy of driving actions and

natural-language environment descriptions. In the case of the No NLD network, the

overall explainability is reduced compared to Multimodal-XAD due to the absence of

natural-language environment descriptions.

In this section, we also examine the effect of using different encoders on the

performance of Multimodal-XAD. Fig. 4.3 shows the results of an ablation study

where Multimodal-XAD is tested with various EfficientNet variants, ranging from

Efficient-B0 to Efficient-B7. The left plot in Fig. 4.3 presents the F1 scores for
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driving actions and natural-language descriptions with different encoders. As shown,

Multimodal-XAD with Efficient-B4 achieves the highest F1actm and F1actoval, indicating

that this variant provides the best driving action prediction performance among all

tested encoders. For natural-language environment descriptions, Multimodal-XAD

with Efficient-B6 performs the best, with both F1descm and F1descoval reaching the highest

values. Efficient-B4, on the other hand, ranks fourth and second in F1descm and F1descoval ,

respectively.

The right-hand plot in Fig. 4.3 illustrates the IoU values for different BEV map

classes when using various EfficientNet encoders. As shown, there is a clear upward

trend in BEV map prediction performance as the complexity of the EfficientNet vari-

ant increases from B0 to B7. To balance prediction performance with computational

efficiency, EfficientNet-B4 is selected as the default encoder for Multimodal-XAD

model.

The ablation study also explores how the relative importance assigned to driving

actions, natural-language environment descriptions, and BEV maps affects the pre-

diction performance of Multimodal-XAD. This relative importance is controlled by

the values of λ1, λ2, and λ3 in the loss function (4.6). We evaluated four different

configurations to examine the impact of these weight parameters. As shown in Tab.

4.9, when driving actions are given greater importance (λ1 = 2), Multimodal-XAD

achieves its best performance in predicting driving actions. Similarly, increasing the

importance of natural-language environment descriptions (λ2 = 2) results in the high-
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Table 4.9: The ablation study results of prediction performance for Multimodal-XAD

networks with different relative importance between driving actions, natural-language

environment descriptions and BEV maps. The best results are highlighted in bold

font.

λ1 : λ2 : λ3 F1actm F1actoval mIoU (%) F1descm F1descoval

1:1:1 0.870 0.913 38.7 0.881 0.897

2:1:1 0.873 0.914 38.0 0.863 0.875

1:2:1 0.855 0.903 37.8 0.895 0.906

1:1:2 0.828 0.892 40.3 0.878 0.892

est performance for this task, and emphasizing BEV maps (λ3 = 2) leads to the best

results for BEV map predictions. To ensure balanced performance across driving

actions, natural-language environment descriptions, and BEV maps, we selected a

configuration where λ1 : λ2 : λ3 = 1 : 1 : 1 as the default for Multimodal-XAD.

4.3.5 Limitations

Despite the advantages of the proposed Multimodal-XAD, there are still some

limitations. Firstly, the prediction performance of the multimodal environment de-

scription is currently assessed using the IoU for the BEV map and the F1 score for

natural-language descriptions. However, to more thoroughly evaluate the explainabil-

ity of Multimodal-XAD, a new metric that can holistically measure the effectiveness

of multimodal environment descriptions should be explored. Secondly, while the driv-

72



ing action is connected to BEV perception through the use of context information

for action prediction, we believe that a stronger coupling between driving actions

and BEV perception could further enhance performance. One potential approach

to achieve this is by employing a generative adversarial network (GAN), where the

driving action predictor acts as the generator, and the BEV module functions as the

discriminator.

4.4 Summary

To enhance both the safety and explainability of deep learning-based end-to-

end autonomous driving systems, we introduced an explainable network designed to

jointly predict driving actions and multimodal environment descriptions, which in-

clude BEV maps and natural-language descriptions of traffic scenes. In the proposed

model, both context information from BEV perception and local information from

semantic segmentation are incorporated before making predictions about driving ac-

tions and environment descriptions. Additionally, we have released a new dataset

consisting of 12,000 image sequences, where each sequence includes six frames cap-

tured by surrounding visual cameras, along with manually annotated ground truth

for driving actions and multimodal environment descriptions. Experimental results

demonstrate that combining context and local information significantly improves the

accuracy of predictions for both driving actions and environment descriptions.
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Chapter 5

PolarPoint-BEV: BEV Perception

of Driving Environment in Polar

Points

5.1 Introduction

In recent years, end-to-end autonomous driving has gained significant atten-

tion. This approach processes raw sensory inputs and outputs either waypoints or

direct control actions. The waypoints can be utilized by low-level controllers such as

Proportional-Integral-Derivative (PID) or Model Predictive Control (MPC) to gen-

erate control signals. Compared to modular pipelines, which involve multiple inter-

connected modules like localization [135, 136], perception [137], planning [113], and
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control [138], end-to-end methods bypass the issue of cumulative errors across mod-

ules, and exhibit better scalability for handling complex scenarios. Numerous research

efforts [1–12] have advanced the field, leading to substantial progress. However, these

methods often lack explainability due to the opaque nature of deep neural networks,

making them susceptible to unpredictable mistakes and safety risks. This absence

of transparency creates a barrier to their widespread adoption in real-world driving

scenarios. To address this issue, various eXplainable Artificial Intelligence (XAI)

techniques have been introduced, such as producing semantic bird’s-eye-view (BEV)

maps to provide interpretable insights into the decision-making process of end-to-end

driving systems.

The generation of semantic BEV maps has recently become an active research

topic in autonomous driving, as this representation offers a clear and intuitive format

for downstream tasks like trajectory planning [24] and control [27]. Furthermore,

these maps enable visualization of how autonomous driving systems perceive and

interpret surrounding traffic conditions, offering a valuable tool for explaining deci-

sions in end-to-end driving models. There have been numerous contributions in this

area [66–86].

Despite the successes, traditional semantic BEV maps exhibit certain draw-

backs. First, they typically treat all regions within the traffic scene equally, despite

the fact that objects near the ego vehicle are generally more critical for ensuring

safety [139,140]. In traditional BEV maps, distant regions, which may pose lower im-
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mediate risks, receive the same focus as areas in close proximity to the vehicle. This

uniform attention allocation can lead to a failure in prioritizing crucial safety-related

information. Additionally, traditional BEV maps rely on dense, pixel-level represen-

tations of the environment, which impose substantial computational, communication,

and memory overheads. Given the limited processing power on autonomous vehicles,

these high resource demands may introduce delays that jeopardize safety [141,142].

To address these limitations, an innovative BEV perception method called PolarPoint-

BEV is proposed. Unlike traditional approaches, the proposed method emphasizes

the regions near the ego vehicle, which are more pertinent to safe driving. Moreover,

PolarPoint-BEV adopts a sparse representation, significantly reducing the computa-

tional load compared to dense BEV maps. This lightweight structure makes it a more

practical solution for deployment on vehicles with restricted computational capacity.

To assess the effectiveness of PolarPoint-BEV in enhancing both explainability and

driving performance, an end-to-end autonomous driving network, called eXplainable

Planning (XPlan) is introduced. XPlan utilizes a multi-task architecture to jointly

predict control commands and generate polar point BEV maps as interpretable ex-

planations. We validate the proposed network’s performance in the CARLA sim-

ulator [42]. Experimental results demonstrate that PolarPoint-BEV improves both

driving performance and the explainability of the end-to-end driving model.
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Figure 5.1: Schematic diagram of the proposed polar point BEV map (Sub-fig. (a))

and the traditional BEV map (Sub-fig. (b)). In the proposed polar point BEV map,

the orange, red, green colors represent background, vehicle and road.

5.2 The proposed network

5.2.1 The PolarPoint-BEV

As discussed earlier, traditional BEV methods have certain limitations. To ad-

dress these, the proposed PolarPoint-BEV introduces a polar point-based BEV map

to demonstrate how the network interprets and perceives the surrounding environ-

ment, providing an explainable output for the end-to-end autonomous driving model.

Fig. 5.1 illustrates the comparison between the proposed PolarPoint-BEV map and

the traditional BEV approach. In the traditional method, the traffic scene is repre-

sented by a uniformly distributed rectangular grid map aligned with Cartesian axes,

while the PolarPoint-BEV map employs a series of points dispersed around the ego

vehicle, offering a more adaptive representation. Each point on the PolarPoint-BEV
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Table 5.1: Details of each zone for polar point BEV map with normal configuration.

Zone Scope Interval Density

Zone A Layer 1 to 6 0.5m 3.91 m−2

Zone B Layer 6 to 10 1.0m 1.21 m−2

Zone C Layer 10 to 15 1.5m 0.45 m−2

Zone D Layer 15 to 16 2.0m 0.42 m−2

map is assigned a semantic class based on the object located at that point. More

specifically, the PolarPoint-BEV map categorizes points into three distinct semantic

classes {0, 1, 2}, representing different types of objects in the scene. These are vi-

sualized in Fig. 5.1 using different colors: class {0} corresponds to the background

(orange), class {1} represents vehicles (red), and class {2} denotes roads (green).

The location of each point is expressed in polar coordinates. In the angular

dimension, the field of view (FOV) spans 100◦, consistent with the horizontal FOV

of the front-view camera. The angular range is divided into subsections, and we

experiment with configurations ranging from 15 to 41 subsections (see Fig. 5.1).

In the radial dimension, the map is divided into 16 layers, forming the complete

PolarPoint-BEV map. Therefore, the map can be defined as Pi ∈ {0, 1, 2}16×n, where

16 refers to the number of radial layers and n is the number of angular subsections

determined by the chosen configuration.

The 16 radial layers are grouped into four distinct zones: Zone A, Zone B, Zone
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C, and Zone D. As outlined in Table 5.1, each zone has different intervals between

the layers. Recognizing that regions nearer to the ego vehicle are more safety-critical,

Zone A and Zone B feature finer resolution (smaller intervals), while Zones C and

D have coarser resolution (Zone A < Zone B < Zone C < Zone D). The density of

the PolarPoint-BEV map is defined as the ratio of semantic points to the area they

occupy. Table 5.1 summarizes the densities for the different zones under the normal

configuration. The density in Zone A is approximately nine times higher than in Zone

D, reflecting the increased focus on closer, more critical regions. By contrast, tradi-

tional BEV maps distribute semantic points uniformly across the scene, neglecting

the varying importance of different regions. This allows the PolarPoint-BEV map to

prioritize areas near the ego vehicle, where immediate safety considerations are most

crucial.

5.2.2 The Network Structure

Fig. 5.2 illustrates the architecture of proposed XPlan network for autonomous

driving. XPlan primarily consists of three main components: an encoder, the Control

Prediction (C-P) module, and the Polar-Point (P-P) module. The network processes

input from both the front-view RGB image Ii and the navigation data Si to produce

control commands Ci, as well as a polar point BEV map Pi for explainability. Here,

Ii ∈ Rh×w×c represents the RGB image, with h, w, and c denoting its height, width,

and number of channels. The navigation input Si includes the vehicle’s current speed
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Figure 5.2: The structure of proposed XPlan network. This explainable end-to-end

network takes as input the front-view RGB image as well as navigation information,

and outputs control commands along with polar point BEV map as the explanations.

v, the target position (x, y), and a high-level command. The control output Ci consists

of steering, throttle, and brake values. Thus, the overall process of the XPlan network

can be represented as:

XPlan: (Ii, Si) → (Ci, Pi ∈ {0, 1, 2}16×n). (5.1)

The network employs ResNet-34 as the encoder, extracting feature maps Fi from

the input images. These feature maps are then fed into both the C-P and P-P

modules. The C-P module, based on the Trajectory-guided Control Prediction (TCP)

network [7], takes the feature maps Fi and navigation data Si as inputs to generate

control outputs Ci. For detailed information on the TCP network, we refer readers

to [7]. The C-P module’s function can thus be summarized as (Fi, Si) → Ci.

The P-P module is responsible for generating the polar point BEV map, Pi,

to provide explanation for the control decisions made by the network. It consists
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of two submodules: the space transformation module and the BEV decoder. In

the space transformation module, feature maps from the front-view are flattened

and processed by a Multilayer Perceptron (MLP), which learns the transformation

from front-view to BEV space. The MLP translates the perspective of the front-

view feature maps into the BEV domain. These transformed feature maps are then

reshaped and passed through the BEV decoder to generate the polar point BEV map,

consisting of semantic points. The process for the P-P module can be expressed as:

Fi → Pi.

Five configurations of the polar point BEV map are evaluated, ranging from

sparse to dense representations. The version of XPlan that predicts the normal polar

point BEV map (16 × 27) is referred to as XPlan-N, while the variations predicting

sparse, light, thick, and dense BEV maps are denoted as XPlan-S, XPlan-L, XPlan-T,

and XPlan-D, respectively.

5.2.3 Dataset and Training Details

The dataset is collected within the CARLA simulator by running randomly gen-

erated routes under a variety of weather and lighting conditions. These include

ClearNoon, CloudyNoon, WetNoon, WetCloudyNoon, SoftRainNoon, MidRainyNoon,

HardRainNoon, ClearSunset, CloudySunset, WetSunset, WetCloudySunset, MidRain-

Sunset, HardRainSunset, SoftRainSunset, ClearNight, CloudyNight, WetNight, Wet-

CloudyNight, SoftRainNight, MidRainyNight, and HardRainNight. The dataset is
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created using Roach [143] as the expert, which has access to privileged information

about traffic elements such as roads, vehicles, pedestrians, and traffic lights. This

dataset comprises over 92k data batches from 6 of CARLA public towns (Town01,

Town03, Town04, Town06, Town07, and Town10), encompassing small towns, quiet

rural areas, and inner-city environments. Each data batch includes a front-view RGB

image, current speed, future target coordinates, high-level commands, ground-truth

waypoints, control values, and the BEV map. The XPlan network is trained using

this dataset. For evaluation, the routes from [6] are utilized, which include traffic

scenarios from two other towns in CARLA (Town02 and Town05), featuring both

small town and urban settings.

All networks are trained on an NVIDIA GeForce RTX 3090 GPU, while inference

speeds are measured on an NVIDIA GeForce RTX 3060 GPU. Training proceeds in

two stages: first, the C-P module is pre-trained using the dataset from [7]. In the

second stage, the entire XPlan network is trained and evaluated using our collected

dataset. The Adam optimizer is applied with an initial learning rate of 1 × 10−4

and a weight decay of 1 × 10−7. A multi-task loss function is designed for XPlan,

calculated as Ltotal = Lctrl + λ1Lbev. Here, Ltotal represents the total loss, Lctrl

corresponds to the loss associated with control command prediction, and Lbev relates

to the loss for generating the polar point BEV map. The coefficient λ1 adjusts the

balance between control command prediction and BEV map generation. For the polar

point BEV map, each semantic point falls into one of three classes. Therefore, Lbev is
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calculated as the sum of cross-entropy losses for each class: Lbev = Lvehicle+λ2Lroad+

λ3Lbackg. Here, Lvehicle, Lroad, and Lbackg represent the loss terms for vehicle, road,

and background classes, respectively. The weighting coefficients λ2 and λ3 control the

relative importance of these semantic classes in the BEV map generation.

5.3 Experimental Results and Discussions

5.3.1 Evaluation Metrics

The driving performance and polar point BEV map prediction capabilities of

the proposed XPlan network are assessed within the CARLA simulator. In this

environment, the autonomous agent has two key objectives: 1) to safely and efficiently

navigate a predefined path to reach its designated destination, and 2) to accurately

predict the polar point BEV map of the traffic scene, providing explanations for its

control commands. To evaluate driving performance, several metrics are employed in

the CARLA simulator, including three main indicators: route completion, infraction

score, and driving score. Route completion measures the percentage of the path the

agent successfully covers. The infraction score reflects the number of rule violations,

such as collisions with pedestrians or vehicles, running red lights, and improper use

of road layouts. The driving score is calculated as the product of route completion

and infraction score. Additional metrics are also considered to target specific driving

behaviors, such as collisions with vehicles or road layouts, red light violations, off-road
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infractions, and instances where the agent becomes blocked.

To assess the overall accuracy of the polar point BEV map predictions, the

Intersection-over-Union (IoU) and F1 scores are computed for road, vehicle, and

background classes. However, traditional IoU and F1 metrics assign equal weight

to all points on the BEV map. Recognizing that areas closer to the ego vehicle are

more critical for safety, we introduce a new metric called the weighted Intersection-

over-Union (wIoU). The wIoU is calculated as:

wIoU =
D∑

z=A

(mIoUz ×Nz), Nz = L−1
z /

D∑
z=A

(L−1
z ), (5.2)

where mIoUz represents the mean IoU for each zone (A to D) in the BEV map, and

Nz is the normalized weight for each zone. The term L−1
z denotes the reciprocal of

the distance from each zone to the ego vehicle. This weighting ensures that regions

closer to the ego vehicle have a greater influence on the wIoU score.

5.3.2 Comparative Results

We first compare the prediction performance of polar point and traditional BEV

maps. We propose an end-to-end network called the Planning-BEV (Plan-B) network,

which jointly predicts control commands for the agent along with the traditional

BEV map. In the Plan-B network, the encoder and C-P module remain identical to

those in the XPlan network, but the P-P module is replaced with a traditional BEV

generation module based on the View Parsing Network (VPN) [75]. Both XPlan and
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Table 5.2: Comparative results of the overall prediction performance for the polar

point and traditional BEV maps. The mean and standard deviations are calculated

over 3 runs. The best results are highlighted in bold font.

Network

IoU (%) F1 Score

Vehicle Road Background Mean Vehicle Road Background Overall

Plan-B 54.83±0.55 87.27±0.15 93.07±0.15 78.37±0.15 0.71±0.01 0.93±0.00 0.96±0.00 0.95±0.00

XPlan-N 61.03±1.37 91.77±0.49 86.93±1.08 79.93±0.86 0.76±0.01 0.96±0.01 0.93±0.01 0.94±0.01

Table 5.3: Comparative results of the mIoU of different zones and the wIoU for

the polar point and traditional BEV maps. The mean and standard deviations are

calculated over 3 runs. The best results are highlighted in bold font.

Network Zone A (%) Zone B (%) Zone C (%) Zone D (%) wIoU (%)

Plan-B 69.10±0.46 73.97±0.06 81.90±0.30 89.00±0.35 73.50±0.20

XPlan-N 73.93±1.10 83.47±0.80 81.57±1.29 69.13±0.81 76.50±0.78

Plan-B networks are trained for 60 epochs with the same pre-trained weights for the

C-P module, and the weighting coefficients (λ2 and λ3 in the loss function) are kept

the same for both networks.

Tab. 5.2 presents the comparative results for the overall prediction performance

of the polar point and traditional BEV maps. Each network was tested over three

runs, and the mean and standard deviations for IoU and F1 scores are reported. As

shown in the table, the mIoU and overall F1 scores of the polar point BEV map are

similar to those of the traditional BEV map, suggesting comparable overall prediction

performance. However, for vehicles and roads, the polar point BEV map achieves
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Table 5.4: Computational complexity for different networks. The inference speed is

tested using an NVIDIA GeForce RTX 3060 GPU.

Network Param MACs FPS

TCP [7] 25.77M 17.09G 137.88

Plan-B 38.58M 27.21G 90.08

XPlan-N 27.57M 17.58G 132.66

higher IoU and F1 scores than the traditional BEV map.

Tab. 5.3 provides a comparison of mIoU for different zones and wIoU for both

polar point and traditional BEV maps. The polar point BEV map outperforms the

traditional BEV map in Zones A and B, while the traditional BEV map performs

better in Zone D. In Zone C, the performance of both maps is comparable. The

wIoU score for the polar point BEV map is approximately 4% higher than for the

traditional BEV map, indicating that while their overall performance is similar, the

polar point BEV map excels in predicting areas closer to the ego vehicle.

Fig. 5.3 shows examples of polar point and traditional BEV maps under different

weather and lighting conditions, such as SoftRainDawn, ClearNoon, CloudySunset,

and HardRainNight. Both polar point and traditional BEV maps effectively represent

the traffic scenes and demonstrate how the network perceives and understands the

surrounding environment. Thus, both approaches offer valid explanations for the

control commands generated by the end-to-end networks.
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Figure 5.3: Sample qualitative results of the polar point and traditional BEV maps.

GT and Pred refer to ground truth and prediction. In the polar point BEV maps,

the points with orange, red and green colors respectively represent the background,

vehicle and road.

Tab. 5.4 compares the computational complexity of different networks. The

TCP [7] network can be considered as the XPlan/Plan-B network without the P-
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Table 5.5: Comparative results of the driving performance for different networks. The

mean and standard deviations are calculated over 3 runs. The best and second-best

results are highlighted in bold font and italic font.

Networks

Driving Route Infraction Vehicle Layout Red Light Off-road Agent

Score Completion Score Collisions Collisions Infractions Infractions Blocked

LAV [6] 45.20±6.35 91.55±5.61 0.49±0.06 0.92±0.42 0.33±0.50 0.28±0.28 0.27±0.01 0.01±0.02

TCP [7] 53.10±2.18 78.66±3.86 0.67±0.01 0.09±0.03 0.15±0.02 0.01±0.02 0.05±0.02 0.16±0.04

Plan-B 55.19±1.48 90.34±4.41 0.63±0.03 0.11±0.03 0.00±0.00 0.03±0.03 0.02±0.01 0.03±0.03

XPlan-N 60.41±3.31 92.62±0.96 0.66±0.04 0.07±0.03 0.03±0.01 0.03±0.01 0.04±0.01 0.05±0.01

P/BEV module. Compared to TCP, the XPlan-N network has a slight increase in

complexity, with the number of parameters (Param) and multiply–accumulate oper-

ations (MACs) being about 7% and 3% higher, respectively. The XPlan-N network’s

inference speed is approximately 4% lower than TCP. In contrast, Plan-B significantly

increases computational complexity, with its Param and MACs being about 50% and

60% higher than TCP, respectively, and its inference FPS around 35% lower. This

indicates that the PolarPoint-BEV approach offers a lightweight and efficient method

for describing traffic scenes and explaining control commands. By using the polar

point BEV map, XPlan reduces the computational costs associated with BEV gener-

ation, striking a balance between efficiency and accuracy, making it a suitable choice

for autonomous driving systems where real-time performance and computational re-

sources are critical.

The effect of polar point and traditional BEV maps on driving performance in

end-to-end networks are also examined. Tab. 5.5 summarizes the comparative driv-
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ing performance of different networks. The results of the LAV network are taken

from [6], trained on 186K data points from four towns and tested on the same routes

as the other networks. As shown in Tab. 5.5, both XPlan-N and Plan-B outper-

form LAV and TCP in terms of driving performance. Since TCP can be consid-

ered as XPlan/Plan-B without the P-P/BEV module, we can conclude that both

PolarPoint-BEV and traditional BEV generation positively impact driving perfor-

mance. Additionally, XPlan-N outperforms Plan-B in driving metrics: the driving

score for XPlan-N is approximately 9% higher than for Plan-B, with route completion

and infraction score being 2% and 4% higher, respectively. We attribute this superior

performance to the following reasons:

1. The polar point BEV map emphasizes areas close to the ego vehicle, where

critical safety decisions are often made. As the results show, the polar point

BEV map performs better than the traditional BEV map in regions near the

ego vehicle, which are crucial for ensuring safe navigation. This likely enhances

the system’s ability to perceive and respond to potential hazards, leading to

safer autonomous driving.

2. While the overall prediction performance of the polar point and traditional BEV

maps is similar, the polar point BEV map achieves better results for vehicle and

road classes. These are far more relevant to the safety of the autonomous agent

than background elements, so the improved prediction of these classes translates

into better driving performance.
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Table 5.6: Comparative results of the overall prediction performance for the polar

point and traditional BEV maps on the nuScenes dataset. The best results are

highlighted in bold font.

Network

IoU (%) F1 Score

Vehicle Road Divider Background Mean Vehicle Road Divider Background Overall

VED [74] 35.5 76.6 29.8 92.1 58.5 0.52 0.87 0.46 0.96 0.91

VPN [75] 37.7 77.8 29.7 91.8 59.2 0.55 0.87 0.46 0.96 0.91

PON [76] 38.6 75.5 34.7 92.0 60.2 0.56 0.86 0.52 0.96 0.90

XPlan-N* 52.7 85.9 27.3 75.4 60.3 0.69 0.92 0.43 0.86 0.88

* The polar point BEV map is predicted by the XPlan-N network without the C-P module.

Given the domain gap between synthetic environments and real-world traffic

scenes, the PolarPoint-BEV method on the nuScenes [96] dataset is also assessed.

Tab. 5.6 compares the overall prediction performance of polar point and traditional

BEV maps using different networks on the nuScenes dataset. In this case, the polar

point BEV map is predicted using the XPlan-N network without the C-P module.

As seen in Tab. 5.6, both mIoU and overall F1 scores for the polar point BEV map

are close to those of the traditional BEV map, indicating comparable performance on

the nuScenes dataset.

The mIoU scores across different zones and wIoU values for polar point and

traditional BEV maps on nuScenes are shown in Tab. 5.7. Consistent with results

from the CARLA simulator, the polar point BEV map outperforms the traditional

map in Zones A and B but falls behind in Zone D. The wIoU of the polar point

BEV map is higher than that of the traditional BEV map on the nuScenes dataset,
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Table 5.7: Comparative results of the prediction performance (mIoU of different

zones and the wIoU) and the computational complexity for different networks on

the nuScenes dataset. The best results are highlighted in bold font.

Network

Prediction Performance Complexity

Zone A (%) Zone B (%) Zone C (%) Zone D (%) wIoU (%) Param MACs FPS

VED [74] 53.9 54.6 60.2 67.1 56.0 45.59 159.09 59.61

VPN [75] 54.2 54.8 61.3 69.5 56.6 37.15 43.59 79.11

PON [76] 49.6 57.5 68.3 72.8 55.7 37.94 62.10 32.44

XPlan-N* 54.8 63.5 65.0 59.7 58.4 26.14 28.24 109.72

* The polar point BEV map is predicted by the XPlan-N network without the C-P module.

further validating its superior performance in regions near the ego vehicle. Tab. 5.7

also compares the computational complexity of different networks, revealing that the

XPlan-N network (without the C-P module) has significantly lower complexity than

other networks, demonstrating that PolarPoint-BEV is an efficient and lightweight

solution for describing traffic scenes in real-world environments.

5.3.3 Ablation Study

In the ablation study, we first examine the prediction performance of polar point

BEV maps across different configurations, as well as the impact of these configurations

on driving performance. We evaluate five different configurations of the polar point

BEV map, with the number of semantic points ranging from 16 × 15 to 16 × 41.

Tab. 5.8 presents the computational complexity of the XPlan networks with these

various configurations. The results indicate that all configurations have very similar
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Table 5.8: Computational complexity for the XPlan networks with different configu-

rations of the polar point BEV map. The inference speed is tested using an NVIDIA

GeForce RTX 3060 GPU.

Configuration Param MACs FPS

XPlan-S 27.57M 17.55G 134.33

XPlan-L 27.57M 17.56G 134.09

XPlan-N 27.57M 17.58G 132.66

XPlan-T 27.57M 17.59G 131.62

XPlan-D 27.57M 17.61G 130.52

computational costs, and more importantly, they all offer lightweight and efficient

methods for describing traffic scenes and explaining control commands.

The left panels of Fig. 5.4 summarize the prediction performance for polar point

BEV maps with different configurations. As shown in Fig. 5.4(a), the normal config-

uration of the polar point BEV map achieves the highest mIoU, approximately 3%

higher than the lowest mIoU from the sparse configuration. Similarly, in Fig. 5.4(b),

the overall F1 score for the normal configuration is about 3% higher than the lowest

score, which is obtained from the light configuration. These findings demonstrate that

the prediction performance across different configurations remains consistent, high-

lighting the robustness and reliability of the proposed PolarPoint-BEV approach.

Tab. 5.9 presents the mIoU values for different zones, along with the wIoU for

polar point BEV maps under various configurations. The normal configuration yields
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Table 5.9: Ablation study results of the mIoU of different zones and the wIoU for polar

point BEV maps with different configurations. The mean and standard deviations

are calculated over 3 runs. The best results are highlighted in bold font.

Network Zone A (%) Zone B (%) Zone C (%) Zone D (%) wIoU (%)

XPlan-S 71.17±1.56 79.47±1.44 80.13±1.45 68.17±0.49 73.80±1.40

XPlan-L 71.67±1.07 79.87±1.42 78.33±2.10 66.97±2.52 73.82±1.23

XPlan-N 73.93±1.10 83.47±0.80 81.57±1.29 69.13±0.81 76.50±0.78

XPlan-T 72.83±0.40 80.73±0.76 79.43±1.01 64.77±1.33 74.61±0.55

XPlan-D 72.73±0.47 81.97±0.93 80.90±0.70 65.53±1.70 75.06±0.30

the highest mIoU across all zones. Specifically, from Zone A to Zone D, the mIoU

for the normal configuration is 4%, 5%, 4%, and 7% higher, respectively, than the

lowest values. The wIoU for the normal configuration is approximately 4% higher

than the lowest wIoU. These results further validate the robustness and reliability of

the proposed PolarPoint-BEV model.

The impact of different polar point BEV map configurations on driving perfor-

mance is also explored. The right panels of Fig. 5.4 display the driving performance of

XPlan networks under various configurations. Each network was tested three times.

As seen in Fig. 5.4(c), the XPlan-L network achieves the highest driving score and

infraction score, with a driving score that is about 13.5% higher than the lowest score

from the XPlan-T network. The infraction score of XPlan-L is 6.7% higher than the

lowest value from the XPlan-D network. In terms of route completion, the XPlan-

N network performs best, with a score approximately 5.7% higher than that of the
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Figure 5.4: Ablation study results of the prediction performance of XPlan networks

with different configurations of polar point BEV map. (a) and (b) show the prediction

performance of the polar point BEV maps with different configurations. (c) and (d)

show the driving performance of the XPlan networks with different configurations of

the polar point BEV map.

XPlan-T network.

As previously noted, the parameters of the C-P module are not fixed during

the second stage of training. To further analyze the effect of fixing the C-P module

parameters on driving performance, a comparative experiment between the XPlan-N

network with the C-P module fixed and the XPlan-N network with the C-P module

unfixed is conducted. Both networks were trained for 60 epochs using the same pre-

trained weights for the C-P module. Tab. 5.10 shows that the driving performance

of the XPlan-N network with unfixed C-P module parameters is superior to that

of the fixed version. These results suggest that leaving the C-P module parameters

unfixed during the second stage of training can improve the driving performance of

the proposed network.
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Table 5.10: Ablation study results of the driving performance for the XPlan-N net-

work with different configurations of the C-P module. The mean and standard devi-

ations are calculated over 3 runs.

Network Driving Score Route Completion Infraction Score

XPlan-N (fixed) 57.33±0.80 86.74±4.96 0.66±0.05

XPlan-N (not fixed) 60.41±3.31 92.62±0.96 0.66±0.04

5.3.4 Limitations

Despite the strengths of the PolarPoint-BEV method and the XPlan network,

there are still a few limitations. First, the current polar point BEV map is limited

to only three classes. Expanding it to include additional categories, such as road

dividers, road signs, pedestrians, and other relevant objects, would provide a more

comprehensive representation of the traffic scene. This enhanced level of detail could

further improve the explainability of end-to-end autonomous driving systems. Ad-

ditionally, the fixed interval between layers in the polar point BEV map may not

be ideal, especially when handling complex corner cases involving objects of varying

sizes and shapes. To address this, experimenting with different layer intervals could

help optimize the polar point BEV map configuration for better performance across

diverse scenarios.
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5.4 Summary

In this work, we introduced PolarPoint-BEV, a novel BEV perception method

designed to overcome the limitations of traditional BEV approaches in explainable

end-to-end autonomous driving. Observing that regions close to the ego vehicle are

typically more critical for safety, and that the fine-grained, pixel-level detail of tra-

ditional BEV maps may be excessive, we developed the polar point BEV map. This

method uses a sequence of semantic points distributed around the ego vehicle to rep-

resent the traffic scene. To assess the impact of the polar point BEV map on driving

performance in an end-to-end system, we designed an end-to-end multi-task explain-

able network that jointly predicts control commands and polar point BEV maps.

Experimental results demonstrate that incorporating PolarPoint-BEV not only en-

hances driving performance but also improves the explainability of the network.
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Chapter 6

Conclusion and Suggestions for

Future Work

This thesis aims to address the issue of the lack of explainability in end-to-end

autonomous driving. Through a series of innovative approaches, it seeks to enhance

the explainability of end-to-end autonomous driving, making it more transparent

and understandable to humans. The core contributions of this research include the

proposal of a novel network for generating natural-language explanations, the intro-

duction of multimodal explanations that integrate both natural-language and visual

explanations, and the development of an advanced BEV perception technique that

enhances safety while maintaining computational efficiency. The main work, research

results, and innovations of this thesis are summarized below:

To enhance the explainability of end-to-end autonomous driving systems by us-
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ing natural-language explanations, we proposed a new deep neural network archi-

tecture that not only predicts driving actions but also generates natural-language

explanations based on semantic scene understanding. This approach aims to bridge

the gap between autonomous decision-making and human understanding by provid-

ing explanations behind driving action. Specifically, two types of natural-language

explanations are generated: reasons for each driving action and descriptions of the

surrounding environment relevant to the ego-vehicle. To train and test the proposed

network, a large-scale dataset consisting of 10, 000 images from the BDD-OIA dataset

have been labeled with 4 distinct driving actions and 6 environment descriptions. Ad-

ditionally, to further validate the network’s prediction accuracy and assess its ability

to generalize to diverse driving environments, we have selected a subset of 1, 500

frames from the nuScenes dataset, labeled with 4 driving actions and corresponding

natural-language explanations (covering 21 reasons and 6 descriptions). Experimen-

tal results on both publicly available dataset and our annotated datasets demonstrate

the model’s effectiveness, showing that the proposed architecture enhances the accu-

racy of decision-making predictions and significantly improves the explainability of

the network.

While natural-language explanations provide a useful means for explaining driv-

ing decisions, they often lack insights into the internal processes of end-to-end net-

works. To address this gap and further enhance explainability, we proposed com-

bining natural-language and visual explanations to better interpret the outputs of
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autonomous driving models. Specifically, we introduce an explainable end-to-end net-

work that simultaneously predicts driving actions and generates multimodal descrip-

tions of traffic scenes, incorporating both semantic BEV maps and natural-language

environment descriptions. In this network, context information from BEV perception

and local information from semantic segmentation are integrated before predicting

driving decisions and describing the environment. This design aims to minimize error

propagation and boost prediction accuracy. To support the training and validation of

the proposed approach, we present a dataset of 12, 000 image sequences, each contain-

ing images from multiple cameras and manually annotated with ground truth labels

for driving actions and multimodal environment descriptions. Experimental findings

reveal that combining context and local information enhances the accuracy of both

driving action predictions and environment descriptions, promoting safer and more

explainable autonomous driving systems.

At last, we introduced an innovative BEV perception approach, PolarPoint-BEV,

designed to improve the explainability of end-to-end autonomous driving. In contrast

to traditional BEV methods, the proposed approach focuses on areas close to the ego

vehicle, which are crucial for safe driving. Additionally, PolarPoint-BEV employs a

sparse representation, significantly reducing computational demands compared to tra-

ditional dense BEV methods. This lightweight structure makes it a practical choice for

vehicles with limited processing resources. To evaluate the effectiveness of PolarPoint-

BEV in enhancing explainability and driving performance, we present an end-to-end
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autonomous driving network, named XPlan. XPlan uses a multi-task framework

that simultaneously predicts control commands and generates polar point BEV maps

as visual explanations. We validate the network’s performance within the CARLA

simulator, with experimental results indicating that PolarPoint-BEV enhances both

driving performance and the explainability of the end-to-end driving network.

Regarding the suggestions for future work, several challenging and meaning-

ful directions deserve investigation to enhance the explainability of end-to-end au-

tonomous driving systems. One promising area involves the integration of LLMs

into autonomous driving systems. As LLMs continue to advance, their potential

to improve both the generalization capacity and explainability of these systems is

becoming increasingly evident. By leveraging common-sense reasoning, LLMs may

enable autonomous driving systems to better manage unexpected or anomalous sit-

uations, potentially enhancing the safety and reliability of autonomous vehicles in

real-world environments. For example, LLMs can use reasoning to anticipate com-

plex, unplanned scenarios, such as a pedestrian unexpectedly crossing the street or

an unusual obstacle in the roadway. This capacity to reason through unconventional

situations offers a promising approach to augmenting the decision-making process

of autonomous vehicles, making them safer and more adaptable in dynamic envi-

ronments. Moreover, LLMs can generate comprehensive, text-rich explanations for

driving decisions, addressing the “black box” nature of end-to-end networks. This

capability could be crucial in promoting transparency and building user trust. For
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instance, an LLM might provide detailed insights into why an autonomous system

chose a particular path, slowed down, or avoided certain objects. By translating

model outputs into natural language, LLMs can deliver more user-friendly explana-

tions that clarify complex model behavior in a manner understandable to passengers,

engineers, and regulators alike.

However, several challenges need to be addressed to effectively integrate LLMs

into autonomous driving systems. A primary challenge is the “hallucination” prob-

lem, where LLMs may generate plausible but factually incorrect information. This

issue could be critical in autonomous driving, as inaccurate information could lead

to misunderstandings about the vehicle’s environment, potentially resulting in errors

in perception or decision-making. For instance, if an LLM incorrectly describes an

object or event, the system’s response could jeopardize safety. Another significant

challenge is that most LLMs are designed to work primarily with text data and can-

not process raw sensor data, such as images, LiDAR, or radar, directly. To fully

realize the potential of LLMs in autonomous driving, it would be necessary to create

cross-modal methods capable of accurately translating visual and spatial information

from sensor data into natural language representations. Developing such cross-modal

systems would involve significant research and could require advanced techniques for

bridging the gap between diverse data types, potentially combining computer vision,

sensor fusion, and language processing to allow for seamless integration. In addition,

the computational demands of LLMs present a notable hurdle. LLMs are inherently
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resource-intensive, posing a challenge given the limited computational resources typ-

ically available in autonomous vehicles. Achieving efficient deployment of LLMs on

autonomous vehicle platforms is a technical obstacle that must be overcome. Tech-

niques such as model pruning, quantization, or the development of more efficient LLM

architectures will be essential for balancing real-time performance requirements with

the computational constraints of edge hardware. These approaches could help reduce

the memory cost and processing power needed for LLMs, making them more vi-

able for autonomous driving applications without sacrificing the speed and reliability

necessary for safety-critical decisions. In summary, while LLMs hold promising po-

tential to advance the explainability and adaptability of autonomous driving systems,

substantial research is required to address challenges like hallucination, cross-modal

integration, and computational efficiency. Addressing these challenges could lead to

more explainable, trustworthy, and robust autonomous driving systems capable of

managing the complex realities of real-world driving.
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