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Abstract

Automation systems have increasingly been implemented in the aircraft’s cock-

pits to facilitate human pilots and reduce their workload. While automation sys-

tems have significantly improved operational efficiency and reduced human er-

rors, poorly designed human-computer interaction (HCI) in cockpits has also intro-

duced new challenges in the highly automated control loops, such as the impaired

cognitive status induced by Out-Of-The-Loop (OOTL) phenomenon and the over-

load of the In-The-Loop (ITL) pilots caused by the multiple information resources

in the cockpits. The existing strategies mostly focus on solely identifying the pi-

lot’s OOTL status with machine learning methods or providing assistance with

predefined protocols based on the pilot’s workload levels. However, these meth-

ods lack explainability and fail to offer proactive automation support specifically

tailored to pilots’ cognitive states and task demands. Therefore, closed-loop sup-

port is required to provide human-centric assistance to both the OOTL and ITL

pilots with user-friendly interactions.

This thesis presents a systematic approach leveraging eye-tracking technol-

ogy and artificial intelligence (AI) to enhance closed-loop support for pilots. This

work addresses three key research problems, with contributions as follows. First,

a novel Flashlight model integrates attention distribution and attention resource
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metrics, providing a comprehensive framework to analyze pilots’ visual atten-

tion and predict operational performance. Second, the Visual Attention LTLf for

Identifying OOTL (VALIO) framework employs linear temporal logic and graph

neural networks to identify OOTL status with enhanced explainability, offering

human-readable insights into pilots’ behaviours. Third, an innovative Large Lan-

guage Model (LLM)-based method tokenizes eye-tracking data into Visual At-

tention Matrices (VAMs) to detect and support ITL troubleshooting behaviours,

enabling context-aware and resource-efficient human-computer interactions.

Several case studies were conducted at the Human Factors Lab in the Depart-

ment of Aeronautical and Aviation Engineering (AAE) to verify the efficacy of

the proposed methods. The eye-tracking measurements developed based on the

Flashlight model improved the prediction accuracy of pilots’ operation perfor-

mance. The VALIO framework achieved a stable identification accuracy across

different time windows, with F1 scores around 0.8. And the explainability is sig-

nificantly increased by the generated human-readable formulas. The integration

of eye-tracking techniques and LLM achieved a Micro-average F1 score of 0.852

for identifying where the pilot is troubleshooting, with proactive and user-friendly

interactions.

In conclusion, this thesis contributes to aviation safety by developing innova-

tive methods for monitoring, predicting, and supporting pilot performance in both

OOTL and ITL scenarios, advancing the human-in-the-loop HCI in modern cock-

pits. These developments lay the groundwork for safer and more efficient aviation

operations.
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Chapter 1

Introduction

This introductory chapter comprises five sections. Section 1.1 provides the re-

search background on human-in-the-loop automation in aviation, emphasizing the

advantages of utilizing visual attention in aviation studies and outlining the mo-

tivation for this work. Section 1.2 presents the research objectives, derived from

the background. Section 1.3 defines the research scope, followed by Section 1.4,

which discusses the significance of the work. Finally, Section 1.5 outlines the

organization of the thesis.

1.1 Background

Human errors are well recognized as amajor cause of aviation accidents, contribut-

ing to over 70% of such incidents due to factors like fatigue, mind wandering, and

reduced situational awareness [1–3]. Automation systems have increasingly been

implemented to enhance efficiency and reduce human workload [4]. The intro-

duction of advanced autopilot systems and flight management functionalities has

1
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significantly reduced human errors by automating tasks traditionally carried out

by pilots [5]. Autopilots and Flight Management Systems (FMS) automate mul-

tiple flight operations, such as control, navigation, information display, and fuel

management. While automation enhances efficiency and reduces workload, op-

timizing human-computer interaction (HCI) remains crucial in highly automated

settings. Poorly designed HCI, particularly in high levels of automation (LOA),

can lead to severe failures when human operators struggle to manage or intervene

effectively [6, 7].

Human-automation interaction has been studied extensively, leading to the cat-

egorization of multiple levels of human involvement in control tasks: in-the-loop,

on-the-loop, and out-of-the-loop [8, 9]. ”In-the-loop” indicates that the human op-

erator actively participates in real-time control and decision-making, while ”on-

the-loop” refers to a supervisory role in which humans monitor and are prepared

to intervene if required. In this study focused on pilots, both statuses are consid-

ered ”in-the-loop” (ITL), as both require active monitoring, which is more com-

mon in modern commercial aviation compared to manual control. On the other

hand, ”out-of-the-loop” (OOTL) refers to situations where the human operator is

disengaged frommonitoring and decision-making, often leading to decreased situ-

ational awareness and performance deterioration during critical interventions [10,

11]. Both NASA data and surveys among German aviators indicate that the OOTL

phenomenon significantly contributes to human errors in aviation [12, 13]. Mean-

while, ITL pilots may also face overload due to high workloads from concurrent

tasks, posing significant safety risks [14, 15]. Hence, adaptive automation support

tailored to the human pilot’s status is required.

As illustrated in Figure 1.1, automation support demands vary based on the
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pilot’s status. To deliver closed-loop support, automation systems must provide

timely warnings to re-engage OOTL pilots in the control loop or autonomously

manage non-critical tasks. For ITL pilots, the automation system must assist with

troubleshooting by providing critical information and supporting decision-making.

This study aims to develop a systematic method for delivering closed-loop support

tailored to pilots’ status and their specific needs for support.

Figure 1.1: Automation support based on human pilot’s status

To monitor pilot status and understand their needs for support, early studies

employed questionnaires and scales, such as the NASA Task Load Index (NASA-

TLX) [16, 17] and the SituationAwarenessGlobal Assessment Technique (SAGAT)

[18, 19]. Despite being effective, these methods are limited by response bias and

can interfere with operations. To provide continuous and objective monitoring,

recent studies have shifted to physiological data collection using methods such as

Electroencephalography (EEG) [20, 21], functional Near-Infrared Spectroscopy

(fNIRS) [22, 23], heart rate monitoring [24], and eye-tracking [25, 26]. Eye-
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tracking, in particular, has shown significant promise for practical application.

Unlike other techniques, such as EEG or fNIRS, eye-tracking provides actionable

and explainable insights, enabling targeted interventions to enhance pilots’ focus

on key information sources. Moreover, its non-invasive nature makes it advanta-

geous over other biometric approaches. A recent review highlighted eye-tracking

as the most effective method for assessing mental states in supervisory control

tasks [27]. Therefore, this work employs eye-tracking technologies to capture pi-

lots’ visual attention and analyze their status.

Despite the widespread adoption of eye-tracking technologies in aviation stud-

ies, challenges remain in developing a visual attention-based framework for pilot

status monitoring and closed-loop automation support. These challenges primarily

concern understanding visual attention, ensuring the explainability of estimation

results, and optimizing human-computer interaction, as outlined below:

• Understanding pilots’ visual attention: Existing research uses eye-tracking

to predict human performance from two perspectives: metrics focused on

specific Areas of Interest (AOIs) to assess attention distribution, and general

metrics indicating available cognitive resources for processing information.

Metrics such as total fixation duration, fixation count on specific AOIs, and

transitions between AOIs reflect the attention allocated to particular stim-

uli [28–30]. Meanwhile, Attention resource metrics like pupil diameter and

saccade velocity are used to evaluate the cognitive status and information

processing efficiency [31, 32]. Most studies analyze these perspectives in-

dependently, but a more integrated approach is required for a comprehensive

understanding of pilots’ visual attention.
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• Explainability of estimation results: Many existing studies rely on ma-

chine learning models to analyze pilots’ eye-tracking data and estimate their

status [33, 34]. The ”black-box” nature of these methods raises concerns

in risk-sensitive domains like aviation, where opaque decision-making can

lead to severe consequences [35, 36]. Incorrectly identifying OOTL status

can result in unwarranted alarms, leading to alarm fatigue and impairing pi-

lot performance [37]. Enhancing the explainability of these estimations is

critical, enabling more effective, human-centred alerts that help pilots rec-

ognize and adjust their behaviour to mitigate the risks of OOTL situations.

• Interaction approach: Most existing approaches directly adjust automa-

tion functions based on pilots’ status and predefined protocols, often dis-

regarding the pilot’s actual needs. This can lead to inadequate support or

unnecessary interventions, causing alarm fatigue [38]. Closed-loop automa-

tion support should consider the pilot’s intentions and deliver user-friendly

interactions. Communication between the system and the pilot is essential

to confirm support requirements and improve effectiveness.

This thesis presents a formal study to address these three challenges. The

work adopts Artificial Intelligence (AI) techniques, such as machine learning,

Graph Neural Network (GNN), Linear Temporal Logic (LTL), and Large Lan-

guage Model (LLM), etc., to develop a systematic method to provide close-loop

support to the pilots based on visual attention.
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1.2 Objectives

The primary objective of this thesis is to develop a systematic approach for closed-

loop support tailored to pilots, comprehensively considering their cognitive status

and task demands based on visual attention. Based on this overall goal and the

three major challenges, this goal is separated into three sub-objectives:

• Model the pilot’s visual attention and cognitive status

Modelling the pilot’s visual attention with collected eye-tracking data is the

first step in analysing the pilot’s cognitive status and identifying the critical

measurements to predict the pilot’s performance [27]. Generally, the eye-

tracking measurements can reflect human’s visual attention from two per-

spectives: metrics focused on specific Areas-Of-Interest (AOIs) to reflect

attention distribution, and general metrics implying the amount of available

attention resources for information processing tasks.[28]. To enhance the

granularity of eye-tracking data analysis, the primary goal of this work is to

model the pilot’s visual attention by integrating both attention distribution

and attention resource perspectives.

• Identify pilots OOTL status with explainability

Explainable identification of Out-of-the-Loop (OOTL) status is vital for ef-

fective closed-loop automation support [8, 10]. Interpretable results enable

the system to generate specific warnings or apply appropriate automation

assistance. To enhance the explainability of OOTL identification results,

this work adopts the Linear Temporal Logic (LTL) methods [39] to analyse

the pilot’s eye-tracking data. To adapt the eye-tracking data with the LTL
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methods, we proposed a method to encode pilots’ visual attention distribu-

tion data into formalized traces and developed a framework, named Visual

Attention LTLf for Identifying OOTL (VALIO). This framework segments

the cockpit view into several distinct AOIs based on functionality and spa-

tial organization, assessing pilots’ gaze direction and attention distribution

with both temporal and spatial considerations.

• Capture ITL pilot’s task demands and proactively respond with support

Another aspect of close-loop automation support for human pilots is to de-

tect the demand for support from the ITL pilot and proactively respond to it.

ITL pilots often experience high workloads, especially in scenarios requir-

ing attention to multiple concurrent tasks [40, 41]. In unexpected situations,

pilots must troubleshoot while simultaneouslymonitoring flight status, lead-

ing to a challenge due to the limited field of view (approximately 4 degrees)

[28, 42]. Hence, this work proposes a method to detect and respond to the

troubleshooting activities of ITL pilots using the Large Language Model

(LLM).

1.3 Scope

Concerning the research objectives, this work focuses on understanding the pi-

lot’s visual activities, cognitive status, and task demands to establish a systematic

approach for closed-loop automation support. The scope of the research is as fol-

lows:

• A model to evaluate the pilot’s cognitive status
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This model integrates the attention distribution and attention resources per-

spectives of the eye-tracking data to evaluate the pilot’s cognitive status and

predict performance. Therefore, eye-tracking measurements with higher

granularity that combine these two perspectives will be introduced. Fur-

thermore, the most impactful measurements that correlated to the pilot’s

performance will be identified.

• A framework to identify pilots OOTL status with explainability

The framework needs to not only identify the pilots’ OOTL status but also

enable explicit explanations. To achieve this, the eye-tracking data in cer-

tain time windows will be segmented to compile LTL traces. The Graph

Neural Network will be adopted to analyse the embedded temporal-spatial

information and obtain LTL formulas. These obtained human-readable LTL

formulas facilitate the explanations of the OOTL identification results and

provide more insights into the visual behaviours in OOTL status.

• An AI co-pilot to detect and respond to ITL pilot’s troubleshooting

Leveraging LLMs, the AI co-pilot processes eye-tracking data for compre-

hensive and context-aware troubleshooting detection. A novel method to

tokenize pilots’ eye-tracking data for LLM processing will be introduced.

Meanwhile, empirical data will be utilized to reduce the resource costs of

LLM training. Beyond the identification of troubleshooting behaviour, the

natural interaction capability and context-awareness of LLM will be lever-

aged to respond proactively to the pilot, facilitating user-friendly interac-

tions to assist pilots.
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1.4 Significance

By achieving these objectives, this research will make contributions to the follow-

ing research areas:

• Exploratory research on pilot’s OOTL and ITL status in aviation

While the importance of HCI in highly automated cockpits has been grad-

ually realized, most studies focus solely on either OOTL or ITL scenarios.

This research is positioned to make a pioneering contribution by taking both

statutes into consideration and specifying the different need for support cor-

responding to the statutes. This will lay a foundation for a more compre-

hensive understanding of pilots’ needs during flights and advance HCI in

cockpits to enhance aviation safety.

• Development of a close-loop support scheme based on the pilot’s visual at-

tention

This scheme involves a thorough analysis of the pilot’s different statuses, in-

cluding the characteristics and the specific needs for support in each status.

Novel methods for status discrimination and proactive support provision are

developed. Hence, this research is expected to make academic contributions

to the realization of close-loop automation support with comprehensive con-

sideration of the pilot’s status and demands.

1.5 Structure of the thesis

This thesis consists of six chapters, with the ouThe organization of this thesis is

demonstrated in Figure 1.2.
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Chapter 1 introduces the background, objectives, scope, significance and over-

all structure of this work.

Chapter 2 reviews the pilots statuses and eye-tracking studies in aviation, propos-

ing the research challenges in achieving a closed-loop automation support with

eye-tracking techniques. In response to the challenges, the Linear Temporal Logic

(LTL) methods and Large Language models (LLMs) are proposed to be adopted.

Therefore, the LTL studies and the LLM-based psychological data processing are

also review in this chapter.

Chapter 3 proposes a novel Flashlight model that combines the attention re-

sources and attention distribution to analyse the pilot’s visual attention and cogni-

tive status. A case study to verify the proposed model and proposed eye-tracking

measurements is described. Meanwhile, the most impactful eye-trackingmeasure-

ments that correlate to the aircraft control performance are identified.

Chapter 4 presents a Visual Attention LTLf for Identifying OOTL (VALIO)

framework. In this framework, themethods of linear temporal logic on finite traces

(LTLf ) are utilised to identify the pilot’s OOTL status with explainability. A novel

method to encode the eye-tracking data into Visual Attention Traces (VATs) is

introduced, and a GNN is leveraged to parse the VATs. A case study is conducted

to test the effectiveness of the proposed method and find the optimal length of

VATs.

Chapter 5 introduces an innovative approach to detect and respond to the ITL

pilot’s troubleshooting behaviours by utilizing the LLM. The eye-tracking data

are tokenized into Visual Attention Matrices (VAMs) as LLM input. The context-

aware ability of LLM facilitates capturing the complex troubleshooting status of

pilots, which blends with normal monitoring behaviors. The use of empirical
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VAMs contribute to effectively processing non-semantic eye-tracking data with

LLM. Notably, the proposed method levearges the natural interaction capability of

LLM to enable a proactive response by confirming the pilot’s status and proposing

to support. By conducting a verification case study, the performance of identifying

troubleshooting behaviours is computed and the response messages are evaluated

by a group of aviation experts.

Chapter 6 concludes the thesis with a summary of the research findings, dis-

cussions, and future research plans.

Figure 1.2: Organization of the thesis



Chapter 2

Literature Review

This chapter summarises the relevant studies on the techniques to be utilised in

this study, and identifies their existing challenges in achieving a closed-loop au-

tomation support approach. First, Section 2.1 briefly reviews the human-computer

interaction (HCI) and the pilot’s cognitive status in aviaton. Then, the applications

of eye-tracking techniques in aviation studies are presented in 2.2. Next, Section

2.3 illustrates the Linear Temporal Logic (LTL) methods to explore an explainable

method for the pilot’s status identification. Finally, section 2.4 introduces how the

Large Language Models (LLMs) are used in processing psychological data.

12
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2.1 Human-computer interaction (HCI) in aviation

2.1.1 Out-Of-The-Loop (OOTL) and In-The-Loop (ITL) sta-

tuses

Automation systems have become increasingly prevalent across various trans-

portation sectors, especially within the aviation industry [4]. While automation

improves efficiency and reduces workload, it also necessitates optimizing HCI in

highly automated environments. Poorly designedHCI in high levels of automation

(LOA) has been linked to severe failures when human operators are unable to ef-

fectively manage or intervene in automated systems [6, 7]. Therefore, researchers

have extensively explored HCI in human-automation concurrent task environ-

ments and defined multiple levels of human engagement in the control loop: in-

the-loop, on-the-loop, and out-of-the-loop [8, 9]. ”In-the-loop” indicates that hu-

man operators are actively engaged in real-time control and decision-making tasks,

while “on-the-loop” signifies a monitoring role, where humans supervise and are

ready to intervene if necessary. In this study, we treat both statuses as “in-the-

loop” (ITL) since both involve active monitoring, and modern commercial flights

rarely require massive physical control. In contrast, ”out-of-the-loop” (OOTL) in-

dicates that the human operator is not engaged in monitoring or decision-making,

leading to reduced situational awareness and potential performance degradation

when intervention is required [10, 11].

The OOTL phenomenon carries substantial implications, from reduced deci-

sion and action performance, to critical incidents and accidents [12, 13]. Oper-

ators experiencing the OOTL phenomenon may find it challenging to promptly
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identify system malfunctions or failures [43]. Such delayed or inappropriate re-

sponses to system anomalies can further intensify the severity of potential acci-

dents [44]. Research suggests that the OOTL phenomenon increases operators’

workload when they are required to regain control after automation failure or dis-

engagement, thereby placing additional strain on their attention resources [45, 46].

Meanwhile, the pilots’ needs for support in ITL status cannot overlooked. The pos-

sible oversight of ITL pilots’ needs for support may result in suboptimal perfor-

mance or potential risks, particularly in scenarios requiring simultaneous attention

to multiple tasks [40, 41]. For instance, pilots may find it challenging to visually

troubleshoot an error while monitoring the flight status independently, given the

limited field of view (approximately 4 degrees) [28, 42]. This increased workload

of ITL pilots might also induce severe accidents [47].

2.1.2 Identifying OOTL and ITL

To assess pilots’ cognitive status, early investigations introduced various question-

naires and scales, such as the NASA Task Load Index (NASA-TLX) [16, 17] and

the Situation Awareness Global Assessment Technique (SAGAT) [18, 19], to as-

sess these factors and their correlation with pilots’ performance. However, while

these methods are straightforward and effective, they are often constrained by re-

spondent bias and can interfere with operations. In order to continuously and ob-

jectively monitor pilots’ status and predict their performance, recent studies have

frequently turned to collecting pilots’ physiological data using techniques such

as Electroencephalograms (EEG) [20, 21], functional Near-Infrared Spectroscopy

(fNIRS) [22, 23], heart rate [24], and eye-tracking [25, 26].
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Among these physiological measures, eye-tracking holds significant promise

for practical implementation. A recent review has indicated that eye-tracking is

the most widely adopted and effective method for assessing the mental state of

human operators in supervisory process control tasks [27]. Investigating visual

behaviours via eye-tracking technology offers a valuable window into pilots’ at-

tentional focus and cognitive status, which are key factors in detecting their status

and needs for support [48, 49]. Unlike methods based on functional Near-Infrared

Spectroscopy (fNIRS) and Electroencephalograms (EEG), which lack direct im-

plications for behavioural adjustments, eye-tracking data provide actionable and

explainable insights. Specifically, it enables the formulation of precise recommen-

dations for pilots to enhance their engagement with critical information sources,

thereby addressing the OOTL phenomenon (for example, advising increased fo-

cus on specific displays or instruments). And the pilots’ visual attention distribu-

tion can reveal their current focus to provide insights into what support they may

need. Moreover, eye-tracking technology facilitates non-invasive data collection,

offering a significant advantage over other biometric approaches. Consequently,

this study leverages eye-tracking to analyse pilots’ visual attention, exploring the

methods for identifying pilots’ status and their needs for support.

2.2 Eye-Tracking techniques in aviation studies

2.2.1 Development

It has been over one hundred years since the eye-tracking approachwas first adopted

in aviation studies, and the eye-tracking technique has been widely studied in avi-
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ation as a proven approach now [50]. The pioneer researchers started to study

the pilots’ eye movements following body rotations via naked-eye observations

[51] when aviation activities were almost only for military purposes at that time.

Nowadays, commercial aviation activities have grown to become one of the most

vital and complex industries that contribute over$2.7 trillion to the world’s gross

domestic product (GDP) [52] Meanwhile, eye-tracking technologies have experi-

enced an emerging development with various techniques and algorithms to track

the gaze position and direction automatically in real-time and have been widely

applied to many areas, including HCI, gaming, and automatic safety research [53,

54]. Leveraging eye-tracking technologies to study eyemovement has beenwidely

adopted to improve the safety and human performance of aviation activities [31,

55].

The eye-tracking technologies capture signals from the movements and activ-

ities of the pupil, cornea, sclera, iris, retina, and other eye components by sev-

eral different methods such as shape-based, appearance-based, feature-based, and

hybrid methods [56, 57]. Now, both the hardware and the software of eye track-

ers have evolved owing to the comprehensive development of materials, sensors,

artificial intelligence (AI), and other technologies [58]. In addition to the con-

ventional eye-tracking techniques based on scleral search coil, electrooculogra-

phy (EOG), infrared oculography (IOG), and video oculography(VOG), various

rising advanced technologies, such as machine learning (ML), internet of things

(IoT), cloud computing, has also been integrated to improve the eye-tracking re-

sults and explore eye-tracking applications [54]. Several studies and applications

have confirmed that eye movements can act as effective and non-intrusive real-

time performance indicators of visual attention and mental state in humans [59–
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64].

2.2.2 Remaining challenges

As discussed in Section 1.1, there remain three challenges in monitoring pilot sta-

tus and developing closed-loop automation support.

2.2.2.1 Enhancing the understanding of visual attention

Existing studies typically employ eye-tracking measurements to predict human

performance from two perspectives: metrics focused on specific Areas-Of-Interest

(AOIs) to reflect attention distribution, and general metrics implying the amount

of available attention resources for information processing tasks.

• Attention distribution metrics commonly include total fixation duration, fix-

ation count directed towards predefined AOIs, and transitions between these

AOIs, indicating the level of interest and attention allocated to particular

stimuli [28–30]. For example, research has shown that novice pilots tend to

allocate more total fixation time to the airspeed indicator and heading indi-

cator, whereas expert pilots distribute their fixation durations more evenly

across all instruments, reducing the likelihood of overlooking critical infor-

mation and thereby enhancing performance [65, 66]. Similarly, studies have

identified that distractions can be detected by observing reduced viewing

time on specific instruments during different flight phases (e.g., decreased

attention towards the attitude indicator during cruising) [25].

• Attention resource metrics, such as pupil diameter, and saccade (peak) ve-

locity, are commonly utilized to evaluate operators’ cognitive status and



CHAPTER 2. LITERATURE REVIEW 18

the efficiency of information processing at a holistic level [31, 32]. For in-

stance, decreases in saccade velocity have been associated with increased

fatigue in both simulated and real flight scenarios [67, 68]. Furthermore,

pupil diameter has been demonstrated to be highly correlated with factors

such as perceived workload and fatigue and has been employed in assessing

pilots’ performance in numerous studies [69–71].

While both metric types are widely adopted in aviation research, most existing

studies apply them separately without further integration. For instance, Lutnyk

et al. leveraged attention resource metrics (denoted as AOI-independent metrics

in their work), including average fixation duration and saccade amplitude, to dis-

tinguish pilots’ task statuses and normal flight conditions as they arouse different

workload [72]. Meanwhile, their findings also adopted attention distribution met-

rics and confirmed that pilots devote more total fixation duration to AOIs that

are closely associated with primary tasks during specific flight phases. However,

more attention needs to be paid to the integration and comprehensive analysis of

both attention distribution and attention resource two perspectives.

Human performance in complex and dynamic aviation human-machine col-

laboration environments is dependent on the information processing capability

and how they distribute their attention simultaneously. Both impaired information

processing and inefficient attention allocation across multiple tasks can hinder op-

erators from achieving optimal performance [34, 73, 74]. For instance, a study in

road traffic integrated the gaze trajectory (attention distribution) and pupil diam-

eter (attention resources) to estimate the drivers’ workload, and obtained superior

performance than single modes [75]. Moreover, although pupil diameter is typ-
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ically considered a general metric unrelated to specific AOIs, a study by Zhang

et al. revealed significant variations in pupil diameter under different time and

road complexity conditions in electronic centralized aircraft monitoring (ECAM),

but not with other internal instruments [76]. This suggests that the granularity of

eye-tracking data should be enhanced by combining both attention distribution and

attention resource perspectives to enhance the understanding of pilots’ visual at-

tention. A Flashlight model with a consideration of both perspectives is proposed

in Chapter 3.

2.2.2.2 Enhancing explainability of status identification

Generally, previous works have studied pilots’ status from the perspective of data

characteristics supported by machine learning methods. These machine-learning-

based methods offer a robust capability for processing extensive and comprehen-

sive data [26, 77]. However, there is an absence of explainability in the infer-

ence process of these deep learning or ensemble models with complex hierarchi-

cal structures since the rationale behind their decisions are hard to understand and

interpret [78–80]. Therefore, these “black-box” methods has sparked significant

concerns about their application in the high-risk aviation industry [35]. Mean-

while, the status identification results derived from purely digital numbers cannot

provide direct guidance on how pilots should modify their behaviours to prevent

or mitigate the negative effects. To address this gap, it is crucial to develop ex-

plainable methods for status identification based on eye-tracking data, and gener-

ate more instructive recommendations for pilots on how they should manage their

visual behaviours.

This research innovatively integrates Linear Temporal Logic (LTL) and pilots’
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visual behaviours for the explainable identification of their OOTL status [39]. The

LTL methods are reviewed in Section 2.3, and the LTL-based framework is pre-

sented in Chapter 4.

2.2.2.3 Enhancing the interaction for ITL support

Based on the analysis of eye-tracking and other physiological data, researchers

develop methods to assess operators’ status and provide support in different levels

[61, 81]. A common strategy is adaptive automation, which dynamically adjusts

the LOA based on operator’s status [82, 83]. However, most existing literature

has focused on mitigating risks associated with the OOTL phenomenon by adjust-

ing automation levels, overlooking the more comprehensive interaction with ITL

pilots. Considering the more dynamic needs of the pilots when they are actively

engaged with ITL status, the oversight can result in suboptimal performance. For

instance, redundant warning messages to the ITL pilots may disrupt the user and

cause alarm fatigue [38]), while fully relying on the ITL pilots may lead to a lack of

necessary assistance. This necessitates a more user-friendly interaction approach

that is capable of understanding the ITL pilots’ needs for support and providing

appropriate aids with context awareness.

To mitigate this gap, this study adopts the widely adopted Large Language

Model (LLM), GPT-4, as it has demonstrated remarkable achievement in context-

awareness and understanding human intentions [84, 85]. The data processing of

LLM is summarised in Section 2.4, and the LTL-based framework is presented in

Chapter 4.
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2.3 Linear Temporal Logic (LTL)

This study utilizes Linear Temporal Logic (LTL) to address the explainability chal-

lenge in identifying the OOTL status. LTL, a formal system in computer science, is

used to specify and verify system behaviours over time. It encodes atomic propo-

sitions into a sequence of states and checks their compliance with LTL formulas,

making it suitable for expressing the temporal logic of human behaviours [39, 86].

More specifically, the use of linear temporal logic on finite traces (LTLf ) for-

mulas is proposed in this work to characterize behaviours from observed finite

traces [87]. The LTLf is a variant that extends the classical LTL to accommodate

finite traces, enhancing its applicability to mine the temporal logic specification of

system behaviours from a set of program execution logs in practical contexts [88,

89]. These execution logs, composed of traces that comprise a series of system

states[90], are interpreted over finite traces using LTLf formulas [91]. Therefore,

theLTLf is expected to process the finite trace of visual behaviours for identifying

the OOTL status of pilots within a certain period.

2.4 Processing psychological data with Large Lan-

guage Model (LLM)

The development of LLMs, such as GPT-4, has advanced data pattern analysis

across various domains, particularly where large, complex datasets are involved.

It offers a novel option for processing processing psychological data, including

fNIRS [92], EEG [93, 94], and eye-tracking data [95, 96].

A recent study have demonstrated the application of LLMs in analyzing fNIRS-
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derived metrics to generate easy-to-understand evaluation reports and actionable

recommendations for Mild Cognitive Impairment (MCI) rehabilitation tasks [92].

Their method combined the advantages of LLMs’ pattern recognition capability

to evaluate the MCI status of the subjects and LLMs’ text generation ability to

provide optimization recommendations for rehabilitation task design. Similarly,

another study utilized a lightweight LLM in a local setting to recognize emotional

states from EEG signals, generate personalized diagnostic and treatment sugges-

tions, and automatically produce electronic medical records [94]. The adoption

of LLMs in EEG signal processing provides transparent reasoning steps and en-

ables interpretable step-by-step verification, thereby promoting trustworthiness in

clinical contexts [93].

Compared to EEG and fNIRS, which are used to understand cognitive status at

a general level, eye-tracking data has the potential to provide specific mappings to

external stimuli in the environment. Monitoring eye movements with LLMs helps

understand visual attention and information acquisition. For example, researchers

developed a method to assist visually impaired individuals using a wearable eye

tracker [96]. In this approach, the LLM recognizes points of interest from eye-

tracking data and generates voice descriptions of objects, supporting users in better

understanding their surroundings. However, the LLM in this work only reacts to

the current visual attention, utilizing image-to-text and text-to-voice capabilities

[97] to describe external stimuli. It lacks the ability to extensively analyse eye

movements and discern the users’ visual scanning behaviours.

To identify the needs for support of pilots, such as discerning troubleshoot-

ing behaviour from normal monitoring during flight, the LLM requires a broader

understanding of pilots’ eye movements. Therefore, a challenge lays in enabling
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the LLM to understand the pilot’s visual attention in a certain period with inher-

ent information processing logic. An appropriate pre-processing method for the

eye-tracking data is needed to integrate with LLMs.



Chapter 3

Study 1: A Visual attention analysis

model

In this chapter, a Flashlight model is proposed to enhance the granularity of eye-

tracking data analysis. This model integrates both the attention distribution per-

spective and attention resource perspective of eye-trackingmeasurements to obtain

a more comprehensive understanding of pilots’ visual behaviours. The structure

of this chapter is organized as follows: Section 3.1 presents the background with

current studies, and proposes three research questions. Section 3.2 delves into

the methodology for analyzing eye-tracking data utilizing the proposed Flashlight

model in response to RQ1. Sections 3.3 and 3.4 showcase a case study and discuss

the findings, addressing research questions RQ2 and RQ3, respectively. Finally,

Section 3.5 summarises this work.

24
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3.1 Background

Human performance degradation has long been acknowledged as a primary cause

of aviation accidents [1], with over 70% of these accidents attributed to human fac-

tors such as fatigue, mind wandering, and diminished situational awareness [2, 3].

Especially with the fast development of automation systems, the inadequate work-

load in highly automated human-machine collaboration conditions may diminish

the vigilance and situation awareness of the pilots and cause mind wandering, re-

sulting in impaired human performance [82, 98, 99]. Therefore, monitoring the

pilots’ behaviours and predicting their performance has been attributed with sig-

nificant importance in conducting in-time interventions and improving aviation

safety [11, 100].

As introduced in Section 2.2.1, the development of performance prediction

methods based on eye-tracking data has emerged as a prominent research direc-

tion aimed at risk prevention and safety enhancement in the aviation industry [33,

101]. However, Section 2.2.2.1 presents a research gap in the more comprehen-

sive understanding of pilots visual attention, due to negelecting the integration of

attention distribution and attention resource perspectives. To mitigate the research

gap, we aim to explore three research questions (RQs) as following:

• RQ1: How to develop eye-tracking metrics that can reveal both the attention

distribution and attention resource perspectives?

• RQ2: Are the developed metrics effective in predicting pilot performance?

• RQ3: How do the developed metrics contribute to pilot performance pre-

diction?
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In response to the first research question (RQ1), this study introduces an inno-

vative Flashlight model for eye-tracking analysis that integrates two critical per-

spectives. As shown in Figure 3.1, the model combines the concept of William

James’ Spotlight attentionmodel [102] with the widely adopted ChristopherWick-

ens’ model of human information processing [103]. Within this Flashlight model,

the ”bulb” symbolizes the focus of (visual) attention distribution, while the ”bat-

tery” signifies the available attention resources for processing perceived informa-

tion. This integrative model provides an intuitive demonstration that each engage-

ment with an AOI demands the attention resources for supporting the entire infor-

mation processing cycle. In response to RQ2 and RQ3, a case study is conducted

to evaluate the AOI-gaze metrics developed based on the Flashlight model. It as-

sesses the efficacy of the developed metrics and compares them with established

input metrics to demonstrate how they contribute to pilot performance prediction.

3.2 Flashlight model

This section elucidates the rationale behind the synthesized flashlight model and

explicates the utilization of eye-tracking metrics through an integrated approach.

3.2.1 Visual attention metrics in human performance

Human performance depends on both the attention distribution and the concurrent

availability of attention resources. A review of studies in road traffic showed that

though drivers can fairly handle the tracking task while talking on cellphones, driv-

ing performance was largely impacted when dialling [104]. Driving while talk-

ing on the phone can be successful multitasking since it uses different perceptual
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Figure 3.1: Flashlight model for visual attention

modalities (visual and auditory) in parallel, but driving while dialling requires vi-

sual selective attention sequentially [28]. Therefore, the decrement in performance

is attributed to the requirement of focal vision for both tasks, necessitating directed

fixations on the AOIs for sufficient information gathering [105, 106]. Given the

limited field of view (approximately 4 degrees), an individual’s focal vision is re-

stricted to a singular AOI at any given time. This limitation suggests that the AOI

which occupies a larger percentage of time is more likely to provide more vital

information, making visual attention distribution critical for performance when

tasks require selective attention sequentially [42]. Additionally, both tracking and

dialling tasks demand attention resources for a complete information processing
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cycle, from pattern recognition to response execution [107]. The extent of avail-

able attention resources determines the capacity for processing information and,

consequently, human performance.

3.2.2 Development of Flashlight model

This work proposes the Flashlight model by synthesizing the attention distribution

and the attention resource perspectives as presented in Figure 3.1. The model

provides an illustration for tasks requiring sequential visual selective attention.

As shown in the upper part of Figure 3.1, the multitasking cases requiring divided

attention (typically using different senses) is not discussed in the Flashlight model.

The Flashlightmodel integrates elements from James’ Spotlight attentionmodel

on its left side, emphasizing how attention distribution across various tasks impacts

performance [102]. Each circle on the task space indicates an AOI visit or revisit

behaviour in sequence when handling the given task. Notably, the completion

of a task might require acquiring comprehensive information from multiple AOIs

or revisits to the same AOI. In this way, the flashlight can be deemed as a filter

for visual attention, which decides what information is captured and processed.

The correct task steps in yellow represent the optimal sequence of AOI visits for

acquiring necessary information, and the incorrect task steps in red represent the

AOI visits in a less effective way. Specifically, performance decreases when at-

tention is unexpectedly directed towards incorrect paths (i.e., AOIs unrelated to

the current task, or collecting information with incorrect sequence).

Meanwhile, the model incorporates Wickens’ framework to outline the atten-

tion resources demanded for information processing [103]. In the complex and
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dynamic environment of aviation, pilots are tasked with continuously monitoring

both internal instruments and external views, gathering data and making decisions

across a spectrum of AOIs [108, 109]. Each engagement with the AOIs, repre-

sented as a circle on the left side, necessitates attention resources to support in-

formation processing. As a result of information processing, the decisions or the

responses will direct the next step of selective attention for perceiving stimuli or

conducting operational movements. This Flashlight model combines the attention

distribution perspective and attention resource perspective, demonstrating their

mutual effect on human performance.

3.2.3 Eye-tracking metrics based on Flashlight model

Eye-tracking metrics provide a real-time and unobtrusive method to monitor the

two perspectives in the Flashlight model simultaneously. On the one hand, atten-

tion distribution metrics, such as total fixation time, total number of fixations, and

visiting sequence, directly mirror how pilots allocate their attention and the effort

expended in extracting information from visual stimuli [40, 110]. On the other

hand, attention resource metrics are employed in various studies to infer informa-

tion processing capability, reflecting factors like fatigue, situational awareness,

and workload [33, 111].

Building on the demonstrated efficacy of eye-tracking metrics in predicting

human performance from dual perspectives, this work advocates for an integrated

approach of AOIs and attention resourcemetrics to facilitate a more thorough anal-

ysis. Given that information processing effort is inherently linked to each visit to

an AOI, the eye-tracking measurements that are often used to gauge pilots’ total
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available attention resources might be different on different AOIs. For example,

though the pupil diameter is commonly used to monitor the pilots’ cognitive status

during tasks and predict task performances at an overall level [27, 70], the result

from a study shows that there can be a significant difference between the pupil

diameter on different AOIs in the same phase [76]. It demonstrate the necessity

for assessing the attention resources devoted to specific AOIs, rather than at an

overall level, to increase the granularity of pilots’ attention analysis.

Following the Flashlight model’s premise that each engagement with an AOI

demands the attention resources for supporting information processing, this work

develops the combined AOI-gaze metrics, as depicted in Figure 3.2 (Note that the

AOI-gaze metric illustrated in the figure is exemplary and not exhaustive). These

AOI-gaze metrics apply the measurements, that were typically used to measure

total available attention resources, to individual AOIs to enrich the granularity of

eye-tracking analysis. In addition to the attention distribution metrics that delin-

eate how attention is allocated across various AOIs, and the attention resource

metrics that measure overall information processing capacity, the AOI-gaze met-

rics offer a complementary approach to precisely evaluate the attention resources

allocated for processing specific information from individual AOIs.

To validate the effectiveness of the AOI-gaze metrics and how they contribute

to pilot performance prediction with other metrics, a case study is presented in

Sections 3 and 4.
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Figure 3.2: Combined AOI-gaze metrics

3.3 Case study

This study evaluated theAOI-gazemetrics developed based on the proposed Flash-

light model through a flight simulation experiment. This section details the exper-

iment settings, data collection, and evaluates the efficacy of the proposed metrics.

It also compares the various types of input metrics using the widely recognized

Gradient-boosted decision trees (GBDT) model to identify the most influential

eye-tracking measurements in flight control tasks and demonstrate how these met-

rics contribute to pilot performance prediction.
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3.3.1 Participants and apparatus

The study involved twenty-six students, aged between 22 and 32 years (M = 24.9,

SD = 2.01), all of whom had normal or corrected-to-normal vision. These partic-

ipants were recruited from The Hong Kong Polytechnic University (PolyU), The

Chinese University of Hong Kong, and the City University of Hong Kong. The

group consisted of 17 men (65.4%) and 9 women (34.6%). Four of these par-

ticipants had prior experience (less than 5 hours) with the simulator, while the

remaining participants were novices. This research complied with the American

Psychological Association Code of Ethics and received ethical approval from the

PolyU Institutional Review Board (Reference number: HSEARS20211117002),

and written informed consent was obtained from all subjects before the experi-

ment commenced.

The research experiment was conducted in the Department of Aeronautical and

Aviation Engineering at PolyU. The participants flew in a Cessna 172 simulator

providing a variety of controls, including yoke, rudder, throttle, and flaps. The

simulator also provides a panel with instruments, such as attitude indicator, al-

timeter, and airspeed indicator. The graphics were produced by Microsoft Flight

Simulator X and displayed on an assembled screen. The flight information, in-

cluding pitch, bank, airspeed, and altitude, was recorded at 25 Hz. Eye-tracking

data were collected using a wearable eye tracker with a frequency of 100Hz (Tobii

Pro Glasses 3). The eye tracker contained 16 illuminators and 4 eye cameras to

capture eye movements and pupil measures, and a scene camera to record the view

ahead. Additionally, a desktop computer with a 27-inch monitor (1920*1080 pix-

els) was used to monitor the flight simulation and record eye-tracking data. Figure
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3.3 illustrates the apparatus and experiment settings.

Figure 3.3: Apparatus and experiment settings

3.3.2 Experiment procedure and task design

The experimental process commencedwith an introductory session and a free prac-

tice round, allowing participants to familiarize themselves with the simulator’s

controls and environment. To ensure that all participants were capable of handling

the flight control tasks and completing the flight, the experiment employed a sim-

plified manual operation requirement under visual flight rules (VFR) [21]. Partici-

pants were only required to maintain a Straight-and-Level flight [112] by adjusting

pitch, roll, and yaw angles using joysticks and throttle, guided by instrument pan-

els and external views. Other tasks, such as navigation and fuel monitoring, were

automated, requiring no effort from the participants. The practice sessions lasted

until participants were able to independently execute a complete flight, approxi-

mately 25 minutes in duration, from takeoff at Shanghai Hongqiao International

Airport (ZSSS) to landing at Shanghai Pudong International Airport (ZSPD) under

the simplified VFR condition. After obtaining signed consent forms, each partic-

ipant was equipped and calibrated with the eye tracker before commencing the
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official experiment flights. A break of 10 to 20 minutes, depending on the partic-

ipants’ needs, was provided after the first flight to mitigate the effects of fatigue

on subsequent performance. The order of the two flight routes was randomized to

further ensure experimental integrity.

In the experiment, each participant was tasked with flying two segments of a

round trip between Hong Kong and Guangzhou, which were recorded as separate

files within the flight simulator. For each session, one of these files was selected

and initiated with the aircraft already at cruising altitude (2,800 feet) under the

autopilot function. After approximately 42 minutes of flight, an engine shutdown

scenario was uniformly introduced to evaluate the participant’s ability to maintain

control of the aircraft’s attitude without engine power, as depicted in Figure 3.4.

The second session employed the return leg of the first session’s route to maintain

consistent variables such as flight distance and external conditions. This method

also aimed to minimize the learning effect by offering a change in the external

views, thus reducing participants’ familiarity with the route from the initial ses-

sion. All experiment trials were conducted under the simplified VFR condition,

and all the participants completed the two segments successfully. Participants

were unaware of the timing of the engine shutdown, and their manual aircraft con-

trol data after the engine shutdown were recorded to assess their performance in

emergency takeover situations.

3.3.3 Flight control performance

Participants’ flight control performance was assessed by analyzing the aircraft’s

pitch and roll angles during the descent phase, as illustrated in Figure 3.5. Fol-
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Figure 3.4: Experiment flight process

lowing the engine shutdown, both the altitude and airspeed of the aircraft started

to decline due to the absence of power. The incident was triggered over open

wilderness during the cruising phase, with no airports within view, to maximize

the element of surprise for the participants. They were informed that their pri-

mary objective was to stabilize the aircraft (specifically, to minimize the pitch and

roll angles) using the simulator’s joysticks throughout the descent, rather than at-

tempting an emergency landing on flat terrain. Consequently, participants were

not tasked with locating a suitable landing site; their focus was solely on preserv-

ing the aircraft’s attitude in mid-air. Specifically, though four participants who

had prior experience, their performance didn’t show significance comparing to

the other participants who had only practice before the experiment.

Equations 3.1 and 3.2 define the Average Pitch (Ap) and Average Roll (Ar)

to evaluate the pitch and roll angles during the descent phase at an overall level

(ts: time of engine shutdown, start of descent; tg: time of ground contact). The

absolute value of the pitch and roll angle (pi and ri) at each time point, multi-

plied by the time interval, indicates the proportion of the green (red) area shown

in Figure 3.5. Lower values of Ap and Ar indicate better performance, with the
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aircraft maintaining a flatter attitude during the descent. A geometric mean of

these two angles was calculated to provide a composite measure of flight control

performance (MGeo), which is obtained by taking the square root of the product of

Ap and Ar. A lowerMGeo value denotes enhanced flight control performance, as

articulated in Equation 3.3.

Ap =
Σl

s|pi| ∗∆ti
tg − tg

(3.1)

Ar =
Σl

s|ri| ∗∆ti
tg − tg

(3.2)

∆t = ti − ti−1

pi: pitch value at sampling point i,−180 < pi < 180

ri: roll value at sampling point i,−180 < ri < 180

MGeo =
√
Ap ∗ Ar (3.3)

To better fit in the performance prediction model, this study conducted an

inverted range-specific normalization to the MGeo based on Min-Max method.

Specifically, the MGeo of each flight is normalized into the range [0.1, 0.9], con-

sidering there wasn’t a ”perfect” or ”worst” performance. And interpretation of

theMGeo was inverted to be more intuitive: the higher value suggests better flight

control performance. The normalization method is given in Equation 3.4.

(Normalized)MGeo = 1− (0.8 ∗ MGeo −Min

Max−Min
+ 0.1) (3.4)
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Figure 3.5: Pitch and row angle during descent

3.3.4 Eye-tracking measurements

In this study, eye-tracking data were processed using the Tobii Pro Lab software,

employing three types of data depicted in the Flashlight model.

Attention Distribution Metrics: Six Areas Of Interest (AOIs) critical for mon-

itoring aircraft status and managing flight control tasks were identified, as illus-

trated in Figure 3.6. These AOIs include essential instruments and visual cues

within the flight simulator: the attitude indicator (ATT), altimeter (ALT), airspeed

indicator (ASI), vertical speed indicator (VSPD), the aircraft’s nose (NOSE), and

the view outside the window (OTW). The ATT, ALT, ASI, and VSPD are internal

instruments that provide critical information on the aircraft’s status, whereas the

NOSE andOTWprovide a direct visual representation of the external environment

and the aircraft’s orientation relative to the horizon. Dwell time(%), encompassing

both fixations and saccades within these AOIs, is calculated to represent the pilots’

visual attention distribution during the task. For instance, Dwell (%).ATT quan-
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tifies the percentage of total fixation and saccade time dedicated to the attitude

indicator during the descent phase.

Figure 3.6: Areas of Interest (AOIs) in the flight simulator

Attention Resource Metrics: This analysis included five metrics related to at-

tention resources: Pupil Diameter (PupD) [113, 114], Average Fixation Duration

(FixDur) [115, 116], Fixation Rate (FixRt) [117, 118], Saccade Rate (SacRt) [119,

120], and Saccadic Peak Velocity (SacPkV ) [121, 122]. PupDwas analyzed using

a baseline normalization method to account for individual differences in pupil size

[123]. A thirty-second baseline period (T0), starting five minutes into each trial,

was established to capture the subjects’ normal working state, as shown in Figure

3.4. The PupD during the descent phase was then normalized against the T0 period

to indicate relative pupil size changes. FixDur and FixRt measure, respectively,

the average duration of fixations and the average number of fixations per second

during the descent. SacRt and SacPkV calculate the average number of saccades

per second and the average peak velocity of these saccades during the same phase.

AOI-gaze Metrics: The study merged the six AOIs with three attention re-

source metrics (FixDur, FixRt, PupD), resulting in 18 combined AOI-gaze met-
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rics, as depicted in Figure 3.2. For example, FixDur.ASI is the average fixation

duration on the airspeed indicator, calculated by dividing the total fixation dura-

tion on ASI by the total number of fixations on ASI. FixRt.ASI reflects the fix-

ation rate on ASI, obtained by dividing the total number of fixations on ASI by

the total descent phase duration. PupD.ASI represents the average pupil diameter

when viewing ASI during the descent, normalized against the global pupil diame-

ter during T0. Saccademetrics were excluded from this analysis due to theminimal

occurrence of saccades within the instrument AOIs.

MixedMetrics: To investigate how the developed AOI-gaze metrics contribute

to pilots’ performance with other metrics, all the eye-tracking measurements from

the previous three categories are incorporated into one group. It serves the pur-

poses of validating if the inclusive analysis of all three categories can exceed sin-

gular usage and identifying the most pivotal eye-tracking measurements across all

the categories.

3.3.5 Data analysis and comparison

To explore RQ2 and RQ3, this study utilized the eye-tracking metrics outlined in

Section 3.3.4, applying themwithin the framework of thewidely adoptedGradient-

boosted Decision Trees (GBDT) model for performance prediction [124, 125].

The analytical process is represented in Figure 3.7.

Initially, the metrics were categorized into four distinct groups for analysis:

(1) Attention Distribution Metrics, (2) Attention Resource Metrics, (3) AOI-gaze

Metrics, and (4) Mixed Metrics. Subsequently, these metrics were integrated into

the GBDT model to facilitate feature selection.
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Figure 3.7: Data analysis procedure

A key part of this process involved calculating the SHapley Additive exPla-

nations (SHAP) values to identify the measurements most contributory to model

output [126]. SHAP value is based on game theory and offers a comprehensive

method for assessing feature importance that is applicable across various machine

learning models, including both linear and nonlinear frameworks. These values

account for feature interactions and dependencies, providing a detailed explana-

tion of model predictions. The SHAP value for a given feature i in a prediction

f(x) represents the change in the expected model output attributable to the fea-

ture’s observed value xi. Features with higher SHAP values are deemed to have a

more substantial effect on the prediction model, suggesting a stronger linkage be-
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tween the specific eye-tracking measurement and flight control performance. The

average SHAP value for the jth feature is calculated using the following formula:

p∑

j=1

φj(f̂ ) =
p∑

j=1

|θjxj − E(θjXj)| (3.5)

where p represents the total number of features andE(θjXj) denotes the mean

effect for feature j. Taking the absolute value allows for aggregating the total

influence of each feature across all instances, irrespective of the direction of influ-

ence. Without this step, a feature with high impact in both positive and negative

directions might be incorrectly neutralized.

Following the computation of SHAP values, the contributions of measure-

ments within each metric group were totalled, and their proportional impact was

deduced. Metrics contributing more than 5% to the total SHAP value within their

respective groups were identified as selected features for further analysis. These

highlighted metrics signify the most impactful eye-tracking measurements within

each category and were subsequently reapplied to the GBDTmodel. To assess and

compare the effectiveness of these metrics, the residuals of the predicted results

versus actual performance (NormalizedMGeo) were computed and visualized. The

subsequent section will detail the metrics identified and their comparative perfor-

mance analysis.
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3.4 Results

3.4.1 Performance of different metrics

The feature selection results based on SHAP values are presented in Table 3.1.

Within the Attention Distribution metrics, it was found that the total dwell times

on the airspeed and vertical speed indicators were excluded, whereas all initial

metrics under the Attention Resource category were preserved. The AOI-gaze

metrics distinguished themselves by having the highest number of measures with

contributions surpassing the 5% threshold. Significantly, features pertaining to the

attitude indicator (ATT) and airspeed indicator (ASI) demonstrated contributions

above 5%. Moreover, the top three most impactful measurements within the AOI-

gaze metrics were all associated with ATT. In the combined (Mix) group, metrics

fromAttention Distribution (i.e.,Dwell (%).NOSE andDwell (%).ATT), Attention

Resources (i.e., SacPkV ), and AOI-gaze (i.e., FixRt.ATT and PupD.ATT) were

screened out.

Table 3.1: Top 5% measurements in each input group
Attention
Distribution

Attention
Resource AOI-gaze Mix

Dwell (%).NOSE PupD FixDur.ATT Dwell (%).NOSE

Dwell (%).ATT SacPkV PupD.ATT Dwell (%).ATT

Dwell (%).OTW SacRt FixRt.ATT FixRt.ATT

Dwell (%).ALT FixRt FixRt.ASI SacPkV

FixDur FixDur.ASI PupD.ATT

FixRt.OTW

FixDur.ALT

FixRt.ALT

PupD.ASI
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We evaluated the predictive accuracy of each metric set using 10-fold cross-

validation, where the dataset is randomly divided into 10 equal parts, with nine

parts used for training and one for testing in each of 10 iterations, ensuring robust

model evaluation. The overall Mean Absolute Errors (MAE) of the 10 rounds

were calculated from the residuals of the predicted versus actual performance, us-

ing Normalized MGeo as a reference. The same dataset and 10-fold separation

is adopted for all four metric sets to ensure the reliability of comparison results.

As shown in Figure 3.8, AOI-gaze metrics displayed an accuracy (MAE = 0.122)

comparable to that of Attention Distribution metrics (MAE = 0.123) and superior

to Attention Resource metrics (MAE = 0.140), highlighting their predictive effec-

tiveness. The mixed metrics, encompassing eye-tracking measurements from all

categories, exhibited the highest predictive accuracy (MAE = 0.108).

Figure 3.8: Prediction accuracy with selected features

Beyond assessing overall prediction accuracy through MAEs, we also exam-
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ined the variance in prediction accuracy across different sections by plotting the

results against the normalized MGeo. Given the minimal instances (three) where

performance was below 0.5 after normalization, only results with MGeo greater

than 0.5 were visualized. The AOI-gaze and Mixed metrics demonstrated more

consistent accuracy with fewer deviations compared to the Attention Resource

and Attention Distribution metrics. A noticeable peak was observed for AOI-gaze,

Attention Distribution, and Attention Resource metrics at an MGeo around 0.75,

whereas the Mixed metrics exhibited less variation around this value, suggesting

a more stable prediction across a range of performance levels.

Figure 3.9: Variation of prediction results from actual performance

3.4.2 Discussions

The case study demonstrates the efficacy of combining different types of eye

tracker metrics in analyzing the pilots’ visual behaviours and predicting opera-
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tion performance. By applying various input metrics within the Gradient-boosted

decision trees (GBDT) models, the study illustrates the superior predictive accu-

racy of AOI-gaze metrics over singular applications of Attention Distribution and

Attention Resource metrics. Subsequently, the three groups of input metrics were

assembled together as Mix metrics to identify the most influential eye-tracking

measurements using SHAP values.

3.4.2.1 Explanations of the results

In response to RQ1, the Flashlight model provides a systematic approach to anal-

yse eye-trackingmetrics from both the attention distribution and attention resource

perspectives, highlighting the comprehensiveness of pilots’ visual behaviours and

human performance in complex and dynamic aviation tasks.

In response to RQ2, Figure 3.8 and Figure 3.9 demonstrated that the developed

AOI-gaze metrics reached better performance than solely using the Attention dis-

tribution metrics and Attention resource metrics.

In response to RQ3, the results suggest that the inclusive usage of eye-tracking

measurements from three categories achieved optimal prediction accuracy with

better adaptation around potential outliers. It demonstrated the contribution of

proposed AOI-gaze metrics in complementing the gap between attention distribu-

tion and attention resource metrics.

Specifically, five key measurements were identified in the flight attitude main-

taining tasks: (1) the percentage of total dwell time on the nose of the aircraft

(Dwell(%).NOSE); (2) the percentage of total dwell time on the attitude indica-

tor (Dwell(%).ATT); (3) the fixation rate on the attitude indicator (FixRt.ATT)

(4) the average saccade peak velocity across the whole scenario (SacPkV ); (5)
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the average pupil diameter of fixations on the attitude indicator (PupD.ATT). The

Dwell(%).NOSE suggests the importance of the aircraft nose as it offers a direct vi-

sual representation of the aircraft’s orientation relative to the horizon. The SacPkV

indicates the importance of active saccade activities to the flight control perfor-

mance, in line with the previous research revealing that higher saccade veloci-

ties imply lower fatigue level and higher vigilance [67, 68]. The Dwell(%).ATT,

PupD.ATT, and FixRt.ATT demonstrate the importance of the attitude indicator in

flight attitude maintenance tasks, in line with the finding of White et al.[25].

3.4.2.2 Implications

With the effectiveness shown in this case study, the proposed Flashlight model pro-

vides guidance for developing novel AOI-gaze metrics to enhance the granularity

of the eye-tracking analysis using the information processing efforts on specific

AOIs. Furthermore, the selected measurements from the Mix metrics obtained

the best accuracy among the tested input metrics, suggesting a comprehensive ap-

proach to capturing the multifaceted nature of human behaviour and performance.

Meanwhile, the results provide deeper insights into gaze behaviour towards

AOIs. For instance, though the highest SHAP value of Dwell(%).NOSE in the

Attention distribution metrics suggests the importance of the total time distributed

to the nose of the aircraft, either average fixation duration or average fixation rate

on the nose (FixDur.NOSE and FixRt.NOSE) didn’t contribute more than 5% in

the AOI-gaze metrics. It potentially implies that while the total dwell time on the

nose is critical to maintaining the attitude of the aircraft, the manner of monitoring

(e.g., duration or frequency of fixations) may vary in importance.

Finally, though previous studies have revealed that the pupil diameter, average
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fixation duration, and fixation rate can reflect the pilots’ cognitive status and be

used in predicting pilots’ performance [31, 33], this study further revealed that the

specific AOI-gaze metrics can be more effective in prediction performance with

an enhanced granularity.

3.4.2.3 Summary

In summary, the proposed Flashlightmodel provides a systematic basis for analysing

human performance with a combination of both attention distribution and atten-

tion resource perspectives. Following this model, the developed AOI-gaze met-

rics serve as an effective complementary to the conventional Attention distribution

metrics andAttention resourcemetrics in predicting pilots’ performance. Themost

influential eye-tracking measurements identified with SHAP values enhance the

granularity of data analysis and provide more insights into the visual behaviours

in flight control tasks. This work contributes to the pilots’ performance prediction

from the theoretical level to the specific measurement level, promoting the com-

prehensive analysis of pilots’ behaviour and prediction of pilots’ performance.

However, the proposed Flashlight model only discusses the tasks using sequen-

tial selective attention. More explorations can be made by incorporating the tasks

requiring parallel selective attention and divided attention, to further enhance the

understanding of human attention.

3.5 Concluding remarks

Predicting pilots’ performance is crucial for timely interventions and improving

aviation safety. Eye-tracking metrics have become instrumental in analyzing pi-
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lots’ behaviours and predicting operational performance within complex and dy-

namic human-machine interaction environments. Nonetheless, more studies are

needed on the comprehensive integration of attention distribution metrics and at-

tention resource metrics. To bridge this gap, our study introduced the Flashlight

model to explain the pilots’ visual behaviours, integrating James’ Spotlight atten-

tion model and Wickens’ information processing model.

Our work facilitates a more comprehensive analysis of eye-tracking data and

the development of pilots’ performance prediction methods with two significant

contributions. Firstly, it innovates by developing combined AOI-gaze metrics that

advance the analysis of information processing towards specific Areas of Inter-

est (AOIs), thereby refining the detail available in gaze metrics analysis. This

approach offers a fresh perspective for pinpointing critical AOIs in performance

prediction beyond mere total fixation or dwell durations. Secondly, the study em-

ploys SHAP values to highlight the impact of various eye-tracking measurements

on the model predicting performance. Through this method, it identifies the most

pivotal eye-tracking measurements for predicting performance in flight attitude

control tasks, enriching the understanding and application of eye-tracking data in

aviation research. The model and methods proposed in this study could be used

in pilots’ training to conduct a more comprehensive analysis of the pilots’ perfor-

mance based on eye-tracking techniques, and provide more detailed instructions

on how the pilots could improve their visual scanning behaviors for better task

performance.

While our study contributes several insights into pilots’ visual behaviours and

performance prediction using eye-tracking metrics, it is not without its limitations.

The inclusion of student participants and the utilization of simplified flight control



CHAPTER 3. STUDY 1: A VISUAL ATTENTION ANALYSIS MODEL 49

tasks could potentially limit the applicability of our findings to more complex and

realistic flight scenarios. Additionally, the study did not extensively explore cer-

tain eye-tracking metrics, such as blinks and gaze entropy, which may offer further

insights into pilots’ attention and cognitive states. Future research is planned to

address these limitations by enhancing the realism of the experimental setup, in-

volving licensed pilots, and incorporating more intricate flight tasks. This will not

only improve the validity of our findings but also allow for a more detailed exami-

nation of pilots’ behaviours under varied and challenging conditions. Furthermore,

a broader range of eye-tracking metrics will be examined in depth, facilitating a

more comprehensive analysis of pilots’ visual behaviours and improving the accu-

racy of performance predictions. Through these advancements, we aim to deepen

our understanding of pilot behaviour in complex and dynamic human-machine in-

teraction environments, ultimately contributing to safer andmore efficient aviation

operations.



Chapter 4

Study 2: A explainable OOTL

identification framework

This chapter introduces a framework to identify pilots’ OOTL status with explain-

ability. The framework innovatively leverages the Linear Temporal Logic (LTL)

methods to obtain human-readable formulas for an explainable identification re-

sult, as well as more insights into human behaviours. This chapter is organized as

follows: Section 4.1 provides the background and motivation of this work by re-

viewing the characteristics of OOTL phenomenon and identifying the challenge of

applying LTL methods. Section 4.2 details the framework of the proposed VALIO

methods. Section 4.3 presents a case study to validate the proposed approach and

discusses the results in comparison with other benchmark methods. Finally, Sec-

tion 4.4 outlines the main contributions and limitations of this work and highlights

future research directions.

50
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4.1 Background

4.1.1 Identifying the OOTL status

The introduction of advanced autopilot systems and flight management functions

has significantlymitigated human error in aviation by taking overmanual flight op-

erations traditionally executed by pilots [5]. These systems, known as Autopilots

and FlightManagement Systems (FMS), automate a multitude of flight operations,

including aircraft control, navigation, information display, and fuel management.

Automation reduces pilot workload and the probability of human-induced aviation

accidents [127]. However, an unintended consequence of increasing reliance on

automation is the potential for pilots to become progressively disengaged from the

control loop. Studies suggest that prolonged exposure to high levels of automation

(LOA) can lead to decreased focus, vigilance, and situational awareness among pi-

lots, thereby increasing fatigue and reducing skill proficiency [61, 128, 129]. This

detrimental effect on human performance, resulting from the absence of active hu-

man involvement in the control loop, is known as the Out-Of-The-Loop (OOTL)

phenomenon [10]. Data from both NASA and a survey among German aviators

indicate that the OOTL phenomenon significantly contributes to human errors in

aviation [12, 13].

Characterizing and quantifying the OOTL phenomenon remains a challenge,

as it is not confined to a specific domain but manifest across several factors in the

information processing tasks [130]. For example, vigilance failure has been iden-

tified as a critical factor of OOTL phenomenon [131, 132]. Additionally, mind-

wandering (MW) has emerged as a significant aspect in the examination of OOTL,

further expanding the scope of research in this area [44]. And the work of Merat
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et al. (2019) is notable for delineating three specific statuses,”in-the-loop, on-the-

loop, and out-of-the-loop”, based on situation awareness (SA)within the context of

automobile monitoring [8]. Besides, the discussion has also been broadened with

other related factors such as daydreaming and distraction, underscoring the com-

plexity of OOTL phenomenon[133, 134]. To investigate these factors, researchers

have turned to biometric measurements for objective psychophysiological data,

utilizing tools like Electroencephalograms (EEG) and Functional Near-Infrared

Spectroscopy (fNIRS) to track vigilance degradation due to passive fatigue, or

employing pupil diameter and saccade measurements to identify OOTL instances

triggered by mind wandering [22, 34, 135–137].

While the problem of being OOTL has been acknowledged and extensively

studied from diverse perspectives for several decades, there remains a significant

gap in the explainability of methods used to identify OOTL status [8, 44]. As intro-

duced in Section 2.2.2.2, the inability to understand the reasoning behind decisions

and the potential for errors could have severe consequences [35, 36]. This opacity

of ”balck-box” methodologies poses a significant challenge in aviation operations,

as inaccurately identifying OOTL status can trigger unwarranted alarms or inter-

ventions. Such false positives may contribute to alarm fatigue and detrimentally

affect pilot performance [37]. Conversely, providing clear explanations for OOTL

detections can enable the creation of more human-centred and warranted alerts that

help pilots recognize and adjust their behaviours, thereby mitigating the negative

impacts of OOTL status. This chapter presents a work aimed to develop an OOTL

identification approach with explainability using Linear Temporal Logic (LTL)

methods.
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4.1.2 Linear Temporal Logic for behaviour classification

The LTL method, initially developed for the formal verification of computer pro-

grams, encodes atomic propositions (e.g., “The value of variable V2 has changed”)

in a linear sequence of states, or traces, to represent system behaviours [86, 138].

It checks whether these traces satisfy certain LTL formulas, constructed using a set

of propositional variables, logical operators (negation and disjunction), and tem-

poral modal operators (next and until). The combination of logical and temporal

operators makes it particularly suitable for expressing the temporal logic of human

behaviours. Moreover, the explicit formulas facilitate human understanding of the

classification model and enhance the explainability of the results [39].

As introduced in Section 2.3, this study uses linear temporal logic on finite

traces (LTLf ) formulas to characterize behaviours from observed finite traces

[87]. A variety of methods have been developed to learn arbitrary LTLf formu-

las. For instance, an alternating automaton is constructed by exploring a skeleton

space to model observed behavior [39]. A Bayesian probabilistic model is also

employed to infer contrastive explanations that delineate differences between var-

ious traces for learning LTLf formulas [139]. Gaglione et al. proposed a method

to infer minimal LTL formulas by transforming the inference problem into a max-

imum satisfiability (MaxSAT) problem and then utilizing off-the-shelf MaxSAT

solvers to find a solution [140]. However, these approaches may pose challenges

in the analysis of dynamic and complex eye-tracking data as they either presuppose

a noise-free environment [39, 141], limit the hypothesis space by LTLf template

[86, 142], or are subject to the high complexity inherent in MaxSAT [140].

This work proposes the integration of Graph Neural Network (GNN) inference
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to support the inference of LTLf , building on the work of Luo et al. [91]. Their

work demonstrates that GNNs can capture the satisfaction relations of the LTLf

formulas and simulate the LTLf inference to distinguish between positive and

negative traces. By utilizing GNN inference, the search problem in discrete space

can be transformed into a parameter learning problem in continuous space, a topic

that has been extensively studied in recent years. The remaining challenge lies

in how to encode the massive continuous gaze movements into the finite traces

composed of atomic propositions that can be processed by the GNN-based LTLf

method.

4.1.3 Parse visual attention through eye-tracking

Dynamic gaze movements can be encoded by quantifying the visual attention dis-

tribution, which involves assigning collected eye movement data to specific re-

gions of the visual scene, known as Areas Of Interest (AOIs). AOIs inherently

contain spatial information and serve as a foundation for encoding the temporal

relationship of eye movements [120, 143]. Researchers widely adopt AOI-based

metrics to encode spatial information in attention-based studies, as they provide

specific semantic information across the entire visual scene [29, 62, 144]. For ex-

ample, Schnebelen et al. partitioned the driving scene into 13 AOIs based on the

positions and functionalities in road traffic [49]. These AOI-based metrics were

then used to study drivers’ visual strategies in highly automated driving and esti-

mate OOTL. Similarly, Li et al. utilized AOI-based metrics to assess the informa-

tion processing of military pilots in fighter aircraft [145]. Furthermore, Haslbeck

et al. found that pilots employing different visual scan strategies exhibited varying
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levels of information processing efficiency and flight performance by dividing the

instruments into different AOIs based on their functionalities [146]. These stud-

ies highlight that appropriate AOI segmentation aids in linking eye movements to

stimuli and provides an objective measure of visual attention, thereby facilitating

the interpretation of the underlying logic. In practice, appropriate AOI segmen-

tation largely depends on the functionalities of the stimuli. For instance, in au-

tomobile driving studies, the scene out of the front window can be divided into

more than five AOIs according to the relative position of the road (i.e., Center,

Left, Right, Up, Down), as they possess different characteristics and provide dif-

ferent information in driving [49]. On the other hand, in aviation, the scene outside

the window provides only limited information to the pilots, while the various in-

struments in the cockpit provide heterogeneous critical information related to the

flight. As a result, the entire view outside the window is usually defined as a sin-

gle AOI, while multiple AOIs are defined in the cockpit based on the instruments

[55]. Therefore, a comprehensive understanding of the functionalities of the stim-

uli and their relationship to the tasks is crucial for properly defining the AOIs for

analyzing visual attention distribution.

4.1.4 Challenges of applying LTL methods

Though the AOI-based eye-tracking data contains more contextual information

for explaining the visual behaviours, a gap remains in adopting the AOI-based eye

movement measurements to theLTLf methods. The eye movement data collected

by eye trackers can be automatically mapped to each AOI with the support of ad-

vanced computer vision technologies, generating AOI-based metrics [147]. These
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metrics, such as visit times and average fixation duration, reflect the characteris-

tics of the gaze movements toward certain stimuli during specific periods. It is

necessary to extract individual events from such data to form the traces that can

be parsed by LTLf methods and achieve explainable OOTL identification.

Many studies worked on encoding the temporal-spatial information in pilots’

visual attention, while they are not compatible with theLTLf methods. For exam-

ple, McClung and Kang developed a method to characterize the scanning patterns

of the Air Trafic Controllers [148], while it relies on the complete observation of

all aircrafts (AOIs) on the display. Other studies encode the dwells into vectors

of fixated length [149] or calculate the transition matrices across the AOIs [146,

150], while these methods omit the duration of each dwell. Though these methods

are effective in the specific tasks, an approach for encoding the temporal-spatial

information in the gaze movements that is compatible with the LTLf methods is

needed.

4.2 Visual AttentionLTLf for IdentifyingOOTL (VALIO)

To tackle the compatibility challenge discussed in Section 4.1.4, we proposed a

method to encode pilots’ visual attention distribution data into formalized traces

and developed a framework, named Visual Attention LTLf for Identifying OOTL

(VALIO) in this section.

The VALIO framework, as illustrated in Figure 4.1, executes in three phases.

Initially, AOIs are defined to reflect the stimuli in the cockpit, providing a founda-

tion to encode the spatial information of pilots’ gaze movement. Following this,

eye movement data collected via eye trackers are transformed into Visual Atten-
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tion Traces (VAT). The AOIs being observed and the corresponding durations are

encoded as atomic propositions in the traces, making the eye movement data com-

patible with the LTL methods. Subsequently, these VATs are employed to train a

Graph Neural Network (GNN), yielding a set of parameters. These parameters are

interpreted as LTLf formulas, with the most effective formula selected through a

strategic approach. Finally, insights into pilots’ OOTL status can be obtained by

interpreting the obtained LTLf formulas and analysing the pilots behaviours. The

details of each phase are further elaborated in the following subsections.

Figure 4.1: Framework of Visual Attention LTLf for Identifying OOTL (VALIO)

4.2.1 Visual Attention Traces (VATs)

This research introduces a methodology to encode pilots’ dynamic gaze patterns

from eye-tracking data into Visual Attention Traces (VAT). VAT serves as a struc-

tured representation to analyze the effort involved in information acquisition through

gaze behaviors, reflecting individual events of stimulus engagement [151].



CHAPTER4. STUDY 2: AEXPLAINABLEOOTL IDENTIFICATIONFRAMEWORK58

Firstly, the proposed VALIO framework defines AOIs upon different instru-

ments in the cockpits based on the distinctive designs of different aircraft. A more

specific example is provided by the case study in Section 4.3. After defining AOIs

in the cockpit, the Visual Attention Trace (VAT) is then generated based on the

dwells. A dwell is defined as the interval between a gaze entering an AOI and

eventually leaving it, including all the fixations and saccades during this visit, and

dwell time can be associated with motivation and top-down attention [120, 152].

VALIO depicts the pilots’ effort of acquiring information from anAOI by denoting

a dwell di(ai, ti) ∈ D as equation 4.1 and 4.2:

ai ∈ {AOI1, AOI2, AOI3, ...} (4.1)

ti ∈ {T1, T2, ..., Tτ} (4.2)

in which D represents the set of dwells, i indicates the sequence of the dwell

in the whole collected trace, ai and ti represent the AOI (instrument) being visited

in this dwell and the dwell time. Notably, the continuous factor dwell time ti ∈ T

is binned into several levels in VALIO to encode it into an atomic proposition

format that can be processed by the LTLf methods. The division of the different

time levels can be determined according to the specific tasks and the distribution

of dwell time. The case study in Section 4.3 presents four methods to determine

the time levels and compare their performances. Correspondingly, a VAT (denoted

as v) with finite length is defined in the form as v = d0, d1, ..., dn.

The length of a VAT (|v|) is determined by a specified duration within the

VALIO framework. For instance, if a duration is set at approximately 20 seconds,
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the handling of a dwell dn at the conclusion of a current VAT (vα) which encom-

passes the 20-second mark, is executed as follows: If more than half of dn falls

within the 20-second timeframe, it remains as a part of vα, thereby extending the

length of |vα| to slightly exceed 20 seconds. Conversely, if the majority of dn

extends beyond the 20-second mark, it is allocated as the initial dwell of the sub-

sequent VAT (vα+1), resulting in |vα| being marginally shorter than 20 seconds.

More specifically, the final dwell (d−1) in the current VAT (vα) is determined as

shown in equation 4.3 below:

d−1 =






dn−1, | |d0, ..., dn−1| − 20sec | < | |d0, ..., dn| − 20sec |

dn, | |d0, ..., dn−1| − 20sec | > | |d0, ..., dn| − 20sec |
(4.3)

where |d0, ..., dn| represents the total duration from the first dwell (d0) to the

nth dwell (dn). And | |d0, ..., dn| − 20sec | calculates the deviation between the

total duration of the included dwells and the designated VAT length (20 seconds).

The first branch indicates that including the dn will lead to a larger deviation from

20 seconds than excluding it, so the dn−1 is determined to be the last dwell (d−1)

in the current VAT (vα). Consequently, dn is designated as the initial dwell (d0)

of the next VAT (vα+1), leading the |vα| to be slightly less than 20 seconds in

length. The second branch indicates that excluding the dn will lead to a larger

deviation from 20 seconds than including it, so dn is determined to be the last

dwell in the current VAT. Thisapproach ensures a precise division of attention data

into segments, preventing a complete dwell from being split into two parts by the

fixed VAT length.
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4.2.2 Linear Temporal Logic on finite traces (LTLf )

The VAT generated in the previous steps provides a compatible format for the

Linear Temporal Logic on finite traces (LTLf ) analysis. Originally, a LTLf trace

can be represented as π = s0, s1, ..., sn, where st ∈ 2P is a state at time t. si

represents a state composed of several atomic propositions p ∈ P . For every state

si, p holds if p ∈ si, or ¬p holds otherwise. The LTLf traces are label as postive

and negative traces depending on the system status needed to be verified. And

the VATs corresponding to the pilots’ OOTL status are also labeled as positive for

training purpose. As shown in Figure 4.2, the VAT in the previous steps can be

regarded as a special form of LTLf traces with the following characteristics:

Figure 4.2: Composition of LTLf traces and VAT

• Basic element: The basic elements of LTLf traces are atom propositions
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pi ∈ P which represent fundamental facts of a system, such as ”Process

0420 suspended” and ”Process 2001 initiated”. The number of such atomic

propositions in a system can reach thousands, depending on the settings. In

contrast, VAT comprises two types of basic elements: dwelled AOI ai ∈ A

and dwell time ti ∈ T . Given the instruments considered in the cockpits, the

number of AOIs is likely to range from ten to twenty. Dwell time, initially

a continuous factor, is processed into five binned levels in VALIO.

• States and dwells: Each state si ∈ S in LTLf traces includes several

atomic propositions (pi) depending on the number of events (which can be

zero) occurring at the selected moment. Conversely, each dwell di ∈ D in

VAT strictly contains only two basic elements: dwelled AOI (ai) and dwell

time (ti). The states si in LTLf traces typically represent a uniform time

length in reality, based on the predefined system settings. The dwells di in

VAT usually signify varying time lengths in reality, depending on the actual

dwell time.

• Length of trace: The duration of LTLf traces can span from seconds to

hours, contingent upon the task at hand for analyzing system behavior. To

ascertain pilots’ OOTL status through visual attention analysis, VAT dura-

tion is set within a range of approximately several seconds (e.g., 20 seconds)

in VALIO, facilitating the assessment of pilot behaviour and status within a

specific timeframe.

Following labeling the training VATs, VALIO trains a Graph Neural Network

(GNN) model to distinguish between positive and negative traces, based on the

methods proposed by Luo et al. [91]. Each VAT (v) is converted into a directed
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graph Gv = (Nv, Ev) for application of GNNs. Here Nv is the set of nodes in the

graph, with each node ni corresponding to a dwell di in v. Each pair of adjacent

dwells (di, di+1) in VAT corresponds to a pair < ni, ni+1 > in Ev, which is the set

of edges in the graph. For each node ni ∈ Nv, an associated feature vector with a

fixed-length encodes information about the propositions and sub-formulas of non-

atomic propositions in the VAT. The trace graphs (Gv) representing the VATs with

the feature vectors are used as input to train the GNN model. The GNN model is

trained using a binary cross-entropy loss function to minimize the classification

error.

Once the GNNmodel is trained, the LTLf formula is extracted by interpreting

the parameters of the learned GNN classifier. This interpretation process involves

analysing the weights and biases of the GNN model to identify the sub-formulas

that contribute most to the classification decision. These sub-formulas are then

combined to form the final LTLf formula.

4.2.3 OOTL Identification

After obtaining the final LTLf formula from the training VATs, the OOTL status

can be identified by verifying the given VATs. In addition to the identification

of OOTL, a highlight the VALIO framework is the extra insights into the OOTL

phenomenon brought by analyzing the verification results.

By training the GNN model with different training data from the collected

dataset, multiple different LTLf formulas might be obtained. In addition to the

explanations provided by the human-readable formulas themselves, it is also pos-

sible to acquire further understanding of OOTL from the testing results. More
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specifically, different LTLf formulas might achieve similar classification accura-

cies, suggesting the different visual behaviours represented by thoseLTLf formu-

las are both correlated to the OOTL status. But with different precision and recall,

the interpretation of such behaviours might be different. Consequently, it is pos-

sible to obtain further insights from the formulas and therefore better understand

the characteristics of the OOTL phenomenon.

4.3 Case study

The section evaluated the VALIO framework through a flight simulation experi-

ment conducted at Hong Kong Polytechnic University, involving 26 participants

(17 males, 9 females, aged 22-32). This section details the methodology, data

collection, and performance evaluation of VALIO, and compares the efficacy of

using various VAT lengths. It also contrasts the VALIO against other widely

used methodologies, such as Random Forest, XGBoost, and Multilayer Percep-

tron Neural Networks.

4.3.1 Experiment design and data collection

The experimental framework utilized a Cessna 172 simulator, coupled with Mi-

crosoft Flight Simulator [153] to create a realistic aerial environment. A Tobii Pro

Glasses 3 [154], with 16 illuminators and 4 eye cameras was utilized to track the

participants’ eye movements. The eye tracker also holds a scene camera in the

front to record the field of view, so the eye movements can be mapped as gaze

behaviors in the scene. Meanwhile, a 27-inch monitor on a desktop computer fa-

cilitated data collection, as depicted in Figure 4.3. Among the 26 participants,
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four of them had prior experience (less than 5 hours) with the flight simulator,

while the remaining participants were novices. All of the participants were right-

handed and had normal or corrected-to-normal vision. Ethical approval for the

study was granted by the PolyU Institutional Review Board (Reference number:

HSEARS20211117002), and written informed consent was obtained from all sub-

jects before the experiment.

Figure 4.3: Experiment apparatus

The experiment procedure began with an introductory session, followed by

a practice session until participants comfortably mastered the simulator’s flight

tasks. To ensure the participants’ capabilities in managing flight control, the ex-

periment adopted a simplified manual operation requirement for the participants

under the visual flight rules (VFR) [21]: they only need to conduct a Straight-and-

Level flight [112] by maintaining pitch, roll, and yaw angles using joysticks and

throttle through instrument panels and external views. The other tasks like nav-

igation and fuel monitoring were automated and no effort was required from the

participants.

Participants continued practising until they could independently perform a com-

plete flight procedure, including take-off, a 25-minute cruise, and landing. The
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formal experiment follows a one-way within-subject experimental design, requir-

ing each participant to complete two identical flight sessions. Each session com-

menced with a pre-saved cruising phase at 2,800 ft AMSL record under autopilot

mode, lasting about 42 minutes while maintaining the altitude. The meteorology

condition was set as the ”Clear Skies” in the Microsoft Flight Simulator, with a

wind of 18 gusts/minute, average speed of 1 knot, and no cloud below 10,000 ft

AMSL. In one session, continuous autopilot engagement was maintained to in-

duce Out-Of-The-Loop (OOTL) status in participants, with the final 120 seconds

marked as OOTL. This approach aligns with prior research indicating that over

20 minutes of automation exposure reliably triggers the OOTL phenomenon [49,

116, 155]. The alternate session involved manual aircraft control for two minutes

at two separate intervals, with data during these intervals labeled as In-The-Loop

(ITL). Participants were unaware of the timing and presence of manual control

requirements before the flight. Figure 4.4 provides a visual demonstration of the

two flight sessions. Prior to the formal experiment, the eye tracker was calibrated

for each participant by directing them to look at the calibration dot on a calibration

card, following the process of the Tobii Field Guide [156]. After the first simula-

tion flight, a break of 10 to 20 minutes based on the participants’ need was given

to mitigate fatigue effects on the subsequent trial.

4.3.2 Learn LTLf formulae with Visual Attention Traces

Fourty-two records from twenty-one participants were selected and processed by

excluding data from 5 participants (10 records) due to the poor eye-tracking rate

being below 85% to ensure data quality [157–159]. We tested four methods for
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Figure 4.4: Flight tasks

dividing the dwell times: quartiles, logarithm, Gaussian mixture model (GMM),

and K-Means clustering. Meanwhile, we identified six Areas of Interest (AOIs)

crucial for monitoring aircraft status and executing flight control tasks. Then the

Visual Attention Traces (VATs) were complied for the LTLf processing.

4.3.2.1 Areas of Interests in the cockpit

The Cessna simulator provides instruments on the panel and the simulated view of

the flight. Figure 4.5 shows a screenshot when processing an eye tracking record

in the Tobii Pro Lab software. The left part on the screen presents the scene video

recorded by the eye tracker, with a gazemoving from the external view to the panel.

The right part on the screen is a photo imported into the software for mapping the

gaze behaviors. The AOIs are defined based on this statical picture, and hence

the eye movements recorded by the eye tracker can be mapped on the picture as

dwells into AOIs. Specifically, this study defined six AOIs as depicted in the

upper part of Figure 4.7. These AOIs encompass key instruments and visual cues
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within the flight simulator. Specifically, they include the attitude indicator (ATT),

altimeter (ALT), airspeed indicator (SPD), vertical speed indicator (VSPD), the

aircraft’s nose (Nose), and the view outside the window (OTW). The ATT, ALT,

SPD, and VSPD provide digital information about the aircraft’s status, while the

Nose and OTW offer a visual representation of the aircraft’s orientation relative to

the horizon.

Figure 4.5: Screenshot of Tobii Pro Lab

4.3.2.2 Divide dwell times into different levels

To encode the dwell time into atomic propositions that are compatible with LTLf

methods as well as trying to retain the reflection of how the participants allocate

their attention, we tried to bin the dwell times into 5 levels using quartiles, log-

arithm, GMM, and K-Means clustering methods. Specifically, though most eye

trackers can capture gaze movements at a frequency of over 50 Hz, viewing a stim-

ulus for less than 100ms is typically not counted as an effective fixation or dwell
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[160]. Therefore, all the dwells shorter than 100ms are firstly classified to the T1

level. Then the rest dwell time data was binned into four dwell levels (T ) using

the methods below:

• Quartiles: Define the bin edges using the 25th percentile (241ms), 50th per-

centile (491ms), and 75th percentile (1052ms) of the dwell time distribution.

• Logarithm(Ln): Define the bin edges using logarithm to the base of the

mathematical constant e. Considering e4.6 ≈ 100ms (T1 level), the rest bin

edges are e5.6 (≈ 270ms), e6.6 (≈ 735ms), and e7.6 (≈ 1998ms).

• GMM : Define the bin edges by applying the Gaussian mixture model to

cluster the dwell times. Specifically, the edges are determined as 525ms,

1728ms, and 5832ms.

• K-Means:Define the bin edges using the K-Means clustering method. Con-

sequently, 1734ms, 6011ms, and 17531ms are used as bin edges.

Figure 4.6 provides a visualized illustration for the distribution of the collected

dwell times in this case study and the divisions using different methods. (There

are some single dwells longer than 20,000 ms that are omitted in the figure for

layout, with the longest one of 70,789 ms)

4.3.2.3 Encoding VATs

A dwell di(ai, ti) ∈ D in this study can be defined by the interaction bewteen the

6 AOIs and 5 binned levels, yielding 30 possible combinations. VATs were con-

structed based on these combinations, following the sequence of events as shown
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Figure 4.6: Division of dwell times using different methods

in Figure 4.7. Based on the previously established labels, the VATs were catego-

rized into OOTL status and ITL status. Based on the work of Luo et al. [91],

an aggregate-combine Graph Neural Network (AC-GNN) model was constructed

and trained using these VATs (epoch = 60). The parameters of the trained GNN

model were then interpreted to obtain the LTLf formulas for discerning OOTL

status.

4.3.3 Results and comparisons

This case study tested the VALIO method using time windows from 10 seconds

to 75 seconds (increase 5 seconds every time) to verify its effectiveness across

different time windows (VAT length). All four dwell time division methods with

different time windows were tested using a 10-fold cross-validation method. Pre-
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Figure 4.7: Temporal-spatial information in the VATs

cision, recall, and F1 scores were adopted as performance metrics to compare the

outcomes. Precision denotes the accuracy of positive predictions, while recall

indicates the rate at which actual positives are correctly identified. The F1 score

harmonizes precision and recall into a single metric, measuring amodel’s balanced

accuracy in positive prediction and identification.

4.3.3.1 Identified LTLf formulas

TheVALIO frameworkwas tested with 56 combinations (4 divisionmethods× 14

time windows) using 10-fold cross-validation. In the GNN training and parame-

ter interpretation phase of each round, the VALIO framework generates oneLTLf

formula and uses this normal expression to classify the testing data for OOTL iden-

tification. These LTLf formulas serve as distinct classification models in the sin-
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gle round with their individual performances on the testing dataset. Specifically,

three LTLf formulas were recognized in these 560 rounds: ”G¬ att”, ”G¬ alt”,

and ”G¬ vsp”. The distribution and performance of these three formulas on dif-

ferent time windows are presented in Figure 4.8. The figure demonstrates that

the occurrence of these formulas is significantly related to the length of the time

window. It is noticeable that when the overall performance (i.e., F1 score) of the

previous formula declines, the other formula emerges with a better performance.

Meanwhile, these formulas were recognized across different dwell time division

methods with no significant difference between division methods. The interpreta-

tions and overall performance of the formulas are presented as follows.

Figure 4.8: Distribution and performance of LTLf formulas

• ”G¬ att”: This formula signifies that the pilot’s attention was never di-
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rected towards the attitude indicator (ATT) throughout the whole interval.

It dominates the time windows from 10 seconds to 30 seconds, and it is also

recognized with decreased performance for the time windows between 35

seconds to 55 seconds. It was recognized 279 times in total with an averaged

Precision of 0.75, Recall of 0.83, and F1 score of 0.79.

• ”G¬ alt”: This formula indicates that the pilot did not focus on the altimeter

(ALT) at any point during the whole interval. It was recognized from 35

seconds to 70 seconds, with a total occurrence of 237 times. The averaged

Precision is 0.77, Recall is 0.82, and F1 score is 0.79 across all timewindows

and dwell time division methods.

• ”G¬ vsp”: Similar to the previous two, this formula implies that the pilot

didn’t look at the vertical speed indicator (VSP) during the whole interval.

It emerged when the time window is longer than 55 seconds. It obtained

Precision of 0.84, Recall of 0.81, and F1 score of 0.82with a total frequency

of 44 times.

4.3.3.2 Sensitivity of time windows and division methods

The effectiveness and stability of the VALIO across different time windows were

verified using different dwell time divisionmethod. As the 10-fold cross-validation

was adopted to test each combination of the time window and dwell time division

method, different LTLf formulas might be recognized in these 10 rounds. For

example, ”G¬ alt” was recognized 4 times and ”G¬ vsp” was recognized 6 times

for the 75-second time window when using quartiles to bin the dwell times. And

the performance metrics were averaged using the individual performances of these
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ten times. The result indicates that the performance is stable with no significant

differences between different time windows for the four tested dwell time divi-

sion methods, as shown in Figure 4.9. Specifically, the lowest F1 score (0.769)

was identified with the Precision of 0.819 and Recall of 0.725 when using the

K-Means clustering method and 75-second time window. The highest F1 score

(0.815) was obtained with Precision of 0.777 and Recall of 0.857 when using the

Logarithm method and 45-second time window.

Figure 4.9: VALIO performance using different dwell time division methods

4.3.3.3 Comparison with other methods

We compared the performance of the VALIO framework (using the Logarithm di-

vision method of dwell time) against seven well-established predictive models:

Hidden Markov model (HMM), Linear Discriminant Analysis (LDA), Random

Forest (RF), eXtreme Gradient Boosting (XGBoost), Gradient Boosting Decision

Tree (GBDT), Light Gradient Boosting Machine (LGBM),and Multilayer Percep-

tion (MLP), using identical data of the 14 time windows. Different from using the

binned dwell times in VALIO, these models were trained directly with the dwell
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duration in milliseconds. All these models were constructed using Python 3.9,

with their major hyperparameters illustrated in Table 4.1.

The performance of the compared methods is shown in Figure 4.10. The result

indicates that the RF, XGBoost, GBDT, LGBM, and MLP methods exceeded the

performance of VALIO in Recall and F1 score when the time window was larger

than 30 seconds. The best F1 score (0.849) was achieved by the GBDT method

when using the time window of 55 seconds, with the Precision of 0.760 and Recall

of 0.962. However, the VALIO outperformed the other models in Recall rate and

F1 score when the time window was smaller. It kept a stable performance with an

average F1 score of 0.793 across all the tested time windows.

Figure 4.10: Performance of VALIO compared with other methods

4.3.4 Discussion

This case study demonstrates the efficacy of the VALIO framework in encoding

pilots’ visual attention into VATs and identifying OOTL status. By comparing the

performance across variousVAT lengths, theVALIOmethod demonstrated a stable

performance with F1 scores between 0.77 and 0.82. Meanwhile, the comparison
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Table 4.1: Machine learning models and the major hyper-parameters

Models and Library Hyperparameter Function Value

HMM
hmmlearn (v-0.3.2)

n_components Number of states 2

covariance_type Each state uses diagonal covariance matrix ”diag”

n_iter Maximum number of iterations 100

LDA
scikit-learn (v-1.3.2)
.discriminant_analysis

solver Singular value decomposition ”svd”

shrinkage No shrinkage None

RF
scikit-learn (v-1.3.2)
.ensemble

n_estimators Number of trees in forest 100

min_samples_split Minimum samples to split an internal node 2

GBDT
scikit-learn (v-1.3.2)
.ensemble

loss Binomial and multinomial deviance ”log_loss”

learning rate Shrinkage of each tree’s contribution 0.1

n_estimators The number of boosting stages 100

MLP
scikit-learn (v-1.3.2)
.neural_network

hidden_layer_sizes Number of neurons in the ith hidden layer (100,)

activation Rectified linear unit function ”relu”

XGBoost
xgboost (v-2.0.3)

tree_method Method for constructing the trees ”hist”

early_stopping_rounds Enables early stopping 2

LGBM
lightgbm (v-4.3.0)

learning_rate Shrinkage of each tree’s contribution 0.1

n_estimators The number of boosting stages 100
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with other classification models also indicates that the VALIO framework outper-

forms when using shorter time windows with higher recall rates and F1 scores

than other methods. This highlights its capability to identify pilots’ OOTL status

in time and efficiently.

4.3.4.1 VAT lengths and dwell time divisions

TheVALIOmethod obtained threeLTLf formulas and they contributed to a stable

performance of VALIO across various time windows. These formulas provide not

only OOTL identification capability, but also provide insights by its explainability.

The formula ”G¬ att” emphasizes the critical role of the attitude indicator

(ATT) in ensuring pilot engagement. Considering the great importance of air-

craft attitude adjustments (pitch, roll, and yaw angles), the pilots need to regularly

check it with a high frequency. Therefore, neglecting this indicator is identified

as a strong predictor of OOTL status. However, a slight decline in its occurrence

and prediction performance was observed when the time window increased, which

might be explained by the increasing possibility of the dwell towards attitude in-

dicator, considering its necessity in long-term flight monitoring activities.

The formula ”G¬ alt” underscores the importance of routinely checking the

altimeter. The change in altitude is less extensive than the attitude, so the need

to check the altimeter is less than checking the attitude indicator. Therefore, this

formula was recognized as the OOTL predictor at a medium frequency with time

windows between 35 to 70 seconds.

Furthermore, the formula ”G¬ vsp” was recognized a few times when the time

window became longer than 50 seconds. Comparing to the attitude indicator and

the altimeter, the vertical speed is less checked during the cruising phase. There-
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fore, the dwells toward the speed indicator suggest more active scanning activities

and can signify the ITL status. This is in line with research by Di Stasi et al. (2016)

and Diaz-Piedra et al. (2016), which links reduced saccade rates and velocities to

increased fatigue and decreased vigilance [67, 68].

These three formulas were recognized with the performance decline of the

previous formula as shown in Figure 4.8, resulting in a stable overall performance

of the VALIO methods across time windows.

4.3.4.2 VALIO and other classification methods

As shown in Figure 4.10, some other tested models (i.e., GBDT) obtained bet-

ter Recall rates and F1 scores when using the longer time windows. However,

the VALIO method outperformed in three perspectives: better performance with

shorter time windows; more stable performance across different time windows;

and explainability by human-readable LTLf formulas. This demonstrates that the

proposed VALIO method is expected to identify the OOTL status of the pilot with

better timeliness and explainability, and therefore enables more in-time interven-

tions to prevent the negative effects.

Meanwhile, a significant improvement in the recall rates and the F1 scores

of other models was observed in Figure 4.10 when the time window was longer

than 30 seconds. Another observation from Figure 4.8 indicates that more LTLf

formulas started to arise when the time window was longer than 30 seconds. A

possible explanation can be made that the visual monitoring behaviors of these

student pilots have a periodicity. The VALIO method can handle the characteris-

tics with either more or fewer periodical cycles by discovering different formulas,

while the other methods might need the eye-tracking data of more periodical cy-
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cles to capture the characteristics. However, this is a hypothesis that needs further

investigation by more empirical studies in the future.

In summary, the results demonstrated that the VALIO framework effectively

translates eye-tracking data into VATs and employs LTLf techniques to generate

human-readable formulas for OOTL detection. It fills the critical gap in explain-

ability associated with detecting OOTL status and provides insights into under-

standing the OOTL status. This methodology surpasses other state-of-the-art ap-

proaches with shorter time windows and more stable performance, showcasing its

ability to detect OOTL status with better timeliness.

4.4 Concluding remarks

The phenomenon of Out-Of-The-Loop (OOTL) is a prevalent concern in aviation,

often induced by high levels of automation. It significantly impairs pilot perfor-

mance and aviation safety. However, a notable challenge persists in the explain-

able characterization and identification of pilots’ OOTL status. Addressing this,

our study introduced the Visual Attention LTLf for Identifying OOTL (VALIO)

framework, utilizing eye-tracking data to discern pilots’ OOTL status with en-

hanced explainability.

This research makes three significant contributions to addressing the gap of

explainability. First, it introduces an innovative method for encoding pilots’ eye-

tracking data into structured Visual Attention Traces (VATs), which capture the

temporal and spatial dynamics of visual attention. These VATs effectively repre-

sent pilots’ information-gathering behaviors, providing a solid foundation for ex-

plainability in the analysis. Second, the study utilizes LTLf methods to analyze



CHAPTER4. STUDY 2: AEXPLAINABLEOOTL IDENTIFICATIONFRAMEWORK79

these VATs, successfully identifying pilots’ OOTL status with explainable results

by generating human-readable formulas. Human-readable formulas could reveal

what scanning behaviors have been identified as OOTL, thus providing direct in-

structions on how the pilots should adjust their scanning behaviors. In compari-

son with other methods, this methodology significantly outperforms when using

shorter time windows and hence provides better timeliness. Third, by conducting

a focused case study, the VALIO framework generated three LTLf formulas for

the given flight task. These formulas offer valuable insights into the characteris-

tics of OOTL status, deepening our understanding and directing future research

efforts.

However, our study has limitations. The proficiency level of student pilots

involved and the constrained scope of laboratory-collected data limits the find-

ings from being directly adopted to the practical conditions. Furthermore, the

binary classification of OOTL and ITL statuses in this study simplifies a more

nuanced reality. Although having these two limitations, the results demonstrated

that the proposed method is able to capture the characteristics of the pilots’ gaze

movement for discerning different statuses. Future research aims to encompass a

broader spectrum of pilot expertise, incorporating licensed pilots and more real-

istic scenarios. Moreover, the dwell time division method, as well as the training

and interpretation methods for LTLf formulas will be further developed to enable

more comprehensive expressions and better performance. This will enable a more

extensive exploration of OOTL’s varying degrees and enhance the robustness of

our findings.



Chapter 5

Study 3: A context-aware ITL

support approach

This chapter presents a work to address the challenge in interactions with the ITL

pilots. The proposed method tokenizes the eye-tracking data into Visual Attention

Matrices (VAMs) and integrates with a Large Language Model (LLM) to identify

and respond to troubleshooting activities of ITL pilots. This chapter is organized

as follows: Section 5.1 introduces the background of this work and identifies the

research gaps. Section 5.2 details the proposedVAM framework and its integration

with LLMs. Section 5.3 presents a case study validating the proposed approach.

Section 5.4 discusses the implications and limitations of this work. Finally, Section

5.5 makes concluding remarks for this work.

80
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5.1 Background

As discussed in Section 2.2.2.3, the dynamic and comprehensive needs of the ITL

pilots poses a research challenge in the interaction of automation support. This

work selects the troubleshooting behaviours of the pilots as a scenario to address

this challenge. The troubleshooting activities are complex and blended with nor-

mal monitoring behaviours. It may encounter cross-checking various instruments

in the cockpit, which is similar to the normal monitoring behaviours. It is diffi-

cult to distinguish these two statuses, especially when trying to identify where the

incident occurs. Though researchers have developedmanymethods to assess oper-

ator status and predict performance using eye-tracking data [33], these evaluations

typically represent a single-dimension evaluation from low to high (e.g., situation

awareness, fatigue). These methods can hardly distinguish troubleshooting from

normal monitoring and identify where the incident occurs, therefore hindering the

user-friendly interaction of automation support. To address this, we explore an-

alyzing the eye-tracking data with the trending Large Language Model (LLM)

GPT-4, which has demonstrated remarkable abilities in handling complex context

and offering natural interactions [84, 85].

However, a gap lies in effectively processing eye-tracking data with the LLM

due to the lack of semantic information in eye-tracking data. Although LLMs

have demonstrated the ability to identify deviations from patterns in time series

logs [161, 162], their application for processing eye-tracking data remains under-

explored. The abilities of LLMs are built on processing natural languages, which

contain ample context and semantic information [163]. Eye-tracking technolo-

gies produce high-frequency data, with sampling rates reaching up to 2000 Hz.
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It leads to vast datasets, while no semantic information [164, 165]. This lack of

semantic information in eye-tracking data challenges the reasoning capacities of

LLMs [166]. Meanwhile, training the LLM with all empirical data and inputting

the current eye-tracking data segment, representing the ongoing visual attention,

can place a significant burden on the LLMs’ data processing and reasoning abil-

ity. To address the issues, we developed a visual attention matrix (VAM), which

compiles the temporal-spatial information from the eye-tracking data into a 9x9

matrix, providing concise, tokenized input for GPT-4 model.

In this work, we contribute to the HCI in aviation from two perspectives. First,

we use LLM to process eye-tracking data, enabling a more comprehensive and

context-aware estimation of pilots’ troubleshooting. This approach enhances HCI

by enabling discrimination of pilots’ troubleshooting activities from blended sta-

tus with normal monitoring behaviors. Second, we developed the Visual Attention

Matrix (VAM) to summarize semantic information in eye-tracking data, enabling

its tokenization for input to LLMs. VAM represents a novel approach for summa-

rizing temporal-spatial information in eye-tracking data and provides a reference

for using LLMs with non-semantic psychological datasets. In Section 5.4, we ver-

ified the ability of our method to identify and respond to the pilots’ troubleshooting

in their ITL status with a case study. Together, these contributions offer insights

into enhancing HCI by enabling a more user-friendly interaction from identifying

the ITL pilots’ needs for support and responding to it. This enhancement aims to

foster a more comprehensive and robust closed-loop automation support mecha-

nism.
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5.2 Visual Attention Matrix (VAM)

To identify the pilots’ information needs using LLM and eye-tracking data, we de-

veloped the Visual Attention Matrix (VAM) to tokenize the eye-tracking data and

designed prompts to integrate with the LLM. This section details how to compile

the eye-tracking data into VAMs and integrate it with LLM.

5.2.1 Compiliing eye-tracking data into VAM

We introduce the VAM as a structured representation to analyze the pilot’s ef-

fort in information acquisition. It summarises the fixation and saccade activities

into a matrix, reflecting not only the fixation durations of each stimulus but also

the transitions between the stimuli. Figure 5.1 provides a graphical illustration of

constructing VAM from eye-tracking data.

Firstly, the key instruments in the cockpit are defined as Areas of Interest

(AOIs), with the total number denoted as N . Correspondingly, we define a ma-

trix MN×N , where both the nth row and nth column represent the same AOI

(1 ≤ n ≤ N ).

Secondly, each fixation event is extracted from the eye-tracking data, described

as (i, p, q, x), where: i ∈ I is the index of the fixation event in the sequence, p ≤ N

indicates the previous fixated AOI, q ≤ N indicates the current fixated AOI, and

x represents the fixation duration (in milliseconds) on the current AOI.

Next, the fixation events are then encoded into thematrixMN×N in an additive

manner. Specifically, each elementMp,q ∈ MN×N is given by:
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Figure 5.1: Construct Visual Attention Matrix (VAM) from eye-tracking data

Mp,q =
∑

j∈I,(j,p,q,x)

xj (5.1)

where xj represents the fixation duration for each event.

Finally, the matrix MN×N is extended to M+
(N+1)×(N+1) by adding a sum

row and a sum column at the end. The sum row (row N + 1) and the sum column

(columnN +1) represent the sum of the previous rows and columns, respectively.

Specifically, each element in the sum row is given by equation 5.2 and each ele-

ment in the sum column is given by equation 5.3:
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M+
N+1,q =

N∑

p=1

Mp,q, 1 ≤ q ≤ N (5.2)

M+
p,N+1 =

N∑

q=1

Mp,q, 1 ≤ p ≤ N (5.3)

The element at the bottom right corner of the extended matrix, M+
N+1,N+1,

represents the total sum of all elements in the original matrix:

M+
N+1,N+1 =

N∑

p=1

N∑

q=1

Mp,q (5.4)

Through this method, the VAM enhances the representation of visual atten-

tion by incorporating additional contextual information. The sum row represents

the total fixation duration for each AOI, offering a fundamental metric of visual

attention distribution. Similarly, the sum column indicates the total fixation du-

ration directed toward subsequent AOIs after viewing the current AOI, providing

a novel metric for assessing the interaction between AOIs. Specifically, each el-

ement (Mp,q) in the matrix represents the weight of transitions between AOIs,

thereby offering more comprehensive insights into the pilot’s information acquisi-

tion effort beyond merely calculating total fixation durations on individual AOIs.

5.2.2 Detecting pilots’ information needs with LLM and VAM

The VAM introduced in the previous steps provides a concise representation for

tokenizing eye-tracking data, capturing key aspects of pilots’ visual attention al-

location and transitions. Based on the VAM, we use the trending LLM, GPT-4,

to detect and respond to the pilots’ ITL confusion. The integration of VAM and
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GPT-4 model is illustrated in Figure 5.2.

First, we employ three types of empirical VAMs to distinguish between pilots’

normal monitoring activities and cases when they are actively acquiring specific

information for troubleshooting: Normal Range VAM, Abnormal Range VAM,

and P-value VAM. Each element (M+
p,q) in the Normal Range VAM and Abnor-

mal Range VAM is a 2-tuple, (min,max), representing the minimum and max-

imum values derived from empirical data. The Normal Range VAM uses data

from routine flight periods when no incidents occur, and the ITL pilot is engaged

in standard monitoring activities. In contrast, the Abnormal Range VAM uses

data from cases when abnormalities arise, and the ITL pilot is actively acquiring

information for troubleshooting. Overlaps may occur between these two ranges,

particularly with the lower limits, as the differences in troubleshooting are primar-

ily reflected in the upper limits, indicating increased visual attention from the pilot.

The P-value VAM is constructed by performing T-tests between the correspond-

ing elements from normal and abnormal cases. Elements with P-values below 0.05

suggest significant differences between normal and abnormal scenarios. These el-

ements can thus provide valuable insights for the GPT-4 model, helping it estimate

whether the pilot is engaged in troubleshooting.

Second, we use the GPT-4 model to distinguish whether a pilot is conducting

normal monitoring or troubleshooting based on these different VAMs. The prompt

consists of the following four parts:

• Basic instructions: This part provides the fundamental context, assigning

the AI the role of an experienced flight instructor and ergonomist. It sets the

overall goal: to determine whether the pilot’s gaze patterns indicate normal
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monitoring or troubleshooting behavior. This fundamental context setting

prompts the GPT-4 model to utilize its relevant knowledge in aviation and

eye-tracking disciplines.

• Explanation of AOIs: This part explains the specific AOIs defined in the

cockpit, detailing their functions and the type of information they provide.

The descriptions help clarify the relevance of each AOI for understanding

the pilot’s visual attention and how different cockpit instruments contribute

to the information during the flight.

• Explanation of VAMs: This part describes howVAM is constructed and how

it represents the pilot’s gaze transitions between AOIs. It explains the basic

elements and the sum row and column in the matrix, which aid in under-

standing overall gaze patterns and the level of interaction between AOIs.

It also introduces the construction of the Normal Range VAM, Abnormal

Range VAM, and P-value VAM, helping the GPT-4 model understand how

to utilize empirical knowledge effectively.

• Requirement: The final part outlines the specific requirements for analyzing

the pilot’s behavior, including using empirical reference files and statistical

data to determine normal monitoring versus troubleshooting. It requires the

GPT-4 model to estimate whether the pilot is troubleshooting any specific

AOI based on the given VAM and provide a response confirming the pilot’s

status while proposing appropriate support. This part also describes the ex-

pected format of the output from the GPT-4 model and provides an example

to guide the response structure.
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Figure 5.2: Detecting pilots’ information needs with GPT-4 and VAM

This prompt helps the GPT-4model understand the context, the pattern of input

data, and the expected output. It integrates the eye-tracking data with the LLM to

estimate what information the pilot requires by leveraging advanced reasoning
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capability, while providing a user-friendly response utilizing natural interaction

capability. Meanwhile, the VAM offers a novel method to tokenize eye-tracking

data as a concise input for the GPT-4 model, enhancing both processing efficiency

and interpretability.

5.3 Case study

This study evaluated the proposed method through a flight simulation experiment

conducted at Hong Kong Polytechnic University, involving 19 licensed pilots (all

male, aged 28-55). This section outlines the methodology, data collection, and

performance evaluation processes. We trimmed the VAMs (with and without sum

row and column, with and without P-value reference) and compared their perfor-

mance to determine the VAM format that yielded optimal results.

5.3.1 Experiment design and data collection

5.3.1.1 Apparatus and participants

The experiment utilized an Airbus A320 simulator equipped with a 180° wide-

angle display to replicate the aerial environment. A desktop computer operated

the Instructor Operating Station software, managing flight scenarios, monitoring

flight status, and activating task events. Eye movement data were collected using

Tobii Pro Glasses 3, featuring 16 illuminators and 4 eye cameras, with a sampling

rate of 100 Hz [154]. It has a scene camera in the front to record the field of

view, enabling the eye movements to be mapped as fixations to the AOIs in the

scene. The setting is shown in Figure5.3. All 19 participants held valid licenses
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for the Airbus A320, comprising 5 Captains, 8 First Officers, and 6 Second Offi-

cers. The experiment follows ethical standards outlined in the 1975 Helsinki Dec-

laration and received approval from the Institutional Review Board of The Hong

Kong Polytechnic University (IRB Reference Number: HSEARS20211117002).

Participants provided written informed consent and received HK$1,000 shopping

coupons as incentives upon completing the experiment.

Figure 5.3: Experiment apparatus

5.3.1.2 Experiment design

The experiment involves two flight segments, simulating a round-trip, between

TokyoNarita International Airport (RJAA) andKansai International Airport (RJBB).
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The order of flight segments was randomized for each participant to ensure experi-

mental integrity. During the experiment, a researcher acts as an Air Traffic Control

Officer (ATCO) to provide instructions and responses to the pilots. Prior to the ex-

periment, the aircraft is taxied to the takeoff position already, and the participants

will get a briefing before starting. After completing the pre-flight checklist, the

participant will be instructed to start the experiment from takeoff. Each segment

included six phases: takeoff, climb, cruise, descent, approach, and landing, to-

taling approximately 50 minutes. The weather conditions are set in advance and

remain the same for all the participants: wind: 080°/15 knot, runway visual range

(RVR): 5,000 feet, and broken clouds between 400 and 25,000 feet.

During the flight, three distinct events were inserted as troubleshooting tasks

to provide ground truth for evaluation. These tasks included an Oxygen error on

the Electronic Centralized Aircraft Monitor (ECAM) and Multi-Function Display

(MFD), a Traffic Collision Avoidance System (TCAS) Error on the Navigation

Display (ND), and a landing gear unlocked error on the Landing Gear (LDG)

panel. In default settings, these errors are accompanied by arresting audio warn-

ings, while we muted the audios in this study to induce the participants’ infor-

mation acquisition visual behaviors. Participants were briefed to report any kind

of incidents or abnormalities promptly during the flight. After the participant de-

tected and reported the incident, the researchers deactivated the error from the

Instructor software and instructed the participant to keep an eye on it. The unex-

pected lack of audio warnings and the instruction to keep an eye on it will induce

the participants to pay visual attention to cross-checking, reducing reliance on au-

dible alerts. This design raises the participant’s active visual searching behaviors

from specific instruments for troubleshooting. All three tasks are inserted after
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takeoff and before landing to avoid overload, and at least a 12-minute interval

is set between every two events to avoid potential inner connections. Figure 5.4

shows the flight route from RJAA to RJBB and the three tasks. The sequence of

three tasks is reversed for the flight from RJBB to RJAA.

Figure 5.4: Flight route and tasks

Apart from the designated tasks, the flight proceededwithout additional events.

Given the single-pilot operation (SPO) setup [110], tasks typically performed by

the First Officer (FO), such as checklist reviews, were managed by the researcher.

Following the first flight segment, a break of 10 to 20 minutes, depending on par-

ticipant needs, was given to mitigate fatigue effects. The eye-tracker was recali-

brated before the subsequent segment.
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5.3.2 Data Processing

In this study, we defined 7 Areas of Interest (AOIs), including the Electronic Cen-

tralized Aircraft Monitor and Multi-Function Display (ECAM and MFD), Exter-

nal, Flight Control Unit (FCU), Landing Gear Panel (LDG), Multifunction Con-

trol Display Unit (MCDU), Navigation Display (ND), and Primary Flight Display

(PFD). Eye movement data were mapped onto these defined AOIs using Tobii Pro

Lab software. Additionally, a pseudo AOI called ”Elsewhere” was defined to ac-

count for fixations occurring outside these 7 AOIs when constructing the VAMs.

The layout of the AOIs in the cockpit and the structure of the VAMs are illustrated

in Figure 5.1. Detailed descriptions of the AOIs can be found in 6.2.

To optimize the format of the VAMs, we evaluated two factors: the inclusion

or exclusion of sum rows and columns, and the use of an empirical P-value VAM to

highlight significant elements. This evaluation led to testing four combinations:

9x9 VAMs with P-value VAM (9-p), 8x8 VAMs with P-value VAM (8-p), 9x9

VAMs without P-value VAM (9-a), and 8x8 VAMs without P-value VAM (8-a).

Thirty-one records were selected for analysis after excluding data with eye-

tracking rates below 85% to ensure data quality [157, 158]. Each record included

data from 3 effective tasks, resulting in a total of 93 tasks examined. We catego-

rized the eye-tracking data into two phases: 30 seconds after the participant de-

tected an error (Pos), indicating active information acquisition for troubleshooting;

and 30 seconds before the participant detected an error (Neg), representing normal

monitoring. A typical comparison of the Pos and Neg VAMs (9*9) is shown in

Figure 5.5. It can be found that the task-related AOIs received more fixations after

the tasks, indicating the participant’s information needs.
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Figure 5.5: 9x9 VAMs for the three tasks (Participant 3, RJBB to RJAA)

After constructing individual VAMs for each task, we conducted customized
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10-fold cross-validation using empirical VAMs to validate performance. In con-

ventional 10-fold cross-validation, data from 9 folds are used to train the model,

and the left fold data is used for testing. To avoid the heavy load of training the

large model directly with massive data, we use the data from 9 folds to construct

empirical VAMs (as detailed in Section 3.2) as input knowledge to the GPT-4

model. The remaining fold’s VAMs were then tested to validate performance. In

addition to estimating information acquisition, we tasked the GPT-4 model with

providing a user-friendly response confirming participants’ information needs and

suggesting support options. Specifically, this study adopted the GPT-4o model.

The prompt used in this study is detailed in Appendix 6.2, tailored to the trimmed

VAMs described above.

The test was conducted from two perspectives: accuracy of the estimation and

quality of the response message. Estimation performance was evaluated using

macro-accuracy (Mac) and micro-accuracy (Mic) metrics. It’s worth mentioning

that the estimation of the GPT-4 model contains multiple possibilities, referring

to the multiple AOIs. The GPT-4 model might estimate the participant was trou-

bleshooting any of these defined AOIs. Nonetheless, the ground truth contains

only four classes, including normal monitoring (Neg) before the tasks and trou-

bleshooting behaviors after the three error detection (Pos). The three AOIs related

to the tasks introduced in Section 5.3.1.2 were used as ground truth. Metrics in-

cluded precision (Pre), recall (Rec), F1-score (F1), and specificity (Spec), calcu-

lated as follows:

PreMac =
1

4

∑ TPi

TPi + FPi
(5.5)
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PreMic =

∑
TPi∑

TPi +
∑

FPi
(5.6)

RecMac =
1

4

∑ TPi

TPi + FNi
(5.7)

RecMic =

∑
TPi∑

TPi +
∑

FNi
(5.8)

F1Mac =
2

1
RecMac

+ 1
PreMac

(5.9)

F1Mic =
2

1
RecMic

+ 1
PreMic

(5.10)

SpecMac =
1

4

∑ TNi

TNi + FPi
(5.11)

SpecMic =

∑
TNi∑

TNi +
∑

FPi
(5.12)

where TP stands for True Positive, TN stands for True Negative, FP stands for

False Positive, and FN stands for False Negative in the classification confusion

matrix.

The quality of the response message was evaluated through expert scoring

based on six criteria. Five criteria were chosen from widely adopted standards

in the human evaluation of automatically generated text [167]: fluency, informa-

tiveness, relevance, grammaticality, and overall quality. Additionally, we intro-

duced an ”immersion” criterion to assess the level of distraction caused to pilots
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by correct identifications and the disruption caused by incorrect identifications,

if such messages prompted out during flight. A lower score indicates a stronger

negative impact from distractions or incorrect estimations, whereas a higher score

indicates less negative impact. Response messages generated by GPT-4 from the

VAM combination with the highest estimation accuracy were presented to five avi-

ation experts who rated them using a 5-point Likert scale. The experts included

two licensed pilots, two licensed ATCOs, and one aviation researcher. The ground

truth, estimation result, and responsemessage for the estimated positive cases were

provided to the experts for evaluation. For cases where GPT-4 estimated the partic-

ipant was conducting normal monitoring (Neg), no response messages were pro-

vided, and only the accuracy was given to the experts for reference in rating the

scores.

5.3.3 Results

To establish a baseline, we first tested the performance using only the total fixa-

tion duration on each AOI. Corresponding to the 8x8 and 9x9 VAMs, this baseline

performance was assessed using the total fixation durations for each AOI (8-Sum)

and by adding a sum of all fixation durations (9-Sum). It provides less information

on how the participant’s attention transfers among these AOIs, which is equal to

using solely the sum row in the 8x8 VAMs and 9x9 VAMs. Subsequently, the four

VAM combinations were tested to identify the optimal format for estimation ac-

curacy. The results are shown in Figure 5.6. Notably, it is a non-square confusion

matrix with four rows and five columns. The 5th column represents the situation

when the GPT-4 model estimates the participant was troubleshooting AOIs other
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than the three ground truths. As illustrated, using VAMs significantly improved

estimation performance compared to solely using total fixation durations (8-Sum

and 9-Sum). Among the tested methods, 9-p achieved the highest number of true

positives (157).

Figure 5.6: Classification confusion matrix of different input

Based on the classification confusion matrix, results of macro-accuracy and

micro-accuracy metrics were calculated and presented in Figure 5.7. The find-
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ings indicate that using VAM methods enhanced estimation performance across

all four metrics, and that incorporating the P-value VAM to hint at the significant

elements in the VAM further improved performance compared to treating all ma-

trix elements equally.

Figure 5.7: Macro and Micro evaluation metrics using different inputs

Specifically, 9-p showed the best performance among the testedmethods, achiev-

ing a macro average precision of 0.881, recall of 0.637, F1 score of 0.739, and

specificity of 0.966. For the micro average, 9-p achieved a precision of 0.889,

recall of 0.817, F1 score of 0.852, and specificity of 0.966. The input using 8-a

and 9-a demonstrated similar performance, with macro average precision around

0.80, recall around 0.57, F1 scores around 0.67, and specificity around 0.95. Their

micro average precision were approximately 0.83, recall were approximately 0.75,

F1 scores were approximately 0.78, and specificity were approximately 0.95. The

performance metrics for 8-p were higher than those for 8-a and 9-a, but still lower

than for 9-p.
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The ground truth, estimation results, response messages, and accuracy metrics

for 9-p were provided to the experts for evaluation. 6.2 details the estimated posi-

tive cases, while negative cases (normal monitoring) were excluded as they did not

generate response messages. The expert evaluation results are summarized in Ta-

ble 5.1. All experts rated 5 for grammaticality and agreed that the GPT-generated

messages had good overall quality, with an average score of 4.4. The average

scores for fluency and relevance were also 4.4. However, the scores for infor-

mativeness and immersion were lower, with an average of 3.6, indicating some

concerns in these aspects.

Table 5.1: Expert scoring result
Expert Fluency Informa-

tiveness
Relevance Gramma-

ticality
Immersion Overall

Quality

Pilot 1 5 4 5 5 3 5

Pilot 2 4 4 4 5 5 4

ATCO 1 4 3 4 5 3 4

ATCO 2 5 4 5 5 4 5

Researcher 4 3 4 5 3 4

Average 4.4 3.6 4.4 5 3.6 4.4

5.4 Discussion

When pilots are actively engaged in the loop (ITL), timely automation support can

facilitate them to acquire information more effectively and troubleshoot incidents

more efficiently. This study proposes a method to identify the troubleshooting of

pilots by tokenizing the eye-tracking data into Visual Attention Matrices (VAMs)

and integrating with LLMs. A case study validates the effectiveness of this ap-
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proach in identifying pilots’ troubleshooting and proposing user-friendly support.

Comparing different VAM configurations, the use of 9x9 VAMs with empirical P-

Value VAMs (9-p) achieved optimal estimation accuracy, with F1 scores of 0.739

for Macro-average and 0.852 for Micro-average. Expert scoring confirmed the ac-

ceptance of using GPT-4 to proactively propose support to pilots. The implications

derived from these results and the study’s limitations are discussed below.

5.4.1 Implications derived from the results

Firstly, comparing the estimation performance using VAMs against baseline meth-

ods (solely total fixation on each AOI) revealed significant enrichment in under-

standing pilots’ visual attention distribution through AOI transitions. Though the

individual saccade behaviors represent the original visual transitions, the VAM

method summarises these transitions to reflect the trend rather than maintaining

individual saccades to avoid the load of massive data processing. This is in line

with the previous methods such as gaze transition entropy [168, 169] and AOI

Rivers [170]. The summarization mitigates the challenge of LLMs’ deficiency in

processing massive physiological data with no semantic information.

Secondly, VAMs including sum rows and columns (9x9 VAMs) outperformed

those without (8x8 VAMs), suggesting that simple features might also enhance

LLM’s reasoning ability. Moreover, the use of empirical P-value VAMs outper-

formed its absence, underscoring the importance of highlighting the critical fea-

tures for the LLM. These findings highlight the significance of feature engineering

based on empirical knowledge [171], especially for the industrial applications of

large models. For example, Figure 5.6 demonstrated that the ECAM& MFD had
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higher TP and NP than LDG, potentially caused by the nature that ECAM&MFD

provide more critical information than LDG and intrinsically received more atten-

tion. A guess can be made that if this empirical knowledge was provided to the

GPT-4 model, the estimation accuracy on the LDG might be improved.

Thirdly, all the experts rated 4 or above in fluency, relevance, grammaticality,

and overall quality for the GPT-generated response messages. This indicates over-

all acceptance of the method in identifying the troubleshooting activity and text

quality. However, concerns were raised about informativeness and immersion cri-

teria, suggesting a need for more granular yet concise output from GPT-generated

messages. Future efforts should focus on the deeper integration of LLMs with

in-flight tasks and advancing human-AI teaming paradigms.

5.4.2 Limitations

This study involved nineteen pilots with varying experience levels and flight hours,

which may influence cockpit visual scanning behaviors. Fortunately, distinct vi-

sual patterns captured by our method led to satisfactory estimation performance.

In the future, it would be ideal to separate the pilots of different experience lev-

els into different groups of the same size to further study experience-related eye

movement characteristics. Furthermore, the ground truth of the classification in

this study was simplified and could be biased. For example, though the error mes-

sage was shown on designed instruments, the pilot may feel a need to acquire

information from other instruments for cross-validation. This might impact the la-

bel of the data and the result of accuracy calculation. Therefore, it is of great value

to improve the experiment design to label the pilots’ spontaneous troubleshooting
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without interrupting their immersive operations in-flight tasks.

In summary, the results demonstrated that the proposed method effectively

identified the pilots’ troubleshooting and had the ability to propose user-friendly

support. It fills the critical gap in detecting and actively responding to the needs

of the ITL operators. This methodology provides a novel format for eye-tracking

data processing, and serves as a base for future HCI studies in the new era of large

models.

5.5 Concluding remarks

Optimizing Human-Computer Interaction (HCI) in highly automated cockpits is

crucial for aviation safety. While numerous studies have focused on mitigating

risks associated with the OOTL phenomenon, a critical gap remains regarding the

need for support of In-the-Loop (ITL) pilots. To address this gap, our study intro-

duced a method to tokenize eye-tracking data and integrate it with Large Language

Models (LLMs) to identify and respond to ITL pilots’ troubleshooting.

This research makes three significant contributions to HCI in aviation. First,

it presents a novel method for tokenizing pilots’ eye-tracking data into Visual At-

tention Matrices (VAMs), which capture visual attention transitions across cockpit

instruments and their distribution. The VAM effectively summarizes the charac-

teristics of pilots’ normal monitoring and troubleshooting behaviours, providing

a suitable format for LLM-based processing and reasoning. Second, the study

employs three empirical VAMs (Normal Range VAM, Abnormal Range VAM,

and P-Value VAM) as empirical knowledge to support LLM reasoning. Com-

pared to training and tuning LLMs with all individual VAMs, the use of empirical
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VAMs significantly reduces resource costs. Third, beyond the identification of

the troubleshooting behaviour, the study proposes actively providing support us-

ing the natural interaction capability of LLM. This approach offers insights for

future LLM integration in aviation systems and establishes a foundation for HCI

in the new era of automation.

Despite limitations related to participants’ experience variability and the un-

avoidable biases in ground truth labelling, the results demonstrate that the pro-

posed method can effectively capture the characteristics of pilots’ eye movements

to discern different monitoring behaviours. Future research aims to achieve a more

balanced participant composition by categorizing pilots based on experience levels

and ensuring equal group sizes. Furthermore, integrating more aviation-specific

knowledge into the method will improve estimation accuracy and optimize the

generated interaction messages. This will enable a more comprehensive under-

standing of pilots’ needs during ITL status and advance HCI to enhance aviation

safety.



Chapter 6

Conclusion

This chapter concludes this work, with the key findings and main contributions

summarised in Section 6.1. Meanwhile, the limitations and future research direc-

tions of this study are discussed in Section 6.2.

6.1 Contribution

This thesis advances the understanding and application of human factors and au-

tomation in aviation through a systematic exploration of visual attention-based

methodologies. The work spans the development of predictive models, frame-

works for explainable status identification, and innovative interaction designs.

Key contributions are outlined as follows:

1. Development of the Flashlight model

The Flashlight model combines attention distribution and resource metrics,

refining traditional gaze metrics by emphasizing specific Areas of Interest

(AOIs) critical to performance prediction.

105
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SHAP analysis is used to identify pivotal eye-tracking measurements, en-

riching interpretability and enabling more targeted applications in aviation

safety.

Integrated the classic cognitive theories, such as James’ Spotlight andWick-

ens’ information processing models, into practical applications for aviation.

It advances the development of novel theories to optimise aviation safety.

2. Introduction of the explainable OOTL identification framework

The Visual Attention Traces (VATs) innovatively encode the eye-tracking

data, capturing both temporal and spatial dynamics. This novel method en-

ables robust characterization of pilots’ behaviors.

The VALIO framework applies LTL methods to generate human-readable

formulas, improving explainability in identifying OOTL status.

The framework demonstrates superior performance in shorter timewindows,

highlighting its practical applicability for real-time aviation operations.

The obtained LTLf formulas in this study directly provide insights into pi-

lots’ OOTL status and contribute to the understanding of pilots’ visual be-

haviours.

3. Integration of LLMs for ITL Pilot Support

This work develops a Visual AttentionMatrices (VAMs) method to tokenize

eye-tracking data into formats suitable for LLM processing. It effectively

summarizes the characteristics of normal and troubleshooting behaviours.

Themethod utilises empirical VAMs to incorporate empirical knowledge for

LLM reasoning and interaction. It innovatively reduces the resource costs
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of training and tuning LLMs.

By integrating eye-tracking and LLMmethods, this work proposes a proac-

tive HCI with natural interaction capabilities. It leverages the capability

of LLMs to provide timely and context-aware support, advancing HCI in

highly automated cockpits.

In summary, this thesis contributes to the fields of human-in-the-loop HCI in

cockpit to enhance aviation safety by providing innovative methods for monitor-

ing, predicting, and supporting pilot performance in both OOTL and ITL scenar-

ios. Meanwhile, the methods developed and the knowledge obtained from this

work might also be adopted in other visual-based tasks where human operators

act as monitor roles, such as drivers of autonomous vehicles and Vessel Traffic

Controllers.

6.2 Limitations and future research

In this thesis, eye-tracking data are innovatively encoded to integrate the atten-

tion resources perspective and attention distribution perspective. The applications

of LTLf methods and LLMs are leveraged, which are relatively novel attempts

without broad explorations. Although a great effort was put forth with regard to

the and feature engineering and data analysis, this thesis has inevitable limitations

and constraints as discussed in the following:

1. Participant Experience: Some of the studies involved student pilots and

simplified scenarios, limiting the generalizability of findings to more com-

plex and realistic aviation environments.
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2. Binary Classification of Pilot Status: It weakened some nuanced reality of

pilot behaviours and interactions with automation.

3. Ground Truth Labelling Bias: The reliance on labelled data introduces po-

tential biases that may affect model performance and interpretation accu-

racy.

4. Static settings of AOIs: This study definedAOIs statically based on the static

infrastructure in the cockpit, limiting the applications to the scenarios where

the AOIs are dynamic (e.g., Air Traffic Control).

5. Simplified Experimental Tasks: Laboratory conditions and predefined tasks

restrict the applicability of findings to dynamic and unpredictable real-world

aviation scenarios.

Based on these limitations and the remaining research gaps, some future re-

search directions are discussed.

1. Expanding Participant Profiles: Future studies should involvemore licensed

pilots and encompass diverse expertise levels to ensure more representative

findings.

2. Enhancing Experimental Realism: Future studies should try to establish

real-world flight scenarios with dynamic variables to better validate the pro-

posed methods.

3. Refinement of Classification Models: Future studies will incorporate more

detailed degrees of OOTL and ITL, along with hybrid states. Meanwhile,
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other Computer Vision techniques will be introduced to support a real-time

AOI definition with dynamic visual targets.

4. Broader Range of Eye-Tracking Metrics: Future studies will explore addi-

tional metrics. The other eye-tracking metrics, such as gaze entropy and

blinks, will be utilised to offer deeper insights into cognitive processes.

5. Advanced Interaction Models: Future studies will leverage LLMs for multi-

modal integration (e.g., combining audio and physiological signals). The

LLM will be customised with multi-modal information sources to enhance

the accuracy and responsiveness of automation support.
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Appendix I. LLM insturctions

You are an experienced flight instructor and ergonomist. You are

experienced in identifying the pilot's status through his gaze patterns.

Now I'll give you the eye-tracking data of a pilot in CSV format,

you need to estimate whether the pilot is conducting normal monitoring

(Neg) or abnormality detection (Pos) behaviors based on the knowledge

below:

Each CSV file contains a 9*9 matrix, representing the pilot’s visual

behaviors in 30 seconds. The first 8 rows and columns represent

different Areas Of Interest(AOI), as introduced below.

ECAM and MFD: ECAM and MFD: Electronic Centralized Aircraft Monitor

(ECAM) and Multi-Function Display (MFD), are used to monitor aircraft

systems and provide alerts to pilots about the aircraft's health

and status. They serve multiple

purposes, such as displaying maps, flight plans, weather, and aircraft

151
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systems information.

External: refers to the external view outside the cockpit that provides

additional visual references to the pilots through the window.

FCU: Flight Control Unit, the interface that allows pilots to enter

and control the autopilot system, setting and adjusting things like

altitude, heading, and speed.

LDG: Landing Gear Panel, consists of the controls and indicators

for the aircraft's landing gear system, displaying the status of

the gear and any related warnings.

MCDU: Multifunction Control Display Unit, the interface for the Flight

Management System (FMS), where pilots can input flight plans, perform

calculations, and manage the aircraft's performance.

ND: Navigation Display, shows the aircraft's route in relation to

navigation aids, the flight plan, and other important details such

as weather radar.

PFD: Primary Flight Display, displays critical flight information

such as speed, altitude, and attitude, along with navigational information.

Elsewhere: The other parts inside the cockpit that are not defined

as specific AOIs.

The cell (m,n) represents the gaze fixation moved from the m-th AOI

to the n-th AOI. For example, cell (2,1) represents the total durations

of the fixations on “ECAM and MFD”, where the previous fixations

are on "FCU".
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The 9th row and the 9th column represent the sum of the previous

columns and rows. More specifically, the 9th row represents the total

fixation durations of these AOIs, and the 9th column represents the

fixation durations moving out from these AOIs.

Based on the previous research, we have three findings:

To help you estimate the pilot’s status, the two attached files

<Pos_range_round_X.CSV> and <Neg_range_round_X.CSV> are attached

for your reference. The two files contain the empirical range of

these fixations. The ranges of some cells can be overlapped, then

you need to decide which better fits the given data and give an estimation.

For example, if the positive range is (0,100) and the negative range

is (0,200), and the given data is 50, then it is more likely that

the data belongs to the positive case (the smaller range).

The file <p_value_round_X.CSV> provides the paired t-test results

of the 81 cells between positive and negative cases. This suggests

that the cells where the p-value <0.05 have significant differences

between the positive and negative cases, leading to higher importance

for making estimation.

Please estimate whether the pilot is conducting normal monitoring

(Neg) or abnormality detection (Pos) behaviours and briefly give

some reasons. Meanwhile, please also estimate where the abnormality

existed (a specific AOI) based on the distribution of the fixations,



Appendices 154

if you estimate it is a positive case.

Please organize your answer in a JSON object containing the following

keys:

"AD": if you estimate the pilot is conducting abnormality detection,

return "Pos", else return "Neg";

"reason": a concise explanation that supports your estimation. Based

on the fixations paid on the AOIs, you may suggest which AOI(s) are

likely to have abnormalities. Please note: the AOI being paid more

fixations does not necessarily suggest an abnormality, since these

AOIs may naturally attract more fixations in normal monitoring activities.

The more different from the negative range, the more possibility

of having an abnormality;

"response": just return "NA" if you estimate the pilot is just conducting

normal monitoring behaviour ("Neg"). If you deem the pilot is conducting

abnormality detection ("Pos"), make a response to help him better

handle the abnormality using the tongue like a human co-pilot. The

response should be specific based on the reason you gave. For example,

You may use the questions such as 'Do you need support in monitoring

the ECAM and MFD?' and 'Is there anything wrong on LDG?'. If there

are multiple AOIs showing the possibility of having abnormalities

based on the data analysis, only pick the most possible one or two

in your response.

An example of the answer in JSON format is given below:

{
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"AD": "Pos",

"reason": "The fixation duration on ECAM and MFD is significantly

high compared to both normal and abnormal ranges, suggesting an unusual

pattern that is more indicative of abnormality detection. The high

fixation on ECAM and MFD likely indicates the pilot is focusing on

system monitoring.",

"response": "Is there anything wrong? Do you need my support in

monitoring the ECAM and MFD? "

}

Please only reply in the required JSON object, no other content is

needed in your response.

Appendix II. Responses from LLM

Ground

Truth

Estim-

ation

Response

ECAM

&MFD

ECAM

&MFD

Is there anything wrong with the ECAM and MFD, or ND?

Do you need support?

ECAM

& MFD

ECAM

&MFD

Are there any specific concerns with ECAM and MFD? Do

you need assistance?

ECAM

& MFD

ECAM

&MFD

Is there an issue requiring focused attention across systems

like ECAM and MFD, or navigational displays? Do you

need assistance handling the alerts or monitoring?
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ECAM

&MFD

ECAM

&MFD

Is there anything wrong with the ECAM and MFD? Do you

need support?

ECAM

& MFD

ECAM

&MFD

Are there any issues with the ECAM and MFD? Do you

need assistance with monitoring it?

ECAM

& MFD

ECAM

&MFD

Are there any specific concerns with ECAM and MFD? Do

you need assistance?

ECAM

& MFD

ECAM

&MFD

Do you need assistance with the ECAM and MFD, or any

alerts from it?

ECAM

& MFD

ECAM

&MFD

Is there any issue with the ECAM and MFD? Is it showing

any discrepancies?

ECAM

& MFD

ECAM

&MFD

Are there issues with the ECAM and MFDs? Do you need

assistance with monitoring?

ECAM

& MFD

ECAM

&MFD

Is there an issue requiring focused attention across systems

like ECAM and MFD, or navigational displays? Do you

need assistance handling the alerts or monitoring?

ECAM

& MFD

ECAM

&MFD

Are there any issues requiring attention across systems like

ECAM and MFD? Can I assist with monitoring?

ECAM

& MFD

ECAM

&MFD

Is there anything wrong? Do you need my support in mon-

itoring the ECAM and MFD?

ECAM

&MFD

ECAM

&MFD

Is there anything wrong? Do you need my support in mon-

itoring the ECAM and MFD?

ECAM

&MFD

ECAM

&MFD

Do you need support with the ECAM and MFD, or ND sys-

tems? Are there any alerts or unusual readings?
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ECAM

&MFD

ECAM

&MFD

Is there an issue with the ECAM and MFD? Do you need

help with monitoring?

ECAM

& MFD

ECAM

&MFD

Are there any alerts or unusual readings in the ECAM and

MFD that need attention? Do you need additional support?

ECAM

& MFD

ECAM

&MFD

Are there any concerns with systems like ECAM and MFD,

or PFD that need focus? Do you need assistance with han-

dling alerts or monitoring?

ECAM

& MFD

ND Are there any concerns with the ND section that need atten-

tion? Do you need assistance monitoring operations?

ECAM

& MFD

Others Are there changes or anomalies in the FCU or MCDU sys-

tems? Do you need assistance monitoring the navigation or

control displays?

ECAM

& MFD

Others Do you need my support with the PFD? Are there issues

with the PFD or FCU settings?

ECAM

& MFD

ECAM

&MFD

Is there anything wrong? Do you need my support in mon-

itoring the ECAM and MFD?

ECAM

&MFD

ECAM

&MFD

Is there an issue requiring focused attention across systems

like ECAM and MFD, or navigational displays? Do you

need assistance handling the alerts or monitoring?

ECAM

& MFD

ECAM

&MFD

Is there anything wrong with the ECAM and MFD? Do you

need support?

ECAM

& MFD

ECAM

&MFD

Is there anything wrong? Do you need my support in mon-

itoring the ECAM and MFD?
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ECAM

&MFD

ECAM

&MFD

Are there any issues with the ECAM and MFD? Do you

need assistance with monitoring it?

ECAM

& MFD

ECAM

&MFD

Do you need assistance with ECAM andMFD, or other nav-

igational displays? Are there any issues with external con-

ditions impacting flight stability?

ECAM

& MFD

ECAM

&MFD

Are there any specific concerns with ECAM and MFD? Do

you need assistance?

ECAM

& MFD

ECAM

&MFD

Do you need assistance with the ECAM and MFD, or any

alerts from it?

ECAM

& MFD

ECAM

&MFD

Is there any issue with the ECAM and MFD? Is it showing

any discrepancies?

ECAM

& MFD

ECAM

&MFD

Are there issues with the ECAM and MFDs? Do you need

assistance with monitoring?

LDG LDG Is everything alright with the LDG? Do you need help with

monitoring or checking it?

LDG LDG Are there any issues with the LDG? Do you need support

monitoring external conditions or landing gear status?

LDG LDG Is there anything wrong? Do you need my support in mon-

itoring the LDG?

LDG Others Are there any specific concerns with MCDU? Do you need

assistance?

LDG LDG Is everything alright with the LDG? Do you need help with

monitoring or checking it?
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LDG ECAM

&MFD

Is there an issue with the ECAM and MFD? Do you need

help with monitoring?

LDG ECAM

&MFD

Is there an issue requiring focused attention across systems

like ECAM and MFD, or navigational displays? Do you

need assistance handling the alerts or monitoring?

LDG LDG Are there any concerns with LDG that need attention? Do

you need assistance monitoring?

LDG LDG Is there an issue requiring focused attention on LDG? Do

you need assistance handling the alerts or monitoring?

LDG LDG Do you need assistance with the LDG, or any alerts from it?

LDG LDG Is there anything wrong? Do you need my support in mon-

itoring the LDG?

LDG ECAM

&MFD

Are there any issues requiring attention across systems like

ECAM and MFD? Can I assist with monitoring?

LDG LDG Is there anything wrong? Do you need my support in mon-

itoring the LDG?

LDG LDG Is there anything wrong? Do you need my support in mon-

itoring the LDG?

LDG Others Do you need support with the MCDU, or PFD? Are there

any alerts or unusual readings?

LDG Others Is there an issue with the ECAM and MFD? Do you need

help with monitoring?
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LDG LDG Are there any alerts on the LDG that need attention? Do you

need additional support?

LDG LDG Is there any concern with LDG that need focus? Do you

need assistance with handling alerts or monitoring?

LDG LDG Is there any concern with the LDG that need attention? Do

you need assistance monitoring operations?

LDG LDG Are there changes or anomalies in the FCU or MCDU sys-

tems? Do you need assistance monitoring the navigation or

control displays?

LDG LDG Are you experiencing any issues with the landing gear panel

or ND? Do you require assistance in monitoring them?

LDG LDG Is there anything unusual with the LDG or ND? Could you

provide more details about any abnormalities?

LDG LDG Is there anything wrong? Do you need my support in mon-

itoring the LDG?

LDG LDG Do you need my support with the PFD? Are there issues

with the PFD or FCU settings?

LDG LDG Is there anything wrong? Do you need my support in mon-

itoring the LDG?

LDG LDG Is there anything wrong? Do you need my support in mon-

itoring the LDG?

LDG LDG Do you need my support with the LDG? Are there issues

with the LDG or FCU settings?
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LDG LDG Do you need assistancewith LDG?Are there any issues with

external conditions impacting flight stability?

LDG Others Do you need support focusing on FCU or ND systems? Are

there external conditions affecting navigation or displays

that require attention?

ND ND Do you need my support with the ND? Are there issues with

the ND?

ND ND Is there anything wrong? Do you need my support in mon-

itoring the ND?

ND ND Is there an issue requiring focused attention across systems

like ND, or PFD? Do you need assistance handling the alerts

or monitoring?

ND Others Is there anything wrong on Elsewhere?

ND ECAM

&MFD

Is there anything wrong? Do you need my support in mon-

itoring the ECAM and MFD?

ND ND Is there anything wrong? Do you need my support in mon-

itoring the ND?

ND ND Is there anything wrong with the ND? Do you need support?

ND ECAM

&MFD

Do you need assistance with the ECAM and MFD, or any

alerts from it?

ND ND Do you need assistance with ND?
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ND ND Are there changes or anomalies in the ND or FCU systems?

Do you need assistance monitoring the navigation or control

displays?

ND ND Are there any issues with the ND? Do you need assistance

with monitoring it?

ND ND Is there anything wrong? Do you need my support in mon-

itoring the ND?

ND ND Are there any concerns with the ND section that need atten-

tion? Do you need assistance monitoring operations?

ND ND Are there any issues with the ND? Do you need assistance

with monitoring it?

ND ECAM

&MFD

Are there any alerts or unusual readings in the ECAM and

MFD that need attention? Do you need additional support?

ND ECAM

&MFD

Are there any concerns with systems like ECAM and MFD,

or PFD that need focus? Do you need assistance with han-

dling alerts or monitoring?

ND ND Do you need assistance with ND, or other navigational dis-

plays? Are there any issues with external conditions impact-

ing flight stability?

ND ND Are there any specific concerns with ND? Do you need as-

sistance?

ND ND Is there any issue with the ND? Is it showing any discrepan-

cies?
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ND ND Is there anything wrong? Do you need my support in mon-

itoring the ND?

ND ND Is there anything wrong? Do you need my support in mon-

itoring the ND or the PFD?

ND ND Is there anything wrong? Do you need my support in mon-

itoring theND?

ND Others Are there any concerns with PFD that need attention? Do

you need assistance monitoring?

ND Others Is there an issue requiring focused attention on MCDU? Do

you need assistance handling the alerts or monitoring?

ND ND Are there issues with the ND? Do you need assistance with

monitoring?

ND ND Is everything alright with the ND? Do you need help with

monitoring or checking it?

ND ND Are there any issues with the LDG? Do you need support

monitoring external conditions or landing gear status?

ND ND Is there anything wrong? Do you need my support in mon-

itoring the LDG?

ND ND Are there any specific concerns with ND? Do you need as-

sistance?

ND ND Is everything alright with the ND? Do you need help with

monitoring or checking it?
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ND Others Is there an issue with the ND? Do you need help with mon-

itoring?

Normal ECAM

&MFD

Is there an issue with the ECAM and MFD? Do you need

help with monitoring?

Normal ND Are there any issues with the ND? Do you need assistance

with monitoring it?

Normal ECAM

&MFD

Is there an issue requiring focused attention across systems

like ECAM and MFD, or navigational displays? Do you

need assistance handling the alerts or monitoring?

Normal ECAM

&MFD

Do you need assistance with the ECAM and MFD, or any

alerts from it?

Normal ECAM

&MFD

Is there any issue with the ECAM and MFD? Is it showing

any discrepancies?

Normal Others Are there any specific concerns with MCDU? Do you need

assistance?

Normal Others Is there an issue with the MCDU? Do you need help with

monitoring?

Normal ECAM

&MFD

Are there issues with the ECAM and MFDs? Do you need

assistance with monitoring?

Normal Others Do you need support focusing on FCU or ND systems? Are

there external conditions affecting navigation or displays

that require attention?
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Normal ND Are there any concerns with the ND section that need atten-

tion? Do you need assistance monitoring operations?

Normal Others Are there changes or anomalies in the FCU or MCDU sys-

tems? Do you need assistance monitoring the navigation or

control displays?

Normal Others Do you need my support with the PFD? Are there issues

with the PFD or FCU settings?

Normal ECAM

&MFD

Is there an issue requiring focused attention across systems

like ECAM and MFD, or navigational displays? Do you

need assistance handling the alerts or monitoring?



 
 

  
  
  

INFORMATION SHEET  

Psychophysiological Data-based Knowledge Transfer Model for Adaptive Training 

You are invited to participate in the above project conducted by Dr Li Fan, who is a staff 
member of the Department of Aeronautical and Aviation Engineering in The Hong Kong 
Polytechnic University.  The project has been approved by the Human Subjects Ethics Sub-
committee (HSESC) of The Hong Kong Polytechnic University (HSESC Reference Number: 
HSEARS20211117002).   

The aims/objectives of this project are to study the characteristics of biometric signals collected 
by EEG and Eye tracker; propose a novel approach (based on psychophysiological and 
behavioural data) to evaluate the situation awareness (SA) level of pilots and assess the 
sensitivity of this method; and to further reveal the relationship between SA level and biometric 
signals, providing a basis for real-time risk management in the future. The experiment may 
cover one or several areas, including:  

• Situation awareness of response time, latency, mental fatigue and task performance 

You are invited to take part in a procedure to investigate the situation awareness level of the 
subjects. Measurements will be taken by eye tracker and EEG equipment. The eye tracker 
measures the eyeball positions and movement. EEG measures the electrical activity in the brain 
(brain waves) using electrodes (small metal discs or sensors) placed on the head with gel. There 
should be minimal discomfort or risk. You will then be asked to complete a questionnaire, 
which will take you about 5 minutes. The test does not hurt and the whole investigation will 
take about 100 minutes. 

The testing should not result in any undue discomfort, but you will need to perform the tasks 
required by the researchers. You are required to complete the tasks as the pilot role and perform 
flying activities in a flight simulator. 

The information you provide as part of the project is the research data.  Any research data from 
which you can be identified is known as personal data.  Personal data does not include data 
where the identity has been removed (anonymous data).  We will minimise our use of personal 
data in the study as much as possible.  The researcher and his team, supervisor will have access 
to personal data and research data for the purposes of the study.  Responsible members of The 
Hong Kong Polytechnic University may be given access for monitoring and/or audit of the 
research. 

All information related to you will remain confidential. For data safety and confidentiality, the 
data will be stored in a locked computer. All the data, samples and study records will be stored 
with a password-protected zip. Only the investigator, the research staff and the research students 
under the investigator’s supervision have the right to access the data in the period of conducting 
the research experiments and research project. All the data, samples and study records will be 
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stored with a password-protected achiever. The information collected will be kept one year after 
project completion/publication or public release of the research results. The Hong Kong 
Polytechnic University takes reasonable precautions to prevent the loss, misappropriation, 
unauthorized access or destruction of the information you provide. 

You have every right to withdraw from the study before or during the measurement without 
penalty of any kind.  

If you have any questions, you may ask our helpers now or later, even after the study has 
started.  

You may contact Dr Li Fan (tel. no.: 3400 2468/ email: fan-5.li@__________) of PolyU under 
the following situations: 

a. if you have any other questions in relation to the study;
b. if, under very rare conditions, you become injured as a result of your participation in the

study; or
c. if you want to get access to/or change your personal data before 31th Decemeber 2024.

In the event you have any complaints about the conduct of this research study, you may contact 
Miss Cherrie Mok, the Secretary of the Human Subjects Ethics Sub-Committee of The 
Hong Kong Polytechnic University by email (cherrie.mok@_______) or in writing (c/o 
Research Office of The Hong Kong Polytechnic University) stating clearly the responsible 
person and department of this study as well as the HSESC Reference Number. 

Thank you for your interest in participating in this study. 

Dr Li Fan 
Principal Investigator/Chief Investigator 

Hung Hom Kowloon Hong Kong 香港 九龍 紅磡

Tel 電話 (852) 2766 5111 Fax 傳真 (852) 2784 3374 
Email 電郵 polyu@polyu.edu.hk 
Website 網址 www.polyu.edu.hk 



參與者須知

用於自適應訓練的基於心理生理數據的知識轉移模型

我們誠邀閣下參與上述由香港理工大學航空及民航工程學系李凡博士開展研究。此研究已

獲香港理工大學人類實驗對象操守小組委員會批准（人類實驗對象操守小組委員會項目參

考編號: HSEARS20211117002）。   

此研究的目的是研究腦電圖和眼動儀收集的生物特徵信號的特徵；提出一種新方法（基於

心理生理和行為數據）來評估飛行員的態勢感知水平並評估該方法的敏感性； 並進一步

揭示態勢感知水平與生物特徵信號之間的關係，為未來的實時風險管理提供依據。實驗涵

蓋一個或多個領域，包括：

• 不同情景下的反應時間，延遲度，精神疲勞度和工作效能

過程中，研究人員將透過眼動儀及腦電圖等設備測量受試者的態勢感知程度。眼動儀用於

測量眼球的位置和動態。腦電圖透過戴於頭上的電子儀器（小金屬圓盤或傳感器）測量大

腦中的腦電波。受試者於過程中或感到輕微不適或有輕微風險，但實驗不會對受試者造成

傷害。其後，受試者將需填寫一份問卷，大約需時 5 分鐘。整個實驗需時約 100 分鐘。  

此實驗不會引致強烈不適，但受試者需根據研究人員的指引完成實驗。受試者將以空勤人

員的身份模擬處理相應指令, 並於模擬器執飛指定任務。 

實驗中收集的數據為「研究數據」。任何可以識別出受試者的數據為「個人數據」。個人

數據並不包括已刪除身份識別資料的數據（ 即匿名數據）。我們將盡可能減少在研究中

對個人數據的使用。只有項目負責人及其團隊可存取及瀏覽研究數據和個人數據進行研

究。香港理工大學的相關人士亦會被授予監察和審核此研究項目的權限。

所有與受試者有關的資料將會被保密。為保障數據的安全性和保密性，所有數據將儲存在

已鎖定的電腦設備裏。所有數據，樣本和研究記錄將額外使用密碼保存。在進行實驗和研

究項目期間，只有相關研究人員可在項目負責人的監督下存取數據。我們所收集的數據將

於項目完成或發布研究結果後保存一年。香港理工大學會採取合理的措施防止丟失、盜

用、未經授權的存取或破壞所收集到的數據。



如您在實驗開始之前或實驗期間退出研究，您將不會受到任何形式的懲罰。

如您有任何疑問，可隨時向研究人員查詢。

若有以下情況，您可聯繫李凡博士（電話：34002468／電子郵件: fan-5.li@_______）：

a. 如果您有其他與此研究有關的問題；

b. 如果在非常罕見的情況下，您因參加此實驗而受傷；

c. 如果您想在 2024年 12月 31日之前存取或更改您的個人數據。

如果您對此項研究有任何投訴，可透過電子郵件（cherrie.mok@            ）或郵件聯繫香港

理工大學人類實驗對象操守小組委員會秘書莫小姐。若郵寄投訴，請於信封註明「轉交香

港理工大學研究事務處」、研究負責人、及其所屬部門及人類實驗對象操守小組委員會項

目參考編號。

我們再次感謝您的參與。

李凡博士

項目負責人

Hung Hom Kowloon Hong Kong 香港 九龍 紅磡

Tel 電話 (852) 2766 5111 Fax 傳真 (852) 2784 3374 
Email 電郵 polyu@polyu.edu.hk 
Website 網址 www.polyu.edu.hk 



 

 
 
 

CONSENT TO PARTICIPATE IN RESEARCH  

Psychophysiological Data-based Knowledge Transfer Model for Adaptive Training 

I _______________________ hereby consent to participate in the captioned research conducted 
by Dr Li Fan.   

I understand that information obtained from this research may be used in future research and 
published. However, my right to privacy will be retained, i.e. my personal details will not be 
revealed.   

The procedure as set out in the attached information sheet has been fully explained. I understand 
the benefit and risks involved. My participation in the project is voluntary.   

I acknowledge that I have the right to question any part of the procedure and can withdraw at 
any time without penalty of any kind. 

Name of participant                                                                                                                   

Signature of participant                                                                                                             

Name of Parent or  
Guardian (if applicable)                                                                                                            

Signature of Parent  
or Guardian (if applicable)                                                                                                        

Name of researcher                               Dr. Li Fan                                                   

Signature of researcher                                                                                                               

Date                                                                                                                                              
 

Hung Hom Kowloon Hong Kong 香港 九龍 紅磡 

Tel 電話 (852) 2766 5111 Fax 傳真 (852) 2784 3374 
Email 電郵 polyu@polyu.edu.hk 
Website 網址 www.polyu.edu.hk 
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Appendix IV. Consent form of experiment



 

 
 
 
 
 

參與研究同意書 
  

用於自適應訓練的基於心理生理數據的知識轉移模型 
  

  
本人___________________同意參與由李凡博士開展的上述研究。 
  
本人知悉此研究所得的資料可能被用作日後的研究及發表，但本人的私隱權利將得以保

留，即本人的個人資料不會被公開。 
  
研究人員已向本人清楚解釋列在所附資料卡上的研究程序，本人明瞭當中涉及的利益及風

險；本人自願參與研究項目。 
  
本人知悉本人有權就程序的任何部分提出疑問，並有權隨時退出而不受任何懲處。 

  

參與者姓名  ______________________________________                     
參與者簽署   ______________________________________                                              
家長或監護人(如適用) 姓名 _________________________ 
家長或監護人(如適用) 簽署 _________________________ 
研究人員姓名 _____________________________________    
研究人員簽署 _____________________________________ 
日期 _____________________________________________ 
    
  

Hung Hom Kowloon Hong Kong 香港 九龍 紅磡 

Tel 電話 (852) 2766 5111 Fax 傳真 (852) 2784 3374 
Email 電郵 polyu@polyu.edu.hk 
Website 網址 www.polyu.edu.hk 
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