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Abstract

The main objective of the thesis is to demonstrate a comprehensive study of the

autonomous navigation of Unmanned Aerial Vehicles (UAVs) through intricate

environments characterized by narrow gaps. Employing advanced Deep Rein-

forcement Learning (DRL) methodologies, this research introduces two innova-

tive algorithms optimized for real-time UAV path planning. The first algorithm

enhances the standard Deep Q-Network (DQN) by integrating a series of improve-

ments that increase its adaptability and decision-making capabilities in complex

environments. This enhancement involves the incorporation of a more efficient re-

ward structure and a refined state-action space representation, allowing the UAV

to autonomously generate optimized navigation paths. The enhanced DQN frame-

work facilitates rapid adaptation to environmental variations, improving both the

learning speed and robustness of the UAV’s path planning. This results in more

effective navigation, especially in environments with narrow gaps and dynamic

obstacles. A key feature of this enhanced algorithm is its ability tomap action com-

mands directly from sensor data, thereby improving the UAV’s real-time decision-

making. Furthermore, by implementing a direction reward function, the algorithm

incentivizes the UAV to optimize its trajectory towards target goals while penal-

izing deviations from the desired path. This approach strengthens the UAV’s gen-
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eralization ability, allowing it to perform effectively across a range of diverse op-

erational scenarios.

In parallel, this thesis addresses the complex challenge of autonomous navi-

gation for UAVs in real environments. The study employs a sophisticated DRL

approach using the Soft Actor-Critic (SAC) algorithm, which is specifically op-

timized for UAV path planning within a continuous action space. This method

utilizes environmental image data to refine the accuracy of flight maneuvers and

enhance obstacle avoidance capabilities. The efficacy of our approach has been

substantiated through comprehensive simulations in Gazebo and empirical field

tests, which demonstrate the algorithm’s capability to enable UAVs to adeptly

navigate through obstacles using depth maps. Furthermore, the study assesses the

robustness of the SAC algorithm by juxtaposing it with conventional DRL meth-

ods, highlighting its superior performance in practical applications. This research

makes a significant contribution to the advancement of UAV technology, particu-

larly in autonomousmotion planning, by incorporating advancedmachine learning

techniques. The findings and methodologies are accessible via the provided video

link: https://www.youtube.com/watch?v=Nd_aMzejNXY.

In general, this research advances UAV technology by integrating cutting-edge

machine learning techniques into autonomous motion planning. It enhances the

adaptability and efficacy of UAV navigation in narrow-gap environments and con-

tributes significantly to the field by establishing benchmarks for evaluating various

DRL algorithms in complex terrains.

Keywords: Unmanned Aerial Vehicles, Deep Q-Network, Soft Actor-Critic.
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Chapter 1

Introduction

Significantly advanced in supporting a wide range of applications can be found in

Unmanned Aerial Vehicles (UAVs) across diverse industries, with demonstration

of UAVs’pivotal role in boosting operational efficiency and overcoming conven-

tional limitations [48]. These applications include search and rescue missions,

structural inspections, geospatial mapping, parcel delivery, and agricultural inno-

vations, where UAVs demonstrate critical advantages in precision, accessibility,

and cost-effectiveness [33]. Notably, UAV autonomous system excel in navigating

through constricted spaces and narrow apertures [16]. This ability is underpinned

by the UAVs’ integration of semi-autonomous and fully autonomous operations

facilitated by advanced sensory technologies [41].

Moreover, the advent of state-of-the-art UAVs equipped with enhanced GPS

navigation, computer vision, and obstacle avoidance systems has revolutionized

traditional methods of aerial observation and data collection [33]. These innova-

tions not only address the challenges associated with manned aircraft and satel-

lites, such as high operational costs and limited accessibility but also improve the
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CHAPTER 1. INTRODUCTION 2

spatial resolution and timeliness of data acquisition [42]. By integrating these

cutting-edge technologies, UAVs provide a dynamic, efficient, and safer solution

for real-time aerial tasks across diverse environments, establishing themselves as

pivotal assets in modern technological landscapes [21]. Through continuous ad-

vancements in UAV technology, these vehicles increasingly support complex op-

erations, showcasing their versatility and evolving role in critical and emerging

sectors [61].

1.1 Study Background and Incentive

The accuracy of path planning is a significant aspect of UAV operations, partic-

ularly in challenging terrains such as urban or industrial settings [39]. This pro-

cess is vital when navigating through narrow openings and intricate landscapes,

demanding high accuracy in maneuvering within spatially constrained areas [62].

Advanced object detection frameworks, underpinned by artificial intelligence, play

a pivotal role here. Cited extensively in the literature, these frameworks assist

UAVs in identifying viable entry points or gaps by utilizing onboard cameras [41].

The critical nature of detecting these gaps allows for the calculation of the most

effective angles and trajectories for safe passage, thereby reducing collision risks

and enhancing operational efficiency [11].

Developing algorithms that optimize route efficiency and safety, ensuringmin-

imal travel distance while mitigating potential hazards is the main objective of

UAV path planning [74]. This aspect is particularly crucial in operations requiring

high precision and swift responses, such as in search, rescue, or detailed inspec-

tions [36]. The integration of Deep Reinforcement Learning (DRL) [65] has be-
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come a cornerstone for enhancing autonomous navigation capabilities in complex,

variable environments. Traditional learning paradigms such as supervised and un-

supervised learning which rely on pre-labeled data or are suited for data cluster-

ing. DRL enables UAVs to autonomously develop optimal navigation strategies

[49]. This capacity for self-learning is crucial given the extensive computational

resources and significant training durations required for effective implementation

[32]. The development of these advanced algorithms emphasize the vital signifi-

cance of path planning in UAV technology, marking it as an indispensable element

in complex operational scenarios [37].

This thesis is motivated by the pursuit of advancing autonomous navigation

capabilities for UAVs in environments, a critical challenge in the field of aerial

robotics [42]. The core of this research centers on the development and imple-

mentation of two sophisticated DRL strategies designed to enhance navigational

ability of UAVs.

The first algorithm enhances the standard Deep Q-Network (DQN) [37] by

integrating a series of improvements that increase its adaptability and decision-

making capabilities in complex environments. This innovative DRL framework

is tailored to rapidly adapt to environmental fluctuations and is specifically engi-

neered to accumulate and analyze state and path data across a variety of scenar-

ios. By incorporating a direction-based reward-penalty function into the UAV’s

reward system, this algorithm substantially enhances the UAV’s capacity to per-

ceive its environment and broadens its generalization capabilities. Consequently,

this leads to a marked improvement in overall performance, particularly in navi-

gating complex terrains. Simultaneously, this thesis investigates the effectiveness

of the Soft Actor-Critic (SAC) algorithm [83], a cutting-edge DRL method opti-
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mized for continuous action spaces within UAV path planning. This approach is

evaluated against traditional DRL methods to assess its robustness and effective-

ness in real-world applications. The SAC algorithm is particularly noteworthy for

its ability to maintain optimal policy estimation while navigating through envi-

ronments that undergo continuous changes, thereby supporting more precise and

reliable UAV operations.

Collectively, these research efforts aim to push the boundaries of UAV tech-

nology by employing advanced machine learning techniques to refine autonomous

path planning. This contribution is crucial for advancing the practical disposition

of UAVs across various applications, including surveillance, delivery, and emer-

gency response scenarios. Through this thesis, we seek to establish a benchmark

for UAV autonomy that combines state-of-the-art computational intelligence with

practical, real-world applicability.

1.1.1 NEWDQN Algorithm

To improve the low success rate and limited environmental generalization capabili-

ties of existing algorithms in dynamic environments for autonomous UAV obstacle

avoidance and target tracking, this research proposes an enhanced deep reinforce-

ment learning algorithm named NEWDQN. Firstly, the detection strategy within

the DQN algorithm is improved by incorporating an innovative approach called

Optimistic Bootstrapping Exploration (OBE), which enables the UAV to explore

the environment more effectively. Secondly, a multi-experience pool mechanism

is introduced to categorize the collected experience data into successful and un-

successful experiences. Compared to a single experience pool, this mechanism
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improves the quality of sampled data and decrease the possibility of the algorithm

from getting stuck in local optima. Additionally, a direction-based reward-penalty

function is integrated into the reward system to guide the algorithm into quicker

convergence. Moreover, to enhance the UAV’s adaptability to the environment, its

perception capabilities are augmented, enabling better environmental understand-

ing. Finally, results of simulation verify the efficacy of the proposed approach.

1.1.2 SAC Algorithm

This study employs the Soft Actor-Critic (SAC) algorithm within a consecutive

action environment to enhance UAV barrier evasion features. The UAVs are cul-

tivated, by utilizing depth maps and applying SAC with deep learning, to pass

through comprehensive emulated environments containingmultiple obstacles. This

method not only increases more accurate and smooth decisions in action but also

illustrates outstanding consistency and reward outcomes during training compared

to previousDRL algorithms that copewith LiDARor location data inputs straightly.

Experiments give evidence that employing a delayed update learningmethod yields

better results in UAV gap navigation tasks. Classical DRL approaches tend to pro-

ceed direct LiDAR or location data inputs for UAV obstacle navigation tasks. By

comparison, the SAC model in this study shows faster convergence and achieves

outstanding rewards. This research develops the feasibility for invasive flight ma-

neuvers, such as navigating through narrow slit, which shows significant improve-

ment in UAVmaneuverability in scenarios like search-and-rescue operations. Pre-

viously, solutions of aggressive flight planning, subjected to the UAV’s underac-

tuated dynamics and the comprehensiveness of searching possible paths, depend
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on enhancing manually defined loss functions within a constrained framework.

Nevertheless, these traditional methodes always predigest the issue via advanced

premises, restricting the room for solution.

The emulation circumstance utilized in this research is carefully constructed

using Gazebo and the Python PyTorch machine learning mechanism, creating a

comprehensive platform for educating a UAV to function as the learning agent.

This inventive setting enables the UAV to analyze environmental depth images

and execute complex flight and obstacle evasion maneuvers. The conversancy

presented by the cultivated UAVs in obstacle avoidance is significant, achieving

exceptional success rates that highlight their flexibility and operational effective-

ness. Under a governing training context, a remarkable mean successful rate with

over 90% has been found in UAVs. Additionally, the experiments achieve com-

mendable successful rates of above 80% and 70% in scenarios where obstacles are

either repositioned or entirely redesigned.

The UAVs’ ability to achieve a 68% success rate in real-world tests is not

merely a performance metric, but an important benchmark indicating the model’s

robustness and practical viability. This success rate represents a significant accom-

plishment in navigating through dynamic and unpredictable environments, demon-

strating the UAV’s capability to adapt and operate effectively despite real-world

challenges. Achieving this threshold is not just an isolated goal, but a critical step

toward further improving the model’s performance under varying operational con-

ditions. The adaptation of policies learned through simulations to real-world UAV

applications presents a substantial challenge, primarily due to the stringent error

tolerance required for Sim2Real transfer. Sim2Real transfer refers to the process of

transferring a model trained in a simulated environment to real-world applications,
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a task fraught with difficulties due to the discrepancies between the controlled con-

ditions of simulations and the inherent unpredictability of real environments. In

particular, this process often encounters issues such as sensor inaccuracies, envi-

ronmental variability, and the failure to replicate real-world complexities in simu-

lations. These challenges are compounded by the difficulty of obtaining real flight

data, which is typically required to fine-tune models for real-world deployment.

To address these concerns, we propose an innovative technique designed to

facilitate the effective transfer of DRL models to actual UAV operations with-

out the need for real flight data. This approach minimizes the risks and logistical

complications typically associated with collecting real-world flight data, thereby

enhancing the practicality, scalability, and reliability of UAV navigation and ob-

stacle avoidance strategies. By circumventing the need for extensive real-world

data collection, our methodmakes significant strides in improving the transferabil-

ity of learned policies, ensuring that UAV can more reliably perform autonomous

tasks in dynamic, real-world environments.

This study makes significant contributions to the field of UAV autonomous

navigation, particularly in the context of obstacle avoidance and real-world appli-

cation of DRL. The key contributions of this research are as follows:

• Advancing UAV Obstacle Avoidance with the SAC Algorithm: This re-

search introduces the application of the SAC algorithm to UAV obstacle

avoidance, a crucial aspect of autonomous navigation in dynamic and com-

plex environments. By utilizing SAC, the study enhances theUAV’s decision-

making capabilities, allowing for more efficient and reliable path planning

in the presence of obstacles.
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• Demonstrating Real-World Applicability of the SAC Algorithm: Through

a combination of simulated training and real-world testing, the study high-

lights the efficacy of the SAC algorithm in UAV obstacle avoidance. The

approach achieved significant success rates in real-world obstacle avoidance

scenarios, demonstrating the algorithm’s robustness and practical utility in

operational environments.

• ReducingDependence on Pre-labeledData: The research leverages environ-

mental image data to train the UAV’s navigation model, significantly reduc-

ing reliance on large, pre-labeled datasets. This approach ensures that the

UAV can effectively learn to navigate through diverse environments by pro-

cessing visual inputs in real-time, making the learning process more adapt-

able and scalable.

• Utilizing Continuous Action Spaces for More Fluid UAV Movements: A

key innovation in this research is the application of DRL within a contin-

uous action space, as opposed to traditional discrete action models. This

methodological shift facilitates smoother, more adaptable UAVmovements,

enabling more refined control and more precise obstacle avoidance in dy-

namic environments. The continuous action space allows the UAV to make

decisions that involve a range of movement possibilities, rather than being

restricted to a limited set of pre-defined actions.
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1.2 Thesis Structure

The structure of this thesis is organized as follows. Chapter II presents a literature

review on DRL. Chapter III details the construction of the methodology model.

Chapter IV discusses the experiment results and analysis of the proposed approach.

Finally, Chapter V provides a conclusion to this thesis.



Chapter 2

Literature Review

The introduction of Unmanned Aerial Vehicles (UAVs) has markedly transformed

various industries, from agriculture to search and rescue operations, by introduc-

ing innovative solutions that significantly enhance both efficiency and safety [5].

As UAV technologies continue to advance, the development of sophisticated au-

tonomous navigation capabilities becomes essential for maximizing their utility in

complex and dynamic environments. In these environments, UAVs must contend

with transient and unpredictable obstacles, such as moving vehicles, animals, or

sudden environmental changes, which necessitate advanced situational awareness

and adaptive path planning capabilities [60]. To optimize UAV efficiency and

safety in such conditions, robust path planning algorithms are essential. This be-

gins with the UAV’s ability to perceive and interpret its surroundings in real time

using integrated sensory systems, which typically include visual and depth sen-

sors. The data captured by these sensors must then be processed using advanced

artificial intelligence techniques to accurately identify and classify dynamic ob-

stacles.

10
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Considering the inherently limited detection capabilities of UAV sensors, it

becomes vitally important for these aerial systems to demonstrate a high degree of

precisionwhen navigating through intricate terrains, ensuring a seamless transition

through narrow openings. As a result, the discipline of path planning has risen to

prominence as an indispensable element for UAVs operating in such challenging

environments. The importance of this discipline is further underscored in terrains

marked by complex infrastructures, exemplified by urban landscapes or industrial

settings, compelling UAVs to operate within spatially restricted areas [40].

Prior to initiating the complex task of path planning, it is imperative for the

UAV to precisely identify the aperture or the designated target area [80]. In the

quest to achieve this, object detection frameworks, grounded in the principles of

artificial intelligence, have been subjected to rigorous academic scrutiny. These

advanced frameworks assist UAVs in pinpointing gaps or potential entry points

through the use of onboard cameras that continuously monitor their environment

[42]. Upon successful detection of a gap, its precise spatial coordinates can be

determined based on the parameters of the bounding box. Armed with this infor-

mation, the UAV then calculates the most appropriate angle and trajectory to safely

navigate through the identified opening, thereby minimizing the risk of potential

collisions.

Within the realm of UAV operations, the primary objective of path planning

is the development of sophisticated algorithms that enable the UAV to chart the

most advantageous trajectory from its current position to the designated aperture

[54]. It is of utmost importance for the UAV to adeptly navigate around any poten-

tial obstacles, ensuring a safe and unobstructed journey. The responsibility of the

path planning algorithm is to ascertain the most efficient trajectory, prioritizing the
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minimization of both travel distance and associated risks [38]. As such, the chosen

algorithm for path planning must be capable of determining the optimal trajectory

in the shortest possible time frame, all the while adhering to stringent safety stan-

dards. The need for such speed and accuracy becomes paramount in missions that

necessitate precision and promptness, such as those related to search, rescue, or

detailed inspections [5].

The fundamental aim of path planning in this scenario is to devise algorithms

that enable UAVs to autonomously navigate from their starting point to a specified

target location in an efficient and secure manner [10]. This involves dynamically

adjusting their flight path in response to changes within the environment, thereby

minimizing the risk of collisions and optimizing travel time—an imperative in

scenarios where timing may be critical, such as in search and rescue operations

[82].

As delineated in Table 2.1, a wide array of methodologies, from non-learning-

based to learning-based strategies, have been developed within the realm of UAV

path planning.

2.1 Basic concepts and definitions

2.1.1 Classical methods

Over recent decades, the broadening scope of UAV applications—ranging from

surveillance to cargo delivery—has underscored the need for more advanced path

planning techniques [9]. The progression of communication technologies, from

first generation (1G) to fifth generation (5G), has significantly enhanced the data
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Table 2.1: Summary of UAV path planning methods

Approach Strengths Weakness

Classical

1. Good results for
path optimization in
static environments
with simple obstacles.
2. Short run times
and low computational
resource requirements.

1. Optimal results
cannot be guaranteed
due to constraints.
2. Complete
environments where
tasks need to be
performed.
3. Poor performance
in complex and dynamic
environments.

Simple-heuristics

1. Good path
optimization results
in static environments
with constraints on
individual UAVs.
2. Moderate response
time and moderate
computation resource
requirements.

1. No guarantee that
the result is optimal
because of constraints.
2. Poor results in
multi-objective
path planning tasks
and tend to fall
into local optima.
3. Performs poorly in
complex and dynamic
environments.

Meta-heuristics

1. Good path
optimization results in
complex dynamic
environments with
multiple UAVs.
2. Reasonable
execution time and
ease of implementation.

1. No guarantee that
the result is optimal
because of constraints.
2. Long computation
time and high
computation cost.
3. No theoretical
convergence.

Machine learning

1. Optimal solution.
2. Suitable for complex
and dynamic environments
with sudden changes.

1. Requires large
training data for
the environment.
2. Long computation
time and high
computation cost.
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exchange capabilities among UAVs and other connected devices, facilitating more

intricate and dynamic operational strategies [8].

The domain ofUAVpath planning has experienced considerable growth, marked

by the introduction of numerous classical methodologies designed to navigate the

complex challenges inherent in this field [27]. Prominent among these are the

Rapidly-exploring Random Tree (RRT) [63], Visibility Graph (VG) algorithm

[47], Voronoi Diagram (VD) [29], Artificial Potential Field (APF) [50], Proba-

bilistic Road Map (PRM) algorithm [26], and the Dijkstra algorithm [73].

These classical methodologies have been lauded for their rapid solution gen-

eration and exceptional path optimization capabilities, especially suited to static

environments with simple obstacles [12]. However, they require the acquisition

of comprehensive and accurate environmental data to develop detailed graphical

or model-based representations [79]. This necessity poses a notable challenge and

highlights a primary limitation of these methods. Despite their proven efficacy

and straightforward implementation in certain scenarios, the practical application

of these classical methodologies often hinges on the ability to obtain a detailed and

precise understanding of the UAV’s operational context.

Moreover, the challenge of UAV path planning extends beyond merely chart-

ing a trajectory from an origin to a destination. It involves ensuring that the se-

lected path is free from collisions and aligns with the dynamic and often unpre-

dictable nature of the operational environments [27]. This task also demands ad-

herence to the UAV’s physical and kinematic constraints, including considerations

for energy consumption and maneuverability, ensuring optimal and safe opera-

tions within the designated aerial space [37]. This comprehensive approach to

UAV path planning not only boosts operational efficiency but also facilitates the
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wider integration of UAVs into increasingly sophisticated application domains.

2.1.2 Heuristic methods

Several heuristic-based algorithms have been developed to enhance UAV path

planning in less predictable contexts [2]. The greedy heuristic (GH) algorithm,

have demonstrated superiority over genetic algorithms (GA) and multiple popula-

tion genetic algorithms (MPGA) in terms of execution speed and path optimiza-

tion [2]. These simple heuristic algorithms, requiring minimal environmental data,

perform well in static and simpler dynamic environments.

The adoption of meta-heuristic algorithms has proven to be a formidable ap-

proach for addressing the challenges of UAV path planning, especially in manag-

ing the complexities of dynamic and multifaceted environments [23]. Techniques

such as the improved Genetic Algorithm (GA), neighborhood-based GA, and the

Multi-Population Chaotic Grey Wolf Optimization (MP-CGWO) algorithm have

demonstrated superior performance in optimizing path length, cost, and conver-

gence speed in multi-UAV operations [2]. These algorithms are crafted to deliver

high-quality solutions that effectively adapt to changes in the environment and

constraints in UAV operations. Despite their benefits, the deployment of meta-

heuristic algorithms in UAV path planning is not widespread, primarily due to

their propensity for local optima and the considerable computational demands of

their iterative processes.
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2.1.3 Machine learning methods

In parallel, the application of machine learning methods, especially Deep 

Learning (DL). UAV path planning is increasingly recognized as vital, 

motivated by the escalating demand for these aerial systems to navigate 

autonomously through evolving and unpredictable environments [30]. 

Traditional RL methods have proven effective for scenarios with static or 

nonexistent obstacles [22]. However, these approaches are often inadequate in 

more complex settings [30].

Deep learning, a transformative force within machine learning characterized 

by the development of artificial neural networks, gained substantial momentum in 

the early 2000s, facilitated by advancements in graphical processing units (GPUs)

[44]. In the domain of UAV technology, deep learning algorithms are integral to 

enabling UAVs to perform advanced autonomous tasks, particularly in the areas 

of obstacle detection, path planning, and precise positioning [81]. These algo-

rithms leverage vast amounts of data to model complex, nonlinear relationships 

within the environment, thereby enhancing the UAV’s ability to perceive its sur-

roundings and make informed decisions in real-time. Deep learning strategies 

including neural networks for image interpretation [30], sequential information 

[25] to support decision-making, empower UAVs to automatically 

recognize obstacles in ever-changing settings, map out efficient flight 

trajectories, and fine-tune their positioning with exceptional precision. This 

level of autonomy eliminates the need for constant human intervention, 

making UAVs more effective in executing tasks such as navigation through 

cluttered or unfamiliar environments, performing search-and-rescue missions, 

or conducting precision agriculture operations. The ability of deep learning m- 
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odels to process sensor data enhances the UAV’s situational awareness, allowing 

for rapid and reliable responses to unforeseen obstacles changes.

The application of supervised learning in UAV navigation involves training 

models on a well-labeled dataset, which provides high accuracy for navigation 

tasks in environments similar to the training data [81]. The efficacy of super-

vised learning largely depends on the availability of extensive, accurately labeled 

datasets, which are often expensive and labor-intensive to compile. Moreover, 

supervised models typically face challenges in generalizing to novel, unseen en-

vironments that substantially deviate from those represented in the training data.

Unsupervised learning, by contrast, operates without labeled outputs, allow-

ing it to identify hidden patterns and intrinsic structures within data [84]. This 

makes it particularly valuable in situations where labeled data is scarce or incom-

plete. While unsupervised learning typically yields less precise predictions than 

supervised methods [45], it is crucial for exploring and understanding complex 

datasets and can be instrumental in enhancing the performance of supervised and 

reinforcement learning algorithms.

In the domain of UAV path planning, the combined use of supervised and un-

supervised learning techniques with Deep Reinforcement Learning (DRL) is in-

creasingly recognized as an effective strategy to address the variabilities of dy-

namic environments [43].

In summary, while deep learning-based algorithms hold transformative poten-

tial for enhancing UAV autonomous navigation, the deployment of these technolo-

gies must be carefully tailored to the specific demands of each application. The 

selection between supervised and unsupervised learning methodologies should be 

informed by factors such as the availability of data, the complexity of the naviga-
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tional tasks, and the precision required in navigation outcomes. Balancing these

considerations is essential for effectively harnessing the strengths of each learning

paradigm to optimize UAV operations in environments characterized by dynamic

and unpredictable obstacles.

Recent developments have enhanced the synergy of deep learning with rein-

forcement learning, offering solutions to some of the inherent challenges of con-

ventional reinforcement learning approaches in dynamic scenarios [13]. These

advancements facilitate more robust and adaptive navigation strategies, capable

of operating effectively across a broader range of environmental conditions. For

instance, Tai and Liu developed a DRL strategy utilizing CNNs, though its appli-

cation was limited to static scenarios [56]. Fang et al. extended these approaches

to environments with low dynamics or sparse obstacles [17], yet these too fall short

in highly dynamic situations where obstacles such asmoving vehicles, pedestrians,

or animals present continuous and unpredictable challenges. Such environments

are typical in urban and semi-urban areas where UAVs must navigate at low alti-

tudes amidst a plethora of moving elements.

In response to the evolving needs of UAV navigation, path planning, and ob-

stacle avoidance, various Reinforcement Learning (RL) methods have been re-

fined and adapted. Q-learning, a cornerstone value-based RL approach, updates a

Q-table to determine the optimal policy and is particularly effective in scenarios

that do not necessitate a model of the environment [65]. However, its application

to UAV control is limited due to difficulties in scaling within continuous action

spaces, an essential feature for precise UAV maneuvers.

Deep Q-Networks (DQN) extend Q-learning by integrating deep neural net-

works, thus enabling the approximation of Q-values to handle larger state spaces.
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One of the primary issues is the instability and potential divergence during train-

ing, as the Q-values can be updated inappropriately, leading to compounding er-

rors without stabilization mechanisms like experience replay and target networks.

Additionally, DQNs often suffer from overestimation of Q-values, which can re-

sult in suboptimal policies and less effective decision-making, especially in high-

variance environments. The algorithm is also sample-inefficient, requiring a large

number of interactions with the environment to converge, which can be problem-

atic in real-world scenarios where data collection is costly or impractical. Further-

more, DQN is inherently designed for discrete action spaces, making it unsuitable

for continuous control problems such as UAV navigation, where continuous ac-

tion spaces are necessary. The exploration vs. exploitation dilemma also remains

a challenge, as DQN may struggle to balance exploration of new actions with ex-

ploitation of known high-reward actions, particularly in complex environments.

In addition, DQNs can suffer from high memory usage due to the experience re-

play mechanism, which becomes impractical in environments with complex states

and actions. The algorithm also relies heavily on well-defined reward functions,

and poor reward shaping can lead to unintended behaviors, making the reward

design process crucial. Long training times are another drawback, as DQNs re-

quire substantial time to converge to a good policy, which is often incompati-

ble with real-time applications. Finally, DQNs are black-box models, lacking in-

terpretability and transparency in decision-making, which can be problematic in

safety-critical applications where understanding the reasoning behind decisions

is essential. These disadvantages highlight the challenges of applying DQN in

dynamic, high-dimensional environments, necessitating modifications or the use

of alternative algorithms to address these limitations effectively. Moreover, the
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substantial computational demands for training can be prohibitive for UAVs with

limited onboard processing capabilities [20].

To accommodate continuous action decisions, the Deep Deterministic Policy

Gradient (DDPG) method utilizes a model-free [18], actor-critic framework that

combines policy gradients with Q-learning. This adaptation allows for smoother

integration of continuous action spaces in the training process. Although DDPG

is adept at complex control tasks and suited to the nuanced requirements of UAV

operations, it remains highly sensitive to hyperparameter settings, is prone to local

optima, and tends to overestimate action values, which can adversely affect its

performance in dynamically evolving environments.

Further refining the capabilities of RL, the Distributed Proximal Policy Opti-

mization (DPPO) algorithm [3] extends Proximal Policy Optimization (PPO) to a

distributed architecture, enhancing the balance between exploration and exploita-

tion through trust-region methods. However, DPPO requires a network of learn-

ers for effective policy updates, introducing additional complexity and substantial

computational infrastructure demands, which may not be practical for all UAV

systems.

These innovations underscore the necessity for continued research to develop

more robust, efficient, and adaptable DRL algorithms. Such frameworks are es-

sential for effective operation in the dynamic and often unpredictable environ-

ments typical of urban and semi-urban UAV applications. This ongoing research

is vital to advancing the capabilities of UAVs in complex operational contexts.

Such advancements are crucial for enabling UAVs to perform autonomous opera-

tions safely and efficiently amidst a complex array of moving obstacles.



CHAPTER 2. LITERATURE REVIEW 21

2.1.4 Hybrid methods

The burgeoning integration of advanced machine learning techniques with classi-

cal path planning methods represents a substantial evolution in the development

of navigation systems for UAVs, particularly as they are increasingly deployed in

dynamic and unfamiliar environments [7]. This research proposal aims to tackle

the significant challenges presented by environments through an innovative inte-

gration of DRL with DL methodologies, thereby enhancing both the adaptability

and computational efficiency of UAV path planning [52].

Historically, methods like the Grey Wolf Optimization (GWO) blended with

reinforcement learning have shown promising improvements in adaptability for

UAV path planning [35]. Similarly, the combination of APF methods with the

RRT strategy has proven effective in handling complex static obstacles [35]. How-

ever, these methods typically require extensive environmental data and struggle in

highly dynamic settings where obstacles and environmental conditions change un-

predictably.

The incorporation of DRLwith established optimization algorithms such as the

Interfered Fluid Dynamical System (IFDS) [57], APF, and Model Predictive Con-

trol (MPC) marks a considerable progression in the domain of path planning and

maneuver control for autonomous systems. When integrated with IFDS, DDPG

can optimize the control policy by learning the optimal actions in a simulation that

models fluid dynamics [33]. The IFDS provides a smooth, global trajectory that

guides the DDPG’s exploration, enhancing the algorithm’s efficiency in environ-

ments mimicking fluid flows. This synergy enables the system to adapt to moving

obstacles.
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APF is a renowned method in robotics for obstacle avoidance, characterized

by obstacles generating repulsive forces and goals generating attractive forces that

influence the movement of the navigating agent [75]. By combining PPO with the

APFmethod, the system can robustly handle real-time changes in the environment

[76]. APF provides immediate responses to obstacle proximity through repulsive

forces, while the PPO algorithm continuously adjusts the navigation strategy to

minimize potential collisions and optimize the trajectory towards the target. This

integration is particularly beneficial in crowded environments where dynamic ob-

stacle avoidance is critical, such as in urban UAV navigation or mobile robotics in

industrial settings [68].

MPC is a simple control strategy that employs an optimization algorithm to

determine the control actions based on the prediction of future states of the system

over a defined horizon [19]. This approach allows for detailed and anticipatory

control decisions that are essential for the dynamic management of UAVs in com-

plex environments. When combined with MPC, the SAC algorithm can utilize

the predictive model of MPC to foresee future states and optimize actions over a

receding horizon.

2.2 Prior studies (relevant research)

Each RL algorithm offers unique benefits and challenges in UAV applications.

Tailoring them to specific UAV requirements often involves hybrid approaches

and careful tuning of parameters to overcome inherent limitations. Recent research

demonstrates that using a deep reinforcement learning framework like D3QN PER

[15], which incorporates a prioritized experience replay mechanism, can signifi-
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cantly improve the planning effectiveness for UAVs in dynamic scenes. This ap-

proach outperforms classical methods such as A* [34], RRT, andDQN,mainly due

to better handling of real-time changes in the environment [59]. These benefits are

still challenged by highly dynamic environments where global state information

is incomplete [14]. This limitation can lead to suboptimal path planning and poor

convergence in learning-based algorithms. Enhancements have also been made

in multi-UAV autonomous path planning. By adopting DRL, UAVs can now per-

form better in reconnaissance missions even with incomplete information. These

benefits need a proper reward structure that can accurately reflect the contribution

of each UAV to the collective outcome, which is critical. Studies have pointed

out that most existing approaches do not adequately solve the credit assignment

problem, which is essential for fostering cooperative behavior [67]. A Q-learning

model that integrates environmental feedback in real-time, enhancing UAV navi-

gation in urban landscapes and reducing path deviations [28]. These approaches

are developed to deal with consecutive movement and statements. However, they

confront issues in applying UAV path planning in the practical world due to the

greater complexity of these scenarios compared to those usually studied [1]. These

algorithms require a resource-heavy training process, involving important compu-

tational capability and vast image datasets to effectively train accurate navigation

to the models [6].

In an endeavor to reduce reliance on traditional methods, a subsequent study

explored the use of RL to navigate through gaps, signifying a shift away from

purely optimal control-based approaches. This innovative method employed a

neural network to replicate trajectories that were initially computed using an opti-

mal control solver. The trajectories generated through this approach demonstrated
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a greater variety of patterns as opposed to the parabolic curves produced by earlier

methods. However, despite these advancements, the initial trajectory for imitation

learning was still derived from an optimal control framework, inheriting its inher-

ent limitations and heavy reliance on predefined models. While this use of imi-

tation learning marked a novel approach, it risked converging on locally optimal

solutions that merely replicated the demonstrated trajectories, thus not sufficiently

exploring other, potentially more efficient, navigational paths.

2.3 Research Questions

The primary objective of this research is to develop a comprehensive solution that

addresses the key challenges associated with autonomous UAV navigation in en-

vironments characterized by dynamic obstacles. This study seeks to investigate

how DRL can be leveraged to enhance UAV navigation, particularly in complex

and unpredictable settings. While DRL shows great promise, the transition from

controlled simulation environments to real-world applications presents several dif-

ficulties that need to be systematically explored. The following research questions

are designed to guide the investigation and address these challenges:

• How can DRL algorithms be adapted to effectively handle dynamic obsta-

cles in real-time environments? Given that environmental changes, such

as the movement of other UAVs, animals, or humans, are not always well-

represented in training data, how can a DRL model be designed to continu-

ously learn and predict obstacle interaction patterns, thereby improving the

UAV’s adaptability to unforeseen situations [71]?



CHAPTER 2. LITERATURE REVIEW 25

• How can sensor noise and inaccuracies in real-world data bemitigated to im-

prove the performance of DRL algorithms in UAV navigation? What strate-

gies can be employed to counteract the negative impact of sensor noise,

inaccuracies, and environmental conditions (such as variable lighting and

weather effects) that distort data and hinder state observation, thus compro-

mising the accuracy of the UAV’s decision-making process [51]?

• What methods can be developed to manage high-dimensional state spaces

in real-time UAV navigation tasks? Considering the vast amounts of sensor

data and the dynamic nature of the environments in which UAVs operate,

how can DRL algorithms efficiently process high-dimensional state spaces

within the constraints of limited computational resources, ensuring real-time

responsiveness and stability [77]?

• How can the sim-to-real transfer problem be effectively addressed to ensure

DRL algorithms trained in simulations perform optimally in real-world set-

tings? What techniques can be implemented to bridge the gap between simu-

lated environments and real-world applications, given that models trained in

idealized simulation conditions often suffer from performance degradation

when deployed in the unpredictable and complex dynamics of real-world

scenarios [4]?

• What approaches can ensure real-time decision-making capabilities for UAVs

operating in complex environments? How can DRL algorithms be opti-

mized to operate at high speeds with minimal latency, ensuring real-time

processing and decision-making in environments characterized by high di-

mensional data and limited onboard processing power [24]?
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• How can algorithm stability and convergence issues in DRL models be mit-

igated to ensure optimal UAV performance? In continuous action spaces,

how can stability and convergence problems be addressed, given the chal-

lenges of non-stationary target policies and the variability of reward signals

that often lead to slow or unstable training and suboptimal policies [31]?

• What methods can be used to design effective reward functions that guide

UAV behavior in dynamic environments? How can reward functions be

designed to robustly handle variations in environmental conditions, ensuring

that UAVs consistently learn desired behaviors, while avoiding unintended

actions that might arise from poorly specified rewards [7]?

This thesis aims to develop a comprehensive solution to address key chal-

lenges in autonomous UAV navigation in unknown and dynamic environments. 

Efforts concentrate on strengthening DRL algorithms to achieve higher 

robustness and dependability, even when confronted with sensor imprecision, 

data noise, and challenging conditions such as fluctuating illumination and 

shifting weather. To mitigate these challenges, the study introduces advanced 

sensor data processing techniques, enhancing the quality and consistency of the 

state observations crucial for DRL. Moreover, the research tackles the issue of 

managing high-dimensional state spaces in UAV navigation, utilizing innovative 

algorithmic designs and op-timized computational strategies to enable real-time 

processing in environments characterized by constant changes and complexities. 

A key aspect of this work is the development of simulation environments that 

more accurately mirror the dy-namic and unpredictable nature of real-world 

settings, ensuring that DRL models trained in simulations are adaptable and 

robust when applied to practical scenarios. A central  the real-time decision-mak-
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ing capabilities of goal of this research is to advance DRL algorithms for UAV 

navigation. To achieve this, the study op-timizes the algorithms for higher 

operational speeds and reduced latency, which are critical for environments 

requiring immediate and accurate responses. This optimization process involves 

enhancing the efficiency of both the neural network architectures and the training 

algorithms, as well as reducing the computational burden through techniques 

such as model pruning, parallelization, and efficient state-action representation. 

The aim is to minimize the time delay between input sensing and the 

corresponding control action, ensuring that the UAV can respond to rapidly 

changing environments with minimal lag. Furthermore, the thesis addresses 

the issues of algorithm stability and convergence, with improvements in learning 

rates and reward structures to stabilize the training process and produce optimal 

navi-gation policies. Finally, the study contributes to the design of more 

sophisticated and adaptable reward functions that more precisely reflect the 

desired behaviors in UAV navigation, thus enabling more effective learning and 

greater autonomy.



Chapter 3

Methodology

This section delineates the architecture of the policy, the computational models

employed, and the trainingmethodologies utilized to develop a control mechanism

for navigating a UAV through a complex gap scenario.

3.1 NEWDQN Algorithm

To address the complexities delineated earlier, a circumscribed annular configu-

ration is introduced within a simulated environment, serving as a surrogate for a

narrow aperture. Following this, an UAV is maneuvered through this annular de-

sign, thereby enabling an exhaustive simulation experiment. Within the purview

of UAV operations in simulated settings, the precise delineation of elliptical struc-

tures emerges as a critical consideration.

28
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3.1.1 One Circular Crossing Algorithm

This research presents a comprehensive methodological framework designed to

develop an effective circular crossing algorithm. Illustrated in Fig. 3.1, entitled

”Circular Crossing Detect Algorithm Overview,” the methodology initiates with

the preprocessing of raw image data using a Gaussian filter. This critical step is

fundamental in reducing noise interference, thereby enhancing the clarity of the

image and preparing it for subsequent analytical procedures. Following this, the

Adaptive Canny edge detection method is employed, renowned for its ability to

adjust to varying image conditions and reliably outline boundaries.

Boundary Detection via Adaptive 
Canny Algorithm

Image from Camera

Pre-processing with 
Gaussian Filter

Integration of YOLO-V5 Network

Arc Segmentation and 
Parameter Screening

Clustering Based on 
Ellipse Attributes

Decision-making: Go up, Go 
down, Turn left, Turn right, 
Forward, Backwards

Center of circle

Figure has objects

Figure has circle

Figure 3.1: Circular crossing detect algorithm overview.
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Further strengthening the detection process is the integration of the YOLO-

V5 network [69], a leading-edge object detection model. This model, extensively 

trained on a diverse dataset of ellipses, excels in identifying ellipses under various 

conditions with exceptional precision and speed. Once the boundaries are estab-

lished, they are segmented into concave and convex arcs. These segments are 

rigorously analyzed based on predefined criteria to improve accuracy. From these 

arc segments, parameters describing the potential ellipse are derived. A validation 

step follows, aiming to accurately locate the ellipse’s centroid.

Subsequently, an ellipse score is calculated to assess the accuracy of the de-

tection. The characteristics of the identified ellipse, including its center, major 

and minor axes, and angular orientation, are utilized in clustering processes to 

group similar ellipses. This application of deep learning models like YOLOv5 in 

UAV imagery for ellipse detection reflects significant advancements in the field, 

offering enhanced accuracy and reduced processing times, which are crucial for 

real-time UAV operations.

Relying on the results from the circular recognition detection, the UAV’s con-

trol system adjusts its navigation based on the precise location of the identified 

ellipse. It is critical to recognize that as the UAV approaches the target within a 

meter, the target may become less discernible due to the limitations of the field of 

view. In such instances, the UAV, guided by its current positional data, contin-

ues its path through the target. Once this flight objective is successfully 

accomplished, the UAV proceeds back to its launch point, thereby concluding the 

overall operational sequence.



CHAPTER 3. METHODOLOGY 31

3.1.2 Two Circular Crossing Algorithm

In the pursuit of navigating dual circular structures, the detection of these circular

entities adheres to themethodology previously detailed. However, the overarching

strategy for global exploration in this context leverages the principles of RL.

The RL agent operates through iterative steps, receiving an observation de-

noted as ot and a corresponding reward rt from the environment at each interval.

Based on these inputs, the agent executes an action at, driven by a policy π. This

policy serves to map states to a probabilistic distribution of potential actions. The

implementation of action at induces a transition in the environment from its current

state st to the subsequent state s(t+1), concurrently delivering a new reward r(t+1)

and an updated observation o(t+1). It is pertinent to acknowledge that in numerous

real-world scenarios, the states of the environment are only partially observable.

However, for the purposes of simplification in this model, we assume that st = ot.

The overarching objective for the RL agent is to engage in iterative inter-

actions with the environment to ascertain the optimal policy that maximizes the

cumulative future reward or return. This return is mathematically formulated as

Rt =
∑T

i=t γ
(i−t)r(si, ai), where T represents the terminal time step and γ is the

discount factor, which quantifies the decreasing significance of future rewards.

The reward function within this RL framework is meticulously designed, in-

tegrating four distinct components to strategically influence the agent’s behavior:

1. TerminationReward-Penalty: This component rewards or penalizes the agent

upon the completion or termination of a task, encouraging efficient task

completion.

2. Step Reward-Penalty: This component is designed to optimize the number
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of actions executed by the agent, thereby incentivizing the identification of

the most efficient, shortest path available.

3. Direction Reward-Penalty: This aspect of the reward system confers ben-

efits to the agent for sustaining an optimal trajectory towards the target,

thereby enhancing direct and efficient navigational practices.

Together, these elements of the reward function are designed to ensure that

the RL agent not only reaches its targets but does so in an efficient and effective

manner, reflecting the complexities and demands of navigating through dynamic

and potentially cluttered environments.

DQN is a seminal algorithm in the field of RL, well-regarded for its utility

in complex decision-making scenarios. In this research, the DQN framework is

applied to a specific aerial navigational problemwhere the UAV, functioning as the

tracker, must locate and traverse through a target identified as the “circular”. This

task is set against the backdrop of intricate environments, notably those punctuated

by narrow gaps, which present significant challenges for UAV navigation.

The intricacies of such environments often produce a vast quantity of inter-

action data, which complicates the training of an end-to-end neural network via

DRL. This research is dedicated to the development and refinement of an innova-

tive DRL algorithm specifically engineered for real-time UAV path planning in en-

vironments characterized by narrow gaps. The proposed algorithm is designed to

translate sensor data directly into action commands, thereby enhancing the UAV’s

autonomous decision-making capabilities in dynamically changing environments.

A pivotal element of this algorithm is its ability to aggregate state and path data

from various narrow-gap scenarios, utilizing this information to train a deep neu-
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ral network effectively. This training approach is strategically developed to facil-

itate the swift generation of optimized navigation paths in familiar terrains, while

strictly adhering to tight temporal constraints. Moreover, the research will inves-

tigate diverse neural network architectures to process different sensor datasets,

aiming to establish a robust environmental feature set. This feature set is intended

to underpin a UAV path planning methodology that leverages state-of-the-art DRL

techniques.

An essential component of this research involves conducting a comparative

analysis of the proposed DRL algorithm against traditional navigation strategies.

Furthermore, the study will rigorously assess the adaptability and effectiveness of

the path planning approach, particularly in environments characterized by narrow

gaps, which are central to this innovative algorithm.

In terms of exploration strategies, the DQN algorithm typically utilizes an ε-

greedy approach to balance exploration with exploitation effectively. This method

is articulated mathematically as follows: the exploration rate ε is incrementally ad-

justed over iterations according to the formula ε(i+1) = εi+∆ε, constrained within

the bounds εmin ≤ εi ≤ εmax. The action selection for the tracker, based on this

exploration rate, alternates between exploiting the best-known action, determined

by argmaxa Q(ot, a), and exploring new actions randomly, dictated by the condi-

tion frand ≥ ε(i+1), ensuring a comprehensive assessment of possible strategies.

This ε-greedy exploration strategy is crucial for refining the UAV’s navigational

commands, optimizing the balance between exploring uncharted paths and ex-

ploiting known trajectories to enhance operational efficiency in complex aerial

environments.
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εi+1 = εi +∆ε, εmin ! εi ! εmax

ati+1 =

⎧
⎪⎨

⎪⎩

argmaxa Q (ot, a) , frand < εi+1

random(A), frand " εi+1

(3.1)

The ε-greedy strategy is fundamental to the operational dynamics of the DQN

algorithm, functioning as a critical mechanism for balancing exploration and ex-

ploitation during the learning process. This strategy functions by permitting the

tracker to explore alternative actions with a probability defined by ε, thereby en-

abling the discovery of potentially more effective solutions. As learning advances

across successive iterations, ε is gradually reduced to increase the tracker’s depen-

dence on its accumulated knowledge, progressively transitioning from exploration

to exploitation.

The configuration and decay schedule of ε within the DQN framework are

meticulously adjusted to alignwith the particularities of the problem and themodel’s

parameters. Typically, ε is initialized at a high value, often 1.0, to prioritize explo-

ration during the early stages of training. This high level of exploration ensures

that the tracker is not prematurely confined to a limited area of the action space,

thus avoiding local optima and encouraging a thorough search of the environment.

Over time, ε is methodically decreased according to a predefined decay sched-

ule, such as linear, exponential, or step decay. This gradual reduction is designed

to decrease the rate of exploration while correspondingly increasing the rate of

exploitation. By adjusting ε, the algorithm progressively focuses more on lever-

aging the best-known strategies derived from past experiences rather than seeking

out new ones.

The utilization of the ε-greedy exploration strategy allows the DQN algorithm
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to strike an effective balance between exploring new possibilities and exploiting 

learned behaviors. This balance is crucial for the algorithm’s ability to converge 

towards the most effective policies while mitigating the risk of converging to sub-

optimal solutions. Through this strategic adjustment of ε, the DQN algorithm op-

timizes its performance, enhancing its capability to navigate complex decision-

making environments efficiently.

In reinforcement learning, the ε-greedy strategy holds a pivotal role by 

guiding the tracker’s gradual move from exploration to exploitation, thereby 

steadily enhancing its decision-making abilities. However, the unpredictable 

nature of complex environments can sometimes make initial explo-ration 

insufficient for the tracker to reliably determine the optimal policy. Further-more, 

even after identifying what appears to be an optimal policy, the tracker may 

become trapped in local optima due to inadequate reinforcement signals.

To mitigate these challenges, this research introduces an enhancement to the 

traditional ε-greedy strategy by incorporating the OBE strategy. This innovative 

approach is designed to augment the tracker’s exploratory capabilities within 

mul-tifaceted environments. The core concept of the OBE strategy is to 

dynamically adjust the exploration rate, ε, based on the tracker’s performance 

over a speci-fied period. Specifically, if the tracker repeatedly fails to achieve the 

desired task within this timeframe, ε is incrementally increased to enhance 

exploration, thereby enabling the tracker to escape local optima and potentially 

discover more effective strategies.

The implementation of the OBE strategy is meticulously tailored to the spe-

cific requirements of the problem and the intricacies of the model configuration. 

It involves continuous monitoring of the tracker’s performance and employs a sys-
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tematic approach to adjust ε based on predefined criteria or performance thresh-

olds. These adjustments can be made at regular intervals or triggered by specific

events, thereby ensuring that the tracker consistently maintains an optimal balance

between exploring new actions and exploiting established effective strategies.

Integrating the OBE strategy into the exploration framework introduces a more

advanced and adaptive explorationmechanism. This integration enables the tracker

to recalibrate its exploration activities in response to real-time performance met-

rics. As a result, the strategy enhances the tracker’s ability to navigate complex

decision-making environments, effectively addressing the challenges posed by lo-

cal optima and promoting a more resilient approach to discovering optimal poli-

cies.

εi+1 =

⎧
⎪⎪⎨

⎪⎪⎩

εm, Cfail > C

εi +∆ε, other
(3.2)

where the exploration rate, represented as εi, is crucial in determining the UAV’s

capacity to effectively navigate and learn from its environment. The parameter

∆ε represents the incremental adjustment to ε in each iteration, which is crucial

for adapting the UAV’s exploration strategy based on its ongoing performance.

Furthermore, Cfail quantifies the number of consecutive task failures experienced

by the UAV, serving as a critical metric for assessing the necessity of strategic

adjustments.

Within this methodological framework, the variableCfail measures the sequen-

tial failures of the UAV in completing its designated tasks, while C denotes the

maximum threshold of allowable consecutive failures before a forced recalibra-
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tion of the exploration rate occurs. If the UAV encounters a number of task failures 

that meet or exceed this threshold, the exploration rate is reset to εm = εi, where 

i represents the current iteration. This adjustment is intended to significantly im-

prove the UAV’s ability to explore its environment more comprehensively, thereby 

increasing the likelihood of identifying globally optimal solutions.

The specific values and adjustment schedule for εm = εi are carefully tailored 

to address the unique requirements of the problem and the model’s operational 

parameters. By requiring an increase in the exploration rate following a se-ries of 

task failures, this approach ensures that the UAV intensifies its exploratory 

efforts, thereby enhancing its ability to navigate and adapt to its environment 

effec-tively. This strategic recalibration aims to mitigate the risk of the UAV 

becoming ensnared in local optima and facilitates a more expansive exploration 

of potential strategies and states. Such an approach is instrumental in potentially 

uncovering more efficacious solutions to the challenges encountered during 

navigation.

Navigating the complex domain of UAVs and the intricacies of their opera-

tional algorithms necessitates a profound understanding of the mechanisms under-

lying their behavior. In the DQN paradigm, the UAV, referred to as the “tracker,” 

is tasked with locating and navigating through a target. The iterative interaction 

between the tracker and its environment generates a wealth of experiential data, 

which is accumulated in an experience pool. The effectiveness of the UAV’s learn-

ing process is fundamentally tied to the quality of the stored data, highlighting the 

critical importance of strategic data management and algorithmic adjustments in 

improving overall navigational performance.

In the development of reinforcement learning algorithms for UAVs, a critical 

challenge frequently encountered is the entrapment of the UAV, or “tracker,” in
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a local optimum. In such instances, the repetitive reinforcement of the tracker’s

actions can obscure valuable insights from the experiential data, consequently hin-

dering its ability to escape from these suboptimal solutions. To address this issue,

this research introduces a novel algorithm, designated as NEWDQN, which incor-

porates significant enhancements specifically designed to overcome these limita-

tions.

TheNEWDQNalgorithm integrates two keymodifications aimed at enhancing

the robustness and efficacy of the traditional DQN framework: Optimistic Boot-

strapping Exploration (OBE) strategy, coupled with the multi-experience pool

mechanism, enhances the exploration component of the DQN algorithm. The

OBE strategy actively revitalizes exploration by encouraging the selection of ex-

ploratory actions. This strategic emphasis on exploration encourages the tracker

to engage with a broader array of states and actions, thus increasing the probabil-

ity of escaping from local optima and facilitating the discovery of more effective

navigational strategies.

Concurrently, the multi-experience pool mechanism addresses the shortcom-

ings associated with relying on a single experience pool. This innovative approach

categorizes accumulated experiential data into distinct pools based on the out-

comes of the tracker’s actions, thereby improving the quality of the data sampled

for learning. This mechanism is particularly crucial as it enables the maintenance

of data integrity and relevance, which are essential for effective learning and adap-

tation.

The NEWDQN algorithm uniquely integrates three distinct experience pools:

a failure experience pool, a success experience pool, and a temporary experience

pool. This tripartite structure allows for a nuanced management of experiential
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data, where each pool serves a specific purpose in the learning process. The failure

experience pool collects data from unsuccessful navigational attempts, offering in-

sights into the conditions and decisions leading to suboptimal outcomes. The suc-

cess experience pool gathers data from successful missions, providing templates

for effective actions and strategies. Lastly, the temporary experience pool serves

as a dynamic repository for ongoing assessments and adjustments in strategy, fa-

cilitating immediate responsiveness to changing environmental conditions.

This stratified approach to experience management within the NEWDQN al-

gorithm significantly mitigates the risk of continual reinforcement of suboptimal

actions and enhances the tracker’s overall learning trajectory. By implementing

these targeted modifications, the NEWDQN algorithm ensures a more stable con-

vergence process, even in the face of complex tasks that might otherwise predis-

pose the tracker to prolonged periods of exploration without adequate reinforce-

ment. Thus, the algorithm not only enhances the UAV’s capability to navigate

through challenging environments but also ensures robust learning and adaptation

over time.

In the sophisticated domain of UAV pathfinding, the strategic management of

experiential data is crucial. The NEWDQN algorithm utilizes a structured expe-

rience pool system, consisting of a failure experience pool, a success experience

pool, and a temporary experience pool, each designed to optimize learning from

distinct operational outcomes.

The failure experience pool collects data from instances where the tracker

fails to complete a task, providing valuable insights into ineffective strategies and

decision-making processes. This information is essential for identifying and re-

fining approaches that require improvement. In contrast, the success experience
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pool collects data from successful task completions or effective navigations, serv-

ing as a repository of proven strategies and actions that should be reinforced and

emulated.

Additionally, the temporary experience pool acts as a dynamic buffer, tem-

porarily holding data from current operations. When this pool reaches capacity,

and the tracker has not yet arrived at a terminal state, it indicates that the deci-

sions made have had a positive impact. The overflow data is then transferred to

the success experience pool, assuming these actions have contributed to favor-

able outcomes. The final allocation of the data remaining in the temporary pool is

contingent upon the success or failure of the tracker’s ultimate task.

Data utilization from these pools follows a strategic sampling method. Let B

represent the proportion of data sampled from the success experience pool, and

let β denote the total amount of data obtained through random sampling. The

quantities of data drawn from the success and failure experience pools are deter-

mined based on B, underscoring the significance of learning from both successful

and unsuccessful experiences to refine the tracker’s decision-making processes as

follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b1 =

⎧
⎪⎪⎨

⎪⎪⎩

Ds, Ds ! βB

βB, other

b2 = B − b1

(3.3)

In the context of the NEWDQN algorithm, data management is meticulously

orchestrated to optimize the learning trajectory of UAVs. In this context, b1 and

b2 represent the quantities of data samples drawn from the success and failure
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experience pools, respectively. The variable Ds denotes the total number of data

samples currently residing in the success experience pool. During the algorithm’s

update process, data is systematically sampled from both the success and failure

experience pools according to predetermined proportions. This approach ensures

that, even when the UAV, referred to as the tracker, finds itself ensnared in a local

optimum, it retains the ability to access and learn from the successful experiences

stored, thereby facilitating a swifter escape from such suboptimal positions.

However, it is important to acknowledge that improving the tracker’s explo-

ration capabilities can introduce substantial fluctuations in the algorithm’s con-

vergence process. In the context of particularly challenging tasks, there is a risk

that the tracker may persist in a continuous state of exploration without obtaining

adequate reinforcement. Such a scenario can impede the convergence process,

leading to potential instability and inefficiency.

Fig. 3.2 shows the NEWDQN structure. To mitigate these challenges, this

research proposes the adoption of a multi-experience pool mechanism, which cat-

egorizes experiential data into three distinct pools: the failure experience pool, the

success experience pool, and the temporary experience pool. Such a division not

only ensures the preservation of data quality across different contexts but also en-

hances the robustness of the learning process. By maintaining separate pools, the

algorithm can more effectively manage the data relevance and utility, ensuring that

the tracker has access to a diverse range of experiences. This arrangement helps

to stabilize the convergence of the algorithm and enables the tracker to navigate

out of local optima more effectively. In essence, the multi-experience pool mech-

anism serves as a critical component in fostering a resilient and effective learning

environment for UAVs. It ensures that the tracker is not only equipped to han-
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dle the complexities of dynamic environments but also improves its overall task

performance and navigational capabilities.

Environment

UAV
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𝑟𝑡 (Reward )
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Figure 3.2: NEWDQN structure.

3.2 SAC Algorithm

3.2.1 Problem Statement

3.2.1.1 Dynamics

This section outlines the mathematical framework governing the dynamics of a

UAV, incorporating the effects of aerodynamic drag alongside the inherent phys-
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ical properties of mass and inertia. The UAV is modeled as a rigid body with a

uniformmass distribution and axial symmetry, characterized by constant mass and

moment of inertia parameters.

The UAV is modeled as a rigid body with a uniform mass distribution, which

simplifies the dynamic equations by ensuring that the mass and moment of in-

ertia remain constant throughout flight. It is assumed that the UAV’s center of

gravity coincides with its geometric center, a critical assumption that simplifies

the analysis by eliminating the need to account for torques and forces resulting

from any misalignment between these centers. The lift generated by blade flap-

ping is assumed to occur within the same plane as the center of gravity, implying

that the UAV’s thickness does not significantly influence its aerodynamics. This

assumption further simplifies the model by neglecting any pitch or roll moments

that could arise from offset lift surfaces. Additionally, the model disregards fric-

tion between the propeller and its motor spindle, as well as aerodynamic drag on

the UAV’s body. By excluding these factors, the focus remains on the primary

forces and torques, without the complexities introduced by mechanical and vis-

cous resistances. Furthermore, the model does not consider the curvature of the

Earth or its rotational motion, an approximation typically acceptable for UAVs

operating at low altitudes and within small geographical areas, where such factors

have minimal impact on the UAV’s dynamics.

ṗ = v
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The dynamics model of the UAV can be expressed as follows [53]:

ṗ = v, (3.4)

This equation indicates that the rate of change of the UAV’s position, ṗ, is

equivalent to its velocity, v. It establishes the fundamental principle that the UAV’s

position evolves in direct relation to its velocity vector.

Ṙg = Rg [ωb]× , (3.5)

This equation illustrates how the orientation of the UAV, represented by the

rotation matrix Rg, evolves over time in response to its angular velocity ωb. The

skew-symmetric matrix [ωb]× is utilized to compute rotational velocities in three

dimensions, enabling a precise representation of the UAV’s rotational dynamics.

mv = me3g +Rge3ft + fd, (3.6)

This equation describes the net force acting on the UAV, which results in its

translational acceleration v. The termme3g represents the gravitational force act-

ing on the UAV, where m denotes the UAV’s mass, g is the acceleration due to

gravity, and e3 = [0, 0, 1]T is a unit vector directed vertically (typically upwards).

This term effectively accounts for the weight of the UAV. The variable ft repre-

sents the total thrust generated by the UAV’s rotors. The rotation matrix Rg is

used to convert this thrust from the UAV’s body frame to the Earth’s frame, allow-

ing for the determination of the UAV’s Euler angles (φ, θ,ψ). This term captures

the upward force generated by the rotors, which enables the UAV to lift off or
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move vertically. The term fd denotes the aerodynamic drag acting on the UAV,

which opposes its motion. This force depends on the UAV’s velocity components

(vx, vy, vz) in the Earth’s frame and typically increases with the square of the ve-

locity.

Jω̇b = τT + τD − ωb × Jωb, (3.7)

This equation relates the rate of change of angular momentum, Jω̇b, to the net

torque acting on the UAV. In this context, τT represents the thrust torque, τD de-

notes the drag torque, and ωb × Jωb accounts for the gyroscopic effect. This rela-

tionship is fundamental for understanding how the UAV’s rotational dynamics are

influenced by the applied torques and its intrinsic angular momentum.

Incorporating these assumptions into the model simplifies the analysis and en-

hances its mathematical tractability, allowing for a clearer understanding of the

fundamental dynamics governing quadrotor UAV flight. This theoretical frame-

work provides a solid foundation for developing control strategies aimed at im-

proving the UAV’s stability and maneuverability in practical applications.

3.2.1.2 Problem Formulation

The objective is to design bold flight paths that enable a UAV to successfully nav-

igate through a slanted aperture, as illustrated in Fig. 3.3. In this depiction, the

UAV is represented by a black circle symbolizing its bounding box, while a grey

rectangular background represents a wall with an opening, as detailed in Fig. 3.4.

The figure exemplifies a scenario where the UAV satisfies the spatial requirements

to pass through the gap without altering its trajectory. However, the combined
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Figure 3.3: The UAV guided by RL is maneuvering through a tilted narrow gap.

forces generated by the UAV’s motors and the gravitational pull can induce unin-

tended horizontal movements, increasing the risk of collision, as indicated by the

red arrows in the illustrations. Furthermore, employing a forward pitch to enhance

speed and maneuverability can expand the UAV’s lateral dimensions, thereby re-

ducing the clearance between the UAV and the edges of the gap and diminishing

the overall safety margin.

In this context, S denotes a continuous state space, while A represents a con-

tinuous action space. At each decision point, given the current state st from S,

a continuous action at from A is selected according to a decision-making policy

π (at | st). Upon choosing action at, the system transitions to a new state st+1

within S, governed by an unspecified probability distribution p : S × A → S.

The process generates a reward, defined by the function r : S × A → [rmin, rmax],

which is constrained within a predetermined range. The state space S compre-
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Figure 3.4: One possible traverse.

hensively includes both the UAV’s states, denoted by x within the set X , and the

positions of the gap (0.70 m), denoted by g within the set G. The primary objec-

tive of this algorithmic approach is to develop a control policy π : X × G → A,

which optimizes the UAV’s interactions with its environment to facilitate effective

navigation and successful task completion.

3.2.2 Simulation Environment

To ensure replicable and verifiable results, our simulation environment was metic-

ulously constructed using theGazebo, integratedwith the PyTorchMachine Learn-

ing implemented in Python. Our experiments are conducted within a specifically

designed environment in Engine. Each quadrotor UAV, acting as an autonomous

learning agent, was configured with specific parameters, including sensor types,

sensor noise levels, and initial positioning. These parameters were chosen to
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closely mimic real-world flying conditions, with UAVs equipped with standard

navigation sensors such as binocular depth camera and IMU. Detailed logging

of each simulation run was implemented to capture data on navigation accuracy,

obstacle avoidance effectiveness, and computational efficiency, ensuring compre-

hensive analysis and evaluation of the SAC algorithm’s performance under varied

environmental conditions. Binocular depth cameras, recognized for their compact

size and energy efficiency, play a crucial role in capturing high-resolution depth

maps of the environment. These cameras, particularly suitable for scene recogni-

tion tasks in conjunction with UAVs, enable the direct acquisition of depth maps

within the Gazebo simulation environment. In our experiments, these depth maps

are used as inputs for the deep reinforcement learning network, significantly im-

proving the UAVs’ navigational accuracy.

The simulation setup includes various slender circles and barriers. Simulation

episodes are immediately terminated upon detecting any overlap between the UAV

and these elements, indicating a collision. To achieve this, a simple yet effective

collision detection algorithm is employed. This algorithm calculates, in real time,

the intersection points where the UAV’s bounding box meets a wall. A collision

is confirmed if any of these intersection points lie outside the designated gap. The

simulation considers a traversal successful when the UAV reaches its target posi-

tion, pG, without any recorded collisions.
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3.2.3 Network Design

3.2.3.1 Soft-Actor-Critic Framework

The state space for our neural network model includes comprehensive details per-

taining to both the UAV and the narrow gap. Specifically, the state space comprises

the UAV’s position and orientation, along with the gap’s relative position and ori-

entation in relation to the UAV. The relative position of the gap with respect to the

UAV is defined by the vector difference between their respective center positions

in the global frame, denoted as:

φr = φgm − φum. (3.8)

To quantify the orientation differences, the Euler angles of the UAV are sub-

tracted from those of the gap:

θτ = θgm − θum. (3.9)

The Euler angles of UAV provide a comprehensive three-dimensional repre-

sentation of its orientation in space, encompassing roll, pitch, and yaw. The roll an-

gle, which measures rotation around the UAV’s longitudinal axis (x-axis), ranges

from -180° to +180°, indicating the tilt of the UAV to the left or right. The yaw

angle, representing rotation around the vertical axis (z-axis), governs the UAV’s

heading and also spans from -180° to +180°, with positive values corresponding to

counterclockwise rotation and negative values to clockwise rotation when viewed

from above. The pitch angle, defined by rotation around the lateral axis (y-axis),

controls the ascent or descent of the UAV and is constrained between -90° and
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+90°, with positive values signifying upward tilt and negative values indicating

downward tilt.

The observation space is structured to incorporate both the UAV and gap states.

To ensure efficient data processing and minimize input dimensionality, the focus is

placed on the relative position, represented as a normalized vector. This approach

allows for the concise utilization of directional and distance information:

pei = sign (pgm − pum)
√

|pgm − pum|. (3.10)

This method is applied independently along the x, y, and z axes. The model fo-

cuses on the roll and pitch angles for the UAV’s orientation, deliberately excluding 

the yaw angle to streamline the model and maintain a targeted focus. The UAV’s 

motion parameters, including linear velocities (vx, vy, vz) and angular velocities 

(ωx, ωy, ωz), are critical for executing precise maneuvers toward the gap. Conse-

quently, the state space is composed of 11 dimensions, integrating relative posi-

tional and angular information with the UAV’s kinematic data. This approach pro-

vides a comprehensive yet efficient framework, well-suited for guiding the UAV 

through complex trajectories.

The following Algorithm 1 presents the SAC-based pseudo code utilizing im-

portance sampling [83].

In the realm of reinforcement learning, the SAC algorithm has emerged as a 

particularly robust approach, recognized for its sample efficiency and stability. 

SAC employs a stochastic policy that enhances exploration capabilities, thereby 

reducing the risk of the agent becoming trapped in local optima. The method 

Twin Delayed Deep Deterministic Policy Gradient (TD3) can encounter diffcul-
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Algorithm 1 Algorithm of SAC
1: Initialization: A given behavior policy β(a | s). A target policy π (a | s, θ0)

where θ0 is the initial parameter vector. A value function v (s, w0) where w0

is the initial parameter vector.
2: repeat
3: At time step t in each episode, do
4: Generate at following β (st) and then observe rt+1, st+1.
5: Update TD error (advantage function):

δt = rt+1 + γv (st+1, wt)− v (st, wt)

6: Update Critic (value update):

wt+1 = wt + αw
π (at | st, θt)
β (at | st)

δt∇wv (st, wt)

7: Update Actor (policy update):

θt+1 = θt + αθ
π (at | st, θt)
β (at | st)

δt∇θ ln π (at | st, θt)

8: until maximizing J(θ).
Output: Search for an optimal policy by maximizing J(θ).

ies in noisy environments [66]. TD can limit exploration and potentially lead 

to suboptimal performance. The Double Deep Q-Network (DDQN), while 

effective, can exhibit high variance during the early phases of training and 

demands significant computational resources due to its com-plex architecture. 

PPO may demonstrate inefficiencies when dealing with very large state or 

action spaces.

The following outlines the fundamental learning objectives of reinforcement
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learning in its most basic form [64]:

π∗ = argmax
π

E(st,at)∼ρπ

[
∑

t

R (st, at)

]
. (3.11)

The reinforcement learning framework, when augmented with maximum en-

tropy [58]:

π∗ = argmax
π

E(st,at)∼ρπ

[
∑

t

R (st, at) + αH (π (· | st))
]
. (3.12)

This equation introduces randomness into decision-making processes, thereby

enhancing the agent’s exploratory capabilities.

Previously, the deterministic policy algorithm focused on identifying an op-

timal trajectory and concluded the learning phase upon its discovery. Currently,

our objective is to achieve maximum entropy, which necessitates that the neural

network explore every conceivable optimal trajectory [46].

Jπ(φ) = Est∼D,ε∼N [α log πφ (fφ (εt; st) |st)− Qθ (st, fφ (εt; st))] . (3.13)

However, due to the dynamic nature of reward variations, employing a static

temperature setting in this context is impractical and can result in instability during

the training process. It is therefore crucial to adjust the temperature dynamically.

As the policy explores new and unknown areas where the optimal action is not yet

determined, a higher temperature is essential to enable a more extensive explo-

ration. Conversely, in well-explored regions where the optimal action has been

established, it is prudent to reduce the temperature to fine-tune the learning out-

comes. The following updated formula incorporates a variable weight for entropy
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across different states [78]:

J(α) = Eat∼πt [−α logπt (at | πt)− αH0] . (3.14)

During the training phase of the Soft Actor-Critic (SAC) method, a systematic

strategy is employed that involves interactive engagements with the environment

and the meticulous documentation and storage of each interaction’s details in a

memory buffer [72]. These details encompass the state before an action st, the

action itself at, the resultant reward rt, and the subsequent state st+1. Data tu-

ples (st, st+1, rt, at) are subsequently extracted from this buffer to evaluate the

effectiveness of the transitions st → at → st+1 through the computation of their

Q-values. This evaluation acts as a crucial metric for refining our strategy, guid-

ing it towards the maximization of expected rewards. This structured approach is

instrumental in optimizing the algorithm’s performance over time.

Figure 3.5 presents an overview of the training process. DRL offers signif-

icant advantages over traditional control methods for navigating UAVs through

narrow obstacles, particularly excelling in complex and uncertain environments

where traditional methods may falter due to their dependence on predefined mod-

els and parameters. Unlike conventional approaches that necessitate extensive pro-

gramming and precise adjustments for specific scenarios, DRL empowers UAVs

to autonomously learn optimal strategies through trial and error, acquiring expe-

rience directly from interactions with the environment. This capability enables

DRL-based systems to adeptly adapt to dynamic environmental changes, such as

moving obstacles or fluctuating wind patterns, which pose frequent challenges in

real-world UAV navigation.
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Figure 3.5: Schematic of the complete system training process.

We have simultaneously developed a detection module that utilizes a stereo-

scopic depth camera to generate temporal images corresponding to depth maps.

This module also computes the UAV’s position relative to obstacles or rings by

analyzing the correlations across successive frames of images.

3.2.3.2 Detection Model

Policy-based DRL methods are particularly suited to handling continuous action

spaces. These methods directly generate actions without the need to explicitly

compute value functions, thereby simplifying their application to continuous do-

mains. Such approaches require algorithms with high precision and offer a bal-

anced approach to exploration and exploitation. Given that policies are generated

directly, these methods can more effectively manage the exploration-exploitation

trade-off, enhancing the flexibility in exploration strategies. However, policy-
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based methods generally demand a greater number of samples and increased com-

putational resources, particularly in high-dimensional state spaces. Consequently, 

the SAC method is limited to employing shallow neural networks to ensure ex-

pedient model fitting. However, shallower neural models frequently face 

inaccuracies and display restricted robustness in image recognition 

tasks, as they lack the capacity to thoroughly handle intricate 

image data. To address this limitation, we have trained a recognition model 

to concurrently identify im-ages captured by the UAV’s onboard stereoscopic 

camera, serving as inputs to this model. The convolutional neural network 

(CNN) architecture of this model includes three convolutional layers and one 

max-pooling layer, the structure of which is detailed in Fig. 3.6.

The initial segment of the model encompasses a CNN section, which consists of 

three parallel one-dimensional convolutional layers applied to the input sliced
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time series. Each convolutional layer is equipped with 32 filters and respective

kernel sizes of 2, 3, and 4. The CNN section also features a 2 × 2 max-pooling

layer. The activation function within the CNN layers is the tanh function. The

outputs of the CNN section are relayed to the subsequent part of the model via a

hidden layer that includes a 0.5 dropout rate to prevent overfitting, particularly in

highly expressive networks. This CNN section undertakes convolution and down-

sampling of the input images.

The subsequent component of the deep neural network includes max-pooling

and fully connected layers. The segmented time series data from the CNN is clas-

sified through the fully connected layer after transitioning through a max-pooling

layer with a dimensionality of 128. Setting appropriate epochs is essential to

avoid unnecessary computation and overfitting, while employing smaller batch

sizes during experiments can enhance the model’s ability to generalize in solving

classification challenges. High batch sizes demand substantial memory resources

and may hinder the program’s functionality. Conversely, smaller batches tend to

yield improved performance on generic models. The loss function calculates the

training set loss every 100 batches, using algorithms to adjust neuron weights. The

model utilizes a cross-entropy loss function and the Adam optimizer.

The input to the detection model comprises color images and depth maps ob-

tained via a stereo camera setup. This dual-input strategy enriches the model’s

capacity to interpret the visual field with a more comprehensive contextual under-

standing, blending texture, color, and spatial depth information crucial for precise

object recognition. The model processes this data to identify the pixel coordi-

nates of the center of a ring in the color images, then extracts the corresponding

depth information from the depth maps. This procedure accurately determines the
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three-dimensional coordinates of the ring’s center by integrating both visual and

depth data provided by the stereo cameras. Calculating these three-dimensional

coordinates is pivotal as it facilitates the determination of both angular and posi-

tional discrepancies between the UAV and the circle’s center, which are essential

for navigation and obstacle avoidance tasks.

This dual-input methodology, which incorporates both color and depth infor-

mation, fosters a more reliable and robust recognition system. By leveraging depth

data, the model can circumvent some limitations inherent in relying solely on vi-

sual cues, such as variations in lighting and color ambiguities. The depth data

offers an absolute scale reference, enhancing the precision of object localization

and enabling accurate spatial judgments necessary for complex navigation tasks.

This approach significantly bolsters the UAV’s operational reliability, allowing

for more precise environmental assessments and more effective decision-making

processes based on real-time data analysis. The input image data to themodel mea-

sures 640 × 480 × 6, and the output quantifies the relative position and angular

discrepancy from the UAV to the nearest circle’s center.

3.2.3.3 Architecture of the SAC Networks

The architecture of the SAC networks is illustrated in Fig. 3.7. The actor network

comprises nine fully connected layers, each equipped with 256 nodes, and utilizes

the tanh activation function. The actor network receives an input of 15 vectors

and generates an output of 9 vectors. These outputs are predictions pertaining to

relative position, velocity, and acceleration. In the context of UAV navigation and

target tracking, angular error is represented as a 6-dimensional vector, where the

first three components correspond to the angular differences between the UAV’s
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orientation and the center of the target ring, while the remaining three components

represent the angular differences between the UAV’s orientation and the apex of

the target ring. Specifically, the first set of three dimensions quantifies the devi-

ations in roll, pitch, and yaw between the UAV’s current heading and the line of

sight toward the center of the target ring. These angles are crucial for assessing

the UAV’s alignment with the target, as they directly influence its trajectory to-

ward the designated location. The second set of three components corresponds

to the angular discrepancies between the UAV’s orientation and the apex of the

target ring, which is typically considered a reference point that defines the precise

positioning within the target’s vicinity.

Conversely, the critic network consists of nine fully connected layers, each

containing 256 nodes and also employing the tanh activation function. This net-

work receives 24 vectors as input and produces 2 vectors as output. The inputs to

the critic network encompass those fed into the actor network as well as the subse-

quent outputs from the actor network. The primary function of the critic network

is to evaluate the value of the actions taken in the current state. As such, its inputs

include the vectors from the current moment and the subsequent outputs, which

consist of predictions for relative position, velocity, and acceleration. The critic

network ultimately calculates two Q-values and consistently selects the smaller of

these values.

3.2.3.4 Replay Buffer

The SAC approach in reinforcement learning incorporates a critical storage com-

ponent known as the replay buffer, which plays a pivotal role in the architecture of

many advanced deep reinforcement learning systems, providing several essential
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functions:

• Experience Reuse: The replay buffer archives transitions collected during

the agent’s interactions with the environment. These transitions, comprising

tuples of state, action, reward, subsequent state, and completion status, are

stored for later use. By randomly accessing these stored transitions, the re-

play buffer helps to decorrelate consecutive experiences, thereby enhancing

the stability and efficiency of the learning process.

• Enhanced Learning Efficiency: The replay buffer significantly improves

learning efficiency by allowing repeated utilization of past experiences to

refine policy and value estimations. Without this mechanism, each expe-

rience would be used transiently and discarded, leading to suboptimal data

utilization.

• Training Stabilization: By providing a diverse mix of past experiences, the

replay buffer contributes to a more stable training regimen. This diversity

prevents the model from overfitting to a limited range of recent inputs and

promotes broader generalization across various environmental conditions.

• Learning fromDiverse Policies: As an off-policy learner, SACbenefits from

the ability to learn from actions derived from previous policy iterations. The

replay buffer maintains a historical catalog of experiences, which expands

the learning scope of the agent by exposing it to a variety of behaviors.

The replay buffer in the SAC framework is fundamental to its functionality.

It enables experience replay, a mechanism through which the agent reuses past

interactions to learn from them multiple times. Additionally, the buffer supports
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off-policy learning, allowing SAC to learn from actions outside the current policy.

Moreover, by decoupling the learning process from immediate experiences, SAC

can sample from a large, diverse batch of experiences, reducing the variance of up-

dates and smoothing the learning curve. This capability is crucial for stabilization

in real-world applications where conditions vary unpredictably. Typically, the ca-

pacity of the replay buffer in SAC is set to 107, accommodating a vast repository

of rewards, actions, states, and other relevant data, which fosters a nuanced un-

derstanding of the environment and supports the development of a sophisticated

agent.

To optimize learning from this extensive dataset, the buffer is strategically di-

vided into two segments. The first segment solely contains data about success-

ful navigations, where the UAV adeptly maneuvers through obstacles to reach its

target. The second segment stores all other data, including UAV collisions and

standard flight data, which constitutes a substantial portion of the records. This

segregation is vital as indiscriminately mixing all types of data could hinder ini-

tial learning stages due to the prevalence of collision and normal flight data. Data

extraction for model updates follows a 0.2 to 0.8 ratio, ensuring a balanced learn-

ing process that encompasses both successful and challenging experiences. This

structured approach to data management enhances the development of a robust

and efficient agent.

3.2.3.5 Reward Function

The reward function is structured into multiple components to guide the UAV’s

navigation through narrow gaps. The variablesp(t) andpT (t) represent the UAV’s

position and the target position at time t, respectively.
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rp(t) = −∥p(t)− pT (t)∥ , (3.15)

r(t) = λprp(t) + λa (ra(t) + ba) + λcrc(t)+

λuru(t) +

⎧
⎪⎪⎨

⎪⎪⎩

rT if target

−1 otherwise
,

(3.16)

The term ru(t) quantifies the duration of UAV flight, penalizing behaviors such

as crashing, remaining stationary, or bypassing all obstacles to directly reach the

final destination. Each of these actions results in a deduction of points. The term

rc(t) indicates the number of circles the UAV successfully navigates through at

time t, rewarding the UAV for each successful passage. The coefficients λp, λa,

λu, and λc are hyperparameters that weigh the importance of various aspects of

the UAV’s performance within the reward function. Additionally, ba is a positive

offset applied to the relative attitude reward, helping to fine-tune the incentive

structure for maintaining optimal orientations relative to obstacles. This formula-

tion enables a comprehensive assessment of the UAV’s performance, encouraging

efficient, safe, and effective navigation through challenging environments by bal-

ancing penalties for undesirable actions with rewards for successful maneuvering.

3.2.4 Update Delay

In traditional actor-critic algorithms, updates to both the actor and critic networks

occur at each step during the learning phase, typically facilitating more rapid pro-
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gression and convergence. However, empirical observations indicate that this high

frequency of modifications throughout ongoing training sessions can excessively

alter the action selection strategy, resulting in instability and unpredictable policy

behaviors.

To address these issues, a modified strategy has been implemented whereby

updates to the networks are postponed until the conclusion of each training epoch.

This method ensures that UAV flights are conducted under a consistent policy

throughout the duration of the epoch, enhancing the stability of the training process

and maintaining policy consistency. This adjustment is aimed at reducing fluctu-

ations in policy behavior and improving the overall effectiveness of the learning

algorithm.
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Results and Discussion

4.1 NEWDQN Algorithm

The proposed methodology has been validated through a series of UAV landing

simulations conducted under various scenarios utilizing ROS and Gazebo.

4.1.1 Simulation Environment

In the domain of UAV autonomous systems, particularly focused on rescue and re-

search operations, two simulation scenarios have been devised to assess the UAV’s

ability to navigate through narrow gaps. Table 4.1 presents a comparative analysis

of the simulation scenarios. The first scenario, referred to as Case 1, involves the

UAV navigating through a singular circular gap as delineated in the literature [55].

This simulation is conducted on the ’Gazebo’ platform, designed with a straight-

forward environmental setup of one circle, aiming to streamline the model training

process by allowing for detailed adjustments to the UAV’s navigation algorithms.

During this scenario, the UAV utilizes visual data from an onboard camera to navi-

64
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gate the gap, executing a direct 30-degree turn without any translational movement

at a maximum speed of 2 meters per second. Impressively, this scenario boasts a

success rate of 100% over 1000 trials, demonstrating the UAV’s effectiveness in

managing simple navigational tasks.

Conversely, Case 2 introduces a heightened level of complexity by requiring

the UAV to navigate through dual circular gaps, also referenced in the literature

[55]. While the application context remains consistent with Case 1, the presence of

two circles increases the environmental complexity. Despite the added challenges,

this scenario maintains a focus on refining the UAV’s control mechanisms. The

performance metrics from this more demanding simulation indicate a success rate

of approximately 70% over 1600 trials, highlighting areas where the UAV’s nav-

igational algorithms require further enhancements to manage multiple obstacles

effectively.

Together, these simulations play a crucial role in providing empirical data that

informs the continuous refinement of UAV control algorithms. By systematically

varying the complexity of the navigation tasks, the simulations help delineate the

capabilities and limitations of current UAV technologies in realistic, controlled

environments. The insights gleaned are vital for advancing UAV capabilities, en-

suring the technology’s effective deployment in real-world applications where pre-

cision and adaptability are paramount.

In the comprehensive analysis of UAV navigation within constrained settings,

spatial parameters are pivotal in elucidating and evaluating the efficacy of naviga-

tional strategies. As depicted in Fig. 4.1, the initial spatial separation between the

UAV and the singular narrow gap in the first scenario is quantitatively established

at 10 meters. This measurement provides a baseline for evaluating the UAV’s ap-



CHAPTER 4. RESULTS AND DISCUSSION 66

Table 4.1: Comparative analysis of simulation scenarios

Parameters Case 1: Single
Gap Navigation

Case 2: Dual
Gap Navigation

Assumption Navigation through a
singular circular gap.

Navigation through
dual circular gaps.

Application Context
Primarily tailored
for rescue and
research operations.

Primarily tailored
for rescue and
research operations.

Environmental
Complexity

Features a singular
circular gap.

Comprises two distinct
circular gaps.

Simulation Platform Gazebo Gazebo

The Rationale for
Multiple Cases

To simplify the
model training
process and
facilitate granular
adjustments.

To simplify the
model training
process and
facilitate granular
adjustments.

Inputs Visual data. Visual data.

Environmental
Complexity

Features a singular
circular gap.

Comprises two
distinct circular
gaps.

Expected Output A secure trajectory. A secure trajectory.

Success Rate A commendable 100%.

Approximately 70%,
indicating the increased
complexity of the dual
gap scenario.

Number of Trials 1000 1600

Environmental
Complexity

Features a singular
circular gap.

Comprises two
distinct circular
gaps.
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proach and maneuvering capabilities in a controlled setting.

Top-down View

Simulation of a UAV traveling through a Circle.
Case 1

Top-down View

Simulation of a UAV traveling through two Circle.
Case 2

50-100 meters

The diameter of a circle is 3 menters

10 meters 10 meters

Figure 4.1: View of environment.

Extending this analysis to a more complex configuration, the initial separa-

tion between the UAV and the foremost narrow gap in the subsequent scenario

is similarly quantified at 10 meters. However, the complexity increases with the

introduction of an additional gap, where the interstitial distance between the two

narrow gaps varies from 50 to 100 meters. This variable range introduces a signif-

icant challenge in path planning and execution, necessitating precise control and

advanced navigational algorithms.

Fig. 4.2 offers a visual depiction of the field of view accessible via the on-
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board camera of the UAV. This figure is crucial as it illustrates the UAV’s visual

range, which directly influences its ability to detect and respond to environmen-

tal features and obstacles. The observable field of view is a critical factor in the

UAV’s operational efficiency, especially in scenarios involving multiple obstacles

or gaps, as it determines the extent of the environment that can be assessed and

navigated at any given moment.

Center

10 meters

5 meters

10 meters

Figure 4.2: View of camera.

Together, these figures and measurements provide a comprehensive frame-

work for analyzing the UAV’s performance under varying degrees of environmen-

tal complexity. They also serve as fundamental inputs for refining UAV control

algorithms, enhancing the UAV’s adaptability and efficacy in real-world applica-

tions that require precise navigation through narrow and dynamically changing
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spaces.

4.1.2 One Circular Crossing Algorithm

Fig. 4.3 presents a graphical representation of a simulated navigation exercise

where an UAV maneuvers through a circular gap. The success of this simulation

is highlighted by the algorithm’s flawless performance, which achieves a 100%

success rate in these trials. This impeccable result is primarily attributed to the

algorithm’s sophisticated capability to precisely identify the center of the circu-

lar gap. By accurately determining this central point, the UAV is able to adjust

its altitude correspondingly, allowing for optimal alignment. This precise align-

ment facilitates the UAV’s seamless navigation through the gap, demonstrating

the algorithm’s effectiveness in handling complex navigational tasks within con-

strained environments. The high success rate in these simulations underscores the

algorithm’s potential for real-world application, where precise and reliable UAV

navigation is critical.

4.1.3 Two Circular Crossing Algorithm

Fig. 4.4 shows the simulation of a UAV through two circulars.

In Fig. 4.5, the cumulative reward curve is illustrated, providing a quantifiable

measure of the proposed algorithm’s performance over time. A detailed analysis

of this curve reveals that the algorithm reaches a state of convergence after ap-

proximately 1,000 iterations. This convergence indicates that the algorithm has

effectively learned the optimal strategy for the task at hand, as evidenced by the

stabilization of the reward accumulation.
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(a)

(b)

(c)

(d)

Figure 4.3: Simulation of a UAV traveling through a circulars.
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(a)

(b)

(c)

(d)

Figure 4.4: Simulation of a UAV traveling through two circulars.
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Figure 4.5: Reward function.

Concurrently, Fig. 4.6 displays the success trajectory of the UAV throughout

its training phase. This trajectory graphically represents the progression of the

UAV’s mission success rate over time, expressed quantitatively as a percentage.

The increasing trend in this trajectory highlights the effectiveness of the training

process, demonstrating a consistent improvement in the UAV’s ability to success-

fully complete its designated tasks.
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Figure 4.6: Success rate.

4.2 SAC Algorithm

4.2.1 Experiment Results

This section assesses the efficacy of the SAC algorithm in UAV path planning,

examining its performance across both simulated environments and actual field

applications. The experiments were designed to assess the SAC’s efficiency, ro-

bustness, and practical utility, aligning with our research objectives to enhance

UAV navigational capabilities in dynamic settings. The simulation experiments

were executed within an advanced simulation framework meticulously developed
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using the Open Dynamics Engine, integrated with Gazebo and the Python-based

PyTorch machine learning framework. This configuration enabled a high-fidelity

simulation of real-world dynamics, permitting precise control and observation of

the UAV’s behavior in scenarios involving obstacle avoidance. In this controlled

virtual setting, the UAVs were required to navigate through dynamically generated

obstacles, with systematic adjustments made to variables such as obstacle density,

UAV speed, and response time. The aim was to evaluate the UAVs’ capacity to

adjust their path planning strategies in response to environmental changes, em-

ploying the soft actor-critic algorithm. These simulation trials generated a com-

prehensive dataset on performance metrics, encompassing navigation precision,

collision frequencies, and computational efficiency.

Following the simulation trials, laboratory experiments were conducted to cor-

roborate the findings. These experiments took place in a controlled indoor setting

using actual UAVs outfitted with depth cameras and onboard processing units.

The laboratory environment facilitated the recreation of the simulation scenarios,

providing a platform to assess the real-world effectiveness of the algorithms. The

UAVs were subjected to stringent tests in conditions that emulated the complex-

ities observed in the simulated environment, such as obstacle density and unpre-

dictability. Performance metrics analogous to those measured in the simulation

experiments were evaluated, with a focus on the UAVs’ proficiency in executing

the learned navigation strategies. Comparative analysis between the simulated

and laboratory results yielded insights into the practical challenges and necessary

adaptations for transitioning the algorithms from simulated to real-world applica-

tions.
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4.2.2 Simulation

In the domain of computer systems and reinforcement learning, the efficacy and

success of algorithms are critically dependent on the configuration of various pa-

rameters. Optimal parameter settings enhance the utilization of computational re-

sources and precisely calibrate the learning mechanisms of the models employed.

This document offers an in-depth overview of key parameters that are crucial in

formulating computer configurations and refining reinforcement learning algo-

rithms. These parameters are demonstrated within a simulated environment, as

detailed in the accompanying Table 4.2.

Table 4.2: Simulation environment setting

Operating System Ubuntu 18.04
CPU Intel(R) Core(TM) i7-12700F
GPU NVIDIA RTX 3070
RAM 48 GB

CV Library Gazebo9
Program Language Python 3.6

ML Library OpencV 4.4
Simulator Open Dynamics Engine
Optimizer Adam

Replay Buffer Size 107

Learning Rate 10−3

Batch Size 256
Reward Scale 0.99
Update Times 20
UAV Weight 1203g

In this experiment, an enclosed area was designed measuring 20 meters in

all dimensions—length, width, and height—using the Open Dynamics Engine to

simulate a flight environment for UAVs. Within this constructed space, twenty
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circular hoops were strategically placed, as illustrated in Fig. 4.7. Each occurrence

of a UAV successfully navigating through these hoops during a test was recorded

as a progression. It was hypothesized that a UAV initiating its flight at one end

of the environment and effectively maneuvering through the obstacles to transit

through the circles would be considered to have successfully completed the test.

Figure 4.7: Simulation environment.

This experiment aimed to assess the SAC network’s effectiveness in training

UAVs for obstacle navigation. The reward function encouraged UAVs to collect

rewards by flying through hoops and avoiding collisions. The total rewards earned

during each epoch, whether the UAV reached the destination or crashed, were

recorded as the epoch reward. By changing the UAV’s starting point every 10

epochs, we built a diverse dataset that captured the UAV’s performance under var-

ious conditions.

During the testing phase, the UAV commenced each trial from a consistent
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starting position and attempted to navigate through a series of hoops while cir-

cumventing obstacles. Success was delineated as the UAV’s ability to traverse all

hoops and arrive at the final destination unscathed. The intermittent repositioning

of the hoops assessed the UAV’s adaptability to variations in the environment. The

model that demonstrated the highest average success rate across diverse scenar-

ios was chosen for further examination. Subsequently, the UAV, governed by this

model, underwent testing in various environments across more than 1,000 epochs.

The SAC demonstrated high success rates in navigating through complex simu-

lated environments. In scenarios with positioned obstacles, the highest navigation

accuracy success rate that SAC achieved in different scenarios was 90.5%. These

findings highlight the SAC algorithm’s capacity for adapting to fluctuating con-

ditions, representing a significant advancement for real-time UAV applications in

areas such as search and rescue or urban surveillance.

To evaluate the efficacy of the update-delayed version of the SAC algorithm

compared to the standard SAC, both variants were subjected to uniform condi-

tions across 1,500 epochs within the same training environment, as depicted in

Fig. 4.8(a). The observations indicated that the delayed update strategy not only

enhances training stability but also facilitates faster convergence and produces

superior reward outcomes relative to the conventional actor-critic method. Fig.

4.8(b) illustrates the outcomes from training various reinforcement learning algo-

rithms in a simulated setting. In our analysis, network updates were implemented

following each epoch. Notably, episodic rewards began to incrementally increase

after approximately 50 epochs, suggesting that with increased training duration,

the magnitude of the rewards also escalates.

To ascertain the superiority of our model, comparative training sessions, each
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Figure 4.8: RL function.
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consisting of 1,500 epochs, were conducted between our model and other promi-

nent algorithms—TD3, DDQN, and PPO—within the same experimental frame-

work, focusing on the comparison of reward outcomes. The PPO algorithm ex-

celled by rapidly converging towards the optimal reward value function and adapt-

ing effectively to the environmental variables. Initially, the DDQN outperformed

the TD3, but subsequently, its performance waned. This variability in performance

could be linked to DDQN’s initial rapid adaptation, whereas PPO demonstrated

sustained efficacy over extended training periods. Among the tested reinforcement

learning techniques, the SAC with a delayed learning update approach yielded the

highest reward, registering a score of 20. This outcome suggests that incorporating

a delay in learning updates can significantly amplify the performance and stabil-

ity of the SAC model, rendering it highly effective in complex training scenarios

where long-term strategic consistency is vital. Fig. 4.8(a) and Fig. 4.8(b) elu-

cidate that in our specific task, the enhanced SAC algorithm markedly surpassed

the competing algorithms in terms of reward accumulation rate and peak reward

values.

With merely 200 updates, our algorithm exhibited notably commendable per-

formance across both unaltered and altered environments, suggesting that ourmodel

effectively addresses the commonly slow convergence issues associatedwith policy-

based DRL algorithms in the context of UAV visual obstacle navigation. Compar-

ing SAC to traditional methods like TD3 and DDQN, SAC consistently offered

better performance and quicker adaptation to environmental changes. This com-

parative analysis not only validates the SAC’s superior efficacy but also demon-

strates its potential to replace more conventional approaches in advanced UAV

path planning tasks. These experimental configurations not only aid in assessing
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UAV performance across diverse navigational challenges but also play a pivotal 

role in advancing algorithmic development for autonomous flight and obstacle ne-

gotiation within cluttered settings.

The observed fluctuation in the image data can be attributed to the inherent 

randomness in the initial conditions and hyperparameter configurations within the 

training environment. Specifically, the UAV’s initial position is randomly initial-

ized at the onset of training, leading to variations in its starting point relative to the 

environment’s spatial layout. This variability, in combination with the stochastic 

nature of several hyperparameters governing the DRL model such as learning rate, 

exploration factor, and reward scaling. These random initializations and hyperpa-

rameter choices result in a dynamic learning process where the UAV’s naviga-

tion and decision-making are influenced by varying conditions at each iteration of 

training. Consequently, the reward function, which serves as a feedback mecha-

nism guiding the UAV’s learning process, experiences corresponding fluctuations 

as the model adapts to different scenarios and conditions. These variations 

frequently appear in reinforcement learning, especially under complex and 

changing conditions, reflecting the model’s continuous pursuit of optimal actions 

throughout the state-action space.

4.2.3 Real Environment

Subsequent to the simulated experiments, the UAVs were subjected to real-world 

testing to evaluate the transferability of their acquired navigation and obstacle 

avoidance skills. These tests are essential for determining the extent to which 

training in simulated environments is applicable to real-world settings that may
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not be accurately modeled or controlled. The laboratory experiments were specif-

ically designed to validate the efficacy of the SAC algorithm in managing UAV

obstacle avoidance under actual conditions. These evaluations were conducted in

an indoor flight testing facility outfitted with a range of physical obstacles, such as

hoops, barriers, and dynamically moving challenges, to closely replicate the con-

ditions encountered in the simulations. Transitioning to real-world environments,

the SAC maintained a high performance, achieving the lowest obstacle avoidance

success rate of approximately 68.0% in different environments. The lowest suc-

cess rate of 68% observed in this study across various test settings represents a no-

table advancement compared to the success rates of approximately 40% reported

in other studies [70]. This slightly lower rate compared to simulation highlights

challenges like sensor accuracy and environmental unpredictability, which are not

fully replicated in simulations. The results demonstrate the feasibility of deploy-

ing UAVs trained with the SAC algorithm in practical scenarios where adaptability

and reliability are paramount.

The configuration of the UAV utilized in our real-world testing environment

is illustrated in Fig. 4.9. This UAV was equipped with an Intel RealSense D435,

which features both a depth camera and a stereo camera, as well as an Intel Tiger

Canyon computer for high-performance onboard processing and a Holybro Pix-

hawk4 Mini flight controller for precision navigation in the controlled laboratory,

ensuring that it could accurately interpret and respond to its surroundings in real-

time. Once the two-dimensional position of the target is determined using the

image obtained from the stereo camera, the vertical distance between the UAV

and the target is subsequently calculated with the aid of the depth camera. The

stereo camera provides critical information regarding the target’s relative position
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within the horizontal plane, while the depth camera, which measures the disparity

in the depth map, accurately estimates the vertical distance. By combining these

data sources, the system can effectively compute the complete three-dimensional

spatial relationship between the UAV and the target, thereby enabling more pre-

cise navigation and obstacle avoidance in dynamic environments. The experi-

mental framework involved a series of meticulously designed flight paths that the

UAV was required to traverse. These paths incorporated strategically placed un-

expected obstacles to rigorously evaluate the UAV’s agility, situational awareness,

and adaptability in learning and maneuvering. This setup aimed to simulate dy-

namic environmental conditions, thereby enabling us to comprehensively assess

the UAV’s obstacle avoidance and navigation capabilities under challenging and

unpredictable circumstances.

Intel Realsense D435 Intel Tiger Cany Computer

Holybro pixhawk4 mini

Figure 4.9: Our flying platform.

In preliminary tests, the UAVs exhibited a notably low obstacle avoidance
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success rate. However, over time, through repeated trials, the avoidance accu-

racy across three specified circles improved to 70.4%, as the UAVs adapted to the

environment via continuous learning facilitated by the SAC algorithm. UAV ex-

hibited the notably lowest success rate in obstacle avoidance, approximately 68%,

when navigating through three challenging scenarios involving two angled circles.

Additionally, the onboard computational demand was rigorously monitored. Ini-

tial experimental trials revealed that up to 70% of the UAVs’ processing capacity

was utilized, primarily attributable to the substantial computational demands of

the SAC algorithm’s actor-critic network. Through targeted optimization of the

network parameters, including adjustments to the learning rates and exploration-

exploitation balance, the computational load was effectively reduced to approxi-

mately 55%. This reduction not only enhanced the operational efficiency of the

UAVs but also ensured that the responsiveness of the system to environmental

variables remained uncompromised.

In an investigation of UAV navigation capabilities across six distinct environ-

ments, various configurations of rings and obstacles were systematically estab-

lished to evaluate navigational accuracy and obstacle avoidance techniques. From

Fig. 4.10 to Fig. 4.15 shows the realistic environment configuration. The config-

uration details are as follows:

1) Fig. 4.10 illustrates the configuration of Environment 1: A single ring with

a diameter of 0.70 m is strategically placed. Positioned 2.90 m from the

center of the ring at a vertical distance of 1.64 m, the UAV measures 0.21 m

in radius and 0.13 m in height. Additionally, two obstacles are incorporated,

including a brown obstacle located 1.40 m from the UAV, which partially



CHAPTER 4. RESULTS AND DISCUSSION 84

2.90 m

1.65 m

Figure 4.10: Realistic environment configuration: 1 circle.

1.10 m

2.20 m

1.35 m

0.30 m 

0.85 m

Figure 4.11: Realistic environment configuration: 2 circle.

obscures the ring by one-third, thereby posing a challenge to the UAV’s

visual navigation systems.
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1.35 m

1.80 m

1.06 m

2.00 m
0.76 m

2.00 m

0.30 m

0.35 m

Figure 4.12: Realistic environment configuration: 3 circle.

1.40 m
0.85 m

2.20 m
45°

1.65 m

x

y

z

45°

Figure 4.13: Realistic environment configuration: 2 circles (rotate around Y-axis).

2) Fig. 4.11 depicts the configuration of Environment 2, which includes two

rings. The UAV is stationed 1.10 m from the first ring’s center at a height of
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1.40 m
0.85 m

45°

1.65 m

x

y

z

2.20 m

45°

Figure 4.14: Realistic environment configuration: 2 circles (rotate around Z-axis).

1.40 m
0.85 m

2.20 m45°
45°

1.65 m

x

y

z

45°
45°

Figure 4.15: Realistic environment configuration: 2 circles (rotate around Y-Z-
axis).
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1.35 m. The horizontal separation between the rings is 0.85 m, with the first

ring positioned 0.30 m lower than the second. The linear distance between

the centers of the rings measures 2.20 m. Four obstructions are strategi-

cally placed, adding complexity to the UAV’s path-finding algorithms and

requiring sophisticated maneuvering capabilities.

3) Fig. 4.12 presents the configuration of Environment 3, where three rings are

utilized in this setup. The UAV’s initial position is 1.80 m horizontally and

1.35 m vertically from the first ring. The subsequent rings are arranged with

increasing complexity; the second ring is 1.06 m horizontally from the first

and 0.30 m lower in elevation, and the third ring, 0.76 m away horizontally

from the second, is 0.35 m lower. The linear distances between the rings

remain consistent at 2.00 m. Similar to Environment 2, four obstructions are

placed to test the UAV’s adaptive response to dynamic spatial challenges.

4) Fig. 4.13 shows environment 4 configuration: This environment is struc-

tured similarly to Environment 2, with adjustments made to the orientation

of the second ring. While the two rings in Environment 2 are aligned par-

allel, here, the second ring undergoes a rotation of 45 degrees clockwise

around the Y-axis. The initial positioning of the UAV is 1.40 m from the

center of the first ring at an altitude of 1.60 m. The horizontal and linear

spacing between the centers of the rings remains consistent at 2.20 m. Ad-

ditionally, four obstacles are strategically placed within this setup to assess

the UAV’s adaptability and response to altered spatial dynamics.

5) Fig. 4.14 shows environment 5 configuration: This scenario mirrors Envi-

ronment 4 with a singular variation in the angular disposition of the second
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ring. Contrary to Environment 2, in which the rings are parallel, the mod-

ification here involves a 45-degree clockwise rotation of the second ring

around the Z-axis. All other spatial arrangements, including the positioning

of the UAV and the placement of obstacles, are identical to those in Envi-

ronment 4, facilitating comparative analysis of navigational responses under

subtly varied rotational adjustments.

6) Fig. 4.15 shows environment 6 configuration: Similar to Environment 4,

this setup introduces a further complex rotational adjustment to the sec-

ond ring. The modification encompasses a two-stage rotation: initially 45

degrees clockwise around the Y-axis followed by an additional 45 degrees

clockwise around the Z-axis. This scenario distinguishes itself from Envi-

ronment 2 by presenting a compounded rotational challenge while maintain-

ing the same spatial configuration as in Environment 4. This environment

is designed to test the UAV’s capacity for navigating through increasingly

complex angular alterations whilemanaging the same spatial constraints and

obstacle configurations.

Table 4.3 presents experimental results comparing success rates of UAV navi-

gation in various configurations both in simulation settings and real-world applica-

tions. In a single circle environment, the UAV achieved a success rate of 90.5% in

simulation and 80.4% in real-world scenarios, demonstrating a decline when tran-

sitioning from controlled to complex real environments. For two and three circles,

success rates in simulations are 85.9% and 80.3%, respectively, decreasing in real-

world settings to 73.8% and 70.4%. This highlights the increasing challenge posed

by additional obstacles. Environments with two circles rotated around the Y-axis
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Table 4.3: Experimental results in success rate

Environment Simulation Real World
1 circle 90.5 % 80.4 %
2 circles 85.9 % 73.8 %
3 circles 80.3 % 70.4 %

2 circles (rotate around Y-axis) 85.0 % 71.0 %
2 circles (rotate around Z-axis) 84.9 % 70.0 %
2 circles (rotate around Y-Z-axis) 80.5 % 68.0 %

and Z-axis, and bothY and Z axes show varied results. Success rates in simulations

are 85.0%, 84.9%, and 80.5%, respectively, while in real-world scenarios, these

figures reduce to 71.0%, 70.0%, and 68.0%, indicating a pattern where rotational

complexities affect UAV navigation effectiveness.

Fig. 4.16 to Fig. 4.21 illustrate the trajectory of the UAV navigating through

six progressively challenging environments.

Figure 4.16: Through the 1 circle.
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Figure 4.17: Through the 2 circles.

Figure 4.18: Through the 3 circles.

Fig. 4.16 reveals the flight route as the UAV passes through a single ring,

offering a relatively straightforward task that tests basic navigation and stability.
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Figure 4.19: Through the 2 circles (rotate around Y-axis).

Figure 4.20: Through the 2 circles (rotate around Z-axis).

Fig. 4.17 shows the trajectory when the UAV encounters two rings, requiring it

to swiftly adjust its orientation and speed between consecutive targets. Environ-
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Figure 4.21: Through the 2 circles (rotate around Y-Z-axis).

ment 2 serves as a baseline, which tests the UAV’s basic path-finding algorithms

and its ability to maneuver through straightforward trajectories with minimal ori-

entation changes. The relatively simpler configuration of this environment allows

the UAV to demonstrate core competencies in stable flight dynamics and obstacle

avoidance. Fig. 4.18 demonstrates the UAV’s ability to maneuver through a se-

quence of three rings, necessitating continuous orientation adjustments and speed

control while maintaining accurate alignment. Environment 2 serves as a baseline,

where the UAV navigates through two parallel rings. This scenario tests the UAV’s

basic path-finding algorithms and its ability to maneuver through straightforward

trajectories with minimal orientation changes. The relatively simpler configura-

tion of this environment allows the UAV to demonstrate core competencies in sta-

ble flight dynamics and obstacle avoidance. Fig. 4.19 demonstrates a scenario

wherein the second ring is rotated by 45 degrees around the Y-axis, presenting a
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challenge to the UAV’s capacity to adjust its trajectory in response to rotational

distortions. This environment tests the UAV’s sensor integration and data pro-

cessing efficacy, requiring a sophisticated understanding of altered geometrical

perspectives. The adaptation to this environment suggests a higher level of spa-

tial awareness and computational adaptability, which are crucial for navigating

through environments with irregular object orientations. Fig. 4.20 further compli-

cates the navigation challenge by rotating the second ring 45 degrees around the

Z-axis. This rotation necessitates an adjustment in the UAV’s lateral and vertical

control mechanisms, pushing the boundaries of its control algorithms to maintain

precision in a dynamically altered navigational context. The successful navigation

through this environment indicates an advanced level of robustness in the UAV’s

control systems, capable of handling changes in the axis of movement which are

common in real-world scenarios. Fig. 4.21 presents the most complex scenario

with a dual-stage rotation of the second ring, combining rotations around both the

Y and Z axes. This environment demands a highly refined integration of sensory

and control systems, enabling the UAV to process and respond to multi-axis rota-

tions simultaneously. The UAV’s performance in this environment is indicative of

its exceptional ability to generalize its learned behaviors to new and more complex

situations. The successful navigation through this scenario underscores the UAV’s

advanced computational algorithms and its robustness in adapting to compounded

rotational challenges.

Strategically placed obstacles in each environment simulate real-world chal-

lenges that demand precise trajectory refinements and spatial awareness from the

UAV. The UAV must navigate around these barriers while aligning accurately

through each ring, proving its ability to analyze the environment, predict obsta-
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cles, and make real-time adjustments in increasingly complex conditions. The

adaptation from basic parallel navigation to managing complex rotations exempli-

fies significant advancements in the proposed model’s generalization capabilities

and its robustness. These attributes are essential for applications requiring high

reliability and adaptability in dynamically changing environments, such as in ur-

ban navigation, disaster response, and other critical real-world applications where

unpredictable changes in environmental geometry are prevalent. These trajecto-

ries highlight the UAV’s agility, accuracy, and adaptability as it navigates through

progressively difficult challenges.

Our study employed a deep reinforcement learning strategy that integrates

deep learning techniques for preprocessing visual data. This approach enables

UAVs to rapidly and effectively learn obstacle avoidance using only a depth cam-

era, eliminating reliance on additional sensory devices. Distinct from other vi-

sual obstacle avoidance methods, our technique proficiently navigates obstacles

within real-world settings. However, there remains room for further refinement of

this methodology. While simulation experiments indicated an obstacle clearance

rate through three circles of nearly 80%, the application in real-world conditions

demonstrated amarginally lower success rate, averaging approximately 70%. This

variance is largely due to the physical constraints and unpredictable dynamics

present in real-world environments, which simulations cannot completely repli-

cate. In practical settings, the minimum success rate of the UAV in maneuvering

through rings at various angles stands at 68%. The adaptability of the change from

parallel rings to rings with different angles shows a significant improvement in the

generalization ability and robustness of our model. This improvement underscores

the UAV’s ability to adjust to geometrically varied configurations and operational
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challenges, further validating the practical efficacy and enhanced adaptability of

the SAC algorithm in dynamic real-world settings. This achievement not only

signifies a critical progression in UAV navigational autonomy but also delineates

potential areas for future research aimed at augmenting model reliability and en-

vironmental responsiveness. The successful deployment of the SAC algorithm in

both simulated and actual environments represents a significant advancement in

the autonomous path planning of UAVs. This research sets the stage for more ad-

vanced, dependable UAV operations across diverse applications, thereby improv-

ing both safety and operational efficiency. While the SAC algorithm exhibited

strong adaptability in both settings, the necessity for parameter adjustment was

more pronounced during laboratory evaluations. Variations in lighting, obstacle

reflectivity, and sensor discrepancies necessitated real-time modifications to en-

sure optimal performance.



Chapter 5

Conclusion

This thesis investigates the autonomous navigation capabilities of UAVs, particu-

larly in navigating narrow gaps and intricate terrains, which are essential for appli-

cations in fields such as rescue operations and environmental research. One of the

key advancements of this research lies in its ability to improve UAV path planning

and navigation, enablingmore efficient traversal through complex and challenging

environments. A significant contribution of this work is the effective mitigation

of limitations posed by semi-autonomous human control and unpredictable signal

transmission. Semi-autonomous human control, while useful in certain situations,

often results in inefficiencies and limited responsiveness, particularly in dynamic

or narrow-gap environments where precise, real-time decisions are critical. Ad-

ditionally, unpredictable signal transmission, which is common in cluttered or re-

mote environments, poses a significant challenge to the continuous and reliable

operation of UAVs. By addressing these issues, this research reduces reliance on

human intervention and enhances the UAV’s ability to operate autonomously, even

in environments where communication signals may be intermittent or unreliable.

96
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Consequently, the findings of this thesis mark a significant progression in UAV

navigation, providing a more reliable and scalable approach for UAVs to operate

in complex, unpredictable settings without the need for constant human oversight.

The core of the first research segment focused on leveraging simulated envi-

ronments to refine the UAV navigation algorithms. This methodology, although

successful within a regulated environment, recognizes the constraints associated

with simulation-based evaluations, particularly the lack of empirical verification

in authentic field conditions. The dynamic and unpredictable nature of real op-

erational environments often introduces variables that are difficult to replicate in

simulations, which could affect the UAV’s operational efficacy when transitioning

from simulation to actual deployment.

In contrast, the subsequent phase of the research deployed a deep reinforce-

ment learning framework that incorporates advanced deep learning methodologies

for the preprocessing of visual data. This integration significantly improves the

unmanned aerial vehicle’s proficiency in mastering obstacle avoidance through

the exclusive use of a depth camera. This method diverges from traditional vi-

sual obstacle avoidance strategies by demonstrating successful navigation in real-

world settings. Nevertheless, divergences were noted between the outcomes de-

rived from simulations and those from real-world implementations—the efficacy

in simulated environments reached approximately 80%, whereas in practical ap-

plications, it exhibited a modest decline, averaging about 70%. This discrepancy

is chiefly ascribed to the physical constraints and unanticipated dynamics that sim-

ulations are unable to completely emulate.

Furthermore, the adaptability of the UAV to navigate through rings with vary-

ing angles was significantly improved, showcasing the generalization capability
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and robustness of the SAC algorithm under dynamically changing conditions. This

not only demonstrates a pivotal advancement in UAV navigational autonomy but

also underscores the necessity for ongoing enhancements in model reliability and

environmental adaptability.

The effective deployment of the SAC algorithm in both simulated and real-

world settings highlights the prospects for more advanced and dependable UAV

operations across diverse sectors, consequently improving both safety and opera-

tional efficacy. The study demonstrates that although the SAC algorithm showed

significant adaptability, there was a heightened need for parameter adjustment dur-

ing controlled experiments. Fluctuations in environmental factors, including light-

ing conditions, obstacle reflectivity, and sensor discrepancies, required immediate

modifications to sustain peak performance.

In conclusion, while the transition from simulated to real-world applications

presents challenges, the insights and refinements derived from these tests are in-

valuable for tailoring UAV algorithms for real-world deployment. The investi-

gation not only propels advancements in the field of UAV navigation but also

establishes a benchmark for future studies focused on augmenting the practical

effectiveness and versatility of UAV systems within intricate operational environ-

ments.

Part of this thesis has been published in the paper, Guo, Jingrui, Huang, Chao,

and Huang, Hailong (2023). “A Deep Q-Network-Based Algorithm for Obstacle

Avoidance and Target Tracking for Drones”. In: 2023 IEEE International Con-

ference on Systems, Man, and Cybernetics (SMC), pp. 4530-4535. and Guo,

Jingrui et al. (2024). “Advancements in UAV Path Planning: A Deep Reinforce-

ment Learning Approach with Soft Actor-Critic for Enhanced Navigation”. In:
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Unmanned Systems.

5.1 Summary of Contributions

This thesis advances the discipline of UAV navigation through the integration and 

validation of cutting-edge deep reinforcement learning frameworks designed to 

improve path planning and autonomous decision-making capabilities in multi-

faceted environments. The thesis concentrates on two primary aspects: the devel-

opment of a DRL framework specifically designed for efficient UAV path plan-

ning, and the complexities surrounding sim-to-real transitions.

DRL framework designed specifically for online path planning allows 

UAVs to navigate narrow and intricate terrains typically found in rescue and re-

search operations. Such environments are challenging due to unpredictable signal 

transmission and spatial constraints. The framework enhances UAVs’ ability to 

make autonomous decisions without heavy reliance on detailed map data, which 

is a significant limitation in traditional path planning methodologies. A pivotal as-

pect of this framework is its ability to directly map action commands from sensor 

data, facilitating real-time command relay and precise navigation through com-

plex terrains. The SAC Update Delay is the fastest converge than other algorithms 

in Fig. 4.8. This approach not only streamlines the UAV’s decision-making pro-

cesses but also enables rapid convergence of neural networks, which is crucial for 

operating effectively in real environments.

Furthermore, the research tackles the perennial challenge of the simulation-

to-reality transition that plagues many UAV development processes. By deliber-

ately increasing the complexity of simulated environments beyond that typically
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encountered in the real world, the research ensures that UAVs are adequately pre-

pared for various operational conditions. Increasing the complexity of the simu-

lation environment, as opposed to utilizing a high-fidelity simulator, offers sev-

eral notable advantages, particularly in addressing the challenges associated with 

sim-to-real transfer in UAV development. This approach significantly reduces 

the computational resources and costs typically required by high-fidelity simula-

tors, which demand substantial processing power to accurately model real-world 

physics and sensor systems. By introducing more complex yet computationally 

manageable simulation scenarios, the research can test a wider variety of environ-

mental conditions and UAV behaviors without the need for expensive hardware 

or high-performance computing infrastructure. Moreover, this method allows for 

faster experimentation and iteration, enabling the rapid testing and refinement of 

algorithms, strategies, and design modifications without the delays inherent in 

high-fidelity simulation or real-world testing. This method not only facilitates 

the development of robust reinforcement learning strategies but also enhances the 

algorithms’ transferability from simulated to practical applications.

Moreover, the architectural adjustments in the SAC algorithm reduce the risk 

of uncontrolled UAV behaviors, ensuring safer and more reliable operations. The 

strategic implementations detailed in this thesis not only enhance the UAV’s op-

erational autonomy and adaptability but also set a robust foundation for future ad-

vancements in UAV technology and applications. A holistic strategy tackles key 

obstacles in UAV navigation and expands the frontiers of drone performance, 

paving the way for advanced and dependable operations across diverse 

applications, ultimately boosting both safety and efficiency.
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5.2 Future Research

The subsequent stage of this research will concentrate on evaluating the success

rate of the DRL model within real-world scenarios that feature dynamic obstacles.

This evaluation is crucial as it aims to verify the model’s proficiency in guiding

UAVs through various obstructions to their intended destinations under evolving

conditions. The primary goal is to ascertain the model’s ability to adapt to obsta-

cles that differ in size, shape, and trajectory, thus offering a concrete measure of

its adaptability and decision-making prowess. Successful navigation in such dy-

namic environments wouldmark a significant milestone in the field of autonomous

UAV navigation, showcasing the model’s capacity to manage situations where tra-

ditional algorithms typically fall short.

Achieving consistent performance in these complex settings would consider-

ably expand the practical applications of UAVs, enabling them to autonomously

execute missions across diverse domains such as search and rescue, precision agri-

culture, and infrastructure inspection. Demonstrating effectiveness in these con-

ditions would also bolster confidence in deploying UAVs for tasks that demand

high adaptability and real-time decision-making capabilities.

Given the noted discrepancies between the outcomes in simulated versus real-

world settings observed in previous experiments, future research will concentrate

on refining the SAC algorithm’s robustness against physical-world variables. This

initiative will encompass optimizing sensor integration and fine-tuning the algo-

rithm to more effectively bridge the gap between simulated training and actual op-

erational environments. These enhancements are anticipated to facilitate greater

adoption of UAVs in commercial and scientific fields where manual control is ei-
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ther impractical or infeasible.

The forthcoming phase of the research is set to establish UAVs as dependable

autonomous entities, adept at performing essential tasks in volatile and dynami-

cally evolving real-world settings with limited human oversight. This progression

marks a crucial advancement toward harnessing the complete potential of UAV

technology across a broad spectrum of practical implementations, emphasizing

the necessity for ongoing enhancement and adaptation of UAV operational algo-

rithms.
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