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Abstract 
    Fruit losses in the supply chain owing to improper handling and a lack of proper control 

are common in the fruit logistics industry. As losses are caused by the inefficiency of the export 

method, selecting the appropriate export method is a possible solution. Several organizations 

employ only a single strategy, which is mainly based on a first-in-first-out approach. Such a 

policy is easy to manage but inefficient. Given that the batch of fruits may become overripe 

during transportation, frontline operators do not have the authority or immediate support to 

change the fruit dispatching strategy. This study aims to develop a dynamic strategy simulator 

to determine the sequence of delivery based on forecasting information projected from 

probabilistic data to reduce the amount of fruit loss.  

The proposed method using asynchronous federated learning (FL) is based on blockchain 

technology and a serially interacting smart contract. In this method, each party in the chain 

updates its model parameters and uses a voting system to reach a consensus. This study 

employs blockchain technology with smart contracts to serially enable asynchronous FL, with 

each party in the chain updating its parameter model. A smart contract combines a global model 

with a voting system to reach a common consensus. Its artificial intelligence (AI) and Internet 

of Things engine further strengthen the support for implementing the Long Short-Term 

Memory (LSTM) forecasting model. Based on AI technology, a system was constructed using 

FL in a decentralized governance AI policy on a blockchain network platform. With mangoes 

being selected as the category of fruit in the study, the system improves the cost-effectiveness 

of the mango supply chain. In the proposed approach, the simulation results show fewer 

mangoes lost (from 6.91% to 0.035%) and operational costs reduced. 
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Chapter 1 Introduction 

1.1 Motivation 

In the past 5 years, the majority of cargoes and shipments have employed a first-in-first-

out (FIFO) allocation strategy that does not involve using sensor devices or shelf-life 

knowledge. Consequently, the mango market experienced significant maturation losses. As a 

member of the category of perishable fruits, mango has a special organoleptic characteristic 

that is subject to continuous change throughout supply chain activities. The problem of overripe 

fruit spreads from upstream to downstream. Mango losses and quality problems are related to 

pre-harvest conditions and post-harvest management of the supply chain structure and 

operations [1]. Such losses and quality problems have been traced back to farm operations, 

such as picking, washing, and drying, and logistics operations, such as packing, storing, and 

exporting. The majority of losses occur at the distribution stage owing to frequent handling 

complications, unexpected events, transportation conditions, and operational practices. In 

particular, when mangoes are transported over long distances and for lengthy transit periods 

along global supply chains, the issues of fruit loss and quality become more severe [2]. 

Therefore, logistics and inventory management are considered the primary causes of low 

acceptance rates and fresh fruit losses during the retail and consumption stages [3]. For instance, 

Ridolfi et al. [4] reported that mango losses amount to 45.6% of the total production. Mango 

losses can be substantial, ranging from 19 to 46% of the crop. The losses incurred because of 

transport, storage, or over-ripening in different countries are listed as follows: 

• Bangladesh: 8.2% out of 25.5% [5]. 

• Ghana: 29.6% out of 45.6% [4]. 

• Philippines: 3.5–4.9% out of 19.0–33.9% [6]. 

• India: 9.6% out of 34.5% [7]. 
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• Ethiopia: 13.4–15.7% out of 40.7% [8] [9]. 

Moreover, the Queensland Government [10] found that the sources of mango losses start 

at the farm level and progress to the post-harvest level. Other sources of loss are in the 

wholesale and retail stages, primarily attributable to inadequate storage facilities and operations, 

low-tech packaging methods and materials used, a lack of cold chain containers and trucking 

facilities, and inadequate road maintenance and infrastructure networks [11] [12]. The shelf-

life of mangoes can be reliably extended when stored over the supply chain cycle within the 

recommended temperature management ranges of the cool chamber: 10 to 12°C for storage, 

12–16°C for transport, and 18–22°C for ripening [10]. However, farmers, logistics providers, 

warehouses, wholesalers, and retailers do not follow this practice. 

1.1.1 Fruit logistics functionalities 

The methodology proposed in this thesis collects status information about mangoes, such 

as export progress, maturity, temperature, and humidity. These are used to construct a scenario 

that enables better logistics management. The sensors detect the fruit maturity loss [13] using 

the “Export Progress” information, and the export progress loss is then estimated. Hence, the 

industry should stimulate advanced management ideas on strategy simulation and recoup a part 

of the sensor cost while increasing fruit quality [14]. Using the “maturity” information, a 

mango ripeness data feed is essential to train a self-supervised deep learning model to predict 

shelf-life [15]. It provides deeper insight into autonomous fruit supply chain management and 

decision-making. Using the “Temperature and Humidity” information, the maturity datasets 

are categorized into different relative humidity and temperature ranges [16]. When real-time 

temperature and humidity are within the range of the datasets, there is a strong correlation 

between actual and predicted ripeness. 
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1.1.2 Logistics prediction through federated learning 

Developing a decisive model for destination selection requires a large amount of training 

data to produce an effective model. If all of the data are collected from a single source, the size 

of the dataset will be insufficient for the training process. However, if data are collected from 

different suppliers, there are security problems, update difficulties, and the risk of node failure. 

Therefore, federated learning (FL) was used in this study. FL aims to achieve the best model 

without exchanging data with individuals [17]. To eliminate the problem of requiring a 

permission server for FL [18], a serverless approach was used in the FL implementation. This 

machine-learning model derives from decentralized governance. Many parties can then use this 

machine learning model to develop scalable AI policy simulations. 

1.1.3 Decentralized Governance and AI Policy (DGAP) 

As mentioned above, traditional FL depends on a central server for model 

aggregation. The current method poses risks related to single points of failure and limited 

scalability. Prediction models not backed by blockchain are vulnerable to data tampering. 

Once the current model changes, other models cannot absorb the knowledge from the 

previous scenario’s model. The non-smart-contract-based predictive models would not 

obtain the optimized overall accuracy due to a lack of scenario variety. The centralized 

server may store different scenario prediction models; however, the trustworthiness of 

predictions may be questioned without a decentralized and transparent framework. In this 

thesis, we propose DGAP to solve the existing federated learning problems for the supply 

chain. Establishing transparency provided by smart contracts with an immutable voting 

system is important. Smart contracts are programs stored on the blockchain that execute 

when predetermined conditions are met. The smart contract can then act as a predictive-

driven serverless approach. The serverless FL allows for greater scalability. The smart 
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contract accommodates a larger number of participants without performance degradation 

to extend the usage possibility of each local model. The more predictive scenarios are, 

the higher the overall accuracy is, and the longer the agent’s sustainability is. The fruit 

waste can, therefore, be reduced. 

DGAP is a double helix framework to integrate federated learning with multiple 

participants using blockchain-based voting mechanisms. Decentralized Governance 

allows multiple parties to collaboratively train AI models without sharing their raw data. 

Each party updates its local model through a smart contract. Blockchain stores critical 

parameters, making the models tamper-proof and traceable. Multiple AI policies in agent 

decision making system ensure that one of the policies is beneficial for each supply chain 

stakeholder. The system allows stakeholders to vote for an optimal prediction model 

highly compatible with agent strategic planning. The decentralized system automates the 

execution of decisions and ensures that all parties adhere to the agreed-upon rules. The 

voting mechanism is achieved within smart contracts about the fusion of model 

aggregation. These smart contracts are pivotal in facilitating model selection and 

enhancing fault tolerance through consensus. 

1.1.4 Benefits of federated learning, decentralized governance, and AI policy 

In this study, federated learning as well as decentralized governance and AI policy (DGAP) 

benefit the supply chain in five ways: 

• Ensuring the responsible and ethical use of AI: AI systems are used in a fair, transparent, 

and respectful way. This can help build public trust in AI and mitigate the potential negative 

consequences of its use. 

• Promoting economic growth and development: AI policy supports fruit saving, in 

addition to the development and deployment of AI technologies that drive economic growth 
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and create new opportunities for workers and businesses. 

• Protecting privacy and security: federated learning can help safeguard the privacy and 

security of individuals by establishing standards for the protection of personal data. 

• Facilitating innovation and research: supply chain policy managers can encourage the 

development of innovative AI technologies and support fruit waste research to help advance 

the field. 

• Enhancing public awareness and understanding: the prediction model informs the public 

about the capabilities and limitations of the current supply chain system and its potential 

impacts on logistics.  

1.2 Aim of this work 

In traditional logistic management, fruit loss information is collected at the beginning and 

end of the transportation route, and information on fruit ripeness throughout the journey is 

unknown. However, with a system simulating the mango allocation strategy, decision-makers 

can obtain recommendations and receive guidance generated with decentralized governance by 

artificial intelligence (AI) policy [19]. The simulation promotes an impact that influences peers 

and forms a consensus when making policy decisions. Without export simulation, it is difficult 

to determine the amount of fruit wasted in the company. It is also difficult for storeroom 

workers to execute a single strategy to address the supply chain issue. The proposed system 

collects data, shares experiences, learns from quick trials, transforms wisdom into a global AI 

model, and broadcasts it to a permanent public network. This study aims to (1) propose scene 

simulation, (2) launch a permanent intelligence broadcaster, and (3) improve the cost-

effectiveness of the fruit supply chain, as presented in the analysis of Indonesia's most 

important fruit commodities [20]. Because the agricultural supply chain industry has to handle 

perishable production, planting, growing, and harvesting processes that depend on climate and 
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season, and yields of varying shapes and sizes, such management is more complex than that 

for non-agricultural supply chains. 

1.3 Organization of the Thesis 

This thesis is organized as follows: Chapter 2 provides the background of federated 

learning and fruit waste detection, focusing on the concept of the FIFO mechanism, permanent 

intelligence broadcaster, and blockchain-based federated learning. Chapter 3 describes the 

three-process flow-integration design and blockchain-based AI models, addressing the lack of 

digital information using reproduction technologies for individual scenes, such as stochastic 

simulations of fruit loss. Chapter 4 concludes the study and discusses real-world industrial 

applications that could limit the interpretability of simulation outcomes. 
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Chapter 2 Related Work 

2.1 The development of federated learning 

Historically, the widespread adoption of FL services grants considerable leverage to 

centralized companies. Initially dominated by technology enterprises, the market for FL 

methods garnered success with substantial support from mobile phone users during its initial 

phase. As shown in Figure 2.1, the FL process involves four steps: 1) the central server selects 

a statistical model for training, 2) transmits the initial model to nodes, 3) nodes locally train the 

model with their data, and 4) the central server aggregates results to generate a global model 

without accessing any raw data.  

 
Figure 2.1 Traditional FL Process 

The concept of FL was introduced by Google in a pivotal paper titled "Communication-

Efficient Learning of Deep Networks from Decentralized Data," published in 2016 by Google 

AI researchers [21]. That seminal work aimed to address the critical issue of preserving raw 

data privacy while harnessing the collective power of decentralized information for machine 
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learning. The paper outlined a visionary approach wherein a large-scale distributed neural 

network model training framework was proposed. This framework enabled smartphone users 

to enjoy the benefits of advanced machine learning services without compromising the privacy 

of their local data. The key innovation is in the strategy of uploading model weights rather than 

raw data. By transmitting only the model's learned parameters, users could contribute to the 

collective intelligence without exposing sensitive information, thus striking a balance between 

personalized service experiences and data privacy. 

FL scientists, subsequently, recognized the omission of transfer learning in their method, 

leading to the development of on-device FL [22]. This version allows algorithms to be trained 

across distributed and isolated data sets with interactive subspaces. In 2017, Google focused 

on on-device FL to enhance energy efficiency during training, leading to the development of 

Horizontal Federated Learning (HFL) [23]. FL on the device involves individual mobile 

phones making personalized enhancements to the model based on user usage. A comprehensive 

plan for modifying the overall model is then formulated and applied to shared models, with the 

process repeating in a continuous loop. As shown in Figure 2.2, HFL involves the transmission 

of encrypted gradients, secure aggregation, sending back model updates, and updating models. 

This approach is particularly applicable to scenarios where diverse characteristics, such as 

mobile phone models, usage time, battery levels, and people's locations, share similar features 

but utilize different samples. These varying characteristics are considered, contributing to a 

collaborative and privacy-preserving model improvement process in HFL. 
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Figure 2.2 Architecture for a HFL System 

However, as of 2018, the European Union introduced the General Data Protection 

Regulation (GDPR), which has significant implications for data privacy [24]. Under GDPR, 

data usage must align with the user's agreement, preventing companies from utilizing data for 

purposes outside the agreed scope. While user data analysis can be employed to enhance 

product experiences, using it to train dialogue systems without explicit consent violates GDPR 

provisions. The regulation also grants users the right to be forgotten, allowing them to request 

the removal of their data from models. Such stringent data protection requirements are not 

exclusive to Europe but are also enforced in California and the USA. 

In 2019, researchers from the Hong Kong University of Science and Technology proposed 

on-device FL targeted at business applications (To B), leading to the development of Vertical 

Federated Learning (VFL) as shown in Figure 2.3. That approach addresses concerns related 

to GDPR. Unlike Google's HFL solution (To C), where the focus is on using the same data 

features for building identical models through the federated average algorithm, VFL is tailored 

for scenarios where different enterprises may have distinct data characteristics, even when 
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dealing with the same user scenario [25]. VFL employs encrypted entity alignment, ensuring 

that no data is directly exchanged between corporations A and B. Instead, only the encrypted 

models from entities A and B undergo joint training through a process involving the exchange 

of public keys, intermediate results, computation of gradients and loss, and model updates. This 

framework ensures collaborative model improvement without compromising sensitive data 

privacy. 

  
Figure 2.3 Architecture for a VFL System 

In the following research, federated transfer learning (FTL) was introduced specifically 

focusing on transferring knowledge from a source domain to a target domain in healthcare [26]. 

The subspaces within this framework exhibit interactivity, and the interactions occurring 

among these subspaces serve as a basis for effective transfer learning. Despite the absence of 

direct features and user overlap between the source and target domains, FTL manages to 

identify commonalities that can be leveraged for transfer learning. This approach highlights 

the ability to extract shared insights and knowledge across distinct domains, contributing to a 

more versatile and adaptable FL model. 

Later, the integration of FL with blockchain technology was suggested, resulting in 
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blockchain-based FL. This iteration incorporates adaptive differential privacy (DP) algorithms 

to safeguard data privacy and employs a consensus protocol based on gradient verification. 

Edge nodes uphold the blockchain to mitigate the risk of single points of failure, while smart 

devices operate FL to gather a more widespread set of clinical data. The following are the 

details of the FL development. In 2021, researchers directed their efforts toward implementing 

blockchain technology to allocate benefits within FL and data alliances [2]. That research 

specifically focuses on enhancing data security through integrating Blockchain and FL, 

emphasizing establishing trust and collaboration in sharing smart city data. As shown in Figure 

2.4, the emerging field of Blockchain-based Federated Learning (BFL) incorporates an 

adaptive DP algorithm designed to safeguard data privacy. Firstly, the host initiates publishing 

a task on the blockchain, specifically within an edge node embedded in the blockchain network. 

Subsequently, local model training occurs, wherein IoT devices contribute data to the local 

training process, generating local gradients. DP noise is added to the model, and adjustments 

are made to the model service tailored for each IoT device. Following the local training, the 

gradients are uploaded from the individual devices to the blockchain. Upon reaching the 

blockchain, the gradient undergoes verification by a committee on the edge node. Once 

successfully verified, the gradient message progresses to the beacon. Finally, a new block is 

generated and broadcast across the blockchain network, marking the completion of this 

decentralized and privacy-conscious FL process. 
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Figure 2.4 Architecture for a BFL System 

 

2.2 The Background of Fruit Waste Detection 

We examined the Indonesian mango industry as a case study to illustrate the current 

operational issues. Ali et al. designed a mini-experiment to measure the amount of wasted fruit 

in 2019. After an investigation of the mango industry, results revealed total postharvest losses 

of mangoes at different stages between harvesting and consumption (25.51%). The majority 

loss dominance percentage, was 6.91% [8] due to the lack of shelf-life information. The 

exploration of the primary industry led to the finding of one mango supplier (Anto Wijaya 

Fruit). 

The purchase of IoT devices could not solely rely on a single source of funds because 

locals usually paid with cash after selling mangoes in the supply chain exchange [3]. Increasing 

the budget for purchasing sensing devices was critical for transferring the sustainable balance 

generated by preserving mangoes before they perished. We selected the TGS 2,600 and DHT11 

sensors because of their high reliability as IoT components [27]. TGS 2,600 will reach the end 
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of its service life after 10–13 years [28]. Moreover, the DHT11 sensor provides precise 

temperature and humidity readings and ensures high reliability and long-term stability [30]. 

Apart from the cost, another key issue was the lack of sensors to detect the shelf-life of 

mangoes. Thus, the retailers had only been using the FIFO strategy to reduce mango loss. 

However, the degree of ripeness may not correlate with the arrival order. This strategy, 

therefore, risked reducing the shelf-life of some fruits. Ali investigated the market dominance 

of mango loss when using the FIFO strategy [5]. Mango failure datasets were collected between 

March and April 2017 and 2019 to examine the quality of mango cultivation in five districts: 

Rajshahi, Chapainawabgonj, Cuadanga, Meherpur, and Satkhira. It was assumed that all 

postharvest mangoes had approximately 4 weeks of shelf-life between collection and 

consumption by collectors, merchants, wholesale agents, retailers, and finally, end consumers. 

The retailer had to separate the fruits into different sizes and sell them within 2 to 3 days. 

The FIFO strategy [29] works as follows: when the quantity on sale (𝑋𝑋) is less than the 

quantity for the 1st week (𝑄𝑄1), the system displays the total profit, which is the target amount 

multiplied by the profit per unit for the 1st week (𝑋𝑋 ∗ 𝐿𝐿1). Otherwise, it moves on to the next 

week when the overall goal is to subtract a smaller amount from the 1st week's amount than 

the number in the 2nd week (𝑋𝑋–𝑄𝑄1 < 𝑄𝑄2) [30]. The following are the symbol meanings: 

𝑋𝑋: the quantity on sale 

𝐿𝐿1: the profit per unit for the 1st week 

𝑄𝑄1: the target quantity on 1st week 

𝑄𝑄2: the target quantity on 2nd week 

A recent survey reported mango losses in Indonesia. When 100% of the mangoes were 

subjected to the FIFO strategy, total mango loss due to grading and maturity issues was 6.91% 

[8], as follows: 
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• Farm level: 1% (sorting and grading), 0.95% (overripening or shriveling). 

• Wholesale level: 1.2% (overripening or shriveling), 1% (immature or unmarketable size). 

• Retailer level: 1.5% (overripening or shriveling), 0.26% (immature or unmarketable size). 

• Storage level: 1% (overripening or shriveling). 

Mango loss information was collected locally at the beginning and end stages. The timeline 

from unripe to ripe or overripe fruit during mango logistics is a missing piece of the puzzle, as 

there is neither a sensor nor a prediction throughout the logistics process [3]. It should be noted 

that even if the sensors are only deployed to diagnose the present mango status (early ripe, ripe, 

or overripe), scenario planning and high-dimensional simulation cannot be conducted without 

a strategy-making agent, which is enabled by a global forecasting model. 

The First-in-first-out (FIFO) strategy is a widely used inventory management technique 

that ensures the oldest inventory items are sold first. This strategy is particularly effective in 

industries where products have a limited shelf life, such as food and pharmaceuticals. It 

simplifies inventory tracking and reduces the complexity of inventory management systems. 

Dynamic supply chain strategies are flexible approaches that adapt to changing conditions in 

real time. These strategies leverage advanced technologies such as IoT, big data analytics, and 

AI to optimize supply chain operations dynamically.  

 

Table 2.1 Comparison of Perishable Inventory Management Methods. 

Method Limitation Model Factors 

Estimating 
Waste 

Saving 
Cost 

Multiple 
Strategies 

Collaboration 

2021 
[31] 

0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐹𝐹2 Differential     

2020 
[32] 

𝜃𝜃𝑜𝑜 < 𝜃𝜃𝑟𝑟 , 
𝑓𝑓𝑜𝑜 < 𝑓𝑓𝑟𝑟 

Exponential 
Decay 

    
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2024 
[33] 

Absence of 
Fine-Tuning 

Advantage 
Actor-
Critic 

    

Proposed Temperature 
and 

Humidity 
Range 

Aligned 
Prediction-
to-decision 

    

 As shown in Table 2.1, the current FIFO mechanism in perishable supply chain 

management limits its flexibility for minimizing waste and saving costs, utilizing FIFO 

simulation and equations. 

In [31], FIFO is assumed to be governed by the differential equation below to estimate 

inventory level vanishes in overflow warehouse due to deterioration. 

𝑊𝑊𝑂𝑂𝑂𝑂 =
𝑑𝑑∏ (𝑡𝑡)𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂

𝑂𝑂𝑂𝑂

𝑑𝑑𝑡𝑡
= �(1 − 𝛽𝛽) �(𝑡𝑡)

𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂

𝑂𝑂𝑂𝑂

�                    0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐹𝐹2 (2.1) 

Waste Percentage = �
𝑊𝑊𝑂𝑂𝑂𝑂

𝐼𝐼𝑂𝑂𝑂𝑂
� × 100 (2.2) 

where 

𝑂𝑂𝑊𝑊 is the overflow warehouse (warehouse with waste) 

∏ (𝑡𝑡)𝐹𝐹𝐹𝐹𝐹𝐹𝑂𝑂
𝑂𝑂𝑂𝑂  is inventory level at time 𝑡𝑡 in which the product has shortages 

𝑊𝑊𝑂𝑂𝑂𝑂 is waste in the overflow warehouse under the FIFO dispatching policy 

𝐼𝐼𝑂𝑂𝑂𝑂 is inventory in the overflow warehouse under the FIFO dispatching policy 

(1 − 𝛽𝛽) is the cost of deterioration in 𝑂𝑂𝑊𝑊 under the FIFO dispatching policy 

𝑡𝑡𝐹𝐹2 is the time at which the inventory level reaches zero in 𝑂𝑂𝑊𝑊 and shortages begin 

0 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐹𝐹2  is time interval (0, 𝑡𝑡𝐹𝐹2)  

In [32], the following exponential decay formula is used to define the percentage of 

deterioration:  

𝑁𝑁(𝑡𝑡) = 𝑁𝑁0𝑒𝑒−𝜃𝜃𝑡𝑡 (2.3) 
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where 𝑁𝑁(𝑡𝑡) is the remaining quantity at time 𝑡𝑡 , 𝑁𝑁0  is the initial quantity, and 𝑡𝑡  is the 

number of periods. The hyperparameters of the equation are selected as follows: 

Deterioration rate for the owner (𝜃𝜃𝑜𝑜): 0.08 

Deterioration rate for the retailer (𝜃𝜃𝑟𝑟): 0.09 

Holding cost for the owner (𝑓𝑓𝑜𝑜): 0.4 

Holding cost for the retailer (𝑓𝑓𝑟𝑟): 0.5 

Owner's Waste Percentage: 1 − 𝑒𝑒−𝜃𝜃𝑜𝑜𝑡𝑡 =  1 − 𝑒𝑒−0.08×1 ≈ 7.69% 

Retailer's Waste Percentage: 1 − 𝑒𝑒−𝜃𝜃𝑜𝑜𝑡𝑡 =  1 − 𝑒𝑒−0.09×1 ≈ 8.61% 

Combined Waste Percentage: 

Owner′s Waste Percentage +  Retailer′s Waste Percentage 
2

=
7.69% + 8.61%

2

≈ 8.15% 

In [33], the FIFO mechanism in the perishable supply chain management operates by 

prioritizing the oldest inventory for order fulfillment. The following steps outline the FIFO 

process. 

1. Demand Fulfillment: Orders are fulfilled based on the FIFO principle, where the oldest 

inventory is used first. Any demand that cannot be satisfied from the available inventory 

results in a cost, which represents the cost of unsatisfied demands. 

2. Inventory Shelf-Life Update: The remaining inventory in the retailers' warehouses is 

revised to account for product shelf-life. Items that have expired are removed from 

inventory. 

3. New Stock Arrival: New products arrive at the supplier's warehouse, prompting an update 

in inventory levels. The shelf-life countdown for these products begins immediately. 

4. Cost of Expired Products: The supplier incurs a cost for any products that expire before 

they can be sold. 
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5. Optimal Inventory Allocation: The supplier allocates inventory to each retailer to 

minimize the total cost associated with wastages and shortages across the supply chain. 

The simulation uses the Advantage Actor-Critic algorithm, which takes into the FIFO 

mechanism to optimize inventory allocation and minimize wastage. Equations used to model 

the inventory dynamics with FIFO include: 

1. Objective function 

max
𝜋𝜋∈Π

𝐸𝐸

⎣
⎢
⎢
⎢
⎢
⎡ −𝐶𝐶𝑠𝑠� � max�0,𝐷𝐷𝑡𝑡

𝑗𝑗 − 𝐼𝐼𝑡𝑡
𝑗𝑗𝜋𝜋�

𝑗𝑗∈(𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2)

𝑇𝑇

𝑡𝑡=0

                              −𝐶𝐶𝑂𝑂� � (𝐵𝐵𝑖𝑖𝑖𝑖+𝑡𝑡𝜋𝜋 )
𝑖𝑖∈(𝐷𝐷𝐷𝐷,𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2)

𝑇𝑇

𝑡𝑡=0 ⎦
⎥
⎥
⎥
⎥
⎤

 (2.4) 

where 𝐶𝐶𝐻𝐻 is the shortage cost per unit and 𝐶𝐶𝑂𝑂 is the wastage cost per unit. This function 

seeks to maximize the negative costs, effectively minimizing them by optimizing the 

policy 𝜋𝜋. 

2. Inventory constraint 

� 𝑎𝑎𝑡𝑡
𝑗𝑗𝜋𝜋

𝑗𝑗∈(𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2)

 ≤ 𝑋𝑋𝑡𝑡𝜋𝜋,∀𝑡𝑡 ∈ {1, … ,𝑇𝑇} (2.5) 

This constraint ensures that the total allocated inventory at any time 𝑡𝑡 does not exceed 

the available inventory. 

3. Fulfillment probability 

𝑝𝑝 ���min �0, 𝐼𝐼𝑡𝑡
𝑗𝑗𝜋𝜋 − 𝐷𝐷𝑡𝑡

𝑗𝑗�� − 𝐷𝐷𝑡𝑡
𝑗𝑗� = 𝐷𝐷𝑡𝑡

𝑗𝑗� ≥ 𝜀𝜀,∀𝑗𝑗 ∈ {𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2}, 𝑡𝑡 ∈ {1, … ,𝑇𝑇} (2.6) 

This ensures that the probability of fulfilling the demand meets or exceeds a predefined 

threshold 𝜖𝜖. 

4. Inventory update equations: 

𝑋𝑋𝑡𝑡+1𝜋𝜋 = 𝑋𝑋𝑡𝑡𝜋𝜋 + 𝐿𝐿𝑡𝑡 − � 𝑎𝑎𝑡𝑡
𝑗𝑗𝜋𝜋

𝑗𝑗∈(𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2)

 ,∀𝑡𝑡 ∈ {1, … ,𝑇𝑇} (2.7) 
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𝐼𝐼𝑡𝑡+1
𝑗𝑗 𝜋𝜋

= 𝐼𝐼𝑡𝑡
𝑗𝑗𝜋𝜋 + 𝑎𝑎𝑡𝑡

𝑗𝑗𝜋𝜋 − 𝐷𝐷𝑡𝑡
𝑗𝑗  ,∀𝑗𝑗 ∈ {𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2}, 𝑡𝑡 ∈ {1, … ,𝑇𝑇} (2.8) 

The equations update the inventory levels for the supplier and hospitals at each time step. 

5. Non-negativity constraint: 

𝜀𝜀,𝑎𝑎𝑡𝑡
𝑗𝑗𝜋𝜋 ≥ 0,∀𝑗𝑗 ∈ {𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2}, 𝑡𝑡 ∈ {1, … ,𝑇𝑇} (2.9) 

This ensures that allocations and the probability threshold are non-negative. 

For the above equations, the variables 

𝐷𝐷𝐶𝐶 is the supplier; 

𝐻𝐻𝐻𝐻 is the retailer (hospital); 

𝑖𝑖 is the index of all sites ∈ {𝐷𝐷𝐶𝐶,𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2}; 

𝑗𝑗 is the index of retailers ∈ {𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻2}; 

𝑘𝑘 are the age classes of the product ∈ {1, … ,𝐾𝐾}; 

𝑡𝑡 is the index of the timestep ∈ {1, … ,𝑇𝑇}; 

𝜋𝜋 is the distribution policy ∈ Π;  

𝑎𝑎𝑡𝑡
𝑗𝑗 are the actions (number of blood bags) proposed by the algorithm for site 𝑗𝑗 at 

timestep 𝑡𝑡; 

𝑎𝑎𝑡𝑡
𝑗𝑗𝜋𝜋 are the actions (number of blood bags) proposed by the algorithm for site 𝑗𝑗 at 

timestep 𝑡𝑡 under distribution policy 𝜋𝜋; 

𝐷𝐷𝑡𝑡
𝑗𝑗 is the stochastic demand of site 𝑗𝑗 at timestep 𝑡𝑡; 

𝐿𝐿𝑡𝑡 is the number of inflow blood bags at timestep 𝑡𝑡; 

𝐼𝐼𝑡𝑡
𝑗𝑗 is the inventory level of site 𝑗𝑗 at timestep 𝑡𝑡; 

𝐼𝐼𝑡𝑡
𝑗𝑗𝜋𝜋 is the inventory level of site 𝑗𝑗 at timestep 𝑡𝑡 under distribution policy 𝜋𝜋; 

𝑋𝑋𝑡𝑡𝜋𝜋 is the inventory level of the supplier at timestep 𝑡𝑡 under distribution policy 𝜋𝜋; and 

𝐵𝐵𝑖𝑖𝑖𝑖+𝑡𝑡𝜋𝜋  is the number of blood bags of age more than 𝑘𝑘 at site 𝑖𝑖 at timestep 𝑡𝑡 under 

distribution policy 𝜋𝜋.  



19 
 

Chapter 3 Minimization of Fruit Waste through Blockchain-

based Federated Learning 

3.1 Introduction 

The proposed system contributes to a potential Supply Chain 4.0 for addressing the issues 

discussed in Chapter 1. The interpretive structural modeling (ISM) method suggested in [34] 

[35] transforms the operation flow of the “Anto Wijaya Fruit” Company [3] into our design for 

process flows covering product, finance, and risk, as outlined in the following sections. 

3.1.1 Process flow of mango production  

Figure 3.1 illustrates the double-helix architecture for the process flow of mango 

production. When farmers pick mangoes, they place them into a deployed IoT device box. The 

box contains the mangoes harvested at the same time. Sensing devices can thereafter collect 

data on temperature, humidity, and odor. These discrete data are the training materials for a 

local forecasting model, the Long Short-term Memory (LSTM) model. This AI model can then 

predict mango maturity trends to update the mango information. Its parameters can be called 

or uploaded through a public smart contract, combined as a global model using decentralized 

governance techniques, and produce probabilistic patterns. While the governance is 

decentralized, mango information is transferred to insight information in the AI policy. In this 

regard, a discussion-making agent acts based on the future relational pattern. The collector can 

allocate mangoes to different retailers and dealers via AI agent discussion. The choices of the 

policy function of Least-shelf-life-first-out (LSFO) or First-in-first-out (FIFO) in a stochastic 

simulation are identified by the trained evaluation net and the target net within the Deep Q-

learning model. The intelligent agent assists the dealer and retailer in choosing which box to 

select and export to consumers. This can help keep mangoes fresh and improve the source of 
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insightful information. 

3.1.2 Financial flow of sensing devices  

This insight can potentially increase cost efficiency, reduce mango waste, and generate 

profit. Table 3.1 lists the Indonesian mango export value (𝐸𝐸𝐸𝐸) sourced from tridge.com. It 

should be considered that the cost of US$ 200 per sensor device includes all operating and 

maintenance costs for a sensor device over 10 years. Equation (3.2) evaluates the net cost 

efficiency (𝑁𝑁𝑒𝑒𝑡𝑡𝐶𝐶𝐸𝐸), which is the profit due to the reduction of mango loss, and the risk of 

decision-making caused by the AI agent to determine the yield and purchasing power of the 

IoT devices. 

𝐶𝐶𝐸𝐸 = 𝐿𝐿% − 𝑅𝑅% (3.1) 

𝑁𝑁𝑒𝑒𝑡𝑡𝐶𝐶𝐸𝐸 = 𝐶𝐶𝐸𝐸 −
𝑁𝑁(200 + 𝑥𝑥)

𝐸𝐸𝐸𝐸
 (3.2) 

where 𝐿𝐿  is the mango loss, 𝑅𝑅  denotes risk percentage as a result of the less-than-ideal 

decision to reduce mango loss, 𝑁𝑁  is the number of sensor devices, and 𝑥𝑥  denotes the 

additional cost per sensing device. 

 

Figure 3.1 Double-helix architecture based on Anto Wijaya Fruit’s (AWF) structure. 
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Figure 3.2 Double-helix architecture based on AWF’s structure. (detail) 

 

Table 3.1 Indonesian mango EV sourced at tridge.com and the maximum number of sensing 
devices (2013–2020). 

Year 𝐸𝐸𝐸𝐸 (USD) 𝐸𝐸𝐸𝐸 ∗ (𝐿𝐿 − 𝑅𝑅%) Budget for sensing devices (N sets) 

2013 7330000 503937.5 2290 

2014 8530000 586437.5 2665 

2015 19260000 1324125 6018 

2016 21150000 1454063 6609 

2017 5310000 365062.5 1659 

2018 34700000 2385625 10843 

2019 44530000 3061438 13915 

2020 82490000 5671188 25777 

 

The additional cost per sensing device 𝑥𝑥 in (3.2) can be obtained as,  
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𝑥𝑥 = 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑒𝑒 𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡 + 𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑒𝑒𝑖𝑖𝑒𝑒𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡 + 𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖𝑖𝑖𝑎𝑎𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡 +

𝑏𝑏𝑠𝑠𝑠𝑠𝑎𝑎𝑑𝑑𝑏𝑏𝑎𝑎𝑠𝑠𝑑𝑑 𝑡𝑡𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑠𝑠𝑣𝑣𝑎𝑎𝑖𝑖𝑖𝑖𝑣𝑣𝑎𝑎𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑣𝑣𝑖𝑖𝑝𝑝𝑖𝑖𝑒𝑒𝑠𝑠𝑡𝑡 𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡  

The details are as follows: 

1. Sensor storage costs, 𝐻𝐻: it is postulated that the storage size of the device is only one percent 

of the storage size of the mango. The logistics company may absorb the sensor storage cost as 

a 1% increase in storage costs. 

2. Implementation costs, 𝐼𝐼: the fruit supplier can pay a third-party logistics provider to 

implement sensor logistics. 

3. Installation costs: sensors are mounted on the surface of the fruit box plate to minimize labor 

costs associated with inserting and removing the sensors. 

4. Broadband transmission costs, 𝑇𝑇: as less detailed, data-intensive flows are required to be 

transmitted over the IoT network in the ocean, data transmission can use the original ship 

channel and the satellite communication fee can be minimized. On land, the inventory's data 

transmission method could use LoRaWAN and 5G on a decentralized wireless IoT network, 

the Helium blockchain network. Regular broadband transmission expenses are relatively cheap, 

costing US$ 0.00001 per every 24 bytes sent in a packet. Each device transmits the signal every 

minute, and their cost is approximately US$ 5, that is, six times * 24 h * 365 days * US$ 

0.00001 per transmission = US$ 0.5256 per year. 

5. Visualization equipment costs, 𝐸𝐸: sensor readings can be visualized using a web-based 

dashboard. They can also be accessed on a personal smartphone instead of using a dedicated 

display device. 

Assuming a total additional cost per sensing device (x), 𝐴𝐴, is US$ 20 for the sensor's life 

span (10 years), the total upfront cost of purchasing and operating each sensor is US$ 200 + 

US$ 20 = US$ 220. The profit recovered by this AI system is 𝐸𝐸𝐸𝐸 ∗ (𝐿𝐿% − 𝑅𝑅%), where 𝐿𝐿 =
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6.91% and 𝑅𝑅 = 0.035%. This could be used as the budget for paying the initial sensor cost. 

The maximum number of sensors that could be purchased using this profit is listed in Table 

3.1. 

In set theory, the total target cost 𝐶𝐶 is composed of various distinct cost components, 

expressed as 𝐶𝐶=𝐻𝐻∪𝐼𝐼∪𝑇𝑇∪𝐸𝐸∪𝐴𝐴. For example, each subset corresponds to a specific category 

of costs involved. The first subset, 𝐻𝐻, represents sensor storage costs, which account for 1% of 

mango storage costs. This is an opportunity cost incurred by replacing mango storage space 

with sensor storage, estimated at $120. The second subset, 𝐼𝐼, pertains to implementation and 

installation costs, such as mounting sensors on box plates, with an estimated cost of $50. The 

third subset, 𝑇𝑇, refers to broadband transmission costs, which involve data transmission and 

are calculated at $0.5256. The fourth subset, 𝐸𝐸, covers visualization costs, which include web 

dashboard equipment used for monitoring instead of dedicated displays, estimated at $30. 

Finally, 𝐴𝐴 accounts for additional operational and maintenance costs, such as unexpected 

expenses, with an example cost of $20. 

In blockchain-based AI systems, these subsets can sometimes overlap due to shared 

resources. For instance, 𝐻𝐻∩𝐼𝐼 represents costs associated with sensor placement that also impact 

storage, reflecting the dual purpose of sensors in optimizing both placement logistics and 

storage utilization. Similarly, 𝑇𝑇∩𝐸𝐸 denotes costs related to both data transfer and its 

visualization in dashboards, where resources are shared for transmitting data and presenting it 

visually through monitoring systems. By recognizing and addressing both individual cost 

subsets and their intersections, this approach ensures a comprehensive and efficient estimation 

of the total target cost 𝐶𝐶, enabling better resource allocation and cost optimization. 

3.1.3 Risk flow associated with the use of AI agents  

The risk flow in Figure 3.1 represents the effectiveness of launching AI to select policies 



24 
 

in an environment. Using an OpenAI-gym library, the system simulates mango allocation 

during the export period in a customized risk field. This library is a toolkit for reinforcement 

learning. It includes several benchmark problems that expose standard interfaces and compare 

algorithm performance [36]. The simulation system with this library can construct a scene of 

fruit logistics, such as the fruit loss process (loss at the farm level, loss due to transportation, 

loss at the wholesale level, loss during storage, loss at the retail level, loss at the consumer 

level, and loss during processing). In the simulation, the intelligent agent drives the reaction 

process. Only a small probability of mango loss may occur using the FIFO and LSFO policies, 

as shown in [4]. 

3.2 Blockchain-based AI models 

3.2.1 LSTM AI forecasting model 

The LSTM model is an artificial recurrent neural network capable of learning long-term 

order dependencies in data [37]. This LSTM model undergoes four main stages, in this order: 

preprocessing, training, testing, and evaluation. The following paragraphs explain these stages 

in detail: the LSTM unit comprises a cell, an input gate, an output gate, and a forget gate [38]. 

The cell stores values over arbitrary time intervals, while the three gates regulate the flow of 

information into and out of the cell. The process moves from the forget gate to the input gate 

and then to the output gate. 

The forget gate uses the previously mentioned hidden state and the latest input data to 

determine the essential information. The previous hidden state and the latest input data are fed 

into a neural network that uses sigmoid activation to generate a vector in which each element 

is between 0 and 1. The network is trained to consider irrelevant information as 0, whereas 

relevant information is 1. Subsequently, the values are multiplied by the previous cell state. 

This process ensures that irrelevant information is multiplied by 0 and has less influence later. 
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Next, the input gate determines the unique information that is implemented in the cell 

state after taking into account the previous hidden state and the latest input data. The tanh-

activated memory neural network generates the latest vector within a range of −1 to 1 because 

the neural network has already learned to combine the previous hidden state and the latest input 

data. After incorporating the most recent data, the generated vector indicates the extent to 

which each component of the cell state of the network should be updated. However, because 

the tanh-activated neural network does not check if it is recalling recent data, the input gate, a 

sigmoid-activated network with an output vector ranging from 0 to 1, is used as a filter to 

identify the components of the vector. Then, the output of the tanh-activated memory neural 

network is obtained by performing a point-wise multiplication with the input gate, and this 

vector is added to the cell state. 

Finally, the output gate establishes the latest hidden state based on the newly updated cell 

state, the previous hidden state, and the most recent input data. The output gate uses a sigmoid-

activated neural network, the previous hidden state, and the latest data to output a value from 

0 to 1. This procedure ensures that only essential details are stored in the latest hidden state. 

However, before this process, the cell state is passed through a tanh function to output a value 

between −1 and 1. The tanh function output is then multiplied by the output gate to receive the 

current hidden state. 

3.2.2 Immutable broadcasting blockchain framework 

The proposed smart contract broadcasts LSTM AI model parameters. Discrete mango data 

owners can upload local model parameters globally, while other people can read them. To 

design an intelligent technology policy, the developer needs scale-free reinforcement learning 

to compute the execution timing, whether launching a FIFO or LSFO method when processing 

a mango export strategy [39]. In addition, the forecasting model and the LSTM model, which 
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predicts the mango maturity trend [40], supports AI decision-making by sharing its features on 

the blockchain. 

The value of a blockchain lies in its ability to store intelligence. The smart contract 

aggregation feature allows for sharing AI models without needing middlemen. Spreading 

machine knowledge through the hive mind platform is likely to solve one of the enormous 

supply chain normalization and fruit maturity consensus problems. Just as the internet allows 

websites to spread information, smart contracts allow the broadcasting of model parameters. 

After data collection by sensors, the AI model has been trained using these datasets. 

Subsequently, the model predicts the ripeness of the 20% trend in future projections. The 

prediction uses the trained intelligence to generate a meaningful equation-free model [41] to 

measure the relative ripeness momentum. These processes allow authorized users to vote on 

forecasting model proposals on the blockchain, choosing whether to merge the old and new 

forecasting models. However, it should be noted that there is a fee for running a smart contract. 

Every time a smart contract is executed, a fee must be paid to the Ethereum Virtual Machine 

(EVM) for execution. This fee is paid to the nodes that help store, compute, execute, and 

validate smart contracts. EVM is known as the core of Ethereum, demonstrating its importance 

to the Fantom network [42] [43] (layer 1). 

Layer 1 is a blockchain architectural term that refers to a network that provides 

infrastructure or consensus on projects, such as an event-based coffee supply chain [44]. A 

virtual machine (VM) is a computer system with complete hardware functions simulated by 

software and running in a completely isolated environment. By generating a new virtual image 

of the existing operating system, the VM performs the same functions as the Windows system; 

however, it runs independently from a Windows system. As the name suggests, the EVM is 

Ethereum's VM. Notably, there are no VMs in the Bitcoin blockchain [45]. The primary 
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function of Bitcoin is to store data in a distributed manner, and we can record, verify, store, 

and replicate transaction data in this network. Ethereum is a “decentralized real-world 

computer,” and developers can also build DApps on it, implying that Ethereum not only needs 

to be able to distribute data storage but also needs to run code and conduct consensus 

communication [46] [47]. If an account wants to execute a smart contract, the transfer will be 

completed according to the smart contract, and the relevant execution rules will be recorded in 

the data to guide the contract's operation. The network nodes execute the smart contract code 

every time the described transaction occurs through the EVM. 

3.2.3 Deep Q-learning AI decision model 

An AI agent selects the best action for the batches of mangoes based on the estimated 

shelf-life or the first import's mango. The program starts by defining the parameters of Deep 

Q-learning, and thereafter defines three classes and a function. These three classes define the 

environment, neural network, and Deep Q-learning, respectively, while a function runs on the 

main program. The parameters for Deep Q-learning are as follows: 0.9 for Epsilon, 0.9 for 

Gamma, 0.01 is the learning rate in an Adam optimizer, memory capacity is 3,000, Q-Network 

iterations are 100, batch size is 32, and episodes are 1,000. The environment class selects a 

random integer between 0 and 1,200 for the shelf-life state, and 480 array shapes for the shelf-

life future projection. Then, it creates a store state from 1 to 480 to determine the reward. After 

480 steps, the environment is reset to its original parameters and returns an array from the shelf-

life state, future projection, and storage state. 

3.3 Simulation process 

This section explains how to operate simulated frameworks to predict and make decisions 

based on complete process flows. 

The state of physical entities on an information platform relies on digital twin technology. 
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Figure 3.3 shows two underripe mangoes inside an A4 paper box equipped with TGS 2,600 

and DHT11 sensors. A Raspberry Pi collects data from these two sensors. The box remained 

closed for 6 days until the odor reading rose from 3 (underripe) to 7.5 (overripe). 

    

Figure 3.3 Underripe mangoes (left), and overripe mangoes (right). 

The collected data are discrete and extensive. The machine first uses the iloc function to 

rescale the original dataset into 2,400 sampling points and process a regression method. The 

shelf-life of mangoes (from underripe to overripe) is irreversible. Because the reading includes 

the fluctuation property, it leads to an irregular shifting up and down in the shelf-life level. 

Therefore, a maximum function is added to address this issue by comparing the back-and-forth 

difference between the two frames each time. 

In the regression stage, a data frame is created for odor data. It is defined using a Gaussian 

process model [48] [49]. The likelihood and model are initialized, and the optimal model 

hyperparameter is determined. The Adam optimizer uses the gaussian likelihood parameters 

[50] and runs 40 training iterations. Following that, the model and likelihood are evaluated. 

The predictions can then be made by feeding the model through likelihood. For instance, a data 

frame and graph are created using data after regression. In the feature selection stage, 2,400 

sample points are taken from the data frame and converted into a new one. 

3.3.1. Forecasting process 

The proposed LSTM neural network has a feature size of one hidden unit, one output, and 
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one layer of LSTM to stack. A small odor value is made into a graph that represents the early 

ripeness of the fruit. The odor dataset is resized to 2,400 frames. This dataset is used to produce 

another graph that plots a portion of the original dataset. Subsequently, 80% of the data from 

the dataset is used for training, whereas 20% is used for testing. The training data are divided 

into five batches. The dataset is used in the LSTM model, which has one feature size, 16 hidden 

units, and a maximum epoch of 10,000. After the training stage, the testing stage begins by 

switching the LSTM model to the testing model. The prediction on the test dataset is made by 

setting the batch and feature sizes to 1. When the testing section is finished, it is plotted on a 

graph, and a root-mean-square deviation (RSME) is provided. Finally, the local LSTM model 

parameters broadcast their application to a public network in four steps: 

1. Upload to an EVM-compatible smart contract on the Fantom network. 

2. Interact with a global model. 

3. Group into a global model. 

4. Generate a shelf-life future projection for deep Q-Learning. 

3.3.2 Immutable AI model broadcasting process 

Several local models can be grouped into global ones through voting. In terms of the 

feature aggregator (FL), the voting system presents an EVM-compatible smart contract 

program for FL. Voting is a program that runs on the blockchain. This allows authorized voters 

to vote for proposals when they fulfill the program conditions. A solidity voting contract has 

two structures: a constructor and six functions. It also includes some lines of code that store 

the chairperson's address, the voter's address, and proposals. The following paragraphs explain 

voting contracts in detail. 

The proposed smart contract, named “model parameter,” is a collection of functions and 

LSTM model information (its state). A deployed contract resides at a specific address on the 
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Fantom network, which is an EVM-compatible blockchain. This smart contract is divided into 

two parts: the constructor and the function. Similar to several class-based object-oriented 

languages, a constructor is a special function that is executed only when a contract is created 

and is used to initialize the contract's data. A public function accepts a string argument and 

updates the “parameters” storage variable. State variables, or “parameters,” are variables whose 

values are stored permanently in the contract storage. The keyword “public” makes the variable 

available outside of the contract and creates a function that other contracts or clients can use to 

access the LSTM model parameters for simulation initiation. 

The contract has two structures: “voter” and “proposal.” In the “voter” structure, the voter 

can change their choice. To ballot the proposal, each voter has votes attributed to their unique 

address. The “proposal” structure stores the name of the proposal and the number of 

accumulated votes. These structures help store vital information about voters and proposals. 

The program has a constructor that runs once a ballot is launched. The constructor assigns 

voting rights to the chairperson. Following that, it takes the address name of a proposal in 

bytes-32 form and initializes the proposals with zero votes. Then, it can add proposals to an 

array in a voting contract. 

Forecasting and broadcasting processes facilitate the development of a general simulation 

structure. OpenAI-gym is a simulation structure package that includes three simulation 

initiation functions: (1) definition, (2) step, and (3) reset. The program begins by defining the 

parameters of a Deep Q-learning model before launching three classes and a function. The first 

step of the main program defined three classes (environment, neural network, and Deep Q-

learning). The following paragraphs explain the program in detail, as shown in Figures 3.4-3.9. 

In the internal state 𝑠𝑠𝑡𝑡, the shelf-life is determined by the odor of the fruits, which reflects the 

ripeness of the batch of samples. The Q-values from Q-Networks can then be used to select an 
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action to execute and observe the outcome. 

 

Figure 3.4 Deep Q-learning model. 

 

Figure 3.5 Simulation flow in episode 1, step 1. 
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Figure 3.6 Simulation flow in episode 1, steps 2–479. 

 
Figure 3.7 Simulation flow in episode 1, step 480. 

 
Figure 3.8 Simulation flow in episode 2, step 1. 
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Figure 3.9 Deep Q-learning with simulated forecast scenarios. 

Because the study collected 8 years of EV data, the machine used those and calculated the 

total steps for each episode, that is, (4 harvesting times + 1 delivery) × 12 months × 8 years = 

480 steps. The deep Q-learning class starts by defining a “memory counter” as zero and a “learn 

counter” as zero. The deep Q-learning class has a function known as “store trans,” which counts 

and stores a state 𝑠𝑠𝑡𝑡, an action 𝑎𝑎𝑡𝑡, a reward 𝑠𝑠𝑡𝑡, and a next state 𝑠𝑠𝑡𝑡+1 in memory 𝐷𝐷. It also 

has a function known as “choose action,” which determines whether to pick the new or old 

model. Another function in the class is the “plot” function, which charts a graph of total reward 

against episode. 

In addition to the memory counter and the choosing action, this class has another function 

known as “learn.” This function is called 1000 times before updating the target network. After 

100 episodes, the memory can then provide an experience to help select an action in the 

remaining 900 episodes of the simulation. Memory has four sections: state, action, reward, and 

next state. Within the memory capacity, the memory counter follows a step counter to select 

an action based on finding the largest action value in the observation space (shelf-life future 

projection and storage state). When the agent selects the action value in the shelf-life future 

projection, it chooses to execute the LSFO policy. Alternatively, there is an option that uses 
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the FIFO strategy after receiving an action index. The AI agent experiences each learning 

process to determine an optimal strategy. 

In every learning cycle, the learn counter follows the step counter to obtain batch memory. 

In each episode, a new data frame is created by passing the odor data frame through the reset 

function of Deep Q-learning. When the step counter is zero, the “main” function also creates 

memory slots to concatenate the data from the array created by the Deep Q-learning class. The 

memory slot is then passed to the “choose action” function for digit-field construction. 

Specifically, the calculation of the Target Q (𝑄𝑄𝑇𝑇) and Predicted Q (𝑄𝑄𝑃𝑃) values on Figure 

3.4 involves several sequential steps. At each time step (𝑡𝑡), the AI agent observes the current 

state and selects an action using an 𝜀𝜀-greedy policy: 𝑎𝑎𝑡𝑡 = � 𝑠𝑠𝑎𝑎𝑠𝑠𝑑𝑑𝑠𝑠𝑖𝑖 𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠,𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝜀𝜀
𝑎𝑎𝑠𝑠𝑠𝑠 𝑖𝑖𝑎𝑎𝑥𝑥𝑎𝑎′𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎′),𝑤𝑤𝑖𝑖𝑡𝑡ℎ 1 − 𝜀𝜀 . 

The Target Q (𝑄𝑄𝑇𝑇 ) value is calculated by combining the immediate reward (𝑠𝑠𝑡𝑡 ) and the 

discounted future reward for the next state (𝑠𝑠𝑡𝑡+1). The discounted future reward is computed 

by evaluating the Q values for all possible actions (𝑎𝑎′) in the next state using the Target Q 

Network with weights ( 𝜃𝜃− ). The maximum Q value among these predictions 

(max
𝑎𝑎′

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎′;𝜃𝜃−)) is selected and scaled by the discount factor (𝛾𝛾). The formula for 𝑄𝑄𝑇𝑇 is 

𝑄𝑄𝑇𝑇 = 𝑠𝑠𝑡𝑡 + 𝛾𝛾 ∙ max
𝑎𝑎′

𝑄𝑄(𝑠𝑠𝑡𝑡+1,𝑎𝑎′;𝜃𝜃−). The Predicted Q (𝑄𝑄𝑃𝑃) value is the Q value predicted by the 

Main Q Network with weights (𝜃𝜃) for the current state-action pair (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡). Using the current 

network's weights, the predicted Q value is calculated as 𝑄𝑄𝑃𝑃 = 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)  in simplified 

notation. The difference between the Target Q and Predicted Q values drives the training of the 

Main Q Network. The loss function quantifies this difference using the Mean Squared Error 

(MSE): 𝐿𝐿(𝜃𝜃) = 1
𝑁𝑁
∑ (𝑄𝑄𝑇𝑇 − 𝑄𝑄𝑃𝑃)𝑖𝑖2𝑁𝑁
𝑖𝑖=1 , where 𝑁𝑁 is the batch size. Using gradient descent, the 

weights of the Main Q Network are updated to minimize the loss: 𝜃𝜃 ← 𝜃𝜃 − 𝛼𝛼 ∙ ∇𝜃𝜃𝐿𝐿(𝜃𝜃), where 

𝛼𝛼 is the learning rate. This process iteratively improves the Main Q Network, ensuring its 
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predictions for 𝑄𝑄𝑃𝑃 closely approximate 𝑄𝑄𝑇𝑇. 

The digit-field construction method is dependent on the prepared model parameters and 

logic. Figures 3.5 to 3.8 illustrate the AI agent being trained inside the digit field after having 

processed 1,000 episodes. In the first episode and first step, there are six segments in the 

simulation flow: initiation, reset, select action, step, store transactions, and learn. In the 

simulation environment, the initiation program sets up the maximum number of sensors, the 

seasonality month, the export year, the boxes' ID state, and the mango shelf-life for mango 

information. The evaluation net, target net, memory, memory counter, learn counter, Adam 

optimizer, mean-square error loss, and output figures are all machine learning settings that are 

part of the AI initiation program. In the simulation environment, the reset program resets the 

box ID state, fruit shelf-life, and number of sensors. The AI agent can then obtain the 

information necessary to select an action (FIFO or LSFO) and execute it in the simulation step 

program. The export-harvest ratio per month was assumed to be 1:4 for mango box allocation 

in the warehouse. Before making a decision, the ripeness sampling position of the received 

boxes was increased by 200 steps to simulate the ripeness speed while maintaining the testing 

sampling position for the forecasting model to predict mango shelf-life. The program 

eliminates the box ID to simulate export scenarios. The AI agent can then memorize rewards 

based on the mango shelf-life of exported boxes and store transactions in its memory to learn 

from the experience gained in this step. 

The AI agent only processes two segments between two and 479 steps in the first episode: 

(1) select an action to respond to the step function, and (2) store transactions from the step 

function. At the first episode and 480th step, the simulation process is the same as it was at the 

first episode and first step, and the average reward, risk, and reward are plotted. In the second 

episode and first step, the simulation environment needs to be reset before the AI agent's 
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learning process can continue. 

Figure 3.9 describes the Deep Q model, which integrates deep learning and Q-learning 

[51], and selects a mini-batch uniformly at random to update the Q-network parameter θ. The 

model can thereafter operate two neural networks to map the input state to action and Q-value 

pairs, using the same architecture but different weights. The two networks are the Q and the 

target networks. The target network is identical to the Q network, whereas the Q network is 

trained to produce the optimal state-action value. In an arbitrary number of steps, the network 

function replicates the weights from the Q-network to the target network. In addition to the two 

neural networks, it also has a component known as “Experience Replay.” 

Experience Replay interacts with the environment, which gathers a training sample saved 

as training data. The function is performed by selecting an ε-greedy action from the current 

state and executing it in the environment that receives a reward and the next state. It can store 

the observations as a sample of the training data. 

In the following step, the Q and target networks are used to predict a projected Q value 

and a target Q value, respectively. The function is executed by taking a random group of 

samples from the training set and inputting them into the target and Q networks. The Q network 

predicts the Q value for the action by combining the current state and action of each data sample 

to obtain the predicted Q value, whereas the target network predicts the target Q value by taking 

the next state from each data sample to compute the best Q value of all possible actions that 

could have been taken from the state. The target Q value then becomes the target network 

output plus the reward. 

After defining the predicted Q value and the target Q value, the difference between the two 

is used to determine the mean squared error loss. In the loss function, gradient descent can then 

be used to back-propagate the loss and update the parameter θ of the Q network. The gradient 
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descent concludes the processing for time step t. However, no loss or back-propagation is 

computed for the target network because it is not trained. In the next time step, t + 1, the 

processing is repeated, which allows the Q network to learn to predict more accurate Q values, 

while the target Q values are temporarily maintained. After an arbitrary number of steps, the 

weights of the Q network are copied to the target network, assisting the target network in 

receiving the improved weights to predict more accurate Q values. The processing can then 

resume as before. 

3.4 Simulation outcomes 

The fundamental idea behind the fruit supply chain simulation is to estimate the fidelity of 

mango maturity loss. Because of environmental constraints, such as temperature and humidity, 

the outcome of the data-driven experiment can be limited. The odor pattern is valid only when 

the temperature and humidity are within the recorded data boundary. Temperature data were 

subjected to 40 iterations. Throughout these, the temperature data experienced a decrease in 

loss from 2.484 to 1.721, an increase in the length scale from 0.693 to 1.384, and an increase 

in noise from 0.693 to 1.541, as shown in Figure 3.10. Temperature data also showed maximum 

and minimum values of 30.1385° and 23.2405°, respectively. The humidity data were also 

iterated 40 times while experiencing a decrease in loss from 11.106 to 2.766, a decrease in 

length scale from 0.693 to 0.152, and an increase in noise from 0.693 to 1.939, with maximum 

and minimum values of 84.6541 and 54.6122%, respectively, as shown in Figure 3.10. 
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Figure 3.10 Temperature (left) and humidity (right) boundaries for the forecasting 

model. 

In Figures 3.11 to 3.22, the shelf-life future projection uses 12 different sample dataset 

sizes ranging from 200 to 2,400 frames, with an increase of 200 frames each time. The shelf-

life future projection maintained a loss of 1e-5. All projections contained 80% of the data for 

training and 20% for testing. In Table 3.2, the readings for the epoch have maximum, minimum, 

and average values of 7,698, 3,528, and 5,284.667, respectively. The test scores of the root 

mean square equation (RMSE) have maximum, minimum, and average values of 0.35, 0.15, 

and 0.2367, respectively. In the 200, 400, and 800 datasets, the graph reached a plateau at 

approximately four readings. In the 1,000 datasets, the graph reached a plateau at 

approximately 4.3 readings. The graph reaches a plateau at approximately five readings for the 

1,200, 1,400, and 1,600 datasets. In the 1,800, 2,000, and 2,200 datasets, the graph reached a 

plateau at approximately six readings. In the 2,400 datasets, the graph reached a plateau at 

approximately seven readings. 
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Figure 3.11 Total of 200 odor-sampling points in the forecasting model. 

 

Figure 3.12 Total of 400 odor-sampling points in the forecasting model. 

 

Figure 3.13 Total of 600 odor-sampling points in the forecasting model. 

 



40 
 

Figure 3.14 Total of 800 odor-sampling points in the forecasting model. 

 

Figure 3.15 Total of 1,000 odor-sampling points in the forecasting model. 

 

Figure 3.16 Total of 1,200 odor-sampling points in the forecasting model. 

 

Figure 3.17 Total of 1,400 odor-sampling points in the forecasting model. 



41 
 

 

Figure 3.18 Total of 1,600 odor-sampling points in the forecasting model. 

 

Figure 3.19 Total of 1,800 odor-sampling points in the forecasting model. 

 

Figure 3.20 Total of 2,000 odor sampling points in the forecasting model. 

 



42 
 

Figure 3.21 Total of 2,200 odor sampling points in the forecasting model. 

 

Figure 3.22 Total of 2,400 odor-sampling points in the forecasting model. 

 

Table 3.2 Test score RMSE and epoch for forecasting. 

The data points from the beginning to point N maintains loss at 1e-5 

N Epoch Test RMSE scores 

200 4153 0.25 

400 6368 0.2 

600 6863 0.22 

800 6155 0.17 

1000 4885 0.15 

1200 4250 0.23 

1400 7698 0.21 

1600 5619 0.21 

1800 3775 0.21 

2000 5310 0.3 

2200 4812 0.35 

2400 3528 0.34 
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The cost-efficiency of purchasing IoT devices is based on data from the past 8 years (2013–

2020). Risk data were collected after processing 1,000 episodes. When the forecasted odor was 

greater than 6.5, implying that the mango inside the box was overripe, the reward was counted 

as 0. The ultimate reinforcement model reward was then generated. 

The Deep Q-learning model program aims to output the distribution of selecting FIFO and 

LSFO policies, such that mango ripeness can maintain freshness starting from seven episodes. 

Figure 3.23 shows the average rewards for readings ranging from 3 to 6.5. This method can 

ideally reduce the loss from 6.91 to 0%. The reward, on the other hand, is sampled in the last 

step of each episode, resulting in five overripe signals within a 1,000-time window. The 

simulated output concluded that the simulated loss improvement was adjusted from 6.91% 

(loss percentage, 𝐿𝐿%) to 0.035% (risk percentage, 𝑅𝑅%), as expressed in equation 2:6.91% × 

5/1000 = 0.035% [5]. 

 

Figure 3.23 Agent's average reward at 30 (left) and 1,000 episodes (right). 

The reference-based mango market has 93.09% market dominance, 100% FIFO strategy, 

and 6.91% of mangoes lost owing to an unknown shelf-life. However, a simulated policy 

coverage is proposed in which 85.21% of the market uses the FIFO strategy while 14.79% uses 

the LSFO strategy. 

These strategies had a tolerance of approximately 8% in terms of scene construction 
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fidelity. This LSFO policy would also require 100% of the sensors to be used for the LSFO 

strategy, whereas no sensors would be required for the FIFO strategy. A total of 100% of the 

sensors indicate the proper number of sensors, which is equal to the number of harvesting times 

according to fractal theory. 

3.5 Summary 

An innovative feature of the proposed FL method is that it allows scene communication 

and generates standards. The predictive model with an FL network adds weight to public 

ledgers, which have more frequently voted for updates to the mathematical model. These highly 

connected ledgers, which belong to the data contributors, provide a solid consensus on the 

ability to predict fruit lifespan trends. This method assigns an internal reinforcement learning 

model to each ledger, and the percentage of adopted strategies can cover the existing market 

share of the problem to reflect the positive correlation of jointly simulating the decision-making 

environment under the same cornerstone. This interaction generates a highly influential model 

using blockchain technology. 

The proposed prototype is based on blockchain technology to accommodate the features 

of decentralized governance and immutability and to align with the general trend of supply 

chain management in driving toward deploying distributed databases. The advantage of such 

an event-driven system architecture is that it involves more stakeholders at different stages of 

the process. With such decentralized governance, there is no unified authority in the system. 

Individual players cannot dominate or manipulate operations. In addition, scene applications 

provide a more flexible and scalable method for users to establish forecasting norms without 

middlemen. Using blockchain technology, critical parameters are stored in a public ledger. As 

the updated parameters are timestamped, they cannot be tempered by hackers. This implies that 

every user can read the data but cannot alter or reverse it. These records are permanently stored 
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on the computers of the individual nodes. One critical feature in the development of AI policy 

is that the scene feature library is closely related to the scene consensus applied to the backbone 

technology of the double helix system. Finally, it produces scenarios that facilitate risk 

minimization and cost reduction of IoT devices used in the supply chain to derive a global 

optimal policy with the support of AI insight. 

There are several potential directions for future development in blockchain-based 

federated learning. Some possible areas of focus include the following: 

• Improve the efficiency and scalability of federated learning systems so that the systems can 

handle larger and more complex datasets. 

• Investigate blockchain technology to enable new forms of decentralized AI model sharing 

and collaboration, such as creating “AI model marketplaces” where organizations can buy and 

sell access to anonymize the AI model via smart contracts. 

• Research ways to incentivize participation in federated learning systems, such as using digital 

currency-based rewards or other financial incentives. 
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Chapter 4 Conclusion 

In this thesis, a novel system for fruit waste prediction based on blockchain-based 

Federated Learning (FL) with Smart Contract is proposed. The proposed system can contribute 

to the fruit logistics industry through more accurate estimation of shelf-life and better 

recommendations on the delivery sequence of product batches to their destinations. Mango 

delivery was chosen in this thesis to demonstrate the application of the method. Mangoes are 

highly sensitive to various environmental conditions. If the mangoes are delivered to the 

retailers within the right period of time, it will help increase the sales of the retailer and, thus, 

the returns of the growers. The proposed system obtains mangoes’ ripeness information and 

makes logistics decisions using AI agents so that a maximum number of fruits are delivered to 

the destinations within their expected shelf-life. 

Developing a prediction AI model for destination selection requires a large amount of 

training data. Rather than from a single source, it is better to collect the data from different 

suppliers but it then gives rise to security problems, update difficulties, and the risk of node 

failure. Therefore, federated learning (FL) is used in this study. Besides, to eliminate the 

problem of requiring a centralized permission server for FL, a serverless approach, which is 

dubbed the DGAP framework, is proposed in this study. The proposed DGAP framework for 

fruit waste reduction is based on blockchain-based Federated Learning (FL) with Smart 

Contracts. Smart contracts are located at a specific address on an EVM-compatible blockchain. 

They consist of two main components: the constructor and the function. The constructor is a 

unique function that executes a single time during the contract's deployment, serving to 

initialize its data. Within the contract, a public function accepts a string argument and modifies 

the "parameters" storage variable. These state variables are persistently retained within the 

contract's storage. By using the "public" keyword, the variable is made accessible externally, 
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enabling other contracts or clients to access and retrieve the prediction model parameters. The 

smart-contract-based FL algorithm used in this thesis involves local model training, 

asynchronous aggregation, and global model updates. Each farmer trains a local model on the 

local machines. The prediction model for farmers is a suitable neural network for forecasting 

fruit ripeness and shelf life. After local training, the model updates are sent to an aggregator. 

Aggregation combines these updates to form a global model. The aggregated model is 

redistributed to all nodes for further training. This iterative process continues until the model 

converges. Convergence is assessed depending on predefined metrics such as accuracy.  

As mentioned above, the prediction model for mangoes’ shelf-life estimation leverages AI 

agent-driven decision-making algorithms to improve overall accuracy. Mangoes can be 

effectively stored for 2-3 weeks at 12-13°C through refrigeration [55]; however, the absence 

of shelf-life categorization in the training model leads to a reduced storage period. Therefore, 

overall prediction-based reinforcement learning is suitable for solving chain effects from 

shorter storage duration by training with the simultaneous ripening of different fruit boxes 

when exporting fruit. The study gathered 8 years of expert value data, enabling the machine to 

calculate the total steps for each episode: (4 harvesting times + 1 delivery) × 12 months × 8 

years = 480 steps. By utilizing expert value data from Tridge.com, stakeholders can perform 

detailed trend analyses, revealing shifts in global demand and supply chains. For instance, such 

data can highlight seasonal pricing fluctuations or regional production changes. The historical 

scope of the data enables predictive modeling, helping users anticipate future market behaviors 

based on past trends. Following 100 episodes, the memory becomes capable of offering 

experiences that guide action selection for the next 900 episodes of the simulation. Memory is 

structured into four key components: state, action, reward, and next state. Within its limits, the 

memory counter synchronizes with the step counter to choose actions by pinpointing the 
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highest action value within the observation space, encompassing shelf-life projections and 

storage conditions. When the agent identifies an action value associated with shelf-life 

projections, it decides to apply the LSFO policy. Alternatively, the agent may choose the FIFO 

strategy based on the received action index. As the AI agent progresses through each learning 

cycle, it continually hones its approach to discover the most effective strategy. As a result, the 

proposed system achieves a significant reduction in mango loss, decreasing from 6.91% to 

0.035%, as indicated in the simulation outcome. It demonstrates the effectiveness of the 

proposed system. 

While the proposed DGAP framework is effective, it is constrained to adjusting future 

mango shelf-life only within the temperature range of 23.24°C to 30.13°C and humidity levels 

between 54.61% and 84.65%. Further research is needed to extend the system to more flexible 

settings. Besides, research into ways to incentivize participation in FL systems is ongoing, with 

potential solutions including digital currency-based rewards and other financial incentives. 

This will encourage broader adoption and contribution to the federated learning framework. 

Future development of blockchain-based federated learning includes exploring decentralized 

AI model marketplaces and devising financial incentives to encourage participation. 

Integrating these advancements will contribute to the evolution of a sustainable collaborative 

AI ecosystem. 

Future work will focus on enhancing the forecasting-driven simulation environment to 

model various aspects of supply chain operations, enabling AI agents to navigate complex 

networks. The hybrid agents’ system will optimize the allocation and logistics of real-world 

assets for maximum efficiency and cost reduction. The supply chain protocol will be integrated 

to model interactions between stakeholders such as farmers, investors, and institutional actors 

within the context of tokenized agricultural commodities. AI-to-AI interactions will allow 
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agents to collaborate on optimizing supply chain operations and executing transactions, 

including crop production, storage, transportation, and commodity trading. Agents will aim to 

maximize yield, minimize waste, and mitigate risks through interactions with simulated wallets 

and tokenized assets. Smart contract functionalities will automate and enforce agreements and 

transactions, with AI agents verifying compliance and facilitating secure transactions. AI 

agents will also explore investment opportunities in the tokenized agricultural commodities 

market, using insights from the supply chain protocol to assess risk-return profiles, diversify 

portfolios, and hedge against market volatility. Performance metrics such as return on 

investment, portfolio diversification, and risk management will be used to evaluate the 

effectiveness of these AI-driven financial strategies.  

Another possible future work is to develop a Proactive Settlement Layer (PSL). This layer 

will enhance the capability of deep learning models to identify the relationship between 

prediction and value within a settlement layer. This new layer addresses a gap in the Arweave 

AO ecosystem, which focuses on on-chain storage and compute scaling but lacks features for 

autonomous deep learning. An "Imaginary Layer" will abstract value from data by tokenizing 

factors like food ripeness and systematic costs, with outputs including sustainable value 

estimation. The "Internet of Value" block will innovate by having sensors function as nodes in 

a value network through smart contracts, with sensors' values collectively correlated with their 

sensitivity and forming liquidity pools to transform prediction utility into value signals. AI 

agents will interact with this system, moving towards greater automation and efficiency in 

supply chain services, representing a shift from human-centric to machine-driven processes.  
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