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Abstract 

In densely populated urban environments, the complex network of buried objects, such 

as pipelines and cables, is indispensable to the daily functioning of the city, supporting 

everything from basic water supply and waste management to sophisticated 

communication and power distribution systems. The precision in locating and 

maintaining these hidden assets is crucial to prevent costly disruptions and facilitate 

urban planning and development. As a result, efficient and accurate methods for 

detecting underground structures are essential for minimizing the risk of damage during 

construction activities and for the timely repair of aging infrastructure. Ground 

Penetrating Radar (GPR) stands out as an indispensable technology in this field due to 

its ability to provide detailed insights into the subsurface landscape without the need 

for physical excavation. Utilizing high-frequency electromagnetic waves, GPR scans 

the underground to create an image of the subsurface features, reflecting variations in 

material properties. This technology is particularly effective for identifying the depth 

and position of buried utilities, assessing their condition, and detecting anomalies such 

as voids or leaks. Its capability to operate across various soil types and to detect non-

metallic as well as metallic objects expands its utility, making GPR an essential tool in 

the toolkit of urban infrastructure management. 

A critical aspect of GPR analysis is the interpretation of hyperbolic reflections, which 

occur when electromagnetic waves are reflected from cylindrical objects like pipes and 

cables. The precise analysis of these hyperbolic patterns, through a process known as 

hyperbolic fitting, is essential for accurately determining the location, depth, and 

material characteristics of subsurface utilities. Hyperbolic fitting involves adjusting 

mathematical models to match the curved reflections observed in GPR data, allowing 

for the estimation of key subsurface parameters. Despite its capabilities, the application 

of GPR faces limitations due to the absence of unified, quantitative hyperbolic fitting 

models that can adapt to the varied and complex conditions of urban subsurface 

environments. The prevalent assumptions of perpendicular survey lines and 
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homogenous media do not reflect the real-world complexities, leading to inaccuracies 

in data interpretation and necessitating advanced methodologies to handle non-ideal 

conditions and incomplete data effectively. This research has advanced hyperbolic 

fitting techniques for GPR applications, addressing core challenges and expanding the 

method's utility in complex environments. By incorporating global optimization 

algorithms and introducing novel methods such as angle-correction and depth-weighted 

velocity corrections, the thesis has enhanced the accuracy and adaptability of GPR for 

detecting and analyzing subsurface structures under varied conditions. Furthermore, it 

has established robust methods for assessing and managing uncertainties in GPR data, 

effectively bridging the gap between theoretical advancements and practical 

implementation in urban infrastructure management and archaeological assessments. 

This thesis contributed to the GPR research and engineering/surveying community in 

the following four facets imminently. Firstly, it undertakes a rigorous evaluation of 

various hyperbolic fitting models, developing strategic recommendations for model 

selection that adapt to changes in target characteristics such as radius and antenna 

separation, and demonstrating how variations in subsurface conditions affect GPR data 

interpretation. Secondly, it introduces angle-corrected hyperbolic fitting models that 

incorporate pipeline orientation, significantly improving the precision of parameter 

estimations and extending GPR applicability through validated simulation and field 

experiments. Thirdly, the study develops a depth-weighted velocity correction 

algorithm that refines velocity estimations in layered media, addressing the 

inaccuracies caused by non-homogeneous underground environments. This algorithm 

has been proven through extensive numerical and laboratory tests to enhance the 

accuracy of subsurface evaluations. Lastly, the research investigates the impact of 

hyperbolic data integrity on fitting accuracy, revealing robustness against data 

alterations and providing empirical insights that guide the handling of incomplete or 

sparse GPR data. Collectively, this study advances GPR from a basic detection tool to 

a measurement instrument capable of providing precise measurements in diverse 
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environmental conditions, enhancing subsurface mapping for archaeological research 

and civil engineering. 
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1. Chapter 1: Introduction:  

1.1. Background 

The underground infrastructure in major urban areas, such as Hong Kong, is 

characterized by a high density of essential utilities, including water supply lines (Chan 

et al., 2020; Chen, 2001; Yue and Tang, 2011), sewer systems (Liang et al., 2019a; 

Liang et al., 2019b), telecommunications cables (Pitt et al., 1999), and electrical 

conduits (Wan et al., 2009). These utilities are critical for the operation of the city, 

ensuring the provision of fundamental services and the overall well-being of its 

inhabitants. Accurate detection and maintenance of these underground networks are 

paramount to prevent disruptions and hazards (Ellis, 1998; Wallace and Ng, 2016). 

Rapid urbanization has led to a complex network of underground utilities where old 

and new infrastructures intertwine, posing significant challenges for urban management. 

Inaccurate mapping and unplanned excavations can result in severe consequences, such 

as water supply disruptions (Chan and Ho, 2019), gas leaks (Guo et al., 2004), and 

telecommunication failures (Tong, 2013), causing substantial economic losses and 

posing risks to public safety. Effective management and maintenance of these 

underground systems are crucial to mitigate urban hazards like land subsidence, 

infrastructure collapse, and flooding. Therefore, accurate estimation of pipe locations 

and the evaluation of their condition are essential.  

The positioning of underground pipelines involves determining both their ground and 

underground locations. The three-dimensional positioning (𝑥𝑥, 𝑦𝑦, 𝐷𝐷) of an underground 

utility consists of horizontal positioning (𝑥𝑥, 𝑦𝑦) and vertical depth (𝐷𝐷) estimation. 

Ground locations can be accurately established using mature surveying methods such 

as total stations, GPS systems, remote sensing, and LiDAR, all of which require a clear 

line of sight between the survey equipment and the target. However, for underground 

pipelines buried within opaque materials like soil, silt, and concrete, determining the 

vertical depth (𝐷𝐷) is more complex as the subjects are out of sight. Methods for locating 

underground pipelines can be divided into destructive and non-destructive approaches. 
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Destructive methods, such as excavation, are invasive, time-consuming, costly, and 

disruptive to urban infrastructure (Forth, 2004). Non-destructive methods, such as using 

a pipe cable locator (PCL) (Kijima and Hattori, 2016), provide a less invasive 

alternative for detecting metallic utilities or those with tracing wires, but these methods 

fall short in EM interference and locating non-metallic underground utilities. The 

complexities and limitations of these techniques in accurately locating and assessing 

the condition of underground utilities necessitate further exploration of advanced non-

destructive methods. 

Ground Penetrating Radar (GPR) offers a powerful non-invasive and non-destructive 

method for surveying and mapping underground utilities (Daniels, 2004), providing an 

alternative to more invasive techniques such as excavation. A typical GPR system 

consists of an antenna, a control unit, and a display monitor (Jol, 2008). The antenna 

emits electromagnetic (EM) wave signals that penetrate the ground, traveling through 

various subsurface materials and reflecting off objects with significant dielectric 

contrasts relative to the surrounding medium. These reflected signals are captured by 

the receiver in the antenna. The control unit processes these signals by sampling and 

digitizing the received analog reflections. The system then registers the strength of these 

reflections at various time intervals, which are used to reconstruct the subsurface 

images known as radargrams. GPR's ability to detect and image subsurface features 

without disturbing the ground makes it invaluable for a variety of applications, from 

locating small rebars in concrete and detecting underground utilities to reconstructing 

buried stratigraphy and uncovering archaeological remains (Abueladas and Akawwi, 

2020; Arosio et al., 2012; Aziz et al., 2016; Booth and Pringle, 2016). Its high resolution, 

effective data acquisition, and sensitivity to material properties have made GPR a 

popular choice among the available non-destructive testing methods. 

In GPR detection, reflection signals can be categorized into layer reflections and 

hyperbolic reflections (Ding et al., 2021). Layer reflections occur when EM waves 

encounter stratified subsurface materials, while hyperbolic reflections are formed when 

waves are reflected from cylindrical objects such as pipes (Xie et al., 2022; Xie et al., 
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2018). Hyperbolic fitting plays a crucial role in interpreting these reflections to 

accurately determine the location and properties of underground objects. This technique 

involves the mathematical modeling of the hyperbolic shape of the reflection in the 

radargram to estimate the depth and material characteristics of the target. The precision 

of hyperbolic fitting is fundamental for reliable subsurface mapping and utility 

detection (Cui et al., 2018; Jafrasteh and Fathianpour, 2017; Jaufer et al., 2022; Xie et 

al., 2021b; Zhang et al., 2016). A typical assumption in GPR measurements is that the 

survey lines are perpendicular to the linear and cylindrical objects, which results in 

symmetrical hyperbolic reflections (Dou et al., 2016; Lai et al., 2016b; Tanikawa et al., 

2013; Xie et al., 2018). However, if the angle between the survey lines and the pipelines 

deviates from 90°, the shape of the hyperbolic reflections alters, complicating the 

interpretation. Additionally, there is an underlying assumption that the detected 

medium is homogenous, which is often not the case in real-world scenarios (Sagnard, 

2017; Sagnard and Tarel, 2016; Wunderlich et al., 2022; Xie et al., 2021a). 

The depth of buried objects and EM wave velocity can be estimated by fitting 

hyperbolic data (Al-Nuaimy et al., 2000; Shihab and Al-Nuaimy, 2005). This involves 

evaluating the GPR wave propagation velocity in the host material and measuring the 

two-way travel time (TTT) of the signal at the apex of the hyperbolic reflection. The 

depth of the target (D) can be calculated using the equation: 

 tD v *
2

=   (1.1) 

where v is the GPR wave propagation velocity and t is the TTT. The model of the GPR 

wave 'ray path' illustrates that when the antenna is not perpendicular to the pipe 

alignment, the TTT increases, altering the shape of the hyperbolic reflection observed 

in the radargram. This hyperbolic reflection provides the necessary information to 

locate underground utilities or any buried cylindrical objects. 

Despite the proven efficacy of GPR in subsurface surveys, several significant research 

gaps in hyperbolic fitting methods still hinder its broader application, particularly in 
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complex urban settings. First, current models lack a unified, quantitative framework for 

evaluation, making it challenging to select the most effective method for specific 

conditions, and thus limiting the precision and reliability of GPR across different 

scenarios. Second, the conventional assumption that survey lines are perpendicular to 

pipelines often does not hold true, necessitating innovative methods to accurately 

account for non-ideal angles frequently encountered in real-world applications. Third, 

GPR typically assumes that the underground medium is homogeneous; however, most 

subsurface environments are heterogeneous and layered, which can lead to inaccuracies 

in estimating the velocity and depth of buried objects. This discrepancy necessitates the 

development of more sophisticated hyperbolic fitting models that can adapt to varying 

subsurface conditions. Fourth, factors such as environmental noise, dense utility 

networks, and signal attenuation often result in incomplete GPR data, introducing 

significant uncertainties in parameter estimation. These four challenges underscore the 

need for robust hyperbolic fitting models that can handle incomplete data effectively 

and provide reliable interpretations. Addressing these gaps under a rigorous physical 

and mathematical approach is crucial for enhancing the reliability, accuracy, and 

usability of GPR in complex subsurface environments, thereby improving safety and 

planning in urban infrastructure management. 

Having introduced the fundamental role of GPR in non-destructive underground utility 

surveying, the structure of this thesis will be outlined next. This thesis is divided into 

five stages as detailed below. 

Following a general introduction to the principles and application of GPR in 

underground utility detection (stage 1, Chapter 2), in stage 2 (Chapter 3), an extensive 

comparative analysis of two hyperbolic and three non-hyperbolic fitting models is 

presented and formulated as a common optimization problem. A value of cost function, 

the C-value, is introduced to quantitatively evaluate the performance of these models 

under varying conditions such as antenna separation, target radius, burial depth, and the 

relative permittivity of the host media. Practical insights and recommendations for 
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model selection are provided, aimed at enhancing the precision and reliability of both 

hyperbolic and non-hyperbolic fitting in various GPR studies. 

In stage 3 (Chapter 4), a novel method that incorporates an angle correction index into 

the classical hyperbolic fitting model is developed to estimate the orientation and burial 

depth of pipes, as well as wave velocity, from the hyperbolic patterns observed in GPR 

data. This method, which is solved using a hybrid optimization approach combining the 

Multi-Verse Optimizer (MVO) and Gradient Descent (GD) algorithms, validates two 

distinct fitting models through numerical simulation and field experiments. The study 

also evaluates the impact of varying pipe radius and burial depth on the accuracy of 

parameter estimation at different pipe orientations. This stage offers a comprehensive 

framework for accurate and efficient parameter estimation, serving as a valuable 

reference for enhancing data quality in future GPR-based investigations. 

Stage 4 (Chapter 5) introduces a depth-weighted velocity correction algorithm designed 

to improve velocity estimation within layered media. The algorithm adapts to two 

hyperbolic models based on the availability of target radius and antenna separation 

information, and its efficacy has been validated through extensive numerical and 

laboratory experiments. This stage significantly enhances the accuracy of wave velocity 

estimations, which is crucial for subsurface utility detection beneath complex overlays 

such as asphalt pavements and tunnel linings, as well as in air-coupled radar 

applications for extraterrestrial exploration. 

In the final stage, stage 5 (Chapter 6), the impact of hyperbolic integrity on the accuracy 

of GPR fitting methods is investigated. It explores the impact of incomplete data on the 

accuracy of hyperbolic fitting, employing robust statistical methods to mitigate 

uncertainties. This stage employs two hyperbolic models to establish optimization 

problems for fitting hyperbolic data, which were deliberately subjected to two types of 

alterations: uniform point deletion and biased point removal. Utilizing statistical 

measures like mean value, standard deviation, and R-squared, a quantitative analysis of 

the uncertainties introduced by these alterations is conducted. The findings offer 
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insights into GPR hyperbolic fitting under varied environmental and measurement 

conditions, contributing to the field's understanding of how burial depth, relative 

permittivity, and target radius influence the uncertainty associated with hyperbolic 

integrity. 

In summary, this research advances the field of GPR by enhancing hyperbolic fitting 

techniques for the detection and mapping of linear and cylindrical subjects. The thesis 

systematically progresses from analyzing various hyperbolic and non-hyperbolic fitting 

models to addressing practical challenges in real-world GPR applications. The 

improvements in GPR data processing and analysis presented in this thesis not only 

enhance the precision of underground utility detection but also pave the way for their 

broader application in complex urban environments. 

1.2. Research Objectives and Methodology 

1.2.1. Research Objectives 

As outlined in Chapter 1.1, this research aims to enhance the accuracy and reliability 

of hyperbolic fitting techniques in GPR for detecting underground utilities. The 

objectives of this research are designed to address specific challenges and gaps 

identified in the current methodologies, ensuring more precise and reliable subsurface 

mapping. The research is divided into four main objectives reflecting the stages of the 

thesis: 

(1) Conduct a comprehensive comparative analysis of existing hyperbolic and non-

hyperbolic fitting models of common offset GPR wave transmission and reflection in 

any host dielectric materials and cylindrical objects. This involves formulating these 

models uniformly and introducing an index to quantitatively evaluate and compare their 

performance under various conditions. 

(2) Develop innovative methods to correct the non-perpendicular alignment of GPR 

survey lines relative to underground pipelines. This includes integrating an angle 

correction index into classical hyperbolic fitting models and employing advanced 
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optimization algorithms to ensure accurate parameter estimation under real-world 

survey conditions. 

(3) Propose and validate a depth-weighted velocity correction algorithm to improve the 

accuracy of velocity estimations within layered media. 

(4) Investigate the impact of data integrity on hyperbolic fitting accuracy. This involves 

analyzing how the integrity of the hyperbolic reflection affects the estimation of key 

parameters such as burial depth and wave velocity. 

1.2.2. Research Methodology 

Research Resources: To ensure the reliability and accuracy of the research findings, 

the methodology employed comprehensive laboratory and field experiments. 

Laboratory tests were conducted at the underground utility survey laboratory in The 

Hong Kong Polytechnic University. The laboratory is equipped with a 5-meter long, 3-

meter wide, and 1-meter-deep platform, simulating a controlled subsurface urban 

environment. This platform houses multiple utilities such as freshwater pipes, saltwater 

pipes, gas pipes, and power cables, all embedded within soil or sand to simulate real-

world conditions. Field experiments were conducted at the geophysical test site at 

IFSTTAR, Nantes, France. The experimental setup included four trenches filled with 

different substrates—silt, sand, and two types of gravel—with nominal sizes ranging 

from 14mm to less than 20mm. Nine pipes were buried in each trench at varying depths, 

with each trench hosting three groups of pipes: PVC pipes filled with air, water, and 

three metal pipes. 

Instrumentation for both laboratory and field experiments utilized advanced GPR 

equipment from renowned manufacturers. The setup included a 250MHz antenna from 

Sensors & Software Inc.; Ground Penetrating Radar Systems, Inc. (GSSI) equipment 

with antennas capable of 400MHz, 900MHz, and 2GHz frequencies; and IDS 

GeoRadar's Opera Duo with 200&600 MHz dual frequencies antennas. Data processing 

and analysis were supported by a comprehensive suite of software tools. Reflexw 

software is widely used for GPR data processing and visualization, GPRSlice offers 
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robust data interpretation capabilities, Geolitix provides geospatial analysis, and 

gprMax is an open-source software that simulates electromagnetic wave propagation. 

Additionally, MATLAB, a platform for mathematical computing and algorithms, was 

employed to further analyze the data. 

This methodological framework supported a comprehensive analysis of GPR 

capabilities across different environments and configurations, allowing for both studies 

and validation studies. 

Forward and Backward Methods: The forward study leverages controlled GPR 

simulations and laboratory experiments to model and understand the subsurface world. 

Due to the complex and often inaccessible nature of actual subsurface environments, 

numerical simulations play a crucial role in constructing models that closely replicate 

real-world conditions. This approach allows for the systematic study of GPR reflections 

from subsurface objects, helping quantify the relationships between GPR signals and 

the physical characteristics of the buried targets. Laboratory and simulation 

experiments serve as crucial platforms for predicting GPR responses under controlled 

conditions, aiding in the refinement and validation of GPR methodologies and 

techniques. 

Conversely, the backward study focuses on the analysis of hyperbolic reflections from 

cylindrical targets embedded in various materials. These reflections are used to 

inversely calculate parameters such as the orientation and depth of targets, hosting 

material dielectric properties. By fitting these obtained hyperbolic reflections with 

different hyperbolic models, this research aims to reverse-engineer the data to deduce 

the characteristics of the subsurface objects. This inverse modeling process is vital for 

validating the applicability of the forward models and ensuring that the interpretations 

of GPR data are accurate and reflective of the actual subsurface conditions. 

Together, these forward and backward approaches enable the understanding of the 

GPR-subsurface interaction, enhancing the reliability of GPR applications in different 

environment. 
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1.3. Thesis Structure 

The thesis is structured into seven chapters, organized to systematically explore and 

address the objectives laid out in the research. The layout of the thesis progresses from 

foundational principles through detailed analyses and into practical applications, 

concluding with a comprehensive summary and future directions. 

Chapter 1: Introduction 

This initial chapter sets the stage by outlining the research scope, aims, and 

methodology. It provides justifications for the research focus and lays out the objectives 

throughout the study. 

Chapter 2: GPR Fundamentals 

This chapter offers a comprehensive overview of GPR, explaining its fundamental 

principles and the hyperbolic and non-hyperbolic fitting techniques utilized in 

evaluating underground utilities (stage 1).  

Chapter 3: Comparative Analysis of Hyperbolic Fitting Models 

Focusing on the 2nd research stage, this chapter presents an extensive comparative 

analysis of two hyperbolic and three non-hyperbolic fitting models. It introduces a 

novel cost function (C-value) to evaluate these models quantitatively, based on different 

parameters such as antenna separation, target radius, burial depth, and the relative 

permittivity of the host media. The findings from this study are expected to influence 

model selection and improve the precision and reliability of GPR studies. 

Chapter 4: Correcting Non-Perpendicular Alignment in GPR Surveys 

The fourth chapter addresses the 3rd research stage by developing methods to correct 

for the non-perpendicular alignment between GPR survey lines and underground 

pipelines. It details a novel approach that integrates an angle correction index into 

classical hyperbolic fitting models, utilizing advanced optimization algorithms to 

ensure accurate parameter estimations under real-world conditions. 
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Chapter 5: Velocity Estimation in Layered Media 

In the 4th stage, this chapter introduces a depth-weighted velocity correction algorithm 

aimed at improving velocity estimations within layered media. This section validates 

the algorithm through extensive numerical and laboratory experiments, demonstrating 

its effectiveness in enhancing the accuracy of wave velocity estimations and its 

adaptability to different subsurface conditions. 

Chapter 6: Analyzing the Impact of Data Integrity on Fitting Accuracy 

This chapter delves into the 5th stage by examining how hyperbolic reflection integrity 

affects the accuracy of GPR fitting methods. Using statistical measures, this chapter 

evaluates the stability of parameter estimations under various conditions of data 

integrity and explores the influence of burial depth, dielectric constant, and target radius 

on fitting. 

Chapter 7: Conclusion and Future Work 

The final chapter summarizes the key findings from each stage of the research and 

discusses their implications for the field of GPR. It outlines the contributions to urban 

subsurface surveying, the challenges encountered, and recommendations for future 

research to further enhance GPR's reliability and utility in complex environments. 
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2. Chapter 2: Literature Review 

2.1. Civil Engineering Application of GPR 

The review paper written by W. W. Lai et al. (Lai et al., 2018) summarizes and details 

various applications of GPR for civil engineering. In the realm of building inspection, 

GPR is used extensively to explore and assess internal structural components. It is 

effective in locating embedded features such as reinforcing bars (Liu et al., 2020a; Liu 

et al., 2020b; Liu et al., 2022; Xu et al., 2013), tension cables (Anderson et al., 2010; 

Dérobert and Berenger, 2010; Garg and Misra, 2021; Gehrig et al., 2004), and conduits 

(Church et al., 2019; Church et al., 2020; Ryu et al., 2023), as well as utilities embedded 

within walls (Amer-Yahia and Majidzadeh, 2012), floors (Miccinesi et al., 2021), and 

ceilings (Ramírez-Blanco et al., 2008). By identifying these elements, GPR assists 

engineers and construction professionals in planning renovations and interventions 

without causing damage to critical structural components (Ristić et al., 2020; ter Huurne 

et al., 2024; Zajc and Grebenc, 2023). Additionally, GPR can detect areas of moisture 

intrusion and delamination within the concrete, providing valuable information for 

maintenance and repair strategies (Agred et al., 2018; Aziz et al., 2016; Bourdi et al., 

2012; Liu et al., 2008). 

GPR significantly enhances the maintenance and assessment of roads and pavements 

by providing detailed insights into the layer thickness and subsurface conditions 

(Loizos and Plati, 2007; Saarenketo and Scullion, 2000). For pavements, it can identify 

layer thickness (Willet and Rister, 2002), detect subsurface voids (Zhang et al., 2022), 

and assess the presence of moisture and frost susceptibility which can lead to structural 

failures if unaddressed (Cao et al., 2022). In bridge inspection, GPR contributes to the 

assessment of deck degradation (Parrillo et al., 2006), delamination (Janků et al., 2019), 

and the detection of voids within or beneath the concrete (Pollock et al., 2008), aiding 

in preventative maintenance measures to extend the lifespan of these critical structures. 
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GPR's role in the detection and mapping of underground utilities is critical for avoiding 

accidental utility strikes during excavation, which can lead to costly repairs and 

hazardous situations (Lai et al., 2018). It allows for the precise localization of pipes, 

conduits, and wiring, thereby facilitating more efficient utility management and 

maintenance (Ni et al., 2010). GPR helps in planning construction projects by providing 

clear mapping of existing utilities, reducing the risk of service interruptions, and 

enhancing worker safety during digging operations (Conyers, 2016). 

In tunnel construction and maintenance, GPR is instrumental in assessing the condition 

of tunnel liners and surrounding materials (Parkinson and Ékes, 2008; Puntu et al., 

2021). It is used to evaluate the thickness of the liner (Li et al., 2011), detect anomalies 

such as fractures, voids behind the liners (Kravitz et al., 2019), and areas of water 

ingress (Lin et al., 2020). These capabilities are crucial for ensuring the structural 

integrity and safety of tunnels, especially in urban environments where aging 

infrastructure presents ongoing challenges. GPR helps in pre-emptively identifying 

areas that may require reinforcement or repair, thereby aiding in the systematic 

maintenance and safety management of tunnel systems. 

2.2. Basic Electromagnetic Principles 

GPR utilizes EM waves to image and characterize subsurface features. The history of 

EM theory spans over two centuries and is documented extensively in scholarly texts 

(Kovetz, 2000). This foundational theory provides the quantitative basis necessary for 

working with GPR. Maxwell's equations, combined with material constitutive 

relationships, form the core of the theoretical framework that allows for the quantitative 

description of GPR signals. 

2.2.1. Maxwell’s Equations 

Maxwell's equations form the cornerstone of EM theory, providing a comprehensive 

mathematical framework that describes how electric and magnetic fields interact and 

propagate. These equations encapsulate the findings of numerous researchers and offer 

a compact way to understand a wide range of EM phenomena: 
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 Faraday's Law of Induction describes how a changing magnetic field over time 

induces an electric field. This is mathematically expressed as: 

 ∂
∇× = −

∂
BE
t

  (2.1) 

where E is the electric field vector, and B is the magnetic flux density vector. 

 Ampere's Law with Maxwell's addition illustrates that electric currents and 

changes in electric fields produce magnetic fields. This relationship is given by: 

 ∂
∇× = +

∂
DH J
t

  (2.2) 

where H is the magnetic field intensity, J is the electric current density vector, and D is 

the electric displacement vector. 

 Gauss's Law for Electricity shows the relationship between electric charges and 

the electric field they produce: 

 ∇⋅ =D q   (2.3) 

with ρ representing the electric charge density. 

 Gauss's Law for Magnetism states that magnetic monopoles do not exist: 

 ∇⋅ =B 0   (2.4) 

These equations are fundamental in deriving the behavior of classical EM phenomena 

such as induction, radio waves, and resistivity when they are combined with materials' 

constitutive properties. They serve as the theoretical foundation for understanding and 

utilizing GPR, by linking EM fields to the electrical properties of the materials they 

encounter. 

2.2.2. Constitutive Equations 
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Constitutive equations are fundamental in describing how a material responds to EM 

fields, playing a pivotal role in the practical application of GPR. These equations 

connect the electrical and magnetic properties of materials to the EM fields described 

by Maxwell's equations. 

For GPR, understanding the electrical conductivity, dielectric permittivity, and 

magnetic permeability of the materials being surveyed is crucial. These properties are 

defined by the following constitutive equations: 

 = J σE   (2.5) 

where J is the current density, σ is the electrical conductivity, and E is the electric field. 

This equation characterizes how freely charges move under an electric field, 

contributing to the electrical current. 

 = D εE   (2.6) 

linking the electric displacement field D with the electric field E through the dielectric 

permittivity ε. This relationship is critical as it describes how charge displacement 

within a material stores energy when exposed to an electric field. 

 = B μH   (2.7) 

where B is the magnetic flux density, μ is the magnetic permeability, and H is the 

magnetic field intensity. This equation illustrates how materials respond to magnetic 

fields, affecting how magnetic fields propagate through different media. 

The properties described by these equations are typically treated as constants in simple 

GPR scenarios, but they can exhibit complex, nonlinear behaviors in more varied 

conditions. In detailed GPR analyses, the properties might need to be treated as tensor 

quantities or functions that vary with the electric field and especially under different 

frequencies. 
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Moreover, material properties can also demonstrate a dependence on the history of the 

incident EM field. This history dependence manifests when charges within a material 

respond at finite rates to changes in the field, appearing fixed under slow field changes 

and mobile under rapid changes. A more sophisticated representation of Ohm's Law to 

account for such time-dependent behavior is given by: 

 
∞

= ⋅ −∫ 
o

J t σ β E t β dβ( ) ( ) ( )   (2.8) 

This expression (Equation (2.8)) should be used when material properties are 

dispersive, i.e., when they change depending on the frequency of the incident EM field. 

For most practical GPR applications, however, simpler models assuming constant 

scalar values for ε, μ, and σ are sufficient. Particularly important for GPR is the relative 

permittivity, often termed the dielectric constant (εr), defined as: 

 =r
εε
ε0

  (2.9) 

where ε0 is the permittivity of free space, a fundamental physical constant. 

2.3. Material properties 

Subsurface materials are generally categorized as dielectrics due to their specific 

electric properties, often termed as ‘dielectric properties.’ The term "dielectric" 

typically refers to non-conductive materials capable of supporting EM wave 

propagation by storing and releasing electric field energy without conducting electric 

current. True dielectrics, such as many crystalline solids, exhibit minimal free charge 

movement (Landau et al., 2013). However, real-world subsurface environments often 

contain materials with some level of free charge (from ions in the water in pores, for 

example), making them what are known as 'lossy dielectrics.' These materials 

demonstrate varying degrees of EM wave attenuation due to their ability to conduct 

electricity to some extent (Lowrie and Fichtner, 2020). This conductive property is 

particularly significant in environments with high salinity or high clay content, where 
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the presence of free charges leads to substantial EM energy loss during wave 

propagation, rendering GPR less effective. 

2.3.1. Permittivity 

Permittivity (ε) is a crucial material property that describes a material’s ability to store 

and release EM energy under the influence of an electric field. It is typically expressed 

relative to the permittivity of free space (ε0), known as relative permittivity or dielectric 

constant (εr ), where: 

 =r
εε
ε0

  (2.10) 

The permittivity of free space is a constant (ε0 = 8.8542×10−12 F/m), and the relative 

permittivity of materials can vary significantly, especially in the presence of water, due 

to its high permittivity (εr ≈ 80) and impact on the EM properties of the surrounding 

material. 

The permittivity of materials is frequency-dependent and typically exhibits a complex 

nature due to the polarization processes involved. In subsurface materials, this 

complexity is evident with different polarization mechanisms contributing to the overall 

permittivity, including dipolar and Maxwell-Wagner polarization. For GPR 

applications, the most relevant is the dipolar polarization, which dominates in the 

typical GPR frequency range (Figure 2-2). 
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Figure 2-1. Conceptual diagram illustrating the process of energy storage/release, charge polarization, and the 

development of a dipole moment occurring when an EM wave propagates through a material (Jol, 2008). 

Table 2-1 provides typical values of relative permittivity and conductivity for various 

subsurface materials at a standard GPR frequency of 100 MHz. These values are 

indicative of how materials respond under specific conditions, showing wide variation 

based on moisture content and material type—from dry sand to wet clay, each presents 

unique challenges and responses to GPR surveys. 
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Table 2-1. Typical values of relative permittivity (real component) and static conductivity for common subsurface 

materials at an antenna frequency of 100 MHz (Jol, 2008). 

Material 
Static Conductivity, σs 

(mS/m) 
Relative Permittivity, εave 

Air 0 1 

Clay – dry 1–100 2–20 

Clay – wet 100–1000 15–40 

Concrete – dry 1–10 4–10 

Concrete – wet 10–100 10–20 

Freshwater 0.1–10 78 (at 25 °C) – 88 

Freshwater ice 1–0.000001 3 

Seawater 4000 81–88 

Seawater ice 10–100 4–8 

Permafrost 0.1–10 2–8 

Granite – dry 0.001–0.000001 5–8 

Granite – fractured and wet 1–10 5–15 

Limestone – dry 0.001–0.000001 4–7 

Limestone – wet 10–100 6–15 

Sandstone – dry 0.01–0.000001 4–7 

Sandstone – wet 0.01–0.001 5–15 

Shale – saturated 10–100 6–9 

Sand – dry 0.0001–1 3–6 

Sand – wet 0.1–10 10–30 

Sand – coastal, dry 0.01–1 5–10 

Soil – sandy, dry 0.1–100 4–6 

Soil – sandy, wet 0.1–100 15–30 

Soil – loamy, dry 0.1–1 4–6 

Soil – loamy, wet 0.1–100 10–20 

Soil – clayey, dry 0.1–100 4–6 

Soil – clayey, wet 100–1000 10–15 

Soil – average 5 16 

 

The conceptual understanding of how EM energy interacts with material properties is 

illustrated in Figure 2-1. This figure demonstrates the storage and release of energy 

through the polarization of molecules under the influence of an EM field, depicting the 
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dynamic nature of the material response to applied EM fields, critical for interpreting 

GPR data effectively. 

2.3.2. Conductivity 

Conductivity is defined as the capacity of a material to conduct electric current, which 

occurs when free charge carriers such as electrons or ions move through the material 

under the influence of an electric field. In metallic materials, free electrons are the 

primary charge carriers (Mott, 1936), whereas, in ionic solutions such as those found 

in subsurface environments, ions act as charge carriers. When an electric field is applied, 

these ions rapidly accelerate, colliding with other particles, which converts their kinetic 

energy into thermal energy, manifesting as heat. 

Under no external electric field, these charge carriers remain static and do not interact 

significantly (King et al., 1981). However, when an electric field is applied, the 

dynamics change drastically. The moving charges gain kinetic energy and, upon 

colliding with other particles, release this energy as heat, leading to energy dissipation 

within the material. 

The process of conductivity at low frequencies, pertinent to GPR, is generally 

considered instantaneous. In such cases, conductivity can be quantified using a real, 

static value, denoted as σs in Siemens per meter (S/m), which is commonly reported in 

the literature. This static conductivity is significant as it directly influences the 

attenuation of EM waves propagated through the material. 

At higher frequencies, the behavior of conductivity becomes more complex due to the 

phase differences between the applied electric field and the resultant current, 

introducing an imaginary component of conductivity. This component represents the 

energy stored in the material's electrical field, which increases with frequency. Despite 

its importance, in typical GPR frequency ranges, the imaginary component is often 

neglected, simplifying the conductivity to its real component. This simplification is 

generally acceptable due to the relatively minor effect of conductivity relaxation 
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phenomena, particularly in subsurface environments where rapid charge movements 

are less prevalent. 

Nevertheless, different materials exhibit distinct behaviors under varying electric fields 

due to their unique physical and chemical properties. For instance, in electrolytic 

solutions, heavy anions and cations respond slowly to changes in the electric field, 

affecting the overall conductivity. The disparity in conductivity between different 

materials underlines the necessity of understanding both the real and imaginary 

components of conductivity for comprehensive subsurface analysis using GPR. 

2.3.3. Magnetic Permeability 

The magnetic properties of materials, typically categorized as diamagnetic, 

paramagnetic, or ferromagnetic, generally have minimal impact on GPR operations due 

to their subtle magnetic effects under normal conditions (Getzlaff, 2007; Jiles, 2015). 

The permeability, often approximated to the permeability of free space (1.26 × 10-6 

H/m), plays a pivotal role only when ferromagnetic materials are involved, significantly 

affecting GPR wave velocity and signal attenuation. Substances like iron and its oxides 

are notable for their strong magnetic relaxation phenomena, which are influenced by 

factors such as electron spin and magnetic domain wall motions. These relaxation 

processes are predominantly dependent on the size and structure of the magnetic grains 

and can lead to energy losses similar to those produced by electrical properties under 

certain conditions. 

In practical GPR applications, only substantial amounts of magnetically responsive 

materials impact the EM response, with materials containing small percentages of 

ferromagnetic substances (typically less than 2%) generally being considered negligible. 

However, materials with significant amounts of magnetite or hematite, often found in 

natural settings like igneous rocks or certain soils, can exhibit relaxation and loss effects 

on par with permittivity-driven losses. The complexity of magnetic properties in these 

materials arises from their frequency-dependent nature, with the imaginary component 

of permeability representing energy loss at varying frequencies. 
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Figures and empirical data, like those from Mars radar exploration or subsurface 

magnetic property studies (Gurnett et al., 2008; Ramírez-Nicolás et al., 2016), underline 

the importance of considering magnetic properties in GPR analyses. These studies 

reveal that the magnetic characteristics of subsurface materials can influence GPR 

signal propagation in ways comparable to electrical properties, especially in 

environments with high concentrations of magnetically active minerals. This makes 

understanding and incorporating magnetic properties crucial in detailed GPR studies 

and interpretations, particularly in mineral-rich geological settings. However, in this 

study, the magnetic properties of the target materials have a minimal impact on the 

propagation of EM waves from GPR and are therefore neglected. 

2.4. GPR Theory 

GPR is a sophisticated geophysical method that uses radio waves to probe various low-

loss dielectric materials such as soil (Abdelmawla and Kim, 2020; Cui et al., 2021), 

rock, concrete, and asphalt. Initially developed for natural geologic materials, GPR has 

expanded its applications significantly, including inspecting man-made structures and 

various other media. This expansion is partly due to the technology’s ability to work 

across a broad radio frequency spectrum, enabling its application in fields ranging from 

glaciology to the non-destructive testing of concrete structures. The scale of GPR 

applications can vary extensively, from exploring vast glacial expanses to assessing the 

integrity of small-scale concrete infrastructures (Lai et al., 2018). 

The operational mechanism of GPR involves emitting radio waves into the ground and 

measuring the reflections from subsurface features. Typically, a GPR system consists 

of a transmitter and a receiver that maintain a fixed geometric relationship and are 

moved over the surface to detect these reflections. In some cases, a method known as 

transillumination is used, where the focus is on how the transmitted energy is modified 

by the subsurface materials rather than just the reflections (Foss and Leckenby, 1987). 

This versatility in measurement approaches allows GPR to be adapted to a wide variety 

of environments and objectives. 
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Historically, the use of radio waves for earth examination dates back to the 1950s, with 

the technology evolving significantly since its inception (Jol, 2008). The foundational 

physics of GPR is rooted in EM theory, described by Maxwell's equations, which when 

combined with material constitutive relationships, enable the detailed and quantitative 

interpretation of GPR data. Over the decades, the applications of GPR have grown 

exponentially, as has our understanding of its underlying physics and its practical 

deployment in field settings. Today, GPR is equipped with its own set of terminology 

and operational procedures, making it a unique and invaluable tool in the field of 

geophysical surveying. 

2.4.1. GPR Antennas 

GPR antennas are critical components that create and detect key EM fields necessary 

for subsurface exploration. The primary function of a transmit antenna is to convert 

excitation voltage into a predictable spatial and temporal EM field. Conversely, the 

receive antenna must detect the temporal variations of the EM field and translate it into 

a recordable signal. The effectiveness of a GPR antenna hinges on several key 

characteristics (Travassos et al., 2018): 

• Source and Detection Locations: The source and detection points must be 

precisely definable to ensure accurate data collection. 

• Transmitter and Receiver Responses: The antennas must consistently convert 

electric fields to and from voltages over time and space, requiring invariant 

responses (transfer functions). 

• Vector Characteristics: The vector nature of the link between the source 

voltage and received voltage must be quantifiable, ensuring that the antennas 

can accurately interpret the direction and magnitude of received signals. 

Moreover, the bandwidth of the antennas must align with the system's application needs 

to ensure efficient signal detection and processing. The design and size of antennas are 

constrained by the need to match the temporal dynamics of the EM fields they intend 
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to detect. In practical terms, this means that antenna dimensions should correspond with 

the rate of change of the exciting field. 

Operational Characteristics and Design Limitations: 

• Finite-Size Requirements: Effective GPR operation necessitates the use of 

finite-size antennas which, by design, are spatially and temporally distributed. 

This distribution implies that the exact locations for field creation and detection 

are somewhat imprecise, which can impact the precision of the data collected. 

• Field Transit Time Variability: The response of antennas in GPR systems 

varies depending on the environmental conditions and is not invariant, 

indicating that adjustments may be necessary based on specific survey 

conditions. 

Efficiency and Directivity: 

• Antennas most effective for GPR applications are typically short, resistively 

loaded electric dipoles. These small dipoles provide a balance between signal 

reproduction and operational efficiency. The directivity of these antennas 

changes significantly when placed on the ground, influenced heavily by the 

ground's permittivity. Figures depicting the antenna patterns on the ground 

show how the transverse electric (TE) and transverse magnetic (TM) patterns 

adapt based on the permittivity, demonstrating the complex interaction between 

the antenna radiation patterns and the ground characteristics (Figure 2-2). 
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Figure 2-2. When the ground permittivity changes, the patterns change. The TE pattern is shown for permittivities 

ranging from ice (low) to water (high) (Jol, 2008). 

Challenges with Antenna Shielding: 

• While shielding can enhance signal focus and reduce noise, it introduces 

additional complexity. Shielded antennas are common in high-frequency GPR 

systems where minimizing signal leakage is crucial. However, shields are not 

perfect and can sometimes interfere with signal clarity, especially in low-

frequency applications where antenna size and weight are significant concerns. 

In integrating these elements, GPR antennas are designed to maximize the efficacy of 

subsurface exploration while adapting to the constraints imposed by environmental and 

operational factors. The design and selection of GPR antennas thus directly impact the 

quality and reliability of the GPR data collected. In this thesis, only the common offset 

antenna configuration is used. 

2.4.2. Types of GPR Waves 
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GPR waves interact with their environment in several distinct ways, and these 

interactions are categorized into different types of waves: air wave, ground wave, 

refracted wave, and reflected wave, as shown in Figure 2-3. 

 

Figure 2-3. Propagation of GPR wave in underground layered materials with dielectric contrast (Giannopoulos, 

1998). 

Air Wave: The air wave is the initial wave that travels directly from the GPR 

transmitter to the receiver through the air. It travels at a constant speed of approximately 

0.2998 m/ns. Proper shielding of the antenna is essential to mitigate the effects of the 

air wave, ensuring it does not interfere with the detection of more relevant subsurface 

signals. 

Ground Wave: This wave is generated by the transmission into the ground and is the 

first wave to penetrate the subsurface materials before reaching the receiver. It's 

essential for antennas with a small separation between the transmitter and receiver, as 

their signals may merge at the receiver, appearing as a single direct wave in the radar 

image. 

Refracted Wave: Detected only by specific antenna configurations, such as those set 

in common mid-point or wide-angle reflection and refraction modes, the refracted wave 

travels along material boundaries where it encounters changes in material properties. 

Reflected Wave: This is the primary wave type utilized in GPR surveys to detect 

subsurface anomalies. It occurs when the EM wave encounters a boundary between 

materials with different dielectric properties, causing the wave to bounce back toward 
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the surface. The strength of the reflected wave is influenced by the relative permittivity 

of the materials at the interface, calculated using the reflection coefficient formula: 
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where εr1  and εr2 represent the relative permittivity of the host and target materials, 

respectively. This coefficient helps quantify the intensity and phase of the reflected 

wave relative to the incident wave, with larger differences in permittivity leading to 

stronger reflections. 

These interactions between GPR waves and the materials they encounter are crucial for 

accurately interpreting subsurface conditions and identifying anomalies within the 

surveyed area. 

2.4.3. GPR Survey 

GPR surveys are integral in subsurface exploration, employing various methodologies 

tailored to specific geophysical needs. Each type of survey has unique configurations 

and applications, as detailed below: 

 Common-Offset Reflection Survey 

Common-offset surveys are standard in GPR applications where a single transmitter 

and receiver are deployed at a fixed separation across each survey location (Berard and 

Maillol, 2008). This method is known for its simplicity and effectiveness in mapping 

subsurface reflectivity variations, including changes in material properties and 

structural boundaries. The data collected with common-offset surveys generally 

facilitate advanced processing and visualization techniques, enhancing the 

interpretability of subsurface features. The uniform data spacing, consistent geometry, 

and straightforward deployment make this technique favored for comprehensive area 

coverage. This is the survey type adapted in this thesis. 

 Multi-offset Common Midpoint (CMP) and Wide-Angle Reflection and Refraction 

(WARR) 
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These techniques extend the common-offset method by varying antenna separations to 

create a detailed velocity profile of subsurface materials. CMP surveys, in particular, 

stack signals from multiple offsets to improve the signal-to-noise ratio and develop 

comprehensive cross-sections of subsurface velocity—critical for detailed geophysical 

investigations (Jacob and Urban, 2016). Meanwhile, WARR surveys offer insights into 

both the velocity and attenuation properties of the ground materials, similar to seismic 

refraction techniques (Kaufmann et al., 2020). These methods are more complex and 

time-consuming but provide valuable data for complex subsurface investigations. 

 

Figure 2-4. GPR wave travel paths of various antenna geometries (Giannopoulos, 1998). 

 Transillumination Surveys 

Transillumination or borehole GPR measurements are specialized surveys conducted 

in boreholes or similar confined spaces. These surveys provide detailed cross-sectional 

images of subsurface conditions and are crucial for studies in complex geological 

settings where surface GPR surveys might not be effective. The methodology involves 

transmitting GPR signals across boreholes or between boreholes and the surface, 

capturing detailed data on subsurface structures and anomalies. 

2.4.4. GPR Survey Considerations 

Vertical Resolution: Vertical resolution in GPR systems defines the smallest vertical 

separation at which individual reflectors can be distinguished by the antenna. Typically, 

this resolution is around a quarter of the wavelength used in the survey, though more 

accurate systems achieve finer distinctions. The resolution depends on the frequency of 
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the GPR wave, where higher frequencies provide better resolution due to shorter 

wavelengths (Reynolds, 2011; Yilmaz, 2001). The equation 

 =
r

vλ
f ε

  (2.12) 

where λ is the wavelength, v is the speed of light in vacuum, f is the frequency, and εr 

is the relative permittivity, highlighting how both the operating frequency and the 

material properties influence vertical resolution. 

Horizontal Resolution: The horizontal resolution relates to the system’s ability to 

discern between objects that are side by side and depends on the footprint of the wave 

emitted by the GPR system, often governed by the First Fresnel Zone. This zone’s 

radius can be estimated with 
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where z is the depth of penetration (Pérez-Gracia et al., 2008). Like vertical resolution, 

higher frequencies, and lower permittivity materials enhance the horizontal resolution, 

allowing closer objects to be distinguished more clearly. 

Resolution from System Constraints: GPR data acquisition results in various scan 

types: A-scan, B-scan, and C-scan, each providing different dimensions of data 

representation (Figure 2-5). An A-scan provides a single-dimensional depth profile at 

a point, while a B-scan displays a two-dimensional vertical slice through the subsurface. 

C-scans offer a top-down view aggregating data from multiple B-scans. The resolution 

of these scans depends significantly on the digital sampling rate and the methodological 

setup of the GPR system, which dictates the clarity and precision of the subsurface 

imaging. The Sampling Theorem is crucial here, suggesting that higher sampling rates 

can better represent the waveform, improving the accuracy of the data interpretation in 

the resulting images (Luo et al., 2019). 
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Figure 2-5. Illustration of A-scan, B-scan, and C-scan in GPR survey (Kaniewski and Kraszewski, 2023). 

Scattering Attenuation: GPR signals are influenced significantly by the 

heterogeneous electrical and magnetic properties of the medium they travel through. 

Small-scale heterogeneities within the medium may not generate strong or detectable 

signals themselves, but they do affect the transmitted GPR signals by scattering the 

electromagnetic energy in multiple directions. This scattering, which can be visualized 

from an energy perspective, results in a decrease in signal intensity as the 

electromagnetic field scatters off small objects and travels through the medium. 

Scattering attenuation, the reduction of signal strength due to these small 

heterogeneities, is notably dependent on the frequency of the transmitted signal. Higher 

frequencies often result in greater scattering, which is described by Rayleigh scattering. 

This type of scattering is crucial to consider because it contributes significantly to the 

overall attenuation of the GPR signal alongside ohmic or material loss attenuation 

within heterogeneous lossy dielectric media. 

Historically, the significance of scattering effects has been acknowledged early in radar 

and radio wave applications, particularly in contexts like ice sounding, where volume 

scattering plays a more pronounced role than ohmic losses in most cases. This 

understanding underscores the need to account for both ohmic losses and scattering 

effects when evaluating GPR signal attenuation in varied subsurface environments. 
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2.4.5. Hyperbolic Reflection of Cylindrical Utilities 

The detection of underground utilities with GPR typically involves the use of a common 

offset antenna configuration. This setup is depicted in Figure 2-4, where the ground-

coupled antenna is strategically placed on the surface to transmit EM waves into the 

subsurface. As these waves traverse through various media—soil, sand, silt, asphalt, 

concrete—they interact with underground utilities such as pipes and cables. 

 
Figure 2-6. The construction of hyperbolic reflection in underground utility survey by GPR (Xie et al., 2021). 

When these EM waves encounter cylindrical objects with dielectric properties distinct 

from the surrounding material, they are reflected back to the surface. The shape of the 

reflected waveforms often exhibits a hyperbolic pattern on the radargram. This 

phenomenon occurs because the distance the wave travels increases when the antenna 

moves away from being directly above the utility, resulting in an increase in the time it 

takes for the reflection to return to the receiver. 

Figure 2-6 illustrates the construction of hyperbolic reflection in underground utility 

surveys by GPR, showing how the transmitted signals travel through the underground 

host material and are reflected by utilities. The setup ensures the antenna is at various 

positions relative to the target utility, providing a comprehensive scan across a 

predefined GPR traverse. 
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A typical example of what these hyperbolic reflections look like on a radargram can be 

seen in Figure 2-7. This radargram was obtained from a 400MHz antenna with 

reflections captured from metal pipes buried in a sand medium at the IFSTTAR test site 

in Nantes, France. These reflections are crucial for a range of applications including 

velocity analysis, depth estimation of underground targets, characterization of 

underground media, and condition assessment of targets. 

 
Figure 2-7. Radargram with reflections from metal pipes in the sand trench (Xie et al., 2021). 

2.4.6. Basic GPR Signal Processing 

Transforming raw GPR data into actionable insights involves several stages of 

processing, each tailored to enhance specific aspects of the data. This multifaceted 

approach starts with basic editing to remove errors and extends to advanced processing 

techniques aimed at refining the data for detailed analysis and visualization. 

 Dewow and Current-shift Removal 

These techniques are employed to remove low-frequency drift (wow) and direct current 

components in the GPR signal. By stabilizing the baseline of the GPR trace, it enhances 

the overall readability and reliability of the data. The current shift correction process 

adjusts the trace to center around a zero mean, effectively balancing variations in signal 

amplitude caused by environmental or equipment factors. 

 Time-varying Gain 
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As GPR signals penetrate deeper, they naturally weaken due to material attenuation. 

Time-varying gain is applied to increase the amplitude of signals from deeper regions, 

ensuring that all potential reflections are visible, regardless of depth. This can be 

managed automatically through algorithms like Automatic Gain Control (AGC) (Pérez 

et al., 2011), which dynamically adjusts the gain based on the incoming signal strength, 

or manually, where the operator sets the gain curve to highlight features of interest at 

various depths. 

 Filtering 

To isolate meaningful data from noise, several filters are used. Bandpass filters focus 

on frequencies within a specified range, crucial for highlighting relevant geological 

features while discarding irrelevant noise. High-pass and low-pass filters target spatial 

inconsistencies, enhancing horizontal or vertical resolution. Median and mean filters 

smooth out random noise, making the interpretation of GPR data clearer and more 

accurate. 

 Background Removal 

This process is critical for identifying subtle variations in the GPR data by removing 

background noise that might obscure key features. It involves calculating the average 

signal across all traces and subtracting this from each trace, thereby highlighting 

anomalies and features against a normalized background. 

 Time-zero Correction 

Adjusting the time-zero point on GPR traces corrects for delays introduced by varying 

surface conditions and initial system settings (Yelf, 2004). This correction ensures that 

the recorded data accurately reflects the true timing of the reflected signals, which is 

essential for precise depth calculation and analysis. The possible positions for the time-

zero are shown in Figure 2-8. In this thesis, the peak point (point E) is adopted as the 

position of time-zero. 
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Figure 2-8. Possible positions of time-zero in the direct wave of A-scan waveform (Xie et al., 2021b). 

2.5. GPR Ray-path Models in Hyperbolic Fitting 

Building on the foundational concepts covered in the preceding section 2.4, which 

detail the operational principles, equipment, and methodologies integral to GPR 

technology, we transition into a more focused exploration of hyperbolic reflection 

models in GPR analysis. This segment, section 2.5, delves into the mathematical and 

physical modeling of hyperbolic reflections, which are crucial for accurately estimating 

the depth of burial, EM wave velocity, and permittivity of the medium around 

cylindrical targets such as pipes and cables. By applying refined hyperbolic fitting 

techniques to the measured data, this section aims to enhance the precision and 

reliability of subsurface investigations, providing essential insights into the 

characteristics and conditions of buried utilities and other cylindrical objects. 

In the context of GPR analysis, the curves produced when scanning cylindrical targets 

such as pipes are often referred to by various terms—hyperbolas, curves, diffractions, 

or hyperbolic reflections. For clarity and consistency, this thesis will use the term 

"hyperbolic reflections" to describe these characteristic curves. Additionally, the 

mathematical models that describe these curves have been given different names in the 

literature, including GPR ray-path models, GPR reflection models, or simply 

hyperbolic or hyperbola models. To distinguish these mathematical formulations from 

the actual measured curves, we will consistently refer to them as GPR ray-path models 

in this work. Some of these models can be expressed in the form of hyperbolic equations, 

which we will categorize as hyperbola models, while others that do not fit this form 
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will be referred to as non-hyperbola models. This distinction sets the stage for the 

detailed exploration of these models in the following sections. For convenience, the 

process of fitting hyperbolic reflections using different GPR ray-path models will be 

collectively referred to as hyperbolic fitting. 

Beyond the specific application to underground pipelines, GPR can effectively detect a 

variety of cylindrical and elliptical structures across diverse environments. This 

includes scanning rebar within concrete, identifying boulders beneath the earth's 

surface, mapping tree roots, or exploring geological formations on other planets. These 

scenarios all generate hyperbolic reflections similar to those observed with pipelines 

due to their rounded cross-sectional profiles when intersected by GPR waves. The 

hyperbolic fitting techniques discussed in this thesis, while focused on pipelines, are 

equally applicable to these varied contexts. The adaptability of these algorithms allows 

them to be applied directly to any scenario where the target exhibits a circular or 

elliptical geometry relative to the radar's scanning plane, thus broadening the scope of 

GPR applications in both terrestrial and extraterrestrial explorations. 

The application of deep learning in GPR data analysis has significantly enhanced the 

detection and interpretation of subsurface features. Techniques such as Faster R-CNN 

(Lei et al., 2019), CNN-LSTM (Lei et al., 2020), and SSD (Liu et al., 2020) have 

streamlined the identification and localization of hyperbolas, traditionally a manual and 

time-consuming process. These methods automate the extraction of key data, 

improving accuracy and reducing processing time for on-site analysis. Notably, the 

integration of Generative Adversarial Networks (GANs) (Zhang et al., 2021) and 

YOLOv4 (Li et al., 2022) showcases the ability to handle complex datasets efficiently, 

even under challenging conditions like noise and data scarcity. By reducing 

computational demands and supporting real-time applications, deep learning is proving 

indispensable in advancing subsurface exploration and utility mapping. 

Significant advances in full-waveform inversion (FWI) approaches for GPR also have 

been documented in the literature. As early as 1996, a FDTD model was developed to 
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simulate GPR detection of cylindrical targets, showing good correlation with 

experimental results (Bourgeois and Smith, 1996). This approach was further refined 

with the introduction of efficient pseudospectral time-domain (PSTD) algorithms in 

1999, which significantly reduced the number of unknowns required in FDTD methods 

(Liu and Fan, 1999). Subsequent improvements in FDTD algorithms have consistently 

demonstrated robust performance in field and synthetic tests (Fan and Liu, 2000; Gürel 

and Oǧuz, 2000). The integration of FDTD with particle swarm optimization (PSO) has 

enabled precise localization of subsurface cylindrical objects at varying depths 

(Matriche et al., 2014). Additionally, the application of frequency-domain FWI, using 

specialized frequency strategies, has effectively enhanced inversion efficiency, 

allowing simultaneous inversion of permittivity and conductivity to accurately 

reconstruct the shape and location of inclusions (Jazayeri et al., 2018). Innovations such 

as the use of the PEST algorithm (model-independent parameter estimation and 

uncertainty analysis) have further refined the precision in estimating pipeline diameters 

and identifying infill materials like air or water. More recently, a novel FWI approach 

employing a 3D FDTD forward-modeling program coupled with the shuffled complex 

evolution (SCE) technique has been developed, facilitating reliable parameter 

extraction and significantly broadening the adaptability of FWI in GPR applications 

(Liu et al., 2018). The advent of machine learning integrated FWI techniques promises 

even greater computational efficiency and application scope in scenarios such as rebar 

positioning within concrete, surpassing traditional electromagnetic solvers in real-time 

capabilities (Giannakis et al., 2019; Patsia et al., 2023a, b). 
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2.5.1. GPR Ray-path Model 1 (M1) 

 

Figure 2-9. Illustration of GPR signal paths for Model 1. Key parameters are color-coded for clarity: the burial 

depth (D0) of the target is shown in red. The TTT at positions xi (any point along the traverse) and x0 (directly above 

the target) is denoted by ti and t0, respectively. Here, xi represents the lateral distance between the antenna and x0. 

This model is depicted in Figure 2-9. In this simplistic approach, the separation between 

the transmitter and receiver antennas is not considered, and the buried cylindrical target 

is regarded as a point source. The geometry of the scenario allows for the establishment 

of Equation 1 through basic trigonometry: 
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where v is the EM wave velocity in the host material, D0 is the burial depth of the object, 

xi is the distance between the antenna at position i and at the apex of the object, and ti 

represents the corresponding two-way travel time at position i. 

The equation (2.14) can also be expressed in the form of hyperbolic equations: 
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The popularity of this model is largely due to its simplicity and computational 

efficiency, which has led to its widespread adoption in commercial processing software. 

Furthermore, it does not require prior knowledge such as antenna separation or target 

radius, making it applicable in a wide range of scenarios. Common practice involves 

constructing a mathematical model of the hyperbola using Equation 1 with a given 
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velocity value and then manually adjusting the model to align with the curved reflection 

in the data. This alignment process, often referred to as the 'drag-and-overlap' procedure, 

relies heavily on the operator’s experience. As such, it can be subjective and potentially 

introduce bias, which may undermine the reliability of the survey results. 

2.5.2. GPR Ray-path Model 2 (M2) 

 
Figure 2-10. Illustration of GPR signal paths for Model 2. The distance (D1) between the receiving antenna and the 

target in purple, and the distance (D2) between the transmitting antenna and the target in green 

In contrast to Model 1, Model 2 (as shown in Figure 2-10) accounts for the separation 

between the transmitter and receiver antennas. This addition helps mitigate 

uncertainties arising from antenna separation. The TTT in this model can be expressed 

as: 
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These distances can be calculated using Pythagoras theorem 
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Here, S represents half the separation between the transmitter and receiver antennas. 
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This model is particularly beneficial when using low-frequency GPR antennas to locate 

underground utilities. Since the separation between antennas increases with lower 

frequencies and may approach the depth of the targets, accounting for this separation is 

critical. However, Model 2 still neglects the radius of the targets, which can result in 

inaccuracies under conditions where the radius is comparable to the depth. 

2.5.3. GPR Ray-path Model 3 (M3) 

 

Figure 2-11. Illustration of GPR signal paths for Model 3. 

Some researchers have sought to enhance Model 1 by incorporating the radius of 

cylindrical targets while still treating the GPR antenna as a point source. This adaptation, 

illustrated in Figure 2-11, has been shown to be particularly beneficial when the target 

radius is substantially larger compared to its depth (Sham and Lai, 2016b). The 

modified model can be expressed as follows: 
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where r signifies the radius of the target. 

The equations (2.19) and (2.20) can also be expressed in the form of hyperbolic 

equations: 
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Despite the improved accuracy in certain scenarios, Model 3 may still exhibit 

inaccuracies when the antenna separation significantly affects the radar signal's path. 

Additionally, as this model requires prior knowledge of the target’s radius, it may not 

be suitable when such information is unavailable. 

2.5.4. GPR Ray-path Model 4 (M4) 

 

Figure 2-12. Illustration of GPR signal paths for Model 4. 

Model 4, depicted in Figure 2-12, is a more comprehensive approach that accounts for 

both antenna separation and target radius. Furthermore, this model assumes the 

reflection point to be at the center of the target. The equations representing this model 

are:  
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While this model is a significant improvement over Model 2, it is computationally more 

demanding due to the increased complexity. This may pose challenges for real-time 

applications with limited computational resources.  

2.5.5. GPR Ray-path Model 5 (M5) 

 

Figure 2-13. Illustration of GPR signal paths for Model 5. 

Model 5 is an extension of Model 3 that takes into account antenna separation. Different 

from Model 4, Model 5 assumes the reflection point to be at the intersection of the 

antenna midpoint and the target centerline with the target surface (Figure 2-13). The 

equations for this model are: 
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This model is even more computationally intensive than Model 4, which may limit its 

feasibility for real-time applications. 

2.5.6. Summary of Five Models 

Table 2-2 summarizes the characteristics and parameters considered by each of the five 

hyperbolic fitting models discussed above. At the outset of the discussion on the five 

models, it's important to note a key difference between traditional hyperbola fitting and 

the non-hyperbola fitting methods used in this study. M1 and M3, which do not account 

for antenna separation, can be translated into standard hyperbola equations. The process 

of estimating parameters through these equations constitutes traditional hyperbola 

fitting. On the other hand, M2, M4, and M5, which do consider antenna separation, 

don't exactly fit the traditional hyperbola but rather describe a curve that approximates 

the shape of a hyperbola. These models cannot be transformed into standard hyperbola 

equations and hence represent non-hyperbola models, distinct from the traditional 

approach. 

Table 2-2. Summary of parameters required for five hyperbolic-fitting methods. 

Parameters 
Hyperbolic Fitting model 

M1 M2 M3 M4 M5 

Antenna separation (S) N I N I I 

Target radius (r) N N I I I 

Reflection-point position - - Surface Centre Surface 

Note: I – Input as priori information; N – Neglected. 

Except for Model 1, the other models require information on antenna separation or 

target radius to enhance the accuracy of parameter estimation. The requirement of this 

information, however, restricts the applicability of these models. While antenna 

separation can easily be obtained from equipment specifications, the radius of buried 

targets might not always be available, which increases the uncertainty of survey results. 
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2.6. Hyperbolic Fitting Algorithm 

Having established a robust framework for modeling hyperbolic reflections in GPR 

data through various ray-path models, the next crucial step involves the extraction of 

these reflections and their subsequent analysis using fitting algorithms. Reflection 

extraction serves as a foundational stage, where we systematically isolate the 

hyperbolic patterns from raw GPR data, a process pivotal for accurate parameter 

estimation. This extraction not only ensures the clarity and reliability of the data fed 

into the fitting algorithms but also enhances the precision of the depth estimation, wave 

velocity, and medium permittivity calculations. Subsequently, the section on fitting 

algorithms delves into the methodologies for parameter estimation—ranging from the 

traditional Nonlinear Least Squares with its Levenberg-Marquardt solution to more 

robust global optimizers like Particle Swarm Optimization (PSO). These fitting 

techniques build upon the clean, well-defined inputs generated by the reflection 

extraction process, providing a comprehensive approach to interpreting GPR data for 

subsurface evaluations.  

2.6.1. Extraction of Hyperbolic Reflection 

In the process of analyzing GPR data, the accurate extraction of reflection events from 

subsurface objects is paramount. This involves isolating specific hyperbolic reflections, 

which are indicative of cylindrical utilities such as pipes or cables. Initially, the apex of 

these hyperbolic reflections, which corresponds to the point of shortest TTT, is 

identified within the radargram. This apex represents the direct overhead position of the 

buried object relative to the GPR antenna. The critical time, t0, is then determined by 

calculating the difference between the established time-zero—marking the start of the 

GPR signal's journey—and this shortest TTT, thus pinpointing the precise moment the 

signal reflects off the target. 

This selection process is crucial as it focuses on the most pronounced part of the 

reflection, providing a clear starting point for further analyses. The accurate 

identification of this point facilitates the subsequent stages of signal processing and 
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parameter estimation. An example of this selection is depicted in Figure 2-14, 

illustrating a systematic approach to identifying and isolating hyperbolic patterns within 

the radargram. 

 

Figure 2-14. The selection of the hyperbolic pattern. 

2.6.2. Establishment of the Cost Function and Levenberg-Marquardt Nonlinear 

Least-Squares Solution 

For a given set of parameters [D0, v], synthetic TTT, denoted by ti, is computed through 

various hyperbolic fitting models. These models translate the fitting challenge into an 

optimization problem, aiming to identify the parameter set [D0, v] that reduces the sum 

of squared discrepancies between the observed TTTs, Ti, and the predicted TTTs, ti. 

Formally, this optimization task seeks to minimize: 
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where n represents the number of equations formulated for the parameters (D0, v), 

utilizing known pairs (xi, ti). The least squares method can be applied to solve this set 

of equations, refining the parameter estimates towards optimal values. 

 General Least Squares Approach 

The fundamental concept in least squares estimation is to minimize the overall error 

between the predicted and observed values. In the context of hyperbolic fitting for GPR, 
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this involves adjusting the parameters of the hyperbolic reflections to best fit the data 

points collected from subsurface reflections. Mathematically, the objective function or 

cost function for a least squares problem is defined as: 

 =
x

x F xargmin{ ( )},   (2.29) 
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2
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where fi(x) are the residual functions for each observation, representing the difference 

between the observed values and those predicted by the model. The goal is to find the 

parameter set x that minimizes F(x), effectively minimizing the sum of the squares of 

the residuals. 

 Levenberg-Marquardt Solution 

To refine this approach, the Levenberg-Marquardt method augments the traditional 

least squares by introducing modifications that enhance robustness and convergence 

speed, particularly for non-linear models encountered in hyperbolic fitting. It starts by 

approximating the cost function using a first-order Taylor expansion around the current 

estimate: 

 + ≈ +f x h f x J x h( ) ( ) ( ) ,   (2.31) 

where J(x) is the Jacobian matrix of partial derivatives of the residual functions, and h 

is the step vector in parameter space. This formulation leads to an approximate model 

for the cost function: 

 + ≈ + +TF x h f x J x h f x J x h1( ) ( ( ) ( ) ) ( ( ) ( ) ).
2

  (2.32) 

The quadratic approximation of the cost function allows for solving the parameter 

updates efficiently using the following update rule derived from setting the gradient of 

F(x+h) with respect to h to zero: 
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 + = −T TJ J uI h J f( ) .   (2.33) 

Here, u is the damping factor that controls the influence of the gradient descent and 

Gauss-Newton method components, providing a means to navigate the balance between 

convergence speed and stability. 

Additionally, Xie et al. have extended the traditional LM solution method by 

introducing constraints, leading to the development of the CLS (Constrained Least 

Squares) solution (Xie et al., 2021a). This enhancement further improves the precision 

of parameter estimation using least squares fitting for hyperbolic reflections. 

2.6.3. Global Optimization for Hyperbolic Fitting 

In the realm of hyperbolic fitting for GPR data analysis, traditional methods such as the 

LM algorithm have been widely utilized due to their efficiency in handling well-

behaved mathematical models. However, these least squares methods often struggle 

with convergence issues when the model assumptions do not hold perfectly or when 

the parameter landscape is complex and fraught with local minima. 

To address these challenges, alternative approaches involving global optimization 

techniques have been explored. These methods do not rely on the gradient descent 

principle alone but employ a broader search strategy to navigate the entire solution 

space. This is particularly useful in scenarios where the objective function, such as the 

sum of squared differences between observed and predicted travel times outlined in 

Equation (2.28), is non-convex or has multiple feasible solutions. 

By deploying global optimizers, or a combination thereof, one can directly search for 

optimal values of burial depth (D) and wave velocity (v), thus potentially achieving 

more robust and reliable fitting results even in complex subsurface conditions. The 

following discussion delves into various global optimization strategies such as gradient 

descent (GD), particle swarm optimization (PSO), and genetic algorithms (GA), which 

offer distinct advantages in terms of exploration capabilities and resilience against 

getting trapped in local optima. 
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 Gradient descent (GD) 

Gradient descent (GD) is an iterative optimization algorithm used to minimize a cost 

function, typically employed in situations where the solution space is multidimensional 

and complex. It is especially useful in applications like fitting GPR hyperbola and non-

hyperbola reflections. 

In the context of hyperbolic fitting, the objective function to be minimized can be 

expressed as: 

 
=

= −∑
n
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i

J D v T t 2

1
( , ) ( ) ,   (2.34) 

where Ti  represents the actual travel times measured by GPR, and ti  are the 

predicted travel times based on the hyperbolic model with current estimates of D and v. 

The gradient descent updates the parameters iteratively according to the formula: 
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where α is the learning rate—a crucial parameter that determines the step size of each 

update. This rate must be chosen carefully; too large a rate can lead to overshooting the 

minimum, while too small a rate may result in a slow convergence. 

The partial derivatives ∂J/∂D and ∂J/∂v represent the gradients of the cost function with 

respect to the depth and velocity, respectively. Calculating these gradients involves 

evaluating how the small changes in D and v influence the prediction error across all 

data points. 

 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a robust, population-based optimization 

algorithm inspired by the social behavior of birds flocking or fish schooling (Kennedy 
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and Eberhart, 1995). It's particularly effective for optimizing complex nonlinear 

functions like those involved in hyperbolic fitting in GPR data analysis. 

In PSO, each "particle" in the swarm represents a potential solution to the optimization 

problem, characterized by parameters such as D and velocity v in the context of GPR. 

Each particle adjusts its position in the search space by combining some aspect of its 

personal best position with the best position found by the swarm as a whole. 

The position update rules for each particle can be expressed as follows: 

Velocity Update: 

 + = + − + −t t t t
i i i i iv ωv c r p x c r g x( 1) ( ) ( ) ( )

1 1 2 2( ) ( ).   (2.37) 

Position Update: 

 + += +t t t
i i ix x v( 1) ( ) ( 1) .   (2.38) 

Here: 

vi
(t) and xi

(t)  are the velocity and position of the ith particle at iteration t. 

pi  is the personal best position of the ith particle. 

g is the global best position found by any particle in the swarm. 

ω is the inertia weight that controls the impact of the previous velocity on the current 

one, helping to balance global and local exploration. 

c1 and c2 are acceleration coefficients influencing the cognitive and social components 

respectively, with r1 and r2 being random numbers between 0 and 1. 

This approach effectively explores the solution space by encouraging individual 

particles to explore new areas while also converging towards promising regions 

identified by the swarm. This dual mechanism makes PSO particularly effective at 

avoiding local minima and finding a global minimum in complex, multimodal 

landscapes. 
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To better explain how optimization problems can be used to solve the hyperbolic fitting 

problem, we have included Figure 2-15. This figure comprises two sub-figures aimed 

at visually demonstrating the estimation of hyperbolic parameters by locating the 

minimum value of the cost function. Figure 2-15(a) displays three hyperbolic 

reflections, each corresponding to a distinct set of parameter combinations. Among 

them, the hyperbolic reflections that best overlaps with the measured data is the one 

associated with the set of parameters that minimizes the cost function value. The other 

two hyperbolic reflections, which exhibit larger fitting errors, are illustrated using 

dotted lines. In Figure 2-15(b), a plot of cost function values is shown, where the 

horizontal axis represents different parameter combinations, and the vertical axis 

represents the corresponding cost function values. Points corresponding to the three-

parameter combinations used in Figure 2-15(a) are also marked here, with the point of 

minimum value distinctly highlighted. This visual representation underscores the 

proposed method of employing optimization strategies for hyperbolic fitting, reminding 

that the smallest cost function value at the global minimum equates to the optimal 

overlap between calculated and measured hyperbolic reflections, hence yielding the 

most accurate parameter estimation. 

 

Figure 2-15. (a) Hyperbolic reflections calculated from different parameter combinations and (b) the cost curve of 

the model. The red dot and arrow indicate the parameter combination of the smallest cost function. 

Combining different global optimization algorithms can enhance the robustness and 

efficiency of solving complex optimization problems, such as fitting hyperbolic curves 

from GPR data. For instance, initiating the optimization process with PSO utilizes its 
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capability to broadly explore the solution space, identifying promising regions quickly 

without getting prematurely trapped in local minima. Subsequently, these solutions can 

be improved using GD, which can efficiently refine to a minimum value using the initial 

estimates provided by the PSO. This layered approach not only capitalizes on the 

strengths of each method—broad exploration and precise exploitation—but also 

mitigates their weaknesses, providing a more reliable and effective solution for 

estimating the parameters associated with hyperbolic reflections in GPR data. It is 

worth noting that the selection of PSO and GD for this study is not prescriptive; similar 

results could likely be achieved using any compatible combination of global and convex 

optimization algorithms. This combination of global optimizers underpins the advanced 

hyperbolic fitting methodology that is central to the research approach in this thesis. 

Hyperbolic fitting inherently presents a non-unique solution problem, where multiple 

sets of parameters, including depth and wave velocity, can accurately describe a single 

hyperbolic signature. However, by imposing practical constraints on the range of 

possible values—effectively narrowing the solution space with appropriate prior 

assumptions—we can significantly reduce the uncertainties associated with parameter 

estimates. This approach leverages prior knowledge about the subsurface conditions or 

target characteristics to provide more reliable and constrained fitting results, as 

discussed in Chapter 6 and supported by references (Xie, et al. 2021). 

2.7. Finite Difference Time Domain (FDTD) Modelling of GPR 

The Finite Difference Time Domain (FDTD) method is recognized for its robust and 

versatile capabilities in addressing the full-wave solution of Maxwell’s equations, 

making it highly suitable for modeling electromagnetic wave propagation in GPR 

applications. The technique employs finite differences as approximations for the spatial 

and temporal derivatives in Maxwell’s equations, allowing for the direct modeling of 

electric (E) and magnetic (H) fields. This direct approach is effective in simulating GPR 

wave interactions with various subsurface materials. 
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FDTD is advantageous because it allows users to specify material properties at every 

point within the simulation domain, enhancing the accuracy and relevance of 

subsurface modeling. However, this method also demands substantial computational 

resources as the model's resolution increases to manage finer details, which can enlarge 

the computational domain. While FDTD provides detailed insights into electromagnetic 

wave behavior in heterogeneous media, it does not inherently solve for unique 

permittivity and permeability values at material interfaces, which could be a limitation 

in scenarios requiring precise material differentiation. Nonetheless, this issue is 

generally mitigated by the method's capacity to accommodate large-scale simulations 

without needing extensive computational overhead typical of finer mesh resolutions 

used in other methods like Finite Element Method (FEM). 

The inclusion of the Courant-Friedrichs-Lewy (CFL) stability condition equation 

significantly aids in estimating computational costs for FDTD modeling. By delineating 

the relationship between the spatial discretization (Δx, Δy, Δz) and the temporal 

resolution (Δt), this equation ensures stability in the numerical simulation: 
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where c is the speed of light in vacuum. 

For defining the boundaries of the simulation domain in FDTD, artificial boundaries 

are often necessary. Although this can introduce some complexity, the development of 

absorbing boundary conditions has matured significantly, providing effective solutions 

to minimize reflections and artifacts at the domain edges (Giannopoulos, 2005). 

Therefore, FDTD method is a powerful approach for simulating the responses of GPR, 

useful in complex urban subsurface environments. Based on the electromagnetic wave 

theory, Maxwell’s equations describe the propagation of EM waves, which can be 

expressed in simplified form, capturing the dynamics of the electric field E and 

magnetic field H as they relate through time and space: 
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By employing the Taylor series expansion, functions f(x) about a point x0 with a time 

step δ, are approximated, facilitating the use of central differences to simulate 

derivatives in Maxwell's equations. This approach allows for a precise discrete 

approximation: 
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Kane Yee first introduced the FDTD method in 1966 (Yee, 1966), utilizing second-

order central differences to replace the continuous derivatives in Maxwell's equations 

with discrete analogs. This discretization of both space and time permits the electric 

and magnetic fields to be calculated at staggered intervals in a computational grid. By 

solving these discretized equations, known as "update equations," the future states of 

the field variables are predicted based on their known past values, ensuring a dynamic 

and accurate simulation of GPR wave interactions with the subsurface environment 

(Warren et al., 2016). 
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3. Chapter 3: Unified Optimization-Based Analysis of Hyperbolic 

Fitting Models 

3.1. Chapter Overview 

After introducing the basic principles of GPR and several hyperbolic fitting methods, 

this chapter delves into the utilization of GPR as a critical instrument for subsurface 

exploration, specifically highlighting its capability in detecting cylindrical objects like 

pipelines and rebars, which often manifest as hyperbolic patterns in GPR data. The 

focus of this investigation centers on the technique of hyperbolic fitting, a prevalent 

method for interpreting such data, examining the influence of several variables 

including antenna separation, target radius, burial depth, and the relative permittivity of 

the surrounding medium. This study conducts a thorough comparative analysis of two 

hyperbolic and three non-hyperbolic ray-path models, all framed within a unified 

optimization-based analytical framework. A novel evaluation metric, the C-value, is 

introduced to quantitatively assess each model's performance. The analysis reveals how 

these parameters distinctly affect each model's effectiveness, leading to tailored 

recommendations for model selection based on the availability of prior information and 

the models' fidelity to actual data. This comprehensive approach augments the accuracy 

and reliability of both hyperbolic and non-hyperbolic fittings in GPR studies and 

enhances practical understanding, thereby offering substantial advancements in GPR 

application methodologies. 

3.2. Historical Development of Hyperbolic Fitting Models in GPR 

The evolution of hyperbolic fitting models reflects a significant transition from basic 

echo radar techniques, widely used in various geological applications, to sophisticated 

methods that are tailored for detailed subsurface analysis. This transition has 

incorporated a wide range of signal-processing methodologies, some of which can find 

its origins in fields such as seismology. 
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The genesis of what we now understand as hyperbolic fitting can be traced back to 

pioneering efforts by researchers such as Osumi and Ueno in 1985, who laid 

foundational concepts in radar signal ray models (Figure 2-9), setting the stage for later 

developments (Osumi and Ueno, 1985). Although these early models did not employ 

fitting methods for precise parameter estimation, they introduced the community to the 

potential of utilizing radar data for subsurface characterization. 

Significant advancements in GPR signal processing occurred in the late 20th and early 

21st centuries. In 2000, Al-Nuaimy et al. introduced innovative approaches to 

hyperbolic reflection extraction using pattern recognition and neural networks, marking 

a significant leap towards automated and refined fitting methods (Al-Nuaimy et al., 

2000). The work by Shihab and Al-Nuaimy in 2005 further pushed these boundaries by 

integrating considerations such as the target's radius into hyperbolic fitting models 

(Figure 2-10), bringing them closer to the contemporary understanding of these 

techniques (Shihab and Al-Nuaimy, 2005). 

The development of models considering antenna separation came later, proposed by 

researchers like Illawathure et al. in 2020 and Shen et al. in 2019 (Illawathure et al., 

2020; Shen et al., 2019). These models, while still simplifying the target as a point 

source, acknowledged the complex dynamics of signal propagation and interaction 

within different subsurface conditions (Figure 2-11). 

More recent innovations have seen even more complex models that account for both 

the antenna separation and the target radius. In 2016, Zhang et al. and Sham and Lai 

introduced sophisticated models that either assume the reflection point at the center of 

the target (Figure 2-13) or at the intersection of the line connecting the antenna center 

with the target’s outer contour (Figure 2-12), respectively (Giannakis et al., 2021; Lau 

et al., 2021; Sham and Lai, 2016a; Zhang et al., 2016). These models represent the 

highest order of fitting complexity used in contemporary GPR studies and have been 

applied in a variety of contexts, ranging from underground media analysis on other 

planets to the detection of urban infrastructure leakages. 
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This chapter synthesizes these historical developments and conducts a comparative 

analysis of five widely used models. This comparative approach underscores the 

versatility and adaptability of GPR technology and highlights the ongoing need to refine 

these models to enhance their applicability in practical geological and engineering 

scenarios. 

3.3. Evaluation Metric: The Cost Function Value (C-Value) 

In assessing the performance of hyperbolic fitting models within this chapter, a critical 

metric used is the cost function value, referred to as the C-value. This value is computed 

following Equation (2.28), which articulates the optimization challenge in the research 

methodology. Specifically, the C-value is calculated as the sum of squared differences 

between the measured TTT, Ti, obtained from GPR, and the synthetic TTT, ti , predicted 

by the hyperbolic models after determining the parameters for burial depth (D) and 

wave velocity (v). It shall be noted that the GPR survey line is assumed to be 

perpendicular to the target in this chapter. The influence of the target orientation will 

be explored in the next chapter. 

The C-value serves as a quantitative indicator of how well a hyperbola or non-hyperbola 

model conforms to the actual GPR data. Essentially, a lower C-value denotes a higher 

degree of alignment between the model predictions and the actual data, indicating a 

more accurate representation of the subsurface features. This metric enables an 

objective comparison across different hyperbola or non-hyperbola fitting models, 

providing a standardized measure of model effectiveness. In practical terms, when the 

parameters of burial depth and wave velocity are known or can be precisely estimated, 

the C-value offers a robust criterion for evaluating the suitability and precision of 

various fitting techniques. Through this tool, this chapter aims to delineate the model 

that best matches the detected hyperbolic signatures under varying subsurface 

conditions, thereby enhancing the reliability and applicability of GPR analysis in 

geophysical explorations. 

3.4. Numerical Simulations 
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To validate the global optimization algorithms for the five hyperbolic fitting models 

and quantitatively study the performance of these methods in different scenarios using 

the C-value analysis, a series of numerical simulations were conducted using gprMax 

(Antonios 2005; Warren et al., 2016), an open-source Finite-Difference Time-Domain 

method (FDTD) simulation software that allows users to simulate the GPR response to 

the subsurface world. This software enabled us to understand how various parameters 

impact the performance of hyperbolic fitting models. Simulations are important in this 

study as they allow for precise control of variables, facilitating a clear understanding of 

their impact on hyperbolic fitting model performance. In this way, we can 

systematically test and fine-tune the models, highlighting potential challenges, and 

informing model selection for various real-world scenarios. 

Specifically, four sets of simulation models were created by varying the following 

parameters: radius of the metal targets, antenna separation, buried depth, and relative 

permittivity of the host material. For all simulations, the TE mode was selected, and a 

Ricker wavelet with a center frequency of 900 MHz was used for excitation. The time 

window was set to be 15 ns with a step interval of 0.01 m. The specific parameters of 

the simulation models are detailed in Table 3-1, Table 3-2, Table 3-3, and Table 3-4. 

In this research, the 'TE mode' refers specifically to the orientation of the electric field 

relative to the pipe or target, rather than to any solver mode within the gprMax software. 

TE (Transverse Electric) mode in Ground Penetrating Radar (GPR) applications 

involves the electric field oscillating perpendicular to the direction of wave propagation, 

illustrated in Figure 3-1. This orientation is crucial when using dipole antennas like 

bowties for pipeline detection, as the electric field alignment parallel to the pipe's axis 

(typically in the Z-direction) enhances the reflectivity and clarity of the signals from 

buried structures. Our simulation setup in gprMax accordingly simulates this scenario 

by analyzing the Ez component of the electric field, which reflects the vertical 

alignment of the electric field, mimicking the real-world behavior of TE-mode 

polarized GPR antennas. 
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Figure 3-1. Illustration of the numerical-simulation model. 

Table 3-1. Simulation models with the varying radius of the target. 

Parameters Simulation models 

1 2 3 4 5 

Radius of target r (m)  0.02 0.05 0.1 0.2 0.3 
Antenna separation S (m) 0.05 

Buried depth D (m) 1 

Relative Permittivity P 5 
 

Table 3-2. Simulation models with varying antenna separation. 

Parameters Simulation models 

1 2 3 4 5 

Radius of target r (m)  0.1 
Antenna separation S (m) 0.02 0.05 0.1 0.2 0.3 

Buried depth D (m) 1 

Relative Permittivity P 5 
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Table 3-3. Simulation models with varying buried depths. 

Parameters Simulation models 

1 2 3 4 5 

Radius of target r (m)  0.1 
Antenna separation S (m) 0.05 

Buried depth D (m) 0.3 0.6 0.9 1.2 1.5 

Relative Permittivity P 5 
 
Table 3-4. Simulation models with varying relative permittivity. 

Parameters Simulation models 

1 2 3 

Radius of target r (m)  0.1 
Antenna separation S (m) 0.05 

Buried depth D (m) 1 

Relative Permittivity P 3 5 10 

 

Post-processing steps involved setting the time-zero position and picking the hyperbolic 

points, as shown in Figure 3-1, which presents the example results for models with 

varying target radius (black dots). To study the impact of noise on hyperbolic fitting 

methods, Gaussian white noise was introduced to the raw data, rendering the signal-to-

noise ratio (SNR) of the noisy data at 5 dB (red dots). Additionally, experiments were 

conducted using Gaussian white noise to achieve signal-to-noise ratios (SNRs) of 10dB, 

20dB, and 40dB. The conclusions drawn were consistent across all these noise levels. 

Therefore, to maintain conciseness, these additional experiments were not chosen to 

report in detail. 
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Figure 3-2. Hyperbolic reflection picking results and noisy data of the simulation model with varying radius of 

targets. 

Using the known model parameters, the C-value of different hyperbola and non-

hyperbola fitting methods can be obtained and is depicted in Figure 3-2. The C-value 

serves as a tool to evaluate the performance of each method, with a lower C-value 

indicating better performance.  

Figure 3-2(a) illustrates the effect of changing the radius of targets on the C-value. 

Initially, for smaller radii, all five models perform comparably. However, as the radius 

increases, the performance of Model 1 and Model 2 markedly declines. The other 

models - Model 3, Model 4, and Model 5 - remain stable in performance. This suggests 
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that incorporating the radius of targets into the hyperbolic fitting models significantly 

improves accuracy, particularly when the target radius is substantial compared to the 

depth and antenna separation in terms of size. 

Figure 3-2(b) focuses on the effects of antenna separation on the C-value. The results 

indicate that accounting for antenna separation in hyperbolic fitting significantly 

enhances the models' performance. It’s noteworthy that up to a certain limit, the antenna 

separation does not drastically affect the models. However, when antenna separation 

exceeds a critical threshold (such as 0.4 m or 0.6 m), neglecting it from the models can 

lead to significant errors. This finding emphasizes the importance of considering 

antenna separation, especially in scenarios with larger separations. 

Figure 3-2(c) explores the influence of buried depth on the models’ performance. With 

increasing depth, there is a general decline in the C-value across all models, with Model 

1 and Model 2 experiencing the most significant drops. Interestingly, when targets are 

buried at shallow depths where their diameters are comparable to the depths, Model 1 

and Model 2 perform poorly, as evidenced by their high C-values. This indicates that 

they are ill-suited for hyperbolic fitting under such conditions. However, as the depth 

increases relative to the radius, the performance of all models begins to converge. 

Lastly, Figure 3-2(d) examines how the relative permittivity impacts the C-value. All 

models exhibit an increasing trend in C-value with growing relative permittivity. 

However, Model 1 and Model 2 underperform compared to the others. This observation 

suggests that Model 1 and Model 2 might not be the ideal choices when dealing with 

the high relative permittivity of the host material. 

In summary, Model 4 and Model 5 consistently exhibit small C-values across all 

experimental scenarios and are closely matched in results. Model 3 performs well in 

general, with the exception of cases involving large antenna separations. Conversely, 

Model 1 and Model 2 have limitations in handling varying radius, depth, and relative 

permittivity effectively. The findings demonstrate the importance of considering key 
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parameters such as target radius, antenna separation, buried depth, and relative 

permittivity in hyperbolic fitting models for GPR data to achieve optimal accuracy. 

 
Figure 3-3. The C-value of different hyperbolic fitting models of simulation models with varying (a) radius of target, 

(b) antenna separation, (c) buried depth, and (d) relative permittivity. 

Utilizing the combination optimization algorithm proposed earlier, we can estimate the 

optimized depth and wave velocity. The results of simulation with varying target radius 

are presented in Figure 3-3. It is evident that as the radius increases, Model 1 and 2 

yield deteriorating results, while Models 3, 4, and 5 maintain a stable and high level of 

accuracy. The resilience of Models 3, 4, and 5 due to the changing radius signifies their 

robustness. Additionally, the noise levels, quantified by signal-to-noise ratio (SNR), 

play a notable role. As SNR decreases (noise increases), the errors for all models 
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increase. Interestingly, as the radius increases, the influence of noise appears to 

diminish. This may be because the increased radius has a greater effect on the model 

than the noise. 

 

Figure 3-4. Errors in parameter estimation for simulation models with varying radii. Ed – Errors in the estimated 

depth from raw data; Ed_N – Errors in the estimated depth from data with added noise; Ev – Errors in the estimated 

wave velocity from raw data; Ev_N – Errors in the estimated wave velocity from data with added noise. The 'noisy 

data' refers to the original hyperbolic data mixed with additional noise components. 

Figure 3-4 shows the impact of antenna separation on parameter estimation. For smaller 

separations, Models 3, 4, and 5 excel compared to Models 1 and 2. However, as the 

separation expands, Model 3's accuracy declines, while Models 4 and 5 continue to 
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perform satisfactorily. Interestingly, for smaller separations, noise deteriorates the 

parameter estimation for all models, but for larger separations (as seen in experiments 

4 and 5, where B=0.2 and 0.3 m, respectively), noise seems to improve the accuracy.  

 

Figure 3-5. Errors in parameter estimation for simulation models with varying antenna separation. 

Figure 3-5 portrays how varying the buried depth impacts parameter estimation. 

Generally, as the depth increases, the estimation accuracy for all models rises. Models 

3, 4, and 5 particularly outperform Models 1 and 2 in most scenarios because of the 

small percentage errors. An interesting observation is that when the target is buried at 
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shallow depths, noise tends to enhance estimation accuracy, but it negatively affects 

accuracy for deeper burials. 

 

Figure 3-6. Errors in parameter estimation for simulation models with varying buried depth. 

The effect of the relative permittivity of the host material on the estimation of depth 

and wave velocity is noteworthy. Figure 3-6 shows a trend where increasing relative 

permittivity leads to decreasing accuracy in parameter estimation. Models 3, 4, and 5 

again outperform Models 1 and 2 with raw data. However, when noise is introduced (in 

simulations 1 and 3), Models 1 and 2 surprisingly exhibit a significant boost in 
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all models are not true representations and inherently contain errors, which manifest 

through variations in the material's dielectric properties. In simulation 2, where P=5, 

noise seems to have a negligible impact on all models. 

 

Figure 3-7. Errors in parameter estimation for simulation models with varying relative permittivity. 

In assessing computational efficiency, we analyzed the time required to run each model 

on our computing platform. The benchmarking was carried out on a Windows laptop 

with an AMD Ryzen 7 quad-core 2.9 GHz CPU and 16 GB of memory, using Matlab 

2022 for computations. As depicted in Figure 3-7, Models 1 through 3 demonstrated a 

considerable advantage in terms of computational speed. The inclusion of antenna 

separation and target radius in Models 4 and 5 increased their computational demands, 

with Model 5 exhibiting the longest computation times. Notably, the introduction of 

noise to the data did not significantly affect the computational times, suggesting that 

noise level does not impact the efficiency of the computations. 
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Figure 3-8. Computational time (seconds) of the models for all simulation data. Panels: (a) Raw data and (b) noise-

added data of separation simulation; (c) Raw data and (d) noise-added data of depth simulation; (e) Raw data and 

(f) noise-added data of radius simulation; (g) Raw data and (h) noise-added data of permittivity simulation. 

The numerical simulations have offered invaluable insights into the behavior of the 

models under controlled settings, and how they respond to various parameters such as 

radius, antenna separation, buried depth, and relative permittivity. Models that account 

for radius (M3, M4, and M5) consistently perform better with increasing radius, as 

opposed to those that do not. The assumption of point sources is increasingly not valid 
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when the radius and antenna separation increases, such that M1 and M2 yield larger 

errors. On the contrary, models that take antenna separation into account excel in these 

conditions. All models seem to improve with increasing depth since, with deeper targets, 

the relative effects of radius and antenna separation reduce, thus diminishing the errors 

they introduce. This is evident as all models demonstrated similar C-values at a burial 

depth of 1.5 m (Figure 3-2).  

There is a general trend of deteriorating performance with increasing relative 

permittivity across all models. However, Models 1 and 2 experience a more drastic 

decline in performance. Based on the simulation results, Models 4 and 5 stand out in 

terms of performance under various parameters, with Model 3 also exhibiting 

commendable results except in large antenna separation scenarios. Considering 

computational costs, Model 4 is recommended for hyperbolic fitting with known 

information, whereas Model 1 is suitable when radius and antenna separation are 

relatively small compared to the depth and prior information is lacking. The addition 

of Gaussian white noise generally leads to reduced estimation accuracy of parameters. 

Interestingly, under certain conditions such as very large antenna separation or very 

low relative permittivity, noise appears to improve parameter estimation accuracy. This 

counter-intuitive result may be attributed to unintentional corrections of data 

imbalances by the noise. However, it should be noted that this might not be a general 

characteristic and is contingent on the specific conditions. It’s important to highlight 

that attenuation was not considered in the simulations. This is a significant difference 

from the field experiments and can influence the behavior of the models. 

3.5. Laboratory and Field Experiments 

To further evaluate the five models in the real-world environment, both laboratory and 

field experiments were conducted. These experiments are crucial for understanding 

how various parameters influence hyperbolic signatures in practice. 

3.5.1. Laboratory Experiments 
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Laboratory experiments were conducted in air, a decision motivated by the known 

relative permittivity of the air medium, which facilitated a controlled environment for 

error analysis (Figure 3-8). The experiments employed two GPR antennas from 

Geophysical Survey Systems, Inc. (GSSI). The antennas operated at central frequencies 

of 900 MHz and 2 GHz, with respective antenna separations of 0.156 m and 0.04 m. 

The experiments comprised three target depths (0.5 m, 1 m, and 1.5 m) and three target 

radii (0.01 m, 0.03 m, and 0.163 m). Table 3-5 outlines the parameters of each 

laboratory experiment.  

Figure 3-9 and Figure 3-10 showcase the B-scan radargrams for each laboratory 

experiment. These radargrams underwent normalization for analysis. It is evident from 

the figures that hyperbolic signatures captured by the 2 GHz GPR are subdued, possibly 

due to strong signal attenuation and scattering. Such attenuation poses difficulties in 

hyperbolic extraction. Furthermore, it is essential to note that while higher GPR 

frequencies enhance resolution, they also increase susceptibility to noise. This factor 

necessitates careful consideration in the selection of GPR frequencies, especially as 

decreasing the frequency may correspondingly increase the antenna separation. 

  

Figure 3-9. Laboratory experiments setup. 
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Table 3-5. The parameters of laboratory experiments. 

Experiment No. 
Parameters 

Antenna separation 2B 

(m) 

Radius of target r 

(m) 

Buried depth D 

(m) 

1 0.04 0.01 0.5 

2 0.04 0.01 1 
3 0.04 0.01 1.5 
4 0.04 0.03 0.5 
5 0.04 0.03 1 
6 0.04 0.03 1.5 
7 0.04 0.163 0.5 
8 0.04 0.163 1 
9 0.04 0.163 1.5 
10 0.156 0.01 0.5 
11 0.156 0.01 1 
12 0.156 0.01 1.5 
13 0.156 0.03 0.5 
14 0.156 0.03 1 
15 0.156 0.03 1.5 
16 0.156 0.163 0.5 
17 0.156 0.163 1 
18 0.156 0.163 1.5 



69 
 

 

Figure 3-10. Radargrams using a 2 GHz GPR system. Here, the number in the lower left corner of each figure 

represents the experimental number in Table 3-5. 

 

Figure 3-11. Radargrams using 900 MHz GPR system. Here, the number in the lower left corner of each figure 

represents the experimental number in Table 3-5. 
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Upon extracting the positions of peak echoes along the pipes, hyperbolic signatures 

were obtained and are presented in Figure 3-11. To ensure data integrity, Gross Error 

rejection was applied. An initial observation reveals that escalating antenna separation 

from 0.04 m to 0.156 m has minimal impact on the shape of the hyperbolic pattern. 

However, as target depth increases, a flattening effect on the hyperbolic reflection is 

discernible. A comparable trend of flattening is observed with an increase in target 

radius. 

 

Figure 3-12. The extracted hyperbolic signatures of all experiments. Note: the number of experiments can be related 

to Table 3-5. 

Utilizing the previously mentioned methodology, the C-value for all laboratory 

experiments was computed. Figure 3-12 provides a graphical representation of this data. 

One of the significant observations is that an increase in radius from 0.01 m to 0.03 m 

adversely affects the performance of all models. Interestingly, a further increase in 

radius to 0.163 m resulted in Models 3, 4, and 5 performing commendably using both 
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2 GHz and 900 MHz GPR, whereas Models 1 and 2 demonstrated poor performance at 

2 GHz but satisfactory performance at 900 MHz. Moreover, concerning the antenna 

separation, there is a general trend of inferior performance for most models using 2 

GHz GPR compared to 900 MHz GPR. This is particularly pronounced in the case of 

Models 1 and 2 for large radius values. Notably, for smaller depths (D = 0.5 m) and 

target radii (r = 0.01 m), all models exhibited enhanced performance with 2 GHz GPR. 

This may be because at shorter distances, high-frequency signals have not yet 

experienced significant attenuation and scattering, allowing the shorter wavelengths of 

high-frequency signals to achieve higher detection resolution at this stage. Additionally, 

concerning depth, barring instances where the target radius is relatively large (r = 0.163 

cm), there is a common trend across the five models where an increase in depth initially 

augments the model's performance, but an excessive depth eventually leads to 

deterioration. This observation deviates from the simulation results. This is because the 

simulation experiments did not account for signal attenuation and scattering, which can 

impact the fitting results. 

 
Figure 3-13. The C-value of laboratory experiments. Note: the number of experiments can be related to Table 3-5. 

Transitioning to parameter estimation, the combined optimization technique proposed 

earlier was employed to estimate depth and wave velocity. Figure 3-13 exhibits these 

results. Consistent with simulation findings, the parameter estimations of depth and 
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wave velocity across different models are similarly influenced by depth, radius, and 

antenna separation.  

However, a deviation from the C-value analysis is that a larger antenna separation did 

not enhance the accuracy of parameter estimation but led to a decline. This is 

exemplified in experiments 16 and 17 where despite a low C-value indicative of a good 

match with the hyperbolic reflection, the parameter estimation exhibited a high error. 

 

Figure 3-14. Errors of parameter estimation of laboratory experiments. 

Upon closely scrutinizing the laboratory experiments, it is evident that the parameters 

under consideration exhibit similar trends to the simulations. The primary discrepancy 

between the two lies in the fact that in the laboratory setting, the performance of all 

models generally declines with increased depth, attributable to severe signal attenuation, 

an aspect not accounted for in simulations. In practical scenarios, an increase in antenna 

separation is frequently a consequence of utilizing antennas with reduced working 

frequencies, which, in turn, are correlated with greater detection depths and diminished 

signal resolution. This potentially elucidates why all models exhibit better coherence 

with the hyperbolic reflection obtained through 900 MHz GPR. Furthermore, within a 
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certain threshold, the increase of the target radius seems to curtail the signal attenuation 

followed by the increase in depth. This is possibly due to signal resolution; Models 1 

and 2 manifest a markedly inferior performance compared to Models 3, 4, and 5 when 

using 2 GHz GPR, but comparable performances at 900 MHz. The decreased working 

frequency of the GPR seems to obscure the distinctions amongst the models as a result 

of variations in radius and depth. In some instances, such as experiments 16, 17, and 

18, there is an inconsistency between the C-value analysis and parameter estimations. 

Despite the low C-value, which suggests a good fit with the hyperbolic reflection, 

parameter estimation errors are considerably large. This can be attributed to the 

heuristic nature of PSO, which may occasionally converge to local minima. 

Consequently, a low-cost function value might not necessarily signify the global 

optimum, resulting in potential inaccuracies in parameter estimation. 

With prior knowledge of the target radius and antenna separation, Model 4 is highly 

recommended for hyperbolic fitting. It exhibits excellent performance in matching 

hyperbolic reflections under varying conditions, achieving favorable parameter 

estimation results via the proposed combination optimization algorithm, and has a 

reasonable computational cost. On the other hand, in scenarios where prior information 

is not available, Model 1 is more appropriate. However, care should be taken to consider 

errors, especially when fitting hyperbolic reflections derived from objects with 

relatively large radii and shallow depths. Moreover, when utilizing low-frequency GPR 

for detecting objects buried at greater depths, Model 1 is capable of providing good 

results of parameter estimation. 
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Figure 3-15. The comparison between simulation and laboratory experiments. The numerical experiments were set 

as same as the 18 laboratory experiments. 18 experiments were divided into 6 groups according to the variation of 

depth from 0.5m to 1.5m. The detailed parameter setting can be seen in Table 3-5. 

To align the methodological framework of the study, additional simulation experiments 

were conducted that mirrored the parameter settings used in the laboratory experiments, 

focusing on hyperbolic model 4. Depth estimation results for 18 grouped datasets were 

extracted, corresponding to variations in depth from 0.5 meters to 1.5 meters, organized 

into six major groups. These simulation results were then directly compared against 

laboratory outcomes through a series of scatter plots, which visually map the correlation 

and discrepancies between the simulated and laboratory data. 

The simulation experiments demonstrated a high degree of accuracy, closely aligning 

with the actual measured values across all experimental groups. Notably, at shallower 

depths of 0.5 meters, the laboratory results showed a high consistency with the 

simulation data, clustering near the true values. However, as the depth increased, the 

laboratory data points began to diverge more significantly from the expected values, 
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reflecting the growing influence of signal attenuation and scattering that is not present 

in the simulations. Both scattering and attenuation phenomena result in the weakening 

of target reflections, increasing the susceptibility of hyperbolic signatures to noise 

interference, thereby amplifying the discrepancies between modeled and measured data, 

and escalating the errors in parameter estimation. Additionally, in the initial three 

groups—characterized by higher frequency and narrower antenna spacing—the 

dispersion of results was minimal at depths of 0.5 and 1 meter. Beyond these depths, at 

1.5 meters, the accuracy of these configurations diminished, underscoring the 

susceptibility of high-frequency signals to attenuation and scattering effects. 

3.5.2. Field Experiments 

The field data collection was carried out at the test site in the geophysical environment 

at IFSTTAR, Nantes, France (Dérobert and Pajewski, 2018). The sand trench was 

selected as the experimental location. Three metal pipes with a diameter of 0.08 m were 

buried at different depths, serving as the main reflector for data collection. The actual 

buried depths of each pipe can be referenced from the as-built report of this geophysical 

test site. SIR 4000 control unit with GSSI common offset antenna of nominal center 

frequency at 400MHz was equipped for radargram acquisition. 

Figure 3-15 showcases the radargram acquired by a 400 MHz GPR, featuring presented 

hyperbolic patterns. After extracting the hyperbolic data at the peak-echo points, the 

optimization method can be applied to estimate the wave velocity and the buried depths 

of three metal pipes. Given the known burial depths, it is able to compare the accuracy 

of depth estimation of the five models. The results are presented in Table 3-6.  
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Figure 3-16. Radargram with reflections from metal pipes in the sand trench. 

Table 3-6. Estimated depth of the five models. 

Model 

Pipe1 D = 1.184 m Pipe2 D = 1.659 m Pipe3 D = 2.395 m 

Estimated 

D (m) 

Error 

(m) 
Error (%) 

Estimated 

D (m) 

Error 

(m) 
Error (%) 

Estimated 

D (m) 
Error Error (%) 

M1 1.258 0.074 6.25 1.785 0.126 7.59 2.360 0.035 1.46 

M2 1.254 0.070 5.91 1.782 0.123 7.41 2.358 0.037 1.54 

M3 1.241 0.057 4.81 1.767 0.108 6.51 2.352 0.043 1.80 

M4 1.237 0.053 4.48 1.764 0.105 6.33 2.363 0.032 1.34 

M5 1.237 0.053 4.48 1.764 0.105 6.33 2.363 0.032 1.34 

 

The field experiments echoed the outcomes of the simulations and laboratory 

experiments. Models M4 and M5 consistently emerged as the most accurate, followed 

closely by M3, while M1 and M2 were less precise. It's important to note that due to 

the uncontrolled environment and the lack of actual wave velocity in the field 

experiments, comprehensive parameter sensitivity analysis based on C-value analysis 

could not be performed. However, these results offer insights into how the models 

perform under more realistic conditions and validate their applicability beyond 

controlled simulations and laboratory settings. 

The decreased accuracy of parameter estimation for pipe 2 is attributed to interference 

from nearby PVC pipes and the inability to extract one side of the curved reflection. In 

contrast, as with pipe 3, all five models showed similar and improved accuracy as burial 
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depth increased. This trend aligns with the findings from numerical simulations. Lastly, 

the improved accuracy observed when using a 400 MHz antenna is likely due to less 

signal attenuation and noise interference, leading to better data quality. The results from 

the field experiments highlight the robustness of the proposed methods in real-world 

applications, substantiating the credibility of the findings from our initial simulations 

and laboratory experiments. The research underlines the effectiveness of using 

optimization methods in solving the hyperbolic fitting problem and comparing the 

performance of different models under various conditions. 

3.6. Summary and Contribution 

This chapter has examined the efficacy of various hyperbolic fitting models employed 

in GPR for estimating essential parameters such as burial depth and wave velocity. 

Through the detailed evaluation of five distinct hyperbolic fitting models, this analysis 

has illuminated how different model configurations respond under varying 

conditions—target radius, antenna separation, and material relative permittivity. 

Key insights derived from this chapter include: 

1. Models that treat targets as point sources displayed varied accuracy, heavily 

dependent on the relationship between the target's radius and its depth. This 

finding underscores the importance of considering physical dimensions in 

model selection and application. 

2. Contrary to theoretical expectations, increased depth, while theoretically 

beneficial for accuracy, often leads to degraded performance due to signal 

attenuation. This practical challenge suggests a complex interaction between 

depth and signal quality that must be managed carefully. 

3. The research revealed that small variations in antenna separation generally do 

not impact model performance significantly within a predefined range. 

However, in practical scenarios, changes in antenna separation are closely tied 
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to alterations in signal strength and resolution, which can affect the efficacy of 

the fitting process. 

4. The chapter provides generalized recommendations for choosing the most 

appropriate hyperbolic fitting model, which is model 4, based on available data 

and operational conditions. These guidelines advocate for a strategic approach 

to selecting models that balance computational efficiency with accuracy. 

It should be noted that in addition to the factors studied in this chapter that affect 

hyperbolic fitting, the orientation of the target also influences the hyperbolic fitting. 

This specific research will be introduced in the next chapter. In this chapter, we assume 

that the GPR survey line is perpendicular to the target, thus the impact of target 

orientation on hyperbolic fitting can be disregarded. 
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4. Chapter 4: Angle-Corrected Hyperbolic Fitting Models for 

Improved Parameter Estimation 

4.1. Chapter Overview 

Building on the quantitative analysis of hyperbolic models from Chapter 3, this chapter 

advances the study by focusing on estimating pipe orientation using hyperbolic fitting, 

a curial factor that is not yet come across in Chapter 3. Traditionally, GPR analysis 

assumes that traverses are perpendicular to, or the E-field is parallel to, the target 

alignment—an assumption that often fails in real-world scenarios. To address this, a 

novel angle-corrected hyperbolic fitting model is introduced in this chapter, which 

integrates an angle correction index into the conventional fitting approach. This model, 

formulated as an optimization problem, is solved using a hybrid approach that combines 

the Multi-Verse Optimizer (MVO) and GD algorithms. Validated through simulation 

and field experiments, this method enhances the accuracy of estimating parameters like 

burial depth, object radius, and wave velocity together, especially under varying pipe 

orientations, offering a more robust framework for GPR data analysis in complex 

environments. 

4.2. Introduction to Angle-Corrected Hyperbolic Fitting 

Classical hyperbolic fitting methods have been widely applied in many aspects. Despite 

these advancements, a significant gap remains in addressing the orientation of 

subsurface targets relative to the GPR survey line. This oversight is particularly critical 

as the orientation can profoundly affect the precision of parameter extraction (Jaw and 

Hashim, 2013; Yuan and Cai, 2020). 

While ideal survey conditions assume GPR scans perpendicular to subsurface objects, 

the reality of urban environments, characterized by a dense and randomly oriented 

underground utility network, often precludes such perfect alignments (Xie et al., 2018). 

Various studies have explored the impact of oblique angles between the subsurface 

object and the GPR line. Techniques like C-scan profile generation, although 
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straightforward for estimating object orientation, pose challenges in terms of increased 

data acquisition time and decreased accuracy in complex subsurface environments 

(Tsung-Hsien and Mendel, 1998). Similarly, the application of full-polarimetric 

scattering matrices and improved Alford rotation methods offer insights into orientation 

estimation but are limited by practical field conditions (Liu et al., 2019; Paola and 

Friedrich, 2003; Seol et al., 2001). 

Furthermore, the use of elliptical inversion models and hybrid polarimetric GPR data 

has shown potential in accurately estimating the orientation and other parameters of 

elongated subsurface objects, including tree roots, which present additional challenges 

due to their random orientation (Tanikawa et al., 2013; Wang et al., 2020; Zhou et al., 

2022). Despite these methodological developments, traditional hyperbolic fitting 

techniques cannot still incorporate adjustments for non-perpendicular alignments. 

Building upon previous works that introduced an angle correction index to the 

hyperbolic fitting equation (Lai et al., 2016b; Xie et al., 2018), this chapter presents an 

advanced approach that incorporates a cost function value (C-value). This C-value is 

derived from the differences between synthetic and real TTT, offering a novel index for 

assessing the impact of pipe orientation on fitting accuracy. This approach is enhanced 

through a hybrid optimization strategy that merges the MVO with GD algorithms, 

facilitating the simultaneous estimation of pipe orientation, burial depth, and wave 

velocity. This chapter details the application of this methodology in both simulated and 

field settings, aiming to refine GPR data analysis for more accurate and reliable 

underground imaging. 

4.3. Methodology 

4.3.1. GPR Measurement and Oblique Angle 

Commonly in GPR surveys, when the antenna traverses perpendicularly across a buried 

cylindrical object, the EM field aligns in parallel with the object. This alignment 

produces an optimal hyperbolic-like pattern for estimating the object depth and wave 

velocity. However, the presence of an oblique angle between the GPR antenna and the 
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object changes the dynamics. The oblique angle 𝜃𝜃  affects the distance from the 

antenna to the object, reducing it from √𝑥𝑥2 + 𝐷𝐷2  to√𝑥𝑥2 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃 + 𝐷𝐷2  (Lai et al., 

2016b; Xie et al., 2018), where x represents the lateral distance from the antenna to the 

projection of object on the ground, and D is the depth of the buried object. Here the 

oblique angle is defined as the included angle between the GPR traverse and a 

continuous alignment of a buried object. The illustration of such GPR measurement can 

be seen in Figure 4-1. Considering the orientation of object, traditional hyperbolic 

fitting models require modification. In this section, two modified hyperbolic fitting 

methods based on different GPR ray-path models are introduced and subsequently 

formulated as the optimization problems of scattered points in (xi, ti), wherein the cost 

function is established and computed. Then based on the MVO and GD algorithm, the 

object orientation, buried depth, and wave velocity will be estimated together. 

 
Figure 4-1. Illustration of the GPR measurement with the oblique angle. 

4.3.2. Hyperbolic Fitting Model 1 (M1) 

This model is graphically represented in Figure 2-9. Within this framework, the 

separation between the transmitter and receiver antennas is not considered, and the 

buried cylindrical object is modeled as a point source. The TTT for the GPR system at 
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position xi and x0, where x0 is the position directly above the target, is denoted by ti and 

t0, respectively. Given the geometry of the scenario and the object orientation, Equation 

1 can be derived through fundamental trigonometric principles: 

 
+

= i
i

D x θ
t

v

2 2
02 ( sin )

,  (4.1) 

where D0 is the buried depth of the target, xi is the distance between the positions of 

antenna, θ is the oblique angle, and v is the EM wave velocity. 

4.3.3. Hyperbolic-like Fitting Model 5 (M5) 

As illustrated in Figure 2-13, Model 5 (M5) extends upon Model 1 (M1) by accounting 

for both the object radius and the separation between the transmitting and receiving 

antennas (He and Lai, 2024). The governing equations for this model are no longer in 

the form of the expression of hyperbolic reflection, thereby termed as hyperbolic for 

convenience, and are expressed as follows: 
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Here, D1 is the distance from the transmitter to the object, D2 is the distance from the 

object to the receiver, r signifies the object radius, and S denotes half of the antenna 

separation between transmitter (TX) and receiver (RX). 

4.3.4. Establishment of Optimization Problems 

Given a set of [D0, v, sin(θ)], the synthetic TTT, ti, can be calculated using different 

hyperbolic fitting equations. The ray-path-based hyperbolic fitting models can then be 

expressed as optimization problems, where the objective is to find the set of parameters 
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[D0, v, sin(θ)] that minimizes the sum of squared differences between the Ti, represents 

the actual TTT collected by GPR, and synthetic TTT, ti, calculated by the hyperbolic 

fitting model. This can be mathematically represented as: 

 
=

−∑
n

i i
i

argmin T t 2

1
( ) .  (4.5) 

The optimization is framed as a problem of minimizing a cost function (Equation (4.5)), 

which quantifies the discrepancy between the measured TTT, Ti, and the TTT ti, 

predicted by the hyperbolic fitting model. 

The MVO (Mirjalili et al., 2016) is a recent optimization algorithm inspired by the 

multiverse theory in cosmology. The algorithm operates by considering multiple 

potential solutions as "universes" and employs three main operations, namely, white 

hole, black hole, and wormhole mechanisms, to navigate the search space and converge 

toward the optimal solution. To avoid local minima and potential optimization plateaus, 

this study employs a hybrid optimization approach that combines MVO and convex 

optimization techniques. Initially, the MVO algorithm, inspired by multiverse theories 

in cosmology and designed to explore diverse potential solutions as 'universes', is 

utilized to globally approximate the optimal parameters. These approximations are 

subsequently refined using the GD method. Importantly, we opted not to include the 

object radius as an optimization parameter, as previous research has indicated that 

hyperbolic fitting algorithms have difficulty estimating object radius with the level of 

accuracy required for practical applications in utility detection (Giannakis et al., 2022). 

Once the buried depth, wave velocity, and object orientation are known, the synthetic 

TTT, ti, can be computed, and consequently the value of Equation (4.5) (cost function 

or C-value) can be calculated. This value serves as an index to evaluate the performance 

of hyperbolic fitting models. A smaller C-value indicates a better match to the detected 

hyperbolic reflection, allowing for quantitative comparison of these models across 

various scenarios. Moreover, the C-value offers a mechanism for investigating the 
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discrepancies between the hyperbolic fitting models and the actual data, without 

requiring consideration of pipe orientation. 

4.4. Numerical Simulation 

In continuation of the simulation efforts from Chapter 3, this section focuses on 

validating the angle-corrected hyperbolic fitting models using gprMax (Warren et al., 

2016), a FDTD simulation software. These simulations specifically assess the impact 

of angle discrepancies on hyperbolic fitting accuracy, exploring how pipe orientation 

influences the model's effectiveness. By precisely manipulating the angles between the 

GPR traverse and subsurface targets, we evaluate the performance of the angle 

correction index introduced in this chapter. This validation not only tests the models 

under controlled conditions but also helps refine their application in real-world 

scenarios, ensuring the reliability and applicability of the proposed methods. 

The simulation models were constructed with varying parameters to represent 

conditions encountered in GPR applications. Two sets of models varied by the radius 

of targets and buried depth, employing the TE mode and a Ricker wavelet with a center 

frequency of 1000 MHz for excitation. This frequency aligns with the effective 

bandwidth of 500-1500MHz typical for GPR, chosen based on findings that antenna 

frequency has minimal impact on hyperbolic fitting accuracy (He and Lai, 2024; Xie et 

al., 2021a, 2022). However, it is important to note that varying antenna frequencies can 

significantly affect the signal's interaction with the environment, particularly through 

mechanisms such as attenuation and scattering, which in turn can influence the visibility 

and shape of hyperbolic reflections. These environmental effects are critical for 

understanding the practical implications of frequency selection in field applications. 

The time window for simulations was set at 30 ns, with a spatial step interval of 0.01 

m. Antenna separation was determined to be 0.1 m, a measure within the limits 

identified in previous studies for maintaining accuracy in hyperbolic fitting models 

without exceeding the practical size of GPR antennas (He and Lai, 2024). This setup 
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facilitates investigations into the effect of antenna separation on parameter estimation 

accuracy. 

The relative permittivity of the host material was set at 5, a value of common ground 

conditions, and selected for its consistent impact on fitting model accuracy across 

varying conditions. This standardization allows for a focused analysis of the model's 

sensitivity to target geometry and positioning. The specific parameters of the simulation 

models are detailed in Table 4-1 and Table 4-2. 

Table 4-1. Simulation models varying in target radius. 

Parameters Simulation models 

1 2 3 4 5 

Radius of target r (m) 0.02 0.05 0.1 0.2 0.3 
Buried depth D (m) 0.9 

 

Table 4-2. Simulation models varying in buried depth. 

Parameters Simulation models 

1 2 3 4 5 

Buried depth D (m) 0.3 0.6 0.9 1.2 1.5 
Radius of target r (m) 0.1 

 

During the simulation, the GPR antenna was fixed to move along the designed lines. 

The scanning lines all passed through the projection of the middle point of the root on 

the ground surface, crossing the root at a specific angle ranging from 0° to 90° at 

intervals of 15°, as can be seen in Figure 4-2. 
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Figure 4-2. Top view of the simulation models and the scanning line. 

Post-processing steps involved setting the time-zero position and picking the hyperbolic 

reflection points. The example results of the GPR radargrams and the corresponding 

picking hyperbolic patterns can be seen in Figure 4-3. 

 

Figure 4-3. Radargrams and corresponding hyperbolic reflection picking results with varying pipe orientations. 

Using the known model parameters, the C-value for various hyperbolic fitting methods 

can be calculated, as shown in Figure 4-4 and Figure 4-5. The C-value serves as a 

performance metric; a lower C-value suggests better matching between the model and 

real-world observations. We also calculated the C-value without correcting the oblique 

angle to assess its impact on the fitting models. 
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Figure 4-4. C-value analysis for simulation models with varying pipe radius. For M1: (a) C-value considering pipe 

orientation; (c) C-value without considering pipe orientation. For M5: (b) C-value considering pipe orientation; (d) 

C-value with varying target radius, without considering pipe orientation. 

 

Figure 4-5. C-value analysis for simulation models with varying buried depth. For M1: (a) C-value considering pipe 

orientation; (c) C-value without considering pipe orientation. For M5: (b) C-value considering pipe orientation; (d) 

C-value with varying target radius, without considering pipe orientation. 
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As illustrated in Figure 4-4(a, b), when the horizontal pipe orientation is disregarded, 

the C-values for both models (across varying target radii) are exceptionally high, 

implying a poor fit to the actual hyperbolic reflections. As the oblique angle increases, 

for example, to 75°, i.e. the pipe alignment is getting close to being parallel to the GPR 

E-filed, the C-value decreases and becomes comparable to those obtained when 

considering the pipe orientation. Regarding the effect of target radius on the models, 

different trends were observed. For M1, the C-value increases as the target radius 

enlarges (Figure 4-4(a, c)), which is attributed to the negligence of this parameter in the 

model. For M5, without considering the pipe orientation, the C-value tends to become 

lower with the increasing radius when the oblique angle is relatively small (Figure 

4-4(b)). When the oblique angle is relatively big, the C-value of different radii becomes 

similar. After angle correction, all C-values notably decrease, suggesting that 

incorporating target radius into the fitting models enhances accuracy. This 

improvement varies depending on the prior information on pipe orientation. 

Similarly, for varying buried depths, the C-values of both models are generally high, 

particularly at smaller oblique angles, such as 15°, 30° and 45°. The varying buried 

depth shows a similar influence to these models. The C-value becomes larger with the 

decreasing depth. This is because the effect of target size and antenna separation on the 

fitting increases as depth decreases, so models that do not take these factors into account 

have increasing C-value. Two outliers (indicated by red arrows) appear when the 

oblique angles are 15° and 30° at a 1.5 m buried depth (Figure 4-5). These outliers are 

attributed to the combined effect of increasing oblique angles and buried depths which 

flatten the hyperbolic patterns. This flattening occurs in a layer where the signal 

sampling rate is inadequate to accurately capture the hyperbolic reflection, resulting in 

elevated C-values. After considering the oblique angle, the C-values for both models 

decrease substantially. When compared to the target radius, buried depth has a more 

significant effect on the C-value, especially when both the oblique angle and depth are 

relatively small. Aside from the sampling rate-induced anomalies, an increase in buried 

depth appears to reduce errors resulting from neglecting pipe orientation. However, in 
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practical applications, greater buried depth might lead to signal attenuation, thereby 

introducing more errors. 

Finally, an analysis based on C-values—without angle corrections—reveals that the 

impact of oblique angle on hyperbolic reflections is not linear. For equal angle changes, 

the effect is much more prominent at smaller angles compared to larger ones, which 

could impact parameter estimation using the methods presented in this chapter. 

 
M1 M5
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Figure 4-6. Errors in parameter estimation for simulation models with varying radius and pipe orientation. Ea – 

Errors in estimated pipe orientation; Ed – Errors in estimated depth; Ev – Errors in estimated wave velocity. 

In Figure 4-6, the efficacy of the combined optimization algorithm—previously 

explained—is assessed for both M1 and M5 under varying target radii and oblique 

angles. The results indicate a direct correlation between smaller oblique angles and 

elevated estimation errors for both angle and depth parameters. For M5, it is noteworthy 

that estimation errors across all evaluated parameters—namely, orientation angle, 

buried depth, and wave velocity—converge within an acceptable 10% error margin 

when the oblique angle is greater than 45°. Contrary to M1, M5 manifests a diminished 

sensitivity to target radius variation, validated by a consistent performance in error rates. 

In M1, however, there is a discernible escalation in the error as the target radius 

increases. Interestingly, at target radii below 0.1 meters, like concrete rebars, both 

models provide comparable estimation accuracies, rendering either model viable for 

applications necessitating precise parameter estimations at such dimensions. The 

empirical data for M5 exhibit a marked uniformity in the optimization errors for both 

depth and velocity parameters, across varied target radii and oblique angles. This 

strongly implies an inherent robustness in the ability of M5 to estimate these parameters 

accurately. 

In summation, the results depicted in Figure 4-5 provide clear evidence M5 is 

preferentially advantageous for achieving accurate and less radius-dependent parameter 

estimations, particularly when the oblique angle surpasses 45°. As can be observed, 

when the angle is less than 45°, the C-values for both hyperbolic models are quite high. 

As the angle exceeds 45 degrees, the C-value for M5 becomes significantly lower than 

that for M1, and it continues to stabilize as the angle increases further. The observations 

collectively corroborate the utility of the combined optimization algorithm in 

facilitating precise parameter estimations across a diversified set of conditions. 
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Figure 4-7. Errors in parameter estimation for simulation models with varying depth and pipe orientation. Ea – 

Errors in estimated pipe orientation; Ed – Errors in estimated depth; Ev – Errors in estimated wave velocity. 

Figure 4-7 shows the impact of varying burial depths on the precision of parameter 

estimation, specifically in terms of pipe orientation, depth, and wave velocity, for both 

M1 and M5. Consistent with previous observations, estimation accuracy is inversely 

proportional to the size of the oblique angles for both M1 and M5. Remarkably, M1 

M1 M5
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manifests a pronounced sensitivity to changes in burial depth. The results indicate a 

degeneration in the estimation accuracy for all parameters as the burial depth 

diminishes. This degradation can be postulated to arise due to the relative increase in 

the target radius at shallower depths, a parameter not explicitly accounted for in M1. 

M5, in contrast, exhibits robust performance at oblique angles greater than 30°, 

irrespective of the burial depth. Both models tend to exhibit enhanced performance at 

greater burial depths. Specifically, when targets located at depths at a comparatively 

larger depth, i.e. 1.5 meters, the optimization error for both models tends to diminish, 

even at oblique angles as narrow as 30°. In summary, Figure 4-7 substantiates that the 

performance of M1 is acutely contingent upon the burial depth, unlike M5, which 

maintains a more consistent estimation accuracy across different burial depths and 

oblique angles. This evidential disparity reiterates the relative robustness of M5 in 

scenarios requiring versatile and depth-invariant parameter estimation. The results 

further show the utility of larger burial depths in enhancing the estimation precision for 

both models, a reference for subsurface applications. 

The primary objectives of the numerical simulations in this chapter extend beyond a 

mere quantitative comparison of M1 and M5. The simulations are designed not only to 

assess the impact of varying parameters—such as target radius and burial depth—on 

these models but also to validate the effectiveness of the proposed combined 

optimization method, particularly in the context of pipe orientation estimation. The 

results confirm that M5, which incorporates target radius into its algorithm, consistently 

outperforms M1 when dealing with variations in target radius and burial depth. This 

contrast becomes increasingly evident as M1, which assumes targets to be point sources, 

accrues greater estimation errors under these conditions. Furthermore, both models 

display sensitivity to oblique angles; however, M5 is generally more robust, 

maintaining a satisfactory performance level even under suboptimal conditions. 

Therefore, based on our simulation data, M5 is recommended for scenarios where 

hyperbolic parameters can be reliably estimated. On the other hand, M1 still offers 

acceptable performance when the target radius is relatively small. 
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It is important to acknowledge the limitation that signal attenuation was not considered 

in these simulations. This represents a significant deviation from real-world, field-based 

experiments and could potentially affect the applicability and behavior of both models 

in practical settings. Finally, the simulation results lend strong support to the 

effectiveness of the combined optimization method, particularly in estimating pipe 

orientation alongside burial depth and wave velocity. This validation reinforces the 

proposed method as a valuable tool for comprehensive parameter estimation, especially 

in the term of pipeline management. These simulation outcomes set the stage for the 

subsequent field testing and verification, thereby providing holistic proof upon which 

to assess the proposed models and optimization methods under real-world conditions. 

4.5. Field Experiments 

4.5.1. Experimental Setup and Data Acquisition 

To evaluate the applicability and precision of the proposed optimization method under 

real-world conditions, a field experiment was carried out at a test site constructed by 

IFSTTAR in France (Derobert and Pajewski, 2018; Dérobert and Pajewski, 2018). The 

experimental setup consisted of three trenches, each filled with varying compositions 

of silt, sand, and gravel. Within each trench, nine pipes were systematically buried 

across three distinct depth layers. Each layer housed a set of three pipes: an air-filled 

PVC pipe, a water-filled PVC pipe, and a metal pipe, all aligned parallel to each other. 

Figure 4-8 illustrates the spatial arrangement of these pipes both in plan and section 

views. 

The study focused on metal pipes with a radius of 0.04 m, which were buried at 1.184 

m, 1.659 m, and 2.395 m deep within the sand-filled trench. These metal pipes were 

anticipated to yield discernible curved reflections suitable for analysis. Data acquisition 

was executed using a GSSI 4000 control unit coupled with GSSI antennas operating at 

nominal center frequencies of 270 MHz and 400 MHz. Consistent with the simulation 

settings, six GPR traverses were devised to scan each metal pipe. These traverses were 

incrementally rotated around a fixed pivot from oblique angles of 15° to 90°, in 15° 
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intervals. Figure 4-9 presents the reflection profiles of a metal pipe buried at different 

within the sand trench, as captured from various oblique angles. It shall be noted that 

the gain was only applied for visualization. 

 

Figure 4-8. Geophysical test site at IFSTTAR, Nantes, France. 
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Figure 4-9. Metal pipe reflections in 1.184 m (a), 1.659 m (b), and 2.395 m (c), from 15° to 90° oblique angles in 

sand trench. 
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4.5.2. Hyperbolic Reflection Analysis 

Utilizing the peak-echo extraction method previously described, hyperbolic reflections 

were successfully extracted. Figure 4-10 displays the reflections of the metal pipe, 

buried at a depth of 2.395 m, captured at varying oblique angles using a 270 MHz 

antenna. A discernible trend emerges: as the oblique angle increases, the curvature of 

the hyperbolic reflection flattens. This empirical observation is congruent with both the 

simulation results and extant literature on the subject (Lai et al., 2016b; Liu et al., 2018; 

Xie et al., 2018). 

 
Figure 4-10. Reflections of the metal pipe in 2.395 m at different oblique angles in 270 MHz antenna. 

4.5.3. Parameter Estimation and Model Performance 

 Parameter Estimation Methodology 

Transitioning to parameter estimation, the combined optimization approach proposed 

earlier was employed to estimate the pipe orientation, depth, and wave velocity. Figure 

4-11 and Figure 4-12 exhibit the errors in estimating these parameters when using 270 

and 400 MHz antennas, respectively. The detailed information is shown in Table 4-3 

and Table 4-4. To evaluate the performance and reliability of hyperbolic fitting models, 

we employed two widely accepted statistical metrics: Mean Absolute Error (MAE) and 

Root Mean Square Error (RMSE). MAE measures the average magnitude of the errors 
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between predicted and observed values, without considering the direction of the error. 

It provides an easily interpretable, linear score that directly indicates the average error 

in the units of the parameter being estimated. RMSE, on the other hand, gives a sense 

of the error distribution's spread and penalizes larger errors more severely due to the 

squaring of individual error terms. The choice of using both MAE and RMSE stems 

from their complementary attributes. While MAE offers a straightforward and easily 

understandable measure of model performance, RMSE provides a more nuanced view 

by emphasizing larger errors. Together, these metrics provide a comprehensive 

assessment of model accuracy and robustness, which we present in Table 4-5 (for MAE) 

and Table 4-6 (for RMSE). 

 Estimation Results and Analysis 

As evident from the results, when the oblique angle exceeds 30°, the proposed method 

demonstrates commendable accuracy in estimating both pipe orientation and depth. In 

such scenarios, the estimation accuracy is subject to a variety of factors including depth, 

GPR center frequency, and the chosen hyperbolic fitting model. Importantly, the 

influence of depth on parameter estimation diverges between field experiments and 

simulations. In field conditions, contrary to what was found in simulation results, 

increasing depth does not improve estimation accuracy but tends to diminish it. This 

decline in accuracy is likely due to signal attenuation and scattering at greater depths, a 

phenomenon visible in Figure 4-9 and Figure 4-10. Such noise in the data predictably 

lowers the accuracy of parameter estimations. 

According to Table 4-5 (MAE) and Table 4-6 (RMSE), M5 generally demonstrates 

lower errors in angle estimation across both 270 MHz and 400 MHz frequencies. 

However, the results for depth estimation are mixed, confirming the complex interplay 

between depth and estimation accuracy. This subtle behavior is especially pronounced 

in field experiments. 
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 Implications and Parameter Influences 

Moreover, as depth increases, both M1 and M5 demonstrate a decline in the accuracy 

of pipe orientation estimation, while surprisingly showing better results for depth 

estimation. This suggests a differential impact of burial depth on the accuracy of 

estimating various parameters, such as orientation and depth. When comparing M1 and 

M5, the latter shows a slight edge in overall accuracy. This minor improvement may be 

attributed to the consideration of pipe radius and antenna separation of M5. However, 

the impact of these factors is less pronounced in field experiments where the radius and 

separation are relatively small compared to the burial depth (r = 0.04 m, S = 0.1 m). 

Our observations from Table 4-5 and Table 4-6 also highlight that operating at a higher 

frequency of 400MHz tends to reduce angle-estimation errors. This could be an 

essential parameter for consideration in future experimental setups. 

For oblique angles that are relatively small, such as 15° and 30°, the error in estimating 

pipe orientation is considerably higher than for depth estimation. A plausible 

explanation for this divergence in error rates lies in the small values of the angle 

correction index 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃), e.g., 𝑠𝑠𝑠𝑠𝑠𝑠(15°) = 0.2588. Here, even a small absolute error 

leads to a significant relative error. Furthermore, the term 𝑥𝑥 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) in the hyperbolic 

equations becomes negligible at small angles, minimizing its overall impact on 

parameter estimation. As a result, unlike angle estimation, parameters like depth and 

wave velocity are estimated with relatively low errors. 

The consistency between MAE and RMSE as shown in Table 4-5 and Table 4-6 

indicates that both metrics broadly support the same conclusions about model 

performance and the influence of various parameters. The RMSE is higher than the 

MAE in most cases, suggesting the influence of outliers or large errors, which could be 

influenced by the large error at a small oblique angle. 
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Figure 4-11. Errors of parameter estimation of field experiments using 270 MHz antenna. Ea – Errors in estimated 

pipe orientation; Ed – Errors in estimated depth; Ev – Errors in estimated wave velocity. 

M1 M5
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Figure 4-12. Errors of parameter estimation of field experiments using 400 MHz antenna. Ea – Errors in estimated 

pipe orientation; Ed – Errors in estimated depth; Ev – Errors in estimated wave velocity. 

  

M1 M5
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Table 4-3. Parameter estimation results using 270 MHz GPR. Est. O, Est. D, and Est. V are the estimated pipe 

orientation Sin(θ), buried depth D, and wave velocity V, respectively. Abs. Err. O and Err. O (%) are the absolute 

error of the estimation of the pipe orientation Sin(θ), and the corresponding percentage error, respectively. 

Angle 

(°) 
Sin(θ) 

Depth 

(m) 

M1 M5 

Est. 

O 

Est. 

D 

Est. 

V 

Abs. 

Err. 

 

Err. O 

(%) 

Abs. 

Err. D 

Err. D 

(%) 

Est. 

O 

Est. 

D 

Est. 

V 

Abs. 

Err. 

 

Err. O 

(%) 

Abs. 

Err. D 

Err. 

D (%) 

15 0.259 
1.184 0.334 1.143 0.126 0.075 29.094 0.041 3.439 0.337 1.122 0.125 0.078 30.182 0.062 5.204 

1.659 0.343 1.633 0.126 0.084 32.526 0.026 1.547 0.321 1.739 0.134 0.062 23.953 0.080 4.814 

2.395 0.359 2.397 0.126 0.100 38.764 0.002 0.080 0.330 2.511 0.133 0.071 27.500 0.116 4.856 

30 0.500 

1.184 0.532 1.143 0.124 0.032 6.416 0.041 3.500 0.536 1.120 0.123 0.036 7.150 0.064 5.412 

1.659 0.522 1.616 0.122 0.022 4.332 0.043 2.601 0.532 1.620 0.123 0.032 6.360 0.039 2.381 

2.395 0.536 2.440 0.127 0.036 7.130 0.045 1.872 0.533 2.404 0.125 0.033 6.647 0.009 0.362 

45 0.707 

1.184 0.723 1.294 0.131 0.015 2.179 0.110 9.332 0.711 1.246 0.126 0.004 0.613 0.062 5.203 

1.659 0.635 1.706 0.122 0.072 10.166 0.047 2.860 0.665 1.760 0.126 0.042 5.932 0.101 6.080 

2.395 0.681 2.417 0.124 0.026 3.702 0.022 0.937 0.660 2.316 0.118 0.048 6.726 0.079 3.298 

60 0.866 

1.184 0.796 1.286 0.126 0.070 8.086 0.102 8.608 0.870 1.148 0.113 0.004 0.447 0.036 3.041 

1.659 0.818 1.593 0.117 0.048 5.575 0.066 4.003 0.823 1.577 0.117 0.043 4.958 0.082 4.940 

2.395 0.793 2.419 0.124 0.073 8.375 0.024 1.021 0.802 2.419 0.124 0.064 7.445 0.024 1.000 

75 0.966 

1.184 0.954 1.274 0.122 0.012 1.216 0.090 7.616 0.916 1.197 0.115 0.050 5.132 0.013 1.093 

1.659 0.949 1.775 0.126 0.017 1.752 0.116 6.986 0.934 1.723 0.122 0.032 3.270 0.064 3.862 

2.395 0.951 2.547 0.131 0.014 1.497 0.152 6.364 0.936 2.481 0.128 0.030 3.133 0.086 3.596 

90 1.000 

1.184 0.962 1.167 0.124 0.038 3.826 0.017 1.418 0.964 1.170 0.115 0.036 3.614 0.014 1.210 

1.659 0.974 1.686 0.124 0.026 2.608 0.027 1.627 0.966 1.743 0.114 0.034 3.439 0.084 5.049 

2.395 0.934 2.385 0.116 0.066 6.573 0.010 0.419 0.954 2.410 0.117 0.046 4.619 0.015 0.630 

 

Table 4-4. Parameter estimation results using 400 MHz GPR. 

Angle 

(°) 
Sin(θ) 

Depth 

(m) 

M1 M5 

Est. 

O 

Est. 

D 

Est. 

V 

Abs. 

Err. O 

Err. O 

(%) 

Abs. 

Err. D 

Err. D 

(%) 

Est. 

O 

Est. 

D 

Est. 

V 

Abs. 

Err. O 

Err. O 

(%) 

Abs. 

Err. D 

Err. D 

(%) 

15 0.259 

1.184 0.290 1.197 0.128 0.031 29.094 0.013 1.092 0.310 1.261 0.135 0.051 30.182 0.077 6.465 

1.659 0.331 1.731 0.131 0.073 32.526 0.072 4.313 0.336 1.730 0.131 0.077 23.953 0.071 4.259 

2.395 0.417 2.190 0.117 0.158 38.764 0.205 8.571 0.437 2.271 0.121 0.178 27.500 0.124 5.182 

30 0.500 

1.184 0.537 1.160 0.122 0.037 6.416 0.024 2.060 0.527 1.114 0.118 0.027 7.150 0.070 5.924 

1.659 0.543 1.717 0.127 0.043 4.332 0.058 3.506 0.542 1.693 0.125 0.042 6.360 0.034 2.046 

2.395 0.583 2.279 0.117 0.083 7.130 0.116 4.849 0.543 2.491 0.128 0.043 6.647 0.096 4.013 

45 0.707 

1.184 0.690 1.172 0.117 0.017 2.179 0.012 1.043 0.675 1.123 0.113 0.032 0.613 0.061 5.188 

1.659 0.639 1.643 0.117 0.068 10.166 0.016 0.967 0.669 1.698 0.121 0.038 5.932 0.039 2.353 

2.395 0.683 2.406 0.123 0.024 3.702 0.011 0.444 0.663 2.316 0.119 0.044 6.726 0.079 3.284 

60 0.866 

1.184 0.842 1.262 0.121 0.024 8.086 0.078 6.577 0.826 1.214 0.117 0.040 0.447 0.030 2.565 

1.659 0.868 1.680 0.123 0.002 5.575 0.021 1.286 0.860 1.644 0.121 0.006 4.958 0.015 0.887 

2.395 0.792 2.376 0.122 0.074 8.375 0.019 0.800 0.829 2.354 0.121 0.037 7.445 0.041 1.695 

75 0.966 

1.184 0.951 1.279 0.120 0.015 1.216 0.095 8.059 0.948 1.253 0.118 0.018 5.132 0.069 5.866 

1.659 0.951 1.795 0.126 0.015 1.752 0.136 8.221 0.957 1.785 0.125 0.009 3.270 0.126 7.618 

2.395 0.952 2.305 0.118 0.014 1.497 0.090 3.756 0.958 2.298 0.118 0.008 3.133 0.097 4.054 

90 1.000 

1.184 0.955 1.116 0.119 0.045 3.826 0.068 5.730 0.934 1.069 0.114 0.066 3.614 0.115 9.682 

1.659 0.968 1.666 0.122 0.032 2.608 0.007 0.416 0.949 1.612 0.118 0.051 3.439 0.047 2.858 

2.395 0.906 2.311 0.112 0.094 6.573 0.084 3.496 0.950 2.399 0.117 0.050 4.619 0.004 0.176 
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Table 4-5. Mean Absolute Error (MAE) of the optimized results. 

Frequency 
(MHz) 

Depth 
(m) 

M1 M5 

Err. O Err. D 
Err. D 
(%) 

Err. O Err. D 
Err. D 

(%) 

270 
1.184 0.040 0.067 5.652 0.035 0.042 0.739 
1.659 0.045 0.054 3.271 0.041 0.075 2.293 
2.395 0.052 0.043 1.782 0.049 0.055 3.078 

400 
1.184 0.028 0.048 4.094 0.039 0.070 1.720 
1.659 0.039 0.052 3.118 0.037 0.055 1.775 
2.395 0.075 0.087 3.653 0.060 0.073 2.011 

 

Table 4-6. Root Mean Square Error (RMSE) of the optimized results. 

Frequency 
(MHz) 

Depth 
(m) 

M1 M5 
RMSE O RMSE D RMSE O RMSE D 

270 
1.184 0.047 0.076 0.043 0.047 
1.659 0.052 0.062 0.042 0.077 
2.395 0.060 0.066 0.051 0.068 

400 
1.184 0.030 0.059 0.042 0.075 
1.659 0.046 0.068 0.044 0.066 
2.395 0.088 0.109 0.081 0.084 

 

 

4.6. Summary and Contribution 

This chapter has shown the significance of hyperbolic fitting as an essential technique 

for estimating various parameters from the hyperbolic reflections of cylindrical objects, 

emphasizing the critical role of target orientation in enhancing the precision of these 

estimations. The contributions of this research are substantial, offering novel 

methodologies and insights into the complexities of parameter estimation using GPR: 

1. The value of cost function (C-value) is used to quantitatively evaluate the 

impact of pipeline orientation on hyperbolic curves and fitting models. This 

analysis not only provides a deeper understanding of how orientation affects 

fitting precision but also introduces a robust metric for the evaluation and 

optimization of hyperbolic fitting methods. 
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2. Based on the established cost function, this study introduces a hybrid 

optimization approach that simultaneously estimates pipeline orientation, depth, 

and wave velocity, enhancing the applicability and accuracy of GPR data 

analysis. This method is operationalized through two distinct models: Model 1, 

which functions independently of prior information, and Model 5, which 

requires knowledge of target radius and antenna separation for enhanced 

accuracy. The effectiveness of these methods has been corroborated through 

comprehensive simulation and field experiments. 

3. The research extends to a quantitative examination of how different pipeline 

radii and burial depths at various oblique angles influence the generation of 

hyperbolic curves. This investigation enriches the understanding of the factors 

that impact parameter estimation accuracy, thereby augmenting the robustness 

and reliability of the proposed fitting techniques. In the next chapter, another 

important factor of concern—wave velocity estimation in multi-layer media—

is addressed, extending our investigation into increasing accuracy of parameter 

estimation under heterogenous subsurface conditions. 
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5. Chapter 5: Depth-Weighted Velocity Correction: Approach to 

Hyperbolic Fitting in Multi-Layered GPR Surveys 

5.1. Chapter Overview 

Following the developments of models discussed in previous chapters on hyperbolic 

fitting techniques and the integration of angle correction for improved parameter 

estimation, this chapter introduces a novel depth-weighted velocity correction 

algorithm that enhances the accuracy of velocity estimations within such complex 

layered media using hyperbolic fitting. Commonly, GPR hyperbolic fitting techniques 

operate under the assumption that the subsurface environment is homogeneous, an 

assumption that is frequently invalidated by the complexity encountered in actual field 

conditions. The utility of proposed algorithm spans not only improving the localization 

of subsurface utilities but also refining the characterization of material properties, 

including dielectric attributes and moisture content assessments. Designed to be 

adaptable across various hyperbolic models, the algorithm leverages available data on 

target radius and antenna separation, ensuring broad applicability. Through 

comprehensive numerical simulations and targeted laboratory experiments, which 

include a sensitivity analysis of the algorithm's parameters, the method's effectiveness 

is validated.  

5.2. Introduction 

Hyperbolic fitting techniques in GPR typically assume homogeneity in the surveyed 

area, a presumption that often does not hold in complex field conditions. This 

assumption introduces significant errors in velocity estimations when encountering 

heterogeneous layers such as multi-layered road surfaces or tunnel linings (Zhao and 

Al-Qadi, 2016; Zhu et al., 2024). Traditional methods do not effectively address the 

variations in dielectric properties across different layers, leading to inaccurate 

subsurface characterizations. 
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In fields like extraterrestrial exploration where GPR is employed, the use of air-coupled 

antennas introduces air as an intermediary medium, further complicating hyperbolic 

fitting results for sub-surface wave velocity estimations. Although specialized 

algorithms have been developed to correct these distortions, they remain rarely in 

engineering contexts and are often too complex and computationally intensive for 

practical engineering applications (Liu et al., 2023; Persico et al., 2015; Rappaport, 

2007). 

To mitigate these challenges, this chapter presents a novel depth-weighted velocity 

correction algorithm designed to refine wave velocity estimations within heterogeneous 

media. This simple yet effective algorithm adjusts velocity estimations to better reflect 

the layered media conditions found in typical GPR surveys, enhancing the accuracy of 

hyperbolic fitting methods. Validated through extensive numerical simulations and 

laboratory experiments, this algorithm addresses the inaccuracies in traditional 

hyperbolic fitting methods (M1 and M5) in previous chapters and extends its 

application to more complex and practical engineering scenarios, promoting its 

adoption for terrestrial and extraterrestrial subsurface explorations. 

5.3. Methodology 

The workflow of the proposed method is illustrated in Figure 5-1. The process begins 

with data pre-processing to correct the raw GPR signals, which includes time-zero 

correction, Dewow, and DC-shift removal. Subsequently, it is essential to determine 

the thickness and relative permittivity of the overlaying layers. These parameters can 

be obtained through various methods depending on the experimental setup: the 

extended common midpoint method (XCMP) is primarily used in simulation 

experiments, while direct measurements and the reflected-amplitude method are 

utilized in field experiments. Alternatively, these parameters can also be sourced from 

reference tables or construction documents. This flexibility in method selection helps 

accommodate the different practical constraints and data availability in each scenario. 

Following parameter determination, hyperbolic reflections are identified and optimized, 
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facilitating the estimation of the total burial depth and the bulk velocity influenced by 

all layers. Finally, the depth-weighted velocity correction is applied, adjusting the EM 

wave velocity and the corresponding relative permittivity for the layer containing the 

target object. 

 

Figure 5-1. Procedure of the proposed method. 

5.3.1. Extended Common Midpoint Method (XCMP) 

The CMP method is one of the multi-offset profile data processing techniques originally 

developed in the seismic field (Schneider, 1984; Annan, 2004). Leng and Al-Qadi 

(Leng and Al-Qadi, 2014), and Zhao and Al-Qadi (Zhao and Al-Qadi, 2016) developed 

this method and introduced it to GPR detection. The basic setup of the XCMP method 

and the corresponding geometry using two bistatic systems can be seen in Figure 5-2. 

T1/R1 and T2/R2 are the transmitter/receiver pairs for Channel 1 (CH1) and Channel 2 

(CH2), respectively. The antenna separations for CH1 and CH2 are S1 and S2, 

respectively. Both antenna pairs share the same midpoints, P1 and P2. 𝜀𝜀0, 𝜀𝜀1, and 𝜀𝜀2 

are the relative permittivity of air, layer 1 and layer 2, respectively, and 𝜈𝜈0, 𝜈𝜈1, and 𝜈𝜈2 

are the corresponding EM wave velocity. H1 and H2 are the thickness of layer 1 and 

layer 2, respectively. t1 and t2 are the time EM wave travels in the layer 2 for CH1 and 

CH2, respectively. 

Data Pre-
processing

Overlay 
Characterization Hyperbolic fitting Depth-weight 

correction
• Time-zero correction
• Dewow
• DC-Shift Removal

• XCMP
• Reflected-amplitude
• As-Built

• Estimate the burial
depth of the target and
the effective velocity

• Estimate the EM wave
velocity and relative
permittivity of the layer
containing target
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Figure 5-2. XCMP setup and geometry using two bistatic GPR systems: (a) reflection in a single layer; and (b) 

reflection and refraction in double layers. 

The XCMP problem has four unknowns: the thickness (H1 and H2) and relative 

permittivity (𝜀𝜀1 and 𝜀𝜀2) of two layers. Obtaining bottom reflection times at layer 1 and 

layer 2 from two channels can fully determine the four unknowns. Based on Snell’s 

Law of reflection and refraction, thickness and relative permittivity can be expressed 

as: 
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where 𝑡𝑡11 and 𝑡𝑡21 are the EM wave travel times in from T1 and T2 to R1 and R2 in 

layer 1, respectively (Figure 5-2 (a)), 𝑐𝑐0 = 3×108 m/s is the EM waves velocity in 

vacuum. It shall be noted that the above equations do not work when total reflection 

occurs or antenna separation is too large. 

The solution of the thickness and relative permittivity of layer 2 is derived as: 
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where 𝛥𝛥𝑡𝑡1 and 𝛥𝛥𝑡𝑡2 are the time difference of the EM wave between the reflections 

at bottoms of layer 1 and layer 2 for CH1 and CH2, respectively, as shown in Figure 

5-2 (b). 𝑥𝑥1 and 𝑥𝑥2 are the distances between the incidence point and reflection point 

of CH1 and CH2, respectively. The detailed equation of the derivation process can refer 

to the literature (Leng and Al-Qadi, 2014). It shall be noted that if the layer is relatively 

smaller than the wavelength, 𝛥𝛥𝑡𝑡1  and 𝛥𝛥𝑡𝑡2  may not be resolved due to pulse 

overlapping (Zhao and Al-Qadi, 2016). 
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From Equation (5.4) to Equation (5.7), four unknown 𝑥𝑥1, 𝑥𝑥2, 𝑡𝑡1 and 𝑡𝑡2 may be 

resolved numerically. The thickness and relative permittivity of layer 2 then can be 

determined by: 
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5.3.2. Depth-weighted Velocity Correction 

Utilizing hyperbolic reflection models 1 (M1) and 5 (M5) developed in Section 2.5, this 

section applies a global optimization algorithm based on the MVO to estimate 

electromagnetic (EM) wave velocity and burial depth for cylindrical targets. Equation 

(3.8) facilitates the calculation of media's relative permittivity, which aids in predicting 

the water content within various layers. However, these models inherently assume 

medium homogeneity within each layer—an assumption often contradicted in complex 

scenarios like pipelines beneath layered structures such as asphalt or tunnel linings. In 

such cases, traditional estimates reflect a bulk velocity, influenced by the composite 

effects of all encountered layers. To address these discrepancies and enhance the 

precision of subsurface utility detections, this section introduces a depth-weighted 

velocity correction method. This method adjusts the bulk wave velocity from 

hyperbolic fitting to better represent the actual EM wave velocity or relative 

permittivity of the layer surrounding the targets, ensuring that GPR survey results align 

more closely with real-world conditions. 

The proposed method, termed the depth-weighted velocity correction algorithm, 

advances the interpretation of bulk wave velocity by considering the distinct 

contributions of each layer. The algorithm assumes that the bulk wave velocity is a 

depth-weighted average of the velocities corresponding to each layer, a concept 
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formulated on the premise that the proportional distance traveled by EM waves through 

each layer aligns with the layer's relative thickness. This relationship is mathematically 

captured by the equation: 
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where 𝑣𝑣𝑒𝑒 is the bulk velocity estimated by the hyperbolic fitting through M1 and M5, 

𝐻𝐻 is the burial depth of the round-shaped target, 𝐻𝐻𝑖𝑖 and 𝑣𝑣𝑖𝑖 are the thickness and the 

EM wave velocity of the ith layer, respectively. 

Therefore, utilizing the bulk velocity 𝑣𝑣𝑒𝑒 and burial depth 𝐻𝐻 estimated by hyperbolic 

fitting, with the thickness and wave velocity of the overlying layers predicted by the 

XCMP method, the wave velocity in the layer where the target is located, 𝑣𝑣𝑛𝑛, can be 

determined using the following equations: 
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where 𝐻𝐻𝑛𝑛 represents the thickness of the layer containing the target. 

Incorporating this depth-weighted correction into GPR data analysis largely reduces the 

inaccuracies introduced by inhomogeneous media and boosts the reliability of 

geophysical assessments across various environmental settings. The efficacy of this 

approach is supported by validation through both controlled simulations and laboratory 

experiments.  

5.4. Numerical Simulation 

Similar to Chapters 3 and 4, the numerical simulation was also conducted using gprMax. 

The simulations were organized into two groups based on the number of overlying 

layers—single and double layers, respectively. To investigate the influence of layer 
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thickness and dielectric properties on the algorithm, two-parameter variation schemes 

were implemented: one varying the thickness while holding the relative permittivity 

constant, and another varying the relative permittivity while maintaining consistent 

thickness across the layers. The specific parameters for these schemes are detailed in 

Table 5-1 and Table 5-3. For all simulations, the TE mode was chosen, and a Ricker 

wavelet with a 1.5 GHz center frequency was used for excitation. To minimize 

dispersion effects and facilitate the selection of layer reflection signals via the XCMP 

method, the wavelength of the excitation signal was ensured to be less than the 

thickness of any layer (Zhao and Al-Qadi, 2016). The simulations were conducted over 

a 30 ns time window with a 0.01 m step interval. The separation distances for T1/R1 

and T2/R2 were set to 0.1 m and 0.2 m, respectively. 

5.4.1. Single Overlying Layer Cases 

Following the two schemes described previously, the thickness and relative permittivity 

were varied independently to explore their impacts on the proposed methods. The 

specific simulation parameters are detailed in Table 5-1. In this group, four sets of 

parameters were established, generating eight distinct cases, as illustrated in Figure 5-3. 

Table 5-1. Parameters for single overlying layer simulation cases. Case Num. is the number of the case. P_1 and 

P_2 are the relative permittivity of layer 1 and the layer enveloping the target, respectively. H_1 and H_2 are the 

thicknesses of layer 1 and the layer enveloping the target, respectively. 

Case Num. P_1 P_2 H_1 (m) H_2 (m) 

1 2 20 

0.3 0.7 2 3 8 
3 4 7 

4 5 6 

5 

3 8 

0.2 0.8 
6 0.3 0.7 

7 0.4 0.6 
8 0.5 0.5 
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Figure 5-3. The simulations cases with a single overlying layer. 

Following the workflow detailed in Section 5.3, the wave velocity of the media 

containing the target can be obtained. The parameter-estimation results from the cases 

with varying relative permittivity and layer thickness are shown in Table 5-2. 
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Table 5-2. Parameter estimation results of two hyperbolic fitting models in the single layer simulations. Model is 

the number of the hyperbolic model. The case represents the number of simulation cases (Figure 5-3). Vt is the 

import value of the EM wave velocity in the layer containing the target. Ve is the bulk velocity estimated by the 

hyperbolic fitting and Err_Ve is the corresponding percentage error. CV is the velocity corrected by the proposed 

method (Equation (3.17)) and Err_CV is the corresponding percentage error. H is the total depth estimated by 

hyperbolic fitting and Err_H is the corresponding percentage error. 

Model Case 
Vt 

(m/ns) 

Ve 

(m/ns) 

Err_Ve 

(%) 

CV 

(m/ns) 

Err_CV 

(%) 
H (m) 

Err_H 

(%) 

1 

1 0.0670 0.1099 63.94 0.0796 18.81 1.3123 31.23 

2 0.1060 0.1318 24.35 0.1164 9.79 1.1028 10.28 

3 0.1133 0.1309 15.52 0.1235 9.02 1.0739 7.39 

4 0.1224 0.1331 8.75 0.1327 8.43 1.0616 6.16 

2 

1 0.0670 0.1060 58.12 0.0731 8.98 1.2652 26.52 
2 0.1060 0.1265 19.34 0.1080 1.93 1.0574 5.74 
3 0.1133 0.1255 10.75 0.1155 1.89 1.0289 2.89 
4 0.1224 0.1275 4.17 0.1247 1.92 1.0164 1.64 

1 

5 

0.1060 

0.1261 18.97 0.1157 9.13 1.1017 10.17 

6 0.1318 24.35 0.1164 9.79 1.1028 10.28 

7 0.1376 29.82 0.1173 10.69 1.1002 10.02 

8 0.1436 35.48 0.1188 12.11 1.0952 9.52 

2 

5 0.1210 14.16 0.1088 2.68 1.0562 5.62 
6 0.1265 19.34 0.1080 1.93 1.0574 5.74 
7 0.1320 24.53 0.1069 0.86 1.0549 5.49 
8 0.1377 29.91 0.1055 0.45 1.0498 4.98 

 

To analyze the parameter estimation results further, the percentage errors of the bulk 

and corrected velocities were depicted in Figure 5-4. The results reveal that M1 and M5 

display similar trends: the error in bulk velocity significantly decreases as the disparity 

in dielectric properties between the two media layers reduces. For instance, in 

simulation case 1, where the dielectric contrast between layers is substantial (relative 

permittivity of 2 and 20), the errors in bulk wave velocity were as high as 63.94% and 

58.12%, respectively. In contrast, in scenarios with minimal dielectric differences 

(relative permittivity of 5 and 6), the errors dropped to 8.75% and 4.17%, respectively. 

M5 consistently demonstrated higher accuracy across all simulation cases, a benefit 
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derived from including variables such as target radius and antenna separation in its 

calculations (He and Lai, 2024). 

The comparison of the corrected results indicates a significant reduction in error for 

both models under various simulation conditions. Specifically, in simulation case 1, 

which displayed the highest initial errors, the correction algorithm reduced the error for 

M1 from 63.94% to 18.81% and for M5 from 58.12% to 8.98%. In simulation cases 3-

5, while the corrected error rates exhibited minor fluctuations corresponding to changes 

in dielectric properties between layers, they remained relatively stable—M1 averaged 

around 9% and M5 around 2%. This pattern indicates that the impact of dielectric 

property differences on the algorithm’s performance is more substantial when these 

differences are significant. As these disparities reduce, their influence on the accuracy 

of the proposed algorithm correspondingly diminishes. The variance in correction 

efficacy can be explained by the theoretical foundations underlying the proposed 

velocity correction method. This method assumes that the wave propagates along a 

straight line in an inhomogeneous medium. According to Snell's law, as depicted in 

Figure 5-2, when there is a greater disparity between the dielectric properties of the 

upper and lower layers of the medium, the actual wave propagation route deviates more 

significantly from the hypothetical straight line. Consequently, the error associated with 

the correction increases. Conversely, when the disparity between the dielectric 

properties is smaller, the actual wave propagation path aligns more closely with the 

assumed straight line, resulting in a smaller correction error. 
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Figure 5-4. Percentage error in velocity estimations with and without correction across models (a) M1 and (b) M5 

for single-layer cases with varying relative permittivity. 

In the analysis of single overlying layer cases, we examined how variations in layer 

thickness affect the performance of the proposed algorithm. As shown in Figure 5-5, 

both M1 and M5 exhibit a nearly linear increase in the error of bulk wave velocity as 

the thickness of the media layers becomes comparable. This trend highlights the 

significant influence of media thickness on velocity estimations, underscoring the 

robustness of the proposed method. Notably, M5 consistently delivered superior 

accuracy across all simulations. 

Figure 5-5 also illustrates notable improvements in the error associated with the 

corrected wave velocity compared to the uncorrected velocity for both models. 

However, a divergence in behavior emerges as the layers' thickness equalizes: the 

corrected velocity error in M1 slightly increases, while it decreases substantially in M5. 

This variation suggests that the object radius parameter differentially affects the 

accuracy of hyperbolic fitting models based on the relative thickness of the surrounding 

media. Further exploration of how the object radius interacts with media properties 

could yield essential insights, potentially enhancing the efficacy of the velocity 

correction method. 
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Figure 5-5. Percentage error in velocity estimations with and without correction across models (a) M1 and (b) M5 

for single-layer cases with varying layer thickness. 

The accuracy of depth estimations, as shown in Figure 5-6, reveals differences between 

M1 and M5. M5 consistently provides more accurate depth results than M1, which, in 

turn, enhances the precision of the velocity corrections derived from these models. 

Figure 5-6(a) illustrates the performance of the models with varying relative 

permittivity, showing that higher permittivity generally results in higher error rates, in 

line with previous research (He and Lai, 2024). This effect diminishes as the disparity 

in relative permittivity between the two layers decreases, improving the accuracy of 

depth estimations. Conversely, Figure 5-6(b) shows that depth estimation errors reduce 

when the two media layers converge towards equal thickness, especially when the layer 

with higher relative permittivity is thinner and the one with lower relative permittivity 

is thicker. 
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Figure 5-6. Percentage error in depth estimation across models (a) M1 and (b) M5 for single-layer cases. 

5.4.2. Double Overlying Layer Cases 

In this section, the proposed velocity-correction algorithm was evaluated using double-

layer simulation cases. Three sets of parameters were established, generating six 

distinct cases. The specific parameters for these cases are detailed in Table 5-3, and the 

cases themselves are depicted in Figure 5-7. 

Table 5-3. Parameters for double overlying layer simulation cases. Case Num. is the number of the case. P_1, P_2, 

and P_3 are the relative permittivity of layer 1, layer 2, and the layer enveloping the target, respectively. H_1, H_2, 

and H_3 are the thickness of layer 1, layer 2, and the layer enveloping the target, respectively. 

Case Num. P_1 P_2 P_3 H_1 (m) H_2 (m) H_3 (m) 
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Figure 5-7. The simulations cases with double overlying layers. 

As in Section 5.4.1, the estimated results from these simulations are compiled in Table 

5-4, highlighting both the uncorrected and corrected velocity errors. This comparative 

analysis is visualized in Figure 5-8 and Figure 5-9, which illustrate the error percentages 

for velocity with and without the corrections. Additionally, the depth estimation results 

are depicted in Figure 5-10. 
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Table 5-4. Parameter estimation results of two hyperbolic fitting models in the double-layer simulations. 

Model Case 
Vt 

(m/ns) 

Ve 

(m/ns) 

Err_Ve 

(%) 

CV 

(m/ns) 

Err_CV 

(%) 
D (m) 

Err_D 

(%) 

1 
9 0.1341 0.1593 18.81 0.1465 9.30 1.0785 7.85 

10 0.1060 0.1409 32.93 0.1187 12.03 1.1229 12.29 
11 0.0707 0.1159 64.02 0.0855 21.04 1.2568 25.68 

2 
9 0.1341 0.1528 13.97 0.1350 0.71 1.0335 3.35 

10 0.1060 0.1353 27.65 0.1083 2.22 1.0774 7.74 
11 0.0707 0.1117 58.07 0.0775 9.72 1.2107 21.07 

1 
12 

0.1060 

0.1290 21.70 0.1178 11.12 1.1261 12.61 
13 0.1409 32.93 0.1187 12.03 1.1229 12.29 
14 0.1543 45.57 0.1231 16.18 1.1132 11.32 

2 
12 0.1239 16.89 0.1110 4.68 1.0811 8.11 
13 0.1353 27.65 0.1083 2.22 1.0774 7.74 
14 0.1482 39.82 0.1063 0.25 1.0685 6.85 

 

The simulation results of the double-layer cases closely mirror those observed in the 

single-layer configurations, showing the robustness and adaptability of the proposed 

velocity-correction method across varying subsurface conditions. Both models, M1 and 

M5, exhibited similar trends in error reduction for bulk and corrected velocities, as well 

as depth estimations, regardless of the number of layers involved. This consistency is 

significant as it validates the method's efficacy not only in simplified, single-layer 

scenarios but also in more complex, double-layer environments. 

While the specific error percentages and trends align closely with those of the single-

layer cases, the double-layer configurations further demonstrate the method’s reliability 

in handling interactions between multiple layers, which are common in real-world 

subsurface evaluations. The results indicate that the velocity-correction method 

effectively mitigates errors associated with complex layer interactions, thereby 

enhancing the accuracy of subsurface material characterization. This is evident in 

scenarios where disparities in layer properties could potentially complicate data 

interpretation and analysis. 
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Figure 5-8. Percentage error in velocity estimations with and without correction across models (a) M1 and (b) M5 

for double-layer cases with varying relative permittivity. 

 

Figure 5-9. Percentage error in velocity estimations with and without correction across models (a) M1 and (b) M5 

for double-layer cases with varying layer thickness. 

 

Figure 5-10. Percentage error in depth estimation across models (a) M1 and (b) M5 for double-layer cases. 

5.5. Laboratory Experiments 

To validate the proposed method under real-world conditions, controlled laboratory 

experiments were conducted across three different scenarios. The properties of the 

layers used in these experiments are detailed in Table 5-5. It is important to note that 
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the thickness of all three layers was measured using a tape measure, the relative 

permittivity of the sand was determined using a time-domain reflectometer (TDR), and 

the relative permittivity of the asphalt and polyoxymethylene (POM) was measured 

using the reflected-amplitude method (Wang et al., 2018), where the relative 

permittivity of the surface layer (𝜀𝜀1) is determined from the ratio of the amplitude of 

the reflection from the surface layer (A1) to that from a copper plate (Ap), according to 

Snell's law of reflection, as described by the equation 𝜀𝜀1 = [(1 + 𝐴𝐴1 ∕ 𝐴𝐴𝑃𝑃)/(1 − 𝐴𝐴1 ∕

𝐴𝐴𝑃𝑃)]2.  

Table 5-5. Parameters of different layers. H and P are the thickness and relative permittivity of the corresponding 

material, respectively. 

Layer material Thickness H (m) Relative permittivity P 

Sand 0.1 2.3 
Asphalt 0.1 4.4 

POM 0.08 2.9 

 

Figure 5-11 illustrates the configurations for the three laboratory experiment scenarios. 

These experiments utilized a GPR system from Geophysical Survey Systems, Inc. 

(GSSI), which operated at a central frequency of 2 GHz with antenna separations of 

0.04 m. In each scenario, a metal pipe with a diameter of 0.03 m was buried at a depth 

of 0.1 m within dry sand. Scenario 1 (S1) involved the GPR operating directly on the 

surface of the dry sand, providing a baseline measurement. In Scenario 2 (S2), a 0.1 m 

thick asphalt layer was overlaid on the dry sand to simulate a single-layer condition, 

while Scenario 3 (S3) added a 0.08 m thick POM layer on top of the asphalt, simulating 

a double-layer condition. It is crucial to note that the GPR traverse was perpendicular 

to the pipe. Discussions regarding the application of hyperbolic fitting in situations 

where the GPR traverse is not perpendicular to the pipe are detailed in previous research 

(Lai et al., 2016b). 
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Figure 5-11. Laboratory experiments setup. 

Figure 5-12 presents the radargrams of the three experimental scenarios. With the 

addition of each layer, the hyperbolic reflections become deeper and weaker, while the 

interfaces between different layers are distinctly marked with lines of varying colors. 

The radargrams clearly show that as layers are added, the nature of the hyperbolic 

reflections changes not only in terms of depth but also in their shape. 

Utilizing the peak-echo selection method, the hyperbolic reflections extracted are also 

displayed in Figure 5-12. Upon adding an asphalt layer, the shape of the hyperbolic 

reflections visibly flattened—a direct result of the increased depth and altered wave 

velocity due to the new layer composition. Consequently, using hyperbolic fitting to 

estimate depth and velocity under these conditions naturally results in measurements 

that reflect both the increased depth and the combined velocity characteristics 

influenced by the presence of the asphalt. 

When a second layer of POM is added on top of the asphalt, the change in the 

reflections' shape becomes subtler, merely flattening slightly. This is attributed to the 

POM's thinner profile and its relative permittivity of 2.9, which is slightly higher than 

that of sand but lower than asphalt, resulting in less pronounced changes. These 

variations in hyperbolic reflections across different layered structures illustrate that 

traditional hyperbolic fitting, which assumes homogeneous media, is limited under non-

uniform conditions. This necessitates further methods to accurately correct the results. 

S1 S2 S3

Sand
Asphalt
POM

Pipe
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Figure 5-12. Radargrams of the three scenarios and the extracted hyperbolic reflections. Red lines indicate the 

interface between asphalt and sand. The yellow line donates the interface of POM and asphalt. 

After extracting the hyperbolic reflections, the two hyperbolic fitting models were 

applied to estimate the burial depth and the bulk EM wave velocity. Subsequently, the 

correction algorithm outlined in Section 5.3.2 was employed to adjust the bulk velocity 

to reflect the wave velocity of the media where the pipe is buried—dry sand in these 

experiments. 

Table 5-6 presents the results from the laboratory experiments applying the proposed 

velocity correction algorithm to both single-layer and double-layer cases. An in-depth 

analysis of these results is crucial. Initially, the velocity estimation results for S1 using 

M1 and M5 indicate that both models performed commendably: M1 had an error of 

5.26%, while M5 had a smaller error of 3.19% in estimating the wave velocity. 

However, after introducing an asphalt layer, the errors escalated to 9.00% (M1) and 

13.76% (M5), respectively. This significant increase underscores the challenges posed 

by assuming a uniform medium. Following the application of the correction algorithm, 

the errors were substantially reduced to 4.15% and 2.93%, closely mirroring the results 

of S1 using M1 and M5 and thus affirming the effectiveness of the proposed method. 

When examining the more complex double-layer case results, a slight increase in 

velocity estimation was observed, attributable to the additional POM layer, which has 
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a relative permittivity of 2.9 and is sandwiched between the asphalt and dry sand layers. 

Despite being thinner than both the asphalt and sand layers, the POM layer contributed 

to a minor increase in velocity estimation. The velocity correction performance of M1 

in the double-layer case was suboptimal, with accuracy decreasing from an initial 8.01% 

error to 8.6% after correction, indicating a deterioration in performance. This 

underscores the limitations of M1, particularly when handling multiple layers with 

similar dielectric properties and thicknesses, a challenge also highlighted in simulation 

experiments. In contrast, M5 demonstrated robust performance, significantly reducing 

the error rate from 11.33% to 2.17%. 

The results consistently indicate that M5 provides more accurate velocity estimates than 

M1, benefiting from the inclusion of target radius and antenna separation considerations. 

These parameters significantly influence accuracy when they align closely with the 

burial depth of the target; their omission leads to more pronounced errors (He and Wai-

Lok Lai, 2024). However, in practical measurement scenarios where acquiring precise 

values for these parameters is challenging, M1 remains a useful alternative, offering 

straightforward velocity estimation and correction despite higher error margins. 

Moreover, the addition of the asphalt layer notably increased the depth estimation error, 

primarily due to the layer's higher relative permittivity and the presence of non-smooth 

boundaries. These factors intensify estimation challenges, as further corroborated by 

references (He and Wai-Lok Lai, 2024). Conversely, the introduction of the POM layer 

reduces depth estimation errors, benefiting from its lower relative permittivity and 

larger thickness, which collectively aid in reducing error. 
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Table 5-6. Parameter estimation results of laboratory experiments. Ht indicates the reference value of the burial 

depth, measured by tape. 

Model Scenarios 
Vt 

(m/ns) 

Ve 

(m/ns) 

Err_Ve 

(%) 

CV 

(m/ns) 

Err_CV 

(%) 

Ht 

(m) 
H (m) 

Err_H 

(%) 

1 
S1 

0.1977 

0.2081 5.26 - - 0.10 0.1144 14.40 
S2 0.1799 9.00 0.2059 4.15 0.2 0.2421 21.05 
S3 0.1818 8.04 0.2147 8.60 0.28 0.3124 11.57 

2 
S1 0.1914 3.19 - - 0.1 0.1047 4.70 
S2 0.1705 13.76 0.1919 2.93 0.2 0.2289 14.45 
S3 0.1753 11.33 0.2020 2.17 0.28 0.2991 6.82 

 

The numerical and laboratory experiments validated the proposed depth-weighted 

velocity correction algorithm, demonstrating its effectiveness in improving velocity 

estimation in layered environments. However, the method assumes GPR waves travel 

linearly through each layer, which simplifies the modeling but doesn't fully account for 

wave refraction and reflection at interfaces, as governed by Snell's law. This 

approximation may introduce errors, particularly in environments with large dielectric 

contrasts where the actual wave propagation path significantly deviates from the 

assumed straight-line trajectory. Additionally, the acquisition of layer parameters 

through various methods like XCMP and direct measurement introduces variability in 

accuracy. While results have been promising in up to two layers, extending this 

approach to more complex multi-layered scenarios will require precise parameter 

determination. Future studies should focus on refining these assumptions and 

expanding the algorithm’s applicability to diverse subsurface conditions. 

5.6. Summary and Contribution 

This chapter has addressed the traditional limitations of hyperbolic fitting, which is 

commonly used to estimate burial depth and wave velocity from hyperbolic reflections 

but typically relies on the assumption of homogeneous media. Recognizing the 

inadequacy of this assumption in practical scenarios, this chapter introduces a novel 

depth-weighted velocity correction algorithm that adapts hyperbolic fitting for 
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application to multi-layered subsurface structures. The primary contributions of this 

chapter are as follows: 

1. The research quantitatively assesses the errors in velocity estimation that arise 

when hyperbolic fitting is directly applied to layered media. It investigates how 

variations in media parameters affect these errors, offering a better understanding of the 

challenges posed by non-homogeneous environments. 

2. The proposed correction algorithm effectively reduces velocity estimation errors 

in layered structures and enhances the velocity-estimation accuracy for target-contained 

layers. It is versatile, and compatible with different hyperbolic fitting models, which 

can be adapted based on the availability of specific parameters such as target radius and 

antenna separation. 

3. A comparative analysis of two hyperbolic fitting models that incorporate the 

velocity correction algorithm is provided. The study outlines clear recommendations 

for selecting appropriate models based on the specific characteristics of the layered 

scenarios encountered. This comparative insight is instrumental in guiding practitioners 

in choosing the most suitable ray-path model for accurate subsurface investigations. 
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6. Chapter 6: Impact of Hyperbolic Integrity on Hyperbolic Fitting in 

GPR Measurement 

6.1. Chapter Overview 

This chapter addresses a less explored aspect of GPR hyperbolic fitting: the impact of 

hyperbolic integrity on fitting accuracy. Utilizing optimization-based models, this study 

systematically examines the effects of data modification through uniform point deletion 

(change of horizontal sampling of A-scans) and biased point removal (biased and 

assymetric hyperbolic reflections). Such modifications simulate potential data integrity 

issues that can arise in practical GPR applications. The methodology allows for the 

empirical estimation of key parameters, such as burial depth and wave velocity, and 

assesses their stability under conditions of up to 40% point deletion. The analysis 

incorporates statistical tools like mean value, standard deviation, and R-squared to 

evaluate the robustness of parameter estimations. This chapter further explores the 

influence of variable factors such as burial depth, dielectric permittivity, and target 

radius on the estimations. Through detailed numerical simulations and field 

experiments, the findings enhance understanding of how to maintain the reliability of 

GPR data analysis even in complex underground conditions. These insights are crucial 

for advancing the precision of subsurface explorations and refining GPR techniques to 

adapt to diverse environmental challenges. 

6.2. Introduction 

While hyperbolic fitting provides a straightforward approach to deducing these 

parameters, such as burial depth and wave velocity, it often assumes ideal conditions 

that do not typically exist in field scenarios. This simplification leads to uncertainties 

in the results, especially in complex environments like layered structures or areas with 

subsurface heterogeneity. Factors such as equipment stability, operational settings, and 

the inherent properties of the survey area can introduce errors in data acquisition and 
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processing. Moreover, subsurface heterogeneity contributes to additional challenges by 

causing EM wave scattering, thereby complicating the interpretation process. 

In practical applications, the integrity of hyperbolic reflections is frequently 

compromised due to various factors such as sparse data from limited antenna 

configurations or obscured reflections by adjacent subsurface utilities, or trade-off of 

horizontal resolution and vehicle speed in multi-channel GPR system. These conditions 

necessitate a rigorous examination of hyperbolic data's reliability and accuracy in 

parameter estimation. Recognizing these challenges, this chapter discusses the 

development of robust methodologies to assess and mitigate the impacts of data 

alteration on hyperbolic fitting accuracy. 

By employing optimization-based models, this study systematically investigates the 

stability of hyperbolic fitting under conditions of uniform and biased point deletion—

common scenarios in sparse data environments and areas with dense subsurface utility 

layouts. Additionally, the influences of varying burial depths, dielectric permittivity, 

and target radii on hyperbolic fitting accuracy were analyzed through a comprehensive 

set of numerical simulations and field experiments. 

6.3. Methodology 

Further to models introduced in Section 2.5, this section employs hyperbolic reflection 

models 1 (M1) and 5 (M5), leveraging a global optimization algorithm based on the 

MVO. By implementing the MVO algorithm repeatedly, we accumulate a substantial 

dataset of parameter estimations. The empirical distribution of these estimations is 

subsequently derived, providing a probabilistic characterization of estimated parameter. 

This distribution serves as the basis for a comprehensive analysis to hyperbolic integrity, 

enabling us to quantify the reliability of hyperbolic-reflection-based interpretations in 

GPR data analysis. 

The core of our investigation into the impact of hyperbolic integrity involves executing 

multiple optimizations of the parameter set [D0, v] against a specific dataset [xi, ti]. This 

iterative approach is continued until a stable parameter distribution is observed. The 
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empirical distribution's density then informs the probability that the estimated 

parameters [D0, v] are an accurate reflection of the actual dataset [xi, ti]. For this study, 

we have determined that 5000 repetitions of the optimization process are adequate for 

the parameter distributions of both simulated and experimental datasets to achieve 

stability.  

6.3.1. Statistical Parameters for Analyzing Hyperbolic Integrity Impact 

Prior to the introduction of statistical parameters, it is critical to delineate the primary 

focus of the present research. The objective herein is not to ascertain the absolute 

accuracy of parameter estimations yielded by hyperbolic fitting models; rather, it is to 

explore the complex alterations in hyperbolic integrity upon such estimations. Through 

the optimization-based hyperbolic fitting, a distribution of parameters is derived, 

inherently characterized by probabilistic tendencies. These distributions reveal the 

probabilities associated with the estimated parameters, thereby expressing the impact 

in the data analysis. 

 Mean Value and Standard Deviation in Evaluating Hyperbolic Integrity Impact 

In statistical analysis, the mean value and standard deviation are crucial metrics used to 

describe the distribution of a data set. The mean provides a measure of the central 

tendency, indicating the average outcome, while the standard deviation reflects the 

amount of variability or dispersion from the mean. Mathematically, they are defined as: 

 
=
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m
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i

Mean mu y
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1( ) ,  (6.1) 
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1

1( ) ( )
1
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where 𝑦𝑦𝑖𝑖  represents the estimated depth or velocity at ith optimization, 𝑚𝑚𝑚𝑚 is the 

mean value of the parameter estimation, and m is the number of runs. 

By analyzing how the mean value and standard deviation change as points are 

systematically removed from the hyperbolic reflection—reflecting various degrees of 
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hyperbolic integrity—we can gauge the impact of data completeness on the accuracy 

and certainty of parameter estimates. 

 R-Squared (R2) in Evaluating Hyperbolic Integrity Impact 

R-squared, also known as the coefficient of determination, is a statistical measure that 

represents the proportion of variance for a dependent variable that's explained by an 

independent variable or variables in a regression model. It is a key output of regression 

analysis and ranges from 0 to 1, where a higher value generally indicates a better fit of 

the model to the data. Mathematically, R-squared is defined as: 

 = − res
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where 𝑆𝑆𝑆𝑆𝑟𝑟𝑒𝑒𝑟𝑟  is the sum of squares of residuals, representing the variation that the 

model fails to capture, 𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡  is the total sum of squares, which measures the total 

variation in the observed data, 𝑇𝑇𝑖𝑖 represents the actual TTT collected by GPR and 𝑡𝑡𝑖𝑖 

represents the TTT calculated by the hyperbolic fitting models at position xi, 𝑇𝑇� is the 

mean of the actual TTT, and n is the number of points on hyperbolic-reflection. 

R-squared provides a measure of how well the observed outcomes are replicated by the 

model, based on the proportion of total variation of outcomes explained by the model. 

In this chapter, R-squared is employed to assess the robustness of hyperbolic fitting 

under varying conditions of integrity. By evaluating how R-squared changes as we 

systematically reduce the number of points on the hyperbolic reflection in two ways, 

uniform point deletion and biased point removal, we can infer the sensitivity of our 

depth and velocity estimations to the integrity of the hyperbolic reflection pattern, 

which is essential in GPR data interpretation. 
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6.4. Numerical Simulation 

Similar to previous chapters, the numerical simulation was also conducted using 

gprMax. The TE mode was specifically chosen for simulation. This mode was 

facilitated by employing a Ricker wavelet centered at 900 MHz for signal excitation. 

The time window was set to 30 ns and the step interval at 0.01 m, with an antenna 

separation of 0.05 m, thereby collecting a comprehensive dataset of 171 A-scan data 

points. Within this simulation framework, a representative model was selected to 

illustrate our approach to quantifying hyperbolic integrity impact. The chosen model 

features a cylindrical pipe with a radius of 0.1 m, buried at a depth of 0.9 m within a 

medium with a relative permittivity of 5, corresponding to an EM wave velocity of 

0.1341 m/ns. 

Upon extracting the hyperbolic reflection within the GPR radargram, the raw dataset 

was obtained. This dataset was then manipulated to imitate varying degrees of 

hyperbolic integrity. As previously outlined, two distinct methodologies were 

employed to degrade the integrity: one by uniformly eliminating points across the 

hyperbolic reflection (del 1), and the other by progressively removing points from one 

side (del 2). To systematically explore the spectrum of reflection integrity, we 

established ten discrete levels—spanning deletions from 10% to 90% in increments of 

10%, with an additional level at 95% deletion. Figure 6-1 displays the unaltered 

hyperbolic dataset alongside the outcomes post-deletion at the fifth and tenth levels for 

both methodologies. 
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Figure 6-1. Original hyperbolic dataset with the datasets post-fifth and tenth deletion iterations utilizing two distinct 

methodologies for hyperbolic integrity disruption. "Del 1" and "Del 2" denote the first and second methods 

respectively, while "5th batch" and "10th batch" refer to the deletion of 50% and 95% of the original hyperbolic 

points, correspondingly. 

6.4.1. Effects of Hyperbolic Fitting Models and Deletion Methods 

To study the impact of varying hyperbolic integrity on parameter estimation, we 

employed optimization techniques to determine the empirical distributions of burial 

depth and wave velocity. The resulting distributions, depicted in Figure 6-2 and Figure 

6-3, were analyzed for two hyperbolic fitting models across different integrity scenarios, 

specifically focusing on raw data and the effects after 50% (5th) and 95% (10th) point 

deletions. 

The distribution analysis revealed that, under both models, parameter distributions 

typically conform to a normal distribution. Notably, the effect of point deletion on these 

distributions varied significantly with the deletion method used. For Model 1 (Figure 

6-2), uniformly removing points across the hyperbolic reflection did not significantly 

alter the distribution of parameters. However, when adopting the biased point deletion, 

the distributions remained stable until 50% points were deleted. Beyond this, significant 
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shifts in both the mean and standard deviation were observed, suggesting a marked 

increase in the integrity impact. 

 

Figure 6-2. Empirical distributions of burial depth and wave velocity using Model 1. 

In contrast to Model 1, the application of the initial deletion method exerts a marginal 

impact on parameter distribution within the framework of Model 5. The biased point 

deletion yields similar findings for both models, indicating that the removal of 50% of 

hyperbolic points does not substantially influence parameter distributions. Nevertheless, 

deleting 95% of the points obviously influences the parameters. 
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Figure 6-3. Empirical distributions of burial depth and wave velocity using Model 5.  

Upon analyzing the parameter distributions across various deletion batches, statistical 

measures such as the mean, standard deviation, and R-squared offer insights into the 

impact associated with hyperbolic integrity. 

Figure 6-4 and Figure 6-5 reinforce these observations, showing that the systematic 

removal of points does not substantially affect the mean values or model fit, as indicated 

by R-squared values, until a critical threshold of point deletion, indicated by arrows, is 

reached. Remarkably, removing up to 95% of the points results in minimal fluctuation 

in parameter estimates, leaving a sparse set of data points yet yielding stable estimates. 

This robustness highlights the hyperbolic fitting methods' resilience to data reduction 

but also points to significant impact when hyperbolic integrity is heavily compromised 

by biased point removal. 
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Figure 6-4. Variation in mean depth and wave velocity, including thrice the standard deviation, across different 

deletion batches. 

 

Figure 6-5. R-squared values derived from parameter estimations at varying levels of data deletion. 

6.4.2. Effects of Burial Depth, Relative Permittivity, and Target Radius 

Following an initial demonstration of the process for assessing hyperbolic integrity 

impact through the use of R-squared and mean value analysis, our investigation extends 

to the effects of burial depth, relative permittivity, and pipe radius on this impact. To 

conduct a comprehensive analysis, three sets of simulation models were generated, each 

varying one of these three critical parameters. The specific configurations of these 

models are displayed in Table 6-1, which outlines the range and increments of each 

variable under consideration. 
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Table 6-1. Three sets of simulation models with varying burial depth, relative permittivity, and pipe radius. 

Parameters Simulation Set 1 

1 2 3 

Depth (m) 0.3 0.9 1.5 

Permittivity 5 

Radius (m) 0.1 

 Simulation Set 2 

Depth (m) 0.9 

Permittivity 3 5 9 

Radius (m) 0.1 

 Simulation Set 3 

Depth (m) 0.9 

Permittivity 5 

Radius (m) 0.02 0.1 0.3 

 

The impact of subsurface variations on the integrity of hyperbolic reflections has been 

examined through a systematic computation of parameter differentials. This 

computation was performed by incrementally reducing the number of points 

constituting the hyperbolic curve, while their referenced variations in burial depth, 

relative permittivity, and target radius were accounted for. 

These differential metrics serve as robust indicators of the sensitivity of the estimations 

to modifications in the modeled subsurface conditions. For instance, when points are 

systematically deleted from the hyperbolic reflection to represent varying degrees of 

hyperbolic integrity, the resulting changes in parameter estimations can be precisely 

quantified. The mathematical expressions employed in this analysis are delineated as 

follows: 

 += − −j j
i

j j
i iD D

D D1
ˆΔ Δ   (6.6) 
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where 𝐷𝐷𝑖𝑖
𝑗𝑗  represents the mean depth of the jth model at ith deletion batch, 𝑣𝑣𝑖𝑖

𝑗𝑗 

represents the mean wave velocity of the jth model at ith deletion batch, 𝛥𝛥𝐷𝐷�𝑗𝑗  is the 

reference variation in depth between jth and (j+1)th models, 𝛥𝛥𝑣𝑣�𝑗𝑗  is the reference 

variation in wave velocity between jth and (j+1)th models, 𝑐𝑐0 is the wave velocity of 

the light in the vacuum, and 𝜀𝜀𝑗𝑗 is the permittivity of the jth model. 

Equation (6.6) captures the change in the estimated mean depth between two 

consecutive models after accounting for the input depth variation, while Equation (6.7) 

represents the analogous change in estimated mean wave velocity. Equation (6.8) 

provides the relationship between the wave velocity in the medium (𝑣𝑣𝑖𝑖
𝑗𝑗) and its relative 

permittivity (𝜀𝜀𝑗𝑗). These equations form the foundation of the proposed approach to 

systematically assess how burial depth, relative permittivity, and object radius influence 

hyperbolic integrity impact. The following sections present the outcomes of this 

analysis, highlighting the interdependencies and isolated impacts of each parameter on 

the fidelity of hyperbolic data interpretation. 

Sensitivity to Depth Variation: Illustrated in Figure 6-6, we note that depth variations 

exert differential impacts on hyperbolic integrity impact based on the deletion method 

applied. Uniform point deletion maintains stability across a wide range of depths, 

indicating the robustness of hyperbolic fitting methods to depth changes. This 

robustness diminishes when points are removed unilaterally, with sensitivity to depth 

variations becoming obvious beyond the removal of 50% of points. Such sensitivity 

reduces with increasing depth, implying a depth-dependent influence on hyperbolic 

integrity impact. 

Sensitivity to Relative Permittivity Variation: As depicted in Figure 6-7, changes in 

relative permittivity influence wave velocity estimates but have a negligible effect on 
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depth estimates across both deletion methods. This finding underscores the inherent 

model errors in hyperbolic fitting algorithms, affected by permittivity variations, yet 

reveals the algorithms' resilience to such changes in estimating burial depth. 

Sensitivity to Radius Variation: Demonstrated in Figure 6-8, the sensitivity analysis 

reveals that adjustments in object radius have minimal impact on Model 5's estimates, 

showing the model's accuracy despite radius variations. Conversely, Model 1 exhibits 

sensitivity to radius changes, particularly under biased point deletion, highlighting a 

greater sensitivity to alterations in target radius, especially when points are removed 

beyond a 50% threshold. 

 

Figure 6-6. Differential impact on parameter estimates due to variations in burial depth with altered hyperbolic 

integrity. '1st Dataset' (solid lines): Illustrates the changes in estimated parameters when the burial depth is modified 

from 0.3m to 0.9m across varying levels of hyperbolic integrity disruption. '2nd Dataset' (dashed lines): Showcases 

the changes in estimated parameters with a further increase in burial depth from 0.9m to 1.5m, also across varying 

levels of hyperbolic integrity disruption. 
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Figure 6-7. Differential impact on parameter estimates due to variations in relative permittivity with altered 

hyperbolic integrity. '1st Dataset' (solid) reflects adjustments from permittivity of 3 to 5, and '2nd Dataset' (dashed) 

from 5 to 9. 

 

Figure 6-8. Differential impact on parameter estimates due to variations in object radius with altered hyperbolic 

integrity. '1st Dataset' (solid) reflects radius adjustments from 0.02m to 0.1m, and '2nd Dataset' (dashed) from 0.1m 

to 0.3m. 

It is vital to acknowledge that the numerical simulations have not accounted for 

numerous variables that influence GPR detection in practical scenarios. For instance, 

an increase in depth typically deteriorates scattering losses and introduces additional 
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noise, whereas a higher dielectric permittivity may reflect increased moisture content 

or alterations in material composition. Such elements can impact the quality of GPR 

signals, consequently affecting the outcomes derived from the simulation experiments 

discussed herein. Bearing this in mind, the following section will adopt the same 

analytical approach to investigate hyperbolic curves acquired from field data. 

6.5. Field Experiment 

This section delves into field experiments conducted within a geophysical environment 

to assess the hyperbolic integrity impact. The fieldwork was executed at a dedicated 

research facility managed by IFSTTAR in France (Derobert and Pajewski, 2018; 

Dérobert and Pajewski, 2018). This facility featured three trenches, each filled with a 

unique mixture of silt, sand, and gravel. Within these trenches, a total of nine pipes 

were methodically buried at three different depths, creating layers that each contained 

an air-filled PVC pipe, a water-filled PVC pipe, and a metal pipe, all positioned parallel 

to one another. Details can be found in the research of Dérobert and Pajewski (Dérobert 

and Pajewski, 2018). 

Same as chapter 3, the focus of the study was on metal pipes, due to the weaker 

reflections from PVC materials. Radius of the metal pipes are typically 0.04 m. They 

were buried at depths of 1.184 m and 2.395 m in the sand-layered trench. These metal 

pipes were selected for their pronounced curved reflections, which were essential for 

our analysis. The data was collected using a GSSI 4000 control unit paired with GSSI 

antennas with a central frequency of 270 MHz. The data collection was characterized 

by a step interval of 0.005 m, a time window of 100 ns, and a total of 1024 points per 

scan. Figure 6-9 presents the extracted hyperbolic reflection from the pipe buried at a 

depth of 2.395 m alongside reflections of varying integrity, obtained through the 

implementation of different point deletion methods. 
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Figure 6-9. Original hyperbolic data for the metal pipe buried at 2.395 m, alongside datasets after the fifth and tenth 

deletion iterations, demonstrating two methods of hyperbolic integrity disruption. 

Empirical distributions of depth and wave velocity estimates from the metal pipe at a 

depth of 2.395 m in the sand trench were analyzed using both Model 1 and Model 5, 

depicted in Figure 6-10 and Figure 6-11, respectively. Echoing the patterns observed in 

the simulation experiments, the parameter distributions conformed to normal 

distributions. A notable deviation from the simulation outcomes is the observable 

influence of the uniform point deletion method on parameter distributions in the field 

data. While parameter distributions largely overlap when up to 50% of points are 

removed, the distributions undergo a complete transformation with the deletion of 95% 

of the points. The biased point deletion's impact on parameter distribution is markedly 

more pronounced, with both the mean and standard deviation exhibiting significant 

shifts as the deletion percentage increases. Model 5's results mirror those of Model 1, 

underscoring a consistent pattern across both models. 
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Figure 6-10. Field-derived empirical distributions of burial depth and wave velocity using Model 1. 

 

Figure 6-11. Field-derived empirical distributions of burial depth and wave velocity using Model 5. 

To quantitatively analyze the impact of hyperbolic integrity in field experiments, the 

mean (Equation (4.1)), standard deviation (Equation (4.2)), and R-squared (Equation 
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(4.3)) were computed for hyperbolic reflections with varying integrity, as done in the 

simulation studies. Figure 6-12 illustrates the mean values and their corresponding 

standard deviations, multiplied by a factor of three. 

The analysis reveals patterns similar to those in the simulation experiments; the 

integrity of the hyperbolic reflection compromised by the uniform point deletion does 

not significantly impact the parameter estimation, yielding relatively stable curves with 

minor fluctuations appearing only beyond the 80% deletion threshold. In contrast, the 

biased point deletion introduces significant variability in the results upon deletion of 

more than 40% of the points, with standard deviations increasing alongside the deletion 

percentage. This differs from the simulation experiments where notable mean value 

fluctuations manifested only after a 50% deletion, suggesting that the simulation's 

neglecting of scattering noise could influence the hyperbolic integrity impact. 

Additionally, comparing the mean value trends across both deletion methods, biased 

deletion of hyperbolic points introduces a substantially higher level of impact compared 

to uniform point deletion. It is noteworthy that the bands representing three standard 

deviations from the mean are virtually imperceptible except at the 95% deletion level 

using the biased point deletion, indicating a narrow parameter distribution focused 

around the mean and thus more reliable parameter estimations from hyperbolic fitting 

via the optimization method employed. 

The R-squared values, depicted in Figure 6-13, corroborate these findings. The values 

remain consistently high, above 0.9, when points are deleted uniformly. For biased 

point deletion, a marked decrease in R-squared values is observed after deleting more 

than 40% of the points, signaling a substantial divergence between the fitted hyperbolic 

reflection and the actual data. Notably, the R-squared outcomes for Models 1 and 5 

converge closely at deeper depths, suggesting that the influence of the pipe's radius and 

the antenna separation on hyperbolic fitting accuracy is minimal at this level. 
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Figure 6-12. Mean values and thrice the standard deviation of hyperbolic reflections across various deletion batches 

from field experiment 1. 

 

Figure 6-13. R-squared values for parameter estimates across different deletion batches from field experiment 1. 
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Figure 6-14. Resolution and Residue Length versus Deletion Batch. The resolution, measured in centimeters, 

represents the spacing between A-scans at different deletion batch and is shown by the bule line and red point. The 

red line and blue points depict the residue length, also in centimeters, of the remaining hyperbolic sections at 

different deletion batch. 

Figure 6-14 graphically represents the effects of deletion operations on hyperbolic data 

integrity using two methods: the spacing between A-scans, which is indicative of 

horizontal resolution, and the residual length of the hyperbolic reflections. As depicted, 

the uniform point deletion operation results in an increase in the A-scan spacing, 

progressively expanding from 0.5 cm to 10 cm, which reflects a reduction in resolution 

with each batch. Simultaneously, the residual length of the hyperbolic reflections, 

related to the biased deletion method, demonstrates a notable decrease from 144 cm to 

8 cm. 

The second set of hyperbolic reflections was captured from a metal pipe buried at a 

depth of 1.184 meters in the sand trench. The empirical distributions of the parameters 

obtained using Models 1 and 5 across different deletion batches are presented in Figure 

6-15 and Figure 6-16, respectively. 
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Comparing the first and second field data results, the parameter distributions show that 

the depth of burial does not significantly influence the impact resulting from the 

disruption of hyperbolic integrity via the uniform point deletion. The distributions of 

the intact data, the data with 50% point deletion, and the data with 95% point deletion 

remain relatively congruent, echoing the findings from the initial field experiment. 

However, with the biased point deletion, the variations in the parameter distributions 

become more pronounced as the deletion percentage increases, more so than in the first 

field experiment's results. This suggests that the depth of burial does impact the impact 

associated with the biased point deletion, a conclusion that aligns with the outcomes of 

the simulation experiments. 

 

Figure 6-15. Empirical distributions of burial depth and wave velocity as estimated using Model 1 in field experiment 

2. 
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Figure 6-16. Empirical distributions of burial depth and wave velocity as estimated using Model 5 in field experiment 

2. 

The analysis of the mean values (as depicted in Figure 6-17) and R-square trends 

(shown in Figure 6-18) yield observations consistent with those from the first field 

experiment. The impact of the disrupting hyperbolic integrity through the biased point 

deletion are markedly more significant than those arising from the uniform point 

deletion. The hyperbolic reflections impacted by the biased point deletion display 

substantial instability and uncertainty, particularly when the deletion exceeds 40% of 

the points. At this level of disruption, the hyperbolic reflections become less reliable 

for the fitting algorithm, leading to unstable results. Notably, at this depth, there is no 

discernible performance difference between Models 1 and 5, suggesting that the depth 

of burial does not significantly differentiate their effectiveness. 
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Figure 6-17. The mean value and corresponding 3 times standard deviation of the hyperbolic reflections at different 

deletion batches obtained from field experiment 2. 

 

 

Figure 6-18. R-squared of the parameters estimated at different deletion batches obtained from field experiment 2. 
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burial depth and wave velocity, providing significant insights into the robustness of 

fitting techniques against data incompleteness. 

The investigation of uniform point deletion reveals a remarkable resilience of fitting 

processes. Even with the deletion of up to 95% of data points, with a A-scan interval of 

10 cm that can be seen in Figure 6-14, hyperbolic fitting's ability to accurately estimate 

subsurface parameters remains largely unaffected. This finding is particularly relevant 

in practical scenarios involving GPR array antennas measurement (Jia et al., 2022), 

where the arrangement of sparse antenna pairs can still yield sufficiently reliable 

hyperbolic data for fitting. This underscores the potential for direct deletion of aberrant 

data points in measurements and enhances the flexibility of GPR investigations in urban 

infrastructure assessments and archaeological site explorations. 

Conversely, the analysis of biased point deletion highlights a threshold of hyperbolic 

integrity, below which the fitting algorithm's reliability diminishes. Specifically, when 

over 60% of the integrity is preserved, 64 cm of hyperbolic reflection that can be seen 

in Figure 6-14, parameter estimations remain dependable. This outcome is critical for 

urban underground pipeline detection (Lai et al., 2016a; Xie et al., 2018), where 

hyperbolic reflection often appears incomplete due to obstructive subsurface elements. 

Similarly, in planetary exploration (Zhang et al., 2020), the integrity of hyperbolic 

reflections may be compromised by scattering or nearby targets. The findings provide 

a quantitative basis for assessing the reliability of hyperbolic fitting under such 

conditions, thereby facilitating more accurate subsurface characterizations. 

However, this study acknowledges several limitations. The exploration of hyperbolic 

integrity disruptions has been confined to two specific models, while real-world GPR 

measurements often encounter a broader spectrum of hyperbolic data incompleteness. 

Furthermore, although this study offers a methodological framework for estimating the 

impact of the hyperbolic integrity on the hyperbolic fitting, the variability and 

complexity of actual GPR environments necessitate further empirical validation. 

6.7. Summary and Contribution 
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This chapter has examined the impact of hyperbolic integrity on the accuracy of 

parameter estimation using hyperbolic fitting methods in GPR applications. By framing 

hyperbolic fitting as an optimization problem, the research facilitated the derivation of 

empirical distributions for key parameters and allowed for a detailed assessment of the 

impact of the hyperbolic integrity. The major contributions and findings from this 

investigation are summarized as follows: 

1. The study confirmed that the uniform point deletion of points on hyperbolic 

reflections has minimal impact on parameter estimation. This robustness was 

consistent across various subsurface conditions, including changes in burial 

depth, dielectric permittivity, and target radius. 

2. Contrary to uniform point deletion, biased/one-side biased point deletion 

significantly decreased estimation stability, especially when over 40% of data 

points were removed. This scenario highlighted critical vulnerabilities in the 

hyperbolic fitting process, particularly when dealing with sparse data in 

complex subsurface environments. 

3. The analysis contrasted two hyperbolic fitting models, revealing that changes in 

burial depth and target radius variably influenced their performance. Model 1 

showed greater sensitivity to these parameters at shallow depths, whereas 

Model 5 maintained consistent accuracy, acknowledging the importance of 

model selection based on specific site conditions. 

4. Alterations in dielectric permittivity were found to indirectly affect the 

outcomes of hyperbolic fitting, suggesting potential model errors that need to 

be addressed to enhance the accuracy of GPR investigations. 
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7. Chapter 7: Conclusion 

The research systematically explored various hyperbolic fitting models and their 

optimizations to enhance subsurface utility detection accuracy. Through extensive 

research, key limitations in traditional hyperbolic fitting methods were identified, 

primarily their dependency on the assumption of homogeneous media, and addressed 

through the development of novel fitting and correction algorithms. Each chapter 

systematically tackled different aspects of the GPR data analysis, from basic hyperbolic 

fitting to complex adjustments for media heterogeneity and target orientation. The 

comprehensive analysis encompassed both numerical simulations and field 

experiments, enriching the understanding of GPR applications in diverse environments. 

Notably, the proposed methodologies demonstrate enhanced precision in depth and 

wave velocity estimations across diverse subsurface conditions, significantly 

improving the reliability of initial parameter inputs for full-waveform inversion (FWI) 

frameworks. This thesis strengthens the theoretical foundations of GPR analysis and 

provides practical guidelines and innovative tools for more accurate subsurface 

explorations, marking a significant advancement in geophysical survey techniques. 

7.1. Main Finding 

 Comparative Analysis of Hyperbolic Fitting Models for Subsurface Parameter 

Estimation (Chapter 3) 

A rigorous evaluation of various hyperbolic fitting models used in GPR has shown how 

different configurations respond under varying conditions influenced by target radius, 

antenna separation, and material relative permittivity. Insights include the sensitivity of 

models to target characteristics, where accuracy varied significantly based on the 

target's radius relative to its depth. Despite theoretical advantages, increased depth often 

led to performance degradation due to signal attenuation. Variations in antenna 

separation had minimal impact on model performance within certain limits, but 

practical changes significantly affected signal strength and resolution. The analysis 

concludes with strategic recommendations for selecting appropriate hyperbolic fitting 
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models, emphasizing the need for tailored approaches based on specific application 

scenarios, operational constraints, and available data. 

 Enhancing Parameter Estimation Accuracy through Angle-Corrected Hyperbolic 

Fitting Models (Chapter 4) 

Incorporating target orientation in hyperbolic fitting has proven critical for improving 

the accuracy of parameter estimations from hyperbolic reflections of cylindrical objects. 

A unique cost function combining synthetic and real TTT data has been developed, 

enabling the C-value analysis which assesses the impact of pipeline orientation on 

fitting precision and introduces a robust metric for evaluating and optimizing 

hyperbolic fitting methods. Furthermore, a hybrid optimization strategy effectively 

estimates pipeline orientation, depth, and wave velocity, enhancing GPR data analysis 

applicability and accuracy. This method is applied through models requiring varying 

levels of prior information, validated by extensive simulation and field experiments. 

Additionally, this research extends to quantitatively examine the effects of varying 

pipeline radii and burial depths at different angles, thereby enriching the understanding 

of factors impacting parameter estimation accuracy and augmenting the robustness of 

fitting techniques. These methodologies advance GPR-based parameter estimation, 

providing a detailed framework for precise subsurface investigations and paving the 

way for further research in practical GPR applications. 

 Depth-Weighted Velocity Correction (chapter 5) 

Addressing the traditional limitations of single velocity inherent in hyperbolic fitting 

methods in layered materials with different dielectric properties, this chapter introduces 

a depth-weighted velocity correction algorithm designed to refine parameter estimation 

in multi-layered subsurface conditions. The research critically evaluates the errors in 

velocity estimation when hyperbolic fitting is applied directly to layered media, 

offering insights into the challenges of non-homogeneous environments. This novel 

algorithm significantly reduces velocity estimation errors and improves the accuracy of 

such estimates within target-contained layers, proving adaptable to various hyperbolic 
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fitting models based on available target radius and antenna separation. Furthermore, a 

comparative analysis of two fitting models incorporating this correction algorithm 

provides essential guidelines for model selection, tailored to the specific characteristics 

of layered subsurface scenarios. These guidelines assist practitioners in selecting the 

most suitable ray-path model in layered materials and, enhancing the precision of 

subsurface investigations and paving the way for more accurate and reliable GPR 

applications in complex geological settings. 

 Impact of Data Integrity on Hyperbolic Fitting (chapter 6) 

This chapter addresses the influence of hyperbolic data integrity on the accuracy of 

parameter estimations within GPR applications. The chapter unveils that uniform point 

deletion of points on hyperbolic reflections minimally impacts the estimation, 

demonstrating method robustness under varying subsurface conditions such as changes 

in burial depth, dielectric permittivity, and target radius. In contrast, biased point 

deletion markedly decreases the estimation stability, particularly with over 40% of data 

removed, exposing significant vulnerabilities in scenarios with sparse data. 

Comparative analysis of two fitting models illustrates differing sensitivities to 

subsurface characteristics, with one model showing heightened responsiveness at 

shallower depths while the other maintains consistent accuracy across varied conditions. 

Additionally, the research identifies that changes in dielectric permittivity indirectly 

influence fitting outcomes, pointing to potential model errors that need consideration 

for improving GPR data interpretation accuracy. 

7.2. Challenges and Future Work 

 Refining Model Selection in GPR Hyperbolic Fitting  

The importance of selecting hyperbolic fitting models appropriate for specific GPR 

applications is highlighted, though challenges persist due to small sample sizes and the 

exclusion of noise effects. Future research should include larger datasets, consider the 

impact of noise, and explore global optimization algorithms. Investigating how antenna 

frequency and separation affect model performance is essential to enhance the accuracy 
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and applicability of GPR hyperbolic fitting techniques across different geological 

settings. 

 Enhancing Accuracy in Hyperbolic Fitting for Pipe Orientation  

The introduced methodologies for estimating pipe orientation demonstrate potential but 

face accuracy challenges at smaller oblique angles and with non-horizontal orientations. 

Future efforts should focus on improving accuracy for smaller angles and expanding 

analyses to include inclined and vertical orientations. Additionally, developing 

optimization algorithms that target global optima and are less susceptible to local 

minima will be crucial. Extending model validation to lower quality or incomplete 

hyperbolic data will ensure broader applicability. 

 Improving Velocity Estimations in Layered Media Using Depth-Weighted 

Corrections  

The proposed depth-weighted velocity correction algorithm improves velocity 

estimation but simplifies wave interactions at layer interfaces, potentially introducing 

errors in environments with significant dielectric contrasts. Future research should 

refine these assumptions and expand the algorithm’s utility to more complex, multi-

layered conditions, ensuring the algorithm accounting for the longer or shorter ray-path 

due to wave refraction and reflection governed by Snell’s Law to enhance accuracy of 

velocity and object depth’s measurements in stratified settings. 

 Quantifying Impact in Hyperbolic Fitting with Data Integrity Disruptions  

This research addresses the impact of hyperbolic integrity on fitting accuracy due to 

variation of B-scan’s spatial resolution, acknowledging the limitation of focusing on 

only two models. The proposed methodologies require further empirical validation to 

handle the variability of real-world GPR measurements. Future studies should explore 

a wider range of data integrity scenarios and empirically test the methodologies to 

enhance the reliability and accuracy of subsurface investigations. 
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In conclusion, this PhD research has advanced the methodologies for estimating 

subsurface parameters through refined hyperbolic fitting techniques using GPR. The 

thesis addressed traditional limitations of hyperbolic fitting, integrating advanced 

optimization algorithms and innovative approaches like angle-corrected and depth-

weighted velocity corrections. These enhancements have broadened the applicability of 

hyperbolic fitting to complex underground scenarios including layered subsurface 

structures and varying orientations of buried objects. Furthermore, the research 

developed methodologies to quantitatively assess the impact of the hyperbolic integrity 

on hyperbolic fitting in GPR data analysis. By empirically and numerically validating 

these methods, the research bridged theoretical models with practical applications, 

improving the reliability of subsurface evaluations.  

Previous studies have utilized GPR to detect the presence or absence of subsurface 

anomalies, such as underground utilities, reinforcing bars, and historical substructures. 

Advancements in GPR technology have gradually transformed it from a mere detection 

tool into a precise measurement instrument. This study further advances GPR's 

application, enhancing its precision in providing accurate measurements across various 

environmental conditions. These improvements contribute to archaeological 

explorations and civil engineering, where accurate and reliable mapping of both known 

and unknown subsurface objects is essential.  
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