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Abstract
Walking is the primary mean of access to essential urban goods and services. Like

many metropolitan cities around the world, Hong Kong has been promoting

walkability in its urban design and planning policy. Quality of urban walking

environment is one of the crucial factors that affect the viability of a city. It can

reshape the activity and mobility pattern of the citizens. However, pedestrians are also

vulnerable to fatal and severe road injuries. Hence, it is necessary to identify the

factors that affect walking behaviour and safety of pedestrians. Then, effective

remedial measures can be developed to improve the walking environment and

mitigate pedestrian injury risk. In this study, pedestrian walking behaviour and safety

in urban environment will be evaluated at different levels. First, relationship between

environment, traffic, safety perception and walking behaviour of individual pedestrian

is investigated. Second, effects of street design, urban street tree, and traffic

characteristics on pedestrian crash risk at the microscopic level are evaluated. Third,

association between built environment, road network configuration, transport facilities,

population socio-demographics and pedestrian crash risk at the macroscopic level is

measured.

At the individual level, effects of walking environment, transport facilities, and

personal characteristics on the walking path choice are evaluated using an attitudinal

survey. In this part, the stated preference method is adopted to predict the preferred

walking path of pedestrians, accessing to the urban rail transit stations. In particular,

factors like mixture of indoor and outdoor environment, accessible design, sky and

green view, road geometry, socio-demographics and travel habit are considered. Then,

the integrated choice and latent variable model is adopted, accounting for the effect of

unobserved heterogeneity. On the other hand, effects of weather and traffic conditions

on pedestrian safety perception and crossing behaviour are explored using the

immersive Cave Automatic Virtual Environment (CAVE) experiment. For example,

relationship between adverse weather conditions like rain and fog, vehicle speed, and
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pedestrian safety perception is examined. Furthermore, the casual inference approach,

with inverse probability of treatment weight, is adopted to account for the possible

confounding factors.

At the microscopic level, effects of road geometric design, transport facilities, and

urban street trees on the pedestrian crash risk of individual streets are evaluated. For

example, data on tree density and tree canopy cover is used. In addition,

comprehensive pedestrian count data is also available for the estimation of pedestrian

crash exposure. Furthermore, the multivariate Bayesian spatial approach is applied,

accounting for the effects of spatial dependency and multivariate correlation.

At the macroscopic level, the roles of footbridges and underpasses in pedestrian safety

at the zonal level are explored. With the three-dimensional digital map of pedestrian

network, it is possible to estimate the connectivity of pedestrian network and

accessibility of crossing facilities like footbridges and underpasses. Then, the Poisson

lognormal approach is adopted, accounting for the effect of overdispersion.

Furthermore, data on land use, road network, street environment, traffic

characteristics, pedestrian crash, and population socio-demographics are usually

aggregated at different spatial scales. To this end, the multiple membership multilevel

modeling approach is adopted, accounting for the effects of hierarchical data structure

and spatial correlation on the association measure of pedestrian crash risk at both

microscopic and macroscopic levels.

To sum up, findings of perceptional survey, immersive CAVE experiment, and micro-

and macroscopic level pedestrian crash model should shed light on the effective urban

design and planning policy that can improve the walking environment and promote

walking as the sustainable transportation mode in Hong Kong. Therefore, overall

quality of living can be enhanced.
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Chapter 1 Introduction

1.1 Research background

In the context of transit-oriented development, walking or cycling often constitutes a

significant portion of travel time, which is crucial for enhancing urban mobility (Su et al.,

2021a). Walkability is considered a key determinant of urban vitality, especially in

densely populated and highly active cities. Many metropolises worldwide, including

Hong Kong, Melbourne, London, Nanjing, and Tokyo, are actively promoting walking

through urban design and planning policies. These cities have implemented innovative

urban and transportation planning frameworks to enhance walkability, thereby improving

the built environment, accessibility, and pedestrian safety. For instance, in Hong Kong,

nearly 90% of daily trips rely on public transportation, with walking being the primary

means of accessing these services and other essential urban amenities (Sze and

Christensen, 2017). As walking becomes the main mode of accessing various urban

facilities from transit stations, understanding how urban environment design elements

influence pedestrian walking behaviour is crucial. In 2021, Hong Kong developed a

comprehensive walking strategy to improve the pedestrian environment (Transport

Department, 2021). The characteristics of pedestrian facilities, such as sidewalks,

footpaths, crosswalks, footbridges, underpasses, landscaping, street trees, and public

spaces, significantly impact pedestrian walking behaviour. The quality of the urban

walking environment is vital for the city's sustainability, as it can reshape citizens' activity

and mobility patterns.

Pedestrian activities are prevalent in urban areas, particularly within transit-oriented

developments, yet pedestrian safety remains a significant concern due to their

vulnerability to severe injuries in road crashes. Globally, pedestrians account for

approximately 25% of all road fatalities, while in the Asia-Pacific area, pedestrians

represent 14-22% of road deaths (World Health Organization, 2023). For instance, as

illustrated in Figure 1.1, the total number of traffic accidents in Hong Kong experienced
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fluctuations over the seven years from 2017 to 2023. During the years 2017 to 2020, the

proportion of pedestrian-related traffic accidents relative to the total number of traffic

accidents showed an overall declining trend. However, from 2021 to 2023, this proportion

exhibited an upward trend. Additionally, Hong Kong, characterized by its dense

population and reliance on walking as the primary means of accessing public

transportation, still reports an alarmingly high proportion of pedestrian fatalities,

accounting for 56% of the total road deaths (Transport Department, 2022). Studies have

shown that pedestrian crash frequencies are notably higher in areas surrounding metro

stations and streets with numerous public transit stops, potentially due to unsafe crossing

behaviours (Osama and Sayed, 2017; Raveesh et al., 2020; Sung et al., 2022). In Hong

Kong, inattentiveness and reckless crossing are significant contributory factors to

pedestrian-related road crashes, with a substantial proportion occurring at intersections

without signal control and on footpaths or verges (Hong Kong Police Force, 2023;

Transport Department, 2022; Zhu et al., 2024). Identifying factors that influence

perceived safety risks and the likelihood of reckless crossing behaviour, especially at

crash-prone locations like mid-block crossings, is essential for enhancing pedestrian

safety (Hou et al., 2022; Rupp et al., 2016; Zhu et al., 2021). Hence, it is necessary to

identify the factors that affect walking behaviour and safety of pedestrians. Then,

effective remedial measures can be developed to improve the walking environment and

mitigate pedestrian injury risk.
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Figure 1.1 Road traffic crashes in Hong Kong from 2017 to 2023

1.2 Motivation and problem statement

This research aims to comprehensively explore pedestrian walking behaviour and safety

in urban environment through interrelated aspects that analyze the impact of metro system

accessibility, pedestrian network infrastructure, and street greening on pedestrian

safety and walking behaviour at individual, microscopic, and macroscopic levels. The

motivation and problem statement of the thesis is dedicated to the following aspects.

First, understanding pedestrian safety and walking behaviour at the individual level is

crucial for enhancing the overall pedestrian experience in urban environments.

Pedestrians often prioritize safety, comfort, and aesthetic appeal over merely choosing the

shortest path, indicating that walking behaviour is influenced by a complex interplay of

neighborhood-level attributes, street-level characteristics, and uncontrollable factors such

as weather (Basu et al., 2023; Sevtsuk et al., 2021; Zhu et al., 2023a). In addition, safety

perception, shaped by personal attitudes and social norms, plays a significant role in

influencing pedestrian walking behaviour, including path and crossing choices (Lehtonen

et al., 2016; Ram and Chand, 2016; Sayed et al., 2022). Thus, identifying factors that

affect walking behaviour and pedestrian safety perception is essential for developing
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effective interventions.

Second, this study is motivated by the need to understand pedestrian safety at a

microscopic level, focusing on specific entities such as road segments, intersections, and

crosswalks. Previous research indicates that road characteristics, transport facilities,

traffic control measures and environmental factors significantly impact pedestrian crash

risk at a microscopic level (Kim, 2019; Koh et al., 2014; Zhao et al., 2020). However, in

microscopic-level pedestrian safety research, urban greenery is a contentious factor.

While increasing the proportion of street tree canopies can enhance the walking

environment and encourage walking (Nehme et al., 2016), street trees are also considered

roadside hazards due to potential visibility issues (Budzynski et al., 2016). Despite these

insights, the specific impact of street tree density and canopy coverage on pedestrian

injury risk remains underexplored, particularly when considering spatial dependency and

crash exposure.

Last but not the least, the motivation for this study stems from the need to

comprehensively understand pedestrian safety at a macroscopic level, particularly in

complex urban environments like Hong Kong. Previous research has explored the

relationship between various influencing factors and pedestrian crash frequency across

different geographical units, considering elements such as population density,

demographics, socio-economics, road network characteristics, and the built environment

(Hu et al., 2020; Osama and Sayed, 2017; Su et al., 2021b). However, much of this

research has focused on cities with limited footbridge or underpass networks, overlooking

the unique topographical features of cities like Hong Kong, where extensive networks and

hilly terrains significantly influence pedestrian route choices. Moreover, the modifiable

areal unit problem and boundary crash problem highlight the complexities of spatial

analysis in pedestrian safety, where the configuration and scale of geographical units can

affect statistical inferences (Shin et al., 2020; Li et al., 2020a; Zhai et al., 2018; Zhai et al.,

2019a). Therefore, at the macroscopic level, the roles of footbridges and underpasses in

pedestrian safety at the zonal level are explored by considering the effects of spatial
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correlation.

1.3 Objectives

This research aims to assess walking behaviour and safety of pedestrians in urban

environment at individual, microscopic, and macroscopic levels. The Figure 1.2 illustrates

a comprehensive research framework comprising three primary components: individual,

microscopic, and macroscopic level analysis. In response to the existing concerns

elaborated in Section 1.2, the specific research objectives can be given as follows.

Firstly, the relationship between the environment, traffic, safety perception, and the

walking behaviour of individual pedestrians is investigated. On one hand, the effects of

weather conditions, walking attributes, environmental factors, available facilities,

socioeconomic characteristics, and individual latent attitudes on metro passengers'

walking preferences and behaviours are assessed. On the other hand, influences of

weather conditions on pedestrian safety perception are examined, whereas confounding

factors including traffic and pedestrian characteristics are controlled for.

Secondly, the effects of street design, urban street trees, and traffic characteristics on

pedestrian crash risk at a microscopic level are estimated. The roles of road geometry,

traffic characteristics, tree density, and tree canopy on pedestrian crash risk at the road

segment level are explored.

Thirdly, the effects of the built environment, road network configuration, transport

facilities, and population characteristics on pedestrian crash risk at the macroscopic level

are explored. On one hand, the connectivity of the pedestrian network and the

accessibility of crossing facilities are assessed, and the relationship between pedestrian

network characteristics and pedestrian safety is evaluated. On the other hand, the study

evaluates the impact of walking accessibility and different spatial scale data, such as land

use, socio-demographics, pedestrian networks, and transport facilities, on pedestrian crash
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frequencies in areas surrounding metro stations.

Figure 1.2 Research framework of pedestrian walking behaviour and safety

1.4 Thesis organization

Chapter 2 presents the literature on various aspects of walking behaviour and pedestrian

safety studies, including pedestrian walking behaviour, influencing factors of pedestrian

safety, and methods for walking behaviours and pedestrian safety.

Chapter 3 illustrates the roles of the environment and individual perception in pedestrian

path choice by analyzing the relationships between the built environment, traffic

conditions, individual perceptions, and walking path choices. The study assesses the

walkability of Transit-Oriented Developments through stated preference experiments.

Additionally, the effects of individual heterogeneity on decision-making are examined

using an integrated choice and latent variable model.

Chapter 4 presents the impact of weather conditions, such as rain, fog, and low visibility,

along with environmental factors on pedestrian risk perception at mid-block crossings,

utilizing an immersive Cave Automatic Virtual Environment (CAVE) experiment. The

study employs a propensity score method to estimate the causal effects of weather on
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safety perceptions, while inverse probability of treatment weighting is used to address the

influence of multi-level data.

Chapter 5 unveils the impact of road geometric design, traffic facilities, and urban

greenery on pedestrian crash risk at the microscopic level for individual streets.

Pedestrian crash exposure is assessed using comprehensive pedestrian count data. A

multivariate Bayesian spatial analysis method is applied to analyze spatial dependency

and correlation in pedestrian casualty counts across different injury severity levels.

Finally, how pedestrian crashes at the segment level are influenced by tree density and

canopy coverage is discussed.

Chapter 6 illustrates pedestrian networks and facilities at a macroscopic level, with a

focus on the impact of footbridges and underpasses on pedestrian crashes.

Three-dimensional digital maps are utilized to estimate the connectivity and accessibility

of pedestrian networks. Data are aggregated into a grid format. A multivariate Poisson

log-normal regression model is employed to analyze fatal and severe injury and slight

injury pedestrian, while accounting for unobserved heterogeneity, spatial correlation, and

the interdependence of crashes counts.

Section 7 provides the impact of walking accessibility to the metro system on pedestrian

safety. Walking accessibility for individuals with and without physical disabilities is

considered. The multiple membership multilevel modeling approach is adopted,

accounting for the effects of hierarchical data structure and spatial correlation on the

association measure of pedestrian crash risk. Additionally, the section explores temporal

instability in parameter estimation.

Chapter 8 concludes the study with a summary of the findings, implications, limitations,

and future research directions.
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Chapter 2 Literature review
This chapter presents the literature on walking behaviour and pedestrian safety analysis

from several aspects. Section 2.1 reviews the literature on risk perception and influencing

factors of pedestrian walking behaviours. Section 2.2 discusses the influencing factors of

pedestrian safety, with a focus on the effect of built environments, traffic characteristics

and socioeconomic and demographic factors. Section 2.3 reviews the literature with

respect to analytic methods and critical methodological issues relating to pedestrian safety

and walking behaviour analysis.

2.1 Pedestrian walking behaviours

2.1.1 Influencing factors on pedestrian walking choices

Beyond the behaviour of pedestrians crossing streets, it is crucial to understand pedestrian

travel preferences during their journeys. When selecting walking routes, pedestrians do

not strictly adhere to the shortest path. Although walking distance and travel time are key

determinants of route choice, their significance is influenced by various other route

characteristics (Sevtsuk et al., 2021; Zhu et al., 2023a). Pedestrians often prefer routes

that are safer, more comfortable, or more aesthetically pleasing, as long as the detour

remains within an acceptable range (Basu et al., 2023). Previous research indicates that

pedestrian walking behaviour is significantly influenced by various attributes of the

walking environment. These attributes can be categorized into three main types. First,

neighborhood-level attributes impact the walking experience, including factors such as

land use patterns, the distribution of points of interest, walking accessibility, the

characteristics of the road network, and the socioeconomic characteristics of the local

population (Liu et al., 2020; Liang et al., Sevtsuk, et al.,2021; 2023; Zhu et al., 2023b).

Second, street-level attributes directly impact walking behaviour and encompass elements

such as pedestrian crossing facilities, traffic volume, street greenery, street lighting,

sidewalk width, and slope (Basu and Sevtsuk, 2022; Liu et al., 2024 Sevtsuk et al., 2021;

Zhu et al., 2023a). Third, other exogenous and uncontrollable factors, such as weather
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conditions and weather, also play a role (Liu et al., 2015; Zhu et al., 2023a).

Current research on pedestrian walking preferences has identified several key factors

influencing walking behaviour (Gupta et al., 2022; Paydar et al., 2020; Sun et al., 2016).

The walking behaviour of metro passengers is primarily influenced by walking distance

and time, as well as their interactions with environmental factors (Paydar et al., 2020).

Studies indicate that when selecting walking routes, passengers prioritize minimizing

walking distance, followed by safety considerations (Gupta et al., 2022; Sun et al., 2016).

Although there are regional variations in walking distance and time, these distances

generally fall within acceptable ranges, with the average acceptable walking time and

distance being less than eight minutes and half a mile respectively (Kim, 2015; Sun et al.,

2016). Additionally, factors such as connectivity, mixed land use, and pedestrian-friendly

designs in the walking environment are crucial in facilitating walking behaviour (Gupta et

al., 2022; Paydar et al., 2020). These elements enhance the convenience and attractiveness

of walking, thereby influencing pedestrian walking behaviour. Furthermore, confounding

factors including individual demographics, socioeconomic, and travel purpose that affect

the underlying relationship between possible attributes and walking behaviour of transit

passengers should be explored.

2.1.2 Safety perception and crossing behaviour

Pedestrians are among the most vulnerable road users, accounting for a significant share

of road traffic fatalities. The majority of pedestrian crashes occur during road crossings,

with urban areas posing the greatest risk. Consequently, understanding pedestrians' safety

perception is essential for analyzing their crossing behaviour. Safety perception is a

critical field of study due to its substantial influence on the behaviour and

decision-making of road users in uncertain conditions, thereby directly or indirectly

affecting road safety attitudes. Individuals with heightened safety perception are more

likely to engage in cautious behaviour. Previous research has examined the impact of

safety perception on walking behaviour, revealing a positive correlation between
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pedestrians' safety perception and their walking activity (Elias and Shiftan, 2012; Nehme

et al., 2016; Rankavat and Tiwari, 2016). This suggests that when pedestrians perceive

their environment as safe, they are more likely to engage in walking, highlighting the

importance of fostering a sense of safety to promote pedestrian activity.

Several factors that influence pedestrian crossing behaviour and risk perception have been

identified (Hou et al., 2022; Kwon et al., 2022; Li et al., 2022; Papadimitriou et al., 2016).

These factors encompass pedestrian characteristics, such as age and gender (Hou et al.,

2022; Pala et al., 2021). For example, older pedestrians often exhibit increased caution

due to declines in cognitive and physical abilities (Pala et al., 2021; Wilmut and Purcell,

2022). Besides, crashes caused by the elderly are more frequent than those caused by the

younger population, with a narrower safety margin and a slower pace when crossing the

road (Pala et al., 2021). In contrast, male pedestrians generally perceive lower risk and

tend to prefer taking risks (Morgenroth et al., 2018).

Additionally, various road and traffic characteristics, such as the number of lanes, road

width, traffic signals, traffic volume, speed limits, and road infrastructure, as well as

vehicle types, significantly influence pedestrian crossing behaviour (Kwon et al., 2022;

Rankavat and Tiwari, 2016). For instance, previous research indicates that pedestrians are

more likely to cross mid-block when traffic is light or absent, compared to when it is

heavy or congested (Papadimitriou et al., 2016). Minor roads are more frequently chosen

for mid-block crossings compared to major roads (Papadimitriou et al., 2016). Pedestrians

are more sensitive to increased waiting times at signalized intersections than to the

additional walking time required by pedestrian overpasses and underpasses (Zhu et al.,

2023a). Studies also suggest that due to the generally larger mass of heavy vehicles, the

risk of severe road crashes is relatively higher, leading pedestrians to avoid gaps closed

by large vehicles (Kadali et al., 2015).

Environmental factors, such as the presence of street trees, roadside parking, pavement

signs, and street lighting (Kwon et al., 2022; Rankavat and Tiwari, 2016), along with
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social and psychological factors like group behaviour and distraction (Aghabayk et al.,

2021; Hou et al., 2022; Tian et al., 2022), significantly influence pedestrian crossing

behaviour. Weather conditions also play a crucial role in altering these behaviours.

Research indicates that adverse weather conditions lead to an increase in jaywalking

incidents among pedestrians (Zafri et al., 2020; Zhai et al., 2019b). Under such conditions,

pedestrians are more likely to engage in dangerous and noncompliant crossing behaviours

(Zhai et al., 2019b). Moreover, pedestrians tend to cross streets more quickly in rainy

conditions compared to normal weather (Bargegol et al., 2022). However, there is limited

research on how safety perception mediates the relationship between road environments,

traffic characteristics, and pedestrian crossing behaviour. It is crucial to identify the

factors that influence pedestrians’ safety perception.

Weather significantly influences pedestrian behaviour. For instance, pedestrians tend to

exhibit more aggressive and risk-taking behaviours in adverse weather conditions, leading

to an increased propensity for jaywalking (Ansariyar and Jeihani, 2023; Zafri et al., 2020).

Additionally, pedestrians walk faster when crossing roads in rainy weather compared to

clear conditions (Bargegol et al., 2022). Weather also affects pedestrians' perception of

vehicular speed. In rainy conditions, pedestrians tend to underestimate vehicle approach

speeds by over 20% (Sun et al., 2015). Conversely, in foggy weather, especially with the

presence of street trees and road facilities, pedestrians often overestimate vehicle speeds

(Sudkamp and Souto, 2023).

2.2 Influencing factors of pedestrian safety

Pedestrians are particularly vulnerable road users, exposed to numerous physical

variables in their environment. Their fatality rate is higher than that of car occupants and

other road users (Sze et al., 2019). The severity of pedestrian injuries in the event of a

crash is influenced by a range of factors, including the demographics of both drivers and

pedestrians (Liu et al., 2019; Morgenroth et al, 2018; Papadimitriou et al., 2016), road

design and traffic characteristics (Damsere-Derry et al., 2019; Osama and Sayed, 2017;
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Zhu et al., 2023b), the specific circumstances of the crash (Alhajyaseen et al., 2013; Prato

et al., 2019), land use (Zhu at al., 2023b), physical environment( Hu et al., 2020; Xu et al.,

2020), as well as weather conditions (Zhai et al., 2019b).

2.2.1 Effect of built environments

Studies have investigated the relationship between various influencing factors and the

frequency of pedestrian crashes within geographical units such as counties, census tracts,

and traffic analysis zones (Cai et al., 2016; Hu et al., 2020; Su et al., 2021b). At a

macroscopic level, factors related to the built environment that influence pedestrian safety

have been considered, including road network characteristics (Osama and Sayed, 2017;

Wang et al., 2016), land use (Su et al., 2021b; Zhu et al., 2023b), points of interest (Su et

al., 2021b), and transport facilities (Chimba et al., 2018; Lee et al., 2020; Zhu et al.,

2023b). For example, pedestrian crash rates in commercial and industrial areas are

significantly higher than in residential areas (Lee et al., 2020; Wong et al., 2007), largely

due to the frequency of roadside pickup and drop-off activities (Kraidi and Evdorides,

2020). Conversely, pedestrian crashes tend to decrease as the proportion of green areas

increases (Ryan et al., 2018; Zhu et al., 2024). Additionally, pedestrian crash risk is

positively associated with road width and the number of lanes (Koh et al., 2014; Zhao et

al., 2020). Furthermore, the presence of bus stops and metro exits is linked to an increase

in pedestrian crashes (Chen and Zhou, 2016; Su et al., 2021b).

At a microscopic level, studies have assessed pedestrian crash risk for specific entities

such as road segments, intersections, and crosswalks (Stipancic et al., 2020; Zhu et al.,

2022a). The presence of schools, bus stops, transit stations, and on-street parking has

been found to increase pedestrian crash risk (Kim, 2019; Kraidi and Evdorides, 2020; Zhu

et al, 2022). Regarding the safety impacts of geometric and intersection characteristics,

features such as three-way intersections, raised medians, roundabouts, curb extensions,

and exclusive left-turn lanes have been shown to reduce pedestrian crash injuries (Kim,

2019; Vignali et al., 2020; Zafri et al., 2020). Researchers have also identified that road
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safety measures, such as raised medians and crosswalk markings, contribute to reducing

pedestrian injuries by minimizing potential traffic conflicts between pedestrians and

vehicles (Stipancic et al., 2020; Vignali et al., 2020). However, certain factors at road

segments, including the total number of lanes, street trees, street lighting, park

recreational land use, and commercial entrances, have been associated with an increased

risk of pedestrian crashes (Zhang et al., 2017; Zhu et al., 2022a). Additionally, physical

features such as median barriers and verges within road segment characteristics have been

shown to reduce the number of pedestrian crashes (Zhu et al., 2022b).

2.2.2 Effect of traffic characteristics

Regarding the effect of traffic characteristics, vehicle speed and speed variation are one of

the most important crash factors. Some studies suggest that average speed is negatively

correlated with road crashes, while speed variation is positively correlated with crashes

(Quddus, 2013; Xu et al., 2016). In addition, the effects of speed and speed variation were

proved to be related to other traffic variables, such as flow (Choudhary et al., 2018; Xu et

al., 2016). Additionally, several studies have evaluated the association between the

pedestrian crashes and the type of vehicles (Choudhary et al., 2018; Hu and Cicchino,

2022; Molan et al., 2020). Large vehicles have a relatively high risk of serious road

crashes (Kadali et al., 2015; Yannis et al., 2013). For instance, light truck vehicles were

more likely involved in fatal crashes at or near intersections when compared with cars and

light truck vehicles were also associated with increased odds of walking-along-roadway

crashes (Hu and Cicchino, 2022).

Regarding traffic control characteristics, pedestrian crash risk decreases with the

implementation of measures such as stop controls, exclusive pedestrian (green signal)

phases, permissive right-turn signals (in left-hand drive contexts), pedestrian islands, and

colored pavements (Kim, 2019; Stipancic et al., 2020; Vignali et al., 2020; Zafri et al.,

2020). Conversely, pedestrian crash risk increases with higher traffic volumes (Zhu at al.,

2022). Therefore, it is crucial to implement local area traffic management and traffic
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calming measures, such as low-speed limit zones and pedestrian priority traffic signals.

These interventions can effectively reduce pedestrian injury risk at hotspots where

pedestrian-vehicle conflicts are prevalent (Zhang et al., 2017; Zafri et al., 2020).

2.2.3 Effects of other factors

With regard to socioeconomic and demographic factors, areas with higher employment

density, population density were positively correlated with the number of pedestrian

crashes (Chimba et al., 2018; Hu et al., 2020). Besides, the population of neighborhoods

commuting to work by walking, population of neighborhoods of housing units with no

vehicles and population had a positive relation with the number of pedestrian crashes

(Chimba et al., 2018). In addition, some studies showed that less female than male

pedestrians in general were found to violate traffic rules, which indicates a higher risk

tendency of the male pedestrians (Hidayati et al., 2020). Previous studies also found that

age of the pedestrians is one of the factors influencing pedestrian safety. For instance,

younger pedestrians were more likely to violate rules and elderly pedestrians are

vulnerable and are at great risk of injury or death, when involved in a crash (Kim, 2019).

Studies have examined the effects of network characteristics on road safety (Clifton et al.,

2009; Guo et al., 2017; Marshall and Garrick, 2011). Road crash is positively associated

with network connectivity (Marshall and Garrick, 2011; Osama and Sayed, 2017). Crash

rate of lollipop network with limited access is lower than that of grid network (Sun and

Lovegrove, 2013). However, it is not the case for pedestrian crashes (Guo et al., 2017).

Pedestrian crash increases with intersection density (Guo et al., 2017) number of links

(Osama and Sayed, 2017), and node-to-link ratio (Guerra, et al., 2020). It is crucial to

measure the association between pedestrian network configuration and pedestrian safety.

Weather and visual conditions significantly impact the severity of pedestrian injuries.

Increased rainfall intensity can lead to reduced road roughness and visibility, thereby

elevating the potential risk of crashes (Malin et al., 2019). The risk of pedestrian injury
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rises during rainy and snowy weather, largely due to reckless driving behaviours under

adverse conditions (Li et al., 2017; Zafri et al., 2020; Zhai et al., 2019b). There is also a

negative correlation between road lighting and the likelihood of severe pedestrian crashes,

indicating that better lighting reduces crash severity (Li et al., 2017).

2.3 Methodological approaches for walking behaviours and pedestrian safety studies

2.3.1 Data acquisition for pedestrian studies

Attitudinal survey is commonly adopted for the understanding on choice decision and

associated factors in transport studies (Liang et al., 2023; Liu et al., 2023). For example,

revealed and stated choice experiments can be applied (Arellana et al., 2023). The former

examines the underlying preferences based on observed or self-reported behaviour.

Revealed preference study is relatively straightforward but may be limited to the

observable choices. Potential choices and dynamic changes in the preferences over time

may not be considered (Liang et al., 2023). To gain a comprehensive understanding on the

travel behaviour, stated choice experiments, with which hypothetical scenarios and a wide

range of attributes and levels are included, can be adopted (Basu et al., 2023; Chen et al.,

2022; Liu et al., 2023). For instance, trade-offs between attributes like walking time and

distance, visual attractiveness, safety and security, and level of comfort can be measured

using hypothetical choice scenarios for pedestrian studies.

In recent years, emerging technologies like virtual reality are also adopted for the

examination of pedestrian behaviours (Kwon et al., 2022; Pala et al., 2021). Compared to

empirical surveys, virtual reality offers an efficient and cost-effective way to study

pedestrian behaviours in a controlled manner. Furthermore, immersive CAVE automatic

virtual environment is also adopted for the study of pedestrian crossing behaviour, with

which the risk of simulator sickness of participants is mitigated (Mallaro et al., 2017; Pala

et al., 2021). In addition to built environment, traffic control and personal characteristics,

influences of visual and cognitive distractions on the pedestrian crossing behaviours are

also explored using the immersive CAVE experiments (Tian et al., 2022).
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2.3.2 Walking behaviour analysis

(1) Discrete choice models

In conventional transport studies, econometric methods like multinomial, ordered, and

binary logit and probit regression models are adopted to measure the association between

possible attributes and choice decision (Chen et al., 2021; Guo et al., 2023; Huang et al.,

2019). Essentially, the integrated choice and latent variable model combines a latent

variable model to enhance the explanatory power of the classical choice model to account

for the effects of unobserved heterogeneity attributed to subjective perception (Chen et al.,

2023; Guo et al., 2023; Wang and Song, 2024). The latent variable model captures the

causal relationship between exogenous variables and latent factors, requiring a

measurement model that represents the hypothesized relationship between the latent

factors and attitudinal indicators.

(2) Causal inference approaches

Causal inference approaches like propensity score method are often adopted for the

effectiveness evaluation of road safety interventions in empirical studies, with which the

effects of possible confounding factors are controlled for (Li et al., 2020b; Zhang et al.,

2021). Propensity score refers to the conditional probability of an entity being exposed to

a “treatment” (or “intervention”), given a set of observed covariates (Rosenbaum and

Rubin, 1983). The propensity score method balances the distribution of observed

covariates between treatment and control groups by adjusting the balance values, with

which the confounding factors and potential counterfactuals are accounted for. Otherwise,

it would result in bias and imprecision of treatment effect estimates (Graham, 2022).

There are four common propensity score methods for covariate adjustment, namely

regression, stratification, matching and weighting (Fuentes et al., 2022). In particular,

propensity score is used to balance the pseudo-population by weighting each individual

entity in accordance with the inverse probability of receiving its exposure (Fuentes et al.,

2022; Zhang et al., 2023). It is effective in assessing the balance between entities with and
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without “treatment” for all observed covariates. Despite that, very few studies have

adopted propensity score method for the matching of multi-level entities (Fuentes et al.,

2022). For example, individual entities are nested within clusters in conventional safety

studies. Furthermore, it is rare that the propensity score method is generalized to multiple

treatment scenarios (Li et al., 2020b).

2.3.3 Pedestrian safety analysis

(1) Conventional models

To measure the association between crash frequency and influencing factors, count data

models like Poisson, Poisson-gamma and Poisson-lognormal regression models are

commonly used (Lee and Mannering, 2002; Lord and Mannering, 2010; Washington et al.,

2020). However, issues like excessive zero observation and imbalanced crash data can be

prevalent for disaggregate crash frequency model (Lord et al. 2005, 2007; Pei et al., 2016).

In addition, accounting for the effect of unobserved heterogeneity (because of unknown

or omitted variables) among the observation units, random parameters approach can be

applied (Barua et al., 2016; Chen et al., 2021; Mannering et al., 2016).

To distinguish between the effects of influencing factors on different types of crashes,

separate univariate models are estimated for the subsets of crash data with respect to crash

type, transport mode, and injury severity (Lee and Mannering 2002; Qin et al. 2005;

Wong et al., 2007). Alternately, joint probability model can be adopted, accounting for the

correlation between crash counts of different types for an observation unit (Bhowmik et

al., 2018; Pei et al., 2011; Su et al., 2021b). Furthermore, as the location of crash and

other covariates are involved in the analysis, issues including spatial correlation between

neighboring units and spatial heterogeneity should be considered using Bayesian model

with conditional autoregressive (CAR) prior (Barua et al., 2014; Huang et al., 2019;

Quddus, 2008).

(2) Multivariate models
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In pedestrian safety analysis, it is often used to model specific types of pedestrian crash

counts, such as crash severity (e.g., fatal, serious, minor). The application of univariate

regression models separately ignores the fact that the number of crashes of one particular

type cannot be independent of the number of crashes of other types. In other words, they

are not independent of each other and they are correlated. This is a common problem in

studies involving multivariable when using univariate statistical methods rather than

multivariable statistical methods. Thus, multivariate regression models have been widely

used for road safety analysis over the last decades, considering the unobserved effects and

dependency across multiple crash counts (Aguero-Valverde, 2013; Ma et al., 2008;

Sacchia and El-Basyouny, 2018).

(3) Multilevel model

Multilevel data structures often exist for built environment, traffic, population, and safety

data in spatial crash analysis (Kim et al., 2014; Zhou and Zhang, 2019). For example,

traffic and crash count of individual road entities like street links and intersections

(individual-level) are nested within geographical units like street blocks, census tracts,

and traffic analysis zones (group-level) (Zhao et al., 2020; Zhu et al., 2022a; Zhu et al.,

2022b). In contrast, land use, population socio-demographics, and road network

characteristics data are often aggregated at the group level (Cho et al., 2009; Hu et al.,

2020; Wang et al., 2016; Zhu et al., 2023). Additionally, there are often repeated

measurements for traffic flow and crash over time at each road entity (Huang and

Abdel-Aty, 2010). It is necessary to account for both unstructured and structured

disturbances, attributed to hierarchical and temporal data structures, in parameter

estimation (Cai et al., 2018; Lee et al., 2017). To this end, Bayesian hierarchical and

spatial models were adopted for the prediction of crash hotspots, accounting for the

within-group and between-group disturbances in the estimation (Fawcett et al., 2017;

Huang et al., 2016). Nevertheless, multi-level modeling approach was also proposed to

explore the variability of intrinsic process for hierarchical data structure (Dupont et al.,

2013).
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2.4 Concluding remarks

This chapter presents the findings from a literature survey on pedestrian walking

behaviour and safety assessment studies. Several research gaps have been identified in the

existing literature, which are outlined as follows.

Firstly, while significant attributes influencing perceived walkability have been identified,

their roles in the decision-making processes of urban transit passengers remain

underexplored. Therefore, it is essential to investigate confounding factors, including

individual demographics, socioeconomic status, and travel purpose, that affect the

underlying relationship between these attributes and the walking behaviour of transit

passengers.

Secondly, although several factors influencing pedestrian crossing behaviour and risk

perception have been identified, the impact of weather conditions, which is a significant

contributory factor to crashes, on pedestrian safety perception remains underexamined.

Therefore, it is crucial to explore pedestrian perceptions and crossing behaviours under

varying weather conditions.

Thirdly, while studies have explored the effects of urban street trees on road user

perception, travel behaviour, and traffic safety in general, the specific relationship

between street trees and pedestrian safety is seldom examined. Consequently, it is

essential to investigate the effects of road geometric design, transport facilities, and urban

street trees on pedestrian crash risk at the microscopic level for individual streets.

Fourthly, most studies have concentrated on the network connectivity and accessibility of

cities with limited footbridges or underpasses. Therefore, it is crucial to consider

topographical features, such as elevation and gradient, when evaluating the connectivity

and accessibility of pedestrian networks. Additionally, data on land use, road networks,

street environments, traffic characteristics, pedestrian crashes, and population
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socio-demographics are typically aggregated at varying spatial scales. To address this, a

multiple membership multilevel modeling approach is employed, which accounts for the

effects of hierarchical data structures and spatial correlations on the assessment of

pedestrian crash risk at both microscopic and macroscopic levels.
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Chapter 3 Effect of walking environment and perception on

pedestrian path choice

3.1 Introduction

Transit-Oriented Development (TOD) has been implemented as a pivotal urban planning

strategy in metropolitan cities like Nanjing (Nanjing Natural Resources Bureau, 2023),

with special emphasis on integrated housing and commercial development around transit

stations (Singh et al., 2017). TOD encourages the development of a compact

neighborhood with a mix of various urban functions that are easily accessible by public

transportation. An integrated metro system and public transport network often forms the

backbone of an efficient transportation system of a transit-oriented city (Su et al., 2021a).

This could then stimulate the modal shift from private cars to public transport, addressing

the problems of car reliance, traffic congestion and carbon emission. Therefore,

sustainable urban transport development can be promoted. In 2023, the average daily

passenger trip made by metro in Nanjing City was 2.76 million. This constituted

two-thirds of overall public transport trips in the city (Nanjing Transport, 2024a). In

addition, walking has been the primary means of access for housing, study, work,

shopping, leisure, and public transportation in a transit-oriented city (Singh et al., 2017;

Su et al., 2021a). It is crucial to address the needs of pedestrian-friendly design for the

“first mile and last mile” travel to and from the transit stations. To this end, it is necessary

to understand the underlying relationship between pedestrian planning, walkability, and

walking behaviour of pedestrians.

As aforementioned, TOD focuses on integrated development around transit stations.

There are often seamless connections between indoor and outdoor spaces, with abundant

natural lighting, green vegetation, amenities, crosswalks, and accessible design for person

with disabilities (Chan et al., 2022). In Nanjing City, pedestrian friendly design is adopted

at 134 metro stations (56.8% of overall). All these 134 stations are connected with nearby

building development through grade-separated walkways (Nanjing Transport, 2024b). An
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early study indicated that provision of accessible design at the underground transit

stations can increase transit use (Chan et al., 2022). However, the relationship between

accessible design and walking path choice accessing the transit station is less explored.

Furthermore, interference of pedestrian perception on the association between walking

behaviour and possible attributes should be considered. In preceding studies, objective

measures like connectivity, integration, and accessibility of pedestrian network were

adopted to examine the relationship between walking behaviour and possible attributes

using the space syntax method (Serra-Coch et al., 2018). However, influences of subject

feelings including visual attractiveness, perceived safety, and level of comfort on the

choice decision and behaviour of pedestrians are less studied. Hence, this study aims to

examine the relationship between physical environment, traffic characteristics, subjective

perception, and walking path choice of pedestrians for TOD through the stated choice

experiments in Nanjing City. Contribution of this study is twofold. First, what roles do

physical environment and subjective perception play in the walking behaviour are

examined. In particular, influences of urban design, streetscape, weather, visual

attractiveness, traffic dynamics, and connections between indoor and outdoor spaces

around the metro stations on the choice decision are considered. Second, a hybrid

approach of integrated choice and latent variable model is adopted, with which the

influences of individual heterogeneity and subjective perception on the association

between walking choice and other observed attributes are incorporated.

The remainder of this chapter is structured as follows. Stated choice experiment and

analysis method are described in Section 3.2 and Section 3.3, respectively. Section 3.4

presents the estimation results and their policy implications. Finally, concluding remarks

are given in Section 3.5.

3.2 Stated choice experiment

In this study, an attitudinal survey is conducted to measure the trade-offs between

different attributes for the preferred walking path of pedestrians accessing urban rail
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transit stations. The questionnaire consists of three parts. First, information on gender, age,

education and income of individuals is gathered. Second, importance of possible

attributes that affect the perceived comfort and safety of pedestrians are measured. Third,

hypothetical scenarios of stated choice are presented.

3.2.1 Perceived comfort and safety

In this study, two latent variables that indicate the effects of perceived comfort and safety

on the choice preference of pedestrians are established. Table 1 illustrates the

specification of latent variables. As shown in Table 1, attributes that affect the perceived

level of comfort are quality of pedestrian facilities, pedestrian volume, and sidewalk

width. On the other hand, attributes that affect the perceived safety are traffic flow

volume, level of familiarity, and lighting (Basu and Sevtsuk, 2022; Sevtsuk et al., 2021;

Zhu et al., 2023). For instance, the five-point Likert scale approach (with 1 implies

strongly disagree and 5 implies strongly agree) is adopted for the estimation of relative

importance. As also shown in Table 3.1, perceived level of comfort increases for the

streets with better pedestrian facilities (average of 4.34 out of 5), fewer pedestrians (3.63),

and wider sidewalks (4.20). On the other hand, perceived safety increases for the street

with lower traffic volume (4.17), higher familiarity (4.37), and adequate lighting (4.41).

Table 3.1 Specification of latent variables
Scope of
work

Description Mean
Standard
deviation

Perceived
Comfort

C1: Street with better pedestrian facilities is preferred 4.34 0.79
C2: Street with fewer pedestrians is preferred 3.63 1.07
C3: Street with wider sidewalks is preferred 4.20 0.84

Perceived
Safety

S1: Street with fewer vehicles is preferred 4.17 0.94
S2: Street with higher familiarity is preferred 4.37 0.80
S3: Street with lighting is preferred 4.41 0.76

3.2.2 Stated preference design

In this study, scenarios of possible walking path choices from a transit station to specific
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destinations are generated. For example, travel purposes including work, leisure, and back

home are considered. In each choice scenario, two options are presented. Table 3.2

summarizes the attributes and levels considered in the stated choice experiments.

Table 3.2 Variables and attribute levels for the stated choice experiment
Variable Attribute level

Walking time 1 Short: 8 minutes
2 Medium: 15 minutes
3 Long: 25 minutes

Proportion of indoor link 1 Low: 10%
2 Medium: 25%
3 High: 40%

Connection between indoor and outdoor
spaces

1 Easy: No difference in vertical levels
2 Medium: Connected with elevators and

lifts
3 Difficult: Connected with staircases

Number of crosswalks 1 No: Zero
2 Less: Two
3 More: Five

Weather 1 Fine
2 Hot
3 Rainy

Proportion of sky view 1 Low: 10%
2 Medium: 25%
3 High: 40%

Proportion of green view 1 Low: 10%
2 Medium: 25%
3 High: 40%

As shown in Table 3.2, attributes including walking time, proportion of indoor link,

connection between indoor and outdoor spaces, number of crosswalks, weather, and

proportions of sky and green view from pedestrian perspective are included. Additionally,

each attribute has three levels. If all possible combinations of attributes and levels were

adopted, there would be 37 = 2,187 options in the choice set. To improve the efficiency of

estimation, a fractional factorial design is often adopted to examine the main and

interaction effects with a minimum number of trials (Zhu et al., 2023). Furthermore, a

D-efficient design approach can be adopted to increase the precision of estimation and
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minimize the standard errors (Chen et al., 2022). In this study, 24 choice scenarios are

generated using the D-efficient approach with STATA package. Finally, the scenarios are

divided into four blocks, each with six scenarios, to reduce the burden of individual

participant. To enhance the presentation of choice scenarios and understanding of

participant, illustrations based on the actual scenes in Nanjing City are provided (as

shown in Figure 3.1).

Work trip (select one ):  

Leisure trip (select one ):  

Home trip (select one ):  

Option A Option B
Weather Hot Rainy
Walking time 8 minutes 25 minutes
Proportion of indoor link Low Medium
Connection between
outdoor and indoor links

Medium Easy

Number of crossings 3 0
Proportion of sky view

Medium Low
Proportion of green view

Low High

Figure 3.1 An example of stated choice experiment (English translation)

3.2.3 Attitudinal survey

The stated preference survey was conducted in Nanjing City during the period between

April and May 2024. Participants were recruited through an online survey platform

(www.powercx.com). Inclusion criteria of participants are (i) lived in Nanjing City for not

http://www.powercx.com
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less than 12 months, (ii) aged not less than 18 years; and (iii) used Nanjing Metro in

preceding 12 months. Informed consent was sought prior to the survey. Overall, a sample

of 600 participants (with 600 x 6 = 3600 observations of choice scenarios) was collected.

Table 3.3 summarizes the characteristics of participants. As shown in Table 3.3, 41.7% of

participants were male, about half (54.3%) were young adult of age between 26 and 35

years, and majority (78.2%) attained tertiary education. Furthermore, the majority earned

between 5,000 and 19,999 RMB (i.e., 703 to 2,812 USD) per month.

Table 3.3 Summary statistics of the sample
Variable Attribute Count Proportion

Gender Male 250 41.7 %
Female 350 58.3 %

Age 18 – 25 years 81 13.5 %
26 – 35 years 326 54.3 %
36 – 45 years 166 27.7 %
Above 45 years 27 4.5 %

Education level Secondary education or below 131 21.8 %
Tertiary education or above 469 78.2 %

Employment status Full-time employment 530 88.3 %
Self-employed 25 4.2 %
Student 25 4.2 %
Other 20 3.3 %

Monthly income Less than 5,000 RMB 74 12.3 %
5,000 – 9,999 RMB 222 37.0 %
10,000 - 19,999 RMB 232 38.7 %
20,000RMB or above 72 12.0 %

Note: Number of responses: 600

3.3 Method of analysis

In conventional transport studies, econometric methods like multinomial, ordered, and

binary logit and probit regression models are adopted to measure the association between

possible attributes and choice decision. To account for the effects of unobserved

heterogeneity attributed to subjective perception, an integrated choice and latent variable

model is adopted in this study (Chen et al., 2023; Guo et al., 2023; Wang and Song,

2024).
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Figure 3.2 illustrates the framework of integrated choice and latent variable model

proposed. As shown in Figure 3.2, a measurement model is adopted to measure the

relationship between latent variables (i.e., perceived comfort and safety) and observed

attributes like quality of pedestrian facilities, pedestrian volume, sidewalk width, traffic

flow, familiarity, and street lighting. Then, a choice model is established to examine both

the direct and indirect effects of pedestrian socio-demographics, stated choice attributes

(i.e., walking time, weather, proportion of indoor link, connection between indoor and

outdoor spaces, and proportions of sky and green views), and latent variables on the

choice decision using random utility model. Table 3.4 summarizes the variables and

attribute levels considered in the proposed integrated choice and latent variable model.

Figure 3.2 Framework of the proposed integrated choice and latent variable model
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Table 3.4 Variables considered in the proposed model
Scope of work Variable Attribute

Socio-demographics Gender 1: Male; 0: Female
Age 1: 35 years or below; 0: Otherwise
Education level 1: Tertiary or above; 0: Secondary or below
Monthly income 1: Less than 10,000 RMB; 0: 10,000 RMB

or above
Latent variable Perceived comfort Minimum: 1; Maximum: 5

Perceived safety Minimum: 1; Maximum: 5
Weather Hot weather 1: Yes; 0: No

Rainy weather 1: Yes; 0: No
Route attribute Walking time Minimum: 8; Maximum: 25

Proportion of indoor links Minimum: 0.1; Maximum: 0.4
Connection with lift 1: Yes; 0: No
Connection with staircases 1: Yes; 0: No
Number of crossings Minimum: 0; Maximum: 5

Street view Proportion of sky view Minimum: 0.1; Maximum: 0.4
Proportion of green view Minimum: 0.1; Maximum: 0.4

3.3.1 Latent variable model

The latent variable model consists of two components: (1) a structural model for the

association between pedestrian socio-demographics and latent variables, and (2) a

measurement model for the relationship between observed attributes and latent variables.

For instance, the structural model for latent variable k of individual i is specified by,

���
∗ = �� + ���� + ��

� ��� (Eq. 1)

where ui denotes the vector of personal characteristics of individual i, �� is the vector of

corresponding parameters, ��
� denotes the vector of standard normally distributed

random error terms, and ��� is the scale parameter.

Then, the conditional probability is specified by,

� ���
∗ �� = � ���

∗ −����
���

(Eq. 2)
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where � is the standard normal density function.

On the other hand, the measurement model that links the latent variables and observed

attribute ���
�∗ (o = C1, C2, C3, …, and S3 in this study) can be given by (Bouscasse, 2018;

Wang and Song, 2024),

���
�∗ = ��� + ������

∗ + ���
� ��� (Eq. 3)

where ��� is the intercept, ��� is the parameter for attribute o, ���
� is the standard

normally distributed random error terms, and ��� is the scale parameter.

As aforementioned, five-point Likert scale approach is adopted for the observed attributes,

the probability function can be specified using ordered probit regression method as,

���
� =

1 ���
�∗ < �1

2 �1 ≤ ���
�∗ < �2

⋮
�

⋮
��−1 ≤ ���

�∗

(Eq. 4)

where ���
� is the observed response, �1, �2, . . . , ��−1 are thresholds, and m = 5

respectively.

Furthermore, two positive parameters �1 and �2 are defined, considering the

symmetrical nature of the thresholds. Hence, the thresholds are specified as,

214

13

12

211

















(Eq. 5)

Finally, the probability of observed responses can be written as,
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� ���
� ���

∗ = �� � ��− ���+������
∗

���
− � ��−1− ���+������

∗

���
� (Eq. 6)

where � is the standard normal cumulative distribution function, and n = 1, 2, 3 and 4.

3.3.2 Random utility model

In this study, the binary logit regression approach is adopted to model the preferred

walking path with the utility function given by,

�� = ��� + ���
∗ + �� (Eq. 7)

where wi and xi are the observed and latent variables of observation i, α and γ are

corresponding parameters, and εi is the independent and identically extreme value

distributed error term.

Then, the probability is given by,

� � = 1 = ��

1+�� (Eq. 8)

To model the joint probability, the integrated choice and latent variable model is given by,

� ��, ���
� ��

∗, �� = ��
∗ � �� = 1 ��, ��

∗� •�(���
� ��

∗)•� ��
∗ �� ���

∗ (Eq. 9)

Nevertheless, effects of unobserved heterogeneity and panel data are also accounted using

mixed approach.

3.4 Results and discussion

3.4.1 Latent variables

Table 3.5 presents the parameter estimation results for the structural model of perceived
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comfort and safety. Personal attributes including gender, age, education level, and

monthly income are considered. As shown in Table 3.5(a) and Table 3.5(b), there is no

significant difference in parameter estimates among travel purposes, i.e., work, leisure,

and back home.

For perceived comfort, as shown in Table 3.5(a), perceived comfort is higher for

pedestrians of age 35 or below. This is because younger adults tend to prioritize the

options with higher levels of comfort in travel choice (Olsson et al., 2020). Additionally,

there are positive associations between perceived comfort, education level and monthly

income perceived comfort. Such a finding is intrinsic as people with higher education

level and income tend to prioritize options with better quality. Nevertheless, there is no

significant effect for gender on perceived comfort.

For perceived safety, as shown in Table 3.5(b), effects of gender, age, education level, and

income are significant. For instance, perceived safety is lower for male and pedestrians of

age 35 or below. Such findings are consistent with those in previous traffic psychology

studies. Male and younger adults tend to be more risk-taking. They are less sensitive to

road hazards (Rišová and Madajová, 2020; Salducco et al., 2022). In contrast, perceived

safety is higher for pedestrians with high education level and monthly income. This

justifies the effectiveness of education in enhancing road safety awareness and promoting

the compliance of road traffic rules (Cordellieri et al., 2016). Furthermore, it is intrinsic

that people with higher income tend to have higher safety awareness. Also, they could

have been more risk averse (Heydari et al, 2019).
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Table 3.5 Results of parameter estimation for the structural model
(a) Perceived comfort

Variable
Work trip Leisure trip Home trip

Parameter
Standard

error
Parameter

Standard
error

Parameter
Standard

error
Male -0.003 0.15 -0.005 0.21 -0.004 0.19
Age of 35 years or below 0.031* 0.04 0.034* 0.03 0.033* 0.05
Tertiary education or above 0.075* 0.08 0.081** 0.11 0.080** 0.13
Monthly income more than
10,000 RMB

0.051* 0.07 0.048* 0.08 0.047* 0.09

* Significant at the 5% level
** Significant at the 1% level

(b) Perceived safety

Variable
Work trip Leisure trip Home trip

Parameter
Standard

error
Parameter

Standard
error

Parameter
Standard

error
Male -0.071* 0.06 -0.062* 0.05 -0.065* 0.05
Age of 35 years or below -0.048* 0.04 -0.061* 0.06 -0.055* 0.06
Tertiary education or above 0.083** 0.15 0.094** 0.19 0.086** 0.12
Monthly income more than
10,000 RMB

0.55* 0.02 0.57* 0.05 0.53* 0.08

* Significant at the 5% level
** Significant at the 1% level

Table 3.6 presents the parameter estimation results for the measurement model. As shown

in Table 3.6, all parameters (β) for perceived comfort and perceived safety are statistically

significant, regardless of the travel purpose. Furthermore, thresholds for the ordered

model are also estimated.
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Table 3.6 Results of parameter estimation for the measurement model

Variable
Work trip Leisure trip Home trip

��,� �1 �2 �3 �4 ��,� �1 �2 �3 �4 ��,� �1 �2 �3 �4

Perceived
comfort - C1

Parameter 0.568* -1.055 -0.357 0.698 1.055 0.689* -1.314 -0.513 0.801 1.314 0.614* -1.321 -0.527 0.794 1.321
Standard error 0.022 0.018 0.033

Perceived
comfort - C2

Parameter 0.891* -1.822 -0.639 1.183 1.822 0.879* -1.838 -0.701 1.137 1.838 0.793* -1.512 -0.584 0.928 1.512
Standard error 0.054 0.061 0.039

Perceived
comfort - C3

Parameter 0.788* -1.412 -0.433 0.979 1.412 0.533* -1.01 -0.308 0.702 1.01 0.739* -1.659 -0.579 1.08 1.659
Standard error 0.047 0.042 0.041

Perceived
safety - S1

Parameter 0.639* -1.478 -0.496 0.982 1.478 0.708* -1.512 -0.537 0.975 1.512 0.703* -1.551 -0.521 1.03 1.551
Standard error 0.028 0.021 0.028

Perceived
safety - S2

Parameter 0.482* -0.919 -0.236 0.683 0.919 0.656* -1.386 -0.487 0.899 1.386 0.526* -1.298 -0.457 0.841 1.298
Standard error 0.027 0.033 0.039

Perceived
safety - S3

Parameter 0.954* -2.278 -0.796 1.482 2.278 0.841* -1.76 -0.609 1.151 1.76 0.896* -1.846 -0.634 1.212 1.846
Standard error 0.081 0.071 0.069

* Significant at the 5% level ; ** Significant at the 1% level
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3.4.2 Walking path choice

Table 3.7 presents the parameter estimation results for the integrated choice and latent

variable model. There is no major difference in parameter estimates among the models for

different travel purposes.

For the effects of socio-demographics of pedestrians, as shown in Table 3.7, factors

including gender (Work: -0.351; Leisure: -0.014; Back home: -0.017), age (0.004; -0.042;

-0.047) and monthly income (0.807; 0.211; 0.181) all significantly affect the choice of

pedestrians, regardless of the travel purpose, at the 5% level. Nevertheless, effects of

education level (-0.079; -0.473; -0.314) on walking path choices are marginal. For the

effects of pedestrian perception, pedestrians tend to choose the walking paths that have

higher level of perceived comfort (0.7335; 0.748; 0.969) and perceived safety (0.801;

0.778; 0.978), all at the 5% level.

For the effects of weather condition, as shown in Table 3.7. Both hot weather and rainy

weather are associated with expected negative coefficients, suggesting that pedestrians are

less inclined to travel during adverse weather conditions. Furthermore, the parameter for

rainy weather is higher (-0.377; -0.881; -0.283) than that for hot weather (-0.294; -0.754;

-0.042), indicating that different weather conditions have varying impacts on walking

decisions. Additionally, metro passengers’ perceived walkability for leisure purposes is

more significantly affected by weather conditions than other travel purposes. This

justifies that pedestrians are sensitive to the weather conditions in walking path choice.

Adverse weather conditions like rain and extreme high temperatures can modify the

relationship between possible factors and utilities of specific walking path (Liu et al.,

2015).

For the effects of route attributes, as shown in Table 3.7, it is intrinsic that paths with

longer walking time (Work: -0.036; Back home: -0.002) are less preferred, for work and

back home trips, at the 5% level (Chen et al., 2023). Paths with longer walking time
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might be preferred for leisure trips (0.023), even if the effect is marginal. In addition,

paths with higher proportions of indoor link (work: 0.001, leisure: 0.007, home: 0.002)

are more preferred, regardless of the travel purpose, all at the 5% level. This is because

indoor links usually have level surfaces, shops and amenities. They are often considered

as safe, comfortable, and pedestrian-friendly since possible hazards like road traffic, air

pollutants, adverse weather, injuries, and crimes can be avoided (Sun et al., 2016; Zhu et

al., 2024). Furthermore, walking paths that are connected by lift (0.065; 0.035; 0.106) are

preferred, regardless of the travel purpose, all at the 5% level. In contrast, walking paths

that are not equipped with an accessible design (i.e., connection with staircases only) are

less preferred (-0.104; -0.361; -0.080), at the 5% level. Last but not least, walking paths

that have more crosswalks are less preferred (-0.032; -0.018; -0.020), regardless of the

travel purpose. Such finding is consistent with that of our previous study (Zhu et al.,

2023).

For the effects of street view from pedestrians’ perspectives, as shown in Table 3.7,

walking paths that have more sky view (0.008; 0.011; 0.003) are preferred, regardless of

the travel purposes, all at the 1% level. It is because of the positive association between

open sky and pleasant feeling (Liu et al., 2024). Just, the favorable effects of green view

are less significant, compared to that of sky view. As also shown in Table 3.7, there is

significant association between green view (0.006) and utility for leisure trip only at the

5% level. This is because of the effectiveness of greenery in alleviating the anxiety and

depression symptoms (Nordfjærn et al., 2014).
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Table 3.7 Results of parameter estimation for the choice model

Variable
Work trip Leisure trip Home trip

Parameter t-statistics Parameter t-statistics Parameter t-statistics
Constant 0.944* 2.08 1.213* 1.96 1.458* 2.03
Gender -0.351** -2.73 -0.014* -1.99 -0.017* -2.15
Age 0.004* 1.99 -0.042* 1.96 -0.047* 1.99
Education level -0.079^ -1.93 -0.473^ -1.94 -0.314^ -1.94
Monthly income below
10000 RMB

0.807* 1.99 0.211^ 1.85 0.181^ 1.95

Perceived comfort 0.735** 2.82 0.748** 2.65 0.969* 2.47
Perceived safety 0.801** 2.69 0.778* 2.37 0.978* 2.31
Hot weather -0.249** -4.87 -0.754** -3.96 -0.042** -2.98
Rainy weather -0.377** -7.35 -0.881** -10.39 -0.283** -3.69
Walking time -0.036** -11.85 0.023^ 1.84 -0.002** -2.84
Proportion of indoor
link

0.001* 1.99 0.007* 2.31 0.002* 2.55

Connection with lift 0.065* 1.99 0.035* 2.01 0.106* 2.34
Connection with
staircases

-0.104* -2.06 -0.361* -2.27 -0.080** -2.62

Number of crossings -0.032** -2.60 -0.018* -2.36 -0.020** -2.87
Proportion of sky view 0.008** 6.22 0.011** 4.68 0.003** 3.54
Proportion of green
view

0.002 1.62 0.006* 1.96 0.002^ 1.79

^ Significant at the 10% level
* Significant at the 5% level
** Significant at the 1% level

3.5 Concluding remarks

There has been concern for rapid urbanization in many developing countries. Urban

agglomeration often results in problems like traffic congestion, air pollution, noise, and

road injuries. To this end, transit-oriented development (TOD) is increasingly

implemented to resolve the problem of unsustainable urban development. With the

integration of housing development and urban rail transit system, modal shift to public

transport and walkability are promoted. Studies have explored the relationship between

TOD and walkability, based on the metrics like connectivity, integration, and accessibility

of pedestrian networks. However, the moderation effect of pedestrian perception on the

association between physical environment and walking behaviour of pedestrians is less
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considered. Furthermore, pedestrians’ preference on the indoor environment, vertical

access, and visual perspective in the decision-making process is rarely explored. In this

study, a stated choice experiment is established to gauge the trade-off of pedestrians

among different physical environment attributes in walking path choice. Additionally,

perceived comfort and safety of the walking path are also considered. Furthermore, an

integrated choice and latent variable model is adopted for the parameter estimation.

Results indicate that route attributes like walking time, proportion of indoor link, vertical

access, and sky and green views significantly affect the path choice of pedestrians for

work, leisure, and back home trips from the metro stations. For instance, shorter routes,

more indoor links, better vertical access, and more sky view are preferred. Nevertheless,

perceived safety and comfort, socio-demographics, and weather can also modify the

relationship between route attributes and walking path choice.

Findings are indicative to future pedestrian planning and urban design strategies. For

example, perceived walkability can be enhanced when more environmental-friendly

design including covered walkway, accessible design including ramps, elevators and

movable walkways, and open space and sky view are provided. Nevertheless, this study

also has limitations. First, effects of spatial dependency and panel data could be

accommodated using advanced econometric methods. Second, effects of spatial-temporal

dynamics of real-time traffic and pedestrian flow on the walking behaviour of pedestrians

could be explored using advanced microscopic traffic simulation model. Third, effects of

walking experience on the walking behaviour could have been explored using virtual

reality simulation and field observation.

In our recruitment of survey respondents, we primarily utilized online questionnaires.

This method may have unintentionally biased our sample towards younger and

middle-aged individuals. Older adults might have been less likely to participate due to

potential unfamiliarity with online platforms or limited exposure to areas where these

surveys are typically advertised. To address this issue in future research, we can design

targeted surveys specifically for the elderly population.
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Chapter 4 Effect of weather and traffic conditions on

pedestrian safety perception at mid-block crossing

4.1 Introduction

Pedestrians are vulnerable to fatal and severe injuries in road crashes. About a quarter of

road fatalities around the world were pedestrians in 2023 (World Health Organization,

2023). Hong Kong is a densely populated city. Walking is the primary mean of access to

public transport services. However, the majority of road deaths (65%) are pedestrians.

Inattentiveness and reckless crossing of pedestrians are the major contributory factors to

road crashes involving pedestrians (Hong Kong Police Force, 2023; Zhu et al., 2024). It is

necessary to identify the possible factors that affect the perceived safety risk, and

therefore, likelihood of reckless crossing behaviour of pedestrians (Hou et al., 2022; Rupp

et al., 2016; Zhu et al., 2021), particularly at the accident-prone locations like mid-block

crossings (Siddiqui et al., 2006).

Weather is recognized as a crucial factor that affects road user behaviour and traffic safety.

Adverse weather conditions like rain and fog have significant impacts on driver and

pedestrian behaviour (Liu et al., 2015; McCann and Fontain, 2016). For example,

cognitive performance of drivers and pedestrians could have been impaired in the low

visibility condition since the capabilities of visual and auditory cognitions to the

environment are reduced (Ingold, 2005; Malin et al., 2019; Półrolniczak and Kolendowicz,

2023). However, previous studies mainly focus on the impairment of driver behaviour.

Associations between weather, safety perception and crossing behaviour of pedestrians

are less explored (Druta et al., 2020; Zhai et al., 2019b). To this end, it is crucial to

examine the interdependence between pedestrian safety perception, weather, and other

possible confounding factors.

In this study, influences of weather conditions on pedestrian safety perception at the

mid-block crossing are examined using the immersive CAVE experiment. For instance,
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pedestrian safety perceptions in different weather conditions are compared using a causal

inference model. Furthermore, effects of multilevel data for multiple treatments are

accounted using inverse probability of treatment weighting. The contribution of this study

is twofold. First, associations between weather, other possible factors and pedestrian

safety perceptions are measured. Second, the effects of multiple treatments on the causal

inference are accounted for using advanced statistical methods.

The remainder of this chapter is structured as follows. Methods of data collection and

analysis are described in Section 4.2 and Section 4.3, respectively. Section 4.4

summarizes the results of causal inference. Finally, concluding remarks are given in

Section 4.5.

4.2 Data collection

4.2.1 Study design

In this study, the 3D model of a typical mid-block crossing in Hong Kong is developed.

The selected site is near a metro station – Sha Tin Wai. As shown in Figure 4.1, the

crossing is at a one-way single lane local street. Pedestrian footpaths are available on both

sides of the street. To provide more realistic experience to the participants, design and

layout of road features like road barriers, road markings, traffic signs, and street lighting

are similar to those in Hong Kong. In the experiment, a participant would “stand” at the

kerbsides. Vehicles with varying gap sizes are approaching from the right-hand side, and

the participant would be asked whether a suitable gap exists for him or her to cross safely.
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Figure 4.1 3D virtual reality model of the study site

In this study, factors including vehicle speed, gap size, weather, and lighting are

considered. A gap refers to the time difference between the arrival of the rear bumper of a

leading vehicle and the front bumper of a following vehicle. Gap acceptance can be

affected by factors including demographics, personal attitude, walking speed, and

perception-reaction time of pedestrians (Feldstein, 2019; Soares et al., 2021; Stafford et

al., 2019). For crosswalks on single-lane roads, the acceptable gap typically ranges from 2

to 5 seconds. Gap acceptance is generally not sensitive to gap sizes smaller than 2

seconds or larger than 5 seconds (Tian et al., 2022). Therefore, this study considers a gap

size range of 1 to 5 seconds. As shown in Table 4.1, there are two levels for vehicular

speed, five levels for vehicle gap, three levels for weather, and two levels for lighting,

respectively.

Table 4.1 Factor attributes considered in the experiment

Factor Attributes
Vehicle speed 30 km/h, 50 km/h
Gap 1 second, 2 second, 3 second, 4 second, 5 second
Weather Fine weather, rain, light fog, heavy fog
Lighting Daytime, dusk
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However, there could have been 80 = 2 x 5 x 4 x 2 experiment scenarios if all possible

combinations were considered. To improve the efficiency of experiments, three schemes

of approaching traffic with varying gap sizes (see Figure 4.2) and five scenarios of

weather and lighting conditions (see Figure 4.3), i.e. (I) daytime – fine weather; (II)

daytime – rain; (III) dusk – rain; (IV) daytime – light fog; and (V) daytime – heavy fog,

respectively, would be presented. In each scheme, as shown in Figure 4.2, there are

eleven gaps with size ranging from 1 to 5 seconds. To this end, there are 30 = 2 (vehicle

speed) x 3 (scheme of vehicle gaps) x 5 (weather and light conditions) trials for the

experiments. Order of the 30 trials would be randomized for each participant to avoid the

learning effect.

Scheme 1

Scheme 2

Scheme 3

Figure 4.2 Gap sizes (in seconds) in different experimental schemes

(a) Daytime – Fine weather (b) Daytime - Rain

(c) Dusk - Rain (d) Daytime – Light fog
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(e) Daytime – Heavy fog

Figure 4.3 Illustrations of different weather conditions

Figure 4.4 illustrates the instrument used in this study. The immersive CAVE has four

screens, with the size of 2.2 metre high x 3.2 metre wide x 2.6 metre deep. As shown in

Figure 4.4, participants would stand in the middle of the CAVE and wear a pair of active

stereo shutter glasses. This is to avoid the genlock problem for the synchronized signal.

Figure 4.4 CAVE used in this study

4.2.2 Study procedures

A power analysis is conducted to determine the necessary sample size (Cohen, 2013). For

example, assuming an effect size of 0.15, a statistical power of 0.9, and a significant level

of 0.05, the required sample size is 47. Therefore, 50 participants are recruited for the

experiments. The inclusion criteria include age of 18 years or above, lived in Hong Kong

for more than 12 months, good physical health, normal or corrected-to-normal full-colour

vision, capable for walking, and with no hearing problem. Mean age of the participants is
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31.6 years (range: 18 years to 60 years). 25 are males and 25 are females respectively. No

simulation sickness occurs in the experiments. Research ethics approval was obtained

from the Human Subjects Ethics Sub-committee of the Hong Kong Polytechnic

University. Written consent for participation was sought. Also, an honorarium of HKD

100 would be given for each participant.

For each participant, the duration of the experiment is about 60 minutes. First, a briefing

session would be given for the introduction of study purpose, experiment procedures, and

safety precaution. Also, a survey on personal characteristics like gender, age, and travel

habits would be conducted and informed consent would be sought. Second, a practice

session would be given to help familiarize the participants with the operation of

instrument and experiment procedures. Third, each participant would be asked to

complete 30 trials of gap acceptance tests. A five-minute break would be given after every

ten trials. Lastly, a perceptional survey would be conducted to measure the participants’

attitude towards the experiments. Overall, there are 1,500 observations (50 participants x

30 trials).

As mentioned, eleven vehicle gaps, with varying gap sizes, would be presented to the

participant in each trial. For each gap presented, the participant must indicate whether the

gap is “acceptable” for safe crossing, by raising his or her hand. Number of approaching

vehicles and total waiting time are not known to the participant in each trial. Also, a

participant would be asked to give a rating, indicating the likelihood of crash if he or she

had crossed the road with the accepted gap, using the 10-point Likert scale (1 refers to

very unlikely, 10 refers to very likely), after each trial. Lastly, upon the completion of all

30 trials, each participant is required to answer two questions for the measurement of (i)

Rashness (“I behaved more recklessly in the experiments, compared to the real life”, 1

refers to strongly disagree, 10 refers to strongly agree ), (ii) hesitation (“It was easier for

me to decide whether to cross or not in the experiments, compared to the real life”, 1

refers to strongly disagree, 10 refers to strongly agree), again using 10-point Likert scale.
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4.3 Method of analysis

4.3.1 Propensity score method

In the propensity score framework, treatment and corresponding control entities have

similar characteristics. In this study, the sample of 1,500 observations (trials) are nested

within 50 clusters (participants). Let imn denotes individual observation, with m = 1, 2, …,

and 50 and n = 1, 2, …, and 30. Weather and light conditions are the treatments under

investigation in this study. Let Ti = j denotes the treatment assigned to i, with j = 0, 1, 2, 3

and 4. Also, Yi (Ti) denotes the outcome, i.e., safety perception, of observation i when

assigned treatment Ti. Hence, individual causal effect (ICE) can be given by,
�� = �� � − �� � (Eq. 1)

where � ≠ �.

Furthermore, assumptions for causal inference should be modified for multiple treatments

as follow.

ASSUMPTION 1 - Weak unconfoundedness: Treatment assignment is weakly

unconfounded when,

�� �  1 �� = � ��, ∀� ∈ 0,1,2,3,4 (Eq. 2)

ASSUMPTION 2 - Sufficient overlap or positivity: For all x and j , probability of

treatment assignment is bounded away from zero as,

�� � > 0, ∀� in support of Xi and ∀� ∈ 0,1,2,3,4 (Eq. 3)

4.3.2 Multilevel multinomial logit model

In general practice, propensity scores are estimated using empirical data. Additionally, it

is necessary to consider multilevel data structure for the estimation (Fuentes, et al., 2022).
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To this end, random-intercept multilevel multinomial logit model is adopted for

propensity score estimation given by,

�
� = � � + � � �� + �

� + ��
� (Eq. 4)

where � � and � � have specific parameters, and �
� and ��

� are independent error

terms with '�~� 0,


and �'�~� 0,� .

Furthermore, the response variable follows a multinomial distribution and j = 0 is the

reference (with all parameters and random errors set as zero). Hence, the conditional

probability of response variable �� � can be given by,

1
1 + �=1

4 ��� �
�� (Eq. 5)

Propensity score, i.e., conditional probability for treatment exposure, has been an

effective summary measure of covariate. For multiple treatments, it can be extended to

generalized propensity score given by (Imbens, 2000),

�
� = ����� ��

� (Eq. 6)

��
� = �� �� = � ��,�, �� =

��� �
�

1 + �=1
4 ��� �

��
(Eq. 7)

4.3.3 Inverse probability of treatment weightings

In this study, inverse probability of treatment weightings (IPW) is adopted to balance the

pseudo-population. For instance, individuals with higher probability receiving the

“treatment” are assigned small weights, and vice versa. Then, treatment assignment and

distribution of covariates for propensity score estimation are independent. Therefore, the

average treatment effect can be estimated, with which the weights of individuals with and
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without treatment are reallocated. For example, the weights for average treatment effect

estimation are given by,

����� =

1

��
� =

1
�� �� = � ��, �, ��

1

1 − ��
� =

1
1 − �� �� = � ��, �, ��

, for treatment group
(Eq. 8)

, for control group

Then, the weighted mean estimate for treatment j is given by,

� = �=1
�

�=1
�� ��� �� �� ��

�=1
�

�=1
�� ��� ��� �

(Eq. 9)

Finally, the average treatment effect (ATE), which is the expectation across all ICEs

integrated over all x with respect to IPW, is given by,

���� = � �� � − �� � = � − � (Eq. 10)

4.3.4 Covariates

In this study, the primary objective is to examine the effects of weather conditions on the

association between pedestrian safety perception and other possible factors. Therefore,

observations are assigned to different groups in accordance with the following Table 4.2.

Table 4.2 Assignment of treatment and control group

Group Weather
Control (T0) Daytime – Fine weather
Treatment 1 (T1) Daytime – Rain
Treatment 2 (T2) Dusk - Rain
Treatment 3 (T3) Daytime – Light fog
Treatment 4 (T4) Daytime – Heavy fog

In this study, the Propensity score method is employed to account for the effects of

confounding factors. This approach balanced the distributions of observed attributes
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among treatment and control groups, allowing for more precise estimates of treatment

effects and reducing bias attributed to possible confounding factors. Table 4.3 summarizes

the covariates considered for the propensity score estimation. As shown in Table 4.3, four

covariates including pedestrian age, gender, rashness, and hesitation are at the participant

level and another four including vehicles passed, waiting time, gap accepted, and vehicle

speed are at the observation level, respectively.

Table 4.3 Covariates considered in the proposed model
Scope of work Covariate Description Covariate type
Dependent
variable

Pedestrian
safety
perception

Anticipated crash risk if gap
is accepted

Ordinal: 10 refers to very
likely, 1 refers to very
unlikely

Participant
level

Age Age of participant Continuous
Gender Gender of participant Categorical: 1 refers to

male, 0 refers to female
Rashness Participant behaved more

recklessly in the
experiments, compared to
the real life

Ordinal: 10 refers to
strongly agree, 1 refers to
strongly disagree

Hesitation Participant considered easier
to decide whether to cross or
not in the experiments,
compared to the real life

Ordinal: 10 refers to
strongly agree, 1 refers to
strongly disagree

Observation
level

Vehicles passed Number of vehicles passed
until the participant starts
crossing

Count

Waiting time Waiting time until the
participant starts crossing

Continuous

Gap accepted Size of gap accepted by the
participant

Categorical: Not accepted,
2 second, 3 second, 4
second, 5 second

Vehicle speed Speed of approaching
vehicle

Categorical: 30 km/h, 50
km/h

Last but not least, balance of covariate is assessed using standardized mean difference

(SMD). SMD refers to the standardized difference in means for each covariate among

treatment groups. A smaller SMD implies better balance of covariate.
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4.4 Results and discussion

4.4.1 Standardized mean difference for covariate balance

Figure 4.5 illustrates the Love plot of the SMD before and after propensity score

weighting for all covariates. Positive SMD implies the over-representation of

corresponding covariate in the treatment group. As shown in Figure 4.5, a threshold of 0.1

is established for the covariate balance prior to propensity score weighting. As also shown

in Figure 4.5, values of SMD are below 0.1 for all covariates after propensity score

weighting. This implies a satisfactory balance is achieved.

Figure 4.5 Standardized mean difference before and after weighting

4.4.2 Adjustment by inverse probability of treatment weighting

Overall, there are 1,500 observations in this study. For instance, they are evenly allocated

to the five treatment and control groups given in Table 4.2 in previous Section 4.3. Table

4.4 presents the descriptive statistics and SMD estimates for the treatment and control

groups, before and after propensity score weighting. As shown in Table 4.4, there are

noticeable imbalances for covariates like vehicle passed (SMD = 0.118), waiting time

(0.120), and gap acceptance (0.238), before propensity score weighting. In contrast, no
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significant imbalance can be observed for gender, age, rashness, hesitation, and vehicle

speed. Nevertheless, there is also remarkable imbalance for pedestrian risk perception

(0.441). To sum up, this justifies the need to account for confounding factors using the

proposed inverse probability of treatment weighting. As also shown in Table 4.4, values

of SMD are less than 0.1 for all covariates, after propensity score weighting. This implies

that between-group differences in covariates are eliminated, and the differences in

outcomes are surely attributed to the “treatment”. There is remarkable imbalance for

pedestrian risk perception (0.455). This justifies that weather significantly affects

pedestrian risk perception.
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Table 4.4 Descriptive statistics before and after propensity score weighting

Covariate
Unweighted Weighted

T0 T1 T2 T3 T4 SMD T0 T1 T2 T3 T4 SMD
Observation 300 300 300 300 300 N/A 299.67 299.73 300.11 297.87 300.46 N/A

Age
Mean 31.60 31.60 31.60 31.60 31.60

<0.001
31.62 31.62 31.64 31.49 31.65

0.006
SD 11.30 11.30 11.30 11.30 11.30 11.16 11.37 11.38 11.14 11.42

Male
Count 150 150 150 150 150

<0.001
148.48 150.14 150.38 149.23 149.95

0.005
% 50.00 50.00 50.00 50.00 50.00 49.55 50.09 50.11 50.10 49.91

Rashness
Mean 4.36 4.36 4.36 4.36 4.36

<0.001
4.36 4.36 4.35 4.37 4.35

0.005
SD 1.77 1.77 1.77 1.77 1.77 1.77 1.76 1.76 1.77 1.78

Hesitation
Mean 4.38 4.38 4.38 4.38 4.38

<0.001
4.39 4.38 4.38 4.38 4.38

0.004
SD 1.83 1.83 1.83 1.83 1.83 1.83 1.84 1.83 1.83 1.85

Vehicle
passed

Mean 5.04 5.56 5.38 5.06 5.76
0.118

5.32 5.37 5.36 5.39 5.38
0.006

SD 3.15 3.37 3.43 3.29 3.39 3.37 3.31 3.41 3.42 3.21

Waiting time
Mean 10.61 12.25 11.72 10.81 12.85

0.120
11.57 11.67 11.64 11.73 11.63

0.006
SD 9.02 10.10 10.10 9.67 10.36 9.81 9.90 10.00 10.07 9.74

2 second gap
Count 1 2 2 0 6

0.238

1.88 2.18 2.37 0.00 2.21

0.056

% 0.33 0.67 0.67 0.00 2.00 0.63 0.73 0.79 0.00 0.73

3 second gap
Count 36 31 28 39 37 34.27 34.17 34.06 34.26 34.05

% 12.00 10.33 9.33 13.00 12.33 11.44 11.40 11.35 11.50 11.33

4 second gap
Count 113 104 120 129 90 111.35 110.50 111.20 111.00 112.38

% 37.67 34.67 40.00 43.00 30.00 37.16 36.87 37.05) 37.27 37.40

5 second gap
Count 122 122 110 99 120 114.58 115.03 114.70 114.68 114.18

% 40.67 40.67 36.67 33.00 40.00 38.24 38.38 38.22 38.50 38.00
Gap not Count 28 41 40 33 47 37.58 37.84 37.77 37.92 37.64
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Note: IQR refers to Interquartile range

accepted % 9.33 13.67 13.33 11.00 15.67 12.54 12.63 12.59 12.73 12.53
50 km/h
speed

Count 150 150 150 150 150 <0.001 149.22 151.66 150.74 147.26 146.95 0.017
% 50.00 50.00 50.00 50.00 50.00 49.80 50.60 50.23 49.44 48.91

Risk
Perception

Median 3.00 5.00 5.00 5.00 7.00
0.441

3.00 5.00 5.00 5.00 7.00
0.455

IQR
[2.00,
5.00]

[3.00,
6.00]

[4.00,
7.00]

[3.00,
6.00]

[4.00,
8.00]

[2.00,
5.00]

[3.00,
6.00]

[4.00,
7.00]

[3.00,
6.00]

[4.00,
8.00]
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4.4.3 Weather effect on pedestrian safety perception

Table 4.5 presents the results of parameter estimation for the association between

pedestrian safety perception and possible factors. As shown in Table 4.5, perceived risk of

pedestrians significantly increases with age (coefficient = 0.05), at the 5% level. Such a

finding is consistent with that of previous studies. Older pedestrians tend to be more

cautious given the reduced cognitive and physical capabilities (Pala et al., 2021; Wilmut

and Purcell, 2022). In contrast, male pedestrians tend to have lower perceived risk (-0.36),

at the 5% level of significance. This could be because males are more risk-taking

(Morgenroth et al., 2018). For the effects of personal attitudes, perceived risk increases

significantly with the degree of rashness (0.26) and hesitation (0.24), respectively, both at

the 5% level. It is intrinsic that risk-averse pedestrians (with higher level of hesitation)

tend to be more cautious. Hence, perceived risk increases. Just, it may be controversial

that reckless pedestrians also have higher perceived risk. This could be attributed to the

sensation seeking for risky behaviour (Dinh et al., 2020). For the effects of traffic

characteristics, perceived risk of pedestrians significantly decreases with number of

vehicles passed (-0.20) and waiting time (-0.15), both at the 5% level. This is because

pedestrians may become less tolerant after waiting for long (Tian et al., 2023).

Additionally, it is intrinsic that perceived risk also significantly decreases with vehicle

gap size (-1.41 for 3 second gap, -2.09 for 4 second gap, and -2.70 for 5 second gap), but

increases with vehicle speed (0.05) at the 5% level. Such findings are consistent with that

of previous studies (Luque et al., 2024; Tian et al., 2023). Last but not least, for the

effects of weather conditions, perceived risk of pedestrians significantly increase in

adverse weather condition (0.89 for daytime – rain, 1.43 for dusk – rain, 0.89 for daytime

– light fog, and 2.39 for daytime – heavy fog), all at the 1% level. This justifies that

pedestrians tend to be more risk-averse in adverse weather conditions. This could be

because of the compensatory strategies of road users for the offset of anticipated risk

(Bargegol et al., 2022; Chen et al., 2021). Such phenomenon could be more prevalent in

low visibility conditions like heavy fog and dusk time, where the increases in perceived

risk are magnified (Wu et al., 2018).
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Table 4.5 Results of parameter estimation for weather effect on pedestrian safety

perception
Covariate Coefficient Standard error 95% confidence interval

Intercept 3.78** 0.25 (3.29, 4.27)
Age 0.05* 0.02 (0.01, 0.09)
Male -0.36* 0.21 (-0.73, -0.08)
Rashness 0.26* 0.10 (0.05, 0.47)
Hesitation 0.24* 0.11 (0.02, 0.47)
Vehicle passed -0.20* 0.12 (-0.47, -0.09)
Waiting time -0.15* 0.06 (-0.33, -0.05)
3 second gap -1.41** 0.63 (-2.58, -0.04)
4 second gap -2.09** 0.64 (-3.39, -0.80)
5 second gap -2.70** 0.57 (-3.86, -1.53)
Gap not accepted -3.90** 0.78 (-5.48, -2.33)
Vehicle speed - 50 km/h 0.05* 0.18 (0.01, 0.07)
Daytime – Rain (T1) 0.89** 0.19 (0.51, 1.26)
Dusk – Rain (T2) 1.43** 0.20 (1.02, 1.84)
Daytime – Light fog (T3) 0.89** 0.15 (0.58, 1.19)
Daytime – Heavy fog (T4) 2.39** 0.33 (1.73, 3.04)
* Significant at the 5% level; ** Significant at the 1% level

4.5 Concluding remarks

Weather significantly affects the travel behaviour and safety risk especially for active

transport modes like walking. However, the relationship between weather and pedestrian

safety perception is less explored. In this study, pedestrian gap acceptance behaviour and

safety perception at the mid-block crossing is examined using the CAVE experiments. In

addition to weather condition, confounding factors including pedestrian

socio-demographics, safety attitude, and traffic characteristics are also accounted for

using propensity score method. Furthermore, effects of multiple treatment and multilevel

data structure are also considered using the inverse probability of treatment weighting

method. Results indicate that pedestrian risk perception significantly increases in the

adverse weather conditions like rain and fog. Such increases were even more remarkable

in poor visibility conditions like dusk time and heavy fog. Additionally, there are

noticeable association between pedestrian age, safety attitude, vehicle speed, waiting time

and risk perception. Finding should shed light on the development and implementation of
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local area traffic management and adaptive traffic control that can mitigate the pedestrian

crash risk at accident-prone locations in adverse weather conditions.

Nevertheless, this study has some limitations. First, a one-way single-lane street, which

presents a less complex traffic environment compared to two-way or multi-lane streets, is

simulated. To enhance the generalizability of the results, future studies could include

additional experiments in varied geometric designs and traffic settings. Second,

participants only verbally indicated their intent to cross or not in the simulated scenarios.

It would be worth exploring the discrepancies between actual crossing behaviour in

real-world settings and self-reported intentions in future research, such as through

naturalistic walking studies. Third, participants might anticipate changes in gaps after

repeated experiments and their decision-making process could have been affected. In

future research, capturing physiological signals such as eye movement, gaze patterns, and

EEG, could provide insights into the interaction between physiological state, safety

perception, and gap acceptance behaviour.
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Chapter 5 Effect of urban street landscape on pedestrian safety

5.1 Introduction

Walking is the primary mean of access to essential resources, activities, and services in

urban areas. Pedestrians are vulnerable road users. They constitute 23% of road deaths

around the world (World Health Organization, 2018; World Health Organization, 2023).

Thus, it is necessary to create pleasant and safe walking environment with effective urban

planning and development strategies (Sze and Christensen, 2017). Urban street trees play

an important role in the shaping of urban landscape and promotion of walkability.

Environmental, economic, and social benefits of urban street trees are recognized (Choi et

al., 2016; Hamim et al., 2024). Increase in the proportion of street tree canopy can

improve the walking environment, and encourage walking (Guzman et al., 2022;

Herrmann et al., 2017; Larsen et al., 2009; Nehme et al., 2016). In addition, street trees

can help reduce stress by relieving anxiety and depression. It can improve the mental

health and quality of life among inhabitants (Henderson et al., 2016; Li and Sullivan,

2016).

Many cities have recognized the importance of urban forestry in the past decade. In 2012,

Melbourne City Council has initiated an Urban Forest Strategy, aiming to increase the

tree coverage, diversify the urban ecosystem, improve the tree health, and mitigate the

urban heat island problem (City of Melbourne, 2012). In the early 2010s, there were

about 70,000 trees and 22% of tree canopy cover in the public areas of Melbourne. In

accordance with the Urban Forest Strategy, tree canopy cover should be increased to 40%

by 2040 (City of Melbourne, 2012). In addition, priorities for urban space allocation

should be given to walking, cycling, and public transport, in accordance with

Melbourne’s Transport Strategy 2030 (City of Melbourne, 2020a). For example, footpaths

in Central Melbourne should be widened. Also, tree planting and other climate change

adaptation measures would be integrated with urban streetscape projects. These are

crucial for the improvement of safety, accessibility, and sustainability of urban areas
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(Chen et al., 2020).

However, trees were considered roadside hazards in the past decades. They may reduce

the visibility on roadways. Street trees were removed to provide clear zones and reduce

crashes associated with fixed-objects (Budzynski et al., 2016). Previous studies have

examined the relationship between urban street trees, driving behaviour, and traffic safety

(Cai et al., 2022; Harvey and Aultman-Hall, 2015; Marshall et al., 2018; Naderi, et al.,

2008). For example, urban street trees can create perceived edges and introduce visual

complexities, thereby enhancing drivers' attention and alertness. Consequently, driving

speed may be reduced, and drivers' braking reaction times can be affected (Naderi et al.,

2008; Wang et al., 2024). In addition, urban street trees can form a visual wall, separating

the roads from the buildings and other infrastructures. This can provide a sense of

familiarity and security and increase the safety perception of drivers (Cai et al., 2022;

Harvey et al., 2015; Naderi et al., 2008). Furthermore, the enclosure of urban streetscapes

by tree canopy is negatively associated with the risk of road injury and fatality (Harvey

and Aultman-Hall, 2015; Marshall et al., 2018). However, the effect of urban street trees

on pedestrian safety is rarely investigated. Therefore, it is important to identify the factors

that affect the risk of pedestrian crashes and injuries.

In previous studies, pedestrian crash exposure at the zonal level was estimated using the

metrics including population, population density, and trip data (Ferenchak and Marshall,

2019;Sze et al., 2019; Su et al., 2021b; Wang et al., 2016). It was rare that pedestrian

crash exposure at the microscopic level (e.g., road segment, intersection, and crosswalk)

using pedestrian counts was estimated. Furthermore, research has yet to consider factors

that could influence findings on pedestrian crash exposure such as unobserved

heterogeneity, spatial dependency, and correlation among different crash types. Thus,

effects of the factors including urban street trees, geometric design, traffic characteristics

and time period on pedestrian injury at the street level will be evaluated using Poisson

lognormal regression method. Density and canopy of urban street trees will be considered

for the effect of urban forestry on pedestrian safety. More importantly, pedestrian crash
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exposure will be measured using comprehensive pedestrian count data by space and time.

For example, hourly pedestrian count data of individual road segments will be adopted.

The remainder of this chapter is structured as follows. Illustration of data collection and

statistical model are described in Section 5.2 and Section 5.3, respectively. Section 5.4

summarizes the estimation results and discusses the policy implications. Finally,

concluding remarks are given in Section 5.5.

5.2 Data

5.2.1 Study data

Data was collected in a state in Australia. Melbourne city is busy, with approximately one

million people using the streets every day, as pedestrians, cyclists, drivers, and

motorcycle riders. To illustrate, walking constitutes 33-36% of total trips per day

(Victorian Integrated Survey of Travel and Activity (VISTA); Victorian State Government,

2018). During 2014-2018, 19% of pedestrians sustained road injury and 30% of crashes

resulted in fatality (VicRoads, 2020).

Pedestrian counting system has been installed in Central Melbourne since 2009,

collecting the hourly pedestrian counts across the area. In this study, pedestrian, traffic,

and injury data of 38 road segments that have pedestrian sensors in the period between

2014 and 2018 are modeled. Figure 5.1 illustrates the road segments, with the length

ranging from 65 to 265 metres, under investigation. In this study, pedestrian injury of a

road link between two intersections is modeled.
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Figure 5.1 Road segments under investigation

5.2.2 Traffic and crash data

In this study, crash data was obtained from the Road Crash Information Database of

Victorian State Government (VicRoads, 2020). The database contains information on

crash time and location, gender and age of road user, vehicle type, crash circumstances,

and road and weather conditions of every crash reported to the police. There were 2,018

pedestrian casualties at the selected road segments in the observation period. For instance,

pedestrian casualties were classified into three categories by injury severity: (i) fatality

(died within 30 days after crash), (ii) severe injury (required hospital admission), and (iii)

slight injury. In this study, fatal and severe injuries are combined into one class in the

model to avoid the bias attributed to imbalanced crash data, considering the extremely

low count of fatal injury (Chen et al., 2022; Ding et al., 2022).

In this study, traffic and pedestrian count data are obtained from the Traffic Count Vehicle
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Classification and Pedestrian Counting System of Melbourne City Council (City of

Melbourne, 2020b, 2020c). For the former, information on the number of vehicles,

vehicle class, average speed, maximum speed, and 85th percentile speed for each hour can

be obtained (City of Melbourne, 2020b). For the latter, number of pedestrians passing a

sensor for each direction and hour is measured (City of Melbourne, 2020c). In this study,

crash and traffic data were aggregated at 3-hour intervals, avoiding the bias associated

with excessive zero observations and imbalanced crash data (Chen et al., 2022; Ding et al.,

2022). Figure 5.2 presents the distribution of pedestrian counts and casualties of selected

road segments in different time intervals.

(a) 1:00 am – 3:59 am (b) 4:00 am – 6:59 am

(c) 7:00 am – 9:59 am (d) 10:00 am – 12:59 pm
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(e) 1:00 pm – 3:59 pm (f) 4:00 pm – 6:59 pm

(g) 7:00 pm – 9:59 pm (h) 10:00 pm – 12:59 am

Figure 5.2 Pedestrian counts and casualties in different time intervals

5.2.3 Tree data

Effects of tree density and tree canopy cover on pedestrian safety were investigated.

Location and canopy of each tree, measured by aerial photography and LiDAR

techniques, were obtained from the open data portal of Melbourne City Council (City of

Melbourne, 2020d). Then, street network data (planimetric edge of the road) was

integrated with the tree data using geographical information system (GIS) technique. As

shown in Figure 5.3, the proportion of road area (pavement and footpath) that is covered

by tree canopy was estimated. There were more than ten percentage point changes (both

gain and loss) in tree canopy cover for the sampled road segments in the study period

(Hurley et al., 2019). Figure 5.4 illustrates the distribution of tree canopy cover of Inner

Melbourne for each year in 2014-2018. As shown in Figure 5.4, variations in tree canopy

cover over the years and across the road segments are considerable.
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Figure 5.3 Illustration of tree location and canopy cover

(a) 2014 (b) 2015
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(c) 2016 (d) 2017

(e) 2018

Figure 5.4 Spatial distribution of tree canopy in 2014-2018

5.2.4 Road network and traffic characteristics

The effects of road geometry and transport facilities were considered. Information on road

length and road width were obtained from the public road profile of Melbourne City

Council (City of Melbourne, 2021). In addition, information on the locations of bus stop,

tram station, and on-street parking spaces were obtained from Google Street View

observation. The sample size was 1,160, for annual average 3-hour crash, pedestrian, and

traffic counts of selected road segments in 2014-2018. Table 5.1 summarizes the sample.
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Table 5.1 Summary statistics of the sample

Scope of work Variable Mean
Std.
Dev.

Min. Max.

Pedestrian
casualty

Slight injury 0.09 0.38 0.00 3.00
Fatal and severe injury 0.02 0.12 0.00 1.00

Exposure
Ln (Pedestrian count) 2.39 0.62 0.78 3.67
Ln (Vehicle-kilometre) 2.74 0.97 0.19 5.48

Street tree
Tree density (per 100 m) 9.83 8.29 0.00 34.73
Tree canopy (percentage) 12.95 8.83 0.00 42.87

Road and Traffic
characteristics

Presence of Crosswalk (1: Yes; 0: No) 0.29 0.46 0.00 1.00
Presence of bus stop (1: Yes; 0: No) 0.17 0.38 0.00 1.00
Presence of tram station (1: Yes; 0: No) 0.22 0.41 0.00 1.00
Presence of on-street parking (1: Yes; 0: No) 0.57 0.50 0.00 1.00
Road width (m) 17.99 4.95 5.00 27.58
85th percentile speed (kph) 34.42 7.48 21.52 57.14

Time period

7:00 am – 9:59 am 0.13 0.35 0.00 1.00
10:00 am – 12:59 pm 0.13 0.35 0.00 1.00
1:00 pm – 3:59 pm 0.13 0.35 0.00 1.00
4:00 pm – 6:59 pm 0.13 0.35 0.00 1.00
7:00 pm – 9:59 pm 0.13 0.35 0.00 1.00
10:00 pm – 12:59 am 0.13 0.35 0.00 1.00
1:00 am – 3:59 am 0.13 0.35 0.00 1.00
4:00 am – 6:59 am 0.13 0.35 0.00 1.00

5.3 Method of analysis

5.3.1 Poisson lognormal regression

The dependent variable was pedestrian crash frequency. Poisson lognormal regression

approach was adopted based on the distribution given as follows,

��
� ~ � ������ ��

� (1)

where ��
� is the observed number of pedestrian casualties of severity level k at road

segment i, and ��
� is the Poisson parameter given as follows,

�� ��
� = �� + ����

' + ��
� + ��

� (2)
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where �� is the vector of covariates, ka is the intercept, kb is the vector of parameters,

k
iU is the unstructured random term for overdispersion, and k

iS is the structured random

term for spatial dependency.

To account for the effects of unobserved heterogeneity among the observation units,

random parameters ��
� can be specified as,

��
� = �� + ��

� (3)

where �� is the fixed parameter and ��
� is the randomly distributed error term that

follows the normal distribution with the mean of zero and variance of 2 .

To account for the effects of spatial dependency, conditional autoregressive (CAR) prior

given as follows would be adopted,

��
� �−�

� ~� ��
���� , ���

2 �� (4)

where  


ij iji
kk

i nSS
j , with ��,� representing the spatial weight, ��,� = 1

when road segment i and j are adjacent and 0 otherwise, �� refers to the number of

neighboring units adjacent to i , and the hyperparameter ���
2 follows the Gamma

distribution given by,

���
−2 ~ � ����(0.01，0.001) (5)

5.3.2 Multivariate model

A multivariate model was adopted to consider the correlation between the counts of

different injury severity levels, m. The random parameters can be specified as,

���
� = �� + ���

� (6)

where �� is the fixed parameter for multivariate and ���
� is the normally distributed
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random term.

In addition, the unstructured random term, following a multivariate normal distribution,

can be written as,

�� ~ � � ��, �� (7)

where �� denotes the vector of zeroes, and �� is the covariance matrix estimated using

the Wishart distribution given by,

��
−1 ~ � ��ℎ��� ��, � (8)

where �� is the scale matrix for precision matrix and � is the degrees of freedom (K =

2 in this study).

For instance, the non-informative prior for �� is set as (Aguero-Valverde, 2013),

�� = 0.1 0.005
0.005 0.1 (9)

Furthermore, the multivariate CAR prior can be specified as,

�� �−�
1 , �−�

2 ~�� ��, �� �� (10)

where �� = �≠� ��
1×��,� ��� , �≠� ��

2×��,� ���
�

and �� is a 22 covariance matrix.

Univariate and multivariate random parameters Poisson-lognormal models were

estimated using the Bayesian framework with Markov chain Monte Carlo simulation,

with the first 10,000 iterations being discarded as a burn-in and the further 20,000

iterations run for each chain. Credibility of the variables considered were assessed using

the 95% Bayesian Credible Intervals (BCIs). To assess the model fit, Akaike Information

Criterion (AIC) is commonly used. In addition, generalized performance metrics like
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Watanabe-Akaike Information Criterion (WAIC) and Deviance Information Criterion

(DIC) have been proposed to account for model complexity and avoid overfitting. Despite

that Bayesian measures like WAIC may be superior to point estimates, DIC is adopted

considering the computational efficiency (Kitali et al., 2022; Li et al., 2021). In this study,

DIC would be estimated using the following (Spiegelhalter et al., 2002),

��� = ���� + �� (11)

where Dbar is the posterior mean of deviance and pD is the number of effective

parameters.

DIC considers both the predictive performance (Dbar) and model complexity (pD).

Model with the lower DIC, that indicates superior model fit, is preferred.

5.4 Results and Discussion

Table 5.2 summarizes the model fit of univariate and multivariate random parameters

Poisson lognormal regression models for pedestrian casualties. As shown in Table 5.2, the

multivariate model (DIC = 342.34) outperforms the univariate model (DIC = 398.65).

Hence, the multivariate model was adopted.

Table 5.2 Goodness-of-fit assessment of multivariate and univariate Poisson-lognormal

models
Parameter Multivariate Poisson-lognormal model Univariate Poisson-lognormal model
Dbar 263.59 304.38
Dhat 184.85 210.71
pD 78.74 93.97
DIC 342.34 398.65

Table 5.3 presents the results of parameter estimation of both multivariate and univariate

models. A variable is considered significant when the MC error is less than 0.05 and the

95% BCIs do not overlap with zero. As shown in Table 5.3, parameter estimates between
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multivariate and univariate models are similar. Hence, results of multivariate model

would be discussed in detail as follows.

For the exposure, pedestrian count (slight injury, β = 0.92; fatal and severe injury, β =

0.93), and vehicle-kilometre (slight injury, 0.37; fatal and severe injury, 0.39) are

positively associated with pedestrian casualties, at the 95% BCIs. For the effect of street

tree, both tree density (slight injury, -0.42; fatal and severe injury, -0.43) and tree canopy

(slight injury, -0.35; fatal and severe injury, -0.39) are negatively associated with

pedestrian casualties, at the 95% BCIs. For the effects of road and traffic characteristics,

presence of bus stop (slight injury, 1.01; fatal and severe injury, 1.22), presence of tram

station (slight injury, 0.13; fatal and severe injury, 0.15), presence of on-street parking

(slight injury, 0.99; fatal and severe injury, 1.02), road width (slight injury, 0.43; fatal and

severe injury, 0.45), and 85th percentile speed (slight injury, 0.38; fatal and severe injury,

0.46) are positively associated with pedestrian casualties. In contrast, presence of

crosswalk (slight injury, -0.36) is negatively associated with pedestrian casualties, all at

the 95% BCIs. For the time effect, pedestrian casualty risk is higher in the morning peak

(i.e., 7:00 am – 9:59 am; slight injury, 0.13; fatal and severe injury, 0.13) and afternoon

peak (i.e., 4:00 pm – 6:59 pm; slight injury, 0.11; fatal and severe injury, 0.12) periods.

However, pedestrian casualty risk is lower in the nighttime (i.e., 7:00 pm – 9:59 pm;

slight injury, -0.15; fatal and severe injury, -0.17).

As also shown in Table 5.3, effects of tree density, tree canopy, presence of bus stop,

presence of tram station, presence of on-street parking and road width are random. This

implies that effects of these variables may vary across individual road segments, known

as unobserved heterogeneity. Furthermore, spatial effects are significant (slight injury:

0.26; Fatal and severe injury: 0.27). This justifies the correlation in pedestrian casualties

of the road segments that are in close proximity (Quddus, 2008).
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Table 5.3 Results of parameter estimation of multivariate and univariate Poisson-lognormal models

Scope of work Variable
Multivariate Poisson-lognormal model Univariate Poisson-lognormal model

Slight injury Fatal and severe injury Slight injury Fatal and severe injury
Mean (95% BCI) Mean (95% BCI) Mean (95% BCI) Mean (95% BCI)

Intercept 3.08* (0.93, 5.49) 3.21* (1.12, 5.32) 3.43* (1.79,5.28) 3.51 (1.61, 5.57)

Exposure
Ln (Pedestrian count) 0.92* (0.46, 1.27) 0.93* (0.64, 1.35) 0.91* (0.81,0.98) 0.93* (0.65,1.17)
Ln
(Vehicle-kilometre)

0.37* (0.11, 0.51) 0.39* (0.09, 0.53) 0.34* (0.10,0.49) 0.38* (0.08,0.55)

Street tree
Tree density

Mean -0.42* (-0.78, -0.10) -0.43* (-0.81, -0.14) -0.41* (-0.64, -0.18) -0.43* (-0.75, -0.18)
SD 0.31* (0.07, 0.88) 0.25* (0.09, 0.55) 0.29* (0.05,0.81) 0.21* (0.05,0.39)

Tree canopy
Mean -0.35* (-0.52, -0.10) -0.39* (-0.72, -0.11) -0.30* (-0.75, -0.05) -0.34* (-0.68, -0.08)
SD 0.27* (0.08, 0.43) 0.32* (0.11, 0.62) 0.26* (0.058,0.87) 0.34* (0.22,0.48)

Road and
traffic
characteristics

Presence of
Crosswalk

-0.36* (-0.52, -0.17) -0.38 (-0.58, -0.07) -0.32* (-0.51, -0.09) -0.32 (-0.54, -0.13)

Presence of bus stop
Mean 1.01* (0.69, 1.33) 1.22* (0.51, 1.98) 1.07* (0.73,1.57) 1.19* (0.88,1.56)
SD 0.27* (0.06, 0.51) 0.35* (0.18, 0.67) 0.33* (0.05,0.75) 0.30* (0.10,0.49)

Presence of tram
station

Mean 0.13* (0.06, 0.30) 0.15* (0.07, 0.31) 0.09* (0.05,0.19) 0.08* (0.04,0.16)
SD 0.23* (0.06, 0.49) 0.26* (0.04, 0.77) 0.22* (0.10,0.43) 0.24* (0.04,0.51)

Presence of on-street
parking

Mean 0.99* (0.53, 1.55) 1.02* (0.71, 1.41) 1.11* (0.93,1.59) 1.06* (0.52,1.50)
SD 0.33* (0.10, 0.46) 0.38* (0.26, 0.48) 0.44* (0.17,0.68) 0.46* (0.31,0.62)

Road width
Mean 0.43* (0.10, 0.72) 0.45* (0.13, 0.81) 0.45* (0.21,0.78) 0.48* (0.23,0.57)
SD 0.39* (0.09, 0.63) 0.40* (0.08, 0.71) 0.37* (0.17,0.51) 0.37* (0.07,0.77)

85th percentile speed 0.38* (0.18, 0.49) 0.46* (0.22, 0.67) 0.37* ((0.27,0.46) 0.33* (0.08,0.52)

Time period
7:00 am - 9:59 am 0.13* (0.07, 0.18) 0.13* (0.05, 0.19) 0.12* (0.05, 0.25) 0.14* (0.07, 0.32)
4:00 pm - 6:59 pm 0.11* (0.08, 0.18) 0.12* (0.06, 0.20) 0.14* (0.09, 0.23) 0.16* (0.09, 0.23)
7:00 pm - 9:59 pm -0.15* (-0.31, -0.03) -0.17* (-0.34, -0.03) -0.16* (-0.31, 0.01) -0.20* (-0.34, -0.10)
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Unobserved
effects

Unstructured effect 0.19 (0.07, 0.28) 0.23* (0.09, 0.37) 0.18 (0.06, 0.25) 0.20 (0.07,0.34)
Spatial effect 0.26* (0.08, 0.61) 0.27* (0.05, 0.71) 0.29* (0.09, 0.75) 0.29* (0.07,0.77)

* Significant at the 95% BCI
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Table 4.4 presents the correlation between the random effects. As shown in Table 4,

correlation between the total random effects is remarkable (Mean = 0.90; S.D. = 0.14) at

the 95% BCI and the correlation between unstructured random effects is significant

(Mean = 0.92; S.D. = 0.11).

Table 5.4 Correlation between the random effects for the multivariate models
Mean S.D. (95% BCI)

Unstructured random effect 0.92 0.11 (0.63, 0.99)
Structured random term for spatial dependency 0.50 0.27 (-0.01, 0.96)
Total random effect 0.90 0.14 (0.47, 0.99)

5.4.1 Pedestrian crash exposure

The results of the study found that pedestrian count was positively associated with

pedestrian casualties. This is consistent to the finding of previous study in Florida (United

States) that used the household travel survey data to proxy the pedestrian crash exposure

(Lee and Abdel-Aty, 2005). This study also found that pedestrian casualties increased less

than proportionately with pedestrian count (coefficient of logarithmically transformed

pedestrian count being less than 1). This finding justifies the existence of

safety-in-numbers effect. In other word, when the number of pedestrians increases,

marginal increase in that of pedestrian casualties would diminish. In support, research has

found an increase in driver awareness when there are more pedestrians on the roads

(Elvik and Bjørnskau, 2017). This is indicative to the policy measures including

pedestrian streets, traffic calming, and low speed limit zones, prioritizing the right-of-way

of pedestrians in the urban cities like London and Hong Kong (Department for Transport,

2017; Transport Department, 2019). However, information on the pedestrian

characteristics like gender, age, and travel purpose, which can affect the safety perception,

walking behaviour, and related crash risk, is not available in the pedestrian count data (Su

et al., 2021b; Zhu et al., 2021). It is worth exploring the relationship between crash

involvement rate and walking trips for each pedestrian group when comprehensive

information on socio-demographics and travel behaviour of pedestrians is available in the
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future study.

This study found that pedestrian casualties increase with vehicle kilometre. This could be

because of the increase in pedestrian-vehicle conflicts, particularly in the central business

districts (Wong et al., 2007; Zhang et al., 2017). This finding suggests that the

implementation of local area traffic management and traffic calming measures that can

reduce the traffic flow, increase the driver awareness, and channelize the pedestrian and

vehicular traffic (Bertulis and Dulaski, 2014; Damsere-Derry et al., 2019). Therefore, risk

of pedestrian-vehicle conflicts can be reduced (Chen et al., 2020). In accordance with the

Walking Plan 2014-2017 and Transport Strategy 2030 of Melbourne, safe and walkable

street design should be implemented. For example, more space should be allocated for

walking, traffic signal operation should be optimized to reduce pedestrian delay, and

street network should be redesigned to optimize the pedestrian and traffic flow. Hence,

proportion of through-traffic in Central Melbourne would be reduced from 43% in 2020

to 21% in 2030 (City of Melbourne, 2014; 2020a).

5.4.2 Urban street trees

For the effect of urban street trees, results indicate that pedestrian injury is negatively

associated with tree density and tree canopy cover. Urban street trees can increase the

driver awareness and driving safety by modifying the visual perception of drivers (Naderi,

et al., 2008; Wang et al., 2024) and pedestrian safety perception can be improved when

street tree cover increases (Ryan et al., 2018); thus, this finding supports strategies

focused on urban street trees. In support, the Transport Strategy 2030 of Melbourne states

that more physical protections including trees and other street furniture to be installed to

separate between pedestrians and vehicles (City of Melbourne, 2020a). Nevertheless, it is

worth exploring the factors including pedestrian socio-economics, safety attitude, and

social norms that can affect the trade-off between efficiency and safety of pedestrians

when the scarce urban space is allocated for urban greening (Chen et al., 2020;

Sanganaikar and Mulangi, 2023; Zhu et al., 2021). Moreover, moderating effect by urban

streetscape, built environment, and weather conditions on the association between urban



72

street tree, pedestrian crossing behaviour, and pedestrian safety can be investigated using

virtual experiment and field observation (Naderi et al., 2008; Zhai et al., 2019b; Zhu et al.,

2022b). Nevertheless, effects of tree density and tree canopy on pedestrian injury are

random. This could be because of the unobserved effects of seasonal changes in tree

canopy cover and moderating effect by the weather condition on the association between

tree canopy, walking behaviour and pedestrian safety (Hurley et al., 2019). It is worth

exploring the effects of seasonal changes in tree density and canopy on pedestrian safety

when comprehensive weather and tree data is available in the future.

5.4.3 Road and traffic characteristics

For the effect of road geometry, pedestrian casualty is positively associated with road

width. As revealed in previous study, road width is positively correlated with pedestrian

crossing distance. Hence, pedestrian may have higher likelihood to involve in a crash

(Manuel et al., 2014). This is indicative to effective road design and traffic control

measures like traffic calming that can reduce the pedestrian crashes at high risk locations.

As indicated in current results, pedestrian casualty rate is lower when there is a crosswalk.

Optimal design and planning of crosswalks, particularly in the areas with high

development density and pedestrian activity would be essential (Su and Sze, 2022; Sze

and Wong, 2007; Zegeer et al., 2001; Zhu et al., 2022a). In addition, pedestrian injuries

increase when bus stop, tram station, or on-street parking is present. This finding suggests

that the frequent pickup and drop-off activities at the kerbside, frequent pedestrian

crossing activities near the bus stops and tram stations, and visual obstruction of

pedestrians and drivers by the parked vehicles, buses, and trams (City of Melbourne,

2020a; Hosseinpour et al., 2014; Kraidi and Evdorides, 2020; Sze and Wong, 2007; Wong

et al., 2007). Such findings are indicative to the street design and traffic calming measures

in Central Melbourne. For example, road space should be allocated for walking by

reducing the road width, removing the on-street parking, and widening the footpath,

accessibility can be improved (especially for individuals with disability) by removing the

road kerbs, and crossing distances can be reduced (Chen et al., 2020; Sze and Christensen,
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2017). However, effects of bus stop, tram station, and on-street parking on pedestrian

safety are random. This could be because of the unobserved heterogeneity of crossing

behaviours among individuals. To this end, it is worth exploring the effects of safety

perception, socio-demographics, and social norms on the crossing behaviours of

pedestrians in the future study (Zhu et al., 2021). Furthermore, positive association

between pedestrian injury and traffic speed (85th percentile speed) can be expected

(Bertulis and Dulaski, 2014). Thus, pedestrian-priority and low speed limit zones can be

introduced (City of Melbourne, 2020a; Li et al., 2020b; Transport for London, 2001).

Therefore, walking environment can be improved, and overall pedestrian safety can be

enhanced in the long run (Su et al., 2021b).

5.4.4 Time period

Last but not least, time effect on pedestrian safety is also considered. For example,

pedestrian casualty rates are higher in the morning peak and afternoon peak periods. Such

finding is consistent to that of previous studies (Gu and Peng, 2021; Katanalp and Eren,

2021). This could be because of the poor light conditions and aggressive crossing

behaviours of pedestrians in these periods (Gårder, 2004; Gu and Peng, 2021; Makarova

et al., 2019). In contrast, pedestrian casualty rate is lower in the nighttime. This may be

because drivers are usually not in a hurry, and would drive more cautiously (Cai et al.,

2007). To sum up, these are indicative to the implementation of better street design and

road management, e.g., streetlights, road barriers, and warning signs, that can increase the

safety awareness of pedestrians and therefore reduce the pedestrian injury risk (Zhu et al.,

2022a).

5.5 Concluding remarks

Urban street tree plays an important role in improving walking environment (Choi et al.,

2016; Larsen et al., 2009; Sze et al., 2019). However, it is rare that the relationship

between urban tree street and pedestrian safety is examined (Marshall et al., 2018). In this

study, effects of tree density and tree canopy cover, based on the data obtained using
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LiDAR technique, on pedestrian casualty at the microscopic level are evaluated. For

instance, pedestrian crash exposure is measured using disaggregate pedestrian counting

data of individual streets at the short time intervals. Then, a multivariate Poisson

lognormal regression model is established to measure the association between pedestrian

casualty and influencing factors, with which the effects of unobserved heterogeneity,

spatial dependency, and correlation between injury counts of different severity levels are

controlled.

Results indicate that road width, bus stop, tram station, on-street parking, and traffic

speed are positively associated with pedestrian casualty. In contrast, pedestrian casualty

would decrease when tree density and tree canopy cover increase. Hence, safety benefit

of urban greening for walking is justified (Naderi et al 2008). More importantly, findings

are indicative to optimal street design and traffic calming measures like reducing the

crossing distance, reducing the speed limit, removing the on-street parking, and

introducing the pedestrian-priority zone. Therefore, safe and comfortable walking

environment can be provided, and walkability can be enhanced (Harvey et al., 2015).

Nevertheless, this study also has some limitations. First, most of the road segments are

located in or close to the CBD. Results of parameter estimation might be limited to the

urban area. It is worth exploring the effects of demographic, socioeconomic, built

environment, and travel characteristics on the relationship between street tree and

pedestrian safety when comprehensive street tree, traffic and safety data in other areas are

available (Su et al., 2021b). In addition, this study is limited to the yearly trend of tree

canopy cover only. Indeed, 40% of the tree in Melbourne City are deciduous, tree canopy

may change more drastically due to seasonal effects. It is worth exploring the moderating

effects by the factors including climate, socio-cultural mechanism, and walking behaviour

on the association between tree canopy and pedestrian safety when comprehensive

information on tree canopy and pedestrian behaviour are available in the empirical survey.

Future study can use street view images to capture built environment. Furthermore, crash

data used may be subject to missing data and under reporting, especially for slight injury
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crash. It is worth exploring the effects of under reporting, imbalanced crash data,

temporal instability, and correlation between random effects on the parameter estimation

using advanced statistical and machine learning modeling framework in the future

(Behnood and Mannering, 2019; Ding et al., 2022; Lord and Mannering, 2010; Toran

Pour et al., 2017; Toran Pour et al., 2018).
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Chapter 6 Effect of pedestrian network and traffic conditions

on pedestrian safety

6.1 Introduction

Walkability is one of the key attributes that determine urban vitality. Many metropolitan

cities, that have high population density and activity intensity including Hong Kong,

London, Melbourne, New York, Seoul, Singapore, Tokyo, and Toronto have been

promoting walkability with new city and transport planning framework for pedestrians.

Hence, street-level environment, air quality, accessibility, and safety for pedestrians can

be improved (Guzman et al., 2022; Hamim and Ukkusuri, 2024; Ng et al., 2012;

Transport Department, 2019). In Hong Kong, almost 90% of daily trips are made by

public transport. Walking is the primary mean of access for public transport and other

essential urban services (Guzman et al., 2022; Sze and Christensen, 2017). In 2021, an

overall walkability strategy for Hong Kong was developed to improve the pedestrian

environment (Transport Department, 2021). Characteristics of pedestrian facilities

including sidewalks, walkways, crosswalks, footbridges and underpasses, landscape and

street trees, and public spaces can affect pedestrian route choices. For example, footpaths

that are well connected and have more amenities are favored by pedestrians (Anciaes and

Jones, 2020). However, pedestrians are also vulnerable to fatality and severe injuries in

road crashes. Pedestrians constitute 23% of road deaths round the world. In the

Asia-Pacific area, pedestrians represent 14-22% of road deaths (World Health

Organization, 2018). In Hong Kong, extremely high proportion (56%) of road deaths are

pedestrians (Transport Department, 2022). Hence, it is necessary to consider pedestrian

safety for the design of pedestrian network and facilities, and the formulation of traffic

management strategy (Marshall and Garrick, 2010; Oviedo-Trespalacios and Scott-Parker,

2017; Sanganaikar and Mulangi, 2023; Zhao et al., 2021).

Road infrastructure plays an important role in road safety, especially for vulnerable road

users (Intini et al., 2019; Papadimitriou et al., 2019; Sanganaikar and Mulangi, 2023;
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Wegman and Slop, 1998). Over 90 countries have specific design standards for the

separation between pedestrians and road traffic, and more than 130 countries have

considered pedestrians for the design of crosswalks (World Health Organization, 2018).

In Hong Kong, design for all principles have been applied for road curbs, building

accesses, walkways, and crosswalks (Planning Department, 2016). To reduce the

pedestrian-vehicle conflicts on urban roads, many footbridges and underpasses have been

built since the 1980s. In Hong Kong, pedestrians often use footbridges and underpasses to

cross the roads. On average, there were 217 rainy days and 18 very hot (with daily

maximum temperature above 33 degrees Celsius) days per year in the past three decades

(Hong Kong Observatory, 2021). Pedestrians tend to be unwilling to wait at the signalized

crossings in adverse weather (Yang et al., 2015). Additionally, footbridges and

underpasses are often interconnected with major transport hubs and commercial

development and become parts of the elevated and underground walkway systems of the

city (Highways Department, 2022). Furthermore, many footbridges and underpasses have

been retrofitted with lifts and escalators (Planning Department, 2022). Pedestrians

generally prefer footbridges and underpasses to at-grade pedestrian crossings considering

the safety, accessibility, and efficiency implications (Soliz and Pérez-López, 2022).

It is challenging to characterize the complex multi-layer pedestrian network in Hong

Kong (Chan et al., 2022; Zhao et al., 2021). Hong Kong has extremely high density of

building development and transport infrastructures. The urban morphology and spatial

hierarchy of three-dimensional pedestrian network are far more complicated, compared to

the road network designed for motor vehicles. There are large number of links including

staircases, ramps, lifts, escalators, and people movers connecting multi-level path

segments and infrastructures in the vertical metropolis (Sanganaikar and Mulangi, 2023;

Solomon et al., 2012; Sun et al., 2021). Additionally, it is necessary to consider the effect

of the change in vertical level among all interconnected path segments in the pedestrian

network on accessibility and safety outcomes. In previous studies, the relationship

between characteristics of trafficable road network and pedestrian safety has been

explored (Li et al., 2020a; Osama and Sayed, 2017). For example, a global integration
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index was adopted to characterize the topological structure of road network using space

syntax technique (Guo et al., 2017). However, it is rare that safety effects of the

characteristics like connectivity and accessibility of pedestrian network are investigated.

In this study, a recently developed three-dimensional (3D) digital map of Hong Kong

pedestrian network is applied for the data collection, imputation, and analysis of

pedestrian network patterns (Lands Department, 2022). For example, the topology of

individual walkway links, connectivity of pedestrian network, and accessibility of

pedestrian facilities including at-grade crossings, footbridges, and underpasses can be

determined. Then, the role of pedestrian network patterns in pedestrian safety can be

identified.

The objective of this study is to examine the effects of footbridge and underpass on

pedestrian safety. For instance, comprehensive land use, population characteristics, road

infrastructures, traffic and crash data are mapped to 379 grids in urban Hong Kong using

Geographical Information System (GIS) technique (Su et al., 2021b). Additionally,

accessibility to pedestrian facilities including footbridge, underpass, and at-grade crossing

is estimated. Furthermore, a multivariate Poisson-lognormal regression model with

conditional autoregressive (CAR) prior is developed to measure the association between

pedestrian crash and possible influencing factors, with which the effects of spatial

correlation, unobserved heterogeneity, and correlation between crash counts are

accounted, using the full Bayesian approach (Zhu et al., 2022a). Findings of this study

will inform the optimal design, planning and development of pedestrian networks so to

improve the accessibility of pedestrian facilities, enhance pedestrian safety, and more

importantly, promote walkability in Hong Kong.

The remainder of this chapter is structured as follows. Illustration of data collection and

statistical model are described in Section 6.2 and Section 6.3, respectively. Section 6.4

summarizes the estimation results and discusses the policy implications. Finally,

concluding remarks are given in Section 6.5.
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6.2 Data

6.2.1 Study area

In Hong Kong, about 8% of total land area only can be developed due to the mountainous

terrain. City landscape is characterized by dense and high-rise development, limited

vegetation and green space, diverse land use, and integrated transport network (Planning

Department, 2016). Total length of the pedestrian network in Hong Kong is 8,363 km,

281% longer than that of the trafficable road network. A trafficable road refers to one that

is designed for motor vehicles. In addition, number of pedestrian links is 8.5 times higher

than that of road link (Sun et al., 2021). As of March 2022, there were 1,560 footbridge

(total length of 108.5 km) and underpass (38.4 km) structures in Hong Kong (Highways

Department, 2022). The multi-layer pedestrian links are usually interconnected using

staircases, ramps, lifts, and escalators. Furthermore, built-up area constitutes 25% of total

land area only in Hong Kong (Lands Department, 2022). Hence, the study area covers the

urban area (Kowloon and North shore of Hong Kong Island) in Hong Kong only. The

study area has high concentration of residential and commercial development, and high

activity and travel intensity. Land area of the study area is 69.39 km2, and population is

about 3.15 million in the year 2016 (Census and Statistics Department, 2019).

In Hong Kong, land use and population census data are aggregated to pre-defined

geographical units, i.e., Tertiary Planning Unit (TPU), for planning purpose. However,

land area of a TPU can range from 0.07 km2 to 4.8 km2, which could hinder the

assessment and benchmarking of topological characteristics of pedestrian network across

units. Therefore, data are mapped to 379 (0.5 km x 0.5 km) grids in this study. Such

configuration has considered: (1) amount of activity and travel; (2) both macroscopic- and

microscopic-level characteristics of pedestrian network; (3) distributions of at-grade and

grade-separated crossings; and (4) pedestrian crash intensity, at the neighborhood level.

Other grid dimensions, such as 800 and 200 meters, were contemplated; however, they

did not produce satisfactory outcomes. Specifically, the 800-meter radius proved to be
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excessively spacious for the densely populated pedestrian network of Hong Kong,

whereas the 200-meter radius was insufficiently extensive to accommodate certain land

use data.

6.2.2 3D digital map of pedestrian network

In this study, pedestrian network characteristics can be determined using the data from the

3D digital map of the Lands Department (Lands Department, 2022). There are 436,900

links (with 27,600 at-grade crosswalk, 7,200 footbridge, and 6,100 underpass links) and

372,500 nodes in total for the Hong Kong network. For instance, information on location

(coordinates, street name, and building name), geometry (length, vertical level, and

gradient), traffic control (crosswalk, footbridge or underpass, and crossing control), and

pedestrian access (indoor or outdoor, covered or not, and escalator, lift, ramp, or

wheelchair access) of each footpath link is available. All pedestrian links connecting

footbridges, underpasses, transit stations, and commercial development are included in

the dataset.

Figure 6.1 illustrates the schematic diagram of the 3D digital map for the pedestrian

network. As shown in Figure 1, node refers to the intersecting point of at least two links,

and vertex refers to the turning point on a link. In this study, connectivity of the

pedestrian network can be reflected by three indicators as follows,

(1) Footpath density: Footpath length per 100 m2 of land

(2) Node density: Number of nodes per 100 m of footpath

(3) Number of vertices per footpath link
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Figure 6.1 Characteristics of pedestrian network

In addition, topographical characteristics of the pedestrian network are also considered

given the hilly terrain of Hong Kong. For grid i, average gradient of all footpath links is

given by,

�� = � �������

� ����
(Eq. 1)

where lis refers to the length of footpath link s of grid i and mij refers the gradient.

Furthermore, as the focus of this study is to evaluate the influence of grade-separated

crossing on pedestrian safety, accessibility to at-grade crossings, footbridges, and

underpasses are estimated. For instance, factors including detour distance, difference in

vertical level, and effective crosswalk distance that could affect the choice of pedestrians

are considered when estimating accessibility. Figure 6.2 illustrates the parameters used

for the estimation of accessibility for grade-separated crossings, i.e., footbridges and

underpasses. As shown in Figure 6.2, lik refers to the length of crossing facility

(footbridge or underpass) k, l’ik refer to the effective crossing distance (i.e., width of the

trafficable road), and dik refer to the detour distance, respectively. Thus, the impedance
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function that indicates the travel cost saving (i.e., total waiting time for all at-grade

crossings avoided) for crossing facility k can be given by,

��� = �− ���
2�� (Eq. 2)

where ��� = ��
�0

when �� ≤ �0 , and ��� = 1 when �� > �0 , nk refers to the number of

at-grade crossings avoided when crossing facility k is used, and d0 refers to the acceptable

detour distance of pedestrian. In this study, d0 is set at 100 m (Arellana et al., 2022).

Figure 6.2 Parameters for the estimation of accessibility of grade-separated crossing

Impedance function that reflects the difference in vertical level of crossing facility k can

be given by,

��� = �−���×�ℎ��
2 (Eq. 3)

where �ℎ��is difference in vertical level between k and ground surface.

Hence, overall accessibility of all grade-separated crossings of grid i can be given by,
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�� = � ���
1

������
���
'

�
(Eq. 4)

As shown in Eq. (4), accessibility of footbridges and underpasses is directly proportional

to the travel cost saving and inversely proportional to the difference in vertical level,

considering the acceptable detour distance of pedestrians. Figure 6.3 illustrates the spatial

distribution of accessibility for footbridges (Figure 3(a)) and underpasses (Figure 3(b)) of

the study area. As shown in Figure 3(a), accessibility of footbridges is generally high for

the majority of observation units. This could be attributed to the development of massive

elevated walkway system in the past four decades (Highways Department, 2022). In

contrast, accessibility of underpasses is generally low, except for in the central business

districts which have major underground transit stations.

(a) Footbridge
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(b) Underpass

Figure 6.3 Distribution of accessibilities of footbridge and underpass in the study area

For the at-grade crossings, accessibility can be given by,

�� = ��
��

(Eq. 5)

where Ci is the number of at-grade crossing of grid i and Ri is the number of trafficable

road link.

6.2.3 Built environment, traffic, and crash data

In this study, effects of land use and transport facilities on pedestrian safety are

considered. Land use data is obtained from the two-dimensional digital map of Planning

Department, which allows estimations for the proportions of residential area, commercial

area, government and utility area, and green space for each grid. Additionally, location of

bus stops and metro exits was obtained from the 3D digital map from the Lands

Department.
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To evaluate the effect of exposure on pedestrian safety, comprehensive traffic count data

was obtained from the Annual Traffic Census (ATC) report of Transport Department. This

report includes the annual average daily traffic (AADT) of about 1,600 road segments

(Transport Department, 2019-2021). To estimate the walking trip frequency, household

travel data was obtained from the Travel Characteristics Survey (TCS) report (Transport

Department, 2014). Information on the origin, destination, departure time, and walking

time of every walking trip leg was available. Furthermore, population and household

characteristic data was obtained from the Census and Statistics Department database

(Census and Statistics Department, 2019-2021).

Crash data was obtained from the Traffic Information System (TIS). In this study, only

motor vehicle crashes that involve pedestrians are included. Information on the location,

date and time, and injury severity (e.g., fatality, severe injury, and slight injury) of

pedestrians for each crash was obtained. In 2017-2019, there were 4,768

pedestrian-vehicle crashes in the study area. Fatal and severe injury crashes constituted

21.9% of the sample.

In this study, land use, transport facilities, pedestrian network characteristics, crossing

facilities, traffic and pedestrian crash data were mapped to the 379 grids using the GIS

technique. Analysis focused on the association between frequencies of slight injury crash

and fatal and severe injury (FSI) crashes, as well as possible influencing factors at the

grid level. Table 6.1 summarizes the data. Correlation between explanatory variable has

been checked prior to parameter estimation. For instances, values of variance inflation

factor (VIF) are less than five for all explanatory variables.
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Table 6.1 Summary statistics of the sample
Scope of work Variable Mean Max. Min. S.D.

Pedestrian crash Slight injury crash 9.81 134.00 0.00 16.97
Fatal and severe injury (FSI) crash 2.77 30.00 0.00 4.79

Exposure Ln (Annual average daily traffic) 9.66 11.77 6.54 1.01
Ln (Population density) 10.28 12.32 6.77 1.37
Ln (Daily walking trip) 8.30 11.32 0.75 1.98

Pedestrian
network
characteristics

Footpath density (m per 100 m2) 3.90 21.98 0.00 2.70
Node density (per 100 m) 3.56 20.70 0.00 2.34
Number of vertices per footpath link 6.32 138.63 0.00 16.46

Average gradient 8.16 37.78 0.00 9.55

Crossing
facilities

Accessibility of footbridge 1.01 12.24 0.00 1.71
Accessibility of underpass 2.14 52.59 0.00 6.43
Number of at-grade crossings per road
segment

0.53 2.00 0.00 0.57

Land use Proportion of residential area 19.47 99.74 0.00 20.47
Proportion of commercial area 3.00 58.83 0.00 8.02
Proportion of government and utility area 10.98 65.93 0.00 11.89
Proportion of green area 19.73 100.00 0.00 30.98

Transport
facilities

Number of bus stop 4.30 22.00 0.00 4.90
Number of metro exit 1.00 17.00 0.00 2.53

6.3 Method of analysis

Poisson lognormal regression approach was adopted to model the association between

pedestrian crash and possible influencing factors, given that the dependent variable is

over-dispersed and heavy-tail distributed (Sohn, 1994; Miranda-Moreno et al., 2005),

using the following,

��
� ~ � ������ ��

� (Eq. 6)

where ��
� is the observed number of pedestrian crashes of injury severity level p at grid i,

and ��
� is the Poisson parameter given as follows,

�� ��
� = �� + ����

' + ��
� + ��

� (Eq. 7)
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where �� is the intercept, ��
' is the matrix of covariates, �� is a column vector of

corresponding coefficients, ��
� is the unstructured random term for overdispersion, and

��
� is the spatially structured random term for spatial autocorrelation respectively.

Considering the effect of spatial dependency, conditional autoregressive (CAR) prior

given as follows is adopted,

��
� �−�

� ~� ��
�, ���

2 �� (Eq. 9)

where �−�
� refers to all the elements except ��

� , ��
� = �≠� ��

�×��,� ��� with ��,�

representing the spatial weight (��,� = 1 if grid i and j are adjacent and 0 otherwise),

�� is the number of units that are adjacent to grid i, and the hyperparameters follow

the Gamma distribution.

To account for the possible correlation between crash counts of different injury

severity level, multivariate approach was adopted. For instance, the unstructured

random term that follows multivariate normal distribution is written as,

��~�� ��, �� (Eq. 10)

where �� is the vector of zeroes and �� is the covariance matrix estimated by the

Wishart distribution,

��
−1 ∼ Wishart ��, � (Eq. 11)

where �� is a scale matrix for precision and � is degree of freedom (P = 2).

For instance, the non-informative prior for �� is set as (Aguero-Valverde, 2013),
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�� = 0.1 0.005
0.005 0.1 (Eq. 12)

Furthermore, the multivariate CAR prior can be expressed as,

�� �−�
1 , �−�

2 ~�� ��, �� �� (Eq. 13)

where �� is the mean vector, �� = �≠� ��
1×��,� ��� , �≠� ��

2×��,� ���
�
and �� is a 2 ×

2 covariance matrix. Similar to the specification of ��, the same approach was adopted to

determine ��.

Multivariate Poisson lognormal model assumes the multivariate normal distribution with

mean vector zero and unrestricted variance-covariance matrix. Correlation can be positive

or negative, depending on the sign of the element of variance-covariance matrix (Chib

and Winkelmann, 2001; El-Basyouny and Sayed, 2009; Ma et al., 2008). Positive element

indicates positive correlation, and vice versa. In addition, diagonal element of the

unrestricted variance-covariance matrix can be positive. Hence, overdispersion can be

accounted (Aguero-Valverde, 2013; Chib and Winkelmann, 2001; Ma et al., 2008).

To assess the goodness of fit of the models, Watanabe-Akaike Information Criterion

(WAIC) is adopted. Not only the predictive power, but also the model complexity and

overfitting are considered (Ali et al., 2021; Kitali et al., 2022).

WAIC is a Bayesian approach that utilizes the posterior distribution for the estimation of

out-of-sample expectation (Li et al., 2021; Bakhshi and Ahmed,2021). In this study,

WAIC would be estimated using the following (Watanabe and Opper, 2010),

���� =− 2���� + 2����� (Eq. 14)

where lppd is log posterior predictive density, pWAIC is effective number of parameters.
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Model with smaller WAIC is preferred. In this study, Markov Chain Monte Carlo

(MCMC) based full Bayesian approach was used to estimate the proposed multivariate

Poisson-lognormal model. For instance, the first 10,000 samples were discarded as

burn-in, and 20,000 further iterations was run for each chain. Convergence of the models

was assessed using autocorrelation plots.

6.4 Results and Discussion

This study examines the effects of built environment, pedestrian network, crossing

facilities, and transport facilities on pedestrian crash frequency using a multivariate

Poisson-lognormal regression model. For instance, a 3D digital map is applied to assess

the connectivity and accessibility of pedestrian network of Hong Kong.

In this study, value of WAIC (2,032.16) of multivariate Poisson-lognormal model is less

than that of univariate model (2,901.33). Hence, the multivariate model is adopted. Table

6.2 shows the parameter estimation results of both multivariate and univariate models.

Bayesian credible interval (BCI) specifies the probability range of posterior distribution

of parameter. A variable is considered significant if the MC error is less than 0.05 and

95% Bayesian credible interval (BCI) does not contain the null effect (i.e., zero) (Sameen

and Pradhan, 2017). In addition, backward stepwise technique is adopted to identify

significant variables. Results of parameter estimation of multivariate and univariate

models are comparable. Hence, results of the multivariate model are discussed in detail in

the following.

As shown in Table 6.2, for the exposure, pedestrian crash was positively associated with

annual average daily traffic (FSI, β = 0.092), population density (slight injury, 0.425; FSI,

0.493), and daily walking trip (slight injury, 0.573; FSI, 0.623). For the pedestrian

network, pedestrian crash was positively associated with footpath density (slight injury,

0.099; FSI, 0.106), node density (slight injury, 0.267; FSI, 0.279), and number of vertices

per footpath links (slight injury, 0.042; FSI, 0.044). In contrast, pedestrian crash was
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negatively associated with average gradient (slight injury, -0.039; FSI, -0.044). For the

crossing facilities, pedestrian crash was negatively associated with accessibility of

footbridges (slight injury, -0.287; FSI, -0.322), accessibility of underpasses (slight injury,

-0.006; FSI, -0.007), and number of at-grade crossings per road segments (FSI, -0.010).

For the land use and transport facilities, pedestrian crashes increases with the proportions

of residential areas (slight injury, 0.329; FSI, 0.348), commercial area (slight injury, 0.118;

FSI, 0.130), government and utility areas (slight injury, 0.046; FSI, 0.049), number of bus

stops (slight injury, 0.047; FSI, 0.050) and number of metro exits (slight injury, 0.034;

FSI, 0.036); but decreased with the proportion of green areas (slight injury, -0.073; FSI,

-0.069). Furthermore, both the unstructured effect (slight injury, 0.474; FSI: 0.430) and

spatial effect were significant (slight injury, 0.530; FSI: 0.571).
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Table 6.2 Results of parameter estimation of multivariate and univariate Poisson-lognormal models
Scope of work Variable Multivariate Poisson-lognormal model Univariate Poisson-lognormal model

Mean S.D. MC error (95% BCI) Mean S.D. MC error (95% BCI)
Slight injury crash

Intercept -9.891* 0.584 0.023 (-11.080, -8.857) -9.987 0.685 0.071 (-11.103, -8.298)
Exposure Ln (Annual average daily traffic) 0.076 0.010 0.002 (0.055, 0.093) 0.079* 0.013 <0.001 (0.057, 0.101)

Ln (Population density) 0.425* 0.094 0.003 (0.255, 0.592) 0.401* 0.085 0.003 (0.249, 0.568)
Ln (Daily walking trip) 0.573* 0.081 0.003 (0.374, 0.724) 0.545* 0.089 0.002 (0.354, 0.714)

Pedestrian
network
characteristics

Footpath density 0.099* 0.079 0.003 (0.005, 0.282) 0.087* 0.076 0.003 (0.011, 0.220)
Node density 0.267* 0.038 0.001 (0.186, 0.333) 0.222* 0.054 0.001 (0.185, 0.375)
Number of vertices per footpath
link

0.042* 0.023 0.001 (0.004, 0.093) 0.041* 0.021 0.001 (0.012, 0.074)

Average gradient -0.039* 0.022 0.001 (-0.088, -0.004) -0.031* 0.031 0.001 (-0.075, -0.001)
Crossing
facilities

Accessibility of footbridge -0.287* 0.134 0.004 (-0.599, -0.051) -0.252* 0.068 0.001 (-0.380, -0.127)
Accessibility of underpass -0.006* 0.003 <0.001 (-0.014, -0.001) -0.007* 0.005 <0.001 (-0.014, -0.001)
Number of at-grade crossings per
road segment

-0.008 0.009 0.001 (-0.025, 0.009) -0.010 0.015 <0.001 (-0.045, 0.015)

Land use Proportion of residential area 0.329* 0.069 0.002 (0.203, 0.457) 0.325 0.017 0.001 (0.293, 0.346)
Proportion of commercial area 0.118* 0.048 0.001 (0.016, 0.209) 0.106* 0.031 0.001 (0.041, 0.164)
Proportion of government and
utility area

0.046* 0.027 0.001 (0.011, 0.136) 0.043* 0.018 <0.001 (0.024, 0.075)

Proportion of green area -0.073* 0.024 0.001 (-0.119, -0.026) -0.075* 0.021 0.001 (-0.133, -0.020)
Transport
facilities

Number of bus stop 0.047* 0.012 <0.001 (0.027, 0.071) 0.045* 0.017 <0.001 (0.007, 0.087)
Number of metro exit 0.034* 0.014 <0.001 (0.006, 0.061) 0.035* 0.017 <0.001 (0.005, 0.068)

Unobserved
effects

Unstructured effect 0.474* 0.064 0.003 (0.358, 0.583) 0.468* 0.068 0.003 (0.341, 0.603)
Spatial effect 0.530* 0.152 0.006 (0.160, 0.730) 0.522* 0.115 0.004 (0.282, 0.744)
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FSI crash
Intercept -10.020* 1.216 0.060 (-11.840, -6.769) -11.480* 1.352 0.055 (-14.010, -9.074)

Exposure Ln (Annual average daily traffic) 0.092* 0.035 0.001 (0.033, 0.162) 0.087* 0.053 0.001 (0.038, 0.157)
Ln (Population density) 0.493* 0.063 0.002 (0.360, 0.611) 0.518* 0.110 0.004 (0.342, 0.731)
Ln (Daily walking trip) 0.623* 0.176 0.008 (0.312, 0.926) 0.655* 0.097 0.003 (0.493, 0.812)

Pedestrian
network
characteristics

Footpath density 0.106* 0.044 0.002 (0.019, 0.185) 0.090* 0.085 0.004 (0.029, 0.183)
Node density 0.279* 0.040 0.002 (0.1895, 0.3503) 0.189* 0.067 0.002 (0.083, 0.274)
Number of vertices per footpath
link

0.044* 0.023 0.002 (0.006, 0.094) 0.045* 0.043 0.001 (0.014, 0.075)

Average gradient -0.044* 0.016 <0.001 (-0.075, -0.013) -0.037* 0.021 0.001 (-0.085, -0.003)
Crossing
facilities

Accessibility of footbridge -0.322* 0.055 0.002 (-0.455, -0.236) -0.378* 0.074 0.002 (-0.469, -0.237)
Accessibility of underpass -0.007* 0.003 <0.001 (-0.014, -0.001) -0.009* 0.004 <0.001 (-0.019, -0.001)
Number of at-grade crossings per
road segment

-0.010* 0.004 <0.001 (-0.019, -0.002) -0.016* 0.005 <0.001 (-0.041, -0.003)

Land use Proportion of residential area 0.348* 0.025 0.001 (0.311, 0.395) 0.358* 0.032 0.001 (0.281, 0.501)
Proportion of commercial area 0.130* 0.017 <0.001 (0.102, 0.163) 0.128* 0.035 0.001 (0.065, 0.193)
Proportion of government and
utility area

0.049* 0.021 <0.001 (0.022, 0.114) 0.044* 0.019 <0.001 (0.022, 0.106)

Proportion of green area -0.069* 0.025 0.001 (-0.116, -0.019) -0.076* 0.025 0.001 (-0.137, -0.018)
Transport
facilities

Number of bus stop 0.050* 0.011 <0.001 (0.030, 0.071) 0.050* 0.018 <0.001 (0.019, 0.084)
Number of metro exit 0.036* 0.013 <0.001 (0.011, 0.062) 0.039* 0.015 <0.001 (0.010, 0.065)

Unobserved
effects

Unstructured effect 0.430* 0.042 0.002 (0.336, 0.510) 0.423* 0.094 0.002 (0.255, 0.592)
Spatial effect 0.571* 0.081 0.004 (0.374, 0.724) 0.554* 0.135 0.005 (0.282, 0.801)

* Significant at the 95% Bayesian credible intervals
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Table 6.3 presents the correlation between crash types. Mean, standard deviation, and 95%

BCI of posterior distribution of correlation are reported. As shown in Table 6.3, correlation of

unstructured random effect is significant (Mean = 0.597; S.D. = 0.082). This implies that

slight injury crash is positively correlated to FSI crash, and justifies that multivariate model is

appropriate. Additionally, correlation of spatial effects is significant (Mean = 0.843; S.D. =

0.100). This implies strong spatial dependency between crash counts of different types across

geographical units (i.e., grids). Furthermore, correlation of total random effect is significant

(Mean = 0.701; S.D. = 0.095). This generally aligns with that of previous studies

(Aguero-Valverde and Jovanis, 2009; El-Basyouny and Sayed, 2009; Ma et al., 2008).

Table 6.3 Correlation of the random effects for multivariate model
Mean S.D. (95% BCI)

Unstructured random effect 0.597* 0.082 (0.438, 0.701)

Structured random term for spatial dependency 0.843* 0.100 (0.674, 0.972)
Total random effect 0.701* 0.095 (0.608, 0.859)

* Significant at the 95% Bayesian credible intervals

6.4.1 Pedestrian network characteristics

Results indicated that pedestrian crashes increased with footpath density, node density, and

number of vertices per footpath links. It was found that more integrated and complex footpath

networks, with more intersecting and turning points, worsened pedestrian safety. This finding

suggests that intersecting points (nodes) and turning points (vertices) like road curves,

building accesses, and roadside drop-off, pick-up and loading areas are vehicle-pedestrian

conflict hotspots, which increase the crash exposure of pedestrians (Guo et al., 2017; Osama

and Sayed, 2017). In contrast, pedestrian crashes decreased with the gradient of footpath.

This finding suggests that drivers may be more cautious when they drive along sloping roads,

which reduces pedestrian crash risk (Chen and Zhou, 2016). However, detailed information

on traffic flow and speed is not available in this study. It is worth exploring the relationship

between gradient, traffic volume, vehicular speed, and pedestrian crash when comprehensive

traffic count data is available in future research.
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For the crossing facilities, these findings suggest that pedestrian safety could be improved if

footbridges, underpasses, and crosswalks are made more accessible. This action could be

achieved if footbridges and underpasses are installed at strategic locations that have high

pedestrian and traffic volumes. In support, research has found that pedestrian-vehicle

conflicts are reduced with grade-separated crossings (Oviedo-Trespalacios and Scott-Parker,

2017). This is particularly true for transit-oriented city likes Hong Kong (and other cities like

London and Tokyo). To illustrate, massive elevated and underground walkway systems have

been developed to provide access to rail transit system in Hong Kong. Such systems ensure

that pedestrians walking to the rail transit stations are well separated from the road traffic

(Cui et al., 2013; Transport Department, 2020).

6.4.2 Traffic characteristics and pedestrian exposures

This study found that pedestrian crashes increased with population density and daily walking

trip. Consistent with previous research, this finding suggests a “safety-in-number” effect,

whereby an increase in pedestrian crashes is less than proportionate to the increase in daily

walking trips (Elvik and Bjørnskau, 2017; Su et al., 2021b). This finding supports the

implementation of overall walkability strategy in metropolitan cities like Hong Kong, London,

and Melbourne (City of Melbourne, 2014; Department for Transport, 2017; Transport

Department, 2021). For example, more space should be allocated for pedestrian streets.

Furthermore, FSI pedestrian crashes increased with traffic volume. This finding suggests it is

crucial to implement local area traffic management and traffic calming measures like

low-speed limit zones and pedestrian priority traffic signals. These actions have the potential

to reduce pedestrian injury risk at the hotspots of pedestrian-vehicle conflicts (Zhang et al.,

2017; Zegeer and Bushell, 2012).

6.4.3 Built environment and transport facilities

Consistent with previous research, this study found that pedestrian crashes increased when

the proportions of residential, commercial, and government and utility area increased (Effati

and Saheli, 2022; Jermprapai and Srinivasan, 2014). In contrast, pedestrian crashes decreased
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when the proportion of green area increased. This finding suggests that the roads in green

area usually have more trees and green vegetation, which could increase the awareness of

drivers and safety perception of pedestrians (Hamim and Ukkusuri, 2024; Naderi et al., 2008;

Ryan et al., 2018). In support, research has found that pedestrian crashes are reduced with an

increase in tree density and canopy cover (Zhu et al., 2022a). Furthermore, pedestrian crashes

increased with the number of bus stop and metro exits. This finding suggests that that

pedestrian crashes may be the result of frequent roadside pickup and drop-off activities and

reckless crossing behaviours near the bus stop and metro exits. Hence, design of road

facilities like on-street parking, road barriers, central median, and crosswalks should be

improved (Sze and Christensen, 2017).

6.5 Concluding remarks

To improve the pedestrian environment and reduce the pedestrian-vehicle conflicts, facilities

like footbridges, underpasses, and elevated and underground walkways have been installed in

Hong Kong in the past decades. However, it is rare that influences of pedestrian network

characteristics on pedestrian safety are investigated. In this study, a 3D digital map is used to

evaluate the topology, connectivity, and accessibility of pedestrian network. Then, association

between pedestrian crash, pedestrian network characteristics and other possible influencing

factors is measured using the multivariate Poisson lognormal approach, based on

multi-source data on traffic flow, walking trip, pedestrian network characteristics, crossing

facilities, land use, and transport facilities of 379 grids.

Results indicate that pedestrian crash increases with population density, traffic flow, walking

trip, footpath density, node density, number of vertices, residential area, commercial area,

government and utility area, bus stop, and metro exit. In contrast, pedestrian crash decreases

with average gradient, and accessibility of footbridge, underpass, and at-grade crossing. This

justifies the development of elevated and underground walkway system. Moreover, findings

should shed light to the implementation of optimal traffic control and management strategy.

Therefore, safe and accessible walking environment can be developed, and walkability can be
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improved (Cui et al., 2013; Oviedo-Trespalacios and Scott-Parker, 2017).

Nevertheless, there are some limitations for this study. First, pedestrian crash data is obtained

from the Police. Problem of under reporting and missing data is prevalent. It is worth

exploring the use of deep learning and data generation approaches for imbalanced crash data

problem (Ding et al., 2022). Furthermore, it is necessary to account for the effect of temporal

instability when multiple year data is used (Behnood and Mannering, 2019).
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Chapter 7 Effect of walking accessibility for metro system on

pedestrian safety

7.1 Introduction

In the past decades, many compact cities around the world have adopted transit-oriented

development strategies, aiming to increase public transport use, reduce car dependence,

optimize urban space allocation, and promote sustainable urban growth. In Hong Kong, the

first metro line was opened in 1979. In the late 1990s, the transit-oriented development policy

was initiated. Since then, mixed-use development integrating residential, commercial, leisure

and community use with metro stations was widely adopted. As of 2023, there are 10 metro

lines and 98 stations (Mass Transit Railway Corporation, 2023). This has reshaped the

activity and travel patterns of the citizens. 34% of passenger trips are made by metro in Hong

Kong (Sze et al., 2019). To further increase public transport use, it is necessary to improve

the level of public transport service, walking environment and accessibility (Park and

Chowdhury, 2018; Tiznado-Aitken et al., 2020). In a compact city likes Hong Kong, it is

challenging to optimize the allocation of scarce urban space for housing development, road

traffic and pedestrians, especially metro stations are often located in high-density mixed-use

areas. Efficiency, safety, and well-being of all road users should be considered (Chen et al.,

2020).

Walking accessibility refers to the opportunity for a pedestrian to reach potential goods and

services from a specific location (Papa et al., 2018; Van der Vlugt et al., 2022). As

aforementioned, walking accessibility plays an important role in public transport use.

However, same as other developed societies, Hong Kong is facing the problem of aging

population. Additionally, over 320 thousand people in Hong Kong (4.5% of the population)

are physically impaired (Sze and Christensen, 2017). It is necessary to consider the needs of

low mobility groups in urban transport planning. To this end, concepts like design for all and

barrier-free access should be adopted in building design, addressing the accessibility

problems for individuals with disability (World Physical Therapy Confederation, 2019). In
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Hong Kong, barrier-free facilities, including elevators, escalators and ramps, are increasingly

installed at the footbridges, underpasses, and metro stations. Therefore, accessibility of low

mobility groups can be enhanced (Sze and Christensen, 2017).

Pedestrian activities are frequent in urban areas, especially for transit-oriented development.

However, the safety of pedestrians has been of concern since they are vulnerable to serious

injuries in road crashes (Chimba et al., 2018; Eluru et al., 2008; Zhu et al., 2022a). A quarter

of overall road deaths are pedestrians around the world (World Health Organization, 2018). In

Hong Kong, pedestrians even constitute more than half of overall road deaths (Zhu et al.,

2023a). Studies indicated pedestrian crash frequencies were higher in the areas around metro

stations and on the streets with more public transit stops (Lee et al., 2015; Pulugurtha and

Penkey, 2010; Osama and Sayed, 2017). This could be because of the unsafe crossing

behaviour of pedestrians (Raveesh et al., 2020; Sung et al., 2022). However, the relationship

between pedestrian safety and walking accessibility is less studied.

In conventional crash studies, built environment, road network, socio-demographics, traffic,

and safety data are often aggregated at different spatial scales. For example, built

environment and socio-demographics data are available at the census tract, area or district

level. In contrast, road design, transport facility and traffic flow data are broken down into

smaller units like street, intersection or grid. To this end, it is necessary to model the

multilevel data using the hierarchical approach, accounting for the possible effect of

between-individual heterogeneity (Hill and Goldstein, 1998; Huang and Abdel-Aty, 2010;

Silvia, 2007). Furthermore, an individual does not belong to one and only one group.

Individuals can be nested within multiple groups. Hence, multiple membership multilevel

model should be adopted, accounting for the problems of data dependency (Durrant et al.,

2018). Last but not least, multiple membership weights should be assigned to an individual

for different groups respectively, accounting for the variation in influential power among

groups.

On the other hand, crash data are often aggregated over time periods like months or years to
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provide an adequate sample of observations for crash frequency models. This implies the

assumption that the effects of influencing factors on crash frequency are constant over time.

However, studies indicate that temporal instabilities may exist when crash data from multiple

time periods are used for the estimation (Behnood and Mannering, 2019; Islam et al., 2020).

Therefore, it is necessary to address the problem of temporal instability in this study, avoiding

the possible bias in parameter estimation (Alnawmasi and Mannering, 2023; Mannering,

2018).

The modifiable areal unit problem is prevalent when data that are aggregated at different

spatial scales are modeled using the single level approach (Manley, 2021). Additionally, it is

necessary to consider the effects of unobserved heterogeneity when data from a sample of

smaller units are aggregated to the larger geographical areas. For example, road segments or

intersections in the same districts may exhibit different road design, traffic control and traffic

flow characteristics. These unobserved characteristics can also affect the crash frequency of

an area (Dupont et al., 2013). To this end, the multilevel modeling approach has been

proposed to address the modifiable areal unit problem, for the unevenness and clustering

characteristics of data structure (Jones et al., 2018).

On the other hand, an individual road entity or small geographical unit can be nested with

two or more larger areas. This is known as a multiple membership problem. If the multiple

membership structure of hierarchical data was not accounted for, the importance of

group-level factors would be underestimated, and therefore, the parameter estimation would

be biased (Hill and Goldstein, 1998). To this end, multiple membership multilevel modeling

approach can be adopted to address the clustering problem of individual road entities and the

underestimation of the significance of group-level clusters (Yang et al., 2022). Furthermore,

multiple membership approach assumed that individual geographical units located within the

same catchment area shared all the area-level characteristics. Hence, spatial dependency

between units in the same catchment area can be captured.
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In this study, a multiple membership multilevel model will be developed to examine the

relationship between possible factors, walking accessibility and pedestrian crash frequency in

the areas around metro stations. For instance, data on land use, demographics,

socio-economic are averaged by the catchment areas of metro stations. On the other hand,

street network, walking accessibility and exposure for the smaller zones are estimated.

Additionally, both barrier-free and general walking accessibility are considered. Furthermore,

multiple membership weights would be assigned to a zone for different metro stations

respectively, considering the walking distances between zones and metro stations. Last but

not least, temporal stability of parameter estimation would be explored. Contribution of this

study is two-fold. First, between-individual heterogeneity in the hierarchical data structure

can be accounted using multilevel modeling approach. Second, dependency between zones

that are located in the same catchment area would be captured. Results of this study can shed

light on effective urban and transport planning policy that can improve the walkability and

pedestrian safety.

The remainder of this chapter is structured as follows. Illustration of study design and

statistical model are described in Section 7.2 and Section 7.3, respectively. Section 7.4

summarizes the estimation results and discusses the policy implications. Finally, concluding

remarks are given in Section 7.5.

7.2 Study design

7.2.1. Study area

In this study, the relationship between built environment, footpath network,

socio-demographics, walking accessibility and pedestrian crash frequency in the areas around

metro stations will be examined. Figure 7.1 shows the metro network in Hong Kong. For

instance, areas within a 500-metre radius of 93 metro stations1 are considered (Xu et al.,

1 5 metro stations are excluded in this study as they are built after 2020 and there are not adequate crash data.
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2022).

Figure 7.1 Metro network in Hong Kong in 2019

As aforementioned, attributes like crash incidence, traffic flow and network characteristics

are usually available at the street level. Hence, each 500-metre radius catchment area for the

metro is further stratified into several 150-metre radius hexagonal zones. To this end, the

sample consists of 1,156 zones and 93 catchment areas. Figure 7.2 illustrates the

configuration of hexagonal zones and catchment areas of some metro stations. As shown in

Figure 7.2, some hexagonal zones are nested within the catchment areas of two or three metro

stations.
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Figure 7.2 Illustration of some hexagonal zones and metro catchment areas

7.2.2. Walking accessibility

(1) General walking accessibility

In this study, walking accessibility refers to the ease of reaching the closest metro station

from a zone, considering the topology and geometry of the footpath network.

First, the impedance function between i and j is given by,

� ���, �0 = �−1
2×

���
�0

2

(1)

where dij refers to the Euclidean distance between the centroid of zone i and catchment area j

and do is set at 500 metres.

Then, the demand potential of j from i is given by,
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��� = �� × � ���, �0 (2)

where Pi is the population of i.

There are often many exits for each metro station. To this end, an impedance function that

indicates the generalized travel cost between exit k of catchment area j and zone i is given by,

���
� = �

−
����×�����
2�����������

(3)

where ���� = ����

�1
when ���� ≤ �1 , ���� = 1 when ���� > �1 , dijk is the shortest walking

distance between k and centroid of zone i, d1 is the acceptable walking distance (set at 800

metres in this study) (Gori et al., 2014), cross is the number of crossings, and cfacilities is

number of at-grade crossings avoided when footbridges and underpasses are used

respectively.

Hence, general walking accessibility can be estimated by,

��� =
������

�

���
(4)

where sij is attractiveness of j for zone i.

For instance, attractiveness is correlated to overall trips and the proportion of metro trips for a

zone. Walking accessibility is non-negative. If the pedestrian network is better integrated and

there are more grade-separated crossing facilities, walking accessibility would increase. Zero

walking accessibility implies no metro station can be reached within 800-metre walking

distance. In this study, information on the configuration and topology of pedestrian network

and characteristics (i.e., gradient, accessible design, crosswalk) of every walking link can be

obtained from the digital map of a three-dimensional pedestrian network. The interested

reader is referred to our recent paper for the detailed descriptions of digital map (Zhu et al.,
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2023a).

(2) Barrier-free walking accessibility

In the past decades, many barrier-free facilities like elevators, escalators, lifts, ramps, and

wheelchair access were installed, enhancing the accessibility of individuals with physical

impairment. Figure 7.3 illustrates a sample of normal (brown colour) and barrier-free (green

colour) shortest walking paths from an origin to the nearest metro exit. Criteria of the

barrier-free link are: (1) there is no segment with slope exceeding 5%; (2) there is no

crosswalk or crossing facility with slope exceeding 2%, and (3) there are escalators, lifts,

ramps, or wheelchair access when (1) and (2) are not satisfied.

Figure 7.3 Sample of shortest walking paths

For barrier-free walking path, the impedance function that indicates the generalized travel

cost between exit k of catchment area j and the centroid of zone i is given by,

���
� = �

−
����

' ×�����

2�����������
'

(5)
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where �'
��� = �'

���

�1
when �'

��� ≤ �1 , �'
��� = 1 when �'

��� > �1 , d’ijk is the barrier-free

shortest walking distance from k to i, d1 is an acceptable walking distance (set at 800 metres

in this study) (Gori et al., 2014), and c’facilities is the number of at-grade crossings avoided

when footbridges and underpasses are used respectively.

Then, the impedance function that reflects the influence of road gradient is given by,

���
� = �−

����
2

(6)

where ���� is the average gradient of barrier-free path from k to j.

Hence, overall barrier-free walking accessibility can be estimated by,

��� =
���×���

� ×���
�

���
(7)

Again, barrier-free walking accessibility is non-negative. If the accessible design is

extensively implemented, barrier-free walking accessibility would increase. Zero accessibility

implies no metro station can be reached.

7.2.3. Built environment, traffic and safety data

In this study, data on the traffic crashes involving pedestrians in the period between 2017 and

2018 obtained from the Traffic Information System is used. For every crash, information on

the location, time, and crash severity is available. Crash severity refers to the injury severity

level of the most severely injured pedestrian involved in the crash. For example, there were

3,277 pedestrian-vehicle crashes in the study area. Additionally, crashes are stratified into two

classes by severity, namely fatal and severe injury crash (20.9%), and slight injury crash

(79.1%). For crash exposure, traffic count data are obtained from the Annual Traffic Census
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and walking trip data are obtained from the Travel Characteristics Survey respectively. For

example, information on the origin, destination, departure time and walking time of the

walking trips can be obtained from the latter (Sze et al., 2019). Last but not least, land use

data is obtained from the Planning Department’s database and population socio-demographics

data is obtained from the Census and Statistics Department’s database respectively. For

example, there are four land use types, namely residential, commercial, government and

utility, and green space (Su et al., 2021b).

Table 7.1 summarizes the data adopted in this study. As shown in Table 7.1, pedestrian crash

frequency, exposure, pedestrian network characteristics, and general and barrier-free walking

accessibility are averaged at zone level, while land use and socio-demographics are

aggregated at catchment area level respectively.
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Table 7.1 Descriptive statistics of the data
Scope of work Variable Mean SD Min Max
Zone level
Pedestrian crash
frequency

Slight injury crash 2.24 4.05 0.00 37.00
Fatal and severe injury crash 0.59 1.24 0.00 12.00

Exposure Ln (Annual average daily traffic) 9.66 0.98 6.17 11.84
Ln (Population density) 9.90 1.80 4.51 12.34
Ln (Daily walking trip) 3.35 1.46 0.00 6.70

Transport facility Number of bus stop 1.27 1.62 0.00 10.00
Pedestrian network
characteristics

Footpath density (m per 100 m2) 4.12 2.48 0.00 15.98
Node density (per 100 m) 4.83 2.34 0.00 20.58

Barrier-free access density (m per 100 m2) 3.41 2.29 0.00 15.39

Average gradient 0.06 0.05 0.00 0.48

Walking
accessibility

General walking accessibility 0.52 0.50 0.00 4.68
Barrier-free walking accessibility 0.25 0.42 0.00 4.13
Barrier-free accessibility X
% of age below 15

3.04 5.90 0.00 70.36

Barrier-free accessibility X
% of age over 64

3.84 6.48 0.00 55.80

Catchment area level
Land use % of residential area 22.41 12.64 0.00 45.25

% of commercial area 6.14 13.95 0.00 97.50
% of government and utility area 12.95 9.23 0.00 48.96
% of green area 7.36 9.90 0.00 39.87

Socio-demographic
s

% of working population 52.37 3.78 40.56 61.99
% of working population with monthly
income below HKD 20,000

31.45 5.27 17.40 41.33

% of age below 15 11.70 3.41 0.15 24.44
% of age over 64 15.57 6.09 0.02 54.28

7.3 Method of analysis

7.3.1 Multiple membership multilevel model

As aforementioned, hierarchical data structures are adopted in this study. Additionally,

individual hexagonal zones are nested within more than one catchment area of metro station.

Hence, a multiple membership multilevel model is adopted for the spatial analysis of

pedestrian crashes and walking accessibility.
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First, influences of zone level and catchment area level factors on pedestrian crashes are

given by Equation (8), Equation (9) and Equation (10) respectively,

 ijij PoissonY   ~ (8)

log(���) = �0� + �=1
� ������� + ���� (9)

�0� = �00 + �=1
� �0����� + �0� with �0�~� 0, ��

2
(10)

where Yij refers to the number of pedestrian crashes in zone i of catchment area j, ij is the

expected number of crashes in zone i of catchment area j, ���� is the vector of zone level

factors, ��� is the vector of catchment area level factors, �0� , ��� , �00 and �0� are the

parameters, �0� is normally distributed between area residuals, and ��� is a

gamma-distributed error term with the mean of 1 and variance of 1/ .

 is the inverse overdispersion parameter that allows the variance to be different from the

mean as,

��� ��� = � ��� + � ���
2/� (11)

Then, the multiple membership issue can be accommodated by modifying Equation (10) as,

�0� = �00 + �=1
� �0� �∈���� � �������� + �∈���� � ����0�� (12)

where ��� is the weight that reflects the influential power of j on i, �0� reflects the fixed

effect, and �∈���� � ����0�� reflects the random effects, � ∈ ���� (�) represents the set of

catchment areas that affect the crash occurrence in zone i, and zone i is nested within N metro

stations with ���� � = {1, …, �, …, �}, N is the number of catchment areas to which zone i



109

belongs, and �∈���� � ���� = 1 respectively.

In this study, two approaches for the weight assignment of multiple membership, (i) equal

weight, and (ii) walking distance, are considered (Wang and Huang, 2016; Park et al., 2020).

For the latter, multiple membership weight is given by,

��� = ���
2

�∈����(�) ���
2�

(13)

where ind is the shortest walking distance between the centroid of zone i and metro station

n.

Poisson family models including Poisson-gamma and negative binomial regression models

are commonly adopted to estimate crash frequency since crash incidence can be modeled as

count data and over-dispersed (Park et al., 2022).

To assess the appropriateness of multilevel modeling approach, variance partition coefficient,

which indicates the correlation in crash counts between individual zones within the same

catchment area, is estimated by.

��� =
���

� 2
exp ��

2 −1
� � ����� ����

catchment area level variance

���
� 2

exp ��
2 −1� � ����� ����

catchment area level variance

+���
�+ ���

� 2
exp ��

2 �� � ������ �����
zone level variance

(14)

where M
ij is the marginal expectation of yij and is given by

���
� = � ��� = exp �0� + ��

2 2 (15)

If there is weak dependency between individual zones, the value of variance partition

coefficient will be close to zero. Then, single level models should be used. Otherwise,
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multilevel model is appropriate (Leckie et al., 2020; Yoon et al., 2017).

7.3.2 Modeling approach and assessment

In this study, three models would be considered for the spatial analysis of walking

accessibility and pedestrian crash risk, namely multilevel model (Model 1), multiple

membership multilevel model with equal weight (Model 2), and multiple membership

multilevel model with walking distance-based weights (Model 3).

To assess the model fit, Deviance Information Criterion is estimated by,

��� = ���� + �� (16)

where Dbar is the posterior mean of deviance and pD is the number of parameters.

Models with a smaller deviance information criterion are preferred. Last but not least, the

models would be estimated using Markov Chain Monte Carlo simulation method in the

Bayesian framework. For instance, the first 10,000 samples are discarded as burn-in, and a

further 20,000 iterations would be run for each chain. Model convergence would be assessed

by visual inspection of the simulation chains and autocorrelation plots.

7.3.3 Temporal stability

The influences of explanatory factors on crash occurrence may change over time because of

the variations in road conditions, vehicle technology, road user perception and behaviour.

This is known as temporal instability (Alnawmasi and Mannering, 2023; Mannering, 2018).

To this end, the simulated maximum likelihood approach is adopted to assess the temporal

stability. Both global and pairwise likelihood ratio tests are conducted. For instance, global

test for the stability of crash frequency model across years can be given by,

��
2 =− 2 �� �� − �� �2017 − �� �2018 (16)

where �� �� is the log-likelihood at the convergence of all year model, �� �2017 is the
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log-likelihood at the convergence of 2017 model and �� �2018 is the log-likelihood at the

convergence of 2018 model respectively.

The null hypothesis is that all year model and 2017 and 2018 models are equal. If the null

hypothesis can be rejected, separated models for 2017 and 2018 are warranted.

On the other hand, pairwise test for the transferability of parameters across years can be given

by,

�2 =− 2 �� ��1�2 − �� ��1 (17)

where �� ��1�2 is the log-likelihood at the convergence of a model using converged

parameters from p1 and data from p2; �� ��1 is the log-likelihood at the convergence of a

model using data from p1.

7.4 Results and discussion

7.4.1 Model performance

In this study, three models are estimated for the assessment of model performance. For

example, simple multilevel model (Model 1), multiple membership multilevel model with

equal weights (Model 2), and multiple membership multilevel model with walking

distance-based weights (Model 3) are estimated. Table 7.2 compares the performance among

the three candidate models. As also shown in Table 7.2, for slight injury crash, between-group

variance of Model 1 (0.231) is remarkably lower than that of Model 2 (0.572) and Model 3

(0.588). The same phenomenon is observed for fatal and severe injury crashes (Model 1:

0.238; Model 2: 0.591; Model 3: 0.598). This implies that between-group variance may be

underestimated when multiple membership approach is not adopted. Hence, the multiple

membership multilevel model approach is justified.
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Table 7.2 Between-group and within-group variances of the models
Variance Model 1:

Multilevel Model
Model 2:

Multiple Membership
Multilevel Model with

Equal Weights

Model 3:
Multiple Membership
Multilevel Model with

Walking Distance-based
Weights

Slight Injury
Crash

Fatal and
Severe

Injury Crash

Slight Injury
Crash

Fatal and
Severe

Injury Crash

Slight Injury
Crash

Fatal and
Severe

Injury Crash
Between-group

variance
0.231 0.238 0.572 0.591 0.588 0.598

Within-group
variance

0.785 0.798 0.792 0.804 0.807 0.819

Variance
partition

coefficient

0.079 0.085 0.356 0.353 0.348 0.347

Prior to the model estimation, multicollinearity of the variances considered should be

assessed. In this study, values of variance inflation factor are all less than five. Table 7.3

summarizes the goodness-of-fit assessment results of the models. As shown in Table 7.3,

multiple membership multilevel model with walking distance-based weights is preferred

since values of the deviance information criterion are the lowest for both slight injury (Model

1: 6092; Model 2: 5571; Model 3: 5459) and fatal and severe injury crashes (Model 1: 5983;

Model 2: 5563; Model 3: 5438) (Ding et al., 2023). Hence, the multiple membership

multilevel model with walking distance-based weights should be adopted.

Table 7.3 Goodness-of-fit assessment of the models
Crash Severity Model 1:

Multilevel
Model

Model 2:
Multiple Membership
Multilevel Model with

Equal Weights

Model 3:
Multiple Membership
Multilevel Model with

Walking Distance-based
Weights

Slight injury crash 6092 5571 5459
Fatal and severe injury crash 5983 5563 5438

As the multiple membership multilevel model with walking distance-based weights is

adopted, the simulated maximum likelihood approach will be used for temporal instability.
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For the global test, chi-square test statistics are 84.6 (with 19 degrees of freedom) for slight

injury crash and 79.4 (with 18 degrees of freedom) for fatal and severe crash respectively.

This implies that the null hypothesis for temporal stability of the models across years can be

rejected at the 1% level of significance. As shown in Table 7.4, chi-square test statistics in

pairwise tests are all significant at the 5% level. Hence, separated models for 2017 and 2018

should be estimated.

Table 7.4 Pairwise likelihood ratio tests for 2017 and 2018
Slight Injury Crash Fatal and Severe Injury Crash

Year 2017 2018 2017 2018
2017 64.9[21](0.017) 67.5[21](0.019)
2018 59.4[21](0.034) 54.3[21](0.043)

Note: Degrees of freedom in the brackets and significant levels in the parentheses.

7.4.2 Parameter estimations and discussion

Table 7.5 presents the results of multiple membership multilevel model, with walking

distance-based weights, for slight injury crash and fatal and severe injury crash respectively.

In addition, estimates of average marginal effect are summarized in Table 7.6.
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Table 7.5 Results of multiple membership multilevel model with walking distance-based weights

Variable
Slight injury crash Fatal and severe injury crash

Coefficient (95% Bayesian credible interval) Coefficient (95% Bayesian credible interval)
2017
Zone level
Intercept -9.017** (-11.221，-7.893) -8.881** (-10.344,-7.417)
Ln (Annual average daily traffic) 0.236* (0.145，0.401) 0.241* (0.043,0.502)
Ln (Population density) 0.162** (0.082,0.257) 0.145* (0.019,0.306)
Ln (Daily walking trip) 0.643** (0.451,0.868) 0.601** (0.293,0.908)
Number of bus stop 0.151** (0.068,0.223) 0.147** (0.051,0.234)
Footpath density (m per 100 m2) 0.300** (0.157,0.421) 0.297** (0.193,0.401)
Node density (per 100 m) 0.227** (0.108,0.334) 0.218** (0.096,0.331)
Barrier-free access density (m per 100 m2) 0.231^ (0.019,0.553) 0.243* (0.004,0.503)
Average gradient -0.732** (-1.108,-0.376) -0.780** (-1.05.-0.509)
General walking accessibility -0.207** (-0.381,-0.052) -0.237* (-0.452,-0.008）
Barrier-free walking accessibility -0.231* (-0.399,-0.121) -0.210* (-0.409,-0.009)
Barrier-free walking accessibility X % of age below 15 -0.021^ (-0.051,-0.008) -0.028^ (-0.069,-0.003)
Barrier-free accessibility X % of age over 64 -0.026^ (-0.058,-0.007) -0.023* (-0.045,-0.002)
Catchment area level
% of residential area 0.050** (0.024,0.071) 0.057* (0.006,0.113)
% of commercial area 0.043* (0.009,0.084) 0.048* (0.003,0.098)
% of government and utility area 0.022^ (0.007,0.055) 0.023^ (0.002,0.056)
% of green area -0.019* (-0.042,-0.003) -0.015* (-0.036,-0.003)
% of working population 0.110** (0.048,0.177) 0.115** (0.078,0.156)
% of working population with monthly income below
HKD 20,000

0.132** (0.077,0.185) 0.146* (0.052,0.265)

% of age below 15 0.004 (0.001,0.039) 0.008 (0.001,0.021)
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% of age over 64 0.006 (0.002,0.038) 0.007 (0.001,0.025)
Catchment area level variance 0.281** (0.103,0.439) 0.247** (0.139,0.345)
Zone level variance 0.536** (0.293,0.789) 0.549** (0.318,0.712)
2018
Zone level
Intercept -8.985** (-11.048,-5.922) -8.739** (-10.688,-6.789)
Ln (Annual average daily traffic) 0.281* (0.008,0.493) 0.249* (0.044,0.501)
Ln (Population density) 0.147* (0.055,0.319) 0.144** (0.038,0.227)
Ln (Daily walking trip) 0.684** (0.543,0.825) 0.630** (0.268,0.952)
Number of bus stop 0.145** (0.049,0.241) 0.149** (0.068,0.234)
Footpath density (m per 100 m2) 0.304** (0.177,0.431) 0.301** (0.160,0.442）
Node density (per 100 m) 0.234** (0.098,0.367) 0.224** (0.124,0.345)

Barrier-free access density (m per 100 m2) 0.242* (0.027,0.411) 0.249* (0.027,0.426)

Average gradient -0.771** (-1.002,-0.256) -0.785** (-1.168,-0.381)

General walking accessibility -0.223** (-0.387,-0.059) -0.242** (-0.385,-0.100)
Barrier-free walking accessibility -0.201* (-0.405,-0.013) -0.209* (-0.326,-0.085)
Barrier-free walking accessibility X % of age below 15 -0.023^ (-0.052,-0.002) -0.027* (-0.052,-0.002)
Barrier-free accessibility X % of age over 64 -0.025^ (-0.060,-0.001) -0.026* (-0.055,-0.001)
Catchment area level
% of residential area 0.052* (0.009,0.113) 0.059** (0.018,0.101)
% of commercial area 0.046* (0.003,0.088) 0.045* (0.005,0.096)
% of government and utility area 0.020^ (0.002,0.050) 0.025* (0.002,0.052)
% of green area -0.017^ (-0.039,-0.001) -0.013** (-0.021,-0.005)
% of working population 0.111** (0.051,0.162) 0.116** (0.071,0.160)
% of working population with monthly income below
HKD 20,000

0.143* (0.026,0.302) 0.147** (0.074,0.236)

% of age below 15 0.006 (0.002,0.036) 0.008 (0.001,0.033)
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% of age over 64 0.009 (0.004,0.040) 0.009 (0.002,0.038)
Catchment area level variance 0.218** (0.047,0.369) 0.241** (0.096,0.394)
Zone level variance 0.521** (0.296,0.744) 0.553** (0.253,0.828)

^ Significant at the 10% level
* Significant at the 5% level
**Significant at the 1% level
Note: Separated models for 2017 and 2018 using Model 1, Model 2 and Model 3 were considered. For 2017, loglikelihood values are the lowest when multiple membership
multilevel model with walking distance-based weights (Model 3) is used (Slight injury crash: Model 1- 6189, Model 2- 5707, Model 3- 5576; Fatal and severe injury crash:
Model 1- 6024, Model 2- 5683, Model 3- 5521). The same also applies for 2018 (Slight injury crash: Model 1- 6163, Model 2- 5688, Model 3- 5542; Fatal and severe injury
crashes: Model 1- 6107, Model 2- 5675, Model 3- 5524). Hence, subsequent description will focus on multiple membership multilevel model with walking distance-based
weights.
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Table 7.6 Average marginal effects

Variable
Slight injury crash

Fatal and severe injury
crash

2017 2018 2017 2018
Zone level
Ln (Annual average daily traffic) 0.591 0.589 0.559 0.510
Ln (Population density) 0.406 0.308 0.336 0.295
Ln (Daily walking trip) 1.611 1.435 1.394 1.290
Number of bus stop 0.378 0.304 0.342 0.305
Footpath density (m per 100 m2) 0.752 0.638 0.689 0.616
Node density (per 100 m) 0.569 0.491 0.505 0.458
Barrier-free access density (m per 100 m2) 0.579 0.508 0.564 0.510
Average gradient -1.835 -1.618 -1.809 -1.607
General walking accessibility -0.519 -0.468 -0.550 -0.495
Barrier-free walking accessibility -0.579 -0.422 -0.487 -0.428
Barrier-free walking accessibility X
% of age below 15

-0.053 -0.049 -0.065 -0.056

Barrier-free accessibility X
% of age over 64

-0.065 -0.052 -0.054 -0.053

Catchment area level
% of residential area 0.125 0.109 0.133 0.121
% of commercial area 0.108 0.096 0.111 0.092
% of government and utility area 0.055 0.042 0.054 0.051
% of green area -0.048 -0.035 -0.034 -0.026
% of working population 0.276 0.232 0.267 0.237
% of working population with monthly income
below HKD 20,000

0.331 0.300 0.338 0.301

(1) Zone level factors

For the crash exposure, pedestrian crash frequency remarkably increases with annual

average daily traffic (Slight injury crash: Coefficient is 0.236 for year 2017 and 0.281 for

year 2018; Fatal and severe injury crash: Coefficient is 0.241 for year 2017 and 0.249 for

year 2018), population density (Slight injury crash: 0.162 for year 2017 and 0.147 for

year 2018; Fatal and severe injury crash: 0.145 for year 2017 and 0.144 for year 2018),

and daily walking trips (Slight injury crash: 0.643 for year 2017 and 0.684 for year 2018;

Fatal and severe injury crash: 0.601 for year 2017 and 0.630 for year 2018), at the 5%

level. For the marginal effect, a 1% increase in log transformed traffic flow would result
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in 0.51 – 0.59% increases in pedestrian crashes. Such findings are consistent with

previous studies. For instance, pedestrian-vehicle crash exposure increased with traffic

volume and pedestrian activities. Just, increase in pedestrian crash was less than

proportionate with exposure (Su et al., 2021b; Sze et al., 2019). This justifies the

safety-in-numbers effect and driver awareness when there are more pedestrians (Elvik and

Bjørnskau, 2017).

For the transport facility, pedestrian crash frequency significantly increases with number

of bus stops (Slight injury crash: 0.151 for year 2017 and 0.145 for year 2018; Fatal and

severe injury crash: 0.147 for year 2017 and 0.149 for year 2018) at the 1% level. For the

marginal effect, a 1% increase in the number of bus stops would result in 0.30 – 0.38%

increases in pedestrian crashes. This could be attributed to the frequent roadside pick-up

and drop-off activities and reckless crossing behaviour near the bus stops (Su et al., 2021b;

Zhu et al., 2022a). Such findings are indicative to the street design and traffic control that

can mitigate the road hazards attributed to the unsafe crossing behaviour of pedestrians.

For the configuration of pedestrian network, pedestrian crash frequency remarkably

increases with footpath density (Slight injury crash: 0.300 for year 2017 and 0.304 for

year 2018; Fatal and severe injury crash: 0.297 for year 2017 and 0.301 for year 2018),

node density (Slight injury crash: 0.227 for year 2017 and 0.234 for year 2018; Fatal and

severe injury crash: 0.218 for year 2017 and 0.224 for year 2018) and barrier-free access

density (Slight injury crash: 0.242 for year 2018; Fatal and severe injury crash: 0.243 for

year 2017 and 0.249 for year 2018). For the marginal effect, 1% increases in footpath

density and node density would result in 0.62 – 0.75% and 0.46 – 0.57% increases in

pedestrian crashes respectively. Figure 7.4 illustrates a sample of pedestrian network. The

positive association between footpath, node and pedestrian crash frequency implies that

pedestrian safety would be worsened when the pedestrian network is more complicated.

This is consistent with a previous study (Zhu et al., 2023b). Pedestrian crash hotspots are

concentrated in areas with more building access and roadside drop-off, pick-up and

loading activities (Guo et al., 2017; Osama and Sayed, 2017) for all population groups
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(Wennberg et al., 2010). Such findings are indicative to the design and planning of traffic

calming measures, especially for individuals with physical disabilities. In contrast,

pedestrian crash frequency remarkably decreases with average gradient (Slight injury

crash: 0.732 for year 2017 and 0.771 for year 2018; Fatal and severe injury crash: 0.780

for year 2017 and 0.785 for year 2018) at the 1% level. For the marginal effect, a 1%

increase in average gradient would result in 1.61 – 1.84% reduction of pedestrian crashes.

This could be attributed to the increase in driver awareness and speed reduction at the

inclined road segments (Chen and Zhou, 2016).

Figure 7.4 Illustration of a sample of pedestrian network

(2) Catchment area level factors

For the effects of land use, pedestrian crash frequency increases with residential area

(Slight injury crash: Coefficient is 0.050 for year 2017 and 0.052 for year 2018; Fatal and

severe injury crash: Coefficient is 0.057 for year 2017 and 0.059 for year 2018),

commercial area (Slight injury crash: 0.043 for year 2017 and 0.046 for year 2018; Fatal

and severe injury crash: 0.048 for year 2017 and 0.045 for year 2018), government and



120

utility area (fatal and severe injury crash: 0.025 for year 2018), at the 5% level. Hence,

1% increases in the areas for residential, commercial, and government and utility land use

would result in 0.11 – 0.13%, 0.09 – 0.11% and 0.04 – 0.06% increases in pedestrian

crashes respectively. Such findings are consistent with previous studies (Effati and Saheli,

2022; Jermprapai and Srinivasan, 2014). Just, pedestrian crash frequency remarkably

decreases with green area (Slight injury crash: -0.019 for year 2017; Fatal and severe

injury crash: -0.015 for year 2017 and -0.013 for year 2018), at the 5% level. A 1%

increase in the green area would result in 0.03 – 0.05% reduction in pedestrian crashes.

This justifies the favorable effect of green space on the quality of living and well-being of

the commuters (Abd Kadir et al., 2012; Hong et al., 2018; Zhu et al., 2022a). More

importantly, vegetation can improve the visual perception, awareness and driving

behaviour of drivers (Naderi et al., 2008).

For population socio-demographics, pedestrian crash frequency remarkably increases

with the proportions of working population (Slight injury crash: 0.110 for year 2017 and

0.111 for year 2018; Fatal and severe injury crash: 0.115 for year 2017 and 0.116 for year

2018) and that with monthly income below HKD 20,000 (Slight injury crash: 0.132 for

year 2017 and 0.143 for year 2018; Fatal and severe injury crash: 0.146 for year 2017 and

0.147 for year 2018) at the 5% level. For the marginal effect, a 1% increase in the

working population with lower monthly income would result in 0.30 – 0.34% increases in

pedestrian crashes. Such findings are consistent with the previous studies for the

relationship between poverty, travel behaviour and pedestrian safety (Dong et al., 2020;

Giuliano, 2005; Rhee et al., 2016).

(3) Effects of walking accessibility

Favorably, pedestrian crash frequency remarkably decreases with general walking

accessibility (Slight injury crash: Coefficient is -0.207 for year 2017 and -0.223 for year

2018; Fatal and severe injury crash: Coefficient is -0.237 for year 2017 and -0.242 for

year 2018) and barrier-free walking accessibility (Slight injury crash: -0.231 for year

2017 and -0.201 for year 2018; Fatal and severe injury crash: -0.210 for year 2017 and
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-0.209 for year 2018). A 1% increase in walking accessibility would result in 0.47 –

0.55% reduction in pedestrian crashes. Figure 7.5 illustrates the spatial distribution of

walking accessibility. As aforementioned, transit-oriented development was extensively

implemented in the city. Therefore, walking accessibility in the areas around metro

stations is generally high. However, as shown in Figure 7.5(b), barrier-free walking

accessibility tends to be lower, except central business districts. This could be attributed

to the planning and development strategy of transport authority and transport operator for

escalators, lifts, and wheelchair access (Mass Transit Railway Corporation, 2023).

Moreover, facilities like barriers, warning signs, footbridges and underpasses significantly

reduce pedestrian-vehicle conflicts and crashes (Cui et al., 2013; Oviedo-Trespalacios and

Scott-Parker, 2017; Zhu et al., 2023a). Last but not least, improved barrier-free walking

accessibility also has favorable effect on transport equity (Yairi and Igi, 2006).

(a) General walking accessibility
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(b)Barrier-free walking accessibility
Figure 7.5 Walking accessibility in the areas around metro stations

Even though there is no significant association between pedestrian crash frequency and

population age, the negative association between pedestrian fatal crash frequency and

barrier-free walking accessibility is more obvious when proportion of children (Age

below 15: -0.027 for year 2018) and the older adults (Age over 64: -0.023 for year 2017

and -0.026 for year 2018) increase. This could be because children and the older adults

are prone to unsafe crossing behaviour and more severe road crashes (Salehian et al.,

2023; Tournier et al., 2016). Hence, the safety risk of vulnerable pedestrian groups would

be reduced when accessibility is improved (Sun et al., 2019). Table 7.7 summarizes the

implications of the empirical analysis.
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Table 7.7 Implications of influencing factors
Factor Effect Implication Reference

Zone level
Annual average daily
traffic

↑
Pedestrian crash increases with population,
traffic volume and walking activity. Pedestrian
crashes increase less than proportionate with the
exposure. This implies possible
“safety-in-numbers” effect.

Elvik and
Bjørnskau, 2017

Population density ↑

Daily walking trip ↑

Number of bus stop ↑

Pedestrian crash increases with number of bus
stop. Street design and traffic control should be
improved.

Su et al., 2021b;
Zhu et al., 2022a

Footpath density ↑ Building access, roadside drop-off and pick-up,
and loading area are prone to pedestrian crash.
Effective traffic calming measures should be
implemented.

Wennberg et al.,
2010; Guo et al.,
2017; Osama and
Sayed, 2017

Node density ↑

Barrier-free access
density

↑

Average gradient ↓

Traffic speed decreases with the inclination
angle. Hence, pedestrian crash frequency
reduces.

Chen and Zhou,
2016

General walking
accessibility

↓ Walking accessibility, especially for the elderly
and individuals with disabilities, has a favorable
effect on pedestrian safety. Accessible design
should be adopted for transport facilities.

Mass Transit
Railway
Corporation, 2023;
Cui et al., 2013;
Zhu et al., 2023a

Barrier-free walking
accessibility

↓

Barrier-free accessibility
X % of age below 15

↓
The favorable effect of accessible design on
pedestrian safety is more significant for children
and older adults because unsafe crossing
behaviour is more prevalent for these population
groups.

Salehian et al.,
2023; Tournier et
al., 2016

Barrier-free accessibility
X % of age over 64

↓

Catchment area level
% of residential area ↑ Negative association between green area and

pedestrian crash frequency indicates the
favorable effect of green areas on pedestrian
safety. This may be because of the enhanced
visual perception and awareness of drivers.

Hong et al., 2018;
Naderi et al., 2008;
Zhu et al., 2022a

% of commercial area ↑

% of government and
utility area

↑

% of green area ↓

% of working population ↑ Positive association between working
population and pedestrian crash is more
significant for lower income group. This implies
the vulnerability of disadvantaged social group.

Giuliano, 2005;
Rhee et al., 2016;
Dong et al., 2020

% of working population
with monthly income
below HKD 20,000

↑

Notes: “↑ ” indicates the positive association between factor and pedestrian crash frequency; “↓ ”
indicates the negative association between factor and pedestrian crash frequency
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7.4.3 Multiple membership multilevel model

In this study, multilevel models are estimated, accounting for the hierarchical structure of

data including built environment, population socio-demographics, road network

configuration, transport facilities and traffic flow characteristics, and the clustering

problem of individual zones. Additionally, multiple membership model outperforms the

conventional multilevel model. This implies that the spatial dependence among zones

within the same catchment area of metro station can be accommodated. Furthermore, two

weighting strategies including equal weighting and walking distance-based weighting for

the multiple membership model are explored. Results indicate that the model with

walking distance-based weights has the best fit. This justifies that the strength of

relationship between individual zones and catchment areas is sensitive to walking

distance (Sze et al., 2019; Su et al., 2021b).

7.4.4 Temporal stability

It is necessary to explore the temporal stability of parameter estimation when data over

multiple time periods (i.e., years) are used. Results of global and pairwise likelihood ratio

tests indicate significant temporal instability of the models between years. Therefore,

separated multiple membership multilevel models for 2017 and 2018 are estimated in this

study. For example, there are remarkable temporal shifts for the influences of traffic flow,

population density, walking accessibility on pedestrian crash frequency. This could be

attributed to the unobserved changes in the road environment and road user behaviour

over time (Mannering, 2018).

7.5 Concluding remarks

Previous studies have evaluated the effects of built environment, traffic characteristics

and population socio-demographics on pedestrian safety. However, the relationship

between walking accessibility and pedestrian crash frequency is less studied. On the other

hand, disturbances by spatial dependency, boundary crash and modifiable areal unit
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problems on the association measure should be accounted for. In this study, a multiple

membership multilevel model is adopted to estimate the influences of both zone level

(exposure, transport facility, pedestrian network, and walking accessibility) and

catchment area level (land use and socio-demographics) factors on pedestrian crash

frequencies in the areas around metro stations. For instance, walking accessibility of

individuals with physical impairment is also considered. Furthermore, multiple

membership weights are estimated using the shortest walking distances to metro stations.

Both the within-group and between-group variances attributed to hierarchical data

structure are considered for the estimation.

Results indicate that pedestrian crashes increase with exposure, footpath and node density,

bus stops, residential area, commercial area, utility area and working population. In

contrast, there are favorable effects for general and barrier-free walking accessibility on

pedestrian safety. Such findings should shed light on the effective urban design and

planning strategy that could enhance the safety of all pedestrian groups. For example,

traffic calming, and lower speed limit zones could be implemented to improve the

pedestrian environment and promote walking.

Nevertheless, there are some limitations to this study. For example, underreporting of

pedestrian related crashes is well recognized. Crashes involving non-motorized transport

mode and minor injuries only are often resolved privately by the parties involved (Ahmed,

et al., 2019). It is worthwhile to explore the advanced statistical methods that can mitigate

the imbalanced crash data problem (Ding et al., 2022). Additionally, near misses or

precursor events should be considered (Lanzaro et al., 2022). High incidence of precursor

events like vehicle-pedestrian conflicts should indicate underlying safety issues.

Furthermore, temporally partially constrained model can be considered to test for

temporal instability of parameters (Alnawmasi and Mannering, 2023).
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Chapter 8 Conclusions and recommendations

8.1 Conclusion

In this study, pedestrian behaviour and safety in urban environments will be evaluated at

different levels. Firstly, at the individual level, this study explores the relationship

between environmental factors, traffic conditions, safety perceptions, and pedestrian

walking behaviour through pedestrian crossing simulation experiments and stated

preference surveys. Secondly, at the microscopic level, the impact of street design, urban

street trees, and traffic characteristics on pedestrian crash risk is assessed, utilizing

pedestrian counts as exposure data. Thirdly, at the macroscopic level, this study examines

the associations between the built environment, street network configuration,

transportation facilities, walkability, and socio-demographic characteristics with

pedestrian crash risk.

As presented in Chapter 3, effects of walking environment on pedestrian path choice are

revealed by using a stated preference approach. An integrated choice and latent variable

model, based on a random utility framework, examines the direct and indirect effects of

socio-demographics, stated choice attributes, and latent variables on decision-making.

The findings reveal that route attributes, such as walking time, indoor link proportion,

vertical access, and sky and green views, significantly influence path choices for work,

leisure, and return trips from metro stations. Pedestrians generally prefer shorter routes

with more indoor links, better vertical access, and enhanced sky views. However,

perceived safety, comfort, socio-demographics, and weather conditions can also affect the

relationship between route attributes and path choices.

As presented in Chapter 4, influences of weather and traffic conditions on pedestrian risk

perception are proposed by conducting an immersive Cave Automatic Virtual

Environment (CAVE) experiment. The propensity score method was employed to

estimate the causal effects of weather conditions on pedestrian safety perception.
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Additionally, the effects of multilevel data for multiple treatments were accounted for

using inverse probability of treatment weighting. The results indicate that pedestrian risk

perception significantly increases under adverse weather conditions, such as rain and fog.

This increase is even more pronounced in poor visibility conditions, such as during dusk

and heavy fog. Furthermore, there are notable associations between pedestrian risk

perception and factors such as age, safety attitude, vehicle speed, and waiting time.

Chapter 5 proposes risk factors to pedestrian safety at microscopic level. The effects of

road geometric design, transport facilities, and urban street trees on pedestrian crash risk

at the street level are evaluated using data on tree density and canopy cover, alongside

comprehensive pedestrian count data to estimate pedestrian crash exposure. A

multivariate Bayesian spatial approach is applied to account for spatial dependency and

multivariate correlation. The results reveal that factors such as road width, the presence of

bus stops and tram stations, on-street parking, and the 85th percentile speed are positively

associated with pedestrian casualties. Conversely, the presence of pedestrian crosswalks is

associated with a reduction in casualties, while increased tree density and canopy are

linked to higher casualty rates. Additionally, temporal variations in pedestrian injury risk

are significant.

Chapter 6 reveals the safety effect of pedestrian network and facility at macroscopic level.

A multivariate Poisson lognormal approach is employed to estimate the association

between pedestrian crashes, pedestrian network characteristics, and other potential

influencing factors at the zonal level. The roles of footbridges and underpasses in

pedestrian safety are explored. A three-dimensional digital map is utilized to assess the

topology, connectivity, and accessibility of the pedestrian network. The results indicate

that pedestrian crashes increase with factors such as population density, traffic flow,

walking trips, footpath density, node density, the number of vertices, and the presence of

residential, commercial, government, and utility areas, as well as bus stops and metro

exits. Conversely, pedestrian crashes decrease with a higher average gradient and

improved accessibility of footbridges, underpasses, and at-grade crossings.
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As presented in Chapter 7, hierarchical data structure issue of pedestrian safety analysis at

macroscopic level is addressed. The influences of both zone-level factors (such as

exposure, transport facilities, pedestrian network, and walking accessibility) and

catchment area-level factors (including land use and socio-demographics) on pedestrian

crash frequencies in areas surrounding metro stations is revealed by adopting the multiple

membership multilevel modeling approach. The model also considers walking

accessibility for individuals with physical impairments. Multiple membership weights are

calculated based on the shortest walking distances to metro stations. The model accounts

for both within-group and between-group variances due to the hierarchical data structure

and identifies additional significant risk factors for individuals with and without physical

disabilities.

Based on the conclusion from the proposed research questions, this thesis can make

contributions to traffic management, control, design and planning of pedestrian networks,

urban design and planning strategies that could enhance perceived walkability, promote

active transportation and urban transit use and improve pedestrian safety in compact cities.

Here suggest some potential implications derived from the above findings. For instance, (i)

pedestrians' walking preferences in various physical environments can be significantly

influenced by perceived walkability. This perception can be enhanced through

environmentally friendly designs, such as covered walkways, and accessible features,

including ramps, elevators, and moving walkways. Additionally, the provision of open

spaces and expansive sky views further contributes to an improved walking experience.

(ii) Pedestrian risk perception significantly increases under adverse weather conditions

such as rain and fog. Therefore, implementing traffic management and adaptive traffic

control measures is essential to mitigate pedestrian crash risks at accident-prone locations

during such conditions. (iii) At the microscopic level, enhancing pedestrian safety can be

achieved through optimal street design and traffic calming measures. Strategies such as

reducing crossing distances, lowering speed limits, removing on-street parking, and

introducing pedestrian-priority zones can significantly improve safety at road segments.
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These measures help create a safer and more pedestrian-friendly environment by

minimizing potential conflicts between vehicles and pedestrians and encouraging more

cautious driving behaviour. (iv) Pedestrian safety can be enhanced by improving the

accessibility of footbridges, underpasses, and crosswalks. This can be achieved by

strategically installing footbridges and underpasses in locations with high pedestrian and

traffic volumes. (v) Walking accessibility in areas surrounding metro stations is generally

high. Facilities such as barriers, warning signs, footbridges, and underpasses significantly

reduce pedestrian-vehicle conflicts and crashes. Enhanced barrier-free walking

accessibility also positively impacts transport equity, ensuring that all individuals,

regardless of physical ability, have equitable access to transportation options. These

improvements contribute to safer and more inclusive urban environments.

8.2 Study limitations and future research

Firstly, future studies should address current limitations and explore new directions to

enhance the understanding of pedestrian behaviour and safety. The influence of factors

such as the built environment and road geometric design on observed associations

requires further investigation, particularly as the number of study sites increases. This can

be achieved through comprehensive surveys and experiments on human factor metrics,

along with larger sample sizes for improved generalization and representation. Future

research could combine a CAVE environment with electroencephalography (EEG) and

eye-tracking to effectively capture human factors and physiological indicators, offering

deeper insights into pedestrian behaviour.

Secondly, it would be valuable to conduct studies on a greater variety of street segments.

This thesis focuses solely on segments within the Central Business District (CBD) area.

Additionally, the study is limited to examining the yearly trend of tree canopy cover.

Some trees are deciduous, tree canopy cover may change more significantly due to

seasonal effects. Furthermore, when comprehensive empirical data on tree canopy and

pedestrian behaviour becomes available, it would be worthwhile to explore how factors
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such as climate, socio-cultural mechanisms, and walking behaviour moderate the

relationship between tree canopy and pedestrian safety.

Thirdly, the issue of imbalanced crash data arises when the number of crash events is

significantly smaller than the number of non-crash events in a dataset. Addressing this

imbalance is crucial for accurate analysis and modelling. Exploring the use of deep

learning and data generation methods to tackle the problem of imbalanced crash data is a

promising avenue for future research. These approaches can enhance the ability to detect

and predict crash events by effectively managing the class imbalance inherent in such

datasets.

Fourthly, in the analysis of pedestrian crashes, current methodological issues remain due

to limitations in computational power and model formulation. For instance, a temporally

partially constrained model could be considered to test the temporal instability of

parameters. Future research should also explore the effects of correlation between random

effects on parameter estimation using advanced statistical and machine learning

modelling frameworks. A hybrid model of econometric and machine learning approaches

can be adopted to address challenges such as imbalanced crash data, underreporting, and

latent structures.
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