
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



DYNAMIC OBJECT-AWARE LIDAR ODOMETRY IN URBAN

AREAS: FROM SINGLE TO COOPERATIVE NAVIGATION

FENG HUANG

PhD

The Hong Kong Polytechnic University

2025



The Hong Kong Polytechnic University

Department of Aeronautical and Aviation Engineering

Dynamic Object-Aware LiDAR Odometry in Urban 
Areas: From Single to Cooperative Navigation

Feng Huang

A thesis submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy

November 2024



Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material

that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signature)

Feng Huang (Name of student)



Abstract

Robust and precise positioning is critical for the autonomous system with navigation

requirements. In recent years, Light detection and ranging (LiDAR) odometry have

been extensively studied to achieve this goal. Satisfactory performance of LiDAR

odometry (LO) can be achieved in sub-urban areas with abundant environmental

features and limited moving objects. However, the performance is significantly de-

graded in challenging urban canyons with numerous moving objects. Moreover, the

LO is subjected to drift over time. Global Navigation Satellite Systems (GNSS)

can provide reliable absolute positioning in open areas and serve as a complement

to LO. However, GNSS performance is often degraded in urban areas due to signal

reflections caused by surrounding structures.

In this thesis, we developed new methods to mitigate the impact of outliers in Li-

DAR odometry, enhancing positioning performance for autonomous driving in urban

environments. First, we evaluated several popular and widely studied LO pipelines

using datasets collected from urban canyons in Hong Kong, presenting the results

in terms of both positioning accuracy and computational efficiency. We concluded

three key factors that affect LO performance in urban canyons: ego-vehicle dynamics,

moving objects, and the degree of urbanization. Second, we conducted an in-depth

study on how to improve LO performance with the existence of large amounts of

dynamic objects using deep learning-based techniques and point-wise discrepancy

images. LO performance was further improved by applying object reweighting in
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highly dynamic scenarios. Third, we proposed a LiDAR-aided cycle slip detection

method for GNSS-RTK, which effectively identifies cycle slips in carrier-phase mea-

surements by leveraging consecutive relative pose estimates provided by LO.

Furthermore, we present roadside infrastructure-assisted navigation in urban ar-

eas. First, we explore the use of roadside LiDAR to provide accurate states that

serve as the global constraint in the LiDAR/Inertial odometry (LIO) graph-based

optimization. Second, we present the use of consistent roadside double-differenced

(DD) constraints provided by roadside GNSS are jointly optimized into the factor

graph optimization. Third, we introduce an error-map-aided multi-sensor integrated

system that utilizes error information collected by a sensor-rich autonomous vehicle.

This error data are then uploaded to the roadside infrastructure, where it is subse-

quently distributed to other vehicles, which benefits the navigation performance of

other vehicles.

Numerous experiments are conducted using the onboard sensor platform and

vehicle-infrastructure platform to validate the performance of the proposed method.

The proposed dynamic object-aware LO significantly enhances positioning accuracy,

achieving decimeter-level precision compared to the traditional meter-level accuracy

in high-dynamic environments. With the assistance of roadside sensors, the proposed

method achieved a 36.6% improvement in terms of absolute positioning accuracy

compared to the state-of-the-art GNSS/LiDAR/INS integrated method. The eval-

uation results demonstrate that our proposed methods outperform the conventional

positioning methods, providing accurate and reliable positioning and mapping for

autonomous driving in urban canyons.
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Chapter 1

Introduction

1.1 Background

Positioning remains one of the key challenges hindering the deployment of fully au-

tonomous mobile systems, including autonomous vehicles, autonomous mobile ser-

vice robots [19], and autonomous aerial robots [20]. LiDAR is widely used to provide

accurate and reliable 3D point clouds of the environment, making it a valuable tool

for positioning and mapping in autonomous systems [21; 22]. Satisfactory accuracy

of LO can be achieved [23] in sub-urban areas with rich environmental features and

limited moving objects. However, the performance is significantly degraded [1] in

challenging urban canyons with numerous moving objects. GNSS is popular for

providing globally referenced positioning services. In open areas, GNSS RTK can

achieve centimeter-level accuracy [24]. However, in urban canyons, positioning accu-

racy is severely compromised by NLOS signals and multipath effects caused by tall

buildings [25; 26; 27]. To address these issues, several approaches have been pro-

posed to mitigate [28] and correct [29] affected GNSS raw measurements to enhance

positioning accuracy in urban canyons. However, the achieved accuracy still remains

insufficient for the navigation requirements of fully autonomous vehicles.

With the rapid development of RSUs and 5G V2X [30; 31], vehicle-to-infrastructure

cooperation has gained significant attention for its potential to enhance sensing capa-
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bilities, supporting various downstream applications in autonomous driving. Road-

side infrastructure is a key component of smart cities and will be deployed at scale

to enable V2X cooperation, as outlined in the smart mobility roadmap for Hong

Kong [32]. However, it is still limited for the existing research on leveraging vehicle-

infrastructure cooperation to improve navigation performance in challenging urban

environments.

To enhance positioning performance for autonomous driving in urban canyons,

the study first conducted a benchmark evaluation of publicly available LO and con-

cluded three dominant factors that degrade the performance of LO in urban canyons

(Chapter 3). The impact of dynamic objects was then addressed using both deep

learning and optimization-based methods (Chapter 4.2). Further improvements in

LO performance were achieved by object reweighting in highly dynamic scenarios

(Chapter 4.3). However, the LO still suffers from accumulated drift after long-term

mapping. Interestingly, GNSS-RTK offers meter-level accurate absolute positioning

solutions that can correct this drift in urban environments. The study further uti-

lizes consecutive relative pose estimates from LiDAR sensors to detect potential cycle

slips in carrier measurements of GNSS-RTK, thereby increasing its fixing rate and

accuracy (Chapter 5).

Limited by the level of intelligence of a single intelligent vehicle, the C-V2X

opened a new window for the realization of fully autonomous driving. Therefore, the

study proposed the use of roadside LiDAR to improve the onboard LIO positioning

and mapping in GNSS-degraded urban areas (Chapter 6.2). Furthermore, a road-

side GNSS-assisted integrated navigation system is proposed to mitigate GNSS error

caused by NLOS and multipath (Chapter 6.3). Finally, an adaptive multi-sensor inte-

grated solution is developed by using continuous error maps for various sensors under

different conditions to enhance the positioning accuracy of connected autonomous

vehicles in complex urban (Chapter 6.4). Extensive experiments are conducted both
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in simulation and Hong Kong C-V2X testbed to validate the effectiveness of the

proposed methods.

1.2 Research Objectives

The primary objective of this study is to investigate the dynamic object-aware

LiDAR odometry to enhance positioning performance for autonomous driving in

urban areas. Three objectives were stated and achieved as follows:

Objective 1: This objective aims to improve the LO positioning performance by

mitigating the impact of dynamic objects. To achieve this, a coarse-to-fine LiDAR-

based solution for dynamic object removal is developed, utilizing both instance-level

deep neural networks and point-wise discrepancy images to handle dynamic points.

Furthermore, this thesis conducts a numerical analysis to assess the effects of dy-

namic objects on LO degradation. Subsequently, an adaptive weighting-based LO

approach is proposed, where contributions from available features are comprehen-

sively evaluated. This ensures that both static and dynamic features are reasonably

utilized. Unhealthy features are automatically assigned lower weights, while healthy

ones receive higher weights, preventing the false exclusion of feature subsets due to

inaccurate detection of dynamic objects.

Objective 2: The objective aims to leverage the complementary strengths of

GNSS-RTK and LiDAR. A common issue in GNSS-RTK positioning is cycle slips in

carrier-phase measurements, which degrade performance in urban canyons due to ex-

cessive signal reflections from buildings. LiDAR sensors, however, can provide accu-

rate relative state estimation in such environments. To address this, a LiDAR-aided

cycle slip detection method for GNSS-RTK is developed, utilizing the consecutive

relative poses estimated by LO. By incorporating the relative pose information from

LO, the performance of GNSS-RTK is significantly enhanced, improving both the
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fixing rate and positioning accuracy.

Objective 3: The objective aims to explore vehicle-infrastructure cooperation to

enhance the navigation performance of CAVs in urban areas. To alleviate the drift

of LIO-based odometry and mapping in urban areas, the research proposes an RSI-

assisted LIO for reliable odometry and mapping, which benefits from the global con-

straint provided by RSI LiDAR. Furthermore, integration of roadside GNSS-assisted

sensor fusion is proposed to achieve reliable odometry and mapping, utilizing the

high-quality DD measurements provided by nearby roadside GNSS, effectively miti-

gating shared random errors such as multipath and NLOS. To this end, the research

introduces an adaptive multi-sensor integrated solution, employing continuous error

maps for various sensors under different conditions broadcasted by RSUs to signifi-

cantly enhance the positioning accuracy of CAV in complex urban.

1.3 Thesis Outline

The outline of this thesis is as follows:

Chapter 2 provides a comprehensive review of existing algorithms related to in-

tegrated navigation systems. It begins with an overview of numerous LO methods,

followed by an analysis of positioning results that illustrate the current LO per-

formance and limitations in urban areas. Subsequently, advanced sensor-integrated

positioning methods are introduced to achieve reliable sensor fusion. Finally, various

vehicle-to-infrastructure cooperation methods are reviewed, including cooperative

navigation and cooperative perception.

Chapter 3 provides a benchmark detailed evaluation of the performance of pub-

licly available LO pipelines using the challenging datasets collected in typical Hong

Kong urban environments. Three dominant factors that degrade the performance

of LO algorithms are concluded: motion difference, dynamic objects, and degree of
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urbanization.

Chapter 4 develops a coarse-to-fine LiDAR-based method that incorporates dy-

namic object removal. This approach utilizes both instance-level DNN and point-

wise discrepancy images to accurately identify and mitigate the impacts of dynamic

points. Furthermore, a dynamic object-aware LO is proposed to mitigate the effects

of dynamic objects. It evaluates the impact of dynamic objects and adjusts the

weighting of both dynamic and static objects in highly dynamic scenarios by joint

weighting estimation in urban areas. This approach helps to alleviate the false detec-

tion problems raised in parameter-based and learning-based methods. Finally, the

performance of both methods is evaluated through real-world experiments conducted

in urban areas.

Chapter 5 presents a LiDAR-aided cycle slip detection method for GNSS-RTK,

which benefits from the consecutive relative pose estimated by LO. Integer ambiguity

resolution is resolved after detecting the potential cycle slips. The corresponding per-

formance is evaluated and compared with the conventional GNSS-RTK positioning

through real-world experiments conducted in a typical urban environment.

Chapter 6 introduces roadside infrastructure-assisted navigation in urban envi-

ronments. Due to the limitations in the intelligence of individual autonomous ve-

hicles, C-V2X technology opens new opportunities for achieving fully autonomous

driving. The chapter begins by exploring the use of roadside LiDAR to provide

precise state information, which acts as a global constraint in LIO graph-based op-

timization. It then integrates accurate DD observations from roadside GNSS, which

are jointly optimized within a factor graph framework. Additionally, an error-map-

aided multi-sensor integrated system is presented, utilizing error data gathered by

sensor-equipped autonomous vehicles. This error data is uploaded to roadside infras-

tructure and redistributed to autonomous vehicles. The effectiveness of the proposed

methods is validated through real-world experiments conducted at the Hong Kong
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C-V2X testbed.

Chapter 7 includes the conclusion and future work.

1.4 Research Contributions

The research topic of this thesis is organized into five phases. The studies in each

phase are summarized and published as academic articles. The flow chart for each

chapter is shown in Fig. 1.1.

Chapter 3 comprehensive performance evaluation and analysis of publicly avail-

able LO pipelines using challenging datasets collected in typical urban canyons of

Hong Kong and concluded three major factors dominating the performance of LO in

urban canyons. The work is published in:

• F. Huang, W. Wen, J. Zhang and L. -T. Hsu, ”Point Wise or Feature Wise? A

Benchmark Comparison of Publicly Available Lidar Odometry Algorithms in

Urban Canyons,” in IEEE Intelligent Transportation Systems Magazine, vol.

14, no. 6, pp. 155-173, Nov.-Dec. 2022. [1]

Chapter 4 develops a coarse-to-fine LiDAR-based method that includes dynamic

object removal. Furthermore, a dynamic object-aware LO is proposed that adap-

tively assigns weightings to dynamic features, enhancing accuracy by mitigating the

impacts of dynamic objects. The work is published in:

• F. Huang, D. Shen, W. Wen, J. Zhang, and L.-T. Hsu, ”A Coarse-to-Fine

LiDAR-Based SLAM with Dynamic Object Removal in Dense Urban Areas,” in

Proceedings of the 34th International Technical Meeting of the Satellite Division

of The Institute of Navigation (ION GNSS+ 2021), pp. 3162-3172.[16]

• F. Huang, W. Wen, J. Zhang, C. Wang and L. -T. Hsu, ”Dynamic Object-

Aware LiDAR Odometry Aided by Joint Weightings Estimation in Urban Ar-
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eas,” in IEEE Transactions on Intelligent Vehicles, vol. 9, no. 2, pp. 3345-

3359, Feb. 2024. [2]

Chapter 5 proposes to detect the cycle slip using the time-differenced carrier-

phase with the help of the consecutive relative pose estimated by LO. The work is

published in:

• F. Huang, W. Wen, H. -F. Ng and L. -T. Hsu, ”LiDAR Aided Cycle Slip De-

tection for GNSS Real-Time Kinematic Positioning in Urban Environments,”

2022 IEEE 25th International Conference on Intelligent Transportation Sys-

tems (ITSC), Macau, China, 2022, pp. 1572-1578.[15]

Chapter 6 presents roadside infrastructure-assisted navigation in urban areas,

which is aimed at overcoming the limitations of a single intelligent vehicle. The pro-

posed integrated navigation solutions were validated through extensive simulations

and real-world experiments. The work is published in:

• F. Huang, H. Chen, A. Urtay, D. Su, W. Wen and L. -T. Hsu, ”Roadside In-

frastructure assisted LiDAR/Inertial-based Mapping for Intelligent Vehicles in

Urban Areas,” 2023 IEEE 26th International Conference on Intelligent Trans-

portation Systems (ITSC), Bilbao, Spain, 2023, pp. 5831-5837.[13]

• F. Huang, W. Wen, G. Zhang, D. Su and L. -T. Hsu, ”Adaptive Multi-Sensor

Integrated Navigation System Aided by Continuous Error Map from RSU for

Autonomous Vehicles in Urban Areas,” 2023 IEEE 26th International Confer-

ence on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 2023, pp.

5895-5902.[14]

In addition to the above contributions, which address the research challenge in

this thesis, I have made contributions to co-authored publications related to my

thesis but will not be included.
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• Hsu, L.-T., Huang, F., Ng, H.-F., Zhang, G., Zhong, Y., Bai, X., & Wen,

W. (2023). Hong Kong UrbanNav: An open-source multisensory dataset for

benchmarking urban navigation algorithms. NAVIGATION, 70(4). Project

• Chen, P., Guan, W., Huang, F., Zhong, Y., Wen, W., Hsu, L. T., & Lu, P.

(2023). ECMD: An Event-Centric Multisensory Driving Dataset for SLAM.

IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1, pp. 407-416, 2023.

Project

• Chang, J., Hu, R., Huang, F.*, Xu, D., and Hsu, L. T. (2023). LiDAR-

based NDTmatching performance evaluation for positioning in adverse weather

conditions. IEEE Sensors Journal, vol. 23, no. 20, pp. 25346-25355, Oct. 15,

2023. (*corresponding author)

• Yan, P., Li, Z., Huang, F., Wen, W., and Hsu, L. T. (2025). Fault Detec-

tion Algorithm for Gaussian Mixture Noises: An Application in Lidar/IMU

Integrated Localization Systems. NAVIGATION: Journal of the Institute of

Navigation, 72(1).

• Chang, J., Zhang, Y., Fan, S., Huang, F., Xu, D., and Hsu, L. T. (2023).

An Anti-spoofing Model based on MVM and MCCM for a Loosely-coupled

GNSS/INS/LiDAR Kalman Filter. IEEE Transactions on Intelligent Vehicles,

9(1), 1744-1755.

• Chang, J., Huang, F., Zhang, L., Xu, D., and Hsu, L. T. (2023). Selection

of areas for effective GNSS spoofing attacks to a vehicle-mounted MSF sys-

tem based on scenario classification models. IEEE Transactions on Vehicular

Technology, 72(11), 14645-14655.

• Zhong, Y., Huang, F., Zhang, J., Wen, W., Hsu, L.-T.: Low-cost solid-state
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LiDAR/inertial-based localization with prior map for autonomous systems in

urban scenarios. IET Intelligent Transport Systems, 00, 1–13 (2022).

• Zhang, J., Wen, W., Huang, F., Wang, Y., Chen, X., Hsu, L.-T. (2022).

GNSS-RTK Adaptively Integrated with LiDAR/IMU Odometry for Contin-

uously Global Positioning in Urban Canyons. Applied Sciences, 12(10):5193.

• Chang, J., Zhang, L., Hsu, L.-T., Xu, B., Huang, F., & Xu, D. (2022). Analytic

Models of a Loosely-coupled GNSS/INS/LiDAR Kalman Filter considering Up-

date Frequency under a Spoofing Attack. IEEE Sensors Journal, 2022.

• Zhang, J., Wen, W., Huang, F., Chen, X., Hsu, L.-T. (2021). Coarse-to-

Fine Loosely-Coupled LiDAR-Inertial Odometry for Urban Positioning and

Mapping. Remote Sensing, 13(12):2371.
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Figure 1.1: Overall flowchart of each chapter of this thesis.
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Chapter 2

Literature Review

Reliable localization and mapping are crucial for achieving fully autonomous driv-

ing. As outlined in Chapter 1, the research aims to investigate integrated navigation

systems that enhance positioning performance for autonomous vehicles operating

in urban areas. This chapter begins by introducing existing LO methods, focusing

specifically on how raw point clouds are modeled and processed. We will explore

various techniques for feature extraction and point cloud registration, highlighting

the strengths and weaknesses of current approaches. The second part of this chapter

delves into works related to sensor integration, where we examine how data from

multiple sensors, such as GNSS, LiDAR, IMU, and cameras can be fused to improve

overall positioning accuracy. We will discuss various algorithms and frameworks that

leverage the complementary strengths of these sensors to mitigate the limitations of

single sensors. Finally, we present existing research on vehicle-infrastructure cooper-

ation, highlighting the importance of collaboration between intelligent vehicles and

roadside infrastructure.

2.1 LiDAR Odometry

LO methods can be categorized into two groups based on how raw point clouds

are modeled: point-wise and feature-wise methods. Point-wise methods estimate
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the relative transformation directly from the raw points, while feature-wise methods,

such as those in [18], extract representative edge and planar features from the raw

point clouds. In other words, the distinction between point-wise and feature-wise

methods is based on whether all raw points are directly utilized for further data

association. A summary of publicly available LO methods and their key properties

is provided in Table 2.1.

One of the most widely recognized point-wise LO methods is the ICP algorithm

[33]. ICP is a modular, straightforward algorithm that aligns two point cloud frames

by identifying point-to-point correspondences. However, a significant drawback of

ICP is its high computational cost, particularly when registering dense point clouds.

The performance of ICP is highly dependent on the initial alignment guess due to

the non-convex nature of its optimization [42]. Outliers from moving objects can

further exacerbate this issue by introducing additional non-convexity. To address

these issues, several variants of ICP have been developed to improve both efficiency

and accuracy, such as Trimmed ICP [43] and Normal ICP [44]. Among these ICP

variants, the G-ICP [34] is one of the most popular due to its notable accuracy. Unlike

standard ICP, which directly optimizes point-wise correspondences, G-ICP leverages

both standard ICP and the point-to-plane method introduced by Chen and Medioni

[45], optimizes the transformation via a distribution-to-distribution fashion. This

allows G-ICP to account for geometric correlations between points, making it less

sensitive to the initial guess compared to conventional ICP. Despite the high accuracy

of G-ICP, its optimization process suffers from the same limitation as ICP and its

variants, namely the reliance on the time-intensive nearest neighbor search (NNS).

As stated in [35], NNS is the dominant factor affecting the computational efficiency

of G-ICP.

Rather than depending on the time-intensive NNS process, NDT [36], another

prominent point-wise registration method, uses a voxel-based correspondence asso-
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Table 2.1: Overview of the selected publicly available LO methods.

Style Method Modeling1 Optimization2 Year

Point-
wise

Besl et al, ICP
[33]

minimize the point-to-
point distance

s2s, SVD (PCL
version)

1992

Segal et al, G-
ICP [34]

surface-based
distribution-to-
distribution

s2s, BFGS and
FLANN (PCL
version)

2009

Koide et al,
FastGICP [35]

surface-based
distribution-to-
distribution

s2s, Gauss-
Newton, multi-
threaded

2020

Koide et al, VG-
ICP [35]

voxel-based
distribution-to-multi-
distribution

s2s, Gauss-
Newton, multi-
threaded

2020

Koide et
al, FastVG-
ICPCuda [35]

voxel-based
distribution-to-multi-
distribution

s2s, Gauss-
Newton, CUDA-
optimized

2020

Biber et al, NDT
[36]

voxel-based point-to-
distribution

s2s, Newton
method

2003

Koide et al,
NDT-OMP [37]

voxel-based point-to-
distribution

s2s, Newton
method

2019

Feature-
wise

Zhang et al,
LOAM [18]

minimize the distance
of feature points

s2s and s2m, LM 2014

Qin et al, A-
LOAM [38]

minimize the distance
of feature points

s2s and s2m,
ceres-solver

2018

Shan et al,
LeGO-LOAM
[39]

minimize the distance
of feature points, add
ground-optimization

s2s and s2m, LM 2018

Ye et al, LIO-
Mapping [40]

minimize the distance
of feature points

s2s and s2m, LM 2019

Han et al, Fast
LOAM [41]

minimize the distance
of feature points

s2m, ceres-solver 2020

1 Modeling represents how to model the transformation function.
2 Optimization: s2s refers to scan-to-scan, while s2m refers to scan-to-map (also known as
scan-to-model in some references). PCL stands for Point Cloud Library. The abbrevia-
tions SVD, BFGS, FLANN, and LM correspond to Singular Value Decomposition, Broy-
den–Fletcher–Goldfarb–Shanno, Fast Library for Approximate Nearest Neighbors, and Lev-
enberg–Marquardt, respectively.
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ciation to estimate transformations. NDT divides raw and discrete point clouds into

multiple voxels, modeling each voxel with a Gaussian distribution. The transforma-

tion is then estimated by mapping other point clouds onto the voxelized point cloud.

Overall, NDT is significantly faster than typical ICP. In a performance compari-

son [46], NDT demonstrated superior accuracy over ICP on the evaluated dataset.

However, the performance of the NDT is sensitive to the selection of the resolution

of voxels. In other words, careful tuning of the voxel size is necessary based on

sensor and environmental conditions. Meanwhile, although NDT avoids the time-

consuming NNS, it still struggles to achieve real-time performance when dealing with

large, dense point clouds. To address this, researchers at Toyohashi University of

Technology have worked on improving the computational efficiency of both G-ICP

and NDT. The study in [37] introduced NDT-OMP, a multi-threaded accelerated

version of NDT, achieving efficient point cloud registration with real-time perfor-

mance. Additionally, the follow-up work in [35] proposed the Voxelized Generalized

Iterative Closest Point (VGICP) algorithm, built upon conventional G-ICP, which

also achieves real-time performance. VGICP’s novel voxelization method aggregates

the distribution of all points in a voxel, enabling parallel implementation. According

to the evaluation in [35], VGICP demonstrated similar or even superior performance

compared to G-ICP.

In short, G-ICP is a highly popular and accurate variant of ICP. VGICP addresses

the computational challenges of G-ICP by reducing the load associated with nearest

neighbor search (NNS). NDT is another commonly employed point-wise method, and

the development of NDT-OMP allows for real-time execution of the standard NDT

approach.

Instead of estimating the transformation directly from all raw points, feature-

based LO methods [18; 39] focus on extracting representative features from the raw

point cloud. The Fast Point Feature Histogram (FPFH) [47] was introduced to ex-
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tract and describe the features within the point cloud. FPFH enables the exploration

of local geometry, with the transformation optimized by matching FPFH-based cor-

respondences. A similar feature descriptor, histograms of OrienTations (SHOT), is

studied in [48] for feature extraction. Other works in [49; 50] optimized the ground

surface features using multiple roadside LiDARs. Feature-based LO methods extract

a smaller subset of features compared to the full raw point cloud, resulting in a con-

siderably reduced computational load for matching, especially when compared to the

optimization processes of G-ICP and NDT. Additionally, feature-based methods are

less sensitive to the initial guess than point-wise methods. However, their perfor-

mance relies heavily on accurate feature detection, and any misdetection can result

in incorrect feature associations. Theoretically, because feature-based methods only

utilize a subset of the raw points, their convergence accuracy [35] tends to be lower

than that of point-wise LO methods.

LOAM [18], a prominent feature-based LO method, was first introduced by the

Carnegie Mellon University team in 2014. While LOAM theoretically incorporates

aspects of both point-wise and feature-wise methods, we classify it as feature-wise in

this section. To reduce the computational load typical of ICP, LOAM extracts two

types of features: edge and planar. These features are extracted based on the smooth-

ness of a small region near a given feature point. Different from FPFH or SHOT,

which provide multiple feature categories based on descriptors, LOAM uses only two

feature types. Nevertheless, LOAM retains the advantage of feature-based LO meth-

ods by avoiding the use of all raw points, enabling more efficient registration. LOAM

matches extracted edge features to a previously maintained dense edge feature map,

and planar features to a corresponding planar feature map, resulting in scan-to-map

matching, which differs from the scan-to-scan matching typical of ICP. Interestingly,

LOAM evaluates matches based on the Euclidean distance between features rather

than descriptor smoothness, as is the case with point-wise registration. This can sig-
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nificantly decrease the mis-association of features and increase the robustness of the

matching. As a result, LOAM combines the low computational load of feature-wise

methods with the robustness of point-wise methods. Due to its strengths, LOAM is

ranked 3rd on the KITTI benchmark as of September 2024. Although the perfor-

mance evaluation among the KITTI dataset is prominent, the accuracy is not guar-

anteed in the diverse operation scenarios [39; 51]. The work in [39] argues that can

exhibit significant drift in the altitude direction due to limited features. To address

this, LeGO-LOAM was proposed to optimize the altitude state based on detected

ground points, resulting in reduced drift in the evaluated dataset. Several variants

of LOAM have been introduced to improve computational efficiency and accuracy.

A-LOAM [38] accelerates LOAM by replacing its complex Jacobian derivation with

the state-of-the-art non-linear optimization solver, Ceres-solver [52].Fast-LOAM [41],

on the other hand, is a faster implementation that removes the odometry process

and relies solely on the mapping process to estimate transformation. LIO-Mapping

[40] presents another LOAM implementation with carefully tuned parameters for fea-

ture selection and extraction. However, while these variants have improved certain

aspects of LOAM, they have not fundamentally addressed its core limitations. As

mentioned above, LOAM remains dependent on the availability of edge and planar

features, utilizing only a portion of the raw point clouds. The authors in [35] sug-

gest that combining feature-based LO methods (e.g., LOAM) with point-based LO

methods (e.g., VGICP) offers a promising approach to ensure both accuracy and ro-

bustness, where a coarse feature-based registration is followed by a fine point-based

registration. In short, LOAM has dominated LO methods on the KITTI dataset

since 2015 due to three key factors: (1) The extraction and matching of edge and

planar features ensure both real-time performance and accuracy; (2) the scan-to-map

matching between keyframe features and the historical dense feature map enhances

the precision of correspondence identification. Table 2.3 presents the positioning er-
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ror of LOAM using the Hong Kong UrbanNav [3] dataset. An RPE RMSE of 0.35 m

and 0.80 m was achieved using LOAM in middle-class urban areas and deep urban

areas, respectively. Interestingly, a reduction in RPE RMSE was observed in harsh

urban scenarios. A possible explanation for this is that taller buildings in harsh

urban environments may provide denser features for the LiDAR. However, accumu-

lated drift is observed in all urban areas, leading to significant absolute translation

errors. It highlights the need for advanced algorithms to improve LO-based methods

in urban environments. Moreover, LO failed on the tunnel dataset due to the limited

features available in tunnel scenes. Therefore, it is essential to enhance LO-based

methods in urban areas by developing advanced algorithms.

Table 2.3: Positioning error of the LOAM [18] using UrbanNav [3] datasets.

Relative Pose Error Absolute Translation Error
Dataset RMSE

(m)
Mean
(m)

STD
(m)

Max
(m)

RMSE
(m)

Mean
(m)

STD
(m)

Max
(m)

Middle-
class
Urban

0.35 0.17 0.30 5.33 20.07 16.49 11.45 46.31

Deep
Urban

0.80 0.17 0.78 9.98 110.29 101.33 43.55 134.65

Harsh
Urban

0.17 0.07 0.16 3.09 22.88 22.19 5.59 32.95

Tunnel Fail Fail Fail Fail Fail Fail Fail Fail

Recent advancements in Neural Networks [53] offer a promising approach to en-

hancing the performance of LO methods by more deeply exploring features within

point clouds. To address dynamic objects in scenes, LO-Net [54] was introduced,

incorporating a mask-weighted geometric constraint loss, achieving results compara-

ble to LOAM. Another recent work, LiDAR Odometry and Mapping using Neural

Implicit Representation [55] was proposed in 2023. For the broader generality of

learning-based methods, an unsupervised LO method [56] based on the geometric

consistency of point clouds was introduced by the team from KAIST.
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2.2 Sensor Integration

Significant efforts have been dedicated to achieving reliable sensor fusion. [57; 58; 59;

60]. A common approach is integrating inertial sensors with LiDAR [61] to provide

an initial estimation for scan matching. VIO [62] combines high-frequency inertial

sensor data for robust pose estimation. However, both LIO and VIO are prone to

accumulated errors in degraded environments [9; 63]. GNSS positioning can miti-

gate drift accumulation [9], but its accuracy is significantly degraded in deep urban

canyons [25]. Each sensor type has specific advantages and drawbacks depending

on the environment, and the challenge remains to effectively fuse these sensors for

autonomous vehicles in urban environments. The integration of multiple sensors

strengthens the system’s resilience in handling difficult scenarios [63], especially in

cases of partial sensor failure or performance degradation. The Multi-State Con-

straint Kalman Filter (MSCKF) [64] is a filter-based VIO framework designed for

fast pose estimation, though it is sensitive to time synchronization. Optimization-

based methods such as VINS [62] can address synchronization issues and optimize

historical frames using local maps or sliding windows through local maps or sliding

windows to obtain a globally optimized solution.

To address the accumulated error in LIO, integrating GNSS offers a promising

solution. Loosely coupled GNSS-LIO methods independently estimate GNSS, Li-

DAR, and IMU data before fusing these estimates within the positioning domain.

The study in [61] proposed a LiDAR/inertial system that incorporates GNSS data

characterized by low positioning uncertainty. Reference [9] presented an adaptive

integration strategy for GNSS-RTK and LIDAR/IMU, which selects reliable GNSS-

RTK solutions by employing an elevation angle mask derived from the surrounding

point cloud data. Raw measurements from GNSS, LiDAR, and IMU sensors are

integrated into the tightly coupled approaches, which enables separate mitigation of
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unhealthy GNSS measurements while maintaining healthy measurements in one sin-

gle epoch. The research in [65] presented a tightly coupled PPP-GNSS/INS/LiDAR

method by accurate outlier exclusion based on spatiotemporal consistency checks of

sensor data. In [66], a GNSS/INS/LiDAR integration is proposed by considering the

cycle slip and outlier detection with the precise orbit and clock products. Nonethe-

less, the performance of such methods depends on outlier detection which requires a

good initial guess which is not always guaranteed in complex urban environments.

Recent studies have demonstrated the potential of deep learning-based methods

[53] for efficient weighting estimation in multi-sensor integration. DeLS-3D [67] is

a deep-learning framework that integrates data from cameras, GPS/IMU, and se-

mantic maps to enhance robustness and accuracy. An unsupervised method [68]

was proposed to estimate camera motion using stereo images and IMU data. Lvio-

Fusion [69] applied reinforcement learning to optimize sensor weighting by training

on ground truth positioning data. However, the generalization of deep learning-based

methods for estimating sensor weighting coefficients in various challenging scenar-

ios remains an open issue. Therefore, it is necessary to improve the multi-sensor

integrated positioning performance in urban areas by estimating the weighting of

different measurements.

2.3 Vehicle-Infrastructure Cooperation

Recent advancements in V2X technology have greatly enhanced the potential of

smart mobility. The study in [30] explored various V2X applications and their re-

quirements for next-generation vehicular mobility. In [70], a method was proposed

that combines roadside-assisted received signal strength (RSS) with GNSS signals

to improve V2I-based localization on a simulated platform. The study in [71] in-

troduced a background filtering technique integrated with 3D object detectors for
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vehicle detection using roadside LiDAR in mining environments. In [72], a V2X per-

ception framework utilizing a visual transformer was developed and tested through

the CARLA simulator [73]. Another study [74] employed roadside LiDAR to de-

tect and track both pedestrians and vehicles. In 2022, Tsinghua University released

a real-world V2X collaborative autonomous driving dataset, and in 2023, the TUM

traffic dataset [75] was open-sourced, featuring labeled LiDAR and camera data from

two roadside units at an intersection. The work [76] aligned point clouds between

ego vehicles and roadside infrastructure using semantic traffic elements in campus

scenarios. A follow-up study [77] in 2023 proposes using roadside LiDAR to enhance

on-vehicle HD mapping in both simulation and campus environments. Previous re-

search [78] demonstrated that sensor measurement sharing between multiple agents

can enhance positioning performance in dense urban environments. However, there

is limited research has explored using vehicle infrastructure cooperation to improve

LIO positioning in challenging urban areas such as Hong Kong.

In urban environments, the GNSS measurements in the same region share similar

random errors [79] such as NLOS and multipath. The study in [80] employed a single

roadside GNSS station to enhance DGNSS and GNSS RTK performance via DSRC

communication. Similarly, the work in [81] proposed a GPS/IMU/V2X observation

fusion framework using an LSTM network, simulating multiple V2X nodes. An-

other research presented a cooperative positioning solution to enhance the accuracy

of low-cost GNSS receivers in obstructed areas by using multi-attribute decision-

making (MADM) methodology to rank neighboring vehicles. A novel GNSS-based

collaborative positioning method, enhanced by 3D mapping and factor graph opti-

mization, is proposed [79] to improve positioning accuracy in urban areas. Despite

these advancements, there is still limited research on leveraging multiple roadside

GNSS to enhance positioning performance in sensor integration, especially in chal-

lenging urban environments such as Hong Kong.
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Chapter 3

Benchmark Comparison of

Publicly Available Lidar Odometry

Algorithms in Urban Canyons

3.1 Introduction

Both point-wise and feature-wise registration methods have their advantages and

limitations. The LO methods listed in Table 2.1 will be theoretically compared and

experimentally evaluated in the following sections.

3.2 Method

3.2.1 ICP

The core idea behind ICP [33] is to determine the transformation between a source

and target point cloud by minimizing the distance error between corresponding

points. Fig. 3.1 illustrates an example of point cloud registration between two

successive frames. The cost function of ICP is as follows,

Tk
k`1 “ argmin

1

2

N
ÿ

i“1

∥∥pk,i ´
`

Rk
k`1pk`1,i ` tkk`1

˘
∥∥2

(3.1)

Firstly, the ICP calculates the centroid of the point cloud P̄k and P̄k`1.
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Figure 3.1: Point cloud Pk and Pk`1 captured from two successive scans. (a) rep-
resents the initial scan, while (b) and (c) depict the transformations after multiple
iterations. (d) presents the final result of the point set alignment.

p̄k “
1

n

n
ÿ

i“1

pk,i (3.2)

Then subtract the center of mass from consecutive point sets to obtain the decenter-

ing point set p1
k,i P P 1

k and p1
k`1,i P P 1

k`1 corresponding to Pk and Pk`1, respectively

[33],

p1
k,i “ pk,i ´ p̄k, (3.3)

Modifying Equation 3.1 based on Equation 3.2 and Equation 3.3, we can have,

1

2

N
ÿ

i“1

∥∥pk,i ´
`

Rk
k`1pk`1,i ` tkk`1

˘
∥∥2

“
1

2

N
ÿ

i“1

∥∥pk,i ´
`

Rk
k`1pk`1,i ` tkk`1

˘

´ p̄k ` Rk
k`1p̄k`1 ` p̄k ´ Rk

k`1p̄k`1

∥∥2

(3.4)
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Then, the right side of Equation 3.4 can be simplified to,

1

2

N
ÿ

i“1

}ppk,i ´ p̄kq ´ pRk`1 ppk`1,i ´ p̄k`1qq}
2

`
›

›p̄k ´ pRk`1p̄k`1 ` tkk`1q
›

›

2
(3.5)

Derive the revised cost function by recalling Equation 3.4 and Equation 3.5,

Tk
k`1 “ argmin

1

2

N
ÿ

i“1

›

›p1
k,i ´ Rp̄k`1,i

›

›

2
` }p̄k ´ Rp̄k`1 ´ t}2 (3.6)

Finally, the commonly used singular value decomposition (SVD) [82] is used to com-

pute the estimate translation and rotation iteratively.

3.2.2 Generalized-ICP

G-ICP [34] enhances the traditional ICP by integrating both standard ICP and

’point-to-plane ICP’ into a distribution-to-distribution matching framework. G-ICP

models each measured point p̂k,i in Pk and p̂k`1,i in Pk`1 as being sampled from

Gaussian distributions: pk „ N pp̂k,i,Ck,iq and pk`1 „ N pp̂k`1,i,Ck`1,iq, where Ck,i

can be calculated from the covariance of the points.

Ck,i “

»

–

covpx, xq covpx, yq covpx, zq

covpy, xq covpy, yq covpy, zq

covpz, xq covpz, yq covpz, zq

fi

fl

“

»

–

Epx2q ´ µ2
x Epxyq ´ µxµy Epxzq ´ µxµz

Epy, xq ´ µxµy Epy2q ´ µ2
y Epyzq ´ µyµz

Epx, zq ´ µxµz Epy, zq ´ µyµz Epz2q ´ µ2
z

fi

fl

(3.7)

µx, µy, and µz are the expected values of pk,i, roughly equal to the average of its k

neighboring points (e.g., k “ 20 by default in PCL’s k-d tree search). The operator

Ep˚q is used to compute the expected value of a given component.

The residual for G-ICP can be expressed as,
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d̂i “ p̂k,i ´ Tk`1p̂k`1,i (3.8)

The residual is assumed to follow a Gaussian distribution, reflecting the geomet-

ric relationship between the target and its neighboring points. If pk,i and pk`1,i

are considered independent and Gaussian distributed, the distribution of di can be

expressed as,

di „ N
`

x̂k,i ´ Tk`1p̂k`1,i,Cpk,iq ` Tk`1Ck`1,iTk`1
T
˘

“ N
`

0,Ck,i ` Tk`1Ck`1,iTk`1
T
˘

(3.9)

Then, we use a maximum likelihood estimation (MLE) to compute the transforma-

tion Tk
k`1 iteratively,

Tk
k`1 “ argmax

N
ÿ

i“1

log pppdiqq (3.10)

“ argmin
N
ÿ

i“1

dT
i

´

Ck,i ` Tk
k`1Ck`1,i

`

Tk
k`1

˘T
¯´1

di (3.11)

3.2.3 VGICP

Voxelized GICP (VGICP) [35] enhances G-ICP by incorporating voxelization, which

significantly reduces processing time while maintaining accuracy. First, Equation

3.13 is extended to compute residual d1
i between pk`1,i and its neighbor points within

distance r in pk,

tpk,j | }pk,j ´ pk`1,i} ă ru (3.12)
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d̂1
i “

Ni
ÿ

j“1

pp̂k,j ´ Tk`1p̂k`1,iq (3.13)

Similar to Equations 3.10 and 3.11, the distribution of d1
i can be represented as [35],

d1
i „ N

˜

0,
Ni
ÿ

j“1

`

Ck,j ` Tk`1Ck`1,iTk`1
T
˘

¸

(3.14)

where the calculation of the covariance is similar to G-ICP, the cost function can be

expressed as follows,

Tk
k`1 “ argmin

N
ÿ

i“1

Ni

˜

ˆř

pk,j

Ni

´ Tk`1pk`1,i

˙T ř

Ck,j

Ni

`Tk`1Ck`1,iTk`1
T
˘´1

ˆř

pk,i

Ni

´ Tk`1pk`1,i

˙

(3.15)

The equation above can be further converted into the voxel-based calculation by

substituting p̄voxel
k,i “

ř

pk,i

Ni
and Cvoxel

k,i “

ř

Ck,j

Ni
respectively in each voxel. Finally,

the MLE is used to compute the transformation Tk
k`1 iteratively as Equations 3.10

and 3.11.

Compared to point correspondence models in ICP or GICP, VGICP optimizes

data association by leveraging voxel association, which is significantly faster than the

KD-tree-based nearest neighbor search used in ICP. Specifically, if a voxel contains

ten points, the computational load for voxel correspondences can be reduced by a

factor of ten compared to ICP or GICP. As a result, VGICP is much more efficient

than traditional point-wise methods [34]. However, VGICP requires additional time

for KD-tree-based nearest neighbor search to estimate the covariance matrix for each

point [35].
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3.2.4 NDT

Unlike ICP, which performs point-to-point registration, NDT [36] begins by dividing

the point cloud into voxels. For each voxel, a probability density function (PDF) is

generated to represent the likelihood that a point pk,i is contained within a voxel

in Pk. The covariance matrix of the points inside a cell of Pk is then calculated to

model the distribution of the points.

Cndt voxel
k,i “

1

n

n
ÿ

i“1

`

pk,i ´ p̄voxel
k,i

˘ `

pk,i ´ p̄voxel
k,i

˘T
(3.16)

The calculation of the covariance Cndt cell
k,i in NDT differs from Cvoxel

k,i in VGICP.

In NDT, Cndt cell
k,i considers only the points within the voxel, requiring at least four

points per cell. This results in a point-to-distribution correspondence, where each

point is associated with the distribution constructed in the target frame, as shown

in Table 2.1. In contrast, VGICP employs a single-to-multiple distribution approach

by using the average covariance of points within the same voxel.

The PDF can be expressed as,

pppk,iq “
1

c
exp

ˆ

´
1

2

`

pk,i ´ p̄voxel
k,i

˘T `
Cndt voxel

k,i

˘´1 `
pk,i ´ p̄voxel

k,i

˘

˙

(3.17)

where c is a constant and can be set to one [36]. An example of 2D-NDT is shown

in Fig. 3.2.

The NDT of the scan Pk is constructed. The maximum matching score function

for all points in P̃k`1 is then reformulated to minimize the negative sum of the scores,

Tk
k`1 “ argmin

1

2

N
ÿ

i“1

`

p̃k`1,i ´ p̄voxel
k,i

˘T `
Cndt cell

k,i

˘´1 `
p̃k`1,i ´ p̄voxel

k,i

˘

(3.18)
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Figure 3.2: Points are divided into multiple cells and their distribution in a voxel in
2D-NDT.

The Tk
k`1 is updated iteratively using the Newton method to minimize the score.

Different from the ICP, NDT models the geometry of 3D point clouds using multiple

Gaussian components, with each component representing a voxel. However, the

performance of NDT is sensitive to the choice of voxel size.

NDT-OMP is a modified implementation of NDT in PCL, utilizing OpenMP for

parallel processing with SSE optimization and multi-threading [37]. This enhance-

ment makes NDT-OMP up to 10 times faster than the original PCL version.

3.2.5 LOAM

LOAM [18] primarily consists of three key processes: feature extraction, lidar odom-

etry, and lidar mapping process.

Feature Extraction

Let m indicate the ring number of point cloud Pk. S
m
k,i represent a set of continuous

neighboring points of pk,i within scan ring m. Typically, points in a ring are ordered

either clockwise or counterclockwise based on their receiving time during a scan

period (usually 0.1 seconds). Feature points are extracted based on the curvature ci
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of point pk,i and its neighboring points [18].

ci “
1

Ns ˚ }pk,i}

›

›

›

›

›

›

ÿ

jPSm
k,i,j‰i

ppk,i ´ pk,jq

›

›

›

›

›

›

(3.19)

the pk denotes the consecutive point of pk,i within subset Sm
k,i. Ns represents the

number of points in Sm
k,i, including pk,i and ten consecutive points. A point is selected

as the edge point if its curvature value is larger than a pre-determined threshold ce´th,

or classified as a planar point by a smaller curvature in Pk. For points pm
k,i within

ring Pm
k,i in each scan, we normally divide the ring into four to eight subregions Ps,m

k,i

and each subregion selects two edge points pe
k,i from Pe,m

k,i and four planar points

pp
k,i within Pp,m

k,i for odometry process [18], as shown in Equation 3.20. Ten times

edge points and enormous planar features are utilized in mapping process to achieve

better accuracy but bring more computational cost. An example of feature extraction

results is shown in Fig. 3.3.

ps,m
k,i “

$

&

%

pe
k,i P Pe,m

k,i , ci ą ce´th and N e
k,i ď 2

pp
k,i P Pp,m

k,i , ci ă ce´th and Np
k,i ď 4

(3.20)

Lidar Odometry

In general, odometry is estimated by accumulating the transformations between con-

secutive point cloud frames. In LOAM, the role of LiDAR odometry is to estimate

the motion between two successive sweeps. The estimated transformation T̂k`1 is

used to correct the distortion of points in Pk`1 and provide the initial guess for pro-

jecting Pk as P̂k. In the next frame, corresponding features are found between P̂k

and Pk`1.

For each edge point pe
k`1,i, its nearest neighbors in P̂k are searched to fit a line
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Figure 3.3: Illustration of extracted edge (yellow) and planar points (red) from a Li-
DAR point cloud frame (grey) in a road intersection, used for scan-to-map matching
in LOAM.

through pe
k,j and pe

k,l P P̂k, representing the corresponding edge. The distance dek`1,i

between the edge point pe
k`1,i and the fitted line is the residual of the edge feature,

which is minimized and can be expressed as:

dek`1,i “

ˇ

ˇ

`

pe
k`1,i ´ p̂e

k,j

˘

ˆ
`

pe
k`1,i ´ p̂e

k,l

˘
ˇ

ˇ

ˇ

ˇ

ˇ
p̂e
k,j ´ p̂e

pk,lq

ˇ

ˇ

ˇ

(3.21)

Similarly, for each plane point pp
k`1,i in Pk`1, the distance dpk`1,i between the point

and the fitted plane in P̂k, is the residual of the plane feature to be minimized, which

can be represented as:

dpk`1,i “

ˇ

ˇ

`

pp
k`1,i ´ p̂p

k,j

˘

¨
`

p̂p
k,j ´ p̂p

k,l

˘

ˆ
`

p̂p
k,j ´ p̂p

k,m

˘
ˇ

ˇ

ˇ

ˇ

`

p̂p
k,j ´ p̂p

k,l

˘

ˆ
`

p̂p
k,j ´ p̂p

k,m

˘ˇ

ˇ

(3.22)

where p̂p
k,j, p̂

p
k,l, p̂

p
k,m are three nearest points of pp

k`1,i among planar points in P̂k

using kd-tree search.

A geometric relationship between edge and plane feature point in Pk`1 and the

corresponding in P̂k can be estimated as
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f
`

pe
k`1,i,Tk`1

˘

“ dek`1,i (3.23)

f
`

pp
k`1,i,Tk`1

˘

“ dpk`1,i (3.24)

Therefore, the transformationTk
k`1 can be calculated by minimizing the cost function

based on Equations 3.23 and 3.24,

Tk
k`1 “ argmin

1

2

#

Nedge
ÿ

i“1

›

›ωk`1,if
`

pe
k`1,i,Tk`1

˘
›

›

2
`

Nplanar
ÿ

i“1

›

›ωk`1,if
`

pp
k`1,i,Tk`1

˘
›

›

2

+

(3.25)

N edge and Nplanar are the numbers of edges and planar points obtained in Pk`1.

Smaller weight ωk`1,i is assigned to feature points with a large residual. The opti-

mization can be solved using the Levenberg-Marquardt [83] method by minimizing

the distance of the feature.

Lidar Mapping

The mapping algorithm matches the Pk`1 and the point cloud map Mk to mitigate

the error estimation arising from lidar odometry. Let Tk,k`1 be the transformation

of lidar odometry between k and k ` 1, the initial guess TW
k`1 can be represented as:

TW
k`1 “ TW

k Tk,k`1 (3.26)

Then TW
k`1 can be used to transform Pk`1 into world coordinates, denoted as PW

k`1.

Similar to the process of lidar odometry described earlier, feature-to-feature corre-

spondence can be determined by conducting a k-d tree search between PW
k`1 and Mk.

The TW
k`1 is then optimized by minimizing the residuals, as outlined in Equations
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3.21, 3.22, and 3.25. Later the TW
k`1 is incorporated into Mk to generate Mk`1 for

the next scan-to-map iteration.

Compared with the point-wise theoretically, the curvature is exploited by LOAM

for the edges and planar points classification based on Equations 3.19 and 3.20. Then

the feature points are utilized to compute the inter-frame motion by minimizing

the residuals in Equations 3.21 and 3.22. Finally, precise state estimation can be

obtained with the scan-to-mapping strategy based on the approximate initial guess

using Equation 3.26. Compared with the traditional point-wise LiDAR odometry

pipelines, the LOAM extracts features that can significantly decrease the number of

points involved in the data association. The number of correspondences involved in

the optimization is significantly reduced when compared with the point-wise pipeline,

leading to improved accuracy and efficiency.

3.2.6 LeGO-LOAM

LeGO-LOAM [39] is a lightweight, ground-optimized LOAM. First, LeGO-LOAM

projects a point cloud onto a range image with a resolution determined by the hor-

izontal and vertical angular resolution of the LiDAR scanner. Each valid point in

the range image is assigned a pixel value based on the Euclidean distance from the

point to the sensor. Segmentation is then applied to the range image to classify

ground and large objects. In the odometry module, rtz, θroll, θpitchs is obtained by

finding correspondences of planar features from ground points, while rtx, ty, θyaws is

estimated by matching edge features from segmented clusters.

rtz, Ry, Rzs “ argmin
1

2

Npg
ÿ

i“1

›

›ωk`1,if
`

pp
k`1,i,Tk`1

˘
›

›

2
(3.27)

rtx, ty, Rzs “ argmin
1

2

Nes
ÿ

i“1

›

›ωk`1,if
`

pe
k`1,i,Tk`1

˘
›

›

2
(3.28)
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where Npg and N es are the number of planar points within the ground area and edge

points from large objects on range images in Pk`1. According to the evaluation in

[39], the drift in the vertical direction of the LeGO-LOAM is significantly smaller

than the conventional LOAM since the rtz, θroll, θpitchs is innovatively estimated by

the ground points. We believe this is one of the major contributions of LeGO-LOAM.

Moreover, compared with the conventional LOAM, the LeGO-LOAM also performs

a loop closure detection [84] to eliminate drift in the lidar mapping process.

3.2.7 Summary

The models of point clouds differ among the various methods mentioned above.

An overview of the fundamental differences in the selected LO (Localization and

Odometry) methods is shown in Table 2.1. K-d trees and voxelization are commonly

used for point modeling and correspondence searching in these LO methods. G-ICP

adopts a Gaussian-based point representation, providing advantages in accuracy and

robustness compared to ICP, though at the cost of higher computational complexity

due to point modeling. NDT, on the other hand, is a computationally efficient

LO method, as voxelization is applied for both point modeling and correspondence

searching. However, its performance is sensitive to voxel cell size, particularly in

diverse environments. VGICP combines the strengths of both G-ICP and NDT,

achieving fast and accurate point registration.

Feature-based LO algorithms, such as LOAM and its variants, employ feature

extraction before correspondence searching, which reduces computational load and

allows real-time execution in most cases. However, because feature-based methods

use only a subset of the point cloud, they can suffer from degeneration in environ-

ments with limited features. Next, we evaluate both point-based and feature-based

LO methods in the context of the challenges presented by urban canyons.
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3.3 Performance Evaluation

3.3.1 Experiment Setup

This section does not include the KITTI dataset, as it has already been extensively

evaluated in numerous studies, with results summarized in [23]. The performance

of the LO methods is assessed using our recently published UrbanNav dataset [85],

which contains data collected from various urban environments in Hong Kong and

Tokyo. The dataset includes measurements from GNSS, IMU, camera, and LiDAR

sensors. Additionally, ground truth data is provided by the NovAtel SPANCPT

system, which integrates GNSS RTK with a fiber-optic gyroscope-grade IMU. This

section focuses on two competitive datasets from the UrbanNav collection: HK-

Data20200314 (Data1) and HK-Data20190428 (Data2). Data2 presents a more chal-

lenging environment compared to Data1. Typical scenes from both datasets are

shown in Fig. 3.4. The entire dataset is publicly available to the research commu-

nity for further evaluation and algorithm development.

(a) (b)

Figure 3.4: Demonstration of the scenarios in the two urban datasets. (a) Data1:
Low-rising buildings and multiple right-turning areas. (b) Data2: Variety of dynamic
vehicles and numerous high-rising buildings.

We set up Ubuntu 18.04 with ROS Melodic as the platform baseline for the

majority of the LO pipelines. However, the original publicly available LOAM im-

plementation is restricted to Ubuntu 16.04 with ROS Kinetic due to software in-
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compatibilities with ROS Melodic. The recommended parameters provided by the

original authors were retained across all experiments. We substituted the package

configuration for the Velodyne HDL32 sensor. The detailed configuration and the

rosbag playback rates are presented in Table 3.1. For FastGICP and Fast LOAM,

the playback rate was set to 0.5, as the processing time for some frames was slower

than 10 Hz. All experiments were conducted using only the point cloud data pub-

lished by the sensor. The estimated trajectories from all methods are shown in

Fig. 3.5. The effectiveness of the LO methods was evaluated using the widely

adopted EVO tools [86], a popular Python package for evaluating and compar-

ing odometry and SLAM algorithms. RPE compares the estimated relative pose

with the reference pose in a fixed time interval. An epoch represents a single time

step in the sequence of measurements or observations. Given a sequence of poses

from the estimated trajectory Test “ tTest,1,Test,2, . . . ,Test,Nepochs
u and ground truth

Tgt “ tTgt,1,Tgt,2, . . . ,Tgt,Nepochs
u, Nepochs represents the number of states for eval-

uation. The relative pose error RPEi,j between timestamp ti and tj can be defined

as,

RPEi,j “
`

T´1
gt,iTgt,j

˘´1 `
T´1

est,iTest,j

˘

(3.29)

RPEi,j belongs to the Special Euclidean Group, SEp3q.

RMSE “

g

f

f

e

1

Nepochs

Nepochs
ÿ

i“1

RPE2
i (3.30)

Nepochs represents the number of epochs to be evaluated. The RMSE can be calcu-

lated based on the overall RPE.

— 34 —



PhD Thesis
CHAPTER 3. BENCHMARK COMPARISON OF PUBLICLY AVAILABLE

LIDAR ODOMETRY ALGORITHMS IN URBAN CANYONS

Figure 3.5: (a) Satellite image showing the ground truth for Data1. (b) Satellite
image showing the ground truth for Data2. Trajectories in (c) and (d) are evaluated
using point-wise LO methods for Data1 and Data2, respectively, while trajectories
in (e) and (f) are evaluated using feature-wise LO methods for the same datasets.

3.3.2 Computational Cost

The processing time for per-frame (PTPF) is used to evaluate the computational

cost of LO methods, as shown in Table 3.2. PTPF is measured from the moment

a new point cloud is received until the LO odometry result is generated. For point

registration-based methods, only the processing time for odometry is recorded as

PTPF. For LOAM-related methods, the processing time is collected at the end of

both the odometry and mapping processes. Specifically, LOAM-related methods

evaluate the PTPF for odometry and mapping separately, with LOAM achieving
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the fastest odometry time at a mean value of 9.41 ms, while LIO-Mapping was the

quickest in the mapping process, with a mean value of 105.54 ms. Fast LOAM

demonstrated a mean PTPF of 60.78 ms by merging the odometry and mapping

processes of conventional LOAM.

Among point registration methods, FastVGICPCuda achieved the fastest pro-

cessing time, while LOAM excelled in the odometry process. LeGO-LOAM demon-

strated the fastest mapping process among LOAM series methods. However, the

processing times of FastGICP, FastVGICP, and FastVGICPCuda revealed a poten-

tial issue when handling large datasets (marked in red in Table 3.2). The maximum

processing speed was significantly faster than both the mean processing speed and

the published rate in Table 3.1. This processing delay may result in significant errors

in some frames.

3.3.3 Detailed Analysis of Accuracy

Translation error is used as the criterion for accuracy evaluation, as shown in Table

3.3. For the Data1 dataset, G-ICP achieved the most accurate results among all

evaluated point-wise registration methods, while LOAM had the best performance

across all methods in terms of RMSE. For the Data2 dataset, G-ICP again delivered

the best results, while Fast LOAM outperformed standard LOAM.

A-LOAM’s performance in Table 3.3 and Fig. 3.6 (a) of Data1 is much worse

than other LOAM-related methods, with an error of up to 0.8 meters in Data1. This

can be attributed to A-LOAM’s lack of outlier removal during the feature extraction

process, a step included in the original LOAM [18]. To verify this, we conducted an

experiment where the feature extraction process from ”LIO-Mapping” was applied to

the A-LOAM odometry and mapping processes. The accuracy of LiDAR odometry

significantly improved, as shown in Fig. 3.6 (b), where the trajectory almost perfectly

overlapped when returning to the starting point.
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Based on the theoretical comparisons in the previous section and the experimen-

tal results, we argue that three major factors are affecting the performance of LO

methods, including (1) the motion difference between two consecutive epochs, which

has an impact on the initial guess that project Pk to P̃k; (2) the density of dynamic

objects, which impacts the assumption of a static environment and affects geometric

correspondences., and (3) the degree of urbanization of the evaluated environment,

which explores the accuracy of LOs for those highly urbanized areas that GNSS

positioning has degenerated [87].

Figure 3.6: (a) The mapping process of A-LOAM, where the repeated route lacks
the overlap, is highlighted in red. (b) The feature extraction process of A-LOAM is
replaced with that from LIO-mapping, resulting in the pose closely aligning with the
previous estimate, indicated in green.

The first factor we examined is the motion difference between the two epochs.

To compute the motion difference between the timestamp ti to ti`1, the Euclidean

norm of the vector ξk`1 in Lie algebra sep3q is utilized to represent its corresponding

rigid body motion Tk
k`1 P SE(3). The formula is represented as,

∆di`1 “
›

›log
`

Tk
k`1

˘_›
› , Tk

k`1 P R4ˆ4 (3.31)

where the superscript _ denotes the operator that maps elements from SEp3q to their
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vector representation in sep3q.

The second factor involves the number of dynamic objects contained in each

scan. Dynamic objects, such as cars and buses, were annotated in two datasets

using SUSTechPOINTS [88], a semi-automatic labeling tool. The density of dynamic

objects is represented as,

c “

ˆ

Ncar ` Nbus

Ntotal

˙

ˆ 100% (3.32)

which Ncar and Nbus denote the number of LiDAR points corresponding to cars and

buses, respectively, in the current scan. Ntotal represents the total number of points

in existing epoch.

To evaluate the degree of urbanization of the evaluated scene, our previous work

in [87] proposed to adopt the 3D building models to further estimate the skymask

(GNSS skyplot with building boundaries). The mean mask elevation angle µMEA is

defined to quantitatively represent the degree of urbanization as follows:

µMEA “

řN
α“1 θα
N

(3.33)

where θα represents the elevation angle corresponding to the building height at a

given azimuth angle α. N refers to the number of evenly spaced azimuth angles from

the skymask, typically 360 for a resolution of 1 degree. Locations surrounded by tall

buildings will have a high µMEA, while rural areas will result in a lower µMEA.

a) Verification using Data1

Data1 - Factor 1 - Motion Difference (MD): As shown in Fig. 3.7 (A), the

motion difference increases from 0 to 5.0 m, leading to a translation error of 0.7 m

for both G-ICP and LOAM. It is a typical scene of motion changing when a vehicle

starts from the roadside. Both methods demonstrated accurate performance between
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Fig. 3.7 (A) and (B) as there was a minor change in motion. In Fig. 3.7 (B), as

the ego-vehicle slows down before passing an intersection, a significant motion offset

is produced. As shown in Fig. 3.7 (C), the error increases again when the vehicle

makes a right turn and eventually returns to the starting point, stopping at the end.

Data1 - Factor 2 - Dynamic Objects (DO): Data1 represents a low-traffic area

with no other vehicles, except in (D) in Fig. 3.7. The results indicate that LOAM is

more sensitive to dynamic vehicles compared to G-ICP in this dataset.

Data1 - Factor 3 - Degree of the Urbanization (Skymask): Fig. 3.7 (E)

shows the G-ICP error peaking as the skymask changes. Similarly, in Fig. 3.7

(F), the LOAM error increases when the density of surrounding buildings drastically

decreases.

Figure 3.7: The comparison of motion difference (MD), dynamic objects (DO), and
sky mask mean (SMM) against translation error in G-ICP and LOAM using Data1.
The dash-dot line represents the outlier threshold. (A), (B), and (C) mark typical
challenging scenarios for the LO methods.

b) Verification using Data2

Data2 - Factor 1 - Motion Difference (MD): As shown in Fig. 3.8 (A), the
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translation error exceeded 1.0 m for both GICP and Fast LOAM. This occurred

as the ego-vehicle resumed movement when the traffic light turned green, with the

motion difference increasing from 0 to 10 meters. Both methods showed superior

performance around frame 300, as depicted in Fig. 3.8 (A) and (B), where the

vehicle was stationary, and the motion was effectively zero. In Fig. 3.8 (B), the ego-

vehicle made a right turn at a busy intersection, and the error increased to 1.5 meters,

attributed to both the motion difference and the presence of dynamic vehicles.

Data2 - Factor 2 - Dynamic Objects(DO): Fig. 3.8 (C)(D) depicts scenes of

heavy traffic and numerous vehicles, demonstrating that dynamic objects signifi-

cantly impacted the error.

Data2 - Factor 3 - Degree of the Urbanization (Skymask): As shown in Fig.

3.8 (E)(F), the rapid changes in the skymask led to a loss of accuracy in both LO

methods.

Figure 3.8: The comparison of motion difference (MD), dynamic objects (DO), and
sky mask mean (SMM) against translation error in G-ICP and LOAM using Data2.
The dash-dot line represents the outlier threshold. (A), (B), and (C) mark typical
challenging scenarios for the LO
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c) Short discussion

As shown in Fig. 3.7 and Fig. 3.8, MD and translation error exhibit the strongest

correlation, as indicated by their synchronized peaks. Therefore, integrating with

inertial sensors is good to compensate the initial guess for registration. DO and

translation error also show a noticeable correlation, which we will discuss in the

following chapters. SMM and translation error demonstrate a moderate correlation,

as urban occlusion effects contribute to localization errors.

3.4 Summary

In this chapter, we presented a benchmark comparison and error analysis of pub-

licly available LO methods using two challenging datasets collected in the urban

canyons of Hong Kong. Feature-based methods demonstrated both accuracy and

cost-efficiency by leveraging extracted feature points. However, the performance of

both methods was impacted by three dominant factors. According to our exper-

iments, we suggest that combining both the feature-wise and point-wise methods

can be a promising solution, which will be discussed in Chapter 4. The feature-

based method can efficiently provide a coarse odometry estimate, which can then be

used as an initial guess for point-based point cloud registration. Since point-based

methods are highly dependent on the initial guess, this approach results in a robust

coarse-to-fine LiDAR odometry pipeline.
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Table 3.1: Code and Parameters of the publicly available LO methods using Urban-
Nav Dataset

Method Code Repository Recommended Parameters Rosbag
Rate

ICP [33] github.com/koide

3/hdl_graph_slam

Default parameters in
hdl graph slam.launch

0.1

G-ICP [34] github.com/koide

3/hdl_graph_slam

Default parameters in
hdl graph slam.launch

0.1

FastGICP
[35]

github.com/SMRT-A

IST/fast_gicp

Integrated into hdl graph slam.
Default parameters are adopted
in hdl graph slam.launch

0.5

FastVGICP
[35]

github.com/SMRT-A

IST/fast_gicp

Default parameters are adopted
in hdl graph slam.launch

1.0

VGICPCuda
[35]

github.com/SMRT-A

IST/fast_gicp

Default parameters are adopted
in hdl graph slam.launch

1.0

NDT [36] github.com/koide

3/hdl_graph_slam

ndt resolution was set to
3.0 for outdoor environment in
hdl graph slam.launch

0.1

NDT-OMP
[36]

github.com/koide

3/ndt_omp/commit/c

799f459b4838dd9c

65698573370b16c4e

7ce7d9

Default parameters in
hdl graph slam.launch

1.0

LOAM [18] github.com/labos

hinl/loam_velodyne

Changing VLP-16 to HDL-32 in
loam velodyne.launch

1.0

A-LOAM
[38]

github.com/HKUST

-Aerial-Robotics/

A-LOAM

Default parame-
ters are adopted in
aloam velodyne HDL 32.launch

1.0

LeGO-
LOAM [39]

github.com/Robus

tFieldAutonomyLab/

LeGO-LOAM

Changing VLP-16 config to
HDL-32E in utility.h

1.0

LIO-
Mapping
[40]

github.com/hyye/

lio-mapping

Updating sensor type =

32, no deskew = false in
64 scans test.launch as 32
scans

1.0

Fast LOAM
[41]

github.com/w

h200720041/floam

Changing scan line = 64 to 32
in floam.launch

0.5
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Table 3.2: The processing time for per-frame (PTPF) evaluation results of Data1
and Data2. Top performance of the registration-based methods is highlighted with
bold, as well as feature-based methods marked with blue. Red fonts denote the
maximum PTPF values obviously shifted compared to the mean values.

Dataset Method
Odometry PTPF (ms) Mapping PTPF (ms)
Max Min Mean Max Min Mean

Data1

ICP 1156.76 29.99 91.47 N/A
G-ICP 1476.64 92.79 232.89 N/A
FastGICP 375.21 24.50 75.02 N/A
FastVGICP 786.19 22.39 42.23 N/A
FastVGICPCuda 1182.24 12.92 29.00 N/A
NDT 1681.75 156.59 472.97 N/A
NDT-OMP 301.57 9.35 51.67 N/A
LOAM 49.04 3.98 9.41 345.32 16.32 138.81
A-LOAM 40.74 10.73 15.93 612.79 61.27 198.51
LeGO-LOAM 31.58 4.64 9.73 252.27 30.32 122.93
LIO-Mapping 79.88 7.88 25.22 274.58 28.94 105.54
Fast LOAM N/A 124.02 22.85 60.78

Data2

ICP 988.06 34.42 105.38 N/A
G-ICP 520.10 106.35 219.64 N/A
FastGICP 1465.45 21.69 87.14 N/A
FastVGICP 339.66 25.77 47.16 N/A
FastVGICPCuda 1626.14 16.03 38.08 N/A
NDT 1442.36 195.41 488.43 N/A
NDT-OMP 142.85 13.87 39.18 N/A
LOAM 56.85 4.7 10.73 322.08 17.50 125.80
A-LOAM 38.06 11.96 15.2 588.59 76.02 209.23
LeGO-LOAM 33.70 3.35 11.16 248.47 26.49 115.19
LIO-Mapping 86.57 9.13 28.16 328.82 37.40 119.38
Fast LOAM N/A 164.99 27.23 90.52

— 43 —



CHAPTER 3. BENCHMARK COMPARISON OF PUBLICLY AVAILABLE
LIDAR ODOMETRY ALGORITHMS IN URBAN CANYONS PhD Thesis

Table 3.3: Evaluation results on the two urban datasets. The best performance
among registration-based methods in terms of accuracy is highlighted in bold, while
the best feature-based results are marked in blue.

Data-
set

Description
Trajec-
tory
Length

Method
Relative
Trans-
lation
Error
(m)

Relative
Rota-
tion
Error
(deg)

RMSE Mean RMSE Mean

Data1

Low-
urbanization,
Small
Loop

1.21 km

ICP 1.857 1.529 2.073 1.533
G-ICP 0.371 0.326 1.912 1.268
FastGICP 0.383 0.330 1.814 1.238
FastVGICP 0.372 0.321 1.670 1.113
FastVGICP-
Cuda

0.627 0.389 1.773 1.184

NDT 0.405 0.323 1.938 1.301
NDT-
OMP

0.510 0.397 1.840 1.197

LOAM 0.354 0.311 2.113 1.379
A-LOAM 0.803 0.476 1.870 1.232
LeGO-
LOAM

0.374 0.324 1.972 1.236

LIO-
Mapping

0.479 0.337 1.201 0.803

Fast
LOAM

0.376 0.322 1.661 1.094

Data2

Heavy
Traffic,
Tall
Buildings

2.01 km

ICP 1.684 1.213 1.494 0.902
G-ICP 0.417 0.296 1.129 0.662
FastGICP 0.543 0.301 1.303 0.472
FastVGICP 0.711 0.367 1.093 0.618
FastVGICP-
Cuda

0.874 0.411 1.734 0.732

NDT 0.816 0.422 1.106 0.657
NDT-
OMP

0.788 0.388 1.149 0.661

LOAM 0.450 0.321 1.383 0.799
A-LOAM 0.478 0.331 1.234 0.695
LeGO-
LOAM

0.462 0.333 1.226 0.694

LIO-
Mapping

0.664 0.379 0.886 0.471

Fast
LOAM

0.423 0.294 1.141 0.619
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Chapter 4

Dynamic Object-aware LiDAR

Odometry in Urban Areas

4.1 Introduction

As highlighted in the benchmark comparison of publicly available LO in Chapter

3, existing LO methods still struggle to provide satisfactory positioning accuracy in

urban areas due to three key factors: ego-vehicle dynamics, dynamic objects, and

degree of urbanization. Among these, dynamic objects are particularly challenging

and must be effectively managed to enhance positioning performance.

In this chapter, we develop a coarse-to-fine LiDAR-based method that incorpo-

rates dynamic object removal. This approach utilizes both instance-level DNN and

point-wise discrepancy images to accurately identify and mitigate dynamic points.

Furthermore, we propose a dynamic object-aware LiDAR odometry method that

adaptively assigns weightings to dynamic features, improving accuracy by reducing

the impact of these transient elements.
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4.2 A Coarse-to-Fine LiDAR-Based SLAM with

Dynamic Object Removal in Dense Urban Ar-

eas

To mitigate the impacts of the errors caused by dynamic objects, numerous studies

[89; 90] have been presented to address localization and mapping problems in high-

dynamic environments. A random sampling consensus (RANSAC) method [91] was

proposed to eliminate mismatches by treating moving objects as outliers. However,

its performance significantly degrades when dealing with a large number of dynamic

points. The clustering method [89] divides the point cloud into organized groups,

efficiently extracting dynamic vehicles based on classification modeling. Nevertheless,

parameter-based approaches are vulnerable to unknown object classes or threshold

limitations.

In recent years, deep learning-based methods have been widely developed to ad-

dress the effects of moving objects, achieving impressive results on the KITTI dataset

[23]. LO-Net [54] was introduced to tackle dynamic objects using a mask-weighted

geometric constraint loss, achieving similar results to LOAM. Recent work [92] im-

proves SLAM accuracy by predicting point-wise semantic labels using RangeNet++

[93] with range images. For broader applicability, an unsupervised dynamic aware-

ness LO method [94] was proposed by a team from ETH, where dynamic objects are

automatically labeled using an occupancy grid-based approach. DUFOMap [95] is

a dynamic awareness mapping framework developed for efficient online processing,

maintaining robust performance across diverse scenarios with consistent parameter

settings. However, detecting and estimating motion in highly urbanized environ-

ments, such as Hong Kong, remains a challenging research problem.

Change detection [96] is another effective approach for detecting objects by com-

paring the current scan with a pre-generated map based on prior pose estimation.
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Yoon et al. [97] proposed a ray-tracing method with a false-positive filter to improve

detection accuracy. Another study [98] introduced a voxel ray-casting-based method

to build a static map, but this process is time-consuming as it requires traversing

the voxel grid. To reduce computational load, a range image-based visibility check

was proposed in [99] to directly remove dynamic points from the map. However, this

method often includes static areas in its detections due to the field of view (FOV)

limitations.

The objective of this work is to provide a pipeline to optimize LiDAR-based

SLAM performance by detecting and removing dynamic objects. Our approach

leverages the capabilities of DNN and point-wise discrepancy comparison. First, a

custom-trained DNN [100] is employed to obtain precise feature representations and

classifications in highly urbanized areas, as illustrated in Fig.4.1 (b). Second, an

existing LO method [18] is used to generate coarse poses from scans with dynamic

object removal. These poses are then used to construct a submap, which helps further

refine the detection of dynamic objects by comparing range image-based discrepan-

cies between the scan and the submap. The initial odometry guess is provided during

this coarse process, and the refined scans are subsequently processed by the LiDAR

odometry to produce more accurate poses. This coarse-to-fine approach improves rel-

ative translation accuracy by 19.1% through the filtering of dynamic objects. As a

result, the generated point cloud map contains significantly fewer non-static points,

as shown in Fig. 4.1 (d). The key contributions of this work are summarized as

follows:

(1) We presented a Coarse-to-Fine LiDAR-based pipeline that integrates dynamic

object removal and improves odometry performance in dense urban environ-

ments.

(2) We constructed a more accurate point cloud map to better represent the real-
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world conditions in urban canyons.

Figure 4.1: (a) Numerous dynamic objects at a crossing road; (b) Example of object
detection using a custom DNN model; (c) The raw point cloud map generated by
LiDAR SLAM, with static points marked in greyscale and dynamic points labeled
in red; (d) The refined point cloud map produced using the proposed method.

4.2.1 Method

We present a coarse-to-fine LO approach with dynamic object removal. First, a

3D DNN is trained offline to support object detection in urban canyons. Removing

dynamic objects from the point clouds allows for more precise odometry. A range

image-based scan-to-submap process is then performed to further refine the point

clouds. Finally, the refined point cloud map and accurate poses are generated through

LOAM in the fine stage, utilizing the point-wise labeled point clouds and the initial

guess from the coarse stage. The complete pipeline is illustrated in Fig. 4.2.

Figure 4.2: Overview of the Proposed Pipeline for coarse-to-fine LiDAR-Base SLAM
with dynamic object removal.The LiDAR Odometry with coarse process will be
evaluated as LOAM-C while the LiDAR odometry with coarse and fine process will
be evaluation as LOAM-CF in the evaluation section.
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PV-RCNN Training

PV-RCNN, proposed by Shi et al. [100], combines both point-based and voxel-based

convolutional networks for feature learning. Specifically, raw point cloud data is first

voxelized and downsampled by 3D voxel CNNs at multiple scales (1x, 2x, 4x, 8x) to

capture multi-scale semantic features and generate 3D object proposals. The learned

voxel-wise feature volumes at various neural layers are then condensed into a small set

of key points through the novel voxel set abstraction module. These keypoint features

are subsequently aggregated to the RoI-grid points to learn proposal-specific features

for fine-grained proposal refinement and confidence prediction. Experimental results

demonstrate that this method achieved superior performance compared to other

approaches in the KITTI 3D object detection challenge. Let Fk be a set of 3D

bounding boxes detected at timestamp k from point cloud Pk. The object points

pobj
k,i are extracted within the 3D boxes, while the remaining points are classified as

clean points pclean
k,i .

pk,i “

#

pobj
k,i , if pk,i is inside any of Fk

pclean
k,i , classified as clean if outside the boxes

(4.1)

To implement PV-RCNN in customized datasets, we annotated 3D dynamic objects

with SUSTechPoints [88]. The FOV is fine-tuned to support 360 degrees. After mod-

ifying the data type to suit the network, all data frames are classified into training,

validation, and testing datasets and trained the network.

LOAM

LOAM [18] was introduced by the team from Carnegie Mellon University in 2014.

For the details of feature extraction and scan matching can refer to Chapter 3.2.5.
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Range imaged-based Scan-to-Submap

Inspired by the study in [99], dynamic objects are refined by calculating the difference

between the range image of the current scan and a submap within a 50-meter radius.

The current scan Pk and the surrounding map PM
k are projected into fix-size range

image, Ik and IMk , respectively. For a LiDAR sensor with a 40° vertical FOV and 360°

horizontal FOV, the resulting range image has dimensions of 360x40 pixels, where

each pixel corresponds to 1 degree in both horizontal and vertical FOV, as illustrated

on the left side of Fig. 4.3. Then the visibility check of the map points is calculated

via pixel-wise subtraction,

IDiff
k “ Ik ´ IMk (4.2)

We assign a point as dynamic on the map if its corresponding pixel value of IDiff
k is

larger than a certain threshold. Finally, we can search the corresponding position of

the dynamic points in the current scan to further refine the object points. However,

the method might contain several false positive points like trees and ground which

cannot visible correctly by the current scan. Such that we apply a clustering and

drivable area validation to filter the actual static points, an example of the refined

object points is shown on the right of Fig. 4.3.

4.2.2 Performance Evaluation

The performance of the proposed method is evaluated using our UrbanNav dataset

[85], which includes data collected from urban environments in Hong Kong and

Tokyo. The dataset comprises measurements from GNSS, IMU, camera, and LiDAR

sensors. Additionally, ground truth data is recorded using the NovAtel SPAN-CPT

system, which integrates GNSS RTK with a fiber-optic gyroscope-level IMU for pre-

cise positioning.
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Figure 4.3: Left: The range image, where each row represents Ik, IMk , and IDiff
k ,

respectively. In the color map, blue indicates closer distances, while red represents
farther distances. Therefore, the red pixels in the bottom range image IDiff

k high-
light a high discrepancy between the scan and submap, classifying them as dynamic
points. Right: The detected dynamic objects alongside the captured image of the
corresponding scenario.

Figure 4.4: Left: The sensors and vehicles used for data collection; Right: A variety
of dynamic vehicles captured in the Hong Kong dataset.

PV-RCNN Object Training and Verification Results

We achieve an IoU of 79.02% for the validation data in terms of dynamic object

removal of dataset HK-Data20190428. In this experiment, 487 annotated frames are

separated into 292 frames are utilized as the training set, 97 frames are performed

as the validation set and testing set, respectively. LiDAR scans and ground truth

labels of the training set are taken as the input to the network for training. The

evaluation results are shown in Table 4.1.

IoU generally means the overlapping level of prediction and ground truth bound-

ing boxes.
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IoU “
Aintersection

Aunion

(4.3)

Aintersectionis the area of intersection between the predicted box and ground truth

box; Aunion is the area of all two boxes associated.

Table 4.1: 3D object detection results in the validation set.

Type AP 0.5
Bev 79.02%
3D 67.35%

In Table 4.1, we present two different types of Average Precision. The bird’s-eye

view (Bev) is calculated based on 2D overhead projections, which loses precision in

the Z-axis. In contrast, the 3D Average Precision is computed in 3D space, offering

a more comprehensive evaluation of performance. Most ground truth objects are

successfully predicted with satisfactory accuracy. Examples of detections can be

seen in Figs. 4.5 and 4.1 (b). However, currently, only the car class is predicted due

to limitations in training labels and available data

Figure 4.5: Detection of the dynamic object.
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LiDAR Odometry

To verify the performance of each component and the entire process, we separate the

evaluation based on LOAM, LOAM-C, and LOAM-CF respectively.

• LOAM: the original LO

• LOAM-C: LO with the coarse process, the DNN is utilized to detect the

dynamic objects.

• LOAM-CF: LO with the coarse-to-fine process, the scan is further refined by

the discrepancy of scan-to-submap.

We labeled the dynamic objects such as cars and buses in the datasets to explore

how the dynamic objects affect the position error. The density of dynamic objects

factor is defined as,

c “

ˆ

Ncar ` Nbus

Ntotal

˙

ˆ 100% (4.4)

which Ncar and Nbus represent the number of LiDAR points of cars and buses sep-

arately in the current scan. The total number of points in the current frame is

denoted by Ntotal. The performance of the listed methods was evaluated using rela-

tive pose error (RPE) via the popular EVO tools [86], a widely-used Python package

for evaluating and comparing odometry or SLAM algorithms. The overall results are

presented in Table 4.2 and Fig. 4.4. Compared to standard LOAM, the proposed

pipeline, LOAM-C, achieved a 19.1% reduction in drift, as demonstrated by the

RMSE of the translation error. The mean error of LOAM-C decreased from 0.321 m

to 0.258 m. Fig. 4.6 shows that LOAM-C can slightly mitigate the error caused by

dynamic points. To further evaluate the proposed method in highly dynamic urban

canyon scenarios, an epoch-wise evaluation based on the scenarios (A), (B), and (C)
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in Fig. 4.6 was conducted to demonstrate the performance of LOAM, LOAM-C, and

LOAM-CF, respectively.

Qualitative and quantitative epoch-wise results are presented in Fig. 4.7 and

Table 4.3. The DNN network may not fully detect all vehicles, so the discrepancy

method based on range images is employed to further refine point cloud filtering

using DNN labels. In scenarios (A) and (C), LOAM-C outperforms both LOAM and

LOAM-CF, while in scenario (B), LOAM-CF achieves more accurate estimations

than LOAM-C in terms of translation and rotation errors.

Table 4.2: Positioning results of LOAM and LOAM-C

Dataset Length Method
Trans. Error (m) Rot. Error (deg)
RMSE Mean RMSE Mean

HK-Data20190428 1.21 Km
LOAM 0.450 0.321 1.383 0.799

LOAM-C 0.364 0.258 1.413 0.815

Figure 4.6: The comparison between dynamic objects (DO) and translation error in
LOAM and FLOAM. (A), (B), and (C) represent scenarios with numerous dynamic
objects where state estimation performance is degraded.
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Figure 4.7: Qualitative evaluation of the refined dynamic objects in scenarios (A),
(B), and (C) from Fig. 4.6 using the range image-based scan-to-submap method:
(A) The ego-vehicle resumes movement as the traffic light turns green from red, with
numerous dynamic vehicles and pedestrians nearby; (B) The ego-vehicle stops before
the traffic light; (C) The ego-vehicle is close to a double-decker bus.

Table 4.3: Epoch-wise performance comparison of LOAM, LOAM-C, and LOAM-
CF under scenarios labeled in Fig. 4.6 Top performance of the method in different
scenarios is highlighted with bold.RTE is short for relative pose error while RRE is
short for relative rotation error.

Scenario Method 2D RRE (m) RRE (deg)
RMSE Mean RMSE Mean

A
LOAM 0.415 0.354 0.464 0.374

LOAM-C 0.382 0.337 0.414 0.333
LOAM-CF 0.387 0.341 0.434 0.352

B
LOAM 0.53 0.406 2.597 1.767

LOAM-C 0.476 0.357 2.39 1.65
LOAM-CF 0.475 0.355 2.376 1.619

C
LOAM 0.511 0.443 3.242 2.241

LOAM-C 0.511 0.443 3.245 2.233
LOAM-CF 0.517 0.446 3.224 2.225

Mapping Results

Fig. 4.8 and Fig 4.1 (d) present the refined map with satisfactory results compared

to the original map. However, the dynamic pedestrian in Fig. 4.8 is not removed

because the pedestrian is not trained in our network. However it could be filtered

by the drivable lane. Generally speaking, removing dynamics using the proposed

method in the urban canyons are a promising solution for constructing a static map
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for long-term usage in the autonomous system.

Figure 4.8: Mapping results of Scenario A. Left: The raw point cloud map generated
by LiDAR SLAM. Static points are marked in greyscale, while dynamic points on
the drivable lane are labeled in red and pedestrians are colored yellow; Right: The
refined point cloud map using the proposed method.

4.3 Dynamic Object-aware LiDAR Odometry Aided

by Weightings Optimization in Dense Urban

Areas

Significant effort has been made to improve LiDAR odometry performance in the

presence of dynamic objects [98; 94]. The most common approach involves retaining

only static features for odometry estimation, while dynamic features are detected

and removed. However, existing methods suffer from two main limitations: (1) In

highly dynamic scenarios with numerous moving objects, the static features that re-

main after excessive dynamic feature removal often provide insufficient constraints for

odometry estimation; (2) The DNN or conventional parameter-based methods [101]

capable of dynamic object detection is required to remove them so that the odom-

etry is free from dynamic measurements. Therefore, the performance improvement

of the odometry suffering from dynamic objects is dependent on accurate detection

methods. Unfortunately, there is no effective remedy for false detections which make

the odometry even worse. To address these two challenges, this study proposes a dy-

namic object-aware LiDAR odometry method that effectively utilizes features from
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both dynamic and static objects, ensuring sufficient constraints even in highly dy-

namic scenes. Fig. 4.9 demonstrates the contributions of our proposed pipeline,

which are summarized as follows:

(1) Numerical analysis of the impacts of dynamic objects on LiDAR odometry:

This study investigates the impacts of dynamic objects on the degeneration

of LiDAR odometry. Three key factors are taken into consideration includ-

ing the number, the geometric distribution, and the velocity of the dynamic

objects. For extensiveness and flexibility, the investigation is performed by

adding simulated dynamic objects into real data, which could be custom-

tailored by the researchers. The implementation kit is open-sourced at https:

//github.com/DarrenWong/code_for_dynaLO to benefit the research society.

(2) Adaptive weighting estimation of LiDAR features from dynamic objects: This

study proposes an adaptive weighting-based LiDAR odometry method. Con-

tributions from available features are evaluated comprehensively so that both

static and dynamic features can be reasonably utilized. The unhealthy fea-

tures are automatically assigned with low weights while healthy ones with high

weights. The false exclusion of feature subsets caused by the false detection of

dynamic objects is thus avoided.

4.3.1 Overview of the Proposed System

An overview of the proposed method is shown in Fig. 4.10. The system takes

three main inputs: the LiDAR point cloud, an object database, and object pose

information. The output of the system is the pose estimation of the LiDAR odometry.

The pipeline consists of two key components: (1) The scene composition, which

aggerates PLk
d and PLk

s with PLk to produce PLk
a . It aims to investigate the impact

of dynamic objects on the degradation of LiDAR odometry. Specifically, dynamic
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Figure 4.9: Illustration of the contributions of this work. LiDAR points in a 3D
static environment are marked in grey. (a) The scanned point cloud in the static en-
vironment; (b) The red cloud represents dynamic vehicles generated by the proposed
vehicle simulator, integrated with (a) to investigate the impact of dynamic objects
on LiDAR odometry degradation; (c) The grey cloud represents the simulated point
cloud with dynamic objects; (d) The proposed joint weighting optimization for Li-
DAR odometry with dynamic object awareness. Both healthy features (green, as-
signed high weight) and unhealthy features (red, assigned low weight) are simulated
based on (b), representing features on static or dynamic objects.

objects from the object database can be integrated with PLk in a customizable

manner, allowing the user to define their pose and velocity in the LiDAR body frame.

Static objects from the object database are anchored in the world frame t.uW by the

user and can be transformed into the LiDAR frame t.uLk . The transformation matrix

TLk
W is provided by the NovAtel SPAN-CPT. ; (2) Dynamic object-aware LiDAR

odometry (LO) supported by a weighting optimization scheme. Planar features are

extracted from PLk
a and denoted as FLk

a . A local map is constructed using planar

features from several historical frames [41]. Each feature in the current scan is

associated with a planar patch in the map, and the total association cost is optimized
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to generate accurate pose estimations, similar to the conventional LO methods [41].

Note that the weightings of associations provided by features on dynamic objects

are jointly optimized. Large residuals induced by poorly conditioned associations

with dynamic objects are down-weighted and minimized iteratively. The superiority

of our proposed LO, enhanced by the weighting optimization scheme, is evaluated

using the composite scene elaborated in part (1).

Figure 4.10: Overview of the proposed method.

4.3.2 LiDAR Odometry Degeneracy Induced By Dynamic
Objects

This section defines three key factors that represent the impact of dynamic objects

on the performance of LiDAR odometry, namely (1) the number of dynamic points

that have a direct impact on the data association of LiDAR odometry. Specifically, a

higher density of dynamic objects is expected to have a more significant impact on the

performance of LiDAR odometry. (2) the geometric distribution of dynamic points,

which affects the constraint of the state optimization. In particular, it is expected

that the uniformly distributed dynamic objects would lead to a negative impact

on the LO. (3) the relative velocity of the dynamic objects, which explores moving
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dynamic points related to the accuracy of LiDAR odometry. In particular, higher

velocities of dynamic objects are likely to lead to greater inconsistencies in feature

association, thereby degrading the performance of LiDAR odometry. The listed three

factors dominate the degree of degeneracy of the LiDAR odometry induced by the

dynamic objects. The next section will introduce the generation of high-dynamic

scenarios for further investigation of LiDAR odometry performance.

Number of Dynamic Objects

The number of dynamic objects is expressed as the percentage of dynamic features

within the set of features used for LO estimation, defined as follows:

D1 “
Nd,k

Nk

(4.5)

in which Nk represents the total number of features used to estimate TW
Lk
. Nd,k indi-

cates the number of features associated with dynamic objects within NLk
. Intuitively,

the larger number of dynamic objects induces more incorrect data associations, thus

heavier odometry degeneration.

Geometric Distribution of Dynamic Objects

In GNSS, the dilution of precision (DOP) is used to quantify the error in receiver

positional measurements that arises from the geometry of the satellites [102]. Inspired

by DOP, we represent the covariance of the error in translation estimation induced

by the geometric distribution of dynamic objects as follows,

Qd “
`

Jd,t
TJd,t

˘´1
“

»

–

σ2
x σxσy σxσz

σyσx σ2
y σyσz

σzσx σzσy σ2
z

fi

fl (4.6)
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in which σp¨qσp¨q, with p¨q representing x, y, or z, denotes the covariance on the

specific dimensions of the translation estimation. Jd,t denotes the Jacobian matrix

of the association costs produced by the dynamic planar features referring to the

translation part t of the estimated pose,

Jd,t “ rJd1,t,Jd2,t, . . . ,Jdm,ts
T

P Rmˆ3 (4.7)

For the i-th planar point in the dynamic features, the Jacobian matrix of residuals

can be computed by [41],

Jdi,t “
Brdi
BtT

“ nT
i P R1ˆ3 (4.8)

where rdi is the association residual. ni represents the normal vector [41] of the

planar patch corresponding to the i-th planar feature. As clock bias [102] is not

involved in LiDAR odometry, the geometric distribution of the dynamic objects is

inherited from the position DOP (PDOP) [102] and represented as follows,

D2 “

b

σ2
x ` σ2

y ` σ2
z (4.9)

Specifically, well-distributed dynamic features, such as those evenly distributed, re-

sult in ill-conditioned constraints for pose estimation compared to non-uniformly

distributed ones. In this case, the covariance of the translation error is expected to

increase and a smaller D2. In other words, a smaller D2 reflects the more uniform

distribution of dynamic features, which significantly exacerbates LiDAR odometry

degeneracy.

Relative Velocity of Dynamic Objects

The relative velocity of dynamic objects with respect to the LiDAR is expressed as,
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D3 “

›

›

›
pLk
d ´ p

Lk`1

d

›

›

›

∆t
(4.10)

where the pLk
d P R3 and p

Lk`1

d P R3 represent the positions of dynamic features in the

Lk frame and the Lk`1 frame, respectively. ∆t represents the time interval between

the two frames. Within a moderate range, a larger relative velocity of the dynamic

objects significantly degrades LiDAR odometry, as it tends to introduce more false

associations. However, beyond this range, when the relative velocity is extremely

high, the dynamic objects may lag far behind or move far beyond the LiDAR’s

detection capabilities. In such cases, these dynamic objects are not observed in two

consecutive frames, resulting in no degeneracy being induced since no associations

are provided for the LiDAR odometry by these dynamic objects.

Dynamic Scene Generation

To simulate a realistic dynamic scene with multiple vehicles, we initially delve into

the LiDAR optical model. The raw reflection data from LiDAR can be categorized

into several types [103], including solid targets (such as vehicles and pedestrians),

soft targets (such as rain, fog, dust, or snow), and noise-related measurements. Our

previous work [6] evaluated LiDAR positioning performance in adverse weather con-

ditions. In this study, we aim to examine the impact of dynamic objects on the

degradation of LiDAR odometry. Unlike adverse weather and noise factors, dy-

namic vehicles primarily affect LiDAR through backscattering. Fig. 4.11 depicts the

backscattering effect of LiDAR signals interacting with vehicles and buildings.

The pulse propagation in the presence of scattered particles is discussed in [103].

The impulse response of the LiDAR estimates the transformation of the range and

intensity between the original point cloud and the modified cloud that includes dy-

namic objects. Under clear weather conditions, the impulse response function [103]
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of LiDAR data can be derived as follows:

HpRq “
τpRq

R2
¨ ρ0δpR ´ R0q (4.11)

R is the range of the reflection point while τpRq is the ratio of the area illuminated

by the transmitter and the area observed by the receiver (τpRq normally equals 1

for larger than 2-meter observation). ρ0 denotes the reflectivity of the target. For

the metal component of the vehicle, ρ0 can be larger than 10
π
. δp¨q is the Dirac delta

function and R0 is the range of the hard target. δp¨q equals zero everywhere except

at R “ R0.

Figure 4.11: Illustration of the effect of hard targets (vehicles and buildings) on
LiDAR in a complex dynamic environment (top: graphical representation; bot-
tom: corresponding real point cloud). The red and grey double arrows indicate
the backscattering effects from dynamic vehicles and buildings, respectively. The
green arrow highlights LiDAR points reflected from vehicles and buildings, while the
blue arrow shows the backscattering effect on a bus. A significant portion of LiDAR
points strike dynamic objects, resulting in a large number of outliers.

To assess the impact of these factors on LiDAR odometry performance in dy-

namic scenarios, we utilize real-world dynamic objects and static environments to

create realistic scenes based on the LiDAR model. Specifically, we construct a set
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of dynamic objects using data collected from vehicles and incorporate ground truth

information to generate both dynamic and static objects.

We propose that more realistic dynamic scenarios can be created by leveraging

dynamic objects from real-world data. To achieve this, various dynamic objects,

including cars, trucks, and double-decker buses, were captured in different urban

environments using 3D LiDAR. Highly dynamic scenarios are then constructed by

transforming the i-th dynamic object pLk
d,i to the specific locations TLk

c,i relating to

the ego vehicle.

PLk
d,i “ TLk

c,iPd,i (4.12)

PLk
d,i represents the i-th dynamic object in the LiDAR frame. Fig. 4.12 illustrates

the composition of dynamic objects within a static environment (shown in Fig. 4.12

(a)). It is important to note that the points obstructed by the objects in Fig. 4.12

(b) are missing, as the vehicle object acts as a hard target [103] for the LiDAR

scanning system, causing the LiDAR pulse to be reflected upon contact with the

object. Additionally, a point cloud containing both dynamic and static objects is

necessary to evaluate the rejection scheme of dynamic-aware LiDAR odometry. The

ground truth information provided by our vehicle platform is utilized to transform

the pre-defined static object pW
s,i into the LiDAR local frame pLk

s,i .

PLk
s,i “

`

TW
k

˘´1PW
s,i (4.13)

TW
k represents the ego vehicle pose at timestamp k in the world frame. The detail

of the dynamic scenario generation is shown in Algorithm 1.

The generated PLk
a will be used for LiDAR odometry with dynamic object reweight-

ing in the subsequent section. Fig. 4.13 compares the real-world point cloud with the

simulated point cloud generated using the proposed LiDAR simulation across two
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datasets. The simulated point cloud, including dynamic objects, closely matched the

real-world data.

Figure 4.12: Illustration of the simulated LiDAR point cloud. LiDAR points in a
3D static environment are marked in grey, while points corresponding to dynamic
objects are labeled in red. (a) The point cloud in a static urban environment. (b) A
highly dynamic urban area featuring various real dynamic objects. The blue areas
in (a) and (b) indicate the points blocked by the dynamic vehicle, which are not
scanable in (b) using the proposed simulator.

4.3.3 LiDAR Odometry Aided By Weighting Optimization

The conventional feature-wise LiDAR odometry [18] can be expressed as,

TW
Lk

“ argmin
TW

Lk

1

2

#

m
ÿ

i“1

›

›

›
rLk
i

`

TW
Lk

˘

›

›

›

2

+

(4.14)

m indicates the number of associated features, while rLk
i represents the residuals

from edge and planar features. This method performs well in constrained environ-

ments with few dynamic objects. However, the conventional formulation is adversely

affected by incorrect data associations arising from an excess of dynamic features,

leading to significant degradation in pose estimation [94]. To address these chal-

lenges, this work introduces a novel term ρp˚q, inspired by switchable constraints

[105].

ρpωi, r
Lk
ds,iq “ ω2

i }rLk
ds,i}

2
` k2

p1 ´ ωiq
2 (4.15)
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Algorithm 1: Dynamic scenario generation

Inputs: Original LiDAR point cloud at timestamp k as PLk , objects and their
pose parameters
Outputs: The simulated point cloud PLk

a

Step 1: Initialize PLk
a Ð empty.

Step 2: Object creation

• Step 2-1: Transform the dynamic object points Pc
d,i “ tpc

d,1,p
c
d,2, . . . ,p

c
d,nu

which docked at the origin into the LiDAR local frame
!

pLk
obj,1,p

Lk
obj,2, . . . ,p

Lk
obj,n

)

using the object transformation.

• Step 2-2: Transform the static object points
␣

pW
s,1,p

W
s,2, . . . ,p

W
s,n

(

into

LiDAR local frame
!

pLk
s,1,p

Lk
s,2, . . . ,p

Lk
s,n

)

using the ego-vehicle ground truth

via Equation 4.13.

• Step 2-3: Filtering the points in the PLk
k as PLk

k if the line segments
between LiDAR origin and the points intersect with any objects based on
LiDAR ray casting [104].

• Step 2-4: Composing the dynamic object points PLk
d and static points PLk

s

over the PLk
k :

PLk
a “ PLk

k ` PLk
d ` PLk

s

Step 3: Finish the algorithm and output the aggregated point cloud as PLk
a .

where rLk
ds,i represents the residual from both dynamic and static LiDAR object points.

ωi P r0, 1s denotes the switchable variable associated with the dynamic residuals,

while k stands for the cost parameter for the switch prior constraints term. The

switchable constraints can include or exclude the LiDAR features through the asso-

ciated weighting factor ωi. The switchable prior constraints are required to anchor

the switchable variables at their initialization. All the initial values of the switch-

able variables are set to 1, which means that all the residuals are accepted as static

features in the beginning. Then, the LiDAR point is determined as a static point if

ωi is close to 1 or classified as a dynamic point if ωi is near 0. Recalling Equations

4.14 and 4.15, the adaptively weighted LiDAR odometry can be written as:
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Figure 4.13: Illustration of the simulated point cloud (c) and (d) that contained
objects that matched the real data in (a) and (b).

TW
Lk

“ arg min
TW

Lk
,W

1

2

˜

m
ÿ

i“1

}rLk
ev,ipT

W
Lk

q} `

Nds,k
ÿ

i“1

ρpωi, r
Lk
ds,iq

¸

(4.16)

where W denotes the sets of weighting ωi of each residual. rLk
ev,i indicates the residual

from environmental points PLk
ev,i. Nds,k indicates the number of associated LiDAR

points from the simulated objects. The process of the joint weightings estimation is

shown in Algorithm 2. To minimize the cost function 4.16, the first-order gradient

of ρp˚q relative to ωi is defined as,

Bρ

Bωi

“ 2ωi}r
Lk
ds,i}

2
´ 2k2

p1 ´ ωiq (4.17)

The optimal ωi can be achieved where the gradient is zero,

ωi “
k2

}rLk
ds,i}

2 ` k2
(4.18)
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The optimal ρ̂ can be computed by substituting Equation 4.18 into Equation 4.16,

ρ̂pωi, r
Lk
ds,iq “

k2}rLk
ds,i}

2

k2 ` }rLk
ds,i}

2
(4.19)

Algorithm 2: LiDAR odometry aided by Joint Weightings Estimation

1: Inputs: Aggregated point cloud PLk
a , environment point cloud PLk

ev , and object
point cloud PLk

ds which aggregated point cloud PLk
k “ tPLk

ev ,P
Lk
ds u

2: Outputs: The optimal pose estimation TW
Lk

3: Step 1: Extract features FLk
a from PLk

a

4: Step 2: Obtain the residuals rLk
ev and rLk

ds from environment features and object
features, respectively.

5: Step 3: For each rLk
ev,i in rLk

ev

• A squared residual function is applied via conventional state estimation
Equation 4.14: }rLk

ds,i}
2

6: Step 4: For each rLk
ds,i in rLk

ds

• A switchable constraint is applied [105] using the following cost function:

ρpωi, r
Lk
ds,iq “ ω2

i }rLk
ds,i}

2
` k2

p1 ´ ωiq
2

7: Step 5: Minimize the cost function to obtain optimal TW
Lk

TW
Lk

Ð arg min
TW

Lk
,W

1

2

˜

m
ÿ

i“1

}rLk
ev,ipT

W
Lk

q}
2

`

Nds,k
ÿ

i“1

ρpωi, r
Lk
ds,iq

¸

Figs. 4.14 and 4.15 illustrate the adaptive loss corresponding to residual rLk
ds,i over

the range r´1.0, 1.0s, with different values of ωi and k. As depicted in Fig. 4.14,

the loss remains a convex function except when ωi “ 0, where the gradient becomes

zero. Consequently, the weight assigned to dynamic objects with large residuals

can be optimized to approach zero. Fig. 4.15 shows that increasing k raises the

loss, indicating a greater influence on Equation 4.16 compared to the residual from

static environments rLk
i . Determining an appropriate value for the prior k is crucial

for the reweighting process, and this will be further elaborated in the experimental

validation.
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Figure 4.14: ρp˚q with respect to different ωi if k “ 0.1. ρ̂ represents the optimal
loss.

Figure 4.15: The optimalρ̂ with respect to different k.

4.3.4 Performance Evaluation

Experiment Setup

Sensor setups: The performances of the proposed method are evaluated using

UrbanNav [3] and the nuScenes [106] datasets.

Our open-sourced UrbanNav [3] dataset comprises data collected from GNSS,

inertial navigation systems (INS), cameras, and LiDAR sensors mounted on a vehi-

cle platform, as illustrated in Fig. 4.16 (a). The NovAtel SPAN-CPT [107] system

integrates a fiber optic gyroscope (FOG) with GNSS-RTK technology to deliver
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GT positioning data. Additionally, measurements from the SPAN-CPT are tightly

coupled using NovAtel’s Inertial Explorer [107] software, achieving centimeter-level

positioning accuracy. In this experiment, point clouds are captured using the Velo-

dyne HDL-32E [108] at a frequency of 10 Hz, while the LiDAR pose’s ground truth is

derived from the NovAtel SPAN-CPT at a frequency of 100 Hz. The extrinsic trans-

formation matrix between the two sensors has been pre-calibrated. Synchronization

of the timestamps from the two sensor types is accomplished using GPS time and

pulse per second (PPS) signals [109].

To enhance the evaluation’s diversity, the nuScenes dataset [106] was collected in

Boston and Singapore under various weather conditions. The sensor configuration

for nuScenes is depicted in Fig. 4.17 (a). A 32-line LiDAR system was employed to

capture point clouds at a frequency of 20 Hz. The ground truth, with an accuracy

of less than 10 centimeters, was achieved through sensor fusion in conjunction with

high-definition mapping. Furthermore, the dataset includes 3D bounding boxes and

semantic-level annotations for all objects in keyframes, encompassing image, LiDAR,

and radar data.

Figure 4.16: (a) Setup for the sensor platform in UrbanNav ; (b) The evaluated static
scene and its ground truth trajectory.

Experimental scenes: To verify the effectiveness of the proposed method, we

conducted numerous experiments in typical urban areas in Hong Kong and nuScenes

datasets. The urban environments are collected in urban areas without dynamic

objects, as shown in Fig. 4.16 (b) and Fig. 4.17 (b). We first conducted the

experiment in which the static scenes were composed with different percentages of
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Figure 4.17: (a) Sensor setup for the nuScenes dataset collection; (b) Bird’s-eye view
of a typical scene in the nuScenes dataset, highlighting parked trucks and buildings.
The ground truth trajectory of the data collection vehicle is represented by a green
curve.

Figure 4.18: Illustration of the simulated point cloud with varying proportions of
dynamic objects: (a) 10% dynamic objects, (b) 60% dynamic objects.

dynamic objects (shown in Fig. 4.18). Then, we performed another experiment in

which the same amount of dynamic objects was integrated into different directions

under the LiDAR body frame (shown in Fig. 4.19). Besides, we performed the third

experiment investigating the degeneracy caused by the speed of dynamic objects

(shown in Fig. 4.20). Finally, we evaluated the performance of the proposed method

using integrated scenes from UrbanNav and nuScenes, which include both dynamic

and static objects, as shown in Fig. 4.21 and Fig. 4.22.

Evaluation metrics: We first analyzed the performance of LiDAR odometry

with different levels of dynamic objects. Second, the performance of the proposed

method was evaluated via the relative pose error (RPE) to investigate the local

consistency of the trajectory with standard practice [49]. To verify the effectiveness

of the proposed method in this paper, we evaluate the following method,
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Figure 4.19: Illustration of the simulated point cloud with dynamic points distributed
vertically in (a) and horizontally in (b).

Figure 4.20: Illustration of the simulated point cloud (a) and (b) with dynamic
objects at a relative speed of 5m/s.

• LO: The conventional LiDAR Odometry.

• T-LOAM [110]: The state-of-the-art LiDAR odometry with outlier resis-

tance. The truncated least squares method is adopted to mitigate the effect of

dynamic objects.

• LO-R: The LiDAR Odometry aided dynamic object removal in the previous

section 4.2.

• LO-RW: The proposed LiDAR Odometry with dynamic object reweighting.

We use k “ 0.1 for the penalty const parameter in Equation 4.15 experimen-

tally.
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Figure 4.21: Illustration of the integrated point cloud with dynamic objects for
evaluation in UrbanNav. (a) the scanned point cloud at timestamp t; (b) the scanned
point cloud at timestamp t ` 1.

Figure 4.22: Illustration of the integrated point cloud with dynamic objects for
evaluation in nuScenes (including a parked bus in the data). (a) the scanned point
cloud at timestamp t; (b) the scanned point cloud at timestamp t+1

Verification of LiDAR Odometry Degeneracy Induced by Dynamic Ob-
jects

1) Verification of the Number of Dynamic Objects

Table 4.4 presents the performance evaluation of LiDAR odometry as influenced by

the number of dynamic objects. The first column indicates the varying percentages

of dynamic objects based on Equation 4.5. The first row shows the positioning er-

ror in static environments (0% dynamic objects), where an RMSE of 0.170 meters

was observed with a standard deviation of 0.085 meters. Notably, dynamic objects

comprising up to 40% had minimal impact on state estimation, according to our ex-

perimental results. However, when the number of dynamic objects increased to 50%,

the positioning error rose significantly to 1.330 meters, with a standard deviation of
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1.170 meters. This indicates that the number of dynamic objects gradually degrades

LiDAR odometry performance. At 80% dynamic objects, the performance worsened

dramatically, with the error reaching up to 6.484 meters.

Table 4.4: Performance of LiDAR odometry in terms of numbers of dynamic objects.

Number of Dy-
namic Objects

RMSE (m) MEAN (m) STD (m) Max (m)

0% 0.170 0.147 0.085 0.569
10% 0.171 0.148 0.086 0.573
20% 0.181 0.158 0.088 0.572
30% 0.177 0.154 0.087 0.572
40% 0.191 0.167 0.091 0.566
50% 1.330 0.632 1.170 4.318
60% 2.998 1.682 2.481 7.146
70% 6.417 6.394 0.545 7.457
80% 6.484 6.459 0.566 7.477

2) Verification of Geometric Distribution of dynamic objects

Table 4.5 presents the performance of LiDAR odometry under different geometric

distributions of dynamic objects. Based on the results from Table 4.4, where signif-

icant positioning errors were observed, we selected the scenario with 50% dynamic

objects as the baseline for verification. We then redistributed these dynamic objects

to create varied configurations (illustrated in Fig. 4.19). The second column in Table

4.5 shows the D2 values corresponding to the distributions of dynamic objects, calcu-

lated using Equation 4.9. The baseline (50% dynamic objects) yielded an RMSE of

1.330 meters with a standard deviation of 1.170 meters, where D2 equals 0.00357. As

the D2 value increased, the positioning error significantly decreased, dropping from

1.330 meters to 0.839 meters with a standard deviation of 0.736 meters. In Sequence

3, the error was further reduced to 0.357 meters with an even higherD2 value. It can

be concluded that a more even geometric distribution of dynamic objects leads to

lower accuracy in LiDAR odometry.

3) Verification of Relative Velocity of Dynamic Objects
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Table 4.5: LiDAR odometry performance is evaluated under varying geometric dis-
tributions (D2) with 50% dynamic objects. In Sequence 1, the baseline scenario
includes 50% dynamic objects. In Sequence 2, the dynamic objects are rotated 90
degrees around their z-axis to create a different distribution. In Sequence 3, the
objects are repositioned 2 meters away from the ego-vehicle.

Scenario D2 RMSE (m) MEAN (m) STD (m)
Sequence 1 0.00357 1.330 0.632 1.170
Sequence 2 0.00630 0.839 0.403 0.736
Sequence 3 0.00846 0.357 0.237 0.266

Table 4.6 shows the accuracy of LiDAR odometry under various relative velocity

conditions (illustrated in Fig. 4.20). The second column lists the different speeds

of the dynamic vehicles, while the third column presents the positioning results

of LiDAR odometry. The results for Sequences 1-5 in Table 4.6 indicate that the

presence of a single moving vehicle has minimal impact on state estimation. However,

when an additional vehicle moving at 5 m/s (related to ego-vehicle) is introduced on

the left, the positioning error increases to 4.375 meters, with a standard deviation of

3.699 meters. In Sequence 5, the error further escalates to 8.192 meters compared to

Sequence 4 as the speed increases. Interestingly, the positioning error is drastically

reduced to 0.408 meters, with a standard deviation of 0.271 meters. This significant

reduction could be due to the fact that outliers with large movements are identified

as corresponding features by the k-d tree data association algorithm.

In short, the positioning results are affected by the relative velocity factor, but

faster speed might not lead to worse results.

4) Analysis of Residuals

To show further details of three factors denominating the performance of LiDAR

odometry, we analyzed the residuals from evaluated scenarios, as illustrated in Fig.

4.23. The x-axis represents the residual values while the y-axis indicates the volume

associated with residuals in the histogram.

Firstly, Fig. 4.23 (a) presents the residuals associated with 20% of dynamic ob-
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Table 4.6: Performance of LiDAR odometry in terms of the relative velocity of
dynamic objects. D3 represents the relative speed of the dynamic objects, while
right and both represent the placement of the dynamic objects on the right side and
both sides.

Scenario D3 (m/s) RMSE (m) MEAN (m) STD (m)
Sequence 1 5, right 0.198 0.167 0.106
Sequence 2 10, right 0.181 0.153 0.097
Sequence 3 20, right 0.178 0.148 0.098
Sequence 4 5, both 4.375 2.336 3.699
Sequence 5 10, both 8.192 4.688 6.717
Sequence 6 20, both 0.408 0.305 0.271

jects. These dynamic objects are more easily identifiable due to their larger residuals,

resulting in minimal impact on the accuracy of LiDAR odometry, as indicated in Ta-

ble 4.4. However, as the number of dynamic objects increases, the identification of

outlier residuals becomes more challenging, as they tend to have values similar to

those of static features (Fig. 4.23 (b)-(c)), leading to significant positioning errors.

Secondly, Fig. 4.23 (d)-(f) illustrates the residuals corresponding to different

D2 values. As shown in Fig. 4.23 (e), the residuals from dynamic objects increase

with a higher D2 value. Consequently, outliers can be more effectively managed if

the distribution of dynamic objects is less uniform, even when the total number of

dynamic objects remains the same.

Thirdly, Fig. 4.23 (g)-(i) illustrates the residuals associated with dynamic objects

at varying relative speeds. Notably, dynamic objects with higher relative speeds

exhibit fewer residuals compared to those with lower speeds. This suggests that

outliers characterized by rapid movement may not be effectively associated with the

corresponding features between consecutive frames.

Verification of Reweighting LiDAR Odometry

1) Verification of Proposed Method in the Mid-Dynamic Scene

To assess the effectiveness of the proposed reweighting method, experiments were
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Figure 4.23: Illustration of the residual distributions of the compared scenarios on a
single epoch. The x-axis represents the value of residuals. The y-axis indicates the
volume associated with each bin of the residuals in the histogram. The residuals from
static features are shown in green, and those from dynamic features are shown in
brown. The residuals are presented under scenarios (a) 20% of dynamic objects; (b)
50% of dynamic objects; (c) 80% of dynamic objects; (d) D2 value equals 0.00357;
(e) D2 value equals 0.00630; (f) D2 value equals to 0.00846; (g) right side dynamic
objects with relative speed 5 m/s; (h) both side dynamic objects with relative speed
10 m/s; (i) both side dynamic objects with relative speed 20 m/s. Note that some
residuals plots are not on the same scale for illustration purposes.

carried out in a mid-dynamic scene featuring 24% dynamic objects and 30% static

objects. Table 4.7 summarizes the positioning results for the four evaluated methods,

while Fig. 4.24 and Fig. 4.25 illustrate the positioning errors and trajectories of these

methods. The LO method produced an RMSE of 0.206 meters, with a standard devi-
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ation of 0.147 meters. By employing truncated least squares, the RMSE for T-LOAM

was improved to 0.096 meters, making it the most accurate among the four methods

tested. After dynamic object points were removed, the RMSE further decreased from

0.206 to 0.147 meters. With the introduction of the proposed reweighting method

(LO-RW), both the RMSE and standard deviation were further reduced to 0.118

meters and 0.033 meters, respectively. The LO-RW method demonstrated enhanced

performance, particularly in the turning area highlighted in Fig. 4.25. These findings

validate the effectiveness of the proposed method in mid-dynamic environments. To

further evaluate its performance, another challenging experiment is discussed in the

following section.

Table 4.7: Positioning results of the proposed method in the mid-dynamic scene
(24% dynamic points).

Results LO T-LOAM LO-R LO-RW

RMSE (m) 0.206 0.096 0.147 0.118
MEAN (m) 0.144 0.081 0.142 0.113
STD (m) 0.147 0.053 0.038 0.033

Figure 4.24: Positioning error of the four methods. The x-axis and y-axis denote the
epoch and error, respectively.

2) Verification of Proposed Method in the High-Dynamic Scene
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Figure 4.25: 2D positioning trajectories of the four methods. The x-axis and y-axis
denote the x and y directions, respectively. The black curve represents the ground
truth.

To further challenge the performance of the proposed method, an experiment was

conducted in a highly dynamic environment with 40% moving objects. The results,

shown in Table 4.8, highlight the effectiveness of the proposed LiDAR odometry

approach. T-LOAM failed to optimize the trajectory, as seen in Fig. 4.27, due to in-

correct outlier rejection in the presence of a large number of dynamic objects. Using

the conventional LO method, an RMSE of 1.349 meters was obtained, with a stan-

dard deviation of 1.104 meters. This performance was worse than in the mid-dynamic

scene, owing to the excessive number of dynamic objects in this scenario. After ex-

cluding all dynamic objects with LO-R, the error decreased to 0.146 meters. With

the addition of object weighting optimization, the error was further reduced to 0.110

meters using LO-RW. The improvement in the results demonstrates the effectiveness

of the proposed method for LiDAR odometry in highly dynamic environments.

Fig. 4.26 and Fig. 4.27 show the positioning error and trajectories, respectively.

The more accurate trajectory is estimated using LO-RW with the help of dynamic

object reweighting. After applying the object reweighting, the positioning perfor-

mance of LiDAR odometry is improved significantly in the dynamic scene.
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Table 4.8: Positioning results of the proposed method in the high-dynamic scene
(40% dynamic points).

Results LO T-LOAM LO-R LO-RW

RMSE (m) 1.340 5.660 0.146 0.110
MEAN (m) 0.759 5.555 0.141 0.112
STD (m) 1.104 1.084 0.035 0.041

Figure 4.26: Positioning error of the four methods. The x-axis and y-axis denote the
epoch and error, respectively.

3) Verification of Proposed Method using nuScenes Dataset

To evaluate the performance of the proposed method in challenging conditions,

the third experiment was conducted combined with simulated dynamic objects from

the nuScenes [106] Dataset. The positioning results are presented in Table 4.9. The

conventional LO method yielded an RMSE of 2.592 meters, accompanied by a stan-

dard deviation of 1.755 meters. Similar to the high-dynamic scenario, T-LOAM

struggled to optimize the trajectory, leading to substantial errors. The performance

of LO-R was inferior to that of LO due to a lack of constraints after removing all

vehicle points, as shown in Fig. 4.28-(b). In contrast, LO-RW achieved the best accu-

racy with an RMSE of 0.729 meters, benefiting from the reweighting strategy. These

results confirm the effectiveness of the proposed method across extensive datasets.

Fig. 4.9-(d) shows the final weighting assigned to all objects in the nuScenes dataset.
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Figure 4.27: 2D positioning trajectories of the four methods. The x-axis and y-axis
denote the x and y directions, respectively. The black curve represents the ground
truth.

Notably, most points from the front of the dynamic vehicle received low weight due

to inconsistencies, while points from the sides of the dynamic object were assigned

higher weights because the residuals of point-to-surface distances remained small,

despite the vehicle moving forward. Additionally, static features were assigned high

weights, positively contributing to the final optimization.

Table 4.9: Positioning results of the proposed method in the nuScenes dataset.

Results LO T-LOAM LO-R LO-RW

RMSE (m) 2.592 6.043 5.069 0.729
MEAN (m) 1.907 5.729 4.354 0.446
STD (m) 1.755 1.922 2.595 0.576

4) Analysis of Weighting and Residual

As mentioned in Section 4.3.4, the constant penalty parameter for adaptive

weighting is experimentally set to 0.1. Fig. 4.31 illustrates the weighting with differ-

ent penalty parameters in a single epoch. From Fig. 4.31-(a), it can be observed that

the weighting for dynamic objects is close to 1 when the penalty parameter is set to

1. The final residual in Equation 6 is significantly influenced by the penalty term

due to the large residual introduced by this parameter. As the penalty parameter
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Figure 4.28: The example cloud in nuScenes is shown in (a) with dense objects
marked in red; (b) illustrates the cloud after the removable objects have been re-
moved.

Figure 4.29: Positioning error of the four methods in nuScenes. The x-axis represents
the epoch, while the y-axis indicates the error. The orange box highlights the tunnel-
like area (see Fig. 4.28-a), which contains both dynamic and static objects. It has a
negative impact on state estimation.

decreases, the inconsistencies (car front and rear) of the dynamic objects between

consecutive epochs are assigned lower weights, as expected, as shown in Fig. 4.31-

(b). However, Fig. 4.31-(c) indicates that the weighting for both dynamic and static

objects approaches 0 when the penalty parameter is further reduced to 0.01, result-

ing in less constraint on state estimation. In other words, the performance of the

proposed method becomes similar to that of the LO-R method with dynamic object

removal.
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Figure 4.30: 2D positioning trajectories of the four methods in nuScenes. The x-axis
represents the x-direction, while the y-axis denotes the y-direction. The black curve
indicates the ground truth. The orange box highlights the area with a tunnel-like
scene (see Fig. 4.28-a). It has a negative impact on state estimation.

To evaluate the residual of the optimization after applying the dynamic object

reweighting method, Table 4.10 presents the residuals from different iterations with

respect to the estimated states for both static and object points. It can be observed

that the residuals for static points and total cost decrease gradually as the number

of iterations increases. The reweighting scheme provides a better initial guess for

static feature association, suggesting that the performance of the proposed method

can be further enhanced through coarse-to-fine optimization.

5) Analysis of Convexity

To prevent our solution from being trapped in a local minimum within the solu-

tion space, we investigate the convexity of the state estimation using the proposed

method. We introduced translation offsets of 10, 100, and 1000 meters to the initial

guess of the state following feature association. Table 4.11 displays the residuals

examined after each optimization using Ceres Solver. It can be observed that the

cost can be minimized after several iterations, even with an initial guess offset of

1000 meters. Therefore, we can conclude that our problem remains convex within a
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Figure 4.31: Illustration of the weighting effects based on different penalty parame-
ters during state optimization. (a) Penalty parameter k=1; (b) Penalty parameter
k=0.1 ; (c) Penalty parameter k=0.01. Lower weightings are indicated in red, while
higher weightings are marked in green.

range of less than 1000 meters.

6) Analysis of Computational Time Cost

To assess the computational efficiency of the proposed method, the computation

time for the evaluated methods is presented in Table 4.12. We compare the feature

extraction, optimization processes, and total odometry using our evaluated dataset.

During the optimization phase, our proposed LO-RW method required an additional

40 milliseconds compared to LO, primarily due to the estimation of more parame-
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Table 4.10: Residuals of the proposed method are analyzed in relation to iterations
within a single epoch. Each iteration utilizes the initial guess from the previously
estimated state.

Iteration
Static Resid-
ual (m)

Dynamic
Residual (m)

Total Residual
(m)

1 9.588 0.805 10.393
2 9.216 0.780 9.995
3 8.952 0.809 9.760
4 8.810 0.827 9.637
5 8.729 0.829 9.558
6 8.780 0.835 9.615
7 8.775 0.834 9.609
8 8.775 0.833 9.608

Table 4.11: Results of the cost based on various initial guesses within a single epoch.

Offset (m) Iteration Cost Cost Change

10

1 2.715e+05 /
2 42.508 2.71e+05
3 22.886 19.622
4 22.842 0.042

100

1 2.701e+07 /
2 86.257 2.70e+07
3 23.790 0.963
4 22.826 0.029

1000

1 2.684e+09 /
2 6.574e+05 2.68e+09
3 259.113 6.57e+05
4 24.997 234.116
5 22.679 2.318
6 22.659 0.020

ters. Overall, the performance of the proposed method remains suitable for real-time

applications.

4.4 Summary

Section 4.3 presents a comprehensive evaluation of how dynamic objects nega-

tively impact the performance of LiDAR odometry. By analyzing various scenarios,
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Table 4.12: The computation time for the evaluated methods is presented. MD
stands for mid-dynamic scene, while HD refers to the high-dynamic scene. ”ms”
denotes milliseconds. The odometry time is the sum of feature extraction time and
optimization time.

Results LO T-LOAM LO-R LO-RW
MD Feature Extraction

MEAN (ms) 14.5 24.4 14.8 15.0
MAX (ms) 20.6 48.0 22.4 22.1
STD (ms) 2.0 4.1 2.1 2.1

MD Optimization
MEAN (ms) 72.1 36.6 71.5 111.7
MAX (ms) 96.9 67.0 100.0 175.2
STD (ms) 13.3 5.2 11.7 20.1

MD Odometry
MEAN (ms) 86.6 61.0 86.3 126.7

HD Feature Extraction
MEAN (ms) 15.4 24.6 15.5 15.4
MAX (ms) 22.0 43.0 21.2 21.0
STD (ms) 1.8 3.7 2.1 2.1

HD Optimization
MEAN (ms) 82.9 48.0 71.8 116.3
MAX (ms) 111.8 73.0 108.5 196.3
STD (ms) 17.2 12.0 15.8 26.9

HD Odometry
MEAN (ms) 98.3 72.6 87.3 131.7

this section highlights the specific challenges posed by dynamic elements in urban

environments. In contrast to the work discussed in Section 4.2, this study proposes

a reweighting strategy for dynamic objects, which enables the system to adaptively

adjust the influence of these objects during state estimation. This approach results in

significantly improved accuracy in both highly dynamic and adverse scenes. The ex-

perimental results in our UrbanNav dataset and the open-sourced nuScenes dataset

demonstrate the effectiveness of the proposed method, which outperforms both tra-

ditional approaches and those involving dynamic object removal [16]. By effectively

addressing the complexities introduced by dynamic objects, our method enhances

the reliability and robustness of LiDAR odometry, paving the way for more accurate
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navigation in challenging urban areas.
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Chapter 5

LiDAR Aided Cycle Slip Detection

for GNSS Real-time Kinematic
Positioning in Urban Areas

5.1 Introduction

Existing GNSS positioning methods typically utilize EKF [24] or FGO [111] to esti-

mate the position of the GNSS receiver, achieving meter-level accuracy [112; 113; 114]

through pseudorange and Doppler measurements. To enhance GNSS positioning ac-

curacy, GNSS-RTK techniques have been introduced [115], enabling centimeter-level

positioning to meet the navigation requirements of autonomous systems. Specifically,

GNSS-RTK mitigates systematic errors by applying the DD operation [24] between

observations from a reference station and those from the user. Ideally, centimeter-

level accuracy can be attained in open areas when high-resolution DD carrier-phase

and pseudorange measurements are employed, provided that the integer ambiguities

associated with the DD carrier-phase are correctly resolved, resulting in a fixed solu-

tion. However, the accuracy of GNSS-RTK positioning is significantly compromised

in urban environments, such as Hong Kong, due to excessive cycle slips [116] caused

by signal reflections from buildings. The estimation of the fixed solution for GNSS-

RTK heavily relies on integer ambiguity resolution, which assumes that the resolved
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integer ambiguity remains constant [24]. Unfortunately, this assumption is often

violated in the presence of cycle slips, leading to substantial errors in GNSS-RTK

if these slips are not properly detected prior to ambiguity resolution. For instance,

even a single cycle slip can introduce a range error of up to 19 centimeters for GPS

L1 measurements [117]. There are three major sources [118] of cycle slips. First of

all, the cycle slips are caused by signal reflection due to the buildings, bridges, trees,

etc., which are common elements in urban environments. Secondly, the cycle slip

can suffer from signal-to-noise ratio (SNR) losses due to the multipath, satellite with

low elevation angle, or high dynamics of the receiver. Third, false signal processing

[119] might occur because of the receiver software failure. In short, effective cycle slip

detection is crucial for achieving precise GNSS-RTK positioning in urban canyons.

To mitigate the errors caused by cycle slips, numerous studies [117; 120] have fo-

cused on detecting these inconsistencies. The underlying principles of these methods

are generally similar, as they leverage additional information or sensors to identify

discrepancies in carrier-phase measurements. For instance, Bisnath [120] and Gao

[121] utilized DD observations to detect cycle slips through L1 and L2 observable

combinations using typical dual-frequency GNSS receivers. Additionally, Blewitt

[122] introduced the TurboEdit method, which employs undifferenced dual-frequency

carrier-phase data to identify cycle slips. However, these methods are specifically de-

signed for dual-frequency systems and are not applicable to single-frequency receivers.

For single-frequency receivers, techniques such as code-phase difference, Doppler in-

tegration, and time difference of carrier-phase measurements can be employed [123]

to detect cycle slips. However, these methods also have limitations. The code-phase

difference is often ineffective at detecting small cycle slips due to significant noise in

code measurements. While Doppler observations are generally resilient to cycle slips

[119] and can be combined with carrier measurements, they still struggle to detect

small cycle slips [117] and are susceptible to multipath effects in urban environments.

— 89 —



CHAPTER 5. LIDAR AIDED CYCLE SLIP DETECTION FOR GNSS
REAL-TIME KINEMATIC POSITIONING IN URBAN AREAS PhD Thesis

Similarly, the time difference of carrier-phase measurements shows inadequate detec-

tion accuracy in high-dynamic conditions, such as those encountered in autonomous

applications. In summary, the accuracy of cycle slip detection for small slips and

under high receiver dynamics remains limited.

To address these limitations, some researchers [124; 125] have integrated inertial

navigation systems (INS) with GNSS receivers for cycle slip detection. The INS pro-

vides high-frequency relative position data by integrating acceleration and rotation

measurements based on the previous position obtained from the GNSS system. By

comparing the geodetic range between the satellite and the INS-predicted state with

the carrier-phase measurements, the probability of cycle slips can be assessed. How-

ever, a standard automobile-level INS may not suffice, as its performance heavily

depends on the correction of internal biases [126] in the accelerometers and gyro-

scopes. In summary, these methods often incur significant costs due to the reliance

on high-quality INS.

Recently, LiDAR sensors have gained popularity in autonomous systems due

to their ability to provide accurate and high-frequency LO [18]. The LO method

estimates the state by accumulating relative transformations between consecutive

frames. Our previous work [1] demonstrated that LiDAR sensors can achieve accu-

rate relative state estimation in urban environments. Inspired by this, this chapter

proposes a method for detecting cycle slips using time-differenced carrier-phase mea-

surements in conjunction with LiDAR odometry. The precise LiDAR pose estimation

is utilized to determine the relative motion of the GNSS receiver. Cycle slip detec-

tion is performed by comparing consecutive epochs of LiDAR-predicted ranges with

the received carrier-phase measurements. Once cycle slips are identified, the integer

ambiguity can be re-estimated to obtain a fixed solution for GNSS-RTK.
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5.2 Methods

The proposed framework is illustrated in Fig. 5.1. The pipeline consists of two main

components: (1) the predicted state derived from LiDAR odometry and orientation

provided by the attitude and heading reference system (AHRS) [127], and (2) cycle

slip detection based on the time difference between DD carrier-phase measurements

and DD LiDAR-derived ranges. The difference between two DD measurements taken

over different epochs is referred to as the triple difference. The primary purpose of

using the triple-difference method is to eliminate systematic errors. Note that the

relative pose estimation concerning the LiDAR local frame should be transformed

into the GNSS global frame before its utilization in cycle slip detection. To achieve

this, the orientation from the AHRS is directly adopted. The system inputs include

point cloud data from the LiDAR sensor, orientation from the AHRS, and raw mea-

surements from the GNSS receiver and the reference station. The pose estimated by

LiDAR odometry is aligned with the ECEF frame, corresponding to the light-blue

boxes in Fig. 5.1, which will be discussed in subsequent sections. Cycle slip de-

tection is performed by comparing the triple-differenced carrier-phase measurements

with predictions from the LiDAR odometry, as represented by the light-yellow boxes

in Fig. 5.1. Finally, the ambiguity is re-estimated to achieve a fixed solution.

5.2.1 State Estimation Based on LiDAR Odometry

This section outlines the methodology of LiDAR odometry and the transformation

between the LiDAR and ECEF frames. The study in [18] demonstrated that LiDAR

odometry can achieve low-drift state estimation in urban environments.

ECEF Transformation

Given the pre-calibrated extrinsic parameters among the LiDAR, AHRS, and GNSS

receiver, the LiDAR pose in the LiDAR frame can be transformed into the receiver
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Figure 5.1: Overview of LiDAR-aided cycle slip detection. WLS denotes the weighted
least squares method.

pose in the ENU frame as follows,

xenu
r,t “

„

Renu
I 0
0 1

ȷ

4ˆ4

Tr
IT

I
Lx

L
t (5.1)

where TI
L is extrinsic to transform the pose from the LiDAR frame to the AHRS

frame. Tr
I is the extrinsic parameter between the AHRS and the antenna of the

GNSS receiver. Renu
I is obtained by AHRS orientation estimation.

The origin of the ECEF coordinate system is located at the Earth’s center of

mass based on the WGS 84 ellipsoid [128]. To transform coordinates from ENU to

ECEF, a reference point in the ENU system is required. The first fixed solution, PG
fix

obtained through RTK-GNSS, is selected as the reference point for the ENU frame.

The state in the ENU frame can be converted to the ECEF frame as outlined in

[129],

PG
r,t “

»

–

´ sinλ ´ sinϕ cosλ cosϕ cosλ
cosλ ´ sinϕ sinλ cosϕ sinλ
0 cosϕ sinϕ

fi

fl tranpxenu
r,t q ` PG

fix (5.2)

where the ϕ and λ denote the geodetic latitude and longitude of the reference point,
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respectively. Note that the first point is selected as the reference point in this section.

The operator tranp˚q is defined as the translation of the state.

5.2.2 LiDAR-Aided Cycle Slip Detection

Cycle Slip Detection Aided by LiDAR Sensor

A carrier-phase measurement in units of length from the GNSS receiver can be ex-

pressed as [130],

ϕs
r,t “ rsr,t ` cpδrr,t ´ δsr,tq ´ Isr,t ` T s

r,t ` λsN s
r,t ` ϵsr,t (5.3)

where λs denotes the carrier wavelength of the corresponding GNSS signal. rsr,t is

the range distance between the satellite and the GNSS receiver. c denotes the speed

of light. δrr,t and δsr,t represent the receiver clock bias and the satellite clock bias,

respectively. Isr,t and T s
r,t represent the delay due to ionospheric and tropospheric

layers, respectively. N s
r,t is the integer ambiguity value of the carrier-phase. ϵsr,t

denotes the unmodeled error such as receiver thermal noise and multipath.

An overview of DD carrier-phase measurement is illustrated in Fig. 5.2. The sin-

gle difference between the receiver and base station using a common master satellite

eliminates satellite bias, as well as ionospheric and tropospheric effects. Typically,

the satellite with the highest elevation angle is chosen as the master satellite, which

is the approach followed in this section. The receiver clock bias is further removed

by applying a between-satellite single difference. The DD carrier-phase measurement

for GNSS-RTK can be formulated as follows [112],

∆∇ϕs
r,t “

`

ϕs
r,t ´ ϕs

b,t

˘

´
`

ϕw
r,t ´ ϕw

b,t

˘

“ ∆∇rsr,t ` λ∆∇N s
r,t ` ∆∇ϵsr,t (5.4)

where the satellite w denotes the master satellite, selected based on the highest

elevation angle. ∆∇N s
r,t represents the DD ambiguity that must be resolved to obtain
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the fixed solution. ∆∇ϵsr,t denotes the noise associated with the DD carrier-phase

measurements.

Given the LiDAR-predicted receiver pose in the ECEF frame, as derived in Equa-

tion 5.2, the range distance from satellite s to the receiver is calculated as,

ϕ1s
r,t “

∥∥Ps
t ´ PG

r,t

∥∥ “

b

pP s
t,x ´ PG

r,t,xq2 ` pP s
t,y ´ PG

r,t,yq2 ` pP s
t,z ´ PG

r,t,zq2 (5.5)

where the ϕ1s
r,t is the LiDAR-determined range distance between satellite and receiver.

Ps
t “ pP s

t,x, P
s
t,y, P

s
t,zq and PG

r,t “ pPG
r,t,x, P

G
r,t,y, P

G
r,t,zq are the position of the satellite

and the receiver in the ECEF frame, respectively. Therefore, the predicted DD range

measurement aided by LiDAR sensors can be expressed as,

∆∇ϕ1s
r,t “ pϕ1s

r,t ´ ϕ1s
b,tq ´ pϕ1w

r,t ´ ϕ1w
b,tq (5.6)

Fig. 5.2 illustrates the difference of DD carrier-phase measurement, so-called the

triple difference measurements, between two successive epochs, which can be ex-

pressed as follows,

δ∆∇ϕs
r,t “ ∆∇ϕs

r,t ´ ∆∇ϕs
r,t´1

“ ∆∇rsr,t ´ ∆∇rsr,t´1 ` λ
`

∆∇N s
r,t ´ ∆∇N s

r,t´1

˘

` δ∆∇εsr,t

(5.7)

δ∆∇ϵsr,t indicates the change in the unmodeled DD error between consecutive epochs.

Similarly, the time-differenced LiDAR-predicted range can be expressed as,

δ∆∇ϕ1s
r,t “ ∆∇ϕ1s

r,t ´ ∆∇ϕ1s
r,t´1 (5.8)

Given that LiDAR odometry can provide highly accurate relative motion between

two frames with a short time difference, the ∆∇rsr,t should equal to ∆∇ϕ1s
r,t. The

difference between δ∆∇ϕs
r,t and δ∆∇ϕ1s

r,t can be denoted as,
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Figure 5.2: Illustration of triple-differenced carrier-phase measurements.

dsδϕ,t “ δ∆∇ϕs
r,t ´ δ∆∇ϕ1s

r,t “ λp∆∇N s
r,t ´ ∆∇N s

r,t´1q (5.9)

where the dsδϕ,t represents the difference between the triple-differenced carrier-phase

measurements and LiDAR-predicted range measurements, referred to as DCL. When

the carrier-phase measurement is free of cycle slips, the DD ambiguity ∆∇N s
r,t re-

mains constant across consecutive epochs. As a result, the DCL residual should

remain small if there is no cycle slip. Therefore, Equation 5.9 can be used to detect

cycle slips if dsδϕ,t exceeds an experimentally determined threshold TDCL,

|dsδϕ,t| ą TDCL (5.10)

GNSS-RTK Positioning Aided by Cycle Slip Detection

GNSS-RTK positioning involves two key steps: float state estimation and integer

ambiguity resolution. The first step uses WLS [24] to estimate the float solution. In
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the second step, the integer ambiguity resolution (AR) is carried out using the least-

squares ambiguity decorrelation adjustment (LAMBDA) algorithm [130] algorithm

in the second stage. If a cycle slip occurs, the AR must be reprocessed to obtain a

fixed solution. The GNSS-RTK implementation is based on RTKLIB [24].

Cycle slip detection using LLI: The receiver provides a Loss of Lock Indicator

(LLI) indicator representing the status of cycle slips. As defined by the Receiver

Independent Exchange Format (RINEX) 3.03 [131], 3 bits are used for cycle slip

detection. If the bits are set to 0 or left blank, it indicates either no cycle slip or an

unknown status. Bit 0 being set indicates a potential cycle slip, while bit 1 signals

the presence of a half-cycle ambiguity or slip. Additionally, bit 2 is set when BOC

tracking occurs on an MBOC-modulated signal [131]. In urban environments, cycle

slips are often flagged by the LLI due to signal reflections from nearby buildings.

5.3 Performance Evaluation

5.3.1 Experiment Setup

To validate the performance of the proposed LiDAR-aided cycle slip detection method,

we conducted experiments in typical urban environments in Hong Kong using our

open-source UrbanNav [3] datasets. These datasets include measurements from

multi-GNSS receivers, an INS, cameras, and multiple LiDAR sensors. The GT posi-

tioning was obtained using the NovAtel SPAN-CPT, which integrates a fiber optic

gyroscope with GNSS-RTK, as shown in Fig. 5.3. To maximize trajectory accuracy,

we post-processed the GT data from the SPAN-CPT using the state-of-the-art No-

vAtel Inertial Explorer software. In this experiment, a commercial u-blox F9P GNSS

receiver was employed to collect raw measurements from GPS and BeiDou at a fre-

quency of 1 Hz, while the LiDAR operated at a frame rate of 10 Hz. Additionally,

the GNSS time and LiDAR timestamps were hardware-synchronized [109] during
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data collection. The extrinsic parameters of the GNSS receiver, LiDAR sensor, and

NovAtel SPAN-CPT were calibrated in advance.

Figure 5.3: Left: Setup of the sensor platform, which includes a u-blox F9P receiver,
Velodyne HDL-32E 3D LiDAR, and ground truth positioning provided by the SPAN-
CPT. Right: A typical urban environment in Hong Kong for evaluation.

5.3.2 Evaluation Metrics and Methods

Cycle Slip Ground Truth Labeling

To validate the effectiveness of the proposed cycle slip detection method, we use

ground truth positioning data from the NovAtel SPAN-CPT to label cycle slips.

Specifically, the relative pose from the ground truth estimation is substituted for

LiDAR odometry in Equation 5.7.

The range measurement between the satellite and the receiver at epoch t can be

obtained using Equation 5.5, after transforming the SPAN-CPT data to the receiver’s

antenna. Furthermore, the triple-difference ground truth-based range measurement

can be computed from the DD range measurements across consecutive epochs.

Recall Equation 5.7, the difference dsδϕ,gt,t between the triple-differenced carrier-

phase δ∆∇ϕs
r,t and GT-based range measurement δ∆∇rsr,t can be expressed as fol-

lows,

dsδϕ,gt,t “ δ∆∇ϕs
r,t ´ δ∆∇rsr,t “ λp∆∇N s

r,t ´ ∆∇N s
r,t´1q (5.11)

dsδϕ,gt,t can be used to label the cycle slips when the threshold is exceeded.
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Performance Evaluation of the GNSS-RTK Cycle Slip Detection

In this work, the performance evaluation of the LiDAR-aided GNSS-RTK cycle slip

detection method is based on the cycle slip ground truth labeling results from the

previous section. We evaluate only the data epochs where DD measurements are

available in consecutive epochs, as the ground truth labeling relies on the triple-

differenced measurements. The accuracy of the cycle slip detection can be defined

as follows:

Pdr “
Ncs X Ngt

Ngt

(5.12)

where Pdr denotes the percentage of detection rate. Ncs denotes the amount of cycle

slip satellites detected using the proposed method. Ngt denotes the number of cycle

slip satellites detected using the ground truth labeling in the previous Section. A

higher value of Pdr means a larger overlapping level of the cycle slip detection and

GT labeling.

To evaluate the contributions of the proposed method in cycle detection, the

following methods are evaluated:

• LLI: The cycle slips are marked by the LLI flags.

• LAD: The proposed LiDAR-aided cycle slip detection scheme.

Performance Evaluation of the GNSS-RTK Positioning

The fixed solution is determined using raw measurements from both the user’s GNSS

receiver (rover) and the base station’s GNSS receiver through RTKLIB [24]. The

configuration for RTKLIB evaluation is detailed in Table 5.1.

For improved classification, the availability and fixing rate of GNSS-RTK is also

defined. Availability Pa is calculated as the percentage of epochs Nsol successfully
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Table 5.1: Process Setting in RTKLIB

Parameter Value Parameter Value
Positioning
Mode

Kinematic Satellite System GPS/Beidou

Ionosphere
Model

Broadcast Frequency L1

Troposphere
Model

Saastamoinen
Model

Elevation Mask 15 degrees

Integer Ambigu-
ity Resolution

Fix and Hold Ephemeris
Hong Kong Land De-
partment

Min Ratio to Fix
Ambiguity

3.0 Filter Type Forward

resolved by RTKLIB, divided by the total number of epochs Neph in the GNSS

measurement,

Pa “
Nsol

Neph

(5.13)

The fixing rate Pfix is defined as the percentage of epochs where the integer fixed

successfully Nfix, divided by the total number of epochs Nsol,

Pfix “
Nfix

Nsol

(5.14)

To validate the contributions of the proposed method, we evaluate the following four

approaches:

1. RTKLIB: This conventional GNSS-RTK positioning method [24] uses LLI to

detect cycle slips. If a cycle slip occurs, the ambiguity will be re-estimated.

2. RTK-LA: This method involves GNSS-RTK positioning with LiDAR-aided

cycle slip detection only. Ambiguity re-estimation occurs if a cycle slip is

detected.
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3. RTK-LAE: This approach combines LiDAR-aided cycle slip detection with

LLI flags. Satellites identified with cycle slips are excluded from position esti-

mation.

4. RTK-LAR: The proposed method integrates LiDAR-aided cycle slip detection

with LLI flags. If a cycle slip is detected, the estimated ambiguity is reset and

re-fixed.

5.3.3 Experimental Evaluation in Urban Environments

The experiment was conducted in a 675-meter path within an urban area of Kowloon

Town, Hong Kong. An example scenario is depicted on the right side of Fig. 5.3.

The environment, characterized by numerous trees and buildings, represents a typical

urban setting where frequent cycle slips occur.

GNSS-RTK Cycle Slip Detection in Urban Areas

The results of cycle slip detection using the LLI and LiDAR-aided methods are

presented in Table 5.2. A total of 104 cycle slips were labeled by the ground truth

out of 1,235 measurements, indicating that cycle slips accounted for 8.4% of this

dataset. Among these, 33 common-view measurements were identified from the

402 LLI slip detections based on the ground truth labeling. The remaining 369

LLI flags were not included in the cycle slip comparison because the ground truth

labeling only considers successive carrier-phase measurements. In other words, LLI

flags from unlabeled measurements were not taken into account. With the help of

LiDAR odometry, the RTK-LA method successfully identified 94.2% of the cycle

slips, whereas only 10.6% were detected by LLI flags. Additionally, we observed

that the number of cycle slips indicated by LLI is considerably higher than the

number labeled by the ground truth or detected by the LiDAR-aided method. This

discrepancy arises because cycle slips are often produced and flagged by LLI at the
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onset of signal tracking or in low SNR conditions typical of urban environments.

Table 5.2: Performance evaluation of cycle slip detection in the urban environment.
Ncs X Ngt denotes the number of cycle slip satellites detected by both the proposed
method and the ground truth labeling from the previous section.

Results
Ground Truth
Labeled

LLI LAD

Number of Detection 104 402 105
Number of Correctly De-
tected, Ncs X Ngt

/ 33 98

Detection Rate Pdr / 10.6% 94.2%

Fig. 5.4 and Fig. 5.5 illustrate the cycle slip detection results for G01 and C11,

respectively. Most cycle slips can be identified based on the experimental threshold,

marked in red dash-dot at 0.57 m (equivalent to 3 cycles for L1 measurements).

Notably, the majority of LLI flags in G01 and C11, are highlighted in the red boxes

of Figs. 5.4 and 5.5, are detected at the beginning of tracking or during periods

of discontinuous measurement in urban environments. In contrast, the RTK-LA

method effectively detects cycle slips during continuous measurements. In summary,

the cycle slip detection capabilities of LLI flags and the LiDAR-aided approach could

complement each other for GNSS-RTK positioning.

GNSS-RTK Fixing rate and Positioning results in Urban Areas

To effectively evaluate the cycle slip detection capabilities of the LLI and LiDAR-

aided methods, several positioning approaches are assessed to explore their combi-

nation. The results of the fixing rates for the four methods are presented in Table

5.3. The proposed RTK-LAR achieved a fixing rate of 25.25%, the highest among

the evaluated GNSS-RTK methods. In contrast, RTK-LA performed poorly regard-

ing the fixing rate due to some discontinuous carrier-phase measurements, which

impacted the usability of the proposed triple-differenced formulation. RTK-LAE

demonstrated better performance by excluding measurements from satellites with
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Figure 5.4: The cycle slip detection results for satellite G01. The x-axis represents
GPS seconds, the left y-axis shows the absolute value of the DCL residual, and the
right y-axis indicates the LLI flag. The red dash-dot line denotes the threshold for
cycle slips in DCL residuals, set at 0.57 m..

cycle slips. However, it suffered from lower availability, as it excessively excluded all

measurements with detected cycle slips.

Table 5.3: Performance evaluation of GNSS-RTK in terms of fixing rate and 2D
position error.

Results RTKLIB SPP-
INS
[132]

PPK-
INS
[132]

RTK-
LA

RTK-
LAE

RTK-
LAR

Availability
Pa

99.02% 93.14% 93.14% 99.02% 97.55% 99.02%

Fixing Rate
Pfix

7.92% / 10% 3.96% 14.57% 25.25%

Improvement
of Fixing
Rate

/ / 2.08% -3.96% 6.65% 17.33%

MEAN (m) 1.298 4.822 0.963 2.715 1.173 1.118
STD (m) 2.459 2.536 1.658 3.590 2.451 2.446
Improvement
of Positioning

/ / 25.81% / 9.64% 13.86%

In terms of positioning accuracy, the RTK-LAR method outperforms other ap-

proaches, achieving a mean error of 1.118 m and a 13.86% improvement in mean

positioning error compared to conventional GNSS-RTK, as shown in Table 5.3. The
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Figure 5.5: The cycle slip detection result for satellite C11. The x-axis represents
GPS seconds, the left y-axis shows the absolute value of the DCL residual, and the
right y-axis indicates the LLI flag. The red dash-dot line denotes the threshold for
cycle slips in DCL residuals, set at 0.57 m.

commonly used INS-aided PPK-INS loosely coupled solutions [132] offer superior

positioning performance compared to LiDAR-aided GNSS-only solutions, as they

integrate GNSS with accelerometer and gyroscope data, enabling improved position

and orientation estimation while also detecting cycle slips through GNSS carrier-

phase cross-checking.

Fig. 5.6 and Fig. 5.7 illustrate the trajectories and positioning errors for the listed

methods, respectively. The RTK-LAR method, aided by LiDAR cycle slip detection,

provides a more accurate trajectory estimate, particularly in the areas highlighted

in Fig. 5.6. The implementation of LiDAR-aided cycle slip detection significantly

enhances GNSS-RTK positioning performance in this urban environment, especially

in the regions marked in purple and orange in Figs. 5.6 and 5.7. However, unsatis-

factory positioning accuracy is observed in the grey area of these figures, attributed

to excessive signal reflections. Consequently, integrating additional onboard sensors,

such as an IMU [132], is essential for improving state estimation performance.
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Figure 5.6: 2D positioning trajectories of the listed methods. The x-axis and y-axis
represent the east and north directions, respectively. The black curve indicates the
ground truth positioning. The areas marked in grey, purple, and orange correspond
to three typical urban environments.

5.4 Summary

Cycle slips pose a significant challenge in GNSS-RTK systems, especially in urban

environments where signal reflections are common. When cycle slips go undetected,

they can adversely affect both the fixing rate and positioning accuracy, resulting in

unreliable navigation solutions. Consequently, effective cycle slip detection is crucial

for enhancing the overall performance of GNSS-RTK systems.

In this chapter, we propose a novel cycle slip detection method that leverages

predicted triple-differenced range measurements obtained from a LiDAR sensor. This

innovative approach shows promising results, achieving a satisfactory fixing rate and

accurate state estimation in urban areas. By effectively addressing the issue of cycle

slips, our method improves the reliability and robustness of GNSS-RTK systems,

particularly in challenging environments.
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Figure 5.7: 2D positioning errors of the listed methods. The x-axis and y-axis denote
the epoch and 2D error, respectively. The areas marked in grey, purple, and orange
represent the corresponding area in Fig. 5.6, respectively.
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Chapter 6

Roadside Infrastructure Assisted
Navigation in Urban areas

6.1 Introduction

With the rapid advancement of RSU and 5G V2X technology, vehicle-infrastructure

cooperation has garnered significant attention for its potential to enhance sensing ca-

pabilities, supporting various downstream applications for autonomous driving. Fig.

6.1 illustrates the proposed Vehicle-to-Infrastructure (V2I) system concept. Intelli-

gent street poles are equipped with RSU devices, edge sensors, and a Multi-Lamp

Poles Sensor Fusion Server (MLP-SFS), while the multi-sensory vehicle platform fea-

tures an OBU for V2X communication. Roadside infrastructure plays a crucial role

in smart cities and will be deployed at scale to facilitate V2X cooperation, which

is outlined in the smart mobility roadmap for Hong Kong [32], announced by the

Hong Kong Transport Department. Inspired by this initiative, we aim to investi-

gate the potential of roadside infrastructure to enhance navigation performance in

urban areas. Firstly, we explore the use of roadside LiDAR to provide accurate state

information, which serves as a global constraint in LIO graph-based optimization.

Secondly, we incorporate consistent DD observations provided by roadside GNSS,

which are jointly optimized within the factor graph framework. Finally, we introduce
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an error-map-aided multi-sensor integrated system that leverages error information

collected by sensor-rich autonomous vehicles. This error information is uploaded to

the roadside infrastructure and subsequently distributed to autonomous vehicles.

Figure 6.1: Illustration of the Vehicle-Infrastructure Cooperation System in Hong
Kong C-V2X testbed. The multi-sensory vehicle platform is equipped with an OBU
that communicates with the RSU through a 5G V2X network operating in the 5905-
5925 MHz frequency range. The Multi-Lamp Poles Sensor Fusion Server (MLP-SFS)
processes edge sensing data in real-time. Sensing information is shared between
vehicles and infrastructure over a low-latency network. The communication range
for RSUs is 500 meters, while for OBUs, it is 200 meters. The direct C-V2X (PC5)
communication delay is less than 20 ms.

6.2 Roadside Infrastructure assisted LiDAR/Inertial-

based Mapping for Intelligent Vehicles in Ur-

ban Areas

To mitigate error accumulation in LiDAR-based odometry, numerous methods [11;

9; 133] have been proposed to correct accumulated drift. One common approach is

to loosely integrate GNSS with LIO [134] using factor graph optimization to provide

global pose constraints. However, the effectiveness of such methods is difficult to

guarantee in urban areas, where GNSS performance is significantly degraded due
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to NLOS conditions and multipath effects [25]. The study in [135] explored loop

closure factor constraints to reduce drift accumulation. Unfortunately, revisiting

routes is not always available for mapping tasks in urban environments. Another

research team [136] proposed using globally consistent LiDAR matching to minimize

residuals between frames across the entire map. However, this approach is still

impacted by unexpected outliers, such as dynamic objects. In summary, existing

LiDAR-based mapping and localization solutions relying on onboard sensors from a

single vehicle face challenges in complex urban scenarios. To address the limitations

of LiDAR-based mapping using onboard sensors, this work proposes an RSI-assisted

LIO method for urban mapping and localization. This approach leverages global

constraints provided by RSI based on point registration between the ego-vehicle and

RSU point clouds. The drift in the LIO is corrected by the registered absolute

positioning with the assistance of the RSIs. To evaluate the performance of our

proposed method, we collected multi-view RSIs and vehicle sensor data in the Hong

Kong C-V2X testbed [137]. The contributions of this work are highlighted as follows:

1. We present the deep learning-based vehicle detection framework using multi-

RSI LiDARs, which provides an accurate initial guess for aligning the ego-

vehicle and RSI LiDAR clouds.

2. We propose an RSI-assisted LIO to reduce global drift using the global con-

straint provided by the point cloud registration between the vehicle and RSI.

3. We extensively validate the effectiveness of the proposed method using the real-

world data collected in the Hong Kong C-V2X testbed. The results demon-

strate that the positioning performance is significantly improved aided by the

RSI in challenging urban areas. We also open-sourced our data at https:

//github.com/DarrenWong/RSI-aided_LIO to benefit the research society.
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6.2.1 Method

Overview of the Proposed Architecture

An overview of the proposed system is illustrated in Fig. 6.2. The system com-

prises two main components: (1) vehicle detection and tracking using multi-RSI

point clouds, and (2) LIO aided by global constraints from RSIs. The system inputs

include the vehicle’s LiDAR point cloud, IMU measurements, and roadside LiDAR

point clouds collected from multiple RSUs. First, the Cloud Fusion module inte-

grates point clouds from multiple RSIs to generate a unified representation. These

fused RSI point clouds are then used for vehicle detection and tracking. The detected

vehicle poses serve as an initial guess for aligning the onboard local map with the

multi-RSI point clouds, as described in the Point Cloud Registration module. Fi-

nally, the registered vehicle pose is utilized as an absolute constraint in factor graph

optimization, ensuring accurate positioning.

Figure 6.2: Overview of the proposed pipeline. TR
car det indicates object detection in

the RSI base frame. TW
R1, T

W
R2 and TW

bk
denote the RSI1 pose, RSI2 pose and vehicle

IMU body in the world frame. The data transmission delay between the AV and
RSIs is around 20 milliseconds
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RSI-based Object Detection and Tracking

To minimize the “blind zones” created by static traffic elements and moving dynamic

objects, it is essential to optimally deploy a set of RSIs and LiDAR sensors through-

out the area to generate a precise and comprehensive point cloud map of the specific

traffic environment. By merging point clouds from different RSI LiDAR systems, a

dense map of the area is created, facilitating various downstream tasks related to

autonomous vehicles. The initial translation matrix for the multi-RSI LiDARs can

be derived by aligning multiple landmark points located within overlapping FOV.

The extrinsic matrix between two RSI LiDARs can be further optimized using the

ICP method [33].

min
TR1

R2

NR1,2
ÿ

i“1, p
R1,Lk
i ϵPR1,Lk ,p

R2,Lk
i ϵPR2, Lk

›

›

›
pR1,Lk
i ´ TR1

R2p
R2,Lk
i

›

›

›

2

(6.1)

where TR1
R2 represents the optimized registration between the point clouds of RSI1

and RSI2. NR1,2 indicates the total number of corresponding points from the RSIs.

PLk and PR,Lk denote the k-th frame of the vehicle’s LiDAR point cloud and the RSI

LiDAR point cloud, respectively. The i-th points in PLk and PR,Lk are represented

as pi
Lk and pi

R,Lk . The merged RSI point cloud MR,RLk in the RSI base frame can

then be computed as follows:

MR,RLk “ TR1
R2PR2,Lk

` PR1,Lk (6.2)

Fig. 6.3 illustrates the cloud fusion results in the base frame using the optimal

extrinsic parameters. It can be observed that the points corresponding to the road

curb (Fig. 6.3 (A)) and the roundabout (Fig. 6.3 (B)) are partially covered by

different RSI LiDAR systems, resulting in a single coherent model. With the pre-

calibrated RSI poses in the world coordinate system, the merged cloud or individual
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RSI cloud can be transformed into the global frame.

MW,RLk “ TW
R MR,RLk (6.3)

Figure 6.3: Illustration of the point cloud from multi-RSI LiDAR. The cloud is
merged by transforming the data from RSI1 (blue) and RSI2 (red) into the base
frame. The highlighted areas indicate that the point clouds of the road curb (A) and
roundabout (B) are well-aligned.

Object detection and tracking algorithm is then applied on the fused point cloud

MR,RLk . The tracking pipeline necessitates that objects be detected first, with the

detection results serving as inputs for the tracking algorithm.

3D object detection: The CenterPoint algorithm [138] was selected for object

detection using RSI LiDAR due to its efficiency and effectiveness. This two-stage

detector first identifies the center of each object and subsequently estimates attributes

such as the size and rotation of the 3D bounding box. Additional point features

are then utilized to refine these initial estimations. The detector exhibits robust

performance in identifying and localizing objects in 3D space, as demonstrated in

the Waymo Open Dataset [139] and our customized RSI data.

3D object tracking: 3D object tracking involves monitoring objects across

multiple point cloud frames over time, capturing their position, velocity, and other

attributes. Each object is tracked using a bounding box with a unique ID. To achieve
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this, we leverage the Simpletrack algorithm [140], which employs the “tracking-by-

detection” concept to maintain tracking performance while reducing computational

costs. Simpletrack [140] uses non-maximum suppression (NMS) to eliminate extrane-

ous boxes and retain valid boxes with low scores after processing the object detection

bounding boxes. Generalized IoU (GIoU) [141] serves as the association metric, and

the Hungarian algorithm [142] is utilized to match bounding boxes. The Kalman

Filter is then applied to estimate the motion of the bounding boxes in subsequent

frames. To manage the lifecycle of tracklets [141], a tracklet is initiated after three

consecutive matches and terminated after two misses. Finally, the specific ego-vehicle

can be identified through RSI with object tracking and V2X communication.

The factor graph of the proposed RSI-assisted LIO is illustrated in Fig. 6.4. It

is important to note that the RSI factor acts as a unary constraint within the state.

The process of RSI-assisted odometry comprises two main components: point cloud

registration aided by object tracking and a factor graph that incorporates the RSI

factor.

Figure 6.4: The graph of the RSI-assisted LIO. xi denotes the estimated state.

The accumulated vehicle-side local map MW,Lk at timestamp k can be expressed

as,

MW,Lk “

Ns
ÿ

s“1

TW
Ls
PLk,s (6.4)

where N s denotes the extracted N surrounding keyframes. TW
Ls

and PLk,s represent
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the pose and LiDAR point cloud of the corresponding keyframe s, respectively.

The vehicle local point cloud map MW,Lk can be transformed into the RSI frame

MR,Lk based on the vehicle tracking pose TR
V det and the TW

L ,

MR,Lk “ TR
V detT

V
L

`

TW
Lk

˘´1MW,Lk (6.5)

where TV
L indicates the extrinsic parameter of the vehicle center and its LiDAR. The

point clouds of the vehicle and RSI can be further aligned using point-based ICP [33]

after removing the ground points,

min
TR

Lk

NRL
ÿ

i“1

›

›

›
pR,Lk
i ´ TR

Lk
pRL,Lk
i

›

›

›

2

(6.6)

where TR
Lk

is the optimized alignment between RSI and vehicle LiDAR point clouds

at timestamp k. NRL, pR,Lk
i , and pRL,Lk

i indicate the total number of corresponding

points, points in merged RSI cloudMR,RLk , and merged vehicle cloudMR,Lk , respec-

tively. The details of the point cloud registration process are described in Algorithm

3.

Algorithm 3: Vehicle-RSI Point Cloud Registration

1: Inputs: multi-RSI clouds MR,RLk , vehicle local map MW,Lk

2: Outputs: TR
Lk

3: Step 1: Transform the MW,Lk from the world frame to the RSI frame MR,Lk

based on the detection information TR
V det using Equation 6.5.

4: Step 2: Remove the ground points of the MR,RLk and MR,Lk based on the
ground height.

5: Step 3: Search the corresponding points between MW
Lk

and MR
Lk

based on the
kd-tree.

6: Step 4: Iteratively compute the optimized TR
Lk

by minimizing the residuals
between the clouds from the vehicle and RSI using Equation 6.6.

The output of Algorithm 3 is the registered vehicle pose in the RSI frame. With

the pre-calibrated RSI positionTW
R in the world frame, the registered accurate vehicle
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pose T̂W
bk

can be further transformed into the world frame to form the RSI factor,

T̂W
bk

“ TL
b T

W
R TR

Lk
(6.7)

where TL
b indicates the extrinsic parameter of LiDAR and IMU. Finally, the cost

function of the proposed method aided by the RSI factor can be expressed as,

min
TW

bk

ˆ

›

›rL
`

TW
bk

˘
›

›

2

PL
`

›

›

›
rR

´

T̂W
bk

¯
›

›

›

2

PR

˙

(6.8)

where rL, rR indicate the residuals of the LIO factor and RSI factor, respectively.

Pp¨q represents the covariance matrix of each term. IMU pre-integration is used to

provide the initial guess and aid in point cloud drift. The accumulated drift of the

LIO measurement can be corrected effectively with the RSI factor.

6.2.2 Performance Evaluation

Experiment Setup

Sensor Setups: We utilized the UrbanNav [3] vehicle platform to conduct onboard

experiments, equipping it with GNSS, INS, cameras, and LiDAR sensors. The No-

vAtel SPAN-CPT integrates a fiber optic gyroscope and GNSS-RTK to provide GT

positioning. Additionally, measurements from the SPAN-CPT are tightly coupled

using NovAtel Inertial Explorer to maximize GT accuracy. Each RSI in the Hong

Kong testbed [137] is equipped with GNSS, a 300-line LiDAR, high-performance

V2X communication, and edge computing capabilities. In this experiment, we col-

lected 10 Hz LiDAR data and 400 Hz IMU data from one vehicle platform, along

with 10 Hz LiDAR data from two RSIs, all simultaneously in a challenging urban

environment. Fig. 6.5 presents the sensor setup and evaluated trajectory with a

total length of 1.85 km. The RSIs are located in the roundabout area (around half)

of the trajectory. The evaluated route returns to the starting point to assess the per-

formance of LiDAR loop closure constraints versus the global constraints provided
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by the RSIs. PPS time synchronization with the GPS source is implemented on our

vehicle platform, while Precision Time Protocol (PTP) time synchronization with

the GPS source is conducted on the RSI side.

(a) (b)

Figure 6.5: (a) Setup for the vehicle-infrastructure platform, featuring a Velodyne
32-line LiDAR and SPAN-CPT on the vehicle side, along with two Innovusion Jaguar
LiDARs integrated with two RSIs. (b) The evaluated scene of the Hong Kong C-V2X
testbed, along with its ground truth trajectory.

Evaluation Metrics: The effectiveness of the listed method is evaluated via the

ATE to investigate the global accuracy of the pose estimation.

Evaluated Methods: To verify the performance of the proposed algorithms,

we use the following methods,

1. LIO-SAM [61]: The state-of-the-art LiDAR-inertial odometry.

2. RSIA-LIO: The proposed RSI-assisted LiDAR-inertial method. The RSI fac-

tor will constrain the state in the factor graph once available.

Experimental Validation in Urban Areas

1) Results of Object Detection by RSIs
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To conduct the evaluation, models for our self-collected RSI data were trained

using 80% of the available data, while the remaining 20% was reserved for validation.

All detection results are measured by the average precision (AP) at the 3D-GIoU

[141] threshold of 0.7 for the cars class, with the AP on the validation set calculated

using 40 recall positions.

Table 6.1 presents the performance evaluation of CenterPoint [138] on the vali-

dation set of our self-collected dataset. The trained model achieved a 3D detection

AP of 57.17% and an average orientation similarity (AOS) AP of 90.09%. As shown

in Table 6.1, most vehicles were successfully predicted with satisfactory accuracy.

Examples of the testing results are illustrated in Fig. 6.6. Furthermore, vehicles

can be continuously tracked [140] across different frames, as indicated by their ID

numbers in Fig. 6.6.

Table 6.1: Detection results of the CenterPoint on our validation set.

Results Self-collected RSI data
3D detection AP (%) 57.17
AOS AP (heading angle) (%) 90.09

Figure 6.6: Illustration of the RSI detection results.

2) Results of Point Registration Figure 6.7 illustrates the point cloud align-
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ment results between the onboard local map and the multi-RSIs. It can be observed

that there is a significant error of several meters (shown in Fig. 6.7(a)) when align-

ing the point cloud solely based on the detection information provided by the RSUs.

However, with the assistance of ICP-based [33] point cloud registration, we success-

fully achieve high-accuracy alignment of the vehicle-RSI point cloud, as demonstrated

in Fig. 6.7(b).

(a) (b)

Figure 6.7: (a) Setup of the vehicle-infrastructure platform, featuring a Velodyne 32-
line LiDAR and SPAN-CPT on the vehicle side, along with two Innovusion Jaguar
LiDARs integrated into two RSIs. (b) The evaluated scene of the Hong Kong C-V2X
testbed, including its ground truth trajectory.

3) Results of RSI-assisted LIO

To validate the contributions of the proposed RSI-assisted LIO methods, exper-

iments were conducted in a challenging urban environment. Table 6.2 presents the

positioning performance of the evaluated methods. The existing LIO-SAM achieved

an RMSE of 17.004 meters, with a standard deviation of 10.784 meters. When loop

closure was enabled, LIO-SAM recorded an RMSE of 18.992 meters, failing to correct

the significant drift accumulation from LiDAR odometry in urban areas. In contrast,

the proposed RSI-aided method reduced both the RMSE and standard deviation to

5.614 meters and 4.318 meters, respectively. Notably, the RSIA-LIO method with
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loop closure outperformed all other methods, achieving an RMSE of 2.676 meters.

The combination of the LiDAR loop closure constraint and the global constraint

from the RSI provides complementary benefits for reliable odometry and mapping

in urban environments.

Figs 6.8 and 6.9 illustrate the positioning errors and trajectories using the eval-

uated methods, while the mapping results of the proposed method are presented in

Fig. 6.10. It is evident that the positioning accuracy of LIO-SAM does not benefit

from the loop closure factor in the grey area of Fig. 6.8. This is likely because it can

only reduce positioning errors at revisit points, but it introduces additional errors

in the estimated trajectory due to significant drift accumulation. After applying

the RSI global constraint, positioning performance improved by 67% in urban areas,

particularly in the yellow area highlighted in Figs.6.8 and 6.9. Notably, the error

of the RSIA-LIO method can be further reduced by incorporating the loop closure

factor at the revisit point (around epoch 250). The RMSE decreased from 5.614

meters (RSIA-LIO) to 2.676 meters (RSIA-LIO with loop closure), reflecting an im-

provement of 84.3% compared to the existing LIO method. Additionally, Fig. 6.10

shows that the mapping result using the proposed method aligns well with Google

Maps. However, unexpected inaccuracies are still observed around epoch 200 (shown

in Fig. 6.8) due to drift accumulation. Therefore, it is crucial to incorporate more

RSIs to enhance the performance of state estimation for autonomous driving.

Results LIO-SAM LIO-
SAM w/
loop

RSIA-LIO RSIA-
LIO w/
loop

RMSE (m) 17.004 18.992 5.614 2.676
MEAN (m) 13.147 14.077 3.588 2.392
STD (m) 10.784 12.748 4.318 1.200
Max (m) 33.152 36.177 19.293 5.781
Improvement / / 67.0% 84.3%

Table 6.2: Comparison of LIO-SAM, RSIA-LIO, and their loop variants.
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Figure 6.8: Positioning Errors in the ENU Directions. The x-axis represents the
timestamp, while the y-axis indicates the errors in meters. The area marked in
yellow highlights the errors reduced by the RSI-assisted global constraints, while the
area marked in grey represents the loop closure factor when revisiting the starting
points.

6.3 Roadside GNSS Aided Multi-Sensor Integrated

Positioning for Intelligent Vehicles in Urban

Areas

The GNSS, three-dimensional (3D) LiDAR, and IMU are widely used in autonomous

systems. GNSS provides an absolute positioning service for navigation applications.

However, it suffers from NLOS and multipath effects [25; 143] by tall buildings in

urban areas. 3D LiDAR provides dense surrounding point clouds which are widely

used for positioning and mapping solutions. IMU captures high-rate acceleration

and orientation measurements, which is critical in achieving robust sensor integra-

tion. The combination of LiDAR and IMU [40; 61] has been commonly adopted for

achieving robust odometry and mapping. However, the positioning performance of

such methods can be degenerated by urban canyons such as moving objects [1] and
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Figure 6.9: 2D positioning of the listed methods in the urban area. The x-axis
represents the east direction, while the y-axis indicates the north direction. The
areas marked in yellow and grey correspond to the yellow and grey areas in Fig. 6.8,
respectively.

featureless environments, which results in accumulated drift for urban navigation.

To address the accumulated error of LIO, fusing with GNSS is a promising solution.

A common approach is loosely integrating the information from multiple sensors [9]

at the positioning level. However such methods are unreliable in urban canyons due

to sensor degradation [1] in complex urban. The study [65] proposed a tightly cou-

pled method by accurate outlier exclusion based on residual checks that request a

good initial state and healthy measurements which are not always available in dense

urban. Our previous work [144] proposes two-stage optimization which integrates

the GNSS, LiDAR, and IMU measurements using a graph-based method. However,

the unhealthy GNSS is not always mitigated due to continuous NLOS and multi-

path effects in urban areas. In short, the existing multi-sensor integration relying

on onboard sensors is still a significant challenge for navigation in complex urban

environments.

In recent years, the significant development in the C-V2X has drawn consider-
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Figure 6.10: Mapping results from the proposed RSI-assisted LIO with loop closure
enabled showed high alignment with Google Maps. Note that the ENU orientation
of the map has been rotated for better presentation.

able interest because of its capability to enable low-latency information sharing for

ITS. According to the CAV Development Study [145] conducted by Deloitte China

and ASTRI in April 2024, roadside infrastructure and sensors are fundamental com-

ponents in the CAV ecosystems. In urban environments, the GNSS measurements

in the same region share similar random errors [79] such as NLOS and multipath.

Motivated by this, this work proposes a roadside GNSS-aided GNSS/LiDAR/IMU

(RSG-GLIO) method for urban navigation, which leverages the accurate DD con-

straint between the onboard and roadside GNSS. The consistent roadside DD mea-

surements are identified based on the coarse-to-fine residual evaluation. Multiple

roadside GNSS and onboard sensor data are collected in the Hong Kong C-V2X

testbed [137] to validate the effectiveness of our proposed method, as depicted in

Fig. 6.11. The contributions of this study are highlighted as follows:

1. We propose an RSG-GLIO that fuses onboard measurements and roadside

GNSS measurements through factor graph optimization.

2. We introduce a coarse-to-fine selection scheme to identify consistent DD mea-

surements from available roadside GNSS measurements. The accurate roadside
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DD constraints are jointly optimized into the factor graph optimization.

3. We evaluate the effectiveness of the proposed RSG-GLIO method in the Hong

Kong C-V2X testbed. The results report a significant improvement in vehicle

positioning performance aided by multiple roadside GNSS in challenging urban

areas. Additionally, the potential of roadside GNSS as low-cost base stations

in urban areas is explored.

Figure 6.11: Demonstration of the roadside GNSS-aided multi-sensor integrated
positioning at Hong Kong C-V2X testbed. The GNSS measurements marked in blue
circles are identified as normal GNSS data while the roadside GNSS measurements
marked in the red circles are identified as unhealthy GNSS data through coarse-to-fine
selection. The roadside unit (RSU) and onboard unit (OBU) have a communication
range of 500 meters and 200 meters, respectively.

6.3.1 Method

System Overview

Fig. 6.12 provides an overview of the proposed system. It consists of two main com-

ponents: (1) Roadside GNSS-assisted GNSS/LiDAR/IMU integration using FGO,

and (2) Coarse-to-fine RSG measurement selection. The system takes inputs such as

the onboard LiDAR point cloud, IMU measurements, onboard GNSS measurements,
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and roadside GNSS data from multiple RSI. Firstly, the point clouds, IMU, and

GNSS collected by the onboard vehicle are fused to estimate the state. Secondly,

the consistent roadside DD factor is identified by the coarse-to-fine selection based

on the initial state from onboard state estimation. Finally, the roadside DD factor

is incorporated as an additional constraint in FGO for state optimization.

Figure 6.12: Overview of the proposed RSG-GLIO. RSG is short for Roadside GNSS.

GNSS/LiDAR/IMU Integration Aided by RSG

A GNSS pseudorange observation can be defined as [129],

ρsr,t “ rsr,t ` c
`

δr,t ´ δsr,t
˘

` Isr,t ` T s
r,t ` εsr,t (6.9)

where superscript s, subscript r and t denote the satellite, receiver and epoch, re-

spectively. rsr,t is the true range from the satellite to the GNSS receiver. c indicates

the velocity of the light. δr,t and δsr,t denote the clock bias from the receiver and the

satellite, respectively. Isr,t and T s
r,t denotes the ionospheric delay and tropospheric de-

lay, respectively. εsr,t represents the unmodeled noise such as receiver thermal noise

and multipath.

— 123 —



CHAPTER 6. ROADSIDE INFRASTRUCTURE ASSISTED NAVIGATION IN
URBAN AREAS PhD Thesis

Fig. 6.13 illustrates the DD among onboard GNSS, the typical base station

pG
b,t and roadside GNSS pG

I,t. The single difference (SD) [129] between the GNSS

receiver and base station eliminates the satellite clock bias and atmospheric effects.

The receiver clock bias can be further mitigated through a between-satellites single

difference, also referred to as DD. The DD pseudorange measurement with the base

station can be formulated as below,

∆∇ρsrb,t “
`

ρsr,t ´ ρsb,t
˘

´
`

ρwr,t ´ ρwb,t
˘

“ ∆∇rsrb,t ` ∆∇εsrb,t (6.10)

where subscript b denotes the base station. Satellite w indicates the master satellite,

selected based on the highest elevation angle. ∆∇rsrb,t denotes the DD expected range

between onboard GNSS and the base station. ∆∇εsr,t denotes the noise associated

with the DD pseudorange measurements, which are typically meter-level [146] in the

open sky. However, the error can be significantly increased to tens of meters due to

multipath and NLOS in urban areas. The roadside GNSS and the onboard GNSS

have a similar environment (within 100-200 meters V2X communication range), the

GNSS atmospheric noise, multipath, and NLOS in the DD pseudorange then can be

further mitigated by,

∆∇ρsrI,t “
`

ρsr,t ´ ρsI,t
˘

´
`

ρwr,t ´ ρwI,t
˘

“ ∆∇rsrI,t ` ∆∇εsrI,t (6.11)

where subscript I denotes the roadside GNSS. ∆∇rsrI,t and ∆∇εIr,t are the DD ex-

pected range and DD noise between the onboard GNSS and the roadside GNSS,

respectively, which is free of atmospheric delay, multipath, and NLOS effects [79] as

nearby roadside GNSS share similar environmental patterns.

Fig. 6.13. Illustration of double-differenced GNSS measurements among onboard

GNSS PG
r,t , roadside GNSS pG

I,t and base station pG
b,t.

The residual of roadside DD pseudorange can be further derived based on Equa-

tion 6.11,

rsDD,rI,t “ ∆∇ρsI,t ´ ∆∇rsrI,t (6.12)
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Figure 6.13: Illustration of double-differenced GNSS measurements among onboard
GNSS PG

r,t , roadside GNSS pG
I,t and base station pG

b,t.

To facilitate residual calculation, the state is converted from the ENU frame to the

ECEF frame, as the state is maintained in the ENU frame. Conversion between

ENU and ECEF can be referred to [15] in detail.

Doppler measurements can be used to determine the receiver's velocity and aid

in precise positioning calculation. A Doppler measurement can be modeled as [129],

rs,Dr,t “ λdsr,t ´ rrsr,t (6.13)

where λ is the wavelength. rrsr,t indicates the expected range rate of the ego GNSS

receiver.

The inertial sensors provide high-frequency acceleration and angular velocity for

efficient sensor fusion as it is immunized to environmental features. Normally we

pre-integrate multiple raw measurements [62] to establish the relative constraint

between keyframes. Details of IMU pre-integration can be referred to [62] for more

information.

Scan to map scheme [18] is adapted to process the point cloud data from the

LiDAR sensors. The scan-to-map factor can provide locally accurate pose estimation

in urban canyons, the residual from planar feature FL
p, k,i to the fitted plane can be
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represented as,

rs2mL,t “

ˇ

ˇ

`

FL
p,k,i ´ FL

p,k,a

˘

¨
`

FL
p,k,a ´ FL

p,k,b

˘

ˆ
`

FL
p,k,a ´ FL

p,k,c

˘ ˇ

ˇ

ˇ

ˇ

`

FL
p,k,a ´ FL

p,k,b

˘

ˆ
`

FL
p,k,a ´ FL

p,k,c

˘
ˇ

ˇ

(6.14)

where FL
p,k,a,F

L
p,k,b, FL

p,k,c denotes the three nearest planar patches in the keyframe

k among planar points in the local map. Then, it can be further transformed from

LiDAR to IMU frame rs2mb,t by applying the pre-calibrated extrinsic Tb
l .

Fig. 6.14 illustrates the factor graph of the RSG-GLIO. The process of the RSG-

GLIO includes two parts, a factor graph incorporating the roadside DD pseudorange,

and a coarse-to-fine RSG measurement selection to ensure only consistent roadside

DD measurement is added. We follow the work in [144] to fuse the IMU factor,

LiDAR factor, DD pseudorange, and Doppler factor, plug the innovative roadside

DD pseudorange factor into the graph optimization,
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χ

ÿ
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(6.15)

where rp, r
s2m
b,t , rb,k,r

s,D
r,t , r

s
DD,rb,t , r

s
DD, rI,t represent the residuals of the prior fac-

tor, LIO factor, IMU factor, Doppler factor, DD pseudorange factor, and roadside

DD pseudorange factor, respectively. All the sensor residual is modeled from the

corresponding sensor frame to the IMU-centric ENU frame by applying the trans-

formation TEN
p‚q

. σp‚q indicates the covariance matrix of each term. An experimental

covariance σρI “ 0.1ˆσρb is set to roadside DD pseudorange factor compared to DD

pseudorange factor as rsDD, rI,t should be small according to Equation 6.12.
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Figure 6.14: The factor graph of the RSG-GLIO. xi indicates the state to be esti-
mated at the time i.

Coarse-to-Fine RSG Measurement Selection

The coarse-to-fine roadside GNSS measurement selection is a two-stage approach

designed to identify high-quality measurements from roadside GNSS receivers. In

the coarse phase, the onboard state first is used to compute the estimated DD range

between RSG and onboard GNSS. Given the onboard vehicle state, the estimated

geometric distance prsr,t for satellite s to the onboard receiver is calculated as,

prsr,t “
›

› Ps
t ´ PG

r,t

›

› “

b

pP s
t,x ´ PG

r,t,xq
2

` pP s
t,y ´ PG

r,t,yq
2

` pP s
t,z ´ PG

r,t,zq
2

(6.16)

Therefore, the estimated DD range measurement can be expressed as,

∆∇prIr,t “
`

prsr,t ´ rsI,t
˘

´
`

prwr,t ´ rwI,t
˘

(6.17)

Recall Equation 6.11, the estimated residual between RSG and onboard GNSS can

be obtained,

pεsrI,t “ ∆∇ρsrI,t ´ ∆∇prIr,t (6.18)

pεsrI,t is then employed to exclude RSG measurements from the FGO optimization if

exceeding an experimentally determined threshold of 1.0 meters. In the fine stage,
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the RSG DD measurements are iteratively evaluated and selected for inclusion in

the FGO similar to the coarse stage. The selected RSG DD measurements are with

increasing weighting as more precise RSG DD constraints can be provided compared

to other existing DD pseudorange factors. The details of the coarse-to-fine RSG

measurement selection are described in Algorithm 4.

Algorithm 4: Coarse-to-Fine RSG Selection

1: Inputs: onboard GNSS measurements, RSG measurements, estimated state
2: Outputs: consistent DD RSG measurements
3: Step 1: Calculate the DD RSG residual between RSG and onboard in the

coarse stage using Equation 6.18.
4: Step 2: Remove the unhealthy DD RSG measurements and the consistent DD

measurements are added into FGO.
5: Step 3: Iteratively evaluate and select the healthy DD RSG measurements in

the fine stage.
6: Step 4: Iteratively optimize the state by minimizing the residuals of the

factors using Equation 6.15 and then repeat Step 3 for accurate DD RSG
selection until convergence.

6.3.2 Performance Evaluation

Experiment Setup

Our UrbanNav vehicle platform [3] is employed for onboard data collection, which

includes GNSS, INS, cameras, and LiDARs. NovAtel SPAN-CPT and Inertial Ex-

plorer software [107] are used to provide centimeter-level GT positioning. Each

RSI in the Hong Kong C-V2X testbed [137] includes GNSS measurements, high-

resolution LiDAR, and low-latency V2X communication. Fig. 6.15-(left) presents a

static experiment evaluating RTK positioning performance using an urban roadside

base station compared to a conventional open-sky base station. In the dynamic en-

vironment shown in Fig. 6.15-(right), we collected 1Hz u-blox F9P GNSS data, 10

Hz Velodyne HDL 32-line LiDAR data, 400 Hz Xsens Mti-10 IMU data from our

vehicle platform, and 1 Hz u-blox F9P GNSS data from two different RSIs. The
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pose of the roadside GNSS is computed by Precise Point Positioning (PPP) [147]

using 2-hour static data collection to make it convergent. Fig. 6.16 illustrates the

vehicle-infrastructure platform and GT trajectory covering a total distance of 1.73

kilometers. Both the roundabout area and the west area (with tall buildings) of the

trajectory are with roadside sensors and V2X communication. RSG measurements

within 100 meters between RSG and onboard are utilized based on the V2X cover-

age. Our vehicle platform and RSI sensors are synchronized with PTP and GNSS

source.

Figure 6.15: (left) The static experiment near a tall building using one RSG and one
rover GNSS compared with the traditional open-sky base station (baseline:4.34 km)
and one rover GNSS (short baseline: 2.26 m); (right) The dynamic experiment in
Hong Kong C-V2X testbed which contains multiple RSGs and the evaluated ground
truth trajectory.

To evaluate the performance of the proposed RSG-GLIO, the following methods

are employed,

(1) RTKLIB [24]: The popular GNSS RTK positioning method. Available L1

measurements are used with forward and backward solutions.
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Figure 6.16: (left) Sensor setup for the onboard and RSG platform. A u-blox F9P
GNSS, Velodyne 3D LiDAR, Xsens MTi-10 IMU, and SPAN-CPT for the onboard
while two u-blox GNSS are connected with different roadside infrastructures; (right)
U-blox GNSS is integrated with each roadside infrastructure.

(2) GICI-Lib [148] : The state-of-the-art FGO-based GNSS RTK positioning

method with batch optimization. We excluded the satellite with an elevation

angle lower than 15 degrees.

(3) LIO-SAM [61]: The representative LiDAR-inertial odometry.

(4) GLIO [144]: The tightly coupled integration system that combines GNSS,

LiDAR, and IMU data.

(5) RSG-GLIO: The proposed roadside GNSS-aided sensor integration. The se-

lected consistent roadside DD measurements will constrain the state in the

graph iteratively. We also compare the performance of using single roadside

GNSS and multi-roadside GNSS sensors. Available L1 measurements are used

in the optimization.

Experimental Evaluation in C-V2X testbed

A. Static Experimental Evaluation Results

We first conducted a 1-hour static experiment to evaluate the effectiveness of

using RSG compared to base stations for RTK positioning in urban areas. Table 6.3

presents the accuracy evaluation results of four positioning methods. For RTKLIB
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with the traditional base configuration using publicly available Hong Kong Observa-

tory station [149], the RMSE is 19.007 m. For RTKLIB-RSG, using a nearby RSG to

replace the base station as the differential reference station, the RMSE significantly

decreases to 12.627 m, indicating a significant improvement in positioning accuracy

after introducing the RSG which shares similar multipath effects mentioned in 6.3.1.

GICI-Lib represents the positioning method based on the FGO-based RTK position-

ing [148], also employing the combination of a rover and traditional base station, the

RMSE is 18.955 m, suggesting that its positioning accuracy fluctuates considerably.

Similarly, GICI-Lib-RSG indicates the method that introduces a nearby RSG for re-

placement on the basis of the aforementioned setup, the RMSE is the lowest at only

3.822 m. It demonstrates that this method exhibits the best performance in both po-

sitioning accuracy and stability. We also observe that GICI-LIB diverges compared

to the EKF-based method, as shown in Fig. 6.17. This divergence might indicate

that the method is unable to handle large residual cases after 1 hour of testing.

Overall, using a nearby RSG to replace a traditional reference station can signifi-

cantly improve the accuracy and stability of the positioning system by mitigating

the multipath by DD observations.

Table 6.3: 2D positioning results of listed methods.

Method RMSE (m) MEAN (m) STD (m) Max (m)
RTKLIB 19.007 18.813 2.714 28.366
RTKLIB-RSG 12.627 12.428 2.232 18.520
GICI-Lib 18.955 17.438 7.429 29.824
GICI-Lib-RSG 3.822 3.463 1.616 14.032

Fig. 6.17 demonstrates the accuracy performance of four positioning methods.

The results clearly demonstrate that users can obtain more accurate location fixes

by integrating RSG information. In addition, we present a histogram visualization

comparison of the DD residual distribution under two differential GNSS positioning

strategies in Fig. 6.18. The method to calculate the residuals of DD observations can
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Figure 6.17: 2D Positioning errors of the evaluated methods in the static experiment.

be found in [150]. It can be seen from Fig. 6.18 that the residual distribution of the

Rover-RSG methods shows significant concentration: its histogram peak is sharp,

and most error values are closely centered around the zero-error line, indicating that

most positioning errors are concentrated near the zero value, the distribution range

is relatively narrow, and the tail is short. In contrast, the residual distribution of the

Rover-Base method is more dispersed, with a gentle peak and a wider distribution

range. Especially in the positive error direction, the histogram tail extends longer,

indicating that the probability of large error values is significantly increased due to

the multipath and NLOS. This intuitive difference in distribution patterns initially

reveals the advantages of the Rover-RSG method in error control.

Furthermore, the error metrics in Table 6.4 show that the Rover-RSG is superior

to the Rover-Base method in terms of residual. The RMSE of Rover-RSG is 30.494
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Figure 6.18: Histogram of the DD residual with GT pose. The ground truth of the
double-difference pseudorange is obtained by differentially calculating the ground
truth and the satellite position, and the double-difference pseudorange errors under
the two differential GNSS positioning strategies are evaluated on this basis. This
double-difference pseudorange error can directly reflect the unmodeled errors in the
measured values.

Table 6.4: Quantitative metrics of DD residual between Rover-RSG and Rover-Base
error. CEP95 is short for a circular error probability of 95%.

Method RMSE (m) MEAN (m) STD (m) CEP95
Rover-RSG 19.007 18.813 2.714 28.366
Rover-Base 12.627 12.428 2.232 18.520

m, which is significantly lower than the 43.674 m of Rover-Base, a decrease of 30%.

The STD of Rover-Roadside is 30.156 m, which is lower than the 40.156 m of Rover-

Base, indicating that its error distribution is more concentrated. More importantly,

the circular error probability of 95% (CEP95) of Rover-RSG is 66.132 m, which is

much lower than the 118.132 m of Rover-Base, which indicates that the probability

of extreme errors is significantly reduced. The differential GNSS positioning method

(Rover-RSG) with the introduction of RSGs shows significant advantages in terms of

positioning accuracy, error fluctuation range, and the probability of extreme errors.

Based on the static experimental results of DD observations between user re-
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ceivers and RSGs, we can conclude that it can eliminate satellite and receiver clock

errors while mitigating atmospheric delay, multipath, and NLOS effects. Unlike tra-

ditional wide-area reference networks with longer baselines (4.34 km in this paper),

RSGs shorten distances, improving error correlation and reducing multipath and

NLOS effects. This proximity enhances the effectiveness of double-differencing, sup-

pressing residual errors and significantly improving positioning accuracy, especially in

complex urban environments. In summary, RSG, through its significant geographical

advantages, not only enhances the efficiency of utilizing error spatial correlation but

also provides more precise correction values for DD pseudorange positioning technol-

ogy, thereby achieving a significant improvement in positioning accuracy in urban

environments. In the following section, we investigate the effectiveness of including

RSG measurements in our proposed sensor fusion framework.

B. Dynamic Experimental Evaluation in C-V2X Testbed

1) Results of RSG-GLIO

To evaluate the effectiveness of the proposed RSG-GLIO method, experiments

were conducted under challenging urban scenarios. The positioning performance

using the listed algorithms is summarized in Table 6.5. The 2D RMSE of GNSS

RTK is 5.661 meters, with a standard deviation of 2.662 meters. A 2D RMSE of

9.254 meters was resulted using the popular LIO-SAM. The RMSE of the tightly

coupled GLIO method was 1.726 meters, which shows improvements in correcting

the accumulated by LiDAR odometry using GNSS measurements in urban areas.

With the aid of one single roadside GNSS, the RMSE was reduced to 1.245 meters

and 1.153 meters aided by RSG1 and RSG2, respectively. Interestingly, the proposed

RSG-GLIO with multi-roadside GNSS enabled outperformed other methods in terms

of RMSE of 1.095 meters. The utilization of multiple accurate DD roadside GNSS

measurements is reliable for odometry and mapping in urban areas.

Fig. 6.19 illustrates the positioning error while Fig. 6.20 presents the trajecto-
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Table 6.5: 2D positioning results of listed methods. RSG-GLIO w/rsg1 and RSG-
GLIO w/rsg2 denote the RSG-GLIO method using single roadside GNSS RSG1 and
RSG2, respectively.

Method RMSE (m) MEAN (m) STD (m) Max (m)
RTKLIB 5.661 4.999 2.662 12.709
LIO-SAM 9.254 7.258 5.741 16.369
GLIO 1.726 1.551 0.758 3.537
RSG-GLIO w/rsg1 1.245 1.137 0.508 3.334
RSG-GLIO w/rsg2 1.153 1.063 0.758 3.537
RSG-GLIO 1.095 1.025 0.385 2.230

ries based on the evaluated methods. The positioning performance of GNSS-RTK is

affected by the numerous buildings. The error of the LiDAR-based method is accu-

mulated when it comes to the roundabout area which is marked in grey. By tightly

coupled GNSS and LiDAR, the positioning performance can achieve a low drift pose

estimation using state-of-the-art GLIO methods. After applying the multi-RSG DD

constraint, the positioning performance was significantly improved by 36.6% com-

pared to the GLIO.

Figure 6.19: 2D Positioning errors of the evaluated methods in the C-V2X testbed.
The area marked in grey indicates the error mitigated with the RSG1 while the area
marked in blue indicates the error mitigated by the RSG2.

2) Results of Coarse-to-Fine DD Measurement Selection
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Figure 6.20: 2D positioning of the evaluated methods in the C-V2X testbed. The
grey and blue areas correspond to the yellow and grey areas in Fig. 6.19, respectively.

Fig. 6.21 demonstrates the estimated DD residuals and ground truth labeled

DD residuals. The initial guess of the state estimation is used to evaluate the DD

residual in the coarse stage. It can be seen that our estimated residual is close to

the ground truth labeled DD residuals using the coarse-to-fine scheme. We only

select the consistent DD measurements and then contribute to the global graph-

based optimization. Take PRN G27 as an example (left bottom of Fig. 6.21), the

DD residuals are large between epoch 0-5 therefore we excluded the unhealthy DD

measurements for the graph-based optimization.

3) Results of Transmission Latency from RSU to OBU The raw mea-

surement of the roadside GNSS is packed in the standard V2X basic safety message

(BSM) of 254 bytes per message [151] and broadcast to the OBU which is located

in the vehicle platform. The average latency of one message or in one message

group sent from RSU and then received by OBU is 21.3 milliseconds. The latency is

acceptable [24] for GNSS DD technical with the roadside GNSS measurements.
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Figure 6.21: DD residual in urban areas. The x-axis indicates the epoch (which might
be discontinuous GNSS measurements) while the y-axis represents the DD residuals.
RSG1 DD Res PRN indicates the DD residual of PRN number G07 satellite using
the RSG1 as the base station.

Applications with Roadside GNSS

As the roadside GNSS is statically installed, it has the potential to serve the RTK

correction of the local region since it shares similar NLOS and multipath effects

in urban areas. Fig. 6.22 presents the mean error of RTK positioning using the

roadside low-cost GNSS is 2.49 meters, which can achieve similar performance com-

pared to using the high-end base station provided by the Hong Kong government

(4.3 kilometers away) with the MEAN error is 1.97 meters.

6.4 Continuous Error Map Aided Adaptive Multi-

Sensor Integrated Positioning for Connected

Autonomous Vehicles in Urban Scenarios

Inspired by the efficient data transmission capabilities of C-V2X technology among

CAVs[152], we propose a system for continuous error map estimation and its ap-

plication in V2X-enabled multi-sensor positioning. The concept behind this system
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Figure 6.22: RTK positioning results using the HKST base station (nearby station
provided by Hong Kong Lands Department) and the proposed roadside GNSS base
station.

is illustrated in Fig. 6.23. To create error maps for different sensors in a defined

urban area, we utilize the full-sensor-enabled autonomous high-definition (HD) map

update [153] vehicle or autonomous bus (CAV1 on the left of Fig. 6.23 ) periodically

collects data and assesses errors. The error data collected by the vehicle is trans-

mitted to a roadside edge system, which integrates this information into a real-time

error map. Intelligent vehicles (CAV2 and CAV3 on the left of Fig. 6.23 ) operating

within the same region can then access this error information broadcast by RSUs.

Vehicles equipped with a single sensor can optimize their navigation using the error

map, while autonomous vehicles with a full sensor suite can improve sensor fusion by

incorporating the prior weightings provided by the error maps. These sensor error

maps, generated periodically by sensor-rich CAVs, serve as an additional layer upon

the base map and point cloud map (right of Fig. 6.23 ) for intelligent transportation

applications.

To evaluate our approach, we collect the multi-sensor data from multi-vehicles,

including LiDAR, camera, IMU, and GNSS in urban day and night conditions both

in high-fidelity simulation platform [73; 154] and the Hong Kong C-V2X testbed.

The contributions of this work are summarized as follows,
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Figure 6.23: Left : Illustration of the error map broadcast through the RSU. CAV1 is
equipped with a sensor-rich (e.g., LiDAR, camera, GNSS, and high-end devices that
can provide ground truth positioning) to periodically evaluate sensor errors. CAV2
and CAV3, the connected autonomous vehicles, receive this error map information to
aid their navigation using their available sensors. Right : Illustration of the error map
serves as an additional layer upon the base map and point cloud map for intelligent
transportation applications. These error maps are generated in real time from CAV1.

1. We study the continuous error map estimation based on different onboard

sensors with different confidences in different urban environments. The up-to-

date error maps can support various downstream navigation tasks for vehicle-

infrastructure cooperation.

2. We introduce an adaptive multi-sensor integrated system that benefits from

the prior information provided by the error map estimation. The weighting

coefficients are computed based on the corresponding error from the error maps.

3. We evaluate the performance of the proposed system using extensive simu-

lated data and Hong Kon C-V2X testbed data. The implementation is open-

sourced at Github https://github.com/DarrenWong/continuous_error_m

ap to benefit the research community.
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6.4.1 Method

Overview of the Proposed System

An overview of the proposed system is illustrated in Fig. 6.24. The pipeline consists

of two major modules: (1) error map generation using a sensor-rich map update

vehicle, and (2) multi-sensor fusion enhanced by adaptive weighting based on the

latest error map. The system inputs include LiDAR point clouds, IMU measure-

ments, camera images, and GNSS data from CAVs. First, sensor data from the map

update vehicle is processed to produce the error map. This error map is then sent

to the RSU via the V2X network. The error maps are subsequently aggregated and

distributed to other CAVs in the same area through the RSU. By incorporating this

error data, the system adjusts the weighting of different odometry factors to improve

the multi-sensor integration and achieve more robust positioning. The coordinate

systems used in this work are depicted in Fig. 6.25. The extrinsic parameters among

the LiDAR, camera, and IMU are pre-calibrated, while the extrinsic parameters be-

tween the ENU and IMU body frames are estimated using the Attitude and Heading

Reference System (AHRS). For details on the conversion between the ECEF and

ENU frames, please refer to [15].

Error Map Estimation

This section provides a concise overview of the algorithms used in error map estima-

tion for various sensors.

LOAM [18] is a popular LO method. An illustration of the feature extraction pro-

cess is presented in Fig. 6.26 (a). The scan-to-scan and scan-to-map operations are

then performed to minimize the residuals between point-to-line and point-to-plane

correspondences for consecutive LiDAR frames and the map point cloud, respectively.
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Figure 6.24: Overview of the proposed system. LO, LIO, and VIO represent the Li-
DAR odometry, LiDAR-inertial odometry, and visual-inertial odometry, respectively.
BSM is short for basic safety message which is defined in V2X message.

The cost function for the scan-to-map process can be simplified as follows,
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whereN e
k`1andNp

k`1 indicate the numbers of edge and plane points. r
´
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and r
´

Xp
k`1,i, TW

Lk`1

¯

represent the residuals for the edge Xe
k`1,i and planar feature

Xp
k`1,i, respectively.

The LiDAR Inertial Odometry via Smoothing and Mapping (LIO-SAM) algo-

rithm [61] utilizes high-frequency updates from IMU measurements to provide an

initial estimate for LiDAR odometry, which is then refined using factor graph opti-

mization.

VINS-Mono [62] is a non-linear optimization estimator designed for monocular

visual odometry. It combines data from a monocular camera and an IMU using a

sliding window factor graph. Fig. 6.26 (b) shows the feature tracking process used by
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Figure 6.25: Overview of the coordinate system.

VINS-Mono. The cost function aims to minimize residuals from IMU pre-integration,

visual measurements, and marginalization.
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where χ is the state vector in the sliding windows. rp, rB and rC denotes the residuals

for marginalization, IMU pre-integration and visual reprojection, respectively. Hp

represents the marginalization estimation matrix, while P p.q presents the covariance

matrix of each term. pZbk
bk`1

and pZ
cj
l denotes the observations of IMU and features,

respectively.

GNSS WLS [129] is a widely used method that employs WLS to estimate the

position of a GNSS receiver. Both pseudorange and carrier phase measurements are

utilized to compute the GNSS WLS solution. The objective of the WLS method is

to minimize the weighted sum of residuals from the GNSS observations.

xG
“
`

HTWH
˘´1

HTWz (6.21)
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Figure 6.26: Illustration of (a) Edge and planar features extracted by LOAM, with
red circles representing planar features and yellow points denoting edge features; (b)
VINS-Mono’s feature tracking process, where red features indicate longer tracking
duration compared to blue features; (c) GNSS NLOS and multipath interference in
urban environments, caused by reflections off surrounding buildings.

where xG is the GNSS state to be estimated. H denotes the design matrix. W is the

weighted matrix for observation, which is given based on the standard deviation of

the satellite measurement. z is the measurement vector. GNSS-RTK positioning can

further improve the WLS solutions by eliminating systematic errors by adopting the

DD operation [129] between the observations received from a reference station and

the one from the user. There are two main steps in GNSS-RTK positioning. In the

first step, the float solution is estimated by the WLS [129]. Secondly, the integer am-

biguity resolution (AR) is performed using the least-squares ambiguity decorrelation

adjustment (LAMBDA) [130] algorithm in the second stage. For implementation

details of GNSS-RTK positioning, refer to RTKLIB [24].

In summary, the methods mentioned above perform effectively in ideal conditions.

However, both LIO and VIO experience degraded positioning accuracy in featureless

environments or when confronted with unmodeled outliers such as dynamic objects in

urban settings. Similarly, GNSS positioning is affected by non-line-of-sight (NLOS)
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signals and multipath interference, as illustrated in Fig. 6.26 (c). Since the influence

of dynamic objects has been examined in our previous work [1; 2], this study focuses

on sensor performance degradation due to varying static environments in urban areas

across different sensor types.

Given LiDAR odometry and LIO which provides high-rate relative measurements,

LO/LIO error eL denotes the translational components of the RPE of the ground

truth state Tj,k,gt and estimated state Tj,k,est between timestamp j and k.
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Similarly, the VIO error eC can be expressed as,
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Regarding the GNSS positioning which provides the absolute positioning, GNSS

error eG denotes the absolute pose error (ATE) of the timestamp j,

eG “

›

›

›
transpTj, gtq ´ transpTj,estq

›

›

›
(6.24)

By utilizing the map update vehicle, which collects data at regular intervals, we

can periodically generate error maps for the listed algorithms based on the data gath-

ered from the available sensors. Fig. 6.27 demonstrates the GNSS positioning error

map generated in the Hong Kong C-V2X testbed at a single route, which includes

the timestamp, geographic information, and corresponding error. The matrix form

Mt of the error maps at timestamp t can be expressed as,

Mt “

»

—

—

—

—

–

sL t1 x1 y1 z1 eL,1 . . .
sC t1 x1 y1 z1 eC,1 . . .
sG t1 x1 y1 z1 eG,1 . . .
sL sL x2 y2 z2 eL,1 . . .
. . . . . . . . . . . . . . . . . . . . .

fi

ffi

ffi

ffi

ffi

fl

(6.25)
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Figure 6.27: Illustration of the generated GNSS error map. The left green curve
indicates the ground truth estimation by the sensor-rich map update vehicle while
the right color curve indicates the estimated error of GNSS positioning.

where eL,1, eC,1, eG,1 are the corresponding errors derived from different sensors

using Equations 6.5, 6.6, and 6.24 at the timestamp t1 and geographic position

T1,gt “ rx1, y1, z1 s in the world frame, respectively.

C-V2X Communication for error maps

C-V2X is designed to enhance road safety, improve traffic efficiency, and enable new

applications and services in the context of CAVs and ITS. However, there is cur-

rently no existing C-V2X message specifically designed for transmitting error map

information. To address this, the SAE J2735-defined basic safety message (BSM)

[151] is introduced, as it contains essential data such as the timestamp, vehicle po-

sition, accuracy, component status, and other relevant travel information necessary

for error maps. Additional information can also be included in the BSM message

Part 1 & 2 if required. Fig. 6.23 illustrates the pipeline of C-V2X data communica-

tion incorporating error maps. In this system, sensor-rich vehicles transmit packed

BSM data through the V2X OBU device to the RSI, which includes the RSU and

edge computing capabilities, integrates the error maps and subsequently broadcasts
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them to nearby connected vehicles that have an OBU installed, utilizing the V2X

communication channel.

Error Map-aided Adaptive Sensor Integration

Since the error information is received from the RSU, the nearby connected vehicle

can utilize it to aid adaptive multi-sensor integration in urban areas. Fig. 6.28

depicts the process of obtaining the closest error information from the error map,

considering the estimated trajectory under the world frame.

Figure 6.28: Illustration of the error information extracted from the error map under
world frame. The error of the nearest point from the error map is assigned for the
current pose estimation.

The weighting coefficient of the LIO factor is computed as,

ωLk,k`1
“

eLk,k`1
` eCk,k`1

eLk,k`1

(6.26)

which ωLk,k`1
refers to the weighting parameters for the LIO factor. eLk,k`1

and eCk,k`1

indicate the estimated relative translation errors for LIO and VIO, respectively, at

the same position.

Similarly, the weighting coefficient of the VIO factor is calculated as,

ωCk,k`1
“

eLk,k`1
` eCk,k`1

eCk,k`1

(6.27)

which ωCk,k`1
denotes the weighting coefficient associated with the VIO factor, where

a higher weight is applied as eCk,k`1
decreases. Meanwhile, the absolute GNSS mea-
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surement is incorporated into the graph optimization process when the prior posi-

tional error falls below an experimental threshold value m.

ωG,k`1 “

"

1, eGk
ă m

0, eGk
ą m

(6.28)

Subsequently, we loosely integrate the relative LIO factor, relative VIO factor, and

absolute GNSS factor, applying the corresponding weights derived from the error

map. The factor graph of the proposed approach is illustrated in Fig. 6.29.

Figure 6.29: Factor graph of the proposed method.

The cost function of the proposed method can be formulated as,

min
TW

bk`1

˜

›

›

›
rL

´

ωLk,k`1
,TW

bk`1

¯
›

›

›

2

PL

`

›

›

›
rC

´

ωC,k,k`1,T
W
bk`1

¯
›

›

›

2

PC

`

›

›

›
rG

´

ωG,k`1,T
W
bk`1

¯
›

›

›

2

PG

¸

(6.29)

where ωLk,k`1
, ωC,k,k`1, ωG,k`1 indicate the weighting of the LIO factor, VIO factor

and GNSS factor, respectively. rCp‚q and Pp‚q present the residual and covariance

matrix of each term, respectively. Algorithm 5 summarized the details of the error

map-assisted sensor integration.

— 147 —



CHAPTER 6. ROADSIDE INFRASTRUCTURE ASSISTED NAVIGATION IN
URBAN AREAS PhD Thesis

Algorithm 5: Error map-assisted sensor integrated positioning

Input: Point cloud P̂L, image ÎC , GNSS measurements ϕ̂G, IMU data Ẑb

Output: The optimal state TW
Lk

1: Step 1: Obtain the factor from different sensors.
2: Step 1-1: Obtain the LIO factor using P̂L and Ẑb

k based on (6.19).

3: Step 1-2: Obtain the VIO factor using ÎC and Ẑb based on (6.20).
4: Step 1-3: Obtain the GNSS unary factor using ϕ̂G based on (6.21).
5: Step 2: Extract error information from the error map and compute sensor

weighting coefficients based on (6.26), (6.27) and (6.28).
6: Step 3: Minimize the cost function to obtain the optimal TW

Lk
based on (6.29).

6.4.2 Performance Evaluation

Experiment Setup

Sensor Setups: The effectiveness of the proposed method is validated using simu-

lation and the real data collected in the Hong Kong C-V2X testbed.

The CARLA [73] autonomous driving simulator and the RUMS [154] urban GNSS

simulator are utilized to generate realistic sensor data in simulated scenarios. To

examine the impact of varying time conditions, we simulated data during different

time slots (noon, sunset, and night) within urban environments. Dynamic objects

are not included in this research, as their effects have been extensively evaluated in

our previous work [2]. We collected data at a frequency of 10 Hz for LiDAR point

clouds, 20 Hz for images, 100 Hz for IMU measurements, and 100 Hz for ground

truth positioning, all of which explicitly consider real-world noise in urban scenarios

(example data are shown in Fig. 6.30) while maintaining a maximum speed of 30

km/h. Additionally, GNSS measurements were simulated using the realistic RUMS

simulator, which accounts for the effects of signal reflection and diffraction based on

a 3D building model, as CARLA can only simulate GNSS solutions with Gaussian

noise. Details of the sensor setup are provided in Table 6.6 and Fig. 6.30.

In real-world evaluation, UrbanNav vehicle platform [3] is employed for onboard

data collection, which includes GNSS, INS, cameras, and LiDARs. NovAtel SPAN-
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CPT and Inertial Explorer software [107] are used for GT positioning. The accuracy

of our ground truth system is centimeter level continuously, plus 1 ppm, with RTK

enabled. Each RSI in the Hong Kong C-V2X testbed [137] includes GNSS measure-

ments, high-resolution LiDAR, and low-latency V2X communication. We collected

1Hz U-blox F9P GNSS data, 10 Hz Velodyne HDL 32-line LiDAR data, 20Hz Point

Grey camera data and 400 Hz Xsens Mti-10 IMU data from our vehicle platform un-

der a maximum speed of 50 km/h. The RSUs are distributed equally in this urban

environment with an effective range of 500 meters. The RSUs can provide the error

map service using the direct C-V2X (PC5) with a communication delay of less than

20 milliseconds. The details of the sensor setup are provided in Fig. 6.31. We di-

vided the collected sequences from the experimental vehicles into two sub-sequences

to estimate the error map and evaluate the effectiveness of the proposed method.

The details of the simulated and real-world sequences are listed in Table 6.7.

Figure 6.30: (a) Sensor for the simulated platform; (b) The evaluated trajectory
and its ground truth trajectory in the simulated urban areas (modified Town03 in
CARLA). It contains diverse urban scenarios, including medium-height buildings,
wide roads, and tunnels.

Evaluated Methods: To evaluate the performance of algorithms with different

types of sensors, we use the following methods. We first analyzed the error matrix

of each sensor via the RPE to generate the error maps. The performance of the
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Figure 6.31: (a) Setup for the vehicle-infrastructure platform; (b) The evaluated
Hong Kong C-V2X scene and its ground truth trajectory. The distributed RSIs are
marked in orange.

proposed method was evaluated via the ATE to investigate the global accuracy of

the trajectory.

(1) LOAM [18]: The popular LiDAR odometry.

(2) LIO-SAM [61]: The state-of-the-art LiDAR-inertial odometry. It can loosely

couple with GPS if available.

(3) VINS-Mono [62]: The popular visual-inertial odometry.

(4) GNSS Positioning [24]: GNSS WLS positioning is adopted for simulated

data while GNSS-RTK positioning is adopted for real-world data as the simu-

lated data contains pseudorange measurements only.

(5) LVI-SAM [155]: The state-of-the-art tightly coupled LiDAR-visual-inertial
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Table 6.6: Sensor description for the simulated data.

Sensor Description
1x LiDAR 360° Horizontal FOV, +10°˜-30° vertical FOV, 100 me-

ters, Velodyne1 HDL 32 noise model, 5cm standard de-
viation on range measurement

1x RGB Camera FoV of 90°, 960x600, forward, default noise setting2 in
CARLA [73]

1x IMU 100 Hz, 9-axis, Xsens MTi3 noise model according to
UrbanNav [3]

1x GNSS 10 Hz, Ublox M8T4 noise model with sign reflection from
buildings

1. https://velodynelidar.com/

2. https://carla.readthedocs.io/en/latest/ref_sensors/#rgb-camera

3. https://www.movella.com/products/sensor-modules

4. https://www.u-blox.com/en/product/neolea-m8t-series

odometry. The depth information from LiDAR will help recover the scale of

visual odometry.

(6) EMA-MS: The proposed error map-assisted multi-sensor integrated position-

ing. The weighting of the different sensors is computed using the continuous

error estimated by the map update vehicle periodically.

Experimental Validation in Simulated Urban Areas

The evaluated data was collected in typical urban areas (modified Town03 in CARLA)

with a total length of 3.5 km, as shown in Fig. 6.30-(a). The environment includes

medium-height buildings, wide roads, and tunnels. As detailed in Table 6.7, we

collected three sets of data using a single sensor-rich CAV under different time con-

ditions (urban-noon1, urban-sunset1, and urban-night1 ) for error map estimation.

Subsequently, we gathered another three sets of data with the tested CAV (urban-

noon2, urban-sunset2, and urban-night2 ) during the same time slots to verify the

effectiveness of the proposed method, which is aided by the error maps generated

from the previous data.

— 151 —

https://velodynelidar.com/
https://carla.readthedocs.io/en/latest/ref_sensors/##rgb-camera
https://www.movella.com/products/sensor-modules
https://www.u-blox.com/en/product/neolea-m8t-series


CHAPTER 6. ROADSIDE INFRASTRUCTURE ASSISTED NAVIGATION IN
URBAN AREAS PhD Thesis

Table 6.7: The simulated urban and real-world datasets for evaluation.

Data Description

Simulated Urban

urban-noon 1 data collected at noon is used to generate
error maps

urban-noon 2 data for error map-aided sensor fusion at
noon

urban-sunset 1 data collected at sunset is used to generate
error maps

urban-sunset 2 data for error map-aided sensor fusion at sun-
set

urban-night 1 data collected at night is used to generate
error maps

urban-night 2 data for error map-aided sensor fusion at
night

Hong Kong C-
VX2 Testbed

testbed-day 1 data collected at daytime is used to generate
error maps

testbed-day 2 data for error map-aided sensor fusion at
daytime

testbed-night 1 data collected at night is used to generate
error maps

testbed-night 2 data for error map-aided sensor fusion at
night

1) Error Map Estimation

Translation error is used as the criterion for error map estimation. Table 6.8

illustrates the positioning performance of the evaluated methods. The performance

of LiDAR-only LOAM is inferior to that of other methods, with an error of up to

0.520 meters in urban-noon1. With the assistance of inertial sensors, the RPE is

reduced to 0.318 meters in urban-noon1. However, the RPE and absolute translation

error (ATE) are still inadequate for autonomous driving due to degradation in the

tunnel (as shown in Fig. 6.32) and accumulated drift. VINS demonstrates better

performance regarding RPE and ATE in the absence of dynamic objects. Neverthe-

less, the RPE increases from 0.066 to 0.077 meters as the illumination worsens from

urban-noon1 to urban-night1 for the visual-based method. GNSS WLS achieves the

best results in terms of ATE since GNSS can provide absolute positioning without

— 152 —



PhD Thesis
CHAPTER 6. ROADSIDE INFRASTRUCTURE ASSISTED NAVIGATION IN

URBAN AREAS

drift accumulation. However, noisy GNSS positioning (shown in Fig. 6.32) in ur-

ban areas and unavailable measurements in tunnels fail to meet the requirements for

CAVs. In summary, each sensor has its limitations, and positioning results could be

enhanced through appropriate sensor integration.

Table 6.8: Error evaluation of listed methods using different sensors.

Data Methods RPE RMSE (m) ATE RMSE (m)

urban-noon 1

LOAM 0.520 54.672
LIO-SAM 0.318 16.935
VINS 0.045 12.076
GNSS Positioning * 1.357

urban-sunset 1

LOAM 0.643 43.619
LIO-SAM 0.381 26.324
VINS 0.036 11.312
GNSS Positioning * 1.171

urban-night 1

LOAM 0.536 43.982
LIO-SAM 0.297 17.809
VINS 0.077 12.914
GNSS Positioning * 1.2205

Fig. 6.32 and Fig. 6.33 illustrate the positioning errors and trajectories for the

four evaluated methods, respectively. The black curve represents the ground truth.

The LiDAR-based methods, LOAM and LIO-SAM, experience degradation in the

tunnel (as shown in Fig. 6.32 (A)), making it challenging to achieve satisfactory

positioning. The visual-based method, VINS, exhibits smoother performance across

different time slots but suffers from decreased accuracy under poor illumination, as

demonstrated in Fig. 6.32 (C). The GNSS WLS method provides average absolute

performance when compared to both LiDAR-based and visual-based methods; how-

ever, it experiences significant errors near tall buildings, as illustrated in Fig. 6.32

(B).

Fig. 6.34 illustrates the results of the error maps from the listed methods using

urban-noon 1. The error maps for urban-sunset 1 and urban-night 1 can be found

in the supplementary materials. Similar to Figs. 6.32 and 6.33, we observe signifi-

— 153 —



CHAPTER 6. ROADSIDE INFRASTRUCTURE ASSISTED NAVIGATION IN
URBAN AREAS PhD Thesis

Figure 6.32: Positioning errors of the listed methods (GNSS APE is a 2D error). The
x-axis represents the timestamp, while the y-axis indicates the corresponding error.
Areas (A), (B), and (C) highlight the challenging scenarios for the LiDAR-based
methods, GNSS positioning, and VINS, respectively.

cant errors from LOAM and LIO-SAM in tunnel scenarios. Interestingly, fusing the

state estimation from VINS and the LiDAR-based method appears complementary

in typical tunnel scenes, as indicated by the error maps of LIO-SAM and VINS. Ad-

ditionally, the GNSS error map can be utilized to identify areas with minimal errors,

which can facilitate sensor integration. Consequently, each CAV equipped with Li-

DAR, visual, or GNSS sensors can benefit from the real-time error map estimations

broadcasted by the RSU. One potential application is that other autonomous vehicles

(AVs) could leverage the state estimation errors to optimize planning and control in

regions with larger errors. Furthermore, better performance can be achieved by using
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Figure 6.33: Illustration of trajectories of the four methods under urban-noon 1. The
trajectories of urban-sunset 1 and urban-night 1 can be found in the supplementary.

the error map for adaptive weighting of different sensors if the CAV is equipped with

a full suite of sensors, as discussed in the following section.

1) Positioning Results of the Proposed Method

The positioning performance for the test data is presented in Table 6.9. The pro-

posed EMA-MS method outperforms state-of-the-art techniques, achieving an ATE

RMSE of 1.019 meters in urban-noon 2. In the same scene, the existing LIO-SAM

recorded an ATE RMSE of 19.749 meters, with a mean error of 17.723 meters. VINS

demonstrated a similar performance, yielding an ATE RMSE of 16.103 meters. LVI-

SAM performed accurately on the test data due to its tightly coupled LIO and VIO

systems. However, the error of LVI-SAM increases as illumination conditions worsen,

particularly in urban-night 2, where the ATE RMSE escalated from 1.414 meters to

3.658 meters. EMA-MS maintained superior performance by loosely coupling LIO,

VIO factors, and GNSS adaptive weighting in urban-noon 2.

Fig. 6.35 illustrates the trajectories produced by the five methods. It is evident
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Figure 6.34: Illustration of error map of the listed methods in data urban-noon 1.
(a) LOAM; (b) LIO-SAM; (c) VINS;(d) GNSS WLS. The error maps of sunset and
night can be found in supplymentary6. Note that the error color which larger than
the color legend upper limit will be the same red color as the upper limit.

that the estimated trajectory of the proposed EMA-MS method closely aligns with

the ground truth, particularly in the zoomed-in U-turn area. The trajectories for

urban-sunset 2 and urban-night 2 can be found in the supplementary materials.

Experimental Validation in Hong Kong C-V2X Testbed

To further evaluate the proposed method in real complex scenes, we conduct another

experimental validation in the Hong Kong C-V2X testbed with a total length of 4.19

km, as shown in Fig. 6.31-(b). It involves buildings and high-speed roads. As shown

in real-world data descriptions in Table 6.7, we collected two sets of data using one

sensor-rich CAV under different time conditions (testbed-day 1 and testbed-night 1 )

for error map estimation. Afterward, we collected another two sets of data (testbed-

day 2 and testbed-night 2 ) with the same time slots to verify the effectiveness of the
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Table 6.9: Performance evaluation of listed methods. RMSE Improvement is calcu-
lated based on the evaluated method compared to the LIO-SAM.

Data Methods ATE RMSE (m) ATE MEAN (m)

urban-noon 2

LIO-SAM 19.749 17.723
VINS 16.103 15.202
LVI-SAM 1.414 2.095
LIO-SAM w/ GNSS 11.077 7.246
EMA-MS 1.019 0.828

urban-sunset 2

LIO-SAM 24.172 21.678
VINS 29.565 28.06
LVI-SAM 2.549 2.456
LIO-SAM w/ GNSS 12.040 8.238
EMA-MS 1.732 1.568

urban-night 2

LIO-SAM 21.376 19.168
VINS 12.425 11.382
LVI-SAM 3.658 3.523
LIO-SAM w/ GNSS 6.715 4.787
EMA-MS 2.909 1.852

proposed method aided by the error map generated by the previous data.

1) Error Map Estimation

Table 6.10 demonstrates the positioning performance of the evaluated methods.

The performance of LiDAR-only LOAM is worse than other methods, up to 0.452

meters in terms of RPE in HK C-V2X testbed day 1. With the help of the inertial

sensors, the RPE of the LIO-SAM is decreased to 0.233 meters. VINS achieves an

average performance of 0.438 meters in terms of RPE. The RPE of GNSS positioning

is up to 9 meters due to multi-path in urban areas.

Fig. 6.36 and Fig. 6.37 show the positioning error and the trajectories using four

methods, respectively. The black curve represents the ground truth. The LiDAR-

based method LOAM and LIO-SAM are degenerated in the featureless scene (shown

in Fig. 6.36 (A) and (E)). VINS suffers a worse performance if under ill illumination

and featureless scenes, as shown in Fig. 6.36 (D) and (E). The GNSS positioning

method provided average absolute performance compared to the LIO-SAM. Similar
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Figure 6.35: Trajectories of the listed methods in Data urban-noon 2. The area
marked in blue is the zoom-in of the U-turn area. The trajectories of urban-sunset
2 and urban-night 2 can be found in supplementary.

to the simulated scene, it suffers from large errors entering the dense urban areas, as

shown in Fig. 6.36 (C) and 6.36 (F).

Fig. 6.38 demonstrates the results of the error maps from the listed methods

using testbed-day 1. Similar to Figs. 6.36 and 6.37, it can observe large errors of

VINS in high-speed scenarios. The performance of GNSS positioning is degraded

near the high-building areas. Interestingly, it is complementary if we fuse the state

estimation of multiple sensors according to the error maps. We can obtain better

performance by utilizing the error map for the adaptive weighting of different sensors

if the CAV is equipped with all sensor-suit, as shown in the following section.

1) Positioning Results of the Proposed Method

The positioning performance for the test data is shown in Table 6.11. An ATE

RMSE of 12.476 meters was obtained using the existing LIO-SAM in the same scene,

with a mean error of 10.875 meters. The error of VINS increases as the illumination

condition worsens, especially on testbed-night 2. The LVI-SAM obtained a similar
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Table 6.10: Error evaluation of listed methods using different sensors in terms of
RMSE in Hong Kong C-V2X testbed.

Data Methods RPE RMSE (m) ATE RMSE (m)

testbed-day 1

LOAM 0.452 223.142
LIO-SAM 0.233 9.546
VINS 0.438 556.614
GNSS Positioning * 9.597

testbed-night 1

LOAM 0.159 47.848
LIO-SAM 0.357 16.501
VINS 0.134 258.772
GNSS Positioning * 9.306

performance as VINS due to the poor performance of VINS in these dynamic illu-

mination scenes. With the aid of the weighted constraint, the error of the proposed

method is reduced to 4.743 meters in HK C-V2X day 2 and 4.120 meters in HK

C-V2X night 2, respectively. Fig. 6.39 shows the trajectories using five methods. It

can be seen that the estimated trajectory of the proposed EMA-MS method aligns

well with the ground truth, especially in the zoom-in U-turn area. The trajectories

of HK C-V2X night 2 can be found in the supplementary. In summary, using the

continuous error map can significantly improve the positioning performance of the

multi-sensor integration in urban areas.

Table 6.11: 2D Positioning evaluation of listed methods.

Data Methods ATE RMSE (m) ATE MEAN (m)

testbed-day 2

LIO-SAM 12.476 10.875
VINS 424.171 378.136
LVI-SAM 633.347 575.513
LIO-SAM w/ GNSS 5.536 4.289
EMA-MS 4.743 3.911

testbed-night 2

LIO-SAM 8.871 8.275
VINS 600.720 422.203
LVI-SAM 410.649 310.221
LIO-SAM w/ GNSS 6.091 4.471
EMA-MS 4.120 3.498
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Figure 6.36: 2D Positioning errors of the listed methods. The x-axis denotes the
timestamp while the y-axis indicates the error, respectively. Scene (A)-(F) are the
marked area of the challenging scenarios for the state estimation.

6.5 Summary

Roadside Infrastructure assisted LiDAR/Inertial-based Mapping for In-

telligent Vehicles in Urban Areas: With the growth and development in smart

cities, there is a huge demand for vehicle-infrastructure cooperation. This study

presented a complete pipeline to enhance the performance of the LIO aided by the

global constraint provided by the RSIs. Evaluation results on the Hong Kong C-V2X

testbed show that our proposed method outperforms the state-of-the-art method re-

garding absolute positioning accuracy.

Roadside Infrastructure-Assisted LiDAR/Inertial-Based Mapping for

Intelligent Vehicles in Urban Areas: As smart cities continue to evolve, the
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Figure 6.37: Illustration of trajectories of the four methods under testbed-night 1.
The trajectories of testbed-night 1 can be found in the supplementary

demand for efficient vehicle-infrastructure cooperation has grown significantly. In

this study, we propose a method aimed at improving LIO performance by leveraging

global constraints from roadside infrastructures (RSIs). Evaluation results from the

Hong Kong C-V2X testbed show that our approach outperforms state-of-the-art

methods in terms of absolute positioning accuracy.

Roadside GNSS Aided Multi-Sensor Integrated Positioning for Intel-

ligent Vehicles in Urban Areas: This study presents the RSG-GLIO method,

which enhances sensor integration performance by incorporating multiple roadside

GNSS DD observations. The results show that roadside GNSS can significantly im-

prove positioning accuracy for autonomous systems and offer potential applications,

such as low-cost base stations.

Continuous Error Map Aided Adaptive Multi-Sensor Integrated Posi-

tioning for Connected Autonomous Vehicles in Urban Scenarios This study

introduces sensor error maps, which can be deployed as an additional layer on top of
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high-definition maps for V2X applications in urban environments. We demonstrate

that the multi-sensor integrated system benefits from prior error information pro-

vided by error map estimation, as validated through both a realistic simulator and

a real-world C-V2X testbed.

Since the same sensor noise and configuration are used in this study, future work

will focus on conducting a detailed analysis of sensor correlations to further enhance

the robustness of error maps. This will include:

1. Assessing Cross-Vehicle Sensor Correlations – Investigating how spatial and

temporal alignment of sensors across different vehicles affects error propagation.

2. Evaluating the Impact of Sensor Accuracy and Configuration – Analyzing how

variations in LiDAR, GNSS, and IMU specifications influence the accuracy of

shared error maps.

3. Examining Operational Duration Effects – Exploring the impact of long-term

operation and accumulated drift on error consistency across multiple vehicles.
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Figure 6.38: Illustration of error map of the listed methods in data HK C-V2X day 1.
(a) LOAM; (b) LIO-SAM; (c) VINS;(d) GNSS WLS. The error maps of HK C-V2X
night 1 can be found in supplementary. Note that the error color which larger than
the color legend upper limit will be the same red color as the upper limit.
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Figure 6.39: Trajectories of the listed methods in Data HK C-V2X day 2.
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Chapter 7

Conclusions and Future Work

This thesis investigates the dynamic object-aware LiDAR odometry in dense urban

areas by developing several new methods. The proposed approaches cover a range of

solutions, from single-agent intelligence to vehicle-infrastructure cooperative naviga-

tion. This chapter presents the conclusion of the research, based on the four stages of

study: (1) identify the limitations of existing LO pipelines in urban areas; (2) develop

dynamic object-aware LO to mitigate the impact of moving objects; (3) integrate

LiDAR with GNSS-RTK positioning to enhance fixing rates and state estimation;

(4) develop roadside infrastructure-assisted navigation systems to address the lim-

itations faced by individual autonomous vehicles in urban areas. Finally, several

potential future research directions are discussed at the end of the chapter.

7.1 Conclusion of this Research

In Chapter 3, we conducted a benchmark performance evaluation and analysis of

publicly available LO pipelines using two challenging datasets collected from the

urban canyons in Hong Kong. The findings indicate that point-wise LO methods can

be enhanced by incorporating additional computational steps, such as G-ICP. While

voxelization in VG-ICP reduces the computational effort needed for neighboring

point searches, it may also compromise accuracy in state estimation. Feature-based
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methods, on the other hand, demonstrate both accuracy and computational efficiency

by utilizing extracted feature points. However, the performance of both types of

methods is influenced by the three dominant factors we identified. Our experiments

suggest that combining feature-wise and point-wise approaches can be an effective

solution. The feature-based method can quickly generate a coarse odometry estimate,

which can then serve as an initial guess for point-wise point cloud registration. Since

point-wise methods are highly dependent on the accuracy of the initial guess, this

strategy creates a coarse-to-fine LO pipeline. However, it is crucial to recognize that

feature-wise methods can occasionally produce erroneous estimates. In such cases,

fault detection mechanisms, such as the degeneration factor should be employed.

In chapter 4, we aimed to mitigate the impact of dynamic objects on LO. Firstly,

we introduced a LiDAR-based pipeline that removes dynamic objects, leading to im-

proved state estimation and reduced mapping residuals in densely populated urban

areas. This approach also enables the creation of a clearer point cloud map that more

accurately reflects the real world. Secondly, we provided a comprehensive evaluation

of how dynamic objects can degrade LO performance. By analyzing various scenar-

ios, this study highlights the challenges posed by dynamic elements in urban envi-

ronments. In contrast to the work with dynamic object removal, this study proposes

a reweighting strategy for dynamic objects, which enables the system to adaptively

adjust the influence of these objects during state estimation. Experiments conducted

on our UrbanNav dataset and the open-source nuScenes dataset validate the effec-

tiveness of our proposed method, which outperforms both conventional methods and

those relying solely on dynamic object removal [16]. By addressing the challenges

introduced by dynamic objects, our approach enhances the robustness and reliability

of LO, contributing to more accurate navigation in complex urban environments.

In chapter 5, we explored the complementary relationship between GNSS-RTK

and LiDAR odometry. We proposed a LiDAR-aided method for detecting cycle slips
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in triple-differenced carrier-phase measurements. We resolve the integer ambiguity

resolution after identifying the potential cycle slips. The performance of this ap-

proach is evaluated using a challenging dataset collected in typical urban canyons

of Hong Kong. Step-by-step comparisons with traditional methods demonstrate the

effectiveness of the proposed pipeline in terms of fixing rate and state estimation.

In chapter 6, we introduced roadside infrastructure-assisted navigation systems

in urban areas, aimed at overcoming the limitations faced by individual intelligent

vehicles. First, we propose a method that enhances LIO performance by utiliz-

ing global constraints from RSI. Evaluation results from the Hong Kong C-V2X

testbed indicate that our approach surpasses state-of-the-art methods in absolute

positioning accuracy. Secondly, we present the RSG-GLIO method, which improves

sensor integration by incorporating multiple roadside GNSS DD observations. Our

findings show that roadside GNSS significantly enhances positioning accuracy for

autonomous systems and opens up possibilities for applications like low-cost base

stations. Thirdly, we introduce sensor error maps, which can be used as an addi-

tional layer over high-definition maps for V2X applications in urban environments.

We demonstrate that the multi-sensor integrated system benefits from prior error

information provided by error map estimation, as validated through both a realistic

simulator and the real-world C-V2X testbed.

7.2 Future Directions

Future research directions will focus on enhancing the integration of vehicle-infrastructure

cooperation to enable robust, long-term mapping and meshing across diverse urban

environments.
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7.2.1 Collaborative high-definition map update for autonomous
systems

Intelligent vehicle-infrastructure cooperation has the potential to revolutionize the

transportation industry, offering optimized traffic management and a significant

leap forward in the development of next-generation intelligent transportation sys-

tems. However, one of the major challenges lies in the continuous updating of high-

definition (HD) maps, which is both cost-intensive and laborious. This is largely due

to the reliance on expensive, sensor-rich map update vehicles, as well as the substan-

tial manpower required to maintain the accuracy and freshness of these maps.

As depicted in Fig. 7.1, one of our key future research directions aims to ad-

dress these challenges by focusing on three fundamental aspects: First, map change

detection, which involves identifying and tracking dynamic changes in the environ-

ment, such as road modifications, new buildings, or updated traffic infrastructures,

to ensure that maps remain up to date without needing full re-scans of entire areas.

Second, we aim to explore massive data compression and restoration techniques. As

HD maps consist of large, detailed datasets, compressing these maps efficiently while

ensuring minimal loss of critical information is essential for real-time updates and

storage efficiency. Finally, the third focus is on developing a globally consistent op-

timal solution for HD map updates, which entails creating algorithms that ensure

all changes are seamlessly integrated into the map, maintaining global consistency

across different regions and sensor data inputs, thus improving the reliability and

usability of the maps across vast urban environments.

7.2.2 Calibration of onboard and roadside sensors

Our current approach relies on the assumption that both roadside and onboard

sensors are pre-calibrated. However, over time, sensor calibration parameters may

drift due to environmental factors, sensor wear, or slight shifts in sensor positioning,
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Figure 7.1: Illustration of collaborative mapping with vehicle infrastructure

necessitating periodic recalibration. Manual recalibration, especially for roadside

sensors, can be both labor-intensive and costly, as it typically requires the use of static

reference markers and often involves shutting down roads or setting up controlled

environments. This not only incurs additional costs but also disrupts the normal

functioning of transportation networks.

To address these challenges, a potential future direction involves the development

of an automatic calibration system for roadside sensors, which leverages the continu-

ous, high-precision global constraints provided by the integration of onboard sensors.

As shown in Fig. 7.2, the accurate and real-time positioning data from onboard sen-

sors can be used to continuously monitor and correct the calibration parameters of

roadside sensors. This would enable a dynamic and automated recalibration process,

eliminating the need for costly and time-consuming manual interventions.
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Figure 7.2: Illustration of online calibration of onboard and roadside sensors

7.2.3 Online 3D reconstruction in challenging urban areas

Various 3D reconstruction methods, such as NeRF [156] and 3D Gaussian Splatting

[17], have shown remarkable performance in static scenes, as illustrated in Fig. 7.3.

These techniques have pushed the boundaries of photorealistic and geometrically

accurate reconstructions. However, when applied to complex urban environments

characterized by highly dynamic elements—such as moving vehicles, pedestrians, and

changing lighting conditions—maintaining the same level of performance becomes a

significant challenge.

To address this, we will explore the integration of our navigation system with

state-of-the-art 3D reconstruction techniques. By leveraging advanced multi-sensor

data, including LiDAR, cameras, and GNSS, combined with robust navigation al-

gorithms, our goal is to enable accurate and resilient 3D reconstruction even in

challenging, high-dynamic urban areas. This integration could provide real-time,

continuously updated 3D models of urban landscapes, which would be invaluable for

applications like autonomous driving, urban planning, and virtual reality environ-

ments.
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Figure 7.3: Results of 3DGS [17] using Google Map Satellite imagery in Hong Kong
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