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Abstract

With the prevalence of graph data on the Internet, graph learning models, particularly Graph

Neural Networks (GNNs), have emerged as powerful tools for various applications, including

social network analysis, recommender systems, and anomaly detection. These applications of-

ten play critical roles in ensuring system security and reliability, making the trustworthiness

of graph models paramount. However, recent studies have revealed the vulnerability of graph

learning models to adversarial attacks, highlighting the urgent need to enhance their robustness.

This thesis delves into the vulnerability and robustness of graph learning models from three key

perspectives: adversarial attacks, empirical defenses, and certifiable defenses.

First, we introduce coupled-space attack to investigate the vulnerability of the random-walk-

based anomaly detection (RWAD) model. A unique characteristic of RWAD is that it can oper-

ate on both pre-existing and feature-derived graphs, which present two potential attack surfaces:

graph-space and feature-space. Our proposed coupled-space attacks are the first to investigate

the interplay between graph-space and feature-space attacks. We prove the NP-hardness of

attacking RWAD and propose efficient strategies to solve the bi-level optimization problem as-

sociated with the attacks.

Secondly, we propose a powerfulMetaC attack for both GNN-based and matrix-factorization-

based recommender systems. Leveraging insights from our vulnerability analysis, we design a

robust recommender system with empirical defense named PDR system. GraphRfi, a state-of-

the-art robust GNN-based recommender system, was proposed to mitigate the effects of injected

fake users. Unfortunately, we demonstrate thatGraphRfi is still vulnerable to strong attacks likes

MetaC due to the supervised nature of its fraudster detection component, where the clean labels
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it relies on are hard to obtain in practice. Then, we design an adjustable fraudster detection

module that explicitly considers label uncertainty. This module can serve as a plug-in that can

be easily integrated into different models, resulting in the PDR system.

Thirdly, while empirical and certified robustness techniques have been developed to defend

against graph modification attacks (GMAs), the problem of certified robustness against graph

injection attacks (GIAs) remains largely unexplored. To bridge this gap, we introduce the node-

aware bi-smoothing framework, which is the first certifiably robust approach for general node

classification tasks against GIAs. Specifically, it randomly deletes nodes and edges of the graphs

to obtain smoothed predictions with a large amount of random inputs. Through rigorous theo-

retical analysis, we establish the certifiable conditions of our smoothing scheme.

Finally, we present the first collective certificate against GIAs, significantly improving the cer-

tified performance compared to existing sample-wise certificates. Our collective certificate cer-

tifies a set of target nodes simultaneously, overcoming the limitations of previous approaches.

We formulate the problem as a binary integer quadratic constrained linear programming (BQ-

CLP) and develop a customized linearization technique to relax it into efficiently solvable linear

programming (LP).

Through extensive evaluations, we demonstrate the effectiveness of our proposed adversarial

attacks and defense techniques, paving the way for developing more robust and trustworthy

graph learning models for real-world applications.

[475 words]
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Chapter 1

Introduction

Massive data in the form of graphs are ubiquitous in various domains, including social net-

works, financial systems, and e-commerce platforms. These graphs represent the complex rela-

tionships between entities, providing valuable insights for various applications. With the rapid

development of Artificial Intelligence (AI), graph learning, particularly Graph Neural Networks

(GNNs) [4, 5], has emerged as a powerful tool for learning and predicting from graph data [6].

GNNs have achieved significant success in fields closely related to people’s daily life, such as

social network analysis [7], financial fraudster detection [8, 9], and e-commerce recommender

systems (RS) [10, 11, 12, 13, 14]. However, the increasing reliance on these graph machine

learning models raises concerns about their trustworthiness and vulnerability to adversarial at-

tacks. Many of these applications are critical for ensuring system security. Consequently, en-

suring the trustworthiness of those graph learning models is of paramount importance.

The adversarial robustness of graph learning models has been a topic of significant research

interest [15, 16, 17, 18]. Existing research [19, 20, 21] has demonstrated the effectiveness and

prevalence of adversarial attacks on graph learning models. These attacks manipulate graph data

to influence model predictions, enabling attackers to achieve malicious goals. For instance, in a

recommendation system, attackers can create fake user accounts and generate positive reviews

to promote specific products, manipulating the model’s predictions and gaining unfair advan-

tages [22, 23, 24]. Such attacks undermine the trustworthiness of graph learning models and
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pose significant security risks to online activities. Addressing these threats is crucial for ensur-

ing the reliability and security of AI systems that rely on graph data.

A mainstream approach to achieving trustworthy graph learning is to enhance the robustness of

graph learning models. This involves two progressive levels: empirical robustness and certified

(provable) robustness [25]. Empirical robustness [26, 27, 28, 15] focuses on adopting specific

techniques to make the model resistant to attacks, with defense capability evaluated through

extensive experiments. However, a key challenge with empirical robustness is that attackers

can adapt their strategies, potentially compromising the model’s defenses [29]. Certified ro-

bustness [30, 31, 32, 33, 34, 35] builds upon empirical robustness by establishing a theoretical

framework that provides a guarantee for the model’s defense effectiveness: As long as the attack

intensity remains within a certain range, the model’s predictions remain unchanged. This char-

acteristic distinguishes certified robustness from empirical robustness, and no further potential

attack will break the robustness. Enhancing both the empirical and certified robustness of graph

learning models can significantly improve their trustworthiness and mitigate the potential harm

caused by adversarial attacks.

Adversarial Attack

Empirical Defense

Introduction: Overview

• Discover Model Vulnerability
• Inspire Robust Model Design
• Used For Robustness Evaluation

• Practical Robust Model
• Empirically Defense Against

Some Specific Attacks

• Certifiably Robust Model
• Certified Defense Against Any

Attacks under Defined Conditions

Figure 1.1: Relationship among adversarial attacks, empirical defense, and certified robustness.

However, current research on the vulnerability and robustness of graph learning models

faces significant limitations due to the inherent richness of graph data and the evolving

2



complexity of adversarial environments. This thesis aims to investigate adversarial attacks,

empirical defense, and certified defense in the face of the diversity of graph models. We propose

adversarial attacks, aiming to evaluate and analyze the robustness of graph learning models.

To defend against the attacks, we propose empirical defense by designing more robust graph

learning models. Nevertheless, new and adaptive attacks might occur and break the empirical

defense. To further safeguard the model, we propose certified defenses that are provably robust

to some attacks in a specific format. Empirical defense is more popular (efficient but without

theoretical guarantee), while certified defense is more rigorous (provably robust but high cost).

Both of these defenses play essential roles in safeguarding graph learning. We further illustrate

the relation among the three aspects in Figure. 1.1.

1.1 Adversarial Attack

The first goal of this thesis is to further investigate the vulnerability of graph models by de-

signing fine-grain adversarial attacks in a more complex adversarial environment. Specifically,

this thesis investigates two kinds of important target models: Random-walk-based anomaly

detection models (RWAD) and recommender system (RS) models. Both of these two graph

learning models exploit complex interdependency between multiple data dimensions. In the

RWAD model, the graph and feature data space are interdependent and interacting. In the RS

models, the graph structure and the ratings work together to affect the recommendation. We

propose advanced attacks that can better capture the complex interdependency between the data

dimensions.

RandomWalks-based Anomaly Detection (RWAD) is graph-based models that commonly used

to identify anomalous patterns in various applications [36, 37, 38, 39, 40, 41]. An intriguing

characteristic of RWAD is that the input graph can either be pre-existing graphs or feature-

derived graphs constructed from raw features [42, 43, 44, 45, 46]. Consequently, there are two

potential attack surfaces against RWAD: graph-space attacks and feature-space attacks. It is

worth noting that in the latter case, where the graph is not directly accessible, feature-space

attacks are deemed more realistic. However, previous research treats attacks in the graph space
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and feature space rather separately. On the one hand, many existing works have investigated

structural attacks [19, 47, 48, 49] against a wide range of graph learning models. On the other

hand, another line of research has focused on studying feature manipulation attacks [50, 51, 52]

primarily in the computer vision domain, where the data objects represented by features are

independent of each other. Unfortunately, no existing adversarial attack considers the inter-

dependency between the graph space attack and feature space attack.

In the content of feature-derived graph-based models, in which the graph and feature data are

interdependent in a complete way, we are motivated to explore the vulnerability by investigating

the interplay between graph-space and feature-space attacks. To this end, we conduct a thorough

complexity analysis, proving that attacking RWAD is NP-hard. Then, we proceed to formulate

the graph-space attack as a bi-level optimization problem and propose two strategies to solve

it: alternative iteration (alterI-attack) or utilizing the closed-form solution of the random walk

model (cf-attack). Finally, we utilize the results from the graph-space attacks as guidance to de-

sign more powerful feature-space attacks (i.e., graph-guided attacks). In addition, we conduct

transfer attack experiments in a black-box setting, which shows that our feature attack signifi-

cantly decreases the anomaly scores of target nodes. Our study opens the door to studying the

coupled-space attack against graph anomaly detection in which the graph space relies on the

feature space.

Recommender systems (RS) are widely used in our daily lives, and they save people’s time

by showing them the most relevant information or products. However, adversarial attacks are

ubiquitous among RS. Despite the development of vulnerability analysis for RS [22, 23, 24],

existing approaches generate edges (which items the attacker chooses to insert ratings) and rat-

ings (which rating scores the attacker gives) independently. These attacks ignore the complex

interdependency between the edges and the ratings. As a result, we design a stronger attack,

named MetaC, to optimize the attack profiles by considering the edges and ratings at the same

time. Specifically, we adapt metattack [53], one of the state-of-the-art attacks originally de-

signed for node classification tasks, to be suitable and powerful for RS attacks. We employ a

continuous vector to encode the discrete ratings during the optimization and then discretize the

ratings after the optimization. Our proposed MetaC attack is suitable for both GNN-based [54]
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and Martix-Faxtorization-based [55, 56] recommender systems, showing the versatility of our

attack.

1.2 Empirical Defense

Against the background of adversarial attacks, various defense mechanisms [57, 58] have been

proposed to improve the adversarial robustness of RS against node injection attacks. Recently,

GraphRfi [54], a Graph-Neural-Network-based (GNN-based) recommender system, was pro-

posed and shown to mitigate the impact of injected fake users effectively. However, we demon-

strate that GraphRfi remains vulnerable to MetaC attacks due to the supervised nature of its

fraudster detection component, where obtaining clean labels is challenging in practice.

The second goal of this thesis is to explore the key research question of how to effectively inte-

grate fraudster detection into RS, where the labels employed in training contain uncertainty. We

first analyze whyGraphRfi fails under MetaC attack. Then, based on our insights obtained from

vulnerability analysis, we design an adaptive fraudster detection module that explicitly consid-

ers label uncertainty. This module can serve as a plug-in for different recommender systems,

resulting in a robust framework named Posterior-Detection Recommender (PDR). Overall, our

research presents a practical framework for integrating fraudster detection into recommendation

systems to achieve adversarial robustness.

1.3 Certified Robustness

In recent years, although significant progress has beenmade in the field of certified robustness in

graph learning [59, 34, 33, 35], the attacks targeted by these methods are mainly common graph

modification attacks. However, another prevalent form of attack, called graph injection attack

(GIA), is gaining attention [3, 60, 61]. Unlike graph modification attacks (GMA), which only

add or delete edges on the original graph, GIAs involve injecting new nodes into the original

graph. This characteristic makes GIAs more powerful and imperceptible [3, 60, 61]. Therefore,

it is an urgent problem to study certified robustness that is applicable to GIAs.
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Unfortunately, the existing certified robustness methods designed for graph structural attacks

have limited effectiveness when applied to GIAs. The fundamental reason is that previous

GMAs only manipulate the graph in a single way (e.g., deleting edges), while GIAs involve

mixed-mode manipulations (e.g., adding nodes and edges simultaneously). As a result, the

main method relied upon by previous certified robustness approaches, randomized smooth-

ing [59, 62, 35], cannot handle suchmixed-mode datamanipulations, making it unable to provide

effective theoretical guarantees for graph learning models against more diverse GIAs.

Therefore, the third goal of this thesis is to construct a more generalizable certified robust

model and explore new theoretical proof methods to provide theoretical robustness guarantees

in the face of complex and diverse attack methods. To bridge this gap, we introduce the node-

aware bi-smoothing framework, which is the first certifiably robust approach for general node

classification tasks against GIAs. Notably, the proposed node-aware bi-smoothing scheme is

model-agnostic and is applicable for both evasion and poisoning attacks. Through rigorous

theoretical analysis, we establish the certifiable conditions of our smoothing scheme. We also

explore the practical implications of our node-aware bi-smoothing schemes in two contexts: as

an empirical defense approach against real-world GIAs and in the context of recommendation

systems. Furthermore, we extend two state-of-the-art certified robustness frameworks to address

node injection attacks and compare our approach against them.

Current certified robustness methods have low certified ratios and need to improve their certi-

fied ratios to make them truly practical. Another major issue with existing certified robustness

methods is that their certified ratios (i.e., the proportion of predictions that can be theoretically

verified) are very low. This means that certified robustness is still in its early stage of theoretical

usability and still has a long way to go before it becomes practically applicable. For example, as

a representative work, [59] the certified ratio of the model drops to zero [59] when the number

of deleted edges exceeds 25 (which is only about 0.3% of the original edges). In other words,

this model can only guarantee stable predictions under minor attack strengths, which is far from

practical requirements. The main reason for the low certified ratios in current methods is that it

is difficult to estimate the attacker’s strength accurately in the process of making assumptions

and modeling the attacker. In order to facilitate theoretical proofs, we often overestimate the
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attacker’s strength to reduce the complexity of modeling, which directly leads to much lower

certified ratios than expected in practice.

Therefore, the fourth goal of this thesis is to explore new approaches to improve the certified

ratios of certified robustness models and promote the practical application of certified robust-

ness as a valuable tool with theoretical guarantees. Existing research only provides sample-wise

certificates [59, 62, 33] by verifying each node independently, leading to very limited certifying

performance. In this thesis, we present the first collective certificate, which certifies a set of tar-

get nodes simultaneously. To achieve it, we formulate the problem as a binary integer quadratic

constrained linear programming (BQCLP). We further develop a customized linearization tech-

nique that allows us to relax the BQCLP into linear programming (LP) that can be efficiently

solved. Our thesis marks a crucial step towards making provable defense more practical.

Contributions

Unknown Vulnerability
for complex graphs

Uncertain Label
for malicious nodes

Unknown Robustness
under adaptive attacks

Interdependency
between different data

dimensions

Obtaining these true 
labels is difficult

Existing certificates are
not directly suitable for

GIA attacks

We propose new
adversarial attacks for

feature-induced graphs,
and user-item

interaction graphs

We propose jointly
training model with
adaptive fraudster

detection and robust
recommendation

We propose the first
sample-wise and

collective certifiably
robust framework for

GIA attacks

TIFS TIFS S&P, ICML

Trustworthy graph learning : 
Adversarial Attack, Empirical Defense, and Certified Robustness

Outcomes

Challenges

Problems

Introduction: Overview

Figure 1.2: Overview of the thesis.

In summary, this thesis aims to systematically analyze the vulnerability by investigating power-

ful attacks and enhance the robustness of graph learning models by developing both empirical

and certified defenses. The overview of this thesis is presented in Figure. 1.2. The contributions
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of the thesis are listed as follows:

• To investigate the vulnerability of the graph learning model, we design coupled-space

attacks for the random-walk-based graph anomaly detection model andMetaC attack for

the GNN-based recommender system model. Comprehensive experiments demonstrate

that our proposed attacks are effective with a limited attack budget.

• To investigate empirical defense against adversarial attacks, we propose an empirically

robust recommender system (PDR). Comprehensive experiments show that our defense

approach outperforms other benchmark methods under attacks.

• To investigate new certified defense, we propose node-aware smoothing, a certifiably

robust graph model against graph injection attacks. Extensive evaluations demonstrate

the effectiveness of our proposed certificates.

• To further improve the certifiable performance, we design a collective certification that

models the locality of message-passing GNNs. Through comprehensive experiments, we

demonstrate that our proposed scheme significantly improves certification performance

with minimal computational overhead.
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Chapter 2

Background and Related Works

In this chapter, we provide the necessary background and related work of graph learning models,

especially in the context of adversarial attack, empirical defense, and certified robustness.

2.1 Random-Walk-based Anomaly Detection

In this section, we introduce the necessary background on unsupervised random-walk-based

anomaly detection (RWAD).We first present an overview of the framework with an emphasis on

the role of random walk (RW) in anomaly detection. Then, we give two concrete representative

RWAD models, which are also the target models considered in this thesis.

Random-walks-based anomaly detection (RWAD) [38, 43, 40, 42, 44, 63, 45] , a classical un-

supervised graph anomaly detection (GAD) technique, is widely used to safeguard the system

from attacks by detecting abnormal data. RWAD, as discussed in this chapter, exploits ran-

dom walks as a similarity or connectivity measurement. Traditional feature-based techniques

[64, 65, 66] utilize statistical features, such as in and out node degrees, to extract structural infor-

mation from graphs and transform the GAD to usual anomaly detection problem. For example,

OddBall [64] built a regression model based on the density power law to estimate anomalous

local patterns. These labor-intensive handcrafted features have limitations on generalizing to
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unknown anomalies. Beyond handcrafted features, network-representation-based techniques,

such as DeepWalk [67] and Node2Vec [68], are widely exploited to extract a more flexible

feature representation which can be used for downstream anomaly detection tasks[69]. Most

recent work mainly focuses on investigating deep learning based anomaly detection, such as

DOMINANT [70], GAL [71], TAM [72], GLAD [73], and GAD-NR [74].

Nevertheless, RWADs have an irreplaceable role in GAD because of their simplicity, unsu-

pervised, and effective features. These motivate us to investigate their vulnerability further in

Section 3.1.

2.1.1 Input data as a graph

In general, RWAD takes a plain graph as input and produces anomaly scores for the nodes in

the graph as output. In practice, the input graph could be either directly available or constructed

from raw data. Depending on the levels of accessibility of the graph, we divide RWAD systems

into two types:

• RWAD over directly accessible graph (Di-RWAD) [38, 39]: In this case, the input to

RWAD is a graph that represents relational data in a specific application. For instance, in

recommender systems, the rating towards products given by customers on E-commerce

platforms can be modeled as a bipartite graph.

• RWAD over indirectly accessible graph (InDi-RWAD) [42, 43, 44, 45]: In this case, the

input to RWAD are raw features of entities, and a graph is constructed as a data preprocess-

ing step in the pipeline of anomaly detection (Fig. 3.1, top). Typically, given the feature

vectors, a proximity graph is constructed, where the nodes represent entities and an edge

exists between two nodes only if they are similar enough in certain similarity metrics.

We note that in both cases, RWADwill operate on graphs; however, the difference lies in whether

the graph is directly accessible. Later we will see that such a difference is crucial for determining

the attacker’s ability when designing attacks.
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2.1.2 RW as a similarity measurement

The core of unsupervised anomaly detection is to identify data points that are significantly differ-

ent from the rest of the population. RW has been shown to be an effective method for measuring

the similarities of nodes in a graph. Specifically, given a graph G = (V,E) with its adjacency

matrix denoted asW , we define the transition matrix P = (pij)|V |×|V | as the column-normalized

version of the adjacency matrix W , where pij = wij/
∑|V |

t=1 wi,t. If vertex i has no outgoing

edges (i.e.,
∑k+n

t=1 wi,t = 0), we set the transition probability to 0. The widely used Page-Rank

algorithm with restart can be represented as follows:

%s = (1− α)P%s+ α%r, (2.1)

where α is the restart rate, a hyper-parameter that controls the probability of restart; the vector

%r specifies the restart strategy, and %s characterizes the node similarities. With the similarity, the

anomaly score of a node is calculated as the opposite of its average similarity to all other nodes,

or the average similarity among its neighbors.

2.1.3 Adversarial attacks on random walk

Our work belongs to the category of targeted and poisoning adversarial attacks. Here, we in-

clude the most related existing attacks on graph models. There are some previous research

efforts on the random walk (RW) based models. [75] reformulate the DeepWalk model as a

matrix factorization form to reduce the bi-level optimization to single-level, and then optimize

the untargeted attack loss by optimizing the graph spectrum. [76] make further improvements

to make the spectrum-based attack work in a black-box system. Different from our attacks on

RW-based anomaly detection, they mainly focus on attacking node embedding generated by

RW.

In addition to RW-based model, Nettack [19], Metattack [20] are two strong poisoning attacks

for the GCN-based models. Nettack greedily selects the perturbation edges among the candidate

sets with the largest gradient obtained by incremental updates. Metattack greedily selects the

perturbation edges with the largest gradient obtained by meta-gradient. Note that both of these
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methods can be extended to attack node features. However, Nettack does not introduce the attack

node selection, and Metattack is only applicable to binary features. Furthermore, the proximity

graph is different from other graphs. The proximity graph is changing along with features, while

the node feature attack in [19],[20] have fixed graph structures. For belief propagation models,

[77] introduced a poisoning attack for graph data. For another classical graph-based anomaly

detection model called OddBall, [49] proposed BinarizedAttack, which is well-designed for the

binary property of edges. For graph contrastive learning, [78] attacks the graph embedding by

greedily choosing the most informative edges. Beyond gradient-based methods, perturbing the

intrinsic property of graphs, such as spectral changes [79] shows to be more effective, but it is

only suitable for untargeted attacks. These works are orthogonal to our study.

2.2 Recommender Systems

In this section, we introduce the recommender system (RS) background by first providing an

overview and then introducing two representative RSs.

The recommender system (RS) plays an important role in our daily lives as it saves us time by

preventing us from accessing tremendous amounts of information. However, the vulnerability

of RS gives the opportunity for malicious attackers to manipulate the recommendation. For this

reason, this thesis aims to investigate their vulnerability further and propose a stronger defense

strategy.

A recommender system (RS) typically operates on a weighted bipartite graph G = (U ∪ V , E),

where U = {u1, · · · , un} is a set of n users, V = {v1, · · · , vm} is a set of m items, and the

edge set E = {eij = (ui, vj, rij)} is a collection of observed ratings with rij ∈ {1, 2, · · · , rmax}

denoting the rating from user ui to item vj . Each user ui is also associated with a feature vector

xi summarizing this user’s behavioral information. The task of recommendation thus amounts

to predicting the weights of missing edges and recommending highly ranked items to users.

Recommender systems can be implemented using various techniques. One of the most classical

methods is Matrix Factorization (MF) [56]. More recently, graph representation learning tech-
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niques, such as Graph Neural Networks (GNNs), have been increasingly utilized to improve

prediction performance [11, 12, 13, 14]. In the following, we introduce some representative

models to provide background on the techniques used in recommender systems.

2.2.1 MF-based RS

Matrix factorization (MF)-based recommendation models, such as SVD [80], Regularized SVD

[81], and Improved Regularized SVD [82], are widely used in recommendation systems due to

their simplicity and effectiveness. For instance, Regularized SVD predicts missing values in

the history rating matrix by decomposing it into user embedding matrix U and item embedding

matrix V . The embeddingmatricesU and V are learned by regression on existing/history ratings

as follows:

argmin
U,V

∑

∀(u,v)∈E

(ruv − UT
u Vv)

2 + β(‖U‖2 + ‖V ‖2), (2.2)

where the Uu and Vv denote the embeddings for user u and item v respectively, the matrices

U ∈ R|U |×d and V ∈ R|V |×d represent the collection of user and item embeddings, d is the

factor number, and β is the regularization factor.

2.2.2 GNN-based RS

We useGraphRfi as a representative to introduce GNN-based RS. To mitigate node injection at-

tacks, a robust RS GraphRfi was introduced that combines recommendation with fraudster (i.e.,

fake users) detection. In particular, GraphRfi has two essential components: a rating predic-

tion component based on GNN and a fraudster detection component based on Random Neural

Forest (RNF) [83]. The main idea of GraphRfi is to treat the anomaly score of a user (from

the fraudster detection component) as her weight in estimating the ratings, thus mitigating the

effects of anomalous users. The backbone of this RS model is GNNs with attention aggrega-

tors. It encodes the discrete ratings by learnable embeddings er ∈ Rd′ , r ∈ {1, 2, · · · , rmax},

where d′ is the embedding dimension. For each user/item, it concatenates the rating embedding

with user/item embedding, and then two single-layer GNNs are employed to learn the user’s and
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item’s representation,

zu = ReLU(W1 · Agg(MLP(xv ⊕ eruv), ∀v ∈ N (u)) + b1),

zv = ReLU(W2 · Agg(MLP(xu ⊕ eruv), ∀u ∈ N (v)) + b2),

where xu/xv is initial user/item embedding, ⊕ is concatenation, and Agg(·) is attention aggre-

gation function,

Agg(hk, ∀k ∈ N (s)) =
∑

k∈N (s)

αkshk,

and the αks is the weight learned by attention layer,

aks = W4 · σ(W3 · (hk ⊕ zs) + b3) + b4,

αks =
exp(aks)∑

k′∈N (s) exp(ak′s)
.

In other words, GNNs are used to learn the embeddings of both users and items denoted as zu

and zv, which are further used to compute the predicted rating r′uv from user u to item v through

a multi-layer perceptron (MLP):

r′uv = W5 ·MLP(zu ⊕ zv),

whereWi, bi are the learnable parameters, N (s) is the neighbor set of node s.

Given the user embedding zu learned by GNNs, a classifier (i.e, RNF) is used to estimate the

probability that a user u is normal, denoted as P [y = 0|zu, θ], where θ is the model parameter,

and y = 0 indicates that a user is normal. Finally, the prediction and detection components are

jointly trained in an end-to-end manner by minimizing the following loss function consisting of

two parts:
L(θ,G) = Lrating + λ · Lfraudster

= 1
|E|

∑
∀(u,v)∈EP [y = 0|zu, θ] · (r′uv − ruv)

2

+ λ · 1
|U|

∑
∀u∈U ,yu∈Y (− logP [y = yu|zu, θ]) ,

(2.3)

where Lrating summarizes the weighted mean squared error of rating and Lfraudster is the cross-

entropy loss for anomaly detection with yu denoting the ground-truth label of user u.
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The probability P [y = 0|zu, θ] serves as the weight for user u. As a result, a user with a high

anomaly score (i.e., 1−P) contributes less to the prediction, which can enhance the robustness of

the recommendation under node injection attacks. We can also notice that the fraudster detection

component is supervised in nature as the ground-truth labels are required during training; in

Section 3.2, we will show the defects of this design by designing a powerful attackMetaC.

2.2.3 Adversarial attacks on recommender systems

Injecting nodes into the recommender system is the major attacking approach, as it could be

easily implemented in practice. The difficulty, however, lies in the selection of items and the

ratings they give. Earlier attacks [84, 85] rely on choosing filler items by heuristic rules and

giving the highest/lowest ratings to the target items, depending on the goal of pushing or nuking

items. However, these attacks are not effective enough as shown by [86] and [87, 88].

Recently, more sophisticatedmethods have been proposed based on techniques such as optimiza-

tion, generative models, and so on. For instance, [89] proposed a method to optimize the selec-

tion of filler items using approximated gradients to attack MF-based RS. [90] train a poisoned

RSmodel to predict the ratings for filler items. In addition, another line of works [91, 88, 87] ex-

plore the utilization of generative models (e.g., GAN [92]) to generate fake users profiles, which

are injected into the system. However, previous works mainly focus on MF-based models due

to their simplicity and could not be easily extended to GNNs-based systems. For example, the

approximating gradients proposed in [89, 91] cannot be directly applied to GNNs-based models

like GraphRfi. This motivates us to design new attack for RS in Section 3.2.

2.2.4 Empirical defenses on Recommender System

The primary method to achieve the adversarial robustness of RS is through adversarial training,

which has been tested to be effective in many other machine learning systems. [93] and [58]

perform adversarial training by adding perturbation noise to model parameters in each training

iteration to improve the robustness of different target models. [57] train a robust MF-based RS
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via injecting some defense users based on the calculation of influence functions. Again, it is

nontrivial to extend such an idea of defense to GNNs-based systems due to the complexity of

estimating the Hessian matrix in the influence function.

The detection of fraudsters (or anomalies) is closely related to defense, as it is a natural way to

identify injected fake users. Anomalous users may exhibit patterns that deviate from those of

genuine users, such as rating several items in a similar pattern or providing overly positive or

negative reviews. Feature-based anomaly detection methods [94, 95] extract the user features

based on user behavior, such as the number of ratings, rating time, and review content, and then

apply classification techniques to identify the abnormal users. In addition, embedding-based

anomaly detection methods based on user-item rating graphs have been developed [96, 97].

These methods aim to learn embeddings that capture user behavior patterns in graphs, where the

node embedding of the fraudster deviates from that of normal users. Due to difficulty in obtain-

ing the label, unsupervised methods such as clustering [98, 99, 100, 96] and semi-supervised

methods [101, 102] are widely used in detection. However, we emphasize that anomaly detec-

tion is often employed as a preprocessing step.

Given the current under-explored status of GNNs-based RS, in Chapter 4, we aim to investigate

the adversarial robustness of the representative model GraphRfi.

2.3 Node classification task

Beyond the anomaly detection and recommendation model, the graph learning model is versa-

tile and can be used for various node classification tasks, such as social network, transaction

network, and citation network analysis [103, 17]. A further study on node classification tasks

broadens the research scope of this thesis. In this section, we first formally define the node

classification task and then introduce the most representative graph neural network.

A graph with n nodes is represented as G = (V , E , X) ∈ G, where V = {v1, · · · , vn} is the

set of nodes, E = {eij = (vi, vj)} is the set of edges with each edge eij linking vi and vj , and

X ∈ Rn×d are node features with dimension d. The graph structure of G can also be encoded
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by adjacency matrix A ∈ {0, 1}n×n with Aij = 1 if eij ∈ E and Aij = 0 if eij /∈ E . Some of

the nodes are associated with a label y ∈ Y = {1, · · · , C}. The task of node classification is

to predict the missing node labels. To this end, a graph-based classifier f : G → {1, · · · , C}n

takes graph G as input and is used to predict the labels. We consider both the inductive and

transductive settings. Specifically, in the transductive setting, the model trained on graph G

can only make predictions for the current nodes in G, while the inductive classifier can make

predictions for graphs with new nodes.

2.3.1 Message-Passing Graph Neural Networks

Graph Neural Networks (GNNs) are the mainstream model for node classification. In this the-

sis, we study certified robustness approaches that are applicable to the most commonly used

GNNs that operate under the message-passing framework based on neighbor aggregation. These

message-passing GNNs [4, 104, 105, 106] encode the local information of each node by aggre-

gating its neighboring node features (i.e., embedding) through various aggregation functions. To

generate the embedding at the higher layer of node v, GNNs aggregate the current node embed-

ding h(l)
v and its neighboring node embedding h(l)

u , ∀u ∈ N (v) := {u|Auv = 1}. We generally

represent the aggregation layers in k-layer GNNs as follows:

h(0)
v = Xv,

h(l+1)
v = Ψ(Agg(l+1)

u∈N (v)(h
(l)
v , h(l)

u )), (∀ l = 0, · · · , k − 1),

where Xv is the feature vector of node v, Agg(·) represents the general aggregation function

depending on the type of GNNmodel, andΨ(·) represents the learnable feature extraction func-

tion. These aggregation layers all together form the k-layer GNNs as parametrized functions f(·)

for the K-class classification models by taking the maximum index of the final representation

h(k)
v : fv(G) = argmaxc h

(k)
v,c . Note that, well-trained GNNs under inductive learning schemes

are able to give predictions for new graphs/nodes without any retraining. During the inference,

the receptive field of a node v in k-layer GNN is just its k-hops neighbors, and the nodes/edges

beyond the receptive field would not affect the prediction of the node when the model is given.

This locality enables the application of collective certificates.
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2.3.2 Graph Injection Attack

Graph injection attack (GIA) is a type of attack that manipulates the structure of a graph by in-

jecting malicious nodes with carefully crafted features to degrade the performance of node clas-

sification. For instance, a representative example, HAOGIA [3], first formulates an adversarial

objective function comprising two key components: an attack objective and an unnoticeable

objective. The attack objective guides the attacker in accomplishing their malicious goal, while

the unnoticeable objective aids the attacker in evading detection by defenders. Subsequently,

the method utilizes gradient descent to iterate and locate the optimal edges and node features

that maximize the objective function. We note that a GIA can occur at test time (i.e., evasion

attack [3, 61, 107]) and training time (i.e., poisoning attack [108, 109, 110, 111, 112, 113, 114]).

Specifically, the former will manipulate the testing data to disrupt a trained model, while the lat-

ter will manipulate the training data causing changed model parameters. Our proposed scheme

is applicable to both evasion and poisoning attacks.

A common requirement for GIA is to remain stealthy such that the injected malicious nodes can

not be spotted by detectors. To ensure stealthiness, many existing attacks impose a constraint that

the degree of an injected node should not exceed the average degree of the clean graph [108, 115,

110]. In particular, attack methods like G-NIA[115], G2A2C [61], and G2-SNIA [107] adopt

a default strategy of inserting a single malicious node with a single edge. This motivates us to

investigate certified robustness against such constrained while more realistic graph injection

attacks in Chapter 5.

2.4 Certified Robustness of Graph Learning Models

To defend against attacks, numerous approaches have been proposed, especially empirical ap-

proaches, such as adversarial training [116], robust models [4, 26, 27, 28], and anomaly detec-

tors [54]. Additionally, certified approaches provide provable robustness within a predefined

perturbation set, representing the attacker’s capabilities. The techniques for achieving certified

robustness can be divided into two main categories: precise certification [31] and probability
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certification based on random smoothing [30, 117]. Precise certification is usually designed for

specific models, so it has limitations. On the other hand, probability certification based on ran-

dom smoothing is more scalable and flexible, making it applicable to any graph model, and has

become a mainstream approach. The research in this thesis belongs to the latter category.

Probability certification based on random smoothing attempts to estimate the probabilities of

model outputs under given attack capabilities by using randomization techniques, such as intro-

ducing Gaussian noise. Then, theoretical conditions for maintaining unchanged predictions can

be derived.

2.4.1 Randomized Smoothing

A mainstream technique to achieve certified robustness is randomized smoothing [59, 34, 33,

35, 117, 118]. It provides probabilistic certified robustness by adding random noise to the input

samples. One representative smoothing scheme designed for graph data is the sparsity-aware

smoothing method [59]. It offers an l0-ball guarantee for graph modification attacks (GMAs).

This guarantee specifies the maximum number of edges that can be added or deleted among

existing nodes while maintaining consistent predictions. It achieves this by creating a smoothed

classifier through randomization, which involves randomly deleting or adding edges to the input

samples. Based on this randomization, denoted as φ(·), it constructs a smoothed classifier:

gv(G) := argmax
y∈{1,··· ,C}

P(fv(φ(G)) = y), (2.4)

where f : G→ {1, · · · , C}n returned the class y given a randomized graph φ(G), and smoothed

classifier g(·) returns the “majority votes” of the base classifier f(·). Then it estimates the

probability of the model’s output given the perturbed graph based on the prediction on the clean

graph and the sample overlap probability. The smoothed classifier has a certified consistent

prediction if the top class probability p′A is larger than the runner-up class p′B under any perturbed

graph in the perturbation set.

However, most existing work in this area has focused on computer vision, particularly on clas-

sification problems for images [119, 120, 121, 122] and tabular data [123, 124]. Research on
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the certified robustness of machine learning tasks on graph data, such as graph classification,

node classification, and link prediction, is still in its early stage of development. Specifically,

recent research on certified robustness of graph data has mainly focused on graph structure at-

tacks, with representative works including [59, 34, 33, 35, 125]. Among them, Wang et al.[34]

first extended the random smoothing method to graph data and established certified robustness

guarantees for any graph neural network for node classification and graph classification. Jia et

al.[33] used a similar approach to study the certified robustness of graph community detection.

Bojchevski et al.[59] improved the computational efficiency of [34, 33] by reducing the number

of constant likelihood ratio partitions and can handle perturbations on both graph structure and

node attributes. However, as mentioned earlier, these research approaches only apply to graph

modification attacks (GMAs), and extending them to graph injection attacks (GIAs) would result

in low certified ratios.

Additionally, the certified robustness mentioned earlier only applies to evasion attacks (attacks

that only manipulate test samples), and only a few studies [126, 127, 128, 129] provide cer-

tified robustness against poisoning attacks (attacks that manipulate training samples) on im-

age data. For example, Rosenfeld et al.[126] first extended the random smoothing method to

label-flipping poisoning attacks. Wang et al.[127] and Weber et al.[128] extended the random

smoothing method to defense against backdoor (poisoning) attacks. Levine et al. [129] proposed

an aggregation-based certification scheme to defend against poisoning attacks, including label

flipping and sample insertion. However, due to the significant differences between image data

and graph data, the above methods cannot be directly and effectively extended to graph learning

models. To the best of our knowledge, this thesis (Section 5.1) is the first to study the certified

robustness of graph learning models against graph injection attacks, which can be applied to

both evasion and poisoning attacks, demonstrating high originality and uniqueness.

2.4.2 Collective Certified Robustness of Graph Learning Models

Current work on certified robustness for graph learning models [59, 34, 33, 121, 32] has mainly

focused on sample-wise certification against graph structure attacks, which essentially exam-
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ines the predictions for each individual node. A critical assumption in this approach is that the

attacker can create a different perturbed graph each time to attack a single node. However, in

reality, the attacker can only generate one perturbed graph and disrupt the predictions of a group

of target nodes simultaneously. This difference motivates the development of a groundbreaking

approach to improve the certified robustness, known as collective certification [130, 35].

Schuchardt et al. [130] introduced collective certification by considering a more realistic and

constrained attacker who can only use one perturbed input at a time to disrupt the predictions

of as many nodes as possible in the graph. This significantly improves the certified robustness.

However, this approach is not applicable to graph injection attacks. This is because the certi-

fication scheme assumes that the graph neural network has a fixed receptive field, while graph

injection attacks involve adding edges after injecting nodes, inevitably expanding the receptive

field.

Despite the progress made in defending against graph modification attacks (GMAs) [130], the

robustness against graph injection attacks (GIAs) has received relatively little attention. [2,

131] further extended it to certify against GIAs. However, these models provide sample-wise

certificates instead of collective ones. In essence, this greatly exaggerates the actual capabilities

of the attacker, resulting in limited effectiveness in achieving certified robustness. To the best of

our knowledge, there is currently no collective certificate designed for GIAs. This also inspires

us to design a collective certification method that is applicable to GIAs to enhance the certified

robustness in Section 5.2.
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Chapter 3

Adversarial Attacks on Graph Models

This chapter aims to further investigate the vulnerability of graphmodels by designing fine-grain

adversarial attacks in a more complex adversarial environment. Specifically, this thesis inves-

tigates two kinds of important target models: Random-walk-based anomaly detection models

(RWAD) and recommender system (RS) models.

3.1 Coupled-Space Attacks against Random-Walk-based

Anomaly Detection

Graph-based Anomaly Detection (GAD) has gained significant research attention in recent years

due to the widespread use of graph data across various application domains. GAD algorithms

are designed to identify anomalies in a graph, where nodes represent entities, and edges indi-

cate their relations. Essentially, a GAD algorithm works by initially measuring the similarities

among nodes and then identifying nodes that are less similar to the rest as anomalous. De-

spite the development of supervised GADs, such as GADs based on graph neural networks

(GNNs) [132], unsupervised GADs still have advantages in their simplicity, unsupervised prop-

erty, and effectiveness. Random Walks (RWs), such as PageRank [133], have emerged as

a powerful tool for measuring node similarities over graphs and have become a fundamental
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Figure 3.1: Illustration of RW-based anomaly detection and the distinction between graph-space

and feature-space attacks.

component of many unsupervised GAD systems that are extensively employed in diverse ap-

plications. Notably, Random-Walk-based Anomaly Detection (RWAD) has been employed in

detecting money laundering within the financial industry [36], identifying fraudsters in online

shopping [37], uncovering fake accounts in social networks [134, 135, 136, 137, 138], and serv-

ing as a general unsupervised outlier detection method for bipartite graphs [38, 39] (e.g., review

data in recommender systems, stock market transaction data, and short message service), mul-

tivariate time series data [40, 41] (e.g., electrocardiograms data), and the most common feature

data [42, 43, 44, 45, 46] (e.g., network intrusion detection data). Moreover, random walk has

also been adopted to improve large-scale graph anomalies detection [139] and enhance deep-

learning-based anomalies detection [71, 140]. These diverse applications underscore the impor-

tant role of RWAD in ensuring system security.

As the accuracy of predictions produced by the RWAD methods is crucial for system security,

it is essential to assess their robustness in a real-world adversarial environment. In fact, the

individuals that RWAD aims to detect may have both the incentive and capability to evade de-

tection. For instance, adversaries controlling bank accounts to be used in money laundering

schemes may wish to remain undetected to continue their malicious activities. They could care-

fully manage the everyday transactions on the accounts to make them appear similar to normal

ones, causing the system to falsely classify them as benign. In essence, in an adversarial en-

vironment, attackers can intentionally manipulate the input data to RWAD in order to mislead

its predictions, leading to what is known as data poisoning attacks in the literature. However,
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studying the adversarial robustness of RWAD imposes new challenges due to an intriguing char-

acteristic of RWAD. Specifically, in an RWAD system, the graph is often not directly accessible

and needs to be constructed from raw data. As illustrated in Fig. 3.1 (top), entities in the system

are represented as vectors in a feature space, and a graph is then constructed based on the rela-

tionships among the entities as determined by their feature vectors. This kind of graph is termed

as feature-derived graph. For instance, a proximity graph can be constructed based on feature

similarity. This graph is then fed into the RWAD system, which produces anomaly scores for

each node.

Consequently, there are two potential attack surfaces against RWAD: graph-space attacks and

feature-space attacks. In graph-space attacks (Fig. 3.1, bottom), the attacker can directlymodify

the structure of the graph, which is a common assumption made by previous works [19, 20, 49]

that design structural attacks on graphs. In feature-space attacks (Fig. 3.1, middle), the attacker

does not have direct control over the graph but can modify the features, which indirectly affects

the graph’s structure. It is worth noting that in the latter case, where the graph is not directly

accessible, feature-space attacks are deemedmore realistic (further explained in Section 3.1.4.1).

Unfortunately, previous research treats attacks in the graph space and feature space rather sep-

arately. On the one hand, many existing works have investigated structural attacks [19, 47, 48,

49] against a wide range of graph learning models. On the other hand, another line of research

has focused on studying feature manipulation attacks [50, 51, 52] primarily in the computer vi-

sion domain, where the data objects represented by features are independent of each other. In

contrast, one unique characteristic of RWAD is that it examines data objects that are interde-

pendent. Specifically, the data processing pipeline of RWAD involves transforming the features

into graphs, over which the random walk operates. That is, the data in the feature space and the

data in the graph space are interdependent in the sense that any modifications to the features will

be reflected in the changes in the constructed graphs. This unique interdependency makes the

interplay between the graph-space and feature-space attacks possible.

Thus, for the first time, we aim to investigate the adversarial robustness of RWADunder coupled-

space attacks, where the attackers can explicitly exploit the interdependency between two cou-
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pled data spaces to effectively achieve their malicious goals. Our mainmotivations for exploring

coupled-space attacks are twofold. First, data manipulation in the feature space is more realistic

since the graph is constructed virtually in the pipeline of which the attacker does not have direct

control. Second, since random walks directly run over the constructed graphs, an attacker can

potentially leverage the anticipated data manipulation in the graph space to guide the modifica-

tions in the feature space, which can make the attack more effective.

Towards this end, we begin with a formal analysis of graph-space attacks. Specifically, we de-

fine the attacks in the graph space as a decision problem. We ask whether an attacker can reduce

the anomaly scores of the target nodes below a certain threshold, thereby classifying them as

benign, by modifying a limited number of edges in a given graph. Our in-depth complexity anal-

ysis shows that this problem is NP-hard for both directed and undirected graphs. Furthermore,

since feature-space attacks ultimately modify edges, they can be viewed as special cases of this

problem, and the hardness results remain applicable. The hardness results serve as the anchor

for us to investigate efficient attack algorithms in both the graph space and feature space.

We then proceed to design effective graph-space attacks, which are formulated as an opti-

mization problem with the objective of minimizing the target nodes’ anomaly scores output

by RWAD. Solving this optimization problem encounters several challenges. Firstly, random

walk (PageRank) is an iterative algorithm that operates on an input graph; thus, any changes

made to the graph will require the iterations to be re-executed. Consequently, attacks against

RWAD will result in a bi-level optimization where the inner layer involves complex iteration.

Second, the discrete nature of graph structure further complicates the solving of the optimiza-

tion. To address these challenges, we propose two efficient attacks: alterI-attack and cf-attack.

The former is an iterative approach that optimizes the attack objective by projected gradient

descent (PGD) [77] and updates the random walk model alternatively. The latter utilizes the

closed form of the random walk model to transform the bi-level optimization into a single-level

problem.

Finally, we investigate the more realistic feature-space attacks. Our major innovation is to use

the results from the virtual graph-space attack as our guidance to design more powerful feature-
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space attacks. Specifically, we utilize the guidance from two aspects: selecting the attack nodes

and formulating an effective attack objective. Through extensive experiments, we demonstrate

that by fully exploring the dynamics between attacks in coupled spaces, more powerful attacks

could be designed, revealing more realistic security threats against RWAD systems.

The main contributions are summarized as follows:

• We study the adversarial robustness of RWAD, for the first time, exploring the interplay

between attacks in coupled spaces.

• We present a deep theoretical analysis of the hardness of attacking RWAD,which is proved

to be NP-hard on both directed and undirected graphs.

• We propose effective attacks in coupled spaces. In particular, we innovatively utilize the

results from the graph-space attacks as guidance to design more powerful feature-space

attacks.

• We conduct comprehensive experiments to demonstrate the effectiveness of our proposed

attacks. Especially we also transfer our attacks to other anomaly detection methods in the

feature space. It is shown that our graph-guided feature-space attack remains effective

even without knowing the target models, demonstrating a realistic threat in real-world

application scenarios.

In summary, our work uncovers a unique vulnerability of RWAD and unleashes the power of

attackers by exploring the interplay between attacks in coupled spaces, significantly advancing

our knowledge of the adversarial robustness of RWAD in deployment.

Road Map: Problem statements (3.1.1)⇒ Complexity analysis of attacks (3.1.2)⇒ Effective

graph-space attacks (3.1.3)⇒ Graph-guided feature-space attacks (3.1.4)⇒ Evaluation (3.1.5)

⇒ Limitation and future work (3.1.6)⇒ Conclusion (3.1.7).
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3.1.1 Problem Statements

In this section, we first present two representative models to instantiate the Di-RWAD and InDi-

RWAD systems, which have been introduced in Section 2.1. Then, we introduce the adversarial

environment in which random-walk-based anomaly detection (RWAD) operates and then for-

mally define the attack problem.

3.1.1.1 RWAD Target Models

1) Di-RWAD. We consider bipartite graphs as a representative example of directly accessible

graphs. We next describe how to apply the RWAD algorithm to the bipartite graphs of this

kind, which we term as BiGraphRW model. In the following, we define the notation and briefly

explain the BiGraphRW model.

To begin, we define a bipartite graphG = (U∪V,E) as a graph with two disjoint sets of vertices

U = {ui|1 ≤ i ≤ k} and V = {vi|1 ≤ i ≤ n}, and a set of edges E ⊆ U × V that connect

the vertices in U to the vertices in V . We represent the edges in E as a binary edge matrix

M = (mij)k × n, where mij = 1 if 〈i, j〉 ∈ E, and mij = 0 otherwise. Then, the adjacency

matrix for a bipartite graph can be constructed asW = (wij)(k+n)×(k+n) =



 0 M

MT 0



.

For each node u ∈ U , BiGraphRW applies Eq. (2.1) with %r = %eu, where %eu is a vector with zeros

element except node u, which means that it always restarts from node u. The resulting vector

%su = (1 − α)P%su + α%eu represents the connectivity scores of node pairs {〈u, t〉 |t ∈ U ∪ V },

which quantifies the similarity between node u and others. By assumption, a node v tends to

have a lowermean similarity score among its neighbors if it is anomalous. We denote the average

neighbor similarity as S̄v:

S̄v =

∑k
i=1 Miv

∑k
j=1,i %=j Mjv%sui(uj)

∑k
i=1 Miv

∑k
j=1,i %=j Mjv

, (3.1)

where %sui(uj) represent the element corresponding to node uj in %sui , which is the similarity

between node ui and uj . Anomaly score of node v is in contract to the mean similarity score S̄v,
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so we denoted it by

A(v) = 1− S̄v =






anomaly, if A(v) ≥ θ,

normal node, if A(v) < θ,
(3.2)

where the parameter θ is a given and fixed threshold of the anomaly detection model.

2) InDi-RWAD. A representative way to apply RWAD to non-graph data is by constructing

a proximity graph. We call this variant as ProxGraphRW model. In this approach, the input

feature data is represented as X = [x1, x2, · · · , xn], xi ∈ Rd.

The first step is to construct a proximity graph according to the similarity or distance mea-

surement between each pair of samples. To construct a proximity graph G = (V,E), the ver-

tices V represent data samples {x1, x2, · · · , xn}, and the edges imply the similarity among ver-

tices. This can be achieved through similarity measures, such as Euclidean distance, cosine

similarity, or correlation coefficient. We denote the similarity function between xi and xj as

sim(xi, xj). Then, proximity graphs can be constructed by different rules. In this thesis, we

take ε-Graph [43, 42] as an example, where for every data sample xi, an edge is connected to

xj if sim (xi, xj) > ε. We define the weighted adjacency matrix as W = (wij)n×n, where

wij = sim(xi, xj) · I(sim(xi, xj) > ε), and I(·) is an indicator function. With the proximity

graph constructed, ProxGraphRW applies the Eq. (2.1) with %r = 1
n , which means that the RW

restart from any node with equal probability. The resulting vector %s = (1− α)P%s+ α
n contains

the connectivity scores of all nodes, where each element %s(v) quantifies the overall similarity of

node v to all other nodes. Finally, based on the hypothesis that anomalies have low connectivity

to most others, the anomaly score of node v is

A(v) = 1− %s(v), (3.3)

where %s(v) is the element corresponding to node v in %s.
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3.1.1.2 Threat Model

We consider a system consisting of two parties: an analyst who runs an RWAD algorithm to

detect potential anomalies and an attacker who aims to evade the detection. In practice, the

analyst would first collect data from the environment and construct a graph, which is fed into

the RWAD system for anomaly detection. However, the attacker could tamper with the data

collection process whichwill result in a poisoned graph, leading to themalfunction of the system.

For instance, in online shopping platforms, the attacker may manipulate some users to provide

fake ratings for target items. The resulting poisoned data can lead to biased recommendations

from the recommender system.

We further introduce the threat model by specifying the attacker’s knowledge, goal, and capa-

bility. By Kerckhoffs’s principle, we assume a worst-case scenario where the attacker knows all

the data as well as the anomaly detection model, which is a common assumption employed by

many previous attacks [49, 18]. We assume that the attacker has a set of target nodes in mind.

Initially, the target nodes would have been determined as abnormal by the RWAD system if no

data was manipulated. The attacker then tries to decrease the anomaly scores of those target

nodes in the hope that they would evade the detection. To this end, the attacker can manipu-

late the data constrained by a certain budget. Specifically, depending on whether the graph is

directly accessible or not, we divide the attacks into two types:

• Graph-space attack: the attacker can directly modify the structure of the graph by adding

and deleting the edges under a budget constraintK.

• Feature-space attack: the attacker can only modify the features of a set of attack nodes,

which will indirectly cause changes in the graph structure. Considering a practical sce-

nario that the targeted anomaly nodes are crafted to have specific malicious functions, we

can not modify their features arbitrarily. Therefore, an indirect feature attack, aiming to

decrease the anomaly scores of target nodes while keeping their features unchanged, is

ideal for such a problem. Hence, we restrict the selection of attack nodes to those other

than the target nodes.
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3.1.1.3 Problem definition

To facilitate our theoretical analysis, we formally define the attacks against RWAD as follows.

Definition 1 (PA-RWAD: poisoning attacks against RWAD). An instance of the problem is

defined by a tuple, (G, T ,A,Θ, K, Â, R̂), where G = (V,E) is a network, T ⊆ V is the set

of targets, A : G × V → R is the anomaly score function, Θ ∈ N is the safety threshold,

K ∈ N is the budget specifying the maximum number of edges that can be added or removed,

Â ⊆ (V ×V )\E is the set of edges that can be added, and R̂ ⊆ E is the set of edges that can be

removed. The goal is then to identify two sets, A∗ ⊆ Â andR∗ ⊆ R̂, such that |A∗|+ |R∗| ≤ K,

and for G∗ = (V, (E ∪ A∗) \R∗) we have:

∣∣{vi ∈ V : ∀vj∈T A(G∗, vi) > A(G∗, vj)
}∣∣ ≥ Θ.

In practice, the top-Θ nodes ranked by their anomaly scores in descending order are determined

as anomalous. Then, the goal of PA-RWAD is to find a way of modifying the network by adding

and removing edges, so that there are at least Θ nodes with anomaly scores greater than any of

the target nodes. In other words, the target nodes are considered as benign.

We note that although PA-RWAD emphasizes modifying the structure of the graph, a feature-

space attack is still an instance of PA-RWAD, since the modification of features will ultimately

lead to the changes of the graph.

3.1.2 Complexity Analysis

We now proceed to analyze the computational complexity of the attacks against RWAD. We

summarize the hardness results in Tab. 3.1.

Theorem 2. The PA-RWAD problem is NP-hard given a directed graph.

Proof. Wewill prove that the problem is NP-hard by showing a reduction from the NP-complete

3-Set Cover problem. An instance of this problem is defined by a collection of subsets Q =
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Table 3.1: Hardness results of PA-RWAD.

Directed graph Undirected graph

PA-RWAD
NP-hard

(Lemma 1 & Theom. 1)

NP-hard

(Theom. 2)

{Q1, . . . , Q|Q|} of the universe U = {u1, . . . , u|U |} =
⋃

Qi∈Q Qi such that ∀i|Qi| = 3, and a

number k ∈ N. The goal is to determine whether there exist at most k elements of Q that cover

the entire universe, i.e., Q∗ ⊆ Q such that |Q∗| ≤ k and U =
⋃

Qi∈Q∗ Qi.

Let (Q, k) be a given instance of the 3-Set Cover problem. We will now construct an instance

of the PA-RWAD problem. In what follows, let Q(ui) be the subsets in Q that contain ui, i.e.,

Q(ui) = {Qj ∈ Q : ui ∈ Qj}. Let us also assume that |Q| ≥ 4, as all smaller instances can be

easily solved in constant time. First, we construct a directed network GQ = (V,E), where:

• V = U ∪
⋃

Qi∈Q{Qi, qi, oi} ∪ {h1, h2, h3} ∪
⋃

ui∈U
⋃|Q|−|Q(ui)|

j=1 {xi,j, yi,j, zi,j},

• E =
⋃

ui∈Qj
{(Qj, ui)}∪

⋃
oi∈V

⋃
hj∈V {(oi, hj)}∪

⋃
xi,j∈V {(xi,j, ui), (xi,j, yi,j), (xi,j, zi,j)}.

An example of this construction (e.g., |U | = 5, |Q| = 3) is presented in Fig. 3.2. Now, consider
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Figure 3.2: An example of the construction used in the proof of Theorem 2. The green dotted

arrows represent edges that can be added.

the instance (GQ, T ,A,Θ, K, Â, R̂) of the PA-RWAD problem, where:
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• GQ is the network we just constructed,

• T = U is the target set,

• A is the anomaly score function with the restart rate parameter α = 1
|Q| ,

• Θ = n− |U | is the safety threshold,

• K = k is the budget,

• Â =
⋃

Qi∈Q{(qi, Qi)}, i.e., only edges from qi to corresponding Qi can be added,

• R̂ = ∅, i.e., none of the edges can be removed.

Since R̂ = ∅, for any solution to the constructed instance of the PA-RWAD problem, we must

have R∗ = ∅. Hence, we will omit the mentions of R∗ in the remainder of the proof, and we

will assume that a solution consists just of A∗. We next prove a useful lemma.

Lemma 3. Let A ⊆
⋃

Qi∈Q{(qi, Qi)}, and let GQ ∪ A = (V,E ∪ A). We have that:

∀ui∈U∀v/∈UA(GQ ∪ A, v) > A(GQ ∪ A, ui)

if and only if ∀ui∈U∃(qj ,Qj)∈Aui ∈ Qj.

Proof. From the formula of the anomaly score function, we have that A(GQ ∪ A, vi) = 1 −

%s(GQ ∪ A, vi), where:

%s(GQ ∪ A, vi) =
α

n
+ (1− α)

∑
vj∈V %s(GQ ∪ A, vj)Pj,i.

Therefore, we have that A(GQ ∪ A, vi) > A(GQ ∪ A, vj) if and only if %s(GQ ∪ A, vi) <

%s(GQ ∪A, vj). Let A(ui) be the set ofQj containing ui that got connected to the corresponding

node qj via the edges in A, i.e., A(ui) = {Qj ∈ Q : ui ∈ Qj ∧ (qj, Qj) ∈ A}. We now compute

the values of %s(GQ ∪ A, vi) for all nodes in V :

• %s(GQ ∪ A, qi) = %s(GQ ∪ A, xi,j) = %s(GQ ∪ A, oi) =
α
n = 1

|Q|n , as nodes qi, xi,j , and oi

do not have any predecessors,
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• %s(GQ∪A, yi,j) = %s(GQ∪A, zi,j) = α
n+(1−α)%s(GQ∪A, xi,j)

1
3 = α

n+
(1−α)α

3n = (4−α)α
3n =

(4− 1
|Q|)

3|Q|n , as the only predecessor of nodes yi,j and zi,j is the node xi,j with out-degree 3,

• %s(GQ ∪ A, hi) =
α
n + (1− α)

∑
oj∈V %s(GQ ∪ A, oj)

1
3 = α

n + |Q|(1−α)α
3n = ((1−α)|Q|+3)α

3n =

|Q|+2
3|Q|n , as the predecessors of hi are all |Q| nodes oj , each with out-degree 3,

• if (qi, Qi) /∈ A then %s(GQ ∪ A,Qi) =
α
n = 1

|Q|n , as such node Qi has no predecessors,

• if (qi, Qi) ∈ A then %s(GQ∪A,Qi) =
α
n +(1−α)%s(GQ∪A, qi) = α

n +(1−α)αn = 2|Q|−1
|Q|2n ,

as the only predecessor of such node Qi is the node qi,

• %s(GQ ∪ A, ui) = α
n + (1 − α)

∑
Qj∈Q(ui)

%s(G,Qj)
1
3 + (1 − α)

∑
xi,j∈V %s(G, xi,j)

1
3 =

α
n + |Q|(1−α)α

3n + |A(ui)| (1−α)2α
3n = ((1−α)|Q|+3+|A(ui)|(1−α)2)α

3n =
|Q|+2+|A(ui)|(1− 1

|Q|)
2

3|Q|n , as the

predecessors of ui are |Q(ui)| nodes Qj , as well as |Q| − |Q(ui)| nodes xi,j , each with

out-degree 3.

We now prove the main equivalence of the lemma. Assume that ∀ui∈U∀v/∈UA(GQ ∪ A, v) >

A(GQ ∪ A, ui). In particular, it implies that: ∀ui∈U %s(GQ ∪ A, ui) − %s(GQ ∪ A, h1) > 0. By

substituting the values in the inequality, we get:

∀ui∈U

|A(ui)|
(
1− 1

|Q|

)2

3|Q|n > 0,

which in turn implies that ∀ui∈U |A(ui)| > 0. Hence, we have that for every ui ∈ U there exists

at least one Qj such that ui ∈ Qj and (qj, Qj) ∈ A.

To prove the implication in the other direction, assume that ∀ui∈U ∃(qj ,Qj)∈Aui ∈ Qj . Hence,

we get that ∀ui∈U |A(ui)| > 0, which implies that: ∀ui∈U %s(GQ ∪ A, ui) ≥
|Q|+2+(1− 1

|Q|)
2

3|Q|n . By

comparing this value to the values computed above, we have that ∀ui∈U , ∀v/∈U :

%s(GQ ∪ A, v) <
|Q|+ 2 +

(
1− 1

|Q|

)2

3|Q|n ≤ %s(GQ ∪ A, ui),

which in turn implies that:

∀ui∈U∀v/∈U A(GQ ∪ A, v) > A(GQ ∪ A, ui).

This concludes the proof of the lemma.
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Let Q∗ ⊆ Q be a solution to the given instance of the 3-Set Cover problem, i.e., |Q∗| ≤ k

and ∀ui∈U∃Qj∈Q∗ui ∈ Qj . From Lemma 3 we have that A(GQ ∪ A∗, v) > A(GQ ∪ A∗, ui)

where A∗ = {(qi, Qi) : Qi ∈ Q∗}. Hence, in network GQ ∪ A∗ all Θ = n − |U | nodes other

than the nodes in U have greater anomaly scores than all the nodes in U , and |A∗| ≤ k = K.

Therefore, A∗ is a solution to the constructed instance of the PA-RWAD problem. To prove the

implication in the other direction, assume that A∗ is a solution to the constructed instance of

the PA-RWAD problem. In particular, it implies that |A∗| ≤ K = k and ∀ui∈U∀v/∈UA(GQ ∪

A, v) > A(GQ ∪ A, ui). From Lemma 3 we have that ∀ui∈U∃(qj ,Qj)∈Aui ∈ Qj . Therefore,

{Qi ∈ Q : (qi, Qi) ∈ A∗} is a solution to the given instance of the 3-Set Cover problem.

We have shown that the constructed instance of the PA-RWAD problem has a solution if and

only if the given instance of the 3-Set Cover problem has a solution, which concludes the proof

of NP-hardness.

Theorem 4. The PA-RWAD problem is NP-hard given an undirected graph.

Proof. Wewill prove that the problem is NP-hard by showing a reduction from the NP-complete

Finding k-Clique problem. An instance of this problem is defined by a network G′ = (V ′, E ′),

and a number k ∈ N. The goal is to determine whether there exist k nodes that induce a clique

in G′.

Let (G′, k) be a given instance of the Finding k-Clique problem. We will now construct an

instance of the PA-RWAD problem. Let n′ = |V ′|, and let d(G, v) be the degree of v in network

G, i.e., d(G, v) = |{w ∈ V : (v, w) ∈ E}|. First, we construct a undirected network G =

(V,E), where:

• V = V ′ ∪ {t} ∪
⋃

v′i∈V ′
⋃n′+k−d(G′,v′)−3

j=1 {xi,j},

• E = E ′ ∪
⋃

v′i∈V ′{(t, v′i)} ∪
⋃

xi,j∈V {(v
′
i, xi,j)}.

An example of this (e.g., |V ′| = 4, k = 3) construction is presented in Fig. 3.3. Now, consider

the instance (G, T ,A,Θ, K, Â, R̂) of the PA-RWAD problem, where:
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Figure 3.3: An example of the construction used in the proof of Theorem 4. The red dashed

lines represent edges that can be removed.

• G is the network we just constructed,

• T = {t} is the target set,

• A is the anomaly score function with the restart rate parameter α = 0,

• Θ = n− (n′ − k + 1) is the safety threshold,

• K = k(k−1)
2 is the budget,

• Â = ∅, i.e., none of the edges can be added,

• R̂ = E ′, i.e., only edges existing in G′ can be removed from G.

Since Â = ∅, for any solution to the constructed instance of the PA-RWAD problem, we must

have A∗ = ∅. Hence, we will omit the mentions of A∗ in the remainder of the proof, and we

will assume that a solution consists just of R∗.

From the formula of the anomaly score function with α = 0 we have that A(G, vi) = 1 −

%s(G, vi), where:

%s(G, vi) =
∑

vj∈V %s(G, vj)Pj,i.

Therefore, we have that A(G, vi) > A(G, vj) if and only if %s(G, vi) < %s(G, vj).

Moreover, from Perra and Fortunato [141], we have that for the stationary distribution %s of this

form (i.e., for α = 0) in an undirected network G we have that %s(G, vi) ∼ d(G, vi), i.e., the

value of the entry in %s for a given node is proportional to its degree. Therefore, we have that
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A(G, vi) > A(G, vj) if and only if d(G, vi) < d(G, vj). Let us now compute the values of

d(G, vi) for all nodes in G:

• d(G, t) = n′, as the node t is connected with all n′ nodes v′i,

• d(G, xi,j) = 1 < d(G, t), as each node xi,j is only connected with the node v′i,

• d(G, v′i) = 1 + d(G′, v′i) + n′ + k − d(G′, v′i)− 3 = n′ + k − 2 ≥ d(G, t), as each node

v′i is connected with the node t, d(G′, v′i) nodes from V ′, as well as n′ + k− d(G′, v′i)− 3

nodes xi,j .

Since Θ = n − (n′ − k + 1), all nodes xi,j have a smaller degree than t, and the total number

of xi,j is n − n′ − 1, we need at least k out of n′ nodes in V ′ to have a smaller degree than t

in order for the safety threshold to be satisfied. However, they all have equal or greater degrees

than t. Hence, the safety threshold is not satisfied in G.

Since the removal of edges from R̂ can only change the degrees of nodes in V ′, we need to

decrease the degree of k of these nodes to a value smaller than that of t. For each of these k

nodes we have to remove at least ∆ edges incident with it, where:

∆ = d(G′, t)− d(G′, v′i) + 1 = n′ + k − 2− n′ + 1 = k − 1.

Let V ∗ ⊆ V ′ be a solution to the given instance of the Finding k-Clique problem, i.e., a set of k

nodes forming a clique in G′. Since R̂ = E ′ and the degree of each node in k-clique is k − 1,

we have that V ∗ × V ∗ ⊆ R̂, and removing V ∗ × V ∗ from G decreases the degree of k nodes

from V ′ by∆ = k− 1 each. Therefore, V ∗× V ∗ is a solution to the constructed instance of the

PA-RWAD problem.

To prove the implication in the other direction, assume that R∗ is a solution to the constructed

instance of the PA-RWAD problem. At least k∆
2 = k(k−1)

2 of the removed edges have to be

incident with the k nodes from V ′ contributing to the safety threshold. However, since the

total budget is K = k(k−1)
2 , all of the removed edges have to be incident with the k nodes

from V ′ contributing to the safety threshold, and k(k−1)
2 edges incident with k nodes constitute
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a clique. Since we have that R̂ = E ′, the same edges constitute a k-clique in G′. Therefore,
⋃

(v′i,v
′
j)∈R∗{v′i, v′j} is a solution to the given instance of the Finding k-Clique problem.

We have shown that the constructed instance of the PA-RWAD problem has a solution if and

only if the given instance of the Finding k-Clique problem has a solution, which concludes the

proof of NP-hardness.

3.1.3 Practical Graph-Space Attacks

In this section, we investigate practical attacks in the graph space. We note that the graph-space

attack itself is important in the case where the graph is directly accessible. Moreover, as we

will show later, the results of graph-space attacks provide insightful guidance for feature-space

attacks.

3.1.3.1 Attack Formulation

We begin by formulating the decision problem PA-RWAD as an optimization problem. We

use G = (V,E) with its corresponding adjacency matrix W to represent the original clean

graph. We assume that the anomaly detection system predicts node v as an anomaly if the

anomaly score A(v) is greater than a threshold θ. The attacker aims to decrease the number

of nodes in a given target set T ⊂ V that are identified as anomalies by modifying at most

K edges in the graph. To represent the edge manipulations, we denote the modification by a

binary matrix B = (buv)(|V |×|V |), where the element buv ∈ {0, 1}. If buv = 0, the edge 〈u, v〉

remains unchanged, and buv = 1 lead to add/delete of edge 〈u, v〉. Then the attack graph can

be represented by |W −B|. In this section, we consider undirected graphs where the adjacency

matrix is always symmetric, and the budget constraint can be represented as
∑

u>v buv ≤ K.

Then the graph-space attack problem can be formulated as follows:

min
B

∑
v∈T I(A(v) > θ),

s.t. buv ∈ {0, 1},
∑

u>v buv ≤ K,
(3.4)
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where I(·) is a indicator function, I(A(v) > θ) = 1 if the anomaly scores of node v is greater

than θ.

3.1.3.2 Attack Method

To address the non-differentiable issue of the binary values in B, we adopt a relaxation strategy

by representing buv in a continuous space that ranges from 0 to 1. This is denoted as B̃, which

is subsequently converted back to binary form B̄ after solving the optimization problem. To

handle the discrete objective function in Eq. (3.4), we replace it with the sum of anomaly scores

among target nodes, La(B̃) =
∑

v∈T A(v), then we can re-formulate the attack problem as:

min
B̃

La(B̃) =
∑

v∈T A(v),

s.t. b̃uv ∈ [0, 1],
∑

u>v b̄uv ≤ K,
(3.5)

where B̃ is the relaxed and continuous adjacency matrix, B̄ = (b̄ij) is the discrete version of B̃.

To solve the challenging bi-level optimization problem, we propose two strategies: alternative

iteration attack (alterI-attack) and closed-form attack (cf-attack). In brief, the alterI-attack

iterates the inner RW model and the attack optimization alternatively to approximate the bi-

level optimization, while the cf-attack transforms the bi-level optimization into a single-level

problem. We first introduce the alterI-attack and then highlight the difference in the cf-attack.

1) alterI-attack. The optimization of problem (3.5) remains a challenging task due to the

need to reverse the continuous variable B̄ to binary B̄ while satisfying the budget constraint. To

overcome this difficulty, we first use projected gradient descent (PGD) to efficiently optimize B̃

without considering the budget constraint
∑

u>v b̄uv ≤ K. Instead, we add l2-norm regulariza-

tion on the variable B̃: La(B̃) =
∑

v∈T A(v)+λ||B̃||2, where the λ is regularization coefficient.

Then, we obtain the binary matrix B̄ by selecting the top-K elements from B̃. This approach

allows us to efficiently approximate the constrained optimization problem while ensuring that

the attack budget is satisfied. The advantage of our optimization strategy is that the continuous

solution B̃ we obtained does not depend on the attack budgetK. This implies that we can reuse

the same B̃ for variousK, eliminating the need for recalculations.

38



3.1. Coupled-Space Attacks against Random-Walk-based
Anomaly Detection

However, optimizing the relaxed optimization problem is still challenging because the anomaly

score A(v) in the loss function La(B̃) depends on the variable B̃ in a complex way. After

updating B̃, obtainingA(v) requires iterating over Eq. (2.1) dozens of times to get the converged

node similarity vector %s, and the gradient needs to be traced back to each iteration. To address

this issue, we only iterate over Eq. (2.1) once instead of multiple times. The detailed procedures

are summarized in Alg. 1 and Fig. 3.4 (top). Firstly, we update the adjacency matrix with W̃ =

|W − B̃| (line:5), and then we update the similarity score A(v) based on W̃ for one step using

Eq. (2.1) and then obtain the anomaly score with Eq. (3.2) or 3.3 (line:6-9). Next, we update

attack loss La(B̃) based on A(v) (line:10), and calculate the projected gradient to optimize B̃

for one step (line: 11-15). Repeating the alternative iteration leads to the convergence of the

inner model %s and also the continuous attack variable B̃. After the iterations, we keep the top-K

elements in B̃ to obtain B̄ and the others are set to zeros (line:17-18). Finally, the attacked graph

is obtained by Ŵ = |W − B̄| (line:19). This algorithm is also suitable for weighted graphs in

which the weights on edges are in [0, 1], and the final solution is to modifyK edge weights while

the other weights remain unchanged.

2) cf-attack. While the alterI-attack approach is feasible, the one-step update of the inner

model is a simple estimation that may not provide accurate attack loss during the iteration. To

address this issue and obtain accurate attack loss, we employ the closed-form solution of the in-

ner model to transform the bi-level optimization problem into a single-level problem. According

to [142, 143], the inner model (Eq. (2.1)) has closed-form solution as follows:

%s = α(I − (1− α)P )−1%r, (3.6)

where I is an identity matrix. With the closed-form solution, we can directly obtain the accurate

anomaly scores after the update of B̃. In contrast to the alterI-attack, which iterates the inner

model once after updating B̃, our innovative cf-attack approach substitutes the Eq. (2.1) (line:7)

with Eq. (3.6) to obtain the accurate connectivity scores %s for current B̃, and others remain the

same.
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Algorithm 1 Graph-space attack.
1: Input: Graph with adjacency matrix W , attack budget K, attack iteration T , learning rate

η.

2: Output: Attacked graph with adjacency matrix Ŵ .

3: function AlterI-attack(W , K, T , η)

4: for t = 1 to T do

5: Update adjacency matrix: W̃ = |W − B̃|.

6: for each node v in target set T do

7: Update similarity scores %s with Eq. (2.1).

8: Update anomaly score A(v) based on %s.

9: end for

10: Update objective function La(B̃) with A(v).

11: for each edge b̃uv in B̃ do

12: Calculate gradient guv = b̃uv − η ∂L(B̃)

∂b̃uv

13: Project guv into [0, 1]

14: Update b̃uv in B̃

15: end for

16: end for

17: Choose top-K edges in B̃ to obtain B̄:

18:

b̄uv =






b̃uv if b̃uv ∈ topK(B̃),

0 otherwise.

19: Obtain attacked graph Ŵ = |W − B̄|.

20: return Ŵ .

21: end function

3.1.3.3 Complexity Analysis

While cf-attack offers a more accurate formulation than alterI-attack, it comes with the cost of

potential time consumption when calculating the matrix inverse, particularly for graphs with a
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Figure 3.4: Illustration of proposed attacks.

large number of nodes or edges. In contrast, alterI-attack does not encounter such a problem,

making it a more efficient option for such scenarios. Both cf-attack and alterI-attack have their

own unique advantages.

Our alterI-attack has the complexity ofO(T (|E|+2|V |2)). First, we need to update the anomaly

scores by Eq. (2.1), in which the time complexity is O(|E|) because it transits through all edges

in the graph. Our loss function includes a l2-norm on the variable B̃, which requires O(|V |2)

computation. Then, we take the gradient for each element in B̃, whose complexity is O(|V |2).

We repeat the process for T steps, then the total complexity for alterI-attack is O(T (|E| +

2|V |2)). For cf-attack, we update the anomaly score by the Eq. (3.6), which takes the complexity

ofO(|V |2.21) [144] for sparse matrix inverse. Hence, the total complexity isO(T (|V |2.21+|E|)).
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3.1.4 Graph-Guided Feature-Space Attacks

3.1.4.1 Motivation for Feature-space Attacks

Previously, we presented effective graph-space attacks against Di-RWAD. However, for InDi-

RWAD, where the graphs are not directly accessible, the realizability of the attacks becomes a

serious concern: the attacker cannot directly modify the edges in a virtual graph space. Instead,

inmany practical application scenarios, what the attacker canmodify are the attributes associated

with the entities in their control. For example, when it comes to network intrusion detection,

each TCP connection represents an entity or node, and attackers can manipulate certain TCP

connections by altering attributes such as connection duration, protocol type, and the number

of urgent packets. Such manipulations will change the structure of the proximity graph in the

ProxGraphRW model to become perturbed, which can help shield the targeted anomaly TCP

connection from being detected.

Thus, investigating feature-space attacks against InDi-RWAD is of significant practical impor-

tance. In particular, we consider the scenario where an attacker can manipulate a set of entities

(corresponding to nodes in the constructed proximity graph) and modify their features to assist a

group of target nodes in avoiding detection. We explore the connection between graph-space and

feature-space attacks and demonstrate how guidance from graph-space attacks can be leveraged

to construct effective feature-space attacks.

3.1.4.2 Attack Formulation

Consider a set of entities with features X = [x1, x2, · · · , xn], where xi ∈ X denotes the feature

vector associated with entity i. As introduced in Section 3.1.1.1, a proximity graph can be

constructed from X, where the nodes represent those entities and edges indicate similar node

pairs. An attacker aims to allow a set of target entities (nodes) T to evade detection. We assume

that the attacker has control of a set of attack nodes Z such that the features of the nodes in Z

can be arbitrarily modified in a certain domain X . To limit the attacker’s ability, we make the

restriction that Z ∩ T = ∅ and |Z| ≤ K ′. For an attack node i ∈ Z , we denote the modified
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feature vector as x̂i. The manipulated feature matrix is X̂. We note that since the manipulation of

the features leads to the change of graph structure, the anomaly score functionA(v; X̂) depends

on the features X̂. Then, we can formulate the feature-space attack as follows:

min
x̂i,i/∈T

L(X̂) =
∑

v∈T I(A(v; X̂) > θ),

s.t. x̂v = xv, ∀v ∈ T , x̂i ∈ X ,

Z = {i|x̂i 5= xi}, |Z| ≤ K ′.

(3.7)

3.1.4.3 Two Levels of Guidance from Graph-Space Attacks

Applying the gradient-descent method to solve problem (3.7) faces a crucial challenge: while

gradient descent can be used to optimize the node features, it is hard to decide which nodes are

to be manipulated. In other words, it is nontrivial to guarantee the constraint |Z| ≤ K ′ while

preserving optimization performance. We adopt a divide-and-conquer strategy to tackle this

problem: we first select up to K ′ nodes as the attack nodes and then utilize gradient descent to

optimize node features. In particular, we show that the results from graph-space attacks can be

innovatively utilized to guide both the selection of attack nodes and feature optimization.

Specifically, given a proximity graph G, we can leverage the attacks in Section 3.1.3 to produce

a poisoned graph G ′. Even though G ′ might not be directly realized, it represents an excellent

candidate in the graph space with which the target nodes T could evade detection with high

probability. Thus, our intuition is to manipulate features so that the resulting proximity graph

would approximate G ′. To this end, we utilize the guidance from the following two aspects.

Guidance on attack node selection. In the graph-space attack, the nodes involved in the struc-

ture modification might have a more significant impact on the attack goal. We denote the set of

edges/non-edges modified by the attacker as Ea. Intuitively, the modification of Ea will influ-

ence the anomaly scores of the targets most. To preserve such an influence, we set the attack

nodes Z as those ones incident to the edges/non-edges in Ea. Note that we can always easily

adjust the budget in the graph-space attack such that the constraint |Z| ≤ K ′ is satisfied.
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After fixing the attack nodes Z , we can follow a similar approach in the graph-space attack to

optimize the features. Specifically, we replace the indicator function in (3.7) with the sum of

anomaly scores of target nodes. For discrete features, we relaxed their discrete feature domain

to the continuous space denoted by X̃ . Then, let x̃i ∈ X̃ denote the relaxed feature, and X̃ =

{x̃i|i ∈ V }, the feature-space attack can be formulated as the following optimization problem:

min
x̂i∈X̃ ,i∈Z

La(X̃) =
∑

v∈T A(v; X̃). (3.8)

We term this type (with objective function La) of feature-space attacks as G-Guided. We can

straightforwardly adopt the two algorithms alterI-attack and cf-attack to solve the optimization

problem (3.8), resulting in two variants named G-Guided-alterI and G-Guided-cf.

Guidance on reformulation of attack objective. Beyond the selection of attack nodes, the

poisoned graph G ′ obtained from the graph-space attack can provide vital information for opti-

mizing the features. Specifically, we aim to optimize the features such that the proximity graph

constructed from the modified features would approximate G ′ as much as possible. To this end,

we reformulate the attack objective function as follows:

Lg(X̃) =
∑

{(i,j)|b̄ij>0}
i/j∈Z

|sim(xi, xj)− ŵi,j|, (3.9)

where ŵij is the element in the attacked adjacency matrix Ŵ . This objective function aims

to push the similarity between control nodes xi and other nodes xj (denoted by sim(xi, xj))

close to the manipulated edges ŵi,j in the poisoned graph G ′. Intuitively, minimizing Lg allows

us to approximate an inverse problem: given G ′, find the node features from which G ′ can

be constructed. Since (3.9) is a single-level function, we can directly adopt PGD (similar to

the graph-space attack) to solve the optimization problem. We term this type (with objective

function Lg) of feature-space attacks as G-Guided-plus. The attack algorithm in the feature

space is summarized in Alg. 2 and Fig. 3.4 (bottom).

The perturbed graph obtained from the graph-space attack serves as a valuable source of in-

formation. It not only highlights the crucial nodes that should be targeted by the feature-space
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Algorithm 2 Feature-space attack.

1: Input: Feature matrix X̃, attack nodes Z , attack iteration T , learning rate η.

2: Output: Attacked feature matrix X̂.

3: function FeatureAttack(X̃, Z , T , η)

4: for t = 1 to T do

5: Construct graph based on X̃ (Section 3.1.1.1).

6: Update similarity scores %s with Eq. (2.1).

7: Update the anomaly scores based on %s (Eq. (3.3)).

8: Update objective function L(X̃).

9: for each attack nodes x̃i, i ∈ Z do

10: Calculate gradient gi = x̃i − η ∂L(X̃)
∂x̃i

.

11: Project gi,j into the feasible set X̃ .

12: Update x̃i,j in X̃.

13: end for

14: end for

15: Rounding the attacked feature:

x̂i =






round(x̃ij) if feature j is discrete,

x̃ij otherwise.

return Attacked feature matrix X̂.

16: end function

attack but also suggests how the node features should be modified to maximize the impact on

the anomaly score calculation.

3.1.5 Experiments

In this section, we evaluate the performances of our proposed attacks by answering these four

major questions: 1) Are our proposed graph-space attacks effective? 2)What are the preferences
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of the proposed graph attack? 3) How effective are the graph-guided feature-space attacks? 4)

How is the transferability of the graph-guided feature-space attacks?

3.1.5.1 Datasets and Experiment Settings

We consider four datasets that are commonly used for graph-based anomaly detection: Paper-

Author, Magazine, KDD-99, and MINIST (outlier). Among them, the first two are bipartite

graphs while the latter two datasets are feature data. Below is the detailed description. All

datasets, source code for our proposed attacks, and evaluated baselines are in our GitHub

link. 1

• Paper-Author [38]: This dataset contains papers crawled from the arXiv preprint database.

Nodes U represent papers, while nodes V represent authors. An edge 〈u, v〉 indicates that

the author v is shown in the paper u. We randomly sample 10, 000 records and delete

nodes with degrees lower than 5, resulting in |U |, |V | = 2311, 405. We manually inject

10% of anomaly nodes following [66].

• Magazine: This dataset contains Amazon Reviews Data 2 under the category of Magazine

Subscriptions. We randomly sample 100, 000 records and removed nodes with degrees

lower than 3, resulting in |U |, |V | = 1079, 1180 nodes. We also inject 10% of anomaly

nodes manually following [66].

• KDD-99 [43]: The dataset contains network intrusion data with 41 features and 4 types

of attacks. We randomly sample 10, 000 benign data and 100 anomaly data for the exper-

iment.

• MINIST (outlier): This is a subset of theMINST handwritten digits dataset, created for the

outlier detection task in Outlier Detection DataSets 3. It contains a total of 7603 images,
1https://github.com/Yuni-Lai/CoupledAttackRW.
2https://nijianmo.github.io/amazon/, accessed May 2023.
3http://odds.cs.stonybrook.edu/, accessed May 2023.

46



3.1. Coupled-Space Attacks against Random-Walk-based
Anomaly Detection

with 6903 images of digit-0 regarded as normal points and 700 images of digit-6 regarded

as outliers. Each sample has 100 features.

3.1.5.2 Experimental Settings

We conduct our experiments on Ubuntu 20.04 system with an NVIDIA GeForce RTX 3090

GPU, Python 3.7, and PyTorch 1.10.0. All the experiments are repeated 10 times with different

random seeds, and different target nodes are sampled.

1) Target nodes and budgets. For attacking BiGraphRW model, we sample 5 target nodes

from the top 100 anomaly nodes, while in ProxGraphRW model, we sample 20 target nodes

from the top 100 anomaly nodes. We set the attack edge budget proportion to the sum of target

node degrees (e.g., budget 10% : K = 0.1 ×
∑

v∈T d(v), where d(v) is the degree of node v).

Setting the budget associated with node degree is commonly adopted in targeted attacks such as

Nettack [19, 75]. In feature-space attacks, we set the number of attack nodes Z as the number

of nodes involved in the alterI graph-space attack. Then the attack intensity is associated with

the attack budget in the graph space attack.

2) Evaluationmetrics. Ourmain focus is to evaluate the effectiveness of our proposedmethod

facilitating target nodes to evade detection under different detection thresholds. Usually, the

detection threshold θ is set to the proportion of data size, and we evaluate the level of detect ratio

as the top 5% and 10%. We then use the evasion rate ER of target nodes under these detection

thresholds as the main metric. Specifically, the evasion rate is computed as ER = n0/|T |, where

n0 is the number of target nodes not shown in the top 5% or 10% anomaly scores (i.e., evaded

successfully). Besides, we also evaluate the average anomaly scores of target nodes.

3) Baselines. We evaluate the effectiveness of our proposed attacks against several baselines

for both graph-space attacks and feature-space attacks.
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Graph-space attack. The most relevant prior work is [75]. Although this work also proposes

a targeted attack for the RW model, it is specific to the DeepWalk model and cannot be directly

applied to our RWAD systems. Therefore, we transfer its targeted attack to our model. Besides,

we also adopt two common baselines RndAdd and DegAdd following [75].

• RndAdd: This baseline randomly adds candidate edges, where the candidate edges are

the edges incident to target nodes.

• DegAdd: This baseline adds candidate edges with the top-K highest degrees, where the

candidate edges are also the edges incident to target nodes.

• DeepWalk[75]: In this baseline, we transfer the attack designed for DeepWalk to RWAD

models.

• Our methods: alterI and cf are our proposed attacks with alternative iteration and closed-

form solution, respectively.

Feature-space attack. To evaluate the effectiveness of our graph-guided attack in node selec-

tion, we include random selection as a baseline for comparison.

• VanillaOpt: This baseline randomly selects attack nodes from candidates and optimizes

node features with the objective function La(X̃) in (3.8) with strategy alterI.

• Our methods: We use the graph-space attacks to guide the selection of attack nodes and

choose La(X̃) as the attack objective function, resulting in two attack methodsG-guided-

alterI andG-guided-cf, which adopt alterI and cf to optimize node features respectively.

In addition, when the objective function Lg(X̃) (3.9) is selected, the attack method is G-

guided-plus.

4) Hyper-parameters. Grid search is employed to find the optimal hyper-parameters in all

the attack methods over different datasets. For BiGraphRW model, the regularization parame-

ter λ = 1 × 10−6, learning rate lr = 1.0, 60 epochs with SGD optimizer. For ProxGraphRW
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model, we evaluate proximity graphs constructed with cosine similarity (Cos(xi, xj) = <xi,xj>
||xi|| ||xj || )

and correlation similarity (Corr(xi, xj) = <xi−x̄i,xj−x̄j>
||xi−x̄i|| ||xj−x̄j || ). The similarity threshold ε for con-

structing the graph is 0.8 for the KDD-99 dataset and 0.5 for the MNIST dataset; We employed

the regularization parameter λ = 1 × 10−4, learning rate lr = 1.0, 35 epochs for the KDD-

99 dataset and 100 for the MNIST dataset with Adam optimizer in the graph-space attack. In

feature-space attack, learning rate lr = 1.0, 500 epochs with Adam optimizer.

3.1.5.3 Performance of Graph-space Attacks

To begin with, we evaluate the performance of the target RWAD models over corresponding

datasets. As shown in Tab. 3.2, both models achieved an AUC (area under reception curve) of

at least 0.89, demonstrating a strong ability to identify anomalies.

Table 3.2: AUC of RWAD.

Models BiGraphRW ProxGraphRW

Dataset Author-Paper Magazine KDD-99 MNIST

AUC 1.00 0.89 0.98 0.90

1) Effectiveness of attacks. We present the evasion rates ER of those attack methods under

different detection levels (top-5%/10%) in Tab. 3.3 and 3.4. We observe that our proposed

graph attack methods, alterI and cf, significantly outperform other baselines on all datasets.

For instance, at the detection level of top-5%, our results indicate that our proposed attack on

BiGraphRW model is highly effective, achieving an evasion rate of over 85% with a budget of

40.0%. Similarly, for ProxGraphRW model, with a budget of 60.0%, the evasion rate (under

detection threshold top-10%) is over 80% on the MNIST dataset. Since the MNIST dataset is

relatively easier to attack, we report the attack performance at a higher detection threshold. The

reason why the DeepWalk method does not exhibit a strong attack effect could be attributed to

its transferability across different types of random walk models.
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Table 3.3: Graph attack results on BiGraphRW model.

Dataset Metrics budget RndAdd DegAdd DeepWalk alterI cf

Author-

Paper

ER
(5%)

0% 0.560 0.560 0.560 0.560 0.560

20% 0.560 0.560 0.578 0.720 0.760

40% 0.560 0.560 0.578 0.880 0.940

60% 0.580 0.560 0.578 0.920 0.960

80% 0.580 0.560 0.600 0.980 1.000

100% 0.580 0.560 0.600 1.000 1.000

ER
(10%)

0% 0.000 0.000 0.000 0.000 0.000

20% 0.000 0.000 0.000 0.060 0.280

40% 0.000 0.000 0.000 0.260 0.360

60% 0.000 0.000 0.000 0.460 0.360

80% 0.000 0.000 0.000 0.660 0.600

100% 0.000 0.000 0.000 0.820 0.740

Magzine

ER
(5%)

0% 0.740 0.740 0.740 0.740 0.740

20% 0.760 0.740 0.760 0.760 0.780

40% 0.760 0.760 0.760 0.880 0.860

60% 0.760 0.760 0.760 0.920 0.880

80% 0.760 0.760 0.760 0.960 0.880

100% 0.780 0.760 0.760 0.980 0.880

ER
(10%)

0% 0.380 0.380 0.380 0.380 0.380

20% 0.380 0.380 0.380 0.500 0.600

40% 0.400 0.380 0.380 0.560 0.740

60% 0.400 0.380 0.400 0.620 0.760

80% 0.400 0.380 0.400 0.760 0.820

100% 0.400 0.400 0.400 0.840 0.860

Comparing alterI and cf attack, it was observed that cf attack slightly outperforms alterI in

most cases. In our experiments, we observe that cf can achieve significantly lower attack loss
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Table 3.4: Graph attack results on ProxGraphRW model.

Dataset Similarity budget RndAdd DegAdd DeepWalk alterI cf

KDD99

ER
(5%)

cosine

0% 0.045 0.045 0.045 0.045 0.045

10% 0.045 0.045 0.045 0.050 0.055

20% 0.045 0.045 0.045 0.155 0.245

40% 0.045 0.045 0.045 0.605 0.620

60% 0.045 0.045 0.045 0.745 0.825

80% 0.055 0.045 0.050 0.775 0.865

100% 0.085 0.045 0.060 0.775 0.875

correlation

0% 0.045 0.045 0.045 0.045 0.045

10% 0.045 0.045 0.045 0.055 0.060

20% 0.045 0.045 0.045 0.110 0.150

40% 0.045 0.045 0.045 0.315 0.405

60% 0.045 0.045 0.045 0.575 0.690

80% 0.050 0.045 0.050 0.670 0.735

100% 0.060 0.045 0.055 0.695 0.845

MNIST

ER
(10%)

cosine

0% 0.000 0.000 0.000 0.000 0.000

10% 0.000 0.000 0.000 0.060 0.045

20% 0.000 0.000 0.000 0.210 0.135

40% 0.000 0.000 0.000 0.585 0.515

60% 0.000 0.000 0.020 0.800 0.860

80% 0.005 0.000 0.030 0.940 0.975

100% 0.050 0.000 0.070 0.985 0.995

correlation

0% 0.000 0.000 0.000 0.000 0.000

10% 0.000 0.000 0.000 0.045 0.060

20% 0.000 0.000 0.000 0.205 0.185

40% 0.000 0.000 0.000 0.555 0.550

60% 0.010 0.000 0.010 0.770 0.825

80% 0.040 0.000 0.045 0.940 0.940

100% 0.095 0.005 0.080 0.995 0.995

in the continuous domain (i.e., B̃). However, when discretizing the optimization results, the

attack performance is not guaranteed to be preserved. While cf is generally more effective (also

observed for feature-space attacks in Section 3.1.5.4), alterI is more efficient on larger graphs
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such as KDD-99 and MNIST (see Tab. 3.5).

(a) Attack nodes (KDD-

99).

(b) Attack nodes

(MNIST).

(c) The attacker prefers

nodes with lower degrees.

(d) The weights changed

by attacker.

(e) The attacker prefers

adding edges between tar-

get nodes and the others.

(f) The attacker increases

the degree of target nodes.

Figure 3.5: Graph-space attack (alterI) result analysis on KDD-99.

2) Preferences of graph attack. We further present a more detailed analysis of the graph

attack results in Fig. 3.5, in which Fig. 3.5(a) and 3.5(b) show the proportion of the attacked

nodes (to the total number of nodes) corresponding to different budgets. On average, only about

1%− 6% (KDD-99) and 0.3%− 2.7% (MNIST) of nodes are involved in the edge modification

under various budgets (Fig. 3.5(b)). In Fig. 3.5(c), we present the node degrees of attack nodes

and others, and we observe that the attacker prefers nodes with lower degrees as attack nodes.

Fig. 3.5(d) presents the weights changed in the attack. We observe that the attacker tends to
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make larger weight changes in the K attack edges. This is because we choose the top-K edges

in priority of the values in B̃, and a higher value of b̃ij leads to larger weight change. The

attacker mainly adds/deletes edges between target nodes and other nodes (Fig. 3.5(e)), and the

target-other edge modification tends to increase the degree of target nodes (Fig. 3.5(f)). These

actually provide convenience for our graph-guided feature attack with attack loss Lg(X̃), where

the target node features are fixed (the edges between target-target are fixed) and the attack nodes

can be optimized to be close to the desired edge weights (the edges between target nodes and

control nodes). We observe similar phenomena in the MNIST dataset.

(a) KDD-99 (b) KDD-99 (c) MNIST (d) MNIST

Figure 3.6: Feature-space attack results.

(a) Control node degrees

(KDD-99)

(b) Edge modified

(KDD-99)

(c) Control node degrees

(MNIST)

(d) Edge modified

(MNIST)

Figure 3.7: Result analysis of feature-space attacks.

3.1.5.4 Performances of Graph-guided Feature-space Attacks

First of all, to limit the attack intensity, we set the number of control nodes |Z| as the number of

nodes involved in the graph-space attack. As mentioned before in Section 3.1.5.3, the number

of nodes involved in the graph-space attack ranges from 1% − 6% in the KDD-99 dataset and

0.3%− 2.7% in the MNIST dataset with various edge manipulation budgets.
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1) Effectiveness of attacks. We compare the performances of these feature-space attacks in

Fig. 3.6. Our analysis shows thatG-guided-alterI outperforms theVanillaOptmethod, achiev-

ing much lower anomaly scores and higher evasion rates. These two models are only different

in the selection of attack nodes, which indicates the effectiveness of using guidance from graph-

space attacks in node selection. Comparing the performance of the alterI and cf attack strategies

under La, we observe that cf-attack also improves the performance, although the side effect is

that cf-attack takes about 7 times longer than alterI in our experiments (Tab. 3.5). Additionally,

G-guided-plus has a higher evasion rate thanG-guided-alterI and G-guided-cf in most cases,

indicating the advantage of using the attack loss Lg as further guidance for feature attack.

2) Unnoticeability of attack. In Fig. 3.7, we provide an analysis of the feature attack high-

lighting its advantage of unnoticeability. Specifically, we visualize the control nodes’ original

degree in Fig. 3.7(a) and Fig. 3.7(c). The manipulation in the feature space will then lead to the

perturbation in the graph space. In Fig. 3.7(b) and Fig. 3.7(d), in order to quantify the perturba-

tion volume, we present the ratio of edges modified by the feature-space attack on the y-axis and

the ratio of edgesmodified by the graph-space attack x-axis. These ratios are proportionate to the

original graph’s total number of edges. As mentioned earlier, the graph attack prefers the attack

nodes with lower degrees. As a result, our graph-guided attack nodes have lower node degrees

compared to VanillaOpt (Fig. 3.7(a) and Fig. 3.7(c)). This leads to significantly fewer edge

modifications in graph-guided attacks compared to VanillaOpt (Fig. 3.7(b) and Fig. 3.7(d)),

which enhances the unnoticeability of the attack. In particular, both of our graph-guided attacks

only lead to less than 0.5% edge modification in the graph space in both datasets.

Table 3.5: Runtime comparison of alterI and cf-attack.

Attacks Author-Paper Magazine KDD-99 MNIST

Graph

attack

alterI 00:00:07 00:00:04 00:00:10 00:00:16

cf 00:00:02 00:00:02 00:00:23 00:00:35

Feature

attack

alterI - - 00:00:27 00:00:18

cf - - 00:03:26 00:01:49
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3.1.5.5 Transferability of graph-guided attack

We transfer our feature-space attacks to several unsupervised anomaly detection models, in-

cluding Beta-VAE [145], IForest [146], and ECOD [147]. Tab. 3.6 shows the anomaly scores of

target nodes before and after the transfer attack based on our G-guided-alterI and G-guided-

plus feature attack on the KDD-99 dataset. The results indicate that the graph-guided attack

with graph attack loss significantly decreases the anomaly scores of the target nodes across dif-

ferent models. This suggests that the graph-guided attack on RWAD has the potential to be used

as a surrogate model for black-box attacks. The graph-guided attack could be a useful tool for

attackers to evade detection and deceive anomaly detection systems in real-world scenarios.

Table 3.6: Transferability: The change in anomaly score (%) compared to the clean data. Lower

is better.

Detect Methods Attack Methods 20% 40% 60% 80% 100%

Beta-VAE

VanillaOpt -11.56 -13.97 -14.70 -15.18 -15.68

G-guided-alterI -4.15 -5.65 -6.13 -7.14 -9.711

G-guided-plus -25.26 -31.79 -33.25 -33.94 -33.99

IForest

VanillaOpt -10.63 -0.06 -8.41 -0.82 -11.93

G-guided-alterI 9.94 10.44 -0.18 0.39 -2.31

G-guided-plus -25.03 -44.21 -40.27 -47.58 -47.26

ECOD

VanillaOpt -2.20 -2.72 -2.90 -2.988 -3.099

G-guided-alterI -0.29 -0.64 -0.66 -0.90 -1.28

G-guided-plus -3.70 -5.32 -5.81 -6.01 -6.00

3.1.6 Limitation and future work

Although our thesis introduces coupled-space attacks for RWAD and demonstrates the superior

performance of our proposed methods compared to the baselines, we did identify certain limi-

tations. Specifically, in Fig. 6, we observed that our feature-space attacks were not as effective
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as our graph-space attacks. Additionally, the unnoticeability of feature attacks was found to be

comparatively weaker than graph attacks. Fig. 7 indicates that the feature space attack resulted

in a higher proportion of graph structure perturbation.

These limitations highlight areas for further investigation and improvement in future research.

While our proposed coupled-space attacks offer significant advancements, addressing these lim-

itations could potentially enhance the effectiveness and stealthiness of feature-space attacks in

RWAD.

Generalization of coupled-space attack: In this study, we introduce coupled-space attacks against

RWAD, where the interdependency between the graph space and the feature space is exploited to

enhance the effectiveness of attacks. Besides RWAD, there aremany other feature-derived graph

models where the graph and feature are interdependent [148, 149]. For example, graph struc-

ture can be constructed based on traffic sensor data [150], earthquake sensor data [150], image

data [151], video data [152], and genomics data [153]. Future work can generalize our proposed

strategies to more feature-derived graph-based models in which the graph is constructed on raw

features. Because the model directly relies on the graph, as long as the graph constructed on the

perturbed feature is close to the perturbed graph, the attack is expected to be effective.

3.1.7 Conclusion

In conclusion, this section has shed light on the vulnerabilities of Random-Walk-based Anomaly

Detection (RWAD), a classical and important anomaly detection tool. Specifically, we introduce

a novel study of adversarial poisoning attacks on RWAD, where the graph is constructed on top

of the feature space. We provide a theoretical understanding of these attacks, including proof of

NP-hardness. Our approach involves proposing graph-space attacks and using the graph attack

to guide the feature-space attack, which bridges the gap between these two attacks. Our exper-

iments on four datasets, encompassing both directly and indirectly accessible graphs, demon-

strate the effectiveness of our proposed graph-space attack and its ability to guide the selection

of attack nodes and optimization of the attack loss for feature-space attacks. By taking RWAD

as an example, our study provides valuable insights into the effectiveness of graph-space attacks
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and feature-space attacks. Future research can extend this work to apply RWAD for black-box

attacks on other deep learning-based anomaly detection systems, without relying on labeled data

or inner models.

3.2 Adversarial Attack on Recommender System

Recommender systems (RS) are now considered an essential component of online shopping

platforms like Amazon, Taobao, and eBay. By analyzing customers’ historical shopping behav-

iors, including the items they have browsed, reviewed, or rated, RS can provide personalized

product recommendations to potential customers who may be interested in them. A typical RS

is built around a machine-learning algorithm that operates on a bipartite graph. Specifically, the

graph comprises two sets of nodes representing users and items, and the edges between them

indicate the ratings that users have given to items. To generate personalized recommendations,

various graph analytic techniques, such as Matrix Factorization (MF) [55, 56] and Graph Neural

Networks (GNNs) [154, 155], have been utilized to predict the missing ratings. Based on these

predicted ratings, the RS recommends items to users that are likely to be of interest to them with

higher predicted ratings resulting in higher recommendation priority.

Similar to other machine learning-based systems [156, 157], the adversarial robustness of RS

has been a topic of significant research interest. One reason is that the predictions of RS are

crucial for sellers to generate profits and for users to make informed decisions, making RS a

tempting target for attackers. Additionally, it is relatively easy for attackers to manipulate the

graph data that RS operates on in real-world scenarios. For example, attackers can inject fake

user accounts with manipulated ratings to deceive the prediction results of an RS. In fact, node

injection attacks [22, 23, 24] have emerged as the primary form of attacks, where fake nodes,

called fraudsters, are injected with carefully crafted ratings to intentionally alter the recommen-

dation outcomes.

To defend against the attacks, GraphRfi [54] was proposed to jointly train a fraudster detection

and robust recommender. At a high level, GraphRfi innovatively attaches the GNN-based rec-
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ommendation component with a fraudster detection component, which can produce the anomaly

probability of each user. This probability is further used as the weight for that user in the train-

ing objective function for recommendation, such that users with a higher anomaly probability

would have a lower contribution. GraphRfi trains both components jointly in an end-to-end

manner, resulting in state-of-the-art performance for robust recommendation under node injec-

tion attacks. Overall, GraphRfi offers a promising way of integrating fraudster detection into

recommendation to achieve robustness. However, our analysis shows that GraphRfi is still vul-

nerable to node injection attacks. The underlying reason, as we show in Section 3.2.2.3, is that

the fraudster detection component relies on a supervised learning method, which in turn relies

on the availability of initial user labels (i.e., fake or normal) to accurately detect anomalies.

In practice, obtaining these true labels is extremely difficult, if not impossible. Even if unsu-

pervised anomaly detection methods are used to preprocess the data and label users, the results

may contain errors. This leads to noisy user labels, where some fake users are labeled as normal,

causing GraphRfi to assign large weights to these fake users due to its supervised nature. As a

result, GraphRfi may malfunction and not effectively detect fraudsters, rendering it vulnerable

to node injection attacks.

Our first step is to conduct a thorough vulnerability analysis of fraudster-detection-based ro-

bust RS with GraphRfi as the representative. Specifically, we design a powerful node injec-

tion attack which is formulated as a bi-level combinatorial optimization problem. We utilize a

gradient-based method to solve the problem, where one of the main challenges is to compute

the required gradients. We adopt the idea of meta-gradients proposed by [19] that is designed

to attack Graph Convolutional Networks (GCNs) [4] via manipulating the graph structure (i.e.,

add/delete edges). Different from the attack proposed in [19] that is designed for unweighted

graphs, we not only need to decide the optimal injected edges between fake users and items but

also the optimal rating associated with each edge. Our solution is to use a continuous rating

probability tensor to encode all discrete ratings. After optimization, we use discretization tech-

niques to recover the desired ratings. We term our attack asmetaC. Our experiments show that

metaC is very effective in promoting targeted items even with small budgets against the robust

model GraphRfi as well as the MF-based model.
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In summary, we propose a new attack method metaC that is tested effectively against both

GNN-based and MF-based recommender systems. In particular, we conduct a detailed analysis

of the causes of the vulnerability of a representative robust RS GraphRfi, providing insights for

properly integrating fraudster detection into RS.

The rest of the section is organized as follows. We describe the problem statements in Sec-

tion 3.2.1. In Section 3.2.2, we present our proposed attack methodMetaC. We investigate how

to generalize MetaC to the MF-based model in Section 3.2.3. We conduct extensive experi-

ments in Section 3.2.4 to show the effectiveness of our proposed attack. Finally, we conclude

our findings in Section 3.2.5.

3.2.1 Problem Statements

In this section, we introduce the adversarial environment in which a recommender system op-

erates. Below, we specify the goal, knowledge, and ability of both the attacker and defender.

Threat Model. We consider an attacker whose goal is to promote a set of target items T ⊂ V .

More specifically, the attacker aims to increase the probability that a target item vt ∈ T appears

in the top-k recommendation lists of target users. Based on Kerckhoffs’s principle [158], we

assume a worst-case scenario where the attacker has full knowledge of the target RS, including

the data (i.e., the clean graph G) and the recommendation algorithm. To achieve the malicious

goal, the attacker is able to inject a set of fake users U ′ as well as some ratings (i.e., edges E ′

between U ′ and V), resulting in a manipulated graph G ′ = (U ∪U ′∪V , E ∪E ′). To constrain the

attacker’s ability, we assume that there are at most H fake users (i.e., |U ′| ≤ H), and each fake

user can give at most B ratings. After the attack, the defender observes the manipulated graph

G ′, from which the RS is trained and tested; this attack falls into the category of data poisoning

attacks.
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3.2.2 Attacks against Existing RS

In this section, we use the GNN-based robust recommender system GraphRfi as the example to

illustrate our attack. We show that our attack can be extended to MF-based RS in Section 3.2.3.

3.2.2.1 Attack Formulation

We begin by quantifying the attacker’s malicious goal. Recall that the attacker aims to promote a

set of target items T , a commonly usedmetric tomeasure the effectiveness of attack for an item is

the hit ratio. Specifically, a hit ratio for an item v with parameter k (denoted asHR@k(v,G, θ))

is the percentage of users whose top-k recommendation list includes that item. Note that we

make explicit the dependency of the hit ratio of v on the graph G and the trained model parameter

θ. Thus, we can use an adversarial objective functionFadv(G, T , θ) = 1
T
∑

v∈T HR@k(v,G, θ),

the average hit ratios of those target items, to quantify the attacker’s goal.

Poisoning attacks against recommendation then amounts to finding the optimal poisoned graph

G ′ to maximize the adversarial objective function. It can be formulated as a bi-level optimization

problem, where in the outer level the attacker optimizes the objective over the graph G ′ while

in the inner level, the model parameter θ is optimized though minimizing the training loss, also

depending on G ′. Mathematically, a poisoning attack is formulated as:

max
G′

Fadv(G, T , θ∗) =
1

T
∑

v∈T

HR@k(v,G ′, θ∗)

s.t. θ∗ = argmin
θ

L(θ,G ′), G ′ = G ∪ U ′ ∪ E ′,

|U ′| ≤ H, d(u′) ≤ B, ∀u′ ∈ U ′,

(3.10)

where we use G ′ = G ∪ U ′ ∪ E ′ to denote that G ′ is obtained by injecting a set of fake users U ′

and edges E ′ into G, |U ′| ≤ H requires that at most H fake users are injected, and the degree

constraint of fake user d(u′) ≤ B requires that each fake user can give at most B ratings.

60



3.2. Adversarial Attack on Recommender System

3.2.2.2 Attack Method

1) Reformulation of attack. The major challenges in solving the above optimization problem

are the discrete search space and the exponential growth of candidate edges in G ′: the attacker

needs to determine which items to rate as well as the specific discrete ratings (e.g., scale 1 to

5). We thus use a series of techniques to approximate this discrete optimization problem. First,

we use a continuous probability vector r̂ = (p1, p2, · · · , prmax) (e.g., rmax = 5) to encode

a discrete rating, denoting a user will give a rating l ∈ {1, 2, · · · , rmax} with probability pl.

Then, we assume that the injected users will initially connect to all items. Thus, the attacker’s

behavior is now fully captured by a continuous rating tensor R̂ ∈ [0, 1]|U
′|×|V|×rmax . We denote

themanipulated graph as Ĝ = G∪U ′∪R̂. Another difficulty comes from the non-differentiability

of the objective function, in particular, the hit ratios. Thus, we use a sum of softmax function

ratios [159] to approximate Fadv(G, T , θ∗) as below:

Ladv(Ĝ, T , θ∗) = −
∑

t∈T

∑

u∈U

log(
exp (r′ut)∑
v∈V exp (r′uv)

), (3.11)

where r′uv denotes the predicted rating from user u to v. Basically, this function measures the

fraction of the ratings for targeted items over the ratings for all items. Now, the optimization

problem defined in (3.10) is recast as:

min
R̂

Ladv(Ĝ, T , θ∗)

s.t. θ∗ = argmin
θ

L(θ, Ĝ), Ĝ = G ∪ U ′ ∪ R̂,
∑

l

R̂i,j,l = 1(∀i, j), R̂ ∈ [0, 1]|U
′|×|V|×rmax .

(3.12)

To utilize the continuous rating probability tensor R̂, we design the loss function during attack

optimization as below:

L(θ, Ĝ) =
∑

∀(u,v)∈E

max
l

R̂uvl · (r′uv − argmax
l

R̂uvl)
2, (3.13)

where the term argmaxl R̂uvl is used to find the maximum index of the probability vector as the

ground truth, and maxl R̂uvl is the associated maximum probability value. Rating vectors with

higher maximum probability will have a higher contribution to the RS training loss during the

attack optimization.
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2) Optimization method. Now, we describe the method to solve problem (3.12) to obtain the

(sub-)optimal continuous rating tensor R̂, from which we derive the discrete ratings that satisfy

all the constraints. We alternately update the inner objective function L(·) with respect to θ for

K steps and update the outer objective function Ladv(·) with respect to R̂ for one step, whereK

is a hyper-parameter. However, the central challenge lies in computing the gradients of Ladv(·)

with respect to R̂ because θ∗ itself is obtained through an optimization process depending on R̂.

We adapt the idea of approximating meta gradients [19] to compute the required gradients. In

detail, we sum the gradients∇R̂Ladv(Ĝ, T , θt) during theK steps of inner model updates as the

approximation, termed as meta-gradients:

∇meta
R̂ Ladv ≈

K∑

t=1

∇R̂Ladv(Ĝ, T , θt). (3.14)
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Figure 3.8: Illustration of poisoning attackMetaC. Fake users are pre-injected into a user-item

graph (represented by a rating matrix). The discrete ratings are encoded by continuous rating

vectors, optimized via gradient descent. Finally, a subset of these ratings is selected, and the

discrete rating is determined by discretizing the corresponding rating vector.

As a result, we can update Ladv for one single step in the outer layer based on meta-gradients:

R̂t+1 = R̂t − η2 ·∇meta
R̂ Ladv, (3.15)

where η2 is the learning rate. After each update of R̂, we conduct zero-one scaling and normal-

ization to ensure that the entries of R̂ always stay within the range of [0, 1] and sum to 1 while

gradient updates might break these constraints. Specifically, we employ the commonly used 0-1

normalization method on all entries (for ∀i, j):

R̂i,j,: =
R̂i,j,: −min(R̂i,j,:)

max(R̂i,j,:)−min(R̂i,j,:)
, R̂i,j,: =

R̂i,j,:∑L
l=1 R̂i,j,:

.
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These operations ensure that the entries of R̂, which is R̂i,j,: ∈ Rrmax , can be interpreted as the

probabilities of adding specific ratings during optimization. We can then iteratively update R̂

and θ until the loss Ladv diminishes to an acceptable level.

After the optimization, we will need to discretize the ratings and simultaneously pick B (bud-

get) ratings for each fake user. Since the highest value of probabilities maxl R̂uvl are served as

weights in the training loss in Eq. (3.13), we discretize each rating vector R̂ij as (l, pl) and pick

top-B ratings by ranking the pl in descending order as the injected ratings, where pl = maxl R̂ij

and the discrete rating l is obtained by the corresponding index of pl. In doing so, we have

tackled the problem of simultaneously determining the optimal edges and ratings.

We further summarize the process of obtaining continuous rating tensor R̂ through alternate

iteration in Algorithm 3, and Fig. 3.8 shows the framework of MetaC. Firstly, we initialize the

R̂ by sampling ratings from the normal distribution N(µ,σ2), where µ and σ2 are the mean

and variance of existing history ratings. Secondly, we do inner training (the RS model) for K

steps with fixed R̂. Thirdly, we update R̂ by approximated meta-gradient ∇meta
R̂ Ladv aiming

to optimize adversarial attack loss Ladv, and scale the vectors in R̂ to satisfy the probability

constraints. We update the θ and R̂ alternately for Ttrain epochs.

Algorithm 3 MetaC Poisoning Attack.

Input: Initiated rating tensor R̂; Total training epochs Ttrain; Inner training stepsK.

1: for t← 0, · · · , Ttrain do

2: for k ← 0, · · · , K do

3: θ(tK+k+1) = θ(tK+k) − η1∇θ(tK+k)L(θ(tK+k), Ĝ).

4: end for

5: R̂t+1 = R̂t − η2 ·∇meta
R̂ Ladv.

6: R̂i,j,: =
R̂i,j,:−min(R̂i,j,:)

max(R̂i,j,:)−min(R̂i,j,:)
.

7: R̂i,j,: =
R̂i,j,:∑L
l=1 R̂i,j,:

.

8: end forreturn The optimized rating tensor R̂.

In summary, we formulate the node injection poisoning attack as a bi-level optimization problem
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that is solved by an alternate iteration method in the continuous domain. Through discretization,

we finally obtain the injected users associated with ratings, i.e., a poisoned graph G ′. We term

this attack method as MetaC. We note that, by Kerckhoffs’s principle in security, we consider

a worst-case scenario when designingMetaC, where the attacker has full knowledge of the RS

and some additional attack design goals, such as unnoticeability, are not considered. We then

aim to design robust RS against this strong attack in the worst case.

3.2.2.3 Vulnerability analysis

The underlying reason that GraphRfi fails against our proposed poisoning attack is that its

anomaly detection component adopts a supervised learning approach. As a result, if a user

is labeled as normal (even if it is actually fake), supervised learning will eventually assign a

small anomaly score to it as the training process continues. That is, fake users that are labeled

as normal would still have strong malicious effects on the prediction.

We conduct comprehensive experiments to demonstrate this phenomenon. Specifically, we clas-

sify the users into four types. Type I and Type II users are normal and anomalous users inherently

existing in the graph, respectively, and the defender knows their labels reliably. Among the in-

jected fake users, a fraction of τ users (denoted as Type III) are determined as anomalous with

high confidence by the defender and thus are labeled as abnormal. The rest of the fake users

(denoted as Type IV) are labeled as normal. We emphasize that the parameter τ is a variable

that reflects the defender’s ability to identify abnormal users from the collected data, and in

practice, it is not uncommon that τ is low especially when there are several effective stealthy

node injection attacks against recommender systems. We observed the anomaly scores for those

four types of users during the whole training process of GraphRfi, shown in Fig. 4.3(a). We can

observe that Type II and Type III users (labeled as fake) have very high anomaly scores during

training. In comparison, the anomaly scores of Type IV users (fake but labeled as normal) keep

decreasing as training continues and eventually approach to those of Type I users (normal).

In summary, the insufficient ability of a defender to filter out fake users (which is common)

resulted in highly noisy user labels and further caused the supervised anomaly detection com-
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ponent to assign low anomaly scores (i.e., large weights of contribution) to evaded fake users,

which finally leftGraphRfi vulnerable to poisoning attacks. This crucial observation also guides

us in designing robust RS in the next chapter.

3.2.3 Generalization to MF-based RS

In this section, we demonstrate that our attack and defense approaches can be applied to MF-

based RS with minor modifications.

Different from the GNNs-based model, where Ladv(Ĝ, T , θt) is dependent on the input R̂ when

given θt, the prediction of MF-based model only rely on θt = {U, V }. This actually makes

the computation of the gradients easier for MF-based RS due to its simplicity. Specifically, we

can apply the meta-gradient (instead of approximating) to directly compute∇meta
R̂ Ladv. Briefly,

Ladv is depended on θK (obtain byK steps of inner model iteration), and each θt+1 depends on

R̂ and θt during the training, so the gradient ∇meta
R̂ Ladv can be traced back to the each iteration

of θt as follow,

∇meta
R̂ Ladv =∇r′

θK
Ladv(T , θK) ·∇θtr

′
θt(Ĝ) ·∇R̂θ

K , (3.16)

where∇R̂θ
t+1 = ∇R̂θ

t−η1∇R̂∇θtL(θ, Ĝ), t = 0, · · · , K−1, η1 is the learning rate of the inner

model, r′θt(Ĝ) = {UT
u Vv|∀(u, v) ∈ Ĝ}, are the rating predictions between among user-item pairs

of the inner model.

The difficulty, however, lies in that it requires the loss function L(θ, Ĝ) in Eq. (3.13) is dif-

ferentiable with respect to R̂. To address this, we smooth the argmax function via softmax

function. We approximate the argmax function by softmax with parameter β (the larger β, the

better approximation) as follow,

argmax
l

R̂uvl ≈ [1, 2, 3, 4, 5]T × softmax(β · R̂uv). (3.17)

Note that the attack optimized on the MF-based model is only different in the calculation of

∇meta
R̂ Ladv, and the other processes are the same.
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3.2.4 Experiments

In this section, we aim to evaluate our methods by answering the following: Does the MetaC

attack effectively compromise the security of existing robust recommendation systems?

3.2.4.1 Datasets and Experiment Settings

Datasets. We conduct experiments over two widely-used real-world datasets YelpCHI and

Amazon Movies&TV (abbreviated as Movies) that collect user reviews from two platforms.

YelpCHI contains approximately 60, 000 reviews/ratings regarding 201 restaurants and hotels

in Chicago from 38, 063 reviewers. Each rating ranges from 1 to 5, and the corresponding re-

view is provided with a label of fake or normal. In our setting, we treat a user giving fake

review(s) as fake. The other dataset Movies contains reviews from Amazon under the category

of Movie&TV. Each review, with a rating from 1 to 5, is voted helpful/unhelpful by other users,

which provides the information to determine whether a user is fake or normal. Specifically, we

only consider the reviews with more than 20 votes. If more than 70%of the votes of a review are

helpful, we regard it as normal; otherwise, fake. Similarly to YelpCHI, we treat the users giving

fake review(s) as fake users. The statistics of the two datasets are summarized in Tab. 3.7.

Table 3.7: Statistics of YelpCHI andMovies.

# Users # Items # Edges # Fake users

YelpCHI 38063 201 67395 7739

Movies 39578 71187 232082 19909

Note that there are two types of fake users, one is the existing fake users in the dataset (we do not

know their targets/goals, but these users can enlarge the number of anomaly users for detection

model training), and the other is our own injected fake user (from 0.3% to 2.0% according to

attack power setting). During the data preprocessing, we iteratively remove the cold items and

users that are less than two records. We extract the user features used in GNNs following [54].
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Environments. We conduct our experiments on Intel 10C20T Core i9-10850K CPU with GI-

GABYTE RTX3090 24GB GPU on development environment Ubuntu18.04, Python 3.7, Py-

Torch 1.10.0.

Settings. Following the typical settings in [160], we randomly sample 5 items from all items

as the targets. To train the RS model, we randomly sample 20% of existing ratings labeled with

normal for testing, and the remaining are the training set. The rating budget of each injected user

isB = 15. Due to the large number of items in theMovies dataset, the search space for the attack

optimization is extensive. As noted in [161], two-layer GCN is highly susceptible to poisoning

nodes within 2-hop. Therefore, we limit the space of candidate items to 2-hop neighbors of the

target items, which improves the efficiency of the training process. The experiments are repeated

for 5 times with different random seeds to initialize model parameters. We use the averaged hit

ratios of the target items, i.e., HR@10 and HR@50, as the metrics to evaluate how the attacks

can promote target items. We test the attack performances under various attack powers (0.0%,

0.3%, 0.5%, 0.7%, 1.0%, 2.0%), where an attack power represents the fraction of the number of

injected users over all users. In this section, the fraction of injected fake users with correct labels

is set as τ = 30% to reflect that a user deploying GraphRfi may have some prior knowledge

about the data. However, later we show that GraphRfi can be successfully attacked regardless

of the value of τ . In attacks, the number of inject user proportion is set to 1% of the original

user number and detection fraction τ = 30% if not mentioned. We set the alternate iteration

steps K = 100, batch size 128. We totally train the model for Ttrain epochs (Ttrain = 50 for

GraphRfi; Ttrain = 300 for MF-based model) during attack optimization and retrain the model

after poisoning for Ttrain epochs. The smoothing parameter β for attacking the MF-based model

is set to 10.0.

3.2.4.2 Baselines

We compare five representative attack methods: Random, Average, Popular/Bandwagon [88],

Poison Training (PoisonT) [90], and Trial Attack [87]. Among these attacks, Random, Average,
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and Popular/Bandwagon do not depend on the RS model, while PoisonT and Trial Attack are

designed for MF-based RS. Each fake user gives the highest ratings to the target items and

rates a set of filler items using the remaining budget with various strategies. In Random Attack,

filler items are randomly selected, and the corresponding ratings are sampled from a normal

distribution. N (µ,σ2), where µ and σ are the mean and deviation of all existing ratings. For

Average Attack, the only difference from Random Attack is that the rating given to a filler item

vi is sampled fromN (µvi ,σvi), where the µvi ,σvi are the means and deviation of existing ratings

for item vi. InPopular Attack, a portion (set as 30% in our experiment) of filler items are selected

as popular items since they might have bigger impacts, and the ratings given to these popular

items are also set as rmax. In PoisonT Attack, it adds poisoning users one by one with maximum

ratings given to target items and trains a poisoned RS model to predict the ratings for filler

items. It chooses filler items in descending order of the predicted rating scores and gives ratings

sampled from a normal distribution. Trial Attack trains generator module, influence module,

and discrimination module together to generate stealthy fake users that maximise the influence

on attack goals while evading the detection of the discriminator.

3.2.4.3 Effectiveness of MetaC Attack

Againt MF. We start with MF-based RS, for which there exists a direct comparison. The

attack results are summarized in Tab. 3.8 and Tab. 3.9. We can observe that MetaC achieves

the best results under all attack powers, demonstrating its strength as well as the challenge in

defending against this strong attack. Besides, the attack performance of MetaC is still bet-

ter than PoisonT most of the time under the two defense frameworks with anomaly detection

(highlighted by underlining in Tab. 4.1 and Tab. 4.2), which further demonstrates the power of

MetaC. In addition, PoisonT has slightly better attack performance than that of Trial Attack.

Also, due to its computational simplicity, we choose to adapt Poison Training for attacking

GraphRfi.

68



3.2. Adversarial Attack on Recommender System

Table 3.8: Attack performances (HR@50) on MF-based model (YelpCHI).

Power Random Average Popular PoisonT Trial MetaC

0.0% 0.389 0.389 0.389 0.389 0.389 0.389

0.3% 0.446 0.445 0.462 0.471 0.551 0.614

0.5% 0.529 0.524 0.500 0.523 0.638 0.772

0.7% 0.584 0.587 0.540 0.661 0.694 0.864

1.0% 0.682 0.673 0.596 0.776 0.717 0.929

2.0% 0.909 0.889 0.773 0.942 0.790 0.972

Table 3.9: Attack performances (HR@50) on MF-based model (Movies).

Power Random Average Popular PoisonT Trial MetaC

0.0% 0.200 0.200 0.200 0.200 0.200 0.200

0.3% 0.376 0.371 0.258 0.386 0.398 0.409

0.5% 0.387 0.377 0.398 0.397 0.408 0.522

0.7% 0.398 0.392 0.384 0.401 0.409 0.828

1.0% 0.418 0.399 0.404 0.445 0.507 0.957

2.0% 0.787 0.550 0.534 0.929 0.620 0.986

AgainstGraphRfi. The hit ratios under attack (the higher, the better) are presented in Fig. 3.9.

We can see thatMetaC achieves the best attack performances in all cases, especially onMovies.

One observation is that the gaps betweenMetaC and others are more evident forHR@10. Note

that pushing the items to top-10 is harder than pushing to top-50, which further demonstrates the

effectiveness of MetaC. Meanwhile, we notice that the results show a larger variance onMovies.

A possible reason is that hit ratio is a ranking-based metric, and Movies has significantly more

items. Thus, there are much more items around the top-10/50 threshold, making the ranking

sensitive to perturbations (this large variance is also observed in related research [159, 162]).
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(a) YelpCHI (b) YelpCHI (c) Movies (d) Movies

Figure 3.9: Attack performances (HR@10 and HR@10) on GraphRfi with different attack

powers.

3.2.5 Conclusion

In this section, we demonstrated the vulnerabilities of a state-of-the-art robust recommender

system called GraphRfi by designing an effective attack approachMetaC. We showed that the

vulnerabilities come from the supervised nature of its fraudster detection component. In addi-

tion, we also show that our attackmethods can also be applied toMF-based RS. The vulnerability

of existing RS motivates as to further improve their robustness in the next chapter.
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Chapter 4

Empirical Defense of Recommender

Systems

Due to the prevalent of adversarial attacks in recommender systems (RS) as mentioned in Sec-

tion 3.2, various defense mechanisms [57, 58] have been proposed to improve the adversarial

robustness of RS against node injection attacks. These defense strategies can be broadly clas-

sified into two categories: training robust models and detecting malicious fraudsters. The first

approach involves training RS models with robust parameters that can accurately predict out-

comes even when the input data is poisoned. Adversarial training [163] is one of the primary

techniques used to achieve this goal. The second approach focuses on developing specialized

techniques to detect and identify malicious fraudsters. These techniques are designed to filter

out or mitigate the impact of fraudsters on the RS. It is worth noting that the two defense ap-

proaches mentioned above are not mutually exclusive. Rather, they are complementary and can

be used together to further enhance the overall adversarial robustness of RS.

However, in Section 3.2, we demonstrate that the existing defense strategy, GraphRfi, is still

vulnerable due to its supervised nature of the fraudster detector. To address the above limitations,

we propose a novel way of integrating fraudster detection into the recommendation, resulting

in a robust recommendation framework that could be applicable to widely used recommender

systems.

71



Chapter 4. Empirical Defense of Recommender Systems

Then, based on our vulnerability analysis of GraphRfi (Section 3.2), we design a general robust

recommendation framework termed Posterior-Detection Recommender (PDR) featured with an

adaptive fraudster detectionmodule. In particular, this new fraudster detection module will take

label uncertainty into consideration and is jointly trained with existing recommender systems to

enhance their robustness. Specifically, we treat the input user labels as observed but uncertain

and changeable variables (priors). We then employ an Implicit Posterior (IP) model [164] to es-

timate the posterior probability of the true label. Furthermore, we use a strategy to dynamically

adjust the prior labels based on the estimated posterior probabilities to counter the noise. The

effect is that even if the input labels are noisy, they can be properly adjusted during the training

process. Consequently, the fake users (even though mislabeled as normal) would have fewer

contributions to the recommendation, which makes our proposed PDR robust against attacks.

We implement PDR with GNN-based and MF-based as the base RS, respectively, against the

powerful attack MetaC. Our comprehensive experiments demonstrate that PDR can signifi-

cantly mitigate the attack effects of MetaC and outperforms other defense baselines. This high-

lights the efficacy of our proposed adaptive fraudster detectionmodule as a viable plug-in, which

results in a general framework PDR to provide adversarial robustness for recommendation.

The rest of the section is organized as follows. We provide more preliminaries in Section 4.1.

We describe the threat model in Section 4.2. Then, we propose, PDR, a robust recommender

system framework in Section 4.3 usingGraphRfi as the illustrative example. We investigate how

to generalize PDR to the MF-based model in Section 4.3.4. We conduct extensive experiments

in Section 4.4 to show the effectiveness of our proposed attack and defense. Finally, we conclude

our findings in Section 4.5.

4.1 Preliminaries

In Section 2.2, we have introduced the recommender systems that are based onMatrix Factoriza-

tion (MF) and Graph Neural Networks (GNNs). In this section, we introduce more preliminaries

related to this section.

72



4.1. Preliminaries

4.1.1 Posterior Estimation

In Bayesian statistics, Maximum A Posterior (MAP) estimate is a method for estimating an un-

known quantity based on observed data and prior knowledge. It is obtained by finding the dis-

tribution that maximizes the likelihood function incorporated with a prior distribution. Suppose

that there are n samples with feature zi, i ∈ {1, · · · , n}, and each sample has a corresponding

unknown variable li. If the prior probability for each li is defined as p(li), i ∈ {1, · · · , n}, and

the observation is zi, the posterior probability q(li|zi) based on the prior p(li) and observation zi
can be estimated by maximizing the log-likelihood. According to the negative evidence lower

bound (ELBO), the inequality of the negative log-likelihood regarding all observed data zi is as

follows [164]:

−
∑

i

log(p(zi)) ≤ −
∑

i,c

q(li = c|zi)log(
p(zi|li)p(li = c)

q(li = c|zi)
)

︸ ︷︷ ︸
F

, (4.1)

where c represents one of the all possible classes that li can take (e.g., fake, normal), the term

F is also known as free energy, and minimizing F leads to maximization of the log-likelihood
∑

i log(p(zi)).

It is common to have coarse and imprecise labels in computer vision tasks, such as segmentation,

since high-resolution labels are usually hard to obtain. Implicit Posterior model (IP) [164] was

first employed to resolve this label uncertainty problem, and it treats uncertain labels as priors

and features zi as observed data. To estimate the posterior probability of the uncertain label,

q(li|zi) can be parameterized by a neural network. We denote θ as trainable parameters of neural

network, and qθ(li = c|zi) := q(li = c|zi; θ). IfF is minimized, the optimum is attained at [164]:

p(zi|li) =
qθ(li|zi)∑
j qθ(lj|zj)

. (4.2)

By replacing the p(zi|li) in F , the free energy F is equivalent to the loss function LIP that guide

the optimization of posterior qθ(li = c|zi):

LIP =
∑

i,c



qθ(li = c|zi) log

∑
j
qθ(lj = c|zj)

p(li = c)



 .
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The minimization of the IP loss (LIP ) leads to the maximization of log-likelihood regarding all

observed data zi.

4.2 Problem Statement

4.2.1 Threat Model

We consider an attacker whose goal is to promote a set of target items T ⊂ V . More specifically,

the attacker aims to increase the probability that a target item vt ∈ T appears in the top-k

recommendation lists of target users. Based on Kerckhoffs’s principle [158], we assume a worst-

case scenario where the attacker has full knowledge of the target RS, including the data (i.e., the

clean graph G) and the recommendation algorithm. To achieve the malicious goal, the attacker

is able to inject a set of fake users U ′ as well as some ratings (i.e., edges E ′ between U ′ and V),

resulting in a manipulated graph G ′ = (U ∪ U ′ ∪ V , E ∪ E ′). To constrain the attacker’s ability,

we assume that there are at most H fake users (i.e., |U ′| ≤ H), and each fake user can give at

most B ratings. After the attack, the defender observes the manipulated graph G ′, from which

the RS is trained and tested; this attack falls into the category of data poisoning attacks.

4.2.2 Defender

The defender can only observe the poisoned graph G ′ instead of the clean one G. The goal of

the defender is to train a robust RS over G ′ that can mitigate the malicious effects of the injected

fake users. Specifically, it is expected that with the robust RS, the target items would not be

significantly promoted. We note that the defender does not know which the target items are, and

we only use such information for evaluation purposes. In practice, it is common for the defender

to run anomaly detection systems to filter out fraudsters before training. To reflect this fact, we

assume that the defender can identify a fraction τ (0% ≤ τ ≤ 100%) of fake users reliably. This

parameter τ indicates the defender’s prior knowledge about the attacks; however, we emphasize

that our proposed robust RS works even when τ = 30%.
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4.3 Robust Recommendation under Attack
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Figure 4.1: Robust recommendation framework PDR. Given the prior probability of each user

being fake or normal, our adaptive fraudster detection module estimates the posterior probabil-

ities based on the user behavior in the graph, using a GNN with MLP. The learned posterior

probabilities are used as weights for users in the RS model, and the two models are jointly

trained.

In this section, we introduce our framework PDR using GraphRfi as the illustrative example.

We show that PDR can also be extended to MF-based RS in Section 4.3.4.

4.3.1 Framework

Our previous analysis shows that the inability to label all fake users correctly causes the failure

ofGraphRfi. In this section, we propose techniques to resolve this issue with the goal of building

a robust recommender system termed Posterior-Detection Recommender system (PDR).

Figure 4.1 presents the framework of PDR, which consists of two components: a recommenda-

tion model and an adaptive fraudster detection model. The fraudster detection model starts by

assigning a prior anomaly probability to users based on the given noisy label. Then, an anomaly

detection module (i.e., a GNN layer and an MLP) is used to estimate the posterior probability

based on the history rating graph. If the RS is a GNN-based model (e.g., GraphRfi), we can

use the user embedding provided by the GNN in the RS directly. The detection model and rec-
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ommendation model are jointly trained, and the posterior probability provided by the detection

model is served as weights of users in the RS. During the training process, we adjust the prior

based on the posterior. Next, we introduce the robust framework in detail.

At a high level, our anomaly detection component combines two procedures: posterior proba-

bility estimation and dynamic label adjustment. Specifically, we assume that a label associative

with a user is a variable instead of being fixed. We turn the given noisy labels into soft labels

as priors and the unknown true labels as latent variables. Thus, given the priors and observa-

tions (i.e., user embeddings, history rating graph), we can use a model to estimate the posterior

probabilities of the true labels. Then, based on the estimated posterior probabilities, we use a

strategy to dynamically adjust the soft labels (priors) during the end-to-end training process in

order to estimate the posterior probabilities more accurately. Below, we articulate the details of

the two procedures.

4.3.2 Posterior probability estimation

We aim to estimate the true labels based on the noisy labels and observation zu (the user em-

bedding learned by GNNs in RS). We define the true label of user u as a latent variable lu ∈

C = {f, n}, where f and n represent fake and normal, respectively. The prior probability of

this label lu is represented as a two-dimensional vector p(lu) = [p(lu = f), p(lu = n)], which

is user-specific prior. To take into account that the given labels are noisy, we initialize the prior

probabilities as follows. For a user with a given label f , we set p(lu) = [1 − p0, p0] (instead of

[1, 0]), where p0 is the probability that a user labeled with fake is actually normal. Similarly, for

a normal user, we set p(lu) = [p1, 1 − p1], where p1 is the probability that a user labeled with

normal is actually fake. We note that p0 and p1 are hyper-parameters of the system that depend

on the anomaly detection system used to preprocess the data.

We further denote the posterior probability of the true label as q(lu|zu) = [q(lu = f), q(lu = n)].

We adopt the Implicit Posterior (IP) model [164] to estimate the posterior probability q(lu|zu)

based on the prior p(lu) and zu. We parameterize q(lu = c|zu) by a neural network: qθ(lu =

c|zu), where θ represents the trainable parameters. To obtain a more reliable posterior, we em-
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Algorithm 4 PDR Defense Framework
Input: Poisoned Graph G ′; Total training epochs Ttrain; Threshold a0; Update rate α; Update

interval c1, c2; Observed label L, Prior parameters p0,p1.

1: function clip(x, a, b)

2: if x < a then: x = a

3: if x > b then: x = b

4: return x

5: end function

6: function set_prior(L, p0, p1)

7: for l in L do

8: if l = fake then: p(lu|zu) = [1− p0, p0]

9: if l = normal then: p(lu|zu) = [p1, 1− p1]

10: end for

11: return p(lu|zu)

12: end function

13: set_prior(L, p0, p1)

14: for t← 1, · · · , Ttrain do

15: θt+1 = θt − η1∇θtL(θt,G ′)

16: if AUC > a0 then

p(fu)
t+1=






if q(fu)t < c1 : (1− α)p(fu)t − α(1− q(fu)t)

if q(fu)t > c2 : (1− α)p(fu)t + αq(fu)t

otherwise : p(fu)t

17: q(fu)t = clip(q(fu)t, 0, 1)

18: q(nu)t = 1− q(fu)t

19: end if

20: end for

21: return Learned RS model parameter θ∗ = θt+1.
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ploy the sofmax function with temperature scaling. This function produces a smoother proba-

bility when temperature T > 1, which prevents the model from becoming overconfident [165].

The formula is as follows,

softmaxT (xi) =
exp(xi

T )∑
j exp(

xj

T )
. (4.3)

We use this loss LIP to train our fraudster detection component which will output the estimated

posterior probability qθ(lu|zu) for each user u, and it serves as the weight in Lrating. To integrate

the IP model in the training of RS, we substitute the Lfraudster in Eq. (2.3) with the IP loss:

L(θ,G ′) = Lrating + λ · LIP ,

Lrating =
1
|E|

∑

∀(u,v)∈E

qθ(lu = n|zu) · (r′uv − ruv)
2 .

(4.4)

4.3.3 Dynamic label adjustment

We use another technique to estimate q(lu|zu)more accurately. We observed in our experiments

that as the training continues, the posterior probabilities learned by neural networks will eventu-

ally approach to the priors, probably due to the over-fitting of neural networks. To address this,

we will use the highly confident posteriors to correct the errors (noise) in the priors. In other

words, we will update a soft label (prior) if the corresponding posterior is of high confidence.

Specifically, we will update the soft labels in iterations along with the training process. For

ease of presentation, we use p(fu)t, q(fu)t, p(nu)t, and q(nu)t as the simplicity of p(lu = f),

q(lu = f), p(lu = n), and q(lu = n) in the t-th iteration, respectively. We update p(fu)

according to the following strategy:

p(fu)
t+1=






(1− α)p(fu)t − α(1− q(fu)t), q(fu)t < c1

(1− α)p(fu)t + αq(fu)t, q(fu)t > c2

p(fu)t, otherwise.

Basically, we use intervals [0, c1] and [c2, 1] to determine whether the estimation of q(fu)t is

confident or not. In particular, if q(fu)t is higher than an upper-threshold c2, we increase its

prior probability p(fu)t+1 to (1 − α)p(fu)t + αq(fu)t, where 0 < α < 1 is an update rate that
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controls the adjustment speed (i.e., the effect of p(fu)t is discounted by α). Similarly, if q(fu)t

is smaller than a lower-threshold c1, we decrease p(fu)t+1 to (1−α)p(fu)t−α(1− q(fu)t). We

clip the p(fu)t+1 to [0,1] if it exceeds 0 or 1, and we set p(nu)t+1 = 1− p(fu)t+1. We apply this

dynamic label adjustment after the detection AUC (Area Under Curve) on the training set first

reaches a0 that the model has a good performance but before over-fitting, where 0.5 < a0 < 1

is a hyper-parameter. We further summarize the whole training process of PDR in Algorithm 4.

4.3.4 Generalization to MF-based RS

In this section, we demonstrate that our attack and defense approaches can be applied to MF-

based RS with minor modifications.

To adapt our approach to MF-based RS, we substitute the loss function Eq. (4.4) with the fol-

lowing:
Lrating =

1
|E|

∑

∀(u,v)∈E

qθ(lu = n|zu) · (ruv − UT
u Vv)

2.

Without the GNNs module that can provide user embedding, we estimate the posterior proba-

bility using a single-layer GNN and an MLP: q(lu|zu) = softmaxT (MLP(zu)), where zu =

GNN(G ′), the input is poisoned history rating graph G ′. Specifically, we normalize the ratings

as the weights on edges, and employ single layer GraphSAGE [5] with mean aggregator:

zu = ReLU(W · (
∑

v∈N (u)

hv · ωu,v∑
i∈N (u) ωu,i

⊕ hu), (4.5)

where W is learnable weight matrix, and hv is initial embedding of user or item, ReLU(·) is

activation function, ⊕ is concatenating function, ωu,v ∈ [0, 1] is the normalized rating between

user u and item v.

4.4 Experiments

In section, we aim to evaluate our methods by answering the following key questions:
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• How resilient is our proposed PDR framework against attacks (4.4.3)?

• What are the underlying mechanisms that enable PDR to achieve adversarial robustness

(4.4.4)?

• How does the level of prior knowledge τ impact the performance of PDR (4.4.5)?

4.4.1 Datasets and Experiment Settings

In this chapter, we employ exactly the same dataset and experiment setting as in Section. 3.2.4.1.

In the PDR framework, we set the temperature of the softmax function as T = 2.0. We set

the probability that a user labeled with fake is actually normal as p0 = 0.01, and the probability

that a user labeled with normal is actually fake as p1 = 0.2. In the label adjustment strategy,

we update the labels when the AUC of the detection model reaches a0 (a0 = 0.8 for GraphRfi;

a0 = 0.7 for MF-based) on the training set, and we set update rate α = 0.05 to adjust priors. At

the beginning, we set the adjusting interval parameters c1 = 0.4, c2 = 0.85, and decreasing c1

while increasing c2 to decay the range of adjusting interval by ct+1
1 = min{ct1− 0.025, 0.2}, and

ct+1
2 = max{ct2+0.025, 1.0}. We set a larger adjust interval for the normal user side (q(fu)t < c1)

since there are more normal users than fake users. Embedding dimension in GraphRfi is set as

50 for YelpCHI and 100 for Movies; 128 in MF. The hidden layer number of MLP is 2. The

regularization coefficient is set as 0.01 in GraphRfi and 1× 10−5 inMF.

4.4.2 Baselines

Since there are no prior defense strategies for GraphRfi, we adapt representative defense ap-

proaches from both categories. First, for the adversarial training approach, we adopt a represen-

tative work proposed by [166]. Specifically, it adds perturbation noise to the model parameters

when training the model. Second, we explore the idea of using the result of anomaly detection

for defense. The natural idea is to remove the detected fake users from the system. Note that we

do not constrain a specific method here for anomaly detection; instead, we assume that a fraction
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τ of the injected fake users can be detected due to the fact that any anomaly detection method

might be employed in practice, and the detection performance varies. In our experiment, this

fraction τ of fake users are removed; we thus term this approach as Remove Anomaly.

4.4.3 Robustness Evaluation of PDR

The primary defense goal is to retain the hit ratios of the target items under attack. We evaluate

the defense effectiveness of proposed PDR on GNN-based model (against MetaC attack) and

on MF-based model (against MetaC and PoisonT attack). Fig. 4.2 presents the performances

of different defense approaches applied toGraphRfi. We can see that PDR achieves the best de-

fense performance, especially when the attack power is higher (it is also when defense is harder).

We note that Remove Anomaly may or may not be better than GraphRfi (i.e., without defense).

The reason is that the anomaly detection component within GraphRfi is supervised. Thus, re-

moving the correctly labeled fake users, as Remove Anomaly did, reduces the supervision, which

might harm the performance. This actually demonstrates the significance of our proposed way

of dealing with those detected fake users. Similarly, the advantages of PDR on MF-based RS

can also be observed. Tab. 4.1 and Tab. 4.2 shows the defense performance on MF-based model

under 2 attacks (PoisonT andMetaC), where No defense is the original MF-based model, Hard

label adds the same GNN detection model in PDR, but it uses the common cross-entropy loss

with hard labels (similar toGraphRfi), and PDR is our robust model that uses soft label posterior

detection. The results demonstrate that the MF-based model trained with PDR has the closest

HR@10 to the original one with 0% attack power.

4.4.4 Why PDR is Robust

The adversarial robustness of PDR comes from the fact that it can detect and dynamically adjust

the contributions of fake users in the recommender system.

To illustrate this point, we visualize the trajectories of anomaly scores (inversely proportional to

contribution) of different types of users during the training of two systems GraphRfi and PDR
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Table 4.1: Defense performances (HR@10) on MF-based model under different attack power

(YelpCHI).

Attack Method PoisonT MetaC

Attack Power No defense Hard label PDR No defense Hard label PDR

0.0% 0.214 0.214 0.214 0.214 0.214 0.214

0.3% 0.245 0.235 0.227 0.335 0.261 0.240

0.5% 0.265 0.243 0.238 0.426 0.281 0.263

0.7% 0.279 0.241 0.231 0.537 0.299 0.273

1.0% 0.302 0.265 0.252 0.701 0.339 0.309

2.0% 0.467 0.304 0.267 0.880 0.401 0.364

Table 4.2: Defense performance (HR@10) on MF-based model under different attack power

(Movies).

Attack Method PoisonT MetaC

Attack Power No defense Hard label PDR No defense Hard label PDR

0.0% 0.183 0.183 0.183 0.183 0.183 0.183

0.3% 0.201 0.274 0.200 0.350 0.264 0.199

0.5% 0.302 0.271 0.199 0.371 0.334 0.322

0.7% 0.359 0.272 0.199 0.424 0.456 0.362

1.0% 0.352 0.282 0.200 0.606 0.563 0.539

2.0% 0.407 0.382 0.220 0.923 0.624 0.557

in Fig. 4.3(a) and Fig. 4.3(b), respectively. What we should focus on is the Type IV users (i.e.,

fake users but labeled as normal), the anomaly scores of which are shown in red over YelpCHI.

Compared to GraphRfi, PDR can assign large anomaly scores even for Type IV users, which is

the reason for its adversarial robustness. The results overMovies are similar.
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(a) YelpCHI (b) YelpCHI

(c) Movies (d) Movies

Figure 4.2: Defense performances on GNN-based model under different attack powers.

(a) without defense

(YelpCHI)

(b) with defense (YelpCHI) (c) without defense

(Movies)

(d) with defense (Movies)

Figure 4.3: Anomaly scores for different types of users.

4.4.5 Influence of Prior Knowledge

In the experiments, we use a parameter τ to control the defender’s prior knowledge (possibly ob-

tained from using some anomaly detectionmethods to preprocess the data) regarding the injected

fake users. Specifically, τ is the recall over injected users defined as τ = |{u∈U ′|labeled as fake}|
|U ′| ,

representing the fraction of fake users that are correctly labeled. We thus evaluate the two dif-

ferent ways (i.e., Remove Anomaly and PDR) of dealing with detected fake users under different
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levels of τ . Fig. 4.4 shows thatPDR achieves the best performance over YelpCHI and the perfor-

mance becomes better as τ increases as it receives more supervision. Again, Remove Anomaly

is not quite effective in some cases as removing correctly labeled fake users also decreases the

supervision.

(a) YelpCHI (b) YelpCHI (c) Movies (d) Movies

Figure 4.4: Defense performance with various τ on YelpCHI.

4.4.6 Running Time and Complexity

The running time of PDR is similar to GraphRfi, since GraphRfi already includes the detection

model, which takes approximately 3 hours on YelpCHI and 17 hours on Movies. When applied

to the MF-based model, PDR takes around 2 minutes on YelpCHI and 6 minutes with PDR.

The main additional computation workload in our proposed PDR framework is the GNN-based

anomaly detectionmodule, which has a polynomial time complexity ofO(L|E|F+LNF 2) [103],

where L is the number of layers, |E| is the number of ratings, N is the number of nodes, and F

is the embedding dimension of nodes. It is worth noting that real-world user-item rating graphs

are highly sparse [167], resulting in |E| << N 2. This observation demonstrates the potential of

employing PDR on large graphs in practical scenarios.

4.5 Conclusion

In this section, we demonstrated the vulnerabilities of a state-of-the-art robust recommender

system called GraphRfi by designing an effective attack approach MetaC. We re-designed the

84



4.5. Conclusion

detection component which is equipped with the ability to dynamically adjust the importance

of newly injected fake users, resulting in a robust RS termed PDR. In addition, we also show

that our attack and defense methods can also be applied to MF-based RS. This research demon-

strated the effectiveness of a framework for integrating anomaly detection into learning systems

to improve their adversarial robustness. In our future work, we expect to see the successful

application of this framework on more learning systems.
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Chapter 5

Certified Robustness against Graph

Injection Attacks

Deep Graph Learning (DGL), particularly Graph Neural Networks (GNNs), has established it-

self as the dominant approach for graph learning tasks. DGL has consistently demonstrated out-

standing performance across various applications, such as recommender systems, community

detection, link prediction in social networks, network intrusion detection, and anomaly detection

in financial networks [6]. Many of these applications are critical for ensuring system security,

such as node classification in anomaly detection, which helps prevent money laundering [168]

and financial fraud [9]. Consequently, ensuring the trustworthiness of those DGL models is of

paramount importance.

Indeed, extensive research has been dedicated to studying the adversarial robustness of DGL

against attacks. Specifically, various graph adversarial attacks [19, 20, 21] have been proposed to

assess the vulnerability of DGLmodels. In response, different defensemechanisms are explored,

resulting in robust DGL models such as Pro-GNN [26], RobustGCN[27], and GCNGuard [28].

However, despite the effectiveness of defense models, their robustness is often compromised by

the relentless development of new attack techniques [29]. The ongoing research on attacks and

defense for DGL has resulted in a highly competitive status.
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To end such an arms race between attack and defense, there is a growing interest in developing

provable defense methods that offer certified robustness [25]. Specifically, certifiably robust

models [59, 34, 33, 35] can provide the theoretical guarantee that their predictions would stay

unchanged as long as the amount of input perturbations is within a certain range. For instance,

a smoothed GNN-based classifier [59] can achieve a certified accuracy of 60% (meaning that

60% of the test nodes are guaranteed to be correctly classified) when faced with an attack in-

volving the arbitrary deletion of up to 10 edges from the graph. Overall, certified robustness

can significantly enhance the trustworthiness of DGL models in deployment.

Despite the significant progress in achieving certified robustness of models in computer vi-

sion [119, 120, 121, 129, 62, 122] and graph learning [59, 34, 33, 35], there is a notable gap

regarding the certified robustness of DGL against a novel and significant form of attack known

as the Graph Injection Attack (GIA). Unlike the commonly investigated Graph Modification

Attack (GMA), which allows the attacker to modify the existing structure of the graph, GIA

involves the injection of new nodes (along with associated edges) into the original graph. Ex-

ploring the certified robustness of DGL against GIA is of great importance for several reasons.

Firstly, unlike in GMA where the attacker requires control over the entire graph, in GIA, the

attacker only needs to control the newly injected malicious nodes. Consequently, GIA presents

a less demanding threat model, making it a more realistic threat. Secondly, it is shown that GIA

is a more powerful and stealthy attack compared to GMA [108, 109, 115, 3, 60, 61]. Notably,

black-box GIAs such as G2A2C [61] have successfully doubled the misclassification rate with

only one node injected and one edge inserted. Lastly, GIA is a type of attack that is particularly

prevalent in recommender systems [111, 112, 113, 114], where adversaries can easily create fake

accounts to engage with items, deliberately damaging recommendations intended for genuine

users. The practical deployment, high stealthiness, and power of GIA underscore the urgent

need to investigate the provable robustness of DGL under such attacks.

In this chapter, we first propose a sample-wise certificate to defend against GIA, and then we

further improve the certified performance by developing a collective certificate.
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Chapter 5. Certified Robustness against Graph Injection Attacks

5.1 Sample-wise Certificate

To develop certified robustness for node classification models, the most usual solution is to

certify testing nodes one by one. These are also termed sample-wise certificates.

Is adapting from existing methods sufficient? Our initial attempt is to adapt two existing and

prevalent certifying frameworks to tackle the task of certifying DGL against GIA.We emphasize

that these two certifying schemes have achieved state-of-the-art performance in their respective

tasks, which include image classification and node classification in graphs. Specifically:

1) Bagging-based certifying scheme [1]. Such a scheme is designed to certify image classi-

fiers against sample insertion or deletion attacks. We can extend it to our task by regarding

each node as an independent sample without accounting for the graph structure.

2) Randomized-smoothing certifying scheme [59]. It is designed for DGL models against

GMA. To extend it for GIA, we can pre-inject several isolated nodes in the clean graph

and then certify how many edges can be injected from these nodes.

Both schemes operate by adding carefully crafted random noise to an input graph, resulting in

a collection of randomized graphs, which are subsequently classified by a base classifier. The

final classification result for the graph is then determined by a majority vote among the classi-

fications obtained from the randomized graphs. Leveraging the Neyman-Pearson lemma [169],

these schemes offer verifiable classification margins when dealing with perturbed data. This is

achieved by assessing the probability of overlap, or likelihood ratio, between the randomized

graphs originating from the clean graph and the perturbed graph. The underlying intuition is

that after the randomization, if the perturbed graph and clean graph are identical, they should

yield the same prediction. Consequently, a higher overlap probability corresponds to a wider

certifiable radius, indicating a greater tolerance for perturbation levels.

Nevertheless, the above two adapted approaches have their own limitations, leading to poor

certification performances (as shown in Tab. 5.2 and Fig. 5.5). The adapted bagging-based cer-

tifying scheme did not properly define the perturbation space (limitation 1 ), resulting in an ex-
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Figure 5.1: Certified Robustness via Node-aware Smoothing.

aggerated threat model where the attacker is unnecessarily too strong. In particular, the scheme

completely neglects the graph structure information, resulting in no constraints on the number of

connected edges for each injected node (in practice, this will make GIA easily detectable). Con-

sequently, the certification performance against GIA is significantly compromised. Although

the randomized-smoothing certifying scheme can explicitly consider graph structure and restrict

the added number of edges per node, it suffers from an extremely low probability of random

sample overlap under GIAs (limitation 2 ), resulting in an inadequate certification performance.

These limitations underscore the necessity and the challenges of developing novel certifying

approaches that can effectively leverage the graph structure while increasing the overlap prob-

ability in order to provide a more effective certificate against GIA.

Our solutions. We propose a novel node-aware bi-smoothing scheme to explicitly address

the above limitations. Specifically, to address limitation 1 , we fully consider the practical con-

straint for GIA that each injected node can only connect to a few edges to ensure attack unnotice-

ability, leading to more accurate perturbation space and improved certification performances.

Our solution to this is a nontrivial generalization of the sparsity-aware certificate [59] to certify

against node injection perturbation. Furthermore, to increase the sample overlap probability

under GIA (limitation 2 ), our bi-smoothing scheme will randomly delete nodes and edges si-

multaneously. More specifically, we show that increasing the probability of deleting all inserted

edges is essential for improving the overlap probability. Considering that the potential perturbed

edges are concentrated around the injected nodes, node deletion enables a significantly higher

probability of removing all perturbed edges originating from the injected nodes. Overall, by in-

troducing node-aware bi-smoothing, we can model a more realistic and restricted attacker, and
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Chapter 5. Certified Robustness against Graph Injection Attacks

increase the chance of deleting all the perturbed edges from an injected node.

We offer a rigorous theoretical analysis to establish the validity of our robustness certificate.

Additionally, we show the versatility of our framework by demonstrating its effectiveness not

only against evasion attacks but also against poisoning attacks. Nevertheless, to enhance the

certification performance specifically for poisoning attacks, we introduce a variant called node-

aware-exclude. This variant excludes isolated nodes from the prediction process after random-

ization, thereby improving the overall prediction quality.

Our comprehensive evaluation shows that the proposed node-aware bi-smoothing framework

can significantly improve the certification performances of the baselines (i.e., direct adapta-

tions). For instance, in certain cases, our scheme has shown improvements of 760% and 530%

in terms of the average certifiable radius (ACR). When arbitrarily injecting 10 nodes with a

maximum of 5 edges per node, our node-aware and node-aware-exclude approaches achieve

certified accuracies of 35% and 55% respectively. In contrast, the two direct adapted baselines

yield 0% certified accuracy.

Practical Implications. We further investigate the practical implications of our proposed node-

aware bi-smoothing schemes from two perspectives. Firstly, we explore the application of

node-aware bi-smoothing schemes as an empirical defense approach to protect against an actual

GIA. We compare our smoothed classifier with other state-of-the-art robust GNN models. Re-

markably, the experimental results demonstrate that our model not only achieves competitive

empirical accuracy but also provides certified accuracy, which is a distinctive advantage over

other empirically robust models. Secondly, we examine the potential of applying the smoothing

schemes to recommendation systems, where GIAs are commonly encountered. Specifically,

we treat the recommender system as a multi-label node classification task, where it predicts K

items for each user (node). To assess the effectiveness of our model, we evaluate the certified

number of overlap items between the predicted and the ground truth items. Notably, our model

demonstrates superior certified performance compared to the baseline method [2] specifically

designed for recommender systems.

We summarize the main contributions as follows:
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5.1. Sample-wise Certificate

• We address the challenging task of achieving certified robustness against the graph in-

jection attack, which is a highly powerful and stealthy form of attack compared to the

graph modification attack. Our primary technical advancement is a novel node-aware

bi-smoothing scheme, which is essential to achieve enhanced certified robustness.

• Our node-aware bi-smoothing scheme is highly versatile. It is model-agnostic and is ap-

plicable to both evasion and poisoning attacks. Furthermore, with minimummodification,

our scheme can also provide certification for recommender systems, where graph injection

attacks are commonly observed.

• In addition, we demonstrate that our node-aware bi-smoothing scheme can be used as a

practical defense strategy. Notably, our defense method achieves comparable empirical

robustness to state-of-the-art robust models under actual graph injection attacks, while

offering theoretical robustness guarantees.

• We conduct extensive experiments to validate the effectiveness of our schemes. The re-

sults show that our schemes can significantly improve the certified robustness against

graph injection attacks compared to strong baseline methods.

Organization. We first state our problem in Section 5.1.1. In Section 5.1.2, we propose our

smoothing scheme and the theoretical guarantees. Then, we illustrate the practical implemen-

tation in Section 5.1.3, and the experimental results in Section 5.1.4. Finally, we discuss the

limitation in Section 5.1.5 and conclude in Section 5.1.6.

5.1.1 Problem Statement

In this section, we present a formal definition of the threat model and outline our defense goal.

5.1.1.1 Threat model

We consider an attacker whose goal is to degrade the performance of the node classification

performance of a classifier. To achieve this, the attacker is allowed to inject ρ nodes Ṽ =
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{ṽ1, · · · , ṽρ} with arbitrary node features X̃ ∈ Rρ×d into the graph. Let Ẽ denote the inserted

edges from Ṽ . To ensure stealthiness of attacks and constrain the attacker’s ability, we assume

that each injected node ṽ can connect at most τ edges. That is the degree of node ṽ, denoted as

δ(ṽ), is less than τ .

The attack causes a perturbation to the original graphG. Specifically, we define the node injec-

tion perturbation set as Bρ,τ (G):

Bρ,τ (G) := {G′(V ′, E ′, X ′)|V ′ = V ∪ Ṽ , E ′ = E ∪ Ẽ ,

X ′ = X ∪ X̃, |Ṽ| ≤ ρ, δ(ṽ) ≤ τ, ∀ṽ ∈ Ṽ} (5.1)

The perturbation set Bρ,τ (G) means that there are at most ρ injected nodes, and at most ρ · τ

perturbed edges. This perturbation set belongs to a l0-norm ball.

Furthermore, the perturbation can occur before or after the model training, which is defined as

evasion attack and poisoning attack. We show that our proposed scheme is applicable for both

the evasion and poisoning attacks.

5.1.1.2 Goal of Provable Defense

Our goal is to build up a smoothed classifier that can provide certified robustness against GIA.

We emphasize that our method is model-agnostic in that it does not require to know model de-

tails. Specifically, we denote the perturbed graph with malicious nodes injected as G′, and its

corresponding adjacency matrix as A′. For any graph classifier f(·), we create its smoothed

classifier g(·). Our goal is to verify whether the classification result for a given node v remains

unchanged: gv(G)
?
= gv(G′), for all adversarial example G′ ∈ Bρ,τ (G) in a predefined pertur-

bation set.

5.1.2 Certified Robustness against GIA

In this section, we first introduce sparsity-aware smoothing [59] that serves as the basis of our

scheme. Then, we propose our node-aware bi-smoothing scheme, and provide the general the-
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oretical condition for provable robustness.

5.1.2.1 Preliminary: Sparsity-aware Smoothing

Our node-aware bi-smoothing scheme is a nontrivialmodification from the sparsity-aware smooth-

ing [59]. As mentioned above, sparsity-aware randomized smoothing is capable of providing

l0-ball guarantee for graph modification attack (GMA), in which the perturbation set denoted

as Bra,rd is at most ra edges can be added and rd edges be deleted among existing nodes.

Specifically, it first specifies a randomization scheme φ that randomly adds or deletes edges:

P(φ(A)ij 5= Aij) = p
Aij
− p

(1−Aij)
+ , where p−, p+ ∈ [0, 1] are the probability of adding edges

or deleting edges (set p+ = 0 in our adaptation). Based on the randomization, it constructs a

smoothed classifier g defined in Eq. (2.4). The model verifies whether g(G) = g(G′) for any

adversarial example G′ ∈ Bra,rd(G) in the given graph modification perturbation set. With this

existing certifying framework proposed for l0-ball graph modification attack (GMA), next, we

illustrate how to generalize it to graph injection attack (GIA).

A Direct Adaptation as Baseline We can use this model to certify the node injection pertur-

bation set Bρ,τ (G) defined in (5.1), by pre-injecting ρ isolated nodes in the clean graph, and

then applying this model to certify if the model can tolerate adding arbitrary ρ · τ edges (i.e.,

ra = ρτ ). This is based on the assumption that the isolated/singleton nodes will not impact the

classification results of other nodes. Note that this assumption holds for almost all graphmodels,

such as all message-passing GNNs [32] and common recommendation models. For the poison-

ing setting, we can merge the training phase and testing phase of the base classifier as a whole

classifier F (G) that takes G as input for both training and then making predictions. To avoid

the effect from isolated nodes to other nodes, we can let F (G) bypass all isolated nodes in the

training phase. (For the detailed adaptation with theoretical proof, please refer to Section 5.1.2,

Theorem 5 with pn = 0, p− = pe > 0.)

Despite the applicable adaptation, we point out that, given a perturbed graph G′ ∈ Bρ,τ (G),

its likelihood ratio (sample overlap) P(φ(G′)=Z)
P(φ(G)=Z) > 0 only if all inserted edges are deleted (see
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Appendix A.1), and the probability is (p−)ρτ , which diminishes significantly as the number of

injected nodes and allowable edges grow. To enlarge the probability within the positive likeli-

hood region, we subsequently introduce our node-aware bi-smoothing scheme.

5.1.2.2 Node-aware Bi-Smoothing

The main idea of our certificates against node injection is to design suitable smoothing distri-

butions: (1) deleting edges φe(G), and (2) deleting nodes φn(G). Specifically, φe(G) randomly

deletes edges inGwith probability pe, and φn(G) randomly deletes nodes (all its incident edges)

with probability pn. We combine edge-level and node-level smoothing distributions to form

φ(G) = (φe(G),φn(G)), which we termed node-aware bi-smoothing, to generate the random-

ized smoothing samples and then classify all of the graphs to obtain the “majority vote”. We

formally represent our smoothed classifier g as follows:

gv(G) := argmax
y∈{1,··· ,C}

pv,y(G), (5.2)

pv,y(G) := P(fv(φ(G)) = y),

where pv,y(G) represents the probability that the base graph classifier f returned the class y

for node v given a randomized graph φ(G), and smoothed classifier g(·) returns the “majority

votes” of f(·).

We assume that for any graph model, the classification result of a query node v ∈ G′ is the

same as v ∈ G if the injected nodes are isolated from all existing nodes in the graph G. Next,

we briefly illustrate how node-aware bi-smoothing can enlarge the probability of isolating all

injected nodes. All the perturbed edges from an injected node are removed if the injected node is

deleted in node deletion. Moreover, since the attacker is restricted to injecting only a few edges

per node, both node deletion and edge deletion contribute to the probability of individually delet-

ing perturbed edges. A perturbed edge can be deleted either through edge deletion or by deleting

the other node that the edge connects to (See Fig. 5.2 for examples, and proof of Theorem 5 for

more details). Since there are ρ injected nodes, and at τ injected edges per injected nodes, the

probability of deleting all the perturbed edges is p̃ := (pn + (1− pn)(pe + pn − pepn)τ )ρ under
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our proposed node-aware bi-smoothing (see Appendix A.1). However, when adapting sparsity-

aware smoothing [59] (pn = 0), the probability is (pe)ρτ , which is much smaller. Next, we

formulate the certified robustness verification problem and show that such probability is the key

to yielding the robustness guarantee (Theorem 5).
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Figure 5.2: Illustration of node-aware bi-smoothing.

5.1.2.3 Condition for Certified Robustness under Node-aware Bi-Smoothing

We first formulate the certifying problem as a linear program following the idea of [59, 118]

and then derive the condition for certified robustness.

Problem Formulation. Let us begin with defining the necessary notations. For a given graph

G and ∀v ∈ V , we assume that the top-class of smoothedmodel gv(G) is yA = argmaxy∈Y pv,y(G)

and the running-up class is yB = argmaxy %=yA
pv,y(G). Let pA := pv,yA(G), and pB := pv,yB(G),

if the node v is correctly classified by g under clean graph with certificate, we must have

pA ≥ pA > pB ≥ pB, where the pA is the lower bound of pA, and pB is the upper bound of

pB. The prediction can be further certified under perturbed graph if p′A > p′B, ∀G′ ∈ Bra,rd(G),

where p′A := pv,yA(G
′) and p′B := pv,yB(G

′) are the classification probabilities under perturbed

graph.

The p′A and p′B can be obtained based on the fact that the randomized sample φ(G) and φ(G′)

have a probability of being overlapped, and the likelihood ratio is the same within some regions.
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We can divide sample space into disjoint regions G =
⋃I

i Ri, where Ri denote the consent

likelihood region that P(φ(G)=Z)
P(φ(G′)=Z) = ci for some constant ci. Let ri = P(φ(G) ∈ Ri), r′i =

P(φ(G′) ∈ Ri) denote the probability that the random sample fall in the partitioned region

Ri. By the law of total probability, we have pv,y(G) =
∑

i P(f(Z) = y|Z ∈ Ri)P(φ(G) =

Z ∈ Ri). Let hi := P(f(Z) = yA|Z ∈ Ri) and ti := P(f(Z) = yB|Z ∈ Ri), we have,

p′A = pv,yA(G
′) = hT r′, and p′B = pv,yB(G

′) = tT r′. Then, the verification problem can be

defined as a Linear Programming (LP) problem [59]:

min
h,t

µ := p′A − p′B = hT r′ − tT r′, (5.3)

s.t. hT r = pA, t
T r = pB,

0 ≤ h ≤ 1, 0 ≤ t ≤ 1,

where the pA is the lower bound of pA, and pB is the upper bound of pB; the vectors h ∈ [0, 1]I

and t ∈ [0, 1]I determine the worse-case classifier that assigns class yA and class yB among the

regions such that the µ := p′A − p′B under perturbed graph is minimized. Hence, the optimal

µ∗ > 0 indicates that the prediction is certified to be consistent for ∀G′ ∈ Bra,rd(G).

Solution & Condition. The LP problem (5.3) can be solved directly according to sorted con-

stant likelihood ratio regions ([59], Appendix B). The worst-case classifier h will assign class

yA in decreasing order of regions by their constant likelihood ratios (c1 ≥ c2 ≥ · · · ≥ cI) until

P(fv(φ(A)) = yA) = hT r = pA, and t will assign class yB in increasing order of the constant

likelihood regions (cI ≤ · · · ≤ c1) until P(fv(φ(A)) = yB) = tT r = pB. Subsequently, lever-

aging this solution, we establish the theoretical condition of the certificate under our node-aware

bi-smoothing scheme:

Theorem 5. Let f : G −→ {1, · · · , C}n be any graph classifier, g be its smoothed classifier

defined in (5.2) with φ(G) = (φe(G),φn(G)), v ∈ G be any query node, Bρ,τ (G) be the node

injection perturbation set defined in (5.1). Suppose yA, yB ∈ {1, · · · , C} and pA, pB ∈ [0, 1].

Then we have gv(G′) = gv(G), ∀G′ ∈ Bρ,τ (G), if:

µρ,τ := p̃ (pA − pB + 1)− 1 > 0, (5.4)
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where p̃ := (pn + (1− pn)(pe + pn − pepn)τ )ρ.

Proof. (Sketch) There are two constant likelihood ratios: c1 = 1/p̃ when all inserted edges are

removed and c2 = 0 when they are not. The worst-case classifier with condition P(fv(φ(A)) =

yA) = pA and P(fv(φ(A)) = yB) = pB will assign class yA in the low likelihood ratio region

in priority in order to make the p′A (classification probability under perturb graph) as small as

possible. On the other hand, it will assign class yB in the high likelihood ratio region in priority

in order to make the p′B as large as possible. The µρ,τ is calculated from p′A − p′B under such a

worst-case classifier. Please refer to Appendix A.1 for detailed proof.

Based on the Theorem. 5, we have the following corollary that further highlights the important

role of the probability p̃ in certifiable condition:

Corollary 1. A node is only certifiable with the necessary conditions: p̃ > 1
2 .

Proof. With the definition of pA and pB, we have pA−pB ≤ 1. Then, µρ,τ = p̃(pA−pB+1)−1 ≤

p̃(1 + 1)− 1 ≤ 2 · p̃− 1. According to Theorem 5, we can certify a node if µρ,τ > 0. We have

µρ,τ > 0 only if 2 · p̃− 1 > 0, which means p̃ > 1
2 .

With the Theorem. 5, we can now give black-box certified robustness for graph models against

graph injection evasion attacks. Next, we show that this is also applicable to poisoning attacks

with small changes.

5.1.2.4 Improving Certificate against Poisoning Attack

In this subsection, we show that our certifying scheme can also work for the poisoning attack

threat model withminor adaptation. First, the certifying condition defined in Theorem 5 does not

rely on the structure of the target model. That is, the Theorem 5 is suitable for any graphmodel as

long as the isolated nodes do not impact the model predictions on other nodes. The graph model

training process, however, can be viewed as an end-to-end function that takes in a graph for

training and outputs a model parameter. With a fixed model parameter, it takes the same graph
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as input and outputs the predictions for each node. We can combine these two processes as a

complex function F : G −→ {1, · · · , C}n, so that the previous certifying scheme is applicable

to the poisoning threat model. The only difference is that the classifier itself depends on the

data.

To avoid the impact of isolated nodes on the model parameter, we propose two different strate-

gies termed node-aware-include and node-aware-exclude. By excluding isolating nodes from

training while including them in the testing phase, node-aware-include strategy has the same

certifying scheme as an evasion attack, because the data sampling is totally the same as in Theo-

rem 5. Nevertheless, the graph models trained without isolated nodes might have poor general-

ization on isolated nodes in the testing. Furthermore, some graph models, such as graph-based

recommender system models, cannot make predictions for the nodes (i.e., users and items) that

are not involved in the training phase. To deal with these problems, we propose a variant termed

node-aware-exclude that excludes isolated nodes totally from training and testing. However, the

sample space is slightly different from that in the Theorem 5 because the base model does not

vote for the isolated nodes. Next, we formally define the smoothed classier with node-aware-

exclude and provide the corresponding certifying condition.

We let the smoothed classifier g under node-aware-exclude abstain from voting for all isolated

nodes:

gv(G) := argmax
y∈{1,··· ,C}

pv,y(G), (5.5)

pv,y(G) := P(Fv(φ(G)) = y)),

Fv(φ(G)) = ABSTAIN, if v ∈ φ(G) is isolated,

where pv,y(G) represents the probability that the base GNN classifier F returned the class y for

node v under the smoothing distribution φ(G). Note that the base classifier F (φ(G)) here is

first trained on φ(G) and then makes predictions. To derive the certified condition under such

a smoothed classifier, we add a common assumption on the attacker that the attack edges added

to a node v should not exceed its original degree d(v) (which is widely adopted in almost all

attackers to ensure their stealthiness). The certified condition is given as the following theorem:
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Theorem 6. Let f : G −→ {1, · · · , C}n be any graph classifier, g be its smoothed classifier

defined in (5.5) with φ(G) = (φe(G),φn(G)), v ∈ G be any query node, Bρ,τ (G) be the node

injection perturbation set defined in (5.1), and the attack edges added to a node v should not

exceed its original degree d(v). Suppose yA, yB ∈ {1, · · · , C} and pA, pB ∈ [0, 1]. Then we

have gv(G′) = gv(G), ∀G′ ∈ Bρ,τ (G), if:

µρ,τ := p̃(pA −
(1− p′0)pB

(1− p0)
+ 1− p′0)− (1− p′0) > 0, (5.6)

where p̃ := (pn + (1 − pn)(pe + pn − pepn)τ )ρ, d(v) denotes the degree of node v, and p0 :=

pn + (1− pn)(pe + pn − pepn)d(v) is the probability that the node v is deleted by the smoothing

φ(G), p′0 := pn + (1− pn)(pe + pn − pepn)2d(v).

Proof. (Sketch) Given a node v, the classifier does not vote for it if the node v is isolated in the

smoothing. We need to calculate the likelihood ratio of regions that intersect with the region

where v is not excluded. For the φ(G), it has a probability of 1− p0 that the node v is included

in the voting, while for φ(G′), the probability is upper bound by 1 − p′0 and lower bound by

1 − p0 because the attacker inserts new edges to node v, and the number of new edges on a

single node should not exceed the original degree by assumption. The likelihood ratio has two

possible values: c1 = 1−p0
p̃(1−p′0)

when all inserted edges are removed and c2 = 0 when they are

not. See Appendix A.1 for the complete proof.

With Theorem. 6, we next illustrate that it can be further extended to provide provable robust

recommendations.

5.1.2.5 Certificate for Recommender System

In particular, a recommender system can be regarded as a K-label classifier that predicts K

items for each user (node). To generalize our certifying scheme to the recommender system, we

adopt the framework of PORE [2] proposed by Jia et al., which defined the certified robustness

problem as how many malicious users (nodes) can be injected while the recommendation for a
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user u is maintained to a certain extent, i.e., at least r recommended items are overlapped with

ground truth items Iu.

A graph-based recommender system is trained on the user-item interaction graph G. Unlike

PORE, which randomly selects s users from the graph for aggregation (similar to [1]), our ap-

proach involves applying node-aware bi-smoothing to generate random graphs. Specifically,

in our method, φn(G) removes all ratings of a user with probability pn, while φe(G) removes

items with probability pe. Assuming that a base recommender system trained on φ(G) predicts

K ′ items for a user u, we denote these predictions as Fu(φ(G)). Our smoothed recommender

system predicts the top-K items based on the item probabilities obtained from the base recom-

mender system. The probabilities, denoted as pu,i = P(i ∈ Fu(φ(G))), represent the probability

of item i being included in Fu(φ(G)). We define the smoothed recommender system as gu(G):

gu(G) := {i|i ∈ top-K(pu,:)}, (5.7)

pu,i := P(i ∈ Fu(φ(G))),

Fu(φ(G)) = ABSTAIN, if u ∈ φ(G) is isolated,

where top-K(pu,:) gives the top-K items with the largest recommendation probability pu,i.

According to [2], we can get at least r recommended items that match with ground truth items Iu

if the rth highest item probability among items Iu is higher than the (K − r+1)th highest item

probability among I \ Iu under the poisoned graph, where I is all the items in the training set.

We next provide the condition for |gu(G′) ∩ Iu| ≥ r, ∀G′ ∈ Bρ,τ (G) in the following theorem:

Theorem 7. Let Fu(G) be any base recommender system trained on G and recommend K ′

items to the user u, gu(G) be its smoothed recommender defined in (5.7), u ∈ G be any query

user, Bρ,τ (G) be the node injection perturbation set defined in (5.1). Then, we have at least r

recommended items after poisoning are overlapped with ground truth items Iu: |gu(G′)∩ Iu| ≥

r, ∀G′ ∈ Bρ,τ (G) if:

p̂ pr −min
Hc

(pHc
+K ′(1− p̂)(1− p0))/c > 0, (5.8)

where p̂ := (pn + (1 − pn)pτe)
ρ, p0 := pn + (1 − pn)(pe)d(u) is the probability that the user u

is deleted by the smoothing φ(G), d(u) is the number of user ratings in training set, pr is the

100



5.1. Sample-wise Certificate

lower bound of the rth largest item probability among {pu,i|i ∈ Iu}, Hc denote any subset of

the top-(K − r + 1) largest items among I \ Iu with size c, pHc
:=

∑
j∈Hc

pu,j is the sum of

probability upper bounds for c items in Hc.

Proof. (sketch) All malicious users are removed in the randomization with probability p̂ :=

(pn + (1− pn)pτe)
ρ. See detailed proof in Appendix A.1.

5.1.3 Implementation in Practice

With the certifying conditions from Theorem 5, Theorem 6, and Theorem 7, we aim to demon-

strate how to instantiate them to train a defense model and obtain its certified robustness in both

evasion and poisoning settings.

5.1.3.1 Certified Robustness Against Evasion Attack

Following [30, 59], we train a graph model with noise augmentation to enhance the model’s

generalization on smoothed samples. In each epoch of training, we apply φ(G) to add noise

to the graph (Algorithm 5). After a graph model is trained, we sample N random graphs

G1, G2, · · · , GN from the smoothing distribution φ(G) to process Monte Carlo: pv,y(G) ≈
∑N

i=1 I(fv(Gi) = y))/N . Based on this frequency, we can obtain the top two predictions yA and

yB. Nevertheless, the prediction might not always be consistent due to the randomness. There

are two levels of randomness we need to deal with: the prediction of yA and its probability pA.

To guarantee that themodel predicts yA with probability at least 1−α, following [30], we employ

a two-sided hypothesis test on the count of yA prediction nA ∼ Binomial(nA + nB,
1
2), where

nA :=
∑N

i=1 I(fv(Gi) = yA) and nB :=
∑N

i=1 I(fv(Gi) = yB). The model returns ABSTAIN

during certifying if the p-value is greater than α. To bound the probability pA and pB, similar

to [30, 59], we compute a lower bound of pA and upper bound of pB based on the Clopper-

Pearson Bernoulli confidence interval with confidence α/C, where C is the class number of the

classifier. These lead to a lower bound of µρ,τ , and it entails a valid certificate simultaneously
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with confidence level probability α. The detailed practical certifying process is further outlined

in Algorithm 6.

Algorithm 5 Training with noise (evasion).
Input: Clean graph G, smoothing distribution φ(G) with smoothing parameters pe and pn,

training epoch E.

1: for e = 1, · · · , E do

2: Draw a random graph Ge ∼ φ(G).

3: f = train_model(f(Ge)) on training nodes.

4: end for

5: return A base classifier f(·).

Algorithm 6 Certified robustness with Monte Carlo sampling (evasion).
Input: Clean graph G, smoothing distribution φ(G) with smoothing parameters pe and pn,

trained base classifier f(·), sample number N , confidence level α, perturbation budget ρ

and τ .

1: Draw N random graphs {Gi| ∼ Gi ∼ φ(G)}Ni=1.

2: counts = |{i : f(Gi) = y}|, for y = 1, · · · , C.

3: yA, yB = top two indices in counts.

4: nA, nB = counts[yA], counts[yB].

5: pA, pB = CP_Bernolli(nA, nB, N,α).

6: if Binomial(nA + nB,
1
2) > α then

7: return ABSTAIN

8: if µρ,τ > 0 then

9: return Certified prediction yA.

10: end if

11: end if

12: return ABSTAIN.
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5.1.3.2 Certified Robustness Against Poisoning Attack

In poisoning attacks, because the perturbation is before the training phase, we take the training

and inference of amodel as an end-to-end functionF (·) to substitute the base classifier f(·) in the

evasion attack. That is, for each randomized graph Gi ∼ φ(G), we first train a model based on

Gi and thenmake predictions. We further summarize the certifying process in Algorithm 7. Note

that the node-aware-include and node-aware-exclude primarily differ in the calculation of µρ,τ .

The former utilizes Eq. (5.4), while the latter employs Eq. (5.6). Regarding the implementation

of the recommender system, it shares a similar training process with node-aware-exclude. The

key distinction is that the prediction is obtained by the classifier defined in (5.7), and µρ,τ should

be computed with (5.8).

Algorithm 7 Certified robustness with Monte Carlo sampling (poisoning).
Input: Clean graph G, smoothing distribution φ(G) with smoothing parameters pe and pn,

sample number N , confidence level α, perturbation budget ρ and τ .

1: Draw N random graphs {Gi| ∼ Gi ∼ φ(G)}Ni=1.

2: F (Gi) : model trained on Gi and makes predictions.

3: counts = |{i : F (Gi) = y}|, for y = 1, · · · , C.

4: yA, yB = top two indices in counts.

5: nA, nB = counts[yA], counts[yB].

6: pA, pB = CP_Bernolli(nA, nB, N,α).

7: if Binomial(nA + nB,
1
2) > α then

8: return ABSTAIN

9: if µρ,τ > 0 then

10: return Certified prediction yA.

11: end if

12: end if

13: return ABSTAIN.
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5.1.3.3 Empirical Robustness

Our proposed node-aware bi-smoothing can not only provide certified robustness but also serve

as a general defense strategy that alleviates the threat of graph injection attack (GIA). We can

follow exactly the same process used to train a smoothed model to achieve empirical robustness

in the presence of a perturbed graph. Importantly, our approach is compatible with a wide range

of base classifiers. This property further offers the practical values of our model.

5.1.4 Evaluation

We conduct extensive experiments on three datasets to evaluate our proposed certifiably robust

framework for node classification and recommender system. We assess the certifiable robust-

ness of the smoothed classifiers against evasion attack and poisoning attack. In summary, our

experiments show the following findings:

• Our proposed node-aware bi-smoothing scheme significantly enhances the certified ac-

curacy and average certifiable radius under various realistic graph injection attack (GIA)

scenarios.

• The variant node-aware-exclude method we propose for poisoning attacks further im-

proves the certification performance in both the node classification task and recommen-

dation task.

• Our node-aware bi-smoothing scheme has shown competitive empirical defense perfor-

mance when compared to existing baselines.

• Ablation studies demonstrate the crucial role of node-aware bi-smoothing and node-aware-

exclude in achieving successful certification against GIA.
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5.1.4.1 Experiment Setting

In general, we follow the settings in [30, 59]. Next, we will explain the detailed settings, includ-

ing datasets and models, certificate parameters, baselines, and evaluation metrics.

Datasets and Models. We take Graph Convolution Neural Network (GCN) [4], one of the

most representative GNNs, as the base classifier in node classification on Cora-ML and Citeseer

datasets. For evaluating the recommender system, we take an item-based recommender system

named SAR [170] on MovieLens-100k dataset [171] following [2]. Specifically, the Cora-ML

dataset contains 2, 995 nodes, 8, 416 edges, and 7 classes, with an average node degree of 5.68.

The Citeseer dataset contains 3, 327 nodes, 4, 732 edges, and 6 classes, with an average node

degree of 3.48. For each class, we sample 50 nodes as the training set, 50 for the validation

set, and the remaining for the testing set. The MovieLens-100k dataset contains about 100, 000

rating records involving 943 users and 1, 682 items. For each user, we take 85% of its history

ratings as training data and the remaining for testing data.

Certificate Parameters. By default, we set the number of smoothing samples asN = 100, 000,

for certifying GCN node classification against evasion attack, andN = 1, 000 for poisoning at-

tack. For certifying the recommender system, we set theN = 100, 000. For all the experiments,

we see the confidence level as α = 0.01. For the node injection perturbation set, we evaluate a

range of node injection numbers ρ and various edge budgets τ = 5, 10 (τ = 5 if not mentioned).

Adapted Baselines. Given the absence of previous work on certifying general node classifi-

cation tasks against GIA, we adapt existing certificates designed for other tasks. There are three

certifying schemes adaptable to our task:

• Bagging-cert [1]: As mentioned in Section 5.1, the bagging-cert was originally designed

for certifying inserting or deleting training samples in image classification tasks. To ex-

tend it for node infection perturbation, we can view each node with its incident edges as
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an independent training sample, such that, the problem is the same as image classification.

Note that it can only certify against poisoning attacks.

• Sparsity-aware [59]: Another way is to use sparsity-aware by adding ρ singleton nodes to

the clean graph, and then certifying how many edge insertions it can withstand. When we

set pn = 0 in our node-aware bi-smoothing, it becomes sparsity-aware smoothing (our pe

is analogous to p− in [59]).

• PORE [2]: It extends the bagging-cert [1] to provide a provable recommender system

scheme under node injection attack, and we employ it as our baseline when certifying the

recommender system.

Evaluation Metrics. A common metric to measure the robustness of a model with guarantee

is certified accuracy: it is the ratio of samples that the prediction is both correct and certified

to be consistent under the defined perturbation set. We formally define the certified accuracy

with the given attack budget ρ and τ as follows: ξ(ρ, τ) = 1
n

∑n
i=1 I(gvi(G) = gvi(G

′) =

yi), ∀G′ ∈ Bρ,τ (G), where yi is the ground truth of node vi. In this chapter, we evaluate the

certified accuracy of the set of testing nodes. However, evaluating the certificate strength is

insufficient due to the inherent trade-off between prediction quality (i.e., clean accuracy) and

certified accuracy. In general, higher smoothing variance improves the certified accuracy, but it

reduces the prediction confidence. For this reason, following [130, 35], we also quantify average

certifiable radius (ACR) with given degree budget τ0: ACR =
∑+∞

ρ=1 ρ·(ξ(ρ, τ0)−ξ(ρ+1, τ0)).

Intuitively, it is the discrete integral (area) under the certified accuracy curve (Fig. 5.3).

!
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)
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ACR

Figure 5.3: Illustration of ACR, where ξ(ρ, τ0) denotes the certified accuracy under a fixed

degree budget τ0.
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When evaluating the robustness of the recommender system, we adopt certified precision and

certified recall following [2]. These metrics measure the certified overlapping of recommended

items and ground truth items:

certified precision = min
G′∈Bρ,τ (G)

|Iu ∩ gu(G′)|
K

, (5.9)

certified recall = min
G′∈Bρ,τ (G)

|Iu ∩ gu(G′)|
Iu

, (5.10)

where K is the number of recommended items, and Iu is the ground truth recommendations.

Similarly, we can calculate ACR by substituting certified accuracy with certified precision or

recall.

5.1.4.2 Certified Robustness for Node Classification

Table 5.1: Certified accuracy comparison under evasion perturbation. For each method, we

report the best results under different smoothing parameters, while the α and N are the same.

certified accuracy ρ
ACR

dataset τ methods 0 3 5 10

Cora-ML

5
sparse-aware [59] 0.809 0.000 0.000 0.000 0.691

node-aware 0.735 0.730 0.730 0.729 100.648

10
sparse-aware [59] 0.809 0.000 0.000 0.000 0.000

node-aware 0.735 0.730 0.729 0.721 51.390

Citeseer

5
sparse-aware [59] 0.705 0.000 0.000 0.000 0.644

node-aware 0.674 0.666 0.666 0.666 31.558

10
sparse-aware [59] 0.705 0.000 0.000 0.000 0.000

node-aware 0.674 0.666 0.666 0.666 16.979

Against Graph Injection Evasion Attack. For evasion attacks, we adapt sparsity smooth-

ing [59] as a baseline for comparison (since bagging-cert [1] is designed for poisoning attacks

only). In Tab. 5.1, we report the certified accuracy under the attack budgets ρ = 3, 5, 10, and

also the clean accuracy (ρ = 0) of the smoothed classifier. The average certifiable radius (ACR)
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(a) Sparsity-aware [59] (b) Sparsity-aware [59]

(c) Node-aware (pe = 0) (d) Node-aware (pe = 0)

(e) Node-aware (pe, pn > 0) (f) Node-aware (pe, pn > 0)

Figure 5.4: Certified accuracy under evasion perturbation with τ = 5. ρ: the number of injected

nodes, τ : the edge budget per injected node. The blue dotted line represents the accuracy of

Multilayer Perceptron (MLP).

comparison is also shown in Tab. 5.1. For all the metrics, we report the best result for each

method under various smoothing hyper-parameters. Compared to the baseline, we observe that

our proposed node-aware bi-smoothing leads to overwhelmingly higher certified accuracy un-

der the same budgets. For example, on the Cora-ML dataset, when there are at most 10 injected

nodes with a budget degree of 5, we achieve a certified accuracy of 72.9% while the baseline is

0.0%.

In Fig. 5.4, we report the certified accuracy curve under a range of attack budget ρ using various

smoothing parameters (pe and pn). We find that sparse-smoothing is not able to certify attack

108



5.1. Sample-wise Certificate

budget ρ > 2 with τ = 5 (Fig. 5.4a,5.4b), this highlights that the direct adaptation from graph

modification attack (GMA) to graph injection attack (GIA) is not effective although it is possible.

In contrast, our node-aware bi-smoothing has non-trivial ACR under various parameters (pe >

0.7 and pn > 0.7).

Due to the trade-off between certified accuracy and clean accuracy, we also report the clean

accuracy under various smoothing parameters in Fig. A.2a,A.2b. Since the MLP does not rely

on graph structure, node injection attacks under an evasion scenario are ineffective. As a result,

a robust graph classifier is meaningful only if its clean accuracy is higher than the MLP.We only

report the effective results (the parameters with clean accuracy higher than the MLP).

Against Graph Injection Poisoning Attack. Similar to evasion attacks, we also observed

significantly higher certifiable performance under our node-aware bi-smoothing compared to

baselines sparsity-aware [59] and bagging-cert [1] (Tab. 5.2 and Fig. 5.5). Notably, our ensemble

smoothed classifier has the potential to increase the clean accuracy, as shown in Fig. A.2c, A.2d,

A.2e, A.2f. Without sacrificing clean accuracy, our proposed node-aware-exclude has over 55%

certifiable accuracy on Cora-ML, and 43% certifiable accuracy on Citeseer with 10 allowable

malicious node with arbitrary features, while the two baseline methods are not able to certify

any one of the nodes under the same condition as shown in Tab. 5.2 and Fig. 5.5. Moreover, our

node-aware-exclude has an average certifiable radius (ACR) of 16.66 on Cora-ML and 12.05

on Citeseer, which improved baselines by 760% and 530%, respectively. These experimental

results reveal the effectiveness of our proposed method in poisoning attack scenarios.

5.1.4.3 Certifiably Robust Recommender System

Our proposed node-aware-exclude is also applicable to provide provable recommendations. We

compare our model to the provable recommender system, PORE [2]. Similar to node classifi-

cation, our model is capable of considering the restricted attacker with node degree constraint,

while PORE can only certify malicious nodes with unlimited degree budgets. Tab. 5.3 and

Fig. 5.6 show the certified precision and recall under PORE and our proposed smoothing with
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Table 5.2: Certified accuracy comparison under poisoning perturbation (τ = 5).

certified accuracy ρ
ACR

dataset methods 0 3 5 10

Cora-ML

sparse-aware[59] 0.832 0.000 0.000 0.000 0.229

bagging[1] 0.744 0.354 0.163 0.000 1.931

node-aware-include 0.770 0.480 0.428 0.351 8.297

node-aware-exclude 0.819 0.666 0.587 0.554 16.658

Citeseer

sparse-aware[59] 0.740 0.000 0.000 0.000 0.130

bagging[1] 0.681 0.362 0.146 0.001 1.905

node-aware-include 0.734 0.493 0.443 0.321 8.835

node-aware-exclude 0.717 0.530 0.462 0.428 12.048

(a) Sparsity-aware

[59]

(b) Sparsity-aware [59] (c) Bagging-cert[1] (d) Bagging-cert[1]

(e) Node-aware-

include

(f) Node-aware-include (g) Node-aware-

exclude

(h) Node-aware-exclude

Figure 5.5: Certified accuracy under poisoning perturbation with τ = 5. s is the bagging size of

the model [1]. The sharp decrease in certified accuracy at the beginning is due to the ABSTAIN

for less confident yA.
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Table 5.3: Certified precision and recall comparison on recommender system (τ = 10).

MovieLens-100k ρ
ACR

metrics methods 0 3 5 10

certified precision
PORE[2] 0.203 0.056 0.038 0.015 0.427

node-aware-exclude 0.209 0.081 0.053 0.018 0.617

certified recall
PORE[2] 0.170 0.050 0.037 0.018 0.424

node-aware-exclude 0.174 0.074 0.051 0.021 0.601

(a) PORE [2] (b) PORE [2] (c) Node-aware-

exclude

(d) Node-aware-exclude

Figure 5.6: Certified precision and recall on SAR Recommender system (MovieLens-100K

dataset, 85% training) under poisoning perturbation, where s is the bagging size of the model

PORE [2],K ′ is the number of items recommended by the base recommender, and we setK =

10 as the number of items recommended by the smoothed recommender.

degree budget τ = 10. Notably, our smoothed classifier has observed better performance.

5.1.4.4 Empirical Robustness for Node Classification

In this section, we take a state-of-the-art GIA attacker HAOGIA [3] as an example to study the

empirical robustness of our model. For comparison, we take four widely-used GNN defense

models, GCN [4], ProGNN [26], RobustGCN[27], and GNNGuard [28] as baselines, and eval-

uate their accuracy under attacks with budgets ρ = {10, 20, 30, 40, 50} and τ = 5. The results

are presented in Tab. 5.4.

Although our model is primarily designed for certified robustness, it achieves a competitive em-
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Table 5.4: Empirical robust accuracy of different defensemodels underHAOGIA [3] attack. The

baseline models can only provide empirical robustness, while our method offers both empirical

and certified robustness. We show the parameters achieve better certified accuracy (the last 3th

and 4th columns) and better empirical accuracy (the last two columns).

defense models GCN ProGNN RobustGCN GNNGuard node-aware-include node-aware-exclude node-aware-include node-aware-exclude

attack
empirical robust accuracy

(pe : 0.8, pn : 0.9) (pe : 0.1, pn : 0.9) (pe : 0.1, pn : 0.7) (pe : 0.1, pn : 0.7)

dataset ρ empirical (certified) empirical (certified) empirical (certified) empirical (certified)

Cora-ML

clean 0.816 0.832 0.800 0.792 0.571 0.784 0.814 0.807

10 0.815 0.831 0.800 0.788 0.560 (0.311) 0.778 (0.533) 0.814 (0.000) 0.811 (0.000)

20 0.815 0.830 0.802 0.790 0.551 (0.194) 0.776 (0.429) 0.814 (0.000) 0.809 (0.000)

30 0.815 0.816 0.791 0.782 0.550 (0.096) 0.775 (0.300) 0.813 (0.000) 0.785 (0.000)

40 0.775 0.791 0.775 0.756 0.546 (0.040) 0.770 (0.125) 0.813 (0.000) 0.801 (0.000)

50 0.764 0.771 0.763 0.745 0.543 (0.008) 0.762 (0.021) 0.808 (0.000) 0.793 (0.000)

ρ empirical robust accuracy (pe : 0.8, pn : 0.9) (pe : 0.1, pn : 0.9) (pe : 0.6, pn : 0.7) (pe : 0.7, pn : 0.7)

Citeseer

clean 0.700 0.719 0.702 0.668 0.675 0.714 0.736 0.732

10 0.695 0.707 0.688 0.657 0.614 (0.312) 0.700 (0.408) 0.728 (0.000) 0.724 (0.002)

20 0.685 0.681 0.683 0.649 0.611 (0.160) 0.685 (0.315) 0.732 (0.000) 0.714 (0.000)

30 0.647 0.673 0.654 0.623 0.607 (0.085) 0.693 (0.198) 0.730 (0.000) 0.711 (0.000)

40 0.638 0.648 0.638 0.610 0.603 (0.021) 0.681 (0.065) 0.730 (0.000) 0.709 (0.000)

50 0.629 0.611 0.618 0.615 0.600 (0.001) 0.677 (0.007) 0.729 (0.000) 0.706 (0.000)

pirical accuracy. Notably, the node-aware-include variant maintains nearly unchanged empiri-

cal accuracy even as the attack budget increases. In both datasets, we achieve the best empirical

defense when the number of injected nodes ρ ≥ 40. These results highlight the effectiveness of

our model as an empirical defense framework. Although the node-aware-exclude variant expe-

riences a slight decrease in empirical accuracy compared to include, it achieves the best certified

accuracy. Notably, while our model can provide both empirical and certified robustness, other

common defense baselines can only offer empirical robustness without any guarantee.

5.1.4.5 Ablation Study and Hyper-parameters

To further analyze the important factor of the effectiveness of our proposed certifying scheme,

we study our node-aware bi-smoothing with a single smoothing distribution and compare the

node-aware-include with node-aware-exclude.

EdgeDeletion andNodeDeletion smoothing. The ablation studied with the smoothing node-

deletion only (pe = 0) and edge-deletion only (pn = 0) are shown in Fig. 5.4 and 5.5. Note that,
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(a) pA (b) pA

Figure 5.7: Histograms of pA under different types of model.

the baseline [59] corresponds to the edge-deletion only (pn = 0).

In the case of edge-deletion only (pn = 0), we observe that the certifying performance improves

as pe increases, particularly in the node-aware-include strategy where the base model also votes

for isolated nodes. In node-aware-exclude (Fig. 5.5g,5.5h), we achieve the highest Average Cer-

tifiable Radius (ACR) with small values of pe (0.0 and 0.1). This phenomenon can be attributed

to a high pe resulting in a large number of isolated nodes that the model does not provide votes

for. Consequently, the model has a less confident pA and a higher ratio of ABSTAIN in our

statistical testing for yA due to the limited sample size. Nevertheless, this issue can be miti-

gated as N increases (Figure5.9), where pe > 0 consistently achieves better performance. In

the case of node-deletion only (pe = 0), we observe an increasing performance as pn increases

(Figure5.4c,5.4d and Figure5.5e,5.5f).

These ablation studies clearly demonstrate the importance of both edge-deletion and node-

deletion smoothing techniques, and the latter has a more significant impact, which is further

supported by the observations in Fig. 5.8.

Comparing node-aware-include and node-aware-exclude. When comparing the include

strategy with the exclude strategy in the poisoning attack scenario (Table5.2 and Figure5.5),

we observe that the exclude strategy enhances the performance in terms of the ACR and certi-

fied accuracy. This improvement is primarily attributed to the higher confidence in pA achieved

by the exclude strategy (Fig. 5.7).
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Figure 5.8: The impact of smoothing-parameters (pe, pn) on µρ,τ (include) under sufficiently

large pA. This figure shows that both node deletion and edge deletion smoothing play an impor-

tant role in the certifying condition µρ,τ > 0 (red).

(a) Node-aware-

include

(b) Node-aware-include (c) Node-aware-

exclude

(d) Node-aware-exclude

Figure 5.9: Impact of N on certified accuracy under poisoning perturbation with pn = 0.9,

τ = 5.

Hyper-parameters Analysis. Fig. 5.8 provides a visualization of the impact of pe and pn

under the same pA and pB. It is evident that larger values of pe and pn correspond to higher

certifying margins µρ,τ , highlighting the crucial role played by both edge-deletion and node-

deletion smoothing techniques.

Additionally, we evaluate the effect of varying numbers of Monte-Carlo samples N in Fig. 5.9.

Notably, as the value ofN increases, the abstain rate decreases significantly, leading to improved

certified accuracy and ACR.
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5.1.5 Limitations and Future Work

This chapter focuses on a provable robust framework against graph injection attacks based on

randomized smoothing. Nevertheless, the drawback of randomized smoothing is the computa-

tion overload. Future work might consider extending de-randomized smoothing [172, 173, 123]

to our framework to tackle the challenge of high running time. To further improve certifiable

performance of randomized smoothing, there are two common strategies: improving the training

process [174, 175, 176, 177] and applying collective certification [178, 130]. The former aims

to increase the intrinsic robustness of the model, while the latter further constrains the attacker

to be more realistic in that it can only forge one attack sample to achieve its overall goal.

5.1.6 Conclusion

This chapter investigates the task of certifying graph-based classifiers against graph injection

attacks (GIA). We propose a novel node-aware bi-smoothing scheme that provides certificates

specifically designed to defend against GIAs under both evasion and poisoning threat models.

Additionally, we propose a variant called node-aware-exclude to further enhance the certi-

fied performance against poisoning attacks. We evaluate the certified robustness of our model

against GIAs on the GCN node classifier and SAR recommender system. While there is no pre-

vious work specifically addressing certifying general node classification against GIA, we gen-

eralize two certified robust models originally designed for other tasks and compare our model

with them. Through extensive experiments on three datasets, we provide comprehensive bench-

marks of our certified models against GIA. Furthermore, we evaluate the effectiveness of our

model as an empirical defense method against a real GIA and compare it with four common

defense models. Through extensive experiments, we demonstrate that our proposed framework

not only provides significant certified robustness but also achieves competitive empirical robust-

ness. These results demonstrate the effectiveness of our proposed model in defending against

GIAs and highlight its importance in ensuring the security of graph node classification tasks.
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5.2 Collective Certificate

Sample-wise v.s. Collective certification. The certification against attacks over graphs can be

categorized into two types: sample-wise and collective certificates. Sample-wise certification

approaches [30, 59, 131] essentially verify the prediction for a node one by one, assuming that the

attacker can craft a different perturbed graph each time to attack a single node (Fig. 5.10, top).

However, in reality, the attacker can only produce a single perturbed graph to simultaneously

disrupt all predictions for a set of target nodes T (Fig. 5.10, bottom). Such a discrepancy makes

sample-wise certificates rather pessimistic. In contrast, more recent works [130, 35] aim to

certify the set of nodes at once, providing collective certification that can significantly improve

the certifying performance.

In the domain of certifying GNNs, the majority of research works [59, 34, 33, 121, 32] focus on

sample-wise certification against GMA. The only collective certification scheme against GMA

proposed by [130], however, is not applicable to GIA. This is because the certification scheme

assumes a fixed receptive field of GNNs, while GIA, which involves adding edges after inject-

ing nodes, inevitably expands the receptive field. Although there are emerging works [131, 2]

specifically designed to tackle GIA, they only offer sample-wise certificates, resulting in limited

certified performance.
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Figure 5.10: Illustration of collective certification.

We are therefore motivated to derive the first collective certified robustness scheme for GNNs
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against GIA. To achieve collective robustness, we leverage the inherent locality property of

GNNs, where the prediction of a node in a k-layer message-passing GNN is influenced solely

by its k-hop neighbors. This ensures that injected edges by the attacker only impact a subset

of the nodes. We address the collective certification problem by transforming it into a budget

allocation problem, considering the attacker’s objective of modifying the predictions of as many

nodes as possible with a limited number of malicious nodes and maximum edges per node. By

overestimating the number of modified nodes, we can certify the consistent classification of the

remaining nodes.

However, the above problem yields a binary integer polynomial-constrained program, which is

known to be NP-hard. We then propose a customized linearization technique to relax the origi-

nal problem to a Linear Programming (LP), which can be solved efficiently. The LP relaxation

provides a lower bound on the achievable certified ratio, ensuring the soundness of the veri-

fication process. We conduct comprehensive experiments to demonstrate the effectiveness as

well as the computational efficiency of our collective certification scheme. For example, when

the injected node number is 5% of the graph size, our collective robustness models increase the

certified ratio from 0.0% to over 80.0% in both Cora-ML and Citeseer datasets, and it only takes

about 1 minutes to solve the collective certifying problem.

Overall, we propose the first collective certificate for GNNs against graph injection attacks.

In particular, it is computationally efficient and can significantly improve the certified ratio.

Moreover, this certification scheme is almostmodel-agnostic as it is applicable for any message-

passing GNNs.

5.2.1 Problem Statements

5.2.1.1 Threat Model: Graph Injection Attack

We focus on providing robustness certificates against graph injection attacks (GIAs) under the

evasion threat model, where the attack perturbation occurs after the model training. The adver-

saries aim to disrupt the node classifications of a set of target nodes, denoted by T, as many as
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possible. To this end, it can inject ρ additional nodes Ṽ = {ṽ1, · · · , ṽρ} into the graph. These

injected nodes possess arbitrary node features represented by the matrix X̃ ∈ Rρ×d. Addition-

ally, Ẽ represents the set of edges introduced by the injected nodes. To limit the power of the

adversaries and avoid being detected by the defender, we assume that each injected node ṽ is

only capable of injecting a maximum of τ edges. Thus, the degree of each injected node δ(ṽ)

is no more than τ . Let us represent the perturbed graph as G′, with its corresponding adjacency

matrix denoted as A′. We formally define the potential GIA as a perturbations set associated

with a given graph G = (V , E , X):

Bρ,τ (G) := {G′(V ′, E ′, X ′)|V ′ = V ∪ Ṽ , E ′ = E ∪ Ẽ ,

X ′ = X ∪ X̃, |Ṽ| ≤ ρ, δ(ṽ) ≤ τ, ∀ṽ ∈ Ṽ}. (5.11)

Given the absence of a collective certificate to address these types of perturbations, our first

contribution is to define the problem of collective robustness.

5.2.1.2 Problem of Collective Certified Robustness

Following [32], we employ randomized smoothing to serve as the foundation of our certifica-

tion. Intuitively, by adding random noise to the graph, the message from the injected node to a

target node has some probability of being intercepted in the randomization, such that the GNN

models will not aggregate the inserted node’s feature for prediction. We adopt node-aware bi-

smoothing [131], which was proposed to certify against the GIA perturbation, as our smoothed

classifier. Given a graph G, random graphs are created by a randomization scheme denoted

as φ(G) = (φe(G),φn(G)). It consists of two components: edge deletion smoothing φe(G)

and node deletion smoothing φn(G). Specifically, the former randomly deletes each edge with

probability pe, and the latter randomly deletes each node (together with its incident edges) with

probability pn. Based on these random graphs, a smoothed classifier g(·) is constructed as fol-

lows:

gv(G) := argmax
y∈{1,··· ,K}

pv,y(G), (5.12)
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where pv,y(G) := P(fv(φ(G)) = y) represents the probability that the base GNN classifier

f returned the class y for node v under the smoothing distribution φ(G), and g(·) returns the

“majority votes” of the base classifier f(·).

Given a specific attack budget ρ and τ , our objective is to provide certification for the number

of target nodes in T that are guaranteed to maintain consistent robustness against any potential

attack. We assume that the attacker’s objective is to maximize the disruption of predictions

for the target nodes,
∑

v∈T I{gv(G′) 5= gv(G)}, through the allocation of inserting edges. By

modeling a worst-case attacker that leads to a maximum number of non-robust nodes, we can

certify that the remaining number of nodes is robust. Such that the collective certification can

be formulated as an optimization problem as follows:

min
G′∈Bρ,τ (G)

|T|−
∑

v∈T

I{gv(G′) 5= gv(G)}, (5.13)

s.t. |Ṽ| ≤ ρ, δ(ṽ) ≤ τ, ∀ṽ ∈ Ṽ .

Typically, when setting theT as a single node, the problem degrades to a sample-wise certificate.

5.2.2 Collective Certified Robustness

In this section, we derive the collective certificate for the smoothed classifier with any message-

passing GNNs as the base classifier. To ensure the clarity of the presentation, we begin by

providing an overview of our approach.

5.2.2.1 Overview

The derivation of the robustness certificate relies on a worst-case assumption: in the message-

passing process, if a node receives even a single message from any injected node, its prediction

will be altered. It is important to note that this assumption exaggerates the impact of the attack,

thereby validating the guarantee of the defense. Accordingly, we define message interference

for a node v as the event Ev that the node v receives at least one message from injected nodes

in message passing.
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The achievement of collective certification then constitutes the following crucial steps. First, we

derive an upper bound on the probability of the message interference event, denoted as p(Ev)

(Section. 5.2.2.2). Second, we establish the relation between the probability p(Ev) and the pre-

diction probability pv,y(G), which allows us to bound the change of pv,y(G) under the pertur-

bation range Bρ,τ (G) (Section. 5.2.2.2). Third, we derive the certifying condition for smoothed

classifier g based on the results from the previous sections (Section. 5.2.2.2). Finally, we formu-

late the collective certified robustness problem as an optimization problem (Section. 5.2.2.3).

5.2.2.2 Condition for Certified Robustness

Message interference event. We begin by introducing some necessary notations. We use P k
ṽv

to represent all the existing paths from an injected node ṽ ∈ Ṽ to a testing node v, where the

length or distance of these paths is smaller than k. Each path q in P k
ṽv consists of a series of

linked edges. To simplify notation, we define φe(A) as an equivalent representation of φe(G),

where φe(A)ij = 0 if the edge (i, j) does not exist after the sampling, and φe(A)ij = 1 if the

edge (i, j) remains. Similarly, we represent φn(G) as φn(A)i, where φn(A)i = 0 indicates the

deletion of node i, and φn(A)i = 1 denotes that the node remains unchanged. Then, we formally

define the event Ev as:

∃ṽ ∈ Ṽ : (∃q ∈ P k
ṽv : (∀ni ∈ q : φn(A

′)ni = 1) (5.14)

∧ (∀(i, j) ∈ q : φe(A
′)ij = 1)).

That is at least one path from a malicious node ṽ to the testing node v is effective (all edges and

nodes are kept in the smoothing). Below, our goal is to quantify the probability ofEv, so that we

can provide an estimation of the potential impact of injected nodes on the prediction probability.

However, directly estimating the event probability p(Ev) is difficult because we need to find out

all the possible paths P k
ṽv for each node. Similar to [32], we have an upper bound for p(Ev) ≤

p(Ev) by assuming the independence among the paths:

Lemma 8. Let A be the adjacency matrix of the perturbed graph with ρ injected nodes, and the

injected nodes are in the last ρ rows and columns. With smoothing pn > 0 and pe > 0, we have

120



5.2. Collective Certificate

the upper bound of p(Ev):

p(Ev) ≤ p(Ev) (5.15)

=1− p
||An:(n+ρ),v ||1
1 p

||A2
n:(n+ρ),v ||1

2 · · · p
||Ak

n:(n+ρ),v ||1
k ,

where pi := 1 − (p̄ep̄n)i, ∀i ∈ {1, 2, · · · , k}, and adjacency matrix A contains the injected

nodes encoded in the (n+ 1)th to (n+ ρ)th row, and || · ||1 is l1 norm.

Proof. (Sketch) Let p(Ē ṽ
v ) denote the probability that all paths are intercepted from an injected

node ṽ to node v in the case that of considering each path independently. We have p(Ē ṽ
v ) =

∏
q∈Pk

ṽv
(1 − (p̄ep̄n)|q|), where p̄e := 1 − pe, p̄n := 1 − pn and |q| ∈ {1, · · · , k} represent the

length of the path q ∈ P k
ṽv from ṽ to v. Furthermore, ||Ak

n:(n+ρ),v||1 quantifies the number of

paths with a length of k originating from any malicious node and reaching node v. Finally, by

considering multiple injected nodes, we have p(Ev) = 1−
∏

ṽ∈Ṽ p(Ē
ṽ
v ). See Appendix B.1 for

complete proof.

Bounding the change of prediction. Next, we first provide Lemma 9 to demonstrate that the

occurrence of the complement event of Ev, denoted as Ēv, is the condition for the consistent

prediction of base classifier f . Then, we prove that the change of prediction probability for the

smoothed classifier g is bounded by p(Ev):

Lemma 9. Given a testing node v ∈ G, perturbation range Bρ,τ (G), pn > 0 and pe > 0, we

have fv(φ(G)) = fv(φ(G′)), ∀G′ ∈ Bρ,τ (G) if event Ēv occurs:

∀ṽ ∈ Ṽ : (∀q ∈ P k
ṽv : (∃ni ∈ q : φn(A

′)ni = 0) (5.16)

∨ (∃(i, j) ∈ q : φe(A
′)ij = 0)).

Proof. For each path q ∈ P k
ṽv, the message from the injected node ṽ to the target node v is

intercepted if at least one of the edges or nodes along the path is deleted. Consequently, if all

the paths are intercepted as a result of the smoothing randomization φ(G′), the prediction for

the target node v remains unchanged.
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Now, we can establish a bound on the change in prediction probability of the smoothed classifier

g, which serves as a crucial step for deriving the certifying condition.

Theorem 10. Given a base GNN classifier f trained on a graph G and its smoothed classifier

g defined in (5.2), a testing node v ∈ G and a perturbation range Bρ,τ (G), let Ev be the event

defined in Eq. (5.14). The absolute change in predicted probability |pv,y(G) − pv,y(G′)| for

all perturbed graphs G′ ∈ Bρ,τ (G) is bounded by the probability of the event Ev: |pv,y(G) −

pv,y(G′)| ≤ p(Ev).

Proof. (Sketch) pv,y(G)−pv,y(G′) ≤ P(fv(φ(G)) = y∧Ev) = p(Ev) ·P(fv(φ(G)) = y|Ev) ≤

p(Ev). See Appendix B.1 for complete proof.

Certifying Condition. With the upper bound of the probability change pv,y(G) provided in

Theorem 10 and upper bound of p(Ev) provided in Lemma 8, we can derive the certifying

condition for smoothed classifier g under a given perturbation range:

Corollary 2. Given a base GNN classifier f trained on a graphG and its smoothed classifier g,

a testing node v ∈ G and a perturbation rangeBρ,τ (G), letEv be the event defined in Eq. (5.14).

We have gv(G′) = gv(G) for all perturbed graphs G′ ∈ Bρ,τ (G) if:

p(Ev) < [pv,y∗(G)−maxy %=y∗pv,y(G)]/2, (5.17)

where y∗ ∈ Y is the predicted class of gv(G).

Proof. With Theorem 10, we have gv(G′) = gv(G) if pv,y∗(G) − p(Ev) > maxy %=y∗pv,y(G) +

p(Ev), which is equivalent to p(Ev) < [pv,y∗(G)−maxy %=y∗pv,y(G)]/2.

Nevertheless, quantifying p(Ev) is still challenging due to the unknown paths P k
ṽv or the per-

turbed adjacency matrix. To tackle the challenge, we introduce the following collective certi-

fying framework that models the problem of certifying node injection perturbation as an opti-

mization problem. More importantly, we can certify a set of nodes at the same time to enhance

the certifying performance.
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5.2.2.3 Collective Certification as Optimization

With Corollary 2, we know that node v is not certifiably robust if

p(Ev) ≥ [pv,y∗(G)−maxy %=y∗pv,y(G)]/2.

Under a limited attack budget, the worst-case attacker can lead to a maximum number of non-

robust nodes among target nodes in T, which can be formulated as follows:

max
G′∈Bρ,τ (G)

M =
∑

v∈T

I{p(Ev) ≥ cv/2}, (5.18)

s.t. |Ṽ| ≤ ρ, δ(ṽ) ≤ τ, ∀ṽ ∈ Ṽ ,

where cv := pv,y∗(G)−maxy %=y∗pv,y(G), is the classification gap of smoothed classifier. To ob-

tain the certifiably robust node number among all testing nodes, the optimal objective valueM∗

of (5.18) can serve as an upper bound for non-robust nodes, and hence the remaining |T|−M∗

nodes are certified robust. Plugging in p(Ev)with (5.15), and taking the logarithm of the p(Ev),

we transformed the problem (5.18) to a binary integer polynomial-constrained programming

(We put the problem and formulation details in Appendix B.2).

Typically, for two-layer GNNs (k = 2), we formulate the problem into a binary integer quadratic

constrained linear programming problem (BQCLP). Let A0 be the original adjacency matrix

of the existing n nodes in the graph G, and A1 denote the adjacency matrix from injected ρ

malicious nodes to the existing nodes, and A2 be the adjacency matrix representing the internal

connection between the malicious nodes. Then the problem (B.3) becomes the BQCLP problem

as follows (See Appendix B.2 for detailed formulation):

max
A1,A2,m

M = t)m, (5.19)

s.t. p̃1A
)
1 1ρ + p̃2(A1A0 + A2A1)

)1ρ ≤ C ◦m,

A11n + A21ρ ≤ τ, A)
2 = A2,

A1 ∈ {0, 1}ρ×n,

A2 ∈ {0, 1}ρ×ρ,

m ∈ {0, 1}n,
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where t is a constant zero-one vector that encodes the position of the target node set T, m is a

vector that indicates whether the nodes are non-robust, p̃1 = log(p1) and p̃2 = log(p2) are two

negative constants, C ∈ Rn is a vector with negative constant elements log(1− cv
2 ), 1n denotes

all-ones vector with length n, ; represents matrix transposition, and ◦ denotes element-wise

multiplication.

5.2.3 Effective Optimization Methods

The BQCLP problem (5.19) is non-convex and known to be NP-hard. In this section, we in-

troduce two effective methods to relax problem (5.19) to a Linear Programming (LP) to solve

it efficiently. The first method (termed Collective-LP1) relies on standard techniques to avoid

quadratic terms; the second method (termed Collective-LP2) employs a novel customized re-

formulation that can significantly improve the solution quality and computational efficiency.

5.2.3.1 Standard Linear Relaxation (Collective-LP1)

To solve problem (5.19) efficiently, one common solution is to replace the quadratic terms in

the constraint with linear terms by introducing extra slack variables. We adopt the standard

technique [179] to address the quadratic terms in A2A1. Specifically, let A2(ij) denotes the

element of ith row and jth column in matrix A2 and A1(jv) denotes the element in matrix A1.

For each quadratic term A2(ij)A1(jv) (∀i ∈ {1, · · · , ρ}, ∀j ∈ {1, · · · , ρ}, ∀v ∈ {1, · · · , n}) in

A2A1, we can equivalently reformulate Qv(ij) := A2(ij)A1(jv) with corresponding constraints:

Qv(ij) ∈ B, Qv(ij) ≤ A2(ij), Qv(ij) ≤ A1(jv), and A2(ij) + A1(jv) − Qv(ij) ≤ 1. We further relax
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all the binary constraints to the box constraints [0, 1], leading to an LP as follows:

max
A1,A2,m,

Q1,Q2,··· ,Qn

M = t)m, (5.20)

s.t. p̃1A
)
1 1ρ + p̃2A

)
0 A

)
1 1ρ + p̃2O ≤ C ◦m,

A11n + A21ρ ≤ τ, A)
2 = A2,

Qv = (Qv(ij))ρ×ρ, v ∈ {1, 2, · · · , n},

O = [1)ρ Q11ρ, 1)ρ Q21ρ, · · · , 1)ρ Qn1ρ]),

Qv ≤ 1ρ[A1(:,v)]
), Qv ≤ A2, Qv ∈ [0, 1]ρ×ρ,

1ρ[A1(:,v)]
) + A2 −Qv ≤ 1,

A1 ∈ [0, 1]ρ×n, A2 ∈ [0, 1]ρ×ρ, m ∈ [0, 1]n.

The more detailed formulation of problem (5.20) is supplied in Appendix B.2. This transforma-

tion makes our collective robustness problem solvable in polynomial time.

Validity of relaxation for certification. It is important to note that the relaxed LP problem

always has a larger feasible region than the original BQCLP problem. As a result, the optimal

M̄∗ (i.e., the maximum number of non-robust nodes) of the relaxed problem is always greater

than the original problem. That is, the number of robust nodes (|T| − M̄∗) certified by the

relaxed problem is always smaller or equal to that obtained from the original problem, such that

the relaxation always yields sound verification.

Nevertheless, this technique results in introducing O(ρ2|T|) (extra) variables among the matrix

O. To improve efficiency, we next design a more efficient reformulation that only requires

O(ρ|T|) extra variables.

5.2.3.2 Customized Linear Relaxation (Collective-LP2)

To reduce the number of the extra variables, we notice that there is a vector in the quadratic

term A)
1 A

)
2 1ρ, and we can first combine the A)

2 1ρ to reduce the dimension. We define a vector

variable z := A)
2 1ρ to replace the term A)

2 1ρ in the problem (5.19). Then we can reformulate it
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as:

max
A1,z,m

M = t)m, (5.21)

s.t. p̃1A
)
1 1ρ + p̃2A

)
0 A

)
1 1ρ + p̃2A

)
1 z ≤ C ◦m,

A11n + z ≤ τ, A1 ∈ {0, 1}ρ×n,

z ∈ {0, 1, · · · ,min(ρ, τ)}ρ×1, m ∈ {0, 1}n.

To linearize the problem, we need to deal with the quadratic term A)
1 z. If a binary variable

x ∈ B, and a continuous variable z ∈ [0, u], then w := xz is equivalent to [179]: w ≤ ux,w ≤

z, ux + z − w ≤ u, 0 ≤ w. To apply it, we first relax the z to [0,min(τ, ρ)]. Assuming that

τ ≤ ρ, for each quadratic term A)
1(ij)zj (∀i ∈ {1, · · · , n}, ∀j ∈ {1, · · · , ρ}) in A)

1 z, we create a

substitution variableQ(ij) = A)
1(ij)zj with corresponding constraints: 0 ≤ Q(ij),Q(ij) ≤ τA)

1(ij),

Q(ij) ≤ zj , and τA)
1(ij) + zj − Q(ij) ≤ τ . We further relax all the binary constraints to [0, 1]

interval constraints. Then the problem (5.19) can be relaxed to an LP as follows:

max
A1,m,

Q∈Rn×ρ

M = t)m, (5.22)

s.t. p̃1A
)
1 1ρ + p̃2A

)
0 A

)
1 1ρ + p̃2Q1ρ ≤ C ◦m,

A11n + z ≤ τ, A1 ∈ [0, 1]ρ×n,

Q ≤ τA)
1 , Q ≤ 1nz),

τA)
1 + 1nz) −Q ≤ τ,

Q ∈ [0, τ ]n×ρ, z ∈ [0, τ ]ρ×1, m ∈ [0, 1]n.

We put the detailed formulation in Appendix B.2. Next, we analyze the complexity of prob-

lem (5.20) and (5.22).

5.2.3.3 Comparison of Computational Complexity

For problem (5.20), in the first constraints, the rows corresponding to the nodes that do not

belong to the target node set T will not affect the objectiveM . Although we define nmatrixQv

for the sake of convenience, only |T| of them are actually effective. For the node with ti = 0,

126



5.2. Collective Certificate

the value mi will not affect the objective M , such that we can always set mi = 0, and the first

constraint always holds. Hence, there are O(3ρ2|T|+ ρ2 + ρ+ |T|) effective linear constraints,

and O(ρ2|T|+ ρ2 + ρn+ |T|) effective variables.

For problem (5.22), similar to (5.20), only |T| rows of Q are actually effective. There are

O(3ρ|T| + ρ + |T|) effective linear constraints, and O(ρn + ρ|T| + |T|) effective variables.

Our well-designed formulation makes the collective problem scalable regarding the number of

injected nodes ρ or the target node number |T|. In the next section, we show that this improved

LP formulation is both more efficient and effective by experimental evaluation.

5.2.4 Experimental Evaluation

In this section, we conduct a comprehensive evaluation of our proposed collective certificate.

Given the absence of other collective baselines for graph injection attacks (GIA), we compare

our collective certification Collective-LP1 and Collective-LP2, with the existing Sample-wise

approach [131]. We present a detailed analysis of the experimental results, highlighting the

strengths and advantages of our collective certification methods.

5.2.4.1 Experimental Setup

Datasets and Base Model. We follow the literature [130, 131] on certified robustness and

evaluate our methods on two graph datasets: Cora-ML [180] and Citeseer [181]. The Cora-ML

dataset contains 2, 810 nodes, 7, 981 edges, 7 classes, and the Citeseer contains 2, 110 nodes,

3, 668 edges, 6 classes. We employ two representative message-passing GNNs, Graph Con-

volution Network (GCN) [4] and Graph Attention Network (GAT) [182], with a hidden layer

size of 64 as our base classifiers. We use 50 nodes per class for training and validation respec-

tively, while the remaining as testing nodes. We also train the base model with random noise

augmentation following [131].
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Threat Models and Certificate. We set the degree constraint per injected node as the average

degree of existing nodes, which are 6 = <5.68= and 4 = <3.48= respectively on Cora-ML

and Citeseer datasets. We evaluate our proposed collective certificate with various amounts of

injected nodes ρ ∈ {20, 50, 80, 100, 120, 140, 160}. Grid search is employed to find the suitable

smoothing parameters pe and pn from 0.5 to 0.9, respectively. We exclude those parameters

that lead to poor accuracy that are worse than the Multilayer Perceptron (MLP) model which

does not depend on graph structure. Following [59, 131], we employ Monte Carlo to estimate

the smoothed classifier with a sample size of N = 100, 000. We apply the Clopper-Pearson

confidence interval with Bonferroni correction to obtain the lower bound of pA and upper bound

of pB. We set the confidence level as α = 0.01. Due to the overwhelming computation cost

of the original collective certifying problem known as NP-hard, we solve our proposed relaxed

LP problems by default. All our collective certifying problem is solved using MOSEK [183]

through the CVXPY [184] interface.

EvaluationMetrics. Among the testing nodes that are correctly classified, we randomly select

100 nodes as the target node set T. We report the certified ratio on the target nodes set, which is

the ratio of nodes that are certifiably robust under a given threat model. We repeat 5 times with

different random selections and report the average results. Additionally, we evaluate the global

attack scenario in which the T is all the nodes in the graph in Appendix B.4.4.

5.2.4.2 Effectiveness of Collective Certified Robustness

In this section, we aim to verify the effectiveness of our proposed collective approach in en-

hancing the certified robustness performance.

Comparing Collective with Sample-wise. In Fig. 5.11 and Tab. 5.5, we exhibit the certified

ratio of the three certificates regarding various numbers of injected nodes ρ. With the same

smoothing parameter, both proposed collective certificates achieve a higher certifiable radius,

outperforming the sample-wise approach significantly when the ρ is large. For example, in the
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5.2. Collective Certificate

(a) Certified Ratio

(GCN)

(b) Certified Ratio (GCN) (c) Certified Ratio

(GAT)

(d) Certified Ratio (GAT)

Figure 5.11: Comparison of certified performance (More results with other parameters are

shown in Appendix B.4).

Citeseer dataset, when ρ = 140, our Collective-LP1 and Collective-LP2 have the certified ratios

of 73.0%, and 81.2%, while sample-wise can certify 0.0%nodes. Moreover, the improvement of

our collective certificate is even more significant in the global attack setting (Appendix B.4.4).

When the ρ is small, the LP collective robustness does not outperform the sample-wise robust-

ness. This can be attributed to the integrality gap of the relaxation technique utilized in the

LP formulation, which we further illustrated in Section. 5.2.4.3. Interestingly, this difference

becomes negligible in the case of a global attack, as shown in Appendix B.4.4. Nevertheless,

in practical scenarios, we can easily combine the sample-wise and collective certificates with

minimal effort to achieve stronger certified performance in both small and large attack budgets.

Since the sample-wise and collective models share the same smoothed model, we only need to

estimate the smoothing prediction once to avoid extra computation. By integrating both cer-

tificates, we can leverage their respective strengths and enhance the overall robustness of the

system.

A superior certifying scheme should not only possess a higher certified ratio but also a higher

clean accuracy that represents the initial performance of the model. We also evaluate the trade-

off between the certified ratio and the clean accuracy of the smoothed model in Fig. 5.12. As

we employ the same smoothed model, both the collective scheme and the sample-wise scheme

exhibit the same clean accuracy when they share identical smoothing parameters, while our

collective approach consistently achieves a higher certified ratio, particularly when ρ exceeds the

certifiable radius of the sample-wise approach. Finally, these results highlight the advantageous
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Chapter 5. Certified Robustness against Graph Injection Attacks

Table 5.5: Comparison of certified ratio between sample-wise and collective certifying schemes

under various parameters.

Cora-ML (τ = 6) ρ

parameters

(pe-pn)
methods 20 50 100 120 140

0.7-0.9

Sample-wise 1.000 0.000 0.000 0.000 0.000

Collective-LP1 0.920 0.768 0.452 0.316 0.178

Collective-LP2 0.926 0.836 0.686 0.624 0.564

0.9-0.8

Sample-wise 1.000 0.000 0.000 0.000 0.000

Collective-LP1 0.950 0.878 0.730 0.666 0.600

Collective-LP2 0.950 0.894 0.800 0.760 0.726

0.9-0.9

Sample-wise 1.000 1.000 1.000 0.000 0.000

Collective-LP1 0.978 0.948 0.900 0.880 0.862

Collective-LP2 0.978 0.948 0.900 0.880 0.862

Citeseer (τ = 4) 20 50 100 120 140

0.7-0.9

Sample-wise 1.000 0.990 0.000 0.000 0.000

Collective-LP1 0.950 0.846 0.640 0.546 0.452

Collective-LP2 0.950 0.892 0.796 0.756 0.718

0.8-0.7

Sample-wise 0.000 0.000 0.000 0.000 0.000

Collective-LP1 0.856 0.504 0.000 0.000 0.000

Collective-LP2 0.894 0.756 0.534 0.446 0.360

0.9-0.8

Sample-wise 1.000 0.000 0.000 0.000 0.000

Collective-LP1 0.970 0.920 0.820 0.775 0.730

Collective-LP2 0.970 0.930 0.862 0.840 0.812

trade-off achieved by our proposed collective approach in both smaller ρ and larger ρ.

Comparing two Collective Certificates. In comparing our two LP-based collective certifi-

cates, it is evident that our customized relaxation (Collective-LP2) consistently achieves higher

or equivalent certified ratios compared to the standard technique (Collective-LP1). For instance,

in the Cora-ML dataset, when pe = 0.7, pn = 0.9, and ρ = 140, Collective-LP2 improves the

certified ratio by 216%compared to Collective-LP1 (Tab. 5.5). Furthermore, with the same clean
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(a) smaller ρ (GCN) (b) smaller ρ (GCN) (c) larger ρ (GCN) (d) larger ρ (GCN)

(e) larger ρ (GAT) (f) larger ρ (GAT)

Figure 5.12: Trade-off between clean accuracy and certified ratio (More results with other ρ are

shown in Appendix B.4).

accuracy, Collective-LP2 is always superior to Collective-LP1 in certified ratios (Fig. 5.12).

(a) Runtime (b) Runtime

Figure 5.13: Runtime comparison of LP collective models.

In Fig. 5.13, we present a comparison of the runtime between our two LP-based collective

certificates. It is evident that Collective-LP2 exhibits a significantly lower runtime compared

to Collective-LP1, particularly as ρ increases. Remarkably, even for a larger value of ρ like

ρ = 140, our Collective-LP2 can be solved in approximately 1 minute. This indicates the prac-

ticality and efficiency of our proposed method, making it feasible for real-world scenarios with

larger attack budgets.
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(a) Integrality Gap (b) Integrality Gap

Figure 5.14: Certified ratio comparison between optimizing original BQCLP problem and re-

laxed LP problem.

5.2.4.3 Effectiveness of Linear Relaxation

In this section, we investigate the impact of our LP relaxation technique on the certified per-

formance of our collective certification method. Specifically, we compare the certified ratios

obtained from both the original integer problem (BQCLP) and the LP problem (Collective-LP2).

Fig. 5.14 provides a graphical representation of these results. Due to the computational overhead

associated with solving the integer problem, we limit our analysis to a smaller attack budget,

ρ ≤ 12. We observe that the certified ratio of the integer problem remains relatively stable as ρ

increases. However, the certified ratio of Collective-LP2 undergoes a decline of approximately

5%. This decrease in certified performance is attributed to the sacrifice made in the relaxation

process of the LP formulation. It also partially explains why our approach may exhibit a weaker

certified ratio compared to the sample-wise approach when ρ is small.

5.2.5 Limitations and Future Works

Our collective certificate is obtained through the solution of a relaxed Linear Programming (LP)

problem, which effectively reduces the computational complexity to linear time. However, this

relaxation does come at a cost, as it introduces an integrality gap that compromises the certified

performance. Consequently, in situations where the attack budget ρ is small and the sample-wise

certificate proves effective, the collective certificate may not yield superior results.

Nevertheless, in practical scenarios, we can easily combine the sample-wise and collective cer-
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tificates with minimal effort to achieve stronger certified performance across a range of attack

budgets, whether small or large. It is worth noting that since both the sample-wise and collec-

tive models share the same smoothed model, we only need to estimate the smoothing prediction

once, avoiding computational overhead. By integrating both certificates, we can leverage their

respective strengths and enhance the overall robustness of the system.

In future research, we plan to explore the development of tighter relaxations, such as semi-

definite programming (SDP), to better handle the quadratic constraints. This could potentially

yield improved certified performance and further enhance the robustness of our approach. Fur-

thermore, we plan to extend the relaxation technique to accommodate polynomial constraints for

deeper Graph Neural Networks (GNNs) where k > 2. This extension will allow us to address

more complex scenarios and further strengthen the applicability of our approach in real-world

settings.

5.2.6 Conclusion

In this chapter, we present the first collective robustness certificate specifically designed for

defending against graph injection attacks (GIAs), which encompass edge addition perturbations

known to be more challenging to certify than edge deletions. Our collective certificate improves

the certified performance by assuming that the attacker’s objective is to disrupt the predictions of

as many target nodes as possible, using a shared single graph instead of different graphs for each

node. We model the collective certifying problem by upper-bounding the number of non-robust

nodes under a worst-case attacker, such that the remaining nodes are guaranteed to be robust.

However, it yields a binary quadratic constrained programming that is NP-hard. To address

this, we propose novel relaxations to formulate the problem into linear programming that can

be efficiently solved. Extensive experimental results demonstrate that our proposed collective

certificate achieves significantly higher certified ratios and larger certifiable radii compared to

existing approaches.
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Chapter 6

Conclusion

This thesis delves into the vulnerability and robustness of graph machine-learning models, a

crucial aspect of artificial intelligence (AI) security and trustworthiness. Our work focuses on

three key areas: adversarial attacks, empirical defenses, and certifiable defenses.

Firstly, we conducted an in-depth exploration of adversarial attacks to assess the vulnerabil-

ity of current models. Specifically, we investigated Random-Walk-based Anomaly Detection

(RWAD), a widely used anomaly detection tool. We provided a theoretical understanding of

these attacks, including proof of NP-hardness. We introduced adversarial poisoning attacks on

RWAD named coupled-space attacks, considering the construction of a graph on top of the

feature space. By proposing graph-space attacks and leveraging them to guide feature-space at-

tacks, we bridged the gap between these two attack types. Our experiments on multiple datasets,

including both directly and indirectly accessible graphs, demonstrated the effectiveness of our

proposed graph-space attack in guiding node selection and optimizing attack loss for feature-

space attacks. This study provides a foundation for the vulnerability study of a feature-derived

graph-based model.

Secondly, we uncovered vulnerabilities in a state-of-the-art robust recommender system (RS),

named GraphRfi, by developing an effective attack approach called MetaC attack. We en-

hanced the detection component of the system, enabling dynamic adjustment of the importance
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of newly injected fake users, resulting in a robust recommender system termed PDR system.

Additionally, we demonstrated that our attack and defense methods can be applied to matrix

factorization-based recommender systems as well. This research showcased the effectiveness

of integrating anomaly detection into learning systems to enhance their empirical robustness.

Thirdly, we investigated the certified robustness of graph-based classifiers against graph injec-

tion attacks (GIAs). We proposed a novel node-aware bi-smoothing scheme that provides cer-

tificates specifically designed to defend against GIAs under both evasion and poisoning threat

models. Furthermore, we introduced a variant called node-aware-exclude to enhance certified

performance against poisoning attacks. Through extensive experiments on the GCN node clas-

sifier and SAR recommender system, we evaluated the certified robustness of our model against

GIAs. Our certifiedmodels outperformed existing approaches, providing comprehensive bench-

marks for defending against GIAs. We also demonstrated the effectiveness of our model as an

empirical defense method against a real GIA, comparing it with four common defense models.

The results showcased the significant certified robustness achieved by our proposed framework,

emphasizing its importance in securing graph node classification tasks.

Lastly, we presented the first collective robustness certificate specifically designed for defend-

ing against GIAs. Our collective certificate improved certified performance by assuming that

the attacker aims to disrupt as many target nodes as possible, using a shared single graph instead

of multiple graphs for each node. However, the collective certification is challenging. To solve

the NP-hard binary quadratic constrained programming problem, we proposed novel relaxations

that transformed the problem into linear programming, enabling efficient solutions. Extensive

experimental results demonstrated the superiority of our collective certificate, achieving signif-

icantly higher certified ratios and larger certifiable radii compared to existing approaches.

In summary, this thesis has made significant contributions to understanding and addressing the

vulnerability and robustness of graph machine-learning models. Our findings provide valuable

insights into the security and trustworthiness of AI systems, paving the way for future research

and advancements in this critical field.
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Chapter 7

Suggestions for Future Research

Future research could explore several promising directions to further enhance the security and

robustness of emerging and more advanced graph machine-learning models.

7.1 Robustness of Graph Foundation Models

In recent years, the integration of Graph Neural Networks (GNNs) with large-scale pretraining

techniques has catalyzed the rapid emergence of Graph Foundation Models (GFMs) [185, 186,

187], establishing them as a central research focus in graph machine learning. GFMs enable

efficient cross-domain and cross-task learning by leveraging pre-trained graph representations,

significantly enhancing the versatility and scalability of graph learning systems. However, the

widespread adoption of GFMs also introduces new security challenges. Their reliance on large-

scale data and transfer learning mechanisms makes GFMs particularly vulnerable to adversarial

attacks, such as data poisoning during pretraining or targeted perturbations that degrade perfor-

mance on downstream tasks. Future work should focus on systematically analyzing the vulner-

abilities of GFMs, designing robust pretraining pipelines, and developing defense mechanisms

that ensure security across diverse applications and domains. Additionally, extending certified

robustness techniques to GFMs could provide theoretical guarantees for their performance under

adversarial conditions, paving the way for more secure and reliable graph learning frameworks.

7.2 Robustness in Cross-Domain and Multi-Modal Graphs
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In the era of large language models (LLMs), graphs have the potential to further enhance their

performance [188, 189]. Multi-modal graphs, which combine information from multiple data

sources (e.g., text, images, and graphs), are gaining popularity in domains like recommendation

systems, social media analysis, and general question answering. For example, Graph Retrieval-

Augmented Generation (GraphRAG) [190] combines knowledge graphs and textual data to gen-

erate answers and reasoning. GraphRAG systems are highly dependent on the interplay between

structured graph data and unstructured text, making them susceptible to multi-modal adversarial

attacks. For instance, attackers could manipulate the knowledge graph structure (e.g., by inject-

ing incorrect nodes or edges) or tamper with textual inputs to mislead the generated answers

and reasoning processes [191]. Future research should focus on designing robust GraphRAG

frameworks that can defend against such multi-modal attacks by jointly modeling adversarial

robustness across both modalities. This includes developing defense mechanisms that account

for the dependencies between graph structures and text data, such as adversarial training tech-

niques that simulate attacks on bothmodalities simultaneously. Furthermore, extending certified

robustness techniques to GraphRAG systems could provide theoretical guarantees for their pre-

dictions, ensuring reliable reasoning even under adversarial conditions. Benchmarking datasets

and evaluation protocols tailored to multi-modal systems like Graph RAG are also needed to

systematically test and improve their robustness in real-world scenarios.

7.3 More Practical Certified Robustness

Future work on improving certified robustness for graph learning models should prioritize ad-

dressing the critical challenges of efficiency, scalability, and adaptability to modern graph learn-

ing paradigms, such as graph foundation models (GFMs). Existing methods, such as those based

on randomized smoothing, often require thousands of predictions to certify a model’s robust-

ness, resulting in significant computational overhead [59]. To make certified robustness more

practical for large-scale and real-time applications, future research should explore more efficient

algorithms that reduce the number of required predictions while maintaining the reliability of

the certification guarantees. Additionally, with the rapid growth of GFMs, the exploration of

certified robustness for GFMs represents a critical and largely unexplored area. Future research

should focus on designing certification techniques specifically tailored to GFMs, considering
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their unique properties, such as zero-shot transferability, few-shot adaptation across tasks, and

reliance on diverse, large-scale pretraining data. Ensuring robust and certifiable predictions for

GFMs across a wide range of tasks and domains will be key to advancing secure and reliable

graph learning in this new era of graph foundation models.
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Appendix A

Appendix of Node-aware Smoothing

A.1 Theoretical Proofs

Theorem 5. (Restate) Let f : G −→ {1, · · · , C}n be any graph classifier, g be its smoothed

classifier defined in (5.2) with φ(G) = (φe(G),φn(G)), v ∈ G be any query node, Bρ,τ (G)

be the node injection perturbation set defined in (5.1). Suppose yA, yB ∈ {1, · · · , C} and

pA, pB ∈ [0, 1]. Then we have gv(G′) = gv(G), ∀G′ ∈ Bρ,τ (G), if:

µρ,τ := p̃(pA − pB + 1)− 1 > 0,

where p̃ := (pn + (1− pn)(pe + pn − pepn)τ )ρ.

Proof. To solve the certifying problem defined in (5.3), we need to calculate the likelihood ratio

of φ(A) and φ(A′). Let Λ(Z) = P(φ(A)=Z)
P(φ(A′)=Z) be the likelihood ratio, where Z ∈ G is any possible

graph produced by φ(A) or φ(A′). However, the difficulty lies in that the φ(A) and φ(A′) are of

different dimensions, which makes the probability hard to obtain. To tackle the challenge, we

propose a straightforward strategy by pre-injecting ρ isolated nodes in the clean graph A, such

that the adjacency matrixA has the same dimension asA′. Furthermore, in order to maintain the

dimension of φ(A), we construct an equivalent setting for node deletion smoothing. If a node

v is deleted in the smoothing φ(·), we delete all the edges incident to that node and keep the
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isolated node v, which is equivalent to setting the vth raw Av: to zeros. Note that the prediction

for a graph will not be affected by the isolated nodes since it does not provide any information

to the existing nodes. Thus, in this setting, all the graphs involved in the computation are in the

same dimension.

According to [59], the likelihood ratio Λ is only depends on the bits C := {(i, j)|Aij 5= A′
ij}

which is the set of index that Aij 5= A′
ij . Under node injection perturbation, the A′ and A are

only different among the submatrix An:(n+ρ),1:(n+ρ) (the raws of injected nodes), and they have

exactly ρ ·τ different bits. That is |C| = ρ ·τ . Since the smoothing randomization φwill not add

any edge, bits in φ(A)n:(n+ρ),1:(n+ρ) are always zeros. So that Λ(Z) = P(φ(A)=Z)
P(φ(A′)=Z) > 0 if and only

if all injected edges in A′
n:(n+ρ),1:(n+ρ) are set to zeros by φ(A′), and we define such a region as

R1 = {Z|Zn:(n+ρ),1:(n+ρ) = 0}, while the other region as R2 = {Z|Zn:(n+ρ),1:(n+ρ) 5= 0}. We

have:

Λ(Z) =
P(φ(A) = Z)

P(φ(A′) = Z)
=





1/p̃, if Z ∈ R1,

0, if Z ∈ R2.
(A.1)

The meaning of the regionR1 = {Z|Zn:(n+ρ),1:(n+ρ) = 0} is to set all the injected nodes isolated

from others. If φ(A′) set an injected node ṽ isolated, the φ(A′) deleted all the incident edges to

node ṽ, or φ(A′) delete the node ṽ. For an injected node, The probability of deleting the node

itself in node deletion smoothing is pn. If it is not deleted, each of the edges has a probability of

pn + (1 − pn)pe = pn + pe − pnpe being deleted. Because the edge connects to other existing

nodes, deleting other nodes also deletes the edge connects to the node (Figure 5.2, bottom). If an

edge is not deleted by this, it has a probability of pe being deleted in edge deletion smoothing.

Since there are ρ injected nodes, and τ injected edges for each injected node, the probability

of φ(A′) ∈ R1 is p̃ = (pn + (1 − pn)(pe + pn − pepn)τ )ρ. Specifically, the corresponding

probabilities for the two constant likelihood ratio regions are:




P(φ(A) ∈ R1) = 1,

P(φ(A) ∈ R2) = 0,





P(φ(A′) ∈ R1) = p̃,

P(φ(A′) ∈ R2) = 1− p̃.
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The worst-case classifier defined in problem (5.3) will assign class yA in decreasing order

(Λ(Z ∈ R1) > Λ(Z ∈ R2)) of the constant likelihood regions until P(fv(φ(A)) = yA) = pA,

and assign class yB in increasing order (Λ(Z ∈ R2) < Λ(Z ∈ R1)) of the constant likelihood

regions until P(fv(φ(A)) = yB) = pB. Therefore, the worst-case classifier is:

P(fv(Z) = yA) =





pA, Z ∈ R1,

0, Z ∈ R2,

P(fv(Z) = yB) =





pB, Z ∈ R1,

1, Z ∈ R2.

Under this classifier, we can verify that:

P(fv(φ(A)) = yA)

= P(φ(A) = Z ∈ R1)P(fv(Z) = yA|Z ∈ R1)

+ P(φ(A) = Z ∈ R2)P(fv(Z) = yA|Z ∈ R2)

= 1 · pA + 0 · 0 = pA.

P(fv(φ(A)) = yB)

= P(φ(A) = Z ∈ R1)P(fv(Z) = yB|Z ∈ R1)

+ P(φ(A) = Z ∈ R2)P(fv(Z) = yB|Z ∈ R2)

= 1 · pB + 0 · 1 = pB.

With this worst-case classifier, we can obtain the worst-case classification margin under φ(A′),

which we denoted as µρ,τ :

P(fv(φ(A′)) = yA)

= P(φ(A′) = Z ∈ R1)P(fv(Z) = yA|Z ∈ R1)

+ P(φ(A′) = Z ∈ R2)P(fv(Z) = yA|Z ∈ R2)

= p̃ · pA + (1− p̃) · 0

= p̃ pA.
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P(fv(φ(A′)) = yB)

= P(φ(A′) = Z ∈ R1)P(fv(Z) = yB|Z ∈ R1)

+ P(φ(A′) = Z ∈ R2)P(fv(Z) = yB|Z ∈ R2)

= p̃ pB + 1− p̃.

µρ,τ = P(fv(φ(A′)) = yA)− P(fv(φ(A′)) = yB)

= p̃ pA − (p̃ pB + 1− p̃)

= p̃(pA − pB + 1)− 1.

If µρ,τ > 0, we can certify the prediction of gv(A′) = yA. Otherwise, we cannot certify the

prediction of gv(A′).

Theorem 6. (Restate) Let f : G −→ {1, · · · , C}n be any graph classifier, g be its smoothed

classifier defined in (5.5) with φ(G) = (φe(G),φn(G)), v ∈ G be any query node, Bρ,τ (G)

be the node injection perturbation set defined in (5.1), and the attack edges added to a node v

should not exceed its original degree d(v). Suppose yA, yB ∈ {1, · · · , C} and pA, pB ∈ [0, 1].

Then we have gv(G′) = gv(G), ∀G′ ∈ Bρ,τ (G), if:

µρ,τ := p̃(pA −
(1− p′0)pB

(1− p0)
+ 1− p′0)− (1− p′0) > 0,

where p̃ := (pn + (1 − pn)(pe + pn − pepn)τ )ρ, d(v) denotes the degree of node v, and p0 :=

pn + (1− pn)(pe + pn − pepn)d(v) is the probability that the node v is deleted by the smoothing

φ(G), p′0 := pn + (1− pn)(pe + pn − pepn)2d(v).

Proof. Let Z be any possible graph from φ(G) or φ(G′), v > Z denote v ∈ Z is not isolated,

we now need to compute the likelihood ratio with v > φ(G):

Λ(Z) =
P(φ(A) = Z, v > Z)

P(φ(A′) = Z, v > Z)
(A.2)

=






1−p0
p̃(1−p′0)

, if Z ∈ R1 (Zn:(n+ρ),1:(n+ρ) = 0),

0, if Z ∈ R2 (Zn:(n+ρ),1:(n+ρ) 5= 0).

Specifically, the corresponding probabilities for the two constant likelihood ratio regions are:
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



P(φ(A) ∈ R1, v > φ(A)) = 1− p0,

P(φ(A) ∈ R2, v > φ(A)) = 0,




P(φ(A′) ∈ R1, v > φ(A′)) = p̃(1− p′0),

P(φ(A′) ∈ R2, v > φ(A′)) = (1− p̃)(1− p′0),

where p0 := pn+(1− pn)(pe+ pn− pepn)d(v), p′0 = pn+(1− pn)(pe+ pn− pepn)d(v
′) denotes

the probability that the node v is deleted by the smoothing φ(G) and φ(G′) respectively; d(v),

d(v′) denotes the degree of node v inG andG′, respectively. Similarly, the worst-case classifier

is:

P(fv(Z) = yA) =






pA
(1−p0)

, Z ∈ R1, v > Z,

0, Z ∈ R2, v > Z,

P(fv(Z) = yB) =






pB
(1−p0)

, Z ∈ R1, v > Z,

1, Z ∈ R2, v > Z.

With this worst-case classifier, we can obtain the worst-case classification margin under φ(A′),

which we denoted as µρ,τ :

P(fv(φ(A′)) = yA)

= P(fv(φ(A′)) = yA, v > Z)

= P(φ(A′) = Z ∈ R1, v > Z)

× P(fv(Z) = yA|Z ∈ R1, v > Z)

+ P(φ(A′) = Z ∈ R2, v > Z)

× P(fv(Z) = yA|Z ∈ R2, v > Z)

= p̃(1− p′0) ·
pA

(1− p0)

≥ p̃ · pA,

where the inequality is due to (1−p′0)
(1−p0)

≥ 1, because the node degree of v in the perturbed graph

must be larger than in the clean graph: d(v′) ≥ d(v). With the assumption that d(v′) ≤ 2d(v),
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we have p′0 > p′0 := pn + (1− pn)(pe + pn − pepn)2d(v), and (1− p′0) ≤ (1− p′0):

P(fv(φ(A′)) = yB)

= P(φ(A′) = Z ∈ R1, v > Z)

× P(fv(Z) = yB|Z ∈ R1, v > Z)

+ P(φ(A′) = Z ∈ R2, v > Z)

× P(fv(Z) = yB|Z ∈ R2, v > Z)

= p̃(1− p′0) ·
pB

(1− p0)
+ (1− p̃)(1− p′0)

≤ p̃ · pB ·
(1− p′0)

(1− p0)
+ (1− p̃)(1− p′0),

where the inequality is due to (1 − p′0) ≤ (1 − p′0). Then, we can obtain a lower bound of the

worst-case classification margin under φ(A′):

P(fv(φ(A′)) = yA)− P(fv(φ(A′)) = yB)

≥ p̃ · pA − [p̃ · pB · (1− pn)

(1− p0)
+ (1− p̃)(1− p′0)]

= p̃(pA − pB ·
(1− p′0)

(1− p0)
)− 1 + p′0 + p̃− p̃p′0

= p̃(pA −
(1− p′0)pB

(1− p0)
+ 1− p′0)− (1− p′0) := µρ,τ .

If µρ,τ > 0, we can certify the prediction of gv(A′) = yA. Otherwise, we cannot certify the

prediction of gv(A′).

Theorem 7. (Restate) LetFu(G) be any base recommender system trained onG and recommend

K ′ items to the user u, gu(G) be its smoothed recommender defined in (5.7), u ∈ G be any query

user,Bρ,τ (G) be the node injection perturbation set defined in (5.1), and the attack edges added

to a node v should not exceed its original degree d(v). Then, we have at least r recommended

items after poisoning are overlapped with ground truth items Iu: |gu(G′) ∩ Iu| ≥ r, ∀G′ ∈

Bρ,τ (G) if:

p̂ pr −min
Hc

(pHc
+K ′(1− p̂)(1− p0))/c > 0,

where p̂ := (pn + (1− pn)pτe)
ρ, pr is the lower bound of the rth largest item probability among

{pu,i|i ∈ Iu}, Hc denote any subset of the top-(K − r + 1) largest items among I \ Iu with
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size c, pHc
:=

∑
j∈Hc

pu,j is the sum of probability upper bounds for c items in Hc, p0 :=

pn +(1− pn)(pe)d(u) is the probability that the user u is deleted by the smoothing φ(G), d(u) is

the number of user ratings in training set.

Proof. For a user-item interaction graph G, we represent it as a user-item interaction matrix

denoted by A, where each row represents a user and each column represents an item, and the

elementsAui = 1 if the interaction exists between user u and item i, otherwiseAui = 0. If there

are n users andm items in the training set, we have the shape ofA of n×m. Let I denote all the

items in the training set, we have |I| = m. Let Z be any possible matrix from φ(A) or φ(A′),

u > Z denote u ∈ Z has at least one rating, we have the likelihood ratio with u > φ(G):

Λ(Z) =
P(φ(A) = Z, u > Z)

P(φ(A′) = Z, u > Z)
(A.3)

=





1/p̂, if Z ∈ R1 (Zn:(n+ρ),1:m = 0),

0, if Z ∈ R2 (Zn:(n+ρ)),1:m 5= 0).

Specifically, the corresponding probabilities for the two constant likelihood ratio regions are:





P(φ(A) ∈ R1, u > φ(A)) = 1− p0,

P(φ(A) ∈ R2, u > φ(A)) = 0,




P(φ(A′) ∈ R1, u > φ(A′)) = p̂(1− p0),

P(φ(A′) ∈ R2, u > φ(A′)) = (1− p̂)(1− p0),

where p0 := pn + (1 − pn)(pe)d(u) denotes the probability that the node u is deleted by the

smoothing φ(G), and d(u) denotes the degree (number of rating) of user u in G. Note that the

newly injected user will not increase the degree of the existing user, the φ(A′), so that P(u >

φ(A′)) is also (1−p0). Similarly, if we know the lower bound of pu,i := P(i ∈ Fu(φ(G))), then

the worst-case classifier returns the smallest p′u,i := P(i ∈ Fu(φ(G′))) is:

P(i ∈ Fu(Z)) =






pu,i

(1−p0)
, Z ∈ R1, u > Z,

0, Z ∈ R2, u > Z,
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On the contrary, if we know the upper bound of pu,j := P(j ∈ Fu(φ(G))), then the worst-case

classifier returns the largest p′u,j := P(j ∈ Fu(φ(G′))) is:

P(j ∈ Fu(Z)) =






pu,j
(1−p0)

, Z ∈ R1, u > Z,

1, Z ∈ R2, u > Z.

For the rth items under the clean graph, we denote its lower bound of probability as pr, and then

we have the bound for its probability under the poisoned graph: p′r ≥ p̂ pr. We have at least

r recommended items overlapped with ground truth items Iu if the rth largest item probability

among items Iu is larger than the (K − r + 1)th largest items probability among I \ Iu under

the poisoned graph. We denote the top (K − r + 1) largest items by their probability among

I \ Iu as a set Ikr. Following [2], instead of considering the (K − r + 1)th item (the smallest

one in Ikr), jointly considering multiple itemsHc usually leads to a smaller upper bound, where

Hc is the subset of Ikr with size c. For the c items, we know its summation of upper bound:

pHc
:=

∑
j∈Hc

pu,j . Because each of the system recommender K ′ items, we have pHc
≤ K ′

(i.e., pHc
K′ ≤ 1). Then we have the upper bound for p′Hc

:

p′Hc
=

∑

j∈Hc

p′u,j ≤ p̂ · pHc
+K ′(1− p̂)(1− p0). (A.4)

Then, because the minimum value of a set is always smaller than the average value, we have:

min
j∈Ikr

p′u,j ≤ min
j∈Hc

p′u,j ≤
∑

j∈Hc
p′u,j

c

≤ (p̂ · pHc
+K ′(1− p̂)(1− p0))/c. (A.5)

Finally, we have at least r recommended items overlapped with ground truth items Iu if: p̂ pr −

minHc(pHc
+K ′(1− p̂)(1− p0))/c > 0.

A.2 Other Experimental Results

In this section, we display the supplemental experimental results. To ensure a broad evaluation

and to be more consistent with related work [59], we extend our evaluation on base model Graph
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(a) Sparsity-

aware[59]

(b) Sparsity-aware[59] (c) Node-aware-

exclude

(d) Node-aware-exclude

Figure A.1: Certified accuracy under evasion perturbation with base model GCN (left) and GAT

(right).

Attention Network (GAT) [182] and PubMed [181] dataset. The results shown in Figure. A.1

are consistent with those in the main thesis.

(a) Evasion

C

(b) Evasion (c) Poisoning (include) (d) Poisoning (include)

(e) Poisoning (exclude) (f) Poisoning (exclude)

Figure A.2: Clean accuracy of node-aware bi-smoothing classifiers with various parameters

under evasion and poisoning setting.

Figure. A.2 shows the clean accuracy of the smoothed classifier under various smoothing pa-

rameters pe and pn. For the evasion attack, theMulti-layer Perceptron (MLP) will never affected

because it does not rely on the graph structure for prediction. As a result, a graph model with a
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lower accuracy is not meaningful. In the Cora-ML dataset, the clean accuracy of our smoothed

classifiers is significantly higher than 0.691, which are all effective. However, due to the smaller

average degree of the Citeseer dataset, our smoothed classifiers might have a lower clean accu-

racy than MLP. We exclude the parameters (shadow) that lead to lower accuracy than the MLP

model, which is 0.691 on Cora-ML and 0.660 on the Citeseer dataset.

Note that the MLP model is also subject to poisoning GIA since the malicious node feature can

be crafted arbitrarily (all the results are effective). Notably, our smoothedmodel in the poisoning

setting improves the clean accuracy.
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Appendix of Collective Certified

Robustness

B.1 Theorectical Proofs

Lemma 8. (Restate) LetA be the adjacency matrix of the perturbed graph with ρ injected nodes,

and the injected nodes are in the last ρ rows and columns. With smoothing pn > 0 and pe > 0,

we have the upper bound of p(Ev):

p(Ev) ≤ p(Ev) (B.1)

=1− p
||An:(n+ρ),v ||1
1 p

||A2
n:(n+ρ),v ||1

2 · · · p
||Ak

n:(n+ρ),v ||1
k ,

where pi := 1 − (p̄ep̄n)i, ∀i ∈ {1, 2, · · · , k}, and adjacency matrix A contains the injected

nodes encoded in the (n+ 1)th to (n+ ρ)th row, and || · ||1 is l1 norm.

Proof. According to [32], we have an upper bound for p(Ev) ≤ p(Ev) by assuming the inde-

pendence among the paths. Let p(Ē ṽ
v ) denote the probability that all paths are intercepted from

an injected node ṽ to node v in the case that of considering each path independently. We have

p(Ē ṽ
v ) =

∏
q∈Pk

ṽv
(1−(p̄ep̄n)|q|), where p̄e := 1−pe, p̄n := 1−pn and |q| ∈ {1, · · · , k} represent

the length of the path q ∈ P k
ṽv from ṽ to v. (p̄ep̄n)|q| is the probability that all edges and all nodes
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in the path q are not deleted, 1 − (p̄ep̄n)|q| is the probability that at least one of edges or one of

nodes are deleted, such that the path q is intercepted. Then, by considering multiple injected

nodes, we have p(Ev) = 1−
∏

ṽ∈Ṽ p(Ē
ṽ
v ). Finally, we have the p(Ev) as follows:

p(Ev) (B.2)

= 1−
∏

ṽ∈Ṽ

p(Ē ṽ
v )

= 1−
∏

ṽ∈Ṽ

{
∏

q∈Pk
ṽv

(1− (p̄ep̄n)
|q|)}

= 1−
∏

ṽ∈Ṽ

{(1− p̄ep̄n)
Aṽv(1− (p̄ep̄n)

2)A
2
ṽv · · · (1− (p̄ep̄n)

k)A
k
ṽv}

= 1− p
||An:(n+ρ),v ||1
1 p

||A2
n:(n+ρ),v ||1

2 · · · p
||Ak

n:(n+ρ),v ||1
k ,

where pi := 1 − (p̄ep̄n)i. In particular, the constant pk denotes the probability that a path

with a length of k is intercepted. According to graph theory, Ak
ṽv is the number of paths from

node ṽ to node v with distance/length/steps of exactly k in the graph. Let An:(n+ρ),v denote the

slicing of matrix A, taking the vth column and the rows from (n + 1)th to (n + ρ)th. Then

||Ak
n:(n+ρ),v||1 quantifies the number of paths with a length of k originating from any malicious

node and reaching node v.

Theorem 10. (Restate) Given a base GNN classifier f trained on a graph G and its smoothed

classifier g defined in (5.2), a testing node v ∈ G and a perturbation range Bρ,τ (G), let Ev be

the event defined in Eq. (5.14). The absolute change in predicted probability |pv,y(G)−pv,y(G′)|

for all perturbed graphsG′ ∈ Bρ,τ (G) is bounded by the probability of the eventEv: |pv,y(G)−

pv,y(G′)| ≤ p(Ev).

Proof. By the law of total probability, we have

P(fv(φ(G′)) = y)

= P(fv(φ(G′)) = y ∧ Ev) + P(fv(φ(G′)) = y ∧ Ēv).

Note that, we define the event Ev based on the sampling of perturbed graph φ(G′). However,

the clean graphG is smaller thanG′, and the intersection/overlap graph of them isG∩G′ = G.
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Subtly, we can still use the event Ev defined on φ(G′) to divide the sample space of φ(G) by

regarding the model fv(φ(G)) only take part of the φ(G′) as input, which is the intersected part

ofG: φ(G′)∩G, and the result does not relate to the part that beyondG (i.e., the injected nodes).

Such that, we also have

P(fv(φ(G)) = y)

= P(fv(φ(G)) = y ∧ Ev) + P(fv(φ(G)) = y ∧ Ēv).

Due to the fact that the injected node does not have any message passing to v would not affect

the pv,y(G), we have P(fv(φ(G′)) = y|Ēv) = P(fv(φ(G)) = y|Ēv), so that P(fv(φ(G)) =

y ∧ Ēv) = P(fv(φ(G′)) = y ∧ Ēv). Following [32], we have similar deduction as follows:

pv,y(G)− pv,y(G
′)

= P(fv(φ(G)) = y ∧ Ev) + P(fv(φ(G)) = y ∧ Ēv)

− P(fv(φ(G′)) = y ∧ Ev)− P(fv(φ(G′)) = y ∧ Ēv)

= P(fv(φ(G)) = y ∧ Ev)− P(fv(φ(G′)) = y ∧ Ev)

≤ P(fv(φ(G)) = y ∧ Ev)

= p(Ev) · P(fv(φ(G)) = y|Ev)

≤ p(Ev).
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B.2 Details of Optimization Formulation

B.2.1 Formulating problem (5.18) as polynomial constrained program-

ming.

For problem (5.18), we plug in p(Ev) with (5.15), and then we have the following optimization

problem:

max
An:,:,m

M =
∑

v∈T

mv, (B.3)

s.t. 2 p(Ev) ≥ cv ·mv, ∀v ∈ T,

p(Ev) = 1− (p
||An:(n+ρ),v ||1
1 p

||A2
n:(n+ρ),v ||1

2 · · · p
||Ak

n:(n+ρ),v ||1
k ),

||Aṽ:||1 ≤ τ, ∀ṽ ∈ {n+ 1, · · · , n+ ρ},

Aij ∈ {0, 1}, ∀i ∈ {n+ 1, · · · , n+ ρ}, ∀j ∈ {1, · · · , n+ ρ},

mv ∈ {0, 1}, ∀ v ∈ {1, · · · , n},

where mv = 1 (the element in vector m) indicates that the robustness for node v can not be

verified. Specifically, it means that 2 p(Ev) ≥ cv, and it disobeys our certifying condition.

There are exponential terms in p(Ev), which is difficult to solve by existing optimization tools.

We further formalize the problem. By taking the logarithm of the p(Ev), we are able to transform

the exponential constraint in problem (B.3) into polynomial constraint:

P̃v ≤ log(1− cv
2
) ·mv, (B.4)

P̃v = ||An:(n+ρ),v||1 · p̃1 + ||A2
n:(n+ρ),v||1 · p̃2 + · · ·+ ||Ak

n:(n+ρ),v||1 · p̃k,

where p̃k = log(pk) is a constant, and P̃v is equivalent to log(1−p(Ev)). Then the problem (B.3)
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is transformed to a binary polynomial constrained programming:

max
An:,:,m

M =
∑

v∈T

mv, (B.5)

s.t. P̃v ≤ log(1− cv
2
) ·mv,

P̃v = ||An:(n+ρ),v||1 · p̃1 + ||A2
n:(n+ρ),v||1 · p̃2 + · · ·+ ||Ak

n:(n+ρ),v||1 · p̃k,

||Aṽ:||1 ≤ τ, ∀ṽ ∈ {n+ 1, · · · , n+ ρ},

Aij ∈ {0, 1}, ∀i ∈ {n+ 1, · · · , n+ ρ}, ∀j ∈ {1, · · · , n+ ρ},

A) = A,

mv ∈ {0, 1}, ∀ v ∈ {1, · · · , n}.

B.2.2 Formulating problem (B.5) as BQCLP (5.19).

In this section, we discuss the process from (B.5) to (5.19). In the case of k = 2, the problem

(B.5) becomes a binary quadratic constrained problem as follows:

max
An:,:,m

M =
∑

v∈T

mv, (B.6)

s.t. ||An:(n+ρ),v||1 · p̃1 + ||A2
n:(n+ρ),v||1 · p̃2 ≤ log(1− cv

2
) ·mv,

||Aṽ:||1 ≤ τ, ∀ṽ ∈ {n+ 1, · · · , n+ ρ},

Aij ∈ {0, 1}, ∀i ∈ {n+ 1, · · · , n+ ρ}, ∀j ∈ {1, · · · , n+ ρ},

A) = A,

mv ∈ {0, 1}, ∀ v ∈ {1, · · · , n}.

Next, we divide the adjacency matrix A into four parts as shown in Fig.B.1, and then the A2

!! !"#

!" !$
!×! !×#

#×! #×#

existing 
! nodes

injected
" nodes

! =

Figure B.1: Illustration of adjacency matrix notation.
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can be interpreted as:

A2 =



(A0A0 + A)
1 A1)(n×n) (A0A)

1 + A)
1 A2)(ρ×n)

(A1A0 + A2A1)(ρ×n) (A1A)
1 + A2A2)(ρ×ρ)



 .

Then, the l1 norm of A2
n:(n+ρ),v can be represented as:

[||A2
n:(n+ρ),1||1, ||A2

n:(n+ρ),2||1, · · · , ||A2
n:(n+ρ),n||1]) = (A1A0 + A2A1)1ρ. (B.7)

Also, same as above, together with Fig. B.1, ||Aṽ:||1 is described as:

[||An:||1, ||A(n+2):||1, · · · , ||A(n+ρ):||1]) = A11n + A21ρ. (B.8)

Finally, combine (B.7) and (B.8), problem (B.6) can be formulated as:

max
A1,A2,m

M = t)m,

s.t. p̃1A
)
1 1ρ + p̃2(A1A0 + A2A1)

)1ρ ≤ C ◦m,

A11n + A21ρ ≤ τ, A)
2 = A2,

A1 ∈ {0, 1}ρ×n, A2 ∈ {0, 1}ρ×ρ, m ∈ {0, 1}n,

where t is a constant zero-one vector that encodes the position of the target node set T, m is

a vector that indicates whether the nodes are successfully attacked, C ∈ Rn is a vector with

negative constant elements log(1− cv
2 ), for v = 1, 2, · · · , n.

B.2.3 Formulating problem (5.19) asLinear ProgrammingProblem (5.20).

Here, we discuss the details of the process of relaxing the BQCLP problem (5.19) to the LP

problem (5.20). In problem (5.19), there are ρ2n quadratic terms among A2A1. To tackle the

challenge, we introduce the following transformation to transform it into an LP problem. Specif-

ically, we first substitute the quadratic terms with linear terms and relax all the binary variables

to continuous variables in [0, 1].

If x ∈ B, y ∈ B are two integer binary variables, then the quadratic term xy can be substitute

by a single variable z := xy with the combination of linear constraints [179]: z ≤ x, z ≤
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y, x+ y− z ≤ 1, z ∈ B. We use a(ij) and b(ij) to denotes the element in ith row and jth column

of matrix A1 and A2 respectively. For each quadratic term b(ij)a(jv) (∀i ∈ {1, · · · , ρ}, ∀j ∈

{1, · · · , ρ}, ∀v ∈ {1, · · · , n}) inA2A1, we create a substitution variableQv(ij) := b(ij)a(jv) with

corresponding constraints: Qv(ij) ∈ B,Qv(ij) ≤ b(ij),Qv(ij) ≤ a(jv), and b(ij)+a(jv)−Qv(ij) ≤ 1.

The existing linear terms remain unchanged. Now, the BQCLP problem has transformed into

binary linear programming (BLP).

Next, we formulate the problem using matrix representation. We firstly use O to substitute

(A2A1))1ρ, and we have the first constraint as:

p̃1A
)
1 1ρ + p̃2A

)
0 A

)
1 1ρ + p̃2O ≤ C ◦m.

We list the elements of the A1 and A2 as follows:

A1 =





a11 a12 a13 · · · a1n

a21

a31
. . . ...

...

aρ1 · · · aρn





, A2 =





b11 b12 b13 · · · b1ρ

b21

b31
. . . ...

...

bρ1 · · · bρρ





. (B.9)

Then, the matrix multiplication of A2 and A1 is

A2A1 =





b11a11 + b12a21 + · · ·+ b1ρaρ1 b11a12 + b12a22 + · · ·+ b1ρaρ2 · · · b11a1n + b12a2n + · · ·+ b1ρaρn

b21a11 + b22a21 + · · ·+ b2ρaρ1 b21a12 + b22a22 + · · ·+ b2ρaρ2 · · · b21a1n + b22a2n + · · ·+ b2ρaρn
...

...
. . .

...

bρ1a11 + bρ2a21 + · · ·+ bρρaρ1 bρ1a12 + bρ2a22 + · · ·+ bρρaρ2 · · · bρ1a1n + bρ2a2n + · · ·+ bρρaρn




.

By the definition of matrix Qv, for v ∈ {1, 2, · · · , n}, we have the following equivalent repre-

sentation:

Qv =





Qv(11) Qv(12) · · · Qv(1ρ)

Qv(21) Qv(22) Qv(2ρ)

...
... . . . ...

Qv(ρ1) Qv(ρ2) · · · Qv(ρρ)




:=





b11a1v b21a1v · · · bρ1a1v

b12a2v b22a2v bρ2a2v
...

... . . . ...

b1ρaρv b2ρaρv · · · bρρaρv




.

177



Appendix B. Appendix of Collective Certified Robustness

We notice that (A2A1))1ρ is to sum the A2A1 by its column, and eachQv contains all the terms

for each vector summation. Then we have O = (A2A1)) = [1)ρ Q11ρ, 1)ρ Q21ρ, · · · , 1)ρ Qn1ρ]).

Further, by decomposing the meaning of Qv, we have

Qv :=





b11 b21 · · · bρ1

b12 b22 · · · bρ2
...

... . . . ...

b1ρ b2ρ · · · bρρ




◦





a1v a1v · · · a1v

a2v a2v · · · a2v
...

... . . . ...

aρv aρv · · · aρv




= A2 ◦ 1ρ





a1v

a2v
...

aρv





)

= A2 ◦ 1ρ[A1(:,v)]
).

To make the Qv equivalent to the quadratic terms, for every Qv, we need to add its constraints:

Qv ≤ A2, Qv ≤ 1ρ[A1(:,v)]
), 1ρ[A1(:,v)]

) + A2 −Qv ≤ 1.

Finally, we relaxed A1, A2, Qv to relax all the binary variables to continuous variables in [0, 1]:

Qv ∈ [0, 1]ρ×ρ, A1 ∈ [0, 1]ρ×n, A2 ∈ [0, 1]ρ×ρ, m ∈ [0, 1]n.

Then we have the linear programming problem (5.20) as follows:

max
A1,A2,m,

Q1,Q2,··· ,Qn

M = t)m,

s.t. p̃1A
)
1 1ρ + p̃2A

)
0 A

)
1 1ρ + p̃2O ≤ C ◦m

A11n + A21ρ ≤ τ,

Qv = (Qv(ij))ρ×ρ, v ∈ {1, 2, · · · , n},

O = [1)ρ Q11ρ, 1)ρ Q21ρ, · · · , 1)ρ Qn1ρ]),

Qv ≤ 1ρ[A1(:,v)]
),

Qv ≤ A2,

1ρ[A1(:,v)]
) + A2 −Qv ≤ 1,

Qv ∈ [0, 1]ρ×ρ,

A1 ∈ [0, 1]ρ×n,

A2 ∈ [0, 1]ρ×ρ,

A)
2 = A2,

m ∈ [0, 1]n.
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B.2.4 Formulating problem (5.19) asLinear ProgrammingProblem (5.22).

We start from (5.19), and we have the first constraint:

p̃1A
)
1 1ρ + p̃2A

)
0 A

)
1 1ρ + p̃2A

)
1 A

)
2 1ρ ≤ C ◦m.

Then, we substitute A)
2 1ρ with z,

z := A)
2 1ρ =





b11 b12 b13 · · · b1ρ

b21

b31
. . . ...

...

bρ1 · · · bρρ





(ρ,ρ)





1

1

1
...

1





(ρ,1)

=





b11 + b12 + b13 + · · ·+ b1ρ

b21 + b22 + b23 + · · ·+ b2ρ
...

bρ1 + bρ2 + bρ3 + · · ·+ bρρ





(ρ,1)

.

(B.10)

Then, from (B.10), the constraint is transformed into

p̃1A
)
1 1ρ + p̃2A

)
0 A

)
1 1ρ + p̃2A

)
1 z ≤ C ◦m, (B.11)

zi ∈ {0, 1, 2, · · · ,min(τ, ρ)} ∀i ∈ {0, 1, 2, · · · , ρ}.

In (5.19), since there exists the constraint: A11n + A21ρ ≤ τ , so we have zi satisfies zi ∈

{0, 1, 2, · · · ,min(τ, ρ)}. Next, we deal with the quadratic term A)
1 z.

If x ∈ B is a binary variable, and z ∈ [0, u] is a continuous variable, then the quadratic term xy

can be substitute by a single variable z := xy with the combination of linear constraints [179]:

w ≤ ux,w ≤ z, ux+ z − w ≤ u, 0 ≤ w. To apply it, we first relax the z to [0,min(τ, ρ)].

We know that A)
1 z satisfies that

A)
1 z =





a11 a21 a31 · · · aρ1

a12 a22 a32 · · · aρ2

a13 a23 a33 · · · ...
...

...
... . . . ...

a1n a2n a3n · · · aρn









z1

z2

z3
...

zρ





=





a11z1 + a21z2 + · · ·+ aρ1zρ

a12z1 + a22z2 + · · ·+ aρ2zρ
...

a1nz1 + a2nz2 + · · ·+ aρnzρ





(n,1)

.
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Then, we create a new variable matrix Q to substitute A)
1 z, with each of its element: qij :=

ajizi, (∀i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , ρ}). That is:

Q =





q11 q12 · · · q1ρ

q21 q22 · · · q2ρ
...

... . . . ...

qn1 qn2 · · · qnρ




=





a11z1 a21z2 · · · aρ1zρ

a12z1 a22z2 · · · aρ2zρ
...

... . . . ...

a1nz1 a2nz2 · · · aρnzρ




.

We now have A)
1 z = Q1ρ. Assuming that τ ≤ ρ, for each quadratic term A)

1(ij)zj (∀i ∈

{1, · · · , n}, ∀j ∈ {1, · · · , ρ}) in A)
1 z, we create a substitution variable Q(ij) = A)

1(ij)zj with

corresponding constraints: 0 ≤ Q(ij), Q(ij) ≤ τA)
1(ij), Q(ij) ≤ zj , and τA)

1(ij) + zj −Q(ij) ≤ τ .

Further, with matrix notation, we have

0 ≤ Q ≤ τA)
1 ,

0 ≤ 1nz) −Q ≤ τ(1− A)
1 ), (B.12)

A1 ∈ {0, 1}, z ∈ [0, τ ], Q ∈ [0, τ ].

Finally, we relax all the binary variables to be continuous variables, We have problem (5.22) as

follows:

max
A1,m,z

Q∈Rn×ρ

M = t)m, (B.13)

s.t. p̃1A
)
1 1ρ + p̃2A

)
0 A

)
1 1ρ + p̃2Q1ρ ≤ C ◦m,

A11n + z ≤ τ,

Q ≤ τA)
1 ,

Q ≤ 1nz),

τA)
1 + 1nz) −Q ≤ τ,

Q ∈ [0, τ ]n×ρ,

A1 ∈ [0, 1]ρ×n,

z ∈ [0, τ ]ρ×1,

m ∈ [0, 1]n.
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B.3 Algorithm of our proposed methods

Train a base classifier f . Following the work of [131], our first step is to train a graph model

to serve as the base classifier. To enhance the model’s generalization ability on the smoothing

samples, we incorporate random noise augmentation during the training process. The training

procedure is summarized in Algorithm 8, providing an overview of the steps involved. Given

a clean graph G, a smoothing distribution φ(G) with smoothing parameters pe and pn, and the

number of training epochs E, the algorithm iteratively trains the model on randomly generated

graphs. In each epoch, a random graph Ge is drawn from the smoothing distribution φ(G). The

model is then trained on the training nodes using this randomly generated graph. This process

is repeated for the specified number of training epochs.

Algorithm 8 Graph model training [131].
Input: Clean graph G, smoothing distribution φ(G) with smoothing parameters pe and pn,

training epoch E.

1: for e = 1, · · · , E do

2: Draw a random graph Ge ∼ φ(G).

3: f = train_model(f(Ge)) on training nodes.

4: end for

5: return A base classifier f(·).

Obtaining prediction probability of smoothed classifier g. Next, we need to obtain the pre-

diction results of a smoothed classifier. As depicted in Algorithm 9, we sample N graphs

G1, G2, . . . , GN from the smoothed distribution φ(G) = (φe(G),φn(G)) based on the base

classifier f . To estimate the probabilistic prediction, we employ a Monte Carlo process. For

each sampled graph Gi, we calculate the prediction probability pv,y(G), which represents the

frequency of the predicted class y for the vertex v. This can be approximated as pv,y(G) ≈
∑N

i=1 I(fv(Gi) = y)/N , where I is the indicator function.

Let denote the top class probability pA := pv,y∗(G) and runner-up class probability pB :=

maxy %=y∗pv,y(G), we want to bound the impact of randomness. Specifically, we compute the
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lower bound of pA (denoted as pA) and upper bound of pB (denoted as pB). Applying the

Clopper-Pearson Bernoulli confidence interval, we obtain the pA and the pB under a confidence

level of α/C, where C represents the number of classes in the model.

Algorithm 9Monte Carlo sampling [131].
Input: Clean graph G, smoothing distribution φ(G) with smoothing parameters pe and pn,

trained base classifier f(·), sample number N , confidence level α.

1: Draw N random graphs {Gi| ∼ Gi ∼ φ(G)}Ni=1.

2: counts = |{i : f(Gi) = y}|, for y = 1, · · · , C.

3: yA, yB = top two indices in counts.

4: nA, nB = counts[yA], counts[yB].

5: pA, pB = CP_Bernolli(nA, nB, N,α).

6: return pA, pB.

Collective certification via solving an optimization problem. We obtain the collective cer-

tified robustness by solving the optimization problem problem (5.20) or (5.22). The process is

described in Algorithm 10.

In this algorithm, we first set up the constant p̃1 and p̃2 based on the given smoothing parameters

pe and pn. Next, for each node v in the target node set T, we obtain the lower bound pA and the

upper bound pB using Algorithm 9. These bounds are based on the prediction probabilities of the

smoothed classifier for the current node v. We then compute the value cv = pA−pB and prepare

the constant vector C with elements log(1− cv
2 ) for each node v. The objective function of the

optimization problem is based on either (5.20) or (5.22), depending on the chosen formulation.

The constraints are also set up accordingly. Finally, we solve the linear programming using an

LP solver, such asMOSEK, to obtain the optimal valueM∗. The certified ratio, which represents

the percentage of nodes in the target setT that have been successfully certified, is then computed

as (|T|−M∗)/|T|.
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Algorithm 10 Certified robustness via solving optimization problem (5.20) or (5.22).
Input: Smoothing parameters pe and pn, graph adjacent matrix A0, perturbation budget ρ and

τ , target node set T.

1: Set constant p̃1 = log(1− (p̄ep̄n)).

2: Set constant p̃2 = log(1− (p̄ep̄n)2).

3: for v in T do

4: Obtain pA, pB from Algorithm. 9 for current node v.

5: Compute cv = pA − pB.

6: Prepare constant vector C with each element: log(1− cv
2 ).

7: end for

8: Setup objective function in (5.20) or (5.22).

9: Setup constraints in (5.20) or (5.22).

10: Solve the optimization problem using LP solver such as MOSEK to getM∗.

11: Return Certified ratio (|T|−M∗)/|T|.

B.4 Other Experimental Results

B.4.1 Trade off between Clean accuracy and the certified ratio on GCN

model

In this section, we present the remaining experiments as outlined in Section. 5.2.4.1. A superior

certifying method should not only achieve a higher certified ratio but also maintain or improve

the clear accuracy, which represents the originalmodel’s performance. We compare the results of

these two metrics for our method under different parameter settings as shown in Figure. B.2. In

the figures, the data points situated closer to the upper right side represent higher certified ratios

and clean accuracy. It is evident that both of our proposed methods consistently outperform the

sample-wise method, demonstrating their superior performance under various attacker power ρ.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.2: Clean accuracy and the certified ratio of our collective model under various smooth-

ing parameters on GCN model.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure B.3: Certified ratio of our collective model under various smoothing parameters on GCN

model.
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B.4.2 GCN certified ratio of our methods under different smoothing pa-

rameters

In addition, we conducted experiments to compare the performance of our methods with the

sample-wise method under different combinations of parameters pe and pn on the Cora and

Citeseer datasets. The results are shown in Figure. B.3.

From the figures, we can observe that our proposed methods always exhibit a larger certifiable

radius. For example, when ρ exceeds 60, the sample-wise method fails to defend against any

attacks, while our methods are still able to provide certifiable guarantees.

B.4.3 Time complexity comparison of two relaxations

Furthermore, we provide more detailed results on the runtime of the two proposed methods with

different parameters in Figure. B.4. From the figures, we can observe that as the attack budget

ρ increases, the proposed Collective-LP2 method demonstrates superior efficiency compared

to Collective-LP1 in both datasets. This efficiency advantage is particularly evident when ρ

exceeds 120. Notably, when ρ = 160, the Collective-LP1 takes approximately 1, 000 seconds to

complete the computation. On the other hand, the time consumption of Collective-LP2 remains

consistently below 90 seconds.

These results highlight the computational advantage of Collective-LP2 over Collective-LP1,

especially for larger attack budgets. The reduced runtime of Collective-LP2 ensures the practi-

cality and efficiency of our proposed method, making it suitable for real-world scenarios with

larger attack budgets.

B.4.4 Against Global Attack: Verifying all testing nodes in a time

Alternatively, instead of verifying a subset of target nodes T, we can extend our approach to

verify all the testing nodes in the graph, as illustrated in Figure B.5. In this scenario, we measure

the certified accuracy, which represents the ratio of nodes that are both correctly classified and
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(a) Collective-LP1 (b) Collective-LP1 (c) Collective-LP2 (d) Collective-LP2

Figure B.4: Runtime of our collective model under various smoothing parameters.

certified to be consistent, as well as the runtime of our customized approach (Collective-LP2).

We have observed that the certified accuracy of our collective certificate only experiences a

slight decrease as the attack budget increases, while the sample-wise approach can only certify

the case of ρ less than 50. This indicates that our approach maintains a high level of certified

robustness even when facing more severe adversarial attacks.

Furthermore, it is worth noting that our Collective-LP2 formulation exhibits excellent compu-

tational efficiency. Despite the presence of more than 1500 testing nodes, the problem can be

solved in less than 3 minutes, even when the number of injected nodes ρ is set to 140 (approxi-

mately 5%×n). This demonstrates the scalability and practicality of our customized relaxation

approach (Collective-LP2) in real-world scenarios.

(a) Certified accuracy (b) Certified accuracy (c) Runtime (d) Runtime (Collective-LP2)

Figure B.5: Certified accuracy and runtime in the case of setting all the testing nodes as T.
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