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Abstract

Global localization provides robots with their current positions relative to the envi-

ronment, enabling them to perform more complex downstream tasks such as path

planning and navigation. One of the most widely adopted solutions, the Global Nav-

igation Satellite System (GNSS), has demonstrated significant advantages over the

past decades. Its robustness and accuracy may be compromised by weak signals, mul-

tipath effects, or signal obstruction, especially in densely built urban areas with tall

buildings. We therefore identify a need to advance techniques on global localization in

GNSS-denied environments. The goal of this thesis is to develop real-time solutions

with high memory efficiency for GNSS-free global localization in urban environments,

with a focus on autonomous vehicles.

Our first contribution focuses on global localization in high-rise environments using

a publicly available map, i.e., OpenStreetMap. We observe that the building roof

outline captured by a sky-looking fish-eye camera shares similarities with the build-

ing outline featured in the OpenStreetMap. Based on this observation, we propose a

descriptor that incorporates both topological (i.e., junction types) and geometric (i.e.,

building outline) information to bridge fish-eye camera images with OpenStreetMap

data. To handle the challenge of similar or repeated building outlines across differ-

ent images, we formulate our method as a Bayesian Filtering problem using Monte

Carlo localization, which leverages multiple consecutive fish-eye images for robust lo-

calization. The sky-looking fish-eye camera also naturally avoids disturbances from
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dynamic objects such as vehicles and pedestrians, making it particularly suitable for

urban environments.

While our first solution enables real-time localization in high-rise environments with-

out the need for manually collecting and maintaining reference maps, its long-term

reliability can be impacted by the quality of captured images, which are sensitive

to changes in illumination, weather, and seasons. In contrast, range sensors such as

LiDAR and radar are more resilient to these environmental factors. To investigate

the influence of these factors on range sensing based global localization methods, we

conduct a comprehensive evaluation of current techniques in long-term scenarios with

significant seasonal variations and adverse weather conditions. In addition, we design

a novel metric to evaluate the influence of matching thresholds on place recognition

performance for long term localization.

Based on our previous evaluation study, LiDAR-based place recognition shows good

robustness under long-term conditions. However, it typically only identifies whether

the current place has been visited before. Determining the vehicle’s pose relative to

the environment requires additional point cloud or feature point based registration,

which might demand significant memory to store these data. Our third contribution

addresses this challenge by integrating pose estimation with place recognition to im-

prove LiDAR-based global localization performance. Rather than relying on abstract

environmental representations like 3D points, we use lightweight semantic features

(e.g., traffic signs, trees, poles, and so on) to represent both on-vehicle LiDAR scans

and reference scans in the databases, significantly reducing memory requirements. We

propose a novel semantic histogram descriptor to represent each semantic instance,

which is used for instance association in pose estimation and aggregated into a global

descriptor for place recognition.

While our previous contribution show competitive localization accuracy and mem-

ory efficiency, the scan-to-scan framework still redundantly stores some of seman-

tic instances multiple times across keyframes. Meanwhile, its RANSAC-based pose
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estimation might fail when outliers dominate. Our fourth contribution shifts to a

scan-to-map localization manner, where each semantic instance is stored only once in

the reference map, further improving the memory efficiency. We improve the seman-

tic histogram descriptor in our previous work to achieve more robust and effective

instance-to-instance correspondences. In addition, we propose a novel Road Surface

Normal (RSN) map to provide a prior rotational constraint, enhancing pose estima-

tion. We then apply graph-theoretic outlier pruning to extract inlier correspondences

for robust 6-DoF pose estimation.

Finally, we develop a multi-robot localization system, building upon our previous

scan-to-map localization approach. Unlike single-robot localization, multi-robot sys-

tems typically lack a prior map, and the initial relative poses between local reference

frames of robots are unknown. To this end, we formulate the multi-robot localization

as an optimization problem and incorporate one-shot registration-based localization

into the optimization process. Specifically, lightweight semantic instances from dif-

ferent robots are transmitted to a central server, which constructs instance maps for

inter-robot localization. We propose a dual-metric validation strategy to confirm the

validity of pairwise localization results from our previous scan-to-map localization so-

lution to reduce the risk of involving incorrect localization results. A pose averaging

based optimization method is used to obtain reliable alignment estimations between

local reference frames of different robots. A shortest transformation chain searching

method is used to align all robots into a shared reference frame. Our preliminary

results demonstrate the feasibility and effectiveness of the proposed system, as well

as its promising potential in communication bandwidth-limited conditions.
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Chapter 1

Introduction

1.1 Research Background

Autonomous driving has gained significant attention in recent years, driven by its

potential to revolutionize the transportation industry. This surge in popularity is

driven by the promising benefits of safer transportation, reduced traffic congestion,

increased efficiency, less stress for drivers in traffic, and enhanced mobility for people

with disabilities [1]. With the rapid advancements in sensor technology, in-vehicle

computing platform, and artificial intelligence, autonomous vehicles (AVs) are no

longer a futuristic concept but are being actively tested and deployed in real-world

scenarios [2]. The ultimate goal of autonomous driving technology is to achieve full

automation—where AVs can perform all driving tasks under any conditions without

human intervention. Although this level of autonomy has yet to be realized, it remains

an area of active research and development. To approach high-level or full autonomy,

an AV must possess several core capabilities: 1) global localization-determining the

vehicle’s position relative to its involved environment; 2) perception-recognizing and

interpreting the surrounding environment using on-board sensors; 3) path planning-

calculating the optimal route to a destination based on road condition, traffic, and
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(a) Multipath effect in Hung Hom, HK (b) Signal obstruction in Hung Hom, HK

(c) Multipath effect in Tsim Sha Tsui, HK (d) Signal obstruction in Tsim Sha Tsui, HK

Figure 1.1: Examples of signal reception issues due to multipath effects and obstruc-

tion. Green lines represent satellite signals reflected off building surfaces, while yellow

dotted lines indicate satellite signals obstructed by tall buildings.

obstacles; 4) motion control-executing smooth and safe vehicle movements, including

steering, acceleration, and braking; and 5) decision making-making informed decisions

based on dynamic traffic conditions and adherence traffic rules [3].

Among the various capabilities required for autonomous driving, global localization

stands out as a particularly important component. Precise localization provides the

vehicle with a continuous and reliable understanding of its position relative to its

surroundings. This understanding is essential for performing a range of tasks, from
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basic navigation to complex decision-making processes, such as avoiding obstacles

and path re-planing under city construction. However, achieving robust and precise

localization is particularly challenging in urban environments, where the Global Nav-

igation Satellite System (GNSS) faces significant limitations. These typically include

signal obstructions caused by tall buildings, as well as the multipath effect, where

satellite signals reflect off surfaces before reaching the receiver, leading to inaccurate

positioning, as shown in Fig. 1.1. Consequently, in densely built-up urban environ-

ments, GNSS localization accuracy can drop to as much as 30–50 meters, making it

difficult for vehicles to maintain reliable localization[4]. This degradation presents a

significant challenge to autonomous driving systems, which might result in incorrect

navigation decisions and potential safety risks.

In recent years, there has been growing interest in alternative approaches to global

localization that rely on onboard sensors, eliminating the need for GNSS [5, 6]. One

of the earliest approaches in this domain is visual global localization, which takes ad-

vantage of the rich texture and appearance information captured by camera images

to estimate a vehicle’s position [7, 8]. However, the reliability of visual localization

is heavily influenced by image quality, which can degrade due to changes in illumi-

nation, weather conditions, or seasonal variations. These environmental sensitivities

might limit the consistency of performance of vision-based localization in long-term

scenarios. In contrast, range sensors such as LiDAR and radar are less affected by

changes in lighting or weather and can perform reliably across a wide range of en-

vironmental conditions, showing promising potential for robust global localization

[5, 9]. However, range sensors typically provide pure geometric structure information

of the surroundings, making data association challenging. Typically, these onboard

sensor-based global localization methods require a prior reference map or database

to eliminate the need for GNSS. These maps or databases provide a pre-recorded

model of the environment, allowing the vehicle to match its current sensor readings

with stored data for localization. However, several key challenges arise when utilizing

3



Chapter 1. Introduction

such reference maps or databases. First, urban environments are dynamic and of-

ten experience frequent changes in appearance and geometric structure, such as city

construction or road alterations, leading to discrepancies between real-time sensor

data and the information stored in reference maps. These differences complicate the

process of associating on-vehicle sensor readings with the stored map data. Second,

reference maps and databases often contain vast large volumes of detailed sensor data,

such as high-resolution 3D maps. This demands efficient storage and processing tech-

niques to ensure that memory consumption remains manageable without significantly

compromising performance, especially as maps expand to cover larger areas. Finally,

outlier associations between sensor data and reference data are common, especially

in cluttered or dynamic environments. As a result, the development of robust fea-

ture representations and effective outlier rejection methods is essential to enhance the

reliability of localization.

This thesis aims to contribute to the development of GNSS-free global localization

solutions that operate in real-time while maintaining high memory efficiency, with a

particular focus on urban environments. Dense and complex infrastructures in urban

areas presents significant challenges for traditional localization methods, necessitating

innovative alternatives. In response, we explore the use of publicly available maps and

lightweight semantics as promising approaches to compactly represent the environ-

ment with less memory usage. These compact and efficient representations serve as

the core foundation for the solutions developed and proposed throughout this thesis.

1.2 Motivation and Objectives

”Where am I?” This is a question that we frequently ask ourselves in our daily lives.

Determining our current location is essential for executing subsequent tasks such as

navigation or path planning. I vividly remember the first time I traveled from accom-

modation to the PolyU campus. The journey took me over half an hour due to the
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(a) Mong Kok, HK (b) Wan Chai, HK

Figure 1.2: Examples of building and environmental layouts in Hong Kong.

complex surroundings and degraded GNSS performance, even though Google Maps

indicated that it should take less than 20 minutes. Fig. 1.2 illustrates the building

density and environmental layout in Mong Kok and Wan Chai, Hong Kong. In these

areas with tall, dense buildings, GNSS signal obstruction and multipath effects are

common challenges. These problems are not unique to Hong Kong; similar challenges

arise in cities like Tokyo and New York. The reliability and accuracy of GNSS in

such environments might not be sufficient to support autonomous vehicles effectively.

As a result, there is a growing need for alternative approaches that do not rely on

GNSS but can still provide reliable localization in complex urban settings. Current

sensor-based methods, while promising, face several challenges. These include main-

taining localization robustness in long-term scenarios, reducing memory demands in

large-scale environment, and handling incorrect data associations caused by frequent

changes in urban settings. These challenges reveal a critical gap in existing systems’

ability to ensure robust, real-time localization with high memory efficiency.

In the scope of this thesis we want to overcome these challenges and contribute to the

development of GNSS-free global localization solutions for urban autonomous driving.

Specifically, we wish to address the following objectives:

1. Develop GNSS-free localization solutions that ensure real-time per-

formance. For autonomous driving, path planning and navigation depend
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on the vehicle’s current position relative to its surroundings for effective re-

planning and status checking. In complex urban environments, more frequent

position updates are often necessary, making real-time performance essential for

localization solutions.

2. Explore the use of publicly available maps and lightweight semantic

representations to reduce memory usage in large-scale environment.

As autonomous vehicles operate over vast areas, more sensor data needs to be

processed and stored for reference maps or databases. Storing raw sensor data,

such as high-resolution images or 3D LiDAR scans, can be memory-intensive.

In contrast, publicly available maps (such as OpenStreetMap) and lightweight

semantic representations offer promising solutions to reduce memory costs.

3. Improve the robustness of localization against changes in the environ-

ment, enabling long-term applicability. In urban environments, changes

like new construction or infrastructure modifications can quickly render refer-

ence maps outdated. Updating these reference maps or databases frequently

incurs significant costs, both in terms of time and resources. As a result, dis-

crepancies between the on-vehicle sensor data and the reference data often

arise. Such discrepancies will result in outlier data associations, complicat-

ing global localization. Consistent feature representation and effective outlier

filtering method are therefore necessary to address these challenges.

6



Chapter 2

Monte Carlo Localization using

Fish-eye Camera and

OpenStreetMap

Global localization can estimate geo-referenced locations (e.g., longitude and lati-

tude), which is a fundamental capability for autonomous vehicles. Most existing so-

lutions rely on the Global Navigation Satellite Systems (GNSS). Their accuracy could

be degraded by the multi-path effects or occlusions of GNSS signals in urban environ-

ments. Some GNSS-free methods could achieve global localization by comparing the

current on-line sensory data with pre-built databases/maps. However, they require

tedious human efforts to drive a vehicle to collect and maintain the databases/maps.

Moreover, most of these methods use front-looking cameras or LiDARs, so the cap-

tured data could be easily contaminated by dynamic objects (e.g., moving vehicles

and pedestrians). To provide a solution to these problems, this chapter proposes a

novel global localization method by comparing an image from a sky-looking fish-eye

camera with the publicly available OpenStreetMap (OSM), and using particle filter

to achieve real-time metric localization in dynamic traffic environments. To evaluate
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our method, we extend a public dataset with OSM data, which are retrieved through

the given geo-referenced location information. Experimental results demonstrate the

effectiveness and efficiency of our method.

2.1 Introduction

Localization is a fundamental capability for autonomous vehicles [10]. It can provide

location information for downstream tasks, such as decision making, path planning,

and autonomous navigation [11], etc. There are mainly two types of localization:

global localization and local localization. Global localization aims to localize a vehicle

against a geo-referenced database or map without initial guess[12]. Local localization

aims to estimate relative poses with respect to previous poses or a small-size local

map. For global localization, most of existing methods rely on the Global Navigation

Satellite Systems (GNSS). However, GNSS is not always reliable or even sometimes

unavailable due to occlusions or multi-path effects of GNSS signals [13], especially in

dense urban environments, such as urban canyons. To improve the GNSS localization

accuracy, 3-D city models and digital maps with environmental knowledge (e.g., street

layouts and building heights) have been used to identify and use “Non-Line-Of-Sight”

signals in some early works [14, 15].

To relieve the need of GNSS, place recognition and re-localization with visual cameras

or LiDARs have been extensively studied in the research community [7, 16, 17, 18].

These methods generally consist of an off-line stage and an on-line stage. During

the off-line stage, a data-collection vehicle usually equipped with expensive global

localization equipment is employed to build a geo-referenced image or point-cloud

database/map. During the on-line stage, images or point clouds captured from

vehicle-mounted sensors are compared with the geo-referenced database/map to de-

termine the current location of the vehicle.
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Figure 2.1: A hybrid descriptor is used to extract topological and geometric infor-

mation from both input fish-eye image and OSM at the same location. The ROI of

fish-eye image is transformed to the polar coordinate as shown in (a), while operation

for the ROI on OSM is based on the cylinder coordinate (b). (c) is the OSM with

the trajectory of the vehicle.

Despite the effectiveness of these methods, they still suffer from several issues. Firstly,

building and maintaining the geo-referenced databases/maps is tedious, expensive,

and time-consuming. Secondly, dynamic objects (e.g., vehicles and pedestrians) may

cause discrepancies between the sensor data captured on-line and those stored in the

pre-built databases/maps. Thirdly, in most existing vision-based methods, due to the

limited field-of-view, the overlap between the image captured on-line and those stored

in the database may not be large enough to accurately determine the locations.

To provide a solution to above issues, we proposes a novel cross-modal method, Sky-

Loc, using a sky-looking fish-eye camera as on-line observation and OSM as pre-built
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map, followed by a filter to achieve global localization in GNSS-degraded dynamic

and complex urban traffic environments. Due to its free and open nature, OSM has

been used in many applications [19, 20]. One novelty of our method is that we inno-

vatively use a sky-looking fish-eye camera for localization, which has the advantage of

avoiding disturbances from dynamic objects and can get a large field-of-view. More-

over, we adopt the combination of on-vehicle visual information and OSM to relieve

the need for GNSS to achieve global localization. Since we use OSM to build our

database, the tedious database building work using a data-collection vehicle can be

alleviated.

To the best of our knowledge, this is the first solution using a sky-looking fish-eye

camera and OSM to achieve global localization. Our method can be easily integrated

into existing localization systems (e.g., LiDAR, radar, or front-looking camera based

methods) to enhance their robustness by providing redundancy from different sensory

sources (i.e., sky-looking Fish-eye camera). To evaluate our method, we extend an

existing public dataset [21] with OSM data retrieved through the given geo-referenced

location information. The contributions of this work are summarized as follows:

1. We propose a novel cross-modal global localization method with a sky-looking

fish-eye camera and OSM data for dynamic and complex urban environments.

2. We design a novel topology-geometry based hybrid (TGH) descriptor to repre-

sent both the fish-eye image and OSM data to narrow the modality gap.

3. We test our method on different computing platforms including PC and embed-

ded devices to demonstrate the real-time efficiency of our method.

This chapter is structured as follows. Section II reviews the related work. Section III

describes our descriptor extraction and weighting model in detail. Experiments and

results are presented in section IV. Conclusions and future work are drawn in the last

section.
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2.2 Related Work

This section reviews two streams of cross-modal global localization methods using

public aerial data. The first stream adopts the Ground-to-Aerial matching framework.

Ground means that the on-line data are captured by an on-vehicle sensor (e.g., camera

or LiDAR). Aerial means that the off-line database is built with geo-referenced aerial

or satellite images. The second stream adopts the Ground-to-OSM framework. The

key problem in cross-modal localization lies in how to bridge the modality gap.

2.2.1 Ground-to-Aerial Matching

Vision-based Methods

Some early methods use hand-crafted image features, such as key points, lines, and

planes, to match images captured by an on-vehicle camera with the images from a

geo-referenced aerial-image database [22, 23, 24, 25]. These methods rely on geo-

metric information and features to build their descriptors for matching. Differently,

Noha et al. [26] used semantic-level textual information (i.e., shop, restaurant, or

street names) to match camera images with a Google Map. Instead of using hand-

crafted features, Kim et al. [27] used a Siamese network to learn embeddings from a

ground-image sequence and satellite images, which are then used to update particle

weights during filtering. Similarly, Hu et al. [28] also used a Siamese network to

measure the similarity between ground and aerial images. The location of the query

on-vehicle image is provided by retrieving aerial images stored in a database. Then,

the authors extended [28] with a Markov localization framework to ensure the tem-

poral consistency of the matching results [29]. Different from CNN-based methods,

TransGeo [30] is a pure transformer-based approach, eliminating the need for aligned

image pairs during training. TransGeo exhibits good flexibility and generalization

but, as a retrieval-based method, requires additional registration to determine the
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vehicle’s relative pose to the aerial image.

Point cloud-based Methods

Range sensors, compared to visual sensors, are more robust to illumination and

weather changes [9]. They can also provide accurate depth measurements. How-

ever, the modality gap between range sensor data and aerial images is much larger.

To narrow such modality gap, Kummerle et al. [31] extracted edge points for both a

satellite image and point clouds provided by a 2-D laser scanner, which are then used

to estimate the position of a ground robot. RSLNet [32] and its extension [33] all use

synthetic radar images generated from satellite images as the intermediate modal-

ity for matching and network training. Self-supervised learning technique is used in

[33] to release the need of ground truth required in [32]. Unlike the above methods

that directly use point clouds, some researchers extract high-level representations for

matching. Hussein et al. [34] used a LiDAR to scan tree stems and matched them

with tree crowns captured in an aerial image to localize a ground robot. Miller et

al. [35] extracted semantic information for both a ground LiDAR point cloud and

a satellite image to calculate their similarity, which is then used to update particle

weights during filtering.

2.2.2 Ground-to-OSM Matching

Vision-based Methods

Some early works achieve global localization by comparing past trajectories of odome-

try with road routes in OSM. For example, Floros et al. [36] combined trajectory of an

odometry with road information of OSM by using champfer matching, which shows

a 5m average localization error in their results. Similarly, Bruaker et al. [37] also

localized a vehicle by matching the trajectory of an odometry with road topological
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information from a OSM, while a probabilistic framework is proposed for matching.

Instead of directly using road information, Panphattarasap et al. [38] proposed a

binary semantic descriptor to represent road junctions and gaps between surrounding

buildings for both images and OMS. Multiple descriptors of consecutive input images

are then combined together to improve the retrieval performance. Based on [38],

Noe et al. [39] used a triplet loss to learn embeddings for both surrounding images

and OSM instead of extracting binary semantic descriptors. Similarly, Zhou et al.

[40] used the same approach to extract descriptors for both vehicle-captured images

and OSM, followed by a particle filter for global localization instead of the retrieval

method used in [39]. Recently, Sarlin et al. [41] propose OrienterNet, a deep neural

network for sub-meter image localization within OSM. It requires a coarse GPS prior

to build a local map from OSM and may struggle when the query image includes many

unregistered elements in OSM, e.g., pedestrians or vehicles, limiting its suitability for

some highly dynamic urban scenarios.

Point cloud-based Methods

Similar to some vision-based methods, Ruchti et al. [42] and Suger et al. [43] both

match LiDAR odometry trajectories to OSM road information, focusing on urban

environments and outer-urban environments, respectively. Unlike [42] and [43] which

focus on geometric information, [44] and [45] first extract semantic information of the

surroundings. A 4-bit semantic descriptor and a scan-context based OSM descrip-

tor were proposed in [44] and [45] for matching, respectively. Global localization is

then achieved using particle filter and data retrieval in [44] and [45], respectively. A

localization error at about 20m on KITTI sequence-00 was reported in [44].
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2.2.3 Difference from Previous Work

Similarly, our method also uses OSM as the reference map. The major difference is

that we use a low-cost sky-looking camera for the observation model, which can avoid

the interference from dynamic objects on roads, while the other methods ([44] uses a

LiDAR, [30] and [40] a panoramic camera, [41] use front-looking cameras) may need to

tackle the interference from dynamic objects on the street. In [44], a compact binary

semantic descriptor (BSD) that captures the topological information (i.e., junction

type) is used to bridge the modality gap between on-board measurement and OSM.

Based on this compact representation, we simultaneously use geometric information

(i.e., building outline) to further narrow the modality gap between sky-looking fish-

eye camera images and OSM. Lastly, different from [44, 40, 35, 30, 41], which may

require GPUs to achieve better efficiency, our method can directly run on a GPU-free

computing platform.

2.3 Methodology

Given a sky-looking fish-eye camera image IF at time t and a street block-sized geo-

referenced OSM Mosm, our goal is to estimate the vehicle pose xt with respect to

Mosm. Note that Mosm is obtained by re-rendering from the original OSM file (see

Fig. 2.1(c)) to retain only building areas, rendered in black, to facilitate descriptor

extraction (see Fig. 2.4). We assume that the vehicle runs on a flat road, so the

vehicle pose consists of three variables: 2-D coordinates (x, y) and orientation θ.

2.3.1 Problem Formulation

As aforementioned, we use particle filter to achieve metric localization. The key idea of

particle filter is to use a number of particles to estimate the posterior probability of the
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Figure 2.2: Fish-eye camera images with typical sky shapes (top row) and the OSM

masks (bottom row) generated from the corresponding patches in Mosm.

vehicle pose. The optimal pose estimation can be achieved through the expectation

of the posterior probability distribution. Mathematically, given all observations from

time 1 to time t, z1:t, and all the motion control inputs, u1:t, the posterior probability

p (xt | z1:t,u1:t) can be calculated as:

p (xt | z1:t,u1:t) = ηp (zt | xt)∫
p (xt | ut,xt−1) p (xt−1 | z1:t−1,u1:t−1) dxt−1,

(2.1)

where η is a normalization constant, p (zt | xt) represents the likelihood from the

observation at pose xt, the integral term is the prior probability of the pose [46].

Here we use a LiDAR odometry algorithm, LOAM [47] as our control input ut. Note

that other motion estimation algorithms that can provide absolute scales can also be

used as the control input here.

We use the KLD-sampling algorithm [48] to speed up the process of weight calculation
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Figure 2.3: Descriptor extraction for input fish-eye image IF . The ROI of IF is

expanded to polar coordinate and binarized to get the sky-looking mask. The final

descriptor is extracted based on the sky-pixel ratios for the divided bins of the sky-

looking mask.

for particles by adaptively reducing the number of particles during filtering. The key

idea is using Kullback-Leibler divergence (KLD) to calculate how many particles are

needed to approximate the distribution of the current vehicle pose:

n =
1

2ϵ
χ2
k−1,1−δ

=
k − 1

2ϵ

{
1− 2

9(k − 1)
+

√
2

9(k − 1)
z1−δ

}3

,

(2.2)

where n is the number of the needed particles, z1−δ is the upper 1 − δ quantile of

the standard Gaussian distribution, ϵ is the upper error bound in KLD, and k is

the number of bins that contain at least one particle. In our case, k represents the

number of square-shape (Wbin ×Wbin, where Wbin is the length of sides in terms of

pixel) bins that contain at least one particle on Mosm.
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2.3.2 The Proposed TGH Descriptors

To associate IF with Mosm, we measure the similarity between the on-line captured

IF and a particle-centered patch in Mosm. However, directly comparing IF and Mosm

is challenging due to the significant modality gap between fish-eye camera images

and OSM. Interestingly, IF and Mosm both encode the structural information about

roads and buildings, as shown in Fig. 2.2. This shifts the problem to: How can

this information be embedded? For road structures, binary semantic descriptor has

shown its efficiency to embed junction types [44, 38]. For buildings, IF and Mosm

share similar geometric outlines, but describing such outlines with a vector-based

descriptor is nontrivial. Instead, we represent this information implicitly using the

ratio of non-building areas, which can be easily extracted from both IF and Mosm.

To keep the method intuitive and efficient, we adopt a handcrafted descriptor (i.e.,

TGH descriptor) rather than a neural network, which usually requires a large amount

of paired training data and additional GPU resources for inference.

Sky-looking Mask and Descriptor Extraction

Given a IF , we first extract a square-shaped region-of-interest (ROI) at the center

of IF instead of using all pixels. In this way, pixels from roads, pedestrians, and

vehicles can be removed. Only the top parts of buildings and the sky are kept. This

could make the structure appearance of IF more close to Mosm. We empirically set

the size of the ROI as 900 × 900 pixels, which can keep enough information while

maintain a good efficiency. The ROI is then expanded horizontally to correct the

image distortion, followed by grayscale conversion. Otsu’s method [49] is then used

to binarize the ROI with adaptive threshold, assigning a value of 255 to sky pixels

and 0 to building pixels. A simple binarization operation is used to set the sky pixels

value as 255 and the building pixels value as 0. In this way, we can get a binary

sky-looking mask (see Fig. 2.3(c)).
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Algorithm 1: TGH Descriptor Extraction

Input: Sky-looking fish-eye image IF

Output: TGH Descriptor DesTGH

1 begin

2 Get the ROI of IF and horizontally expand it, noted as IH

3 Classify pixels in IH as sky or building via binarization operation, noted as IB

4 Divide IB into 24 bins, {Bink}, k ∈ {1, 2..., 24}

5 for each Bink do

6 Count sky pixels in top part, get γ(BinT
k )

7 Count sky pixels in down part, get γ(BinD
k )

8 end

9 Desgeo T ← {γ(BinT
k )}, Desgeo D ← {γ(BinD

k )}

10 Desgeo ← {Desgeo T, Desgeo D}

11 for each biti do

12 Find two corresponding bins, Bink1 and Bink2

13 if (γ(BinT
k1) ≥ τT1 & γ(BinD

k1) ≥ τD1 ) &

(γ(BinT
k2) ≥ τT1 & γ(BinD

k2) ≥ τD1 ) then

14 biti = 1

15 end

16 else if (γ(BinT
k1) ≥ τT2 & γ(BinD

k1) ≥ τD2 ) ∥

(γ(BinT
k2) ≥ τT2 & γ(BinD

k2) ≥ τD2 ) then

17 biti = 1

18 end

19 else

20 biti = 0

21 end

22 end

23 Destopo ← {biti}, i ∈ {1, 2, 3, 4}

24 return DesTGH ← {Desgeo, Destopo}

25 end
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Similar to the binary semantic descriptors (BSD) [44], we design our descriptor by

first dividing the sky-looking mask into 24 bins along the column direction, in which

each bin covers 15◦ out of 360◦. Each bin is then divided into 2 parts, that is, the

top part (i.e., the first 2/3 rows of the mask) and the down part (i.e., the last 1/3

rows of the mask), see Fig. 2.3. Unlike [44] or [38] that use only topological infor-

mation, such as road junctions and gaps between buildings, we use both topological

information and geometric information to extract our descriptors. For the geomet-

ric information, we count the sky pixels in both top and down parts in each bin to

respectively calculate the sky-pixel ratios, denoted as γ(BinT
k ) and γ(BinD

k ), respec-

tively. Bink represents the k-th bin, T is short for the top part, and D is short for the

down part. The descriptor vector of the geometric information can be obtained as

Desgeo=[γ(BinT
1 ), ..., γ(BinT

24), γ(BinD
1 ), ..., γ(BinD

24)], where Des and geo is short for

descriptor, and geometric, respectively. For the topological information, we design a

4-bit binary descriptor Destopo to indicate the presence of a road in the vehicle’s head-

ing direction(H), back direction(B), left direction(L), and right direction(R). Each bit

covers two bins of the mask, as shown in Fig. 2.3(c). If the sky pixel ratios of such

two bins satisfy conditions listed in Algorithm 1 (see thresholds setting in Tab. 2.1),

the corresponding bit of Destopo is set as 1 (i.e., a road exists in this direction), oth-

erwise 0. Let biti denotes the i-th bit of Destopo, where i ∈ {1, 2, 3, 4} follows the

heading-back-left-right order. The whole process of the TGH descriptor extraction

is shown in Algorithm 1.

OSM Mask and Descriptor Extraction

Given a particle pari with pose (xi
p, y

i
p, θ

i
p), where i represents i-th particle, we first

extract a circle-shaped ROI centered at (xi
p, y

i
p) with a diameter of ϕp (see 2.4). We

then orient the ROI according θip before the descriptor extraction (see Fig. 2.4). Sim-

ilarly, we convert the OSM ROI as grayscale and then binarize it, where non-building

pixels approximately correspond to the sky pixels in the sky-looking mask.
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Figure 2.4: Example of descriptor extraction for a given particle on OSM. A cylinder

coordinate is adapted on the OSM to get the ROI. Then the final descriptor can be

obtained as the same way for fish-eye image.

Similar to the TGH descriptor for IF , we divide the ROI of OSM mask into 24 bins

based on a cylinder coordinate, where each bin covers 15◦ out of 360◦. Each bin is

then further divided into center part (inner 2/3 radius) and marginal part (outer 1/3

radius), as shown in Fig. 2.4. Here we do not expand the ROI horizontally, since there

is not distortion in Mosm and circle-shaped ROI is much more close to the raw IF .

Then we count pixels belonged to the non-building area within both center part and

marginal part in each bin to calculate the “sky”-pixel ratio, denoted as γ(BinC
k ) and

γ(BinM
k ), respectively. C is short for center and M is short for marginal. The geome-

try part Despar
i

geo and topology part Despar
i

topo of Despar
i

TGH for particle pari are extracted

by following the same process in Algorithm 1 (i.e., line 5-26). However, different

thresholds are chosen, considering the gap between polar and cylinder coordinate.

More details can be found in Tab. 2.1.

2.3.3 Observation/Weighting Model

The observation, or weighting model in particle filter is used to update particle weights

during the filtering process. A higher weight indicates that the live sensor input data
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is much more likely captured when the robot is under a state as like the given particle.

In our case, such similarity/weight is computed by the distance between descriptors

extracted from IF and Mosm.

Given a TGH descriptor DesFTGH = {DesFgeo, DesFtopo} of IF and

Despar
i

TGH = {Despar
i

geo , Despar
i

topo} of particle pari at time t, the final weight for pari

is the combination of two parts, including topology similarity wpari

topo and geometry

similarity wpari

geo . Similar to [44] and [40], we use Hamming distance dham to calculate

the topology similarity as follow:

wpari

topo = 1− 0.2dham(DesFtopo, Despar
i

topo), (2.3)

The reason for choosing 0.2 as the factor is to make sure those particles with higher

Hamming distance can be still kept in a certain probability after re-sampling. As for

the geometry similarity, we use cos distance dcos, which is widely adapted to evaluate

the similarity between two distributions. DesFgeo and Despar
i

geo can be regarded as

distributions of sky or building pixels. Specifically, we first calculate cos distance

between the top part DesFgeo T of DesFTGH and the center part Despar
i

geo C of Despar
i

TGH.

Similarly, we then calculate the cos distance between the corresponding down part

and marginal part. To reduce the gap caused by the difference of bin size and the bin

shape used for extracting DesFTGH and Despar
i

TGH, we combine these two cos distances

by weighting factors. The final geometry similarity wpari

geo can be obtained as follow:

wpari

geo =λdcos(DesFgeo T, Despar
i

geo C) + ωdcos(DesFgeo D, Despar
i

geo M), (2.4)

where λ and ω are weights satisfying λ+ω = 1. The final weight of particle pari can

be obtained as follow:

wpari = αwpari

topo + βwpari

geo , (2.5)

where α and β are weights satisfying α+β = 1. More details about values of weights

are shown in Tab. 2.1.

21



Chapter 2. Monte Carlo Localization using Fish-eye Camera and OpenStreetMap

Table 2.1: Parameters used in TGH descriptor and KLD-sampling

Thresholds for DesFtopo / Despar
i

topo Weights for DesTGH KLD-sampling

τT1 τD1 τT2 τD2 λ ω α β ϵ δ Wbin

0.7 / 0.7 0.7 / 0.6 0.8 / 0.8 0.8 / 0.8 0.4 0.6 0.6 0.4 0.15 0.1 25

2.4 Experimental Results and Discussions

2.4.1 The Dataset

We build our dataset based on the UrbanLoco dataset [21] by supplementing the

OSM data. The UrbanLoco dataset contains 13 sequences collected in San Francisco

and Hong Kong, covering a total length of over 40 km. There are front-looking

camera images, LiDAR point clouds, and RTK GNSS poses recorded in each sequence.

However, only four sequences have sky-looking fish-eye camera images, including HK-

Data20190426-1, HK-Data20190426-2, HK-Data20190316-1, and HK-Data20190316-

2. These four sequences are collected in urban canyon areas (i.e., the Whampooa and

Ma Tau Kok areas in Hong Kong), as shown in Fig. 2.5. We make our dataset using

the aforementioned four sequences. We sample the fish-eye images at the GNSS

collection rate (i.e., 1 Hz) to get the ground truth pose. Since the down-sampled

sequences are too short, we reverse the sequence (i.e., seems like reversing the car)

at the end of the original sequence. In this way, the sequence is expanded twice

long, renamed as Seq-01, 02, 03, and 04, respectively, as shown in Fig. 2.7. Note

that RTK-GNSS trajectories of Seq-03 and 04 are not accurate enough due to severe

signal occlusions along the data collection route. So, we refine their ground truth

trajectories based on the relative trajectories estimated by LOAM.
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Figure 2.5: The Mosm with the trajectory of the vehicle. Figure (a), (b), (c), and

(d) corresponds to Seq-01, 02, 03, and 04 without expansion, whose length is 562.5m,

723.9m, 657.0m, and 232.5m, respectively.

2.4.2 Experimental Setup

We assume that vehicles always run on roads and follow the traffic rules (e.g., cannot

make u-turns in the middle of roads). Thus, we evenly distribute 40, 000 particles on

the road area, and constrain the particle orientation θp within a range with a tolerance

φ along the road orientation to reduce the number of particles that have invalid poses

(e.g., particles in the middle of the road but with a 90◦ heading direction). So, given

a road with a◦ orientation, the orientations of particles within this road should satisfy

the requirement: θp ∈ [a− φ
2
, a+ φ

2
] or [a+ 180− φ

2
, a+ 180 + φ

2
]. The a is calculated

with the two junctions at the two ends of the road. In this work, we set φ as 30◦ and

evenly distribute the θp with a resolution of 1◦. We use a larger ROI of IF for Seq-02,
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i.e., 1300× 1300 pixels. We set ϕp as around 50m for Seq-01 and 02, and around 25m

for Seq-03 and 04 because the building density is much higher in these two sequences.

Besides, Wbin = 15 is used for Seq-03 and 04 to better estimate the distribution of

sampled particles in narrow street areas. To achieve real-time performance, we pre-

extract descriptors from the given Mosm to build a database, which takes about 20s

for 200, 000 particles on an intel core i7 computer. During filtering processes, Despar
i

TGH

can be approximated by the descriptor that is extracted at the closest location to pari

in the database. A KD-search tree is used to accelerate searching. The descriptor for

the closest point in the database might have a different orientation from the particle

pari. So, we further align the retrieved descriptor with pari according to θip by sifting

the column of the retrieved descriptor. The more data points in the database are

sampled, the more accurate such approximation would be. Empirically, a larger map

Mosm usually needs more data points to build such a database.

2.4.3 Performance Evaluation

Baselines

Since work [44, 40] are not open-sourced, we are unable to directly compare with

them. So, we create some baselines for comparison. The work [44] extracts BSD

descriptors for both Mosm and on-line LiDAR scans to update particle weights during

filtering. Similarly, we use road junctions on the heading, back, right, and left of the

vehicle to build the BSD descriptor. In the first baseline, LOAM is used to provide

pose estimation to update the control input ut. A perfect BSD-based observation

model is used. Specifically, we first find the corresponding coordinates (i.e., x, y, θ)

on OSM according to the ground truth poses of the vehicle. Then BSD descriptors

extracted at these positions from the OSM are used as on-line observations. So, the

BSD descriptors for the on-line observations are exactly the same as those for the

particles whose locations are identical to the on-line sensor in the OSM. We name
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this baseline as the BSD-based method (BSD). We use this baseline as the upper limit

in principle for the BSD-based method when using a practical motion model. As for

the second baseline, we only set particle weights as 0 when particles are outside the

road area, namely, the Road Net-based method (RN). Motion estimation from LOAM

is used to update ut. This baseline only uses road information in its observation

model like [36]. In the third baseline, we replace the original observation model in

our method with a perfect observation model similar to the first baseline BSD. So, the

TGH descriptors for the on-line observations are exactly the same as those for the

particles whose locations are identical to the on-line sensor in the OSM. Such baseline

is noted as ours with Perfect Observation model (ours-PO), which refers to the upper

limit for the performance of the TGH-based method when using a practical motion

mode.

We run our method and three baselines on Seq-01, 02, 03, 04, and their reversed

versions, totally eight sequences. We run ten times of all the methods on each se-

quence. The filtering process is considered as converged when the standard deviation

of all the current particles pose are less than a pre-defined threshold. Here, we set

the standard deviation as 40 pixel (around 6m) for both x and y, as well as 10◦ for

θ. Some localization results in one runtime are as shown in Fig. 2.7.

Localization Accuracy and Convergence

We use the successful convergence rate Psc = |L|/ntest and average running steps

to achieve successful convergence, Ssc = 1
|L|
∑

l∈L s
l, to evaluate the performance

of convergence. |L| is the cardinality of L, in which L = {l} is the set of testing

runs that can achieve successful convergence. ntest represents total testing times.

sl is the number of running steps for successful convergence in l-th testing run.

Once a filtering process is successfully converged, we calculate the average error

for translation and orientation as Etrans = 1
N−sl

∑N
j=sl

√(
x̃l
j − xj

)2
+
(
ỹlj − yj

)2
and
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Table 2.2: Average Etrans and average Eori with standard deviation, average running

steps for successful convergence Ssc, and successful convergence rate Psc in UrbanLoco

dataset.

Metrics Method
Sequence

01 01-reverse 02 02-reverse 03 03-reverse 04 04-reverse

Etrans

ours 4.53±0.45 3.98±0.38 4.47±0.42 3.66±0.66 2.84±0.23 2.84±0.26 N/A N/A

BSD 3.84±0.25 3.16±0.22 3.17±0.17 2.98±0.42 1.21±0.14 1.47±0.83 N/A N/A

RN N/A N/A 3.93±0.41 3.01±0.68 N/A N/A N/A N/A

ours-PO 3.75±0.31 2.98±0.28 2.56±0.21 2.45±0.32 0.73±0.11 0.69±0.09 0.23±0.05 N/A

Eori

ours 3.29±0.32 2.87±0.22 2.76±0.37 2.74±0.32 1.40±0.19 1.32±0.24 N/A N/A

BSD 3.58±0.31 3.05±0.17 3.33±0.34 3.34±0.29 0.83±0.14 0.87±0.10 N/A N/A

RN N/A N/A 3.49±0.49 3.54±0.53 N/A N/A N/A N/A

ours-PO 3.37±0.30 3.00±0.23 2.91±0.23 3.03±0.32 0.68±0.11 0.53±0.09 0.34±0.14 N/A

Psc

ours 1.0 1.0 1.0 1.0 0.9 0.8 0.0 0.0

BSD 1.0 1.0 1.0 1.0 0.9 0.8 0.0 0.0

RN 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0

ours-PO 1.0 1.0 1.0 1.0 1.0 0.9 0.2 0.0

Ssc

ours 102.2 102.6 162.9 61.3 230.4 253.6 N/A N/A

BSD 104.8 104.1 163.2 55.9 241.2 263.9 N/A N/A

RN N/A N/A 207.0 84.3 N/A N/A N/A N/A

ours-PO 101.4 95.0 135.8 47.0 189.4 254.6 287.0 N/A

Etrans(unit: m) and Eori(unit:
◦) refer to average Etrans and average Eori here, respectively.

“N/A” represents not-converged or failed-converged cases. The best results for different metrics

on each sequence are highlighted in bold font.

Eori = 1
N−sl

∑N
j=sl

∣∣∣↼R (R(θ̃lj)
−1R(θj))

∣∣∣. j refers to j-th frame. (x̃l
j, ỹ

l
j, θ̃

l
j) is the estima-

tion pose of the vehicle at frame j in l-th testing run. (xj, yj, θj) is the ground-truth

pose. N is the frame number of the testing sequence. R(·) ∈ SO(2) is the rotation

matrix of the given orientation.
↼

R (·) is the orientation of the given 2D rotation

matrix. The average Etrans and average Eori with standard deviations are then cal-

culated based on all the successful convergence filtering processes, which are used

to evaluate the localization accuracy. As shown in Tab. 2.2, our method can achieve

similar localization accuracy as BSD. The values of average Etrans for all the successful

converged sequences are less than 4.6m. The values of average Eori are less than 3.3◦.
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(a)

(b)

(c)

Figure 2.6: The average absolute error with standard deviation for each single running

step after successful convergence. The first, middle, and bottom row represents results

for Seq-01, 02, and 03, respectively.
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Figure 2.7: Examples for qualitative performance of localization. Figures in each row

are based on the same method. In each picture, the top trajectory is the expanded

part, and the dotted line connects the place where we reverse the sequence (see Part

A of section IV).

When using our method on all sequences except sequence 02-reverse, the average run-

ning steps for successful convergence are smaller compared to BSD. This indicates that

our method can successfully converge faster than BSD. Our method can also achieve a

high successful convergence rate. Indeed, BSD has a perfect observation model without

noise, which means such results are very difficult or even impossible to be obtained
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when using practical sensors. It is worth noting that our method outperforms all

the other baselines when we using a perfect TGH-based observation model from the

perspective of convergence performance with high competitive localization accuracy.

This shows that our TGH-based observation model has a higher upper limit than the

BSD-based observation model. We interestingly find that RN baseline can only local-

ize the vehicle on the Seq-02 and 02-reverse with larger Ssc. We consider RN-based

method as a kind of “lazy” particle filter, which treats every particle equally. It only

drops particles when they are not on roads. The reason why such “lazy” filter can

successfully converge could be that the trajectory of the running vehicle is unique in

the Mosm, while this is not common in urban environments. We also observe that

in challenging scenarios, successful convergence can be difficult to achieve, leading to

failures. For instance, on the Seq-04, only ours-PO manages to converge successfully

with a Psc value of 0.2. Moreover, our method and all the other baselines are un-

able to successfully converge on Seq-04-reverse. We conjecture the primary reason is

the lack of enough consecutive and distinguished observations. The junction types,

building layouts, structures, and even appearances are highly similar and repeated in

Seq-03 and Seq-04. In cases with insufficient observations, such as Seq-04 and Seq-04-

reverse, our method fails. While when more consecutive observations are available, as

in Seq-03 and 03-reverse, our method still able to successfully converge even in such

challenging environments. To enhance the performance in challenging scenarios with

limited observations. We believe that incorporating features such as street signs and

shop names captured in images and registered in OSM provide promising potentials.

We also visualize the average absolute errors of localization, including ϵj(trans) =

1
|L|
∑

l∈L

√(
x̃l
j − xj

)2
+
(
ỹlj − yj

)2
and ϵj(ori) = 1

|L|
∑

l∈L

∣∣∣↼R (R(θ̃lj)
−1R(θj))

∣∣∣ for each

running step-j once the filtering is converged, as well as their standard deviations. The

ϵj(trans) is further split into longitudinal (i.e., along the heading of the vehicle) and

lateral errors (i.e., perpendicular to the heading of the vehicle). As shown in Fig. 2.6,

our method can provide a good estimation for both translation and orientation, where
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the errors are respectively less than 10m and 20◦ in most of the single running step.

We can also observe that the longitudinal errors are generally larger than the lateral

errors. We conjecture that the primary reason lies in the road width being significantly

smaller than its length. The field of view in the lateral direction of the road is

more sensitive than in the longitudinal direction, making fish-eye images captured at

different locations across the road width more distinguishable. Therefore, it would

be better to set different uncertainties for longitudinal and lateral estimations when

using our method in navigation or localization systems.

Dead-reckoning Distance Traveled before Successful Localization

Similar to [50], we calculate the probability of travelling a given distance x without

successful localization in the target map, P (x). In [50], it follows a key-frame-based

place recognition manner, while ours follows a filtering manner. Therefore, successful

localization in our case can only occur after the filtering process has converged. To

determine whether successful localization has occurred, we calculate Relative Trans-

lation Error (RTE) and Relative Rotation Error (RRE) for each step after successful

convergence (more details about RTE and RRE can be found in [12]). Localization

is considered successful when RTE<7.5m and RRE<10◦. For each test, a uniformly

distributed random frame is selected as the starting point for the filtering process. We

conduct 100 trials per sequence and record the travelled distance at the first instance

of successful localization. Results for each scenario (e.g., Scene-01 refers to Seq-01 and

Seq-01-reverse combined) are presented in Fig. 2.8. The vehicle successfully localizes

within 600m and 700m in 95% of the time for Scene-01 and Scene-02, respectively.

In Scene-03, due to more challenging environmental conditions, the vehicle localizes

within 850m in 95% of the time.

Sum of distance travelled without

P (x) =
localization for greater or equal to x meters

Total distance travelled

(2.6)
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Figure 2.8: Probability of travelling a given distance before successfully localizing.

2.4.4 Ablation Study

In this part, we investigate how much the topological information and geometric in-

formation contribute in TGH. We run our method with DesTGH, Destopo, or Desgeo

on all the sequences except Seq-04 and 04-reverse for ten times, respectively. Results

for Psc and Ssc are displayed in Tab. 2.3. We can see that the combination of Desgeo

and Destopo is able to improve the robustness of global localization. For example,

using DesTGH can achieve higher values of Psc on the sequences 02, 03, and 03-reverse

compared to using only Desgeo or Destopo. Meanwhile, using both topological infor-

mation and geometric information allows a better convergence speed on the sequences

01-reverse and 03-reverse. In general, only using Destopo and Desgeo is not very sta-

ble, they sometimes even lead to failures, while the proposed DesTGH allows more

robust performance.

2.4.5 Parameter Tuning for Re-sampling

To have a better understanding of the influence of KLD-based re-sampling on our

method, we investigate the influence of re-sampling parameters (i.e., ϵ, δ, and Wbin)

on the number of particles, Psc, and Ssc. For each parameter, we change its value
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(a)

(b)

(c)

Figure 2.9: The influence of re-sampling parameters on the change of particles num-

ber. The sub-figures (a), (b), and (c) represent the influences of Wbin, ϵ, and δ on

particles number, respectively.
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Table 2.3: Psc and Ssc for using descriptor DesTGH, Destopo, or Desgeo.

Sequence
DesTGH Destopo Desgeo

Psc Ssc Psc Ssc Psc Ssc

01 1.0 102.2 1.0 94.1 0.9 110.4

01-reverse 1.0 102.6 1.0 114.0 1.0 114.5

02 1.0 162.9 0.5 162.3 0.0 N/A

02-reverse 1.0 61.3 0.9 70.3 1.0 51.5

03 0.9 230.4 0.6 220.0 0.6 229.5

03-reverse 0.8 253.6 0.4 263.3 0.1 365.0

The best result for each row is highlighted. Different formats are used to represent the best

results for different metrics (i.e., bold font for Psc and underline for Ssc).

while keeping the others unchanged, and then we run our method ten times. The

experiment is conducted on Seq-03. Examples of the change of particle numbers

during the filtering process can be found in Fig. 2.9, where the y-axis uses the log-

scale. It can be easily found that ϵ has the greatest influence on the number of

particles. When ϵ becomes larger, the number of particles reduces rapidly. Differently,

the relation between the number of particles and Wbin can not be easily determined

by the partial derivative of (2.2). When Wbin is larger, the value of the statistic result

k is generally smaller, leading to the fast reduction of the number of particles (see

Fig. 2.9(a)). As shown in Fig. 2.9(c), the influence of δ on the number of particles

is small during the filtering process. This is because
√

2
9(k−1)

is much smaller than

z1−δ with different values of δ, especially at the early stage of the filtering process.

Intuitively, filtering processes usually converge faster when the number of particles

decreases faster. As displayed in Tab. 2.4, we can find that the vehicle can localize

itself faster with a larger ϵ or a larger Wbin. However, the filtering process becomes not

very stable with larger value of ϵ and Wbin, resulting in a low successful convergence

rate Psc. Empirically, smaller ϵ and Wbin could greatly reduce the failure chance of
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Table 2.4: Psc and Ssc for different re-sampling parameters.

ϵ = 0.15, δ = 0.1 Wbin = 15, δ = 0.1 ϵ = 0.15, Wbin = 15

Wbin Psc Ssc ϵ Psc Ssc δ Psc Ssc

5 1.0 392.8 0.05 1.0 329.6 0.01 0.9 262.6

10 1.0 293.6 0.10 1.0 253.5 0.02 1.0 248.4

15 0.9 230.4 0.15 0.9 230.4 0.05 0.9 252.2

20 0.9 234.9 0.20 0.8 213.1 0.10 0.9 230.4

25 0.8 225.3 0.25 0.7 221.0 0.20 1.0 222.9

30 0.7 201.4 0.30 0.5 197.4 0.30 0.9 260.2

40 0.3 126.3 0.40 0.3 155.5 0.40 0.8 222.3

Figure 2.10: Computational cost of the filtering process for Seq-01 using a NVIDIA

Jeston Xavier NX kit.

localization. However, it might cause too slow reduction for the number of particles,

which usually requires more computational time. It might be better to use smaller

values in more challenging environments, where usually have highly similar building

structures, high building densities, and narrow streets.

2.4.6 Computational Cost

To show the efficiency of our method, we evaluate the computational costs of different

parts during the filtering process in Tab. 2.5. They are measured on three different

platforms: a PC with i7-11700KF CPU (3.6 GHz) and 32-GB RAM, an Intel NUC

Kit with i5-1135G7 CPU (2.4 GHz) and 16-GB RAM, and a NVIDIA Jetson Xavier
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Table 2.5: Computational cost of the filtering process implemented on different plat-

forms.

Platform
i7-PC Intel NUC NVIDIA Xavier NX

µ Λ µ Λ µ Λ

Dataset loading (s) 3.57 3.63 4.07 4.08 15.92 16.66

Filter initialization (ms) 47.92 48.06 58.40 58.61 212.06 214.78

TGH for If (ms) 5.67 6.87 7.47 8.38 27.58 40.22

Weight update (ms) 1.05 10.41 2.96 23.18 10.72 40.22

Particle number update (ms) 0.39 5.26 0.51 6.49 1.37 17.59

Particle re-sample (ms) 0.40 4.12 0.58 6.42 1.90 22.25

Total for single step (ms) 7.51 26.66 11.52 44.47 41.57 178.87

µ refers to the average time cost. Λ is the maximum time cost.

NX kit with 6-core Careml ARM CPU and 8-GB RAM. We run our method three

times on Seq-01 on each platform. We then calculate the average time cost µ for each

part of our method during filtering. Λ is the maximum time cost of a single running

step during filtering.

Specifically, the dataset loading contains loading the Mosm descriptor dataset and

constructing the KD tree, which takes the longest time. The particle filtering ini-

tialization can be finished within 220ms. We consider these two parts as the initial

phase, which only needs to be conducted once. As for the other parts (i.e., DesTGH

extraction time, time for particle weights update, time for particle number update,

and KLD-based particle re-sampling time), the total average time cost is less than

50ms on all the three platforms. Generally, the proposed method can run fast with

real-time performance.
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2.5 Conclusion

In this work, we present a novel method to globally localize a vehicle by using a

sky-looking fish-eye camera and OSM in GNSS-degraded environments. The modal-

ity gap between fish-eye images and OSM is bridged by the similarities in building

outlines present in both data sources. A KLD-sampling based particle filter is used

to improve the efficiency and robustness of localization. We have shown quantitative

and qualitative results for global localization performance in challenging scenarios,

along with high runtime efficiency, even on embedded platforms.
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Chapter 3

Range Sensing-based Place

Recognition for Long-term

Localization: An Evaluation Study

Place recognition is a critical capability for autonomous vehicles. It matches current

sensor data with a pre-built database to provide coarse localization results. However,

the effectiveness of long-term place recognition may be degraded by environment

changes, such as seasonal or weather changes. To have a deep understanding of

this issue, we conduct a comprehensive evaluation study on several state-of-the-art

range sensing-based (i.e., LiDAR and radar) place recognition methods on the Bore-

ase dataset, which encapsulates long-term localization scenarios with stark seasonal

variations and adverse weather conditions. In addition, we design a novel metric to

evaluate the influence of matching thresholds on place recognition performance for

long-term localization. Our results and findings provide fresh insights to the commu-

nity and potential directions for future study.
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3.1 Introduction

Place recognition (PR) refers to determining whether the current place has been

visited previously against a pre-built keyframe-based database [5]. Such capability

is critical for applications in mobile robots and autonomous vehicles, such as global

localization and loop closure in Simultaneous Localization and Mapping (SLAM)

[51, 52, 12, 53]. Significant progress has been made in the last two decades for both

vision-based and range sensing-based methods [54, 55, 6]. However, reliable long-

term PR still remains a challenge in complex road environments, where long-term

variations frequently occur in both geometry and visual appearance.

Vision-based methods could be easily degraded due to dramatic changes in viewpoint,

illumination, or weather conditions [56, 57]. Recently, range sensors, such as LiDAR

and Frequency-Modulated Continuous Wave (FMCW) Radar have shown reasonable

robustness to diverse weather conditions. Some methods have used them in SLAM

and localization tasks under diverse weather conditions [58, 59, 60, 61, 62, 63, 64].

Radars are more robust to extreme weather conditions (e.g., rain or snow) than

LiDARs. This is because radars work in GHz, which is lower than that of LiDARs

(THz).

However, to what extent do weather conditions influence radar- and LiDAR-based

PR methods? We find that this question has scarcely been investigated in existing

literature, so we attempt to answer it by comparing state-of-the-art (SOTA) range

sensing-based methods in this study. In addition to experiments, we also design a

novel evaluation metric to assess influences caused by the matching thresholds [55]

in long-term PR. The motivation for us to design the new metric is that existing

works usually use the retrieval precision and recall [65], however, in long-term PR, the

performance might be degraded when using the same matching threshold to determine

whether a place has been visited. For example, a threshold that can achieve high

precision and recall in summer might not provide satisfactory performance in winter.
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We argue that a robust long-term PR method should be able to achieve performance

with acceptable variations by using a general threshold under seasonal changes.

To the best of our knowledge, this is the first comprehensive evaluation that explores

the impact of seasonal and weather variations on range sensing-based place recognition

methods in long-term scenarios, considering both performance metrics and matching

thresholds. Our contributions are as follows:

1. We design a novel metric to evaluate the influences of matching thresholds on

long-term place recognition performance.

2. We conduct a comprehensive evaluation of SOTA range sensing-based place

recognition methods on a dataset with long-term localization scenarios to ex-

plore the impact of season and weather conditions.

3. We open-source our evaluation code and make the experimental results pub-

licly available, which could inspire further works in this area from the research

community1.

3.2 Related Work

This evaluation study mainly focuses on single-shot PR methods using 360◦ LiDARs

and radars. For filtering- or aggregating-based approaches, as well as PR methods

using Non-repetitive LiDAR, readers may refer to the survey papers [5, 6].

3.2.1 Range Sensing-based Place Recognition

LiDAR-based PR methods usually design global descriptors to compare the similarity

between different LiDAR scans to retrieve places. They can be generally divided into

1https://github.com/Weixin-Ma/PR_Evaluation_Project

39

https://github.com/Weixin-Ma/PR_Evaluation_Project


Chapter 3. Range Sensing-based Place Recognition for Long-term Localization: An
Evaluation Study

handcrafted feature-based methods and data-driven methods. Early works usually

rely on handcrafted local features, such as mean surface curvature [66] and local Nor-

mal Distribution Transform (NDT) [67]. Differently, some researchers use semantic

objects to build their global descriptors instead of using low-level geometric informa-

tion. Fan et al. [68] and Zhu et al. [69] both used topological information of objects

in environments to build global descriptors. Instead of building global descriptors on

the extracted features, projection-based methods generate global descriptors based

on the projection results of raw point clouds. M2DP [70] projects raw point cloud

into multiple 2D planes to extract Histogram descriptors. Scan Context [71] is a typ-

ical bird-eye-view (BEV) projection-based method, where a 2D matrix descriptor is

used to embed the geometirc information. Similarly, Scan Context++ [72], SSC[73],

Intensity Scan Context [74], DiSCO[75], RING++[76], and LiDAR-Iris[77] all project

point clouds into BEV, followed by different global descriptor extraction methods. In-

stead of using handcrafted features, data-driven methods extract features from point

clouds using deep neural networks. Uy et al. proposed PointNetVLAD [78], which

uses NetVLAD [79] to aggregate features extracted from PointNet [80] into a global

descriptor. MinkLoc3D [81] and its extension [82] use generalized-mean pooling layer

[83] to aggregate local features extracted from sparse voxelized point could into global

descriptors.

Radar-based PR remains a challenge due to its low spatial resolution and noise.

Gadd et al. [84] used sequence matching to reduce influences of noise clusters in

a single radar scan, achieving a 30% boost in performance. The authors further

introduced a temporal data augmentation method to obtain a more robust descriptor

[85]. Suaftescu et al. [86] combined cylindrical convolutions, anti-aliasing blurring,

and azimuth-wise max-pooling to extract more reliable features from polar radar

scans. Different from all the data-driven methods above, Hong et al. [60] used M2DP

[70] to extract global descriptors from filtered 2D radar point clouds.

For long-term range sensing-based PR, there are few works. Alijani et al. [87] eval-
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uated a SOTA visual PR method GEM [83] on the Oxford RobotCar dataset [88].

Their results show a performance degradation of approximately 6% every 100 days.

Peltomaki et al. [89] fed LiDAR depth images into an image retrieval method CN-

NRetr [90] to assess the performance of long-term LiDAR PR. Instead of using depth

images, Zywanowski et al. [91] combined camera images and LiDAR intensity im-

ages, which benefits the PR performance across weather conditions. However, only

one data-driven-based method and one metric are evaluated in [89, 91]. Cao et al. [92]

developed a global descriptor from a cylindrical image representation of a 3-D point

cloud, which enhances robustness with a sequence-based check. They later proposed

a two-head classification network for end-to-end long-term localization [93]. However,

all these methods [92, 93] require a sequence of LiDAR scans and odometry to build

a submap.

3.2.2 Performance Evaluation for Place Recognition

The evaluation of PR methods typically focuses on their place retrieval performance.

Machine learning metrics for classification tasks are widely adopted in PR. Popular

metrics include Precision-recall curves [71], maximum F1 score [73], Recall@100%

[78], Extended Precision (EP) [65], AUC-PR [75], and Recall@N [55]. Given simi-

larity values between every query frame and their retrieved frame, different values

of Precision and Recall can be computed by varying the matching threshold. The

Precision-recall curve can be obtained by plotting Precision against the Recall, which

summarizes the trade-off between the true positive rate and the positive predictive

value using different matching thresholds. Maximum F1 score, EP, and AUC-PR are

all computed from the Precision-recall curve, indicating the performance of a PR

method with a single value between 0 and 1. Recall@100% represents the Recall

value at which Precision drops from 100%, which shows the highest Recall that can

be reached before the first false positive occurs. Recall@N is computed by dividing

the number of query frames with correct matches among the top-N retrieved frames
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Figure 3.1: Problem formulation of place recognition. Given a query frame from

the current sensor data, place recognition methods determine whether it has been

previously visited by matching it with a pre-built database.

by the total number of query frames.

3.2.3 Research Gap

Existing literature scarcely investigate and evaluate influences of seasonal changes

on the range sensing-based (i.e., both LiDAR and radar) PR methods. Meanwhile,

existing evaluation metrics almost focus on the performance from the perspective

of Precision and Recall. Influences of matching thresholds on the performance in

long-term conditions have also not been studied.

3.3 Preliminaries

3.3.1 Problem Formulation of Place Recognition

Given a query LiDAR frame Q and a prior database Dref as shown in Fig. 3.1, place

recognition aims to determine whether the frame Q has been visited previously in Dref
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or not. This is determined by the similarity between Q and its most similar frame

in Dref . Once the similarity exceeds a predefined matching threshold, the frame Q is

determined as a positive match, indicating its corresponding place has been visited

previously in Dref . Otherwise, the PR method considers the frame Q as a negative

match.

3.3.2 Precision, Recall, and F-score

In PR, positive matches are fewer than negative matches. Precision-recall curve has

been widely used to evaluate this imbalanced matching problem. Based on the match-

ing results and the ground-truth information, correct positive matches are regarded

as True-Positives (TP) whereas incorrect positive matches are regarded as False-

Positives (FP). Similarly, True-Negatives (TN) and False-Negatives (FN) represent

correct negative matches and incorrect negative matches, respectively. Precision and

Recall are computed by Precision = TP
TP+FP

and Recall = TP
TP+FN

, respectively.

Precision is the ratio of correctly identified positive matches, while Recall is the ratio

of TP to actual positives. By adjusting the matching threshold, we can compute

corresponding precision and recall values. The threshold typically ranges from the

lowest to the highest similarity (or distance). A Precision-recall curve, plotting preci-

sion against recall, illustrates the trade-off between them under different thresholds.

F-score, Fβ, is another widely used evaluation metric for PR, especially F1 score. Fβ

considers both precision and recall. It is calculated by:

Fβ = (1 + β2) · Precision · Recall
(β2· Precision )+ Recall

, where β ∈ R+ is chosen to make Recall β times as

important as Precision. When β = 1, we have F1 score, which is the harmonic mean

of Precision and Recall.
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3.4 The Proposed Evaluation Metric

The Precision-recall curve retains no information about the matching threshold.

Other common evaluation metrics, like maximum F1 score, EP, and AUC-PR, all

summarize a Precision-recall curve into a single value between 0 and 1 to indicate

the performance of a PR method. Therefore, the matching threshold information is

missed. This information is important for long-term PR since a reliable long-term PR

method is expected to achieve similar performance with a general matching threshold.

To assess such ability of a PR method, an intuitive idea is to keep the matching

threshold unchanged and measure the performance variations for a PR method. For

example, given a PR method, we can set a constant matching threshold and calculate

metrics like Precision, Recall, or F-score for different sequences. The variations of the

values of each metric can show the performance variations of a PR method. How-

ever, only the performance variation at a single point (i.e., the matching threshold)

is evaluated. Meanwhile, it is not easy to select a specific value for the matching

threshold. First, a higher/lower matching threshold will result in lower/higher Recall

and higher/lower Precision across all the testing sequences, creating an illusion that

the matching threshold has little influence on the performance variations. Second,

the range of similarity values of the query results for different PR methods might be

very different even using the same testing sequence. So it may be very difficult to

find a specific threshold to fairly compare the influences of the matching threshold

on the performance of different PR methods.

To solve these problems, we use the statistical result of the performance variations of

a PR method instead of the performance variations at a single point. Considering the

performance metrics, we choose to use the F-score since it provides a more comprehen-

sive evaluation of a PR method by considering both Precision and Recall. Note that

it is also acceptable to use other metrics like Precision and Recall here. Specifically,

we introduce the metric AwC-FT , Area within Curves for FT-curves. For a given
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Figure 3.2: An example for how to compute the proposed AwC-FT (i.e., the area of

gray area). The normalized AwC-FT , AwC-FT is the ratio of the original AwC-FT

to the area of the purple dashed box.

reference sequence Seq-j and a query sequence Seq-k, where k ∈ {1, 2, ...,M} is the

index of the query sequence, a F-score Threshold curve (FT-curve) can be obtained

by plotting F-score values against the matching thresholds. This is illustrated by the

red, green, or blue curves in Fig. 3.2. In long-term PR, the reference sequence and the

query sequence are usually different in terms of collection dates and environmental

conditions, i.e., j ̸= k. We denote {FT k}j as the set of FT-curves that use different

query sequences Seq-k with the same reference sequence Seq-j. AwC-FT can be

computed based on the set {FT k}j:

AwC-FT ≈
N−1∑
i=1

∆i + ∆i+1

2
× (ti+1 − ti) ,

∆i = Max (Si)−Min (Si) , Si =
{
fk
i

}
j
,

(3.1)

where N is the number of matching thresholds. ti is the i-th matching threshold. We

use matching similarity (i.e., probability) instead of descriptor distance to determine

the value for ti, which can ensure the ideal maximum value and minimum value for ti

are 1 and 0, respectively. {fk
i }j is the set of F-score values from the set {FT k}j when

matching threshold equals to ti. Max(·) and Min(·) are respectively the maximum

and minimum values of the given set. ∆i is the maximum difference of the F-score
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values when the matching threshold equals ti. An example for AwC-FT (β = 1)

calculation is shown in Fig. 3.2. Three different sequences (i.e., the red, green, and

blue curve) are used as query sequences to form RT-curves {FT k}j. {f 1
i , f 2

i , f 3
i } are

F1 score values from the set {FT k}j when ti = 0.8. We have ∆i = f 1
i −f 3

i . The value

of AwC-FT equals to the area of the gray area shown in Fig. 3.2.

To simplify the calculation, we make the matching threshold ti as a discrete uniform

distribution U{a, b}. Let skl ∈ [0, 1] be the similarity between l-th frame of query

sequence Seq-k and the retrieved frame from the given reference sequence, then {skl }j
is the set of matching similarities for all frames from query sequence Seq-k when using

Seq-j as the reference. Values of a and b can be calculated as following:

a = Min
(

Min
({

s1l
}
j

)
, . . . ,Min

({
sMl
}
j

))
, (3.2)

b = Max
(

Max
({

s1l
}
j

)
, . . . ,Max

({
sMl
}
j

))
, (3.3)

Therefore, ti+1 − ti can be simplified as to b−a
N

. Eq. 3.1 can be rewritten as:

AwC-FT ≈ b− a

N
×

(
∆1

2
+

N−1∑
i=2

∆i +
∆N

2

)
, (3.4)

The calculated AwC-FT is then normalized by dividing ((b − a) × (1 − 0)). The

normalized AwC-FT is defined as AwC-FT ∈ [0, 1], representing the ratio of the

original AwC-FT and the area of the purple dashed box, as shown in Fig. 3.2.

AwC-FT ≈ 1

N
×

(
∆1

2
+

N−1∑
i=2

∆i +
∆N

2

)
. (3.5)

The AwC-FT metric approximately represents the average performance variations of

a PR method when conducting place recognition using different query sequences (i.e.,

query sequences collected on different date and weather conditions) and the same

reference sequence, with the same matching thresholds. Theoretically, a larger value

of AwC-FT indicates that the performance of the PR method is more sensitive to the

matching thresholds under seasonal changes in long-term scenarios. Since AwC-FT
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only represents the performance variation, it is better to use the metric and the other

metrics (e.g., Maximum F1 score) at the same time for more comprehensive evaluation

results. In this paper, we use the F1 score for AwC-FT . Unless specifically stated,

otherwise all experimental results related to AwC-FT are calculated based on the F1

score.

3.5 The Evaluations

3.5.1 Dataset and Experimental Setup

KITTI [94], Oxford Radar [95], and MulRan [96] are urban environment datasets that

have been widely used in range sensing-based PR. However, none of these datasets

contain both season and weather variations, since their collection dates span less than

3 months. Alternatively, we use Boreas Dataset [97], which includes more than 350

km of data collected by driving a repeated route over one year. Seasonal variations

and adverse weather conditions, such as rain and snowstorms, can be found in the

dataset. As for sensor configurations, the data-collection vehicle has a camera, a 360◦

radar, a 128-beam LiDAR, and GPS/IMU. Similar to [59], we select 6 sequences with

stark weather variations for evaluation. Sample weather variations can be found in

Fig. 3.3. We down-sample LiDAR frames to the scan frequency of the 360◦ radar (i.e.,

4Hz). The down-sampled sequences are further filtered to keep the distance between

two consecutive frames not less than 1m. Details of the evaluation sequences can be

found in Tab. 3.1.

We use several SOTA open-sourced PR methods: Scan Context [71], LiDAR-Iris

[77], MinkLoc3Dv2 [98], and OverlapTransformer [99]. Scan Context and LiDAR-

Iris are handcrafted feature-based methods. They both extract descriptors from the

projection results of point clouds, while LiDAR-Iris compares the similarity between

two LiDAR frames in the frequency domain. MinkLoc3Dv2 and OverlapTransformer
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Figure 3.3: Examples of seasonal variations across sequences from Boreas Dataset.

All the sequences are collected along the same route on different dates. Pictures in

each column are captured in the same place. Sequence 2020-12-18 is used to fine

tune the data-driven place recognition methods. All the other sequences are used for

evaluation.
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Table 3.1: Details of the evaluation sequences. Seq-ID refers to the collection date.

Notation in a blanket is used to represent the corresponding sequence for simplicity.

The frame number here is the number after down-sampling and filtering.

Seq-ID Weather Condition Frame Number

2020-11-26 (Seq-01) overcast, snow 3305

2020-12-01 (Seq-02) overcast, snow, snowing 3291

2021-01-26 (Seq-03) overcast, snow, snowing (heavy) 4047

2021-02-02 (Seq-04) overcast, snow (severe) 3324

2021-04-08 (Seq-05) sun 3104

2021-04-29 (Seq-06) overcast, rain 3181

are data-driven methods, while their loss functions are based on localization and

overlap, respectively. We use the default parameters for Scan Context and LiDAR-

Iris provided by the authors. Following the existing long-term PR works [89, 87],

we fine tune MinkLoc3Dv2 and OverlapTransformer on another sequence 2020-12-18

which is different from all the other evaluation sequences.

During evaluation, we alternately use each sequence as the reference sequence, and

the remaining five sequences as the query sequence. For example, if Seq-01 is the

reference, Seq-02 to 06 are queries. Alternatively, if Seq-02 is the reference, Seq-01,

03, 04, 05, and 06 are queries. This allows testing of long-term PR performance

under various seasonal conditions, like recognizing places on rainy days against a

snowy day database, or vice versa. Specifically, we denote a sequence pair as ⟨k, j⟩,

which contains a query sequence Seq-k and a reference sequence Seq-j. {⟨k, j⟩}j is

the set of sequence pairs that have the same reference sequence Seq-j. Here we have

j, k ∈ {01, 02, 03, 04, 05, 06} and j ̸= k, representing the 6 evaluation sequences by the

order of collection date. Following [87] and [89], we conduct all experiments using the

top-1 retrieval results, i.e., only the retrieved frame with the highest similarity is used.

In accordance with prior research [71] and [77], a matching detection is classified as
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a true positive if the ground-truth pose distance between the query frame and the

matched frame is less than 4m.

3.5.2 Evaluation with Widely-used Metrics

For a given PR method and ⟨k, j⟩, we evaluate its performance with several widely-

used metrics: maximum F1 score, EP, and Recall@1. The experimental results are

displayed in Tab. 3.2. We also calculate the average values and standard deviations

of the above metrics for each {⟨k, j⟩}j to show the variations of PR performance.

LiDAR-Iris achieves the best performance in terms of all the metrics under all the

seasonal conditions. The average values of the maximum F1 score, EP, and Recall@1

are all higher than 99.5% with a small standard deviation (less than 0.5%) except

the average of EP when using sequence Seq-03 as the reference (i.e., 97.83%). Scan

Context also shows a competitive performance. There is only a minor decline ob-

served across all the evaluation metrics. We can find prominent degradation for both

OverlapTransformer and MinKLoc3Dv2.

According to Recall@1 values, there are respectively around 60% and 50% of the

matching results that are correct for OverlapTransformer and MinkLock3Dv2, while

more than 96% and 97% of the matching results are positive for Scan Context and

LiDAR-Iris under all seasonal conditions. EP provides a good summary on both

PR0 (i.e., the Precision at the minimum Recall value) and RP100 (i.e., the Recall value

where the Precision drops from 100%) [65]. When EP is less than 0.5, PR0 is less than

1.0, meaning there exist false positives even using the highest matching threshold and

the PR method can never provide a matching result at 100% Precision. We can see

that the averages of EP for both MickLoc3Dv2 and OverlapTransformer in almost

{⟨k, j⟩}j are less than 0.5, while the average values of EP for both Scan Context and

LiDAR-Iris are both larger than 0.94. This shows that Scan Context and LiDAR-Iris

can reach a higher Recall without any false positives.
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Table 3.2: PR performance for different {⟨k, j⟩}j . The best result for each evaluation metric is

emphasized with different formats (i.e., bold face for F1, wavy line for EP, and underline for R@1).

Arrows with different directions indicate different value ranges. ↓ refers to [0, 20]. ↘ refers to [20,

40]. → refers to [40, 60]. ↗ refers to [60, 80]. ↑ refers to [80, 100].

Ref Que
SC Iris OT Mink

F1 EP R@1 F1 EP R@1 F1 EP R@1 F1 EP R@1

Seq-01

Seq-02 99.68 96.45 99.36 99.91 99.66 99.64 85.91 51.05 75.30 62.96 51.20 45.94

Seq-03 93.46 82.42 87.72 100.00 100.00 100.00 27.53 50.02 15.96 1.23 0.00 0.62

Seq-04 99.95 99.83 99.91 99.98 99.98 99.94 86.49 53.64 76.20 88.10 56.35 78.73

Seq-05 99.98 99.81 99.97 99.98 99.98 99.97 86.30 51.80 75.90 86.49 56.68 76.19

Seq-06 99.89 99.73 99.78 99.87 99.69 99.75 80.32 51.51 67.12 84.73 54.92 73.50

ave 98.59↑ 95.65↑ 97.35↑ 99.95↑
::::::
99.86↑ 99.86↑ 73.31↗ 51.61→ 62.10↗ 64.70↗ 43.83→ 55.00→

std 2.57 6.74 4.82 0.05 0.15 0.14 23.01 1.18 23.31 33.03 22.00 29.64

Seq-02

Seq-01 99.62 96.14 99.24 99.91 99.29 99.73 86.31 52.26 75.92 62.86 51.09 45.84

Seq-03 97.91 90.97 95.90 99.99 99.94 99.75 31.30 0.00 18.56 1.37 0.00 0.69

Seq-04 99.44 95.66 98.89 99.95 99.50 99.82 85.56 50.95 74.76 60.42 51.21 43.29

Seq-05 99.29 97.92 99.72 99.95 98.76 99.90 83.59 50.40 71.81 68.61 50.48 52.22

Seq-06 99.49 96.19 98.99 99.95 99.94 99.81 80.03 51.26 66.71 65.98 51.16 49.23

ave 99.15↑ 95.38↑ 98.55↑ 99.95↑
::::::
99.49↑ 99.80↑ 73.36↗ 40.97→ 61.55↗ 51.85→ 40.79→ 38.26↘

std 0.63 2.33 1.36 0.02 0.44 0.06 21.14 20.50 21.73 25.39 20.40 19.02

Seq-03

Seq-01 98.36 88.46 96.67 99.91 99.77 98.03 36.22 50.03 22.12 2.39 0.00 1.21

Seq-02 98.82 89.75 97.11 99.95 99.95 97.54 41.05 0.00 25.83 2.99 0.00 1.52

Seq-04 98.62 83.82 96.84 99.86 99.83 97.92 40.88 50.02 25.69 1.73 0.00 0.87

Seq-05 98.04 89.50 96.04 99.77 99.74 97.58 34.54 50.02 20.88 2.10 0.00 1.06

Seq-06 98.27 84.52 96.32 99.84 99.63 98.05 31.11 0.00 18.42 1.75 0.00 0.88

ave 98.42↑ 87.21↑ 96.60↑ 99.87↑
::::::
99.78↑ 97.83↑ 36.76↘ 30.01↘ 22.59↘ 2.19↓ 0.00↓ 1.11↓

std 0.27 2.53 0.38 0.06 0.11 0.22 3.81 24.51 2.85 0.47 0.00 0.24

Seq-04

Seq-01 99.91 99.55 99.82 100.00 100.00 99.85 85.84 51.23 75.19 88.17 54.17 78.85

Seq-02 99.50 96.89 99.00 99.92 99.82 99.73 85.21 50.98 74.23 59.51 51.17 42.36

Seq-03 93.35 82.59 87.52 99.98 99.90 99.83 28.23 50.01 16.43 0.84 0.00 0.42

Seq-05 99.98 99.32 99.98 99.98 99.73 99.97 86.36 51.08 76.00 85.63 54.24 74.87

Seq-06 99.94 99.87 99.87 99.97 99.84 99.94 80.10 50.30 66.80 83.03 52.00 70.98

ave 98.53↑ 95.64↑ 97.24↑ 99.97↑
::::::
99.86↑ 99.86↑ 73.15↗ 50.72→ 61.73↗ 63.44↗ 42.31→ 53.50→

std 2.60 6.61 4.87 0.03 0.09 0.09 22.57 0.48 22.89 32.93 21.19 29.48

Seq-05

Seq-01 99.94 99.94 99.88 99.98 99.88 99.97 85.98 51.47 75.40 86.39 56.35 76.04

Seq-02 99.47 95.96 98.94 99.97 99.85 99.94 82.28 50.36 69.89 67.11 50.44 50.50

Seq-03 91.43 79.75 84.21 99.88 99.70 99.75 25.49 50.01 14.60 0.64 0.00 0.32

Seq-04 99.94 99.68 99.88 100.00 100.00 100.00 86.82 50.77 76.71 84.72 52.90 73.50

Seq-06 99.94 99.34 99.87 99.98 99.98 99.98 81.59 50.68 68.91 84.95 53.13 73.84

ave 98.14↑ 94.93↑ 96.56↑ 99.96↑
::::::
99.88↑ 99.93↑ 72.43↗ 50.66→ 61.10↗ 64.76↗ 42.57→ 54.84→

std 3.36 7.73 6.18 0.04 0.11 0.09 23.56 0.48 23.45 32.84 21.37 28.81

Seq-06

Seq-01 99.82 99.06 99.61 99.92 99.48 99.73 79.95 50.86 66.60 84.54 54.83 73.22

Seq-02 99.59 96.57 99.18 99.97 99.94 99.70 81.30 50.62 68.49 64.54 51.10 47.65

Seq-03 92.30 76.38 85.69 99.90 99.76 99.70 23.47 0.00 13.29 1.08 0.00 0.54

Seq-04 99.95 99.88 99.91 99.98 99.82 99.97 81.98 50.32 69.46 81.83 51.84 69.25

Seq-05 99.92 99.47 99.84 99.94 99.39 99.87 83.13 50.73 71.13 85.10 56.29 74.07

ave 98.32↑ 94.27↑ 96.85↑ 99.94↑
::::::
99.68↑ 99.79↑ 69.97↗ 40.51→ 57.80→ 63.42↗ 42.81→ 52.95→

std 3.01 9.02 5.58 0.03 0.21 0.11 23.27 20.25 22.30 32.07 21.49 27.92
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Intuitively, when the seasonal and weather conditions change between query and

reference sequences, the performance of a PR method should vary. Interestingly,

such performance variations are almost negligible for LiDAR-Iris. For instance, when

using a snowstorm sequence Seq-03 as the reference, there was only a slight decrease

in Recall@1 compared to using the other sequences as references. Regarding Scan

Context, there is an average performance degradation of about 8% in EP when using

Seq-03 as the reference. Meanwhile, unlike LiDAR-Iris, the values of average EP

and Recall@1 for Scan Context both decrease when using the snowstorm Seq-03

as query sequence. Similar trends of performance variations can also be found in

the results for OverlapTransformer and MinkLoc3Dv2. However, such degradation

is more dramatic than that for Scan Context and LiDAR-Iris. For example, for

OverlapTransformer, the maximum F1 score and Recall@1 decrease by about 40% on

average when using Seq-03 as a reference sequence. Such degradation is even more

prominent for MinkLoc3Dv2, which is more than 50%.

Our results show that the SOTA handcrafted feature-based LiDAR methods can

be robust to seasonal variations in long-term PR. Two SOTA data-driven methods

(i.e., OverlapTransformer and MinkLoc3Dv2) demonstrate a heightened sensitivity

to seasonal variations. We guess the main reason is that these two networks were

initially designed and trained using other datasets that vary from Boreas Dataset in

terms of both scene layouts and sensor configuration (i.e., resolution and installation

position). Limited by the network generalizability, the overall performance degrades

than those reported in [98] and [99]. In addition, insufficient training data collected

under different weather conditions may result in a significant performance variation

during evaluations.
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Table 3.3: Results of AwC-FT for different {⟨k, j⟩}j. The best result for each {⟨k, j⟩}j
(i.e., each row) is highlighted in bold font. “Ref” is short for reference.

Ref

Input: LiDAR Input: Radar

SC Iris OT Mink SC Iris

Seq-01 25.54 23.06 56.79 85.78 4.78 5.84

Seq-02 13.72 17.77 52.78 66.16 3.32 5.32

Seq-03 8.49 3.29 9.17 0.90 4.65 4.49

Seq-04 25.94 21.33 55.53 67.88 3.45 3.86

Seq-05 25.98 20.90 58.32 84.60 3.14 4.42

Seq-06 25.31 19.48 55.31 82.89 5.10 7.66

ave 20.83 17.64 47.98 64.70 4.07 5.26

3.5.3 Influences by Matching Thresholds

In the last part, we evaluate the performance of several SOTA LiDAR PR methods

by using three widely-used metrics. Such evaluation provides a general statement

about how good the performance can be. In this section, we evaluate a long-term PR

method from a new perspective by using the proposed metric. For every {⟨k, j⟩}j,

we compute its AwC-FT , as shown in Tab. 3.3. The results are also visualized in

Fig. 3.4.

We summarize the main findings as follows: Firstly, using the same matching thresh-

olds, the average F1 score variations for handcrafted feature-based methods is smaller

than those for data-driven methods. As shown in Tab. 3.3, the average AwC-FT

values for LiDAR-Iris and Scan Context are much smaller than those for Overlap-

Transformer and MinkLoc3Dv2. Such variations can be also observed in Fig. 3.4.

Secondly, we interestingly find that AwC-FT decreases when the reference sequence

Seq-j for {⟨k, j⟩}j is significantly different from all the other query sequence Seq-k.

Specifically, the snowstorm sequence Seq-03 differs from all the other sequences in

53



Chapter 3. Range Sensing-based Place Recognition for Long-term Localization: An
Evaluation Study

SC Iris OT Mink

S
e
q
-0
1

S
e
q
-0
2

S
e
q
-0
3

S
e
q
-0
4

S
e
q
-0
5

S
e
q
-0
6

Figure 3.4: FT-curves {FT k} for different {⟨k, j⟩}j using several SOAT LiDAR-based

PR methods. Sequences ID on the left refers to the used reference sequence. Figures

in each column are based on the same PR method.

terms of weather conditions. When using Seq-03 as the reference sequence, the varia-

tion in performance is much smaller than those results when using the other sequences

as the reference, as shown in the third row in both Tab. 3.3 and Fig. 3.4.
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Table 3.4: The frame number of each segmented region for different sequences.

Seq-ID
Frame Number

Total
Region-01 Region-02 Region-03

Seq-01 632 774 1899 3305

Seq-02 656 731 1904 3291

Seq-03 818 927 2302 4047

Seq-04 654 707 1963 3324

Seq-05 636 639 1829 3104

Seq-06 604 774 1803 3181

Considering practical applications, AwC-FT not only can evaluate the influence of

matching thresholds on the performance of different PR methods in long-term local-

ization but also can directly benefit the choice of reference sequences. For example,

from Tab. 3.3, we can find that the performance variation is the smallest when us-

ing Seq-03 as a reference. However, the average values for maximum F1 score, EP,

and R@1 are smaller than those when using the other sequences as reference (see

Tab. 3.2). In other words, using Seq-03 as the reference sequence leads to a poor

yet stable result in long-term PR. In addition, the absolute performances for all the

methods are very close when using Seq-01, 02, 04, 05, and 06 as references. It is

reasonable to select any of them as the reference. Nevertheless, when using Seq-02

as the reference sequence, we find that the AwC-FT values for all the methods are

the smallest. So, choosing Seq-02 as the reference achieves a robust and competitive

long-term performance.

Overall, the experimental results show that the performance influenced by different

matching thresholds vary across handcrafted feature-based and data-driven methods.

The proposed metric can effectively evaluate such influence to show the robustness

of the methods to the matching thresholds. Moreover, it can also benefit the choice

of reference sequence.
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Figure 3.5: Example of the segmented regions along the route. ✕ refers to the

locations used to segment each sequence into three different regions.

3.5.4 Matching Similarity Distributions

In large-scale environments, there may be significant variations in geometry across

different regions, such as building styles and road layouts. These variations can

directly influence the performance of PR methods. To assess influences of these

variations on PR performance, we divide each query sequence into distinct regions

based on ground-truth poses. Specifically, there are three different regions, denoted as

Region-01 (campus region), Region-02 (main-road region), and Region-03 (side-road

region), as shown in Fig. 3.5. Region-01 and 03 exhibit fewer dynamic objects, such

as vehicles and pedestrians, whereas Region-02 is highly dynamic with many moving

vehicles. Details about the frames of each region on different sequences can be found

in Tab. 3.4.

For each sequence pair ⟨k, j⟩ from the set {⟨k, j⟩}j, we first compute the Recall@1 for

each region, i.e., the ratio of positive matches within a specific region to the number

of query frames within the same region. We then compute the average of Recall@1

for each region. Results are displayed in Tab. 3.5. Values in each row are computed

using the same {⟨k, j⟩}j. To better present the differences in matching results in
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Table 3.5: The average of Recall@1 (%) for different regions for different {⟨k, j⟩}j.

Results in each row are computed using the same {⟨k, j⟩}j. The best result for each

row is highlighted. Different formats are used to represent the best results from

different regions (i.e., bold face for Region-01, wavy line for Region-02, and underline

for Region-03).

Ref
Region-01 Region-02 Region-03

SC Iris OT Mink SC Iris OT Mink SC Iris OT Mink

Seq-01 94.68↑ 99.84↑ 73.26↗ 52.12→ 93.90↑
::::::
99.52↑ 34.55↘ 49.83→ 99.68↑ 100.00↑ 68.82↗ 57.88→

Seq-02 98.28↑ 99.94↑ 75.34↗ 41.10→ 94.41↑
::::::
99.17↑ 31.25↘ 22.08↘ 99.85↑ 100.00↑ 68.50↗ 43.48→

Seq-03 85.66↑ 89.60↑ 40.26→ 1.44↓ 97.65↑
::::::
99.42↑ 8.87↓ 0.25↓ 99.89↑ 99.99↑ 21.86↘ 1.33↓

Seq-04 94.54↑ 99.67↑ 75.60↗ 54.24→ 93.50↑
::::::
99.67↑ 34.56↘ 47.88→ 99.69↑ 100.00↑ 67.62↗ 55.37→

Seq-05 93.71↑ 99.83↑ 76.44↗ 54.66→ 91.50↑
::::::
98.92↑ 33.77↘ 47.38→ 99.59↑ 100.00↑ 66.73↗ 57.79→

Seq-06 93.72↑ 99.60↑ 71.45↗ 49.59→ 93.64↑
::::::
99.47↑ 33.94↘ 50.08→ 99.23↑ 99.98↑ 62.11↗ 55.19→

different regions, we visualize some examples of the matching similarity distributions

along the trajectory of query sequence as heat maps, as shown in Fig. 3.6.

In general, LiDAR-Iris demonstrates superior performance across all three regions,

particularly in Region-03 where the average of Recall@1 approaches nearly 100% for

all {⟨k, j⟩}j. As expected, for all the methods, the average Recall@1 of Region-02 is

generally lower than those of the other two regions. This can be also supported by the

matching similarity distributions in different regions as shown in Fig. 3.6. The heat

map colors indicating the similarity of matching results in Region-02 are lighter than

those in Region-01 and Region-03. This is particularly noticeable in the results for

LiDAR-Iris (i.e., second row) and the radar-based Scan Context (i.e., fifth row). Com-

pared to the handcrafted feature-based methods, the average Recall@1 for Region-02

significantly decreases when using the data-driven methods. This suggests, to some

extent, that the influences of dynamic objects on Recall@1 is more pronounced for

data-driven methods.

Based on our experimental results, the handcrafted feature-based methods are more

robust to the variations in geometry across different regions in large-scale environ-
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Figure 3.6: Examples of top-1 matching similarity distributions. All the results are

based on the same reference sequence, Seq-01. The sequence ID on the top refers to

the query sequence used in each column.
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ments.

3.5.5 Comparisons with Radar-based Methods

Due to the robustness to diverse weather conditions, radar has recently gained a lot

of attention, showing significant potential in long-term localization. However, radar

suffers from multiple sources of artifacts and clutters, for example, speckle noise,

receiver saturation, and multi-path reflections. So, we first use the filtering method

[100] to reduce noise. The filtered points are then transferred from 2D radar images

into 3D point clouds while the z-coordinate is set as 1 for all the filtered points. We

then use the generated point clouds as inputs to run Scan Context and LiDAR-Iris.

Results for maximum F1 score, EP, and Recall@1 are displayed in Tab. 3.6.

Different from LiDAR-based methods, radar-based Scan Context outperforms the

radar-based LiDAR-Iris. The radar-based Scan Context exhibits improvements in

both maximum F1 score and Recall@1 compared to the LiDAR-based Scan Context.

The average values of maximum F1 score and average values of Recall@1 for different

{⟨k, j⟩}j are all larger than 99.6% and 99.0%, respectively. The value of average EP

increases in almost {⟨k, j⟩}j. Regarding radar-based LiDAR-Iris, the decrease of the

maximum F1 score and Recall@1 can be deemed insignificant. From the perspective

of EP, there is about a 10% drop. We conjecture the reason could be the loss of

height information in the radar-based point cloud, which is important for LiDAR-Iris

to generate its global descriptor. Surprisingly, these two handcrafted feature-based

LiDAR methods show good generalizability on radar sensors.

As expected, radar-based methods show small performance variations using the same

matching thresholds in long-term scenarios. As shown in Tab. 3.3, the average

AwC-FT values for radar-based Scan Context and radar-based LiDAR-Iris are 4.07%

and 5.26%, respectively, which are greatly less than the other LiDAR-based methods.

These results indicate that in radar-based methods, influences of matching thresholds
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Table 3.6: PR performance for different {⟨k, j⟩}j using radar-based methods. The

best result for each evaluation metric is emphasized with different formats (i.e., bold

face for F1, wavy line for EP, and underline for R@1).

Ref Que
SC-radar Iris-radar

F1 EP R@1 F1 EP R@1

Seq-01

Seq-02 99.59 94.42 99.18 99.68 95.68 99.36

Seq-03 99.80 99.23 98.00 99.80 98.35 97.97

Seq-04 99.89 99.12 99.79 99.92 99.86 99.79

Seq-05 99.91 92.84 99.82 99.95 99.30 99.91

Seq-06 99.68 96.08 99.36 99.54 77.20 99.03

ave 99.77↑
::::::
96.34↑ 99.23↑ 99.78↑ 94.08↑ 99.21↑

std 0.12 2.53 0.66 0.15 8.56 0.69

Seq-02

Seq-01 99.76 93.69 99.51 99.63 80.38 99.27

Seq-03 99.49 95.61 97.42 99.49 94.67 97.36

Seq-04 99.65 94.86 99.30 99.68 95.81 99.33

Seq-05 99.66 93.66 99.33 99.80 79.02 99.60

Seq-06 99.73 97.23 99.45 99.71 98.67 99.42

ave 99.66↑
::::::
95.01↑ 99.00↑ 99.66↑ 89.71↑ 99.00↑

std 0.09 1.33 0.80 0.10 8.29 0.83

Seq-03

Seq-01 99.95 99.60 99.90 99.93 84.40 99.85

Seq-02 99.79 96.93 99.58 99.79 74.17 99.58

Seq-04 99.85 97.33 99.70 99.88 99.46 99.68

Seq-05 99.80 94.53 99.60 99.84 98.80 99.68

Seq-06 99.84 98.37 99.60 99.65 90.21 99.28

ave 99.85↑
::::::
97.35↑ 99.68↑ 99.82↑ 89.41↑ 99.61↑

std 0.06 1.69 0.12 0.09 9.46 0.19

Seq-04

Seq-01 99.92 82.24 99.85 99.95 83.12 99.91

Seq-02 99.80 95.92 99.61 99.85 88.81 99.70

Seq-03 99.82 97.02 97.89 99.79 99.52 97.86

Seq-05 99.92 95.32 99.85 99.94 93.80 99.88

Seq-06 99.86 91.58 99.73 99.83 95.05 99.67

ave 99.87↑
::::::
92.42↑ 99.39↑ 99.87↑ 92.06↑ 99.40↑

std 0.05 5.41 0.75 0.06 5.63 0.78

Seq-05

Seq-01 99.87 91.38 99.74 99.89 86.47 99.77

Seq-02 99.56 94.41 99.13 99.73 81.12 99.45

Seq-03 99.74 96.27 97.49 99.69 99.06 97.42

Seq-04 99.90 99.02 99.81 99.89 99.68 99.77

Seq-06 99.87 99.19 99.74 99.61 85.33 99.23

ave 99.79↑
::::::
96.06↑ 99.18↑ 99.76↑ 90.33↑ 99.13↑

std 0.13 2.94 0.88 0.11 7.59 0.88

Seq-06

Seq-01 99.76 94.26 99.53 99.70 77.85 99.40

Seq-02 99.76 96.13 99.53 99.91 99.65 99.81

Seq-03 99.81 98.61 97.89 99.68 97.61 97.80

Seq-04 99.91 99.39 99.81 99.84 72.05 99.69

Seq-05 99.92 92.94 99.84 99.75 77.03 99.50

ave 99.83↑
::::::
96.26↑ 99.32↑ 99.78↑ 84.84↑ 99.24↑

std 0.07 2.46 0.73 0.09 11.45 0.73
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Table 3.7: The average of Recall@1 (%) for different regions for different {⟨k, j⟩}j
using different radar-based PR methods.

Reference
Region-01 Region-02 Region-03

SC-radar Iris-radar SC-radar Iris-radar SC-radar Iris-radar

Seq-01 99.77↑ 99.72↑
:::::
99.13↑ 98.69↑ 99.91↑ 99.99↑

Seq-02 99.84↑ 99.91↑ 97.56↑
:::::
98.28↑ 99.97↑ 99.97↑

Seq-03 89.50↑ 89.48↑
:::::
99.34↑ 99.17↑ 99.90↑ 99.88↑

Seq-04 99.54↑ 99.57↑
:::::
99.10↑ 99.06↑ 99.95↑ 99.91↑

Seq-05 99.52↑ 99.81↑
:::::
99.38↑ 99.00↑ 99.87↑ 99.97↑

Seq-06 99.54↑ 99.43↑
:::::
98.79↑ 98.13↑ 99.90↑ 99.74↑

on long-term performance are typically smaller compared to those of the LiDAR-based

method.

As for influences of geometry variation across different regions on PR performance,

we find that the average Recall@1 values for different regions are very close. For

almost {⟨k, j⟩}j, the values of average Recall@1 for different regions are all more

than 99% (see Tab. 3.7). We guess the primary reason is that radar possesses specific

penetration capabilities, enabling it to reliably observe through various obstacles,

such as moving vehicles. However, the heat map colors indicating the similarity of

matching results in Region-02 tend to be lighter than those in Region-01 and Region-

03, as shown in the last two rows of Fig. 3.6. So, geometry difference, such as building

layout and traffic conditions, still makes place recognition more difficult.

The above comparisons show the potential of radar-based methods in long-term

scenarios, which is expected to achieve robust performance using general matching

thresholds under diverse conditions.
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Figure 3.7: FT-curves {FT k} for different {⟨k, j⟩}j using different radar-based PR

methods. Sequence ID on the left refers to the used reference sequence in each row.

Figures in each column are based on the same method.
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3.6 Conclusions

In this work, we conduct a comprehensive evaluation of range sensing-based long-term

place recognition in large-scale urban environments. We propose a novel metric to

evaluate the influences of matching thresholds on long-term performance, which pro-

vides a new perspective of evaluation. Our experimental results provide the following

important findings: i) current SOTA handcrafted feature-based LiDAR PR methods

are more robust to season and weather variations in long-term and large-scale scenar-

ios; ii) with a general matching threshold, current SOTA data-driven LiDAR-based

PR methods tend to provide results with larger variations in long-term scenarios;

iii) the variation in geometry information across different regions in large-scale en-

vironments, such as building layouts and traffic conditions, can lead to performance

degradation. Such degradation is much smaller in handcrafted feature-based LiDAR

methods; iv) radar-based PR methods show strong potential in long-term, large-scale

scenarios, offering superior robustness in diverse weather and traffic conditions.
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Chapter 4

Place Recognition based

Localization using Lightweight

Semantics

Global metric localization is one of the fundamental capabilities for autonomous vehi-

cles. Most existing methods rely on global navigation satellite systems (GNSS). Some

methods relieve the need of GNSS by using 3-D LiDARs. They first achieve place

recognition with a pre-built geo-referenced point-cloud database for coarse global lo-

calization, and then achieve 3-DoF/6-DoF pose estimation for fine-grained metric

localization. However, these methods require accessing point-cloud features and raw

point clouds, making them inefficient and hard to be deployed in large-scale environ-

ments. To provide a solution to this issue, we propose a global metric localization

method with triplet-based histogram descriptors. Specifically, we first convert the

input LiDAR point clouds into a semantic graph and describe the vertices in the

graph with the proposed descriptor for vertex matching and pose estimation. These

vertex descriptors are then selected and aggregated into a global descriptor to de-

cide whether two places correspond to the same place according to a similarity score.
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Experimental results on the KITTI dataset demonstrate that our method generally

outperforms the sate-of-the-art methods.

4.1 Introduction

Global metric localization refers to finding vehicle positions at the metric level relative

to a given map, usually a geo-referenced map, such as Google Map. It is a fundamental

capability for autonomous vehicles to navigate in real-world environments. Vision-

based global localization has attracted great attentions in recent decades due to the

affordability of visual cameras and great advancement of computer vision technologies.

However, vision-based methods suffer from the intrinsic limitations of visual cameras,

such as changes of illuminations, viewpoints, weathers, and seasons, etc.

Recently, many global localization methods use 3-D LiDARs due to their robustness

to the changes of visual appearances and illuminations. The pipeline of the LiDAR-

based methods can be generally divided into two steps: 1) Perform place recognition

by matching the global descriptors extracted from both the current and off-line Li-

DAR point clouds; 2) Estimate relative metric poses by registering the current point

cloud to the retrieved point cloud from the database. However, these methods require

accessing point-cloud features and raw point clouds for place recognition and pose

estimation, making them inefficient and hard to be deployed in large-scale environ-

ments. To address this issue, some researchers [71, 74] propose to design descriptors

to achieve both place recognition and pose estimation. In this way, only point-cloud

features are needed to be accessed, so the memory cost is reduced and the efficiency

is increased.

However, many existing descriptor-based methods can only achieve 1-DoF/3-DoF lo-

calization and might be degraded when significant viewpoint changes happen between

the on-line and off-line point clouds. So, in this work, we propose a novel method
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called Triplet-Graph to address the above issues. Specifically, we convert a point

cloud into a semantic object graph, and design an innovative semantic triplet-based

histogram descriptor to embed semantic, topological, and geometric information for

each vertex (i.e., an object) in the graph. We extract vertex descriptors from two

different point clouds, then perform vertex matching and estimate the relative pose

based on the matched vertices. The estimated pose and the descriptors of the vertices

are further employed to build global descriptors by simple statistical calculations. The

global descriptors are used to decide whether two places correspond to the same place

according to their similarity score. The framework of our proposed method is shown

in Fig. 4.1. Our contributions are summarized as follows:

1. We propose novel semantic triplet-based histogram descriptors for global metric

localization using 3-D LiDAR point clouds.

2. We design a simple yet effective adding strategy to fast aggregate vertex de-

scriptors into a global descriptor to reduce memory consumption.

3. We demonstrate that our method generally outperforms state-of-the-art meth-

ods in terms of both place recognition and pose estimation.

4.2 Related Work

The existing global metric localization methods using key-frame-based database can

be generally divided into two categories: one-shot and filtering. Our method belongs

to one-shot, which means that for the on-line data we only need the point cloud from

the current moment. Different from one-shot, filtering methods require a sequence

of on-line point clouds from different moments for filter algorithms, such as Bayesian

filter. In this review, we only focus on one-shot methods, and divide them into non-

6-DoF and 6-DoF methods.
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4.2.1 Non-6-DoF Global Localization

In this work, non-6-DoF includes 1-DoF and 3-DoF. The 1-DoF global localization

only estimates headings (i.e., yaw angles), while the 3-DoF localization estimates 2-D

positions (i.e., x and y coordinates) and headings.

Existing methods usually convert point clouds from 3-D to 2-D, such as bird-eye-

view (BEV) images and range images, to extract their descriptors. Scan Context

[71] is a typical BEV-based method, in which raw point clouds are converted into

BEV polar grids. The largest z coordinate among the points in each block of the

polar grids is used to build a matrix-based global descriptor. The heading difference

between the query frame and the matching frame is estimated by column shifting

when their similarity reaches the maximum. Based on Scan Context, Wang et al. [74]

combined intensity information with geometric information for descriptor extraction.

Only 1-DoF pose estimation is provided in [71] and [74]. To achieve 3-DoF global

localization, Wang et al. [77] proposed a global descriptor, LiDAR-Iris, which is

extracted from the generated binary signature image of the LiDAR point cloud. The

3-DoF pose estimation is obtained from the Iris after Fourier transform. Xu et al.

[75] transformed the Scan Context-based feature into the frequency domain to learn

a rotation-invariant descriptor and pose. Kim et al.[72] proposed Scan Context++

by extending Scan Context with a Cartesian BEV-based descriptor to obtain the

translation estimation. Instead of using geometric information, Li et al. [73] explored

semantic information to extract Scan Context-based global descriptor. A two-step

global semantic Iterative Closest Point method was proposed to find the 3-DoF pose,

which was further used to improve matching performance. Instead of using polar

grids, Ding et al. [101] performed Radon Transform to extract descriptors based

on BEV images, which can estimate headings between point clouds without being

affected by the translation variations. Lu et al. [102] also used Radon Transform for

descriptor extraction, while the proposed learning-free descriptor can estimate both

headings and translations.
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Differently, some researchers used a spherical projection model to convert point clouds

into range images instead of 2-D BEV images. Chen et al. [103] proposed OverlapNet,

a deep neural network that can estimate overlap and relative yaw angle between two

LiDAR point clouds. Lukas et al. [104] proposed a data-driven system for place

recognition that estimates yaw discrepancies between LiDAR point-cloud scans at

the same time.

4.2.2 6-DoF Global Localization

A common solution to achieve 6-DoF pose estimation relies on the correspondence of

geometric elements (e.g., key points, lines, and planes). Shan et al. [105] projected 3-

D point clouds to get intensity images, in which ORB feature descriptors are extracted

and used for place recognition queries using BoW. The matched candidate is further

validated by Perspective-n-Point (PnP) and Random Sample Consensus (RANSAC).

Giammarino et al. [106] conducted experiments to show that straightforward adap-

tation of existing visual place recognition techniques on intensity information can

achieve reliable loop closure detection. However, an expensive high-resolution Li-

DAR is usually needed to obtain dense intensity images for feature extraction.

Recently, some researchers directly extracted 3-D features from point clouds for local

matching and global descriptors for place recognition. For example, Cattaneo et al.

[107] proposed LCDNet, an end-to-end approach for both place recognition and pose

estimation. A PV-RCNN-based network is used to extract local descriptors. The pro-

posed pose regression network can register two point clouds with an arbitrary initial

misalignment. Du et al. [108] integrated multi-level context information and channel-

wise relations into local features using FlexConv and an SE block. The extracted local

features are then aggregated as a global descriptor for place recognition. The 6-DoF

pose estimation is also achieved by the local feature matching. Komorowski et al.

[109] proposed EgoNN, a deep neural network based on MinkLoc3D to extract both
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local and global descriptors. Different from DH3D, EgoNN can process more larger

point clouds, while the number of points should be less than 10,000 in DH3D. In-

stead of performing place recognition based on the global descriptor generated from

local features, Cui et al. [110] used 3-D features LinK3D [111] to build a BoW for

loop closure detection. The full 6-DoF pose estimation was then obtained by using

RANSAC and Singular Value Decomposition (SVD) on the point-to-point LinK3D

matching results. Boss et al. [112] and Guo et al. [113] both used probabilistic voting

strategy for place recognition. The 6-DoF poses are estimated based on 3-D keypoint

and intensity-integrated keypoint, respectively.

The above methods all use point-level features, which are not memory efficient in

large-scale environments. Instead, some researchers use semantic objects to build

descriptors. GOSMatch [69] represents environments as semantic object graphs.

Histogram-based descriptor was proposed for both global descriptor and vertex de-

scriptor. Similarly, BoxGraph [114] builds a semantic object fully-connected graph

from point clouds. The authors combined the object shape and centroid information

into the vertex descriptor for both place recognition and pose estimation.

Like GOSMatch and BoxGraph, our method also uses a semantic graph to encode

environment information. But differently, we explicitly use geometric, semantic, and

topological information from stable static objects in the environment. GOSMatch

[69] uses vehicle information, which is not stable and consistent when time changes.

BoxGraph [114] does not explicitly use topological information for descriptor extrac-

tion. We believe that the topological information is beneficial for building a more

descriptive representation for a semantic graph.

69



Chapter 4. Place Recognition based Localization using Lightweight Semantics

Semantic

Graph 

Construction

Semantic

Graph 

Construction

Vertex

Descriptor 

Extraction

Vertex

Descriptor 

Extraction

Global 

Descriptor

Extraction
Vertex 

Matching
6-DoF Pose

Estimation
Global 

Descriptor

Extraction

Similarity

Point Cloud 1

Point Cloud 2

Figure 4.1: The framework of our proposed method. Point Cloud 1 and Point Cloud

2 respectively refer to an off-line point cloud from a pre-built database and an on-line

point cloud captured at the current moment from a vehicle-mounted LiDAR.

4.3 Methodology

The framework of our proposed method is shown in Fig. 4.1. The method is generally

divided into four parts: semantic-graph construction, vertex descriptor extraction

and matching, 6-DoF pose estimation, as well as global descriptor extraction and

similarity computing.

4.3.1 Semantic Graph Construction

Fig. 4.2(a) shows the semantic graph construction process. Given a point cloud, we

first find its semantic segmentation result. We only consider static objects in this

work. The class label is denoted as l, in which l ∈ L = {sidewalk, building, fence,

vegetation, trunk, pole, and traffic sign}. Points with the same class label are then

clustered into different object groups using Euclidean Cluster algorithm implemented

by Point Cloud Library [115]. Each clustered group has its own ID, class label, and

corresponding points. To improve the consistency of object clustering across different

frames, we treat the clustered group as one individual object only when the number

of points within the group is larger than a pre-defined threshold, which varies with

the class label of the group. It is larger for sidewalk, building, and vegetation than

the other classes.
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Figure 4.2: (a) Semantic graph construction and (b) vertex descriptor extraction.

Semantic segmentation is first performed on the input LiDAR point cloud. A semantic

graph is then constructed based on the clustered objects. The blue dotted ellipse

shows a sample triplet. Finally, the triplet semantic histogram-based descriptor is

employed to represent the vertices in the graph. lm could be an arbitrary label from

set L.

Similar to [69, 114], we represent the clustered point-cloud groups as an undirected

graph G = ⟨V ,E⟩. V = {vi} is the set of vertices, in which vi refers to an individual

object-i in the point cloud. Each vertex contains the geometric centroid position

(i.e., xyz -coordinate) and class label-l of the object. E = {eij} is the set of edges that

connect two different vertices, in which eij = ⟨vi, vj⟩ is the edge connecting vertices

vi and vj. Two objects are connected only when their distance is less than a pre-

defined threshold τedge = 55m. As shown in Fig. 4.3, the semantic graph becomes a

completely connected graph when τedge is large enough.
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(a) τedge = 10m (b) τedge = 25m

(c) τedge = 55m (d) τedge = 200m

Figure 4.3: Semantic graphs with different values of τedge.

4.3.2 Triplet-based Vertex Descriptor Extraction andMatch-

ing

The geometric centroids of the clustered objects can be regarded as an abstract repre-

sentation of the point cloud at the instance level. To find the relative pose between two

scans based on two semantic graphs, vertices correspondences are needed. Inspired

by the semantic histogram-based descriptor used in [116], we also use a semantic

histogram descriptor to embed semantic and topological information for vertices in

a graph. Differently, we explicitly embed geometric information into the histogram

based on the relative angle among vertices. To calculate such a relative angle, at least

three vertices are needed. However, using more vertices (e.g., >3) to calculate the

relative angle at once can lead to higher computational complexity. So, we only use
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three vertices and use the word triplet to name our descriptors.

We denote ∆ = {vf , vm, vt} as a triplet, in which f , m, and t are short for first,

middle, and third, respectively. ∆ijk refers to the triplet when vf = vi, vm = vj,

vt = vk, in which i ̸= j ̸= k. vi and vk are both connected to vj. The relative angle of

∆ in the xy-plane is denoted as α. C = {lf , lm, lt} denotes the class combination for

a triplet. An example of a ∆ can be found in the blue dotted ellipse at the top right

of Fig. 4.2(b). Note that ∆ijk and ∆kji are regarded as the same ∆ because objects

in point clouds are unordered. {∆}vj is the set of all the triplets that satisfy vm = vj

in the graph.

Histogram based on Two-level Bins

To build a histogram, the first step is to “bin” the range of values, that is, to divide

the entire range of values into a set of intervals. We innovatively design two-level bins

to classify and count triplets.

We design the first-level bins based on class combinations of triplets. Specifically,

given the class label set L, we first chose one class label for lm of C, such as lm = trunk.

Then, we exhaustively chose class labels for lf and lt. All these class combinations

form the first-level bins of the histogram for vertex whose class label is trunk, denoted

as {C}lm=trunk. Since objects in point clouds are unordered, we regard {fence, trunk,

pole} and {pole, trunk, fence} as the same C. The length of {C}lm=trunk can be

calculated by N1 =
∑|L|

w=1C
1
w, in which |L| is the cardinality of L and C refers to

Combination in mathematics (|L| = 7 in this work, so N1 = 28). Similarly, the first-

level bins of the histogram for vertex with the other class labels can be obtained by the

same way, such as {C}lm=pole, etc. It is worth noting that the first-level bins {C}lm

are different for vertices whose class labels are different, as shown in the bottom right

of Fig. 4.2(b).

For each first-level bin C ∈ {C}lm , we further divide it into N2 second-level bins.
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Each second-level bin has the same combination as C, but with a different relative

angle range. As shown in the purple dotted box in Fig. 4.2(b), we have N2 = 180◦/θ,

in which θ (we set θ as 5◦) is the interval of the relative angle range. Note that θ

should be divisible by 180◦. When θ = 180◦, the second-level bins disappear, which

means that only semantic combinations of triplets are embedded in the histograms,

leading to performance degradation. The details can be found in .

Vertex Descriptor Extraction

Given a vertex vj from a constructed graph, we first build the first-level bins (i.e.,

{C}lm) for its vertex histogram descriptor according to the class label of vj. Then,

we search the graph to get {∆}vj . For each ∆ in {∆}vj , we find the corresponding

first-level bin that has the same class combination C as ∆. By comparing α with

the cover range of relative angles for the second-level bins, we can easily know which

second-level bin the current triplet ∆ belongs to. Then, the triplet number in the

retrieved second-level bin is increased by one. Repeat the above steps for all the

∆ in {∆}vj , we can obtain the final triplet-based histogram descriptor for vj, see

Fig. 4.2(b). The extracted vertex descriptor can be easily converted to a N1 × N2

matrix, denoted as Desvj . Each element in the matrix equals the number of triplets

in {∆}vj with the same class combination C and range of α in the graph.

Vertex Matching

Vertex matching between two graphs G1 and G2 can be realized by comparing the

similarity between the descriptors of vertices in the two graphs. Only vertices with

the same class label are compared, for example, trunks in G1 will only be compared

with trunks in G2. We use the cosine similarity to compare the similarity:

Sim
(
v1j , v

2
t

)
=

∑
Desv1j ·Desv2t∥∥∥Desv1j

∥∥∥
F
×
∥∥Desv2t

∥∥
F

, (4.1)
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in which Sim is short for similarity, the dot · is the element-wise multiplication on

two matrices, ∥·∥F is the Frobenious norm of a matrix,
∑

is the summation of all

elements of a matrix, v1j and v2t are respectively arbitrary vertices in G1 and G2 with

the same class label. For every v1j in G1, we chose the vertex v2t in G2 that has the

highest similarity between v1j as the matching result, denoted as (v1j , v2t ). We use

{(v1j , v2t )} to represent all vertex matching results between G1 and G2.

4.3.3 6-DoF Pose Estimation

There are mainly two steps in the 6-DoF pose estimation. Firstly, we use RANSAC

[117] and SVD to estimate a coarse pose, T̃ ∈ SE(3), based on the vertex matching

results {(v1j , v2t )}. Secondly, we optimize the pose estimation by minimizing the to-

tal projection error based on the inliers matches after the first step. For two given

matched vertices, the projection error can be obtained as ε =
∥∥v̄1j − T · v̄2t

∥∥, in which

T ∈ SE(3) is the pose needed to be optimized, v̄1j and v̄2t are respectively the homo-

geneous coordinates for the vertices v1j and v2t . The Ceres Solver [118] is used to solve

this optimization problem. We denote the optimal 6-DoF pose obtained through the

optimization process as T ∗. To speed up the optimization process, we use T̃ as the

initial guess for the optimization.

4.3.4 Global Descriptor Extraction and Similarity Comput-

ing

To achieve place recognition, the similarity between two point clouds is required.

We aggregate the local (vertex) descriptors into a global descriptor to measure the

similarity.
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Global Descriptor Extraction

Let {Desvj} denote the set of all vertex descriptors in a semantic graph. As mentioned

in Section III-B, the first- and second-level bins of the histogram are exactly the same

for the vertices whose class labels are the same. Therefore, Desvj and Desvj+1
from

the same graph can be directly added together element-wisely when the class labels

for vj and vj+1 are the same. Instead of directly aggregating all the vertices in a graph

into a global descriptor, we use remaining matched vertices. Specifically, we perform

the projection operation (as mentioned in Part C) using T ∗ and the vertex matching

results {(v1j , v2t )}. Only when the projection error is less than a pre-defined threshold

τproj, the corresponding vertex match is kept. The remaining vertices matches are

denoted as {(v1j , v2t )}rem. For G1, we add up descriptors for vertices with the same

class label-l from {(v1j , v2t )}rem, denoted as Desl,1. A Desl,1 records all the triplets

whose middle class is label-l from the remaining vertices in G1, which is the overall

description for class-l in G1. Repeat the adding operation for every class label-l.

Then, the global descriptor for G1 is the set of all Desl,1, denoted as {Desl,1}, in

which l ∈ L. The global descriptor {Desl,2} for G2 can be obtained by the same way.

Similarity computing

We use cosine similarity to measure how close two global descriptors are. Specifically,

given two global descriptors {Desl,1} and {Desl,2}, we first calculate the similarity

between Desl,1 and Desl,2 for each class-l. Then, a weighted model is adopted to

combine the similarity scores for all the classes to get the final score between the

global descriptors from the two graphs:

Sim (G1,G2)=
∑
l∈L

1

|L|
×

∑
Desl,1 ·Desl,2

∥Desl,1∥F×∥Desl,2∥F
. (4.2)
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4.4 Experiments

4.4.1 Dataset and Experimental Setup

We evaluate our method using the KITTI odometry dataset [119]. There are 11

sequences with the 6-DoF trajectory ground truth in the dataset. Loop closure only

occurs in sequence 00, 02, 05, 06, 07, and 08. So, we only perform experiments on

these sequences. Note that sequence-08 contains reverse loops (i.e., revisiting the

same place from the opposite direction), while loop closure only happens with the

same direction in the other sequences. To ensure a fair comparison, we follow the same

setup as in [120] and [73]. They use a large number of point-cloud pairs for evaluation.

A true-positive loop closure occurs when the relative distance is less than 3m between

a point cloud pair. If the distance exceeds 20m, the corresponding pair is considered

as a negative sample. We use the benchmark and evaluation pairs provided by [73].

For each sequence, there are Np positive samples and 100 ·Np negative samples that

are selected randomly.

Following [73], we use the ground-truth semantic labels from the SemanticKITTI

dataset [121], and the prediction labels from RangeNet++ [122] as the point-cloud

semantic segmentation results, respectively denoted as SK and RN in Tab. 4.1 and

Tab. 4.2. Due to the page limit, we present the parameter tuning results for τedge, θ,

and τproj in terms of both place recognition and pose estimation in 4.4.6.

4.4.2 Place Recognition Performance

We compare our method with the open-sourced state-of-the-art methods, including

Lidar Iris (IRIS) [77], M2DP [70], Overlapnet (OLN) [103], PointNetvlad (PNV) [78],

SGPR[120], Scan Context (SC) [71], Intensity Scan Context (ISC) [74], and SSC [73].

In this work, we directly import the results from [73] for all the above methods.
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(a) Seq-00 (b) Seq-02

(c) Seq-05 (d) Seq-06

(e) Seq-07 (f) Seq-08

Figure 4.4: Precision-Recall curves on the KITTI dataset. Seq is short for Sequence.

RN and SK represent prediction labels from RangeNet++ and ground-truth semantic

labels from SemanticKITTI dataset, respectively.
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To ensure comprehensive evaluation, we not only show the Precision-Recall curves

(see Fig. 4.4), but also provide the maximum F1 score and the Extended Precision

(EP) [65] as shown in Tab. 4.1. The F1 score is calculated as F1 = 2 PR
P+R

, in which

P is precision and R is recall. For EP, we have EP = 1
2

(PR0 + RP100), in which PR0

is the precision at the minimum recall, and RP100 equals to the maximum recall at

100% precision.

As we can see in Fig. 4.4 and Tab. 4.1, our approach outperforms the other methods

except on Seq-02 and Seq-06. SSC [73] outperforms our method slightly on Seq-

00 and 06. We conjecture the reason could be the degradation of object clustering

or inconsistency of objects between two LiDAR point clouds (i.e., some objects can

not be both observed in two scans). When there are too few objects in the scene,

the constructed semantic graph would be very sparse, leading to degradation in the

descriptive capability of the vertex descriptor and global descriptor. Especially on

Seq-02, we found that the average number of clustered objects is obviously less than

that of the other sequences, which is shown as the yellow bars in Fig. 4.5. As for

Seq-08, there exist many reverse loop closures (opposite viewpoints), our method can

still achieve satisfactory performance of place recognition. This demonstrates the

robustness of our method against viewpoint changes.

Interestingly, the place recognition performance between Ours-SK and Ours-RN is

very close. This indicates that our method can be practically applicable using stan-

dard semantic segmentation networks. We guess the reason is that our method relies

more on the consistency of semantic segmentation (i.e., similar segmentation results

for different observations around the same location) rather than higher segmentation

accuracy.
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Table 4.1: Maximum F1 score (%) and Extended Precision (EP) (%) on the KITTI

dataset. Larger values indicate better performance. The best results are highlighted

in bold font.

Methods

Seq-00 Seq-02 Seq-05 Seq-06 Seq-07 Seq-08

F1 EP F1 EP F1 EP F1 EP F1 EP F1 EP

IRIS (ICRA 2020)[77] 66.8 62.6 76.2 66.6 76.8 74.7 91.3 79.1 62.9 65.1 47.8 56.2

M2DP (IROS 2016)[70] 70.8 61.6 71.7 60.3 60.2 61.1 78.7 68.1 56.0 58.6 7.3 50.0

OLN (Auton. Robot. 2021)[103] 86.9 55.5 82.7 63.9 92.4 79.6 93.0 74.4 81.8 58.6 37.4 50.0

PNV (CVPR 2018)[78] 77.9 64.1 72.7 69.1 54.1 53.6 85.2 76.7 63.1 59.1 3.7 50.0

SGPR (IROS 2020)[120] 82.0 50.0 75.1 50.0 75.1 53.1 65.5 50.0 86.8 72.1 75.0 52.0

SC (IROS 2018)[71] 75.0 60.9 78.2 63.2 89.5 79.7 96.8 92.4 66.2 55.4 60.7 56.9

ISC (ICRA 2020)[74] 65.7 62.7 70.5 61.3 77.1 72.7 84.2 81.6 63.6 63.8 40.8 54.3

SSC-RN (IROS 2021)[73] 93.9 82.6 89.0 74.5 94.1 90.0 98.6 97.3 87.0 77.3 88.1 73.2

Ours-RN 99.6 92.6 83.1 76.4 98.6 87.8 97.6 86.4 97.8 96.0 96.3 93.2

SSC-SK (IROS 2021)[73] 95.1 84.9 89.1 74.8 95.1 90.3 98.5 96.9 87.5 80.5 94.0 93.2

Ours-SK 99.8 99.5 71.6 74.1 99.1 92.5 97.1 92.6 98.1 97.9 99.0 97.3

4.4.3 Pose Estimation Performance

We compare our results with SSC [73] on the positive pairs. Note that SSC can

only provide 3-DoF pose estimation (x, y, yaw), while ours provides 6-DoF pose

estimation. Relative Translation Error (RTE) and Relative Rotation Error (RRE)

[123] are employed to evaluate the translation and orientation accuracy, respectively.

RTE is calculated as RTE = ∥test − tgt∥2, in which test ∈ T ∗ is the estimated trans-

lation, tgt is the ground-truth for the estimated translation. RRE is calculated as

RRE = cos−1

(
Tr(R−1

gt Rest)−1

2

)
or RRE = cos−1

(
Tr(RT

estRgt)−1

2

)
, in which Rest ∈ T ∗

is the estimated rotation matrix, Rgt is the ground truth for the estimated rotation

matrix, and Tr(·) represents the trace operation.

Tab. 4.2 shows the RTE average and RRE average with standard deviations. We can

see that our method presents better translation estimations than SSC on almost all

the sequences except Seq-02. Especially on Seq-00 and Seq-06, the average RTE of our

method is less than 10cm. As for orientation estimation, SSC only outperforms ours
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Table 4.2: Average RTE (m) and average RRE (degree) with standard deviations on

the KITTI dataset. Smaller values indicate better performance. The best results are

highlighted in bold font.

Seq-00 Seq-02 Seq-05 Seq-06 Seq-07 Seq-08

RTE

SSC-RN 0.38±0.43 1.07±0.81 0.51±0.59 0.33±0.37 0.35±0.45 0.45±0.57

Ours-RN 0.07±0.05 0.95±1.61 0.16±1.01 0.07±0.05 0.35±1.59 0.55±2.23

SSC-SK 0.32±0.41 0.91±0.81 0.47±0.60 0.30±0.38 0.30±0.33 0.25±0.33

Ours-SK 0.07±0.13 1.66±3.72 0.11±0.56 0.09±0.10 0.22±0.10 0.20±1.09

RRE

SSC-RN 0.58±2.24 0.87±1.15 0.66±4.53 0.64±0.81 1.43±10.43 1.35±1.37

Ours-RN 0.37±0.28 4.52±20.69 1.05±9.64 0.26±0.16 2.13±14.46 2.34±9.87

SSC-SK 0.80±5.75 1.22±6.03 0.62±0.67 0.76±0.79 0.52±2.16 1.55±1.37

Ours-SK 0.34±0.31 16.74±44.56 0.58±6.30 0.27±0.27 1.75±13.08 1.04±2.56

on Seq-02 and Seq-07. On the other sequences, our method outperforms SSC with

a large margin, which can generally achieve an average RRE at the sub-degree level.

In general, our method can provide a competitive metric-level 6-DoF pose estimation

against SSC (only 3-DoF available).

As we can see in Tab. 4.2, on Seq-02, our method cannot well estimate the poses.

There are two main possible reasons for this: 1) There might be too many incorrect

vertices matches, leading to inferior optimization results; 2) Too few vertices matches

are obtained, which cannot provide enough constraints during the optimization pro-

cess. To better assess the difference between clustered objects in different sequences,

we calculate the average number of the clustered objects (i.e., the average number of

objects in an input LiDAR point-cloud pair). In addition, object number difference

(i.e., the absolute value of object number difference between the LiDAR point-cloud

pair) and the object number difference among pairs whose RTE/RRE is larger than

the upper quartile of RTE/RRE are also calculated.

The average values and standard deviations of the above items for every sequence

are visualized in Fig. 4.5. Generally, small object number difference refers to better

consistency of clustered objects in two frames, which should usually have a better
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Figure 4.5: Distribution of the numbers of clustered objects for different KITTI

sequences in the form of bar chart. Results are obtained based on the ground-truth

semantic labels. Seq is short for Sequence.

vertex matching result. Besides, a larger average object number contributes to a

denser graph, which can also result in a better vertex matching result. Although the

object number difference is small on Seq-02, we find that its average object number is

the smallest, which is less than 20, while the other sequences have at least 30 objects

for each scene on average. In addition, we find that all the three object number

differences on Seq-07 are much larger than those on the other sequences. Such a huge

difference leads to degradation in pose estimation even Seq-07 has the largest average

object number. These results are all consistent with our conjecture. Some examples

of vertices matches are visualized, including a failing example with occlusion caused

by a truck (see Fig. 4.6(a) and (b)), a failing example with few clustered objects (see

Fig. 4.6(c) and (d)), and a success example (see Fig. 4.6(e) and (f)). The degradation

of vertex matching can lead to the failure of pose estimation, which would further

affect place recognition. In conclusion, a larger average object number and less object

number difference can significantly improve the pose estimation performance.
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4.4. Experiments

(a) Original matches in a scene with occlusion (b) Remaining matches in a scene with occlusion

(c) Original matches in a scene with few objects (d) Remaining matches in a scene with few ob-

jects

(e) Original matches in a simple scene (f) Remaining matches in a simple scene

Figure 4.6: Examples for original vertices matches (the left column) and the remaining

vertices matches (the right column). Original vertices matches represent the matching

results from Section III-B. Remaining vertices matches refer to the selected vertices

for global descriptor extraction in Section III-D. In each figure, the upper and lower

point cloud represents the visited and the revisiting frame, respectively. The figure

is best viewed in color.
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Table 4.3: Maximum F1 score (%) and Extended Precision (EP) (%) on the KITTI

dataset with/without vertices matches selection operation for global descriptor ex-

traction.

Sequence
F1 EP

(w/ select) (w/o select) (w/ select) (w/o select)

Seq-00 99.8 57.3 99.5 56.9

Seq-02 71.6 17.9 74.1 50.4

Seq-05 99.1 56.7 92.5 50.9

Seq-06 97.1 73.1 92.6 64.0

Seq-07 98.1 76.6 97.9 73.6

Seq-08 99.0 47.7 97.3 53.0

average 94.1 54.9 92.3 58.1

4.4.4 Ablation Study

To demonstrate the contribution of the projection-based selection operation, we dis-

able the selection operation and directly generate the global descriptor using all ver-

tices. Note that our ablation study is conducted using ground-truth semantic labels

to avoid the impact caused by the quality of semantic segmentation. Results can

be found in Tab. 4.3. As we can see, the vertices matches selection operation can

significantly improve the performance of place recognition in term of both maximum

F1 score and EP. The average maximum F1 score and average EP are increased by

0.392 and 0.342, respectively.

4.4.5 Memory Consumption

Compared to using raw point clouds, only vertex descriptors need to be accessed in

our method. On average, throughout all the sequences, there are 31 clustered objects

in a graph. So, the average memory consumption for a graph is (N1×N2 +4)×4×31
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(a) F1 max scores

(b) Extended Precision (EP)

Figure 4.7: F1 max score and Extended Precision corresponding to different τproj.

bytes. In our case, this equates to 125.5KB. The average number of 3-D points per

point-cloud scan is 123,584, which approximately consumes 1483.0KB of memories.

This demonstrates our high efficiency in terms of memory consumption.

4.4.6 Parameter Tuning

In this section, we investigate the effects of τedge, θ, and τproj on both place recognition

and relative pose estimation. For each parameter, we change its value while keep

the others static, and then we run our method for all the sequences. To reduce

the interference from semantic segmentation result, all the tuning experiments are

performed based on the ground-truth semantic labels.

85



Chapter 4. Place Recognition based Localization using Lightweight Semantics

(a) F1 max scores

(b) Extended Precision (EP)

Figure 4.8: F1 max score and Extended Precision corresponding to different θ.

Effect of τproj

τproj only affects place recognition because it is only used for global descriptor ex-

traction. As shown in Fig. 4.7, both F1 max scores and EP generally decrease when

τproj becomes larger. This is because the vertex matching merely based on vertex

descriptor is not perfect, there are still some incorrect matching result. The project

operation can be considered a geometry verification, which can effectively filter the

incorrect matches. However, when such verification is too strict, i.e. a small value of

τproj, both F1 max scores and EP decrease. The reason could be the error from pose

estimation T ∗ and the geometry centroid coordination of the object, which will lead

to the position inconsistency between the same object in two different frame after

projection.
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(a) Average RTE(m)

(b) Average RRE(degree)

Figure 4.9: Average RTE and average RRE corresponding to different θ.

Effect of θ

In our method, θ directly affects the dimension of the vertex descriptor and the

global descriptor. Fig. 4.8 and shows the F1 max score and EP to different θ. Fig. 4.9

shows average RTE and average RRE corresponding to different θ. As θ increases,

the performance of place recognition and pose estimation gradually decrease among

most of the sequences. Obviously, when θ is larger, the dimension of the vertex

and global descriptor become smaller. As a consequence, triplets with the same

semantic combination while with different relative angle α contribute equally for

the descriptor construction. The discriminating power for both vertex and global

descriptors degrades, leading to more incorrect vertex matches. Therefore, the pose

estimation and place recognition become worse. Meanwhile, we also found that when

θ is too small (i.e. 1 degree), the general performance also degrades. The main reason
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(a) F1 max scores

(b) Extended Precision (EP)

Figure 4.10: F1 max score and Extended Precision corresponding to different τedge.

is that we can not obtain the consistent geometry centriod of the same object from

two different LiDAR frame. View-point change and local obstruction can easily lead

to such inconsistency.

Effect of τdege

Different values of τdege will result in different constructed graphs. As τdege increases,

the number of edges connecting vertexes increases, which means the graph becomes

denser. And the overall performance becomes better, as shown in Fig. 4.10 and

4.11. Theoretically, a small τdege leads to less triplet for the same vertex, which

means the vertex descriptor focuses on embedding local information. In addition,

the same object in frame-1 might not be observed in frame-2, which can lead to a

huge difference between the local information in different frames. A denser graph can
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(a) Average RTE(m)

(b) Average RRE(degree)

Figure 4.11: Average RTE and average RRE corresponding to different τedge.
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embed both local and global information for each vertex, which can greatly relieve

the inconsistency between vertex descriptors caused by missing some common objects.

However, we also found that the overall performance will slightly decrease when τdege

is big enough (i.e. a fully-connected graph), such as in seq-02, 07, and 08. We

conjecture the reason could be that the 6-DoF pose between the query and matched

frames is relatively larger, making a huger difference between the cluttered objects,

especially those that are far away from the center. Empirically, a value of τdege that

can connect most of the vertexes but not fully connect every two vertexes has a better

overall performance.

4.5 Conclusion

In this work, we propose a novel method, TripletGraph, to achieve both place recog-

nition and 6-DoF relative pose estimation using lightweight semantics. For every

input LiDAR point cloud, a semantic graph will be first constructed to represent

the scenario in a compact and high-level way. We design a triplet-based semantic

histogram descriptor to embed both geometric information and topology information

for the every vertex in the semantic graph. Such descriptors are then used to perform

pose estimation and aggregated into a global descriptor for place recognition. We

have shown quantitative and qualitative results for our proposed method, which also

shows our high competitive against the-state-of-art algorithms.
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Chapter 5

Registration based Localization

using Lightweight Semantics

This chapter presents a system, TripletLoc, for fast and robust global registration of a

single LiDAR scan to a large-scale reference map. In contrast to conventional methods

using place recognition and point cloud registration, TripletLoc directly generates

correspondences on lightweight semantics, which is close to how humans perceive

the world. Specifically, TripletLoc first respectively extracts instances from the single

query scan and the large-scale reference map to construct two semantic graphs. Then,

a novel semantic triplet-based histogram descriptor is designed to achieve instance-

level matching between the query scan and the reference map. Graph-theoretic outlier

pruning is leveraged to obtain inlier correspondences from raw instance-to-instance

correspondences for robust 6-DoF pose estimation. In addition, a novel Road Surface

Normal (RSN) map is proposed to provide a prior rotation constraint to further

enhance pose estimation. We evaluate TripletLoc extensively on a large-scale public

dataset, HeliPR, which covers diverse and complex scenarios in urban environments.

Experimental results demonstrate that TripletLoc could achieve fast and robust global

localization under diverse and challenging environments, with high memory efficiency.
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5.1 Introduction

Global localization refers to localizing a robot in a prior database or map with less or

without initial guess. Global Navigation Satellite System (GNSS) is one of the most

popular solutions. The performance of GNSS might be degraded because of signal

occlusions and multipath effects in urban canyons or undergrounds. Researchers

tend to use onboard measurements to locate the robot within a prior database or

map to release the need for GNSS in such environments. LiDAR-based methods have

demonstrated good robustness and accuracy under diverse conditions, such as changes

in illumination or weather, showing great potential for global localization [5, 9].

A popular global localization framework is based on a scan-to-scan loop closure

scheme, which achieves global localization by comparing similarities of descriptors

(i.e., place recognition) and estimating relative poses between the query scan and

reference scans (i.e., scan-wise registration) [71, 74, 73, 77, 12]. However, some of

them might not be efficient in memory when the scale of the reference map becomes

larger, where thousands of discrete and dense point clouds are involved. Such map

formulation is also hard to maintain in long-term localization, considering the discrete

characteristics of reference scans.

Recent works [124, 125, 126] use a scan-to-map scheme based on lightweight semantics

in environments. These methods directly register the single query scan to the large-

scale reference map, where semantic instances are used to reduce memory and com-

putational complexity of pose estimation. All-to-all [124, 126] and condition-meeting

[125] strategies have been proposed to build instance-to-instance correspondences.

However, they may still be inefficient at times when addressing the registration prob-

lem, particularly with a large number of correspondences in large-scale environments.

To address the above issues, we propose TripletLoc in this study, which is a fast,

efficient, and robust solution for LiDAR-based global localization. Similarly, Triplet-

Loc also converts the single query scan and the entire large-scale reference map to
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Figure 5.1: TripletLoc Framework. Semantic graphs are constructed to represent

both the single query scan and the global reference map. Vertex descriptors are then

extracted from the graphs to build instance-to-instance correspondences. Graph-

theoretic outlier pruning and rotation constraint from the RSN map are integrated

for the 6-DoF pose estimation.

a compact instance-level semantic graph, which has been used in the current meth-

ods [12, 125, 69, 114] to embed environment layouts. Instance-to-instance corre-

spondences are then generated based on a novel semantic triplet-based histogram

descriptor, which embeds semantic, topological, and geometric cues from the scene.

Based on this descriptive descriptor, a simple yet effective top-k matching strategy

is used to guarantee running speed and computational feasibility of the scan-to-map

based scheme. At the back end, an RSN map is proposed to provide a prior rotation

constraint for better pose estimation performance. Lastly, graph-theoretic pruning is

used in the 6-DoF pose estimation to improve the robustness against outlier correspon-

dences. The framework of TripletLoc is shown in Fig. 5.1. Overall, our contributions

are summarized as follows:
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1. We develop a system that could efficiently and robustly localize a robot globally

in large-scale urban environments using only one query scan without requiring

a sequence of onboard scans and odometry.

2. We extend and improve the semantic triplet-based histogram descriptor [12] to

obtain robust and efficient instance-to-instance correspondences.

3. We propose a novel RSN map to provide a prior rotation constraint for pose

estimation to further enhance registration performance.

5.2 Related Work

LiDAR-based global localization can be generally categorized into two branches: one-

shot-based and sequence-based methods [5]. Sequence-based methods can be further

divided into retrieval and filtering methods, where relative poses between consecu-

tive frames are needed. By accumulating consecutive frames as a submap, retrieval

methods achieve global localization by identifying whether the current submap has

been visited in a prior submap-based database. Filtering methods usually locate a

robot by iteratively estimating the pose of the robot, commonly known as Monte

Carlo Localization [127]. Differently, one-shot global localization only uses one single

frame without requiring relative poses. This paper focuses on one-shot methods. We

review existing related works in two streams: place recognition (PR)-based methods

and registration-based methods.

5.2.1 Place Recognition-based Methods

PR-based methods usually first achieve coarse localization by identifying whether the

current query frame has been visited in a prior database. The relative metric pose is

then obtained by registering the query frame to the retrieved frame using raw point
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clouds or local point features [5]. Global descriptors are usually used for the retrieval

process in PR-based methods, including handcrafted feature-based and data-driven-

based descriptors. In early works, handcrafted local features are usually aggregated

into global descriptors for PR [67]. Instead of using local features, global descriptors

extracted directly from LiDAR points have become another popular solution for PR

in recent years [5]. Scan Context [71] embeds geometric information from a 3-D

point cloud as a 2-D matrix global descriptor using bird-eye-view (BEV) projection.

Similarly, SSC[73], Intensity Scan Context [74], RING++[76], and LiDAR-Iris[77] all

use BEV projection to extract their global descriptors. More recently, graph structure

has been used in many methods to embed environment layouts [69, 114, 12, 128]. Most

of them rely on the clustered semantic instances to build semantic graphs [69, 114, 12].

Similarities between semantic graphs are then used for place recognition. Differently,

key points are first extracted from the point cloud and then be used to construct

triangle-based graphs [128]. A voting strategy is proposed to select matched frames

from a prior database for the query frame. In stead of using handcrafted descriptors,

data-driven-based methods extract global descriptors from point clouds using deep

neural networks [78, 81, 82].

5.2.2 Registration-based Methods

Unlike PR-based methods, which use a key-frame-based retrieval method, registration-

based methods directly register the query scan to the reference map. However, in

global localization, the scale of the reference map is much larger than that for a single

point-cloud scan, which usually covers thousands of square meters. It is computation-

ally intractable to register a query LiDAR scan directly to a reference map using 3-D

point-level correspondences. Alternatively, several researchers extract instances from

environments to build correspondences [124, 125, 126]. All-to-all strategy is used to

build correspondences in [126], that is, all the possible pairs of an instance in the

query scan and an instance in the reference map. Similarly, all-to-all correspondences
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are used in [124]. However, an instance from the query scan and an instance from

the reference map will be paired only when their classes are the same. In [125], cor-

respondences are generated when triangle descriptors for query scan and global map

satisfy some designed conditions (i.e., same hash key, semantic classes, and similar

variance matrices). Based on the built correspondences, all the methods mentioned

above use the graph-theoretic outlier pruning method to select inlier correspondences

for pose estimation. These methods might build a large number of correspondences

in large-scale environments, making it very slow or even computationally intractable

for outlier pruning.

5.2.3 Differences from Previous Studies

Our previous work, Triplet-Graph [12], is a typical scan-to-scan based approach. Each

scan includes its surrounding instances, which saves the same instance multiple times

across different keyframes. To improve memory efficiency, TripletLoc employs a scan-

to-map framework, where each instance is saved only once in the prior map. Unlike

the RANSAC-based pose estimation in Triplet-Graph, TripletLoc enhances robust-

ness to outliers using graph-theoretic pruning and Truncated Least Squares (TLS)

based registration. Compared to other registration methods, TripletLoc ensures com-

putational feasibility for robust pose estimation, regardless of the reference map’s

scale. To achieve this, we design an informative vertex descriptor that integrates

semantic, topological, and geometric information, rather than relying solely on clus-

tered instances. Additionally, we propose a novel RSN map to provide a prior rotation

constraint to improve registration robustness. Using RSN overcomes the limitation

of previous methods that discard road information, showing significant potential for

urban global localization.
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5.3 The Proposed Method

Our proposed one-shot global localization method is generally divided into three

parts: instance-level map and RSN map construction, vertex descriptor extraction

and matching, and robust 6-DoF pose estimation, as shown in Fig. 5.1

5.3.1 Instance-level Map and RSN map

Due to the large scale of reference maps, directly localizing the vehicle using 3D

point-level correspondences is computationally impractical. Instead, we represent the

scene at the instance level for better efficiency, as shown in Fig. 5.2. To enhance

localization robustness, we also propose a novel RSN map (see Fig. 5.3) for prior

rotation constraints in 6-DoF pose estimation.

Instance-level Map

Given a sequence of LiDAR scans and their relative poses, we first perform semantic

segmentation on each scan using the pre-trained SPVNAS [129] without fine-tuning.

Instead of using all object classes, we only use trunk, pole, and traffic sign, because

they are more stable in long-term localization. 3D points with the same class label

are then clustered into different object groups for each scan using the Euclidean

Cluster algorithm from the Point Cloud Library [115]. Each clustered group has

its own ID, class label, geometric centroid (i.e., xyz -coordinate), and corresponding

point number. All the clustered instances from different scans are then transformed

and concatenated into the same coordinate system based on relative poses between

different scans. Here, we directly use the ground truth of robot poses provided by

the datasets. Since some instances might be observed across different scans, it would

lead to redundancy and duplication of instances in the map. So, we further fuse

instances whose distances are less than 0.5m between each other into a new single
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Figure 5.2: The construction pipeline of the instance-level map. Semantic segmen-

tation is first performed on each LiDAR scan, followed by instance clustering. The

clustered instances of all scans are then concatenated and fused as a large-scale ref-

erence map.

instance. The geometric centroid for the new instance is the average of the geometric

centroids of the fused instances. The class label for the new instance is set the same

as the instance of which the corresponding point number is the largest across the

fused instances.

RSN Map

Based on the semantic segmentation results from SPVNAS, we divide 3D road points

into discrete road grids (10m×10m). Within each grid, if the number of 3D points

exceeds a pre-defined threshold (1000 in our case), we apply RANSAC to segment the

road plane from these points. We then use the normal of this segmented road plane to

approximate the road surface normal. This approximation is reasonable because roads

are typically flat in local area in modern urban environments. The center of each road

grid serves as the starting point for this normal. Similar to the instance-level map, we

concatenate the road-grid-based surface normals from different scans. We then fuse

normals with starting points less than a threshold distance (3.5m in the experiments)

into a single normal. To achieve the normal fusion, we calculate the average of the

normal vectors element-wise and normalize the result, noted as n−→ ∈ R3. The starting

point of the new normal is the average of the starting points of the fused normals.
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Figure 5.3: The construction pipeline of the RSN map. Road grid segmentation is

first performed on road points, followed by road surface normal estimation. The road-

grid-based surface normal of all scans are then concatenated and fused.

We also compute the relative angle between each fused normal and the new normal.

These angles (differences) are used to determine the standard deviation, σ n−→
∈ R,

which reflects the uncertainty of the road surface normal estimation ( n−→) of the local

area.

5.3.2 Vertex Descriptor Extraction and Matching

Instance correspondences are needed to register the query LiDAR scan to the instance-

level map. We extend the vertex descriptor proposed in our previous method [12] to

build more robust correspondences.

Semantic Graph Construction

Given a set of clustered instances {Ii}, we represent them as an undirected graph

G = ⟨V ,E⟩. V = {vi} is the set of vertices, in which vi refers to an individual

instance Ii. E = {eij} is the set of edges that connect two different vertices, in which

eij = ⟨vi, vj⟩ is the edge connecting vertices vi and vj. Two instances are connected

when their distance is less than a pre-defined threshold τedge. Intuitively, only partial

instances in the reference map can be observed by the single query scan. When τedge

is larger, edges that connect instances distributed along the margin of the query scan,

are more different from edges that connect the same instances in the reference map,
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(a) τedge = 10 (b) τedge = 20

(c) τedge = 40 (d) τedge = 60

Figure 5.4: Semantic graphs of a query scan and the reference map with varying τedge.

Only part of the map is displayed. The blue circle refers to the corresponding area

in the map at the same location as the query scan.

as shown in Fig. 5.4. Therefore, we use a smaller threshold (i.e., 20m) to reduce such

differences.

Vertex Descriptor Extraction

In our previous work, Triplet-Graph [12], a triplet-based semantic histogram descrip-

tor is proposed to describe vertices in a semantic graph. Specifically, given a vertex

vj, Triplet-Graph embeds topological (i.e., semantic combination) and geometric (i.e.,

relative angle) information of {∆}vj from the graph. All the information is encoded
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Figure 5.5: Vertex descriptor extraction. A semantic graph is first constructed to

represent the input LiDAR point cloud. The blue dotted ellipse shows a sample

triplet. The triplet semantic histogram-based descriptor is then employed to represent

the vertices in the graph.

as a histogram descriptor, as shown in the blue box in Fig. 5.5. The histogram can

be easily converted as a N1 ×N2 matrix, denoted as Desαvj . We recommend reading

our previous study[12] for the notations and the details of extraction process.

Only relative angles between instances are embedded in the second-level bin of Desαvj .

When two triplets have the same class combination and close relative angle, they

belong to the same bin of Desαvj . However, in practical situations, these two triplets

might be very different in the length of the edges. Therefore, to better document these

difference, we extend Desαvj by explicitly embedding lengths of edges from triplets at

the same time. Specifically, given a triplet ∆ijk (as shown in the blue dotted ellipse at
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the top of Fig. 5.5, we first calculate distance dij/djk between vertex vi/vj and vj/vk

in xy-plane (i.e., only x and y coordinates are used). Then we calculate the average

edge length of ∆ijk, denoted as d = (dij + djk)/2. Since two vertices are connected

only when their distance is less than τedge, we have d ≤ τedge. Similar to Desαvj , a

histogram based on two-level bins is used to embed the edge length information (i.e.,

d) from all the triplets that use vertex vj as the middle vertex in the graph. An

example of the histogram descriptor can be found in the purple box in Fig. 5.5. The

N1 first-level bins are exactly the same as those for Desαvj . For each first-level bin

C ∈ {C}lm (please refer to [12] for more details about C and {C}lm), we further

divide it into N3 second-level bins. Each second-level bin has the same combination

as C, but with a different range of average edge length. As shown in the blue dotted

box in the right sub-figure of Fig. 5.5, we have N3 = τedge/τ , in which τ (we set τ

as 0.5m) is the interval of the range of average edge length. Note that τ should be

divisible by τedge. The histogram can be also easily converted to a N1 × N3 matrix,

denoted as Desdvj .

The final vertex descriptor for vertex vj is the combination of Desαvj and Desdvj . To

simplify the notation, we concatenate Desαvj and Desdvj into a single N1 × (N2 + N3)

matrix by appending Desdvj on the right of Desαvj , denoted as Desvj .

Vertex Matching

Given semantic graph Gque of a query LiDAR scan and Gref of the reference map,

we use cosine similarity to measure the similarity between vertices, similar to our

previous work [12]. Only vertices with the same class label are compared, for example,

trunks in Gque are only compared with trunks in Gref . The cosine similarity can be

calculated as:

Sim
(
vquej , vreft

)
=

∑
Desvquej

·Desvreft∥∥∥Desvquej

∥∥∥
F
×
∥∥∥Desvreft

∥∥∥
F

, (5.1)

102



5.3. The Proposed Method

in which Sim is short for similarity, the dot · is the element-wise multiplication on

two matrices, ∥·∥F is the Frobenious norm of a matrix,
∑

is the summation of all

elements of a matrix, vquej and vreft are respectively arbitrary vertices in Gque and

Gref with the same class label. For a vertex vquej in Gque, we chose the top-k (25

in our implementation) vertices in Gref that have highest similarities between vquej

as the matching result for vquej . We then repeat the top-k matching for every vertex

in Gque to get a raw set of instance-wise correspondences Araw. A K-D tree is

created to accelerate the matching process. Specifically, given two normalized vectors

a and b, their cosine similarity cos(a, b) and euclidean distance dis(a, b) follows:

cos(a, b) = 1 − 0.5dis(a, b)2. Therefore, for normalized Desvquej
and Desvreft

, the

top-k matches with highest cosine similarities are the same as the top-k matches with

smallest euclidean distance.

5.3.3 Pose Estimation

Given a raw set of instance-wise correspondences Araw between Gque and Gref , we

aim to achieve robust 6-DoF pose estimation for the relative pose of a single query

LiDAR scan against the instance-level map.

Graph-theoretic Outliers Pruning

Theoretically, every vertex in Gque has at most one corresponding vertex in Gref .

However, redundant correspondences can usually involve more inliers for better 6-DoF

pose estimation, so we set k larger than 1. As a result, there will be many outliers in

Araw, especially when k comes larger. These outliers greatly increase the complexity

of the 6-DoF pose estimation. To solve this problem, we use a graph-theoretic pruning

method to filter outliers in Araw.

Given arbitrary two associations aj and ai ∈ Araw. Assuming aj = (vquej , vreft ) and

ai = (vquei , vrefk ), they are considered geometrically consistent only when the distance
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between the points is preserved, i.e., ∥vquei −v
que
j ∥ = ∥vrefk −v

ref
t ∥. v

que
i and vquej are the

xyz coordinates for vertex vquei and vquej from the query scan, respectively. vrefk and

vreft are the xyz coordinates for vertex vrefk and vreft from the instance-level reference

map, respectively. In practice, due to measurement noise, a threshold δcons is set to

consider associations consistent when dis(ai, aj) = |∥vquei − vquej ∥ − ∥v
ref
k − vreft ∥| <

δcons. Then the in-liner associations A can be obtained by finding the largest set of

consistent associations, which can be defined formally as:

max
A⊂Araw

|A|,

s.t. dis(ai, aj) < δcons, ∀ai, aj ∈ A
(5.2)

The above problem can be modeled as a graph whose vertices represent associations

and edges represent consistent associations. The optimal solution A is equivalent to

the maximum clique of the graph. Although finding the Maximum Clique (MCQ)

of the graph is NP-hard, it can be solved relatively quickly for sparse graphs using

the parallel maximum clique (PMC) algorithm [130]. Noted that different types of

semantics instances are treated uniformly during the MCQ searching.

Point-to-Point Registration

After the outliers pruning, we estimate the unknown transformation between the

single query LiDAR scan and the instance-level map. Let T = [R, t] be the ground

truth of the unknown transformation, in which R ∈ SO(3) and t ∈ R3. Based on A,

we can easily get a set of vertex pairs B, {(vquej , vreft )}. Each correct vertex pair can

be associated by:

vreft = Rvquej + t + ϵjt, (5.3)

where ϵjt models the measurement noise.
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Although we have conducted outliers pruning already, there are inevitably still some

potential outliers left in A. To further improve the robustness to outliers, we follow

[131] to calculate the estimation of T , T̂ = [R̂, t̂], as a Truncated Least Squares

(TSL) registration problem:

R̂, t̂ = arg min
R∈SO(3),t∈R3

∑
j,t∈B

min
(∥∥∥vreft −Rvquej − t

∥∥∥
2
, cjt

)
, (5.4)

where cjt is the truncation parameter[132].

Rotation Constraint using RSN Map

Eq. 5.4 generally provides stable 6-DoF pose estimation, but its performance could

be degraded when point-to-point associations fail to provide effective rotation con-

straints. For example, if vertices in B are distributed along a straight line, potentially

due to only one side of a road being visible, the accuracy of rotational estimation

may suffer. To address this issue, we propose a prior rotation constraint from the

RSN map when solving Eq. 5.4. This constraint is based on two assumptions: 1)

road surface normals in urban environments remain consistent in a local area over

time; and 2) yaw rotation is the dominant component in the relative rotation motion

of ground robots and vehicles [133]. Therefore, the z-axis of the vehicle is approxi-

mately parallel to the local road surface normal, providing an additional constraint

for rotation to improve registration performance. Specifically, we first calculate the

average of geometric centroids of all vreft ∈ B, noted as anchor pa. The n−→ in the

RSN map, with its starting point closest to pa, is used to constrain the z-axis of the

vehicle. This normal is denoted as n̂−→ ∈ R3, with a standard deviation of σ n̂−→
. Let

R = [r1−→ r2−→ r3−→], where r1−→, r2−→, and r3−→ ∈ R3 is a vector that represents the direction

of x, y, and z axes of R, respectively. We then have the following equation:

n̂−→ · r3−→ = 1 + ϵnormal. (5.5)

where · denotes the dot product, and ϵnormal represents the measurement noise. To

account for road surface normal variance due to the position difference between the
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anchor pa and the actual position t, we add an additional perturbation δ (rad) of 5◦,

i.e., ϵnormal = σ n−→
+ δ. Eq. 5.5 is then used as a prior constraint for R̂.

Solving using Graduated Non-Convexity

The non-convex optimization problem (Eq. 5.4) with the prior rotation constraint

(Eq. 5.5) is solved using Graduated Non-Convexity (GNC) [131]. GNC is a widely

used method for optimizing generic non-convex cost functions, ρ(·), and has appli-

cations in various fields, including vision [134] and machine learning [135]. The core

idea of GNC involves introducing a surrogate cost function, ρµ(·), controlled by a

parameter µ. This function is designed so that (i) for a specific value of µ, ρµ(·) is

convex, and (ii) in the limit (typically as µ approaches 1 or infinity), it converges

to the original non-convex function, ρ(·). GNC solves the non-convex problem by

starting with its convex surrogate and gradually adjusting µ, progressively increasing

the level of non-convexity until the original function is restored. The solution from

each iteration serves as the initial guess for the next. Specifically, we utilize the TSL-

based GNC implementation in GTSAM [136] as the solver, where the PriorFactor

in GTSAM is employed as the prior rotation constraints described in Eq. 5.5.

5.4 Experiments

5.4.1 Dataset and Experimental Setup

Baselines

We compare the proposed TripletLoc with several state-of-the-art place recognition-

based and registration-based methods. PR-based baselines include Scan Context (SC)

[71], STD [128], GOSMatch [69], and Triplet-Graph [12]. We use GLOSOM [124] and

Outram [125] as the registration based baselines, which both follow ont-shot based
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Table 5.1: The details about the evaluated sequences from HeliPR dataset. Time

span refers to the collection time span between the query sequence and the reference

sequence.

Reference Sequence Query Sequence Time Span

DCC04 (5.5km)
DCC05 (5.3km) 10 hours

DCC06 (4.6km) 138 days

KAIST04 (6.3km)
KAIST05 (6.9km) 11 hours

KAIST06 (6.7km) 138 days

Roundabout01 (9.0km)
Roundabout02 (7.4km) 16 days

Roundabout03 (9.3km) 28 days

Town01 (7.8km)
Town02 (8.2km) 13 days

Town03 (8.9km) 27 days

Riverside04 (6.5km)
Riverside05 (6.4km) 11 hours

Riverside06 (7.2km) 138 days

Bridge01 (23.1km)
Bridge02 (14.6km) 14 days

Bridge03 (19.4km) 28 days

scan-to-map mechanism. All the mentioned methods are implemented in C++ and

evaluated on a PC with an Intel i7-12700F CPU and 64GB RAM.

Dataset and Setup

We evaluate TripletLoc and all the other baselines using the HeLiPR Dataset [137],

which covers long-term data collections in diverse scenarios, from urban cityscapes

to high-dynamic freeways. For each scenario in HeLiPR, different sequences are col-

lected on different dates along a similar route, allowing the long-term performance

of different localization methods to be assessed. The sequence collected earliest is

selected as the reference, while the others serve as query sequences. LiDAR scans

from the Spinning Ouster LiDAR are used for evaluation. Following the evaluation
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Table 5.2: Total clustered instance number in the reference map and average clustered

instance number in a single query scan. “Ref” is short for reference. “Que” is short

for query.

Sequence
Instance Number

car parking trunk pole traffic-sign total

Ref

DCC04 536 8 1534 5278 1142 8498

KAIST04 1619 23 1228 2182 513 5565

Roundabout01 1670 5 1274 7856 1714 12519

Town01 1515 3 1040 4237 1210 8005

Riverside04 415 10 1026 3104 541 5096

Bridge01 1636 2 1561 10817 2009 16025

Que

DCC05 4.89 0.02 15.87 46.05 9.45 76.28

DCC06 4.30 0.05 21.55 59.77 11.20 96.86

KAIST05 17.12 0.25 10.55 16.30 4.52 48.73

KAIST06 12.62 0.20 18.11 24.58 4.64 60.15

Roundabout02 8.60 0.03 5.22 34.60 7.41 55.86

Roundabout03 6.89 0.03 6.33 40.05 8.33 61.63

Town02 5.58 0.01 4.67 22.17 6.12 38.54

Town03 3.18 0.01 4.75 23.37 6.27 37.58

Riverside05 4.93 0.01 9.17 37.85 6.00 57.96

Riverside06 4.41 0.04 14.40 48.44 6.84 74.13

Bridge02 8.62 0.02 2.64 20.93 3.92 36.13

Bridge03 2.57 0.00 2.81 22.65 4.27 32.30

setup for PR methods in [137], we sample query scans at 10m intervals and refer-

ence scans at 5m intervals. It should be noted that STD originally uses accumulated

sub-map of 10 consecutive scans [128]. So we here provide two versions of STD, i.e.,

a single frame version (STD-1) and a sub-map version (STD-10) which accumulates

10 consecutive frames for each sampled scan. As for Triplet-Graph, we use global

descriptor without the selection operation to first get candidates, and then use the

global descriptor with the selection operation to obtain the final loop closure result

from candidates [12]. For registration-based methods, since GLOSOM and Outram didn’t
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open-source code for their instance-level map generation, we use the same instance

clustering method and the generated map for all registration-based methods. In addi-

tion, we follow the setup for the KITTI dataset in [124], only parking and traffic signs

are used in GLOSOM. We use default parameters for Outram [125] for scenario KAIST

and Town. For the other scenarios, wefine-tune the parameters to limit association

number to avoid memory exhaustion when searching MCQ. The details about the

evaluated sequences are displayed in Tab. 5.1.

Evaluation Metrics

We use Relative Translation Error (RTE) and Relative Rotation Error (RRE) [12, 125]

to evaluate the translation and rotation accuracy for global localization, respec-

tively. RTE is calculated as RTE =
∥∥t̂− t

∥∥
2
. RRE is calculated as RRE =

cos−1

(
Tr(R−1R̂)−1

2

)
. Rotation estimations between query scans and retrieved scans

are all available in SC (1-DoF, i.e., yaw), STD (3-DoF), GOSMatch (3-DoF), and

Triplet-Graph (3-DoF). So, successful place recognition is defined by identifying

a candidate with RTE < 7.5m and RRE < 10◦, termed a true positive [137]. Sim-

ilarly, we consider a localization result with RTE < 7.5m and RRE < 10◦ as a

successful case for all registration-based methods. Success rate P = ns/n is used

to evaluate the overall performance across a query sequence. ns is the number of

successful place recognition or localization cases. n is the number of query scans.

We also report the average runtime tave for a single query frame, excluding the time

to load point clouds from binary files. Only the time for descriptor extraction and

localization (i.e., retrieval for PR methods or vertex matching and pose estimation

for registration methods) is considered.
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Table 5.3: Success rate and average run time. “*” refers to place recognition-based method.

“†” refers to one-shot registration based method. “no RSN” is refers to omitting rotation constraint

from RSN map. “TripletLoc(Desαvj
)” refers only using Desαvj

for vertex matching.
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5.4.2 Global Localization Performance

Success Rate

As shown in Tab. 5.3, TripletLoc achieves a higher overall success rate. Especially in

the DCC scenario, TripletLoc can successfully locate the vehicle for more than 93%

of the query scans. As expected, significant degradation can be observed in sequences

Bridge02 and Bridge03. Basically, there are about 1/3 of LiDAR scans are collected

on a bridge, making these scans highly similar and repetitive in appearance and ge-

ometric structure. Meanwhile, there are multiple lane-level changes in translation

between scans from sequence Bridge01 and sequence Bridge02/Bridge03. We guess

these factors are the main reasons for the performance degradation. Compared to all

the other methods, TripletLoc can still achieve a higher P at about 30%. In sequences

Twon02 and Town03, both SC and Triplet-Graph outperform TripletLoc. We sus-

pect this is due to the lack of enough clustered instances in the query scans. As shown

in Tab. 5.2, the average number of clustered instances per scan in Town02/03 (32/34)

and Bridge02/03 (27/29) is much lower than in other scenarios (e.g., 93 in DCC06

and 69 in Riverside06). When few clustered instances are present, TripletLoc’s perfor-

mance declines. While instance numbers also affect Triplet-Graph[12], the impact

is smaller due to its scan-to-scan mechanism. Notably, the Roundabout01, 02, and 03

sequences feature many moving vehicles and pedestrians, making semantic segmenta-

tion and instance clustering more challenging. Despite this, TripletLoc achieves the

best results, with a success rate over 70%, demonstrating good robustness in highly

dynamic scenarios. Outram achieves the highest success rate in the KAIST06 and

Riverside06 sequences, while TripletLoc also performes reasonably well. To show the

influence of RTE and RRE thresholds on success rate. We calculate success rate

of TripletLoc under different RTE and RRE thresholds, as shown in Fig. 5.6 and

Fig. 5.7. The results indicate that TripletLoc maintains a reasonable success rate

even under stricter threshold settings. In fact, when using more stringent thresholds,
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such as (5m, 5◦) or (2.5m, 2.5◦), the success rate only shows a small decline.

Localization Accuracy

Only successfully localized scans (i.e., RTE < 7.5m and RRE < 10◦) are used to

evaluate localization accuracy. As shown in Tab. 5.4, registration-based methods

outperform PR-based methods. GLOSOM shows the best RTE performance, with val-

ues under 1m in all query sequences except Riverside05 and 06. In most sequences,

TripletLoc’s RTE is very close to GLOSOM. Regarding RRE, TripletLoc has the best

overall performance, with values under 2◦ in most of sequences. Indeed, TripletLoc

achieves a higher overall success rate. So, more scans are considered for calculating

RTE and RRE, which might make values of RTE and RRE larger by encounter-

ing some difficult cases (i.e., successfully located scans with high RTE and RRE).

In general, TripletLoc shows competitive performance in localization accuracy, with

RTE < 1m and RRE < 2◦ in most cases.

Runtime Cost

Compared to registration-based methods, PR-based methods generally achieve global

localization more efficiently using a retrieval strategy, often accelerated by K-Dimensional

trees and hash functions. As shown in Tab. 5.3, PR-based methods generally have

better efficiency. Especially, only around 2ms is needed to extract global descriptor

and conduct retrieval for SC. In contrast, registration-based methods involve instance-

to-instance matching and optimization-based pose estimation, which can slow down

as the number of correspondences and outliers increases. GLOSOM uses an all-to-

all matching strategy, leading to a large number of correspondences. Outram em-

ploys a triangle-based descriptor for substructure to build correspondences, while the

condition-meeting mechanism can still result in many correspondences sometimes. As

a result, graph-theoretic outlier pruning may reduce computational efficiency when
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Table 5.4: RTE and RRE. “-” refers to not available.
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(a) DCC05 (b) DCC06

(c) KAIST05 (d) KAIST06

(e) Roundabout02 (f) Roundabout03

Figure 5.6: Examples of success rate under different thresholds of RTE and RRE.

Black, white, and red dots represent success rates for thresholds of (7.5m, 10◦), (5m,

5◦), and (2.5m, 2.5◦) for RTE and RRE, respectively.

114



5.4. Experiments

(a) Town02 (b) Town03

(c) Riversde05 (d) Riversde06

(e) Bridge02 (f) Bridge03

Figure 5.7: Examples of success rate under different thresholds of RTE and RRE.

Black, white, and red dots represent success rates for thresholds of (7.5m, 10◦), (5m,

5◦), and (2.5m, 2.5◦) for RTE and RRE, respectively.
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(a) DCC06

(b) Roundabout02

(c) Bridge03

(d) KAIST05

Figure 5.8: Time cost breakdown for sequence DCC06 (the slowest), Roundabout02

and Bridge03 (both intermediate), and KAIST05 (the fastest).
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the number of correspondences is too large in large-scale environments. The average

runtime cost for GLOSOM and Outram is higher than that for other methods. GLOSOM

operates in real-time only when the number of instances in the reference map is rel-

atively small (e.g., KAIST04 and Riverside04, see Tab. 5.2). Differently, TripletLoc

uses simple yet efficient top-k matches to limit number of correspondences, allowing it

to run much faster in real-time. Fig. 5.8 presents the breakdown of computation time

per frame for TripletLoc across some query sequences, including DCC06 (the slowest),

Roundabout02 and Bridge03 (both intermediate), and KAIST05 (the fastest). Over-

all, vertex matching and MCQ searching (including consistency graph construction)

dominate, as shown in Tab. 5.5. The runtime for vertex matching depends primarily

on the number of instances in the query scan, the number of instances in the refer-

ence map, and the value of k for top-k matches. As these values increase, the runtime

cost for vertex matching grows accordingly. The time for MCQ searching depends

on the size of Araw—the more associations that need filtering, the longer it takes to

construct the consistency graph and perform the search. Descriptor extraction is fast,

averaging 1.62ms per scan across all query sequences. Instance clustering and GNC

solving are also efficient, averaging 5.34ms and 8.13ms, respectively.

5.4.3 Ablation Study

Effectiveness of Desdvj

To demonstrate the effectiveness of integrating Desdvj , we perform global localization

using only Desαvj for vertex matching. The results, shown in Tab. 5.3 as TripletLoc(

Desαvj), indicate that the complete version of TripletLoc achieves higher success rates

across all query sequences compared to using only Desαvj . Localization accuracy shows

a slight decline in RTE and RRE when using only Desαvj . As expected, when using

Desvj , it takes more time for vertex descriptor extraction and matching, leading to a

larger tave. However, such an increase is acceptable, and the system can still achieve
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Table 5.5: The average runtime (ms) for different parts of TripletLoc.

Query sequence
Average runtime cost (ms)

Instance clustering Descriptor extraction Vertex matching MCQ searching GNC solving

DCC05 7.95 2.04 35.63 25.70 11.32

DCC06 9.94 3.73 46.30 50.72 11.21

KAIST05 3.26 0.42 5.64 3.58 6.10

KAIST06 5.14 0.89 8.90 11.62 6.57

Roundabout02 4.69 1.34 44.62 10.85 7.90

Roundabout03 5.40 1.81 51.42 14.85 8.89

Town02 4.09 0.51 13.17 5.30 7.06

Town03 4.16 0.53 13.68 5.64 6.83

Riverside05 4.98 2.67 14.58 17.10 7.73

Riverside06 6.94 4.72 18.91 33.13 8.43

Bridge02 3.66 0.34 36.02 2.71 7.72

Bridge03 3.88 0.40 38.52 3.50 7.82

average 5.34 1.62 27.28 15.39 8.13

a good real-time performance. In conclusion, explicitly embedding both relative an-

gle and edge length from triplets can enhance the descriptive capability of vertex

descriptors, improving the overall performance for global localization.

Effectiveness of RSN-Based Rotation Constraint

To demonstrate the effectiveness of the RSN-based rotation constraint, we present

results for TripletLoc without this constraint, labeled as TripletLoc (no RSN) in

Tab. 5.3. A decline in success rates is observed across all sequences except DCC05

when the RSN-based rotation constraint is omitted from pose estimation. This de-

cline is most pronounced in the Bridge scenario, where instances are primarily linearly

located along both sides of the road, and point-to-point associations may not provide

sufficient rotation constraint when limited instances are visible. As for localization

accuracy, RTE remains largely unchanged, indicating limited impact of rotation con-

straint on translation. A slight decline in RRE can be also observed without rotation
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Table 5.6: Memory consumption for prior reference map

SC GOSMatch STD-1 STD-10 Triplet-Graph GLOSOM Outram TripletLoc

16.27MB 68.85MB 393.37MB 393.37MB 597.24MB 27.50KB 561.60KB 245.63KB

constraint. These results confirm that the RSN-based rotation constraint can enhance

global localization.

5.4.4 The Memory Consumption for Reference Map

To show the memory efficiency of TripletLoc, we compute the total memory con-

sumption for storing prior reference maps on sequence Roudnabout01. For PR-based

methods, vectorized descriptors for each reference frame are stored. For GLOSOM,

only instance information is needed, i.e., instance label and geometric centroids. In

Outram, the covariance matrix for clustered point cloud is also needed. To allow

map updates, we also record the point number for each instance. The road surface

normal, its starting point, and the standard deviation need to be stored for the RSN

map (28.75KB). As shown in Tab. 5.6, the memory cost for GLOSOM is the lowest.

TripletLoc also shows competitive efficiency in memory.

5.4.5 Parameter Tuning

To better understand the influences of k, τedge, τ , on the global localization perfor-

mance, we also provide results for parameter tuning. KAIST06 is selected as the

query sequence with the instance-level map and RSN map generated from sequence

KAIST04. For k, we keep τedge and τ unchanged (i.e., τedge = 20m and τ = 0.5◦) and

change the value of k from 1 to 100. As shown in Tab. 5.7, as k becomes larger, the

success rate gradually increases, and RTE and RRE gradually become smaller. This

is because more correspondences are used for pose estimation when k is larger, which

might introduce more inlier correspondences into |Araw|. However, more runtime is
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Table 5.7: Influences of k on globalization localization performance. |Araw| is the

average size of Araw.

Top-k P (%) RTE (m) RRE (◦) |Araw| tave(ms)

1 70.17 0.55±0.38 1.67±1.42 44 19.24

5 76.04 0.50±0.33 1.49±1.20 220 22.31

10 77.74 0.49±0.34 1.38±1.15 440 23.30

15 77.43 0.47±0.25 1.36±1.07 660 26.01

20 78.98 0.46±0.28 1.36±1.07 880 30.04

25 78.83 0.46±0.28 1.31±1.07 1100 33.12

30 79.91 0.46±0.27 1.31±1.08 1320 41.04

35 80.83 0.46±0.27 1.32±1.10 1540 48.87

40 80.99 0.46±0.27 1.30±1.13 1760 57.60

45 80.68 0.46±0.27 1.29±1.09 1980 67.78

50 81.45 0.45±0.23 1.26±1.00 2200 77.44

100 85.32 0.44±0.22 1.21±1.00 4400 240.61

required to locate the vehicle when using a larger Araw.

To investigate the influences of τedge and τ on TripletLoc, we set k = 25 and change

values of τedge and τ , as shown in Fig. 5.9. Intuitively, when τ becomes smaller,

the resolution of Desdvj is smaller, which can improve the descriptive capability of the

vertex descriptor. As a result, more inlier correspondences might be involved in Araw,

providing more correct constraints during pose optimization. Differently, when τedge

becomes smaller, the semantic graph will become more sparse, leading to a decline

in the number of triplets extracted from the graph. So Desvj will also become more

sparse (i.e., most elements will be 0), leading to the degradation of vertex matching

performance. However, when τedge is larger, the localization performance will also

degrade. This is because only partial instances in the reference map can be observed

by the single query scan. When τedge is too large, edges that connect instances

distributed along the margin of the query scan, are more different from edges that
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(a) Success rate with different τedge and τ

(b) RTE with different τedge and τ

(c) RRE with different τedge and τ

Figure 5.9: Global localization performance with different τedge and τ for query

sequence Roundabout03. All experimental results are obtained when α = 5◦ and

k = 25.

connect the same instances in the reference map, as shown in Fig. 5.4. Empirically,

an appropriate τedge and small τ can generally result in a better performance.
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5.5 Conclusion

In this work, we present TripletLoc, a fast and robust one-shot LiDAR-based global

localization method. Semantic graphs are used to compactly represent both the

query scans and the entire reference map. A novel semantic triplet-based histogram

descriptor is proposed to embed semantic, geometric, and topological information

from the semantic graphs for each vertex. Based on the proposed vertex descriptor,

instance-to-instance correspondences are generated. A novel RSN map is proposed

to provide a prior rotation constraint for pose estimation. Alone with this rotation

constraint, graph-theoretic outlier pruning is used to select inlier correspondences for

the robust 6-DoF pose estimation. Extensive experiments in diverse and large-scale

urban environments demonstrate that TripletLoc is highly competitive to state-of-

the-art methods. Quantitative and qualitative results show the robustness, accuracy,

memory and real-time efficiency of TripletLoc.
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Chapter 6

Multi-Robot Localization using

Lightweight Semantics: A

Preliminary Study

6.1 Introduction

Multi-robot systems offer several advantages over single-robot systems across a variety

of applications. For instance, they can significantly enhance efficiency in surveying

environments at disaster sites, such as those affected by earthquakes or industrial

accidents, where time is of the essence. In addition, multi-robot systems can acceler-

ate the completion of higher-level tasks, such as goods transportation in warehouses

and cleaning operations [138, 139]. In autonomous driving, the interaction between

different vehicles is crucial to ensure that fleets can collaborate effectively for safe

and efficient transportation. To achieve such high-level autonomy, a robot must first

determine its position relative to the environment and other robots. This positional

awareness enables the robot to perform downstream tasks such as path planning and

navigation. Traditionally, exchanging GNSS coordinates has provided accurate inter-
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robot localization. However, GNSS performance can be compromised due to signal

occlusions and multipath effects in urban canyons or underground environments.

Recent research has explored the use of on-board measurements to localize robots

relative to a prior database or map, demonstrating potential for global localiza-

tion without relying on GNSS [125, 128, 12, 124]. However, such prior databases

or maps are not always available for certain multi-robot tasks, such as environmental

surveying or exploration. As an alternative, multi-robot Simultaneous Localization

and Mapping (SLAM) has been employed to eliminate the need for GNSS or prior

maps/databases for inter-robot localization in earlier works [7, 140, 141, 142, 143, 144].

Typically, sensor measurements from different robots are sent to a server or lead

robot, which are then used to update maps and localization. However, as the number

of robots increases, the volume of LiDAR or image data that needs to be transmitted

also increases, which might be inefficient when communication bandwidth is limited.

To address this issue, recent works have employed lightweight map representations

(e.g., segments, Gaussian Mixture Models (GMM), semantics, objects) for multi-robot

SLAM [138, 145, 146, 147]. These methods have shown promise in reducing the re-

quired communication bandwidth in multi-robot systems. Some of these approaches

rely on submap-to-submap based place recognition methods for inter-robot localiza-

tion, which separates the visited environment as multiple submaps. This approach

might not ensure sufficient overlap between the query keyframes and the reference

keyframes across different robots sometimes.

In this study, we consider the visited environment for each robot in a team as a

continuous instance-level map rather than multiple submaps. The proposed multi-

robot system builds on our previous work, Tripletloc(see 5), which provides pairwise

robot localization results between robots. Since the instance-level map accumulates

data from consecutive keyframes, the overlap between this map and query keyframes

from other robots is typically much larger. While Tripletloc was initially designed

for single-robot localization, it only provide localization result for the single query
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Figure 6.1: The example of relative poses between local reference frames of different

robots for a team with three robots.

scan. To enhance the robustness of inter-robot localization, we use multiple one-shot

localization results between each pair of robots, further optimizing them through

pose averaging. Multi-robot alignment is then achieved by searching for the shortest

transformation chains among all currently available transformation chains.

6.2 Problem Formulation

In a multi-robot system, inter-robot localization aims to determine each robot’s lo-

cation respective to a shared reference frame. This shared reference frame is usually

chosen as the local reference frame of one robot from the robot team. Assuming we

have three robots, robot-a, robot-b and robot-c, with local reference frames A, B, and

C. Then the inter-robot localization aims to obtain relative poses between these local

reference frames, i.e., T A
B (or TB

A ), T A
C (or T C

A ), and TB
C (or T C

B ), to align them to a

shared reference frame, as shown in Fig. 6.1. Where T A
B ∈ SE(3) is the ground truth

of the relative pose between A and B, using A as the reference frame. Theoretically,

having two of the above poses (e.g., T A
B and T A

C , or T A
B and TB

C , or TB
C and T A

C ,

where A is chosen as the shared reference frame) can completely align the three local

reference frames into the shared reference frame.
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6.2.1 One-shot Localization between Pairwise Robots

First, let us see how to obtain an estimation for the relative pose between the lo-

cal reference frames of robot a and b. Given two instances map Mai and M bj , two

new instance-level keyframes fai and f bj , two trajectories Trajai and Trajbj from

robot a and b, respectively. Mai is the accumulated instance map using keyframes

{fa1 , fa2 , ..., fai} from robot a (see 5.3.1). Trajai is the accumulated odometry tra-

jectory using keyframes {fa1 , fa2 , ..., fai} from robot a. For simplification, trajectory

drift from odometry is not considered. Indeed, current LiDAR-inertial Odometry

and LiDAR-inertial-Visual Odometry can provide trajectory estimation with very

low drift even after travelling long distance [148, 149].

One-shot localization is then achieved using Tripletloc, where fai and M bj are

used as the query scan and the reference map, respectively. The global localization

result is denoted as T̂B
ai

, where ai represents the query scan, and B refers to the

reference frame. Although Tripletloc can provide global localization result with

competitive success rate (see 5.4.2), it still might provide incorrect results sometimes.

Therefore, we need to determine whether a localization result is valid. We validate

the results using two metrics: the ratio of the Maximum Clique (MCQ) size to the

total number of associations, noted as λMCQ, and the projection error ϵ. Typically,

a localization result is more likely valid when there are more inlier associations (i.e.,

larger Maximum Clique). Considering the instance number might be very different

across different query keyframes, it is not easy to set a specific threshold based on

the size of MCQ. We therefore normalized the size of MCQ by dividing the total

association number. A valid localization result should satisfy the following condition:

λMCQ =
|A|
|Araw|

≥ λ̇, (6.1)

where A and Araw are MCQ and raw instance-to-instance associations (see Eq. 5.2),

respectively. λ̇ is a pre-defined threshold. To further reduce the risk of incorrect
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Figure 6.2: Demonstration of one-shot localization between pairwise robots in a robot

team. New keyframes and their odometry poses are uploaded to the server from

different robots, which are then used to estimate the relative pose between different

local reference frames. Noted that the colored point cloud in the new keyframe is

included for better presentation purposes and is not required to be uploaded to the

server in the system.

localization, we also account for the projection error ϵ between matched instances.

ϵ =
∑
j,t∈Bb

a

∥∥∥vbt − R̂vaj − t̂
∥∥∥
2
, (6.2)

Where Bb
a (more details can be found in 5.3.3) represents vertex pairs determined by

the above MCQ,A (see Eq. 6.1). R̂ and t̂ are the rotation and translation components

of T̂B
ai

, respectively. In the absence of measurement noise, when T̂B
ai

yields a perfect

localization result, the projection error ϵ equals to 0. Therefore, a valid localization

result should also satisfy the following condition:

ϵ ≤ ϵ̇, (6.3)

where ϵ̇ is a pre-defined threshold for the projection error. Therefore, a localization

result is considered valid when both Eq. 6.1 and Eq. 6.3 are met.
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Based on the trajectory of robot-a, Trajai , we can easily obtain the pose of keyframe

fai respective to its own local reference frame A, namely T̂ A
ai

. By integrating T̂B
ai

and

T̂ A
ai

, we can have the alignment estimation between local reference frame A and B:

T̂B
Ai

≜ T̂B
ai

(T̂ A
ai

)−1, (6.4)

where Ai indicates that this alignment estimation is based on the localization result

from TripletLoc using query keyframe fai . Similarly, we can also get T̂ A
Bj

as follow:

T̂ A
Bj

≜ T̂ A
bj

(T̂B
bj

)−1, (6.5)

For alignment estimations between other local reference frames, i.e., T̂ C
Ai

, T̂ A
Ck

, T̂B
Ck

,

and T̂ C
Bj

, can be also obtained by the same way. Demonstration of one-shot localiza-

tion between pairwise robots in a robot team can be found in Fig. 6.2.

6.2.2 Optimization Using Pose Averaging

From Eq. 6.4, we see that each new keyframe fai−1 or fai can provide an alignment

estimation T̂B
Ai−1

or T̂B
Ai

between local reference frame A and B. When two alignment

estimations T̂B
Ai−1

and T̂B
Ai

are both valid inlier, they are expected to be in mutual

agreement [150, 146]. Therefore, integrating multiple alignment estimations to get a

final alignment estimation is usually more reliable than only using single estimation.

Similar to [146], we also optimize the result using multi alignment estimations. Dif-

ferently, we explicitly use estimations for both T̂B
A and T̂ A

B for the reliable alignment

estimation instead of only use one of them. Assume we have n and m valid alignment

estimations for T̂B
A and T̂ A

B , noted as {T̂B
Ai
}n and {T̂ A

Bj
}m, respectively, as shown in

Fig. 6.3. Let SB
A or SA

B = {T̂B
Ai
}n ∪ {T̂ A

Bj
}m be the set of current valid alignments

between reference frame A and B. For arbitrary T̂ A
Bj

and (T̂B
Ai

)−1, we can have the

following relation:

T̂ A
Bj
≈ (T̂B

Ai
)−1, (6.6)
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Figure 6.3: Multiple alignment estimations between frame A and B. These estima-

tions are then used to obtain a reliable alignment estimation using pose averaging.

Then the reliable alignment result is achieved by solving the following pose averaging

problem:

T̂ A
B ∈ arg min

T∈SE(3)

∑
T̂A
Bj

∈{T̂A
Bj

}m

ρ
[∥∥∥T ⊕ T̂ A

Bj

∥∥∥]+
∑

T̂B
Ai

∈{T̂B
Ai

}n

ρ

[∥∥∥∥T ⊕ (T̂B
Ai

)−1
∥∥∥∥] , or

T̂B
A ∈ arg min

T∈SE(3)

∑
T̂B
Ai

∈{T̂B
Ai

}n

ρ
[∥∥∥T ⊕ T̂B

Ai

∥∥∥]+
∑

T̂A
Bj

∈{T̂A
Bj

}m

ρ

[∥∥∥∥T ⊕ (T̂ A
Bj

)−1
∥∥∥∥] (6.7)

where
∥∥∥T ⊕ T̂ A

Bj

∥∥∥ is the residual measurement, i.e., the geodestic distance between

two poses, ρ [·] is the Truncated Least Squares (TSL) robust cost function [131].

Similarly, the reliable alignment results for T̂ C
A , T̂ A

C , T̂ C
B , and T̂B

C can be obtained by

the same way. The Eq. 6.7 can be solved by using Graduated Non-Convexity (GNC)

[131]. Specifically, we use the GNC implementation in GTSAM [136] with a fixed

diagonal covariance matrix for all the residual measures.

6.2.3 Multi Robots Alignment Using Shortest Transforma-

tion Chain

Based on Eq. 6.7, we can obtain the optimized pairwise alignment estimations between

different robots within a multi-robot system. Once these estimations are determined,

it becomes necessary to establish a shared reference frame to bring all robots into a
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Figure 6.4: Example of aligning different robots to a shared reference frame A using

the shortest transformation chains.

shared reference frame for global alignment. In principle, this shared reference frame

can be chosen arbitrarily from any of the local reference frames of the robots in the

team. As an example, and without loss of generality, we select the local reference

frame A as the shared reference for multi robots alignment. For a team with three

robots (a, b, and c), the goal of multi robots alignment is to align both robot b and c

in reference frame A. Suppose we have already obtained the optimized relative pose

between robot a and b, corresponding to the transformation between frames A and

B. In this case, only reference frame C needs to be aligned. There are two possible

transformation chains that can be used to achieve this alignment. The first chain is

to directly use the transformation T̂A
C . The second chain is an indirect chain, using

the composition of transformations T̂A
B T̂

B
C , which sequentially aligns robot c through

the intermediate frame B. When both T̂A
C and T̂A

B T̂
B
C are available, we prefer to

use T̂A
C because it minimizes the accumulated localization error. The indirect chain

T̂A
B T̂

B
C suffers from compounded errors introduced by the sequential application of two

separate transformations, T̂A
B and T̂B

C , as illustrated in Fig. 6.4. When only T̂A
B T̂

B
C

is available, we align robot c using T̂A
B T̂

B
C . This hierarchical approach is scalable

and can be generalized to teams with more than three robots. For any number of

robots, once a shared reference frame is selected, each robot is aligned by following

the shortest available transformation chain to the reference frame, minimizing the

error propagation due to multiple transformations.
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Figure 6.5: The overview of the proposed centralized multi-robot localization system.

6.3 System Overview

We design our system using a centralized architecture, where all the robots in the team

upload their data to a central server. This server is responsible for performing inter-

localization between the robots and subsequently distributing the results back to the

team. As outlined in Section 6.2.1, to compute an alignment estimation (e.g., T̂B
Ai

),

three key elements are required: a reference instance map M bj , semantic instances

from keyframe fai , and the pose of keyframe fai with respect to the reference frame

A (i.e., T̂ A
ai

). Since the reference instance map M bj can be incrementally constructed

from consecutive keyframes, robots do not need to upload the entire map with every

update. Instead, they only need to transmit the semantic instances detected in the

current keyframe fai and the corresponding pose T̂ A
ai

. This approach significantly

reduces the communication load. Once the server receives a new keyframe from any

robot, it proceeds to update that robot’s instance map. The server then performs

pairwise localization (see 6.2.1) by treating the newly received keyframe as the query

frame and using the instance maps from the other robots as reference maps. As more

keyframes are uploaded by different robots, the server accumulates multiple pairwise

alignment estimations between different pairs of robots. These pairwise estimations

are then used for the pose-averaging optimization process (see 6.2.2). After obtaining

the optimized pairwise alignment estimations, the system proceeds to align all robots

to a shared reference frame. We use the shortest transformation chains between robots

to minimize error propagation (see 6.2.3). The overview of the system architecture,
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including the process flow from data uploading to multi-robot alignment, can be found

in Fig. 6.5.

6.4 Experiment

6.4.1 Dataset and Setup

We evaluate the proposed system using scenario DCC and Roundabout in the He-

LiPR Dataset [137]. For each sequence, we select three distinct segments with ap-

proximately equal travel distances to simulate a three-robot collaborative scenario.

Each segment is required to have overlaps with at least one of the other segments to

facilitate inter-localization. Additionally, to ensure that different robots do not share

identical observations (i.e., the same frames), the overlapping frames across segments

must be captured at different times. This simulates the real-world scenario where

overlapping areas are visited by different robots at separate intervals. Distribution of

the selected segments can be seen in Fig. 6.6.

6.4.2 One-shot Localization Analysis

Evaluation of Valid Localization Determination

The determination of valid localization results relies on two key thresholds, λ̇ and

ϵ̇. We evaluate how these thresholds influence the performance of localization de-

termination using the F1-score, a common metric in classification tasks (see 3.3.2

for more details on the F1-score). For each localization result (i.e., T̂ A
bj

, T̂ A
ck

, T̂B
ai

,

T̂B
ck

, T̂ C
ai

, and T̂ C
bj

), we calculate the Relative Translation Error (RTE) and Relative

Rotation Error (RRE). A valid localization result is termed as True Positive (TP)

when satisfying RTE ≤ 7.5m and RRE ≤ 10◦; otherwise, it is classified as a False
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(a) DCC04 (b) Roundabout01

(c) DCC05 (d) Roundabout02

(e) DCC06 (f) Roundabout03

Figure 6.6: Selected segments for multi-robot localization evaluation in the DCC and

Roundabout scenarios. Different colors represent the travel routes of each robot, with

larger dots indicating the starting points of the routes.
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Positive (FP). Similarly, an invalid localization result that meets these conditions is

classified as a False Negative (FN), and if it does not, it is a True Negative (TN). We

then vary the values of (λ̇, ϵ̇) and calculate the corresponding F1-score. As shown in

Fig. 6.7, the determination performance is more sensitive to λ̇ than to ϵ̇. When λ̇ is

kept unchanged, the F1-score remains relatively stable for ϵ̇ ∈ [0.8, 1.0], but begins

to decrease when ϵ̇ < 0.8, due to stricter criteria for valid localization results. For λ̇,

there is no clear range where the F1-score remains stable. Instead, the score increases

initially but decreases as λ̇ continues to grow. Generally, a higher λ̇ and lower ϵ̇ can

filter out more localization results and retain only higher-quality ones, but this may

result in too few valid results for the subsequent pose-averaging optimization. On

the other hand, a lower λ̇ and higher ϵ̇ ensure a sufficient number of valid results but

may introduce more outliers, complicating the optimization process. Empirically, we

set ϵ̇=0.8 and λ̇=0.03 in our system, achieving F1-scores of 0.83 and 0.67 in the DCC

and Roundabout scenarios, respectively.

Localization Accuracy Evaluation

For each sequence, we calculate the average, standard deviation, maximum, and min-

imum for all the true positives of one-shot localization results. As shown in Tab. 6.1,

a sub-meter localization accuracy is achieved by the one-shot localization in aver-

age. The overall rotation accuracy for one-shot localization is less than 2◦. We also

compute the RTE and RRE for each alignment estimation between local reference

frames, i.e., T̂ A
Bj

, T̂ A
Ck

, T̂B
Ai

, T̂B
Ck

, T̂ C
Ai

, and T̂ C
Bj

. In addition, the euclidean distance

disodo =
√

x2 + y2 + z2 is calculated for each corresponding odometry pose, where

x, y, and z are the translations for T̂ A
ai

, T̂B
bj

, and T̂ C
ck

. As shown in Tab. 6.2, the

RTE for the alignment estimations between local reference frames is much larger

than the RTE for the localization results from TripletLoc (see Tab. 6.1), although

the RRE remains similar. This increase in RTE is primarily due to the compounded

localization error from TripletLoc and the odometry poses, as described in Eq. 6.4
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(a) DCC04 (b) Roundabout01

(c) DCC05 (d) Roundabout02

(e) DCC06 (f) Roundabout03

Figure 6.7: The F1 score for the valid one-shot localization result determination across

different values of (λ̇, ϵ̇).
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Table 6.1: The average, standard deviation, maximum, and minimum for the true

positive one-shot localization results.

Sequence
RTE (m) RRE (°)

ave±std Max Min ave Max Min

DCC04 0.8155±0.2222 1.33 0.44 0.8119±0.3213 1.63 0.33

DCC05 0.2152±0.1558 0.86 0.06 0.7541±0.4306 2.00 0.17

DCC06 0.6135±0.2025 1.06 0.30 0.8544±0.4349 2.43 0.21

Roundabout01 0.6161±0.2524 1.13 0.17 0.8924±0.6438 3.35 0.13

Roundabout02 0.9096±0.4728 2.69 0.36 2.4192±1.3342 5.54 0.28

Roundabout03 0.3934±0.2487 1.06 0.07 1.1830±0.7172 2.82 0.33

Table 6.2: The average, standard deviation, maximum, and minimum values for the

true positive alignment estimations between local reference frames, along with the

corresponding euclidean distances.

Sequence
RTE (m) RRE (°) disodo

ave±std Max Min ave±std Max Min ave Max Min

DCC04 2.29±1.73 6.82 0.60 0.81±0.32 1.63 0.33 216.49 351.90 62.29

DCC05 2.58±2.18 9.06 0.08 0.75±0.43 2.00 0.17 296.30 550.42 62.02

DCC06 3.23±2.63 11.70 0.23 0.85±0.43 2.43 0.21 279.93 370.37 176.46

Roundabout01 3.47±2.97 17.32 0.28 0.89± 0.64 3.34 0.13 332.35 487.81 178.37

Roundabout02 2.10±1.41 4.90 0.53 2.42±1.33 5.54 0.28 93.29 202.13 26.00

Roundabout03 3.29±2.40 9.12 0.55 1.18±0.72 2.82 0.33 199.81 272.27 51.41

and Eq. 6.5. In general, as a localization result from TripletLoc is obtained farther

from the origin of its local reference frame (i.e., larger disodo), the error of alignment

estimation between two local reference frames increases.

6.4.3 Multi Robot Alignment Analysis

As described in 6.2.2, we employ pose averaging optimization using multiple align-

ment estimations to obtain a final, reliable alignment result. The effectiveness of this
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(a) RTE for scenario DCC (b) RTE for scenario Roundabout

(c) RRE for scenario DCC (d) RRE for scenario Roundabout

Figure 6.8: The average RTE(m) and RRE(◦) for optimized alignment and the cor-

responding valid input alignment estimations in scenario DCC and Roundabout.

.

optimization is assessed by comparing the RTE and RRE of the optimized alignment

with the RTE and RRE of the valid input alignment estimations for the optimization.

For example, based on Eq. 6.7, we first compute the RTE and RRE for the optimized

alignment between frames A and B, i.e., RTE(T̂B
A ,TB

A ) and RRE(T̂B
A ,TB

A ). We

then calculate the average RTE and RRE for the corresponding valid input align-

ment estimations (i.e., SB
A = {T̂B

Ai
}n ∪ {T̂ A

Bj
}m) that are used for the optimization as

following:

RTE(SB
A ) =

1

n + m
(

∑
T̂B
Ai

∈{T̂B
Ai

}n

RTE(T̂B
Ai
,TB

A ) +
∑

T̂A
Bj

∈{T̂A
Bj

}m

RTE(T̂ A
Bj
,T A

B )) (6.8)

RRE(SB
A ) =

1

n + m
(

∑
T̂B
Ai

∈{T̂B
Ai

}n

RRE(T̂B
Ai
,TB

A ) +
∑

T̂A
Bj

∈{T̂A
Bj

}m

RRE(T̂ A
Bj
,T A

B )) (6.9)
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Results for other reference frame pairs (i.e.,A-C, and B-C) can be obtained by the

same manner. Theoretically, the optimization becomes more reliable when there are

more inputs (i.e., larger n+m). To investigate this, we vary n+m and and calculate

the RTE and RRE for both the optimized alignment and the corresponding valid input

alignment estimations for all reference frame pairs (i.e., A-B, A-C, and B-C). We

then compute the averages of these RTE and RRE results across different sequences

within the same scenario (i.e., DCC and Roundabout). As shown in Fig. 6.8, the RTE

and RRE of the optimized alignment generally decrease as more valid alignment

estimations are used for the optimization. Moreover, the average RTE and RRE

for the optimized alignment results are consistently smaller than those for the valid

input alignments before optimization, except when n + m = 2 and n + m = 3 in

the Roundabout scenario. Overall, the pose averaging optimization provides more

reliable final alignment estimations compared to the original valid inputs, reaching

RTE<1.5m and RRE<1.0◦ in scenario DCC, and RTE<2.0m with RRE<1.0◦ in

scenario Roundabout. Using these reliable alignment results, robot a and b are then

aligned to the shared reference frame A via shortest chain searching. Although the

optimization tends to be more reliable with larger value of n + m, it also requires

more valid alignment estimations, which in turn demands larger overlap between the

areas visited by different robots. This may result in a longer time to successfully

align multiple robots or even failure if there is insufficient overlap. Examples of the

concatenated point could in the shared reference frame A can be found in Fig. 6.9

and Fig. 6.10, where n + m is set as 6 empirically. The registration quality varies

across different overlap areas. Generally, the registration quality improves when more

valid localization results from TripletLoc (i.e., T̂ A
bj

, T̂ A
ck

, T̂B
ai

, T̂B
ck

, T̂ C
ai

, and T̂ C
bj

) fall

within the overlap area, such as overlap-1 and 3 in Fig. 6.9, as well as overlap-2

and 3 in Fig. 6.10. Conversely, registration quality declines in areas with fewer valid

localization results, such as overlap-2 in Fig.6.9 and overlap-1 in Fig.6.10.
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Figure 6.9: The concatenated point could map in the shared reference frame A for

sequence DCC04, where n + m is set as 6.

6.4.4 Communication Efficiency Analysis

To demonstrate the communication efficiency of our system, we calculate the average

number of instances and 3D points per keyframe. The odometry pose is excluded

from this calculation since it must be transmitted regardless of whether semantic

instances or raw point clouds are used for inter-localization. As shown in Tab. 6.3,

each keyframe contains an average of 66 instances. For each instance, the xyz coor-

dinates and the corresponding semantic label are transmitted to the server, requiring
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Figure 6.10: The concatenated point could map in the shared reference frame for

sequence Roundabout03, where n + m is set as 6.

approximately 1.85 KB of bandwidth per keyframe. In contrast, transmitting the

raw point cloud, which contains an average of 117,397 points per keyframe, demands

2.82 MB of bandwidth. This means that transmitting the raw point cloud requires

around 1,500 times more bandwidth than transmitting the semantic instances per

keyframe. Thus, using lightweight semantic instances can significantly reduces the

communication burden in multi-robot localization
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Table 6.3: The average number of instances and raw point cloud points per keyframe,

along with the corresponding memory consumption for each keyframe.

Sequence
Semantic instance Raw pointcloud

ave instance num memory (KB) ave point num memory (MB)

DCC04 70 1.96 114302 2.74

DCC05 74 2.07 118017 2.83

DCC06 88 2.46 117542 2.82

Roundabout01 55 1.54 119630 2.87

Roundabout02 55 1.54 117909 2.83

Roundabout03 55 1.54 116980 2.81

ave 66 1.85 117397 2.82

6.5 Conclusion

In this work, we develop a centralized multi-robot localization system, building upon

our previous one-shot registration based global localization method, TripletLoc.

We formulate the multi-robot localization as an optimization task and incorporat-

ing one-shot registration-based localization into the optimization process. Specifi-

cally, lightweight semantic instances from multiple robots are transmitted to a central

server, which constructs instance maps for inter-robot localization. To reduce the risk

of involving incorrect localization results, we propose a dual-metric validation strat-

egy to confirm the validity of pairwise localization results from TripletLoc. These

validated pairwise results are then optimized through pose averaging to obtain reliable

alignment estimations between the local reference frames of different robots. A short-

est transformation chain searching method is used to align all robots into a shared

reference frame. Our preliminary results demonstrate the feasibility and effective-

ness of the proposed system. It also shows promising potential for bandwidth-limited

conditions, as the transmission of lightweight semantic instances significantly reduces

data transfer between robots and the server.
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Chapter 7

Conclusions, Limitations, and

Future Work

This thesis aims to develop real-time and memory-efficient solutions for GNSS-free

global localization in urban environments, with a focus on autonomous driving. We

explore the use of OpenSreetMap and lightweight semantics to reduce the high mem-

ory demands of the 3D point clouds or 2D images based prior reference map/databases

in large-scale scenarios. We mainly focus on reliable data association, outlier filtering,

and robust pose estimation to achieve robust localization using these compact and

efficient representations. The main contributions and research findings of this thesis

are summarized below:

We propose SkyLoc, a novel global localization method that compares images from

a sky-looking fish-eye camera with OpenStreetMap, utilizing a KLD-sampling-based

particle filter to achieve real-time metric localization in dynamic traffic environments.

The modality gap between fish-eye images and OpenStreetMap is bridged by lever-

aging junction types and building outline information present in both data sources.

We present both quantitative and qualitative results, demonstrating good localiza-

tion performance in challenging scenarios, along with high runtime efficiency, even on
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embedded platforms.

In response to the sensitivity of vision-based localization to frequent condition changes

in long-term scenarios, we shift to using ranging sensors for localization. To better un-

derstand the impact of seasonal and weather variations on localization performance,

we conduct a comprehensive evaluation of range-sensing-based place recognition in

large-scale urban environments. In addition, we propose a novel metric to assess the

influence of matching thresholds on place recognition performance in long-term lo-

calization, offering valuable guidance for parameter setting to ensure more consistent

results over time. Our results and findings provide fresh insights to the community

and potential directions for future study.

To address the significant memory demands of storing additional point clouds or

feature points for pose estimation in traditional place recognition-based localization

methods, we propose a novel scan-to-scan method, Triplet-Graph, to achieve both

place recognition and 6-DoF relative pose estimation with lightweight semantics. We

convert LiDAR point clouds into semantic graphs and describe the vertices in the

graphs with the proposed triplet-based histogram descriptor for vertex matching and

pose estimation. These vertex descriptors are then selected and aggregated into a

global descriptor to decide whether two places correspond to the same place according

to a similarity score. Experimental results on the KITTI dataset demonstrate the

competitive performance of our method compared to state-of-the-art approaches.

To further reduce the memory usage for the reference maps/databases, we propose

TripletLoc, for fast and robust global registration of a single LiDAR scan to a large-

scale reference map. The scan-to-map localization manner ensures that each semantic

instance is stored only once in the reference map, unlike the scan-to-scan framework,

which redundantly stores some of instances across multiple scans. We enhance the se-

mantic histogram descriptor from Triplet-Graph to achieve more robust and effective

instance-to-instance correspondences. In addition, we propose a novel Road Surface

Normal (RSN) map to provide a prior rotational constraint, improving pose estima-
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tion. To enhance robustness against outlier associations, we apply graph-theoretic

outlier pruning and Graduated Non-Convexity. Extensive experiments in diverse and

large-scale urban environments demonstrate that our TripletLoc is highly competitive

to state-of-the-art methods, showing good robustness, accuracy, runtime efficiency,

and memory efficiency.

Building on TripletLoc, we develop a centralized multi-robot localization system by

formulating the problem as an optimization task and incorporating one-shot registration-

based localization into the optimization process. A dual-metric validation strategy

is proposed to confirm the validity of pairwise localization results from TripletLoc.

The validated pairwise results are subsequently refined using pose averaging to achieve

reliable alignment between local reference frames of different robots. A shortest trans-

formation chain searching method is used to align all robots within a shared reference

frame. Preliminary results confirm the system’s feasibility and effectiveness, while also

showcasing its strong potential in bandwidth-constrained environments.

Although our study demonstrates competitive performance and strong potential, sev-

eral limitations remain. First, the absolute localization accuracy of SkyLoc is rela-

tively low due to image distortion and the resolution of OpenStreetMap. This makes

SkyLoc unsuitable for scenarios that require sub-meter localization accuracy. Sec-

ond, Triplet-Graph, TripletLoc, and our multi-robot system currently rely solely on

the geometric centroids of semantic instances, discarding other valuable geometric

information such as shape, size, and orientation. Inconsistencies in semantic segmen-

tation and instance clustering quality across different scans can result in shifts in

the centroids of identical semantic instances, making association and pose estimation

more challenging. Moreover, an instance-level map that relies solely on geometric

centroids may not be sufficient for other tasks, such as obstacle avoidance. Third,

our multi-robot localization system has only undergone preliminary evaluation. A

more comprehensive study, including extensive testing in diverse environments and

detailed comparisons with state-of-the-art multi-robot solutions, is needed to fully
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assess its performance and identify areas for improvement.

In the future, we plan to explore new compact representations that capture more

geometric details to improve the robustness of data association, enhance localization

accuracy, and support additional tasks such as navigation and path planning. In

addition, we intend to incorporate uncertainties in instance-to-instance associations,

including those related to semantic segmentation and instance clustering, to achieve

more robust outlier filtering and pose optimization. Furthermore, we aim to inte-

grate camera and LiDAR data to develop a more flexible reference map capable of

supporting different types of onboard sensors.
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[82] Kamil Żywanowski, Adam Banaszczyk, Micha l R Nowicki, and Jacek Ko-

morowski. MinkLoc3D-SI: 3D LiDAR place recognition with sparse convo-

lutions, spherical coordinates, and intensity. IEEE Robot. Automat. Lett,

7(2):1079–1086, 2021.
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