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Abstract 

As the population ages in modern society, people begin to pay attention to 

daily medical care. There are already some vital sign monitoring products on the 

market, such as Xiaomi Smart Band, Fitbit Watch, Apple Watch, etc. However, 

these products are all wearable devices. Not only will wearing it for a long time 

cause discomfort, but long-term contact measurements may also trigger allergic 

reactions. BCG, a signal of tiny vibrations in the body caused by the heart's 

pumping of blood, can be measured non-invasively by FOSs. In this work, a fiber 

optic interferometer-based BCG monitoring system was developed. During 

exercise and sleep states, the BCG signal based on the FOS has a high correlation 

with the reference signal collected by commercial equipment. Through the BCG 

signal collected by this system, the health status of the heart, such as myocardial 

contractility and HRV, can be analyzed. 

FOSs based on special optical fibers were first proposed for non-contact vital 

signs monitoring. One is a new online MZI sensor based on self-made SCF, and 

the other is an SI sensor based on self-made SH-HiBiF. The advantage of the 

former is that the sensor is simple to manufacture, low in cost, and has high 

repeatability. The advantage of the latter is that the sensing fiber used is not 

sensitive to temperature, and the system does not need to use demodulation to 

solve the signal fading problem. During the experiment, the sensing fiber was 

packaged under the mattress to monitor vital sign signals for a long time. Through 

filtering and FFT procedures, accurate RR and HR can be obtained. At the same 



 

II 

 

time, the proposed system can also diagnose premature beats in a non-contact 

manner with an accuracy of 97.9%. 

Furthermore, we also propose a single-mode fiber-based MZI for non-contact 

vital sign monitoring. The system uses 3×3 coupler demodulation scheme to solve 

the signal fading problem and can be used stably for a long time. And due to its 

high sensitivity, this sensor can not only be placed under the mattress for sleep 

monitoring, but can also be attached to the wrist for pulse diagnosis. The 

measurement results of RR and HR at rest and during exercise showed high 

accuracy. This work verifies the feasibility of the proposed system in sleep, pulse 

diagnosis and driver monitoring applications. And the heart health status is 

evaluated based on the long-term BCG data collected by the proposed system. 
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Chapter 1 

Introduction 

 

1.1 Overview and research motivations 

In recent decades, with the steady growth of income, people's living 

standards have gradually improved. Increasing work pressure has led to a 

decline in physical health, which has gradually increased people's health 

awareness. People are willing to buy some health monitoring devices to 

record their daily health conditions. HR, RR, blood oxygen, BP, body 

temperature, etc., are indicators that reflect human health. Among these vital 

sign indicators, HR and RR are particularly important due to their close 

association with chronic diseases such as CVD and COPD [1]. Daily vital 

sign monitoring can help to evaluate people's health status, which is of great 

significance in many healthcare applications. Due to increasing concerns 

about health issues, researchers are interested in developing user-friendly 

and convenient methods for monitoring vital signs. CVD has become the 

leading single cause of death in developed countries, accounting for more 

than 30% of all deaths in most countries. The AHA reports that CVD was 

responsible for approximately 19.05 million deaths worldwide in 2020. 
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Additionally, one in three people die from cardiovascular-related diseases 

[2]. Long-term service is indispensable for HR and RR monitoring, whether 

in clinical or home applications. Vital sign monitoring equipment is 

particularly necessary in areas with an aging population and scarce medical 

resources. 

In order to provide more convenient vital sign monitoring, many 

devices have been developed and widely used in daily life. The most 

commonly used cardiac monitoring device in the current healthcare system 

is the ECG device [2]. The heart's electrical signals can be collected by 

attaching several electrodes to the chest, abdomen, and limbs. In addition to 

ECG, PPG is a common heartbeat measurement method, and the pulse 

signal can be obtained by clipping a pulse oximeter on the finger [3]. The 

measurement principle of PPG devices is to analyze cardiac information by 

collecting changes in reflected or transmitted light intensity on the skin. 

Spirometry, capnometry, and impedance pneumography are commonly used 

methods for respiratory monitoring [4]. However, traditional medical 

devices have some limitations that need to be addressed. During the ECG 

measurement process, several patches need to be attached to the body, 

which can cause discomfort to the user. PPG is also a contact measurement 

method. Clamping the finger with the device for a long time will cause poor 

blood flow. Spirometry interferes with the natural respiration of users, 

making continuous respiration monitoring difficult. As a contact 

measurement method, capnography also causes discomfort to the users. IRG 

requires the use of special equipment for analysis, resulting in high costs. 
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Therefore, these HR and RR measurement devices cannot meet the needs of 

daily use at home. BCG reflects information about the vibration of the heart 

without attaching any patches to the body. At the same time, respiratory 

information can also be obtained from the BCG raw data. Taking advantage 

of the difference in heartbeat and respiratory rates, simultaneous monitoring 

of HR and RR can be achieved through a single monitoring system. 

BCG is a biomedical signal reflecting the body recoils in reaction to 

heart ejection during each cardiac cycle, in which the body recoils refer to 

global movements of the body. It is a combination of multiple forces 

including blood flow within the heart, blood flow within arteries (mainly the 

aorta), and heart movement. BCG signals can be detected via non-invasive 

and non-wearable means [4]. Many research groups have explored various 

sensing schemes to track the BCG waveform. Among them, electronic 

sensors are the most common type adopted to fabricate the BCG monitor. In 

2006, Alametsä et al. recorded BCG signals with an EMFi sensor and 

assessed the severity of breathing disturbances during sleep [5]. They 

embedded the EMFi sensor into the cushion and users could obtain the 

heartbeat signal when they sat on the cushion. Subsequently, in 2011, Wiard 

et al. applied a designed bathroom scale to measure BCG and improve the 

SNR [6]. Users could obtain their BCG signal by standing on the scale and 

keeping still. In addition, remote vital signs monitoring based on video or 

radar technologies has also caused much concern in recent years. In 2017, 

Hassan et al. proposed a camera-based robust BCG monitoring system by 

measuring head movement [7]. They obtained the approximative BCG 
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signals by estimating the face's microscopic color change or rigid motion. 

More recently, in 2020, Cimr et al. measured a quantity correlated with the 

PWV by using the Cartan curvature and transformed it into direct BP 

measurement by using the Moens–Korteweg relation [8]. Though these 

technologies provide feasible schemes to monitor heartbeat or breath, some 

drawbacks will greatly reduce the performance of sensors. For example, the 

limited sensitivity could result in the loss of details in biomedical signals, 

and EMI can also affect performance. In addition, for video or radar 

technologies-based remote health monitoring, motion artifacts will 

introduce large errors into the monitoring systems. 

Optical fiber-based sensors as a novel sensing technology own many 

merits, including low cost, high sensitivity, electrical isolation, and immune 

to EMI, which is intrinsically safe and reliable. Optical fiber-based sensing 

technologies have been widely used in strain [9], humidity [10], temperature 

[11], acceleration [12], and RI [13] measurements. In addition, there are 

several vital signs monitors based on different types of FOS. For example, 

X. Yang et al. built a wearable textile micro-bend FOS to monitor HR and 

RR based on the principle of micro-bend loss [14]. Ł. Dziuda et al. 

developed an FBG strain sensor to acquire HR and RR information of the 

user during MRI survey [15]. However, the mentioned FOS technologies 

have some defects: the sensitivity of the micro-bend loss-based sensing 

method is limited and the demodulation equipment of FBG is expensive. To 

address these problems, we pay more attention on the phase-based FOS. 
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For optical fiber interferometers, the signal fading problem makes it 

unsuitable for long-term use. Numerous modulation and demodulation 

schemes, including the PGC demodulation method [16] and PZT phase 

modulation method [17], can be used to solve this limitation, but they have 

significant limitations for BCG monitoring. Signal generators and PZT 

modulation devices are too bulky to be integrated into the compact vital 

signs monitoring system. 

In this thesis, the BCG monitoring system based on different fiber optic 

interferometers is proposed to obtain long-term, real-time, stable, and 

accurate BCG signals. The high-quality BCG signals collected through this 

system are then used in cardiac health assessment, sleep monitoring, driver 

monitoring, etc. This long-term and real-time BCG monitoring system has 

tremendous potential in future healthcare applications. 

1.2 BCG signal and applications 

1.2.1 Overview 

The BCG signal reflects the subtle vibrations of the human body caused by 

each heartbeat and is able to be obtained in a non-contact method through 

highly sensitive sensors [18]. Gordon first observed this phenomenon in 

1877. He discovered that while standing on a scale, the hands deflected on 

either side of the dial with every heartbeat [19]. In 1939, an instrument for 

measuring this signal was developed by Starr et al. [18]. However, due to 

limitations of measurement technology, BCG-related technologies were not 

further studied. In the past decade or so, BCG has regained the favor of 
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researchers with its increasingly mature sensing and signal processing 

technology. 

The blood travels along the vascular with each heartbeat, which causes 

changes in the body’s center of mass. Then, tiny body movements caused by 

recoil forces can maintain the overall momentum. BCG is a recording of 

these movements, and it can be obtained as displacement, velocity, or 

acceleration information. BCG can be divided into longitudinal and 

transverse BCG depending on the movements in different directions. The 

longitudinal BCG represents vibrations in the head-to-foot direction, while 

the transverse BCG represents vibrations in the dorsoventral direction. The 

longitudinal BCG is the maximum projection of 3-D forces caused by 

cardiac ejection. However, for some measurement methods, forces from 

multiple directions are inevitably mixed. Despite the 3-D nature of BCG, 

researchers have primarily studied longitudinal BCG. The main 

measurements of longitudinal BCGs were based on force sensors placed on 

chairs or weighing scales, and thus the subject could be in a vertical position 

to detect the change of head-to-foot force. Subsequently, lots of bed-based 

sensors were widely studied to detect transverse BCG successfully. 

BCG waveform is generated with each cardiac contraction, and each 

waveform owns several peaks and valleys, as shown in Fig. 1.1. A complete 

BCG waveform records several peaks, mainly including H, I, J, K, and L 

peaks with different amplitudes. These peaks reflect the pumping status of 

the heart. For example, the amplitude of the IJK complex can reflect aortic 
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pulse pressure [20]. J peaks of BCG can be used to estimate HR and HRV 

of the subject, which has great potential in cardiac health care. 

 

Fig. 1.1. A typical BCG waveform. 

1.2.2 Measurement methods 

The currently widely investigated BCG detection systems are mainly based 

on weighing scales, beds, and chairs. 

The weighing scale-based BCG system was first proposed by Jim 

Williams et al. in 1990, which was based on an electronic scale [21]. They 

built a high-precision electronic scale and then found the motion artifacts 

during the measuring process, which is mainly composed of the BCG signal. 

The standing posture of the subject guarantees the measured BCG is 

completely longitudinal, which is the main advantage of this type of 

measurement. Moreover, since weighing scales are a common household 

device, it is easy to popularize this heartbeat monitoring system by 

enhancing the capabilities of the traditional weighing scale. Therefore, many 

researchers have investigated this BCG measurement. In 2009, O. T. Inan et 
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al. proposed a BCG monitoring system based on a modified weighing scale 

[22]. Gonzalez-Landaeta et al. [23] and Shin et al. [24] have also 

successfully built BCG monitors based on weighing scales. The BCG 

signals collected by their system have a similar shape and amplitude to the 

recordings detected by Starr et al. At the same time, however, this kind of 

measurement also exists the issue of being susceptible to motion artifacts 

and environmental disturbances. In addition, the weighing scale-based BCG 

system also limits the duration of the measurement since it is uncomfortable 

for the subject to stand still on the scale for a long time, especially for a 

patient. 

Bed-based BCG systems can access the BCG signals during sleep, 

which can be used in the evaluation of sleep stages and sleep-related 

disorders. Since the BCG devices do not need to attach electrodes to the 

skin of subjects, they will not disturb the sleep behaviors of subjects 

compared to ECG devices during the data collection stage. Bed-based BCG 

systems can be integrated with the sleeping environment based on different 

types of sensors. Alihanka et al. proposed a static charge-sensitive bed in 

1981, which was the first time such a bed-based BCG sensor has been 

proposed [25]. Subsequently, film-type force sensors [26], EMFi sensors 

[27], piezoelectric film sensors [28], polyvinylidene fluoride sensors [29], 

and hydraulic sensors [30] have been proposed to detect BCG on the bed. In 

addition, sensor arrays have been developed to replace the single sensor to 

improve performance [31]. These sensors can not only detect heartbeat 

signals, but also other physiological information such as respiration signals 
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and body movements, which can be used to improve the accuracy of sleep 

analysis.  

Chair-based BCG systems can obtain the BCG in the sitting position. 

Walter et al. proposed an EMFi sensors-based BCG monitor embedded in 

the driver’s seat in the car, which could be used to monitor the fitness of the 

driver [32]. J. Alamesa et al. developed an EMFi-based seated BCG 

monitoring device and demonstrated a better performance than acceleration 

sensor-based BCG monitoring devices. [33]. In general, chair-based BCG 

monitors provide a heartbeat monitoring way during the day, and they can 

work with bed-based BCG monitors to realize a sound cardiac health 

monitoring system in daily life. However, chair-based BCG signals own less 

signal amplitude compared to bed-based BCG and weighing-scale-based 

BCG signals, which need more sensitive sensors to detect. 

1.2.3 BCG applications 

Initially, BCG was proposed as a clinical diagnostic tool, and doctors could 

make diagnoses of patients' cardiovascular health based on BCG records 

[34,35]. However, large inter-subject variability in the BCG signal 

hampered the continuation of this proposal. In contrast, studies have shown 

that the variability of serially measured signals across subjects is actually 

low unless cardiovascular health changes [36]. Therefore, BCG has been 

proposed as a tool to monitor changes in the cardiovascular status of the 

same patient over time. 

To reveal the correlation between BCG signal characteristics and 

clinical diseases, large number of researchers have conducted studies on 
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healthy subjects using modern instrumentation and analytical tools. They 

primarily use non-invasive protocols to alter cardiac hemodynamics and 

time intervals, such as running, VM, whole-body tilt test, or LBNP, and then 

compare changes in BCG to changes in gold standard measurements (e.g. 

ICG or Doppler ultrasound). 

Many researchers have examined the signal itself as well as the time 

intervals between BCG characteristics and other physiological signals (such 

as ECG or PPG) in an attempt to find correlations between these time 

intervals and well-known parameters (such as PEP, PTT or LVET). PEP is 

usually measured by ICG, which characterizes myocardial contractility. The 

time interval between the R peak of the ECG and the J peak of the BCG has 

been suggested as a reference for PEP assessment [37,38]. These 

researchers used the VM and whole-body tilt test to alter the autonomic 

balance between the SNS and PNS to modulate PEP. They compared the 

measured RJ interval with PEP measured using ICG to assess the feasibility 

of the RJ interval as a surrogate for PEP. Etemadi et al. illustrated a strong 

correlation between RJ interval and PEP for 2126 beats in 10 subjects 

performing the VM [38]. He et al. reached similar conclusions with the VM 

and whole-body tilt test in one subject [37]. 

The amplitude component of BCG has been found to change with the 

variations in left ventricular function, specifically variations in SV or CO. 

After studying 275 data points in 9 subjects, Inan et al. verified that 

exercise-induced RMS power changes measured during a 10-min recovery 
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period were closely related to CO changes measured by Doppler ultrasound 

[39].  

Pinheiro et al. suggested using BCG and PPG for PTT estimation and 

extracting BP-related information through the known relationship between 

PTT and PWV [40]. Shin et al. revealed a strong correlation between RJ 

interval and SBP by comparing RJ interval using VM-modulated BCG with 

beat-to-beat SBP using the Finapres system [41]. Nevertheless, Casanella et 

al. found that the correlation between RJ interval and SBP was not always 

observed in the context of hemodynamic changes caused by paced 

respiration, and this phenomenon depended on the subject [42]. Winokur et 

al. found that the time interval between the BCG and PPG collected from 

subject's ears correlates with PTT, which can be used to estimate BP [43]. 

LVET is another health parameter, which expresses the duration of 

systolic ejection. Javaid et al. used a wearable BCG device to measure 

contraction intervals during walking at different speeds [44]. Using pattern 

matching techniques and multi-sensor data fusion, they demonstrated good 

correlations between PEP from the gold standard ICG and BCG features, 

and also between LVET from both modalities. 

1.3 Optical fibers and fiber optic sensors 

1.3.1 Overview 

Optical fibers were first invented by K. C. Kao in 1966, which is a dielectric 

waveguide operating in the optical band [45]. The RI of the core in an 

optical fiber is higher than that of the cladding, which enables the 
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transmission of energies at optical frequencies to travel in optical fibers 

according to the total internal reflection phenomenon. Optical fibers have 

been extensively studied since then, and SMFs have been produced for use 

in practical communication systems. 

An optical fiber consists of a core, cladding, and coating. The cladding 

surrounds a silica glass core. According to the variation of RI, optical fiber 

is divided into step-index fibers and graded-index fibers. Step-index fibers 

have an abrupt RI change at the core-cladding interface while the RI of the 

core reduces gradually and then is equal to that of the cladding at the 

interface in graded-index fibers. The cross-section and the corresponding 

index profile of two kinds of optical fiber are shown in Fig. 1.2. a and b are 

radius and n1 and n2 are the RIs of the core and cladding. Generally, a and b 

are 8 μm and 125 μm in the SMF. Other than the common SMF, several 

structures of optical fibers are designed and fabricated based on various 

requirements, such as FMFs [46], MMFs [47], MCFs [48], and PCF [49]. 



 

13 

 

 

Fig. 1.2. The cross-section and the corresponding index profile of (a) step-index fiber and 

(b) graded-index fiber. 

Optical fibers have been used worldwide in communications due to the 

intrinsic merits of long transmission distance, large information capacity, 

lightweight, immunity to EMI, and safety. With the development of optical 

fiber technology, optical fibers have also been investigated and utilized in 

the application of sensing. FOSs have been demonstrated to be available for 

strain, temperature, acceleration, and RI sensing. The principle of FOSs is 

that the light from a laser or LED propagates through the optical fiber and is 

modulated by measured parameters in the sensing area. The characteristics 

of light, like optical intensity, wavelength, frequency, phase, and 

polarization state, will be changed. The formed modulated signal can be 

delivered to the demodulation system to obtain the measured parameter. At 
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present, FOSs have been widely used in the field of well logging technology 

[50], medical applications [51], and structure health monitoring [52]. 

Furthermore, an FOS can be utilized in many extreme conditions, such as 

high temperature [53] and intensity magnetic field [54], owing to its 

remarkable properties of which. 

As mentioned, variational measured parameters can change the optical 

properties of light. Therefore, there are several types of FOSs based on 

different principles including intensity-based, wavelength-based, and phase-

based, which will be introduced briefly in the following part. 

1.3.2 Fiber optic sensors 

For intensity-based FOSs, the optical intensity will change with the 

measured parameter, and variation of the transformed electrical signal from 

the PD is related to the measured parameter. There are several types of 

intensity-based sensors. The first type is based on the 

transmission/reflection light. The example illustrated in Fig. 1.3(a) is a 

displacement FOS based on transmission light [55]. The light intensity can 

change with the lateral displacement between the sensing arm and the 

reference arm. The second type is utilizing the principle of bending loss. Fig. 

1.3(b) is a micro-bend FOS [56]. Cyclic bending of optical fiber resulting 

from comb deformer with fixed spatial period can convert part of guided 

modes to radiation modes, which changes the light intensity. The third type 

is based on the varying refraction index. Fig. 1.3(c) is a liquid-level detector 

[57] using an optical fiber and a prism. When the probe enters the liquid, the 
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light intensity can change with the variational critical angle. The device is 

used to detect the RI of the liquid. 

 

Fig. 1.3. (a) Fiber-optic displacement sensor. (b) Micro-bend fiber-optic sensor. (c) Liquid 

level detector. 

As long as the measurement parameter changes, the changes of light 

wavelength can be detected by the PD of the wavelength-based fiber optic 

sensor. The most widely used of these sensors is FBG, which has periodical 

perturbation of the RI in the fiber core. Variations in RI can be achieved by 

exposing the core to a strong ultraviolet energy interference pattern. In fact, 

it can be thought of as a distributed Bragg reflector, reflecting light of 

specific wavelengths and transmitting all other wavelengths [58]. This is 

achieved by the grating period, which will lead to a specific wavelength 

dielectric mirror. Based on FBG's ability to transmit and reflect specific 

wavelengths, it can be used not only as a filter but also as a mirror. Fig. 1.4 

shows the principle of FBG. 
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Fig. 1.4.  The principle of FBG-based sensor. 

FBG-based sensor has high sensitivity and can realize multi-point 

measurement within one optical fiber. Thus, it is ideal for measuring 

temperature, strain, pressure, and sound waves [59,60]. The main advantage 

is that the information being measured is wavelength-encoded, giving the 

sensor a self-referencing function that is immune to fluctuating light levels 

and other sources of optical noise. Benefiting from the inherent wavelength 

characteristics of FBG, even if the light intensity is lost or attenuated due to 

the optical fiber during transmission, the sensor measurement results can 

still remain accurate. [61-63].  

For phase-based FOS, phase variation cannot be obtained directly by 

PD. Therefore, interferometers are utilized to convert phase change into 

optical intensity variation. There are several typical types of interferometers. 

The first one is a fiber-optic MI [64], as shown in Fig. 1.5(a). Two mirrors 

are placed at the end of the sensing arm and reference arm, respectively. The 

phase of sensing light can change with measured parameters. Two reflected 
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light form interference at the coupler and the varying light beam can 

propagate back to PD. Fig. 1.5(b) shows the structure of fiber optic MZI 

[65]. The light beam is split into two paths by the first coupler and 

transmitted in the sensing arm and the reference arm, respectively. the two 

modulated light beams are coupled at the second coupler, and interference 

light intensity can be obtained by PD. The third type is a fiber optic FPI [66], 

which is shown in Fig. 1.5(c). A microcavity is fabricated by coating two 

high reflection films in the fiber, as shown in Fig. 1.5(d), and then multiple 

reflective lights generate interference in the optical fiber. The length of 

microcavity changes with the measured parameter and the variational light 

intensity can be obtained in the PD. 

 

Fig. 1.5. (a) Fiber optic MI. (b) Fiber optic MZI. (c) Fiber optic FPI. (d) Microcavity. 

1.4 Research objectives 
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The research goal of this study is to develop an intelligent health monitoring 

system based on FOS, which can be summarized as follows: 

⚫ Verify the feasibility of FOS based on special optical fibers for vital 

signs monitoring. 

⚫ Construct a robust real-time vital sign monitoring system based on the 

fiber optic interferometer for daily use. And the 3×3 coupler 

demodulation method is used to solve the signal fading problem that 

seriously affects the signal quality in the fiber interferometer. 

⚫ Apply the proposed vital signs monitoring system in different scenarios 

(such as sleep monitoring, pulse detection and driver monitoring). 

⚫ Analyze cardiac health status (such as PEP, HRV) based on the 

proposed vital signs monitoring system. 

1.5 Organization of this thesis 

This thesis mainly investigates the vital signs monitoring system based on 

FOS.  The research contributions have been illustrated in the following 

chapters: 

Chapter 1 gives an overview of this thesis.  

Chapter 2 introduces the application of special optical fibers in vital 

sign monitoring. 

Chapter 3 proposes a robust FOS system based on MZI, which can 

obtain high-quality vital sign signals stably over a long period of time. 

Chapter 4 verifies the feasibility of robust FOS for practical 

applications in sleep monitoring, pulse monitoring, and driver monitoring. 
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Chapter 5 demonstrates the application of FOS-based BCG signal in 

cardiac health analysis. 

Chapter 6 Summarizes the research works and possible suggestions for 

the future work. 
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Chapter 2 

Special optical fiber-based vital signs 

monitoring sensor 

 

2.1 Introduction 

Population aging has become an unavoidable trend around the world, 

placing increasing medical and nursing pressure on individuals and 

governments [67]. CVDs have become one of the leading causes of death 

worldwide over the past decade. Most heart diseases are chronic diseases, 

often accompanied by symptoms of cardiac arrhythmias [68]. The 

premature beat is a type of arrhythmia, which is a beat that occurs earlier 

than expected [69]. Therefore, accurate recognition can provide valuable 

assistance to physicians in diagnosis. Not only can it help with early 

diagnosis of heart diseases, but it can also provide patients with targeted 

treatment option. In today's society, young people are under tremendous 

work and life pressure, and they face a high incidence of disease [70]. 

Timely diagnosis and early treatment of chronic diseases can greatly reduce 

the risk of death [71-73]. Therefore, daily health monitoring has become an 

important means to detect and control diseases, especially cardiovascular 

diseases [74,75]. However, at this stage, the number of medical institutions 
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is limited and they can only provide services to a small number of people. 

Furthermore, most of the work can only be performed by trained personnel, 

resulting in considerable waiting times for medical treatment. For people 

who are busy with work, frequent and long-term visits to the hospital for 

check-ups are unrealistic. In view of these limitations, it would be valuable 

to investigate low-cost vital signs monitoring devices that can be used daily 

at home [76,77]. These research results will effectively reduce the medical 

burden and benefit the entire society. 

FOSs have the advantages of immunity to EMI, lightweight, small size, 

high sensitivity, robust performance, and ability to withstand harsh 

environments. Different physical parameters, such as RI, temperature and 

strain, can modulate the light in special optical fibers through elastic or 

thermo-optical effects. To date, the use of special optical fibers as sensors to 

measure RI, temperature and strain has been widely used in civil 

engineering, environmental monitoring, biomedical engineering and other 

fields. 

2.2 Seven-core fiber-based vital signs monitoring 

sensor 

2.2.1 Overview  

HR and RR are important indicators for evaluating health conditions and 

disease diagnosis [78]. Identifying and analyzing abnormal HR and RR can 

help users detect some diseases at an early stage, such as sleep apnea 

syndrome, premature beats, asthma, etc. [79,80]. It is worth noting that most 
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chronic diseases are accompanied by breathing or heartbeat abnormalities. 

ECG is the most commonly used commercial medical device for accurate 

and stable monitoring of HR [81]. This method usually requires 3 or more 

electrodes attached to the body. A common method of detecting breathing is 

to detect changes in the subject's exhaled airflow and chest volume. This 

approach typically requires patients to wear masks during testing. Complex 

operating procedures and contact-based measurement methods make 

traditional HR and RR measurements unsuitable for long-term use. 

In the past few years, various novel vital sign monitoring devices have 

been developed based on different principles to overcome the shortcomings 

of the above methods, such as Wi-Fi signal-based devices [82], Doppler 

radar-based devices [83], and motion microscopy-based devices [84]. These 

devices provide users with a more comfortable experience. However, the 

low stability and high cost of the systems limit the possibilities for home use. 

In the past few decades, FOSs have attracted widespread attention due to 

their unique advantages, including lightweight, immunity to EMI, low cost, 

etc. These excellent characteristics have inspired researchers to investigate 

optical fiber-based HR and RR monitoring systems. The recently developed 

FOSs can simultaneously serve as a sensing element to obtain information 

and as a medium to transmit signals [85-88]. 

The idea of optical fiber-based non-invasive vital sign monitoring 

technology was proposed and attempted a few decades ago [89,90]. The rise 

and fall of the chest with breathing causes changes in the pressure exerted 

on the FOS. The body produces tiny vibrations as blood is pumped during 
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each heartbeat. Fiber optic interferometers are very sensitive to these smile 

perturbations, and the collected data can be filtered to extract HR and RR. 

Since the optical signal is limited to the optical fiber and has no contact with 

the human body, the user's safety and comfort are significantly improved. 

Thanks to the advantages of interferometers, many scholars have proposed 

various interference-based FOS for vital sign measurement. In 2012, 

Sprager et al. reported an MI-based HR and RR monitoring FOS placed 

within a mattress [91]. In 2014, Yang et al. proposed on a textile FOS for 

HR and RR measurement based on fiber microbending effects [92]. In 2018, 

Chen et al. developed a novel few-mode fiber-based FOS for HR and RR 

monitoring [93]. The proposed FOS structure can significantly reduce the 

complexity of sensor production, since it has only one optical fiber. One 

year later, Tan et al. proposed an interferometer based on strongly coupled 

TCF for non-invasive HR and RR monitoring [80]. However, the 

performance of above-mentioned FMF- and TCF-based interferometers is 

highly dependent on the non-repeatable fusing splicing process. They are 

not suitable for large-scale commercial production. Compared with the 

above-mentioned fibers, strongly coupled SCF has stable and balanced 

mode excitation and distribution. The SCF-based interferometer has high 

repeatability and is suitable for commercial production. SCF has been 

investigated and applied in different applications, such as temperature, 

curvature, strain, vibration, displacement, and RI [87, 88, 94-101]. It is 

expected to be a better choice for vital signs monitoring. 
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A low-cost, stable, and repeatable FOS based on strongly coupled SCF 

is proposed for non-contact vital sign measurement. Based on interference 

principle, an optical fiber fusion splicer is used to sandwich the SCF 

between two sections of SMF. The SCF-based FOS is encapsulated in a 

cushion to achieve the monitoring of RR and HR. Comparing the BCG 

signal obtained by FOS with the reference ECG signals obtained by the 

AD8232 module simultaneously, the usability of SCF-based FOS in the 

field of vital signs monitoring was confirmed. 

2.2.2 Principle and simulation 

Fig. 2.1(a) shows the effective RI of the two supermodes of the proposed 

sensor, and Fig. 2.1(b) shows FOS structure. A strongly coupled SCF is 

fusing splicing between two sections of SMF. Sensor fabrication requires 

only standard fiber cutting and splicing procedures, ensuring repeatability 

and durability. The SCF used by the sensor is homemade. First, the VAD 

method was used to prepare Ge-doped silica rods, and seven silica rods with 

smaller diameters were pulled out. Then, seven silica hollow tubes were 

prepared, the diameter of these hollow tubes was slightly larger than the 

silica rods. After pickling and drying, seven silica rods are inserted into the 

silica hollow tube and stacked in a hexagonal shape. Finally, a jacked tube is 

added to the silica hollow tube in which the quartz rod is inserted to create a 

preform. SCF can be drawn in an optical fiber drawing tower of our 

laboratory at approximately 1900°C. Fig. 2.1(c) demonstrates an SEM 

image of the proposed SCF. The homemade SCF consists of seven cores 

with a distance of 11 μm and a diameter of 8.2 μm, and a pure silica 
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cladding with a diameter of 125 μm. The RI difference between the core and 

the cladding is 0.0049. Since the center core diameter of the SCF is the 

same as that of the SMF core and the diameters of the two fiber claddings 

are the same, the insertion loss caused by mode mismatch and the risk of 

breakage caused by bending at the splicing point are reduced. 

 

Fig. 2.1 (a) The effective RI of two supermodes and mode profiles. (b) The structure of 

SCF-based FOS. (c) SEM image of SCF cross-section. 

In the practical application of the proposed system based on self-made 

strong coupling SCF, the optical signal is injected from the SMF, and 

multiple supermodes are excited when passing through the first splicing 

point. These modes couple into another segment of SMF as they propagate 

along the SCF to the second splicing point. Generally, multiple modes of 

transmission can be supported in the SCF. However, because of the 

geometric symmetry of proposed SCF and the excitation of fundamental 

mode by SMF, only two modes transmission can be supported in the SCF of 

the proposed sensor [102]. In the second SMF, the two modes of light will 

interfere and form interference fringes. Since the effective RI of the two 
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modes are different, the intensity of the interference light can be expressed 

as: 

 𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos
2𝜋𝐿(𝑛1−𝑛2)

𝜆
,  (2.1) 

where 𝐼1 and 𝐼2 are the intensities of two supermodes that interfere, 𝐿 is the 

length of the SCF, 𝑛1 and 𝑛2 are the effective RIs of two modes, and 𝜆𝑚 is 

wavelength of the input light. Therefore, the wavelength of m-order 

interference valley can be expressed as: 

 𝜆𝑚 =
2(𝑛1−𝑛2)𝐿

2𝑚+1
. (2.2) 

The FSR of the SCF can be expressed as: 

 Λ =
𝜆2

(𝑛1−𝑛2)𝐿
 . (2.3) 

The photoelastic effect will cause the effective RI of the two 

supermodes to change when the SCF is bent, causing a shift in the 

wavelength of the interference valley of the transmission spectrum. The 

shift of the interference valley will cause the interference light intensity of 

the second SMF to change. The bending curvature of MZI can be obtained 

by monitoring changes in interference light intensity. 

Full vector FEM simulations were performed using COMSOL 

Multiphysics to investigate the theoretical basis of the proposed SCF-based 

vital signs sensor. As mentioned above, although SCF can theoretically 

support multiple modes of transmission, only the two most powerful modes 

make a major contribution to interference at the second welding point. Fig. 

2.1(a) shows the simulation results of COMSOL Multiphysics. The effective 

RI of both supermodes decreases with the increase of operating wavelength, 
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and the change rate of Supermode-1 is higher than that of supermode-2. The 

inset shows the profiles of the two modes at a wavelength of 1550nm. 

Substituting RI into Eq. 2.1, the normalized transmission spectrum of 

SCF-based FOS can be obtained. Because the intensity of the two modes 

only determines the fringe contrast and not the valley wavelength, the 

intensity values of the two modes are set to 𝐼1 = 𝐼2. Fig. 2.2 illustrates the 

interference spectrum results of SCFs with three lengths: 3.6 cm, 4.8 cm, 

and 100 cm. Substituting the effective RI of the two modes into Eq. 2.3, it 

can be found that the FSR corresponding to the three lengths of SCF are 

37.5 nm, 28.2 nm, and 1.42 nm. 

 

Fig. 2.2. The interference spectrum results of SCFs with three different lengths: (a) 3.6 cm, 

(b) 4.8 cm, and (c) 100 cm.  

As shown in Fig. 2.3(a), when SCF bends, the RI of the two modes is 

obtained by the method in [103]. By applying a conformal transformation 

with an RI profile, straight fibers can be used as an equivalent substitution 

for curved fibers: 

𝑛𝑏(𝑥, 𝑦) = 𝑛(𝑥, 𝑦) ∙ 𝑒𝑥/𝑅, (2.4) 

where 𝑅 is the bend radius of SCF and 𝑛(𝑥, 𝑦) is the RI profile of a straight 

fiber.  

Let 𝜃 represent the bending angle of proposed SCF relative to the x-

axis, and set the incident light wavelength to 1550 nm. Fig. 2.3(c-j) shows 
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the mode profiles of two supermodes of SCF bent along two directions of 

𝜃 = 0° and 𝜃 = 90° with the curvatures of 5 m−1 and 10 m−1. The main 

energy of supermode-1 is confined to the center core of the SCF. As 

curvature increases, a small portion of the intensity will be transferred to the 

inner core. However, for supermode-2, more energy leaks from the center 

core and couples into the outer cores when SCF bends. 

 

Fig. 2.3. (a) The bending simulation principle. (b) Calculated effective RI shifts of the two 

modes as a function of curvature for SCF bent along two orthogonal directions. (c-j) The 

mode profiles of two supermodes with different bending curvatures. 

The RI as a function of curvature is shown in Fig. 2.3(b). As the 

curvature of SCF increases along the x and y directions, the RI of 

supermode-1 decreases, while the RI of supermode-2 increases. The result 

matches the previous description of the mode distribution, that is, the energy 

of the two supermodes is coupled to the inner core and the outer core 

respectively. Moreover, the RI variation curves of supermode-2 bending 

along the x-axis and y-axis overlap well, which means that the bending 

direction has little effect on supermode-2. However, the RI of supermode-1 

depends on the bending direction. As the curvature increases, the difference 

in the RI curves of supermode-1 curved along the x and y directions 

becomes larger and larger. 
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The interference spectrum of a 4.8 cm SCF under different bending 

curvatures along the two directions is shown in Fig. 2.4 (a) and (b). As 

curvature increases, the entire transmission spectrum is blue-shifted. This is 

because the rate of change of RI becomes larger during this process. The 

bending sensitivity, represented by the ratio of wavelength shift to curvature, 

also increases. Fig. 2.4(c) illustrates wavelength shift as a function of bend 

radius. Two curves match very well when the curvature is less than 14 m−1, 

which means that the spectral shifts caused by the slight bending of the SCF 

in x or y direction are very close. In vital sign monitoring applications, since 

the SCF bends caused by heartbeat and breath are very small, the effective 

RI changes of the two modes can be regarded as isotropic. 

 

Fig. 2.4. The spectra changes of SCF when bending along (a) 𝜃 = 0° and (b) 𝜃 = 90°. (c) 

The wavelength shift of the valley around 1550 nm as a function of curvature for SCF bent 

along 𝜃 = 0° and 𝜃 = 90°. 

Next, the bending response sensitivity of SCFs with lengths of 50 mm, 

100mm, 150 mm and 200 mm was simulated, as shown in Fig. 2.5. Fig. 

2.5(a) shows the wavelength as a function of the curvature, and the 

relationship between the wavelength shift and the curvature here is close to 

parabolic. The results from 4 m−1 to 13 m−1 are selected from Fig. 2.5(a) to 

quantify the bending sensitivity, as shown in Fig. 2.5(b). Within this 

relatively narrow range, this curve can be approximated by a linear fitting 
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instead of a quadratic fitting, and the slope achieved from linear fitting 

results is the curvature response sensitivity. Linear fitting resulted in a 

curvature sensitivity of 4.56 nm/m−1. Fig. 2.5(c) demonstrates the results of 

the analysis of four sensors with SCF lengths from 50 mm to 200 mm. 

 

Fig. 2.5. The bending response sensitivity an SCF with 50 mm: the curvature range is from 

(a) 0 m−1 to 20 m−1 and (b) 4 m−1 to 13 m−1. (c) Wavelength shifts of one valley as a 

function of curvature for 50 mm, 100 mm, 150 mm and 200 mm SCF. 

2.2.3 Vital signs monitoring 

After the investigation of the transmission characteristics of SCF and the 

bending response of SCF-based sensor, vital signs monitoring experiments 

were performed using the proposed system shown in Fig. 2.3(a). Based on 

our previous experimental results, the sensor is fabricated from SCF with a 

length of 1m to avoid exceeding the measurement range due to the subject's 

unavoidable body movements. The SCF for sensing and the SMF for 

transmitting light signals are fixed to the mattress with glue. During the test, 

the subject lay flat on the mattress with the chest above the FOS to obtain 

BCG signals in the front-to-back direction. The input light from TL is 

emitted into the vital signs monitoring system by a SMF and received by a 

PD after passing through FOS. The input light wavelength of TL is fixed at 

1549.88 nm. The light in FOS is modulated by the tiny vibrations of the 

body caused by the heartbeat and the rise and fall of the chest caused by 
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breathing. Recordings were performed using a MATLAB program via a 

National Instruments DAQ card (USB6210) with a sampling rate of 5000 

Hz. The light intensity detected by PD changes with the spectral shift caused 

by heartbeat and breathing. The transmission spectrum of FOS is shown in 

Fig. 2.6(b), and its FSR is consistent with the simulation result of 1m SCF 

of 1.42 nm (Fig. 2.2(c)). The reference HR can be calculated from PPG 

signals collected using a commercial finger-clip PPG device. 

 

Fig. 2.6. (a) The experimental diagram. (b) The transmission spectrum of proposed FOS 

with 1m SCF. 

Fig. 2.7(a) illustrates the FOS raw data collected in the resting state of 

the subject. Since the respiratory and heartbeat signals are signals of 

different frequencies, they can be obtained using an LPF or a BPF. Fig. 

2.7(b) shows the spectral information obtained by FFT of the raw data. In 

particular, this experiment uses a BPF with a cut-off frequency of 0.05 Hz to 

0.4 Hz to obtain the respiratory signal, and a BPF with a cut-off frequency 

of 0.8 Hz to 7 Hz to extract heartbeat signals. 
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Fig. 2.7. (a) The raw data collected from proposed FOS. (b) The FFT result of the raw data 

processed with MATLAB. 

Fig. 2.8 shows the 1-min RR and HR results obtained from the raw 

data. The respiratory signal has 14 peaks within 60 seconds, which is 

consistent with the number counted using an external recording instrument, 

as shown in Fig. 2.8(a). During the entire measurement process, the peak-to-

peak interval of the respiratory signal fluctuated around 5 seconds, and the 

corresponding RR was 12 bpm. For heartbeat monitoring, the IBI of BCG 

obtained by our sensor is calculated by the J-J interval, while the reference 

IBI is calculated by the P-P interval of PPG, as shown in Fig. 2.8(b). The 

heart rate calculated based on BCG IBI is 72 bpm, which is consistent with 

the result calculated based on PPG IBI. Therefore, the SCF-based vital signs 

monitoring system can effectively and accurately achieve simultaneous 

measurement of HR and RR. 
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Fig. 2.8. The filtered results of respiration (top) and heartbeat (bottom). 

Post-exercise HRV analysis is often used as a means to diagnose 

cardiovascular diseases [104]. The validity of HRV analysis based on the 

post-exercise BCG J-J interval has been demonstrated [105]. This work 

analyzed the changing trends of RR and HR after exercise calculated by the 

collected BCG and PPG signals. The subjects were asked to perform 20 

burpees and then immediately lie on the mattress to collect data. Monitoring 

lasted approximately four minutes. To visualize the changes in RR and HR, 

Fig. 2.9 and Fig. 2.10 shows the 30-second RR and 10-second HR results, 

respectively. After the subject lay down, the peak-to-peak interval of the 

two signals showed a downward trend, which meant that RR and HR 

gradually returned to normal. At the end of the exercise, the RR reached 

18.2 bpm and dropped to 14.0 bpm after 4 minutes. During this time, the 
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HR results decreased from 114 bpm to 106.9 bpm, which is consistent with 

the results calculated from the PPG signal. 

 

Fig. 2.9. RR results using SCF-based FOS system. 

 

Fig. 2.10. HR results using SCF-based FOS system. 

Experimental results demonstrate that our SCF-based vital sign 

detection system can simultaneously monitor HR and RR after exercise. In 

addition, our system has unique and superior performance compared to 

other FOS-based vital sign monitoring systems. First, some vital sign 

monitoring systems based on few-mode or multi-mode optical fibers take 

advantage of inter-mode interference between different modes, and their 

performance is affected by the length of sensing fiber. The length change 

may introduce more higher-order modes for interference, which gives the 

sensor an unstable interference spectrum. The inability to precisely control 
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the length of sensing fiber makes this type of vital signs monitoring system 

less valuable in the commercial world. The SCF excited supermode used in 

this work can be guided with low loss, and the transmission spectrum can be 

accurately predicted. What's more, the FOS is fabricated simply by 

sandwiching the SCF between two SMFs using standard welding procedures. 

Small differences in SCF length only affect the FSR of the transmitted 

spectrum without changing the spectrum type. And compared with sensors 

based on weakly coupled multi-mode fiber offset splicing, this splicing 

method ensures that the FOS has better mechanical strength, better 

repeatability, and lower insertion loss. Therefore, we believe that SCF-based 

vital signs monitoring systems are very promising candidates in the health 

field.  

2.3 Six hole fiber based vital signs monitoring sensor 

2.3.1 Overview 

In recent years, various electronic sensors based on different data 

acquisition methods have been proposed for HR monitoring, such as 

fingertip cardiotachometer, wrist cardiotachometer, and ECG instruments 

[106-108]. As for RR monitoring, the head-mounted respiratory monitor 

takes up the primary market [109]. However, all electronic sensors cannot 

be used in the high electromagnetic environment, such as magnetic 

resonance imaging equipment. Moreover, most electronic sensors are 

wearable, which is uncomfortable for humans. 
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BCG signals capture the ballistic force of the heart due to the sudden 

ejection of blood into the vessels with each heartbeat and can be measured 

non-invasively. Using non-invasive FOSs as the primary sensing element in 

a vital signs monitoring system is an ingenious way to solve electromagnetic 

interference and comfort problems. In addition, FOSs possess many unique 

advantages, such as compact size, lightweight, chemical corrosion resistance, 

and long-term stability. An increasing number of FOSs-based monitoring 

system proposed by researchers worldwide also proves the advantages 

above. In 2017, Presti et al. developed a smart textile based on 12 FBG 

arrays capable of monitoring RR and HR in both standing and supine 

postures [110]. In 2019, Tan et al. proposed an interferometer based on 

strongly coupled TCF for non-invasive RR and HR monitoring [80]. In 

2020, Xu et al. proposed an all-fiber vital signs monitoring system with 

long-mode interference in MMF and applied it to achieve non-wearable 

vital signs monitoring [111]. However, FBG-based sensors are too 

expensive for widespread use. The TCF and MMF-based sensors are 

affected by external temperature variations which will cause signal fading 

problem. 

In this section, a temperature-insensitive FOS is proposed for non-

invasive vital signs monitoring. The core sensing element is an SI built by 

an optical coupler and a homemade SH-HiBiF. The SH-HiBiF is a type of 

temperature-insensitive fiber for its raw material is pure fused silica without 

doping any other particles. Due to the low temperature sensitivity of the 

proposed sensor, there is no signal fading problem caused by temperature 
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changes in traditional interferometers. The proposed system is simple in 

structure and can achieve quadrature operation without complicated 

demodulation methods, like 3×3 coupler and phase generation carrier, 

commonly used in interferometers. The interference spectrum of the SI 

generated by a broad-spectrum light source can shift linearly with the lateral 

stress variation because of the stress-induced birefringence effect in this 

fiber. If the single-wavelength light around the Q points (the points on the 

interference spectrum with the highest slope) is injected into the SI, the 

heartbeat and respiratory signal can modulate the output light intensity. 

Then, the PD can be used to convert the heartbeat- and respiration-

modulated optical signals into electrical signals, which are collected by the 

multi-modalities signal acquisition board together with the reference ECG 

signal. All signals are transmitted to a computer through a router. The HR 

and RR of the subjects with premature beats can be obtained directly 

through the spectrum analysis of the raw signal. The J peaks of BCG signals 

can be quickly identified using template matching and then used to 

recognize abnormal heartbeats. The average accuracy of normal and 

premature beats recognition based on a commonly used classification 

algorithm, SVM, is 98.4% and 97.9%. 

2.3.2 Sagnac interferometer and experiment system 

The core part of the proposed system is a temperature-insensitive optical 

fiber SI, built up by a 3 dB coupler and a section of homemade SH-HiBiF. 

Because of the circular asymmetric structure in the fiber, the time-domain 

spectroscopy of the SI will shift linearly as the lateral stress change. 
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Because of the circular asymmetric structure of the suspended core part, a 

stress-induced birefringent effect is introduced into this fiber. The cross-

section of the fiber used for building up the SI is shown in Fig. 2.11(a). 

 

Fig. 2.11. System working principle. (a) vital signs monitoring sensors setup (FOS-based 

BCG sensor and commercial AD8232-based ECG sensor), (b) optical signal generation 

and signal processing system. 

Fig. 2.11 demonstrates the working principle diagram of the vital signs 

monitoring system. Subjects with premature beats lie on the bed, and the 

FOS is placed under the chest to collect BCG signals, as shown in Fig. 

2.11(a). In addition, three electrodes are attached to the chest and abdomen, 

and the commercial equipment AD8232 is used to collect synchronized 

ECG signals, which is convenient for experts to select BCG J peaks 

manually. Fig. 2.11(b) shows the laser source of FOS and the signal 

processing system. Signal light from a tunable laser is injected into the FOS, 

and the output signal is received by a PD. All data are collected by a multi-

modal signal acquisition board with a sampling frequency of 1000 Hz, and 

then transmitted to a computer through a router. ECG and BCG waveform 
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signals are displayed on the display device in real-time. Abnormal 

heartbeats (premature beats) can be identified with SVM after template 

matching. 

2.3.3 Data processing and results 

Fig. 2.12 shows the data processing block diagram of the proposed vital 

signs monitoring system. HR and RR can be directly obtained by MATLAB 

FFT function with the raw BCG signal and displayed on a monitor in real-

time. The template matching method can be used to find out the J peak of 

BCG quickly and accurately, and SVM can be used to identify abnormal 

heartbeats.  

 

Fig. 2.12. The data processing block diagram of the proposed vital signs monitoring system. 

Fig. 2.13 (a) shows the raw data collected by the subjects with 

premature beats at rest. Since the respiration and heartbeat signals have 

different frequencies, two BPFs can be used to extract them. The frequency 

distribution of the original BCG signal after FFT processing is shown in Fig. 

2.13(b). According to the characteristics of the BCG signal, the respiration 

signals can be obtained using a BPF with a specified cutoff frequency of 0.1 

Hz and 0.5 Hz, and the heartbeat signals can be obtained using a BPF with a 

specified cutoff frequency of 0.8 Hz and 25 Hz. 
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Fig. 2.13. (a) The raw data collected using SH-HiBiF-based vital signs monitoring system, 

(b) the frequency spectrum raw data, and (c) J peaks of BCG selected by template matching 

and expert. 

For premature beats recognition, a simple and effortless template 

matching method is used to preprocess the raw BCG signal, which can 

extract the J-peak without ECG synchronization. The extraction method is 

based on template matching evaluated using a correlation function during a 

locally moving window. Template matching is performed with a local 

moving window function that generates correlation coefficients between the 

template constructed during the previous modeling process and the BCG 

signal. First, a BPF with a cutoff frequency of 0.5−20 Hz is used to remove 

the respiration signal from the original signal. The templates are selected by 

experts to represent the general shape of the BCG signal based on filtered 

BCG signals. The I-J-K complex of BCG corresponds to ventricular systole 

and the Q-R-S complex of ECG. Then, the correlation function computes 

the accuracy of the template versus the BCG signal using a local moving 

window. Fig. 2.13(c) shows that the J-peak detected by template matching 
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(indicated by red dots) is entirely consistent with the expert analysis 

(indicated by green circles). 

Since a premature beat is a heartbeat that occurs earlier than expected, 

it can be identified by the J-J intervals. After extracting the J peaks of BCG, 

a sudden shortened J-J interval is marked as a premature beat (judged by 

experts). The results can be expressed as: 

1 1, ,..., ,n nx y x y
→ →   

   
   

 

where ix  are the J-J intervals and iy  are either 1 (normal) or -1 (abnormal) 

indicating the class to which   belongs. 75% of the data is used to train the 

SVM model, and then the remaining 25% works as a test set. The premature 

beats recognition result is shown in Fig. 2.14. The accuracy of premature 

beats recognition is 97.9%, and normal beats recognition is 98.4%. 

 

Fig. 2.14. Premature beats recognition results using SVM. 

2.4 Summary 

In this chapter, a novel inline MZI sensor based on homemade SCF 

supermodular interference is proposed and fabricated for non-contact vital 

signs monitoring. It is created by splicing a segment of SCF between two 

segments of SMF through a simple splicing procedure. Encapsulating 
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sensing optical fibers under mattresses enables long-term monitoring of vital 

signs signals. Through filtering and FFT algorithms, accurate RR and HR 

can be obtained. Lower cost, simpler process and better accuracy make 

SCF-based vital sign detection systems highly competitive in the home 

healthcare field. 

In addition, a non-invasive vital signs monitoring system based on 

optical fiber SI is proposed, which works well. The core part of this system 

is an optical fiber SI, built up by a 3 dB coupler and a section of homemade 

SH-HiBiF. Since the optical fiber material of the sensing part is pure fused 

silica, which is insensitive to temperature, the system does not need to apply 

any demodulation scheme to solve the signal fading problem. Moreover, the 

proposed system can be used to diagnose premature beats with 97.9% 

accuracy even without attaching the electrodes to the human body, which is 

more comfortable for the patients. Performed experiments demonstrate the 

system’s feasibility in further research in the biomedical field. 
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Chapter 3 

Single-mode fiber-based robust vital signs 

monitoring system 

 

3.1 Introduction 

In recent decades, a lot of vital signs monitoring devices have been 

developed and widely used in daily life. The most commonly used cardiac 

monitoring device in the current healthcare system is the ECG device [112]. 

By attaching electrodes to the chest, abdomen, and limbs, the heart's 

electrical signals can be collected. In addition to ECG, PPG is a common 

heartbeat measurement method, and the pulse signal can be obtained by 

clipping a pulse oximeter on the finger [113]. The principle of PPG devices 

is to collect cardiac information through changes in transmitted or reflected 

light intensity on the skin. Spirometry, capnometry, and impedance 

pneumography are commonly used methods for respiratory monitoring 

[114]. However, traditional medical devices have some limitations that need 

to be addressed. During the ECG measurement process, several patches 

need to be attached to the body, which can cause discomfort to the user. PPG 

is also a contact measurement method. Clamping the finger with the device 

for a long time will cause poor blood flow. Spirometry interferes with the 
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natural respiration of users, making continuous respiration monitoring 

difficult. As a contact measurement method, capnography also causes 

discomfort to the users. Impedance respirography requires the use of special 

equipment for analysis, resulting in high costs. Therefore, these heartbeat 

and respiration monitoring devices are not suitable for daily use at home. 

BCG reflects information about the mechanical vibration of the heart 

without attaching any patches to the body. At the same time, respiratory 

information can also be obtained from the BCG raw data. Taking advantage 

of the difference in heartbeat and respiratory rates, simultaneous monitoring 

of HR and RR can be achieved through a single monitoring system. 

3.2 Sensor structure 

Fig. 3.1 shows the system setup. The FOS consists of a 1×2 coupler and a 

3×3 coupler. The light is injected into the 1×2 coupler of the MZI by the 

DFB laser and interferes at the 3×3 coupler after passing through the 

sensing arm and the reference arm. Asymmetric configurations can improve 

the sensitivity of the sensor by creating a larger phase difference between 

the interfering light waves. This makes it easier to detect small changes in 

the measured parameter. The interference light is divided into three signals 

and transmitted to the PD. The FOS is placed under the cushion to measure 

the BCG signal, and 3 electrodes are attached to the chest and abdomen to 

obtain 3-lead ECG signals. The optical signals output by FOS and ECG 

signal are collected by a multi-modalities signal acquisition board and 

transmitted to a computer through a router. The multi-modalities signal 
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acquisition board contains a 1550 nm pigtailed DFB laser with a spectral 

width of 0.1 nm used as the light source in the FOS system, 3 PDs used to 

receive the optical signal output by the FOS, a MCU used for demodulation 

3 channels optical signals, an AD 8232 module used for processing ECG 

signals, and a Wi-Fi module used for transmitting ECG and BCG signals. 

All the collected data can be viewed on the computer with processed 

waveforms and calculated HR. Since the paced respiration will significantly 

change the amplitude of HRV, the system acquired all four channels (three 

channels of BCG signals and one channel of ECG signals) at a sampling 

frequency of 1000 Hz to obtain more accurate data. 

 

Fig. 3.1. (a) Experiment setup (FOS placed under a mattress, 3 electrodes attached to the 

chest and abdomen, a multi-modalities signal acquisition board for collecting BCG and 

ECG signals); (b) multi-modalities signal acquisition board schematic (containing 1 DFB 

laser, 3 PDs, 1 MCU, 1 Wi-Fi module, and 1 ECG module AD 8232); (c) interferometric 

FOS structure (containing a 1×2 coupler and a 3×3 coupler); (d) ECG and BCG HR 

signal real-time display. 

A 1550 nm DFB laser is used as the light source in the FOS system. 

Since the FOS is based on the principle of interference, the changes of the 

external environment may cause the random phase drift of the sensor, which 

will make the working point of the fiber optic interferometer deviate from 
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the center of the linear region. The random drift of the working point can 

seriously affect the working state of the interferometer. Thus, a 3×3 

demodulation method was applied for analyzing the BCG signal, that is, 

using a 3×3 coupler to divide the interference light into three beams with a 

phase difference of 120° [115]. The light emitted from the DFB laser is 

transmitted into the reference and sensing fibers through a 1×2 coupler. 

Then the beams of light transmitting in the reference and sensing arms will 

interfere at the 3×3 coupler. The output light intensity of the interferometer 

can be calculated using the equation below:   

 𝐼𝑘 = 𝐷 + 𝐼0 cos[𝜑(𝑡) − (𝑘 − 1)(2𝜋/3)],  (3.1) 

where 𝜑(𝑡) is the phase difference of light signals, D is the average value of 

output light intensity, 𝐼0 is the peak intensity of interference fringes, k is the 

number of the output light path, 𝑘 = 1, 2, 3. 

In practical application, φ(t) includes phase changes caused by the 

measured information and the environment variation which can be 

expressed as: 

 𝜑(𝑡) = 𝜙(𝑡) + 𝜓(𝑡),  (3.2) 

where 𝜑(𝑡)  represents the signal to be measured, and 𝜓(𝑡)  is the phase 

difference caused by environmental changes. 

The sensing arm and reference arm of FOS were fixed on the acrylic 

board with polypropylene/polyethylene glue, and then encapsulated with 

epoxy resin AB glue to ensure long-time stability of the sensor system. The 

transmission spectrum of the interferometric FOS can be observed by an 

optical spectrum analyzer (YOKOGAWA AQ6370D), as shown in Fig. 3.2. 
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Four interference dips can be observed in the spectrum at wavelengths 

1549.4, 1549.72, 1550.03, and 1550.34 nm, respectively. All these dips can 

be used for BCG sensing. 

 

Fig. 3.2. Transmission spectrum of the interferometric FOS. 

3.3 The 3×3 coupler demodulation method 

According to Eq. (3.1), the three optical intensity signals can be 

demodulated by the 3×3 coupler demodulation scheme shown in Fig. 3.3. 

 

Fig. 3.3. Optical fiber 3×3 coupler demodulation scheme. 

After differentiation and cross-multiplication, the demodulated signal is: 



 

48 

 

 𝑁 = 𝑎(𝑒 − 𝑓) + 𝑏(𝑓 − 𝑑) + 𝑐(𝑑 − 𝑒) =
3√3

2
𝐼0

2𝜑′(𝑡). (3.3) 

In the actual environment, fluctuations of the light intensity and 

changes of the polarization state will influence the value of 𝐼0. In order to 

eliminate the influence factors, the following mathematical treatment is 

carried out. 

First, square the three input signals to obtain: 

 𝑀 = 𝑎2 + 𝑏2 + 𝑐2 =
3𝐼0

2

2
.  (3.4) 

Then divide 𝑁 by 𝑀 and eliminate 𝐼0
2 to get: 

 𝑃 =
𝑁

𝑀
= √3𝜑′(𝑡). (3.5) 

After integral operation, the output is shown as:  

 √3𝜑(𝑡) = √3𝜙(𝑡) + 𝜓(𝑡). (3.6) 

Usually, 𝜓(𝑡)  is regarded as a slow change quantity, which can be 

filtered out through an HPF. 𝐼𝑜𝑢𝑡  is the output signal of the 3×3 

demodulation scheme, which is known as the BCG signal transmitted to the 

PC. 

3.4 ECG and BCG data processing 

HR is measured by the number of contractions of the heart per minute. The 

results of this experiment are calculated from the number of R peaks or J 

peaks in a minute. IBI is a scientific term used in reference to the time 

interval between individual beats. It is calculated from the time interval 

between two adjacent R or J peaks. The R peak corresponds to the peak of 

each QRS complex of the ECG, and the J peak corresponds to the peak of 
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each IJK complex of the BCG. The R peaks of the ECG signal are detected 

by the “findpeaks” function of MATLAB. The reference IBI is calculated 

from the RR interval of the ECG. Since motion artifacts in the BCG signal 

can lead to power increase in all frequency bands which will significantly 

affect time and frequency domain results, we detect J peaks of the BCG 

signal by previous algorithm [116]. 

 

Fig. 3.4. The architecture of modified U-net. 

This end-to-end algorithm is based on a modified U-net, and it can 

detect the position of IJK complex and body movement in the BCG signal. 

The architecture of the modified U-net is shown in Fig. 3.4, in which three 

contracting and expansive stages are included. nf is the number of filters in 

1-D convolution layer. The left part is the contracting path. Each stage 

consists of repeated two 15×1 1-D convolutional layers with ReLU 
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activation function followed by a 2×1 max pooling layer with stride 2 to 

halve the size of feature maps. nf in the convolutional layer doubles at each 

downsampling stage. The right part is the expansive path, and at each stage, 

an upsampling layer followed by a 2×1 convolutional layer is used to double 

the size of the feature map and halve the number of feature channels. The 

feature map in the corresponding contracting stage is directly duplicated and 

combined with the upsampled feature map in the expansive path. The 

combined feature map is followed by two 15×1 1-D convolutional layers 

with ReLU, and the filter number of the convolutional layer is halved at 

each upsampling stage. Finally, a convolutional layer with SoftMax 

activation functionis used in the output layer to predict the class of each 

sampling point, including IJK complex, body movement signal and 

background (non IJK complex). The kernel size and filter number of the 

function are 1×1 and 3. In this way, the motion artifacts can be removed and 

then accurate IJK complexes are obtained. 

3.5 Results and discussion 

The comparison between the demodulated BCG signal and the 3 channels of 

the original BCG signal is shown in Fig. 3.5. The top three pictures are three 

BCG output signals, and the bottom picture is the BCG signal after 

demodulation. Obviously, all three output signals have signal fading 

problem in a certain period of time. After demodulation, this problem is 

solved well. 
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Fig. 3.5.  Comparison between original and demodulation signals. 

The R peaks of the ECG signal are detected by the “findpeaks” 

function of MATLAB. The reference IBI is calculated from the RR interval 

of the ECG. The BCG signals are demodulated using the above scheme and 

then filtered using a BPF with a lower cut-off frequency of 1.2 Hz and a 

higher frequency of 35 Hz [117]. This BPF can filter out breathing signal 

and get more details about the high frequency part of the BCG (i.e., J peak). 

The J peak of BCG is detected by the same function. Fig. 3.6 shows the 1-

minute results for BCG and ECG. The FOS-based BCG-derived IBI shows 

high correlations with ECG-derived IBI, with a correlation coefficient of 

0.9971. 
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Fig. 3.6. 60-second BCG and ECG signal. 

3.6 Summary 

In this chapter, a low-cost FOS-based system is proposed for the long-term 

stable measurement of BCG, which can be used to collect accurate BCG 

signal. The core part of the system is a single-mode fiber-based MZI, which 

consists of a 1×2 coupler and a 3×3 coupler. Due to the asymmetric 

structure of the two MZI arms, the interference spectrum will be observed, 

which will move linearly with the change of the transverse stress. The 

incident light is emitted from a low-cost DFB laser and coupled into the 

MZI sensor. The vibrations induced by human respiration and heartbeat will 

result in the variation of light phase in MZI, and further give rise to the 

change of interfering light intensity which is detected by three PDs. The 

FOS-based BCG-derived IBI shows high correlations with ECG-derived IBI, 

with correlation coefficients of 0.9971. This system has the potential to 

become a preferred alternative for ECG in daily monitoring. 
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Chapter 4 

Vital signs monitoring system applications 

 

4.1 Introduction 

The most pressing issue around the world today is to provide equitable and 

affordable health care for everyone. Equitable global healthcare means that 

everyone around the world has access to good healthcare services, which is 

a common challenge faced by developing countries [1]. The existing 

healthcare system is overburdened due to the increase in population and the 

lack of medical facilities, necessary infrastructure, qualified doctors and 

diagnostic equipment [2,3]. Researchers are working tirelessly to mitigate 

the effects of chronic and potentially fatal diseases such as heart disease, 

high BP, and asthma. in the past decade, with the maturity of smart 

wearable devices and the advancement of IoT and artificial intelligence 

technologies, continuous monitoring of vital signs such as HR, BP, heart 

sounds, RR and body temperature has become feasible in more and more 

application scenarios. Additionally, the daily monitoring of vital signs can 

aid in the diagnosis of viral infections like COVID-19. 
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As mentioned earlier, most traditional equipment requires contact 

measurement, which causes discomfort to patients. Contactless vital sign 

sensor technology can monitor a patient's vital signs without feeling. 

Continuous, non-contact vital sign monitoring reduces risk and increases 

alert for those requiring urgent attention. Camera-based vital signs 

monitoring products are already in use. The device detects severe early 

deterioration by continuously measuring HR and RR. An attractive option 

due to its ubiquity, high performance and cost-effectiveness. However, these 

camera-based vital sign monitoring devices are challenging in places where 

capturing images is prohibited. No one likes the feeling of being watched all 

the time, and this can cause discomfort for most people. The proposed fiber-

based vital signs monitoring device can be seamlessly integrated into hotels, 

elderly care centers, homes, or outpatient care facilities, allowing truly 

sensorless measurements while protecting privacy. 

Although continuous monitoring of dynamic vital signs can obtain a 

wealth of valuable health information, effective information extraction and 

monitoring device deployment remain challenging. The prediction of 

cardiovascular risk in different individuals and the assessment of sleep 

status are not yet satisfactory. Research on continuous monitoring of vital 

signs will play a significant role in the field of health care, because they can 

effectively help doctors make relevant treatment decisions. This chapter will 

show the application of optical fiber-based vital signs monitoring systems in 

different fields, protecting sleep monitoring, pulse monitoring and driver 

monitoring. 
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4.2 Sleep monitoring 

4.2.1 Overview 

With the aging of the global population, people are paying more and more 

attention to daily health monitoring. Health data that was only available in 

hospitals in the past can now be obtained by yourself at home. 

Cardiovascular diseases such as atrial fibrillation and hypertension require 

long-term monitoring during the prevention or recovery process. Therefore, 

the home vital signs monitoring system has attracted more and more 

people's attention. ECG is one of the widely used heart monitoring 

technologies in daily life, but it requires wired and multiple viscous 

Ag/AgCl electrodes to be attached to the body. PPG-based smart watches 

and smart bands are also used to provide daily HRV information. However, 

none of these technologies can reflect the mechanical vibration information 

of the heart. In the medical field, ICG can be used to measure the systolic 

and diastolic time interval of the heart, and has the advantages of non-

invasive, safe, simple, continuous dynamic observation and so on. However, 

the equipment is bulky and expensive, and multiple electrodes need to be 

connected to the patient during the measurement process, which can cause 

discomfort, so it is not suitable for daily monitoring at home. 

BCG is a non-invasive heart monitoring technology, which measures 

the tiny vibration caused by the blood pumped into the aorta during each 

heartbeat cycle [18]. This phenomenon was first discovered by Gordon in 

1877. About 60 years later, Starr et al. conducted a lot of research on it. 

However, due to the limitations of sensor technology and measurement 
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resolution, the development of BCG is very slow compared to ECG, and the 

research related to BCG almost disappeared in the late 20th century. In the 

past two decades, thanks to the development of sensor technology, academia 

has once again set off an upsurge in BCG research, and principle-based 

measurement equipment has appeared one after another [36,43,54,118,119]. 

Compared with the BCG system based on electrical sensors and thin film 

sensors, the BCG system based on interferometric FOS has higher 

sensitivity, lower cost, and is more suitable for home use. 

Clinical studies have shown that sleep discontinuity caused by waking 

up at night increases the risk of cardiovascular disease, impairs immune 

function, and leads to obesity, diabetes, and cognitive dysfunction [120,121]. 

Therefore, it is very important to monitor the sleep state at night. The gold 

standard for sleep monitoring is PSG, but PSG equipment is complicated 

and expensive to use, and multiple wired sensors are installed on the face, 

head and limbs, which is extremely uncomfortable. Therefore, the BCG 

system is a better choice for continuous sleep and cardiovascular monitoring 

at home. 

4.2.2 Methods 

Fig. 4.1 shows the overall system setup and the FOS structure based on a 

3 × 3 coupler. The heartbeat signal is collected by ECG equipment (AD 

8232) and BCG equipment (FOS) at the same time. During sleep, 3 

Ag/AgCl patches were attached to the subject’s chest and right abdomen to 

collect ECG signals, as shown in the red part of Fig. 4.1 (a). As shown in the 

green part of Fig. 4.1 (a), an optical fiber-based sensor is placed under the 
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mattress to collect BCG signals. Fig. 4.1 (b) is a fiber optic sensor structure 

based on a 3×3 coupler, which can solve the signal fading problem. The 

components of the BCG and ECG sensors are packaged on the same circuit 

board and connected to the data acquisition card. All data is transmitted to 

the computer for processing through the USB data cable. In the optical 

fiber-based BCG sensor, the light from the 1550 nm distributed feedback 

laser is injected into the reference fiber and the sensing fiber through a 1×2 

coupler. Then, the reference light will interfere with the light in the sensing 

fiber at the 2×3 coupler. The interference signal is received by three PDs, 

and the three-channel signal is sampled by a data acquisition card (National 

Instruments USB 6210). And the ECG signal is also sampled by the same 

data acquisition card. 

 

Fig. 4.1. (a) System setup, (b) fiber optic sensor structure based on 2 × 3 coupler. 

4.2.3 Results and discussion 

Fig. 4.2 shows the sleep data for 7.5 hours, the blue line is the ECG signal, 

and the red line is the BCG signal. The small image at the top of the figure 

shows the detailed information of ECG and BCG from 10100 s to 10150 s. 

In addition to being "insensitive" during the measurement, this sensor can 

detect tiny body movements during sleep due to the high sensitivity of the 
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fiber-optic interferometer. Compared with the BCG signal, the data of the 

ECG signal is very stable all night, and the weak body movement during 

sleep has almost no effect on the signal. In the BCG signal, the signal 

amplitude increases significantly during body movement. The algorithm can 

easily analyze the sleep status using the BCG signal. 

 

Fig. 4.2. BCG and ECG sleep signals. 

Fig. 4.3 shows the HR calculated from the ECG signal and the BCG 

signal. During sleep, the HR basically fluctuates around 55 bpm. When the 

subject's body has small movements, the HR will also increase rapidly. As 

the body calms down, the HR returns to around 55 bpm. The correlation 

between the HR calculated by ECG signal and the HR calculated by BCG 

signal is 0.9907, which shows that the HR monitoring system based on FOS 

can be a good substitute for the traditional ECG system for sleep monitoring.  
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Fig. 4.3. HR signal calculated from BCG and ECG signals. 

4.3 Pulse detection 

4.3.1 Overview 

Pulse diagnosis is the essence of Chinese medicine [122]. In recent years, 

with the rapid development of medical technology, people's requirements 

for medical pulse measurement are getting higher and higher. The pulse is 

the arterial pulse of the human body, and the condition of the pulse reflects 

the physiological health of the human body to a certain extent. The 

measurement of the human pulse is important data to measure whether the 

human body is healthy or not and can be used for pathological analysis. 

However, traditional pulse diagnosis relies on human subjective judgment, 

which affects the scientific nature of pulse diagnosis. Accurate monitoring 

of physiological signals such as pulse, heart sound, BP, and ECG can 

effectively obtain the health condition of the cardiovascular system [78,123]. 

At the same time, people also try to evaluate and diagnose the pathological 

changes in the human cardiovascular system based on the variability of the 
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pulse wave. 

When measuring the pulse, it is greatly affected by human factors and 

environmental factors. The shortcomings of traditional pulse measurement, 

such as long time and inaccurate measurement, have been gradually 

replaced by new technologies [124]. The human pulse contains a lot of 

physiological information, and an experienced doctor can make a diagnosis 

based on the signals from the pulse. Pulse measurement is not only limited 

to manual measurement but also electronic instruments and other equipment 

can be used to effectively measure accurate data in a short period of time, 

allowing clinicians to diagnose patients in a short period of time. 

Currently, pulse measurement mainly includes piezoelectric, 

piezoresistive, photoelectric, and other methods [125]. Among them, the 

piezoelectric type and piezoresistive type convert the pulse into a signal 

output through micro-pressure materials such as piezoelectric sheets and 

bridges; the photoelectric type converts the light transmittance during the 

pulse beating process in the blood vessel through reflection or reflection. 

Changes are converted to signal outputs. With the continuous improvement 

of the precision requirements of pulse measurement equipment, the 

currently used pulse sensors still face severe challenges in terms of 

sensitivity and signal-to-noise ratio. The existing technology has been 

unable to meet the current precision requirements for pulse measurement 

equipment. How to design a method to measure the human pulse wave 

accurately has become the focus of research by those skilled in the art. 
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4.3.2 System structure 

The wrist pulse sensor is based on a high-sensitivity fiber optic MZI. It 

contains two 3 dB couplers that act as optical splitters and optical couplers. 

The PDs convert the light intensity change signal carrying the pulse signal 

into an electrical signal. 

Signal fading is a common problem for MZI, where the offset point 

shifts and the sensitivity change accordingly [126]. It can lead to pulse 

signal distortion. There are many phase modulation methods to solve this 

problem, such as active homodyne and passive homodyne. We use the 3×3 

demodulation scheme to solve this problem [127]. 

The proposed wrist pulse sensor uses a 3×3 coupler to replace the 1×2 

coupler in the traditional MZI. It has three outputs with the phase difference 

of 120°, and the signals are received by three PDs. 

The two arms of the MZI used to measure the wrist pulse are 14 cm 

and 14.5 cm, respectively. As shown in Fig. 4.4(a), the two arms are bent 

side by side into an arc, and both sides are fixed on the pulse diagnosis table. 

During the experiment, the hand was placed on the table, and the optical 

fiber was fixed on the wrist with a mechanical finger, as shown in Fig. 

4.4(b). The pulse will cause the optical path difference between the two 

arms, and the pulse waveform can be obtained by the change of the 

interference signal. After the signal collected at the sampling rate of 5000 

Hz is processed by the BPF, a satisfactory pulse signal can be obtained. 
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(a)                                                      (b) 

Fig. 4.4. System setup. 

4.3.3 Results and discussion 

Fig. 4.5 shows three signals collected simultaneously, one expected and two 

reference signals. The blue line is the PPG signal used as the HR reference. 

According to previous work, the fiber optic sensor-based BCG signal is 

used as a reference for RR [127], as shown by the yellow line in Fig. 4.5. 

The red line is a fiber optic MZI-based pulse signal that can calculate HR 

and RR simultaneously. In order to obtain a satisfactory pulse wave, we use 

a 0.5-15 Hz BPF to process the wrist pulse signal. 
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Fig. 4.5. PPG signal, BCG signal, and fiber-optic MZI-based wrist pulse signal. 

In recent years, there has been increasing evidence that HR is a major 

correlator of BP and is associated with increased cardiovascular and 

cardiovascular disease risk [128]. According to the results in Fig. 4.5, both 

the wrist pulse signal and the PPG signal have been processed by a 0.5-15 

Hz BPF to remove low-frequency effects. FFT is performed on the two 

signals to obtain their spectral information, as shown in Fig. 4.6. The highest 

peaks in Fig. 4.6(a) and (b) are both 1.04 Hz. It can be calculated that the 

average HR of the subject for 120 seconds is 62.4 bpm. The experimental 

results show that the HR measurement based on the wrist pulse is the same 

as the HR calculated from the reference signal. 
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Fig. 4.6. (a) Frequency of fiber-optic sensor-based wrist pulse signal, (b) frequency of 

reference sensor-based pulse signal. 

RR is also an important vital sign parameter. It is used to monitor 

disease progression, and abnormal RR is an essential marker of severe 

disease. Studies have shown that RR is superior to other necessary measures 

such as pulse and BP in distinguishing stable patients from high-risk 

patients [129]. In the previous data processing work, in order to obtain a 

satisfactory pulse wave, the respiratory information was filtered out. Change 

the BPF parameter to 0.1-15 Hz, and another peak of 0.33 Hz will appear in 

the frequency domain of the wrist pulse signal, as shown in Fig. 4.7(a). A 

peak at 0.34 Hz can be found in the frequency spectrum of the BCG signal 

shown in Fig. 4.7(b). The calculated RR from the two signals were 19.8 

bpm and 20.4 bpm, respectively. 
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Fig. 4.7. (a) Frequency of fiber-optics sensor-based wrist pulse signal, (b) frequency of 

reference sensor-based respiration signal. 

4.4 Driver monitoring 

4.4.1 Overview 

Long-distance travel tends to exacerbate driver fatigue, making it 

challenging to maintain sustained attention during the journey. The 

development of autonomous driving technology has made it easier for 

drivers to become fatigued, but drivers still need to be vigilant at all times 

before fully autonomous driving can be achieved. As road safety becomes 

an increasingly important topic [130], any research on this topic is very 

important for drivers. As a result, modified car seats capable of measuring 

and monitoring the driver's vital signs could become an integral part of 

every car. Researchers are currently working on various driver response 

systems, primarily detecting fatigue, stress, and the driver's health [131]. 

Since driver fatigue and drowsiness are the main causes of a large 

number of road accidents, assistance systems that monitor driver drowsiness 

and alert drivers when they are alert can play an important role in preventing 
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such accidents. B. Hariri et al. track and monitor the driver in real-time 

using an on-board camera to detect whether the driver is yawning. A. Kolli 

et al. proposed a system using a single thermal imaging camera for driver 

emotion recognition [132]. M. Walter et al integrated capacitive ECG and 

piezoelectric film-based BCG into car seats to monitor the driver's HR [133]. 

However, camera-based sensors are based on classical image processing 

techniques rather than physiological sensors, especially drowsiness and 

fatigue detection rely on the recognition of multiple photos, which takes a 

long time [134]. From a practical point of view, the cable tie-down solution 

is not an option for driver condition monitoring outside of experiments. 

Therefore, unobtrusive and non-contact driver state monitoring using 

physiological information is currently receiving increasing attention. 

Early BCG recording systems were usually designed longitudinally, 

corresponding to the z-axis of a standing person. Weight is also measured on 

this axis [34,135]. With the development of simple and inexpensive 

cushion-based BCG measurement instruments, this technique has received 

renewed interest in recent years. 

BCG sensors have been attempted to be integrated into car seats, 

however, it was shown that engine vibrations still prevent reliable BCG 

monitoring in moving vehicles. Monitoring of important functions of the car 

faces many signal distortion problems due to interference caused by the 

vehicle and the driver itself [136]. The implementation of in-vehicle sensors 

remains a very challenging task today due to the presence of a large number 

of motion artifacts mainly caused by driving itself. Therefore, some studies 
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use sensor fusion to handle their elimination, which means combining 

multiple sensors at different locations, even sensors of different types. This 

approach will be able to reduce the impact of motion artifacts by using 

advanced adaptive filtering techniques. 

This paper proposes to use two independent optical fiber sensors to 

collect signals simultaneously, and eliminate the influence of simulated 

engine and other vehicle vibrations on BCG signals by calculating the 

frequency spectrum of the two signals. 

4.4.2 Methods 

The system is shown in Fig. 4.8. The monitoring system contains two 

FOSs, a main sensor for measuring vital signs and a reference sensor for 

noise cancellation. The main sensor is placed inside the cushion, as shown 

in Fig. 4.8 (a). The reference sensor is placed under a seat (Audi A3L driver 

seat), as shown in Fig. 4.8 (b). The car seat is placed on a vibration table, 

and the subject sits on the seat during the experiment. Then the vibration 

table is turned on, and the subject can feel the obvious vibrations while 

sitting in the car seat. 

Two 1550 nm pigtailed DFB lasers with a spectral width of 0.1 nm are 

used as the laser source and 6 photodetectors are used to collect optical 

signals. After using the 3 × 3 demodulation scheme, the noisy signal and 

noise signal can be obtained respectively. 
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Fig. 4.8. (a) The main sensor placed in the seat, (b) system setup. 

Since the purpose of this study is to recover the noisy BCG of the main 

sensor from the noise signal of the reference sensor, the response of the two 

sensors should preferably be close. In order to realize better performance, 

two FOSs with similar transmission spectrums were selected. The 

transmission spectrums of the two FOSs can be observed by an optical 

spectrum analyzer (YOKOGAWA AQ6370D), as shown in Fig. 4.9.  

 

Fig. 4.9. (a) Transmittion spectrum of the main sensor, (b) Transmittion spectrum of the 

reference sensor. 

In many practical application scenarios, the only signal available is a 

noisy signal. In these cases, random noise cannot be removed, but reducing 

the average impact of noise on the signal spectrum is a feasible operation. 
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Spectral subtraction is a simple and effective noise reduction method to 

solve this kind of problem. The average signal spectrum and the average 

noise spectrum are estimated and subtracted from each other in a fraction of 

the recordings, thereby increasing the average SNR. Assuming the signal is 

distorted by broadband, stationery, and additive noise, the noise estimate is 

the same during analysis and recovery, and the phase is the same in the 

original and recovered signals. The noisy signal model in the time domain is 

given by: 

𝑦(𝑡) = 𝑥(𝑡) + 𝑛(𝑡), (4.1) 

where y(t), x(t) and n(t) are the pulse signal, the noise and the noisy signal 

respectively, and 𝑡 is the discrete time index. In the frequency domain, the 

noisy signal model of equation (2) is expressed as: 

𝑌(𝜔) = 𝑋(𝜔) + 𝑁(𝜔), (4.2) 

where 𝑦(𝑡), 𝑥(𝑡) and 𝑛(𝑡) are the sampled noisy BCG, pure BCG, an4.d 

additive noise, respectively. Because the heartbeat signal is non-stationary 

and time variant, the noisy BCG signal can be processed as speech signal. 

The power spectrum is given by: 

|𝑌(𝜔)|2 = |𝑋(𝜔)|2 + |𝑁(𝜔)|2 + 𝑋∗(𝜔)𝑁(𝜔) + 𝑁∗(𝜔)𝑋(𝜔). (4.3) 

Since the noise is uncorrelated with the pure BCG: 

|𝑌(𝜔)|2 = |𝑋(𝜔)|2 + |𝑁(𝜔)|2. (4.4) 

Then the BCG signal can be calculated by: 

|𝑋(𝜔)|2 = |𝑌(𝜔)|2 − |𝑁(𝜔)|2, (4.5) 

where |𝑌(𝜔)|2  can be obtained by the main sensor, and |𝑁(𝜔)|2  can be 

obtained by reference sensor. Thus, the noise-reduced signal |𝑋(𝜔)|2 can be 
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obtained, and 𝑥(𝑡) can be obtained by performing inverse Fourier transform 

on |𝑋(𝜔)|2. 

4.4.3 Results and discussion 

Fig. 4.10 shows the noisy BCG data from the main sensor and the noise 

signal from the reference sensor. When the vibration table is working, the 

amplitude of the noise signal is close to that of the BCG signal, causing 

severe interference to the raw BCG signal from the main sensor.  

 

Fig. 4.10. (a) Noisy BCG data from the main sensor, (b) Noise signal from the reference 

sensor. 

The signal in Fig. 4.10(a) is filtered using a BPF with a low cutoff 

frequency of 0.7 Hz and a high cutoff frequency of 30 Hz, and the result is 

shown in Fig. 4.11(a). It is difficult to accurately identify the J peak of BCG 

from the signal in Fig. 4.11(a), which brings difficulties to subsequent data 

analysis. After spectral subtraction processing with the noise signal 

collected by the reference sensor, the quality of the BCG signal is 

effectively improved, and the result is shown in Fig. 4.11(b). It is easy to 

find the exact J-peak using the "findpeak" function of MATLAB and 
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calculate the HR of 62 bpm. 

 

Fig. 4.11. (a) Filter-based BCG signal using only the main sensor, (b) spectral subtraction-

based BCG signal using dual sensors. 

4.5 Summary 

In this chapter, an FOS-based sleep monitoring system is proposed for 

sleep stage analysis. In sleep state monitoring, the BCG system does not 

need to affix uncomfortable patches to the body, nor does it require a wired 

connection on the body, so it can monitor the sleep state in real-time without 

affecting sleep. The BCG system based on FOS has shown the accuracy of 

HR close to that of ECG equipment, and it can be used as a reliable device 

for HR analysis. Moreover, it is small, light, and low in cost, and it will have 

a good development in the field of intelligent health monitoring. In addition, 

the fiber-optic MZI-based wrist pulse sensor proposed in this chapter can be 

used to monitor HR and RR simultaneously.  The HR calculation result of 

the sensor is completely consistent with the reference PPG signal. And the 

error between the RR result and the reference signal is within 1 breath per 

minute. The wrist pulse sensor based on optical fiber has great development 
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prospects in the field of wearable devices. Moreover, a dual FOSs-based 

driver vital signs monitoring system is proposed in this chapter for 

extracting heartbeats in an environment that simulates car vibrations. The 

signal is processed by spectral subtraction, which can effectively eliminate 

the influence of simulated engine and other vehicle vibrations on the BCG 

signal, and significantly improve the accuracy of heartbeat extraction. 
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Chapter 5 

BCG analysis 

 

5.1 Introduction 

Long-term and real-time services are essential for heartbeat monitoring 

whether in the clinic or at home. They can provide early detection of CVDs 

and avoid severe cardiovascular events. Benefiting from the development of 

information technology, vital signs sensors can be integrated with the IoT 

systems to monitor the physiological status, which is called the IoMT 

systems. The sensors can monitor the vital signs such as heartbeat, breathing, 

and temperature from users continuously and transmit these data to remote 

facilities for further analysis. However, long-term monitoring can produce a 

lot of data, and IoMT systems need to collect and store data from abundant 

sensors, which both results in high pressure on the transmission systems. 

Thus, it is necessary to develop signal compression algorithms for BCG 

signals. 
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5.2 Cardiac variations 

5.2.1 Overview 

In modern society, medical care is receiving more and more attention, and 

people are willing to invest more in this field. Monitoring the health of the 

elderly is essential in an aging society. In the past, many examinations could 

only be performed by medical staff, but many diseases such as AF, 

hypertension, myocardial infarction and heart failure require long-term 

monitoring. These requirements mean that medical services previously 

limited to hospitals need to gradually extend to people's homes to support 

their daily medical care.  

For people with a high risk of heart disease, regular assessment of their 

cardiovascular parameters and taking measures at an early stage can reduce 

the risk of disease. For people with a high risk of heart disease, regular 

assessment of their cardiovascular parameters, and taking measures at an 

early stage can reduce their risk of disease. For patients with cardiovascular 

diseases (such as heart failure), implantable devices are often used for 

treatment [137,138]. More and more evidence shows that non-invasive 

monitoring outside the clinical environment can achieve early detection of 

CVD risks (such as arteriosclerosis) [139, 140]. However, cardiovascular 

health needs to be judged by many aspects. Parameters such as BP, HRV, 

and cardiac contractility must be measured accurately. Neither medical nor 

household equipment can satisfy long-term monitoring in a non-clinical 

environment. Common devices in the consumer field include ECG [141], 

PPG [142], smartwatches, etc. These devices can provide more accurate 
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HRV information, but cannot reflect mechanical health information of the 

cardiovascular system. In the research field, researchers have developed 

ICG that can measure the mechanical health of the cardiovascular system 

[143]. However, multiple electrodes need to be attached to the patient 

during measurement, which causes discomfort, and the equipment is bulky 

and expensive to purchase, which is not suitable for home monitoring. 

Compared with other cardiovascular detection technologies, like ECG 

and ICG, BCG has the advantages of non-invasive and convenient detection. 

It is proposed to use it for cardiac diagnosis to achieve the same purpose. 

The research on the physiological significance of ECG signals is very 

mature, and the physiological importance of BCG signals is still under 

further study. This paper attempts to prove that FOS-based BCG can be 

used as a substitute for ECG, and analyzes the effects of different intensities 

of exercise on the heart. 

5.2.2 Experiment 

Before acquiring data, the subject was asked to perform four different 

exercises after resting for 60 seconds: RES exercise, DSE, VM, and running 

exercise. We hope to find the difference in the effects of different intensities 

of exercise on HR and PEP. 

In Fig. 5.1, the overview of the experiment is shown. When performing 

breathing exercises, the subject breathes 6 times per minute (0.1 Hz), and 

the maximum HRV amplitude can be observed at this breathing rate [144]. 

The DSE was to perform 40 squats as fast as possible. During VM, the 

subject expiratory against the mouth closed and the nostrils pinched, which 
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forces air into the eustachian tubes and increases pressure on the inside of 

the eardrum. This maneuver causes changes in BP and HR and is used in 

conjunction with other tests to diagnose heart abnormalities and treat 

various conditions, especially certain abnormal heart rhythms. 

 

Fig. 5.1. The overview of the experiment. 

5.2.3 Results and discussion 

The common IBI is calculated from the R-R interval of ECG, called ECG 

IBI, and used as a reference for IBI validation in this study. The BCG IBI 

was calculated by the J-J interval. There are a total of 1060 heartbeats in a 

total of 580s in the four exercises. We use MATLAB to calculate the 

correlation between the two. The correlation between BCG IBI and ECG 
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IBI is 0.9862, and the RMSE is 0.0139. The IBI used in the analysis of HRV 

and PEP in this study was calculated by BCG. 

Fig. 5.2 shows the IBI after four different exercises. All exercises 

increased HR, and the trend was not the same. In Fig. 5.2 (a), the VM was 

performed in the 10th second and released strains after 15 seconds, marked 

with red line. During this period, the HR gradually increases and returned to 

normal after released strains. The mean value of HR is 0.9381 s. In Fig. 5.2 

(b) and (c), HR gradually slows down from fast. The mean values of DSE 

and RUN HR are 0.6572 s and 0.5277 s, respectively. Because running is 

more intense, the measured initial HR is faster. Fig. 5.2 (d) shows the HR 

during respiration exercise, and the mean value is 0.8054 s. It increases 

during inhalation (shortened J–J interval) and decreases during exhalation 

(extended J–J interval). This is called respiratory sinus arrhythmia (RSA) 

and reflects changes in cardiac autonomic regulation.  

 

Fig. 5.2.  (a) Valsalva maneuver IBI, (b) dynamic squat exercise IBI, (c) running exercise 

IBI, (d) respiration exercise IBI. 
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PEP is one of the systolic time intervals, measured from the Q wave of 

the ECG to the B wave of the ICG. It represents sympathetic activity and 

can be used to assess myocardial contractility. Because ICG equipment is 

expensive and the measurement is complicated, RJ interval is usually used 

as a substitute for PEP. It is defined as the interval between the R peak of 

ECG and the J peak of BCG, and has been investigated quantitively that the 

relationship between the PEP and R-J interval follows [38]:  

 𝑌𝑅𝐽 = 1.05 ∙ 𝑃𝐸𝑃 + 138, (6) 

Fig. 5.3 shows the PEP after four different exercises. In Fig. 6 (a), 

when the VM starts, the PEP suddenly became smaller. This phenomenon 

may be due to deep breathing before the start of VM. During this process, 

the PEP is almost unchanged, and after released strains, it suddenly 

decreases and then gradually recovers. Throughout the testing process, the 

mean value of PEP is 116.344 ms. In Fig. 5.3 (b), the PEP mean value is 

93.9704 ms, it fluctuates violently and shows no obvious trend after DSE. 

The PEP variation is shown in Fig. 5.3 (c), the mean value is 63.9383 ms. It 

fluctuates sharply after running exercise, and the overall trend has gradually 

increased. In Fig. 5.3 (d), the PEP mean value is 106.2365 ms, which trend 

is basically the same as HR during breathing.  
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Fig. 5.3. (a) Valsalva maneuver PEP, (b) dynamic squat exercise PEP, (c) running exercise 

PEP, (d) respiration exercise PEP. 

The goal of this study is to investigate IBI and the PEP variation after 

different exercises. The extremely high correlation between BCG IBI and 

ECG IBI shows that the IBI calculated by the J-J interval of BCG is 

accurate enough for HRV analysis. Because the subject needs to breathe 

quickly and deeply before VM, the larger mutations in HR and PEP may be 

caused by breathing in the early stage of VM. After the four exercises, the 

trends of IBI and PEP seem to show that the two are positively correlated to 

a certain extent. However, during VM, IBI first decreased and then 

increased, while PEP remained almost at a normal level. This result shows 

that PEP is not always consistent with the trend of IBI. Under ideal 

experimental conditions, the breathing rate during the test period should 

remain constant. However, experiments have shown that individuals cannot 

fully breathe following a fixed speed. In addition, swallowing was 

sometimes observed in a few cases, so there are differences in breathing rate. 

The change of HR and PEP in each breath is not exactly the same. In the 
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same way, the fluctuations in HR and PEP during the whole test may also be 

caused by irregular breathing. As we all know, sports exercises will speed 

up HR. VM is the least intense exercise, so the recovery of HR is the fastest. 

Due to the short exercise time of DSE, HR does not increase as much as 

running. However, there are obvious differences in the trend of PEP after 

the two sport exercises. After DSE, the PEP fluctuates between 59 ms and 

135 ms, with a central value of 97 ms. After running exercise, the PEP 

fluctuates between 30 ms and 100 ms, the central value first decreases from 

59 ms to 49 ms, and gradually increases to 78 ms in the next 300 s, and 

there is a tendency to continue to increase. Both PEP values fluctuate 

greatly, but there is not much change from the normal value of 110 ms in 

DSE data (the PEP decreases to about 59 ms after running). It is not sure 

whether it is related to the exercise kinds, or to the intensity and duration of 

the exercise. During the RES exercise, IBI fluctuates around 0.8 s (0.6 s-1.0 

s), and PEP fluctuates around 97 ms (78 ms-126 ms). Both of them change 

around the value in the normal resting state. All the changes of IBI and PEP 

show the variations in a healthy heart pumping under parasympathetic 

regulation after different exercises. 

5.3 HRV analysis 

5.3.1 Overview 

The heart plays a vital role in the human body, maintaining blood flow and 

delivering nutrients to different cells and tissues. Good functioning of the 

cardiac system is essential for a healthy life [145]. The state of cardiac well-
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function is a complex pattern of variability. The ANS controls most of the 

body's physiological activities, the SNS and PNS innervate the heart and 

regulate HR. The balance between SNS and PNS affects the consistency in 

the time domain between heartbeats, which causes HR fluctuations. In 1996, 

the European Society of Cardiology and the North American Society for 

Pacing and Electrophysiology pointed out that HRV is the best quantitative 

indicator for evaluating autonomic nervous activity [147,148]. HRV 

analysis is one of many indicators of pathological conditions related to 

cardiovascular health [148]. The HRV represents a physiological 

phenomenon that may be analyzed to determine the state of the nervous 

system that controls the heart. The time-domain and frequency-domain 

information has significant clinical guiding value for predicting heart health. 

Conventional HRV is usually extracted from ECG signals and refers to the 

variations in consecutive time intervals between peaks of the QRS complex 

[149]. While beats per minute can be extracted in HR, HRV is closer to the 

exact time variation between consecutive heartbeats. In general, time-

domain measures of HRV decline with declining health status. Low levels 

of HRV have been found to be one of the leading causes of death in adults. 

However, the current ECG and PPG signals in common use are usually 

measured by using a device directly contacting with human skin, and the 

long-term measurement will cause discomfort to the users [150]. For people 

with allergies, skin contact may cause sensitization. Therefore, it is 

necessary to investigate non-contact monitoring equipment to obtain human 

HRV. Whereas BCG signals can be easily obtained by non-contact methods, 
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that is, by sensing micro-strains in the human body caused by each heartbeat. 

In addition, BCG signals have a good correspondence with ECG and PPG 

signals [151, 152]. It is practical to adopt BCG as a non-contact and 

accurate HRV measurement. 

Researchers have proposed various BCG measurement methods. For 

example, in 2007, Postolache et al. used an EMFi sensor installed on the 

back of a chair to detect mechanical waves generated by the heart to obtain 

BCG [153]. The signal acquired by their system is characterized by low 

SNR. After that, in 2012, Shin et al. obtained BCG using a scale that 

converts weight linearly to voltage [154]. They used the Valsalva maneuver 

and static exercise to induce changes in the spontaneous cardiac rhythm and 

estimate BP and HRV. Furthermore, in 2015, Jose et al. proposed a 

wearable device based on a piezoelectric sensor to measure wrist BCG [155]. 

And recently, Li et al. proposed a camera-based BCG measurement method. 

They placed a camera on the subject's head and obtained BCG from tiny 

head movements [156]. Unlike conventional BCG which captures facial 

images in a specific environment, this proposed method performs HR 

measurement by simply capturing any scene anywhere with a camera. 

However, the aforementioned sensors have limitations. Measurements based 

on EMFi sensors are less accurate and need adaptive neural network 

filtering to improve their SNR. Scale-based measurements require the 

subject to be upright, which can easily introduce motion artifacts. Sensors 

based on piezoelectric can only be utilized by contacting human body, 

which may cause discomfort to users. Camera-based measurements also 
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have privacy concerns. Compared with the above methods, FOS is very 

user-friendly as it does not require body contact and can be used while 

keeping the user in comfort (sitting or lying down) [157]. 

Some researchers have analyzed HRV with the BCG signal of healthy 

subjects [158]. Since the HR of healthy individuals shows regularity in the 

time domain, further studies are needed to investigate the feasibility of BCG 

for HRV analysis in subjects with arrhythmias. Fig. 5.4 shows healthy and 

premature beats subjects' resting ECG IBI and BCG IBI. When premature 

beats occur, the heart beats about 100 ms earlier. Typically used in studies 

are the QRS complex and the IJK complex. This study aimed to investigate 

whether FOS-based BCG could be used as an alternative to traditional ECG 

signals for HRV analysis. HRV indexes of the time domain (SDSD 

(standard deviation of successive RR interval differences), SDNN (standard 

deviation of the IBI of normal sinus beats), RMSSD (root mean square of 

successive differences between normal heartbeats), and pNN50 (percentage 

of adjacent NN intervals that differ from each other by more than 50 ms)), 

frequency domain (VLF (very low frequency), LF (low frequency), HF 

(high frequency), and LF/HF), and nonlinear (SD1 (standard deviation of 

each point from the 𝑦 = 𝑥 axis), SD2 (standard deviation of each point from 

the  𝑦 = −𝑥 + 2𝑁𝑁̅̅̅̅̅), and SD1/SD2) were compared. The reliability of the 

proposed FOS is validated by comparing with a commercial ECG device 

(AD 8232) which demonstrates its potential application on health 

monitoring. 
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Fig. 5.4. Resting ECG and BCG waveforms of (a) a healthy subject and (b) a subject with 

premature beats. 

5.3.2 Experiment 

A total of 5 subjects aged 25, 27, 46, 52, and 54 were included, and subject 

1 suffered from premature beats. The HR results were calculated separately 

by the simultaneously acquired ECG (AD 8232) and BCG (FOS). Each 

subject was asked to sit on a chair during data collection. The FOS was 

placed under a mattress for BCG measurement, and three electrodes were 

attached to the subject’s chest and abdomen for 3-lead ECG measurement. 

Fig. 2(b) shows the multi-modalities signal acquisition board structure, 

which is used to collect and demodulate optical signals output by FOS and 

ECG signal output by AD 8232 module. Then, all signals are transmitted to 

a computer through a router. The multi-modalities signal acquisition board 

contains a 1550 nm pigtailed DFB laser with a spectral width of 0.1 nm used 

as the light source in the FOS system, 3 PDs used to receive the optical 

signal output by the FOS, an STM32 MCU used for demodulation 3 

channels optical signals, an AD 8232 module used for processing ECG 
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signals, and a Wi-Fi module used for transmitting ECG and BCG signals. 

The FOS consists of a 1×2 coupler and a 3×3 coupler, as shown in Fig. 2(c). 

Two couplers are spliced using a commercial fusion splicer with a default 

single-mode fusion program. In the fabrication process, only standard fiber 

cutting and splicing are required rather than complex glass processing such 

as tapering, offset splicing, and corrosion with hydrofluoric acid. This 

ensures the high repeatability, simplicity of manufacture, and high 

mechanical strength of the device. The light is injected into the 1×2 coupler 

of the MZI by the DFB laser and interferes at the 3×3 coupler after passing 

through the sensing arm and the reference arm. The interference light is 

divided into three signals, which are separately detected by three PDs. The 

sensing arm and reference arm of FOS are fixed on an acrylic board with 

polypropylene/polyethylene glue to guarantee full contact between the 

optical fiber and the acrylic board. After 24 hours, the acrylic board is 

encapsulated with epoxy resin AB glue to ensure long-term stability for the 

sensor. Even extremely weak vibrations will induce the change of the 

optical path difference between the sensing arm and the reference arm, that 

is, the phase difference between the two beams of light will change. 

Variations in phase difference cause variations in the intensity of the 

interference light. All external perturbations, including breathing, heartbeat, 

environmental temperature, will cause intensity changes of output signal. 

After removing the noise signal, the respiratory signal and heartbeat signal 

can be filtered and obtained simultaneously taking advantage of their 

different frequencies. All the collected data can be viewed on the computer 
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with processed waveforms and calculated HR, as shown in Fig. 2(d). ECG 

HR and BCG HR are calculated by calculating the number of R peaks and J 

peaks per minute. The HRV is a measure of the variation in time between 

each heartbeat (ECG IBI and BCG IBI). 

Since the paced respiration will significantly change the amplitude of 

HRV, the system acquired all four channels (three channels of BCG signals 

and one channel of ECG signals) at a sampling frequency of 1000 Hz to 

obtain more accurate data. Prior to conducting the study, informed consent 

was obtained from all subjects for participation. During the paced 

respiration experiment, each subject sat on a comfortable chair in a natural 

posture in a quiet room. They were asked to breathe at a fixed rate of 0.1 Hz 

(6 breaths per minute) and 0.25 Hz (15 breaths per minute) to induce 

changes in cardiac autonomic rhythm. Every test lasted 5 minutes and was 

repeated 5 times.  Before the paced respiration experiment, the stability of 

the system was validated. Resting BCG and ECG were collected from 5 

subjects every 3 days, and a total of 10 measurements were performed for 

each subject.  

A 1550 nm DFB laser is used as the light source in the FOS system. 

Since the FOS is based on the principle of interference, the changes of the 

external environment may cause the random phase drift of the sensor, which 

will make the working point of the fiber optic interferometer deviate from 

the center of the linear region. The random drift of the working point can 

seriously affect the working state of the interferometer. Thus, a 3×3 

demodulation method was applied for analyzing the BCG signal, that is, 
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using a 3×3 coupler to divide the interference light into three beams with a 

phase difference of 120°. The light emitted from the DFB laser is 

transmitted into the reference and sensing fibers through a 1×2 coupler. 

Then the beams of light transmitting in the reference and sensing arms will 

interfere at the 3×3 coupler. The output light intensity of the interferometer 

can be calculated using the equation below:   

 𝐼𝑘 = 𝐷 + 𝐼0 cos[𝜑(𝑡) − (𝑘 − 1)(2𝜋/3)], (5.1) 

where 𝜑(𝑡) is the phase difference of light signals, 𝐷 is the average 

value of output light intensity, 𝐼0 is the peak intensity of interference fringes, 

k is the number of the output light path, 𝑘 = 1, 2, 3. 

In practical application, 𝜑(𝑡)  includes phase changes caused by the 

measured information and the environment variation which can be 

expressed as: 

 𝜑(𝑡) = 𝜙(𝑡) + 𝜓(𝑡),  (5.2) 

where 𝜑(𝑡) represents the signal to be measured, and 𝜓(𝑡) is the phase 

difference caused by environmental changes. 

The signal light emitted from a broadband source (BBS, SLED-

1488/1650-10-FA-B, Shanghai Mai Xuan Laser CO., LTD) is launched into 

the interferometric FOS and the transmission spectrum is detected by an 

optical spectrum analyzer (YOKOGAWA AQ6370D) with a resolution of 

0.01 nm, as shown in Fig. 3. Four interference dips can be observed in the 

spectrum at wavelengths 1549.4, 1549.72, 1550.03, and 1550.34 nm, 

respectively. All these dips can be used for BCG sensing. 
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HR is measured by the number of contractions of the heart per minute. 

The results of this experiment are calculated from the number of R peaks or 

J peaks in a minute. IBI is a scientific term used in reference to the time 

interval between individual beats. It is calculated from the time interval 

between two adjacent R or J peaks. The R peak corresponds to the peak of 

each QRS complex of the ECG, and the J peak corresponds to the peak of 

each IJK complex of the BCG. The R peaks of the ECG signal are detected 

by the “findpeaks” function of MATLAB. The reference IBI is calculated 

from the RR interval of the ECG. The BCG signal with the signal fading 

resolved is demodulated using a previously proposed method [158]. Motion 

artifacts can increase power in all frequency bands, significantly affecting 

time and frequency domain results. Motion artifacts are also removed using 

the previous method, and then accurate IJK complexes are obtained. 

5.3.3 Stability experiments 

Fig. 5.5 shows the results of the one-month system stability test. 

Taking ECG HR as a reference, the error of BCG HR is within 1 bpm, and 

the error between each BCG IBI and ECG IBI does not exceed 20 ms. 

HR results are calculated from the number of R peaks or J peaks in a 

minute. IBI results are calculated from the time interval between two 

adjacent R or J peaks. The bars show the results calculated by ECG and the 

red error lines show the errors between BCG results and ECG results. 
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Fig. 5.5. One-month system stability test results of (a) HR and (b) IBI. HR results are 

calculated from the number of R peaks or J peaks in a minute. IBI results are calculated 

from the time interval between two adjacent R or J peaks. The bars show the results 

calculated by ECG and the red error lines show the errors between BCG results and ECG 

results.  

5.3.4 Instantaneous HR 

Short-term HRV typically requires monitoring cardiac variability over a set 

period (usually 5 minutes). In this experiment, all subjects were asked to 

perform a 5-minute paced respiration to observe the variations in their HR. 

The HR calculated from the JJ interval extracted from the BCG signal and 

the HR calculated from the RR interval extracted from the ECG signal 

showed a high correlation, with correlation coefficients of 0.9971 and 

0.9581 for healthy and premature beats subjects, respectively. Fig. 5.6(a) 

and (b) show the instantaneous HR of a healthy subject at 0.1 Hz and 0.25 

Hz paced respiration, respectively. Fig. 5.6(c) and (d) show the 

instantaneous HR of a subject with premature beats at 0.1 Hz and 0.25 Hz 

paced respiration, respectively. It is obvious that the HR slows down during 

exhaling and increases during inhaling. This phenomenon is called RSA. In 

healthy individuals, RSA can be increased by slow, deep breathing. Changes 
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in respiratory rate can produce large-scale changes in RSA amplitude 

without affecting vagal tone [19]. The results also revealed an inverse 

relationship between HRV amplitude and respiratory rate. Breathing at 6 

bpm resulted in a more significant change in HR than breathing at 15 bpm 

for all subjects. This suggests that the vagus nerve is more active at lower 

respiratory rates. This is consistent with the experimental results proposed 

by Grossman [159]. Although paced respiration brought varying degrees of 

periodic HR variation, the mean HR did not change significantly during this 

period because of unvaried vagal tone. 

 

Fig. 5.6. Instantaneous HR of a healthy subject at (a) 0.1 Hz and (b) 0.25 Hz paced 

respiration. Instantaneous HR of a subject with premature beats at (c) 0.1 Hz and (d) 0.25 

Hz paced respiration. 

Fig. 5.7 shows the RSA amplitude of paced respiration at 0.1 Hz and 

0.25 Hz. For each subject, the amplitude of RSA change at the respiratory 

rate of 0.1 Hz was more significant than that of 0.25 Hz. At both rates, RSA 

amplitudes decreased with age increasing. Greater RSA reflects increased 

baroreflex sensitivity, which worsens with age. Many abnormal heartbeats 
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during the experiment made the RSA amplitude of subject 1 much larger 

than that of the other four subjects. 

 

Fig. 5.7. (a) RSA amplitude at 0.1 Hz and 0.25 Hz paced respiration. 

5.3.5 Resonance frequency breathing 

There is a delay between respiration and cardiac oscillations during 

spontaneous breathing that decreases as the respiratory rate decreases and 

disappears when the respiratory rate reaches approximately 0.1 Hz [160]. 

The combination of respiratory rhythm and heart rhythm by slowing down 

the respiratory rate is called resonant breathing, and a respiratory rate of 0.1 

Hz is often referred to as the "resonant frequency" [161,162]. When the 

respiratory rate was 0.1 Hz, all natural and imposed cardiac oscillations 

occurred at the same frequency, and the amplitude of the imposed cardiac 

oscillation was the largest. This is slow diaphragmatic breathing (6 bpm) 

that maximizes HRV by stimulating the vagus nerve to calm the body's 

sympathetic nervous system. Resonance was observed in both ECG and 

BCG signals at 0.1 Hz respiratory rate for each test subject. Fig. 5.8 shows 

the IBIs of ECG and BCG and respiratory signals of a subject, where the 
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resonance can be clearly observed. The IBI and respiration waveforms rise 

and fall at the same time, this maximally stimulates the baroreflex and 

increases RSA. 

 

Fig. 5.8. (a) ECG IBI and (b) BCG IBI fluctuations with respiration, and (c) respiration 

signal. BCG IBI shows similar resonance frequency breathing phenomena to ECG IBI at a 

respiratory rate of 0.1 Hz. 

5.3.6 HRV time domain analysis 

Table 1 summarizes the most frequently used time domain HRV indexes. 

These statistical time domain indexes include beat-to-beat intervals or 

variables derived directly from the intervals themselves or the instantaneous 

HR and intervals derived from the differences between adjacent NN 

intervals [163]. SDNN is the standard deviation of the R-R interval, which 

reflects the overall level of HRV and is related to the overall regulatory 

capacity of the ANS system [164]. RMSSD is the mean square root of the 

quadratic sum of the differences between adjacent R-R intervals, showing 

the magnitude of the high-frequency component of HRV. RMSSD is 

generally known as the primary time-domain measure used to estimate 

vagus-mediated changes reflected in HRV. SDSD is the standard deviation 
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of the difference between adjacent R-R intervals. Similar to RMSSD, it 

indicates the size of high-frequency components in HRV. pNN50 is the 

proportion of the difference between adjacent R-R intervals greater than 

50ms and also indicates the size of the high-frequency components in HRV. 

These indicators can be used to assess aspects of cardiac autonomic 

regulation, stress levels, emotional state, etc. [165]. 

TABLE I 

DEFINITION AND FORMULA OF HRV TIME DOMAIN INDEXES  

Index Definition Formula (unit) 

SDSD 

Standard deviation of differences between 

adjacent NN intervals 
√

∑ (𝑁𝑁𝑖 − 𝑚𝑁𝑁)2𝑁
𝑖=1

𝑁 − 1
 (𝑚𝑠) 

SDNN Standard deviation of all NN intervals √
∑ (𝑅𝑅𝑖 − 𝑚𝑅𝑅)2𝑁

𝑖=1

𝑁 − 1
 (𝑚𝑠) 

RMSSD 

Square root of the mean of the sum of the squares 

of differences between adjacent NN interval 
√𝑚𝑒𝑎𝑛 ∑ (𝑅𝑅𝑖+1 − 𝑅𝑅𝑖)2

𝑁

𝑖=1
(𝑚𝑠) 

pNN50 

Percent of difference between adjacent NN 

intervals that are greater than 50ms 

𝑐𝑜𝑢𝑛𝑡(|𝑁𝑁𝑖+1 − 𝑁𝑁𝑖|) > 50𝑚𝑠

𝑁 − 1
× 100% 

NN: the interval between two adjacent heartbeats, RR: the interval between two adjacent R spikes in the ECG 

QRS complex. 

Fig. 5.9 and Fig. 5.10 show the HRV indexes calculated by ECG and 

BCG signals under 0.1 Hz and 0.25 Hz paced respiration, respectively. The 

indexes calculated by the BCG have an error of a few milliseconds from the 

corresponding indexes calculated by the ECG. This is because the RJ 

interval changes with the condition of the heart, so the RR interval and JJ 

interval are not completely constant [166]. Since the respiratory rate of 0.1 

Hz causes a larger HRV amplitude, values of SDSD, SDNN, RMSSD, and 

pNN50 will all be larger than those tested at 0.25 Hz paced respiration. All 
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indexes show acceptable errors at both respiratory rates. The four time 

domain HRV indexes show a downward trend with age increasing. However, 

SDSD and RMSSD results from subjects 2 and 3 showed opposite trends 

with age, which may be related to the health of their heart. In addition, due 

to the irregular heartbeat, the SDSD of subject 1 was significantly higher 

than that of subject 2 of similar age. 

 

Fig. 5.9. BCG and ECG HRV time-domain indexes at 0.1 Hz paced respiration. 

 

Fig. 5.10. BCG and ECG HRV time-domain indexes at 0.25 Hz paced respiration. 
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5.3.7 HRV frequency domain analysis 

HRV frequency domain indexes are important because they provide 

information about the distribution of power in different frequency bands of 

HRV [167]. These indexes reflect ANS activity, which is essential for 

maintaining homeostasis in the body and for responding to stressors. HR is 

not constant but oscillates around a mean value, and these oscillations are 

due to modulations of ANS activity, which control HR through the 

sympathetic and parasympathetic systems. Abnormal ANS activity is 

associated with various diseases, such as cardiovascular disease, diabetes, 

and depression. HRV frequency domain indexes are calculated by analyzing 

the PSD of HRV signals [168]. PSD is a mathematical representation of the 

power distribution in the different frequency bands of the HRV signal, 

showing a function of power and frequency. Power is calculated for each 

individual component (the area under the portion of the PSD curve related 

to each component), represented by the total area under the PSD curve. It 

can be provided in absolute units (ms2). The frequency domain indexes are 

divided into three main categories: VLF, LF, and HF bands [169-171]. The 

band ranges are 0.0033–0.04 Hz, 0.04–0.15 Hz, and 0.15–0.4 Hz. Table 2 

shows the definition of HRV frequency domain indexes. LF and HF are 

used to label parasympathetic and sympathetic control, respectively. The 

role of VLF in spectral content remains uncertain. The LF/HF ratio is an 

indicator of the interaction between sympathetic and vagal activity [172]. It 

is used to assess the distribution of scores between the two systems and it’s 

also an important marker of sympathovagal balance. 
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TABLE II  

DEFINITION OF HRV FREQUENCY DOMAIN INDEXES  

Index Definition 

VLF Very low frequency power, 0.0033-0.04 Hz 

LF Low frequency power, 0.04-0.15 Hz 

HF High frequency power, 0.15-0.4 Hz 

LF/HF Ratio of LF to HF 

Fig. 5.11(a)-(d) show the ECG and BCG HRV PSD of a healthy 

subject at 0.1 Hz and 0.25 Hz respiratory rate. Fig. 5.11(e)-(h) show the 

ECG and BCG-derived HRV PSD of a subject with premature beats at 0.1 

Hz and 0.25 Hz respiratory rate. Changes in sinus rhythm in the higher 

frequency domain reflect parasympathetic (vagal) regulation, whereas those 

in the lower frequency domain reflect parasympathetic and sympathetic 

regulation as well as involuntary factors. The PSD of the BCG and ECG 

signals at the two respiratory rates show similar distributions. The LF band 

is the dominant component of the PSD at 0.1 Hz paced respiration. However, 

at 0.25 Hz paced respiration, the LF component is significantly reduced, and 

the components of VLF and HF are increased. 

 

Fig. 5.11. BCG HRV PSD of a healthy subject at (a) 0.1Hz and (b) 0.25 Hz paced 

respiration. ECG HRV PSD of a healthy subject at (c) 0.1 Hz and (d) 0.25 Hz paced 

respiration. BCG HRV PSD of a subject with premature beats at (e) 0.1Hz and (f) 0.25 Hz 

paced respiration. ECG HRV PSD of a subject with premature beats at (g) 0.1 Hz and (h) 

0.25 Hz paced respiration. 
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The resulting frequency spectrum varies widely due to artificially 

controlled breathing that cannot be maintained consistently. Therefore, the 

correlation coefficients of LF, HF, VLF and LF/HF calculated from ECG 

and BCG for each 5-min recording were analyzed in the frequency domain 

to describe the accuracy of BCG HRV compared to ECG HRV.  

 

Fig. 5.12. Correlations between ECG and BCG frequency domain indexes in healthy 

subjects at (a) 0.1Hz and (b) 0.25 Hz paced respiration. Correlations between ECG and 

BCG frequency domain indexes in premature beats subject at (c) 0.1 Hz and (d) 0.25 Hz 

paced respiration. 

Fig. 5.12 shows the correlations between ECG and BCG HRV 

frequency domain indexes for healthy subjects and premature beats subject 

at 0.1 Hz and 0.25 Hz paced respiration. The results show that BCG HRV at 

both respiratory rates (6 bpm and 15 bpm) has a strong correlation with 
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ECG HRV at all frequency bands. The accuracy of experimental results in 

subjects with premature beats is slightly lower than that in healthy subjects 

due to small changes in RJ intervals. The accuracy of the LF band at 0.1 Hz 

is higher than that of 0.25 Hz, on the contrary, the accuracy of the HF band 

at 0.1 Hz is lower than that of 0.25 Hz. In addition, the accuracy is slightly 

lower in the LF/HF bands at both respiratory rates. 

5.3.8 HRV nonlinear analysis 

It must be assumed that the data in the sample is stationary when doing 

analysis in the frequency domain of HRV which means the method can be 

invalidated by sudden changes in HR [173]. The change of respiration 

pattern from spontaneous breathing to controlled breathing can also 

significantly affect HRV. To overcome this, the Poincaré plot of HRV is 

proposed in this work which does not require quiescence of the HRV signal 

and is widely used to monitor changes in the sympathovagal nerve [174-

176]. The Poincaré plot is a geometric representation that can visually 

identify the presence of nonlinear HRV components [177]. It shows the 

correlation of 𝑁𝑁𝑖+1 to 𝑁𝑁𝑖, where 𝑁𝑁 is the beat interval. In the Poincaré 

plot, SD1 width reflects parasympathetic activity, and SD2 length reflects 

sympathetic modulation [178]. SD1 is a measure of the short-term HRV that 

is defined as the width of an ellipse fitted to scatter points of a Poincaré map 

and may be expressed as the standard deviation of the distances from the 

identity line (𝑦 = 𝑥 axis) of the Poincaré plot [179-181]. SD2 is the length 

of an ellipse fitted to the scatter points of a Poincaré map that reflects the 

long-term HRV and is calculated as the standard deviation of the distance of 
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points from the 𝑦 = −𝑥 + 2𝑁𝑁̅̅̅̅̅  axis. The larger the SD1, the wider the 

graph, inversely, the larger the SD2, the thinner the graph. SD1/SD2 is the 

ratio between SD1 and SD2 which reflects the unpredictability of the HR 

[182]. Table 3 shows the definition of HRV nonlinear indexes. 

TABLE III  

DEFINITION OF HRV NONLINEAR INDEXES 

Index Definition Formula (unit) 

SD1 

Poincaré plot standard deviation 

perpendicular the line of identity 

𝑆𝐷1 = 𝑠𝑡𝑑𝑑𝑒𝑣 (
|𝑁𝑁𝑖+1 − 𝑁𝑁𝑖|

√2
) 

SD2 

Poincaré plot standard deviation 

along the line of identity 

𝑆𝐷2 = 𝑠𝑡𝑑𝑑𝑒𝑣 (
|𝑁𝑁𝑖+1 − 𝑁𝑁𝑖|

√2
− 2𝑁𝑁̅̅̅̅̅) 

SD1/SD2 Ratio of SD1 to SD2  

 

Poincaré plots may uncover anomalies that cannot be easily detected 

using traditional time- and frequency-domain measurements. In a clinical 

setting, Poincaré plot analysis of the RR interval provides prognostic 

information in patients with heart failure and those predisposed to life-

threatening arrhythmias [183]. It has been shown that during heightened 

sympathovagal activation, HR behavior becomes very erratic. Dynamic 

analysis of Poincaré plots can better identify these features of HR dynamics 

compared to conventional HRV analysis techniques. Its strength lies in its 

ability to identify beat-to-beat periods and patterns in the data. The shape of 

the Poincaré plots can be used to visually assess sympathovagal activity. An 

elongated torpedo-like shape with a reduced SD1/SD2 ratio is associated 

with elevated sympathetic tone, while a more elliptical fan-shaped 

configuration resulting from an increased SD1/SD2 ratio indicates lower 
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sympathetic tone [180]. The spots become more diffuse when vagal activity 

increases or sympathetic activity decreases. Fig. 13 (a)-(d) show the 

Poincaré plots for healthy subjects at 0.1 Hz and 0.25 Hz respiratory rates. 

Fig. 13 (e)-(h) show the Poincaré plots at respiratory rates of 0.1 Hz and 

0.25 Hz for subjects with premature beats. Comparing the top four graphs 

(Fig. a, b, e, and f) and the bottom four graphs (Fig. c, d, g, and h), the 

BCG- and ECG-derived Poincaré plots show the similar distributions. The 

area of the ellipses represents the overall IBI distribution [184]. Compared 

with respiration of 0.25 Hz, paced respiration of 0.1 Hz brings a greater 

change in HR, and the areas in Fig. 13 (a) and (c) are significantly larger 

than those in Fig. 13 (b) and (d).  

 

Fig. 13. Healthy subject BCG HRV Poincaré plots at (a) 0.1Hz and (b) 0.25Hz paced 

respiration. Healthy subject ECG HRV Poincaré plots at (c) 0.1Hz and (d) 0.25Hz paced 

respiration. Subject with premature beats BCG HRV Poincaré plots at (e) 0.1 Hz and (f) 

0.25 Hz paced respiration. Subject with premature beats ECG HRV Poincaré plots at (g) 

0.1 Hz and (h) 0.25 Hz paced respiration. 
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5.4 Summary 

In this chapter, cardiac responses after different exercises are studied using a 

BCG monitoring system based on a 3×3 demodulation scheme. A FOS-

based smart cushion is used to replace the traditional inconvenient ECG for 

HRV. The BCG HRV calculated from the demodulated signal can be used 

as a new accurate heart condition analysis signal. The correlation between 

BCG-derived IBI and ECG-derived IBI is 0.9862, and the RMSE is 0.0139. 

The BCG signal can assess cardiac contractility by analyzing RJ interval 

with ECG, which is a practical alternative to the PEP. Thanks to its non-

contact measurement, BCG based on FOS will become an important part of 

heart condition analysis. 

HRV analysis provides insight into autonomic function. Many diseases, 

whether cardiac or noncardiac, are associated with alterations in HRV. The 

FOS-based BCG-derived IBI shows high correlations with ECG-derived IBI, 

with correlation coefficients of 0.9971 and 0.9581 for healthy and premature 

beats subjects respectively. During the one-month stability test, the FOS-

based BCG monitoring system realized high accuracy. The paced 

respiration data at 0.1 Hz and 0.25 Hz is collected from 5 subjects of 

different ages, including a subject with premature beats. Studies have shown 

that breathing at 0.1 Hz causes larger RSA amplitude, and resonant 

frequency breathing is observed simultaneously in both BCG and ECG IBI 

signals. At both respiratory rates, the amplitude of HRV decreases with age 

increasing. This study also analyzes the short-term HRV accuracy of 5 

subjects based on the FOS. Time domain indexes of BCG HRV and ECG 
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HRV showed minor errors via box plots. Higher correlation coefficients are 

observed in the frequency domain analysis, and the PSD trend is also close. 

Poincaré plot of non-linear analysis can visualize the response of BCG-

derived HRV and ECG-derived HRV to RSA. By analyzing the results in 

the time domain, frequency domain, and nonlinearity, the proposed HRV 

monitoring system enables reliable heart health monitoring in the chair. In 

addition to high accuracy, the FOS-based BCG monitoring system also has 

the unique advantage of flexible configuration, contactless and accurate 

monitoring, long-term and continuous HR detection. In future work, by 

extending sensor width, the designed novel fiber-optic sensor can be placed 

under the mattress for long-term HRV monitoring during sleep. The 

proposed non-contact sensing system is convenient and accurate. It should 

also be noted that achieving the HRV information of the moving subjects is 

still a puzzle to be solved. In this case, wearable sensors are worthy of 

development. 
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Chapter 6 

Conclusion and future works 

 

6.1 Conclusion 

This thesis proposes and fabricates a novel inline MZI sensor based on 

homemade SCF and SH-HiBiF for non-contact vital signs monitoring. 

Encapsulating FOS under a mattress allows for long-term monitoring of 

vital signs. Through filtering and FFT algorithms, accurate RR and HR can 

be obtained. Even without connecting the electrodes to the human body, the 

proposed system can diagnose premature beats with 97.9% accuracy, which 

is more comfortable for patients. Lower cost, simpler process, and higher 

accuracy make SCF-based vital sign detection systems highly competitive in 

the home healthcare field. The experiments of this work demonstrate the 

feasibility of FOS systems based on special optical fibers for further 

research in the biomedical field. 

In order to collect accurate BCG signals stably and long-term for heart 

health analysis, this thesis proposes a low-cost and robust system based on 

FOS. The core part of the system is the MZI based on single-mode fiber, 
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which consists of a 1×2 coupler and a 3×3 coupler. Due to the asymmetric 

structure of the two MZI arms, an interference spectrum will be observed, 

which will shift linearly with changes in lateral stress. Incident light is 

emitted from a low-cost DFB laser and coupled into the MZI sensor. 

Vibrations caused by human breathing and heartbeat will cause changes in 

the light phase in the MZI, which in turn will cause changes in the 

interference light intensity detected by the three PDs. FOS-based BCG-

derived IBI showed a high correlation with ECG-derived IBI, with a 

correlation coefficient of 0.9971. 

Based on the proposed system, we tried its application in different 

scenarios. In sleep status monitoring, the BCG system does not require 

uncomfortable patches on the body or wired connections on the body, so it 

can monitor sleep status in real-time without affecting sleep. The FOS-based 

BCG system shows a heart rate accuracy close to that of an 

electrocardiogram device and can be used as a reliable device for heart rate 

analysis. Furthermore, the proposed system can be placed on the wrist pulse 

for simultaneous monitoring of HR and RR. The HR calculation result is 

completely consistent with the reference PPG signal, and the error between 

the RR result and the reference signal is within 1 breath per minute. The 

proposed system can be equipped with dual FOS for extracting the driver's 

heartbeat in an environment that simulates car vibrations. Spectral 

subtraction processing of the signal can effectively eliminate the impact of 

vehicle vibrations such as simulated engines on the BCG signal, and 

significantly improve the accuracy of heartbeat extraction. 
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A BCG monitoring system based on the proposed 3×3 demodulation 

scheme was used to study cardiac responses after different exercises. The 

BCG HRV calculated from the demodulated signal can be used as a new 

accurate heart condition analysis signal. The BCG signal can be used to 

evaluate myocardial contractility through electrocardiographic analysis of 

the RJ interval, which is a practical alternative to PEP. Due to its non-

contact measurement, FOS-based BCG will become an important part of 

heart disease analysis. HRV analysis provides insight into autonomic 

function. Many diseases, both cardiac and non-cardiac, are associated with 

changes in HRV. BCG-derived IBI showed a high correlation with ECG-

derived IBI, with correlation coefficients of 0.9971 and 0.9581 for healthy 

subjects and premature subjects, respectively. During the one-month 

stability test, the FOS-based BCG monitoring system achieved high 

accuracy. Pace respiratory data at 0.1 Hz and 0.25 Hz were collected from 5 

subjects of different ages, including one subject with premature beats. 

Studies have shown that breathing at 0.1 Hz results in larger RSA 

amplitudes, and resonant frequency breathing is observed in both BCG and 

ECG IBI signals. The amplitude of HRV decreased with age at both 

respiratory rates. This study also analyzed short-term HRV accuracy in 5 

subjects based on FOS. The time-domain indices of BCG HRV and ECG 

HRV showed smaller errors via boxplots. A higher correlation coefficient is 

observed in the frequency domain analysis, and the PSD trend is also close. 

Poincaré plots from nonlinear analysis visualize BCG HRV and ECG HRV 

responses to RSA. By analyzing the results in the time domain, frequency 
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domain, and nonlinearity, the proposed HRV monitoring system enables 

reliable heart health monitoring in a chair. In addition to high accuracy, the 

FOS-based BCG monitoring system also has unique advantages such as 

flexible configuration, non-contact precise monitoring, and long-term 

continuous HR detection. In future work, by extending the sensor width, the 

designed new fiber optic sensor can be placed under the mattress for long-

term HRV monitoring during sleep. The proposed contactless sensing 

system is convenient and accurate. It should also be noted that obtaining 

HRV information of moving objects is still a difficult problem to be solved. 

In this case, wearable sensors are worthy of development. 

6.2 Future works 

Based on the monitoring system and current research results proposed in 

this article, more in-depth analysis of BCG signals can be performed in the 

future. 

Hypertension is a common chronic disease that can lead to stroke, heart 

attack, heart failure, kidney damage, and many other health problems. It 

causes up to 7.6 million deaths worldwide each year [185]. Because 

accurate diagnosis of masked hypertension, white-coat hypertension, and 

nocturnal hypertension is challenging, implementation of effective 

hypertension care is critical to saving lives [186,187]. In terms of 

assessment and diagnosis, more widespread 24-hour ambulatory BP 

monitoring is needed [188]. Studies have found that 24-hour ambulatory BP 

monitoring is more meaningful than clinical one-time BP measurement in 
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diagnosing various CVDs [189]. Most methods of measuring BP in non-

clinical settings require a cuff to be worn on the upper arm. However, the 

inconvenience of this approach prevents many individuals from measuring 

their BP regularly. 

The most common method of cuffless BP estimation is using ECG, 

PPG, or dual PPG signals. It is known that PTT and PWV calculated from 

the above signals are highly correlated with BP [188,189]. PTT measures 

the travel time of a pressure wave between two points in the arterial. It has 

attracted widespread attention because of its potential for convenient and 

universal BP monitoring. Compared with currently widely used BP 

measurement techniques (e.g. auscultation and oscillometric methods), PTT 

can achieve cuff-less BP monitoring [191]. 

BCG is a measurement of the body's reaction to the heart's effort to 

pump blood into the aorta. Since the time interval between R peaks of ECG 

and J peaks of BCG has been shown to be closely related to PEP [127], we 

believe that BCG serves as a reliable and convenient proximal timing 

reference for obtaining PTT measurements. Our future work will focus on 

continuous BP monitoring based on BCG. 
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