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Abstract

Given the growth in air traffic demand and the highly competitive nature of the avia-

tion industry, many airports face capacity challenges, leading to increasingly frequent

and severe congestion. The aviation sector increasingly relies on predictive and op-

timisation techniques to fully utilise the massive data generated in daily operations.

This thesis uses real-world data to provide informed decisions for airside operations by

employing advanced prescriptive analytics methodologies, thereby improving efficiency

and alleviating congestion.

The first study introduces two prescriptive analytics approaches for the airport

gate assignment problem, utilising historical data through machine learning (ML) tech-

niques to enhance decision-making effectiveness and robustness. Supported by effective

ML methods and scenario selection strategies, the estimate-then-optimise (ETO) ap-

proach delivers superior performance compared to other optimisation techniques. Ad-

ditionally, we develop an efficient exact solution method, the Benders-based branch-

and-cut (BBC) method, to effectively handle real-world scale test instances. This

solution method demonstrates statistically significant improvements in computational

performance over commercial solvers.

The second study examines the aircraft sequencing and scheduling problem (ASSP)

at a single-runway airport under uncertainty in aircraft arrival and departure times. We

first introduce an ETO approach, utilising prediction results to drive the stochastic pro-

gramming model for the ASSP. To address the suboptimal decision-making caused by
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prediction errors, we further propose an estimate-then-distributionally-robust-optimise

(ETDRO) approach, which incorporates prediction results into a distributionally ro-

bust optimisation model for decision-making. Experimental results demonstrate that

the ETDRO approach outperforms other optimisation techniques. Additionally, to

effectively implement the ETDRO approach, we propose several exact and inexact

decomposition methods. Extensive computational results show that our inexact de-

composition method can provide optimal or near-optimal solutions for real-world scale

test instances within a very short CPU time.

In the third study, we focus on the prescriptive analytics of the multi-runway air-

craft landing problem (MALP) with uncertain aircraft arrival times, aiming to de-

sign efficient and environmentally friendly landing operations. Following the ETO

approach in prescriptive analytics, we employ ML techniques to estimate the distri-

bution of uncertain arrival time based on historical data. An optimisation-enhanced

learning-driven scenario generation (OLSG) method is used to generate scenarios that

closely resemble actual scenarios based on the estimated distributions, thus preventing

the subsequent optimisation from being affected by extreme scenarios and producing

suboptimal decisions. Experimental results demonstrate the superior performance of

the ETO approach supported by the OLSG method over other optimisation methods.

Additionally, we propose a novel exact solution method called the stabilised branch-

and-check (SBAC) method to solve the ETO approach for MALP efficiently. This

method stabilises the master problem around a neighbourhood of a stable centre point,

enabling the generation of strong Benders cuts. The results of computational experi-

ments demonstrate that the proposed SBAC method achieves statistically significant

improvements in CPU time compared to the benchmark methods.

This thesis demonstrates the robustness and effectiveness of combining machine

learning algorithms, optimisation techniques, uncertainty modelling, and advanced de-

composition methods to address key operational challenges in airside operations. The
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results include significant improvements in operational efficiency, as well as economic

and environmental benefits. In addition, the successful application of prescriptive an-

alytics demonstrates the significant potential and advantages of data-driven decision-

making in complex aviation operational environments. This suggests that these data-

driven decision-making approaches can be introduced as innovative solutions to address

various operational challenges within the aviation industry.

Chief supervisor: Prof. Kam K.H. Ng

Co-supervisor: Prof. Gangyan Xu
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Chapter 1

Introduction

1.1 Background

Given the growth in air traffic demand and the highly competitive nature of the airline

industry, many airports face capacity challenges, resulting in increasingly frequent and

severe congestion (Ng et al., 2017; Solak et al., 2018; Ribeiro et al., 2019; Bi et al.,

2022). In a constrained capacity environment, any reduction in system capacity can

lead to significant delays and substantial losses for airlines and passengers, posing severe

challenges to the air traffic management (ATM) system (Solak et al., 2018; Khassiba

et al., 2020). Due to the high investment costs and prolonged construction periods,

constructing new infrastructure, such as airports, terminals, runways, and taxiways, to

increase the capacity of airspace systems is often not an immediate solution (Ikli et al.,

2021). Consequently, there is a pressing need to optimise the utilisation of existing

airside facilities to enhance the efficiency of airside operations and alleviate congestion

(Bouras et al., 2014; Daş et al., 2020; Wang et al., 2022a; Chen et al., 2024). Optimi-

sation problems in airside operations primarily encompass the airport gate assignment

problem (AGAP) (Bouras et al., 2014; Daş et al., 2020), runway scheduling problem

(RSP) (Bennell et al., 2011; Ikli et al., 2021), and aircraft ground routing problem
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(AGRP) (Guépet et al., 2016), etc.

Deterministic optimisation problems for airside operations, which assume that all

input information is known with certainty, have been extensively studied (Bennell et al.,

2011; Bouras et al., 2014; Guépet et al., 2016; Daş et al., 2020; Ikli et al., 2021; Mes-

saoud, 2021). However, with increasing air traffic and factors such as severe weather,

delay propagation, the probabilistic nature of trajectories, technical difficulties, and

security concerns, the aircraft arrival and departure times have become increasingly

uncertain (Şeker and Noyan, 2012; Ng et al., 2017; Solak et al., 2018; Khassiba et al.,

2020; Kim et al., 2023a). Uncertain parameters can render predetermined airside op-

eration plans ineffective. Consequently, developing robust plans to address these un-

certainties has become a key focus in recent research on airside operations (Şeker and

Noyan, 2012; Ng et al., 2017; Xu et al., 2017; Solak et al., 2018; Brownlee et al., 2018;

Khassiba et al., 2020; Wang et al., 2021; Khassiba et al., 2022; Kim et al., 2023a).

Stochastic optimisation methods, including stochastic programming (SP) (Şeker

and Noyan, 2012; Solak et al., 2018; Khassiba et al., 2020, 2022) and robust optimisa-

tion (RO) (Solveling et al., 2011; Ng et al., 2017; Xu et al., 2017), are widely employed

for the robust and efficient planning of airside operations. In the aforementioned uncer-

tainty modelling and optimisation approaches for airside operations, the distributions

of uncertain arrival and departure times are primarily derived from the analysis of

historical data (Solveling et al., 2011; Xu et al., 2017; Solak et al., 2018) or empirical

knowledge (Ng et al., 2017; Khassiba et al., 2020, 2022). With the advancement of

big data technology, airports have accumulated massive airside operation data. By

analysing and mining this data, airports can gain deeper insights into airside opera-

tions, identify potential issues, and optimise operational processes. Additionally, the

extensive airside operation data presents new opportunities for addressing uncertainty

in optimisation problems related to airside operations. The combination of predictive

and optimisation techniques to make informed decisions based on available data that
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can be used to predict uncertain parameters is known as prescriptive analytics (Bertsi-

mas and Kallus, 2020; Qi and Shen, 2022; Wang and Yan, 2023; Tian et al., 2023a,b,c).

Specifically, the available data can be categorised into historical data of the uncertain

parameters and other auxiliary data that can be used to predict.

Although prescriptive analytics approaches have been introduced in maritime and

land transportation research (Yan et al., 2020; Kandula et al., 2021; Tian et al., 2023a,b;

Luo et al., 2023; Yan et al., 2024a), such approaches are still rarely applied in air

transportation. This thesis introduces the prescriptive analytics approaches to various

airside operations. The integration of predictive and optimisation methods, supported

by extensive airside operation data, enables informed decision-making for airside op-

erations under conditions of uncertainty. However, prescriptive analytics approaches

typically require substantial information from predictions to be input into the subse-

quent optimisation problems, often increasing their complexity. To address this issue,

we further develop effective scenario selection strategies tailored to different prediction

performances, as well as high-performance solution methods for various optimisation

problem structures to enhance scalability and computational tractability. These meth-

ods make prescriptive analytics approaches applicable to real-world airside operations.

1.2 Research scope and objectives

This thesis addresses operations management problems in the airside sector under con-

ditions of uncertainty, aiming to develop robust solutions. By integrating predictive

and optimisation methods, referred to as prescriptive analytics, we can make informed

decisions for airside operations based on the available data. However, these prescriptive

analytics approaches often increase problem complexity. To address this, we develop

high-performance solution methods tailored to the specific structure of different prob-

lems, enhancing scalability and computational tractability. This thesis comprises three
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studies:

In the first study, we examine prescriptive analytics for the AGAP. Two prescrip-

tive analytics approaches are employed to develop robust and efficient airport gate

assignment plans. Initially, we use a predict-then-optimise (PTO) approach, utilising

machine learning (ML) methods to predict aircraft arrival times, thereby providing

more accurate information for the AGAP. Subsequently, we explore an estimate-then-

optimise (ETO) approach. This approach begins with estimating the conditional dis-

tribution of uncertain aircraft arrival times using ML, followed by solving an SP model

for the AGAP based on the estimated distribution. This SP model involves two de-

cision stages: the first stage assigns aircraft to either contact gates or the apron and

determines the sequence of aircraft for each contact gate; the second stage designs

aircraft scheduling plans based on the observed arrival times. Due to the complexity

of solving the ETO approach, we develop an effective scenario selection strategy and

an efficient Benders-based branch-and-cut (BBC) method.

In the second study, we investigate prescriptive analytics for the aircraft sequencing

and scheduling problem (ASSP). We first introduce an ETO approach to address the

ASSP under uncertainties in landing and take-off times on a mixed-operation single

runway. The ETO approach, a type of prescriptive analytics, involves two steps. First,

the ML method predicts the distribution of aircraft landing and take-off times. Second,

a SP model for the ASSP is solved based on the estimated distribution. In real-

world applications, predictive methods may produce forecasts susceptible to errors

or distribution shifts. To ensure robust aircraft sequencing and scheduling decisions

despite misspecified distributional information, we replace the SP model in the second

step of the ETO approach with distributionally robust optimisation (DRO), thereby

proposing the estimate-then-distributionally-robust-optimise (ETDRO) approach for

the ASSP. We develop several exact and inexact decomposition methods to handle

the ETDRO approach for the ASSP, enhancing them with lower bound lifting cuts to
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tighten the lower bounds and a heuristic to identify high-quality upper bounds.

In the third study, we focus on prescriptive analytics for the multi-runway aircraft

landing problem (MALP) under aircraft arrival time uncertainty, aiming to devise effi-

cient and environmentally friendly landing operations. We formulate the problem as an

SP model with a mixed-integer recourse (SP-MIR). Adhering to the ETO framework

in prescriptive analytics, we employ ML techniques to estimate the distribution of un-

known parameters based on historical data. An optimisation-based scenario generation

method is utilised to create scenarios that closely resemble actual scenarios, thereby

avoiding decision biases influenced by extreme scenarios. Furthermore, we introduce a

novel exact method called the stabilised branch-and-check (SBAC) method to solve the

ETO approach for the MALP efficiently. This method stabilises the master problem

around a neighbourhood of a stability centre point, enabling the generation of strong

Benders cuts.

1.3 Thesis outline

The remainder of the thesis is organised as follows. Chapter 2 summarises and reviews

existing literature on airside operations under uncertainty, and prescriptive analytics

that combine optimisation with prediction for informed decision-making. Chapter 3

develops ML methods for predicting aircraft arrival times by incorporating data on air-

craft operations and aviation meteorological conditions. These predictions are fed into

the AGAP model to provide aircraft-to-gate assignments at the airside by employing

PTO and ETO methods. Chapter 4 introduces an RF model for predicting aircraft ar-

rival and departure times, with these predictions serving as input to the ASSP model

for single runway operations. The ETDRO approach based on the Wasserstein dis-

tance is employed to handle prediction and sampling errors in aircraft sequencing and

scheduling decision-making. Chapter 5 presents an OLSG method to make high-quality
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decisions by selecting appropriate scenarios from ML predictions. These generated sce-

narios are then input into the SP-MIR model for the MALP to develop efficient and

robust aircraft landing plans for a multi-runway system. Chapter 6 concludes the thesis

and discusses some future research directions.
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Chapter 2

Literature review

This chapter illustrates the literature review on relevant research concerning airside

operations under uncertainty, as well as the prescriptive analytics that combines opti-

misation and prediction for informed decision-making.

2.1 Airside operations under uncertainty

This section reviews the existing literature on the AGAP and the RSP under uncer-

tainty, as investigated in this thesis.

2.1.1 AGAP under uncertainty

The deterministic AGAP has been extensively studied in recent years due to its prac-

tical importance (Daş et al., 2020; Li et al., 2021; Karsu et al., 2021; Wang et al.,

2022a; Karsu and Solyalı, 2023). The generic form of the AGAP requires two primary

constraints to be satisfied: first, each aircraft must be assigned to a gate or apron;

second, aircraft assignments with overlapping ground times at the same gate must be

prevented (Daş et al., 2020). Recent studies have incorporated space restrictions and

gate compatibility constraints in the AGAP models (Daş et al., 2020; Li et al., 2021;
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Bi et al., 2022). The objectives of the AGAP are mainly oriented towards passengers,

airports, and airlines (Daş et al., 2020). Passenger-oriented objectives typically aim

to minimise walking distance, waiting time, transit time, and other factors that affect

passenger satisfaction and convenience (Daş, 2017; Karsu et al., 2021). Airport- and

airline-oriented objectives focus on assigning fewer aircraft to aprons or more aircraft

to preferred gates (Dorndorf et al., 2008; Dell’Orco et al., 2017; Daş et al., 2020).

Additionally, robustness-oriented objective functions are employed in the determinis-

tic AGAP to provide robust gate assignment plans to address uncertainties. These

functions include minimising the variance of idle times (Deng et al., 2017; Wang et al.,

2022a), maximising idle times between consecutive aircraft (Dorndorf et al., 2008; Ben-

lic et al., 2017), minimising the expected number and duration of gate conflicts (Cas-

taing et al., 2016; Yu et al., 2017), and minimising aircraft delay times (Li et al., 2021).

Furthermore, several studies consider the trade-off between operational efficiency and

robustness as objectives (Benlic et al., 2017; Daş, 2017; Liu and Xiang, 2023).

The deterministic AGAP with robustness-oriented objectives does not guarantee

that the established airport gate assignment plans can be executed as expected for

most scenarios on an operational day (Şeker and Noyan, 2012; Kim et al., 2023a).

Consequently, uncertainty modelling and optimisation approaches are utilised for the

AGAP. Şeker and Noyan (2012) employed a scenario-based SP approach for the AGAP,

utilising a two-stage decision-making process. They used various robustness measures,

such as the number of conflicting flights, idle times, and buffer times, as objective

functions in different models. Scenarios were generated by adding deviations to the

estimated aircraft arrival times, with the deviation amounts randomly derived from a

predetermined triangular distribution. A Tabu search heuristic was designed to obtain

acceptable solutions for the proposed AGAP model within a reasonable time frame.

Xu et al. (2017) introduced an RO approach for the AGAP using a two-stage decision-

making process. Their model aims to minimise a predetermined quantile of total over-
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lap time. To address the robust counterpart, they incorporated a solution-dependent

uncertainty budget. Upon analysing real data, they observed that the distribution of

aircraft delays exhibited a long tail due to extreme values. After removing the outliers,

the distribution became more balanced and symmetrical. Kim et al. (2023a) proposed

an overlap chance-constrained AGAP that aims to balance robustness and efficiency

with a specified probability limiting the occurrences of overlap. The distribution of

aircraft overlap probabilities is generated using historical aircraft deviation data.

2.1.2 RSP under uncertainty

The optimisation problem aimed at improving runway utilisation is known as the RSP

(Bennell et al., 2011; Ikli et al., 2021). It can be further divided into three cate-

gories: the aircraft landing problem (ALP) for arriving aircraft, the aircraft take-off

problem (ATP) for departing aircraft, and the ASSP for both landing and taking-off

aircraft (Bennell et al., 2011; Ng et al., 2017; Ikli et al., 2021; Messaoud, 2021). The

RSP determines the sequence and schedule of landing and taking-off aircraft to op-

timise predefined objectives while adhering to various operational constraints. These

constraints generally include spacing, wake vortex separation requirements, and oper-

ational time windows (Bennell et al., 2011; Solak et al., 2018; Ikli et al., 2021). The

literature discusses two main objective functions for the RSP: minimising the makespan

of the runway system (Balakrishnan and Chandran, 2010; Harikiopoulo and Neogi,

2010; Prakash et al., 2021) and minimising the total, average, or weighted delay of all

aircraft (Sama et al., 2017; Pohl et al., 2021; Prakash et al., 2022; Pohl et al., 2022).

The deterministic RSP, where all input information is assumed to be determinis-

tic, has been extensively studied (Bennell et al., 2011; Solak et al., 2018; Ikli et al.,

2021; Messaoud, 2021). However, with increasing air traffic and factors such as severe

weather, delay propagation, the probabilistic nature of trajectories, technical difficul-

ties, and security concerns, aircraft arrival and departure times have become increas-
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ingly uncertain (Ng et al., 2017; Solak et al., 2018; Khassiba et al., 2020, 2022; Kim

et al., 2023a). These uncertainties can render predetermined runway scheduling plans

ineffective. Consequently, developing robust plans to address these uncertainties has

become a key focus in recent runway operations research.

Solveling et al. (2011) developed an SP approach for the ASSP under landing and

take-off time uncertainty in a parallel runway system, with one runway dedicated to

landings and the other to take-offs. Their results demonstrate the potential benefits of

the SP model over a deterministic model during peak hours. Ng et al. (2017) investi-

gated the ASSP under uncertainty in a mixed-mode parallel runway system, employing

an RO approach to develop aircraft sequencing and scheduling plans for worst-case

scenarios. Solak et al. (2018) introduced SP models based on network and slot formu-

lations for the ASSP under uncertainty, conducting experiments in a parallel runway

system with two independently operated runways, one for landing and one for take-off.

The results indicate that the proposed SP models are practically implementable and

offer potential advantages over deterministic models. Khassiba et al. (2020) proposed

an SP model with chance constraints for the extended aircraft landing problem (EALP)

on a single landing runway, aiming to pre-schedule aircraft at a destination airport to

minimise landing sequence length and time-deviation costs. Validation with realistic

data from Charles-de-Gaulle (CDG) airport demonstrates its advantages over deter-

ministic policies. Khassiba et al. (2022) extended previous research Khassiba et al.

(2020) on the EALP under uncertainty by incorporating multiple initial approach fixes

(IAFs) and different initial aircraft statuses. The study introduces two problem vari-

ants based on IAF assignment flexibility, using realistic data from CDG airport to

demonstrate the benefits of the SP models and IAF re-assignment.
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2.1.3 Research gaps

Based on the review of previous studies on the AGAP and RSP under uncertainty, we

have identified several research gaps, which are discussed in this subsection.

The first research gap is that in previous studies of AGAP and RSP under uncer-

tainty, the distributions of uncertain parameters primarily originate from experiential

knowledge (Şeker and Noyan, 2012; Ng et al., 2017; Khassiba et al., 2020, 2022) or the

historical data (Solveling et al., 2011; Xu et al., 2017; Solak et al., 2018; Kim et al.,

2023a). With the development of big data technology in the aviation industry, airside

controllers can access additional information beyond historical data on uncertain pa-

rameters, enabling ML methods to estimate their distributions accurately. Driven by

these predictive results, optimisation approaches can generate airport gate assignment

plans and aircraft sequencing and scheduling plans closer to the actual scenarios on

the operational days.

The second research gap is that previous studies on the AGAP and RSP under

uncertainty have mainly utilised SP and RO approaches. The SP approach requires

precise distributional information about uncertain parameters, which is often challeng-

ing to obtain. In contrast, RO aims to optimise performance under the worst-case

scenario, potentially resulting in conservative solutions. The DRO approach offers a

promising alternative to address the limitations of these two approaches. Unlike the

SP approach, the DRO approach does not require complete distributional information

about uncertain parameters. Additionally, the DRO approach optimises performance

across various possible distributions, resulting in less conservative solutions than the

RO approach (Delage and Ye, 2010; Bertsimas et al., 2019).

The final research gap is that previous studies addressing runway operations under

uncertainty primarily focus on single runways or dual runways that handle aircraft

take-offs and landings independently. However, due to substantial air traffic, many
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major airports worldwide now feature multiple runways dedicated to aircraft land-

ing operations (Messaoud, 2021). Consequently, we further explore the MALP under

uncertainty. The aim of the MALP under uncertainty is to devise aircraft landing

plans that enable efficient landing operations on a multi-runway system. This model

can also be easily adapted to the multi-runway aircraft take-off problem. Besides, air

traffic control (ATC) must make decisions regarding aircraft assignment, sequencing,

and scheduling within a parallel multi-runway system for aircraft landing operations.

ATC typically determines aircraft-to-runway assignment before the aircraft enters the

terminal airspace. Aircraft sequencing decisions are usually made when the aircraft

is in the terminal airspace, while scheduling decisions are typically made when the

aircraft enters the final approach phase. In the previous SP model for runway opera-

tions, decisions are based on a two-stage process (Solak et al., 2018; Khassiba et al.,

2020). These studies often assume that aircraft arrival times are known when the air-

craft enters the final approach phase. Consequently, aircraft sequencing decisions are

usually addressed in the first stage, while aircraft scheduling decisions are handled in

the second stage after the arrival times of aircraft are revealed. Since the second-stage

problem of this SP model, which considers only the aircraft scheduling decision, is for-

mulated as a linear programming (LP) problem with continuous variables, we refer to

this SP model as the SP model with continuous recourse (SP-CR). With the support

of advanced aviation technologies, including precise navigation systems, real-time data

processing, accurate predictive analysis, and efficient communication systems, ATC can

monitor the flight status of aircraft in real-time and make relatively accurate arrival

time predictions when aircraft are operating in terminal airspace. Consequently, ATC

can typically make aircraft sequencing decisions based on these revealed arrival times.

Therefore, we can incorporate aircraft sequencing decisions into the second stage of

the SP model, thereby proposing an SP-MIR model for the MALP. This model assigns

arriving aircraft to runways in the first stage. Subsequently, in the second stage, it
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makes sequencing and scheduling decisions for the aircraft assigned to each runway

using a MILP model.

2.2 Prescriptive analytics

The combination of predictive and optimisation methods to make informed decisions

based on available data is known as prescriptive analytics (Bertsimas and Kallus, 2020;

Qi and Shen, 2022; Wang and Yan, 2023; Tian et al., 2023a,b,c). Prescriptive analytics

approaches are generally divided into indirect and direct paths based on the relationship

between prediction and optimisation methods (Tian et al., 2023c). The indirect path

involves first obtaining predictions or estimates through predictive analysis, which are

subsequently used as inputs to downstream optimisation problems. This path typically

includes the PTO and the ETO approaches (Yan et al., 2022; Luo et al., 2023; Wang

et al., 2023; Yang et al., 2024; Yan et al., 2024b; Tian et al., 2023c). The direct path

leverages the structure of the optimisation problem (i.e., its objectives and constraints)

to design better prediction models, aiming to transition directly from data to decision

(Elmachtoub and Grigas, 2022; Tian et al., 2023a,c). This path typically includes

smart predict-then-optimise, weighted sample average approximation, empirical risk

minimisation, and kernel optimisation approaches (Bertsimas and Kallus, 2020; Brandt

et al., 2022; Notz and Pibernik, 2022; Elmachtoub and Grigas, 2022; Tian et al., 2023a;

Wang et al., 2024).

The direct path leverages the structure of the optimisation problem to design a

better prediction model. This approach prioritises decision quality but can involve

significant computational effort. Consequently, the associated optimisation problem is

typically required to be relatively simple (Elmachtoub and Grigas, 2022; Tian et al.,

2023c). The AGAP and the RSP exhibit NP-hard characteristics, making them com-

plex to solve (Bennell et al., 2011; Bouras et al., 2014; Daş et al., 2020; Ikli et al., 2021).
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Therefore, combining these optimisation problems with the direct path in prescriptive

analytics approaches might not be appropriate. This thesis focuses on applying the

indirect path in prescriptive analytics approaches to handle AGAP and RSP under

uncertainty. Although PTO and ETO approaches included in the indirect path are

easy to understand and implement, achieving a good combination of prediction and

optimisation methods still requires careful design. In this section, we review the rele-

vant literature on PTO and ETO, respectively, and summarise some gaps in current

research.

2.2.1 PTO approach

The PTO approach is widely adopted because it can easily integrate prediction results

with various optimisation problems. In particular, this approach can be viewed as first

predicting the best scenario and then optimising the deterministic model using the

predicted best scenario as input (Keutchayan et al., 2023). The predict-then-optimise

approach is widely applied to transportation optimisation problems and is supported

by various machine learning methods such as K-nearest neighbour (KNN), eXtreme

gradient boosting (XGBoost), federated learning (FL), random forest (RF), and artifi-

cial neural networks (ANN) (Luo et al., 2023; Wang et al., 2023; Yang et al., 2024; Yan

et al., 2024a,b). Nevertheless, the PTO approach may lead to suboptimal decisions,

especially when the objective function is nonlinear with respect to the predicted values

of the uncertain parameters (Qi and Shen, 2022; Yang et al., 2024).

2.2.2 ETO approach

Within the ETO approach, the distributions of uncertain parameters are first esti-

mated. Subsequently, an SP model is solved based on these estimated distributions

(Bertsimas and Kallus, 2020; Qi and Shen, 2022; Yan et al., 2022; Yang et al., 2024;
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Wang et al., 2024). Although the ETO approach can usually provide more satisfactory

decisions than the PTO approach, it still requires a well-designed framework to properly

incorporate the distribution of the estimated uncertain parameters into the subsequent

SP models. In the study of Yan et al. (2022) and Yang et al. (2024), KNN-based ETO

approaches were developed, demonstrating their effectiveness in supporting efficient

decision-making. In the KNN-based ETO approaches (Yan et al., 2022; Yang et al.,

2024), the Cartesian product of neighbourhood sets is used to approximate the dis-

tribution of uncertain parameters. The sample average approximation (SAA) method

is then employed as a scenario selection strategy to sample an appropriate number of

scenarios from the Cartesian product, ensuring the tractability of the subsequent SP

model.

2.2.3 Research gaps

The first research gap is that the current ETO approach primarily relies on the KNN

method (Yan et al., 2022; Yang et al., 2024). However, considering that the KNN

method is typically sensitive to noise and outliers in the dataset, these outliers may

affect the determination of the nearest neighbours, causing the estimated distribution

to deviate significantly from the true distribution, leading to unsatisfactory gate as-

signment plans. Given that the RF method can handle noise and outliers in the data by

combining the prediction results of multiple decision trees, it offers strong robustness

and accuracy. Therefore, we further propose an RF-based ETO approach to address

this research gap.

The second research gap identified is the prevalent use of the SAA method as a

scenario selection strategy in current research (Yan et al., 2022; Yang et al., 2024).

Although the SAA method is simple and easy to understand, its results may be bi-

ased if the sample size is insufficient. Additionally, for complex optimisation problems,

increasing the sample size raises computational complexity. Therefore, adopting an
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effective scenario selection strategy to extract an appropriate number of scenarios and

their associated probabilities from the Cartesian product is crucial for making satisfac-

tory decisions (Yan et al., 2022; Yang et al., 2024). Therefore, we propose cluster-based

and optimisation-enhanced scenario generation methods to achieve better performance

than the SAA method.

The last research gap identified is that in the ETO approach, the distribution of

uncertain parameters provided by ML methods is assumed to be the true distributional

information and is directly used in subsequent SP models. However, scenarios gener-

ated by ML methods inherently produce some prediction and sampling errors, which

cannot be entirely eliminated. Consequently, ignoring these potential prediction and

sampling errors may lead to unsatisfactory planning. We propose a novel ETDRO ap-

proach to address this issue. This approach replaces the SP model with a DRO model.

The true distribution is assumed to be either completely unknown or only partially

known. In contrast, the estimated distribution provided by the ML methods is used

as a known reference distribution in the DRO model.
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Chapter 3

Prescriptive analytics for the

airport gate assignment problem

3.1 Introduction

Air traffic demand has continued to grow in recent years, and the competitive nature of

the airline industry has intensified, leading to significant capacity challenges for many

airports (Ribeiro et al., 2019; Bi et al., 2022). Consequently, there is a pressing need to

optimise the utilisation of existing airside facilities to improve the efficiency of airside

operations and alleviate congestion (Bouras et al., 2014; Daş et al., 2020; Wang et al.,

2022a; Chen et al., 2024). Airport gates, including terminal gates and aprons, are

critical as essential airside facilities for passenger boarding and disembarking. For this

reason, the AGAP, which focuses on the assignment of aircraft to airport gates, has

been widely studied in recent years (Bouras et al., 2014; Daş et al., 2020; Karsu et al.,

2021; Li et al., 2021; Wang et al., 2022a; Jiang et al., 2023; Liu and Xiang, 2023; Karsu

and Solyalı, 2023; Jiang et al., 2024; Li et al., 2024; Nikolić et al., 2024). In these

studies, the AGAP is usually developed based on the given estimated aircraft arrival

and departure times. Two constraints are required to ensure the feasibility of airport
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gate assignment plans. First, each aircraft should be assigned to a compatible gate or

apron. Second, it is essential to prevent scheduling conflicts for aircraft assigned to the

same gate. However, in actual operations, because of the bad weather, air traffic delay

propagation, technical challenges, safety considerations, etc., the estimated aircraft

arrival and departure times are not certain (Şeker and Noyan, 2012; Ng et al., 2017;

Solak et al., 2018; Khassiba et al., 2020, 2022; Kim et al., 2023a). Such uncertain

parameters may render the predetermined airport gate assignment plans unsatisfactory.

Therefore, developing robust airport gate assignment plans to address uncertainties has

emerged as a key research focus of the AGAP.

Various robustness criteria have been incorporated into the AGAP models to obtain

robust airport gate assignment plans (Daş et al., 2020). For example, minimising the

variance of idle times (Bolat, 2001; Deng et al., 2017; Wang et al., 2022a), maximising

idle times (Benlic et al., 2017; Liu and Xiang, 2023), avoiding the assignment of two

aircraft with low idle times to the same gate (Dorndorf, Ulrich and Jaehn, Florian and

Pesch, Erwin, 2017), minimising the expected number and duration of gate conflicts

(Castaing et al., 2016; Yu et al., 2017; Dorndorf, Ulrich and Jaehn, Florian and Pesch,

Erwin, 2017), minimising absolute deviation of new airport gate assignment plans from

the reference schedules (Dorndorf et al., 2012; She et al., 2022), etc. However, the

robustness-oriented objectives with estimated aircraft arrival and departure times do

not guarantee that the established airport gate assignment plans can be executed as

expected for most scenarios on the operational day (Şeker and Noyan, 2012; Kim et al.,

2023a). Consequently, uncertainty modelling and optimisation approaches are utilised

in the AGAP. Şeker and Noyan (2012) used a scenario-based SP approach for AGAP to

minimise the expected variance of the idle times and the expected overlap times. The

scenarios are generated by adding deviations to the estimated aircraft arrival times,

where the deviation amounts are randomly derived from a predetermined triangular

distribution. Xu et al. (2017) introduced an RO approach for AGAP, which aims to
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minimise a predetermined quantile of the total overlap time. To address the robust

counterpart, they introduced a solution-dependent uncertainty budget. Upon analysing

the actual data, they observed that the distribution of aircraft delays exhibited a long

tail due to extreme values. After removing the outliers, the distribution became more

balanced and symmetrical. Kim et al. (2023a) proposed an overlap chance-constrained

AGAP that aims to balance robustness and efficiency, where a specified probability

limits the occurrences of overlap. The distribution of aircraft overlap probabilities is

generated using historical aircraft deviation data.

In previous AGAP studies under uncertainty, the distributions of uncertain pa-

rameters primarily originate from experiential knowledge (Şeker and Noyan, 2012)

or the analysis of historical data related to these parameters (Xu et al., 2017; Kim

et al., 2023a). With the advancement of big data technology, the substantial volume

of collected data provides new opportunities to address uncertainty in optimisation

problems, which allows for various ML methods to predict uncertain parameters us-

ing their historical data and other relevant data (Wang and Yan, 2023; Tian et al.,

2023c). The combinations of predictive and optimisation techniques to make informed

decisions based on available data are known as prescriptive analytics (Bertsimas and

Kallus, 2020; Qi and Shen, 2022; Wang and Yan, 2023; Tian et al., 2023a,b,c). The

PTO and ETO approaches are commonly employed in prescriptive analytics to derive

decisions from data. Specifically, these frameworks derive predictions or estimations

through ML methods and then use the predicted values or the estimated distributions

as inputs to downstream decision-making processes. The PTO approach is widely

adopted because it can easily integrate prediction results with various optimisation

problems. In particular, this approach can be viewed as first predicting the best sce-

nario and then optimising the deterministic model using the predicted best scenario as

input (Keutchayan et al., 2023). The PTO approach is widely applied in transporta-

tion optimisation problems, supported by ML methods such as KNN, XGBoost, FL,
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RF, ANN (Luo et al., 2023; Wang et al., 2023; Yang et al., 2024; Yan et al., 2024a,b).

Nevertheless, the PTO approach may lead to suboptimal decisions, especially when

the objective function is nonlinear with the predicted values of the uncertain param-

eters (Qi and Shen, 2022). The ETO approach can be utilised to address this issue.

Within this approach, the distributions of uncertain parameters are first estimated,

and then an SP model is solved based on the estimated distributions (Qi and Shen,

2022; Yan et al., 2022; Yang et al., 2024; Wang et al., 2024). The ETO approach ne-

cessitates a well-designed framework to appropriately incorporate the distribution of

the estimated uncertain parameters into the SP model. In the study of Yang et al.

(2024), a KNN-based ETO approach was developed, demonstrating its effectiveness in

supporting efficient decision-making.

In this study, we implement prescriptive analytics to enhance the efficiency of air-

port gate assignment planning. By leveraging ML methods and massive data related

to uncertain parameters, more accurate predicted values and estimated distributions

can be achieved. These prediction results then drive optimisation methods to generate

airport gate assignment plans closer to actual scenarios on an operational day. We

first apply the PTO approach to the AGAP, where the uncertain parameters in the

AGAP are assumed to be identical to the corresponding predicted values provided

by ML methods. Subsequently, the ETO approach for AGAP is developed, utilising

the distribution of uncertain parameters generated by ML methods as input to solve

the SP model of the AGAP. In practical airport gate assignment operations, the gate

controllers typically establish the aircraft assignment and sequencing decisions several

hours or a day in advance. After the aircraft arrives at the airport, the actual arrival

time of each aircraft is revealed, and the airport gate controllers subsequently make

aircraft scheduling decisions for each gate. Therefore, we propose an SP model with a

two-stage decision-making process for AGAP. In the first stage, aircraft are assigned

to appropriate gates, and aircraft sequencing decisions are made for each gate. Then,
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in the second stage, aircraft scheduling decisions are determined after the uncertainty

of the aircraft arrival times is revealed.

The KNN and RF methods are used to drive the prescriptive analytics in this

study. The KNN method is a non-parametric supervised learning method (Peterson,

2009). Due to its ease of use and good performance, the KNN method is widely

used in the research of prescriptive analytics (Bertsimas and Kallus, 2020; Galli et al.,

2021; Yan et al., 2022; Yang et al., 2024). The RF method is a supervised learning

method, which uses multiple decision trees for prediction (Breiman, 2001). Given its

advantages, including high prediction accuracy, robustness to outliers, and relatively

good interpretability, etc., the RF method is also widely employed in the research

of prescriptive analytics (Bertsimas and Kallus, 2020; Yan et al., 2020; Galli et al.,

2021; Yan et al., 2024a). Recall that the ETO approach in prescriptive analytics

usually requires a well-designed framework to properly incorporate the distribution of

the estimated uncertain parameters into the SP model. Yang et al. (2024) proposed

a KNN-based ETO approach. However, considering that the KNN method is usually

sensitive to noise and outliers in the dataset, these outliers may affect the judgment

of the nearest neighbours, causing the estimated distribution to deviate significantly

from the true distribution, leading to unsatisfactory gate assignment plans. Given that

the RF method can handle noise and outliers in the data by combining the prediction

results of multiple decision trees, it offers strong robustness and accuracy. Therefore,

this study proposes an RF-based ETO method to address this research gap.

Although the ETO approach often provides better decisions, it requires generat-

ing a large number of scenarios based on the distributions of uncertain parameters,

resulting in poor scalability and computational intractability of the SP models (Yang

et al., 2024; Wu et al., 2024). Therefore, when using the ETO approach, adopting an

effective scenario selection strategy to sample an appropriate number of scenarios and

their associated probabilities is also essential for making satisfactory decisions (Yan
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et al., 2022; Yang et al., 2024). The SAA method is used as a scenario selection strat-

egy by Yan et al. (2022) and Yang et al. (2024). The SAA method is based on Monte

Carlo simulation, which extracts multiple samples from the uncertainty distribution,

generates a set of random scenarios, and uses the average of these scenarios to approx-

imate the objective function of the original problem. Although the SAA method is

straightforward, its results may exhibit deviations when the sample size is insufficient.

Additionally, increasing the sample size for complex optimisation problems can sub-

stantially escalate computational complexity. This study proposes a clustered-based

scenario reduction (CSR) method to address these limitations. The K-means method

embedded in the CSR method generates more evenly distributed samples, better cap-

turing the distribution characteristics of random variables (Kim et al., 2023b; Wu et al.,

2024). Moreover, due to the more uniform distribution of samples, the CSR method

requires a smaller sample size while maintaining performance.

The AGAP exhibits an NP-hard nature (Karsu et al., 2021; Li et al., 2021). Given

that the proposed SP model for AGAP further considers the uncertainty of aircraft

arrival times, achieving an optimal solution can be challenging. Existing commer-

cial mixed-integer programming (MIP) solvers can only handle small-size instances of

this model within limited CPU time. Şeker and Noyan (2012) proposed tabu search

heuristics to efficiently provide acceptable solutions for the SP model of the AGAP.

Nevertheless, in practice, gate assignment is not typically a real-time optimisation

problem, as gate plans are usually made hours or even a day before the scheduled

time. Therefore, using an exact algorithm that can provide an optimal solution is

more advisable (Chen et al., 2024). The studied AGAP consists of three classes of

decisions, i.e., aircraft-to-gate assignment decisions, aircraft sequencing decisions, and

aircraft scheduling decisions, which have a good decomposition structure. The Ben-

ders decomposition (BD) methods are widely used to decompose the SP models into

a master problem and several subproblems (Rahmaniani et al., 2018). The master
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problem and subproblems are solved iteratively, and in each iteration, Benders cuts

are generated and incorporated into the master problem. Solving the master problem

of the BD method is time-consuming because it is usually an integer programming

problem, and the Benders cuts added in each iteration increase its complexity (Rei

et al., 2009). Instead of solving the mixed integer linear programming master problem

in each iteration, the BBC method constructs a single branch-and-cut tree, and the

Benders cuts are added to the unfathomed nodes in the branch-and-cut tree after find-

ing an integer feasible solution (Gendron et al., 2016). Additionally, due to parts of

the original objective function being projected out in the master problem, the quality

of lower bound (LB) may be low initially, resulting in a large optimality gap in the

initial stages (Rahmaniani, Ragheb and Crainic, Teodor Gabriel and Gendreau, Michel

and Rei, Walter, 2017; Rahmaniani et al., 2018). Therefore, a lot of Benders cuts are

required to close the gap (Adulyasak et al., 2015). The lower bound lifting (LBL) cuts

with some information about the original objective function can be used as initial cuts

and added to the master problem to improve the LB, where the LBL cuts represent the

LB of arc costs (Adulyasak et al., 2015; Wu et al., 2022). When using the BBC method,

we incorporate the LBL cuts at the root node of the branch-and-cut tree. Moreover,

the original single Benders optimality cuts are weak. To enhance the strength of origi-

nal cuts, we employ a multiple-cut strategy that incorporates more or at least the same

amount of information into the unfathomed nodes in the branch-and-cut tree (Maheo

et al., 2019; Shehadeh, 2023). This approach facilitates the generation of more specific

Benders optimality cuts, potentially leading to improved LB and faster convergence

rate (Shehadeh, 2023).

Our main contributions are summarised as follows:

(i) We develop two prescriptive analytics approaches for AGAP under aircraft ar-

rival time uncertainty. In the PTO approach, the uncertain arrival time of each aircraft

is assumed to be identical to the predicted value provided by ML methods. However,
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the accuracy of predictions impacts the performance of the airport gate assignment

plans offered by the PTO approach, and inaccurate predictions may result in subop-

timal plans. The ETO approach is further utilised for AGAP to deal with this issue,

where the first step involves estimating the distribution of uncertain aircraft arrival

times, and the second step solves the SP model for AGAP based on the estimated

distribution. This study employs KNN and RF methods to predict aircraft arrival

times and estimate their distributions. These ML methods are well-constructed and

validated. To the best of our knowledge, this is the first time that prescriptive analytics

approaches are implemented in the AGAP.

(ii) Although the ETO approach often yields superior decisions, it necessitates

generating a substantial number of scenarios based on the distributions of uncertain

parameters, resulting in poor scalability and computational intractability of the SP

models. To address this issue, we develop a CSR method for scenario selection, which

only requires fewer scenarios to enable the ETO approach to achieve good performance

in airport gate assignment planning. In addition, we develop a BBC method to effi-

ciently solve the SP model of AGAP, in which the LBL cuts are added to the master

problem and the multi-cut strategy is used to generate more specific Benders optimality

cuts to improve LB and faster convergence rate.

(iii) We evaluate the performance of the proposed prescriptive analytics approaches

and solution method on test instances generated from real-world data from Xiamen

Gaoqi International Airport (XMN), an important airport on the southeast coast of

China. In particular, we compare the computational performance of the BBC method

against the commercial solver. The results demonstrate highly significant statistical

improvements in the proposed BBC method compared to the benchmark method. After

analysing the effects of ML methods and scenario selection strategies on the ETO

approach, we compare the performance of airport gate assignment plans generated

by prescriptive analytics approaches with those from other optimisation approaches.
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Additionally, we examine the impact of airport gate controller preference levels and

provide managerial insights that are practically useful for decision-making in airport

gate assignments.

The remainder of this chapter is organised as follows. Section 3.2 describes the

problem background and the corresponding mathematical formulations of the AGAP.

In Section 3.3, the ML methods are constructed and validated using the accessible data

from XMN. Section 3.4 presents the prescriptive analytics approaches for AGAP. The

numerical experiments are conducted in Section 3.5, followed by conclusions and future

directions in Section 3.6.

3.2 Problem setting for AGAP

This section describes the AGAP and presents the corresponding notations and math-

ematical formulation. Consider a set I that contains arriving aircraft. According to

the International Civil Aviation Organisation (ICAO) regulations, aircraft in I can be

classified into types A, B, C, D, E, and F based on their wingspan (Bi et al., 2022).

Types C, D, and E are the most common aircraft types, with wingspans ranging from

24 to 65 meters. Therefore, our AGAP considers these three most frequent aircraft

types and the corresponding contact gates that can accommodate them. However, our

AGAP can be easily extended to consider more or all aircraft types if needed. The

sets of E-type, D-type, and C-type aircraft are denoted as IE, ID, and IC, respectively.

We have I = IE ∪ ID ∪ IC. Besides, the aircraft are either domestic or international.

The sets of domestic and international aircraft are separately denoted as IDom and I Int,

where I = IDom ∪ I Int. Each aircraft i ∈ I must be assigned to a gate g ∈ G ∪ {r}

and occupies its assigned gate for a duration Oi, where G denotes the set of contact

gates, and r represents the apron. In our AGAP, the compatibility of contact gates

is taken into account. The three contact gate sets compatible with E-type, D-type,
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and C-type aircraft are denoted as GE, GD and GC, respectively. E-type aircraft can

only be assigned to a contact gate g ∈ GE, D-type aircraft can be assigned to contact

gate g ∈ GE ∪GD, and C-type aircraft can be assigned to all contact gates (Dell’Orco

et al., 2017; Bi et al., 2022). Furthermore, in airports handling both domestic and

international aircraft, the gates for international and domestic aircraft are separated

due to different control procedures (Karsu et al., 2021). The contact gate sets are

compatible with domestic and international aircraft, which are separately denoted as

GDom and GInt. The apron r has unlimited capacity and can accommodate any aircraft

type (Daş et al., 2020). The contact gates are further assumed to be independent, thus

eliminating interference between contact gates (Li et al., 2021). Each contact gate

g ∈ G can be occupied by one aircraft at a time. The notation xg
i equals to 1 if aircraft

i assigned to a gate g; otherwise, it equals 0. A buffer time B is required between two

aircraft assigned to one contact gate consecutively. Each contact gate begins with a

dummy starting aircraft s and finishes with a dummy ending aircraft e. The notation

ygij equals 1 if aircraft i and j are assigned to the same contact gate g, with i imme-

diately preceding j; otherwise, it equals 0. We define Ai as the estimated arrival time

of aircraft i. The parking time ti of aircraft i should be no earlier than Ai. The delay

time di of aircraft i is defined as the difference between related ti and Ai. It should

be noted that we do not impose an upper bound (UB) on the park time ti for each

aircraft. This decision accounts for the possibility of an arriving aircraft waiting at its

assigned gate for an extended period while the departing aircraft currently occupying

the contact gate completes its pushback, although such occurrences are infrequent (Li

et al., 2021). The objective function of the AGAP is to minimise the costs of assigning

aircraft to the apron r, and the costs caused by aircraft delays. The apron r, a type of

gate without the jet bridge, is typically not preferred by airlines for aircraft assignments

under normal circumstances because it increases passenger boarding and disembarking

time (Daş et al., 2020; Karsu et al., 2021). Therefore, for aircraft i allocated to the
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Table 3.1: Notations and definitions for AGAP.

Notation Definition
Sets
IE The set of E-type aircraft.
ID The set of D-type aircraft.
IC The set of C-type aircraft.
IDom The set of domestic aircraft.
I Int The set of international aircraft.
I The set of all aircraft.
GE The set of gates compatible with E-type, D-type, and

C-type aircraft.
GD The set of gates compatible with D-type and C-type

aircraft.
GC The set of gates compatible with C-type aircraft.
GDom The set of gates compatible with domestic aircraft.
GInt The set of gates compatible with international aircraft.
G The set of all contact gates.
Parameters
Ai Estimated arrival time of aircraft i.
Oi Duration of aircraft i occupying a gate.
B Buffer time between two consecutive aircraft assigned to

one contact gate g.
M A sufficiently large number.
Capron

i Cost of assigning aircraft i to the apron.
Cdelay

i Unit time delay cost for aircraft i.
Decision variables
xg
i 1, if aircraft i assigned to a gate g; 0, otherwise.

ygij 1, if aircraft i and j assigned to one contact gate g, and
i immediately precedes j; 0, otherwise.

ti Park time of aircraft i.
di Delay time of aircraft i.

apron, a penalty cost Capron
i is incurred. Additionally, Cdelay

i represents the unit time

delay cost for aircraft i. For clarity, we provide the notations of sets, parameters, and

decision variables used in this study in Table 3.1.

Based on the problem description and notations provided above, the mathematical
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formulations of the AGAP are written as follows:

min
∑
i∈I

Capron
i xr

i +
∑
i∈I

Cdelay
i di (3.1a)

s.t.
∑

g∈G∪{r}

xg
i = 1, ∀i ∈ I, (3.1b)

xg
i ≤ 0, ∀g ∈ GD ∪GC, ∀i ∈ IE, (3.1c)

xg
i ≤ 0, ∀g ∈ GC, ∀i ∈ ID, (3.1d)

xg
i ≤ 0, ∀g ∈ GInt, ∀i ∈ IDom, (3.1e)

xg
i ≤ 0, ∀g ∈ GDom, ∀i ∈ I Int, (3.1f)

xg
i =

∑
j∈I∪{e}\{i}

ygij, ∀g ∈ G, ∀i ∈ I, (3.1g)

∑
j∈I∪{e}

ygsj = 1, ∀g ∈ G, (3.1h)

∑
i∈I∪{s}

ygie = 1, ∀g ∈ G, (3.1i)

∑
j∈I∪{s}\{i}

ygji =
∑

j∈I∪{e}\{i}

ygij, ∀g ∈ G, ∀i ∈ I, (3.1j)

ti ≥ Ai, ∀i ∈ I, (3.1k)

di ≥ ti − Ai, ∀i ∈ I, (3.1l)

ti +Oi +B − tj ≤M(1− ygij), ∀g ∈ G, ∀i ∈ I, ∀j ∈ I, i ̸= j, (3.1m)
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xg
i ∈ {0, 1} , ∀g ∈ G ∪ {r}, ∀i ∈ I, (3.1n)

ygij ∈ {0, 1}, ∀g ∈ G, ∀i ∈ I ∪ {s}, ∀j ∈ I ∪ {e}, i ̸= j, (3.1o)

ti ∈ R+, ∀i ∈ I, (3.1p)

di ∈ R+, ∀i ∈ I. (3.1q)

The objective function (3.1a) minimises the costs of assigning aircraft to the apron

and the aircraft delay costs. Constraints (3.1b) ensure that aircraft should be assigned

to contact gates or the apron. Constraints (3.1c) to (3.1f) ensure that the aircraft

can only be assigned to the compatible gates. Constraints (3.1g) assign aircraft i to

contact gate g, which relates the two decision variables xg
i and ygij. Constraints (3.1h)

and (3.1i) ensure the first and last aircraft served by each contact gate are dummy

starting aircraft s and dummy ending aircraft e, respectively. Constraints (3.1j) ensure

contact gate flow conservation. Constraints (3.1k) ensure the park time ti of aircraft i

should be larger than its arrival time Ai. Constraints (3.1l) evaluate the delay time for

each aircraft. Constraints (3.1m) guarantee the time consistency. Constraints (3.1n)

to (3.1q) determine the domain of decision variables.

We then discuss the selection of the M value in Constraints (3.1m), which is re-

lated to the maximum of the term (ti +Oi +B). Specifically, we aim to find an UB for

maxi∈I {ti +Oi}+B. Among these, the term maxi∈I {ti +Oi} can be regarded as the

pushback time of the latest pushback aircraft. We consider a worst case in which all

aircraft are assigned to contact gates, and the latest arrival is served first. In this case,

we can determine the UB of the latest aircraft pushback time as maxi∈I {Ti}+
∑

i∈I Oi+

(|I| − 1)B, we thus have maxi∈I {ti +Oi}+B ≤ maxi∈I {Ti}+
∑

i∈I Oi+ |I|B. There-

fore, selecting M = maxi∈I {Ti} +
∑

i∈I Oi + |I|B is sufficient for Constraints (3.1m)

in the deterministic model (3.1).
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3.3 ML methods for the aircraft arrival time pre-

diction

In the mathematical formulations for AGAP provided in Section 3.2, airport gate

assignment plans are made based on the estimated arrival time Ai for each aircraft.

However, the estimated arrival time of aircraft is often uncertain in actual operations

(Şeker and Noyan, 2012; Ng et al., 2017; Khassiba et al., 2020, 2022). The arrival time

of each aircraft can be modelled as a random variable Ãi to address the uncertainty.

When airport gate controllers can access additional information beyond historical data

on aircraft arrival times, ML methods can be used to predict parameter values or

estimate their distributions more accurately. With the support of these predictions,

optimisation approaches can provide airport gate assignment plans closer to the actual

scenarios on the day of operation. The predicted arrival time Âi of aircraft i can be

obtained by adding the predicted arrival time deviation value âi to the estimated arrival

time Ai, which is represented as Âi = Ai + âi.

The experimental data and several selected features are presented in Subsection 3.3.1.

To develop ML methods with good predictive performance, we fine-tune the hyperpa-

rameters of the ML methods in Subsection 3.3.2. Finally, we evaluate the performance

of these ML methods for aircraft arrival time in Subsection 3.3.3.

3.3.1 Dataset and feature engineering

The dataset used in this study was collected from XMN between September 1st and Oc-

tober 31st, 2023. It contains 15,031 records of arriving aircraft, each of which contains

relevant aircraft information. Given the significant role of aviation meteorological data

in predicting aircraft arrival times (Deng et al., 2024), we further incorporate terminal

area forecast (TAF) data into the training dataset. The TAF data include details such
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as maximum and minimum temperatures, humidity, air pressure, wind direction, wind

speed, and other relevant parameters during the forecast period.

To construct the ML methods, we choose 15 features from the original dataset.

These features are presented in Table 3.2 along with their data type, encoding method,

and statistical information. We identify missing values that exist in features such

as “Aircraft type”, “Route distance”, and “Fuel load”. To address these, we fill in

the missing values using the median value for “Aircraft type” and the mean value

for both “Route distance” and “Fuel load”. Notably, the “Aircraft type”, “Domes-

tic/International”, “Weather”, and “Wind direction” features are expressed in a literal

format, necessitating their conversion to numerical data. In the context of aircraft

type, the arriving aircraft at XMN primarily fall into three categories: E-type, D-type,

and C-type. We then encode these types as 3, 2, and 1. The weather includes sunny,

rainy, cloudy, foggy. Additionally, 16 wind directions are considered. For weather and

wind directions, we adopt one-hot encoding. We designate the data collected between

September 1st and October 30th, 2023, as the dataset D with 14,783 records of arriv-

ing aircraft. We randomly split 80% of the data in D as the training set DTraining for

training the ML models, while the remaining 20% as the testing set DTesting to evaluate

their performance. Additionally, the data from October 31st, 2023, is used to generate

the test instances.

3.3.2 Hyperparameters tuning

Within the KNN method, the only hyperparameter is K (i.e., n_neighbours), which

represents the number of neighbours the KNN method takes into account. Opting for

a very small K value may render the model overly sensitive to noise while selecting a

larger K value reduces noise impact and increases model complexity. Consequently,

careful tuning of the K value is essential in practical applications. In the RF method,

more hyperparameters need to be considered. We list some crucial hyperparameters of
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Table 3.2: Features in ML methods for AGAP.

Feature name Data type Encoding Null count
Aircraft type Object Label encoding 32

Domestic/International Object One-hot encoding 0
Estimated take-off time Numerical 0
Estimated landing time Numerical 0
Straight line distance Numerical 0

Route distance Numerical 886
Estimated flight time Numerical 0

Fuel load Numerical 892
Weather Object One-hot encoding 0

High temperature Numerical 0
Low temperature Numerical 0

Humidity Numerical 0
Barometer Numerical 0

Wind direction Object One-hot encoding 0
Wind speed Numerical 0

the RF method in the following. First is the number of decision trees in the forest (de-

noted by n_estimators). Choosing an appropriate value for n_estimators can balance

underfitting and overfitting. Generally, larger values of n_estimators improve the per-

formance of the RF method but also increase computational cost. Second, a leaf node

should contain the minimum number of samples (denoted by min_samples_leaf). A

leaf node can be further split if and only if it contains at least min_samples_leaf

data. Third, the minimum number of samples a node should contain (denoted by

min_samples_split). A node can be further split if and only if it includes at least

min_samples_split data. Finally, the maximum depth of decision trees (denoted by

max_depth). Limiting the maximum depth can prevent overfitting when there are

many samples or features.

The hyperparameters tuned for the KNN and RF methods are detailed in Table 3.3.

These best hyperparameter values are determined using a grid search method with 5-

fold cross-validation on the training dataset DTraining.
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Table 3.3: Best hyperparameter values of the ML methods for AGAP.

Hyperparameters Search space Best value
KNN method
n_neighbours [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 8
RF method
n_estimators [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] 700

min_samples_split [2, 3, 4, 5, 6, 7, 8, 9, 10] 9
min_samples_leaf [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 2

max_depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 50

3.3.3 Performance of ML methods

The performance of the ML methods is evaluated using mean absolute error (MAE),

mean square error (MSE), and root MSE (RMSE), which are commonly used evaluation

metrics when ML methods are used to predict aircraft arrival times (Wang et al., 2020;

Deng et al., 2024). We also illustrate the biases of the ML methods using the mean

bias error (MBE). Considered a data set with n samples, where Āi and Âi are the

actual and predicted arrival time of aircraft i ∈ {1, . . . , n}, respectively. These metrics

are defined as follows:

MAE =
1

n

n∑
i=1

∣∣∣Āi − Âi

∣∣∣ . (3.2)

MSE =
1

n

n∑
i=1

(
Āi − Âi

)2
. (3.3)

RMSE =

√√√√ 1

n

n∑
i=1

(
Āi − Âi

)2
. (3.4)

MBE =
1

n

n∑
i=1

(
Āi − Âi

)
. (3.5)

After predicting the arrival time deviation value âi using the ML methods, we

calculate the predicted arrival time Âi using the formula Âi = Ai + âi, where the

estimated arrival time Ai is assumed to be known in advance. We further use the

33



estimated arrival time Ai to replace the predicted arrival time Âi in Equation (3.2)

to (3.5) for calculating the MAE, MSE, RMSE, and MBE values as benchmarks. Based

on the prediction results presented in Table 3.4, both KNN and RF methods are better

than the benchmark, as they yield smaller MAE, MSE, and RMSE values. These

show that the predicted arrival times provided by ML methods are more accurate

than the estimated arrival times. We also find that the prediction accuracy of the RF

method is better than that of the KNN method. The MAE value of the RF method

is controlled within 15 minutes. Given that an aircraft is considered “delayed” if its

actual arrival time exceeds the estimated arrival time by more than 15 minutes, this

demonstrates that the arrival time predictions made by the RF method are relatively

accurate from the perspective of the MAE indicator. In addition, the MBE value of

the KNN method is -2.73, indicating that its predicted values are, on average, 2.73

units lower than the actual values. This negative deviation reveals that the KNN

method generally underestimates the arrival time on this dataset. On the other hand,

the MBE value of the RF method is 0.40, suggesting that its predicted values are, on

average, 0.40 units higher than the actual values. This positive deviation indicates a

slight overestimation by the RF method, though the overall deviation remains small.

The KNN method’s larger MBE value signifies its poorer performance in predicting

aircraft arrival time, potentially due to systematic underestimation. Conversely, the

RF model exhibits a smaller deviation, highlighting its more stable performance and

closer alignment with the actual situation.

After training, testing and validating the ML methods, we can utilise them to pre-

dict values or estimate distributions for uncertain parameters more accurately. These

predicted values or estimated distributions can then be used as inputs for prescrip-

tive analytics approaches provided in Section 3.4, enabling the development of airport

gate assignment plans that are more closely aligned with the actual conditions on the

operational day.
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Table 3.4: Prediction results on the testing dataset for AGAP.

Metrics Benchmark KNN RF
Value Value Reduction (%) Value Reduction (%)

MAE 17.65 15.73 10.88 14.81 16.10
MSE 1129.17 961.32 14.87 822.65 27.15
RMSE 33.60 31.01 7.73 28.68 14.65
MBE 15.40 -2.73 - 0.41 -

3.4 Prescriptive analytics approaches for AGAP

This section proposes two prescriptive analytics approaches for AGAP based on the

ML methods introduced in Section 3.3. The PTO approach for AGAP is presented in

Subsection 3.4.1. And the ETO approach for AGAP is provided in Subsection 3.4.2.

3.4.1 PTO approach for AGAP

Using the predicted arrival time Âi provided by ML methods, the PTO approach

can be applied, where the random variable Ãi is assumed to be identical to the pre-

dicted value. In this case, the distribution of Ãi can be mathematically presented as

Pr
(
Ãi = Âi

)
= 1, where Pr (·) represents the probability an event occurring. By sub-

stituting the estimated arrival time Ai in Model (3.1) with the predicted arrival time

Âi, the mathematical formulations of the PTO approach for AGAP is formulated.

The framework of the PTO approach driven by RF method for AGAP is provided in

Figure 3.1.

3.4.2 ETO approach for AGAP

When using the PTO approach for AGAP, each random variable Ãi is assumed to be

identical to the predicted arrival time Âi provided by ML methods. Consequently, the

accuracy of these prediction results impacts the performance of the airport gate as-
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Figure 3.1: Framework of PTO approach for AGAP driven by RF method.

signment plans, and inaccurate predictions may result in suboptimal plans. The ETO

approach can be utilised for AGAP to address these issues. The framework of this

approach, driven by the RF method, is provided in Figure 3.2. In the ETO approach,

the first step involves estimating the distribution of unknown parameters Ãi, and the

second step solves the SP model for AGAP based on the estimated distribution. In

the ML methods used in this study, the KNN method computes the prediction result

as the mean of the possible arrival times from a predetermined number of neighbours.

Meanwhile, the RF method calculates the prediction result by averaging the predicted

arrival times from a predetermined number of decision trees. Set N as the predeter-

mined number of neighbours or decision trees. That is, N possible values of the arrival

time of aircraft i provided by the ML methods. We then denote P (fi) as the set

containing N possible arrival times when using input feature vector fi. The vector of

the arrival time for all aircraft in I can be written as Ã =
(
Ã1, Ã2, . . . , Ã|I|

)
. And

the Cartesian product Φ
(
Ã
)
=
{
P (f1)× P (f2)× · · · × P

(
f|I|
)}

can be used to ap-

proximate the distribution of Ã (Yan et al., 2022; Yang et al., 2024). The Cartesian

product contains N |I| elements, which is an exponential function of |I| (Yan et al.,

2022). Based on this, the uncertainty of aircraft arrival times is represented by a finite

set Ξ =
{
1, 2, ...,

∣∣∣Φ(Ã)∣∣∣} of scenarios, where the size of this set is also N |I|. We fur-

ther assume that the scenarios in the set Ξ are independent and identically distributed
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Figure 3.2: Framework of ETO approach for AGAP driven by RF method.

(i.i.d.). In the remainder of this subsection, we first introduce the SP model for AGAP.

Then, scenario selection strategies are employed to approximate the original SP model

using a set of sample scenarios to enhance computational tractability. Finally, an exact

BBC method is developed for the approximated SP model to enhance scalability.

3.4.2.1 SP model for AGAP

We formulate AGAP as an SP model with a two-stage decision-making process. In the

first stage, aircraft are assigned to appropriate gates, and aircraft sequencing decisions

are made for each gate. In the second stage, aircraft scheduling decisions are determined

after the arrival time Aξ
i of aircraft i is realised under ξ ∈ Ξ. In the SP model, the

park time tξi of aircraft i under scenario ξ should be no earlier than its arrival time Aξ
i .

The delay time dξi of aircraft i under scenario ξ is defined as the difference between its

park time tξi and its arrival time Aξ
i . The mathematical formulations of the SP model

are written as follows:

min
∑
i∈I

Capron
i xr

i + Eξ [Q(y, ξ)] (3.6a)

s.t. Constraints (3.1b)-(3.1j), (3.1n), (3.1o), (3.6b)
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where the term Eξ [Q(y, ξ)] represents the expected value of the second-stage objective

function Q (y, ξ). For a feasible first-stage solution y and the realisation of scenario ξ,

Q (y, ξ) is formulated as follows:

Q (y, ξ) = min
∑
i∈I

Cdelay
i dξi (3.7a)

s.t. tξi ≥ Aξ
i , ∀i ∈ I, (3.7b)

dξi ≥ tξi − Aξ
i , ∀i ∈ I, (3.7c)

tξi +Oi +B − tξj ≤M(1− ygij), ∀g ∈ G, ∀i ∈ I, ∀j ∈ I, i ̸= j,

(3.7d)

tξi ∈ R+, ∀i ∈ I, (3.7e)

dξi ∈ R+, ∀i ∈ I. (3.7f)

3.4.2.2 Scenario selection strategies

Recall that N |I| scenarios are generated using the Cartesian product of prediction

results from the KNN or RF methods, and are subsequently included in the set Ξ.

Solving all the scenarios within Ξ can render the SP model for AGAP intractable.

Therefore, appropriate scenario selection strategies should be employed to generate a

sample set Ω = {1, 2, ..., |Ω|} to approximate the set Ξ. In this way, the SP model (3.6)

can be reformulated by the scenario selection strategies into Model (3.8), where pω

is the scenario probability. The selection of M for Constraints (3.8e) is similar to

that for Constraints (3.1m). Since the scenarios are independent, we can initially

determine the appropriate M for each scenario ω ∈ Ω, represented by Mω, where

Mω = maxi∈I {T ω
i }+

∑
i∈I Oi+|I|B. And the choice ofM = maxω∈Ω {Mω} is sufficient
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for Constraints (3.8e) in the SP model (3.8).

Model (3.8) is a mixed-integer linear programming (MILP) model and can be solved

directly by commercial MIP solvers.

min
∑
i∈I

Capron
i xr

i +
∑
ω∈Ω

pω(
∑
i∈I

Cdelay
i dωi ) (3.8a)

s.t. Constraints (3.1b)-(3.1j), (3.1n), (3.1o), (3.8b)

tωi ≥ Aω
i , ∀i ∈ I, ∀ω ∈ Ω, (3.8c)

dωi ≥ tωi − Aω
i , ∀i ∈ I, ∀ω ∈ Ω, (3.8d)

tωi +Oi +B − tωj ≤M(1− ygij), ∀g ∈ G, ∀i ∈ I, ∀j ∈ I, i ̸= j, ∀ω ∈ Ω,

(3.8e)

tωi ∈ R+, ∀i ∈ I, ∀ω ∈ Ω, (3.8f)

dωi ∈ R+, ∀i ∈ I, ∀ω ∈ Ω. (3.8g)

Previous studies used the SAA method as a scenario selection strategy (Yan et al.,

2022; Yang et al., 2024). The SAA method is a widely used approach that randomly

samples equiprobable scenarios (Kleywegt et al., 2002). This method generates the

sample set Ω by randomly selecting scenarios from Ξ. The scenario probability pω of

each scenario ω ∈ Ω is set as 1
|Ω| .

In this study, another scenario selection strategy known as the CSR method is

also used. The CSR method involves clustering similar scenarios and selecting a rep-

resentative scenario from each cluster, where the number of cluster centres is set to

|Ω| (Kim et al., 2023b; Wu et al., 2024). It is worth noting that the number of clus-

ter centres equals the scenario number output by the CSR method. We utilise the
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K-means method to cluster the scenarios in the set Ξ and determine the cluster cen-

tres. Subsequently, we employ the Euclidean distance for each cluster centre to select

the scenario closest to the centre and include that scenario in the sample set Ω. Let{
C1, C2, · · · , C|Ω|

}
be a set of |Ω| clusters obtained by the K-means method, the scenario

probability of each scenario ω ∈ Ω is pω = |Cω |
|Ξ| . However, as previously mentioned,

the size of the set Ξ is N |I|, an exponential function of I, which is usually extremely

large. Directly applying the CSR method requires a significant amount of CPU time

to complete the clustering process. Consequently, we first employ the SAA method to

extract a subset Ξsub from the original set Ξ, and subsequently apply the CSR method

to this subset.

3.4.2.3 Solution method for SP model of the AGAP

The reformulated SP model (3.8) for AGAP provided in Subsection 3.4.2.2 can be

directly solved by a commercial MIP solver. Nevertheless, because of the NP-hard

nature of the AGAP, the commercial MIP solver can only deal with small-size instances.

To improve the solvability of the ETO approach, we thus propose the exact BBC

method. The BBC method decomposes the SP model (3.8) into a master problem and

several subproblems. A branch-and-cut MIP solver solves the master problem in the

BBC method. Since the time-related constraints in the original SP model are omitted

from the master problem, an integer first-stage solution with subtours can be found

during the branch-and-cut search. Once an integer first-stage solution with subtours is

found, the Dantzig-Fulkerson-Johnson (DFJ) subtour elimination cuts will be generated

and added to the unfathomed nodes in the branch-and-cut tree. Otherwise, if an

integer first-stage solution without subtours is found, this solution is then employed

to solve the subproblems. Since the scenarios are independent and the contact gates

do not interfere with each other, the subproblem can be disaggregated into |Ω| ∗ |G|

disconnected subproblems. Then, Benders optimality cuts will be generated and added
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to the unfathomed nodes in the branch-and-cut tree. The pseudo-code of the BBC

method is presented in Algorithm 1.

Algorithm 1 The BBC method
1: Solve the master problem (3.9) using a branch-and-cut MIP solver.
2: If an integer first-stage solution ŷ is found then
3: If there are no subtours in ŷ then
4: Solve subproblems (3.12) with ŷ.
5: Add Benders cuts (3.13) to the unfathomed nodes.
6: Else
7: Add subtour elimination cuts (3.10) to the unfathomed nodes.
8: End if
9: End if

The master problem of the BBC method is formulated as follows:

min
∑
i∈I

Capron
i xr

i +
∑
ω∈Ω

pω(
∑
g∈G

θgω) (3.9a)

s.t. Constraints (3.1b)-(3.1j), (3.1n), (3.1o), (3.9b)

∑
g∈G

θgω ≥
∑
g∈G

∑
i∈I

∑
j∈I\{i}

Dω
ijy

g
ij, ∀ω ∈ Ω, (3.9c)

θgω ∈ R+, ∀g ∈ G, ∀ω ∈ Ω, (3.9d)

where Constraints (3.9c) are the LBL cuts. Due to parts of the original objective

function being projected out in the master problem of the BBC method, the initial

quality of the LB may be low, resulting in a large optimality gap in the early stages

(Rahmaniani, Ragheb and Crainic, Teodor Gabriel and Gendreau, Michel and Rei,

Walter, 2017; Rahmaniani et al., 2018). The LBL cuts that incorporate some infor-

mation about the original objective function can be added to the master problem to

improve the LB of the BBC method (Adulyasak et al., 2015; Wu et al., 2022). Specif-
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ically, these LBL cuts represent an LB on the arc costs (Adulyasak et al., 2015). For

aircraft i ∈ I and aircraft j ∈ I \ {i} that are sequentially severed by any contact

gate g, a LB of delay time incurred by this arc (i, j) under scenario ω is computed as

Dω
ij = max

{
0, Cdelay

j

(
Aω

i +Oi +B − Aω
j

)}
. Constraints (3.9d) define the domain of

decision variables.

The master problem in the BBC method is solved using a branch-and-cut MIP

solver. Once a feasible solution is found in the branch-and-cut tree, the determined

aircraft assignment decisions and sequencing decisions are fixed as x̂g
i and ŷgij, respec-

tively. Since the time-related constraints in the original SP model are omitted from

the master problem, an integer first-stage solution with subtours may be found during

the branch-and-cut search. Once such a solution is identified, we start checking the

subtours in the solution, and put the found subtours ∫ into the subtour set S. The

DFJ subtour elimination cuts (3.10) are generated based on the subtour set S and

added to the unfathomed nodes in the branch-and-cut tree.

∑
(i,j)∈∫

ygij ≤ |∫| − 1, ∀g ∈ G, ∀∫ ∈ S. (3.10)

On the other hand, if an integer first-stage solution without subtours is found, we

then solve the subproblem with this solution. Since the scenarios are independent and

the contact gates do not interfere with each other, the subproblem can be disaggregated

into |Ω| ∗ |G| disconnected subproblems using a multiple-cut strategy. In the multiple-

cut strategy, the unfathomed nodes in the branch-and-cut tree incorporate more or

at least the same amount of information, which may lead to an improvement in the

LB and a faster convergence rate (Maheo et al., 2019; Shehadeh, 2023). Consider the

notation Ĥg, for g ∈ G, which refers to the clusters of aircraft assigned to each contact

gate g by the feasible first-stage solution without subtours found during the branch-

and-cut search, i.e., Ĥg = {i|x̂g
i = 1, ∀i ∈ I}. When Ĥg ̸= ∅, the primal subproblem
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for contact gate g under scenario ω is formulated as follows:

min
∑
i∈Ĥg

Cdelay
i dωi (3.11a)

s.t. tωi ≥ Aω
i , ∀i ∈ Ĥg, (3.11b)

dωi ≥ tωi − Aω
i , ∀i ∈ Ĥg, (3.11c)

tωi +Oi +B − tωj ≤M(1− ŷgij), ∀i ∈ Ĥg, ∀j ∈ Ĥg, i ̸= j, (3.11d)

tωi ∈ R+, ∀i ∈ Ĥg, (3.11e)

dωi ∈ R+, ∀i ∈ Ĥg. (3.11f)

By introducing dual variables πgω
i , σgω

i , and τ gωij for Constraints (3.11b) to (3.11d),

the dual subproblem for contact gate g under scenario ω is written as follows:

min
∑
i∈Ĥg

Aω
i π

gω
i +

∑
i∈Ĥg

Aω
i σ

gω
i +

∑
i∈Ĥg

∑
j∈Ĥg\{i}

(
M
(
1− ŷgij

)
−Oi − B

)
τ gωij (3.12a)

s.t. πgω
i + σgω

i +
∑

j∈Ĥg\{i}

τ gωij −
∑

j∈Ĥg\{i}

τ gωji ≤ 0, ∀i ∈ Ĥg, (3.12b)

− σgω
i ≤ Cdelay

i , ∀i ∈ Ĥg, (3.12c)

πgω
i ∈ R+, ∀i ∈ Ĥg, (3.12d)

σgω
i ∈ R−, ∀i ∈ Ĥg, (3.12e)

τ gωij ∈ R−, ∀i ∈ Ĥg, ∀i ∈ Ĥg, i ̸= j. (3.12f)
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Recall that we do not impose a UB on the park time tωi for each aircraft under each

scenario, based on the assumption provided by Li et al. (2021). Consequently, the SP

model for AGAP has relatively complete recourse property, as all first-stage solutions

without subtours are feasible for the second-stage problem. Therefore, in the BBC

method, all subproblems are feasible for the first-stage solutions without subtours, and

only Benders optimality cuts will be generated during the branch-and-cut search. The

Benders optimality cuts are presented as Constraints (3.13), which will be generated

and added to the unfathomed nodes in the branch-and-cut tree.

θgω ≥

∑
i∈I

Aω
i π̂

gω
i +

∑
i∈I

Aω
i σ̂

gω
i +

∑
i∈I

∑
j∈I\{i}

(M −Oi − B)τ̂ gωij

−M
∑
i∈I

∑
j∈I\{i}

τ̂ gωij ygij

 , ∀g ∈ G, ∀ω ∈ Ω.

(3.13)

3.5 Numerical experiments for AGAP

In this section, we first provide the experimental design. Then, the numerical experi-

ments are conducted to evaluate the performance of the solution methods, ML meth-

ods, and scenario selection strategies for the ETO approach of AGAP. Afterwards, we

compare the prescriptive analytics approaches with other optimisation approaches for

AGAP. We also analyse the impact of subset size in the CSR method, the influence

of the decision horizon on gate assignment plan performance, and the effect of gate

controller preference levels. Lastly, valuable managerial implications and insights are

provided for airport gate controllers.
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Figure 3.3: Map of Terminals 3 and 4, Xiamen Gaoqi International Airport, China.

3.5.1 Experimental design for AGAP

This subsection designs computational experiments to investigate the computational

performance of the BBC method and the efficiency of the prescriptive analytics ap-

proach. The experiments are based on XMN. As shown in Figure 3.3, XMN consists

of two terminals: T3 and T4. Table 3.5 provides details on contact gates.

The test instances are generated based on the realistic data from XMN, on October

31st, 2023. The number of arriving aircraft at hourly intervals is presented in Figure 3.4.

Considering real-life gate assignment operations, the airport gate assignment plan,

which includes assignment and sequencing decisions, is typically decided by airport

gate controllers several hours in advance. We thus use 2-hour, 3-hour, and 4-hour

decision horizons to divide the data of this day. After removing duplicate instances

and instances with a number of aircraft less than or equal to 1, the total number of
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Table 3.5: Detailed information of contact gates at XMN, China.

Contact gate Terminal Domestic/International Accommodated aircraft type
P01 3 Domestic C
P02 3 Domestic D
P03 3 Domestic D
P05 3 Domestic D
P06 3 Domestic D
P07 3 Domestic D
P08 3 Domestic E
P09 3 Domestic E
P10 3 International D
P11 3 International E
P12 3 International D
P15 3 International E
P16 3 International D
P17 3 International E
P201 4 Domestic C
P202 4 Domestic D
P203 4 Domestic D
P205 4 Domestic E
P206 4 Domestic E
P207 4 Domestic C
P208 4 Domestic C
P209 4 Domestic C
P210 4 Domestic C
P211 4 Domestic C
P212 4 Domestic C
P215 4 Domestic C

test instances is 21. Details of each test instance are provided in Table 3.6. We employ

the SAA and CSR methods as scenario selection strategies for each test instance. The

number of scenarios sampled from Ξ is set to |Ω| ∈ {5, 10, 25, 50, 75, 100, 200, 300}, and

the size of the subset used in the CSR method is set to 105.

To consider that delays of larger aircraft with a higher number of passengers are

more important (Pohl et al., 2021), we use delay cost coefficients Cdelay
i of 1, 2, 3

monetary units for C-type, D-type, and E-type aircraft, respectively. Recognising
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Figure 3.4: Number of arriving aircraft at hourly intervals on 31st October 2023 at
XMN, China.

that the apron is inconvenient for both passengers and airlines, penalty costs are of-

ten considered to discourage aircraft assignments to the apron. In this study, we set

Capron
i = λCdelay

i , where λ ∈ {50, 75, 100, 125, 150}. As λ value increases, the penalty

cost associated with assigning an aircraft to the apron also increases. This trend sug-

gests that the airport gate controller prefers not to assign aircraft to the apron. We

will discuss the impact of the gate controller preference level in Subsection 3.5.7. The

buffer time B is set to 10 minutes (Zhang and Klabjan, 2017).

When using the ETO approach for AGAP, various ML methods and scenario se-

lection strategies are used for generating the sample set Ω. For convenience, we use
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Table 3.6: Detailed information of test instances for AGAP.

Instances Horizon Total Domestic International
E-type D-type C-type E-type D-type C-type

1 0:00-2:00 10 0 2 7 1 0 0
2 4:00-6:00 3 0 0 0 2 0 1
3 8:00-10:00 21 0 8 13 0 0 0
4 10:00-12:00 33 2 9 19 1 0 2
5 12:00-14:00 24 1 8 12 1 1 1
6 14:00-16:00 33 1 5 24 0 1 2
7 16:00-18:00 30 1 7 20 0 1 1
8 18:00-20:00 37 1 13 19 2 1 1
9 20:00-22:00 22 0 11 7 1 0 3
10 22:00-24:00 34 0 9 21 1 0 3
11 6:00-9:00 9 0 4 4 1 0 0
12 9:00-12:00 46 2 13 28 1 0 2
13 12:00-15:00 38 2 13 18 1 2 2
14 15:00-18:00 49 1 7 38 0 1 2
15 18:00-21:00 46 1 17 22 3 1 2
16 21:00-24:00 47 0 16 25 1 0 5
17 4:00-8:00 4 0 0 0 3 0 1
18 8:00-12:00 54 2 17 32 1 0 2
19 12:00-16:00 57 2 13 36 1 2 3
20 16:00-20:00 67 2 20 39 2 2 2
21 20:00-24:00 56 0 20 28 2 0 6

the following notations to represent the combination of these methods: (i) KNN-SAA:

using the KNN method for predicting and the SAA method for scenario selection. (ii)

KNN-CSR: using the KNN method for predicting and the CSR method for scenario

selection. (iii) RF-SAA: using the RF method for predicting and the SAA method for

scenario selection. (iv) RF-CSR: using the RF method for predicting and the CSR

method for scenario selection.

When using prescriptive analysis approaches, airport gate assignment plans are

expected to perform as well as possible in actual operations. Therefore, when compar-

ing the performance of different optimisation approaches, we employ a method that
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incorporates actual scenarios, known as actual sample analysis. First, the optimal so-

lution ŷ∗ provided by each optimisation approach is fixed. Then, we solve the second

stage problem Q
(
ŷ∗, ωactual), where ωactual is the actual scenario. The objective value

mentioned in the rest of this section refers to the
∑

i∈I C
apron
i xr

i +Q
(
ŷ∗, ωactual).

Solution methods are coded in Python using the commercial MIP solver GUROBI.

The KNN and RF methods applied in our study are implemented with the scikit-learn

library. All experiments are conducted on a computer equipped with an INTEL CORE

i7-12700K 12 Core 20 Threads CPU @ 5.00 GHz and 32 GB of memory. We set the

CPU time to 3,600 seconds for each test instance.

3.5.2 Computational performance analysis of the BBCmethod

To evaluate the computational performance of the proposed BBC method, we utilise

the commercial solver GUROBI to solve Model (3.8), using its results as the bench-

mark. We evaluate the computational performance of these solution methods on 21

test instances. In this experiment, the value of λ is set to 100, the size of the sample set

Ω is set to |Ω| = {5, 10, 25, 50, 75, 100, 200, 300}, and the RF-CSR method is used to

generate scenarios. We first compare the computational performance of the proposed

BBC method and the commercial solver GUROBI. We select the optimality gap and

CPU time as performance indicators, where the optimality gap indicator is computed

as Equation (3.14).

Optimality Gap (%) = UB− LB
UB ∗ 100. (3.14)

For brevity, we show the average computational performance of the solution method

for all test instances under the same scenario number. The results are displayed in

Table 3.7, where the notation “Gap” and “Time (s)” represent the mean optimality

gap and the mean CPU time, respectively. As shown in Table 3.7, the overall optimality
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Table 3.7: Computational performance of the BBC method for AGAP.

Group GUROBI BBC
Gap (%) Time (s) Gap (%) Reduction (%) Time (s) Reduction (%)

5 61.90 2,236.64 2.66 95.71 1,202.19 46.15
10 61.90 2,291.17 2.74 95.57 1,203.53 47.47
25 65.58 2,406.22 3.67 94.40 1,375.92 42.83
50 66.67 2,413.74 3.58 94.63 1,210.54 49.85
75 66.67 2,421.13 3.75 94.38 1,377.52 43.10
100 71.43 2,574.96 3.67 94.87 1,218.22 52.69
200 71.43 2,600.34 4.41 93.83 1,388.30 46.61
300 66.67 2,433.98 3.43 94.86 1,402.36 42.38

Average 66.53 2,422.27 3.50 94.76 1,282.32 46.44

gap and CPU time of the BBC method are 3.50% and 1,282.32 seconds, respectively.

Compared with GUROBI, the overall optimality gap of the BBC method is sharply

reduced by 94.76%, while the required CPU time is also substantially shortened by

46.44%.

Subsequently, we employ the Wilcoxon signed-rank test to examine further the dif-

ferences in the optimality gap and CPU time between the BBC method and GUROBI.

The results show that all P-values are less than 0.001, indicating a significant reduction

in both the optimality gap and CPU time for the BBC method compared to GUROBI.

3.5.3 The performance of the ETO approach for AGAP

In this subsection, we first compare the performance of the ETO approach for AGAP

driven by ML methods with varying prediction accuracies. This study employs KNN

and RF methods to predict aircraft arrival times, noting that, as shown in Subsec-

tion 3.3.3, the prediction accuracy of RF surpasses that of KNN. In this experiment,

the value of λ is set to 100. Figure 3.6 illustrates that the ETO approach driven by the

RF method outperforms the KNN approach when the scenario numbers are identical,

regardless of whether the SAA or CSR method is used for scenario selection. This find-
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ing suggests that the ETO approach for AGAP yields better airport gate assignment

plans when the underlying ML method provides more accurate predictions.

We then investigate the influence of two scenario selection strategies mentioned in

Subsection 3.4.2.2 on the ETO approach for AGAP. As shown in Figure 3.6, whether the

ETO approach is based on the KNN or RF methods, we find that in most cases, using

the CSR method for scenario selection is better than using the SAA method because of

the smaller objective value. We also observed that when the number of cluster centres

is small in the CSR method, i.e., the number of scenarios is small, better performances

of the ETO approach for AGAP are provided because the obtained objective value is

smaller. However, the decision performance tends to decrease as the number of cluster

centres increases. This phenomenon may arise due to a decrease in cluster quality,

i.e., when the number of clusters increases, some clusters may contain very few data

points or even only one data point. Consequently, the quality of the cluster diminishes,

rendering it ineffective in representing the underlying data structure. At the same time,

it can be observed that when we use the SAA method for scenario selection, the results

of the ETO approach based on the KNN or the RF methods do not show obvious

characteristics. In general, the CSR method is a more appropriate scenario selection

strategy because it requires fewer scenarios to achieve better performance in airport

gate assignment plans, which means the CSR method helps to provide superior plans

with shorter CPU times.

In previous AGAP studies, the distributions of uncertain parameters were primar-

ily derived from historical data analysis (Şeker and Noyan, 2012; Xu et al., 2017; Kim

et al., 2023a), an approach referred to as sampling from the historical data (SFHD). We

further compare the performance of the ETO approach with the SFHD approach used

in previous studies. The approach first analyses the aircraft arrival time distribution

based on historical data, then solves the SP model of AGAP based on the sample set

Ω generated by the analysed distribution. In Figure 3.5, We provide the distribution
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Figure 3.5: Distribution of aircraft arrival time deviations based on the historical data
at XMN.

of aircraft arrival time deviations based on the historical data from September 1st to

October 30th, 2023. Figure 3.5(a) presents the distribution for all deviation time data.

The deviation time is concentrated around 0 minutes, but numerous extreme values

result in a long-tailed distribution. Subsequently, we apply the 3σ criterion to identify

values in the data that exceed three times the standard deviation, classifying them as

outliers and then removing them. When considering the censored data, Figure 3.5(b)

reveals a more balanced and symmetrical distribution of aircraft arrival time devia-

tions. In the SFHD approach, the scenario ω ∈ Ω can be constructed by generating

aircraft arrival time deviations âi to the estimated arrival time Ai, where âi is ran-

domly generated from the distribution of aircraft arrival time deviations provided in

Figure 3.5(b).

The comparison results are provided in Figure 3.6. It can be seen that the ETO

approach driven by the RF method can provide much better airport gate assignment

plans than the SFHD approach when the scenario numbers are identical. Conversely,

the performance of the ETO approach driven by the KNN method is similar to the

SFHD approach. This suggests that when airport gate controllers have access to in-
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Figure 3.6: Comparison results of the ETO and the sampling from historical data
approaches for AGAP.

formation other than historical arrival data, it is still necessary to properly select and

use ML methods and scenario selection strategies to make the ETO approach to pro-

vide better decisions. Otherwise, the performance of the ETO approach may not be

improved over the SFHD approach.

3.5.4 Comparison between optimisation approaches for AGAP

In this subsection, we compare the performance of various optimisation approaches for

AGAP, where the value of λ is set to 100. We use the notation DETA to represent the

deterministic model with estimated aircraft arrival time for brevity. From Table 3.8, it
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can be seen that the mean objective value of the ETO driven by the RF-CSR method

is 326.57, which is better than other optimisation approaches. Specifically, compared

to the DETA approach, the RF-CSR method achieves a 16.37% reduction in the mean

objective value. Additionally, compared with PTO approaches driven by KNN and RF

methods, the RF-CSR method separately reduces the mean objective value by 20.11%

and 5.95%. Furthermore, compared to the SFHD approach, the RF-CSR method

achieves a 12.96% reduction in the mean objective value. Lastly, the mean objective

value of the RF-CSR method is reduced by 15.68%, 11.93%, and 3.03% compared to the

ETO approaches based on KNN-SAA, KNN-CSR, and RF-SAA methods, respectively.

We also provide the performance ranking of each optimisation approach in Table 3.8.

We find that the RF-SAA method won first place the most times, 12 times. The

next one is the PTO approach driven by the RF method, 9 times. The RF-CSR

method, the PTO approach driven by the KNN method, and the SFHD approach tied

for third place, each ranking first 8 times. Although the RF-CSR method is not the

optimisation approach that gets the most first places in these test instances, it exhibits

better robustness than other optimisation approaches when dealing with different test

instances. This is because the rankings of the RF-CSR method fluctuate between 1

and 5, with an average ranking of 2.05. In contrast, the rankings of other optimisation

approaches vary from 1 to 8, with average rankings ranging from 2.24 to 4.67. Because

the RF-CSR method is more robust than other optimisation approaches in dealing with

different test instances, its mean objective value is the best, and its overall rank won

first place. Table 3.9 provides a detailed report on the performance of each optimisation

method for every test instance.

The objective of the AGAP proposed in this study is twofold: first, to minimise the

number of aircraft assigned to the apron, and second, to reduce the aircraft delay time.

We employ a four-quadrant diagram to analyse the impact of different optimisation

approaches on two objectives. This diagram’s horizontal axis represents apron assign-
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Table 3.8: A brief report on the performance of the optimisation approaches for AGAP.

DETA PTO SFHD ETO

KNN RF KNN-SAA KNN-CSR RF-SAA RF-CSR
Mean value 390.48 408.76 347.24 375.19 387.29 370.81 336.76 326.57
Overall rank 7th 8th 3rd 5th 6th 4th 2nd 1st

Rank 1st number 7 8 9 8 7 7 12 8
Best rank 1st 1st 1st 1st 1st 1st 1st 1st
Mean rank 3.95 4.67 3.05 3.38 3.91 3.76 2.24 2.05
Worst rank 8th 8th 8th 8th 8th 8th 8th 5th

Table 3.9: A detailed report on the performance of the optimisation approaches for
AGAP.

Instance DETA PTO SFHD ETO
KNN RF KNN-SAA KNN-CSR RF-SAA RF-CSR

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 27 0 0 0 0 0 0 0
4 364 387 373 299 339 347 351 350
5 0 0 0 37 50 6 0 0
6 378 404 317 341 423 414 308 284
7 58 151 36 86 55 111 25 29
8 325 395 396 324 280 318 389 292
9 0 0 0 0 0 0 0 0
10 276 313 258 306 299 280 235 266
11 0 0 0 0 0 0 0 0
12 1,227 923 960 1,063 1,071 1,081 1,040 1,038
13 165 193 146 79 142 141 99 88
14 411 437 272 352 467 482 285 295
15 483 666 686 583 662 527 783 556
16 493 602 372 426 445 404 345 370
17 0 0 0 0 0 0 0 0
18 1,269 1,049 1,292 1,008 1,141 822 985 1,139
19 721 738 587 681 741 797 536 538
20 1,519 1,621 1,162 1,739 1,470 1,482 1,330 1,218
21 484 705 435 555 548 575 361 395

ment costs, while the vertical axis corresponds to aircraft delay time costs. The results

are provided in Figure 3.7. The DETA and the PTO approaches driven by the KNN

method fall into Quadrant I. This placement indicates that airport gate assignment
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Figure 3.7: Four quadrant diagrams for the comparison of optimisation approaches.

plans generated by these approaches exhibit high apron assignment costs and high air-

craft delay time costs. On the other hand, the SFHD and KNN-SAA approaches reside

in Quadrant II, suggesting that they produce plans with low apron assignment costs

but still suffer from high aircraft delay time costs. Conversely, the KNN-CSR method

and the PTO approach driven by the RF method are located in Quadrant IV. These

approaches yield decisions with high apron assignment costs but relatively low aircraft

delay time costs. Finally, the RF-SAA and RF-CSR methods occupy Quadrant III,

indicating that these optimisation approaches allow airport gate controllers to develop

informed airport gate assignment plans with low apron assignment costs and minimal

aircraft delay time costs.
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Besides, this experiment reveals that the accuracy of the ML method employed in

the PTO approach for AGAP significantly impacts the performance of the resulting

airport gate assignment plans. Notably, when the prediction accuracy is poor, the PTO

approach performs even worse than the DETA. We observed that the performance of

airport gate assignment plans generated using the ETO approach has improved some-

what compared to the PTO approach. Specifically, according to the results provided

in Table 3.8, KNN-SAA and KNN-CSR reduce the mean objective value of PTO based

on KNN by 5.25% and 9.28%, respectively. Similarly, RF-SAA and RF-CSR achieve

reductions of 3.02% and 5.95%, respectively, in the mean objective value of PTO driven

by RF. Notably, regardless of the accuracy of ML methods in predicting aircraft arrival

times, adopting the ETO approach leads to better-performing airport gate assignment

plans. Furthermore, our research indicates that employing an effective scenario selec-

tion strategy can enhance the performance of airport gate assignment plans generated

using the ETO approach. To be more specific, KNN-CSR achieves a 4.26% reduction

in the mean objective value compared to KNN-SAA, while RF-CSR achieves a 3.03%

reduction compared to RF-SAA.

In summary, the RF-CSR method stands out as the most effective optimisation

approach. It assists airport gate controllers in formulating informed airport gate as-

signment plans. Specifically, this approach leads to reduced apron assignment costs

and minimised aircraft delay time costs. Furthermore, the RF-CSR method exhibits

better robustness when handling diverse test instances.

3.5.5 The impact of the subset size in the CSR method

In the above numerical experiments, we set the subset size |Ξsub| in the CSR method to

105 for CPU time and tractability considerations. In this subsection, we evaluate the

impact of the subset size |Ξsub| in the CSR method in detail. Specifically, we study the

CPU time required by the CSR method when smaller or larger subset sizes |Ξsub| are
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used compared to 105, and the performance of the gate assignment plans provided by

the ETO approach based on a subset of scenarios Ξsub generated by the CSR method as

input. Recall that the size of the original scenario set Ξ is N |I|, which is an exponential

function of |I|. Considering N |I| is an extremely large number and cannot be handled

by the K-means method embedded in the CSR method within a few minutes, in this

subsection, we investigate subset sizes |Ξsub| ∈ {103, 104, 105, 106, 107}.

Given that the RF-CSR method performs best in the experiments above, we con-

duct further experiments based on this method to evaluate the impact of subset

size |Ξsub|. For each subset size value, we set the number of clustered scenarios to

|Ω| ∈ {5, 10, 25, 50, 75, 100, 200, 300}, and generate scenarios for the 21 test instances

provided in the experimental design subsection 3.5.1. Therefore, for each subset size

value, we generate 168 test instances. For conciseness, we present the average CPU

time and objective value of all test instances for each subset size value in Figure 3.8.

Our results indicate that using a larger subset size |Ξsub| for the CSR method can lead

to slightly better gate assignment plans. However, this improvement comes at the cost

of increased CPU time required by the CSR method. Specifically, when we increase

the subset size from 103 to 107, our average objective function indicator decreases from

342.99 to 333.07, a decrease of 2.89%. The average computing time required increases

from 0.83 seconds to 1452.14 seconds, an increase of 174,947%. While larger subset

sizes improve the objective function, the drastic increase in computing time suggests

scalability issues that could limit the practical applicability of the CSR method for

airport gate assignment planning. Determining a good subset size to balance perfor-

mance improvement and acceptable computation time may be useful. Based on this

consideration, choosing 105 as the subset size may be a reasonable choice since the

average CPU time required is 8.46 seconds, which is still reasonable, and the average

objective value is 338.65, showing improvement compared to 103 and 104. Overall,

while the increase in efficiency with larger subset sizes is promising, gate controllers
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Figure 3.8: The impact of the subset size in CSR method.

should balance this against the computational cost for practical implementation.

3.5.6 The impact of the decision horizons for AGAP

In the experiments conducted above, the RF-CSR method emerged as the best per-

former among the prescriptive analytics approaches mentioned in this study. In this

section, we investigate how the performance of this method varies across different

decision horizons through a practical implementation experiment. The practical im-

plementation experiment is based on a rolling horizon approach, with decision horizons

set at 2-hour, 3-hour, and 4-hour, as mentioned in the experimental design subsection.

Specifically, to manage the aircraft expected to arrive, the RF-CSR method for AGAP
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is executed a few hours or a day in advance to obtain the gate assignment plans for each

decision horizon. Let us consider the case of a 4-hour decision horizon as an example.

Assuming the aircraft is scheduled to arrive at 00:00, the actual arrival time for each

aircraft within this rolling horizon is determined one hour prior to 00:00. Based on

this, the resource program is executed for aircraft expected to arrive between 00:00 and

04:00, determining the aircraft scheduling decisions and outputting the release time for

each gate during this period. The release time Rg of each gate g ∈ G is defined as

the pushback time of the last aircraft served by that gate plus the buffer time. In

detail, Rg = mini∈Ig{t̂i + Oi + B}, where Ig represents the set of aircraft served by

the gate g in the current time period, and t̂i represents the parking time associated

with each aircraft. The second run of the resource program occurs at 03:00. It uses

the actual aircraft arrival times and gate release times Rg from the previous period to

make decisions for aircraft arriving between 04:00 and 08:00. The resource program

then continues to operate for the remaining periods.

The recourse program mentioned above refers to making additional decisions to

adapt to new information (Birge and Louveaux, 2011). In this study, we design a

simple recourse program based on the second-stage problem (3.7). As illustrated in

Model (3.15), we add gate release time constraints (3.15c) to ensure that each aircraft

assigned to a contact gate must wait until the previous aircraft has pushed back before

it can park.

RP
(
x, y, ωactual) = min

∑
i∈I

Cdelay
i dω

actual

i (3.15a)

s.t. Constraints (3.7b)-(3.7e), (3.15b)

tω
actual

i ≥ Rgxg
i , ∀g ∈ G, ∀i ∈ I. (3.15c)

Then, a practical implementation experiment is conducted using realistic data from
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XMN on October 31st, 2023. We use 2-hour, 3-hour, and 4-hour decision horizons to

divide the data for this day. Details of the generated test instances are provided in Ta-

ble 3.6. The total costs for the 2-hour, 3-hour, and 4-hour decision horizons are 30,824,

26,486, and 21,600, respectively. This demonstrates that extending the decision hori-

zon can better optimise resources, provide greater scheduling flexibility, and ensure a

more comprehensive evaluation of gate usage and aircraft assignments, thereby pro-

viding efficient and robust gate assignment plans. However, longer decision horizons

also bring computational burdens. For example, in this study, we can find the optimal

solution only for the test instance with a 2-hour decision horizon. In contrast, the

average optimality gaps for the test instances with 3-hour and 4-hour decision horizons

are 4.57% and 4.26%, respectively. Considering that a larger decision horizon is likely

to lead to a larger optimality gap, the gate controllers must balance computational

efficiency and the effectiveness of the gate assignment plans when determining the de-

cision horizon to ensure the practical applicability of the RF-CSR method in airport

gate assignment planning.

3.5.7 The impact of the airport gate controller preference lev-

els

This study uses the parameter λ to represent the airport gate controllers’preference for

apron assignments and aircraft delay time. In this subsection, we further evaluate the

λ within the set {50, 75, 100, 125, 150}. As the value of λ increases, the penalty cost

associated with assigning an aircraft to the apron also increases. Consequently, the

airport gate controllers become more cautious about assigning aircraft to the apron

and place relatively less emphasis on the aircraft delay time. Figure 3.9 shows the

average number of aircraft assigned to the apron and the average aircraft delay time

under different preference levels. In Figure 3.9(a), we present a briefing report. As the

value of λ increases, the average number of aircraft assigned to the apron decreases
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sharply initially, followed by a slower rate of decrease until λ = 150, at which point

no aircraft are assigned to the apron. Simultaneously, as the value of λ increases, the

average aircraft delay time rises rapidly in the initial stage, and subsequently, the rate

of increase becomes gentle. Overall, as the value of λ increases from 50 to 150, the

average number of aircraft assigned to the apron decreases from 2.38 to 0, while the

average aircraft delay time increases from 106.05 minutes to 301.19 minutes.

A detailed report involving different aircraft types is provided in Figure 3.9(b). It

can be seen that the average number of E-type and D-type aircraft assigned to the

apron is 0 regardless of the change of λ value, while the average number of C-type

aircraft assigned to the apron decreases from 2.38 to 0 as the value of λ increases from

50 to 150. When it comes to the average delay time, the change in the value of λ also

has a greater impact on the C-type aircraft. As the value of λ increases from 50 to 150,

the average delay time of C-type aircraft increases monotonically from 78.14 minutes

to 254.95 minutes. On the other hand, the value of λ has a smaller impact on the

average delay time of E-type and D-type aircraft. While the average delay time of E-

type and D-type aircraft generally exhibits an increasing trend with the rise in λ value,

it is not strictly monotonically increasing. Specifically, when the λ value increases

from 50 to 150, the average delay time for E-type aircraft increases from 2 minutes to

3.71 minutes, with a peak value of 4.24 occurring at λ = 125. Similarly, with the λ

value increase, the average delay time for D-type aircraft increases from 25.90 minutes

to 42.52 minutes, reaching a maximum of 46.38 at λ = 100. In summary, airport

gate controllers face a trade-off between assigning aircraft to apron and aircraft delay

time. They must navigate the delicate balance between these two objectives. Through

prudent decision-making, they can assign fewer aircraft to aprons while maintaining

low aircraft delay times.
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Figure 3.9: The impact of the gate controller preference levels.

3.5.8 Managerial implications and insights

The proposed prescriptive analytics approaches for AGAP and numerical experiments

discussed above provide valuable managerial implications and insights for airport gate

controllers. The following summary outlines the key findings derived from these ex-

periments:

(i) Robust airport gate assignment plans that can alleviate congestion, absorb dis-

ruptions, and maintain high service levels are essential for maintaining a high service

level at airports. Compared with other optimisation approaches, prescriptive analytics

approaches, particularly the ETO approach, may offer a better solution for minimising

aircraft delay time while maintaining satisfactory apron assignments under uncertain

arrival times. It is recommended that airport gate controllers use historical data and

prescriptive analytics approaches to more accurately predict or estimate aircraft arrival

times and provide robust airport gate assignment plans.

(ii) The experimental results indicate that when information beyond historical data

of uncertain parameters is available, the ETO approach driven by high-performance

ML methods and appropriate scenario selection strategies can provide superior airport

63



gate assignment decisions compared to traditional optimisation methods. Conversely,

when the prediction performance of the ML method is poor, the performance of the

ETO method is similar to that of traditional optimisation approaches. This suggests

that even when airport gate controllers have access to additional information, it is

crucial to carefully select and develop appropriate ML methods and scenario selection

strategies to enable the ETO approach to deliver better airport gate assignment plans.

Otherwise, the ETO approach may not yield significant performance improvements.

Furthermore, we compare the impact of decision horizons. While extending the decision

horizon of the ETO approach can provide better gate assignment plans, it will likely

lead to a larger optimality gap. Therefore, gate controllers must balance computational

efficiency and the effectiveness of gate assignment plans when determining the decision

horizon. This balance is essential to ensure the practical applicability of the ETO

approach in airport gate assignment planning.

(iii) We developed a CSR method for scenario selection. Compared to the widely

used SAA method, the CSR method requires fewer scenarios to perform better in

airport gate assignment plans, resulting in superior plans with shorter CPU times.

Additionally, the CSR method demonstrates better robustness when handling different

test instances. Consequently, the CSR method generally provides satisfactory airport

gate assignment plans. Our results indicate that using a larger subset size |Ξsub| can

lead to slightly better gate assignment plans; however, this improvement comes at the

cost of significantly increased CPU time. Therefore, determining a good subset size

in the CSR method to balance performance improvement and acceptable computation

time may be beneficial.

(iv) Experiments also demonstrate that the proposed exact BBC method signifi-

cantly outperforms the commercial solver in terms of computational performance. This

enables airport gate controllers to utilise the ETO approaches to effectively capture the

dynamic fluctuations of aircraft arrival times over the entire planning horizon. This
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allows for the rapid development of effective and robust airport gate assignment plans.

3.6 Conclusions

In this study, we study the AGAP, which aims to optimise the aircraft-to-gate as-

signments, aircraft sequence for each contact gate, and aircraft scheduling plans to

minimise the number of aircraft assigned to the apron and aircraft delay times. The

practical aircraft assignment requirements are taken into account. Two prescriptive

analytics approaches are developed for AGAP to address the uncertainty of aircraft

arrival times, where the KNN and RF methods are used. The PTO approach assumes

uncertain aircraft arrival times are identical to the values predicted by ML methods.

However, the accuracy of predictions impacts the assignment plans provided by this ap-

proach. The ETO approach is further employed to address this issue, which estimates

the distribution of uncertain arrival times and solves the SP model for AGAP based on

this distribution. The ETO approach generally yields superior airport gate assignment

decisions but requires generating numerous scenarios based on distributions, leading

to scalability issues. Therefore, we developed a CSR method as a scenario selection

strategy and proposed an exact BBC method to mitigate this challenge. Furthermore,

we conduct a series of numerical experiments based on real-world data from XMN to

demonstrate the effectiveness of the prescriptive analytics approaches and BBC algo-

rithm. We compare the computational performance of the BBC method against a

commercial solver, with results showing highly significant statistical improvements in

the proposed BBC method over the benchmark method. After analysing the impact

of ML methods and scenario selection strategies on the ETO approach, we compare

the performance of airport gate assignment plans generated by prescriptive analytics

approaches with those produced by other optimisation approaches. Notably, the ETO

approach outperforms the PTO approach driven by the same ML method. Further-
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more, we find that the ETO approach, supported by high-performance ML methods

and effective scenario selection strategies, provides better performance airport gate

assignment plans than current optimisation approaches, making it more effective in

real-world applications of airport gate assignment. Finally, we investigate the impact

of airport gate controller preference levels and propose some valuable managerial im-

plications and insights that are practically useful for the decision-making of airport

gate controllers.

One limitation of this study is the small size of the current dataset. Consequently,

we chose KNN and RF methods, which perform better on small datasets, to drive the

prescriptive analytics approaches. In future research, we will develop ML methods that

implement complex structures with the support of larger datasets, enabling us to pro-

vide more accurate predicted values or estimated distributions as input for subsequent

optimisation methods. Another limitation is that in the ETO approach for AGAP,

the distribution of uncertain parameters provided by the ML methods is assumed to

be the true distributional information and is directly used in the SP model. However,

ML methods inherently produce prediction errors that cannot be entirely eliminated,

meaning the distributions of uncertain parameters provided by these methods may

be inaccurate. Combining the ETO approach with distributionally robust optimisa-

tion may lead to better results, particularly when the distributional information is

misspecified. Furthermore, this study utilises prescriptive analytics approaches for

AGAP, and extensive numerical experiments demonstrate the effectiveness of these

approaches in generating high-performance airport gate assignment plans. Therefore,

we recommend extending the implementation of prescriptive analytics approaches to

other airside operations or airport decision-making problems. By integrating operations

research techniques with ML methods, airside controllers can enhance operational ef-

ficiency, increase capacity, alleviate congestion, manage disruptions, and maintain a

high service level at the airside.
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Chapter 4

Prescriptive analytics for the

aircraft sequencing and scheduling

problem

4.1 Introduction

With the continuous increase in air traffic demand in recent years, the airspace systems

of some countries or regions are operating near their capacity (Ng et al., 2017; Solak

et al., 2018; Ribeiro et al., 2019). In an environment with limited capacity, any reduc-

tion in system capacity can lead to significant delays and substantial losses for airlines

and passengers, posing severe challenges to the air traffic management (ATM) system

(Solak et al., 2018; Khassiba et al., 2020). Runways are considered one of the primary

bottlenecks of the ATM system and play a crucial role in determining the capacity of

both airports and airspace systems (Balakrishnan and Chandran, 2010; Ghoniem et al.,

2014; Ikli et al., 2021). Due to the high investment costs and prolonged construction

periods, building new infrastructure, such as runways and airports, to increase the

capacity of airspace systems is often not an immediate solution (Ikli et al., 2021). An
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alternative promising approach to enhancing airspace system capacity is to improve

the utilisation of existing runways (Ng et al., 2017; Solak et al., 2018; Ikli et al., 2021).

The optimisation problem studied to optimise runway utilisation is known as the RSP

(Bennell et al., 2011; Ikli et al., 2021). It can be further divided into three categories:

the ALP for arriving aircraft, the ATP for departing aircraft, and the ASSP for both

arrival and departure aircraft (Bennell et al., 2011; Ng et al., 2017; Ikli et al., 2021;

Messaoud, 2021). The RSP determines the sequence and schedule of landing and tak-

ing off aircraft to optimise predefined objectives while adhering to various operational

constraints. These constraints generally include spacing, wake vortex separation re-

quirements, and operational time windows (Bennell et al., 2011; Solak et al., 2018; Ikli

et al., 2021). Two main objective functions for the RSP are discussed in the literature,

including minimising the makespan of the runway system (Balakrishnan and Chan-

dran, 2010; Harikiopoulo and Neogi, 2010; Prakash et al., 2021) and minimising the

total, average, or weighted delay of all aircraft (Sama et al., 2017; Pohl et al., 2021;

Prakash et al., 2022; Pohl et al., 2022).

The classical RSP, in which all input information is assumed to be deterministic,

has been well studied (Bennell et al., 2011; Solak et al., 2018; Ikli et al., 2021; Mes-

saoud, 2021). However, with increasing air traffic and factors such as severe weather,

delay propagation, probabilistic nature of trajectories, technical difficulties, and secu-

rity concerns, aircraft arrival and departure times have become increasingly uncertain

(Ng et al., 2017; Solak et al., 2018; Khassiba et al., 2020, 2022; Kim et al., 2023a).

Uncertain parameters can render predetermined aircraft sequencing and scheduling

plans ineffective. Consequently, developing robust plans to address these uncertainties

has become a key focus in recent runway operations research. Solveling et al. (2011)

developed an SP approach for ASSP under the uncertainty of arrival and departure

times in a parallel runway system, where one runway is designated for arrivals and the

other for departures. Their results demonstrate the potential benefits of the SP model
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over a deterministic model during peak hours. Ng et al. (2017) investigated the ASSP

under uncertainty in a mixed-mode parallel runway system. The study employed an

RO approach to develop aircraft sequencing and scheduling plans for worst-case scenar-

ios. Solak et al. (2018) introduced SP models based on network and slot formulations

for ASSP under uncertainty. Experiments were conducted in a parallel runway system

with two independently operated runways, one for arrivals and one for departures. The

results demonstrate that the proposed SP models are practically implementable and

offer potential advantages over deterministic models. Khassiba et al. (2020) proposed

an SP model with chance constraints for the extended ALP (EALP) on a single landing

runway. This model aims to pre-schedule aircraft at a destination airport to minimise

landing sequence length and time-deviation costs. The validation with realistic data

from Charles-de-Gaulle (CDG) airport demonstrates its advantages over deterministic

policies. Khassiba et al. (2022) extends previous research (Khassiba et al., 2020) on

the EALP under uncertainty by incorporating multiple initial approach fixes (IAFs)

and different initial aircraft statuses. The study introduces two problem variants based

on IAF assignment flexibility and uses realistic data from CDG airport to demonstrate

the benefits of the SP models and IAF re-assignment.

The aforementioned studies on stochastic optimisation for runway operations pri-

marily focus on international airports with multiple runways. At these airports, each

runway is often dedicated exclusively to either arrivals or departures to reduce conflicts

and improve operational efficiency. Consequently, these studies mainly examine the

operational efficiency of single or dual runways dedicated to independently managing

arrivals and departures. While many international airports are equipped with multiple

runways to meet high air traffic demand, there are also numerous international air-

ports with only one runway that must handle a large number of aircraft. Examples

include San Diego International Airport (SAN), London Stansted Airport (STN), Lon-

don Gatwick Airport (LGW), Xiamen Gaoqi International Airport (XMN), Urumqi

69



Diwopu International Airport (URC), Fukuoka Airport (FUK), and Chhatrapati Shiv-

aji Maharaj International Airport (BOM), etc. Given that single-runway airports have

limited resources and must handle both arriving and departing aircraft, the uncertain

arrival and departure times can significantly impact the scheduled aircraft sequencing

and scheduling plans. However, relevant research on mixed-operation single-runway

operations under uncertainty is quite scarce. Therefore, this study addresses this re-

search gap by exploring efficient and robust aircraft sequencing and scheduling plans

for single-runway airports under uncertainty.

Additionally, in previous studies, stochastic optimisation approaches for runway

operations primarily derive the probability distributions of uncertain arrival and de-

parture times from the analysis of historical data (Solveling et al., 2011; Solak et al.,

2018) or empirical knowledge (Ng et al., 2017; Khassiba et al., 2020, 2022). With the

development of big data technology, massive amounts of data provide new opportuni-

ties for addressing uncertainty in runway operations. ML methods can be utilised to

more accurately estimate the probability distributions of arrival and departure times

when airport runway controllers have access to historical and auxiliary data (Tian

et al., 2023c; Wang and Yan, 2023). Driven by these estimations, subsequent optimi-

sation methods have the potential to provide runway scheduling plans that are more

closely aligned with the actual conditions on the day of operation. The integration

of predictive and optimisation methods to make informed decisions based on available

data is known as prescriptive analytics (Bertsimas and Kallus, 2020; Qi and Shen, 2022;

Wang and Yan, 2023; Tian et al., 2023a,b,c).

In this study, we employ the ETO approach in prescriptive analytics for ASSP.

This approach involves initially estimating the probability distributions of uncertain

parameters using ML methods, followed by solving an SP model based on these esti-

mated probability distributions (Bertsimas and Kallus, 2020; Qi and Shen, 2022; Yan

et al., 2022; Yang et al., 2024; Wang et al., 2024). In the ETO approach for ASSP,
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we first use the RF method to estimate the probability distributions of aircraft arrival

and departure times. The RF method is a supervised learning technique that uses

multiple decision trees for prediction. Due to its high prediction accuracy, robustness

to outliers, and relatively good interpretability, the RF method has also been widely

used in other prescriptive analytics studies (Bertsimas and Kallus, 2020; Yan et al.,

2020; Galli et al., 2021; Yan et al., 2024a). Appropriate scenario selection strategies

are then employed to sample a suitable number of scenarios from the estimated air-

craft arrival and departure time probability distributions, serving as input to solve the

SP model for ASSP. In practical runway operations, runway controllers can establish

aircraft sequencing decisions tens of minutes in advance (Solak et al., 2018; Pohl et al.,

2021). Subsequently, as more specific information on uncertain parameters becomes

available, they make scheduling arrangements (Solak et al., 2018; Khassiba et al., 2020,

2022). Therefore, we propose an SP model featuring a two-stage decision-making pro-

cess for ASSP. In the first stage, aircraft sequencing decisions are made prior to the

realisation of uncertainties. In the second stage, aircraft scheduling decisions are made

after observing the arrival and departure times.

In the ETO approach, the probability distributions of uncertain parameters pro-

vided by the ML method are assumed to represent the true probability distributions.

However, ML methods inherently produce prediction errors that cannot be completely

eliminated. Additionally, when using scenario selection strategies to sample proba-

bility distributions, the results may deviate from the true probability distributions

due to outliers, inadequate scenario coverage, and other factors. Overlooking these

potential prediction and sampling errors may result in decisions that perform unsatis-

factorily in real-world scenarios. We propose a novel prescriptive analytics framework

called the ETDRO approach to address these issues. Like the ETO approach, an ML

method provides the probability distributions of uncertain parameters. However, in

the subsequent optimisation, the ETDRO approach addresses prediction and sampling
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errors by developing a DRO model, assuming that the true probability distributions are

completely unknown or only partially known. The estimated probability distributions

of the uncertain parameters, provided by the ML method, are used as the reference

probability distributions in the subsequent DRO model. The DRO models aim to

optimise the expected value of a given function for the worst-case probability distri-

butions within an ambiguity set. The effectiveness of these models largely depends

on the selection of ambiguity sets. In this research, we utilise the type-1 Wasserstein

ambiguity set, which offers several advantages: it requires only minimal sampling data

for construction, allows decision-makers to adjust the level of aversion to ambiguity

by modifying the radius of the Wasserstein ball, and demonstrates strong convergence

characteristics (Mohajerin Esfahani and Kuhn, 2018; Bansal et al., 2018; Zhang et al.,

2021; Agra and Rodrigues, 2022; Shehadeh, 2023). Calculating the type-1 Wasserstein

distance between two distributions can be framed as a transportation problem, where

the objective is to transfer the probability mass from one distribution to the other

(Mohajerin Esfahani and Kuhn, 2018; Bansal et al., 2018; Agra and Rodrigues, 2022).

While DRO approaches are more flexible and robust than traditional SP approaches,

especially when data are incomplete or high uncertainty, they are often challenging to

solve. Consequently, the DRO model typically requires additional reformulation or

decomposition methods to ensure tractability (Mohajerin Esfahani and Kuhn, 2018;

Bansal et al., 2018; Zhang et al., 2021; Shehadeh, 2023). In this study, we ensure

the computational tractability of the DRO model for ASSP embedded in the ETDRO

approach by utilising the distributionally robust (DR) L-shaped method proposed by

Bansal et al. (2018). The DR L-shaped method, an exact solution method, is widely

applied in research on DRO approaches across transportation, logistics, supply chain,

the service industry, and power systems (Guevara et al., 2020; Liu et al., 2021; Agra and

Rodrigues, 2022; Gangammanavar and Bansal, 2022; Wang et al., 2022b; Black et al.,

2023; Xu et al., 2024). Given the challenges in solving DRO models for optimisation

72



problems related to scheduling decisions, we propose an enhanced DR (E-DR) L-shaped

method incorporating several algorithmic enhancements. These enhancements involve

the inclusion of time constraints (Agra and Rodrigues, 2022; Wang et al., 2022b), LBL

cuts (Adulyasak et al., 2015; Wu et al., 2022; Shehadeh, 2023; Tsang et al., 2024),

and initial optimality cuts (Zhang et al., 2021; Gong and Zhang, 2022; Yin et al.,

2024). Additionally, solving the master problems of the DR L-shaped and E-DR L-

shaped methods for the DRO model of the ASSP is highly time-consuming due to their

mixed-integer programming nature (Rei et al., 2009; Rahmaniani, Ragheb and Crainic,

Teodor Gabriel and Gendreau, Michel and Rei, Walter, 2017; Rahmaniani et al., 2018).

Including cuts in each iteration further increases the complexity of the master problems

(Rei et al., 2009). To mitigate the time-consuming issue of solving the MILP master

problems in each iteration, we introduce the BBC method within the framework of

the E-DR L-shaped method. Rather than solving the complex master problems in

each iteration, the BBC method constructs a single branch-and-bound tree, adding

Benders cuts to unfathomed nodes after identifying integer first-stage solutions during

the branch-and-bound search (Gendron et al., 2016). Based on the BBC method, we

further propose the E-DR-BBC method for the DRO model of the ASSP.

The exact E-DR L-shaped and E-DR-BBC methods proposed in this paper can

enhance computational performance compared to the previous DR L-shaped method.

Nevertheless, the ASSP is an NP-hard problem with near real-time requirements (Ben-

nell et al., 2011; Ikli et al., 2021; Chen et al., 2024). Consequently, these exact de-

composition methods may not deliver the optimal solution for the DRO model of the

ASSP within a reasonable timeframe when addressing large-scale test instances. As

the DRO approach is increasingly applied to more complex optimisation problems, in-

exact solution methods are also increasingly utilised to find acceptable, high-quality

solutions within a limited timeframe (Zhang et al., 2021; Gangammanavar and Bansal,

2022; Zhang et al., 2023; Tsang et al., 2023, 2024). Therefore, we further develop an
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inexact decomposition approach for the DRO model of the ASSP, based on the con-

strained position shifting (CPS) method proposed by (Balakrishnan and Chandran,

2010). Specifically, we stabilise the master problem of the E-DR-BBC method by util-

ising CPS constraints to search for new solutions with high quality around a stability

centre point (i.e., a good feasible first-stage solution) (Baena et al., 2020; Prakash

et al., 2021, 2022; Gong and Zhang, 2022). Consequently, this proposed inexact solu-

tion method is termed the stabilised DR-BBC (S-DR-BBC) method. It is worth noting

that while adding CPS constraints shortens CPU time by reducing the search space, it

also eliminates part of the feasible domain of the original problem, thereby losing the

optimality guarantee for the S-DR-BBC method.

The main contributions of this study are summarised as follows:

(i) We develop the ETO approach for ASSP under the uncertainty of aircraft arrival

and departure times at a single-runway airport. The initial step involves estimating the

probability distributions of these uncertain times, followed by solving the SP model for

ASSP based on these estimations. The well-constructed and validated RF method is

utilised to estimate these probability distributions. To the best of our knowledge, this

is the first implementation of the ETO approach in the research of runway operations.

(ii) We propose a novel ETDRO approach that incorporates prediction and sam-

pling errors into the decision-making process. In this approach, the true probability

distributions are assumed to be completely unknown or only partially known. The

estimated probability distributions provided by the RF method serve as reference dis-

tributions in the subsequent DROmodel. This aims to mitigate the potential prediction

and sampling errors associated with ML methods, thereby enhancing the efficiency and

robustness of the decisions.

(iii) Although the ETDRO approach generally leads to better decisions, solving

the DRO model poses a significant scalability challenge. To address this issue, we

propose an E-DR L-shaped method for the DRO model of the ASSP, incorporating
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algorithmic enhancements such as time constraint inclusion, LBL cuts, and initial

optimality cuts. Additionally, we introduce the E-DR-BBC method, based on the BBC

method, to solve the MILP master problem only once, thereby saving substantial CPU

time. Furthermore, we develop the inexact S-DR-BBC method, which leverages CPS

constraints to enhance computational efficiency while ensuring high-quality solutions.

(iv) We evaluate the performance of the proposed ETO and ETDRO approaches for

ASSP, as well as the exact and inexact decomposition methods, using real data from

XMN, a major airport on the southeastern coast of China and the busiest single-runway

airport in that country. Specifically, after analysing the performance of the ETDRO

approach under different Wasserstein radii, we compare the aircraft sequencing and

scheduling plans generated by the ETDRO approach with those generated by other

optimisation approaches, demonstrating the efficiency and robustness of the ETDRO

approach. Furthermore, comparing the proposed exact and inexact decomposition

methods with the DR L-shaped method, we find that the computational performance

is significantly improved while maintaining high-quality solutions. This improvement

is beneficial for adopting the ETDRO approach in real-world runway operations.

The remainder of this chapter is organised as follows. Section 4.2 provides the ETO

approach for ASSP. Section 4.3 further illustrates the ETDRO approach for ASSP. The

exact and inexact decomposition methods are proposed to solve the DRO model for

ASSP efficiently. In Section 4.4, we perform numerical experiments using real-world

data from XMN. The results of the scalability analyses are reported in Section 4.5.

Finally, the conclusions are presented in Section 4.6.

4.2 ETO approach for ASSP

This section proposes the ETO approach for ASSP at single-runway airports. In Sub-

section 4.2.1, we present the experimental data and several selected features, fine-tune
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the RF method’s hyperparameters and evaluate its performance in predicting aircraft

arrival and departure times. Based on these predictions, we estimate the distributions

of uncertain parameters and generate the scenario set in Subsection 4.2.2. Finally, in

Subsection 4.2.3, we introduce the SP model with a two-stage decision-making process

for ASSP.

4.2.1 RF method for predicting aircraft arrival and departure

times

Directly predicting aircraft arrival and departure times can be influenced by various

uncertain factors. By instead predicting the deviation between estimated and actual

arrival and departure times, we can more effectively account for these uncertainties and

improve the accuracy of our predictions. Additionally, estimated arrival and departure

times are usually readily available in historical data, allowing us to leverage this existing

information to enhance our predictive capabilities. Specifically, we predict the deviation

value and then add this predicted deviation value, âi, to the estimated arrival and

departure time, Ti, of aircraft i to obtain the predicted arrival and departure time T̂i,

i.e., T̂i = Ti + âi.

The RF method applied in our study is implemented with the scikit-learn library.

The dataset used in this study was collected from XMN between 1st September and

31st October 2023. It contains 30,104 records of arriving and departing aircraft, each

with relevant aircraft information. The TAF data include details such as maximum

and minimum temperatures, humidity, air pressure, wind direction, wind speed, and

other relevant parameters during the forecast period. We selected 15 features from

the original dataset, which are presented in Table 4.1 along with their data type,

encoding method, and statistical information. We identified missing values in fea-

tures such as “Aircraft type”, “Route distance”, and “Fuel load”. To address these,

we filled in the missing values using the median for “Aircraft type” and the mean for
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Table 4.1: Features of RF for ASSP.

Feature name Data type Encoding Null count
Aircraft type Object Label encoding 123

Domestic/International Object One-hot encoding 0
Estimated departure time Numerical 0
Estimated arrival time Numerical 0

Cruise speed Numerical 163
Straight line distance Numerical 0

Route distance Numerical 1752
Estimated flight time Numerical 0

Fuel load Numerical 1814
High temperature Numerical 0
Low temperature Numerical 0

Humidity Numerical 0
Barometer Numerical 0

Wind direction Object One-hot encoding 0
Wind speed Numerical 0

both “Route distance” and “Fuel load”. Notably, the features “Aircraft type”, “Domes-

tic/International”, and “Wind direction” are expressed in a literal format, necessitating

their conversion to numerical data. Regarding aircraft type, the arriving aircraft at

XMN primarily fall into two categories: heavy and large, which we encoded as 2 and 1,

respectively. We considered 16 wind directions and adopted one-hot encoding for wind

directions. We designated the data collected between 1st September and 30th October

2023 as dataset D with 29,604 records of arriving and departing aircraft. We randomly

split 80% of the data in D as a training set DTraining for training the RF model, while

the remaining 20% as DTesting to evaluate its performance. The data from 31st October

2023 is used to generate test instances for the numerical experiments and scalability

analysis.

In the RF method, several key hyperparameters must be considered. The hyperpa-

rameters tuned for the RF method are detailed in Table 4.2. These optimal hyperpa-

rameter values are determined using a grid search method with 5-fold cross-validation
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Table 4.2: Best hyperparameter values of RF for ASSP.

Hyperparameters Search space Best value
n_estimators [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] 700

min_samples_split [2, 3, 4, 5, 6, 7, 8, 9, 10] 10
min_samples_leaf [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 2

max_depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 80

Table 4.3: Prediction results on the testing dataset for ASSP.

Metrics Benchmark RF
MAE 35.62 14.38
MSE 28310.35 741.05
RMSE 168.26 27.22

on the training dataset DTraining.

After predicting the deviation value âi using the ML methods, we calculate the

predicted arrival and departure time T̂i using the formula T̂i = Ti + âi, where the

estimated arrival and departure time Ti is assumed to be known in advance. We

further use the estimated arrival and departure time Ti to replace the predicted arrival

and departure time T̂i in Equation (3.2) to (3.4) for calculating the MAE, MSE, and

RMSE values as benchmarks. Based on the prediction results presented in Table 4.3,

the RF method is better than the benchmark, as it yields smaller MAE, MSE, and

RMSE values.

4.2.2 Distribution estimation and scenario generation

After training, testing and validating the RF method, we utilise the prediction results

to more accurately estimate distributions for aircraft arrival and departure times. Set

N as the predetermined number of decision trees. That is, there exist N possible

values of the arrival and departure time of aircraft i provided by the RF method.

We then denote P (fi) as the set containing N possible values when using input

feature vector fi. The vector of the arrival and departure time for all aircraft in
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I can be written as T̃ =
(
T̃1, T̃2, . . . , T̃|I|

)
. And the Cartesian product Φ

(
T̃
)

={
P (f1)× P (f2)× · · · × P

(
f|I|
)}

can be used to approximate the distribution of T̃

(Yan et al., 2022; Yang et al., 2024). The Cartesian product contains N |I| elements,

which is an exponential function of |I| (Yan et al., 2022). Based on this, the un-

certainty of aircraft arrival and departure times is represented by a finite set Ξ ={
1, 2, ...,

∣∣∣Φ(T̃)∣∣∣} of scenarios, where the size of this set is also N |I|. Considering all

scenarios in Ξ would render the subsequent SP model too complex to solve. Therefore,

we adopt the SAA method to approximate the true distribution of aircraft arrival and

departure times by randomly selecting a subset of scenarios, Ω, from Ξ.

4.2.3 SP model for ASSP

In this subsection, we formulate the ASSP under arrival and departure time uncertainty

as an SP model. The SP model involves a two-stage decision-making process. In the

first stage, aircraft sequencing decisions are made before the uncertainties are realised.

In the second stage, aircraft scheduling decisions are made after observing the arrival

and departure times. In this study, we assume that the uncertainties in aircraft arrival

and departure times can be approximated by a potentially small and finite scenario set

Ω = {1, 2, . . . , |Ω|}, comprising |Ω| independent scenarios generated by the RF method.

The SP approach assumes that the probability of each scenario is known, and the

objective function is optimised based on the expected value (Birge and Louveaux, 2011).

In the SP model for ASSP, we assume that each scenario ω ∈ Ω is associated with a

reference scenario probability ρω. Consider a set I that contains arriving and departing

aircraft. The variable yij equals 1 if aircraft i ∈ I precedes aircraft j ∈ I \ {i} in the

runway sequence, though not necessarily immediately. For each aircraft i, we define an

estimated arrival or departure time T ω
i under scenario ω ∈ Ω. The landing or take-off

time tωi of aircraft i under scenario ω should be no earlier than its estimated time T ω
i .

The delay time dωi of aircraft i under scenario ω is defined as the difference between tωi

79



Table 4.4: Notations and definitions for ASSP.

Notation Definition
Sets
I The set of arriving and departing aircraft.
Parameters
T ω
i Estimated arrival or departure time of aircraft i under

scenario ω.
Sij The separation time between aircraft i and j.
Aω The target time of the earliest arriving and departing

aircraft under scenario ω.
Cdelay

i Unit time delay cost for aircraft i.
W1 The weight of the makespan.
W2 The weight of the aircraft delay costs.
M A sufficiently large number.
Variables
yij 1, if aircraft i precedes aircraft j in the runway sequence,

though not necessarily immediately; 0, otherwise.
tωi Landing or take-off time of aircraft i under scenario ω.
zω Makespan under scenario ω.
dωi Delay time of aircraft i under scenario ω.

and T ω
i . The runway can accommodate only one aircraft at a time, separation time Sij

is required to ensure safety when aircraft i and j use the runway consecutively. The

target time of the earliest arriving and departing aircraft under scenario ω is Aω, where

Aω = mini∈I {T ω
i }. The variable zω represents the makespan under scenario ω, which

is defined as the difference between the scheduled time of the last aircraft to use the

runway and Aω.

The objective function of the SP model for ASSP is to minimise the expected

makespan and the expected costs caused by aircraft delays. The notation Cdelay
i rep-

resents the unit time delay cost for aircraft i. In this study, weights W1 and W2 are

used to represent the runway controllers’ preference levels for makespan and aircraft

delay costs, respectively, where W1 + W2 = 1. For brevity, we provide notations of

sets, parameters and decision variables used in Table 4.4.
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Based on the problem description and notations provided above, the SP model for

ASSP is provided as follows:

min Eω [Q (y, ω)] (4.1a)

s.t. yij + yji = 1, ∀i ∈ I, ∀j ∈ I, i ̸= j, (4.1b)

yij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ I, i ̸= j, (4.1c)

where the term Eω [Q (y, ω)] represents the expected value of the second-stage objec-

tive function, which can also be expressed as
∑

ω∈Ω ρωQ (y, ω). Here, ρω denotes the

probability of scenario ω, and Q (y, ω) represents the optimal value of the second-

stage problem under scenario ω. For a feasible first-stage solution y and realisation of

scenario ω, the term Q (y, ω) is formulated as follows:

Q (y, ω) = min W1z
ω +W2

∑
i∈I

(
Cdelay

i dωi

)
(4.2a)

s.t. tωi ≥ T ω
i , ∀i ∈ I, (4.2b)

tωi + Sij − tωj ≤M(1− yij), ∀i ∈ I, ∀j ∈ I, i ̸= j, (4.2c)

zω ≥ tωi − Aω, ∀i ∈ I, (4.2d)

dωi ≥ tωi − T ω
i , ∀i ∈ I, (4.2e)

tωi ∈ R+, ∀i ∈ I, (4.2f)

zω ∈ R+, (4.2g)

dωi ∈ R+, ∀i ∈ I. (4.2h)
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The Objective function (4.1a) minimises the expected second-stage recourse costs.

Constraints (4.1b) establish the landing and take-off sequences for the aircraft. The

Objective function (4.2a) minimises the weighted sum of the makespan and the to-

tal aircraft delay costs under scenario ω. Constraints (4.2b) require that the land-

ing or take-off time tωi of aircraft i should be greater than or equal to its estimated

time T ω
i . It should be noted that we do not impose a UB on the scheduled time

for each aircraft. This is because arriving or departing aircraft may occasionally

experience a prolonged hold before landing or take-off, although this is rare. Con-

straints (4.2c) ensure the separation time requirements between two aircraft. Con-

straints (4.2d) compute the makespan. Constraints (4.2e) determine the delay time of

each aircraft. Constraints (4.1c), and Constraints (4.2f) to (4.2h) define the domain of

decision variables. Since the scenarios are independent, we can determine the appro-

priate M for each scenario ω ∈ Ω, represented by Mω, where Mω = maxi∈I {T ω
i } +

maxi∈I,j∈I, i ̸=j {Sij} (|I| − 1).

4.3 ETDRO approach for ASSP

In the ETO approach for ASSP, the probability distribution of uncertain parameters

provided by the RF method is assumed to be the true distributional information and

is directly used in the SP model. However, ML methods inherently produce some

prediction errors, which cannot be entirely eliminated. Ignoring these potential predic-

tion errors may result in unsatisfactory decisions. Therefore, we propose the ETDRO

approach for ASSP. In this approach, the true probability distribution is assumed to

be either completely unknown or only partially known, while the estimated probabil-

ity distribution provided by the RF method is used as a known reference probability

distribution in the DRO model.

In the ETDRO method, the use of the RF method to estimate the unknown param-
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eter distribution is consistent with the ETO method. The main difference is that the

ETDRO method employs the DRO model instead of the SP model for aircraft sequenc-

ing and scheduling plans. In this section, we first develop the DRO model for ASSP in

Subsection 4.3.1. We then propose exact and inexact decomposition methods to solve

the DRO model for ASSP based on the DR L-shaped method proposed by Bansal

et al. (2018). The exact decomposition methods are introduced in Subsection 4.3.2,

and the inexact decomposition methods based on the CPS method are proposed in

Subsection 4.3.3.

4.3.1 DRO model for ASSP

The SP approach assumes that the probability distributions of uncertain parameters

are known exactly. However, in real-world operations, these distributions are often

not fully known. Considering this, the DRO approach can be employed, where only

partial information about the distributions is required. Unlike the SP models, which

optimise the expected value of a given function under a predetermined probability

distribution, the DRO models aim to optimise the expected value of a given function

for the worst-case probability distribution within an ambiguity set (Mohajerin Esfahani

and Kuhn, 2018; Bansal et al., 2018; Agra and Rodrigues, 2022; Shehadeh, 2023; Tsang

et al., 2024). The performance of DRO solutions is heavily dependent on the choice

of ambiguity sets. In this study, we employ a type-1 Wasserstein ambiguity set, which

is well suited to the scenarios generated by RF methods, given that a limited set

of scenario data is considered in their construction. Besides, the type-1 Wasserstein

ambiguity set offers the following advantages: it allows decision-makers to control their

aversion to ambiguity by adjusting the radius of the Wasserstein ball and exhibit good

convergence properties (Mohajerin Esfahani and Kuhn, 2018; Bansal et al., 2018; Agra

and Rodrigues, 2022; Shehadeh, 2023).

In the DRO model for ASSP, the arrival and departure time for each aircraft i ∈ I

83



is modelled as a random variable with a probability distribution P within a finite

support Ω. Since the DRO approach assumes that the true probability distribution P

is either completely unknown or only partially known, we consider the probability ρωP

associated with each scenario ω ∈ Ω belongs to the ambiguity set P. The DRO model

aims to minimise the expected makespan and aircraft delay costs under the worst-case

probability distribution within the ambiguity set P. We define the feasible region of

first-stage variables y as Y , and the formulation of the DRO model is written as follows:

min
y∈Y

{
max
P∈P

EP [Q (y, ω)]
}
⇔ min

y∈Y

{
max
P∈P

∑
ω∈Ω

ρωPQ (y, ω)
}
. (4.3)

The DRO model for ASSP employs the type-1 Wasserstein ambiguity set to charac-

terise ambiguity in the probability distribution. This ambiguity set defines an unknown

probability distribution P = {Ω, ρP} that is close to a known reference probability dis-

tribution P ∗ = {Ω, ρ∗P}. More specifically, in the type-1 Wasserstein ambiguity set,

Ω = {1, 2, . . . , |Ω|} represents a finite set of scenarios, ρP :=
(
ρ1P , ρ

2
P , . . . , ρ

|Ω|
P

)
de-

notes the probabilities related to an unknown reference probability distribution, and

ρP∗ :=
(
ρ1P∗, ρ

2
P∗, . . . , ρ

|Ω|
P∗

)
represents the given probabilities associated with a known

reference probability distribution. Determining the type-1 Wasserstein distance be-

tween two distributions is viewed as a transportation problem for moving the proba-

bility mass from ρP ∗ to ρP . The decision variables mωω′ represent the probability mass

moving from ρωP to ρω’
P ∗ , and the parameter ϵ denotes the radius of the Wasserstein ball.

Based on the above description and notations, for a given ϵ ≥ 0, the type-1 Wasserstein

ambiguity set is formulated as follows:

Wϵ =
{
ρP ∈ R|Ω| :

∑
ω∈Ω

∑
ω′∈Ω

∥ω − ω′∥1m
ωω′ ≤ ϵ (4.4a)

∑
ω′∈Ω

mωω′
= ρωP , ∀ω ∈ Ω, (4.4b)
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∑
ω∈Ω

mωω′
= ρω

′

P ∗ , ∀ω′ ∈ Ω, (4.4c)

∑
ω∈Ω

ρωP = 1, (4.4d)

ρωP ∈ R+, ∀ω ∈ Ω, (4.4e)

mωω′ ∈ R+, ∀ω ∈ Ω, ∀ω′ ∈ Ω
}
. (4.4f)

4.3.2 Exact decomposition methods

In this subsection, the exact decomposition methods are proposed to solve the DRO

model for ASSP. We first reformulate the DRO model (4.3) into the epigraph form, as

shown in Model (4.5), where θ is the epigraphical decision variable.

min θ (4.5a)

s.t. Constraints (4.1b), (4.1c), (4.5b)

θ ≥ max
{∑

ω∈Ω

ρωPQ (y, ω) : P ∈ P

}
, (4.5c)

θ ∈ R+. (4.5d)

The DR L-shaped method proposed by Bansal et al. (2018), as a variant of the

L-shaped method, is devised for solving the DRO model with the Wasserstein ambigu-

ity set. When solving the DRO model using this method, three assumptions must be

observed: (i) the feasible region Y defined by the first-stage variables y is nonempty;

(ii) the model has relatively complete recourse property; and (iii) the scenario set Ω

is finite. It is easy to find that ASSP satisfies assumptions (i) and (iii). However,
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since the first-stage problem of the DRO model does not consider time constraints,

an integer first-stage solution with errors in the aircraft landing and take-off sequence

can be found within the feasible domain Y , which may render the second-stage prob-

lems infeasible. This indicates that the ASSP does not satisfy the assumption (ii).

Therefore, we should adapt the DR L-shaped method to the absence of the relatively

complete recourse property. In addition to ensuring the applicability of the DR L-

shaped method, we develop several algorithmic enhancements and inexact versions to

improve its scalability.

Additionally, when using the DR L-shaped method for the DRO model of the

ASSP, Constraint (4.5c) is replaced by a set of optimality cuts, thereby avoiding the

explicit use of the second-stage problems Q (y, ω). In Subsection 4.3.2.1, we introduce

the DR L-shaped method, focusing on adapting it to solve the DRO model for ASSP

without the relatively complete recourse property. In Subsection 4.3.2.2, we propose

the E-DR L-shaped method, which incorporates time constraints, LBL cuts, and a

warm start procedure to enhance computational performance. Finally, recognising the

computational burden of solving the complex master problem at each iteration, we

propose the E-DR-BBC method in Subsection 4.3.2.3. This method constructs a single

branch-and-cut tree to solve the DRO model for ASSP.

4.3.2.1 The DR L-shaped method

The DR L-shaped method proposed by Bansal et al. (2018) iterates between solving

the master problem, the dual subproblems, and the distribution separation problem

until the UB and the LB converge or the CPU time limit is reached. Each iteration

begins with solving the master problem to obtain the first-stage solutions. Given these

solutions, the dual subproblem for each scenario is solved to determine the optimal

objective value of the corresponding second-stage problem. The distribution separation

problem is then used to determine the probability of each scenario based on these
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optimal objective values. Optimality cuts are generated from the solutions of the dual

subproblems and the distribution separation problem, and these cuts are added to the

master problem.

However, this basic framework cannot be directly applied to the DRO model for

ASSP. Recall that the ASSP has no relatively complete recourse property, which may

render the second-stage problems infeasible. Consequently, the corresponding dual

subproblems may also be infeasible or unbounded, making it impossible to determine

the optimal objective value of the second-stage problem. This issue prevents the gener-

ation of optimality cuts through the dual subproblems and the separation distribution

problem, thus causing the convergence process of the DR L-shaped method to be inter-

rupted (Bansal et al., 2018; Agra and Rodrigues, 2022). We introduce combinatorial

cuts in the DR L-shaped method to address this issue. When an integer first-stage

solution with errors in the aircraft landing and take-off sequence is identified, a com-

binatorial cut will be generated and added to the master problem. This ensures that

the observed first-stage solutions with sequencing errors are excluded from the feasible

domain Y in the next iteration. Conversely, suppose an integer first-stage solution

without errors in the aircraft landing and take-off sequence is found. In that case, the

dual subproblems and the distribution separation problem are solved sequentially to

generate an optimality cut, which is then added to the master problem. The frame-

work of the DR L-shaped method for the DRO model of the ASSP is presented in

Algorithm 2.

The initial master problem of the DR L-shaped method is formulated as follows:

min θ (4.6a)

s.t. Constraints (4.1b), (4.1c), (4.5d). (4.6b)

After solving the master problem in an iteration, we obtain the aircraft sequencing

87



Algorithm 2 The DR L-shaped method
1: While UB - LB > 0 or CPU limit is not reached do.
2: Solve the master problem (4.6)
3: If there are no subtours in ŷ then
4: Solve subproblems (4.8) with ŷ for each scenario.
5: Solve distribution separation problem (4.9).
6: Add Benders cut (4.10) to the master problem (4.6).
7: Else
8: Add combinatorial cut (4.7) to the master problem (4.6).
9: End if

10: End while

decisions ŷ. The sequence position of aircraft i is given by
(
|I| −

∑
j∈I\{i} ŷij

)
. If two

aircraft have the same sequence position, an integer first-stage solution with errors

in the aircraft landing and take-off sequence is found. To prevent the recurrence of

first-stage solutions with sequencing errors in subsequent iterations, a combinatorial

cut (4.7) is added to the master problem, S = {(i, j) |ŷij = 1, ∀i ∈ I, ∀j ∈ I, i ̸= j}.

Subsequently, the current iteration concludes, and the next iteration commences.

∑
(i,j)∈S

yij ≤ |S| − 1. (4.7)

If the aircraft sequencing decisions provided by the master problem are free of

sequencing errors, we establish that LB = θ̂. Subsequently, we solve the dual sub-

problem for each scenario. The primal subproblem for scenario ω ∈ Ω is formulated as

Model (4.2). By introducing dual variables πω
i , τωij , δωi , and σω

i for Constraints (4.2b)

to (4.2e), the dual subproblem under scenario ω is written as follows:

max
∑
i∈I

T ω
i π

ω
i +

∑
i∈I

∑
j∈I\{i}

(M (1− ŷij)− Sij) τ
ω
ij + Aω

∑
i∈I

δωi +
∑
i∈I

T ω
i σ

ω
i (4.8a)

s.t. πω
i +

∑
j∈I\{i}

τωij −
∑

j∈I\{i}

τωji + δωi + σω
i ≤ 0, ∀i ∈ I, (4.8b)
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−
∑
i∈I

δωi ≤ W1, (4.8c)

− σω
i ≤ W2C

delay
i , ∀i ∈ I, (4.8d)

πω
i ∈ R+, ∀i ∈ I, (4.8e)

τωij ∈ R−, ∀i ∈ I, ∀i ∈ I, i ̸= j, (4.8f)

δωi ∈ R−, ∀i ∈ I, (4.8g)

σω
i ∈ R−, ∀i ∈ I. (4.8h)

Recall that we do not impose a UB on the scheduled time tωi for each aircraft i

under each scenario ω. Consequently, all first-stage solutions free of sequencing errors

are feasible for the second-stage problems, and optimal objective value Q̂ (y, ω) for

the second-stage problem under each scenario can be found. Based on these optimal

objective values, we solve the distribution separation problem (4.9) corresponding to

the Wasserstein ambiguity set.

max
{∑

ω∈Ω

ρωP Q̂ (y, ω) | ρP ∈Wϵ

}
. (4.9)

After solving the distribution separation problem, we determine the UB of the

method as UB = min
{
UB,

∑
ω∈Ω ρ̂ωP Q̂ (y, ω)

}
. When the UB converges with the

LB, the DR L-shaped method terminates. Otherwise, we utilise the probability ρ̂ωP

for each scenario ω, as provided by the distribution separation problem, along with

the optimal solutions of the dual subproblems π̂ω
i , τ̂ωij , δ̂ωi , and σ̂ω

i , to generate the

optimality cut (4.10) and incorporate it into the master problem. We then commence

the next iteration.
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Algorithm 3 The E-DR L-shaped method
1: While UB - LB > 0 or CPU limit is not reached do.
2: Solve the master problem (4.11)
3: If there are no subtours in ŷ then
4: Solve subproblems (4.8) with ŷ for each scenario.
5: Solve distribution separation problem (4.9).
6: Add Benders cut (4.10) to the master problem (4.11).
7: Else
8: Add combinatorial cut (4.7) to the master problem (4.11).
9: End if

10: End while

θ ≥
∑
ω∈Ω

ρ̂ωP

∑
i∈I

T ω
i π̂

ω
i +

∑
i∈I

∑
j∈I\{i}

(M − Sij)τ̂
ω
ij −M

∑
i∈I

∑
j∈I\{i}

τ̂ωijyij

+Aω
∑
i∈I

δ̂ωi +
∑
i∈I

T ω
i σ̂

ω
i

)
.

(4.10)

4.3.2.2 The E-DR L-shaped method

In Subsection 4.3.2.1, we focus on adapting the DR L-shaped method to solve ASSP

that lacks the relatively complete recourse property. In this subsection, we further

propose an E-DR L-shaped method, where some algorithmic enhancements are included

to improve its computational efficiency. The primary distinction between the E-DR L-

shaped and DR L-shaped methods lies in the master problem. In the E-DR L-shaped

method, time constraints and LBL cuts are incorporated into the master problem,

along with the initial optimality cuts provided by the warm start procedure. The

framework of the E-DR L-shaped method for the DRO model of the ASSP is presented

in Algorithm 3.

The initial master problem of the E-DR L-shaped method is formulated as follows:
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min θ (4.11a)

s.t. Constraints (4.1b), (4.1c), (4.5d), (4.11b)

tωi + Sij − tωj ≤M(1− yij), ∀i ∈ I, ∀j ∈ I, i ̸= j, ∀ω ∈ Ω, (4.11c)

zω ≥ tωi − Aω, ∀i ∈ I, ∀ω ∈ Ω, (4.11d)

dωi ≥ tωi − T ω
i , ∀i ∈ I, ∀ω ∈ Ω, (4.11e)

θ ≥
∑
ω∈Ω

ρωP ∗

(
W1z

ω +W2

∑
i∈I

Cdelay
i dωi

)
, (4.11f)

θ ≥
∑
ω∈Ω

ρ̂ωζP

∑
i∈I

T ω
i π̂

ωζ
i +

∑
i∈I

∑
j∈I\{i}

(M − Sij)τ̂
ωζ
ij

−M
∑
i∈I

∑
j∈I\{i}

τ̂ωζij yij + Aω
∑
i∈I

δ̂ωζi +
∑
i∈I

T ω
i σ̂

ωζ
i

 , ∀ζ ∈ Z, (4.11g)

tωi ∈ R+, ∀i ∈ I, ∀ω ∈ Ω, (4.11h)

zω ∈ R+, ∀ω ∈ Ω, (4.11i)

dωi ∈ R+, ∀i ∈ I, ∀ω ∈ Ω, (4.11j)

In the DR L-shaped method, combinatorial cuts are used to eliminate solutions with

sequencing errors, but they do not directly improve the LB. Cuts that fail to enhance

the LB are generally considered undesirable (Rahmaniani, Ragheb and Crainic, Teodor

Gabriel and Gendreau, Michel and Rei, Walter, 2017; Ng et al., 2021). An alternative
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approach is to incorporate time constraints (4.11c) from the second-stage problem of

each scenario into the master problem, thereby excluding solutions with sequencing

errors (Agra and Rodrigues, 2022; Wang et al., 2022b).

Since part of the original objective function is projected out in the master problem

of the BD method (also known as the L-shaped method), the initial optimality gap

can be substantial (Rahmaniani, Ragheb and Crainic, Teodor Gabriel and Gendreau,

Michel and Rei, Walter, 2017; Rahmaniani et al., 2018; Adulyasak et al., 2015; Wu

et al., 2022; Shehadeh, 2023; Tsang et al., 2024). To narrow this optimality gap, the

BD method requires numerous iterations and the generation of multiple optimality

cuts. The LBL cut, which incorporates information from the excluded part of the

original objective function, can be added to the master problem to improve the LB of

the BD method (Adulyasak et al., 2015; Wu et al., 2022; Shehadeh, 2023; Tsang et al.,

2024). Inspired by this approach, we design the LBL cut (4.11f) to enhance the LB of

the DR L-shaped method. The makespan and delay times under each scenario in the

LBL cut (4.11f) are determined by Constraints (4.11d) and (4.11e), respectively. To

demonstrate the validity of the proposed LBL cut (4.11f), we begin with the following

proposition.

Proposition 4.3.1. The LBL cut (4.11f) is a valid cut.

Proof : Let y denote a feasible first-stage solution without sequencing errors, and

let the optimal objective value for the second-stage problem under each scenario be

denoted as Q(y, ω). The distribution separation problem with the type-1 Wasserstein

ambiguity set seeks to identify the unknown probability distribution ρωP close to the

reference probability distribution ρωP∗ for each scenario ω that maximises the inner

optimisation problem in Model (4.3). Consequently, we have:

max
{∑

ω∈Ω

ρωPQ(y, ω) | ρP ∈Wϵ

}
≥
∑
ω∈Ω

ρωP∗Q(y, ω) (4.12)
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Based on the Objective function (4.2a) and the Constraints (4.5c), we have:

∑
ω∈Ω

ρωP∗Q(y, ω) ≥
∑
ω∈Ω

ρωP∗

(
W1z

ω +W2

∑
i∈I

Cdelay
i dωi

)
(4.13)

and

θ ≥ max
{∑

ω∈Ω

ρωPQ(y, ω) | ρP ∈Wϵ

}
(4.14)

Thus, we can obtain:

θ ≥ max
{∑

ω∈Ω

ρωPQ(y, ω) | ρP ∈Wϵ

}
≥
∑
ω∈Ω

ρωP∗Q(y, ω)

≥
∑
ω∈Ω

ρωP∗

(
W1z

ω +W2

∑
i∈I

Cdelay
i dωi

) (4.15)

That is the LBL cut (4.11f). Moreover, the LBL cut (4.11f) has no restrictions on

the feasible domain of the master problem. Therefore, the LBL cut (4.11f) is valid. □

Besides, the warm start procedure generates several initial cuts (4.11g). Initially,

we solve the SP model (4.1) using the same inputs as the DRO model (4.3) to obtain

the optimal first-stage sequencing decisions, denoted as ySP. Subsequently, leveraging

the CPS method (Balakrishnan and Chandran, 2010), where k = 1, we generate a set

of sequencing decisions in which each aircraft’s position remains closely aligned with

its position in the original sequencing decisions ySP. For those generated sequencing

decisions, we solve the dual subproblems (4.8) and the distribution separation prob-

lem (4.9) to obtain their objective values and associated optimality cuts. Optimality
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Algorithm 4 The E-DR-BBC method
1: Solve the master problem (4.11) with a CPU limit.
2: If an integer first-stage solution ŷ is found then
3: If there are no subtours in ŷ then
4: Solve subproblems (4.8) with ŷ.
5: Solve distribution separation problem (4.9).
6: Add Benders cuts (4.10) to the unfathomed nodes.
7: Else
8: Add subtour elimination cuts (4.7) to the unfathomed nodes.
9: End if

10: End if

cuts derived from sequencing decisions generated by the CPS method, with objective

values less than or equal to fDRO(ySP), are classified as strong optimality cuts and

incorporated into the initial cut set Z = {1, 2, . . . , |Z|}.

4.3.2.3 The E-DR-BBC method

Solving the master problems of the DR L-shaped and E-DR L-shaped methods for the

DRO model of the ASSP is time-consuming due to their mixed integer programming

nature, and the addition of cuts in each iteration can further increase their complexity

(Rei et al., 2009). Instead of solving the mixed integer linear programming master

problem in each iteration, the BBC method constructs a single branch-and-cut tree,

where cuts are added to the unfathomed nodes after an integer first-stage solution is

found in the branch-and-cut search (Gendron et al., 2016). Based on the BBC method,

we proposed the E-DR-BBC method for the DRO model of the ASSP. The framework

of the E-DR-BBC method is presented in Algorithm 4.

4.3.3 Inexact decomposition method

The ASSP is typically considered a near-real-time optimisation problem that requires

rapid decision-making to ensure efficient and safe runway operations. However, the
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ASSP exhibits an NP-hard nature. The proposed DRO model for ASSP further ac-

counts for the uncertainty and ambiguity of aircraft arrival and departure times, mak-

ing it challenging to achieve an optimal solution. The exact decomposition methods

discussed in Subsection 4.3.2 require a long CPU time. To enhance the scalability of

the DRO model for ASSP, we propose the inexact decomposition method based on the

CPS method.

The primary distinction between the inexact decomposition method and the exact

decomposition method lies in the stabilisation of the master problem around a stability

centre point. This stabilisation reduces the feasible region and facilitates the generation

of strong Benders cuts. Consequently, this proposed inexact decomposition method is

termed the S-DR-BBC method. However, it should be noted that the optimal solution

of the stabilised master problem does not provide a valid global lower bound, as it

only considers a portion of the original problem’s feasible region. The initial stabilised

master problem of the S-DR-BBC methods is formulated as follows:

min θ (4.16a)

s.t. Constraints (4.1b), (4.1c), (4.5d), (4.11c)-(4.11j), (4.16b)

max {1, (li − k)} ≤

|I| − ∑
j∈I\{i}

yij

 ≤ min {|I|, (li + k)} , ∀i ∈ I, (4.16c)

The stabilised master problem (4.16) explores new solutions in the vicinity of

a stability centre point (i.e., a feasible first-stage solution) through the CPS con-

straint (4.16c). Specifically, an aircraft cannot be shifted by more than k positions

from its position in a feasible sequence. Incorporating the CPS constraint (4.16c)

makes the stabilised master problem (4.16) easier to solve by reducing its feasible re-

gion. However, it should be noted that the optimal solution for the S-DR-BBC method
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does not provide a valid global LB because it is only considered part of the feasible

region of the original problem.

4.4 Numerical experiments for ASSP

4.4.1 Experimental design for ASSP

This subsection designs the numerical experiments using data from XMN. As illustrated

in Figure 4.1, XMN currently features a runway (05/23) measuring 3,400 meters in

length and 45 meters in width, and is one of the busiest single-runway airports in

China.

The test instances are generated using data from 31st October 2023. The number

of arriving and departing aircraft at hourly intervals is shown in Figure 4.2. Given that

aircraft sequencing and scheduling decisions have a near real-time characteristic, we

use a 20-minute decision interval to segment the day’s data, as recommended by Solak

et al. (2018). After removing test instances with one or fewer aircraft, the total number

of test instances is 56. The details of each test instance are provided in Table 4.5. The

ID of a test instance consists of two numbers. The first number denotes the hour of

the instance, while the second number indicates the specific 20-minute period within

that hour. For example, the data set from 09:00 to 09:20 is represented as 9_1, and

the data set from 22:40 to 23:00 is represented as 22_3. We adopt the SAA method

as the scenario selection strategy for each test instance, with the number of scenarios

set to |Ω| = 100.

The aircraft arriving and departing XMN are primarily heavy and large types.

Table 4.6 presents the separation time requirements for aircraft type combinations

used in this study, following the settings of Pohl et al. (2021, 2022). To account for

the greater importance of delays affecting larger aircraft with more passengers (Pohl

et al., 2021), we use delay cost coefficients Cdelay
i of 1 and 2 monetary units for large
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Figure 4.1: Runway (05/23) at XMN Airport.

and heavy aircraft types, respectively. For the numerical experiments, we set W1 and

W2 to 0.5.

4.4.2 An illustrative example for ASSP

In this subsection, we comprehensively analyse test instance 8_1. Table 4.7 presents

detailed information, including the estimated arrival and departure times Ti, the air-

craft’s landing or take-off status, and the aircraft types.

In Figure 4.3, we provide graphical representations of the aircraft sequencing and
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Figure 4.2: Number of arriving and departing aircraft at hourly intervals on 31st
October 2023 at XMN, China.

scheduling plans generated by the deterministic model, the ETO approach, and the

ETDRO approach. These plans may exhibit structural differences because each ap-

proach is designed to optimise under specific conditions. The ETO approach is designed

to optimise an expected function based on a specific reference probability distribution

provided by the ML method. In contrast, the ETDRO approach accounts for potential

deviations in the distribution of uncertain parameters from the reference distribution

given by the ML method. Consequently, it optimises the expected value of a function

under the worst-case probability distribution defined by the Wasserstein ambiguity set.

It should be noted that the ETO approach is equivalent to the ETDRO approach when
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Table 4.5: Detailed information of test instances for ASSP.

Test instances Aicraft number Test instances Aicraft number
0_1 5 14_3 8
0_2 2 15_1 7
5_2 3 15_2 14
6_2 2 15_3 10
6_3 8 16_1 9
7_1 5 16_2 12
7_2 8 16_3 11
7_3 7 17_1 10
8_1 10 17_2 11
8_2 11 17_3 6
8_3 5 18_1 11
9_1 4 18_2 13
9_2 9 18_3 11
9_3 7 19_1 12
10_1 9 19_2 13
10_2 10 19_3 12
10_3 12 20_1 6
11_1 9 20_2 11
11_2 12 20_3 9
11_3 10 21_1 11
12_1 10 21_2 7
12_2 10 21_3 5
12_3 10 22_1 7
13_1 13 22_2 10
13_2 13 22_3 10
13_3 8 23_1 6
14_1 8 23_2 6
14_2 8 23_3 5

ϵ = 0. Given the inherent uncertainty in aircraft arrival and departure times, which

cannot be precisely known in advance, we use nominal times for each aircraft as input

to the deterministic model. This model can be viewed as an SP model with a single

scenario consisting of these nominal times. The ETDRO approach with a given ϵ is

denoted as ETDROϵ. As shown in Figure 4.3, the plan provided by the deterministic
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Table 4.6: Separation time requirements for landing and take-off aircraft (in seconds)

Leading
Trailing

Landing Take-off
Heavy Large Heavy Large

Landing
Heavy 96 157 75 75
Large 60 69 75 75

Take-off
Heavy 60 60 90 120
Large 60 60 60 60

Table 4.7: Details of the test instance 8_1 for ASSP.

Aircraft 1 2 3 4 5 6 7 8 9 10

Ti 29,700 30,000 29,700 29,400 30,000 30,600 30,000 27,900 30,600 31,200

LD/TO TO TO TO TO TO TO LD LD TO LD

Aircraft type LG LG LG LG LG HV LG HV LG LG

Note: ’LD’ indicates landing, ’TO’ indicates take-off, ’HV’ indicates heavy, and ’LG’
indicates large.

model is structurally very different from those provided by the ETO and ETDRO ap-

proaches. The structural differences between the ETO and ETDRO plans are relatively

minor. However, these differences become more pronounced as the ϵ value increases.

Next, we present performance indicators for these optimisation approaches in Ta-

ble 4.8. Our findings indicate that the objective values from the deterministic model

are significantly smaller than those from both the ETO and ETDRO approaches. This

difference arises because the deterministic model optimises for a single, specific sce-

nario. In contrast, the ETO and ETDRO approaches must optimise across multiple

possible scenarios to ensure performance in each scenario. The complexity of optimis-

ing for various scenarios results in higher objective values. Moreover, the parameter ϵ

used in the ETDRO approach significantly impacts the objective values. As the value
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Figure 4.3: Aircraft sequencing and scheduling plans provided by optimisation ap-
proaches for test instance 8_1.

of ϵ increases, the objective value of the solutions also increases. Table 4.8 also shows

that the mean value of the ETDRO approach is higher than that of the ETO approach.

However, the ETDRO approach outperforms the ETO approach in extreme situations

within the in-sample data, as evidenced by the smaller 95-quantile and 99-quantile val-

ues. These observations suggest that the ETDRO approach yields more conservative

aircraft sequencing and scheduling plans when faced with in-sample data. While this

results in higher mean values, the approach performs better under extreme conditions.
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Table 4.8: Evaluation of the obtained aircraft sequencing and scheduling plans for test
instance 8_1 for ASSP.

Deterministic ETO ETDRO100 ETDRO500 ETDRO1000 ETDRO3000 ETDRO5000

Objective value 1,822.50 9,382.52 9,571.01 10,250.68 11,000.59 13,546.56 15,859.94
Mean 16,597.73 9,382.52 9,389.22 9,389.22 9,389.22 9,432.55 9,482.76

0.95-quantile 59,008.70 21,299.00 21,297.57 21,297.57 21,297.57 20,730.65 18,419.00
0.99-quantile 12,0629.28 34,742.23 33,462.44 33,462.44 33,462.44 33,838.64 34,114.54

4.4.3 In-sample analysis for ASSP

In this subsection, we perform an in-sample analysis using the scenario set Ω of size

100 to evaluate the performance of the ETO and ETDRO approaches. We first utilise

the value of the stochastic solution (VSS) indicator to evaluate whether it is worth

modelling uncertain aircraft arrival and departure times in the ASSP using the ETO

approach. The VSS is defined as the difference between the expected value of the

expected value solution (EEV) and the optimal objective value of the SP model (Birge

and Louveaux, 2011). In this study, the SP model is replaced by the ETO approach.

The formulation of VSS is presented as follows:

VSS = EEV− ETO, (4.17)

and the relative VSS is calculated as the ratio:

VSS (%) =
(EEV− ETO)

ETO ∗ 100. (4.18)

Table 4.9 shows the average results of 56 test instances related to the value of

incorporating stochasticity. The average value of the relative VSS is 22.06%. The

results indicate that the aircraft sequencing and scheduling plans provided by the

deterministic ASSP model can incur average additional costs of 22.06% compared to

those provided by the ETO approach of the ASSP.
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Table 4.9: Value of incorporating stochasticity for ASSP

EEV ETO VSS VSS(%)
Average 6949.28 5693.53 1255.76 22.06

Table 4.10: Value of using the DRO model for ASSP

Deterministic ETO ETDRO100 ETDRO500 ETDRO1000 ETDRO3000 ETDRO5000

Mean 6,974.73 5,695.37 5,696.68 5,724.71 5,749.38 5,897.62 5,974.97
0.95-quantile 15,867.26 11,872.51 11,863.05 11,845.95 11,830.35 11,874.27 11,826.88
0.99-quantile 24,123.03 18,141.71 18,018.21 17,597.03 17,459.39 17,169.71 16,901.51
Worst-case 28,721.72 22,185.38 21,926.96 20,917.32 20,621.54 19,759.36 19,373.84

We then evaluate the value of using the ETDRO approach, considering different

radii of the Wasserstein ball, i.e., ϵ = {100, 500, 1000, 3000, 5000}. For each first-stage

solution provided by the models, we solve the corresponding second-stage problem (4.2)

to obtain the second-stage costs for each in-sample scenario. Since our ASSP model

has no objective function in the first stage, the second-stage costs represent the total

costs. Table 4.10 presents performance statistics of the in-sample total costs obtained

by different models. We find that the performance statistics of both the ETO and

ETDRO approaches are much better than those of the deterministic model. In the

in-sample analysis, we found that the ETO approach performed better for the average

indicator, while the ETDRO approach excelled in the 0.95-quantile, 0.99-quantile, and

worst-case scenario indicators. The ETO approach performs better on the average

indicator, suggesting it may be more cost-efficient in relatively stable and predictable

operating environments. Runway controllers can leverage the ETO approach for routine

decision-making in such conditions. Conversely, the ETDRO approaches’ superior

performance in the 0.95-quantile, 0.99-quantile, and worst-case indicators demonstrate

their robustness under high uncertainty and extreme conditions. Runway controllers

should consider using the ETDRO approach in volatile operating environments or when

the costs of extreme events are significant.
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4.4.4 Out-of-sample analysis for ASSP

In this subsection, we conduct out-of-sample analysis to assess the performance of

models on unseen data, evaluating their generalisation ability and predictive perfor-

mance. This is crucial for verifying whether the models can effectively handle new

data and uncertainty in real-world applications. First, the optimal solution ŷ∗ pro-

vided by each optimisation approach is fixed. Then, we solve the second-stage problem

Eω∈Ωout [Q (ŷ∗, ω)] with an out-of-sample scenario set Ωout of size 1000, which is gener-

ated in the same way as the scenario set Ω.

Table 4.11 presents the performance statistics of the out-of-sample total costs ob-

tained by different models under various scenario set sizes. Consistent with the in-

sample analysis, the performance statistics of both the ETO and ETDRO approaches

are significantly superior to those of the deterministic model in the out-of-sample anal-

ysis. For the average performance, the ETDRO100 approach demonstrates superior

performance with a value of 5,880.45, outperforming the deterministic model and the

ETO approach. As the radius of the Wasserstein sphere increases, the average perfor-

mance of the ETDRO approach generally declines, suggesting that larger radii result in

diminishing returns in average performance when dealing with unknown data. For the

0.95- and 0.99-quantile indicators, the ETDRO100 approach consistently outperforms

both the deterministic model and ETO approach, particularly at higher quantiles. The

ETDRO1000 approach performs best at the 0.99-quantile, demonstrating the robustness

of the approach at the tail end of the distribution. Additionally, in the worst-case

scenario, the ETDRO3000 approach achieves the lowest value, indicating its superior

effectiveness in managing extreme situations compared to other approaches. Adopt-

ing the ETDRO approach enhances average and quantile performance, indicating that

decision-makers should consider implementing the ETDRO approach, particularly ET-

DRO100, to achieve more reliable and efficient outcomes. Overall, based on the results
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Table 4.11: Results of out-of-sample analysis for ASSP

Deterministic ETO ETDRO100 ETDRO500 ETDRO1000 ETDRO3000 ETDRO5000

Mean 6,992.72 5,882.31 5,880.45 5,908.68 5,947.99 6,097.33 6,169.61
0.95-quantile 16,360.67 12,475.50 12,448.61 12,402.57 12,411.57 12,437.43 12,414.19
0.99-quantile 25,413.65 20,670.53 20,496.89 20,281.20 20,232.32 20,249.17 20,158.11
Worst-case 40,034.06 34,664.70 34,495.93 34,080.52 33,896.96 33,567.15 33,306.57

of in-sample and out-of-sample analysis, the ETDRO100 approach exhibits relatively

low values in terms of average, 0.95-quantile, 0.99-quantile, and worst-case indicators,

demonstrating its effectiveness in both normal and extreme scenarios.

4.4.5 Actual sample analysis for ASSP

In this subsection, we compare the effectiveness of aircraft sequencing and scheduling

plans provided by different approaches in actual scenarios. To achieve this, we employ

a method that integrates actual scenarios called actual sample analysis. First, we fix

the optimal solution ŷ∗ provided by each model. Then, we solve the second-stage

problem Q
(
ŷ∗, ωactual), where ωactual represents the actual scenario. Considering that

in previous ASSP studies, the analysis based on historical data has been the primary

source for the distribution of uncertain parameters (Solveling et al., 2011; Solak et al.,

2018). Therefore, the actual sample analysis not only compares the ETO and ETDRO

approaches with the deterministic model but also includes comparisons with the SP

and DRO models based on the probability distribution of aircraft arrival and departure

times derived from historical data. We present the probability distribution of aircraft

arrival and departure time deviation based on historical data from 1st September to

30th October 2023 in Figure 4.4, where outliers are eliminated using the interquartile

range (IQR) method. Subsequently, scenarios ω ∈ Ω can be constructed by generating

deviations âi in aircraft arrival or departure times from the estimated time Ti, where âi
is randomly generated from the probability distribution of aircraft arrival or departure

time deviation shown in Figure 4.4(a) and Figure 4.4(b), respectively.
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Figure 4.4: Distribution of aircraft arrival and departure time deviation based on
historical data at XMN.

The overall results presented in Figure 4.5 illustrate the performance of each opti-

misation approach in actual sample analysis under different Wasserstein ball radius set-

tings. It is important to note that since the deterministic model, SP model, and ETO

approach do not consider the Wasserstein ambiguity set, their performance remains

unchanged with varying epsilon values and serves only as a benchmark for reference.

These results demonstrate that the performance of the ETO and ETDRO approaches

is markedly superior to that of the deterministic, SP, and DRO models. This suggests

that by fully utilising historical and auxiliary data through ML methods to obtain

more accurate estimates of the probability distribution of unknown aircraft arrival and

departure times, we can frequently devise aircraft sequencing and scheduling plans that

more closely align with actual scenarios. Furthermore, we also find that the perfor-

mance of the SP and DRO models in actual sample analysis generally surpasses that

of the deterministic model, suggesting that incorporating stochasticity in optimisation

approaches can lead to relatively good decisions in actual scenarios.

In addition, we find that in practical scenarios, by properly selecting the ϵ value, the

ETDRO approach can provide better performance than the ETO approach in aircraft
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sequencing and scheduling. Specifically, when ϵ = 0 for ETDRO, the two approaches

are equivalent, with both having an objective value of 2,717.42. As the ϵ value of

ETDRO increases from 100 to 1,000, its objective value strictly decreases from 2,693.48

to 2,604.04, resulting in a percentage reduction in the objective value compared to ETO

increasing from 0.88% to 4.17%. However, as the ϵ value of ETDRO further increases

from 1,000 to 5,000, its objective value subsequently increases from 2,604.04 to 2,648.11,

and the percentage reduction in the objective value compared to ETO decreases from

4.17% to 2.55%. These results demonstrate that the ETDRO approach can enhance

the performance of predetermined aircraft sequencing and scheduling plans in actual

scenarios by considering potential prediction and sampling errors. It should be noted

that the performance of the ETDRO approach in real-world scenarios initially improves

with an increase in the ϵ value. Nevertheless, the performance of the ETDRO approach

declines once the ϵ value surpasses a certain threshold. This indicates that the approach

does not consistently improve with increasing ϵ values. Therefore, the ϵ value of the

ETDRO approach must be carefully selected to ensure its best performance.

It is worth noting that the SP model outperforms the DRO model in practical

scenarios when the probability distribution is estimated based solely on historical data

of uncertain parameters. The objective value of the DRO model deteriorates as the

ϵ value increases, performing worse than the deterministic model when the ϵ value is

greater than or equal to 3,000. This may be because the probability distribution of

uncertain parameters cannot be accurately estimated using only historical data. The

DRO approach seeks to optimise the expected cost under the worst-case distribution

among all possible distributions, exacerbating the inaccuracies in the already imprecise

probability distribution and leading to suboptimal results in actual scenarios.

We present the detailed results of the actual sample analysis in Figure 4.6. The per-

formance of makespan and average delay time aligns with the overall results, with both

ETO and ETDRO approaches outperforming other optimisation approaches. Specif-
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Figure 4.5: Overall results of actual sample analysis for ASSP.

ically, for the makespan metric, ETDRO achieves its best performance at an ϵ value

of 3,000, recording a makespan of 1,280.10. This is roughly 1.25% lower than ETO’

s 1,296.26, 1.38% below the SP model’s 1,298.02, 1.51% under the DRO model’s

1,299.73, and a significant 3.34% less than the deterministic model’s 1,324.39. For

the average delay time metric, ETDRO performs optimally at an ϵ value of 1,000,

achieving a delay time of 391.94. This constitutes a reduction of approximately 5.99%

compared to ETO’s 416.93. Moreover, it shows a decrease of 7.76% relative to the

SP model’s 424.91, an 8.16% decrease compared to the DRO model’s 426.79, and

a substantial 12.33% reduction compared to the deterministic model’s 447.05. These

results highlight the superior performance of the ETDRO approach in both makespan
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Figure 4.6: Detailed results of the actual sample analysis for ASSP.

and average delay time metrics under actual scenarios.

4.4.6 Real-world implementation for ASSP

In the real-world implementation, we consider the runway operations at XMN on 31st

October 2023. The real-world implementation experiment employs a rolling horizon

approach, with decision horizons set at 20-minute intervals, as outlined in the experi-

mental design subsection. Specifically, to manage the expected arrivals and departures

of aircraft, decision-making for ASSP is conducted 20 minutes in advance to generate

sequencing plans for each decision horizon. For example, suppose the aircraft is sched-

uled to arrive or depart starting at 10:00. In that case, the decision-making occurs

at 9:40. At this time, optimisation approaches are executed, considering the aircraft

scheduled between 10:00 and 10:20. Upon completion, the aircraft sequencing plan

for the 10:00 to 10:20 is fixed based on the obtained solution. At 10:00, with more

precise information on arrival and departure times, the scheduling plan for aircraft be-

tween 10:00 and 10:20 is finalised. Afterwards, at 10:00, the subsequent optimisation

run is performed, considering aircraft arriving and departing between 10:20 and 10:40.

The plan for the previous period must be completed before executing the plan for the
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Table 4.12: Results of the real-world implementation for ASSP.

Deterministic SP DRO ETO ETDRO

Total 3,609.04 3,310.47 3,315.36 3,299.64 3,208.17

Makespan 1,404.41 1,346.39 1,348.11 1,346.32 1,332.39

Average delay time 576.37 526.83 527.86 525.71 508.74

subsequent time period.

We compare the deterministic, SP, and DRO models, along with the ETO and

ETDRO approaches. The ϵ value for the DRO model is set to 100, while the ϵ value

for the ETDRO approach is set to 1,000, as these parameter choices enable DRO

and ETDRO to achieve their best performance in the actual sample analysis. For

simplicity, we present the average result of all time periods in Table 4.12. The total

objective value indicator of the ETDRO approach stands at 3,208.17, representing a

reduction of 2.77% to 11.10% compared to other optimisation approaches. Specifically,

ETDRO achieves a makespan of 1,332.39, which is 1.03% to 5.13% lower than the

results from other approaches. Furthermore, the average delay time for ETDRO is

508.74, showing a decrease of 3.23% to 11.73% compared to alternatives. However,

the total objective value, makespan, and average delay time of the ETO approach are

3,299.64, 1,346.32, and 525.71, respectively. These values are slightly lower than those

of the deterministic, SP, and DRO models but are much higher than those of ETDRO.

These results highlight that the ETDRO approach reduces makespan and delays by

incorporating forecasting and sampling errors into decision-making. This is particularly

important for runway controllers, who should prioritise the ETDRO approach in real-

world applications to enhance the efficiency and accuracy of aircraft sequencing and

scheduling plans.
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4.4.7 The impact of the runway controller preference levels

We assign weightsW1 andW2 to reflect the runway controller’s preferences for makespan

and delay time, respectively, where W1 + W2 = 1. The makespan and average delay

time of the optimal decision under different preference levels are shown in Figure 4.7.

As W1 decreases and W2 increases, indicating a decreased preference for makespan and

an increased preference for delay time, the makespan rises from 5,138.96 to 5,153.99,

an increase of 0.29%, while the average delay time decreases from 711.91 to 631.73, a

reduction of 11.26%. The 0.29% increase in makespan indicates a slight compromise

in overall operational efficiency while improving punctuality. The 11.26% reduction

in average delay time demonstrates that prioritising delay time significantly enhances

the on-time performance of individual aircraft. Although improving punctuality may

slightly affect overall operational efficiency, this impact is acceptable in scenarios where

reducing delays is of greater importance. Specifically, we also find that when runway

controllers shift from focusing solely on makespan to incorporating a slight emphasis

on delay time (with W2 increasing from 0 to 0.05), the delay time can be significantly

reduced by 10.44%. As the weight on delay time increases, the delay time reduction

becomes more gradual.

In summary, runway controllers face a trade-off between overall operational effi-

ciency (makespan) and individual aircraft punctuality (delay time). They must strike

a delicate balance between the runway system’s efficiency and individual aircraft’s

punctuality. By making informed weighing choices, runway controllers can effectively

balance these two metrics while enhancing the efficiency and robustness of aircraft

sequencing and scheduling plans.
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Figure 4.7: The impact of preference levels on makespan and average delay time.

4.4.8 Managerial implications and insights

The numerical experiments discussed above provide valuable managerial implications

and insights for runway controllers. The following summary outlines the key findings

derived from these experiments:

(i) Both in-sample and out-of-sample analyses reveal that the ETO approach and

the ETDRO approach with smaller perturbations (i.e., smaller ϵ value) perform better

in normal situations. Besides, the ETDRO approach consistently performs better than

the ETO approach in extreme situations, regardless of the extent of the perturbation.

Overall, the ETDRO approach with smaller perturbations consistently performs well
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in normal and extreme scenarios, regardless of whether the data is known or unknown.

This suggests that runway controllers should consider using the ETDRO approach with

smaller ϵ values to balance performance in normal and extreme situations, thereby

ensuring optimal operational efficiency and robustness.

(ii) According to the actual sample analysis, the ETO and ETDRO approaches are

superior to other optimisation approaches. Additionally, the ETDRO approach out-

performs the ETO approach by considering prediction and sampling errors in decision-

making. However, it should be noted that the performance of the ETDRO approach

in actual sample analysis does not continually improve with an increase in the radius

of the Wasserstein ball. Instead, performance deteriorates beyond a certain thresh-

old. Therefore, it is necessary to determine the appropriate ϵ value through numer-

ical experiments. Moreover, the real-world implementation results demonstrate that

the ETDRO approach significantly surpasses other optimisation approaches regard-

ing makespan and delay time. The improvement of ETO compared with traditional

optimisation approaches is not as pronounced as that of ETDRO.

(iii) The overall experimental results indicate that when historical data is available,

the ETO and ETDRO approaches, enhanced by high-performance ML methods, signif-

icantly improve aircraft sequencing and scheduling decisions compared to traditional

optimisation approaches. This implies that incorporating historical data and advanced

ML techniques should be prioritised to enhance operational efficiency and decision-

making processes. Moreover, since ETDRO offers a robust framework for dealing with

uncertainty, particularly when the probability distribution is unknown or variable, its

flexibility and robustness make it the preferred choice in many high-risk or highly un-

certain environments. This approach demonstrates superior performance in in-sample,

out-of-sample, and actual sample analyses, as well as real-world implementation com-

pared to other optimisation approaches. Therefore, it is recommended that runway

controllers prioritise the ETDRO approach in real-world runway operations to enhance
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operational efficiency and reduce delays.

(iv) The analysis also underscores the importance of weight adjustment in balancing

overall operational efficiency and individual aircraft punctuality. By carefully deter-

mining the weights for makespan and delay time, runway controllers can significantly

reduce delays with a slight increase in makespan, while enhancing the robustness and

efficiency of aircraft sequencing and scheduling.

4.5 Scalability analyses for ASSP

In this study, we propose exact and inexact decomposition methods for the ETDRO

approach for ASSP. This section conducts the experiments on 56 test instances gener-

ated in Subsection 4.4.1. The runway controllers’ preference levels for makespan and

aircraft delay costs are set to W1 = 0.5 and W2 = 0.5. The performance indicators in-

clude the CPU time, objective value, and optimality gap. Solution methods are coded

in Python with commercial MIP solver GUROBI. All the experiments are conducted

on a computer with INTEL CORE i7-12700K 12 Core 20 Threads CPU @ 5.00 GHz

and memory of 32 GB. We set the CPU time to 1,200 seconds for each test instance.

For ease of display and comparison, we only provide the average performance of 56 test

instances for each solution method at different epsilon values.

4.5.1 Performance evaluation of exact decomposition methods

We first compare the computational performance of the proposed E-DR L-shaped and

E-DR-BBC methods with the DR L-shaped method used in previous literature. In

terms of CPU time results provided in Figure 4.8, we find that the E-DR-BBC method

performs the best, followed by the E-DR L-shaped method, while the DR L-shaped

method performs the worst. Specifically, as the ϵ value of the ETDRO approach in-

creases from 100 to 5,000, the CPU time required for the E-DR-BBC method increases
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from 269.19 to 915.52 seconds, and for the E-DR L-shaped method from 492.53 to

1,018.52 seconds. The CPU time difference between the E-DR-BBC and E-DR L-

shaped methods has decreased from over 200 seconds to 100 seconds. Additionally, the

CPU time for the DR L-shaped method remains relatively stable at 1,000 seconds. The

results demonstrate that the algorithmic enhancements in the E-DR L-shaped method

can effectively reduce the CPU time required when the ϵ value is less than or equal

to 1,000. However, when the ϵ value exceeds 1,000, these enhancements lose their

effectiveness on the CPU time, and the performance becomes similar to that of the

DR L-shaped method. Additionally, by adopting the BBC framework, the E-DR-BBC

method further improves its CPU time performance and surpasses the other two exact

decomposition methods regardless of the ϵ value.

Based on the overall results for the objective value indicator provided in Figure 4.9,

we compare the objective value indicator and find that the E-DR-BBC and E-DR L-

shaped methods perform similarly, both significantly outperforming the DR L-shaped

method. Specifically, the performance of the E-DR-BBC and E-DR L-shaped methods

is almost identical when the ϵ value of the ETDRO approach increases from 100 to

1,000. However, the E-DR-BBCmethod performs slightly better as the ϵ value increases

further when ϵ is 3,000, the objective value of the E-DR-BBC method is reduced by

3.88% compared to the E-DR L-shaped method. As ϵ increases to 5,000, this reduction

expands to 6.15%.

Figure 4.10 provides the overall results for the optimality gap indicator of the

exact decomposition methods. The optimality gap of the E-DR L-shaped method

increases from approximately 0.58% to 37.22% as the ϵ value increases from 100 to

5,000, while the optimality gap of the E-DR-BBC method increases from 1.16% to

31.47%. In comparison, the optimality gap of the DR L-shaped method remains stable

at approximately 84%, indicating its difficulty in convergence. We find that the E-DR-

BBC and E-DR L-shaped methods perform similarly and significantly outperform the
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Figure 4.8: Overall results for the CPU time indicator of the exact decomposition
methods for ETDRO.

DR L-shaped method. Specifically, when the ϵ value of the ETDRO approach increases

from 100 to 3,000, the performance of the E-DR L-shaped method is slightly better than

that of the E-DR-BBC method, with the reduced optimality gap fluctuating between

0.46% and 0.58%. However, as the value of ϵ increases further, the E-DR-BBC method

demonstrates superior performance, with its advantage becoming more pronounced.

When ϵ value is 3,000, the E-DR-BBC method achieves a reduction of 4.20 (14.82%)

compared to the E-DR L-shaped method. As ϵ value increases to 5,000, this reduction

grows to 5.75 (15.45%).

In summary, the comparison of exact decomposition methods demonstrates that
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Figure 4.9: Overall results for the objective value indicator of the exact decomposition
methods for ETDRO.

the E-DR-BBC method outperforms both the E-DR L-shaped and DR L-shaped meth-

ods across various metrics, including CPU time, objective value, and optimality gap.

The E-DR-BBC method exhibits superior computational efficiency, with its advantage

becoming more pronounced as the ϵ value increases. This indicates that the algo-

rithmic enhancements, including the incorporation of time constraints, LBL cuts, and

initial cuts, as well as the BBC framework, have played a practical and effective role

in significantly improving computational performance.
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Figure 4.10: Overall results for the optimality gap indicator of the exact decomposition
methods for ETDRO.

4.5.2 Performance evaluation of inexact decomposition meth-

ods

Among the exact decomposition methods, the E-DR-BBC method achieves the best

performance. However, its CPU time increases from 269.19 to 915.52 as the ϵ value

rises. Particularly, when applying the ETDRO approach with ϵ = 1000, which performs

best in actual sample analysis and real-world implementation, the CPU time required

by the E-DR-BBC method is 762.25. For near real-time optimisation problems such as

runway operations, despite providing slightly better solution quality, such a prolonged
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CPU time is deemed unacceptable. Therefore, this paper further proposes the S-DR-

BBC method to significantly reduce CPU time while ensuring that the solution quality

remains within an acceptable range. In this subsection, we evaluate the impact of

the trust region radius k on the S-DR-BBC method. Previous studies have indicated

that increasing the k value beyond 3 becomes challenging to handle (Balakrishnan and

Chandran, 2010; Prakash et al., 2021, 2022). Therefore, we primarily test k values of

1, 2, 3, and |I|. It is important to note that when k = |I|, our S-DR-BBC method

considers the complete solution space of the original problem, making the S-DR-BBC

and E-DR-BBC methods equivalent.

We first compare the performance of inexact decomposition methods with different

trust region radii k in terms of CPU time as provided in Figure 4.11. Generally, as the

value of k increases, the required CPU time also increases accordingly. Specifically, we

find that when k = 1, the CPU time slightly increases with the ϵ value in the ETDRO

approach, from 49.11 to 71.23, yet all the calculations can still be completed within

100 seconds. For k = 2, 3, |I|, all their CPU time exceeds 190 seconds. As the ϵ value

increases from 100 to 5,000, the CPU time for these k values ranges from 195.09 to

283.92 seconds initially and increases to 535.30 to 906.09 seconds.

We then compare the performance of the inexact decomposition methods based on

the objective value metric. The overall results for this metric are shown in Figure 4.12.

We find that the loss, defined as the difference between the objective value of the

solution obtained by the inexact method and that of the exact solution, grows as

the ϵ value increases. Moreover, when the trust region radius k is set to 1, which

considers the smallest solution space, the highest loss value is obtained. As the value

of k increases, a larger solution space is considered, thereby reducing the loss. It is

also observed that when the ϵ value of the ETDRO approach is between 100 and 1000,

the performance of all solution methods is nearly identical. At an ϵ value of 3000, the

loss between the inexact S-DR-BBC method with k = 1 and the exact E-DR-BBC
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Figure 4.11: Overall results for the CPU time indicator of the inexact decomposition
methods for ETDRO.

method is about 2.77%. When the ϵ value reaches 5000, the loss increases to about

4.39%. While the performance gap between the inexact S-DR-BBC method and the

exact E-DR-BBC method increases with higher ϵ values, the results from actual sample

analysis and real-world implementation indicate that increasing the ϵ value does not

always enhance ETDRO performance in practical scenarios. Therefore, selecting an

appropriate ϵ value for ETDRO, which is generally not large, is sufficient to keep the

loss within an acceptable range. For instance, in the ETDRO approach for ASSP, the

best performance in actual scenarios is achieved with an ϵ value of 1000. Notably, the

loss between the inexact S-DR-BBC method with k = 1 and the exact E-DR-BBC
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Figure 4.12: Overall results for the objective value indicator of the inexact decomposi-
tion methods for ETDRO.

method at this ϵ value is only approximately 0.43%, which is a minimal and acceptable

loss, especially given the significant reduction in CPU time.

Lastly, we compare the performance of the inexact decomposition methods based

on the optimality gap indicator. The overall results for this indicator are provided in

Figure 4.13. It can be seen that for all test instances, the inexact S-DR-BBC method

with k = 1 finds the optimal solution within its solution space. For other methods,

the optimality gap is greater than 0, indicating a potential for further optimisation

to narrow or eliminate this gap. Additionally, for k = 2, 3, |I|, as the ϵ value in the

ETDRO approach increases, the optimality gaps also increase, ranging from 0.62% to
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Figure 4.13: Overall results for the optimality gap indicator of the inexact decomposi-
tion methods for ETDRO.

1.44% initially and rising to 13.69% to 31.47%.

Overall, we find that the S-DR-BBC method with k = 1 outperforms other param-

eter settings in terms of CPU time and optimality gap indicators while maintaining

acceptable loss in objective value. This suggests that setting k = 1 in the S-DR-BBC

method is advantageous for implementing the ETDRO approach for ASSP in practical

applications due to its high computational efficiency and excellent solution quality.

This enables runway controllers to utilise the ETDRO approach to effectively manage

the dynamic fluctuations of aircraft landing and take-off times across the entire plan-

ning horizon. This facilitates the rapid development of efficient and robust aircraft
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sequencing and scheduling plans for real-world applications.

4.6 Conclusions

This study introduces advanced ETO and ETDRO approaches for ASSP at single-

runway airports, aiming to enhance runway operations by integrating prediction and

optimisation techniques for intelligent decision-making. We further develop several ex-

act and inexact decomposition methods to handle the ETDRO approach efficiently.

Extensive numerical experiments and scalability analyses using realistic data from

XMN are used to evaluate the proposed optimisation approaches and solution meth-

ods. The in-sample and out-of-sample analyses reveal that both the ETO approach

and the ETDRO approach with smaller ϵ values perform better under normal condi-

tions, while the ETDRO approach excels in extreme situations. Notably, the ETDRO

approach with a smaller ϵ value demonstrates consistent good performance in both

normal and extreme scenarios. Meanwhile, actual sample analysis and real-world im-

plementation demonstrate that the ETDRO approach outperforms other optimisation

approaches when an appropriate ϵ value is chosen. Overall, experimental results con-

firm that when information beyond historical data of uncertain parameters is available,

the ETO and ETDRO approaches, driven by high-performance ML methods, deliver

superior aircraft sequencing and scheduling decisions compared to traditional optimi-

sation approaches. Moreover, the ETDRO approach, which accounts for prediction

and sampling errors, provides more efficient and robust plans than the ETO approach.

The scalability analysis demonstrates that the proposed inexact S-DR-BBC method

significantly outperforms exact solution methods in terms of CPU time, while main-

taining good solution quality. This enables runway controllers to effectively utilise the

ETDRO approach, capturing the dynamic fluctuations of aircraft arrival and depar-

ture times over the entire decision horizon, thereby facilitating the rapid development
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of efficient and robust aircraft sequencing and scheduling plans.

In future research, we will continue to explore the application of prescriptive ana-

lytics in airports with multi-runway systems, as well as in jointly optimising runway

operations and terminal manoeuvring area traffic flow management. By fully utilising

historical and auxiliary data, with the support of ML technology, we can better capture

the uncertainty in both airside operations and terminal airspace management. This

helps avoid suboptimal plans, improve overall operational efficiency, reduce environ-

mental impact, and better meet the growing demand for air traffic. However, given

the more complex operating environment, ML methods may be impacted by numer-

ous extreme values, potentially causing predicted scenarios to deviate from reality. To

address this issue, we need to develop scenario selection strategies that can distinguish

and eliminate these extreme scenarios. Moreover, for these more complex optimisation

problems, it is necessary to develop tailored solution methods based on their specific

operational characteristics, thereby more effectively providing runway and terminal

airspace operation plans for practical applications.
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Chapter 5

Prescriptive analytics for the

multi-runway aircraft landing

problem

5.1 Introduction

The rapid growth in aviation demand in recent years has further strained the already

limited runway capacity at airports (Bennell et al., 2011; Lieder et al., 2015; Ikli et al.,

2021; Messaoud, 2021; Chen et al., 2024). Optimising runway operations, instead

of adhering to the first-come, first-served rule, can reduce the number of aircraft in

holding patterns (Balakrishnan and Chandran, 2010; Lieder et al., 2015; Solak et al.,

2018; Ikli et al., 2021). This not only increases runway capacity but also enhances the

operational efficiency of the runway system. Additionally, making reasonable decisions

about runway operations can bring significant economic and environmental benefits

(Bennell et al., 2011; Sabar and Kendall, 2015; Chen et al., 2024). One critical aspect of

achieving these improvements is addressing the RSP. The RSP is a crucial optimisation

task in the aviation field, aiming to effectively manage airport runways to ensure the
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safe and efficient operation of aircraft (Bennell et al., 2011; Ikli et al., 2021). In the RSP,

wake vortex separation requirements between consecutive aircraft must be considered

operational constraints, and each aircraft should land or take off within its designated

time window. The objectives of the RSP are typically to minimise total delay costs and

to minimise makespan (Lieder et al., 2015; Bennell, J A and Mesgarpour, Mohammad

and Potts, Chris N, 2017; Hong et al., 2017). Additionally, given the substantial

growth in air traffic has led to elevated emissions levels within the terminal airspace,

which negatively impacts the environment and public health in the surrounding regions,

fuel consumption costs and exhaust emission costs are also considered objectives for

optimising runway operations (Sölveling et al., 2011; Bennell, J A and Mesgarpour,

Mohammad and Potts, Chris N, 2017; Ikli et al., 2021; Chen et al., 2024). The ALP

for arriving aircraft, the ATP for departing aircraft, and the ASSP that considers both

arrivals and departures are the main branches of the RSP, which have been widely

studied (Harikiopoulo and Neogi, 2010; Bennell et al., 2011; Lieder et al., 2015; Sabar

and Kendall, 2015; Salehipour, 2020; Ikli et al., 2021; Messaoud, 2021).

The classical RSP, which uses deterministic aircraft arrival and departure times,

has been extensively studied (Bennell et al., 2011; Solak et al., 2018; Ikli et al., 2021;

Messaoud, 2021). However, factors such as severe weather, air traffic delay propaga-

tion, technical challenges, and security considerations introduce variability in aircraft

arrival and departure times, resulting in uncertainty about the input data for the RSP

(Solak et al., 2018; Ng et al., 2017, 2020; Ikli et al., 2021; Khassiba et al., 2022).

Stochastic optimisation approaches have been employed to enhance the robustness of

decision-making in runway operations. Solveling et al. (2011) utilised an SP approach

to address the RSP with uncertain arrival and departure times. Heidt et al. (2016)

applied various RO approaches to develop robust runway operation plans. Kapolke

et al. (2016) incorporated the uncertainty of arrival and departure times into the RSP

using RO and SP approaches. Ng et al. (2017) determined runway scheduling decisions
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by evaluating the robustness of feasible solutions under worst-case scenarios, thereby

ensuring robust decision-making. Solak et al. (2018) introduced SP models based on

network and slot formulations for the RSP under uncertainty. Khassiba et al. (2020)

and Khassiba et al. (2022) used the SP approaches to extend the ALP on a single

runway, where initial approach fixes are considered.

These studies on RSP under uncertainty mainly focus on single runways or dual

parallel runways that handle aircraft take-offs and landings separately. However, due

to the substantial air traffic, many major international airports now feature multi-

ple runways (Messaoud, 2021). Among these, airports with parallel runways often

adopt segregated parallel operations, where runways are designated separately for ar-

rivals and departures, thereby enhancing operational efficiency and safety. Examples

include HKIA, Los Angeles International Airport (LAX), London Heathrow Airport

(LHR), Shanghai Pudong International Airport (PVG), and Dubai International Air-

port (DXB), etc. In this mode, some runways are used exclusively for arrivals, while

others are used solely for departures. Segregated parallel operations enhance opera-

tional efficiency, safety, and simplicity by eliminating the need for separate monitoring

controllers, reducing aircraft interaction and missed approaches, simplifying the air

traffic control environment, and lowering the risk of pilot errors due to incorrect instru-

ment landing system selection. Compared to single runways or dual parallel runways,

runway operations on parallel multi-runway systems not only determine the landing

and take-off sequences and times but also assign aircraft to specific runways, which

is more complex to solve (Kapolke et al., 2016; Hong et al., 2018; Lieder et al., 2015;

Salehipour, 2020; Sabar and Kendall, 2015). To this end, this chapter investigates run-

way operations under uncertainty at airports with parallel multi-runway systems, with

a particular focus on the MALP under arrival time uncertainty. Our approach, how-

ever, can also be readily extended to the MATP with uncertain departure times. ATC

must make decisions regarding aircraft assignment, sequencing, and scheduling within
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a parallel multi-runway system for aircraft landing operations. ATC typically deter-

mines aircraft-to-runway assignment before the aircraft enters the terminal airspace.

Aircraft sequencing decisions are usually made when the aircraft is in the terminal

airspace, while scheduling decisions are typically made when the aircraft enters the

final approach phase. In the previous SP model for runway operations, decisions are

based on a two-stage process (Solak et al., 2018; Khassiba et al., 2020). These studies

often assume that aircraft arrival times are known when the aircraft enters the final

approach phase. Consequently, aircraft sequencing decisions are usually addressed in

the first stage, while aircraft scheduling decisions are handled in the second stage after

the arrival times of aircraft are revealed. Since the second-stage problem of this SP

model, which considers only the aircraft scheduling decision, is formulated as a linear

programming (LP) problem with continuous variables, we refer to this SP model as the

SP model with continuous recourse (SP-CR). With the support of advanced aviation

technologies, including precise navigation systems, real-time data processing, accurate

predictive analysis, and efficient communication systems, ATC can monitor the flight

status of aircraft in real time and make relatively accurate arrival time predictions

when aircraft are operating in terminal airspace. Consequently, ATC can typically

make aircraft sequencing decisions based on these revealed arrival times. Therefore,

we can incorporate aircraft sequencing decisions into the second stage of the SP model,

thereby proposing a new SP model for MALP. This model assigns arriving aircraft to

runways in the first stage. Subsequently, it makes sequencing and scheduling decisions

for the aircraft assigned to each runway in the second stage. The decisions made using

this method are usually more flexible and more suitable for complex environments that

require high accuracy and real-time adjustments. Since the second-stage problem of

this SP model, which considers aircraft sequencing and scheduling decisions, is formu-

lated as a MILP problem, we refer to this SP model as the SP model with mixed-integer

recourse (SP-MIR).
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Previous studies on the RSP under uncertainty have primarily focused on deriving

the distribution of aircraft arrival and departure times by analysing historical data

(Solveling et al., 2011; Solak et al., 2018) or based on empirical knowledge (Khassiba

et al., 2020, 2022). Although effective, these classical methods often rely on past data

and experience and struggle to cope with the increasingly complex airside operation

environment. In recent years, the rapid development of big data technology has pro-

vided new opportunities to address uncertainties in runway operations. When ATC

has access to a substantial amount of historical and auxiliary data, it becomes possi-

ble to use ML methods to more accurately estimate the distribution of aircraft arrival

and departure times (Bertsimas and Kallus, 2020; Tian et al., 2023c; Wang and Yan,

2023). ML methods can extract valuable insights from data, providing more accurate

predictions than classical methods. Driven by these precise estimates, subsequent op-

timisation techniques can develop plans that better align with actual operations. This

integration of prediction and optimisation, known as prescriptive analytics, facilitates

informed decision-making based on the available data (Wang and Yan, 2023; Tian

et al., 2023a,b,c).

The ETO approach is a promising method in prescriptive analytics (Yang et al.,

2024). This approach first employs a learning-driven scenario generation (LSG) method

to estimate the distribution and select appropriate scenarios. Subsequently, these sam-

pled scenarios are inputs for the subsequent SP models. In this chapter, we employ the

random forest (RF) method to estimate the distribution of aircraft arrival times. The

RF method is a supervised learning technique (Breiman, 2001). Due to its high predic-

tion accuracy, resistance to outliers, and good interpretability, the RF method has been

widely used in prescriptive analysis research (Bertsimas and Kallus, 2020). Although

the LSG method typically provides good decisions in real-world scenarios, it generates

too many scenarios. Solving all the generated scenarios is difficult and usually requires

a long CPU time. Since runway operations are typically near real-time optimisation
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problems, solving the relevant optimisation problems is necessary quickly. Therefore, a

suitable scenario selection strategy must be adopted to keep the model tractable while

ensuring the quality of the solution. The LSG method typically employs the SAA to

select an appropriate number of scenarios (Yang et al., 2024). Given that MALP is

usually implemented at hub international airports, where the operational environment

is usually complex, the aircraft arrival time predictions provided by ML methods may

be affected by extreme values. However, previous scenario selection strategies do not

account for the processing of these extreme scenarios. If they are directly used for sce-

nario selection, some extreme scenarios may be input into the subsequent optimisation

problem, resulting in unsatisfactory decisions. It is essential to implement measures

to mitigate the occurrence of such situations. To this end, this chapter proposes an

optimisation-enhanced LSG (OLSG) method. This method selects a subset of scenar-

ios from an initial scenario set using a p-median problem, with the objective function

minimising the Wasserstein distance between the chosen scenarios (Reese, 2006; Wang

and Jacquillat, 2020). By minimising the Wasserstein distance, extreme scenarios can

largely be avoided in decision-making, ensuring that the decisions are more aligned

with reality.

The ALP is recognised as an NP-hard problem (Bennell et al., 2011). When consid-

ering MALP under uncertainty, which involves multiple runways and uncertain aircraft

arrival times, solving it to optimality becomes even more challenging. The studied

MALP includes three categories of decision variables: aircraft-to-runway assignments,

aircraft sequencing, and scheduling. This structure is well-suited to decomposition.

The BD method is extensively used to solve SP models where the subproblems are re-

quired to be LP models with continuous variables (Khassiba et al., 2020; Rahmaniani

et al., 2018). However, the studied SP-MIR model for MALP considers the aircraft

sequencing and scheduling problem in the second stage, which is a MILP second-stage

problem. For this case, the integer L-shaped method can be employed instead of the
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classic BD method (Laporte and Louveaux, 1993). Nevertheless, in the integer L-

shaped method, a continuous relaxation of the MILP subproblem is used to generate

classical Benders cuts, which may be time-consuming (Elçi and Hooker, 2022). As

a more efficient alternative method, the logic-based Benders decomposition (LBBD)

method was widely applied in recent studies, where no-good cuts or analytical cuts are

used as Benders cuts (Elçi and Hooker, 2022; Guo and Zhu, 2023; Li et al., 2023). Elçi

and Hooker (2022) observed that the LBBD method generally delivers more favourable

computational performance compared to the integer L-shaped method. Moreover, the

branch-and-check (BAC) method, a variant of the LBBD method, can achieve even

better computational performance (Elçi and Hooker, 2022; Li et al., 2023). The LBBD

method only generates Benders cuts through the optimal solution of the master prob-

lem (Hooker, 2007). Different from the LBBD method, in the BAC method proposed

by Thorsteinsson (2001), when an integer feasible solution of the master problem is

identified, the master problem terminates, and the feasible solution is input into the

subproblems to generate Benders cuts. An improved version is then proposed, wherein

the BAC method operates within a branch-and-cut tree. Once an integer feasible so-

lution is found, Benders cuts are generated and added to the nodes that remain to

be explored (Beck, 2010; Tran et al., 2016). As the BAC method generates Benders

cuts for every integer feasible solution found in the branch-and-cut tree, the number

of Benders cuts produced during the search process can be substantial (Fachini and

Armentano, 2020). Some weak Benders cuts may be added during this process, poten-

tially slowing the convergence rate. To address this issue, we propose the stabilised

BAC (SBAC) method, which introduces the trust region constraints and the reverse lo-

cal branching constraints to the master problem. The motivation for the SBAC method

is to stabilise the master problem around the neighbourhood of a stability centre point

(i.e., a good feasible solution) to generate strong Benders cuts during the convergence

process (Baena et al., 2020; Gong and Zhang, 2022).
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The main contributions of this chapter are summarised as follows:

(i) We develop the SP-MIR model for MALP, aiming to devise efficient and en-

vironmentally friendly aircraft landing operations for a multi-runway system under

uncertainty. This model minimises the weighted sum of expected makespan, fuel con-

sumption and exhaust emission costs. For the SP-MIR model of the MALP, we employ

the LSG method to estimate the distribution of unknown parameters using ML meth-

ods and generate scenarios based on the estimated results. Additionally, we propose an

OLSG method for generating scenarios when the prediction results of the ML method

perform poorly due to system complexity. This is achieved by using the p-median prob-

lem with the objective function of minimising the Wasserstein distance of the selected

scenarios, thereby avoiding generating extreme scenarios as much as possible.

(ii) We propose a novel exact decomposition method called the SBAC method for

efficiently solving the SP-MIR model for MALP. This method decomposes the original

problem into a stabilised master problem for determining aircraft-to-runway assign-

ments, as well as several subproblems for making aircraft sequencing and scheduling

decisions. The stabilised master problem searches for new solutions around the neigh-

bourhood of a stability centre point through trust region constraints and reverse local

branching constraints, thereby generating strong Benders cuts to accelerate the con-

vergence rate.

(iii) Extensive numerical experiments based on real data from Hong Kong Inter-

national Airport (HKIA) demonstrate the efficiency and environmental benefits of the

SP-MIR model for MALP, supported by the OLSG method. Additionally, scalabil-

ity analyses evaluate the computational performance of the proposed SBAC method,

showing a significant improvement in CPU time.

The rest of this chapter is structured as follows. Section 5.2 provides the problem

setting and presents the formulations of the SP-MIR model for MALP. Section 5.3

illustrates the scenario generation methods used in this study. Section 5.4 introduces
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the proposed SBAC method to solve the SP-MIR model for MALP. In Section 5.5,

numerical experiments are performed based on realistic data from HKIA. The results

of the scalability analyses are reported in Section 5.6. Finally, the conclusions are

presented in Section 5.7.

5.2 SP-MIR model for MALP

In this section, we provide a problem description of the MALP under arrival time

uncertainty and use the SP approach to handle this uncertainty. At airports with multi-

runway systems for aircraft landing operations, ATC must make decisions regarding

aircraft assignment, sequencing, and scheduling. Air traffic control is responsible for

assigning landing runways and planning routes to each arriving aircraft before they

enter terminal airspace. Once an aircraft is flying in terminal airspace, air traffic

control can monitor its flight status in real time, make relatively accurate arrival time

predictions, and determine aircraft sequencing and scheduling decisions for each runway

based on the revealed arrival times. Therefore, the SP model for MALP involves a

two-stage decision-making process. In the first stage, we assign aircraft to runways to

optimise the utilisation of runway resources. In the second stage, we make sequencing

and scheduling decisions for the arriving aircraft assigned to each runway to ensure

they can land safely within the appropriate time windows. Since the second-stage

problem of this SP model, which considers aircraft sequencing and scheduling decisions,

is formulated as an MILP problem, we refer to this SP model as the SP-MIR model.

Consider a set R containing parallel, identical, independent runways for landing. The

approaching aircraft are in a set I. The variable xr
i is equal to 1 if aircraft i ∈ I is

assigned to runway r ∈ R. Due to various factors, the arrival time of each aircraft

is often uncertain. This uncertainty is represented by a potentially small finite set of

scenarios, denoted as Ω = {1, 2, . . . , |Ω|}. The probability of scenario ω ∈ Ω is denoted
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by pω. The arrival time Eω
i of each aircraft i ∈ I is determined under scenario ω ∈ Ω.

The landing time tωi of aircraft i must not be earlier than its arrival time Eω
i , and the

delay time dωi is the difference between these two values. Each runway can process, at

most, one aircraft at a time. The variable yrωij is equal to 1 if aircraft i ∈ I precedes

aircraft j ∈ I \ {i} on the same runway r under scenario ω. If aircraft i and j are

assigned to the same runway, a separation time Sij is required between the landing

times of aircraft to ensure the wake vortex separation requirements. Each runway

starts with dummy aircraft s and ends with dummy aircraft e. The arrival time of the

earliest arriving aircraft under scenario ω is denoted as Aω, where Aω = mini∈I {Eω
i }.

The variable zω represents the makespan under scenario ω, defined as the difference

between the landing time of the last aircraft to use the runway system and Aω.

The SP-MIR model for MALP aims to minimise the weighted sum of the expected

makespan and environmental costs. In this chapter, weightsW1 andW2 are respectively

used to reflect the preferences for makespan and environmental costs, where W1+W2 =

1. The environmental costs include fuel consumption and exhaust emission costs. The

fuel consumption cost depends on the jet fuel cost per unit CFuel, the fuel burn rate

αi, and the delay time dωi (Sölveling et al., 2011). The extra fuel consumption cost of

aircraft i is expressed as CFuelαid
ω
i for each scenario ω. The exhaust emissions mainly

consist of CO2, CO, HC, NOx, and SO2 (Sölveling et al., 2011; Tian et al., 2018).

Following the exhaust emission modelling method proposed by Sölveling et al. (2011),

the emissions of CO2 are proportional to the fuel flow αid
ω
i with a factor β. The

emissions of the other pollutants can be calculated by multiplying the emission rates

εmi , m ∈ {CO,HC,NOx, SO2} by the delay time dωi . Each type of emission has an

associated external cost, denoted as CCO2 , CCO, CHC, CNOx , and CSO2 . We provide

notations of sets, parameters and decision variables used in Table 5.1.

Given the problem description and notations outlined above, the SP-MIR model
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Table 5.1: Notations and definitions for MALP.

Notation Definition
Sets
R Set of runways.
I Set of arriving aircraft.
Ω Set of scenarios.
Parameters
pω Probability of scenario ω.
Eω

i Arrival time of aircraft i under scenario ω.
Aω The arrival time of the earliest aircraft under scenario

ω.
Sij The separation time between aircraft i ∈ I and j ∈

I \ {i}.
αi The fuel burn rate of aircraft i.
β The proportional constant for CO2 emissions per unit of

fuel flow.
CFuel Unit cost of jet fuel.
Cm Unit cost of m, where m ∈ {CO2,CO,HC,NOx, SO2}.
εmi Emission rate of m for aircraft i, where m ∈

{CO,HC,NOx, SO2}.
W1 The weight of the makespan.
W2 The weight of the environmental costs.
Mω A sufficiently large number for the scenario ω.
Variables
xr
i 1, if aircraft i is assigned to runway r ∈ R; 0, otherwise.

yrωij 1, if aircraft i precedes aircraft j on the same runway r
under scenario ω; 0, otherwise.

tωi Landing time of aircraft i in scenario ω.
zω Makespan under scenario ω.
dωi Delay time of aircraft i in scenario ω.

for MALP is provided as follows:

min
∑
ω∈Ω

pω

[
W1z

ω +W2

(
CFuel

∑
i∈I

αid
ω
i + CCO2

∑
i∈I

βαid
ω
i + CCO

∑
i∈I

εCO
i dωi

+CHC
∑
i∈I

εHC
i dωi + CNOx

∑
i∈I

εNOx
i dωi + CSO2

∑
i∈I

εSO2
i dωi

)]
(5.1a)
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s.t.
∑
r∈R

xr
i = 1, ∀i ∈ I, (5.1b)

xr
i =

∑
j∈I∪{e}\{i}

yrωij , ∀r ∈ R, ∀i ∈ I, ∀ω ∈ Ω, (5.1c)

∑
j∈I

yrωsj = 1, ∀r ∈ R, ∀ω ∈ Ω, (5.1d)

∑
i∈I

yrωie = 1, ∀r ∈ R, ∀ω ∈ Ω, (5.1e)

∑
j∈I∪{s}\{i}

yrωji =
∑

j∈I∪{e}\{i}

yrωij , ∀r ∈ R, ∀i ∈ I, ∀ω ∈ Ω, (5.1f)

tωi ≥ Eω
i , ∀i ∈ I, ∀ω ∈ Ω, (5.1g)

tωi + Sij − tωj ≤Mω(1− yrωij ), ∀r ∈ R, ∀i ∈ I, ∀j ∈ I, i ̸= j, ∀ω ∈ Ω, (5.1h)

zω ≥ tωi − Aω, ∀i ∈ I, ∀ω ∈ Ω, (5.1i)

dωi ≥ tωi − Eω
i , ∀i ∈ I, ∀ω ∈ Ω, (5.1j)

xr
i ∈ {0, 1} , ∀r ∈ R, ∀i ∈ I, (5.1k)

yrωij ∈ {0, 1} , ∀r ∈ R, ∀i ∈ I ∪ {s} , ∀j ∈ I ∪ {e} , i ̸= j, ∀ω ∈ Ω, (5.1l)

tωi ∈ R+, ∀i ∈ I, ∀ω ∈ Ω, (5.1m)

zω ∈ R+, ∀ω ∈ Ω, (5.1n)

dωi ∈ R+, ∀i ∈ I, ∀ω ∈ Ω. (5.1o)

136



The objective function (5.1a) minimises the weighted sum of the expected makespan

and expected environmental costs. Constraints (5.1b) ensure that each aircraft is as-

signed to exactly one runway. Constraints (5.1c) ensure each aircraft is within the

runway sequence. Constraints (5.1d) and (5.1e) guarantee that each runway starts

with dummy aircraft s and ends with dummy aircraft e. Constraints (5.1f) main-

tain the flow conservation of each runway. Constraints (5.1g) require that the land-

ing time of aircraft i should be no earlier than Eω
i . Constraints (5.1h) ensure the

separation time between two aircraft that use the same runway consecutively, where

Mω = maxi∈I {Eω
i } + maxi∈I,j∈I, i ̸=j {Sij} (|I| − 1). Constraints (5.1i) compute the

makespan. Constraints (5.1j) define the delay time of each aircraft. Constraints (5.1k)

to (5.1o) define the domain of decision variables.

5.3 Scenario generation methods for MALP

In the SP approach, appropriate scenario generation methods are crucial. They gener-

ate scenarios that better capture uncertainty, enhancing the robustness and reliability

of the SP models’ decisions, thereby making them more effective in practical implemen-

tations. In this section, we first introduce the HDSG method, a scenario generation

method based on historical data, which has been used in previous SP approaches for

runway operations (Sölveling et al., 2011; Solak et al., 2018). Next, we propose the

LSG method based on the RF method. In this approach, the RF method determines

the distribution of aircraft arrival times, and an appropriate number of scenarios are

extracted using the SAA method. Finally, based on the LSG method, we further de-

velop the OLSG method. Given that the poor predictive accuracy of some decision

trees may lead to significant deviations between the sampled and actual scenarios, the

OLSG method employs the p-median problem to select scenarios generated by the RF

method. This method prevents extreme scenarios from being incorporated into the
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subsequent SP models.

5.3.1 Historical data-driven scenario generation method

In previous studies on runway operations under uncertainty using the SP approach,

the HDSG method has often been employed to generate scenarios based on historical

data (Sölveling et al., 2011; Solak et al., 2018). In this study, the HDSG method first

analyses the deviation between the estimated and actual aircraft arrival times using

historical data. Subsequently, it employs the SAA method to generate a scenario set

Ω based on the analysed distribution, which is then utilised in the subsequent SP-MIR

model for MALP.

Utilising data from 1st to 30th October 2023, we present the distribution of de-

viations between estimated and actual arrival times in Figure 5.1. Specifically, Fig-

ure 5.1(a) shows the distribution for all deviations, where the deviation times are

concentrated around 0 minutes. However, numerous extreme values result in the dis-

tribution having a long tail. We eliminate these extreme values using the interquartile

range (IQR) method based on the 0.25 and 0.75 quantiles. After removing outliers,

Figure 5.1(b) shows a more symmetric distribution of arrival time deviations. In the

HDSG method, a scenario is constructed by incorporating the arrival time deviations

âi into the known estimated arrival time Ei for each aircraft i. These deviations, âi, are

randomly drawn from the distribution shown in Figure 5.1(b). All sampled scenarios

are included in the scenario set Ω. The probability of each scenario in set Ω is 1
|Ω| .

5.3.2 Learning-driven scenario generation method

This section presents the LSG method, with its framework illustrated in Figure 5.2.

To train the RF method, we start by presenting the experimental data and selected

features. Then, we adjust the hyperparameters of the RF method and check how
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Figure 5.1: Distribution of arrival time deviations for MALP.

well it predicts aircraft arrival times. The details of the training process are provided

below. Directly predicting aircraft arrival times can be affected by various uncertain

factors. By predicting the deviation between estimated and actual arrival times instead,

we can more effectively account for these uncertainties and enhance the accuracy of

our predictions. Specifically, we predict the deviation value and add this predicted

deviation, âi, to the estimated arrival time, Ei, of aircraft i to provide the predicted

arrival time Êi, i.e., Êi = Ei + âi.

The RF method applied in our study is implemented with the scikit-learn library.

The dataset used in this study was collected from HKIA between 1st and 31st October

2023. It comprises 12,822 records of arriving aircraft, each containing relevant aircraft

information. The TAF data includes details such as maximum and minimum tempera-

tures, humidity, air pressure, wind direction, wind speed, and other relevant parameters

during the forecast period. We selected 14 features from the original dataset, which are

presented in Table 5.2, along with their data type, encoding method, and statistical

information. Missing values were identified in features such as “Aircraft type”, “Route

distance”, and “Fuel load”. To address these, we filled in the missing values using

the median for “Aircraft type” and the mean for both “Route distance” and “Fuel
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Figure 5.2: Framework for the scenario generation method supported by RF.

load”. Notably, the features “Aircraft type”, “Domestic/International”, and “Wind

direction” are expressed in a literal format, necessitating their conversion to numerical

data. Regarding aircraft type, the arriving aircraft at HKIA primarily fall into two cat-

egories: heavy and large, which we encoded as 2 and 1, respectively. We considered 16

wind directions and adopted one-hot encoding for wind directions. The data collected

between 1st and 30th October 2023 was designated as dataset D, containing 12,362

records of arriving aircraft. We randomly split 80% of the data in D as a training set

DTraining for training the RF model, while the remaining 20% as DTesting to evaluate

its performance. The data from October 31st 2023, is used to generate test instances

for the numerical experiments and scalability analysis.

In the RF method, several key hyperparameters must be considered. The hyperpa-

rameters tuned for the RF method are detailed in Table 5.3. These optimal hyperpa-
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Table 5.2: Features of RF for MALP.

Feature name Data type Encoding Null count
Aircraft type Object Label encoding 153

Domestic/International Object One-hot encoding 0
Estimated arrival time Numerical 0

Cruise speed Numerical 506
Straight line distance Numerical 0

Route distance Numerical 228
Estimated flight time Numerical 0

Fuel load Numerical 820
High temperature Numerical 0
Low temperature Numerical 0

Humidity Numerical 0
Barometer Numerical 0

Wind direction Object One-hot encoding 0
Wind speed Numerical 0

Table 5.3: Best hyperparameter values of the RF method for MALP.

Hyperparameters Search space Best value
n_estimators [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] 200

min_samples_split [2, 3, 4, 5, 6, 7, 8, 9, 10] 9
min_samples_leaf [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 6

max_depth [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 20

rameter values were determined using a grid search method with 5-fold cross-validation

on the training dataset DTraining.

After predicting the deviation value âi using the ML methods, we calculate the

predicted arrival time Êi using the formula Êi = Ei + âi, where the estimated arrival

time Ti is assumed to be known in advance. We further use the estimated arrival time

Ei to replace the predicted arrival time T̂i in Equation (3.2) to (3.4) for calculating

the MAE, MSE, and RMSE values as benchmarks. According to the prediction results

in Table 5.4, the RF method exhibits a smaller MAE compared to the benchmark.

However, the MSE and RMSE values are larger, suggesting that while most prediction

errors are small, some individual errors are significantly large.
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Table 5.4: Prediction results on the testing dataset for MALP.

Metrics Benchmark RF Reduction (%)
MAE 27.00 21.63 19.81
MSE 3954.36 3196.96 19.12
RMSE 62.88 56.54 10.05

After training, testing and validating the RF method, we utilise the prediction

results to more accurately estimate distributions for aircraft arrival times. Let N

denote the number of pre-determined decision trees. At this stage, the RF method

can provide N possible arrival times for each aircraft. We represent the set of these

N possible values, given the input feature vector fi, as P(fi). The arrival time vector

for set I is written as Ẽ =
(
Ẽ1, Ẽ2, . . . , Ẽ|I|

)
. Following previous works (Yang et al.,

2024), we employ the Cartesian product Φ(Ẽ) =
{
P(f1)× P(f2)× · · · × P(f|I|)

}
to

approximate the distribution of Ẽ. This product includes N |I| elements, which grows

exponentially with |I| (Yan et al., 2022). Accordingly, the uncertain arrival times are

represented by a set of scenarios, Ξ = {1, 2, . . . , |Φ(Ẽ)|}, with size N |I|.

Considering all scenarios in Ξ would make solving the subsequent SP-MIR model

overly complex. Thus, we employ the SAA method to approximate the distribution of

aircraft arrival times by randomly selecting a subset of scenarios, Ω, from Ξ, with each

scenario having an equal probability 1
|Ω| .

5.3.3 Optimisation-enhanced learning-driven scenario genera-

tion method

In the prediction results presented in Table 5.4, we observe the following: the MAE

of the RF method is 21.63, while the RMSE is 56.54. The MAE indicates the aver-

age of the absolute differences between the predicted and actual values, whereas the

RMSE emphasises the square of these differences, being more sensitive to larger errors.

Consequently, the higher RMSE value suggests the presence of prediction errors. This
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indicates that certain decision trees within the RF method may exhibit poor predictive

performance, leading to larger prediction errors. This also implies that when the LSG

method, based on the RF method, generates scenarios, it may produce some extreme

scenarios due to the influence of certain extreme prediction values. In SP approaches,

such extreme scenarios can affect the efficiency and robustness of the model. There-

fore, it is essential to eliminate these extreme scenarios through appropriate scenario

selection methods to enhance the models’ performance.

In this section, we propose the OLSG method to mitigate the generation of ex-

treme scenarios. The framework of this method is similar to that of LSG provided in

Figure 5.2. The difference is that the OLSG method employs the p-median problem

for scenario selection, aiming to minimise the type-1 Wasserstein distance among the

selected scenarios while determining an appropriate number of scenarios. In the OLSG

method, similar to the LSG method, we first use the RF method to generate the sce-

nario set Ξ. The p-median problem is then employed to select |Ω| scenarios from Ξ.

However, as noted in Subsection 5.3.2, Ξ is a set containing N |I| scenarios, and directly

using it as the input for the p-median problem would render the problem intractable.

To ensure the tractability of the p-median problem, we use the SAA method to ran-

domly choose a subset Ξsub from Ξ. Following this, p-median problem (5.2) is employed

to generate the scenario set Ω from Ξsub, which is subsequently used in the SP model.

In the OLSG method, the set size |Ω| is defined in advance. The size of the subset Ξsub

extracted from the original set Ξ is defined as |Ξsub| = γ|Ω|, where γ represents the

selection ratio. It should be noted that when γ = 1, the OLSG method is equivalent

to the LSG method, as the scenarios in Ω are directly selected from Ξ using SAA. As

the value of γ increases, the scenarios in Ω need to be selected from a larger set Ξsub.

In the p-median problem, we minimise the type-1 Wasserstein distance between

scenarios selected to the set Ω. The parameter wξ′,ξ denotes the type-1 Wasserstein

distance between scenario ξ′ and ξ. The number of scenarios selected into the set Ω
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is constrained by the parameter |Ω|. A binary decision variable lξ equals 1 if scenario

ξ′ ∈ Ξsub is incorporated into the scenario set Ω, and 0 otherwise. Another binary

decision variable qξ
′,ξ equals 1 if scenario ξ′ ∈ Ξsub is mapped to scenario ξ ∈ Ω, and

0 otherwise. The mathematical formulations of the p-median problem for scenario

selection are provided as follows:

min
∑

ξ′∈Ξsub

∑
ξ∈Ξsub

wξ′,ξqξ
′,ξ (5.2a)

s.t.
∑
ξ∈Ξ

lξ = |Ω|, (5.2b)

qξ
′,ξ ≤ lξ, ∀ξ′ ∈ Ξsub, ∀ξ ∈ Ξsub, (5.2c)

∑
ξ∈Ξsub

qξ
′,ξ = 1, ξ′ ∈ Ξsub, (5.2d)

lξ ∈ {0, 1} , ∀ξ ∈ Ξsub, (5.2e)

qξ
′,ξ ∈ {0, 1} , ξ′ ∈ Ξsub, ∀ξ ∈ Ξsub. (5.2f)

The objective function (5.2a) minimises the type-1 Wasserstein distance of the

selected scenarios. Constraints (5.2b) ensure |Ω| scenarios are chosen from Ξsub. Con-

straints (5.2c) guarantee that all scenarios ξ′ ∈ Ξsub are mapped to one of the selected

scenarios in Ω. Constraints (5.2d) make sure that each scenario ξ′ is assigned to a

scenario in Ω. Constraints (5.2e) and (5.2f) define the range of the decision variables.

The scenarios selected in the set Ω have equal probability 1
|Ω| .
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5.4 SBAC method for MALP

Because of the NP-hard nature of the MALP, existing commercial MIP solvers can

only handle test instances with a small number of scenarios within a limited CPU time.

This section proposes the SBAC method for effectively and efficiently solving the SP-

MIR model for MALP. The original SP-MIR model is first decomposed into a master

problem and several disaggregated subproblems. The idea of the SBAC method is to

search for the master problem solutions around the neighbourhood of a good stability

centre point in the branch-and-cut tree to generate strong cuts. Since the aircraft-

to-runway assignment decision variables x are binary variables, the stabilisation can

be achieved by adding trust region constraints and reverse local branching constraints

to the master problem (Baena et al., 2020). The trust region constraints ensure the

Hamming distance of the integer solutions to the stability centre x̂sc is within a trust

region radius κ, where κ ≥ 1. In contrast, the reverse local branching constraints

avoid the SBAC method repeatedly searching the neighbourhood κ of the previous

stability centre x̂sc, where no better solution can be found. A set F of pairs (x̂sc, κ′)

is introduced to record regions excluded by the reverse local branching constraints.

The master problem with these constraints added is defined as the stabilised master

problem. When incorporating the reverse local branching constraints, the stabilised

master problem is easier to solve than the master problem due to the reduction of

its feasible region. However, it should be noted that due to the function of trust

region constraints, the stabilised master problem considers only a portion of the feasible

domain of the original problem. Consequently, the optimal solution to the stabilised

master problem cannot provide a valid global lower bound for the original problem.

Therefore, once an optimal solution to the stabilised master problem is found, the

stabilised master problem without trust region constraints should be solved to obtain

an effective global lower bound for the original problem.
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The implementation framework of the SBAC method is presented in Algorithm (5).

We set the lower bound (LB), upper bound (UB), neighbourhood capacity nc, and trust

region radius κ during the initialisation phase. Additionally, we define the set F , cut

pool M, and N as empty sets. By solving Model (5.1) with only one scenario, the

resulting first stage solution is defined as the initial stability centre x̂sc. We then solve

the stabilised master problem (5.6) with set F , cut poolsM and N using a MIP solver.

During the search, three situations will be encountered. The first situation is an integer

feasible solution x̂ζ is found. The disaggregated subproblems (5.3) are then solved with

this solution. Subsequently, the resulting Benders cuts (5.4) and (5.5) are added to the

unfathomed nodes. Additionally, the Benders cuts (5.4) and (5.5) are incorporated in

the cut poolsM and N , respectively. The second situation is an optimal solution x̂so

for the stabilised master problem (5.6) is found. The UB is updated with the related

optimal solution value, and the stabilised master problem (5.6) without the trust region

constraints (5.6c) is solved to obtain the LB. If UB is equal to LB, the SBAC method

finds the optimal solution to the original problem and terminates. Otherwise, solve a

new stabilised master problem (5.6) with F ,M and N , after the pair (x̂sc, κ) is added

to F and the stability centre x̂sc is updated as x̂so. The last situation is the stabilised

master problem (5.6) is infeasible. If κ ≥ nc, the SBAC method finds the optimal

solution to the original problem and terminates. Otherwise, solve a new stabilised

master problem (5.6) with F , M and N , after the pair (x̂sc, κ) is added to F and

choose a new trust region radius κ. The initial value of κ can be set to a number

greater than 0 and less than or equal to nc. When the stabilised master problem (5.6)

becomes infeasible, the value of κ is increased to a value greater than the current value

of κ and less than or equal to nc. In Subsection 5.6.1, we discuss the impact of various

trust region radius updating schemes on the computational performance of the SBAC

method.

It is easy to prove that the SBAC method presented in Algorithm (5) can solve the
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Algorithm 5 Stabilised branch-and-check method
1: Initialisation: Set LB ← 0, UB ← ∞, nc ← |R| ∗ |I|, κ ← ⌈0.1 ∗ nc⌉ , F ← ∅,
M← ∅, N ← ∅.

2: Generate stability centre x̂sc.
3: Solve the stabilised master problem (5.6) with x̂sc, F , M and N using a MIP

solver.
4: If the stabilised master problem (5.6) is infeasible then
5: If κ ≥ nc then
6: Stop, UB is the optimal value of the original problem.
7: End if
8: Add reverse local branching constraint (x̂sc, κ) to F , choose a new trust region

radius κ, go to line 3.
9: Else

10: If an optimal solution x̂so of stabilised master problem (5.6) is found then
11: Obtain optimal objective value f(x̂so), update UB← f(x̂so).
12: Solve the stabilised master problem (5.3) without trust region con-

straints (5.6c), obtain optimal objective value v, LB← v.
13: If LB = UB then
14: Stop, UB is the optimal value of the original problem.
15: End if
16: Add reverse local branching constraint (x̂sc, κ) to F , change the stability

centre x̂sc ← x̂so, go to line 3.
17: Else
18: An integer feasible solution x̂ζ is found.
19: Solve disaggregated subproblems (5.3) with x̂ζ .
20: Add Benders cuts (5.4) and (5.5) to the unfathomed nodes.
21: Add Benders cuts (5.4) and (5.5) to cut poolsM and N , respectively.
22: End if
23: End if
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optimisation problem within a finite number of iterations:

Proposition 5.4.1. The SBAC method can solve the SP-MIR model for MALP within

a finite number of iterations.

Proof : The SBAC method stops if an optimal solution is found. During the search,

one of the following actions will be taken: (i) add the Benders optimality cuts to un-

explored nodes; (ii) change the stability centre; (iii) increase the trust region radius.

The number of Benders cuts is finite. The number of stability centres is finite since the

feasible region of the first-stage decision variables x is a combinatorial bounded set.

The stability centre will not be searched repeatedly due to the reverse local branch-

ing constraints, and Benders cuts added to the stabilised master problem during the

search. The values of trust region radius κ are limited and never repeated because

it is a monotonically increasing sequence bounded by a neighbourhood capacity nc.

Therefore, the SBAC method will stop within a finite number of iterations and return

an optimal solution. □

5.4.1 Disaggregated subproblems

The subproblem makes the aircraft sequencing and scheduling decisions for each runway

r ∈ R under each scenario ω ∈ Ω, which can be disaggregated into |R|∗|Ω| disconnected

subproblems. When the stabilised master problem (5.6) is solved at iteration ζ, we learn

the aircraft-to-runway assignment decisions x̂ζ . The notation Ĥrζ refers to the clusters

of aircraft assigned to runway r ∈ R by the stabilised master problem solution obtained

at iteration ζ, i.e., Ĥrζ =
{
i|x̂rζ

i = 1, ∀i ∈ I
}
. A disaggregated subproblem for runway

r under scenario ω can be formulated as model (5.3), where the r superscript of y is

ignored.
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min W1z
ω +W2

CFuel
∑
i∈Ĥrζ

αid
ω
i + CCO2

∑
i∈Ĥrζ

βαid
ω
i + CCO

∑
i∈Ĥrζ

εCO
i dωi

+CHC
∑
i∈Ĥrζ

εHC
i dωi + CNOx

∑
i∈Ĥrζ

εNOx
i dωi + CSO2

∑
i∈Ĥrζ

εSO2
i dωi

 (5.3a)

s.t.
∑

j∈Ĥrζ∪{e}\{i}

yωij = 1, ∀i ∈ Ĥrζ , (5.3b)

∑
j∈Ĥrζ

yωsj = 1, (5.3c)

∑
i∈Ĥrζ

yωie = 1, (5.3d)

∑
j∈Ĥrζ∪{s}\{i}

yωji =
∑

j∈Ĥrζ∪{e}\{i}

yωij, ∀i ∈ Ĥrζ , (5.3e)

tωi ≥ Eω
i , ∀i ∈ Ĥrζ , (5.3f)

tωi + Sij − tωj ≤Mω(1− yωij), ∀i ∈ Ĥrζ , ∀j ∈ Ĥrζ , i ̸= j, (5.3g)

zω ≥ tωi − Aω, ∀i ∈ Ĥrζ , (5.3h)

dωi ≥ tωi − Eω
i , ∀i ∈ Ĥrζ , (5.3i)

yωij ∈ {0, 1} , ∀i ∈ Ĥrζ ∪ {s} , ∀j ∈ Ĥrζ ∪ {e} , i ̸= j, (5.3j)

tωi ∈ R+, ∀i ∈ Ĥrζ , (5.3k)

zω ∈ R+, (5.3l)
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dωi ∈ R+, ∀i ∈ Ĥrζ . (5.3m)

5.4.2 Benders optimality cuts

After all the disaggregated subproblems are solved, Benders cuts should be added

to the unfathomed nodes. Notably, we do not impose a UB on the landing time.

This is because arriving aircraft may occasionally experience a prolonged hold before

landing, although this is rare. Therefore, all solutions from the first stage are feasible

to the second-stage problem, i.e., the SP-MIR model of MALP has complete recourse.

Given the complete recourse property of the SP-MIR model for MALP, only optimality

cuts are generated during the convergence process of the SBAC method. After all

the disaggregated subproblems are solved, we learn the makespan Ẑrωζ and the total

environmental costs Ĉrωζ of runway r under scenario ω at iteration ζ. Then, the

related Benders optimality cuts are written as Eq. (5.4) and (5.5). The value of M

is set to 10Ẑrωζ for Eq. (5.4) and 10Ĉrωζ for Eq. (5.5), respectively. In subsequent

iterations, cuts (5.4) ensure that if all aircraft in the set Ĥrζ are assigned to runway

r, the makespan under scenario ω should be greater than or equal to Ẑrωζ . Similarly,

cuts (5.5) guarantee that if all aircraft in the set Ĥrζ are assigned to runway r, the

environmental costs of runway r under scenario ω should be no less than Ĉrωζ .

ηω ≥ Ẑrωζ −M
∑
i∈Ĥrζ

(1− xr
i ), ∀r ∈ R, ∀ω ∈ Ω, (5.4)

θrω ≥ Ĉrωζ −M
∑
i∈Ĥrζ

(1− xr
i ), ∀r ∈ R, ∀ω ∈ Ω. (5.5)
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5.4.3 Stabilised master problem

The initial stabilised master problem is written as follows:

min
∑
ω∈Ω

pω(W1η
ω +W2

∑
r∈R

θrω) (5.6a)

s.t. Constraints (5.1b), (5.1k), (5.6b)

∑
(r,i):x̂r,sc

i =1

(1− xr
i ) +

∑
(r,i):x̂r,sc

i =0

xr
i ≤ κ, (5.6c)

∑
(r,i):x̂r,sc′

i =1

(1− xr
i ) +

∑
(r,i):x̂r,sc′

i =0

xr
i ≥ κ′ + 1, ∀(x̂sc′ , κ′) ∈ F , (5.6d)

ηω ≥ Ẑmω −M
∑
i∈Ĥm

(1− xr
i ), ∀m ∈M, ∀r ∈ R, ∀ω ∈ Ω, (5.6e)

θrω ≥ Ĉnω −M
∑
i∈Ĥn

(1− xr
i ), ∀n ∈ N , ∀r ∈ R, ∀ω ∈ Ω, (5.6f)

ηω ∈ R+, ∀ω ∈ Ω, (5.6g)

θrω ∈ R+, ∀r ∈ R, ∀ω ∈ Ω. (5.6h)

The trust region constraints (5.6c) guarantee that the integer solutions identified

in the branch-and-cut tree remain within a trust region radius κ of a stability centre

x̂sc. The reverse local branching constraints (5.6d) are used to avoid the SBAC method

repeatedly searching the neighbourhood κ′ of the previous stability centre x̂sc′ , where

no better solution can be found. The set F of pairs (x̂sc′ , κ′) record the previous

stability centres x̂sc′ and related trust region radius κ′. Constraints (5.6e) and (5.6f)

are initial cuts for adding the previously found Benders cuts to the root node of the
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new branch-and-cut tree. Constraints (5.6g) and (5.6h) define the domain of decision

variables.

5.5 Numerical experiments for MALP

This section designs the experiments and discusses specific test instances in detail.

Subsequently, we conduct actual sample analysis and implement real-world applications

to evaluate the performance of the SP-MIR model for MALP, supported by the OLSG

method. We then compare the performance of the SP-MIR and SP-CR models for

MALP. Finally, we examine the impact of the decision-maker preference levels.

5.5.1 Experimental design for MALP

The experiments are conducted based on real data from HKIA, which is one of the

busiest passenger airport and cargo gateway over the world. HKIA has a three-runway

system as shown in Figure 5.3, where the northern runway (07L/25R) is used for

landings, the central runway (07C/25C) is implemented for take-offs, and the southern

runway (07R/25L) adapts its mode for take-offs or landings depending on the hourly

aircraft traffic flow.

The test instances are generated using real data from HKIA, including 61 aircraft

scheduled to land between 18:00 and 20:00 on 31st October 2023. Given the higher

number of approaching aircraft compared to departing ones during this period, it is

assumed that both the northern and southern runways are dedicated to landings. Since

the arriving aircraft mainly belong to the heavy and large weight classes, we consid-

ered only these two classes in our experiments. Following the test instance generation

method used by Khassiba et al. (2022), we divided the 61 aircraft into 11 instances.

Each instance contains ten aircraft, except for the last instance, which has 11 aircraft.

For example, the first instance considers the first ten aircraft, while the second instance
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Figure 5.3: Three runway system at HKIA.

includes the 6th to the 15th aircraft. We introduce the information of test instances

in Table 5.5.

We sample 10, 50, and 100 independent scenarios for each instance using the sce-

nario generation methods described in Section 5.3. We set an upper limit of 1,200

seconds for the CPU time of the OLSG methods. The CPU times required by the

OLSG methods are presented in Figure 5.4, where the LSG method is considered a

special case of the OLSG method with a selection ratio γ = 1. In general, we observe

that the OLSG method requires more CPU time as the number of |Ω| increases. Ad-

ditionally, as the value of γ increases, i.e., when scenarios in Ω are selected from larger

Ξsub, the OLSG method also demands more CPU time. Specifically, when γ = 1 in the

OLSG method (at this point, the OLSG method is equivalent to the LSG method),
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Table 5.5: Detailed information of test instances for MALP.

Test instances Aicraft number Heavy aircraft Large aircraft
T_1 10 5 5
T_2 10 4 6
T_3 10 2 8
T_4 10 1 9
T_5 10 1 9
T_6 10 3 7
T_7 10 2 8
T_8 10 1 9
T_9 10 2 8
T_10 10 2 8
T_11 11 1 9

the CPU times required to generate scenario sets Ω of different sizes are very small and

almost negligible. When γ = 3, the required CPU times are around 1 second. When

γ = 5, with scenario set sizes Ω of 10, 50, and 100, the required CPU times are 0.08,

2.30, and 12.70 seconds, respectively, still within an acceptable range. Lastly, when

γ = 10, the required CPU time remains small at 0.70 seconds for a scenario set size Ω

of 10. However, when Ω is 50 or 100, the required CPU times increase significantly to

568.70 and 1,200.94 seconds, respectively.

Serhan et al. (2018) provided the fuel burn rate for each aircraft type. As this

chapter only considers the aircraft weight classes, we summed and averaged the fuel

burn rate values separately for aircraft types in the same weight class. The results of

fuel burn rates of heavy and large aircraft are 3.39 and 1.32 lb/second, respectively.

Following the setting of Sölveling et al. (2011), we provide the emission rates and costs.

The emission amount of CO2 is proportional to the fuel flow, and the factor β is 3.14,

i.e., 1 lb of jet fuel emits 3.14 lb of CO2. Table 5.6 presents the emission rates. The

external costs per lb of exhaust emissions CO2, CO, HC, NOx, and SO2 are set as

$0.09, $0.024, $3.6, $4.1, and $3.9, respectively. Table 5.7 presents the separation time

requirements for all aircraft type combinations, following the setting of Pohl et al.
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Figure 5.4: CPU time required by the OLSG method.

Table 5.6: Emission rates (in lb/second)

CO HC NOx SO2

Heavy 0.0041 0.0005 0.0262 0.0021

Large 0.0023 0.0005 0.0149 0.0010

(2021). Given that different selection ratios γ are considered in the OLSG method, we

use the notation OLSGγ to represent the OLSG method under various γ values.
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Table 5.7: Separation time requirements (in seconds)

Leading
Trailing

Heavy Large

Heavy 96 157

Large 60 69

5.5.2 Actual sample analysis for MALP

When employing scenario generation methods supported by ML methods to develop

multi-runway aircraft landing plans, we strive to ensure that the plans are closely

aligned with real-world conditions. Therefore, this subsection will evaluate the effec-

tiveness of plans provided by various optimisation methods in actual scenarios through

actual sample analysis. We use Q(x̂, ω) to represent the objective function of the

second-stage problem, which also serves as the total objective function since the MALP

model lacks a first-stage objective function. The term Q(x̂, ω) represents the optimal

costs under the first-stage decision x̂ and the revealed scenario ω. In the actual sample

analysis, we solve the second-stage problem using the optimal solution x̂ with the ac-

tual scenario ωactual, thereby obtaining Q
(
x̂, ωactual). In this experiment, both W1 and

W2 are set to 0.5.

This experiment compares the deterministic model and the SP-MIR model sup-

ported by HDSG, LSG, OLSG3, OLSG5, and OLSG10 methods. The overall results,

presented in Figure 5.5, illustrate the performance of each optimisation approach in the

context of the actual sample analysis. It should be pointed out that since scenarios are

not considered in the deterministic model, its performance in actual sample analysis is

consistent under different scenario numbers and is only used as a benchmark reference.

We find that, in general, scenario generation methods supported by the ML method,
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including LSG and OLSG, show a trend of better performance in actual sample analy-

sis as more scenarios are considered in the SP-MIR model they support. This indicates

that leveraging historical and auxiliary data can lead to a more accurate estimation

of the distribution of uncertain aircraft arrival times, allowing for multi-runway air-

craft landing plans provided to be more aligned with actual scenarios. However, in

actual sample analysis, the performance of the HDSG method does not improve as the

number of scenarios considered by the SP-MIR model increases. Instead, it performs

the worst when the number of scenarios reaches 100. This may be because the distri-

bution of uncertain parameters cannot be accurately estimated using historical data

alone. Consequently, as the number of scenarios increases, more extreme scenarios are

generated due to the inaccurate distribution of uncertain parameters. These extreme

scenarios are incorporated into the SP-MIR model, resulting in the formulated plans

being unsatisfactory in actual scenarios.

Specifically, when the number of scenarios is 10, the performance of the scenario

generation methods, except for the HDSG method, is inferior to the benchmark deter-

ministic model in actual scenarios due to the limited number of scenarios included. The

total objective function of the HDSG method is 0.63% lower than that of the determin-

istic model, while the other methods are approximately 0.57% to 2.46% higher than

the benchmark. When the number of scenarios increases to 50, the SP-MIR model sup-

ported by all scenario generation methods performs better than the deterministic model

in actual scenarios. The total objective function is reduced by approximately 1.31%

to 4.45%. As the number of scenarios increases to 100, the SP-MIR model supported

by all scenario generation methods involving the ML method performs better than the

deterministic model in actual scenarios, with its total objective function reduced by

approximately 4.47% to 9.92%. Conversely, the SP-MIR model driven by the HDSG

method performs poorly, with its objective function slightly exceeding the benchmark

by 0.41%. Additionally, we find that when the LSG method is considered a special
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Figure 5.5: Overall results of the actual sample analysis for MALP.

form of the OLSG method with a selection ratio of γ = 1, the SP-MIR model driven

by the OLSG method demonstrates that larger γ values lead to better performance at

scenario numbers 50 and 100.

We then present the detailed results of the actual sample analysis in Table 5.8,

where the notation (Env.) represents the environmental costs. The deterministic

model used as the benchmark has a makespan of 1,082.18 and environmental costs

of 289.15. We find that the makespan indicator remains relatively stable under vari-

ous circumstances, fluctuating between approximately 1,070 and 1,080. Environmental

costs follow a similar pattern to the previously discussed total objective value. With

10 scenarios, the HDSG method reduces environmental costs by 2.34% compared to
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Table 5.8: Detail results of the actual sample analysis for MALP.

|Ω| = 10 |Ω| = 50 |Ω| = 100
Makespan Env. Makespan Env. Makespan Env.

HDSG 1,080.27 282.39 1,084.55 260.66 1,083.36 293.56
LSG 1,075.82 315.62 1,075.73 277.69 1,069.91 240.13
OLSG3 1,074.73 309.99 1,082.36 267.03 1,076.55 219.46
OLSG5 1,075.73 303.48 1,077.73 254.42 1,073.27 170.50
OLSG10 1,072.45 332.61 1,076.91 233.44 1,070.27 165.08

the deterministic model, while the costs for other methods are approximately 4.96%

to 15.03% higher than the benchmark. When the number of scenarios increases to 50,

the SP-MIR model, leveraging various scenario generation methods, outperforms the

deterministic model in actual scenarios, with reductions in environmental costs ranging

from 3.96% to 19.26%. Further increasing the scenarios to 100, the SP-MIR model,

supported by scenario generation methods involving the ML method, significantly sur-

passes the deterministic model, reducing environmental costs by 16.96% to 42.90%.

In contrast, the SP-MIR model driven by the HDSG method underperforms, with its

environmental costs exceeding the benchmark by 1.52%. In addition, for all scenario

generation methods supported by the ML method, environmental costs decrease as the

number of scenarios increases. When the number of scenarios increases from 10 to 100,

the LSG method demonstrates a reduction of 23.91%, the OLSG3 method achieves

a reduction of 29.20%, the OLSG5 method results in a reduction of 43.81%, and the

OLSG10 method exhibits the largest reduction of 50.38% in environmental costs.

Regarding the overall results of the actual sample analysis, the OLSG10 method

with 100 scenarios performs better than other methods. The OLSG5 method with

100 scenarios is the second best, with a total objective value only 0.68% higher than

the best. It is worth noting that generating 100 scenarios using the OLSG10 method

takes 1,200.94 seconds, which is 98.94% longer than the 12.70 seconds required by

the OLSG5 method. Given that the MALP requires near real-time optimisation, the
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OLSG5 method with 100 scenarios may be a better choice.

5.5.3 Real-world implementation for MALP

In this subsection, we evaluate the performance of the SP models for MALP driven

by different scenario generation methods through real-world implementation based on

real-world scenarios. The SP models for MALP are designed to operate in a rolling

manner, advancing five aircraft at a time (Khassiba et al., 2022). Each test instance

generated in Subsection 5.5.1 is treated as a decision period. The last five aircraft

in each decision period overlap with the first five aircraft in the next period, except

for the final period. This overlapping method prevents short-sighted decision-making.

Similar methods have also been employed in other transportation studies (Solak et al.,

2018; Shui and Szeto, 2018; Khassiba et al., 2022). Specifically, for each test instance

generated in Subsection 5.5.1, except for test instance T_11, the first five aircraft in

the optimal solution x̂ are fixed as x̂∗. For the last test instance T_11, x̂∗ is the same as

the optimal solution x̂. We then solve the second-stage problem Q
(
x̂∗, ωactual), where

ωactual denotes the actual scenario. Considering that in the actual sample analysis,

the HDSG method achieves the best performance with 50 scenarios, while the OLSG

methods achieve the best performance with 100 scenarios, we use these settings in real-

world implementation. The weights W1 and W2 are also set to 0.5 in this experiment.

According to the results presented in Table 5.9, the HDSG method exhibits the

poorest overall performance, with total objective value, makespan, and environmental

costs being 436.04, 536.73, and 335.35, respectively. These values are 5.13%, 1.30%,

and 11.89% higher than the deterministic model’s. This poor performance may be

attributed to the HDSG method’s reliance solely on historical data to generate sce-

narios, which may not accurately reflect the true distribution of uncertain parameters.

Consequently, the subsequent SP-MIR models fail to provide satisfactory multi-runway

aircraft landing plans, occasionally performing worse than the deterministic model in
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real-world implementation. The LSG method, which incorporates vast historical and

auxiliary data through the ML method to generate scenarios, demonstrates improved

performance. Its total objective value, makespan, and environmental costs are 385.23,

521.55, and 248.92, respectively. These values represent reductions of 7.12%, 1.56%,

and 16.94% compared to the deterministic model. The OLSG methods with different

γ values all demonstrate good performance. Among the three, the OLSG3 method per-

forms the worst in the real-world implementation. The OLSG10 method outperforms

the OLSG3 method, achieving total objective value, makespan, and environmental

costs of 334.15, 521.55, and 146.76, respectively. These values are 11.82%, 0.36%, and

37.40% lower than those of the OLSG3 method. The OLSG5 method performs the best,

with a total objective value, makespan, and environmental costs of 329.72, 524.91, and

134.54, respectively. These values are 12.98%, 0.28%, and 42.62% lower than those of

the OLSG3 method, and 1.33%, −0.64%, and 8.33% lower than those of the OLSG10

method. The superior performance of the OLSG methods can be attributed to using

the Wasserstein distance-based optimisation method to select the generated scenarios

further. This approach mitigates the negative effects of scenarios that deviate signif-

icantly from real-world scenarios due to the limited predictive accuracy of the single

decision tree in the RF method. As a result, the generated scenarios more closely re-

semble the true distribution of uncertain parameters, enabling the subsequent SP-MIR

model to provide satisfactory multi-runway aircraft landing plans.

In addition, through the line graphs of cumulative environmental costs (fuel con-

sumption and exhaust emission costs) in Figure 5.6, we observe that the OLSG5 and

OLSG10 methods exhibit significantly lower environmental costs than other methods

over time. This demonstrates that the scenario generation methods supported by the

ML method, when incorporated into the SP-MIR models, can more effectively cap-

ture complex environmental changes and subsequently develop multi-runway aircraft

landing plans with substantially lower environmental costs. This advantage becomes
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Table 5.9: Results of the real-world implementation for MALP.

Total Makespan Environmental

Deterministic 414.77 529.82 299.72

HDSG 436.04 536.73 335.35

LSG 385.23 521.55 248.92

OLSG3 378.94 523.45 234.43

OLSG5 329.72 524.91 134.54

OLSG10 334.15 521.55 146.76

increasingly apparent over time.

5.5.4 Comparison of SP-MIR and SP-CR models for MALP

In this subsection, we compare the performance of the SP-MIR and SP-CR models

through real-world implementation. As mentioned in the introduction, both models

adopt a two-stage decision process. The main difference is that aircraft-to-runway as-

signments and sequencing decisions are made in the first stage of SP-CR, while the

second stage focuses on aircraft scheduling decisions. Given that advanced aviation

technologies provide accurate aircraft arrival times when ATC makes sequencing deci-

sions. Therefore, SP-MIR positions aircraft sequencing decisions in the second stage,

where the uncertain aircraft arrival times are revealed. We provide the SP-CR model

for MALP as follows:

min
∑
ω∈Ω

pω

[
W1z

ω +W2

(
CFuel

∑
i∈I

αid
ω
i + CCO2

∑
i∈I

βαid
ω
i + CCO

∑
i∈I

εCO
i dωi
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Figure 5.6: Cumulative environmental costs for MALP.

+CHC
∑
i∈I

εHC
i dωi + CNOx

∑
i∈I

εNOx
i dωi + CSO2

∑
i∈I

εSO2
i dωi

)]
(5.7a)

s.t. Constraints (5.1b), (5.1g), (5.1k), (5.1m)− (5.1o), (5.7b)

xr
i =

∑
j∈I∪{e}\{i}

yrij, ∀r ∈ R, ∀i ∈ I, (5.7c)

∑
j∈I

yrsj = 1, ∀r ∈ R, (5.7d)

∑
i∈I

yrie = 1, ∀r ∈ R, (5.7e)
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∑
j∈I∪{s}\{i}

yrji =
∑

j∈I∪{e}\{i}

yrij, ∀r ∈ R, ∀i ∈ I, (5.7f)

tωi + Sij − tωj ≤Mω(1− yrij), ∀r ∈ R, ∀i ∈ I, ∀j ∈ I, i ̸= j, ∀ω ∈ Ω, (5.7g)

yrij ∈ {0, 1} , ∀r ∈ R, ∀i ∈ I ∪ {s} , ∀j ∈ I ∪ {e} , i ̸= j. (5.7h)

Given that the scenarios generated by the OLSG5 method performed the best in the

previous experimental results, we use 100 scenarios generated by the OLSG5 method

when comparing the two SP models. The weights W1 and W2 are both set as 0.5. The

average total objective value, makespan, and environmental costs of the SP-CR model

over 11 time periods are 445.47, 539.73, and 351.21, respectively. In comparison, the

SP-MIR model achieves 329.72, 524.91, and 134.54 for these metrics. When compared

to the SP-CR model, the SP-MIR model’s performance is reduced by 25.98%, 2.75%,

and 61.68% in the three indicators, respectively. In terms of overall performance,

the SP-MIR model reduced the total objective value by 25.98% compared to the SP-

CR model. This indicates that utilising the SP-MIR model for decision-making in a

multi-runway system could lead to higher operational efficiency and better resource

conservation. Additionally, the SP-MIR model demonstrated a significant reduction

in environmental costs (61.68%), underscoring its superior performance in minimising

environmental impact. Consequently, adopting the SP-MIR model can enable more

sustainable and environmentally friendly airport runway operations, which is particu-

larly important for airports aiming to fulfil their social responsibility and reduce their

environmental footprint. Furthermore, the SP-MIR model demonstrated a slight im-

provement in makespan (reduced by 2.75%), which, although modest, indicates it has

certain advantages in airport runway efficiency. This is particularly critical for run-

way operations that require strict time control. Additionally, the results for each time

period are presented in Figure 5.7. It can be observed that, for most time periods,
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Figure 5.7: Comparison results of SP-MIR and SP-CR models for MALP.

the SP-MIR model outperforms the SP-CR model across all indicators, particularly in

terms of environmental costs. This superior performance is mainly due to the SP-MIR

model considering aircraft sequencing decisions in the second stage, which allows it

to handle aircraft sequencing and scheduling decisions more flexibly after the uncer-

tain arrival times are revealed, thereby outperforming the SP-CR model in real-world

implementation.

5.5.5 The impact of the decision-maker preference levels

The weightsW1 andW2 are used to reflect the decision-makers’ preferences for makespan

and environmental costs, respectively, where W1 +W2 = 1. The total objective value,

makespan, and environmental costs of optimal decisions under different preference lev-

els are provided in Figure 5.8. As W1 decreases and W2 increases (i.e., decision-makers

prioritise environmental factors), makespan gradually increases, indicating a slight de-

165



Figure 5.8: The impact of preference levels on makespan and environmental costs.

crease in operational efficiency. For the environmental costs, prioritising environmental

factors can initially lead to substantial reductions in fuel consumption costs and emis-

sions expenses. Subsequently, with environmental preference weight increases, these

cost reductions tend to be more gradual. In summary, decision-makers face a trade-off

between operational efficiency (makespan) and environmental costs (fuel consumption

and exhaust emission costs). They must achieve a delicate balance between efficiency

and environmental impact. By making informed choices, they can achieve sustainable

outcomes while maintaining operational effectiveness.
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5.5.6 Managerial implications and insights

The above numerical experiments yield the following managerial implications and in-

sights for ATC.

(i) The findings underscore the importance of integrating scenario generation meth-

ods supported by ML, such as LSG and OLSG, within the SP-MIR model for MALP.

These methods significantly enhance performance in actual scenarios by reducing fuel

consumption and exhaust emissions while maintaining operational efficiency. ATC is

encouraged to adopt these models to drive the SP-MIR model for MALP, achieving

effective and environmentally friendly multi-runway aircraft landing plans in real-world

implementation.

(ii) The results highlight the advantages of adopting the SP-MIR model in multi-

runway aircraft landing operations over the SP-CR model used in previous studies.

The SP-MIR model significantly reduces the total objective value, thereby enhancing

operational efficiency and resource conservation in a multi-runway system, which is

crucial for optimising airport operations. Additionally, by adopting the SP-MIR model,

airports can significantly reduce environmental costs, thereby contributing to more

sustainable and environmentally friendly operations, aligning with social responsibility

goals and reducing the environmental footprint. Although the SP-MIR model shows a

modest improvement in the makespan indicator, this is particularly critical for runway

operations requiring strict time control. Overall, the SP-MIR model performs well

across all indicators and is recommended for integration into the planning process by

decision-makers. By leveraging the capabilities of the SP-MIR model, airports can

develop efficient and environmentally friendly multi-runway aircraft landing plans.

(iii) The findings emphasise the need for ATC to balance operational efficiency and

environmental impact when planning aircraft landings. By prioritising environmental

factors, ATC can substantially reduce fuel consumption and exhaust emissions, lead-
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ing to cost savings and environmental benefits, though this may slightly increase the

makespan. Therefore, decision-makers are encouraged to adopt strategies that bal-

ance efficiency with environmental responsibility to achieve sustainable and efficient

multi-runway aircraft landing plans.

5.6 Scalability analyses for MALP

The scalability analyses assess the performance of the proposed SBAC method. All

solution methods are implemented in Python using the commercial solver GUROBI.

The experiments take place on a computer featuring an Intel Core i7-12700K CPU

(12 cores, 20 threads) at 5.00 GHz, along with 32 GB of memory. Solution methods

terminate when the CPU time reaches 1200 seconds. In the scalability analyses, we

set the preference for makespan W1 = 0.5 and preference for environmental costs

W2 = 0.5. The scenarios of each test instance are generated by the OLSG5 method. In

Subsection 5.6.1, we evaluate the impact of trust region radius updating schemes on

the SBAC method. In Subsection 5.6.2, we compare the computational performance

of the proposed SBAC method with benchmark solution methods.

5.6.1 The impact of trust region radius updating schemes on

the SBAC method

In this subsection, we examine the impact of trust region radius updating schemes on

the SBAC method. First, we introduce several trust region radius updating schemes,

starting with the scheme proposed by Fischetti and Lodi (2003). In this scheme, if the

stabilised master problem is infeasible, the radius value κ is updated to κ← κ + ⌈κ
2
⌉,

where the initial value of κ is set to ⌈0.1 × nc⌉. The second scheme follows Baena

et al. (2020). This scheme initially searches the solution space within a small radius,

then expands to a medium radius, and finally covers the entire solution space. In
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this scheme, the initial value of κ is set to ⌈0.1 × nc⌉. After the stabilised master

problem becomes infeasible during the convergence process, the value of κ increases

successively, taking values of κ ∈ {⌈0.2 × nc⌉, ⌈0.5 × nc⌉, nc}. Finally, we use a new

trust region radius updating scheme that initially searches the solution space within

a medium radius, subsequently expanding to cover the entire solution space. In this

scheme, the initial value of κ is set to ⌈0.5× nc⌉. When the stabilised master problem

becomes infeasible, κ is immediately updated to nc. For simplicity, the three schemes

mentioned above are denoted as Scheme 1, Scheme 2, and Scheme 3, respectively.

Since all three schemes driving the SBAC method achieved optimal solutions for

all test instances, we report only the CPU time indicator in Table 5.10. We find that

Scheme 1 tends to have the highest CPU time, indicating it is the least efficient of the

three schemes. Scheme 2 performs better, generally being the second most efficient.

Scheme 3 consistently shows the lowest average CPU time across most test instances,

making it the most efficient in terms of CPU time. Overall, the CPU time for Scheme

3 is 13.79% less than that for Scheme 1 and 10.82% less than that for Scheme 2. For all

schemes, the CPU time increases with |Ω|, as larger sets of scenarios typically require

more computing resources. As |Ω| increases, the efficiency gap between the schemes

becomes more pronounced. For instance, when |Ω| = 10, Scheme 3 saves 10.76% and

9.03% of computing time compared to Schemes 1 and 2, respectively. When |Ω| = 100,

the performance advantage of Scheme 3 is even more apparent, saving 12.78% and

9.83% of computing time compared to Schemes 1 and 2, respectively. In conclusion,

Scheme 3 not only has the best average performance but also demonstrates consistent

performance across various scenario sizes, making it a reliable choice for handling the

SP model for MALP. In our subsequent comparisons, Scheme 3 is adopted as the default

trust region radius updating scheme for the SBAC method.
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Table 5.10: Comparison of CPU time for different trust region radius updating schemes
in the SBAC method

Scheme 1 Scheme 2 Scheme 3
|Ω| = 10
T_1 1.57 1.52 1.30
T_2 2.01 2.03 1.99
T_3 1.64 1.55 1.45
T_4 1.81 1.81 1.27
T_5 1.79 1.79 2.36
T_6 1.27 1.19 0.91
T_7 1.25 1.25 0.98
T_8 1.28 1.23 1.14
T_9 1.26 1.20 0.91
T_10 1.37 1.33 1.28
T_11 2.10 2.12 1.97
Average 1.58 1.55 1.41
|Ω| = 50
T_1 9.88 10.30 7.01
T_2 8.79 8.26 6.25
T_3 11.17 10.64 10.61
T_4 10.52 10.96 12.83
T_5 9.83 9.12 7.36
T_6 9.31 8.59 7.49
T_7 10.58 9.98 6.89
T_8 7.55 7.31 6.61
T_9 6.83 6.50 5.64
T_10 8.71 8.15 7.57
T_11 14.06 13.54 10.83
Average 9.75 9.40 8.10
|Ω| = 100
T_1 23.66 22.57 16.68
T_2 29.32 28.42 24.63
T_3 21.05 21.36 17.35
T_4 36.18 35.94 34.84
T_5 29.17 27.65 37.59
T_6 16.17 14.93 13.15
T_7 25.27 24.48 10.57
T_8 20.19 19.32 32.92
T_9 15.18 14.55 12.18
T_10 24.22 23.16 14.93
T_11 41.84 40.62 31.35
Average 25.66 24.82 22.38
Overall 12.33 11.92 10.63
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5.6.2 Comparison of the SBAC method and the benchmark

solution methods

We utilise GUROBI and the previously proposed LBBD and BAC methods (Elçi and

Hooker, 2022; Guo and Zhu, 2023; Li et al., 2023) as benchmark methods to evaluate

the performance of the SBAC method by comparing the optimality gap and CPU time

metrics.

Table 5.11 shows the results, where “Gap (%)” indicates the optimality gap, and

“Time (s)” indicates the required CPU time. The methods that performed the best

in terms of CPU time for the test instances in Table 5.11 are highlighted in bold.

Overall, the SBAC method demonstrated superior performance, achieving the optimal

solution for all test instances with an overall CPU time of only 10.63 seconds. This

represents a reduction of 84.56%, 98.72%, and 89.79% in overall CPU time compared to

the GUROBI, LBBD, and BAC methods, respectively. Specifically, SBAC consistently

demonstrates the shortest CPU time for most test instances. Its performance remains

excellent across a wide range of |Ω| values and significantly outperforms other solution

methods, particularly when |Ω| = 100. SBAC’s consistency and stability across differ-

ent situations make it a reliable choice for the SP model of the MALP under various

sizes. While GUROBI performs well when |Ω| = 10, its CPU time increases signif-

icantly with larger sizes, potentially affecting its scalability in practical applications.

Among the remaining two solution methods, the LBBD method consistently exhibits

high gaps (%) and very long CPU times, particularly when |Ω| values are large, re-

sulting in the worst overall performance. Although the BAC method finds optimal

solutions for all test instances, its CPU time requirements are substantial.

Subsequently, we compare the SBAC method and the benchmark methods in terms

of CPU time metrics using the Wilcoxon signed-rank test. As shown in Table 5.12, all

the P values are less than 0.01, indicating a highly significant reduction in CPU time
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Table 5.11: Comparison of computational performance for different solution methods
for MALP

GUROBI LBBD BAC SBAC
Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

|Ω| = 10
T_1 0.00 0.85 0.00 92.21 0.00 13.81 0.00 1.30
T_2 0.00 1.41 0.00 11.74 0.00 78.41 0.00 1.99
T_3 0.00 1.67 0.00 111.48 0.00 11.65 0.00 1.45
T_4 0.00 1.61 0.00 210.87 0.00 16.27 0.00 1.27
T_5 0.00 1.71 0.00 134.39 0.00 16.39 0.00 2.36
T_6 0.00 0.73 0.00 66.91 0.00 8.60 0.00 0.91
T_7 0.00 1.11 0.00 113.23 0.00 15.77 0.00 0.98
T_8 0.00 1.10 0.00 55.81 0.00 10.81 0.00 1.14
T_9 0.00 1.08 0.00 56.79 0.00 8.45 0.00 0.91
T_10 0.00 1.25 0.00 100.31 0.00 17.54 0.00 1.28
T_11 0.00 1.80 0.00 586.83 0.00 30.58 0.00 1.97
Average 0.00 1.30 0.00 140.05 0.00 20.75 0.00 1.41
|Ω| = 50
T_1 0.00 30.15 1.86 1,203.80 0.00 78.90 0.00 7.01
T_2 0.00 15.76 0.00 1,182.03 0.00 90.37 0.00 6.25
T_3 0.00 25.47 2.07 1,201.09 0.00 91.45 0.00 10.61
T_4 0.00 50.48 2.17 1,201.40 0.00 81.61 0.00 12.83
T_5 0.00 41.08 0.91 1,206.10 0.00 69.56 0.00 7.36
T_6 0.00 20.07 1.78 1,200.32 0.00 73.70 0.00 7.49
T_7 0.00 16.84 2.05 1,201.18 0.00 81.18 0.00 6.89
T_8 0.00 15.71 0.00 1,027.38 0.00 72.05 0.00 6.61
T_9 0.00 12.74 0.00 758.90 0.00 67.08 0.00 5.64
T_10 0.00 11.64 0.00 1,082.35 0.00 84.65 0.00 7.57
T_11 0.00 168.42 19.27 1,208.63 0.00 192.43 0.00 10.83
Average 0.00 37.12 2.74 1,133.40 0.00 89.36 0.00 8.10
|Ω| = 100
T_1 0.00 156.34 5.26 1,204.97 0.00 195.91 0.00 16.68
T_2 0.00 101.56 5.74 1,212.48 0.00 160.52 0.00 24.63
T_3 0.00 56.85 3.84 1,211.36 0.00 148.16 0.00 17.35
T_4 0.00 346.24 5.99 1,211.06 0.00 223.70 0.00 38.84
T_5 0.00 249.93 21.96 1,203.46 0.00 176.98 0.00 37.59
T_6 0.00 98.23 15.24 1,205.53 0.00 166.23 0.00 13.15
T_7 0.00 59.57 3.69 1,208.96 0.00 170.10 0.00 10.57
T_8 0.00 148.43 17.62 1,211.62 0.00 173.43 0.00 32.92
T_9 0.00 27.98 5.10 1,205.44 0.00 168.12 0.00 12.18
T_10 0.00 132.22 5.86 1,206.22 0.00 181.83 0.00 14.93
T_11 0.00 471.46 29.85 1,216.27 0.00 461.67 0.00 31.35
Average 0.00 168.07 10.94 1,208.85 0.00 202.42 0.00 22.38
Overall 0.00 68.83 4.56 827.43 0.00 104.18 0.00 10.63
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Table 5.12: Comparison in CPU time indicator by the Wilcoxon signed-rank test

Methods Z score P value R value Strength of effect size

GUROBI -2.251 0.000 0.392 Medium effect

LBBD -6.842 0.000 1.191 Large effect

BAC -5.842 0.000 1.017 Large effect

achieved by the SBAC method. R value is used to describe the effect size of the SBAC

method that ignores the sample size (Cohen, 2013). R value is 0.5 for a large effect,

0.3 for a medium effect, and 0.1 for a small effect (Coolican, 2017). According to the R

value, the SBAC method substantially reduces CPU time compared to the LBBD and

BAC methods, and moderately reduces CPU time compared to the GUROBI method.

Overall, the results of the Wilcoxon signed-rank tests show that the proposed SBAC

method has significant statistical improvement in the CPU time indicator compared

with the benchmark methods.

5.7 Conclusions

This chapter investigates the SP-MIR model for MALP under aircraft arrival time

uncertainty. This model for MALP employs a two-stage decision process, wherein ar-

riving aircraft are assigned to runways in the first stage, and the landing sequence

and times are scheduled in the second stage. The objective of the SP-MIR model

is to ensure efficient and environmentally friendly aircraft landing operations. We

employ ML-driven scenario generation methods to create a potentially small finite

scenario set. An optimisation-enhanced version is further proposed to generate scenar-

ios that closely reflect actual scenarios based on the estimated distributions, thereby

preventing subsequent SP-MIR models from being adversely affected by extreme sce-
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narios and avoiding suboptimal decisions. The numerical results demonstrate that

integrating advanced machine learning-supported scenario generation methods, such

as LSG and OLSG, within the SP-MIR model can effectively formulate efficient and

sustainable multi-runway aircraft landing plans in practical applications. Furthermore,

compared to the SP-CR model used in previous studies, our proposed SP-MIR model

significantly reduces fuel consumption and exhaust emissions while maintaining oper-

ational efficiency, thereby enhancing its performance in practical scenarios. Further-

more, numerical studies have shown that runway efficiency objectives may conflict with

environment-related objectives. Due to the NP-hardness of the SP model for MALP,

we propose a novel SBAC method. This approach decomposes the original problem

into an assignment master problem and several sequencing and scheduling subprob-

lems. Trust region constraints and reverse local branching constraints are added to the

master problem, stabilising it around a good stability centre point and enabling the

generation of strong Benders cuts. We conduct extensive scalability analyses using real

data from HKIA. The results show that the SBAC method significantly reduces the

CPU time indicator compared to the commercial solver and well-known benchmark

methods from the literature.

In the OLSG method proposed in this chapter, the objective of scenario selection

is to minimise the type-1 Wasserstein distance between scenarios, but this overlooks

the optimisation problems’ inherent information. In future research, we will enhance

the current OLSG method by incorporating the problems’ information to define the

proximity measure between scenarios. By comprehensively considering the information

of the optimisation problem, we can avoid overfitting, which solely relies on data,

generating a more robust set of scenarios. This approach enhances the model’s stability

in the face of uncertainty, thereby improving its efficiency and effectiveness. In addition,

this study focuses on providing efficient and environmentally friendly aircraft landing

plans for a multi-runway system, considering only the landing operations. In the future,
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we can jointly optimise landing operations and traffic flow management in the terminal

airspace. This integrated approach helps prevent suboptimal plans caused by isolated

optimisation, improves overall operational efficiency, and reduces environmental impact

in the multi-runway system, thereby better meeting the growing demand for air traffic.
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Chapter 6

Conclusions and future research

directions

6.1 Conclusions

This thesis investigates prescriptive analytics for airside operations under uncertain-

ties. The first study investigates the AGAP, which aims to optimise aircraft-to-gate

assignments, aircraft sequencing for each contact gate, and scheduling plans to min-

imise apron assignments and delay times. Practical aircraft assignment requirements

are considered. Two prescriptive analytics approaches using KNN and RF methods

are developed to address the uncertainty in aircraft arrival times. The ETO approach

generally yields superior airport gate assignment decisions but requires generating nu-

merous scenarios based on the estimated distributions, leading to scalability issues.

The CSR method is used to select a reasonable scenario set for the subsequent SP

model, and the BBC method is used to handle the ETO approach efficiently. Numeri-

cal experiments using real-world data from XMN Airport demonstrate the effectiveness

of these methods. The BBC method exhibits significant computational performance

improvements over the commercial solver. Furthermore, we show that the ETO ap-
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proach, supported by high-performance ML methods and effective scenario selection

strategies, outperforms other optimisation approaches in airport gate assignment plans,

proving its effectiveness in real-world applications.

The second study introduces the ETO and ETDRO approaches for the ASSP,

demonstrating their effectiveness in enhancing runway operations through the integra-

tion of prediction and optimisation techniques. The novel ETDRO approach incorpo-

rates unavoidable prediction and sampling errors into decision-making. This approach

uses the DRO model to account for situations that deviate from the estimated distri-

bution but are still possible, thus generating more robust decisions. Extensive numer-

ical experiments with real-world data from XMN airport highlight that the ETDRO

approach, especially with smaller ϵ values, provides superior performance in aircraft

sequencing and scheduling compared to other optimisation methods. The proposed

inexact S-DR BBC method for the ETDRO approach significantly improves compu-

tational performance, enabling runway controllers to utilise the ETDRO approach in

handling real-world runway operations.

The third study examines the prescriptive analytics of the MALP under aircraft

arrival time uncertainty, aiming to design efficient and environmentally friendly air-

craft landing operations. Adopting the ETO approach in prescriptive analysis, we

employ ML techniques to estimate the distribution of uncertain arrival times. An

OLSG method creates scenarios that closely reflect actual scenarios based on these

estimated distributions. This approach prevents subsequent SP models from being

adversely affected by extreme scenarios, thereby avoiding suboptimal decisions. Ex-

perimental results highlight the superior performance of the ETO approach, supported

by the OLSG method, over other optimisation approaches. Additionally, we introduce

a novel exact SBAC method to solve the ETO approach for the MALP efficiently.

Computational experiments demonstrate that the proposed SBAC method achieves

statistically significant improvements in CPU time compared to benchmark methods.
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This thesis demonstrates the robustness and effectiveness of combining ML tech-

niques, optimisation approaches, uncertainty modelling, and advanced decomposition

methods to tackle key operational challenges in airside operations, resulting in signifi-

cant operational efficiency and economic benefits. Moreover, the successful application

of prescriptive analytics underscores the significant potential and advantages of data-

driven decision-making in complex aviation operational environments. This suggests

that these data-driven decision-making approaches can be introduced as innovative

solutions to various operational challenges within the aviation industry.

6.2 Future research directions

Several future research directions related to the aforementioned studies are outlined

below:

The first research direction is the expansion of datasets and ML techniques. Future

research should focus on expanding dataset sizes to improve the accuracy and relia-

bility of machine learning models. By collecting and utilising larger datasets, it will

be possible to develop more sophisticated ML techniques capable of handling complex

structures and providing precise predictions and estimated distributions. Additionally,

exploring advanced ML algorithms such as deep learning, ensemble methods, and hy-

brid models can further enhance the predictive accuracy and robustness of prescriptive

analytics approaches. These improvements will enable more accurate and reliable in-

puts for subsequent optimisation methods, ultimately leading to better decision-making

in airside operations. Enhanced datasets and advanced ML techniques can also sup-

port the development of real-time decision-making systems that can adapt to dynamic

changes in operational conditions, such as sudden weather changes or unexpected de-

lays. Furthermore, larger datasets can facilitate training models that incorporate di-

verse and rare events, thereby improving the overall robustness of predictive analytics.
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Integrating these advanced methods will enhance operational efficiency, reduce envi-

ronmental impacts, and promote sustainability in aviation operations.

The second research direction integrates normative analysis with advanced uncer-

tainty modelling and optimisation approaches, such as DRO methods and risk-averse

criteria. The distribution of uncertain parameters provided by ML methods inher-

ently contains prediction errors. To mitigate the impact of these errors, combining

the ETO approach with DRO can result in more reliable and robust decisions under

uncertain conditions. This study combines ETO with a DRO model based on a type-1

Wasserstein ambiguity set, achieving promising results. Future research could explore

integrating the ETO method with DRO models using different ambiguity sets. As the

performance of the DRO model largely depends on the choice of ambiguity set, it is

crucial to select different sets flexibly according to the specific optimisation problems

and the nature of prediction errors. This ensures that prediction errors are reasonably

incorporated into decision-making, providing efficient and robust decisions. Addition-

ally, when the ETO method generates scenarios, extreme scenarios may arise from

certain extreme prediction results. If not properly managed, these extreme scenarios

can hinder the optimisation process from yielding satisfactory decisions. Future stud-

ies might consider incorporating Conditional Value at Risk (CVaR) and mean-CVaR

criteria into the ETO approach. This would allow decision-makers to better account

for and mitigate the impact of rare but severe scenarios, balancing expectations with

extreme risks. As a result, they can make more reliable and effective decisions that

provide stable returns while effectively controlling risks.

The third research direction is the application of prescriptive analytics to other

operations within the aviation industry. This thesis demonstrates the effectiveness of

prescriptive analytics approaches for the AGAP, ASSP, and MALP through exten-

sive numerical experiments, highlighting their capability to generate high-performance

airside operation plans. Future research should focus on extending these prescriptive
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analytics approaches to other airside operations and airport decision-making problems.

By integrating operations research techniques with machine learning methods, airside

controllers can significantly enhance operational efficiency, increase capacity, alleviate

congestion, manage disruptions, and maintain high service levels. Comparative studies

should be conducted to evaluate the performance of prescriptive analytics across vari-

ous airside operational contexts, identifying best practices and areas for improvement.

This approach can lead to a more holistic optimisation of airport operations, promoting

a seamless and efficient airside environment.

Moreover, prescriptive analytics can be expanded to address more macro-level is-

sues within the aviation sector. For instance, airline recovery operations can benefit

from optimised scheduling and resource allocation to minimise the impact of disrup-

tions and enhance recovery times. Aviation network design can be improved by using

prescriptive analytics to optimise route planning, fleet allocation, and hub selection,

thereby increasing the overall efficiency and resilience of the aviation network. Addi-

tionally, flight crew scheduling can be optimised to ensure compliance with regulatory

requirements while maximising crew utilisation and satisfaction. Maintenance sched-

ules can also be enhanced by predicting and preemptively addressing potential issues,

thereby reducing aircraft downtime and improving safety. Expanding the scope of

prescriptive analytics to encompass these broader operational areas not only fosters

a more integrated and efficient aviation system but also helps address complex, dy-

namic challenges within the industry. This comprehensive approach to optimisation

can ultimately lead to significant operational improvements, cost savings, and enhanced

passenger experiences across the entire aviation industry.
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