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Abstract

  Improving traffic flow efficiency and runway throughput has always been crucial 

to dealing with  heavy  traffic. The  trajectory-based  operational  concept  provides  an 

alternate option to achieve highly collaborative air traffic management, among which 

four-dimensional flight  trajectory  prediction and  time-based  separation build  the 

foundation. With  the  development  of  computer  technology  and the accumulation  of 

massive historical flight information and other separation-related data, emerging data- 

driven machine learning  techniques have  gained great popularity  for civil air traffic 

operations. Despite extensive deep learning implementations in flight traffic prediction 

and optimisation problems, they generally focus on model development rather than the 

applicational  scenarios,  and  the  flight  procedures  and distance-based  separation 

requirements are conservative and static, with restrictions on the efficiency of traffic 

dispatch. Therefore, this thesis intends to investigate the potential of deep learning in 

terminal  traffic  flow  optimisation  and  runway  scheduling,  particularly  from  the 

perspective of predicting dynamic wake separation. Novel deep learning approaches 

are developed to improve efficiency and safety in terminal approach management and 

enhance their  reliability and  trustworthiness for  these  safety-critical air  traffic 

operations.

  As  the  lifetime  and  movement  characteristics  of  aircraft  wake  turbulence are 

crucial determinants of dynamic wake separation and they are highly related to aircraft 

weight  and  meteorological  conditions,  deep  convolutional  neural  networks  are 

developed  for  near- real-time  vortex  locations  and  strength  recognition  using Light 

Detection and Ranging (LiDAR) -scanned wake  images in the first stage. Data pre- 

processing, analysis, and pattern learning based on machine learning (ML) and deep

learning techniques are involved and pinpointed to identify wake pairs. The first step
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consists of vortex core locating utilising the Convolutional Neural Network (CNN), 

and  the  second  step  predicts  vortex  strength  within  the  Region  of  Interest  (ROI), 

derived from raw images based on the initial core locating results. This study primarily 

processes  the  wake  features  and  builds  preconditions  for  the  second-stage  wake 

prediction.

  In the second stage, the dynamic time-based flight separation in the final approach 

for avoiding aircraft wake turbulence encounters is studied through long-term wake 

evolution prediction regarding the spatial-temporal attributes of aircraft wake vortices 

in  their future  decay  and  transport process,  utilising  the probabilistic sequential 

prediction  models. First,  the  wake  vortex  sequences  are  sectored  with  the  relevant 

aircraft information, such as the flight speed, heading and aircraft type, and ambient 

weather information mapped in the final approach. In the offline model training phase, 

the Attention-based Temporal Convolutional Networks (ATCN) are built and trained 

using the historical LiDAR dataset to achieve optimal performance. Next, the trained 

CNN and wake prediction models are fused to achieve long-term wake decay forecasts 

in actual flight scenarios. Finally, the dynamic aircraft separation minima in relation 

to  wind  conditions  in  the  final  approach  is  assessed  with  wake  encounter  safety 

analysis. Furthermore, the model decision processes are explained by feature relevance 

analysis of both image-based and sequential prediction-based models to enhance the 

trustworthiness of the deep learning model, and the prediction uncertainty of the model 

is estimated to improve the robustness of deep learning models.

  The third part assesses the effect of time-based dynamic wake separation on runway 

capacity  improvement  at  both  the  theoretical  and  operational  levels. The dynamic 

wake vortex separation  model that adjusts separation criteria in  response to varying

atmospheric  conditions  and flight pairs is  trained. The  runway  sequencing  and
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scheduling model is constructed and solved with the Branch and Bound algorithm 

under dynamic wake separation matrices. Furthermore, the performance improvement 

of time-based wake separation is verified under the First-come, First-serve strategy 

and runway optimisation and compared with the traditional RECAT-EU wake 

separation standard. 

  The last part of this thesis develops an integrated approach for optimising runway 

and terminal traffic management by performing dynamic wake separation matrixes. 

The study evaluates the contributions of time-based and weather-related wake 

separation in runway operation efficiency and assesses its implications for terminal 

area operations during high traffic density without compromising safety and ensuring 

conflict-free airspace. 

  The overall research presents new attempts at improving traffic flow efficiency and 

safety of the terminal approach and enhancing the runway capacity using reliable and 

trustworthy data-driven deep learning-supported models and algorithms. We expect to 

find a comprehensive understanding of the trade-offs between efficiency gains of 

aircraft separation reduction under dynamic wind situations and safety considerations. 

This research may facilitate the development of dynamic flight separation indicators 

in the final approach and the robust, proactive decision-support tool for runway and 

terminal approach operations to benefit air traffic controllers and airport managers. 
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Chapter 1. Introduction 

1.1. Research background 

According to the International Air Transport Association, air traffic demand has surged 

by 70% since 2004 (IATA, 2022), and the overall number of travellers in 2024 is 

expected to be about 3% higher than in 2019, potentially reaching 4% if recovery 

accelerates in routes still below pre-pandemic levels (ICAO, 2024). Special care on the 

level of safety and efficiency is required to achieve sustainable air transportation. To 

achieve sustainable air transportation, particular attention must be paid to safety and 

efficiency. Over the past two decades, the air traffic management (ATM) community 

has shown a great deal of interest in Trajectory-based Operations (ICAO, 2005) as an 

alternate option, with advanced multinational programmes such as the Single European 

Sky ATM Research Programme (SESAR) (SESAR, 2007) and the Next Generation air 

transportation system (NextGen) developed by the National Aeronautics and Space 

Administration (NASA) and Federal Aviation Administration (FAA) (FAA, 2007). In 

TBO, airspace users will work cooperatively with ATM service providers to access a 

collaborative air traffic management system through synchronised flight trajectories for 

ground and air traffic. Furthermore, the time-based separation will be one efficient 

measure to realise cooperative trajectory-based operations. 

  The main objectives of terminal flight optimisation are to minimise fuel consumption, 

reduce emissions, avoid flight conflict and enhance the overall predictability of aircraft 

landings (Ng et al., 2018). It involves optimising a wide range of flight parameters, 

including altitude, speed, descent rate, and flight path angle while accounting for 

various factors such as weather conditions, air traffic control instructions, and aircraft 

performance characteristics. Advanced optimisation methods, such as genetic 

algorithms (Abdelghany et al., 2007; Hu et al., 2004), particle swarm optimisation 
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(Blasi et al., 2013) and other heuristic approaches (Zhang et al., 2015), have been 

employed to identify optimal flight trajectories that balance indexes such as fuel 

efficiency, noise reduction, flight safety and traffic delay. Four-dimensional trajectory 

prediction, which refers to the estimation of an aircraft's future flight path over time, 

accounting for its position in three-dimensional space and the fourth dimension being 

time (Khan et al., 2021), is also crucial for planning and executing terminal flight 

optimisation strategies effectively and enables pilots and air traffic controllers to plan 

and adjust flight paths proactively. Estimating arrival time based on flight trajectory 

prediction will build preconditions for near-real-time scheduling of the final approach. 

  In the final approach phase of aircraft landing, runway sequencing and scheduling 

are critical in ensuring safe and efficient operations at busy airports (Samà et al., 2017). 

During this phase, multiple aircraft must be sequenced and scheduled to land on the 

same runway while maintaining safe separation distances, maximising runway 

utilisation and minimizing overall delays. Runway sequencing involves determining 

the order in which aircraft will land on the runway, considering factors such as aircraft 

type, size, weight, and approach speed (Prakash et al., 2018). On the other hand, runway 

scheduling involves allocating specific time slots for each aircraft to commence its final 

approach and touchdown (Xu, 2017). These processes must consider various factors, 

including weather conditions, air traffic congestion, and operational constraints, to 

optimise runway utilisation and enhance overall airport capacity. Effective runway 

optimisation algorithms and flight operation procedures deserve to be developed under 

the Trajectory-based Operation (TBO) scenarios to achieve efficient runway operations 

with improved throughputs (Yang et al., 2020). In addition to the optimisation 

algorithms such as mixed-integer linear programming (Farhadi et al., 2014), machine 

learning models and reinforcement learning algorithms can be integrated to deal with 
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changing conditions and traffic flows and realise the integrated prediction-optimisation 

methodological framework. 

  Runway capacity is a major constraint at many international hub airports. The 

procedural and efficiency aspects of runway operations can increase the performance 

of airports with constraint capacity (Farhadi et al., 2014). Current research on runway 

scheduling typically considers the prior static and conservative wake separation as 

safety-related constraints that prevent optimal traffic flow efficiency. In fact, time-

based aircraft separation under dynamic wake separation will improve runway 

throughput, reduce traffic delay and provide additional flexibility and resilience for 

runway scheduling during heavy traffic periods and adverse situations, especially for 

Closely Spaced Parallel Runways (CSPR). Wake turbulence is the by-product of 

aircraft lift, leading to two counter-rotating vortices tailing behind the aircraft and could 

induce different degrees of hazard towards the follower aircraft (Hallock et al., 2018). 

The current flight separation related to the wake vortex is independent of time and 

meteorological conditions (Demirel, 2023). The atmosphere conditions, especially 

winds, play a leading role in determining the time of vortex lasting and transport in the 

background turbulence. Thus, the flight separation time could be reduced when vortices 

are directly blown out of the flight path by strong wind quickly after its generation. 

  The terminal area and the final approach zone are two main areas that require 

efficient flight dispatch. Current research on terminal traffic control and runway 

scheduling typically considers the prior static and conservative wake separation as 

safety-related constraints that prevent optimal airport traffic flow efficiency. Dynamic 

wake separation can be a promising concept for improving runway performance with 

constrained capacity and configuration. Therefore, the research areas in this work are 

introduced from detailed to general perspectives, focusing on developing novel 



7 

 

approaches for efficient air traffic control in terminal flight. One aspect is to investigate 

the potential of weather-related and pairwise aircraft wake separation through deep 

learning-driven approaches utilising historical wake data from LiDAR at the Hong 

Kong International Airport (HKIA). The other aspect is to perform intelligent and 

dynamic runway scheduling and integrated terminal traffic flow optimisation 

considering the dynamic time-based flight separation under aircraft wake vortex 

prediction research. This research aims to build preconditions for holistic and 

continuous traffic planning and facilitate improvement of the overall traffic flow 

efficiency.    

 

1.2. Research scope and objectives 

  The contradiction between the increase of flight volume and the saturation of the 

current operational capacity of airports and terminal areas prompts the development of 

more efficient traffic flow scheduling methods in each airspace sector and integrated 

coordination methods for the whole region when the route structures and airport 

configuration of the airspace cannot be changed. This thesis aims to develop novel data-

driven machine-learning approaches for improving traffic flow efficiency and safety of 

both the terminal area and final approach area under the trajectory-based operational 

concept. The research objectives of this work are primarily in three aspects: 

(1) The first objective of this research is to explore the efficient approach for 

developing dynamic wake separation related to varying meteorological 

conditions and aircraft pairs. The novel deep learning approaches for image 

processing and sequential data prediction will be investigated for their 

applicational capability in aircraft wake vortex recognition, evolution 

prediction and dynamic separation determination. Furthermore, approaches for 
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improving their trustworthiness, explainable ability and prediction robustness 

will be explored to ensure flight safety and enhance human control over the 

system and predictive results. 

(2) At the runway scheduling level, the research is dedicated to identifying the 

potential of flight separation minima reduction related to aircraft wake 

turbulence and exploring its effect in improving the efficiency and throughputs 

of runway operations at theoretical and actual operational operations under 

certain traffic situations. The criteria for developing dynamic wake separation 

without compromising flight safety will be analysed statistically based on 

vortex encounter safety assessment with verification.  

(3) In the macroscope level of terminal airspace, we further aim to explore the 

impact of runway scheduling through dynamic wake separation on terminal 

approach scheduling. Using a dynamic wake vortex separation model, which 

adjusts separation criteria based on atmospheric conditions and aircraft types, 

the study evaluates how these changes influence runway operations and 

terminal area management during periods of high traffic density. Most 

importantly, we investigate whether these efficiency improvements could 

compromise safety by causing conflicts in the terminal manoeuvring area. The 

goal is to balance efficiency gains with necessary safety considerations, 

ensuring conflict-free airspace. 

 

1.3. Organisation of the thesis 

  The structure and correlation between the work done in this thesis and the four 

research stages of the overall framework are presented in Figure 1-1. After a brief 

introduction in Chapter 1, the rest of this thesis is organised as follows: 
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Figure 1-1. The structure of the doctoral thesis. 

  Chapter 2 proposes a comprehensive and extensive literature review on elements 

related to terminal traffic flow: flight trajectory predictions; aircraft wake vortex 

prediction, development of the flight separation standard and the optimisation 

algorithms of sequencing and scheduling.  

  Chapter 3 and Chapter 4 aim to simulate the dynamic wake separation time from the 

wake vortex characteristic analysis perspective, regarding the first objective. The 

reduction of flight separation minima is investigated by recognising the presence and 

positions of aircraft wake vortices, their transport, and encounter time at the approach 

profiles. Specifically, Chapter 3 develops the fast-time and data-driven vortex 

identification models and explores the effects of crosswinds on the lateral transport of 

wake vortices. Chapter 4 elucidates the short-term and long-term wake vortex transport 
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and decay forecasting. The integration of wake vortex recognition in Chapter 3 with 

vortex evolution prediction is also verified with model performance evaluation, 

demonstrating both the online vortex monitoring and prediction ability of future vortex 

movement. This research is a breakthrough in realising deep learning-based vortex 

feature extraction and quantified recognition of aircraft wake vortices based on the 

LiDAR technique, which enables real-time vortex presence monitoring and risk 

assessment of vortex encounters. 

  The dynamic wake separation predicted based on Chapter 3 and Chapter 4 provides 

preconditions for developing proactive runway scheduling plans. Chapter 5 explores 

the contribution of dynamic wake separation in theoretical and operational runway 

throughput improvement, focusing on the second objective. This research is a 

microscope-level investigation of the managerial implications of dynamic wake 

separation strategy. 

  Chapter 6 further investigates the effect of dynamic wake separation in the final 

approach on macroscope traffic control in the terminal area and concentrates on the last 

objective. The feasibility of applying the dynamic wake separation in different traffic 

demands and meteorological conditions is discussed, and the performance of arrival 

time, flight delay, and air traffic controllers’ workload is assessed. 

  Finally, Chapter 7 summarises this research and discusses the potential future 

research directions.  
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Chapter 2. Literature review 

  With the development of computer technology and the accumulation of massive 

volumes of flight data and operational data, data-driven machine learning techniques 

have gained great popularity in air traffic management, especially the terminal traffic 

flow management area. This chapter reviews the conventional approaches and novel 

machine learning algorithms utilised in terminal flight optimisation and runway 

scheduling problems. The development of aircraft separation standards in the final 

approach related to aircraft wake vortex, as well as the approaches for wake vortex 

modelling and prediction, are also examined to understand the physical reason for the 

approach to flight separation reduction. This chapter could improve our grasp of the 

connotations and approaches of the target research topics and identify the research gaps 

that head the research objectives of the following chapters.  

 

2.1. Aircraft wake vortex dynamics, modelling and safety assessment 

  Wake turbulence is the by-product of aircraft lift, leading to two counter-rotating 

vortices tailing behind the aircraft in the far end, as shown in Figure 2-1, and could 

induce different degrees of hazard towards the following aircraft when they enter the 

wake region of the leading aircraft, as depicted in Figure 2-2 (Shen et al., 2023). Figure 

2-3 shows the two-phase decay and lateral movement of aircraft wake vortices in 

moderate turbulence.  

  The research of aircraft wake vortex starts with the development of numerical 

simulation techniques of Computational Fluid Dynamics (CFD). The early numerical 

studies for discrete vortex estimation can be traced back to the 1960s (Moore, 1974). 

In recent years, the pulsed Light Detection and Ranging radar has been implemented 

for monitoring the behaviour of wake vortices. Therefore, the methodologies of wake 
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vortex study are mainly two-fold: physical model-based and data-driven model based 

on LiDAR technique, with the literature research as follows. 

  

Figure 2-1. Wake turbulence generated behind the aircraft. 

 

 

Figure 2-2. Hazards for the following aircraft when getting into the wake region that is 

generated by the leading heavy aircraft. 

 

 

Figure 2-3. Wake decay process under a stable atmosphere without winds. 
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2.1.1. Physical dynamic-based wake modelling 

  The wake separation reduction system relies highly on the accuracy of wake 

detection and modelling of the hazard assessment of aircraft wake turbulence. The two-

dimensional (Burnham et al., 1978) and three-dimensional (Robins et al., 1996; Switzer 

et al.) numerical simulations were applied to identify more and more realistic vortex 

movement and circulation evolution, with computational methods refinement. Corjon 

et al. (2012) identified and explained the generation of secondary vortex structures 

generated by environmental turbulence in the wake vortices’ strain field.  

  A large volume of existing research specialises in the wake vortex prediction from 

the theoretical model perspective, with the vortex initialised employing analytical 

models such as the Lamb-Oseen and Burnham-Hallock (Gerz et al., 2002). Models for 

the rapid predictions of wake vortices are developed further. For instance, the initial 

fast-time model proposed worked as an illustrative model for later model advancements. 

The other fast-time prediction models include the Aircraft Vortex Spacing System 

(AVOSS) (Proctor, 1998), TASS Driven Algorithm for Wake Prediction (TDAWP) 

(Proctor et al., 2006), Probabilistic Two-phase Wake Vortex Decay model (P2P) 

(Holzäpfel, 2003) and Deterministic Wake Vortex Model (DVM) in WAKE4D platform 

(Visscher et al., 2010). To simulate the decrease and decay of vortices, they employ 

theoretical empirical parameterisations upon wake vortex physics. Adjustments are 

made to model elements and coefficients based on theoretical factors, the results of 

computational simulations and field experiments, and validated regarding experimental 

data. For considering the stochastic features of wake vortices, some physical models 

incorporate probabilistic aspects that consider the uncertainty and diversity of initial 

modelling and environmental conditions to forecast the uncertainty range of the vortex 

behaviour. For example, the physical Wake Vortex Prediction System (WSVS) was 



14 

 

constructed with inputs of aircraft information and atmosphere conditions and 

demonstrated with the safety level of their model by the Monte Carlo simulation, and 

its applicability in separation reduction and traffic optimisation was further evaluated 

(Holzäpfel et al., 2021; Matayoshi et al., 2014). However, such a physical model can 

only describe ideal tail-vortex generation and performs under certain weather 

conditions and atmospheric disturbance assumptions. The stochastic feature of the wake 

turbulence requires techniques to detect and analyse the actual data in real operations. 

 

2.1.2. Wake vortex recognition based on the LiDAR technique 

  Light Detection and Ranging instruments with rapid wake vortex identification 

algorithms are considered to support monitoring and analysis of wake behaviour under 

several weather conditions (Hon et al., 2021; Thobois et al., 2016). The rapid wake 

vortex location identification based on LiDAR data can be divided into extraction from 

the Velocity Envelope (VE) and Radial Velocity (RV) categories. VE algorithm locates 

vortex cores from the velocity envelopes and calculates the circulation based on the 

given velocity model (Holzäpfel et al., 2003). Both fixed threshold (Rahm et al., 2008) 

and adaptive threshold to Signal-to-Noise Ratio (SNR) (Wassaf et al., 2011) for 

estimating vortex parameters from the Doppler spectra were researched. RV method 

employs radial velocity to identify wake vortex position (Li et al., 2020; Smalikho & 

Banakh, 2015; Smalikho et al., 2015). Circulation strength indicates the intensity of the 

wake vortex, which is more difficult to estimate. A method of circulation retrieval is 

based on vortex position estimation and the downwash velocity model, such as the 

Burnham-Hallock model. Wu et al. (2019) specifically introduced their measurement 

of wake core with radial velocity data from LiDAR scan and Fast Fourier Transform 

(FFT) spectrum distribution and estimation of wake circulation with the Burnham-
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Hallock vortex model based on velocity envelope. Other methods for circulation 

estimation were to build mathematical theoretical velocity models and fit with the 

LiDAR detection data, such as the Maximum Likelihood estimator (Frehlich et al., 2005; 

Hallermeyer et al., 2016; Jacob et al., 2011). To the best of our knowledge, these rapid-

processing algorithms are universal and may be affected by noise and high-turbulence 

scenarios. 

 

2.1.3. Data-driven with machine learning models  

  Data-driven deep learning models such as convolutional neural networks have a 

strong ability in image processing and identification, which is ideal for wake vortex 

detection to facilitate the physical LiDAR processing algorithm. Although Machine 

Learning techniques such as image processing have been applied in LiDAR algorithms 

for initially identifying the existence of wake vortex and narrowing down the vortex 

window for wake core localisation before the circulation strength calculation (Hon et 

al., 2021; Thobois et al., 2016), there are only few studies that straightforwardly 

perform quantitative practice of wake location and circulation estimation with ML to 

improve the computational automaticity and speed (Wartha et al., 2022). Pan et al. 

(2020) employed the Support Vector Machine (SVM) to identify the presence of wake 

vortices using features of radial wind data from LiDAR and meteorological data such 

as temperature, air pressure, background wind speed and direction. The classification 

of the existence of wake vortex achieved 70% accuracy in SVM (Pan et al., 2020) and 

94% accuracy in Artificial Neural Networks (ANNs) (Weijun et al., 2019). Regions 

with CNN features (R-CNN) and You Only Look Once (YOLO)-v5s network structures 

are also employed for vortex classification and strength category identification (Shen 

et al., 2023). Another latest research applied Multilayer Perceptrons (MLPs) and 
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Convolutional Neural Networks to quantitatively estimate the location and strength of 

wake vortex, which achieved an 86% match rate compared to the benchmarking Radial 

Velocity (RV) method. However, this research conducted separate training of the 

pairwise and coupling two-dimensional vortex positions. Furthermore, the performance 

of their model has no reference to compare with that of other deep learning models. 

More complicated deep learning models remain to be developed to reveal the intrinsic 

non-linear features of wake turbulence generation and decay process, considering 

several weather conditions and information of aircraft types. 

 

2.1.4. Safety assessment of wake encounter 

  The analysis of Wake Vortex Encounters (WVEs) has advanced significantly, 

leveraging a variety of methods to address safety and operational efficiency concerns. 

The risk assessment of the impact of wake turbulence in the rear aircraft is primarily 

based on the single-parameter and multi-parameter assessment models. In the take-off 

and landing stage, the vortex intensity is high, and the wake encounter angle is small, 

which mainly causes rolling motion to the rear aircraft. The rolling moment coefficient 

(RMC) is primarily used to assess the risk of wake encounters.  

  Rojas et al. (2021) focused on sensitivity analysis of wake vortex circulation and 

decay during the en-route phase, utilising a modelling approach to evaluate WV effects 

based on aircraft mass, altitude, and environmental factors. This research aids in 

identifying critical scenarios for WVE simulations, and optimising safety assessments 

by reducing computational redundancies. Baren et al. (2017) validated the RMC as a 

metric for wake vortex encounter severity through piloted flight simulations. Their 

findings support the pair-wise separation concept, refining the Recategorisation of 

Aircraft Weight (RECAT) separation standards by aligning severity levels across 
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aircraft categories. This method enhances the reliability of safety metrics while 

addressing operational demands for reduced separations. Pan et al. (2023) employed 

numerical simulations to explore atmospheric stratification impacts on wake vortex 

evolution. Utilising Reynolds-averaged Navier–Stokes equations and Brunt–Väisälä 

(BV) frequency metrics, this study constructs three-dimensional hazard zones and 

calculates wake separations. The results demonstrate faster decay rates under unstable 

stratifications, enabling tailored separation adjustments based on environmental 

conditions. Jiang et al. (2023) integrated quick access recorder (QAR) data with 

aerodynamic modelling to analyse dynamic wake separation. By considering real-time 

velocity data and incorporating roll moment coefficients as safety metrics, this 

approach dynamically adjusts separations for various aircraft classes, achieving 

significant reductions in separation distances while maintaining adherence to RECAT 

standards.  

  The rolling moment coefficient RMC can be expressed as a function of the front and 

rear wing spread (Treve, 2013): 

 RMC =  
Γv

𝑉𝑓𝑏𝑓

𝐴𝑅𝑓

𝐴𝑅𝑓 + 4
 𝐹(

𝑏1

𝑏𝑓
) (2-1) 

 

Where the 𝛤𝑣 is the vortex strength of the leading aircraft, 𝑉𝑓 is the flight airspeed, 

𝐴𝑅𝑓 is the wing area of the rear aircraft, 𝑏1  and 𝑏𝑓 are the wingspan of the leading 

and following aircraft, 𝐹(
𝑏1

𝑏𝑓
 ) = 1 − 2(2𝑎

𝑏1

𝑏𝑓
 )[√1 + (2𝑎

𝑏1

𝑏𝑓
 )

2

− 2𝑎
𝑏1

𝑏𝑓
 ]  and 𝑎 =

0.04. 

  Multi-parameter assessment criteria can describe aircraft wake hazards 

comprehensively, such as the Simplified Hazard Area Prediction method (SHAPe) from 

the German Aerospace Centre (DLR). The hazard encounter criteria include flight 
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altitude, pilot control commands, starting parameters (sideslip angle and angle of 

attack), route offset and acceleration, etc. 

 

2.2. Runway operation and terminal traffic flow management with time-

based separation 

  In the case of complex background wind, the evolution and drift of aircraft wake are 

complicated. Therefore, the static wake interval is unsuitable for upwind, crosswind 

conditions and application in closely spaced parallel runways. The use of Distance-

based Separation (DBS) will greatly reduce the runway utilisation efficiency. In the 

case of crosswind, the wake of the aircraft may be blown away from the runway, as 

depicted in Figure 2-4, so that the probability of the rear aircraft encountering the wake 

of the front aircraft could be reduced; thus, the wake interval of the front and rear 

aircraft can be reduced. Several large European airports, represented by London 

Heathrow Airport, have proposed the Time-based Separation (TBS) that can increase 

runway capacity by 14% under moderate upwind conditions. Under strong upwind 

conditions, the capacity increase is more obvious, and the delay time of aircraft under 

crosswinds is reduced from 5.9 minutes to 3.4 minutes.  

 

 

Figure 2-4. Wake vortex lateral transport under crosswind (a) the top view of the flight, (b) the 

rear view of the flight. 

 

  The wake separation is taken as a hard constraint in runway scheduling and 

optimisation problems. This section reviews the existing literature on runway 
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scheduling under time-based air traffic management procedure and identifies research 

gaps and research potential in this topic with the separation reduction developed by 

methodology in the above section. 

 

2.2.1. Research on runway scheduling under separation constraint 

  Runway sequencing and scheduling are critical components of air traffic 

management that focus on determining the optimal order and timing for aircraft to land 

or take off on one or more runways. These processes aim to maximise the efficiency of 

runway operations while ensuring safety and minimising delays, by arranging aircraft 

in a specific order and precise time slots based on factors such as arrival times, departure 

priorities, runway capacity, weather conditions, aircraft types, separation requirements 

to avoid conflicts and other operational constraints. The widely used First-Come-First-

Served (FCFS) approach often leads to inefficient utilisation of available capacity in 

the runway sequencing and scheduling problem. The single runway scheduling problem, 

which involves managing arrivals, departures, and ground aircraft, has been addressed 

using multi-objective dynamic programming (DP) by researchers focusing on real-time 

decision support for air traffic controllers (Malik & Jung, 2016). Balakrishnan et al. 

(2010) proposed the most classical K Constrained Position Shifting (K-CPS) 

substitution algorithm based on FCFS for runway scheduling under the time-based 

wake separation regulated by the International Civil Aviation Organisation (ICAO), 

which enhances flexibility in sequencing. Malik et al. (2016) built the Mixed-Integer 

Linear Programming (MILP) model for multiple runway scheduling problems under 

selective CPS. Jacquillat et al. (2017) modelled the mixed take-off and landing of 

runway configuration and analysed with random queuing theory under approach time 

uncertainty. The feasible robust optimisation (Samà, et al., 2017) and exact 
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optimisation algorithms were proposed for different uncertainty models in the approach 

scenarios (Ng et al., 2021; Ng et al., 2020; Ng et al., 2017). For large-scale landing 

problems, Pinol et al. (2006) were the first to introduce the Scatter Search (SS) method 

and the Bionomic algorithm for addressing the Aircraft Landing Problem (ALP) with 

time window constraints, successfully solving large-scale instances involving 500 

aircraft and five runways within a minute. Building on this, Salehipour et al. (2013) 

combined Simulated Annealing (SA) with Variable Neighbourhood Descent (VND) 

and Variable Neighbourhood Search (VNS) to tackle the ALP. Further advancements 

of the VNS algorithm (Salehipour et al., 2013) were made (Ng et al., 2017). This 

research achieved comparable results to CPLEX but with significantly reduced 

computational times. The stochastic branch and bound algorithm was applied to solve 

the stochastic runway scheduling (Sölveling et al., 2014). Dastgerdi et al. (2015) 

proposed a novel Evolutionary Algorithm (EA) to address congestion at single-runway 

airports. Additionally, swarm intelligence approaches for the ALP model have been 

explored. The convergence rate of the Artificial Bee Colony (ABC) algorithm was 

proposed with a robust optimisation framework proposed for the Aircraft Sequencing 

and Scheduling Problem (ASSP) by incorporating mixed-mode runway operations to 

account for uncertainties in arrival and departure times (Ng et al., 2017). In real-world 

applicational scenarios, the Spot and Runway Departure Advisor (SARDA) is a 

decision-support tool designed to enhance the efficiency and predictability of airport 

surface operations by assisting ramp and tower controllers, through collaborations with 

airline partners and has undergone human-in-the-loop simulations at major airports, 

such as Dallas-Fort Worth and Charlotte, demonstrating its potential to improve 

departure pushback operations (Barhydt, 2013). 

  In fact, these prior researches directly feed the static separation minima in their 
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algorithms. Performance improvement under reduced wake separation, and even 

dynamic aircraft separation in runway operations, deserves to be studied. Wake vortex 

avoidance is the main factor that affects the operational problem with aircraft spacing 

to increase runway capacity and throughput. Wake vortex separation is a necessary hard 

constraint for runway operations related to safety. The lateral movement and decay of 

wake turbulence make the optimisation problem more complex in the closely spaced 

parallel runway (Dönmez et al., 2022; Liu et al., 2019). For closely spaced parallel 

runways, the wake vortex generated in one runway may transport to adjacent runways. 

When combined with the wake characteristics in crosswind, the take-off and landing 

capacity of the runway could also be significantly improved compared with the existing 

rules for closely spaced parallel runways. 

 

2.2.2. Terminal traffic flow optimisation problem 

  The Terminal Traffic Flow Problem (TTFP) extends the framework of the ASSP. 

Microscopic air traffic flow models enhance the practical applicability and robustness 

of solutions by providing detailed control over Air Traffic Control (ATC) operations, 

such as air segment management, holding patterns, runway allocation, and ground 

movements. Optimising traffic flow within the Terminal Manoeuvring Area (TMA) 

involves the strategic planning and management of aircraft trajectories during their 

approach to or departure from a runway, with the goal of maximising airspace 

utilisation, minimising delays, and ensuring safety (Murça et al., 2015). The terminal 

approach problems can be modelled as deterministic or stochastic with uncertainty 

considered, and solved with exact algorithms or heuristic algorithms, respectively. 

Deterministic TTFP models have been extensively studied for achieving conflict-free 

approaches and minimising total flow time within the TMA. Rey et al. (2016) 
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introduced a deterministic conflict resolution model constructed through non-linear 

optimisation, employing subtle speed adjustments via subliminal speed control. Li et al. 

(2022) developed a mixed-integer quadratic programming model, enhancing the 

column generation algorithm to address disrupted flight recovery challenges, 

incorporating discrete flight duration control and aircraft assignment constraints. To 

mitigate computational complexity in large-scale instances, meta-heuristics 

optimisation algorithms are proposed (Ikli et al., 2021; Ng et al., 2018; Samà, et al., 

2017).  

  The inclusion of various uncertainties, practical constraints, and environmental 

changes significantly increases the complexity of air traffic control decision-making. 

To address these uncertainties, mitigate delay propagation and reduce the need for 

reactive rescheduling, two primary approaches are employed: stochastic and robust 

modelling. In the stochastic approach, uncertainty is modelled using probability 

distributions derived from historical data (Jacquillat et al., 2015; Jacquillat et al., 2017). 

By contrast, the robust approach addresses uncertainty through interval-based models, 

focusing on performance under deviation scenarios rather than statistical distributions 

(Aissi et al., 2009; Gabrel et al., 2014). As a risk-averse strategy, robust modelling 

emphasises conservative decision-making, ensuring reliable outcomes despite 

environmental uncertainties (Ng et al., 2017). 

 

2.2.3. The development of aircraft separation standard 

  Following the ICAO's initial wake vortex interval standard based on three types of 

aircraft in the last century, major civil air traffic management programs, represented by 

the European Single Air Traffic Control Program and the United States Next Generation 

Air Traffic Control Program, were launched. The representative wake research projects 



23 

 

include EUROWAKE, WAVENC, MFLAME, C-Wake, S-Wake, I-Wake, ATC-Wake, 

FAR-Wake, FLYSAFE, Green-Wake (Gerz et al., 2002), etc. Through a large number 

of studies on aircraft wake characteristics and hazard assessment, the possibility of 

further reduction of wake interval is explored. Some of the research results have been 

gradually applied to air traffic control and aircraft take-off and landing schedules, and 

on this basis, the wake interval reduction of aircraft reclassification is proposed. 

  At present, the RECAT-EU from EASA and the first stage of the RECAT scheme in 

FAA Order JO 7110.659C aims to optimise the classification of aircraft and divides 

aircraft weight classes from the traditional three categories into six categories according 

to aircraft weight and wingspan (forming a 6×6 matching matrix) (FAA, 2016). The 

latest wake reclassification standards have been widely adopted by some countries, 

including RECAT-CN under CCAR-93-R5 in 2017; ReCAT-EU under EU 2020/469 

ATS in 2013; ReCAT-EU-PWS (Proposal for 2022). However, these standards do not 

consider the dynamic effects of weather changes on the separation intervals, and they 

are still conservative.  

  In 2016, the FAA issued RECAT-II Phase II with the goal of constructing static wake 

intervals based on flight pairs. A one-to-one aircraft spacing criterion is formed based 

on the wake of different aircraft and the conditions encountered by the wake, which 

results in a 1200 × 1200 pairing matrix representing essentially all aircraft types. The 

standard is being tested at six U.S. airports. The ultimate goal of Phase III is to achieve 

dynamic and real-time wake interval adjustment based on flight pairs and weather 

changes. The dynamic wake vortex interval adjustment adapted to different weather 

and flight conditions has greater potential to increase airport capacity and is the 

development trend of air traffic control technology in the future. 
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2.2.4. Research on time-based aircraft separation 

  Some state-of-arts directly focus on the aircraft separation problem. Diana (2015b) 

assessed the impact of time-based flow management procedures on airport performance 

through an autoregressive conditional duration model. This model reveals the volatility 

of interarrival duration time in real operational data and its impact on traffic delay and 

taxi-out time. They also investigated the variation of departure throughputs before and 

after RECAT implementation using a Markov regime-switching model (Diana, 2015a), 

in which the results show that the departure will persist in a longer constrained period 

in the post-implementation. Furthermore, research on the prediction of runway exit time 

was also developed employing machine learning techniques for aircraft under the ICAO 

vortex categories based on historical traffic data (Herrema et al., 2019).  

  As for the flight interval optimisation of parallel runways, preliminary studies have 

been conducted on the impact of shortening wake vortex intervals on runway operations. 

Janic (2008) calculated the capacity model of the CSPR model through an analytical 

model with approaching scenarios considered. Hammer (2000) analysed the basic 

principle of the approach procedure of the close parallel runway. The study of crosswind 

analysis mainly focuses on the effect of crosswind conditions (crosswind direction and 

wind level change) on wake and pairing time intervals. Chen (2019) considered the 

influence of wind speed on the evolution of the wake vortex based on the P2P wake 

vortex dissipation model. At the same time, based on the rolling moment coefficient 

evaluated by wake vortex encounter, the aircraft spacing of B747-400 and B737-700 

aircraft during close parallel take-off under the influence of crosswind was determined. 

In general, these studies adopt a simple crosswind model for the lateral movement of 

wake and simplify the classification of danger wake region, without considering the 

sinking characteristics of wake vortex pairs. At the same time, in the flight pair, only 



25 

 

the specific aircraft type matching pair is selected, and the universal real-time matching 

interval estimation based on dynamic crosswind is not realised. 

 

2.3. Flight trajectory prediction in air transportation 

  4D trajectory prediction serves as a foundation to support and integrate high-level 

decision-making systems in TBO, such as arrival and departure management, conflict 

detection and resolution, and en-route air traffic flow management. In the present 

literature, aircraft trajectory prediction approaches can be categorised as model-driven 

and data-driven (Zhang et al., 2020). Several pioneer research on physics-model-based 

flight trajectory prediction focuses primarily on establishing the relationship between 

future trajectory with the current aircraft states using aircraft performance models and 

aircraft intentions. Although sophisticated model-driven Flight Trajectory Prediction 

(FTP) is capable of describing realistic aircraft movement, these flight-phase-orientated 

physical models fail to manage the dynamic and time-varying flying environment. 

Machine learning-based models with data mining techniques show significant 

advantages in four-dimensional flight trajectory prediction through processing and 

integrating massive historical trajectory data with trajectory regularity and several 

flight-related information (Liu et al., 2023b). This section reviews the literature on 

flight trajectory prediction. 

  4D flight trajectories can be characterised mathematically as a time-ordered set of 

trajectory vectors, such as a 4D flight trajectory sequence: 

(𝑥t−15, … , 𝑥t−2, 𝑥t−1, xt, 𝑥𝑡+1, … , 𝑥𝑡+15, 𝑡 ≥ 16) , where 𝑥  vector contains spatial 

properties of trajectory with at least latitude, longitude and altitude, and 𝑡 represents a 

temporal property with timestamp or other time intervals.  

  Suppose given the observed current and historical trajectory vectors 
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(𝑥t−b−1, … , 𝑥t−2, 𝑥t−1, xt), 𝑡 ≥ 𝑏 + 2, prediction of flight trajectories in future 𝑎 time 

intervals (𝑥t+1, … , 𝑥t+2, 𝑥t+a)  is achieved by trajectory predictors, employing data 

from observed trajectory vectors and other attributes such as environmental conditions, 

uncertainty information describing the quality of prediction and information indicating 

operation modes and aircraft intents of flight guidance systems, 

etc.(FAA/EUROCONTROL, 2010). b denotes the input length of observed flight 

trajectories, 𝑥  represents the trajectory vector. 𝑎  represents the prediction time 

horizon, which is the period ahead to which prediction is performed and determines the 

time scale of prediction (Cheng et al., 2021; Guan et al., 2014; Hrastovec et al., 2016). 

Prediction of future trajectories within one to several minutes is categorised as short-

term. The medium to long-term projection spans minutes to hours into the future. The 

predicted output might be either deterministic or probabilistic. The deterministic 

prediction yields single and nominal results without alternatives. The probabilistic 

prediction exposes prediction uncertainty by considering the stochastic distribution of 

inputs and model parameters (Pang et al., 2021; Sun et al., 2018). 

 

2.3.1. Physical model-based  

(1) Aircraft performance model-based 

  The most sophisticated model of aircraft performance is the full six-degree-of-

freedom kinetic model with aircraft translation and rotation, which describes forces and 

moments acting on aircraft as well as aircraft movement in detail. In the air traffic 

operational scale that focuses on kinematics, aircraft can be simplified as a point with 

mass under certain assumptions in aircraft configuration, with 3-dimensional 

differential equations following Newton’s law without consideration of rotational 

moments. With the initial states (time, mass, velocity, position, Euler angles and 
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performance constraints), flight plan, performance parameters and weather data (wind 

speed, direction, etc.) given, the sequential points of future aircraft trajectory in 

integrated differential equations can be forecasted.  

  Estimation of performance parameters and modelling of aircraft intent are two main 

concerns for model-driven trajectory prediction (Schuster et al., 2012). Aircraft intents 

are structured instructions that specify unambiguous configuration changes and 

operational states of the aircraft over a specific time horizon (Schuster et al., 2012). The 

formal Aircraft Intent Description Language (AIDL) using mathematical expressions 

of aircraft intents was presented to improve computational synchronisation across 

multiple predictors (Dupuy et al., 2007; Gallo et al., 2007; Lopez-Leones et al., 2007). 

Extensive research is based on databases such as EUROCONTROL Base of Aircraft 

Data (BADA), which provides multiple layers of aircraft performance models and 

parameter estimation (Nuic et al., 2010). As the flight profiles described in BADA are 

general cases with certain assumptions, which are unrealistic in actual flights and may 

induce significant prediction errors (Alligier et al., 2015; Schuster, 2015), the statistical 

simulation technologies were performed to estimate uncertainty of performance 

parameters or meteorological conditions, such as Monte Carlo (Lymperopoulos et al., 

2010; Sankararaman et al., 2017; Wang et al., 2021) and other estimation methods with 

reduced computational burden than MC approach (Casado et al., 2017; Subramanian et 

al., 2022). 

 

(2) State transition model-based 

  The aircraft kinematic model is another approach to simplify aircraft physical 

movement, which considers kinematical motions with positions, velocity, and heading, 

but ignores the physical mechanism of forces. The state transition model in state space 
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theory is often used to model the kinematic dynamics and forecast trajectory of an 

aircraft. The Kalman Filter (KF) is a classic recursive approach for single-model 

estimation that only considers one flight mode (Lin et al., 2008; Thipphavong et al., 

2012).   

  Hidden Markov model (HMM) (Ayhan et al., 2016; Georgiou et al., 2020; Rezaie et 

al., 2021) and Interacting Multiple Model (IMM) (Roy et al., 2006; Song et al., 2012) 

are two representative stochastic methods for multi-model estimation that handles 

multiple flight modes, which is an estimation problem of stochastic linear hybrid system 

that weighs a hefty cost on computation. Flight trajectories and relevant information 

(local meteorological data, flight intent, aircraft properties, etc.) are typically modelled 

as discrete values that comprise HMM states. The trajectory is subsequently updated 

with transitions between these states, using historical trajectory data and temporal-

spatial constraints (Ayhan et al., 2016; Georgiou et al., 2020). In addition to two major 

components of the initial distribution and the evolution lay of the Markov sequence, 

Rezaie et al. (2021) developed the dynamic Gaussian conditionally Markov model to 

estimate trajectories with waypoints. The IMM algorithm allows multiple state 

hypotheses with multi-filter models to perform state estimation with great performance 

and low computational cost (Roy et al., 2006; Song et al., 2012). Song et al. (2012) used 

IMM to estimate aircraft state and updated the transition probability matrix of aircraft 

intent with a typical trajectory library extracted using a data mining algorithm. Seah et 

al. (2010) extended the IMM and applied it to monitor the conformity of real trajectories, 

including turns and descents, with flight plans, utilising KF and Markov chains to 

update aircraft states and flight modes. 
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2.3.2. Machine learning model-driven 

(1) Machine learning methods 

  The statistical machine learning methods are also used to estimate aircraft 

performance data from historical trajectories and have demonstrated improved 

performance than predicting with the BADA model, such as polynomial regression to 

estimate thrust law and mass in the climb phase (Alligier et al., 2013), the K-nearest 

neighbour model (Hrastovec et al., 2016) and gradient boosting machine for predicting 

aircraft mass and speed (Alligier et al., 2018). Sun et al. (2018) used the Bayesian 

inference based on Automatic Dependent Surveillance-Broadcast (ADS-B) flight data 

to calculate the initial aircraft masses based on the total energy model and fuel-flow 

model. Their results were expanded to a large open-source database of parametric 

statistical models (Sun et al., 2019). Yu et al. (2019) introduced a physics-based learning 

method with a recurrent neural network for learning aircraft dynamical behaviour and 

inherent characteristics, and their model shows superior performance and lower training 

costs than the data-driven Long-short Term Memory Network (LSTM) model. The 

Gaussian mixture model was also proposed as a pseudo measurement for state 

estimation-based prediction with RM-IMM, which achieved better accuracy than the 

single Gaussian mixture model- and LSTM-based trajectory prediction (Choi et al., 

2021). The online trajectory prediction with the physical model was also involved with 

updated aircraft intents (Schuster et al., 2012; Zhang et al., 2018). 

(2) Deep learning neural network-based 

  The state-of-the-art deep neural networks have been employed by 24 studies for 

flight trajectory prediction, as shown in Table 5 of the Appendix. The datasets used in 

the state-of-arts and their features are also listed in Table 3 and Table 4 of the Appendix. 

Back Propagation Neural Network (BPNN) with few hidden layers was constructed for 
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trajectory forecasting (Verdonk et al., 2018; Wang et al., 2018; Wu et al., 2020), where 

the former two focus on the approaching phase while the last for en-route flight, and 

trajectory clustering is performed in all of them to classify similar trajectories to 

improve trajectory prediction performance. Clustering plays a pivotal role in flight 

trajectory pattern identification and prediction (Liu et al., 2023a). Model stacking 

between BPNN and machine learning models was also employed with enhanced 

performance compared to prediction based on individual models (Wang et al., 2020). 

With sophisticated nonlinear transformations obtained from novel deep learning 

architecture, complicated relationships might be learned over historical trajectory 

samples.  

  Recurrent Neural Network (RNN) networks and their variants are the most prevalent 

approaches for predicting flight trajectory, accounting for 14 out of 24 deep learning 

networks employed. The feedback connections between states in previous and 

subsequent steps of the RNN model are capable of capturing variable temporal 

dependencies. The LSTM model is an important structural variant of RNN that reduces 

training time and improves the accuracy of time-series data. The added memory 

function of LSTM with sigmoid and pointwise multiplication enables the ability to 

solve long-term dependence in sequence data. LSTM model was constructed for take-

off and landing trajectory prediction (Zeng et al., 2020), arrival time estimation (Deng 

et al., 2022) and en-route long-term 4D trajectory prediction (Han et al., 2021), with 

attributes of aircraft type, standard terminal arrival routes and time of wheel block 

concatenated, respectively. Bidirectional LSTM was used in (Sahadevan et al., 2022), 

achieving more accuracy than single-directional LSTM with enhanced relevance in 

historical and future trajectory data. The model that encoders with 1D convolutional 

layer and decoders with Gated Recurrent Unit (GRU) was applied (Tran et al., 2022). 
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  A novel model, a generative adversarial network, was applied for long-term 

probabilistic 4D trajectory prediction (Wu et al., 2022). Conv1D-Generative 

Adversarial Network (Conv1D-GAN) has the highest prediction similarity to real 

trajectory compared to two-dimensional convolution-based and LSTM-based 

generators and discriminators trained on RGB trajectories. Other probabilistic 

predictions, such as Gaussian process-based DNN and MC Dropout, were implemented 

for probabilistic separation measurement (Chen et al., 2020) and (Zhang et al., 2020), 

respectively, where the trajectory prediction results were probabilistic with confidence 

level rather than deterministic. 

  Transformer architecture also efficiently manages long-term dependencies. Guo et al. 

(2023) proposed a novel binary encoding method with a transformer as the backbone 

network to formulate the FTP task as a multi-binary classification problem. The 

trajectory embedding module includes an attribute embedding block and an attribute 

correlation attention block to obtain high-dimensional features and correlations in input 

attributes.  

  The properties of different DNN structures confer both advantages and limitations. 

The advantages of RNN networks in capturing temporal features with memory function, 

and the good performance of CNN in extracting spatial features from high-dimensional 

data, make hybrid deep neural networks a promising research direction (Ding et al., 

2022; Ma et al., 2020; Sahfienya et al., 2021). In particular, a 1D convolutional network 

(Ma et al., 2020) and a 3D CNN (Shafienya et al., 2022) were applied for the extraction 

of a 3-dimensional spatial trajectory. The integration of the BPNN model and the LSTM 

model can be referred to (Zhang et al., 2020), which achieved both long-term prediction 

ability and great prediction accuracy.  

  The above-mentioned trajectory prediction focuses on a single flight. Multi-aircraft 
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trajectory prediction is also proposed to consider social connections of adjacent flights, 

the interactions between aircraft and their effect on trajectory prediction. The spatial-

temporal interactions were learnt by social pooling layers of the social-LSTM model 

(Xu et al., 2021), a graph-based spatial transformer module and a temporal module 

(Pang et al., 2021). 

 

2.4. Concluding remarks 

  This chapter presents a literature review of methodologies for terminal air traffic 

control. The flight trajectory prediction approaches are examined to support traffic flow 

optimisation. The literature review on this research area shows that emerging deep 

learning models have great advantages for 4D spatial-temporal flight trajectory 

prediction. The performance of those data-driven models can be further improved by 

integrating dynamic information related to weather, aircraft intentions and flight 

procedures. In addition, integrated deep learning models and deep learning-supported 

physical methods can achieve greater prediction performance. However, these studies 

focus mainly on model development. The integration and implementation of 4D 

trajectory prediction in problems such as flight separation assurance and traffic 

optimisation require further research. 

  In runway operational scenarios, the literature review starts with aircraft wake vortex 

modelling and prediction, which relates closely to flight separation in the final approach. 

The survey also shows the great potential of utilising novel data-driven neural networks 

for recognising and predicting aircraft wake vortices, which can serve as the verification 

method for physical vortex research and provide the model foundation for developing 

dynamic aircraft separation. Furthermore, this separation reduction inferred from the 

aircraft wake vortex prediction model can be applied to runway scheduling problems 
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for improving runway throughputs and reducing overall delay, compared to traditional 

runway scheduling with static separation constraints. 
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Chapter 3. Aircraft wake vortex recognition and safety 

assessment of vortex encounters via deep learning 

  In this chapter, a preliminary empirical study/experiment of aircraft wake vortex 

recognition is conducted as a prodromal step of the overall research programme. The 

deep convolutional neural networks are trained to identify the locations and strength of 

wake vortices. This study has demonstrated the separation reduction potential in 

weather-related conditions for the final approach without compromising flight safety. 

Under pre-identified crosswinds, the wake turbulence induced by the leading aircraft 

can be either conveyed out of the approaching path or decayed to an acceptable level 

for the follower aircraft to encounter. This separation scheme based on wind conditions 

indicates the benefits of increasing capacity for runway operations with high intensity, 

compared with the standard and fixed weather-independent wake separation minima. 

The proposed methodology was validated in the environment of the Hong Kong 

International Airport, using both near real-time and fast-time simulation in deep 

learning models. This separation suggestive tool increases the precision of separation 

delivery and decreases the number of unorganised temporal separations. The results 

show that the operational improvement is considerable when the crosswind near the 

ground is 3 m/s or greater for a continuous period. 
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3.1. Introduction 

3.1.1. Research background 

  Aircraft wake-related separation reduction becomes a hot direction to improve 

runway capacity under the “Increasing air traffic movement and improving runway 

efficiency” concept in air traffic management. Wake turbulence is the by-product of 

aircraft lift, leading to two counter-rotating vortices tailing behind the aircraft and could 

induce different degrees of hazard towards the following aircraft (FAA, 2016). In the 

current National Airspace System (NAS), miles-in-trail (MIT) is widely adopted to 

maintain a minimum distance measured in miles for aircraft sequencing in the en-route 

stream (Kopardekar et al., 2003). However, such static separation management assumes 

the worst-case scenario of wake encounters and may restrict the number of aircraft 

movements in a particular period in a sub-airspace, which results in delays and delay 

propagation under severe weather or other uncertain situations. The dynamic and safe 

wake separation adapted to weather and traffic conditions with wake-vortex research is 

the current research focus of the air traffic control programs around the world to pursue 

both economic and environmental benefits, such as the current phase of aircraft 

recategorisation concept proposed by EASA and FAA (Holzäpfel et al., 2021; Roa et 

al., 2020). 

  The RECAT separation is still essentially static and conservative. Dynamic aircraft 

separation, which involves adjusting the aircraft separation in real-time concerning the 

characteristics of the decay and movement of wake vortices under specific aircraft pairs 

and wind conditions, deserves to be researched and applied in runway operations to 

improve efficiency and safety (Holzäpfel et al., 2021). With the accumulation of a 

massive amount of LiDAR data, data mining with machine learning techniques shows 

great advantages in wake behaviour and separation reduction analysis to support 
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integrated runway optimisation. Some recent research has initially attempted to 

integrate objective detection algorithms (Shen et al., 2023), artificial neural networks 

(Wartha et al., 2022), and machine learning techniques such as support vector machine 

(Pan et al., 2020) in wake presence identification. More advanced deep learning models 

remain to be developed to quantificationally analyse the decay and movement of the 

wake vortices.  

  The research of aircraft wake turbulence focuses predominantly on numerical 

simulation with computational fluid dynamics (Robins et al., 1996) and physical 

modelling aspects. Aircraft Vortex Spacing System (AVOSS) (Proctor, 1998), TASS 

Driven Algorithm for Wake Prediction (TDAWP) (Proctor et al., 2006), Probabilistic 

Two-phase Wake Vortex Decay model (P2P) (Holzäpfel, 2003) and Deterministic Wake 

Vortex Model (DVM) in WAKE4D platform (Visscher et al., 2010) are some of the 

theoretical vortex models. Nevertheless, these analytical models rely on certain 

parametrical assumptions and function under ideal situations of wake encounters, 

which may result in deviations between prediction and actual flight scenarios. Light 

Detection and Ranging instruments with the data processing algorithm (Holzäpfel et al., 

2003; Li et al., 2016; Smalikho, et al., 2015) can facilitate behaviour analysis of wake 

vortex during actual flight operations and serve as a validation tool for vortex analysis. 

Velocity Envelope (VE) (Holzäpfel et al., 2003) and Radial Velocity (RV) method (Li 

et al., 2020) are two primary methodological categories for processing LiDAR data to 

identify the locations and intensity of wake vortex, either velocity envelopes or radial 

velocities are employed. To our knowledge, these algorithms for the rapid processing 

of LiDAR data are universal and may be affected by noisy background wind turbulence, 

resulting in inaccurate positioning and intensity estimation. The stochastic nature of 

wake turbulence necessitates techniques applicable to a variety of meteorological 
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conditions encountered in actual operations. 

 

3.1.2. Research gaps, motivations, and objectives 

  In this context, the research questions that this chapter aims to address are as follows: 

(1) How to analyse wake behaviour and recognise wake vortex through a data-

driven approach with deep learning? 

(2) What is the potential of aircraft separation reduction under several 

meteorological conditions compared to the RECAT standard? 

(3) How to ensure the trustworthiness and interpretability of decisions in deep 

learning models to facilitate their implementation in the wake separation system? 

  In this chapter, we consider the above issues starting with developing a two-stage 

deep-learning framework for wake vortex locating and strength estimation. Next, the 

potential time reduction of approach separation is assessed upon the probabilistic wake 

positioning and duration measurement on the approach corridor. Finally, the prediction 

uncertainty of the proposed deep learning is explained by employing image feature 

analysis. The principal contributions of this research are primarily fourfold: 

(1) In contrast to the research in (Wartha et al., 2022), where each wake-vortex 

parameter was trained in a single model, we construct a two-stage deep learning-

based framework for near real-time locating and strength estimation of wake 

vortices. The estimation of vortex circulation is performed on a refined region 

of interest extracted from raw wake images, based on first-stage vortex locating, 

which achieves significantly higher prediction accuracy compared to estimating 

directly on the entire wake images. 

(2) We explain the model decision process using the gradient-weighted activation 

map and prediction difference analysis (PDA) without requiring any 
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architectural changes or re-training of the CNN network. This visual analysis 

technique identifies the most relevant areas for vortex locating, reveals the 

shape of wake vortices and facilitates safety assessment by quantifying the 

safety-critical vortex encounter zone for follower aircraft. 

(3) The data-driven wake vortex estimation contributes to the existing literature by 

providing a deep understanding of vortex behaviour via high-dimensional 

feature analysis with deep learning models. The proposed CNN models 

effectively revise recognition errors that may occur with the physical algorithm. 

Furthermore, our model achieves higher recognition accuracy for estimating 

vortex locations in one model compared to (Wartha et al., 2022), thereby 

revealing the coupled relationship among spatial vortex features.  

(4) The wake encounter assessment, based on probabilistic vortex positioning at a 

high confidence level under specific crosswind conditions and certain aircraft 

weight categories, provides an effective methodological foundation for 

quantifying the dynamic wake separation. This assessment serves as a 

supplementary tool for reliable near-real-time wake vortex monitoring and 

establishes preconditions for developing more efficient and resilient runway 

scheduling to enhance runway throughputs.  

 

3.2. Backgrounds 

3.2.1. Characteristics of aircraft wake behaviour 

  Wake turbulence is typically a pairwise vortex in a steady atmosphere, counter-

rotating in the far end. It is a complicated phenomenon related to many variables, such 

as weight, wingspan, engine thrust, speed, etc., of the generating aircraft and 

intervening atmosphere such as crosswind, atmospheric stability and turbulence. 
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Surrounding meteorological conditions is the predominant determinant of its duration 

(Hallock et al., 2018). The development process of the wake vortex can be characterised 

as a two-phase decay in weak to moderate turbulence: the initial diffusion phase with 

gradual decay and the rapid decay phase that follows shortly. The initial circulation can 

be described by the below equation: 

 𝛤0 =
𝑀𝐴𝑔

𝜌𝑏0𝑉𝐴
 (3-1) 

 

Where 𝑀𝐴, 𝜌, and 𝑉𝐴 represent the aircraft mass, the density of air and flight speed, 

respectively; 𝑏0 = 𝑠𝐵, in which  𝐵 is the wingspan and 𝑠 is the load factor related 

to the wingspan.  

  Near the ground, the interaction with the secondary vortex separating from the 

ground influences the fall, rebound, and decay properties of vortices. The influence of 

instability and wind on vortex decay is shown to be negligible, with which even a 

moderate crosswind is sufficient to produce strong asymmetric rebound characteristics 

(Holzäpfel et al., 2007). 

  The meteorological conditions, such as crosswind and the background wind 

turbulence, play a crucial role in specifying how long a vortex remains potentially 

hazardous and indicating the transport of the wake vortices, as depicted in Figure 3-1. 

Specifically, when the crosswind is roughly equivalent to the initial descent speed, the 

upwind vortex is likely to halt over the runway, and the decay of the wake pair will be 

unequal (Lin et al., 2017; Xu et al., 2023). While in a strong crosswind without the 

adverse headwind, and the prevailing headwind over approximately 5 m/s, the wake 

vortex will quickly leave the approach path (Holzäpfel et al., 2021). Furthermore, the 

large-scale and heavy atmospheric turbulence extracts energy from wake vortices while 

simultaneously diminishing their strengths, thereby accelerating their decay. 
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Figure 3-1. The movement of wake vortices under crosswinds. (Left: vortex sink under light 

crosswinds. Right: significant lateral transport of vortices with sink under strong crosswinds) 

 

3.2.2. LiDAR implementation at HKIA 

  Four Leosphere Windcube200S LiDARs were installed in the Hong Kong 

International Airport for monitoring traffic in both directions of two runways, as shown 

in Figure 3-2. Each LiDAR executes the mode of range height indicator (RHI) scans 

that is perpendicular to the runway, at the scan rate of 5°/𝑠 and the scan repetition rate 

of approximately 10s. The three-dimensional setup of the RHI scan and the parameter 

definition of wake vortices in the Cartesian coordinate system is shown in Figure 3-3. 

The placements and characteristics of these LiDARs were optimised to capture the 

entirety of wake vortices and their decaying process, with the installation height at 

approximately 7 meters above the ground. The parameter settings are reported in Table 

3-1. More in-depth information on LiDAR measurement at HKIA can be referred to 

(Hon et al., 2021). 
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Figure 3-2. Locations of four LiDARs at HKIA.  

   

Figure 3-3. Scanning mode (left) and definition of the coordinate axis (right) of LiDAR 

instrument. 

 

3.2.3. LiDAR processing algorithm 

  The processing algorithm for Windcube200S is designed by LEOSPHERE to capture 

vortex locations and, consequently, retrieve vortex strength. Initially, the algorithm 

verifies the status of vortex presence based on radial wind speeds calculated from the 

RHI scans. Next, the locations of vortex cores are roughly estimated using an image 

processing technique and are finely optimised. Vortex strength is further retrieved by 

fitting the Hallock-Burnham model (Burnham et al., 1982; Smalikho et al., 2015) on 

the Doppler spectra window that covers wake vortices. In addition to the generic 

parametric components of the Windcube200S processing algorithm (Smalikho et al., 
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2015; Thobois et al., 2016), the positions and specific parameters of these LiDARs at 

HKIA are fine-tuned and calibrated specifically to reduce estimation error and assure 

data quality in all weather conditions and for as many aircraft types as possible. 

Furthermore, it has demonstrated the aircraft hit rate of 89%, overall mean error of 6% 

and 9.9% in wake span and initial wake strength measurement for two weeks (Hon et 

al., 2021). 

 

Table 3-1. Parameter setting of LiDAR instrument. 
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3.3. Methodology of two-stage wake vortex recognition and safety 

assessment 

3.3.1. Overview of the methodology 

  Aircraft wake vortex detection is essential for ensuring safe separation between 

aircraft during the final approach. In this Chapter, a three-step data-driven approach is 

designed to recognise the locations and strength of aircraft wake vortices and to analyse 

their duration in the path of the final approach. Figure 3-4 depicts the general 
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framework of the developed methodology. The first step is to map wake data with 

relevant flight information, visualise wake images from LiDAR data scanned during 

the final approach at HKIA, and clear the vortex data derived from the LiDAR 

processing algorithm. After pertaining data is extracted, a two-stage model framework 

comprised of two probabilistic convolutional neural networks is proposed. In the first 

stage, one CNN model is trained to locate vortex cores from the entire vortex images. 

In the second stage, the strength of wake vortices is captured from the other CNN model, 

utilising the most relevant image regions. This region of interest is derived from initially 

predicted vortex locations. Finally, the prediction reliability of the proposed model is 

clarified by visualising the significant image regions that positively contribute to model 

decisions. On the other hand, the predicted probabilistic vortex locations are then 

utilised to estimate the duration of wake presence in the path of the final approach. In 

addition, the relevance of vortex duration to wind conditions is also demonstrated to 

illustrate the potential of separation reduction in a dynamic flight environment in this 

context. 
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Figure 3-4. Flowchart of the proposed three-step methodology for identifying wake vortices 

and wake encounter assessment. 

 

3.3.2. Deep learning models for wake vortex recognition 

3.3.2.1. Convolutional neural network 

  Convolutional neural network derives features from input data using convolutional 

operations, including the convolutional layer and pooling layer, which are typically 

organised as modules. It provides several benefits, such as being connected locally, 

sharing weight and reducing dimension by down-sampling (Yamashita et al., 2018). 

The convolutional layer applies convolutional kernels to the input images to extract 

feature presentations and generate feature maps. Typically, zero padding is used to 

expand the input with a value of zero to adjust the size of feature maps so that more 

layers can be applied (Li et al., 2022; Yamashita et al., 2018). Stride defines the distance 

between positions of two consecutive sliding kernels to control the density of 

convolution (Li et al., 2022). The pooling layer with max pooling or average pooling 

operation will then simply execute down-sampling along the spatial dimensionality of 

the input data to further reduce parameter numbers. The fully connected layer serves 

the same role as that in other artificial networks to map the extracted features to the 

final categorical or regressive tasks. 

 

Figure 3-5. A general framework of convolutional neural network. 
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3.3.2.2. Object detection algorithms 

  The overall methodological framework for wake region detection and safety 

assessment is illustrated in Figure 3-6, including data processing, model construction, 

and model analysis. Data processing consists of two essential parts. The first is 

visualising the wake vortices in heatmaps, and the other is to label the box that covers 

the entire region of wake vortices to obtain the four coordinates of the box. For model 

construction, YOLO v5, one of the most popular model frameworks for object detection, 

is applied as a benchmark for our task. Furthermore, the loss function of YOLO v5 is 

modified and updated to conform to our performance specifications. Finally, the 

predicted box coordinates of wake regions are implemented for wake presence 

assessment. 

  The raw aircraft wake data utilised in this study comprises the radial wind velocities 

measured by the LiDARs installed at the entrances of the runways at Hong Kong 

International Airport. The LiDAR scans in the range height indicator (RHI) mode 

approximately every 10s at a scan rate of 5  ° /s. The wind velocity data in polar 

coordinates was converted to the cartesian coordinate for visualisation and training 

convenience. Next, the aircraft wake vortices were visualised by heatmaps using the 

Pcolormesh. To achieve the wake region detection task, the ground truth boxes were 

labelled manually using the LabelImg toolbox. In total, 5432 wake images in the final 

approach phase were processed. Therefore, the obtained outputs are 𝑥𝑐, 𝑦𝑐, 𝑤, and ℎ, 

where 𝑥𝑐 and 𝑦𝑐 represent the centres of the box in lateral and vertical directions. 𝑤 

and ℎ  denote the width and height of the labelled boxes. Notably, the boxes were 

labelled to encompass the entire region of the pairwise wake vortices; thus, each box 

was categorised into a single category of vortex pair. 
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Figure 3-6. The framework of the proposed method for aircraft wake region detection and 

encounter analysis.  

 

  The mainstream models for object detection fall into two distinct categories: one-

stage detection and second-stage detection. Popular algorithms belonging to the former 

category, including the YOLO networks, realise rapid object detection in images in a 

single forward pass of the network. In contrast, the second-stage algorithms, such as 

the Faster R-CNN (Ren et al., 2015) and Cascade R-CNN (Cai et al., 2018), require 

multiple passes in detection. In view of the portability and user-friendliness of the 

YOLO series, this study applies the YOLO v5 network as a benchmark for wake region 

detection. 

(1) Structure of the YOLO v5 network 

  YOLO network comprises three primary components: the backbone, neck and heads. 

These components have undergone revisions since their inception in the initial version 

(Redmon et al., 2016), to v3 (Redmon et al., 2018) and v5 version (Ge et al., 2021). 

Compared to the former versions, the novelty of the YOLO v5 network exists mainly 
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in the structures of the backbone and neck. The integration of these components enables 

YOLO v5 to achieve high precision and speed, making it suitable for real-time detection 

of aircraft wake regions. 

• The backbone module efficiently encodes the input image into a rich feature map, 

progressively downsamples the image and captures complex features at various 

scales. The cross-stage partial network (CSPDarknet53), in which a series of 

convolutional layers are employed, and spatial pyramid pooling (SPP) layers are 

applied in YOLO v5. Moreover, the focus layer is involved in the backbone of 

YOLO v5 to replace the first three layers in the v3 version to decrease memory 

utilisation. 

• The neck module further processes and fuses these features to capture context 

and finer details, comprising modules of path aggregation network (PANet) and 

additional convolutional layers. PANet contains the feature pyramid network 

(FPN). 

• The head of the YOLO v5 translates these features into meaningful object 

detection predictions, similar to the former versions. It includes convolutional 

layers that output the class probabilities, objectness scores and bounding box 

coordinates for each detected object. 

 

(2) Loss function design and optimization 

  The loss function in object detection is a crucial component to guide the learning 

process, and it is a composite of the following individual loss terms. 

• The bounding box regression loss, 𝑙𝑏𝑜𝑥. This term measures the accuracy of the 

predicted bounding boxes against the ground truth. It accounts for the shape, 

orientation, and overlap of the predicted and actual bounding boxes, thus driving 
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the model to improve the precision of object localisation. The intersection over 

union (IOU), as defined in Eq. (3-2), is initially applied to evaluate this loss, 

which outperforms the general metrics of mean square error. In addition, 

alternative metrics, such as complete intersection over union (CIOU) in Eq. (3-

4)- Eq. (3-6), generalised intersection over union (GIOU), efficient IOU (EIOU) 

(Zhang et al., 2022), distance-IOU (DIOU), and soft-IOU (SIOU) in Eq. (3-11)- 

Eq. (3-14), are suggested to account for comprehensive situations based on the 

IOU.  

• Objectness loss, 𝑙𝑜𝑏𝑗 . This metric evaluates the accuracy of the model in 

predicting the presence of an object within a bounding box. It typically uses 

binary cross-entropy to distinguish between boxes containing objects and those 

devoid of such objects, thereby enhancing the ability to discern relevant regions 

in the image. 

• Classification loss, 𝑙𝑐𝑙𝑠. The cross-entropy loss is also used in the predicted class 

probabilities to ensure the model accurately classifies the objects it detects, 

aligning the predicted classes with their corresponding ground truth labels. 

 

  Both the size and location of the bounding boxes matter for aircraft wake region 

detection tasks. Therefore, in addition to the IOU-related metric mentioned above, 

another component, RA in Eq. (3-6), is proposed in this study and integrated into the 

bounding box regression loss term, Eq. (3-7). This component constrains the relative 

size of the predicted box compared to the labelled box. Consequently, the total loss is 

calculated as follows. Therefore, taking the CIOU as a benchmark, the total loss is 

defined in 𝑙𝑏𝑜𝑥, as denoted in Eq. (3-8) (Chu et al., 2024). 
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 𝐼𝑂𝑈 =  
𝑎𝑟𝑒𝑎𝑖𝑛𝑡𝑒𝑟

𝑎𝑟𝑒𝑎𝑢𝑛𝑖𝑜𝑛
 (3-2) 

 𝑎𝑟𝑒𝑎𝑢𝑛𝑖𝑜𝑛 = 𝑏𝑜𝑥𝑎𝑟𝑒𝑎
𝑔𝑡

+ 𝑏𝑜𝑥𝑎𝑟𝑒𝑎
𝑝𝑟𝑒𝑑 − 𝑖𝑛𝑡𝑒𝑟𝑎𝑟𝑒𝑎 + 1𝑒−6 (3-3) 

Where the constant value in 𝑎𝑟𝑒𝑎𝑢𝑛𝑖𝑜𝑛 is set to avoid division by zero and numerical 

instability, the superscript 𝑔𝑡  represents the ground truth, and 𝑝𝑟𝑒𝑑  represents the 

prediction in model training. 

 

 
𝐶𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +

𝜌2(𝑏,  𝑏𝑔𝑡)

𝑐2
+ 𝛽𝜈 (3-4) 

 
𝜈 =

4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
) − 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)

2
, 𝛽 =

𝜈

(1−𝐼𝑂𝑈)+𝜈
 (3-5) 

 
𝑅𝐴 =

𝑏𝑜𝑥𝑎𝑟𝑒𝑎
𝑔𝑡

𝑏𝑜𝑥𝑎𝑟𝑒𝑎
𝑝𝑟𝑒𝑑

 (3-6) 

 𝑙𝑏𝑜𝑥  =  𝐶𝐼𝑂𝑈 + 𝑐 ∙ 𝑅𝐴 (3-7) 

 𝑙𝑜𝑠𝑠 =  𝜆1  ∙  𝑙𝑏𝑜𝑥 + 𝜆2  ∙  𝑙𝑜𝑏𝑗 + 𝜆3 ∙ 𝑙𝑐𝑙𝑠 (3-8) 

Where 𝑐  represents the weight of the 𝑅𝐴  term,  𝜆1 ,  𝜆2 , and  𝜆3  represent the 

weight of these loss terms for the final loss.  

 

(3) Model evaluation metrics 

  The evaluation metrics in object detection are primarily in the classification aspect, 

including the precision (P), recall (R) and mean average precision (mAP), and the mean 

of the average precision (AP) for each class. Given that mAP is the comprehensive 

evaluation index, it is utilised to implement it in our task, as formulated in Eq. (3-9). 

 

mAP =  ∑
𝑎𝑣𝑒𝑃(𝑞)

𝑄

𝑄

𝑞=1

 (3-9) 

where 𝑞  represents the number of queries, and 𝑎𝑣𝑒𝑃(𝑞)  denotes the average 

accuracy pertaining to a specific query.  

  Unlike object detection, which primarily classifies multiple objects in one image, the 
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prediction accuracy of box coordinates is considerably vital in wake detection. 

Therefore, the regressive metrics of boxes, typically the IOU and mean absolute error 

(MAE) of the box centres, as shown in Eq. (3-10), are also considered. Furthermore, 

the detection speed frames per second (FPS) of model inference is also evaluated. 

 

MAE =
1

N
∗ ∑|𝑦𝑐,𝑖 

𝑝𝑟𝑒𝑑 − 𝑦𝑐,𝑖
𝑔𝑡

|

𝑁

𝑖=1

 (3-10) 

 

  The definitions of the GIOU, EIOU, DIOU, and SIOU loss functions (Gevorgyan, 

2022) are denoted in Eq. (3-11) – Eq. (3-14), respectively. 

 

 𝐺𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +
|𝐶𝑏𝑎𝑐𝑘𝑠𝑙𝑎𝑠ℎ(𝑏𝑝𝑟𝑒𝑑  ∪  𝑏𝑔𝑡)|

|𝐶|
 (3-11) 

 𝐸𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +
𝜌2(𝑏𝑝𝑟𝑒𝑑,  𝑏𝑔𝑡)

𝑐2
+

𝜌2(𝑤𝑝𝑟𝑒𝑑,  𝑤𝑔𝑡)

𝑐𝑤
2

+
𝜌2(ℎ𝑝𝑟𝑒𝑑,  ℎ𝑔𝑡)

𝑐ℎ
2  

(3-12) 

 
𝐷𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +

𝜌2(𝑏𝑝𝑟𝑒𝑑,  𝑏𝑔𝑡)

𝑐2
 (3-13) 

 𝑆𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +
∆ + 𝛺

2
   (3-14) 

 

Where 𝛺 =  ∑ (1 − 𝑒−𝜔𝑡)𝜃 𝑡=𝑤,ℎ , 𝜔𝑤 =
|𝑤𝑝𝑟𝑒𝑑−𝑤𝑔𝑡|

𝑚𝑎𝑥 (𝑤𝑝𝑟𝑒𝑑,𝑤𝑔𝑡)
, 𝜔ℎ =  

|ℎ𝑝𝑟𝑒𝑑−ℎ𝑔𝑡|

𝑚𝑎𝑥 (ℎ𝑝𝑟𝑒𝑑, ℎ𝑔𝑡)
, 

𝛥 =  ∑ (1 − 𝑒−𝛾𝜌𝑡)𝑡=𝑥,𝑦 , where 𝜌𝑥 = (
𝑏𝑐𝑥

𝑔𝑡
−𝑏𝑐𝑥

𝑐𝑤
)

2

, 𝜌𝑦 = (
𝑏𝑐𝑦

𝑔𝑡
−𝑏𝑐𝑦

𝑐ℎ
)

2

 

 

3.3.2.3. Transfer learning on pre-trained networks with fine-tuning 

  Fine-tuning on a pre-trained network is an efficient method to apply the pre-trained 

deep learning network from the large-scale datasets (classically in classification tasks) 

into small image datasets. The spatial structure of the features figured out by the pre-
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trained network can successfully serve as a general component of the visual domain to 

be used in new scenarios, even if these new tasks refer to entirely different tasks. Two 

well-trained CNNs, VGGNet and ResNet models, are selected in this chapter. VGGNet 

comprises 5 sectors of convolution (2–3 convolution layers per section with a 3 × 3 

kernel, with each section linked to the end of a 2 × 2 maximum pool layer to decrease 

the image size) (Simonyan et al., 2014). One of the key contributions of the ResNet 

model is the residual block developed by the shortcut connection to minimise the 

gradient vanishing problem without degradation, as the gradient can flow directly 

forward through shortcut connections (He et al., 2016; Li et al., 2022; Wan et al., 2018).  

 

3.3.2.4. Probabilistic CNN model with Bayesian inference 

  The objective of the Bayesian approach is to infer the posterior distribution 

𝑝(𝜃|𝑋, 𝑌) of the network parameters 𝜃, where 𝜃 is typically described with a prior 

distribution 𝑝(𝜃) to indicate the prior belief over network weights. Next, a likelihood 

function 𝑝(𝑌𝑖|𝑋𝑖, 𝜃)  is then established to model the probability of observing Yi 

given 𝑋𝑖 and 𝜃. 𝑝(𝜃)  is normally assumed as a Gaussian distribution 𝑁(0, 𝛪) and 

bias vectors in the network are assumed to be a certain value for simplicity (Neal, 2012). 

Thus, the posterior distribution is able to be calculated with the below Bayesian theorem: 

 𝑝(𝜃|𝑋̂, 𝑌) =  
p(Y|X̂, θ)p(θ̂)

p(Y|X)
 (3-15) 

  Approximate inference techniques, for instance variational inference, are introduced 

to avoid the computational intractability of exact posterior distribution. The central 

concept of variational inference is to utilise a variational distribution 𝑞(𝜃)  for 

approximating the true 𝑝(𝜃|𝑋, 𝑌)  by minimizing the Kullback-Leibler (KL) 

Divergence between them. Gal et al. (2016) have proven that the Monte Carlo (MC) 

dropout has a similar effect in minimising KL divergence for approximating Bayesian 
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inference for broad deep neural models in a straightforward and easy approach. The 

term “dropout” represents the randomly elimination of units and their connections in 

the hidden layers of the network. By MC Dropout, the approximation to the full 

posterior distribution 𝑝(𝜃|𝑋, 𝑌)  is obtained, with random samples generated from 

which to build the collection of model output. The probabilistic distribution of the 

model on new data 𝑥∗ can therefore be generated by integrating over 𝜃 and estimated 

with MC samples, in which K is the number of MC samples: 

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑌)  = ∫ 𝑝(𝑦∗|𝑥∗, 𝜃)𝑝(𝜃|𝑋, 𝑌)𝑑𝜃  ≈
1

𝐾
∑ 𝑝(𝑦∗|𝑥∗,

𝐾

𝑛=1

𝜃̃𝑘) (3-16) 

  From the foregoing, the MC Dropout can be applied to the above-mentioned CNN 

models to achieve the probabilistic distribution of prediction, and this CNN model with 

uncertainty estimation is called the probabilistic CNN model. In order to distinguish 

the CNN model with single-point outputs, the CNN model without uncertainty analysis 

is defined as the deterministic CNN model. 

 

3.3.3. Explanation of convolutional neural network 

  In the context of the “black-box” characteristics of deep learning, the prediction 

transparency and confidence level of the neural network become crucial for its 

deployment in safety-critical wake separation systems. The transparency of networks 

can be considered from an explanatory and visual standpoint of model prediction. One 

component of visualising CNNs involves highlighting the “important” area of a given 

input image (Gan et al., 2015; Simonyan et al., 2013). Another visualisation technique 

synthesises images to maximally activate a network unit to visualise the overall model. 

Zhou et al. (2016) developed the Class Activation Mapping (CAM) technique to 

identify the discriminative regions on the raw input image under the image 
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classification-oriented CNN model, in which the global average pooling layer rather 

than the fully connected layers over feature maps was applied. Selvaraju et al. (2017) 

proposed a general Gradient-weighted CAM (Grad-CAM) to analyse feature maps with 

gradient signal, which can be applied to a substantially wider variety of CNN families, 

such as CNN models along with fully connected layers, CNNs with multi-modal inputs 

and structured outputs without that demand of architectural modifications or model re-

training. This chapter applies both the feature analysis method and the Grad-CAM 

method in our regression task, with their methodological flowchart shown in Figure 

3-7. 

 

Figure 3-7. Feature analysis methods for model decision explanation. 

 

(1) Grad-Regression Activation Map    

  The Grad-CAM technique (Selvaraju et al., 2017) is applied in our regression task of 

wake-vortex location and is called Grad-Regression Activate Map (Grad-RAM) in this 

chapter. Grad-RAM is simply the weighted sum of outputs in certain convolutional 

layers. These weights represent the connections between the outputs of the 
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convolutional layer and neurons in the output layer. In order to get the regression-

discriminative localisation map Grad-RAM, 𝐿𝐺𝑟𝑎𝑑−𝑅𝐴𝑀
𝑟  of width 𝑢  and height 𝑣 

for regressive output 𝑟 , the gradient of the output to the feature map 𝐴𝑘  of the 

convolutional layer is first computed, i. e.  
∂y𝑟

𝜕𝐴𝑘. Next, the global average pooling is 

applied in gradients flowing back to get the neuron importance weights, 𝛼𝑘
𝑟: 

 
𝛼𝑘

𝑟 =
1

Z
∑ ∑

∂y𝑟

𝜕𝐴𝑖𝑗
𝑘

𝑗𝑖

 (3-17) 

  The weight 𝛼𝑘
𝑟 obtains the “importance” of feature map 𝑘 with respect to the final 

output 𝑟. Then, a weighted sum above the activation maps is conducted, followed by a 

ReLU operation for capturing the area with a positive influence on output (Selvaraju et 

al., 2017). 

 L𝐺𝑟𝑎𝑑−𝑅𝐴𝑀
𝑟  = ReLU(∑ 𝛼𝑘

𝑟𝐴𝑘

𝑘

) (3-18) 

 

(2) Prediction difference analysis of image features 

  The fundamental concept underlying prediction difference analysis is to estimate the 

relevance of feature 𝑥𝑖 to model output by measuring the prediction disparity between 

𝑝(𝑐|𝑥) and 𝑝(𝑐|𝑥\𝑖) in the absence of the feature is unknown (Robnik-Šikonja et al., 

2008), where 𝑥\𝑖 represents the input feature set without 𝑥𝑖. The prediction difference 

can be evaluated by the weight of evidence: 𝑊𝐸𝑖(𝑐|𝑥) = 𝑙𝑜𝑔2(𝑜𝑑𝑑𝑠(𝑐|𝑥)) −

𝑙𝑜𝑔2(𝑜𝑑𝑑𝑠(𝑐|𝑋\𝑖)), where 𝑜𝑑𝑑𝑠(𝑐|𝑥) = 𝑝(𝑐|𝑥)/(1 − 𝑝(𝑐|𝑥)). 

 

3.3.4. Exploratory assessment of wake vortex duration in the final approach path for 
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dynamic separation 

  As stated previously, the movement of aircraft wake vortices is highly correlated 

with wind conditions. Strong winds may cause the aircraft wake vortices to dissipate 

rapidly. Therefore, the safe aircraft separation time under strong wind conditions has 

the potential to be reduced compared to currently defined static wake separation. 

Consequently, this section aims to provide one exploratory method for predicting the 

dynamic separation utilising the results of our proposed probabilistic CNN model, and 

demonstrate the effect of crosswind in the lateral movement of wake vortices in this 

process.  

  Specifically, when the crosswind is prevailing, the wake vortices generated by the 

leading aircraft will be generally blown away from the approach profile, with the 

movement direction dependent on the direction of the crosswind. The general way for 

determining safe flight separation time is to evaluate the hazard posed to the following 

aircraft when they encounter a certain level of wake vortex strength. However, due to 

the limited accuracy in vortex strength estimation, we propose an exploratory approach 

to assess safe separation by estimating vortex duration in the path of the final approach, 

using the extreme values of vortex locations forecasted by the probabilistic CNN model. 

Two main steps of this exploratory method are introduced as follows. 

(1) Identify allowable aircraft path in the final approach  

  As the flight path in the final approach is quite standard and fixed following the 

requirement of the instrumental approach procedure, the allowable aircraft path in the 

LiDAR plane can be calculated first. Figure 3-8 depicts the general instrumental 

landing procedure with the glideslope guidance and horizontal localiser at HKIA. 

Typically, aircraft approaches with a 3° glide path angle, a deviation tolerance of 

±0.7°, and a horizontal deviation of ±35° from the centreline within 10 nautical miles 
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away from the localiser. Based on the positions of the glideslope antenna and horizontal 

localiser, and the distances of LiDAR instruments to runway entries, the vertical and 

horizontal position allowance of aircraft in the LiDAR planes can be estimated, as 

shown in Table 3-2, in which the installation height of the LiDAR is also considered, 

assuming the landing point is 300m away from the runway end in computing the 

estimated allowable range of height in LiDAR scanning planes. Therefore, the duration 

of vortex presence in the above circumstances is evaluated upon the determination of 

standard approach profiles in LiDAR scan planes. The lateral and vertical boundaries 

of the approach profiles were loosened to achieve an initial vortex coverage of more 

than 80%. 

 

 

Figure 3-8. The instrument landing procedure of the north runway at HKIA (Left: Vertical 

profile of the instrumental landing; Right: Horizontal profile of the instrumental landing). 

 

(2) Assess the duration of vortex presence in the approach profiles 

  After that, the probabilistic CNN model can then be used to determine the maximum 

and minimum values of vortex locations with a certain level of confidence in a wake 

sequence. Then, the duration of wake vortices in the two-dimensional flight profiles 

can be estimated based on the estimated position of vortex cores and the vortex radius 

related to aircraft weight. In addition, a certain safety margin is considered to enhance 

the safety and reliability of separation estimation. After the estimation, the relationship 

between the crosswind speed and the wake duration is analysed statistically to identify 

the foundations of dynamic wake separation. This exploratory result is expected to 
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serve as one reference for determining the final dynamic separation, and may therefore 

support the development of an online suggestion system of time-based aircraft 

separation. It can also serve as a supplementary tool for verifying dynamic flight 

separation time derived from other methods. 

 

Table 3-2. The height and horizontal position range of aircraft at the LiDAR scanning plane. 

Runway 

LiDAR 

distance 

(m) to 

Runway (x 

profile) 

LiDAR 

distance 

(m) to 

Runway (y 

profile) 

Estimated 

allowable 

range of 

height (m) to 

ground 

Estimated 

allowable 

range of height 

(m) in LiDAR 

plane  

Estimated 

allowable range 

of horizontal 

position (m) in 

LiDAR plane  

07L 1400 1116.31 56.84 - 91.40 49.84–84.40  ±60.06 

25R 275 1511.99 72.72 - 116.93 65.72–109.93 ±64.90 

 

3.4. Experiment and methods 

3.4.1. Data processing 

  One-month LiDAR data in both Site 1 and Site 2B of arrival flights in May 2019 was 

selected for this research. The data from LiDAR is twofold: one is the radial wind 

velocity data obtained by LiDAR; the other is the data of wake vortices calculated by 

RV algorithm (height Z𝑙_𝑟𝑒𝑓 , 𝑍𝑟_𝑟𝑒𝑓, the lateral position deviation from the centreline 

𝛥𝑋𝑙_𝑟𝑒𝑓, 𝛥𝑋𝑟_𝑟𝑒𝑓 of vortex cores, and the intensity of the vortex strength 𝐺𝑙_𝑟𝑒𝑓, 𝐺𝑟_𝑟𝑒𝑓). 

These two data sources are treated as inputs and training labels for the deep learning 

model, respectively. The radial wind velocity data were mapped to the Cartesian 

coordinate system to ensure the uniformity of data distribution and then plotted into 

heatmaps with Pcolormesh according to the timestamps of LiDAR scanning. Figure 

3-9 visualises the wake images of these two LiDARs in different meteorological 

conditions, where warm colour indicates positive velocities that radiate away from the 

LiDAR and cold colour represents negative velocities that radiate towards the LiDAR. 
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The theoretical estimated lateral position deviation was converted into the absolute 

lateral position of wake vortices relative to the LiDAR. The rationality of the 

transformation was validated by visual inspection of the reference locations in raw 

wake images, as the solid white dots are shown in Figure 3-9. Next, incomplete and 

anomalous LiDAR scans were removed, and the reference locations of the left and right 

wake vortex were cleaned to remove null data in both location and strength columns. 

Finally, 23511 LiDAR scans under a variety of meteorological conditions were selected 

and randomly divided into three datasets for model training, validation and testing in 

the proportion of 6:2:2. 

 

Figure 3-9. Visualisation of wake vortices with reference positions under several meteorological 

conditions. 

 

3.4.2. Model configuration 

(1) CNN models for wake location and strength estimation 

  The architecture of the proposed convolutional neural networks is listed in Table 3-3, 

including the input layer with images in 256×256×3 size, 5 convolutional modules 

(convolutional layer plus the max-pooling layer) and 3 fully-connected layers to match 
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final outputs in the task. The number of convolutional modules is determined after 

evaluating the model performance with 3-7 convolutional layers. Consequently, the 

same model structure is captured for both vortex locating and strength estimation, and 

the distinctions between models for these two tasks are the inputs and outputs (4-

dimensional positions or 2-dimensional strength). The convolutional layers contain 64, 

128, 256 and 512, 512 units with 3 × 3 kernel size and stride in size 1. The max-

pooling layer contains a kernel size of 2 × 2 and a stride of 1. Batch Normalisation 

and dropout are applied after convolutional and pooling operations in the last three 

convolutional layers. Rectified linear units (ReLU) are used across all layers as the 

activation function. To quantify the uncertainty in network structure and parameters, 

MC dropout is performed by randomly dropping 10% to 20% units to estimate the 

Bayesian posterior distribution. For mini-batch training, the dropout is performed in 

smaller training networks. 

 

(2) CNN-SVM and CNN-KNN models 

  Support Vector Machine and K-Nearest Neighbours (KNN) have advantages in 

nonlinear classification and regression of multiple variables. Unlike the SVM algorithm 

that finds the optimal hyperplane 𝑓(𝑤, 𝑥) = 𝑤 ∙ 𝑥 + 𝑏 to separate outputs (Cortes et 

al., 1995), Support Vector Regression (SVR) identifies the optimal hyperplane to 

maximise the margin distance between the hyperplane and the nearest data points, while 

minimising the prediction error. It employs the 𝜀 − insensitive loss function, where ε 

decides the margin of tolerance of prediction error. The kernel function improves the 

non-linear regression ability of SVR by mapping the input data to higher dimensional 

space (Awad et al., 2015). In the KNN algorithm, the predicted value of a point is 

derived by averaging the values of the K points closest to it, where “closest” can be 
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either in Euclidean distance or other distances. 

 

Table 3-3. Structure of the proposed convolutional neural network for wake-vortex locating 

(Parameters in the convolutional layer are presented as “conv(kernel size)-(number of 

channels)”. The ReLU activation function is omitted for concision. 

Model layer Parameter setting 

Input  256 × 256 RGB image 

Convolutional layer Conv3-64 

Max-pooling 2 × 2 Kernel 

Convolutional layer Conv3-128 

Max-pooling 2 × 2 Kernel 

Convolutional layer Conv3-256 

Batch Normalisation - 

Max-pooling 2 × 2 Kernel 

Dropout 0.1-0.2 

Convolutional layer Conv3-512 

Batch Normalisation - 

Max-pooling 2 × 2 Kernel 

Dropout 0.1-0.2 

Convolutional layer Conv3-512 

Batch Normalisation - 

Max-pooling 2 × 2 Kernel 

Dropout 0.1-0.2 

Flatten - 

Fully-connected layer 512 

Dropout 0.1-0.2 

Fully-connected layer 256 

Fully-connected layer 128 

Output layer 4 

 

  

  This chapter uses these two machine learning models as benchmarking models to 

compare their performance with pure CNN models. The proposed architectures of 

CNN-SVR and CNN-KNN are shown in Figure 3-10. The features of input images 
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were extracted from well-trained CNN convolutional structures. Next, Principal 

Component Analysis (PCA) was applied to reduce the dimension of the high-

dimensional feature maps while maintaining the maximum amount of information. 

Finally, these low-dimensional features were fed into SVR and KNN models for task 

regression.  

 

Figure 3-10. Architecture of proposed CNN-SVR and CNN-KNN model. 

 

3.4.3. Model explanation  

  The Grad-RAM presented in Section 3.4 was applied in the final convolutional sector 

(the convolutional layer “conv2d_4” and the dropout layer “max_pooling2d_4”) of the 

well-trained CNN models. These two layers are anticipated to provide the optimal 

compromise between the high-level concepts and details of the spatial features that are 

important for the regression outputs. 

  From the feature analysis perspective, we applied the conditional sampling technique 

with multivariate normal distribution proposed by (Zintgraf et al., 2017) to replace the 

feature patch rather than just a single pixel of the raw image to reduce the computational 

burden, and then simulated the prediction difference between the processed features 

and the raw images on the trained CNN model. In our regression task, the 𝑜𝑑𝑑𝑠(𝑐|𝑥) 

for the classification task was replaced directly with predicted outputs. 
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3.5. Computational results 

  This section discusses the computational results of the developed models in wake 

location and strength identification, illustrates their improved performance over three 

pre-trained CNN models and the benchmarking machine learning models, and presents 

the safety measurement of wake encounters in the approach corridor. All experiments 

in this chapter were conducted on a Windows 10 desktop with an Intel Core i7-12700K 

processor, NVIDIA GeForce RTX 3060Ti GPU (1.78 GHz), and DDR5 RAM with 32 

GB. The models were implemented using Keras in Tensorflow 2.5.0. 

  Before model training, both input and output data were normalised using the 

MinMaxScaler method. Grid search was performed to tune the hyperparameters and 

relevant parameters of these two CNN models, such as the learning rate ([0.01, 0.001, 

0.0005, 0.0001, 0.00005, 0.00001]), image size ([128, 256]), batch size ([16, 32, 64, 

128, 256]) and size of ROI for strength estimation ([(20, 40), (30, 50), (40, 60)]). The 

early stop that monitors the validation loss was set to obtain the optimal set of 

hyperparameters, with conditions of minimum performance reduction of 0.0000001 in 

the patience of 100 epochs. The results of the grid search indicate that the minimum 

prediction error in wake locating occurs when the image size is 256, the batch size is 

32, the Adam optimiser with a learning rate of 0.00005, and the minimum prediction 

error in strength estimation is under the combination of image size in 128, 20 × 40 

cropped size of ROI, Adam optimiser with 0.0001 learning rate and batch size of 32.  

  The performance evaluation of these models is performed on the metrics of the mean 

absolute error (MAE) and the root mean square error (RMSE). In the probabilistic 

model, the mean value of prediction is used to calculate the MAE and RMSE. The 

detailed performance assessment of these CNN models and benchmarking models is 

demonstrated below. 
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3.5.1. Model performance comparison  

3.5.1.1. Model performance in wake vortex locating 

  The performance of the proposed models was compared to benchmarking models in 

vortex locating, as reported in Table 3-4. In both the locating and strength estimation 

tasks, the proposed deterministic CNN model with single-point outputs and the 

probabilistic CNN model with prediction variance all exhibit superior performance with 

the lowest errors in terms of MAE and RMSE compared to other models. Conversely, 

the well-trained VGGNet demonstrates higher prediction errors, indicating that the 

training samples in this research are relatively small in comparison to the original task. 

Moreover, the complexity of the VGGNet makes it unsuitable for our specific tasks. 

Notably, our experiment reveals that the performance of ResNet models with residual 

blocks can be enhanced by increasing network layers, surpassing the performance of 

the VGG16. Furthermore, the KNN model is more suitable for this task compared to 

the SVR model when utilising the same feature inputs. The variables ∆𝐷𝐿 and ∆𝐷𝑅 

describe the Euclidean distances between the predicted location and reference location 

of the pairwise vortex cores. In comparison to CNN models in (Wartha et al., 2022) 

with similar-sized inputs as our experiments, our CNN model reduces the Euclidean 

distance of the left and right vortexes by up to 26% and 30 %, respectively. Additionally, 

our proposed model predicts these four positional features in a single model, capturing 

the coupling relationships between pairwise vortices more efficiently than previous 

models. The authors adopted the CNN model framework proposed by Wartha et al., 

(2022) on HKIA dataset. The results may different from the original results report in 

the article. Readers may wish to refer to the original article. 
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Table 3-4. Performance comparison of the proposed CNN models with other machine learning 

models in vortex locating. 

Model 
 MAE (m)  RMSE (m) 

𝑋𝑙 𝑍𝑙 ∆DL 𝑋𝑟 𝑍𝑟 ∆D𝑅 𝑋𝑙 𝑍𝑙 𝑋𝑟 𝑍𝑟 

Deterministic 

CNN  
11.57 3.58 12.11 12.29 3.72 12.84 26.66 7.59 29.52 8.17 

Probabilistic 

CNN  
12.40 4.45 13.17 12.43 4.12 13.10 26.49 8.19 29.77 7.95 

VGG16 22.20 6.95 23.26 25.65 7.35 26.68 34.17 11.27 39.14 11.60 

ResNet18 15.04 7.35 16.74 17.07 5.48 17.93 30.04 11.61 33.70 9.90 

ResNet50 15.41 5.04 16.21 15.4 5.17 16.24 29.32 9.13 32.5 9.43 

ConvLayer-

KNN 
20.75 6.33 21.69 20.10 6.06 20.99 41.43 11.96 44.01 11.08 

ConvLayer-

SVR 
33.58 9.81 34.98 34.58 9.39 35.83 46.59 15.83 50.22 14.80 

CNN model 

in (Wartha 

et al., 2022) 

15.72 4.68 16.40 17.69 5.35 18.48 30.51 9.07 34.05 9.64 

Note: the comparison with the existing work is primarily about model structure, under our 

computational hardware and data. 

 

  The proposed five-convolutional-sector CNN model demonstrates low prediction 

error, indicating its high accuracy in identifying the lateral positions and height of wake 

vortices from LiDAR scans. The result suggests that the predictions of the CNN model 

align closely with the reference positions of the theoretical LiDAR algorithm. 

Specifically, the low MAE shows the model’s performance on average, and the low 

RMSE indicates the relatively small outliers or errors in the model’s predictions. As 

depicted in the first row of Figure 3-11, the model performs exceptionally well in 

estimating both young coherent vortices with strong intensity and vortices that descend 

near the ground with weakened intensity. In addition to efficient regression based on 

the reference algorithm, this deep learning model also can rectify evident errors present 

in the reference data. The bottom images of Figure 3-11 highlight noticeable errors in 
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the LiDAR locating algorithm in these scans, which can be further corrected by our 

CNN model. Through this revision strategy, we can anticipate improved accuracy in 

vortex locating through iterations. Furthermore, the integration of the physical 

reversion algorithm with the CNN model enhances decision accuracy and boosts 

confidence levels in wake-vortex locating. 

  In terms of computational performance, our trained CNN model achieves a 

prediction speed of 0.0255s per image using the aforementioned training environment. 

However, based on the processing time of the Windcube200S algorithm described in 

(Thobois et al., 2016), the computational speed of this physical algorithm reaches 

0.7835s per image, under the conservative assumption of 15 scans in each wake 

sequence. Therefore, our data-driven approach demonstrates significant computational 

efficiency benefits. 

 

 

Figure 3-11. Visualisation of performance of wake vortex locating in the test dataset.  

 

3.5.1.2. Model performance of wake region detection 

  The proposed models and the benchmarking models were trained in the Pytorch 
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environment using Adam optimiser. This was accomplished on Windows 10 with an 

Intel Core i7-12700K processor, the GPU of NVIDIA GeForce RTX 3060Ti and DDR5 

RAM with 32GB. To obtain training, validation and test datasets, all 5432 images and 

relevant labelled boxes were randomly divided with a ratio of 6:2:2. The training with 

the best performance was configured with epochs of 300, batch size of 32, initial 

learning rate of 0.001 and cosine annealing learning rate decay, momentum and weight 

decay rates of 0.95 and 0.001, respectively. The gains for bounding box loss, object 

loss and class loss were maintained at 1, and the gain for the relative area (RA) was set 

to 0.01. Besides, the object confidence threshold was established at 0.25, and the IOU 

threshold was defined as 0.45 for model testing and inference. The hyperparameters 

were trained with the grid search. 

  Table 3-5 presents the computational performance of the YOLO v5 benchmarking 

model with various loss functions, including the loss function that we have proposed 

for this particular task. It indicates that box regression performance is enhanced when 

training on the large model with a greater number of parameters that have been pre-

trained in COCO and other datasets, as opposed to the lightweight model that has been 

pre-trained. In contrast, the computational efficacy of the small model is considerably 

higher, as indicated by the FPS, that it can deduce nearly ten additional images within 

a single second. In addition, a comparison is made between the impact of various loss 

functions derived from IOU on the medium model, revealing that the fundamental loss 

functions are more suitable for our objective than the novel EIOU and Soft-IOU (SIOU) 

loss metrics. Furthermore, it is significant to highlight that by incorporating our 

proposed “relative box area” term into the box loss function, the model achieves the 

lowest MAE in both box centre and box area regression, as demonstrated in Figure 

3-12, thus achieving both the goals of wake region regression and wake object 
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classification without incurring any additional computational burden. 

 

Table 3-5. Test performance of the proposed algorithm in wake region detection. 

YOLO 

v5 

model 

Loss 

function 
mAP0.5 

MAE 
Computational 

speed (s) 
FPS 

𝑥𝑐 𝑦𝑐 IOU 

Medium  

IOU 99.6% 0.0218 0.0154 0.7891 0.0107 93 

GIOU 99.6% 0.0204 0.0143 0.7866 0.0104 96 

DIOU 99.5% 0.0194 0.0151 0.7837 0.0104 96 

CIOU 99.6% 0.0269 0.0155 0.7827 0.0104 96 

EIOU 99.5% 0.0314 0.0161 0.7567 0.0104 96 

SIOU 99.5% 0.0314 0.0158 0.7748 0.0108 92 

IOU+RA 99.6% 0.0304 0.01927 0.7681 0.0099 101 

CIOU+RA 99.5% 0.0129 0.0135 0.8059 0.0104 96 

Small CIOU 99.6% 0.0177 0.01493 0.7942 0.0086 116 

Large CIOU 99.6% 0.0144 0.0141 0.7972 0.0122 82 

 

 

Figure 3-12. Visualisation of the performance of the proposed model compared to ground truth 

in wake region detection. 

     

  The refinement of the box regions in our proposed loss function is illustrated in 

Figure 3-13, where it is evident that the box areas are significantly larger in comparison 

to the CIOU loss function alone. Conf, as denoted in the label, refers to confidence in 



68 

 

box classification. With the larger box region detected with the updated loss function, 

the wake classification confidence is correspondingly enhanced. Hence, the inclusion 

of this supplementary loss term holds significant promise in improving the safety and 

reliability of wake region detection, which is critical for its application in wake region 

monitoring and encounter risk assessment. 

 

 
Figure 3-13. Comparison of the performance of the proposed loss function with benchmarks in 

wake region detection. 

 

  Drawing upon the aforementioned wake region detection and model performance 

verification, this sector explores its applicational potential in inferring the dynamic 

wake separation across different crosswind scenarios. Wind conditions at HKIA can 

demonstrate considerable variability (Hon et al., 2022), providing a challenging testing 

ground for the present study. As depicted in scenario 1, Figure 3-14, in a steady 

atmosphere with nearly no crosswind, the wake vortices will gradually descend with 

slight lateral diffusion, with the wake regions increasing. Consequently, based on the 

standard safe approach profiles illustrated in solid grey lines in Figure 3-14, the 

presence time of wake pairs in the approach path is observed to exceed 140 s. The dotted 

grey line in this figure represents the centreline of the runway. Indeed, according to the 
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wake separation of the present RECAT-EU standard, this circumstance describes the 

most severe wake encounter with the most protracted wake duration.  

  Nonetheless, in the presence of a strong crosswind in scenario 2, Figure 3-15 suggests 

an evident lateral movement of wake vortices and a decrease in wake regions, resulting 

in a shorter duration of less than 60s along the approach path. Consequently, under these 

favourable wind conditions, the wake separation time may be diminished to the level 

of minimum radar separation or other constraints imposed on runways. 

 

 

Figure 3-14. Visualisation of the wake region detection of the A320 aircraft in the approach path 

to runway 07L under a mean absolute crosswind of 0.11 m/s (Scenario 1, Time: 2019/06/04 

15:42:18-15:44:38). 

 

Figure 3-15. Visualisation of the wake region detection of the A320 aircraft in the final 
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approach to runway 25R under a mean absolute crosswind of 2.7 m/s (Scenario 2, Time: 

2019/06/21 16:20:26-14:21:51). 

 

  The lateral transition of wake vortices under crosswind at 5-6 m/s scenario is shown 

in Figure 3-16. This indicates that the strong crosswind may further reduce the wake 

duration time to less than 30 s, resulting in a more streamlined and slenderer wake 

region. This verifies the effect of crosswind on wake separation reduction and the 

feasibility of experimentally determining the temporal wake separation time by the 

wake region detection. Overall, the labelled wake regions in these three figures are 

equivalent to or marginally smaller than the predicted regions. This further 

demonstrates that the YOLO v5 model, utilising our improved loss function, performs 

exceptionally well in this regard.  

  In Figure 3-17, the depiction of wake vortex movement within the two-dimensional 

LiDAR-scanning plane is discernible across three representative scenarios. Notably, a 

persistent trend is observed wherein wake vortices endure for an extended duration 

along the final approach path, characterised by prominently centralised wake regions 

throughout all temporal increments of their evolution (Figure 3-17a). However, the 

influence of robust crosswinds induces a rapid lateral displacement of the wake vortices 

towards either the left (Figure 3-17c) or right (Figure 3-17b) periphery of the final 

approach path, concomitant with a concurrent reduction in the spatial extent of the wake 

region. 
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Figure 3-16. Visualisation of the wake region detection of A320 aircraft in the final approach 

to runway 07L under a mean absolute crosswind of 5.48m/s (Scenario 3, Time: 2019/08/28 

02:23:21-02:24:26). 
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Figure 3-17. The two-dimensional movement of wake region in the above three scenarios. 

 

3.5.1.3. Model performance in strength estimation of vortex circulation 

  Table 3-6 demonstrates that the CNN model, when applied to raw images with ROI, 

achieves significantly higher prediction accuracy in strength estimation compared to 

other pre-trained CNN models. Notably, the CNN model trained on the entire raw 

images exhibits the largest errors in the MAE and RMSE, highlighting the efficiency 

and performance advantages of utilising ROI to refine specific zones for strength 

estimate. The ROI area for strength estimation is obtained by cropping relevant portions 

from raw images based on the predicted positions of pairwise wake vortices, as depicted 

in Figure 3-18. For instance, “X40” refers to 40 pixels between the left boundary of the 

ROI and the predicted lateral position of the left vortex, while “Z60” represents 60 

pixels from the upper boundary of the ROI to the predicted height of the highest vortex. 

The right and lower boundaries of the ROI are defined similarly. Specifically, the 

influence of ROI size on strength estimation accuracy is presented in Table 3-7. The 

results indicate that an ROI size of “X20, Z40” is sufficient for capturing wake vortex 

circulation with minimal interference from background wind turbulence. It is worth 
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noting that the results in (Wartha et al., 2022) are similar to our deterministic CNN 

models without applying the ROI technique in the strength estimation of the vortices. 

However, our CNN model with region refinement achieves a significant 41% and 36% 

reduction in MSE compared to the reference study, revealing the performance 

enhancement of our model. It is worth mentioning that with more relevant information 

considered in the CNN model, such as the aircraft weight and flight speed, the 

atmospheric conditions, the performance of vortex strength estimation may be further 

improved. 

 

Figure 3-18. Size of the region of interest for vortex strength estimation. 

 

 

Table 3-6. Performance comparison of CNN models with benchmarking models for vortex 

circulation intensity estimation. 

Model MAE (m2/𝑠) RMSE (m2/𝑠) 

𝐺𝑙 𝐺𝑟 𝐺𝑙 𝐺𝑟 

Model with 

ROI 

Deterministic 

CNN 

32.56 34.53 46.43 48.86 

Probabilistic 

CNN  

35.21 37.80 51.92 53.78 

VGG16 39.43 39.82 56.72 56.80 

ResNet18 39.24 42.21 56.19 58.97 

ResNet50 39.04 39.80 54.90 55.29 

Deterministic CNN without 

ROI 

50.36 50.77 78.49 78.48 

CNN model in (Wartha et 

al., 2022) 

55.31 52.97 77.26 77.21 

Note: the comparison with the existing work is primarily about model structure, under our 

computational hardware and data. 
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Table 3-7. Performance comparison of ROI sizes for strength estimation. 

Cropped size MAE (m2/𝑠) RMSE (m2/𝑠) 

𝐺𝑙 𝐺𝑟 𝐺𝑙 𝐺𝑟 

X20, Z40 32.56 34.53 46.43 48.86 

X30, Z50 36.35 37.66 50.88 53.81 

X40, Z60 35.45 37.53 51.23 53.41 

 

3.5.2. Explanation of model decision with image feature analysis 

  We employed both Grad-RAM and prediction difference analysis on input images to 

investigate which part of the entire image contributes most to the final regression. As 

shown in Figure 3-19, for figures with high prediction accuracy, this region is mainly 

concentrated along the dividing line between the upper and lower velocities of the 

pairwise vortices, which confirms that the trained model operates as expected. However, 

for images with slightly larger prediction errors, the prediction results are influenced 

by a wider range of features. This can be explained from two aspects: first, the shape 

of the wake turbulence indicates that the entire wake-influenced slender region is highly 

related to the predicted output. That is also the reason that the vertical profile 

experiences larger prediction uncertainty than the horizontal profile. Second, it is 

unavoidable that the background turbulence may influence prediction, leading the 

model to conclude that some regions of background turbulence are also associated with 

prediction, and the more dispersed the background turbulence, the greater the effect. 

Given the background turbulence of LiDAR scanning in 25R exerts a bigger influence 

on the model estimation, it is possible to explain the instances that it has significantly 

higher prediction uncertainty, particularly in the vertical profile compared to LiDAR 

scans in 07L. In addition, the growth of the feature is depicted in the activation maps 
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of the penultimate and the final convolutional sector of the CNN model, as shown in 

Figure 3-20. 

 

 

Figure 3-19. Visualisation of the activation maps on the final convolutional layer in the 

pairwise wake-vortex locating of the test dataset. 

 

 

Figure 3-20. The activation maps in the penultimate and last convolutional layer of LiDAR 

image in 2019-05-22 00:22:50. 
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  The comparison of feature importance analysis of Grad-CAM and PDA is shown in 

Figure 3-21. In conditional sampling, the PDA is performed with a sampling window 

size of 8 and a padding size of 2. The red pixels in the lower figures imply the prediction 

difference under patch marginalisation, and the darker the colour, the higher the 

predicted disparity. The relevance between the blank area of LiDAR scans and 

prediction can be seen in both methods, with both the region of wake turbulence and 

the significant background wind turbulence captured. As the Grad-RAM approach only 

preserves the most significant activation, whereas the PDA algorithm generates a 

saliency map of all prediction differences, it is evident that the relevant region of the 

input image is significantly larger in the PDA algorithm. 

 

Figure 3-21. Comparison of Grad-RAM with prediction difference analysis of image features. 

 

3.5.3. Exploratory results of vortex duration estimation for achieving temporal wake 

separation  

  This section discusses the exploratory results of vortex duration estimation based on 

the predicted vortex locations from the probabilistic CNN model. Next, the estimated 

duration is compared to current wake separation standards to analyse the potential of 
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separation reduction. Finally, the relationship between the deviation in wake duration 

and the leading factor, crosswind speed, is statistically discussed to demonstrate its 

managerial implications in runway operations. 

  Figure 3-22 to Figure 3-24 illustrate the estimated vortex locations in three scenarios 

from the probabilistic CNN model. In addition to the mean values of locations, the 

prediction variance with one standard deviation, which shows a 95 % confidence level, 

is also captured from this model and represented using the shaded areas in light purple 

and pink. The boundaries of the wake vortex region for each aircraft weight category, 

are also estimated based on positions of wake cores and a safety margin, as illustrated 

in the light grey areas. Based on the final results of wake boundaries and the allowable 

approach profiles depicted with solid light grey lines, the duration of wake vortices in 

the approach profiles can be inferred. The dash-dot line in these figures represents the 

runway centreline.  

  As shown in Figure 3-22 when the background wind is weak, the continuous descent 

of the wake vortices, accompanied by slow lateral diffusion, results in its presence in 

the approach path for over 100 s after its generation. Both the vertical profile (a) and 

horizontal profile (b) of the approach path exhibit significant probabilities of wake 

existence. While for Figure 3-23 and Figure 3-24 with crosswind exceeding 2 𝑚/𝑠, 

the wake vortices can be blown out of the path in the final approach in rapid lateral 

speed, which leads to considerable time saving in wake durations.  

  Consequently, the predicted wake durations can be compared to the current 

separation standard to catch the potential of wake separation reduction under favourable 

crosswinds. The distance-based RECAT-EU standard, as shown in the Appendix, is 

transferred to the time-based approach separation (TBS) (EUROCONTROL, 2020; 

NATS, 2015), considering the average approach speed for aircraft in each wake 
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category. Next, Table 3-8 shows the computational process of allowable separation 

time reduction of the above three wake scenarios, with the leading aircraft in the upper 

medium category (CAT_D) and various levels of crosswinds. The comparison is based 

on the assumption of 130 knots average approach speed for the following light aircraft 

in CAT_F (Kolos-Lakatos, 2017). The positive crosswind values indicate lateral wind 

moving away from the LiDAR to one side of the runway, while the negative values 

represent crosswind moving to the other side.  

  The results in the first row of Table 3-8 demonstrate that, with almost no crosswind, 

the wake duration predicted based on our CNN model reaches over 80s, which 

experiences the worst-case scenario and complies with the regulatory requirement. The 

second and last rows show that the duration of wake vortices in the approach path can 

be continuously reduced below 60s as the crosswind strength increases, with larger 

crosswinds resulting in a smaller wake duration. When the wake duration reduces below 

the level of other factors that limit runway separation, such as runway occupational 

time and the minimum radar separation (2.5 NM or 62.9s in this context), consequently, 

a separation time reduction of around 13s from raw static wake separation time to such 

as the minimum radar separation can be achieved in this situation. In addition, due to 

factors, such as the minimum radar separation, a higher degree of wake duration 

decrease does not further reduce the wake separation time. 
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Table 3-8. The potential of wake separation reduction in comparison with RECAT separation 

standard. 

Wake 

scenarios 

Leading 

aircraft 

(Aircraft 

category) 

Average 

approach 

speed of 

the 

follower  

Average 

crosswind  

Minimum 

DBS in 

RECAT  

Minimum 

TBS in 

RECAT 

Wake 

duration 

predicted 

in this 

study 

Allowable 

wake 

separation 

reduction 

Figure 

3-22 

A320 

(CAT_D) 
130 knots 0.11 m/s 3 NM 82.1s 

Over 

100s/ 

3.61 NM 

0s 

Figure 

3-23 

A320 

(CAT_D) 
130 knots 2.70 m/s 3 NM 82.15s 

40s/ 1.44 

NM 
12.95s 

Figure 

3-24 

B737 

(CAT_D) 
130 knots -5.48 m/s 3 NM 82.15s 

25s/ 0.9 

NM 
12.95s 

Note: DBS refers to the distance-based separation, TBS represents the time-based separation, and NM 

refers to the nautical mile. 

 

  

Figure 3-22. Visualisation of the wake existence situation in the approach path (Runway: 07L; 

Mean crosswind: 0.11m/s; Time:2019/06/04 15:42:18-15:44:38; Leading aircraft: A320).  

 

  From the statistical analysis perspective, the magnitude of the crosswind directly 

correlates with separation reduction, particularly for situations of small aircraft 

following heavy aircraft. Therefore, the impact of crosswind on aircraft separation time 

and lateral movement speed of wake vortices can be investigated for further 

implementation in runway scheduling, as shown in Figure 3-25 and Figure 3-26. In 
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these two figures, the wake duration in final approach path is calculated based on the 

results from the probabilistic CNN model for vortex locating. A dataset consisting of 

4298 wake vortex sequences from leading flights, encompassing aircrafts in CAT_A to 

CAT_E categories, were analysed. Among these sequences, the separation time of 2128 

flights are expected to be reduced compare to their actual separation time from the 

following flights.  

  Figure 3-25 depicts the functional relationship between the separation time predicted 

by our proposed CNN model and the crosswind speeds in the LiDAR scanning planes. 

The horizontal lines in each column represent the upper limit, upper quartile (upper line 

of the colour-filled box), median value (black line inside the box), lower quartile (lower 

line of the box) and lower limit of the separation time for a certain aircraft weight 

category. Within the 0-2 crosswind speed class, the separation time range from 20s to 

180s with respect to the aircraft category, especially for CAT_A and CAT_B. The 

median values of separation time decrease rapidly with the increase of crosswind speed, 

and the upper quartiles for all considered aircraft categories fall below 60s when the 

crosswind speed exceeds 3 m/s. However, the outliers for CAT_B and CAT_D under 

crosswinds of 3-4 m/s are still reaching a cut-off at 100s. The median separation time 

remains under 20s under crosswind over 6 m/s. 

   Figure 3-26 presents a similar analysis, depicting the dependencies of crosswind 

on the lateral movement speed of pairwise vortex cores. As the crosswind speed 

increases, the lateral movement of vortices accelerates. The median lateral speed 

remains below 2 m/s in the worst-case scenario with a crosswind speed of 0-1 m/s, 

while the median lateral speed reaches over 4 m/s when crosswinds exceed 4 m/s. In 

addition, for a certain crosswind level, another evident trend is that the lateral wake 
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speed will be larger for light aircraft. The rapid increase of the median lateral speed for 

CAT_C under crosswind of 6-7 m/s is due to the small amount of data.  

  It is worth to mention that the motion of aircraft wake vortices is a complex dynamic 

problem influenced by multiple external factors. Due to the limited predictability of 

vortex strength, the preceding analysis of separation time in this study is predicted 

based on the presence of wake vortices in the standard approach profiles of the 

instrument approach procedure, and the assumption of prevalent crosswinds. In 

addition, although the strength crosswind may reduce wake separation below 60s, the 

decision of the final dynamic separation time must also consider several other factors, 

such as the minimum radar separation, as the instanced time with the dotted line in 

Figure 3-25, and situation of wake vortex encounter for the following aircraft. 

Furthermore, additional data is required to support analysis of wake separation in other 

wind conditions, such as the prevailing headwind or wind shear, and wake separation 

in abnormal flight, such as go around and in other approach procedures, such as the 

visual approach. 

   

   

Figure 3-23. Visualisation of the wake existence situation in the path of the final approach 

(Runway: 25R; Mean crosswind: 2.70 m/s; Time: 2019/06/21 16:20:26-14:21:51; Leading 

aircraft: A320). 
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Figure 3-24. Visualisation of the wake existence situation in the path of the final approach 

(Runway: 07L; Mean crosswind: -5.48m/s; Time: 2019/08/28 02:23:21-02:24:26; Leading 

aircraft: B737). 

 

 

Figure 3-25. The allowable wake separation time predicted by the proposed CNN model under 

crosswind in certain levels. 
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Figure 3-26. Lateral movement speed of the pairwise wake vortex under crosswind in certain 

levels. 

 

3.6. Concluding remarks 

3.6.1. Conclusion  

  This study establishes a two-stage probabilistic deep learning-based framework for 

location and strength estimation of aircraft wake vortices, and assesses its duration in 

the final approach path using LiDAR wake images at the Hong Kong International 

Airport. The first step is to perform data processing to visualise wake turbulence and 

map wake data to flight information. Next, the two-stage framework with two 

probabilistic convolutional neural networks is developed for wake vortex recognition. 

The first stage is for vortex locating, while the other involves estimation of the vortex 

strength using the refined region captured from the raw entire image based on vortex 

locating. In the third step, the situation of vortex existence in the vertical and horizontal 

profile of the flight path in the final approach is analysed based on the estimation of 

probabilistic vortex positions and measured with the safety metric of occupational time, 
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and the prediction uncertainty of the convolutional neural networks is analysed using 

model explanation techniques. 

  Several noteworthy contributions are made by the proposed methodology to aircraft 

wake vortex detection and quantifying aircraft separation. The novel data-driven deep 

learning models obtain improved prediction accuracy and computational speed 

compared to prior research based on high-dimensional feature analysis from wake 

images. In addition, the probabilistic prediction model provides an efficient and reliable 

method for visualising and analysing the duration of wake existence in the final 

approach path, considering meteorological conditions and aircraft types, which 

demonstrates the great potential of dynamical separation reduction in comparison to the 

updated standard of RECAT-EU. Finally, the model explanation with probabilistic 

estimation improves the trustworthiness and transparency of the convolutional neural 

networks. The methodology and results in this section can facilitate the development of 

the near real-time monitoring system of aircraft wake turbulence, and the advice system 

for dynamic aircraft separation in the final approach phase. 

 

3.6.2. Managerial implications 

  Safety is one top priority in air traffic operations. The identification of aircraft wake 

vortices and assessment of their duration in the final approach path builds the 

foundation of quantifying the minimum aircraft separation to achieve both traffic 

optimisation resilience and flight safety. The managerial implications of this research 

are mainly in four aspects: 

(1) The two-stage fast-time wake vortex recognition framework via deep learning 

achieves both high estimation precision and computational speed. It can 

facilitate the onboard and near real-time wake vortex monitoring. Furthermore, 
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the methods of probabilistic estimation and decision interpretation of the 

proposed deep learning models can improve their reliability and transparency 

in decision-making, facilitating their implementation in safety-critical wake 

vortex monitoring and prediction systems to reduce the workload of air traffic 

controllers in traffic guidance. 

(2) This study demonstrates great potential and technical feasibility for reducing 

approach separation under certain wind conditions, aligned with the latest 

RECAT-EU standard. The statistical analysis of temporal wake separation in 

relation to crosswinds, presented in this study, allows for the establishment of 

time-based wake separation references applicable to future crosswind 

conditions within the next half to one hour. These references can effectively 

serve as constraints when addressing runway sequencing and scheduling 

challenges. This is crucial for large and busy airports with heavy traffic volume 

that cannot increase capacity by building new runways, to boost airport capacity 

and throughputs from the airport operator side.  

(3) By accurately tracking the movement of wake vortices and implementing 

separation reduction between aircraft in real-time, airlines can minimise delays 

caused by spacing requirements and reduce fuel consumption, which leads to 

cost savings and improvement of their on-time performance, and support more 

efficient flight scheduling in both the short and long period of time. 
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Chapter 4. Data-driven aircraft wake vortex evolution 

prediction and safety assessment of separation minima 

reduction  

  Following the vortex recognition and feature analysis in Chapter 3, which is the 

fundamental step, research regarding predicting the decay and evolution process of 

wake vortices will be presented in Chapter 4. Although the dynamics of aircraft wake 

vortex have been studied over two decades, the research technique mainly focuses on 

numerical simulation with CFD and physical modelling. With the development of 

LiDAR detecting and computer techniques, machine learning models show great 

applicational potential. This chapter aims to research the potential of applying deep 

learning models to realise fast-time and real-time wake vortex decay prediction. This 

chapter develops the encoder and decoder recurrent neural network for predicting future 

wake vortex position and strength based on massive historical vortex data from the 

LiDAR processing algorithm. The online and near-real-time prediction methodology is 

also proposed by integrating the wake recognition model developed in Chapter 3. The 

results show that the proposed models achieve significantly high performance in both 

short-term and long-term wake decay prediction. Furthermore, the integration of wake 

recognition and decay prediction is applicable from both computational speed and 

forecasting accuracy aspects. This study indicates a considerable applicational value for 

building the online wake vortex monitoring and separation advisor system and builds 

the conditions for intelligent runway scheduling to improve traffic flow efficiency and 

runway throughputs. 
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4.1. Introduction 

4.1.1. Research context 

  The aircraft re-categorisation concept proposed by the European Union Aviation 

Safety Agency (EASA) (EUROCONTROL, 2018a) and the Federal Aviation 

Administration (FAA, 2016) refines aircraft maximum take-off weight from four 

groups defined by International Civil Aviation Organisation (ICAO) to six categories 

to further reduce separation for certain aircraft pairs. Holzäpfel et al. (2021) verified 

that the aircraft separation under RECAT standard can be further reduced to minimum 

radar separation for a certain number of landings under favourable wind conditions, 

from the physical wake prediction perspective using one-year aircraft pairwise 

approaching separations in the Vienna International Airport. 

  From the perspective of wake generation and evolution, the weight of an aircraft has 

a strong relationship with the initial intensity of vortex circulation, and meteorology, 

particularly wind, plays a significant role in vortex movement in the air. Therefore, 

research on dynamic time-based wake separation in relation to pairwise aircraft and 

meteorology has extensive applicational value to unlock the potential of runway 

efficiency improvements, which is the current research focus worldwide in the air 

traffic management area.  

  Novel emerging machine learning models that are data-driven are suitable for wake 

vortex recognition and prediction. Deep learning techniques, such as convolutional 

neural networks, are adept at analysing features of LiDAR data in image format. A 

identification method for the existence of wake vortices using a Support Vector 

Machine is proposed (Pan et al., 2020), with LiDAR radial wind data, and 

meteorological parameters (temperature and air pressure). Shen et al. (2023) employed 

the object detection algorithms (R-CNN and YOLOv5 networks) for vortex 
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identification. Their proposed model can identify both a single vortex pair and the case 

of two vortex pairs superposed. These researches aim for qualitative vortex 

identification, rather than quantitative recognition of vortex locations and intensity. 

Although Wartha et al. (2022) utilised convolutional neural networks for vortex locating 

and strength estimation at the Vienna International Airport, each of their networks is 

only capable of estimating one positional or intensity-related parameter of a vortex pair. 

This could disregard the coupling relationship between pairwise vortices. Furthermore, 

few studies utilise novel data-driven models to predict the transport and decay process 

of aircraft wake vortices. The application of time series prediction models in flight 

trajectory prediction for air traffic operations, such as the individual LSTM, GNN, and 

the hybrid deep learning models (ConvLSTM) results in a considerable performance 

boost. In fact, the recurrent neural networks and models that can handle the temporal 

dependencies of data in time series are also appropriate for predicting the wake vortex 

evolution process and deserve to be developed. 

 

4.1.2. Research gaps and contributions  

  From the foregoing, it is evident that the data-driven wake vortex prediction has great 

benefits in time saving and consideration of both qualitative and quantitative factors 

affecting the evolution of wake vortex. However, existing research focuses primarily 

on qualitative tasks, such as wake vortex existence recognition and classification of 

vortex strength level. Few studies have considered machine learning-based regression 

of positional and strength features of wake vortices, which is essential for proactive 

runway scheduling.  

  Implementing more efficient departure and arrival operations can boost runway 

throughput at airports with limited capacity. Consequently, based on the quantitative 
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aircraft wake recognition studies in Chapter 3, this research aims to develop an online 

and real-time wake vortex prediction and safety monitoring framework via deep 

learning and operational LiDAR techniques. The proposed methodology will facilitate 

the development of time-based separation indicators for the final approach, improve the 

runway throughput capacity as a result of reduced, optimised separations while 

maintaining safety under runway scheduling, and further result in fewer separation 

violations and missed approaches, and reduce the ATCOs’ workload despite the fact 

that more aircraft per hour they will manage. The contributions of this study are 

threefold: 

1. In terms of the overall methodology, we develop a model fusion strategy to 

enable online spatiotemporal vortex feature recognition and future evolution 

projection. The hybrid deep learning framework includes two parts: a two-

stage Deep Convolutional Neural Network (DCNN) framework that is adept 

at capturing spatial features of vortex locations and strength; and Attention-

based Temporal Convolutional Network (ATCN) models that are ideal for 

forecasting the long-term temporal dependencies in vortex transport and decay. 

2. For model performance validation, the efficiency of the proposed ATCN 

models and hybrid DCNN-ATCN strategy is assessed using real flight data and 

wake data at the Hong Kong International Airport, encompassing several 

scenarios of background turbulence. This model fusion reveals superior 

performance compared to benchmarking methods. 

3. In vortex duration assessment, both aleatoric uncertainty and epistemic 

uncertainty of the proposed model for predicting vortex location are 

characterised by Gaussian distribution. The dynamic separation minima 

regarding crosswinds are determined by the presence of vortices in the 
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approach profiles and verified from several aspects. Our preliminary results of 

dynamic separation minima show compliance with the current RECAT-EU 

standard, and also indicate the effect of strong crosswinds on separation 

reduction. 

 

4.2. Preliminaries 

4.2.1. Aleatoric and epistemic uncertainty estimation  

  When constructing a prediction model from input 𝑥 to output 𝑦 using a training 

set of finite size, both aleatoric uncertainty and epistemic uncertainty must be 

considered. Aleatoric uncertainty, which is related to the inherent noise or randomness 

in the data, is determined by the quality of the dataset and the nature of the prediction 

task. This uncertainty cannot be reduced as the size of the training dataset increases. 

Epistemic uncertainty resulting from model training process and knowledge. This 

uncertainty arises as a result of limited training data, model architecture or insufficient 

knowledge about the underlying data distribution, and it can be reduced by adding more 

data or enhancing models. 

  The Bayesian neural network is capable of handling both aleatoric uncertainty and 

epistemic uncertainty. The aleatoric uncertainty in the data can be incorporated by 

permitting the model to output probability distributions instead of deterministic point 

predictions. BNNs address epistemic uncertainty by utilising Bayesian inference 

techniques. Methods such as variant inference and Monte Carlo Dropout are used to 

approximate a posterior distribution over weights of the network that is consistent with 

the training data and prior knowledge.  

  Consider a standard neural network with weight and bias parameters denoted as 𝛩. 

Given the training data 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)} , where 𝑥𝑖  represents 
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input sample, 𝑦𝑖 is corresponding target output, and 𝑓(𝑥𝑖, Θ) represents the network. 

  To model the aleatoric uncertainty, a likelihood function that captures the noise or 

variability in the data is introduced. Assuming Gaussian noise in the data, the likelihood 

function is given as: 

 𝑝(𝑦|𝑥, 𝛩) = 𝑁(𝑦|𝑓(𝑥, 𝛩), 𝜎2) (4-1) 

 

where 𝑁(𝑦|𝑓(𝑥, 𝛩), 𝜎2) represents the Gaussian distribution with mean model output 

𝑓(𝑥, Θ) and variance σ2. 

  For epistemic uncertainty, a prior distribution over the parameters 𝛩 is specified 

first to represent initial beliefs before updating them based on the observed data. 

Generally, a simple prior, such as a Gaussian distribution is used: 

 𝑝(𝛩) = 𝑁(𝛩|𝜇0, 𝜖0) (4-2) 

 

  Based on the Bayesian inference theorem, the posterior distribution of the parameters 

𝛩 given the observed data 𝐷 can be calculated as  

 𝑝(𝛩|𝐷) =
𝑝(𝐷|𝛩) ∗ 𝑃(𝛩)

𝑝(𝐷)
 (4-3) 

 

where 𝑝(𝐷|𝛩)  is the likelihood function,  𝑃(𝛩)  is the prior, and 𝑝(𝐷)  is the 

marginal likelihood and is calculated by integrating the product of the likelihood and 

the prior over all possible values of 𝛩. 𝑝(𝐷) =  ∫ 𝑃(𝑑|𝛩) ∗ 𝑝(𝛩)𝑑𝛩. 

  As the above posterior distribution is too complex to solve, approximate methods 

such as variational inference and Monte Carlo methods are utilised to sample from the 

posterior distribution. The central concept of variational inference is to utilise a 

variational distribution 𝑞(Θ) for approximating the true 𝑝(𝛩|𝑋, 𝑌) by minimising 

the Kullback-Leibler (KL) Divergence between them. Monte Carlo Dropout is one 
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popular technique used in Bayesian neural networks that has been proven with a similar 

effect in minimizing KL divergence to approximate the posterior distribution (Gal et al., 

2016). After the inference, outputs can be made by averaging the predictions from 

multiple dropout samples. The probabilistic distribution of the model on new data 𝑥∗ 

can therefore be generated by integrating over 𝜃 and estimated with MC samples, in 

which K is the number of MC samples: 

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑌)  = ∫ 𝑝(𝑦∗|𝑥∗, Θ)𝑝(Θ|𝑋, 𝑌)𝑑Θ  ≈
1

𝐾
∑ 𝑝(𝑦∗|𝑥∗,

𝐾

𝑛=1

Θ̃𝑘)  (4-4) 

 

  Based on the above analysis, the total predictive uncertainty 𝑉(𝑦|𝑥)  can be 

computed by integrating these two kinds of uncertainties: 

 V(y|x) = 𝑉(𝐸[𝑦|𝑥, Θ]) + 𝐸[𝑉(𝑦|𝑥, Θ)] (4-5) 

 

where 𝐸[𝑦|𝑥, Θ] denotes the 𝑓(𝑥, 𝛩). 𝑉(𝐸[𝑦|𝑥, Θ]) is the variance of the predicted 

means of the Bayesian model and represents the epistemic uncertainty. The average of 

the model’s predicted variance 𝐸[𝑉(𝑦|𝑥, 𝛩)] under input and model parameters, is the 

aleatoric uncertainty, and can be denoted as 𝐸[𝑠2(𝑥, 𝛩)]. 

  Therefore, this ensemble approach utilises probabilistic modelling of both the 

aleatoric and epistemic uncertainty to provide comprehensive uncertainty estimates of 

the predictions. 

 

4.2.2. Recurrent neural networks 

  RNN is a type of neural network that introduces feedback loops to process sequential 

data. The key idea is to share weights across time steps, which enables the network to 

maintain hidden state information and capture temporal dependencies in the data. The 
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forward pass in an RNN for each timestep 𝑡 can be represented as ℎ𝑡 = 𝑓(𝑊 ∗ 𝑥𝑡 +

𝑈 ∗ ℎ𝑡−1 + 𝑏), where 𝑥𝑡 is the input at this timestep, ℎ𝑡 is the hidden state for this 

timestep and becomes the hidden state for the next timestep, ℎ𝑡−1 is the hidden output 

from the previous timestep, W, 𝑈, 𝑏 are model parameters. 

  To address the vanishing gradient problem and capture long-term dependencies more 

effectively, LSTM (Hochreiter et al., 1997) and GRU (Chung et al., 2014) networks are 

specialised. The memory cells and gating mechanisms in the forget gate can control the 

flow of information through the cell, enabling LSTM to store and retrieve information 

over long periods, thereby making it effective in capturing long-term dependencies in 

sequences. The LSTM cell at timestep 𝑡 can be denoted as  

 𝑖𝑡 =  𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑖 (4-6) 

 𝑓𝑡 =  𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑓 (4-7) 

 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑜 (4-8) 

 𝑔𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑔[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑔 (4-9) 

 𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡 (4-10) 

 ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ (𝑐𝑡) (4-11) 

 

Where 𝑥𝑡 is the input at timestep 𝑡, ℎ𝑡 is the output at timestep 𝑡, 𝑐𝑡 is the cell state 

at timestamp 𝑡   𝑖𝑡    𝑓𝑡  and  𝑜𝑡  are the input, forget and output gate activations, 

respectively. 𝑔𝑡 is the candidate cell state, the information to be added to the cell state, 

𝑊𝑖   𝑊𝑓  and 𝑊𝑜  denote the learnable weight metrics, 𝑏𝑖   𝑏𝑓  and 𝑏𝑜  denote the 

learnable bias vectors, and 𝜎  and tanh are the sigmoid and hyperbolic tangent 

functions. 

  GRU also has gating units for control of the information flow but without separate 

memory cells, making it computationally more efficient and easier to train. Update and 
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reset gate components determine how much of the previous hidden state will be retained 

and used for computing the candidate hidden state, respectively. The activation of a 

GRU cell at timestamp 𝑡 can be denoted as 

 ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡ℎ̃𝑡 (4-12) 

 ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ[𝑟𝑡ℎ𝑡−1, 𝑥𝑡]) + 𝑏ℎ (4-13) 

 𝑟𝑡 =  𝜎(𝑊𝑟[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑟 (4-14) 

 𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑧 (4-15) 

where 𝑧𝑡 is the update gate that controls how much of the past hidden state ℎ𝑡−1 to 

keep. ℎ̃𝑡 is the candidate hidden state and computed based on the input and reset gate 

𝑟𝑡. 𝑥𝑡 is the input at timestep 𝑡. 

 

4.3. Research methodology 

4.3.1. Overview of the methodology 

  This research aims to develop an integrated deep-learning strategy that can be used 

to recognise wake vortices in real-time, anticipate vortex decay and estimate separation 

minima. This will be achieved by utilising historical wake vortex data derived from the 

LiDAR technique at HKIA. The wake vortex recognition process involves quantifying 

vortex position and determining vortex strength based on LiDAR vortex images. The 

prediction of wake vortex evolution and decay provides insights into the future position 

and strength of vortices by utilising initial vortex data.  

  Figure 4-1 depicts the methodological flowchart of this study with four primary 

stages. Firstly, the wake sequences are segmented with relevant flight information 

(flight speed, heading, aircraft type) from ADS-B mapped and the ambient wind 

conditions considered. In the offline model training phase, the DCNN model for vortex 

recognition from LiDAR scans and Bayesian models (attention-based TCNs and RNNs) 
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for predicting vortex evolution are built and trained. Subsequently, the trained DCNN 

and ATCN models are integrated and applied in real-time scenarios, in which the 

recognised vortex positions and strength in the initial three timesteps from DCNN are 

fed into the Bayesian attention-based TCN and RNN models for predicting vortex decay. 

The ultimate phase evaluates the dynamic minimum in aircraft separation concerning 

wind conditions in the final approach based on vortex duration analysis. In addition, 

feature importance analysis is employed to elucidate the model decision process, 

thereby bolstering the credibility of the deep learning model. The subsequent 

subsections will explain the model architectures and strategies pertaining to each 

component. 

 

Figure 4-1. Flowchart of the methodology for dynamic aircraft wake vortex recognition and 

evolution prediction. 
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4.3.2. Data processing 

  The data derived from LiDAR for each scan contains two parts: the radial wind 

velocities, and values derived from the LiDAR processing algorithm (two-dimensional 

vortex locations relative to runway centrelines and height of LiDAR, and vortex 

intensity). The radial wind data are converted into heatmaps to visualise the whole 

vortex scope, where warm and cold colours indicate the positive and negative velocities 

relative to LiDAR, respectively. The relative positional deviations were converted into 

absolute values that are relative to LiDARs. Furthermore, the sequential vortex data 

with discontinuous scanning in time series and null values in each time step are 

removed, and these successive vortex scan data were segmented according to the 

characteristics of the initial and final wake vortices. In a stable ambient atmosphere, the 

wake vortices generated by heavy aircraft can persist for a dozen scans of LiDAR, 

lasting for several minutes. In the wake vortex series with more than 12 timesteps, a 

large proportion is caused by the superposition of two wake vortices caused by the error 

in the automatic segmentation of wake vortices. Therefore, to ensure the accuracy of 

wake vortex forecasting, vortex sequences with a duration time of less than 4 timesteps 

and over 12 timesteps are removed.  

  In addition to the wake vortex data, crosswind speed from the background turbulence 

is also considered as the main ambient feature. The crosswind values are averages on 

each LiDAR scan plane, with the same time interval as the LiDAR scan. Furthermore, 

the flight information (approaching speed and aircraft type) of the final approach from 

the ADS-B is also cleaned and mapped with each wake sector according to timestamps 

and three-dimensional positions when the flight approaches the LiDAR scan plane. To 

coordinate with the latest aircraft weight classification standard, the aircraft types 
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extracted for each wake sequence are mapped to the weight categories in RECAT-EU. 

  To summarise, for the historical vortex data of a flight denoted as 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛}, 𝑥𝑖 represents features in timestep 𝑖, the input features for training the 

DCNN model and the time-series prediction model, as well as their respective outputs, 

are listed in Table 4-1. To improve prediction accuracy and utility, the length of the 

historical feature window is defined as three timesteps (𝑡0 − 𝑡2) for predicting targets 

in future timesteps. For LiDARs in Site 1 and Site 2, the time intervals in each timestep 

are approximately 12s and 9s, respectively. 

 

4.3.3. Model construction and evaluation 

4.3.3.1. Attention-based TCN models 

  After the relevant aircraft wake vortex features and atmosphere features are derived, 

we proposed the novel one-dimensional dilated convolutional operations with an 

attention mechanism for efficient and high-performance sequential vortex feature 

prediction. The overall methodological framework of the proposed models is illustrated 

in Figure 4-2. Remarkably, two remarkable attention-based TCN models are proposed, 

which consist of three main modules: dilated convolutional residual block and multi-

head attention module or Convolutional Block Attention Module (CBAM). To 

distinguish between the simple TCN model and the attention-based TCN models, the 

TCN model with multi-head attention mechanism is named multi-head attention-TCN 

(ATCN in following experiments), and the model with CBAM module is called the 

CBAM-TCN.  
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Table 4-1. Inputs and outputs of the DCNN model for vortex recognition and TCN models for 

vortex sequential prediction.  

Model Input/output Feature variables Description Unit 

CNN 

model 

Inputs Wake images 
Images of LiDAR scans in the first 

three timesteps 
- 

Outputs 

𝑋𝑙̂
(𝑡0−𝑡2)

,  𝑋𝑟̂
(𝑡0−𝑡2)

 

Predicted lateral positions of 

vortex cores in the first three 

timesteps 

m 

 𝑍𝑙̂
(𝑡0−𝑡2)

, 𝑍𝑟̂
(𝑡0−𝑡2)

 

Predicted vertical positions of 

vortex cores in the first three 

timesteps 

m 

 𝐺𝑙̂
(𝑡0−𝑡2)

,  𝐺𝑟̂
(𝑡0−𝑡2)

 
Predicted strength in the first three 

timesteps 

𝑚2

/𝑠  

TCN 

models 

Inputs 

𝑋𝑙
(𝑡0−𝑡2),  𝑋𝑟

(𝑡0−𝑡2) 
Reference lateral positions in the 

first three timesteps 
m 

 𝑍𝑙
(𝑡0−𝑡2), 𝑍𝑟

(𝑡0−𝑡2) 
Reference vertical positions in the 

first three timesteps 
m 

𝐺𝑙
(𝑡0−𝑡2), 𝐺𝑟

(𝑡0−𝑡2) 
Reference strength in the first three 

timesteps 

𝑚2

/𝑠  

𝑣𝑙𝑎𝑡
(𝑡0−𝑡2) 

Average crosswind in the first 

three timesteps 
m/s 

RECAT 

The recategorised aircraft weight 

category in consistent with 

RECAT-EU 

- 

Outputs  

𝑋𝑙̂
(𝑡3−)

, 𝑋𝑟̂
(𝑡3−)

 
Predicted lateral positions in future 

timesteps 
m 

 𝑍𝑙̂
(𝑡3−)

, 𝑍𝑟̂
(𝑡3−)

 
Predicted vertical positions in 

future timesteps 
m 

𝐺𝑙̂
(𝑡3−)

,  𝐺𝑟̂
(𝑡3−)

 
Predicted strength in future 

timesteps 

𝑚2

/𝑠  
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Figure 4-2. Overall methodological framework of proposed attention-based TCN models for 

vortex decay projection.  

 

(1) Residual temporal neural network 

  The Temporal Convolutional Network (TCN) was first proposed by (Lea et al., 2016) 

for video-based action segmentation. It utilises one-dimensional causal convolutions 

with dilations to capture long-range temporal dependencies and patterns in the input 

sequences without recurrent connections. The parallelism convolutions achieve great 

computational efficiency compared to traditional recurrent neural networks. The dilated 

convolutions allow the receptive field of the network to grow exponentially with the 

number of layers and manipulate how many positions the convolutional kernel skips, 

as shown in Figure 4-3. By stacking multiple dilated convolutions with appropriate 

dilation rates and utilising non-linear activation functions, TCN can capture complex 

temporal patterns and long-term dependencies in the input sequence efficiently. 

  The dilation rate determines the rate of dilation. For a one-dimensional sequence data 

𝑋 with a timespan of 𝑙, 𝑋 = {𝑥1, … , 𝑥𝑡 , … , 𝑥𝑙}, 𝑥𝑖 ∈ 𝑅𝑛 and a filter 𝑓: {0, … , 𝑘 − 1},
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𝑘 ∈ 𝑅 , the dilated convolution F on sequence element 𝑥𝑡   can be denoted as 

 

𝐹(𝑥𝑡) = (𝑋∗𝑑 𝑓)(𝑡) = ∑ 𝑓(𝑖)  ∙ 𝑋𝑡−𝑑∙𝑖

𝑘−1

𝑖=0

 (4-16) 

Where d denotes the dilation factor, k represents the kernel size, and 𝑠 − 𝑑 ∙ 𝑖 is the 

direction of the past. Therefore, dilation is a means of adding a fixed step between each 

pair of adjacent filter inputs. A dilated convolution becomes a regular one when 𝑑 = 1. 

The output of the dilated convolution is: 𝑋̃ = (𝐹(𝑥1), 𝐹(𝑥2), … , 𝐹(𝑥𝑙)). 

 

 

Figure 4-3. Graphical representation of dilated convolutions with dilation factors d=1,2,4 and 

filter size of 3. 

  After the dilated convolution, the weighted normalisation and dropout will be applied 

to the extracted features 𝑋̃, with the output denoted as 𝐻(𝑋̃). Finally, the summation 

of operated outputs and the initial input, denoted as 𝐺(𝑥) , can be formulated as 

𝐻(𝑋̃) + 𝑋, and will be taken as input for the subsequent residual module or attention 

module. 

(2) Multi-head self-attention mechanism 

  To further improve the ability of long-term temporal dependencies, the multi-head 

self-attention mechanism is added after the final two residual convolutional blocks for 

capturing the most critical information and relationship of the elements in the feature 

space, thus further enhancing model performance and general ability. Specifically, for 

the sequence of embeddings (G(x)), three linear projections will be operated to obtain 
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the query (Q), key (K) and value (V) vectors for each token in the sequence. Then, for 

each position in the input sequence, the attention is denoted as 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (4-17) 

  Furthermore, in multi-head attention, the above attention layers, or heads, will be 

performed in parallel for 𝑘  times, concatenated and then projected to get the final 

output. 

 ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖 , 𝑉𝑖) 𝑖 = 1,2, … . 𝑘 (4-18) 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … ℎ𝑒𝑎𝑑𝑘)𝑊𝑜 (4-19) 

Where 𝑊𝑜 is the learned matrix of the model parameter. 

 

(3) Convolutional block attention module 

  Another solution for attention is the convolutional block attention module, which is 

an innovative architecture component designed to enhance the capabilities of 

convolutional networks. It sequentially combines both channel and spatial attention 

mechanisms to enrich the feature representations, allowing the network to focus on the 

most relevant regions (Woo et al., 2018). Specifically, to capture the channel-wise 

attention after one-dimensional convolutions in our model, the average pooling and 

max pooling are employed in parallel to learn the distinctive object features, 𝐹𝑎𝑣𝑔
𝑐  and 

𝐹𝑐
𝑚𝑎𝑥 , respectively. Next, each descriptor is forwarded to a shared multi-layer 

perceptron, and then their results are merged using element-wise summation and 

operated with a sigmoid function to get the one-dimensional channel-wise attention 

map 𝑀𝐶(𝐹).  

 𝑀𝐶(𝐹) =  𝜎(𝑊1 (𝑊0(𝐹𝑎𝑣𝑔
𝐶 )) + 𝑊1(𝑊0(𝐹𝑚𝑎𝑥

𝐶 ))) (4-20) 

Where 𝑊0, 𝑊1 denotes the weights of MLP layers, and 𝜎 is the sigmoid function. 
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  In addition, to identify where the two-dimensional feature map matters, the one-

dimensional spatial attention map in this study (𝑀𝑠(𝐹)) is generated across the channel, 

by one convolutional layer over the concatenated average-pooled and max-pooled 

features. 

 𝑀𝑠(𝐹) =  𝜎 (𝑓2([𝐹𝑎𝑣𝑔
𝐶 , 𝐹𝑎𝑣𝑔

𝐶 ])) (4-21) 

Where 𝑓2 represents the one-dimensional filter with a size of 2, and 𝜎 denotes the 

sigmoid function. 

 

4.3.3.2. Model fusion strategy 

  The aforementioned DCNN models are adept at data mining from wake vortex 

images, indicating their suitability for vortex monitoring in near real-time. However, to 

support advanced runway operations, it is anticipated that the future duration of vortices 

will be estimated when only the initial vortex images are captured by LiDAR. Therefore, 

the fusion of DCNN and ATCN is proposed to integrate the advantages of these two 

models in both capturing spatial features and identifying temporal dependencies, 

thereby achieving both superior performance and long-term prediction capability in 

vortex recognition and evolution prediction. 

 

4.3.4. Model explanation via feature analysis 

  Explainable AI (XAI) has emerged as a crucial area that aims to address the black-

box nature of complex machine learning models by providing human-interpretable 

explanations of model predictions. This is particularly important when applying 

machine learning techniques in safety-critical flight separation suggestion systems. 

Some tools and methods have been proposed to enhance model transparency and 

interpretability, such as Local Interpretable Model-agnostic Explanations (LIME), 
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Shapley Additive exPlanations (SHAP), Layer-wise Relevance Propagation (LRP), and 

Gradient-weighted Class Activation Mapping (Grad-CAM). LIME approximates the 

behaviour of black-box models through local interpretable models, enabling the 

explanation of individual predictions. SHAP leverages cooperative game theory to 

attribute features importance and offers a unified framework for global and local 

interpretability. Grad-CAM visualises significant regions in images for convolutional 

neural networks. 

  For interpretation of the tasks of forecasting sequential wake vortex data and 

enhancing our understanding and confidence in the model decision-making process, the 

SHAP model is applied in this research for local explanation using the additive feature 

attribution method. The Shapley values of a feature represent the average contribution 

of that feature across all possible combinations of features (Lundberg et al., 2017). Let 

𝐹(∙)  represents the trained TCN or LSTM models, while G (∙)  represents the 

explanation model. The input for the explanation model, which is the simplified wake 

feature input 𝑥′ , is mapped with original input by function 𝑥 = ℎ𝑥(𝑥′) . The 

explanation expects 𝐺(𝑧′)  ≈ 𝐹(ℎ𝑥(𝑧′)) when 𝑧′ ≈ 𝑥′. Next, the explanation model 

for additive feature attribution approach is in the format of a linear function of binary 

variables. 

 

𝐺(𝑧′) = 𝜙0 + ∑ 𝜙𝑖𝑧𝑖
′

𝑀

𝑖=1

 (4-22) 

Where z′ ∈ {0,1}M, M is the feature number, 𝜙𝑖 is the contribution of feature i and is 

allocated by their marginal contribution, and 𝜙𝑖 ∈ 𝑅. 

  The kernel explainer which employs a weighted sampling approach to estimate 

Shapley values is used in this study for interpreting the trained deep learning models. 

For the three-timestep window with eight features per timestep, the contribution of a 
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total of 24 features about vortex positions, strength, crosswind and aircraft types to each 

positional output or strength estimation is analysed. 

 

4.3.5. Exploratory evaluation of wake presence in the final approach path towards 

dynamic wake separation 

  As wind conditions play a leading role in the descent and transport of wake vortices, 

strong winds and unstable atmospheric turbulence may expedite the decay, blowing 

vortices away from runway centrelines to the left or right side. If so, the wake separation 

may be reduced in these instances. Therefore, based on the above probabilistic and 

reliable vortex evolution prediction under the developed models, the potential of 

aircraft separation minima reduction can be verified through duration assessment of 

vortex presence.  

  The duration of vortex presence in the above circumstances is evaluated upon the 

determination of standard approach profiles in LiDAR scan planes. In addition to the 

allowable approach paths calculated for instrument landing rules in (Chu et al., 2024), 

the lateral and vertical boundaries of the approach profiles were loosened to achieve an 

initial vortex coverage of more than 80%, as shown in Table 4-2. 

  Notably, the above approach profiles are defined for flights at low altitudes and under 

steady wind conditions. In the presence of wake vortices in the approach corridor at all 

times (typically in a stable atmosphere or with weak crosswinds), further separation 

reduction must be evaluated in light of the wake encounter risk, which requires 

consideration of vortex intensity and following aircraft (Visscher et al., 2016). As the 

performance of vortex strength estimation is quite worse than vortex location prediction, 

the separation reduction is illustrated only in terms of the cleanliness of the approach 

profiles, encompassing the following two aspects: 
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(1) Get the positional boundaries of the two-dimensional vortex cores with a 95% 

confidence level through the probabilistic TCN model with the best 

performance.  

(2) Determine the last timestep that the entire wake pair is outside of the approach 

profiles, either laterally or vertically, considering also the regions of wake 

turbulence and a safety margin. Therefore, separation reduction evaluated in this 

study occurs exclusively when the anticipated wake duration is shorter than the 

lifecycle of the wake as detected by the LiDAR. 

 

Table 4-2. The height and horizontal position range of aircraft at the LiDAR scanning plane. 

Runway 

LiDAR 

distance 

(m) to 

Runway 

(x profile) 

LiDAR 

distance 

(m) to 

Runway 

(y profile) 

Estimated 

allowable 

range of 

height (m) to 

ground 

Estimated 

allowable 

range of 

height (m) in 

LiDAR plane  

Estimated 

allowable 

range of 

horizontal 

position (m) 

in LiDAR 

plane  

Coverage 

percentage 

of initial 

wake 

vortices 

07L 1400 1116.31 
56.84 - 

91.40 
35 - 84.40 ±120 96% 

25R 275 1511.99 
72.72 - 

116.93 
50 - 109.93 ±120 81.69% 

 

 

4.4. Numerical study 

  This section presents the training configuration of the two-stage DCNN model and 

the attention-based TCN models, and illustrates the performance of proposed models in 

location and strength projection of aircraft wake vortices at HKIA. Furthermore, we 

also verify the applicability of the developed model in exploring the dynamic flight 

separation minima under vortex duration analysis. 
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4.4.1. Model training and evaluation configuration 

  A total of 17254 wake vortex sequences from arrival flights at HKIA, consisting of 

108377 timesteps from June to October 2019, were captured by LiDARs Site 1 and Site 

2, and then processed for this study. As the evolution of wake vortices is forecasted 

through time series analysis in this study, all processed historical wake sequences were 

split into training, validation and test datasets randomly by sequence flags in the 

proportion of 6:2:2. This guarantees the ability to acquire knowledge of wake vortices 

generated by various aircraft types and background atmospheres. The short-term 

prediction described in this study represents a single-timestep forecast for roughly 10s. 

The term “long-term prediction” refers to a series of forecasts in the next several steps 

that, dependent on the vortex lifespan detected by LiDAR, may last for one to two 

minutes. 

  All experiments in this research were conducted on the same hardware environment 

as in Chapter 3. Before model training, input and output data were normalised using the 

MinMaxScaler. Grid search was performed to tune the hyperparameters and relevant 

parameters of these models, such as the batch size and model layers. The training 

process employs the Adam Optimiser and has a decayed learning rate of 0.95 in every 

30 epochs. The DCNN models perform under 500 epochs, and the attention-based TCN 

models run under 1000 epochs. The early stopping technique is applied to identify 

model parameters with the best performance. 

  The four residual temporal convolutional modules in the proposed TCN models are 

comprised of one-dimensional causal dilated convolutional layers with dilation rates of 

0, 2, 4 and 8, respectively, and 64 filters with a kernel size of 2 in each layer. The 

dropout rate in these modules is 0.2. 
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  The multi-head attention mechanism in this model is defined under 16 heads and a 

total 64 neurons of the dense layer for linear projection of 𝑄, 𝐾, 𝑉 vectors. The channel 

attention in the CBAM module is constructed under one dense layer with 32 neurons 

and activation function of Rectified Linear Units, and another dense layer with 64 

neurons for vector reshaping. 

  In the decoder part of the model, the global max-pooling layer extracts the most 

salient features across the temporal dimension and reduces the output to a fixed-size 

representation, followed by one dense layer with 128 neurons and another dense layer 

that produces the output. For wake decay prediction, the LSTM model and GRU model 

are taken as benchmarks. These two models contain two layers with 64 and 32 neurons 

with a dropout rate of 0.2. 

  Both the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) metrics 

are used for model performance evaluation, with their formulas as below: 

 
𝑀𝐴𝐸 =

1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (4-23) 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

 (4-24) 

where 𝑛 is the number of data points in the dataset, 𝑦𝑖 is the vector of true target 

values, and 𝑦̂𝑖 is the vector of predicted values. 

 

4.4.2. Model performance assessment 

  Under the same experimental conditions and test dataset, the performance of the 

proposed attention-based TCN models is compared to that of benchmarking models. 

This comparison encompasses the short-term prediction performance on a single test 
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dataset and the average performance under 5-fold cross-validation, the performance of 

long-term prediction and the model hybrid. 

  Performance of ATCN models in short-term prediction horizon: Table 4-3 

demonstrates the superior performance of the proposed two attention-based TCN 

models, especially the TCN model with a multi-head attention mechanism, compared 

to the pure TCN model and two typical recurrent neural networks. The dilation 

convolutions exhibit a broader range of temporal dependencies, with efficient 

utilisation of features in the time window. Moreover, the attention mechanism further 

improves the feature mining process. Specifically, the multi-head attention-based TCN 

model achieves nearly 68% and 70% MAE reduction in 𝑋𝑙 and 𝑋𝑟  prediction, 

compared to GRU and LSTM, respectively. To achieve a comprehensive assessment of 

model generalisation performance and avoid the variance associated with single-fold 

validation, we also applied the 5-fold cross-validation to evaluate the average 

performance of these models across five partitions in Table 4-4. It also indicates the 

best performance of the ATCN models in lateral position prediction despite a decline in 

performance gains. Nevertheless, the performance improvement of strength estimation 

in ATCN and CBAM-TCN models is not as significant as the location estimation, as 

vortex circulation is more challenging to identify, thus resulting in more significant 

errors in the initial measurement. 

  In essence, this improvement can be demonstrated through feature relevance 

visualisation with SHAP values (Lundberg et al., 2017) by providing insights into how 

different features impact the prediction outcomes. The positive SHAP values indicate 

that the corresponding feature has a positive impact on increasing the prediction value, 

while negative values indicate the opposite. In Figure 4-4 and Figure 4-5, for each 

location output, the left figure represents the influence of each feature on the output for 



109 

 

a specific individual input sample. They provide detailed insight into how historical 

locations and other features in the input impact prediction for this sample. Nonetheless, 

the right figure, which is the summary plot, intuitively shows the importance ranking 

of all features in the overall test dataset, as well as the impact of each feature on the 

prediction. 

  Figure 4-4 demonstrates that the most relevant vortex features for future location 

prediction in the ATCN model span all timesteps in the input feature window (8×3 

dimensions with 8 features in three timesteps), while the LSTM model depends 

primarily on input in the first timestep and achieves the worst prediction performance, 

as depicted in Figure 4-5. More specifically, the features of lateral positions in the first 

three timesteps not only lead the forecast of their future values but also more 

intriguingly, play a leading role in future vortex height prediction. In addition, the decay 

of strength also correlates strongly with vortex height reduction, which reveals the 

coupling relationship between the horizontal and vertical positions of the vortex pair. 

  The above results can also be interpreted in relation to vortex physics despite the 

learning process being different from the mechanism of vortex physics. The dynamics 

of wake vortices involve not only instantaneous positions but also historical 

information (the increment of lateral positions or lateral movement speed) for future 

vortex position prediction. Furthermore, changes in lateral positions can impact vortex 

height, indicating a coupling between horizontal and vertical positions in vortex 

evolution. The strong correlation between strength decay and vortex height reduction 

also aligns with known vortex physics principles. As a vortex weakens over time (due 

to diffusion or other factors), its height tends to decrease, reflecting the energy 

dissipation and spreading characteristics of wake vortices. 
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Table 4-3. Test performance comparison of the proposed models for short-term vortex position 

and strength prediction.  

Deterministic 

model 

Vortex location estimation  Vortex strength estimation 

MAE (m) RMSE (m) MAE (m2/s) RMSE (m2/s) 

𝑋𝑙  𝑍𝑙  𝑋𝑟  𝑍𝑟  𝑋𝑙  𝑍𝑙  𝑋𝑟  𝑍𝑟  𝐺𝑙 𝐺𝑟 𝐺𝑙 𝐺𝑟 

ATCN 8.32 4.48 8.72 4.47 11.68 6.53 12.36 6.59 48.86 49.06 66.74 65.03 

CBAM-TCN 10.45 4.52 9.93 4.52 13.58 6.57 13.28 6.64 49.07 49.16 67.08 65.66 

TCN 11.37 4.58 11.12 4.64 15.35 6.58 15.01 6.57 48.95 49.17 66.78 65.42 

GRU 27.75 9.61 27.19 9.82 36.24 13.12 35.50 13.64 50.11 50.38 67.48 66.12 

LSTM 28.44 9.35 28.10 9.65 38.33 13.49 36.14 14.41 70.44 69.56 88.82 86.63 

 

Table 4-4. 5-fold cross-validation of the proposed models in wake vortex location estimation. 

Deterministic 

model 

Vortex location estimation 

MAE (m) RMSE (m) 

𝑋𝑙  𝑍𝑙  𝑋𝑟 𝑍𝑟  𝑋𝑙  𝑍𝑙  𝑋𝑟 𝑍𝑟  

ATCN 11.724 4.54 11.406 4.584 15.226 6.642 14.98 6.61 

CBAM-TCN 13.712 5.476 12.294 5.118 17.678 8.602 16.178 7.508 

TCN 20.752 4.616 23.956 4.64 26.342 6.682 29.932 6.662 

GRU 31.716 9.506 30.948 9.88 39.876 12.826 40.512 13.4 

LSTM 34.918 9.738 36.174 10 46.022 12.942 46.91 13.472 

 

 

Figure 4-4. Relevance of features to outputs of the multi-head attention-based TCN model based 

on the SHAP kernel explainer.  
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Figure 4-5. Relevance of features to outputs of the LSTM model based on the SHAP kernel 

explainer.  

 

The performance of the ATCN model in long-term prediction horizon:  Table 4-5 

verifies the online and long-term prediction ability of the attention-based TCN models 

trained offline. As vortex location prediction is more accurate than intensity estimation, 

it is more reliable and usable for runway operations. Therefore, wake locations are the 

focus of research on long-term decay prediction and hybrid models for online prediction. 

The overall MAEs of the ATCN model in long-term lateral location projection are 

similar to those of the pure TCN model, and are reduced by around 40% when compared 

to GRU and LSTM. Moreover, although Figure 4-6 suggests that prediction errors may 

increase as the length of the vortex sequence increases, the ATCN model achieves 

considerable low-level MAE in the lateral position, specifically approximately 37% and 

45% less than GRU and LSTM, respectively, for vortex sequences consisting of 9 -12 

timesteps. It is worth mentioning that the long-term prediction in this study is conducted 

on wake sequences with no more than 12 timesteps to guarantee the quality of wake 

segmentation. Additional detailed analyses can be performed to investigate vortex 

behaviour in the second stage with consideration of the ground effect when high-quality 

and long-lifetime wake sequences are available. 



112 

 

 

Table 4-5. Long-term prediction performance of the proposed models in test dataset under 

different vortex lengths. 

Deterministic 

Model 

Number 

of wake 

seq. 

Seq. 

length 

(time 

steps) 

MAE RMSE 

𝑋𝑙  𝑍𝑙  𝑋𝑟 𝑍𝑟  𝑋𝑙  𝑍𝑙  𝑋𝑟 𝑍𝑟  

ATCN with 

roll 

prediction 

1575  4 - 12 17.07 6.49 18.98 6.70 27.09 9.43 30.29 10.91 

567  4 – 6 10.73 6.10 11.27 6.38 15.11 8.67 15.61 9.33 

592  6 - 9 15.33 6.01 16.57 6.22 23.04 8.30 24.96 9.49 

416  9 – 12 19.75 6.97 21.79 6.93 30.37 10.16 34.00 9.84 

TCN with 

roll 

prediction 

1575  4 - 12 16.35 6.29 16.53 6.58 23.54 9.02 24.11 9.75 

567  4 – 6 12.16 5.99 12.35 6.45 16.99 8.65 16.97 9.34 

592  6 - 9 15.35 5.96 15.78 6.33 22.12 8.29 22.74 9.54 

416  9 – 12 18.32 6.63 18.30 6.81 26.08 9.65 26.72 10.02 

CBAM-TCN 

with roll 

prediction 

1575  4 - 12 24.92 6.62 21.98 6.97 35.6 9.57 31.84 10.48 

567  4 – 6 13.88 6.12 12.85 6.46 18.58 8.75 16.90 9.56 

592  6 - 9 20.03 6.12 19.57 6.41 27.40 8.47 26.96 9.63 

416  9 – 12 30.30 6.90 26.73 7.28 42.83 9.79 38.60 10.27 

GRU with 

roll 

prediction 

1575  4 - 12 29.02 9.50 29.54 9.70 38.56 13.01 40.29 13.51 

567  4 – 6 27.09 9.67 25.63 9.55 34.82 13.12 34.71 13.06 

592  6 - 9 30.29 11.33 25.37 11.62 36.91 15.15 31.66 16.17 

416  9 – 12 31.16 9.34 29.17 9.57 40.95 12.83 39.42 13.26 

LSTM with 

roll 

prediction 

1575  4 - 12 31.16 9.36 29.01 9.65 42.34 13.49 37.53 14.41 

567  4 – 6 24.55 11.99 27.31 11.07 30.20 16.20 33.09 16.53 

592  6 - 9 26.95 8.92 27.96 9.16 35.10 11.89 36.37 11.92 

416  9 – 12 37.04 8.95 30.50 9.66 50.76 13.96 39.80 15.74 
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Figure 4-6. Performance comparison of proposed models and benchmarking models based on 

the same test dataset with different wake sequence lengths. 

 

  As model performance at high crosswinds is crucial for further separation assessment, 

we also analysed model performance under different levels of crosswind speeds. Wake 

sequences from January to April 2019 were incorporated into the above test dataset for 

evaluating crosswinds. Figure 4-7 demonstrates model performance comparison under 

800, 800, 800, and 569 wake sequences with absolute crosswinds of 0-2, 2-4, 4-6, and 

6-8 m/s, respectively. These data are independent of the above training and validation 

datasets. The quantity of wake sequences under absolute crosswinds exceeding 8 m/s 

is small and is therefore disregarded. The results show an evident trend of MAE 

reduction with the increase of crosswind speeds for all models. Notably, the ATCN 

model exhibits a superior performance, leading credibility to its application in 

separation suggestion. 
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Figure 4-7. Performance comparison of proposed models and benchmarking models based on 

the same test dataset under different levels of crosswinds. 

 

 The performance of model fusion strategy for both vortex recognition and future 

prediction: Table 4-6 shows the results of model fusion for online wake vortex 

prediction with initial vortex data captured from DCNN models. With the highly 

accurate vortex locations and intensity estimated by DCNNs, the ATCN model and the 

TCN model obtain over 27% and 11% performance enhancement in the long-term 

prediction of 𝑋𝑙 and 𝑋𝑟, compared to the other benchmarks. Nonetheless, the CBAM-

TCN model achieves a worse performance with more computational time. Notably, 

wake sequences with lengths of more than 9 timesteps have an approximately 15% 

additional MAE reduction compared with the results from the shorter sequences in the 

CNN-TCN fusion strategy. One reason behind this is the superior recognition accuracy 

of the DCNN model on initial vortex images generated in a more stable atmosphere, 

which thus lasts for a long time. In addition, the computational speed of the long-

lifetime vortex sequences gets to an average of 7.76s per sequence, which provides 
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strong preconditions for near real-time and online vortex monitoring and flight 

separation suggestion, thereby supporting efficient runway operational decisions. 

 

Table 4-6. Performance of CNN-TCN/LSTM/GRU models in long-term prediction of vortex 

evolution based on wake recognition for real flight scenarios.  

Determi

nistic 

Model 

Numb

er of 

wake 

seq.  

Seq. 

length 

(time 

steps)  

MAE (m) RMSE (m) 
Computa

tion time 

(min) 
𝑋𝑙  𝑍𝑙  𝑋𝑟 𝑍𝑟  𝑋𝑙  𝑍𝑙  𝑋𝑟 𝑍𝑟  

CNN-

TCN 

100 4-12 20.99 7.05 22.52 6.99 29.07 9.65 34.31 9.49 21.14 

904 9-12 17.73 8.18 17.10 8.27 26.54 11.78 25.65 12.27 117.07 

CNN-

ATCN 
100 4-12 22.70 7.45 24.76 6.45 36.50 10.05 41.04 8.95 22.53 

CBAM-

TCN 
100 4-12 25.81 6.91 25.89 6.71 35.72 9.52 39.77 9.41 34.96 

CNN-

GRU 
100 4-12 33.81 8.93 31.23 9.09 42.37 11.16 43.56 11.45 20.80 

CNN-

LSTM 
100 4-12 31.28 10.64 29.10 10.50 40.18 17.93 37.72 16.17 21.14 

 

  Following are three typical wake sequences lasting for 7, 9 and 12 timesteps in 

absolute crosswinds of 0.23, 2.08 and 5.9 m/s, respectively. The results of vortex 

recognition and evolution prediction from our proposed hybrid CNN-ATCN model are 

visualised accordingly. For wake vortices generated in a stable atmosphere and lasting 

for a long time, as depicted in Figure 4-8 and Figure 4-9, the rapid vortex decay and 

sink in the first stage are evident with high prediction accuracy (timestep 4-8), while 

the second phase, starting from the 9th timestep, achieves increased errors, especially 

for the lateral position. The green and blue colours in the figure indicate the left and 

right vortex. The solid dot, “+” and “x” markers represent the ground truth of location, 

and the predicted results of CNN and ATCN models, respectively. Furthermore, both 

the aleatoric uncertainty and total uncertainty considering epistemic uncertainty in 95% 

confidence interval are visualised in pink and blue colour with dot-dash lines. The grey 

area represents the region of wake vortices with consideration of vortex radius that 

relates to the aircraft wingspan. The dotted lines in Figure 4-8 represent the allowable 
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approach profiles. Given the perpetual presence of a wake vortex within this profile, 

separation reduction in this scenario is not feasible.  

  Figure 4-10 and Figure 4-12 indicate that even for wake pairs generated under 

unstable background turbulence (Figure 4-11), the prediction of vortex transport and 

descent in the short term also achieves high accuracy. Although the long-term prediction 

of vortex cores is not so accurate, the consideration of positional uncertainty and a 

safety margin in the wake region improves reliability. Moreover, there is a remarkable 

and rapid lateral movement of the whole wake pair till they move outside of either the 

left or the right of the approach profile. The strong crosswind blows the wake pair 

laterally, as illustrated in Figure 4-12(c), which results in a clean approach profile. 

 

  

Figure 4-8. Visualisation of the long-term prediction results of the CNN-ATCN model for a 

vortex sequence generated by aircraft in the CAT-B category under mean crosswind of 0.23 m/s 

during 2019/08/16 17:34:04 – 17:36:18.  
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Figure 4-9. Visualisation of the predicted results of Figure 4-5 in LiDAR wake images. 

 

  

Figure 4-10. Visualisation of the long-term prediction results of the CNN-ATCN model of a 

vortex sequence generated by aircraft in the CAT-B category under mean crosswind of 2.08 m/s 

during 2019/07/14 15:08:55 – 15:10:45.  
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Figure 4-11. Visualisation of the predicted results of Figure4-7 in LiDAR wake images. 

 

  

 

Figure 4-12. Visualisation of the long-term prediction results of the CNN-ATCN model of a 

vortex sequence generated by aircraft in the CAT-D category in a mean crosswind of – 5.9 m/s 

 

(c) Transport of wake pair in LiDAR scan plane 
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during 2019/09/20 23:45:25 – 23:46:21.  

 

4.4.3. Exploratory evaluation of aircraft separation minima reduction in the final 

approach 

  The above probabilistic ATCN model with long-term prediction ability is expected 

to provide reliable vortex locations to further support dynamic flight separation. For the 

above three scenarios of probabilistic long-term vortex prediction under different levels 

of crosswinds, the wake separation and separation reduction compared to the RECAT-

EU standard are demonstrated in Table 4-7. The separation is evaluated under minimum 

radar separation of 3 nautical miles and an average approach speed of 140 knots. It 

indicates that a strong crosswind of 5.9 m/s is able to reduce wake separation generated 

by aircraft in CAT-B to under 60s, consequently reducing the approach separation for 

following aircraft in CAT-C and CAT-D to the minimum radar separation (MRS) by 

25.9s when compared to the separation in RECAT-EU standard. The second row shows 

that the separation reduction is more significant for lighter aircraft. 

  In addition, the vortex durations on the approach profiles were analysed statistically 

on the test dataset and wake sequences from January to April 2019, involving a total of 

12091 sequences and 2744 vortex sequences with mapped aircraft weight categories 

that are independent of the training dataset. Figure 4-13 illustrates the transport of wake 

sequences in the test dataset under different levels of crosswinds, in which the colour 

represents the crosswind speed with directions, and the direction of the arrow indicates 

an increase in the timestep in the wake sequence. It is evident that the strong crosswinds 

are capable of removing entire wake pairs from the approach profiles at both runway 

entrances. Although the wake vortices may rebound with the increase in height, the 

lateral vortex movement is able to make the approach profile clear. The enlarged area 

shows that a large proportion of wake pairs with large lateral movement speeds are 
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generated by aircraft in CAT-B and CAT-D categories, which provides evidence of 

separation reduction for heavy aircraft. 

  Table 4-8 lists the proportion of flights with potential separation reduction relative 

to the entire wake lifetime for each aircraft category. The number of flights whose wake 

separation could be shortened accounts for 27.33% of the total. In addition, 91.06% of 

flight separation reduction is generated when the absolute crosswind speed is over 2.5 

m/s, indicating the effects of crosswind in lateral vortex transport. It is noteworthy to 

remark that when taking wake encounter risk analysis into consideration for 

determining the separation reduction, the proportion of flights with wake separation 

reduction may be further increased, especially for those under a mean absolute 

crosswind of 0-3 m/s. 

  More specifically, Figure 4-14 illustrates the predicted wake separation for flights in 

each aircraft category. The trend towards a shorter separation interval (the greatest 

separation) is evident as aircraft weight decreases. The separation time under an 

absolute crosswind of 0-3 m/s, which also represents the worst-case wake encounter, is 

also compatible with the current RECAT-EU standard. Nonetheless, when the absolute 

mean crosswind is over 5 m/s, the mean duration time of wake vortices on the approach 

profiles for all aircraft may be reduced to under 60s. It is worth mentioning that for 

wake pairs that always last in the approach profiles, the wake separation is taken as no 

reduction and as the same as their lifetime detected by the LiDAR, lacking 

consideration of wake encounter and its effect on separation reduction. Furthermore, 

the wake sequences over 12 timesteps are neglected. These may lead to an 

underestimation of the boundary values of the blue boxes in crosswind 0-3 m/s. More 

importantly, the actual flight separation will be the maximum between the predicted 

wake separation and the minimum radar separation, although the wake separation may 
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be reduced to below 60s. 

  Figure 4-15 reveals wake separation reduction from the perspective of the proportion 

of aircraft numbers in each separation interval period. The time intervals in the x-axis 

represent the real duration of wake pairs with both vortices measured by LiDAR for the 

“Measurement” legend, while for the “Prediction” legend, they mean the predicted 

wake separation time by the DCNN-ATCN model. Figure 4-15(a) reveals that 

separation can be reduced for 21% of wake vortices with a lifetime of at least 60–100s 

to less than 60s, and even below 40s. Moreover, Figure 4-15(b) shows that under a 

stable atmosphere (mean absolute crosswind of 0-3 m/s), the proportions of detected 

wake lifetime and predicted separation time in all time intervals are almost overlapped. 

These proportions peak between 80-100s, indicating no evident separation reduction. 

Conversely, for a large proportion of wake pairs generated under an absolute crosswind 

of 3-6 m/s with a lifetime of 60-80s, their predicted wake separation time can be reduced 

to below 60s, with the most significant proportion in the time interval of 40-60s. 

Although the measured lifetime or predicted separation time may be under 60s, the 

actual flight separation should be the maximum between predicted wake separation and 

the minimum radar separation. 
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Table 4-7. Scenarios of wake transport with dynamic separation reduction compared to the 

RECAT-EU standard. 

Wake 

scenari

os 

Leadin

g 

aircraft 

(Aircra

ft 

categor

y) 

Avera

ge 

approa

ch 

speed  

Averag

e 

crosswi

nd  

Follow

er 

aircraf

t 

Minim

um 

DBS in 

RECA

T  

Minim

um 

TBS in 

RECA

T 

Predict

ed 

wake 

duratio

n  

Minimu

m radar 

separati

on 

Separati

on 

reductio

n 

Figure 

4-8 

A359 

(B) 

140 

knots 

0.23 

m/s 

CAT-

D 
4 NM 102.9s 

Over 

120s 

3 NM/ 

77s 
0 

Figure 

4-10 

A320 

(D) 

140 

knots 

2.08 

m/s 

CAT-

F 
5 NM  128.6s 

70s / 

2.33 

NM 

3 NM/ 

77s 
51.6s 

Figure 

4-12 

A330 

(B) 

140 

knots 

-5.9 

m/s 

CAT-

D 
4 NM 102.9s 

35s / 

1.17 

NM 

3 NM/ 

77s 
25.9s 

Note: DBS refers to the distance-based separation, TBS represents the time-based separation, and NM 

refers to the nautical mile. 

 

Table 4-8. The proportion of flights with separation reduction under each aircraft weight 

category based on the long-term vortex location prediction. 

Aircraft weight categories Proportion of flights with 

separation reduction 

Proportion of flights under 

absolute crosswind over 

2.5m/s of the separation 

reduced flights 

CAT_A 34.48% 100% 

CAT_B 23.6% 99.22% 

CAT_C 22.95% 92.85% 

CAT_D 33.13% 81.46% 

CAT_E 40% 83.33% 

Total flights 27.33% 91.06% 
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Figure 4-13. Predicted transport of wake pairs in the test dataset under different mean 

crosswinds at Runway 25R and 07L.  

 

 

Figure 4-14. Predicted wake separation minima under each aircraft weight category and 

different levels of mean absolute crosswinds.  

 



124 

 

 

Figure 4-15. The total number of wake sequences and wake sequences under different levels of 

mean absolute crosswinds by the time interval of LiDAR measured lifetime or predicted 

separation time. 

 

4.5. Discussion 

  The present study demonstrated the performance of hybrid deep learning approaches 

in aircraft wake vortex feature mining, and the influence of crosswind in dynamic 

separation time in the final approach. In addition to the superior performance 

enhancement analysed previously, the managerial implementations of the proposed 

models and future work will be discussed in this section. 

 

4.5.1. Managerial implementations 

  This section presents the fast-time data-driven methodology for dynamic flight 

separation suggestion in the final approach through near real-time aircraft wake vortex 

recognition and evolution prediction, using a hybrid deep learning framework. This 

research will foster more efficient and intelligent runway scheduling without sacrificing 

flight safety. The managerial implications of this research are described from three 

aspects: 

(1) Support the development of wake vortex analysis models. This section 
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presents a hybrid deep learning framework for onboard aircraft wake vortex 

recognition and evolution prediction, with considerable prediction accuracy and 

computation speed achieved. This will support the online monitoring of the 

vortex state and lifetime. Furthermore, this data-driven methodology can be 

ensembled with physical-based vortex modelling and simulation methods to 

enhance vortex prediction performance. 

(2) Support the construction of dynamic flight separation system. The potential 

of flight separation reduction is assessed based on the probabilistic results of 

vortex location prediction under vortex duration estimation. This exploratory 

flight separation evaluation with reliability analysis using data in real 

operational scenarios provides a promising idea for safety regulators in 

developing the time-based dynamic fight separation minima. 

(3) Improve runway operational efficiency and on-time performance. The 

proposed wake prediction models may not directly support the advanced 

runway sequencing due to their limited prediction time horizon, but they may 

be applied to runway re-scheduling in near real-time situations. Next, the 

statistical analysis of flight separation reduction based on flight safety will 

benefit runway throughput and operational efficiency increase, especially 

during peak periods under optimisation of the traffic mix. For a specific arrival 

or departure sequence, the reduced flight separation also permits a reduction in 

the total flight time. This may provide air traffic controllers with additional 

flexibility in managing traffic. Furthermore, it will also allow for a more 

expeditious recovery from adverse weather or emergent situations, thereby 

reducing overall delays. 
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4.5.2. Results interpretation and future work 

 The evaluation of dynamic wake separation in this study is an exploratory attempt, 

despite the above reliability-improvement strategies to guarantee credibility. The 

potential and range of separation reduction are evaluated under the instrument landing 

procedure and approach profiles only in the LiDAR scan planes at the runway entrances. 

Furthermore, the background atmosphere conditions, which are a crucial factor in 

vortex transport, are considered in only the lateral direction and in a steady status in the 

entire vortex decay process. Due to the limitation of LiDAR’s number, the crosswinds 

along the flight direction are also assumed to be the same and prevailing. Therefore, for 

situations of noticeable wind shear, headwind and dynamic crosswind along the flight 

direction, and other flight procedures, the duration time of aircraft wake vortices in the 

entire approach profiles, including the high airspace, deserves to be further optimised 

with additional data support. Furthermore, with more accurate wake strength estimation 

available, the separation reduction can also be verified from the perspective of wake 

encounter risk analysis for the wake pair always staying in the approach corridor. 

  Next, the ATCN and CNN-ATCN models proposed in this research can only be 

implemented to predict future wake evolution at the minute level when the initial three-

timestep wake features are known. These models may support the near real-time 

runway re-scheduling. Nonetheless, to achieve more advanced runway sequencing 

hours in advance and under dynamic wake separation, the transport and duration of 

wake vortices in the approach path should be forecasted in a longer time horizon 

considering four-dimensional flight trajectory and dynamic wind prediction.  

  Finally, this study proposes a data-driven deep-learning approach for forecasting the 

decay and transport of aircraft wake vortices. Although it indicates a considerable good 

fit with the LiDAR processing algorithm, other physical models and the CFD 
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simulation can be used to verify or support the development of the deep learning 

approach and provide a more comprehensive analysis. It is also worth investigating 

methods to improve the generalisation of the model for handling complex situations 

where the LiDAR processing algorithm may fail. 

 

4.6. Concluding remarks 

  Overall, a new data-driven fusion framework of deep learning is proposed for aircraft 

wake vortex recognition and decay prediction, which provides a promising solution for 

wake vortex monitoring and duration assessment. In the offline stage, the two-stage 

deep convolutional networks that permit prompt and accurate identification of vortex 

locations and strength from wake vortex images are utilised for initial vortex 

recognition. Furthermore, we propose the probabilistic attention-based TCN models for 

vortex transport and decay forecasts, using historical spatiotemporal vortex data. Next, 

the DCNN and the ATCN model are integrated in sequence to realise online vortex 

recognition and future evolution prediction, combining the benefits of spatial feature 

analysis and temporal dependency identification. Finally, based on the predicted vortex 

locations with a high confidence level and duration assessment of vortex presence in 

the final approach profiles, the potential of dynamic flight separation minima is 

tentatively inferred for flights with aircraft in each weight category and under crosswind 

conditions. 

  As revealed in the performance indicators MAE and RMSE, the fusion of DCNN 

together with ATCN for forecasting aircraft wake vortices appears to be a promising 

solution. In addition, it provides a comprehensive view of spatial and temporal 

characteristics of current and future vortex locations. Moreover, the proposed ATCN 

model outperforms specific state-of-the-art models substantially, especially for 
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predicting the long-term movement of wake vortices. This framework achieves both 

outstanding prediction performance and low computational time. More importantly, the 

hybrid probabilistic models verify the potential of dynamic flight separation under 

crosswinds from several aspects. 

  Therefore, the benefit of fusing deep convolutional networks and attention-based 

temporal convolutional networks manifests in three forms. It facilitates online and real-

time aircraft wake vortex monitoring and duration evaluation. Next, it also supports the 

development of the dynamic flight separation system. Finally, the dynamic separation 

time indicated over this framework also facilitates runway rescheduling and near real-

time scheduling for improving runway operational capacity and efficiency.  
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Chapter 5. Runway capacity improvement under smart 

prediction-then-optimise methodology with dynamic wake 

separation prediction 

  The previous chapters have explored the foundations of dynamic wake separation 

through advanced deep-learning techniques, focusing on recognising and predicting 

wake vortex characteristics and their spatial-temporal evolution. Building upon these 

advancements, this chapter transitions from wake turbulence prediction to its practical 

implementation within runway capacity optimisation. Dynamic wake separation, as a 

flexible and adaptive approach, offers the potential to significantly improve runway 

throughput by reducing the conservatism inherent in traditional static separation 

standards. This chapter focuses on quantifying the impact of dynamic wake separation 

on runway capacity, investigating both theoretical and operational perspectives and 

comparing its performance under traditional FCFS scheduling and advanced 

optimisation strategies. Through a detailed runway sequencing and scheduling model, 

combined with dynamic separation matrices, the study evaluates the extent to which 

time-based and weather-responsive separation can unlock additional runway capacity 

and enhance runway utilisation without compromising safety during periods of high 

traffic density. This transition underscores the importance of bridging wake turbulence 

research with operational decision-making tools to balance efficiency and safety in 

runway operations. 

 

5.1. Introduction 

5.1.1. Research context 

  The terminal flight zone and the final approach region are two main areas that require 
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efficient traffic dispatch. Otherwise, misleading traffic planning may lead to unsafe 

flight conflicts or continuous and extensive traffic delays. The concern regarding 

congestion has escalated at significant international terminals in the United States, 

Europe and Asia. The primary cause of this phenomenon is the ongoing rise in air travel 

demand, which starkly contrasts the limited capacity to expand airport infrastructure, 

such as cargo terminals, passenger amenities, and runways. Consequently, it is 

imperative to take proactive measures, including investigating alternative capacity 

management strategies (Ikli et al., 2021) and aligning airline schedules with current 

airport capacity during the initial planning phases. These measures aim to alleviate 

congestion and reduce delays by optimising the utilisation of existing infrastructure, 

addressing demand-side challenges, and concurrently investigating initiatives to 

improve runway operational capacity to surmount supply-side constraints. 

  Runway operations are the primary impediment to airport capacity, as they are 

impeded by various operational constraints. Conservative distance-based aircraft 

separation, which is regulated to prevent aircraft conflicts and wake turbulence (ICAO, 

2023), is one aspect that warrants attention. The separation minima in miles-in-trail are 

initially released for aircraft sequencing (Kopardekar et al., 2003). Nevertheless, such 

static separation management assumes the worst-case scenarios of wake encounters and 

may restrict the rate of aircraft throughputs in a particular time period in a sub-airspace, 

which results in delays and cascading delay propagation under severe weather or other 

uncertain situations. Diana (2015a) investigated the positive influence of implementing 

the RECAT separation standard in departure throughputs, utilising the Markov regime-

switching model. The peak hour runway capacity in Paris Charles de Gaulle Airport 

has been shown to increase by 2-4 flights under RECAT separation (EUROCONTROL, 

2018b). Li et al. (2021) simulated the benefits of fuel saving, especially for aircraft in 
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light and medium weight categories, under separation reduction in the oceanic airspace 

with satellite-based technologies. 

   

5.1.2. Research gaps and objectives 

  There are also existing research studies concentrating on runway separation. 

Nevertheless, most of them concentrate on runway operational separation, which is 

regulated by air traffic controllers by margins exceeding the minimum aircraft wake 

separation (Gu et al., 2022; Pang et al., 2024). In addition, the static ICAO separation 

standards were implemented in the existing research on runway scheduling, whether 

for the single runway landing problem (Balakrishnan et al., 2010; Ng et al., 2017) or 

the multiple runways with the departure in modelling (Lieder et al., 2016; Malik et al., 

2016; Pohl et al., 2021). Based on the authors' knowledge, there are few studies about 

separation reduction from the aircraft wake analysis perspective, and only a few 

attempts to integrate dynamic separation with runway operational optimisation.  

  Therefore, this research aims to investigate the impact of dynamic wake separation 

on runway capacity, focusing on both theoretical and operational aspects. By 

integrating advanced deep learning techniques for wake turbulence prediction with 

practical runway sequencing and scheduling models, the research examines the 

potential of dynamic separation matrices to reduce conservatism in static standards like 

RECAT-EU. Additionally, the study compares the performance of traditional FCFS 

scheduling with optimised scheduling strategies under dynamic wake separation. The 

goal is to develop a comprehensive framework for evaluating the effects of time-based 

and crosswind-responsive separation on total arrival times, flight delays, and overall 

runway efficiency in real-world operational scenarios, using Hong Kong International 

Airport as a case study. The contributions of this research are threefold: 
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(1) Advancement in wake separation techniques. This research introduces a 

dynamic wake separation model that leverages crosswind conditions and 

pairing characteristics to reduce separation intervals. The study demonstrates 

how dynamic adjustments can increase runway throughput, particularly under 

strong crosswind conditions, by achieving separation reductions tailored to 

aircraft categories in dynamic winds. 

(2) Operational scheduling optimisations. By integrating optimisation algorithms 

for real-time runway sequencing and scheduling, the research achieves 

significant improvements over traditional FCFS strategies. Optimising 

scheduling under dynamic separation matrices reduces total arrival times and 

enhances operational flexibility, providing a viable alternative to static 

standards. 

(3) Balanced decision-making for runway utilisation with enhanced theoretical and 

operational capacity. The research provides a dual-perspective runway capacity 

analysis by evaluating theoretical maximum capacity and real-world operational 

limitations. This comprehensive approach offers a deeper understanding of how 

dynamic wake separation influences runway performance under varying traffic 

and weather conditions, aiding in developing more resilient air traffic 

management strategies. 

 

5.2. Methodology 

5.2.1. Problem description 

  As aircraft take off and land, they generate wake vortices that can pose a risk to the 

following aircraft, necessitating specific separation distances to ensure safety. This 

dynamic nature of wake turbulence, which varies based on aircraft type, weight, and 
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environmental conditions, complicates the task of optimising runway operations. The 

10-month arrival data at HKIA from 2019 January to October in Figure 5-1 shows that 

the heavy traffic periods at HKIA are usually from 10:00 to 22:00, with the maximum 

number of arrivals reaching 30 to 35, and the historical Meteorological Aerodrome 

Report (METAR) data demonstrates high-frequency strong crosswinds above runways, 

which reveals the promising potential of implementing dynamic wake separation at this 

airport. In July, nearly 10 days of each peak hour experience a crosswind of over 3 m/s, 

and roughly half of a month experience an average crosswind of over 3 m/s. 

  Consequently, in this context, this section develops a comprehensive methodological 

strategy that is robust and flexible, allowing for real-time runway sequencing and 

scheduling while accommodating the variability of wake separation requirements with 

intelligent predictive modelling. 

 

 

Figure 5-1. Arrival flight number by hour and daily crosswind at HKIA for peak traffic hours 

from January to October 2019.  
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5.2.2. Wake prediction model 

  Aircraft wake turbulence represents a multifaceted phenomenon, with its generation 

and movement predominantly influenced by aircraft configuration and flight 

performance, prevailing meteorological factors, and ground effects (Breitsamter, 2011). 

The initial attributes of the vortices, encompassing their spatial position and intensity, 

are determined by the aircraft's operational parameters, including weight, wingspan, lift 

distribution, and flight speed (Hallock et al., 2018). The subsequent evolution and 

dissipation of these vortices are markedly influenced by atmospheric elements, such as 

wind patterns and velocities, instances of wind shear, and the presence of atmospheric 

turbulence.  

  To accurately model wake dynamics, we incorporate a comprehensive range of 

wake-related features. These include wake positions and intensity obtained from 

LiDAR-derived radial wind data and aircraft performance parameters such as flight 

speed and weight categories defined by RECAT-EU standards. Additionally, METAR 

data are up-sampled to maintain consistent temporal alignment with wake data. 

Crosswind is a critical factor influencing wake presence during the final approach (Chu 

et al., 2024; Holzäpfel et al., 2021). We fuse crosswind measurements from both 

METAR and LiDAR to enhance the reliability of wind forecasts. Notably, headwinds 

are known to accelerate wake dissipation, whereas tailwinds have the opposite effect; 

thus, headwinds are also included as an input feature. Furthermore, we consider various 

meteorological factors, including temperature, humidity, and cloud conditions.  

  We have developed two kinds of deep learning models for dynamic wake prediction: 

the TCN model (Lea et al., 2016) and the MLP neural network, as depicted in Figure 

5-2. All the above features can be denoted as 𝑋, and 𝑡0, 𝑡1. . . , 𝑡𝑙 represent the input 
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features in 0, 1. . . 𝑙 time steps. 𝑙 represents the last time horizon of the lifetime of a 

wake pair. The wake separation measured by wake presence in the standard approach 

path is labelled as 𝑦𝑠𝑒𝑝.  

  The temporal convolution neural networks are adept at processing sequential data by 

capturing long-range dependencies through casual convolutions, making them well-

suited for time series prediction tasks. We apply the structure of the TCN model 

developed in our previous work (Chu et al., 2024). These dilated causal convolutions 

enable the network to preserve the temporal order of input features while expanding the 

receptive field without the need for additional parameters. Notably, our current work 

differs from the previous study in the duration of the time window used for both current 

features and future forecasts. Conversely, the fundamental feed-forward neural network 

is designed to regress wake separation directly. The distinctions between these two 

models are summarised in Table 5-1. The TCN model predicts future 2D positions and 

the intensity of pairwise wake vortices over time, subsequently forecasting the required 

separation time for trailing aircraft. In contrast, the MLP model directly estimates the 

wake separation time using only initial wake features and other relevant features.  

  In addition to the above benchmarking models, we also utilised the transformer 

model for wake evolution prediction based on the initial wake information with a fixed 

input window size of 1 and 18 feature columns, combining the advantages of LSTM in 

feature embeddings. The transformer model is composed of an encoder and a decoder 

(Vaswani et al., 2017). The input layer accepts a three-dimensional tensor, including the 

temporal attributes and features of the input sequences. A masking layer is applied to 

ignore padded values in the sequence. The model proposed in this paper begins with a 

learnable positional encoding implemented using an LSTM layer with 16 units, which 

captures sequential dependencies and encodes positional information into the feature 
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embeddings. The encoder consists of two multi-head attention layers with 8 attention 

heads. The outputs are then combined with the positional encoding using residual 

connections, followed by layer normalisation to ensure numerical stability. The feed-

forward networks with two dense layers and dropout regularisation are applied 

throughout the encoder to prevent overfitting. After the encoder, the output sequence is 

aggregated through a global average pooling layer, reducing the temporal dimension. 

The resulting feature vector is passed through a dense layer, followed by a final output 

layer to produce the model’s predictions. 

 

  In addition to the dynamic wake separation predicted by the aforementioned deep 

learning models, we also propose two wake separation matrices informed by the 6 × 6 

dimensional wake separation matrix of RECAT-EU (Chu et al., 2024), incorporating 

the effects of winds. Given that crosswinds are prevalent at HKIA and influence both 

the descent and lateral movement of wake pairs, we decouple the crosswind and 

headwind effects. For illustrative purposes, we focus on crosswinds to demonstrate their 

impact on wake separation. The values in these two crosswind-related wake separation 

matrices are verified against historical wake encounters for arrival flights from January 

to October 2019 (as shown in Figure 5-3), alongside our previous findings (Chu et al., 

2024). 
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Table 5-1. Input and output features of the Transformer model, TCN model and MLP model for 

wake evolution and separation prediction. 

Model Input/output Feature variables Descriptions 

Transformer/ 

TCN 

Inputs 𝑋𝑙
(𝑡0−𝑡𝑙−1)

, 𝑍𝑙
(𝑡0−𝑡𝑙−1)

, 𝑋𝑟
(𝑡0−𝑡𝑙−1)

, 𝑍𝑟
(𝑡0−𝑡𝑙−1)

, 

𝐺𝑙
(𝑡0−𝑡𝑙−1)

, 𝐺𝑟
(𝑡0−𝑡𝑙−1)

 

Wake data of 

leading aircraft 𝑖 

 𝐶𝑎𝑡𝑖 , 𝐹𝑆𝑖, 𝑇𝐴𝑖 Flight performance 

data of leading 

aircraft 𝑖 

 𝑢(𝑡0−𝑡𝑙−1), 𝑣(𝑡0−𝑡𝑙−1), 𝑉𝑖𝑠(𝑡0−𝑡𝑙−1), 𝑇𝑒𝑚(𝑡0−𝑡𝑙−1), 

𝐻𝑢𝑚(𝑡0−𝑡𝑙−1), 𝐷𝑒𝑤(𝑡0−𝑡𝑙−1), 𝑃𝑟𝑒𝑠(𝑡0−𝑡𝑙−1), 

𝐹𝐸𝑊(𝑡0−𝑡𝑙−1), 𝑆𝐶𝑇(𝑡0−𝑡𝑙−1) 

METAR data in 𝑡0 

timestep 

Outputs  𝑋𝑙

(𝑡1−𝑡𝑙)
, 𝑍𝑙

(𝑡1−𝑡𝑙)
, 𝑋𝑟

(𝑡1−𝑡𝑙)
, 𝑍𝑟

(𝑡1−𝑡𝑙)
, 

𝐺𝑙
(𝑡1−𝑡𝑙)

, 𝐺𝑟
(𝑡1−𝑡𝑙)

 

Future wake 

features of aircraft 𝑖 

in 𝑡1 − 𝑡𝑙 timesteps 

MLP Inputs 𝑋𝑙
𝑡0 , 𝑍𝑙

𝑡0 , 𝑋𝑟
𝑡0 , 𝑍𝑟

𝑡0 , 𝐺𝑙
𝑡0 , 𝐺𝑟

𝑡0 Wake data of 

leading aircraft 𝑖 

 𝐶𝑎𝑡𝑖 , 𝐹𝑆𝑖, 𝑇𝐴𝑖 Flight performance 

data of leading 

aircraft 𝑖 

 𝑢𝑡0 , 𝑣𝑡0 , 𝑉𝑖𝑠𝑡0 , 𝑇𝑒𝑚𝑡0 , 𝐻𝑢𝑚𝑡0 , 𝐷𝑒𝑤𝑡0 , 

𝑃𝑟𝑒𝑠𝑡0 , 𝐹𝐸𝑊𝑡0 , 𝑆𝐶𝑇𝑡0  

METAR data in 𝑡0 

timestep 

 Outputs  𝑦
^

𝑠𝑒𝑝
𝑖  Dynamic wake 

separation of 

leading aircraft 𝑖 

 

 

Figure 5-2. Two kinds of deep learning models for aircraft wake evolution and dynamic 

separation prediction. 
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Figure 5-3. Relationships between wake separation and crosswind for all aircraft categories 

were measured based on detected wake vortices from January 2019 to October 2019. 

 

  Table 5-2 delineates the light-wind separation matrix (LW) applicable when 

crosswind speeds range from 3 to 5 m/s. This matrix introduces a nuanced separation 

reduction compared to the RECAT-EU standard, referred to as REGULAR in this 

research. Under the LW matrix, the separation time for aircraft classified as CAT_D and 

CA_E is adjusted to 120s when trailing aircraft from CAT_A or CAT_B. Furthermore, 

when following CAT_C aircraft, these separation times can be reduced to 100s or be 

minimised to the minimum values between the 80s and the minimum radar separation. 

For CAT_E aircraft specifically, the separation time can be minimised to 100 seconds 

when the preceding aircraft is categorised as CAT_D. 

  Conversely, Figure 5-3 indicates that the separation matrix for crosswinds exceeding 

5 m/s, designated as SW, permits the reduction to the minimum radar separation. It is 

important to note that these separation matrices assume stable, large-scale prevailing 
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crosswind conditions and are conservative as they apply to the entire wake turbulence 

region outside the flight approach path. Both headwind and vertical wind factors are 

relevant to horizontal wake length and vertical wake descent, underscoring the need for 

a holistic approach to determine wake presence at the final approach accurately.  

  For the predicted wake separations and the two wind-specific separation matrices, 

additional operational buffers have been established for both the open case in which the 

following aircraft is slower than the leading and the closed case in which the opposite 

is slower. In addition, final separations on the runway are subject to additional 

constraints, including Runway Occupancy Time (ROT) and Minimum Radar 

Separation (MRS). Consequently, the separation time 𝑡𝑠𝑒𝑝 is defined as the minimum 

value of these operational factors: 

 𝑡𝑠𝑒𝑝 = 𝑚𝑖𝑛(𝑡𝑤𝑎𝑘𝑒 , 𝑡𝑅𝑂𝑇 , 𝑡𝑀𝑅𝑆) (5-1) 

 

Table 5-2. Dynamic wake separation matrix under light crosswind (LW-DWS, 3-5m/s). 

 CAT_A CAT_B CAT_C CAT_D CAT_E 

CAT_A MRS MRS 120s 120s 120s 

CAT_B MRS MRS MRS 120s 120s 

CAT_C MRS MRS MRS 100s 100s 

CAT_D MRS MRS MRS MRS 100s 

CAT_E MRS MRS MRS min(80s, 

MRS) 

min(80s, 

MRS) 

MRS: minimum radar separation. 3 nautical miles for CAT_(A, B), 2.5 nautical miles for 

CAT_(C,D,E). 

 

5.2.3. Runway sequencing and scheduling model 

  The runway approach sequencing and scheduling problem (RSSP) involves 

determining the order in which aircraft should land and their specific landing time. 

Before the three-runway system, there are two independent runways for departure and 
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landing separately at Hong Kong International Airport. As the arrival phase is much 

more complex and dangerous than departure, we consider single-runway approach 

optimisation at HKIA utilising historical arrival data in this study. 

 

5.2.3.1. Decision variables and objectives 

  The Nomenclature of this model is listed in Table 5-3. The single runway sequencing 

and scheduling problem in this research is defined on an aircraft set 𝐹 in a time horizon. 

The decision variables include aircraft adjacent order 𝑦𝑖𝑗, where 

 

 𝑦𝑖𝑗 = {
1 𝑖 precedes 𝑗, 𝑖, 𝑗 ∈ 𝐹, but 𝑖 ≠ 𝑗,

0 𝑖 not precedes 𝑗.
 (5-2) 

 

𝑦𝑖𝑗  take value 1 when aircraft 𝑖 ∈ 𝐹  is precedes aircraft 𝑗 ∈ 𝐹\{𝑖}  in the runway 

sequence. The aircraft landing time 𝑡𝑖 , 𝑖 ∈ 𝐹 is another decision variable. The runway 

sequence begins with a dummy starting aircraft 𝑠 and finishes with a dummy ending 

aircraft 𝑒. A separation time 𝑆𝑖𝑗 is required to ensure safety when aircraft 𝑖 ∈ 𝐹 and 

aircraft 𝑗 ∈ 𝐹\{𝑖} use the runway consecutively. For each aircraft 𝑖 ∈ 𝐹 the earliest 

possible landing time of each aircraft 𝑖 ∈ 𝐹 is 𝐸𝑖 and the latest possible landing time 

is 𝐿𝑖 . Aircraft 𝑖 ∈ 𝐹  should be scheduled within its time window [𝐸𝑖, 𝐿𝑖] , which 

implies that the landing time or take-off time 𝑡𝑖 should be greater than 𝐸𝑖 and no later 

than 𝐿𝑖. 

  Runway efficiency is one of the most important objectives in runway operations. 

Thus, minimising the total arrival time (Makespan) for all aircraft is taken as the 

objective. The total arrival time is defined as the deviation between the maximum 

arrival time 𝑧 and the minimum arrival time 𝑟, with the total delay time included to 

make sure arrival equality from airlines’ perspectives. 
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𝐿 =  min(W1 ∗ (𝑧 − 𝑟) + 𝑊2 ∗  ∑ 𝑑𝑖

𝐹

𝑖=1

) (5-3) 

 

Table 5-3. Nomenclature and descriptions. 

Sets Description 

𝐹 Set of actual aircrafts 

Parameters Explanations 

𝑆𝑖𝑗 Separation time required between consecutive aircraft 𝑖 and 𝑗 

𝐸𝑖 Earliest possible landing time of aircraft 𝑖 

𝐿𝑖 Latest possible landing time of aircraft 𝑖 

𝑊1 Weight of Makespan 

𝑊2 Weight of total delay time 

𝐾 Constraint of the maximum position shifting for each aircraft 

𝐼𝑃𝑖 Initial position of aircraft 𝑖 

Decision 

variables 
Explanations 

𝑦𝑖𝑗 1, if aircraft 𝑖 precedes aircraft 𝑗; 0, otherwise 

𝑡𝑖 Landing time of aircraft 𝑖 

𝑧 Makespan, the maximum arrival time 

r Minimum arrival time 

𝑑𝑖 Delay time of aircraft 𝑖 

𝑃𝑜𝑠𝑖    Order index in the arrival sequence of aircraft 𝑖 

 

5.2.3.2. Constraints 

  Table 5-4 defines the constraints regarding this ASSP model. Constraints (5-4) ensure 

each aircraft is within the runway sequence. Constraints (5-5) and (5-6) guarantee that 

the runway sequence starts with a dummy starting aircraft 𝑠 and ends with a dummy 

ending aircraft 𝑒 . Constraints (5-7) maintain the flow conservation of each runway 

sequence. Constraints (5-8) require that the landing time of the aircraft 𝑖 should be 

within its time window. Constraints (5-9) ensure the separation time between two 

aircraft that land consecutively. Constraints (5-12) determine the delay time of each 
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aircraft. Constraints (5-13) define the domain of decision variables. 𝑊1  and 𝑊2 

indicate the trade-off between Makespan and delay time. Eq. (5-15) constraints the 

maximum position shifting of each aircraft compared to their initial position in the estimated 

sequence. Eq. (5-16) makes sure that the position for each aircraft is unique, and Eq. (5-17) 

constraints the positions of two closely adjacent aircraft. Eq. (5-17) defines the minimum 

arrival time of this aircraft sequence. 

  The above constraints also apply to the objective of minimising only the total delay 

time. To minimise only the Makespan, in addition to the constraints from Eq. (5-4) to 

Eq. (5-11), the Makespan should be a positive real number and the determination of the 

Makespan is also required to be defined, 𝑧 ≥ 𝑡𝑖 ,    ∀𝑖 ∈ 𝐹. 

 

Table 5-4. Overall constraints and special constraints for each element in the objective function. 

∑ 𝑦𝑖𝑗

𝑗∈𝐹∪{𝑒}

= 1,    ∀𝑖 ∈ 𝐹, (5-4) 

∑ 𝑦𝑠𝑗

𝑗∈𝐹

= 1, (5-5) 

∑ 𝑦𝑖𝑒

𝑖∈𝐹

= 1, 
(5-6) 

∑ 𝑦𝑗𝑖

𝑗∈𝐹∪{𝑠}

= ∑ 𝑦𝑖𝑗

𝑗∈𝐹∪{𝑒}

,    ∀𝑖 ∈ 𝐹, (5-7) 

𝐸𝑖 ≤ 𝑡𝑖 ≤ 𝐿𝑖,    ∀𝑖 ∈ 𝐹, (5-8) 

𝑡𝑖 + 𝑆𝑖𝑗 − 𝑡𝑗 ≤ 𝑀(1 − 𝑦𝑖𝑗),    ∀𝑖 ∈ 𝐹, ∀𝑗 ∈ 𝐹, 𝑖 ≠ 𝑗, (5-9) 

𝑦𝑖𝑗 ∈ {0,1},    ∀𝑖 ∈ 𝐹 ∪ {𝑠}, ∀𝑗 ∈ 𝐹 ∪ {𝑒}, 𝑖 ≠ 𝑗, (5-10) 

𝑡𝑖 ∈ ℝ+,    ∀𝑖 ∈ 𝐹, (5-11) 

𝑑𝑖 ≥ 𝑡𝑖 − 𝐸𝑖 ,    ∀𝑖 ∈ 𝐹, (5-12) 

𝑑𝑖 ∈ ℝ+,    ∀𝑖 ∈ 𝐹, (5-13) 

𝑧 ≥ 𝑡𝑖,    ∀𝑖 ∈ 𝐹, (5-14) 

𝐼𝑃𝑖 − 𝐾 ≤ 𝑃𝑜𝑠𝑖  ≤ 𝐼𝑃𝑖 + 𝐾,    ∀𝑖 ∈ 𝐹, (5-15) 

𝑃𝑜𝑠𝑖  ≠ 𝑃𝑜𝑠𝑗, ∀𝑖 ∈ 𝐹, ∀𝑗 ∈ 𝐹, 𝑖 ≠ 𝑗, (5-16) 

𝑃𝑜𝑠𝑗 ≥  𝑃𝑜𝑠𝑖 + 1 − 𝑀 ∗ (1 − 𝑦𝑖𝑗), (5-17) 

𝑟 ≤ 𝑡𝑖, ∀𝑖 ∈ 𝐹. (5-18) 
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5.3. Experiment setting 

5.3.1. Data preparation 

  The actual historical arrival time of these flights was kept as a benchmark for arrival 

flight optimisation under dynamic separation prediction. As shown in Figure 5-4, the 

aircraft landing at HKIA in February 2019 is mainly in CAT_B and CAT_D, with almost 

no light aircraft.  

 

 

Figure 5-4. Landing aircraft number at HKIA in February 2019. 

 

5.3.2. Model training configuration 

  This study utilised four months of aircraft wake vortex data detected by LiDARs at 

HKIA, resulting in 10,212 wake sequences from arrival flights after data cleaning. 

Wake separation time was derived from the wake presence during the entire evolution 

process on the final approach path. The evolution of a wake pair is represented by a 

time series of its location and strength, with time steps of approximately 12s and 9s for 

LiDARs at the entrances of runways 25R and 07L, respectively. Additionally, METAR 

data, updated every half hour, were incorporated as features for wake separation 
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prediction. These include wind direction, speed, temperature, visibility, and other 

weather phenomena. 

  To prevent overfitting, dropout regularisation was employed. A grid search was 

conducted to optimise hyperparameters for both models, including neuron count, kernel 

size, learning rate, and batch size. Model performance was assessed using the Mean 

Absolute Error (MAE) and the Root Mean Square Error (RMSE). The results indicate 

that the TCN model achieved optimal performance with a learning rate of 0.0001 and a 

batch size of 256, while the MLP model performed best with a learning rate of 0.0005 

and the same batch size. 60% of the datasets were randomly selected for model training, 

with the remaining data equally divided into validation and test datasets. The training 

was conducted over 1000 epochs. 

  The RSSP model is built and solved in Gurobi, which is a leading commercial 

optimisation solver widely used for solving complex mathematical optimisation 

problems. It integrates the heuristic method and the Branch and Bound algorithm to 

solve the MILP problems. The heuristic method provides good and feasible solutions 

early in the process and guides the search. The branch and bound algorithm 

systematically explores branches of a tree where each node represents a subproblem, 

solves linear relaxations of the subproblems, and uses bounds to prune branches that 

cannot lead to an optimal solution. The allowable arrival time window for each flight 

is defined to be 20 minutes before and after the estimated arrival time at most. 

 

5.4. Numerical results 

5.4.1. Wake separation prediction performance 

  Table 5-5 compares the performance of the proposed Transformer model against two 

baseline models, the TCN model and the MLP model for predicting wake positional 
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attributes and wake separation. The performance is evaluated using MAE and RMSE 

across different feature sets. With the inclusion of weather features (Wake, flight 

information and weather), the Transformer model achieves the best performance in 

wake separation prediction across all metrics, with 22.34% improvement in MAE and 

13.75% improvement in RMSE compared to the TCN model. When only considering 

the wake and flight information in the feature set, the Transformer model outperforms 

the TCN model with a 56.6% improvement in MAE and a 51.87% improvement in 

RMSE, highlighting its ability to capture wake separation dynamics even in the absence 

of weather data. Furthermore, compared to the MLP model, the Transformer model 

achieves substantial gains with a 68.91% improvement in MAE for wake separation 

prediction. These results emphasise the superior capability of the proposed Transformer 

model in modelling complex temporal dependencies and effectively utilising additional 

weather data, leading to more accurate and reliable predictions in wake attribute and 

separation modelling. 

  It is worth mentioning that the wake location prediction achieved by these deep 

learning models is more significant than that observed in wake separation prediction. 

This disparity arises primarily due to the conservative approach used in measuring wake 

separation to improve flight safety. 

 

5.4.2. Performance of theoretical runway capacity under dynamic wake separation 

  The runway capacity can be defined from theoretical (Hockaday et al., 1974) and 

operational aspects (Farhadi et al., 2014). Theoretical runway capacity refers to the 

maximum number of aircraft movements a runway can handle under ideal conditions 

of perfect efficiency and no delays or interruptions. It is calculated based on factors 

such as runway configuration and aircraft performance. On the other hand, operational 
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runway capacity represents the actual number of aircraft movements a runway can 

accommodate in real-world conditions, reflecting practical limitations and 

inefficiencies considering factors such as air traffic control strategies, operational 

constraints, traffic demand and weather situations. This research investigates the effect 

of dynamic wake separation on both the theoretical and operational capacity of the 

single-runway arrival at HKIA. 

 

Table 5-5. Performance of proposed models in wake attributes prediction and wake separation 

prediction. 
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  Theoretical arrival capacity at a single runway refers to the maximum number of 

aircraft that can land on the runway per hour at the minimum interval between 

successive landings. This interval depends on several factors, including the proportion 

of pairs of landings between different aircraft types 𝑃𝑖𝑗, their wake separation 𝑡𝑤𝑎𝑘𝑒𝑖𝑗
, 

flight speed 𝑉𝑖, 𝑉𝑗 and the ROT of the leading aircraft. Based on the pairing situations 

of historical landing aircraft at HKIA, as depicted in Figure 5-5 and Table 5-6, the 

results of theoretical arrival capacity under different levels of wake separation reduction 

can be referred to in Table 5-7. Figure 5-5 shows that the most frequent arrival pairs 

exist between aircraft in CAT_B and CAT_D. The highest pairing frequency is in 

(CAT_B, CAT_B) with 35.73%, which means both the leading and following aircraft 

are in the CAT_B category. Furthermore, there is over 50% probability that the aircraft 

in CAT_D follows the aircraft in CAT_B. The low efficiency of this scheduling by the 

ATCOs is evident as a larger separation time is required compared to that when aircraft 

in CAT_D leads. 

 

Figure 5-5. Probability of landing aircraft pairs at HKIA from 11:00-21:00 in February 2019. 
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Table 5-6. The probability of the occurrence of various aircraft combinations at the HKIA. 

 CAT_A CAT_B CAT_C CAT_D CAT_E 

CAT_A 0.0872% 0.97% 0.042% 0.427% 0.0312% 

CAT_B 0.985% 36.00% 0.719% 19.3% 0.511% 

CAT_C 0.0026% 0.726% 0.00134% 0.357% 0.000714% 

CAT_D 0.499% 19.50% 0.356% 17.7% 0.423% 

CAT_E 0.0182% 0.517% 0.000907% 0.440% 0.000208% 

 

Table 5-7. Theoretical runway capacity at the HKIA under aircraft wake separation 

reduction. 

Capacity Arrival in a single runway 

Separation of RECAT-EU 44.74 

Separation matrix under crosswind of 3-5 m/s 44.92 

Separation matrix under crosswind of over 5 m/s 47.08 

 

 

5.4.3. Performance of dynamic wake separation under FCFS strategy 

  FCFS is a fundamental and straightforward principle used in runway scheduling for 

air traffic controllers to manage the sequence of aircraft arrivals and departures. Under 

this system, aircraft are processed equally by the order they arrive at the initial approach 

fix (IAF). However, it may lead to strong delays in peak hours, especially if a slower 

aircraft arrives first, causing subsequent aircraft to wait longer than necessary. The near 

real-time arrival sequencing and scheduling based on optimisation algorithms can 

contribute to more efficient and flexible landings and reduce wait times at busy airports. 

Therefore, both the FCFS and the RSSP scenarios under aircraft wake separation 

reduction are considered in this section in comparison with the static wake separation 

standards to analyse runway operational capacity. 

  The results presented in Table 5-8 highlight the impact of dynamic wake separation 

(DWS) on total arrival time in the FCFS strategy under various wind conditions. The 



149 

 

separation for each aircraft under DWS is dynamically determined based on the 

crosswind speed levels within an estimated arrival time window of 6 minutes. Firstly, 

under FCFS sequencing managed by ATCOs, incorporating weather-related wake 

separation, particularly DWS, significantly decreases overall arrival time. Across the 

scenarios, DWS shows the greatest improvement, with reductions of up to 19.79% in 

Scenario 1 compared to the static RECAT-EU standard. This underscores the potential 

of adaptive wake separation to optimise runway throughput under dynamic wind 

conditions. Secondly, the improvements observed in the last two columns for Scenarios 

2 and 4 are similar, with both showing strong reductions in total arrival time (18.81% 

and 13.10% for the three-level separation matrix, and 19.53% and 14.95% for DWS, 

respectively). This similarity is attributed to the highest crosswind levels in these 

scenarios, which enable both the three-level separation matrix and DWS to achieve the 

minimum allowable wake separation. This adaptive approach ensures that separation 

standards are tailored to the prevailing wind conditions during the arrival window, 

allowing for more efficient runway operations while maintaining safety. 

 

5.4.4. Performance of dynamic wake separation in large-scale runway scheduling 

  Table 5-9 highlights the effectiveness of the runway sequencing and scheduling 

process in further improving total arrival time compared to the FCFS strategy employed 

by ATCOs. The time limit in the optimisation process is set to ensure a feasible solution 

rather than achieving an optimal one due to the computational burden of the scheduling 

objective. The arrival time range for each aircraft is restricted to a [-20, 20] minute 

window around the planned arrival time, balancing computational efficiency with 

practical feasibility while still yielding significant improvements in runway throughput. 
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Table 5-8. Scenario analysis of total arrival time under different separation matrices in the First-

Come-First-Serve strategy. 

Scenarios Time 

horizon in 

peak hour 

Aircraft 

number 

Total arrival time (s) 

Real 

arrival 

time 

FCFS + 

RECAT-

EU 

FCFS + 3-

level 

separation 

matrix 

FCFS + 

DWS 

1 20190105 

14:01-

15:01 

34 3600 3302 

(8.28%) 

2987.3 

(17.02%) 

2887.5 

(19.79%) 

2 20190117 

08:57-

10:05 

36 4080 3489.3 

(14.48%) 

3312.4 

(18.81%) 

3283.2 

(19.53%) 

3 20190224 

15:02-

16:00 

33 3480 3210 

(7.76%) 

3118.8 

(10.38%) 

2969.7 

(14.66%) 

4 20190225 

13:59-

15:00 

35 3660 3392.4 

(7.31%) 

3180.5 

(13.10%) 

3112.7 

(14.95%) 

5 20190529 

14:01-

15:00 

33 3540 3399.8 

(3.96%) 

3143 

(11.21%) 

3034 

(14.29%) 

6 20190105 

14:01-

16:59 

95 10680 9266.9 

(13.24%) 

8701.19 

(18.52%) 

8424.9 

(21.13%) 

 

 

Across all scenarios, RSSP strategies incorporating DWS demonstrate a significant 

reduction in total arrival time, with improvements exceeding 20% in several cases, 

particularly when no position shifting constraints are applied. For instance, in Scenario 

1, RSSP with DWS achieves a 23.67% improvement, showcasing the benefits of 

optimised sequencing and scheduling. In addition, introducing position shifting 

constraints for each aircraft, such as when K=5 scenario, results in a slight increase in 

total arrival time. For example, in Scenario 5, the total arrival time increases marginally 
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from 2737s to 2767s when position shifting of maximum 5 is limited. This indicates a 

trade-off between flexibility in aircraft sequencing and achieving optimal arrival 

efficiency. 

 

Table 5-9. Scenario analysis of total arrival time under different separation matrices with 

aircraft sequencing and scheduling. 

Scenarios Time 

horizon 

in peak 

hour 

Aircraft 

number 

Total arrival time (s)  

Real 

arrival 

time 

RSSP + 

RECAT-

EU 

RSSP + 3-

level 

separation 

matrix 

RSSP + 

DWS 

(K=N) 

RSSP + 

DWS 

(K=5) 

1 20190105 

14:01-

15:01 

34 3600 3004 

(16.56%) 

 

2878.69 

(20.04%) 

2748 

(23.67%) 

2763.1 

(23.25%) 

2 20190117 

08:57-

10:05 

36 4080 3323.6 

(18.54%) 

3278.1 

(19.64%) 

 

2939 

(28.00%) 

 

2942.3 

(27.91%) 

3 20190224 

15:02-

16:00 

33 3480 2948.5 

(15.27%) 

2960 

(14.94%) 

 

2766.9 

(20.49%) 

 

2782.1 

(20.06%) 

4 20190225 

13:59-

15:00 

35 3660 3148.2 

(13.98%) 

3096.8 

(15.39%) 

2919.7 

(20.23%) 

 

2928.3 

(19.99%) 

5 20190529 

14:01-

15:00 

33 3540 2890 

(18.36%) 

2867.8 

(18.98%) 

 

2737.6 

(22.66%) 

 

2767.8 

(21.81%) 

 

 

5.4.5. Discussion 

The findings from the above two tables have several limitations in implementing 

dynamic wake separation, particularly in operational scenarios. The development and 

application of weather-related wake separation matrices heavily rely on accurate and 

advanced wind forecasting at low altitudes above the runway. Wind conditions, such as 
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crosswinds, headwinds, and tailwinds, can vary significantly in direction and intensity 

due to localised atmospheric phenomena. This paper focuses on crosswind-prevailing 

situations as an example of dynamic wake separation, but the complexity of real-world 

wind variability underscores the need for more comprehensive meteorological 

modelling to enhance the reliability and robustness of these matrices. 

  Furthermore, we cannot deny that chasing efficiency in runway throughput may lead 

to increased flight delays, which is unexpected from the airlines' benefits perspective. 

While dynamic wake separation successfully reduces total arrival times, its impact on 

other critical performance metrics, such as flight delay and passenger connection times, 

has not been thoroughly investigated. Understanding these trade-offs is crucial for 

balancing operational efficiency with stakeholder priorities, including airline schedules 

and passenger satisfaction. Specifically, the macroscopic impact of dynamic wake 

separation in terminal approach traffic flow will be investigated in Chapter 6. 

  In addition, the proposed wake prediction model and dynamic separation matrices 

were tested using data from a single airport, Hong Kong International Airport. Verifying 

these methods at other airports with different traffic densities, runway configurations, 

and meteorological conditions is essential to validate their generalisability and 

scalability. This broader evaluation would ensure the applicability of the models to 

diverse operational environments and improve their utility in global air traffic 

management systems. 

5.5. Conclusion  

  This study suggests a new approach to runway sequencing and scheduling that 

addresses the challenges associated with dynamic pairwise wake separation. This 

investigation aims to optimise airport operations and improve decision-making 

processes by utilising simulation-based techniques and machine learning. The findings 
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are anticipated to contribute to the body of knowledge in air traffic management and 

provide practical solutions for existing aviation challenges. 

  Overall, two deep-learning models are proposed to predict pairwise aircraft wake 

separation utilising historical LiDAR wake data and ADSB flight trajectory data at 

HKIA. The relationships between crosswinds and wake separation time for aircraft in 

each weight category are explored with the conservative separation reduction inferred. 

Further, two wake separation matrices with reduction under two levels of crosswinds 

are proposed based on the RECAT-EU standards. Finally, the runway operational 

efficiency of these three wake separation strategies is tested in both the FCFS principle 

and RSSP problem based on actual arrival information at HKIA. Both the 

improvements in theoretical arrival capacity and operational arrival throughputs of the 

arrival in a single runway are explored. The above work would contribute to improving 

runway throughputs and capacity and developing efficient, proactive runway 

scheduling methods, especially for high-density traffic scenarios in abnormal events. 
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Chapter 6. Integrated terminal traffic flow management 

and managerial effect under dynamic wake separation 

   

  The preceding chapters have progressively established the foundation for leveraging 

dynamic wake separation and its effect on runway capacity at a microscopic level, 

addressing single-runway sequencing and scheduling. By constructing and solving the 

runway scheduling model with dynamic separation matrices, the study demonstrated 

how adaptive wake separation could optimise runway throughput under both FCFS and 

advanced optimisation algorithms, particularly when compared to traditional static 

separation standards such as RECAT-EU. 

  Based on these insights, this chapter further expands the scope of analysis to a 

macroscopic level, exploring the broader implications of dynamic wake separation on 

terminal traffic flow management. Beyond single-runway optimisation, the final part of 

this thesis integrates the dynamic wake separation framework into a holistic approach 

for high-density airspace scenarios. The study evaluates the contributions of time-based 

wake separation to overall terminal traffic flow efficiency and assesses the scheduling 

burden of separation reduction in the final approach to terminal flight path control. By 

verifying the implementation of dynamic wake separation at the terminal-wide level, 

this chapter presents a comprehensive strategy for optimising air traffic management in 

congested terminal areas, providing actionable insights for air traffic controllers and 

airport managers in addressing future challenges in high-demand environments. 

 

6.1. Introduction 

  The Terminal Manoeuvring Area and runway are vital elements of the air traffic 



155 

 

management system, significantly influencing airport throughput and operational 

efficiency. Given the continuous rise in air travel demand and alongside limited 

opportunities to expand runway configurations and infrastructure, improving capacity 

and efficiency and reducing congestion have become an imperative concern at major 

international airports for addressing demand-supply imbalance challenges. 

Consequently, it is crucial to implement proactive measures that include exploring 

alternative capacity management strategies (Ikli et al., 2021) and aligning airline 

schedules during the initial planning stages. 

  Time-based separation (TBS) supplants the traditional distance-based separations 

with temporal separations, thereby enabling greater adaptability to fluctuating weather 

conditions. The delay propagation of inefficient aircraft separation is investigated in 

(Louie et al., 2023). Morris et al. (2013) investigated the implementation of time-based 

separation under different levels of headwind and verified the separation using LiDAR 

wake data and wake encounter risk analysis. However, this kind of time-based 

separation is achieved by adjusting ground flight speeds and by referring to the 

distance-based RECAT-EU wake separation standard. Baren et al. (2016) also 

developed a data-driven model to forecast approach speed and time to fly, taking into 

account current headwind conditions and aircraft type by utilising radar and weather 

data. Nonetheless, the dynamic time-based separation is not analysed from the 

perspective of wake evolution under dynamic wind conditions. 

  As illustrated in Section 2.2, there are existing research studies concentrating on 

aircraft separation based on historical flight data. Visscher et al. (2018) applied the 

machine learning model to regress time-based pairwise operational separation with 

buffer based on one-year traffic data, aircraft types and local weather data. The 

operational separation, which is regulated by air traffic controllers by margins that 
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exceed the minimum aircraft wake separation and is affected by traffic conditions, is 

also investigated (Gu et al., 2022; Pang et al., 2024). However, the aircraft separation 

derived from historical flight data is conservative, with the operational buffer taken into 

consideration.  

  To the best of the authors' understanding, the existing studies concerning the 

reduction of separation standards through analysing aircraft wake characteristics are 

rather limited. Furthermore, few of them endeavour to integrate dynamic separation 

strategies with runway optimisation. According to the roadmap outlined in the SESAR 

wake project (Barbaresco et al., 2013), the development of weather-adaptive wake 

separation criteria and the implementation of pairwise wake separation are identified as 

natural progressions from traditional time-based separation, which warrant further 

academic and industrial research. 

  The physical-based wake estimation has not capitalised on the advantages offered 

by extensive historical data, resulting in limited simulations of real-world 

environments (Mutuel et al., 2014). Furthermore, the efficient approach towards 

weather-related dynamic wake separation in the final approach and its impact on 

the runway and airside operations and Air Traffic Controllers (ATCOs)’ situational 

awareness and workload remain unclear. Therefore, this research is inspired to 

explore a synthetic solution for dynamic wake separation and its implementation in 

integrated terminal arrival control. The contributions of this study are as follows: 

1. This research presents an integrated TMA arrival optimisation framework 

based on data-driven dynamic wake separation prediction. Two kinds of deep 

learning models are developed to infer dynamic wake separation time. 

Compared to the multiple-layer perception model, the temporal convolutional 

network achieves superior performance in separation interval inference based 
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on wake attributes forecasted in time series. 

2. Based on the dynamic wake separation results, we propose the K-CPS-based SA 

algorithm for integrated flight arrival sequencing and arrival time optimisation 

from terminal airspace to the runway at HKIA. The K-CPS strategy avoids the 

greedy behaviour in local search to some extent and achieves reduced arrival 

time by changing the decision sequences with positional constraints. 

3. The effect of weather-related and pairwise wake separation on terminal arrival 

control at HKIA is evaluated based on historical traffic data from several aspects, 

including operational capacity, flight delay and ATCOs' workload. The 

simulation results indicate that the dynamic wake separation in the final 

approach with time reduction may pose scheduling pressure to terminal airspace 

before the initial approach fix. Nonetheless, this problem can be solved by 

integrated traffic flow optimisation in extended TMA. The total arrival time can 

be reduced without evident flight delay and flight speed change. Furthermore, 

the runway arrival throughput can be continuously improved under the rolling 

horizon in comparison with traditional RECAT-EU separation. 

4. The exploration of dynamic wake separation enriches existing studies on time-

based aircraft separation. Furthermore, the proposed methodological framework 

utilising advanced dynamic wake prediction and separation assessment may be 

tailored based on traffic density and weather conditions, thereby providing an 

alternative solution of the decision support tool for automating and integrating 

runway scheduling with terminal traffic flow optimisation, and finally leading 

to an efficient, intelligent and streamlined air traffic management. 
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6.2. Problem description and modelling 

  This section develops a methodological strategy for scheduling arrival aircraft in 

TMA and runway jointly while also accommodating the variability of wake separation 

requirements with intelligent predictive modelling. Figure 6-1 illustrates the overall 

methodological flowchart of this study, which consists of four parts. First, the historical 

arrival trajectory data at HKIA from ADS-B is processed. The entry waypoint, entry 

time and entry speed of each flight are picked to build the flight sets for consequent 

scheduling. Furthermore, the flight data with aircraft performance are utilised for wake 

separation time or wake decay prediction, along with the wake vortex data retrieved 

from radial wind data scanned by LiDAR, and the METAR data. Consequently, the 

predicted wake separation and the flight data are used to model the arrival problem in 

TMA, which is constructed as a graph based on the Standard Terminal Arrival Routes 

(STARs) at HKIA. Finally, the test scenarios of historical arrival flights are optimised 

under several operational constraints to achieve both flight safety without conflict and 

approach efficiency with minimum arrival time. 

 

 

Figure 6-1. Methodological framework of integrated terminal arrival management under 
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dynamic wake separation prediction. 

 

6.2.1. Network structure 

  In the context of terminal airspace management, aircraft approaching from multiple 

directions must be integrated and sequenced into a cohesive traffic flow. This 

integration adheres to the Standard Terminal Arrival Routes, which are pre-established 

flight paths that dictate altitude and speed in certain waypoints and serve as a reference 

for ATCOs when issuing scheduling directives. The STARs of HKIA are illustrated in 

Figure 6-2, featuring 9 entry waypoints at the boundaries of the terminal sector, 

oriented in various directions, 2 runway entrance points for the approach runway in the 

north, and 51 alternative paths. The STAR network is represented as a graph 𝐺(𝑁, 𝐿), 

where 𝑁 denotes the set of waypoints that correspond to the routes defined by the 

STARs, and 𝐿  is the set of links that represent the ensemble of direct connections 

between these waypoints, visualised as straight-line segments. To mitigate the 

accumulation of positional errors inherent in geographic coordinate systems and to 

simplify the calculation of distances, the spatial coordinates of all waypoints have been 

converted into a Cartesian Orthogonal Coordinate System. 
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Figure 6-2. Standard terminal arrival route at the Hong Kong International Airport. 

 

6.2.2. Problem modelling 

6.2.2.1. Assumptions of the terminal traffic flow model 

  Before we model the terminal arrival problem, assumptions from several operational 

aspects are made: 

• Wake separation: the predicted dynamic wake separation of the leading aircraft 

is assumed to be applicable to subsequent aircraft across all weight categories 

in stable, large-scale wind conditions above the runway. Additionally, the 

crosswind-related separation matrices proposed in this study suit atmospheres 

with prevailing and stable crosswinds. 

• Network structure and paths: the network structure is deterministic, and any 

changes in the approach paths are unavailable within the decision horizon. 
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STARs are built in two-dimensional space, intentionally excluding flight levels 

to enhance computational efficiency. 

• ATC operational regulation: flights approach in the TMA following the STARs. 

Any route changes out the scope of alternative paths, aeronautical holding, 

missed approaches and other ATC operations are not considered. The daily 

flights in peak hours are assumed to arrive at the same end of a single runway 

without a runway configuration switch. 

• Flight performance on the paths: aircraft enter the TMA with fixed flight speeds 

and deterministic entry waypoint, and the aircraft approaches with a constant 

deceleration. Furthermore, the average flight speed on each link is considered 

in this model, with the speed constrained by ATC in STARs. 

• Scheduling scale: the air traffic control is limited to approaching the terminal 

area without involving ground operations or cruise operations. However, 

aircraft may arrive at the entrywaypoints in a predefined time window. This is 

assumed to be realised by regulating speed in the cruise phase. 

 

6.2.2.2. Decision variables 

  This research aims to schedule the arrival aircraft in the TMA under dynamic wake 

separation in the final approach. Therefore, the scheduling includes selecting the route 

for each aircraft entering the TMA and changing its flight speed to ensure flight safety 

and flow efficiency in the entire route until all aircraft reach the initial approach fix, 

and then merge to the final approach fix and arrive at the runway under the constraint 

of dynamic wake separation. Given a set of flight data 𝐹, for aircraft 𝑖, 𝑖 ∈ 𝐹, the 

decision variables are in three types: 

1. TMA entry time 𝑡𝑖. The entry time is predefined in a time slot [𝑡𝑖
𝑜 + Δ𝑇𝑚𝑖𝑛, 
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𝑡𝑖
𝑜 + Δ𝑇𝑚𝑎𝑥], where Δ𝑇𝑚𝑖𝑛 and Δ𝑇𝑚𝑎𝑥 represent the maximum advance and 

delay compared to the planned entry time 𝑡𝑖
𝑜, respectively. Further, a time-slot 

discrete variable 𝑗, 𝑗 ∈ 𝑍 is utilised to define the entry time, where 𝑡𝑖 = 𝑡𝑖
𝑜 +

𝑗 ⋅ Δ𝑇 and Δ𝑇 is the time length adjusted by each step. The benchmarks of 

Δ𝑇𝑚𝑖𝑛 and Δ𝑇𝑚𝑎𝑥 are defined as 0 mins and 30 mins, respectively, and 𝛥𝑇 is 

set to be 5s. The impact of the entry time window in optimisation is also 

investigated in Section 6.4. 

2. TMA entry speed 𝜈𝑖 before the final approach. As the extended TMA depicted 

in Figure 6-2 covers quite a large airspace, in order to simulate flight 

performance in TMA more realistically, the initial entry speed 𝜈𝑖
𝑜 of aircraft 𝑖 

is defined by fusing its historical entry speeds at the TMA boundary and the 

average flight speeds on alternative paths in the high-altitude airspace before 

the initial approach fix. Furthermore, 𝜈𝑖  is also optimised discretely by the 

speed increment Δ𝜈𝑖, which can be defined as: 

 

 𝜈𝑖 ∈ 𝑉𝑓: = {𝜈𝑖
𝑜 + 𝑗 ⋅ Δ𝜈𝑖|𝑗 ∈ 𝑍, Δ𝜈𝑖,𝑚𝑖𝑛 ≤ 𝑗 ⋅ Δ𝜈𝑖 ≤ Δ𝜈𝑖,𝑚𝑎𝑥} (6-2) 

 

Where Δ𝜈𝑖,𝑚𝑖𝑛 and Δ𝜈𝑖,𝑚𝑎𝑥 are set to be −0.1𝜈𝑖
𝑜 and 0.2𝜈𝑖

𝑜, respectively, and 

Δ𝜈𝑖= 0.01𝜈𝑖
𝑜. 

3. Flight path 𝑝𝑖. When an aircraft enters from the fixed entry waypoint, its flight 

path is in a set of alternative paths 𝑃𝑖 that relates to this entry waypoint and 

runway entrance threshold 𝑝𝑖 ∈ 𝑃𝑖. 

 

6.2.2.3. Constraints 

  The constraints for this terminal traffic flow optimisation problem are mainly in two 
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aspects: the conflict avoidance in the TMA network and the separation requirements in 

the final approach under dynamic wake separation. Conflicts regarding the nodes and 

links define flight unsafety in the STARs. The violation of minimum aircraft separation 

in the final approach also contributes to runway conflict. 

• Node conflicts. When the flight routes of several aircraft are merged at one node, 

the separation violation must be avoided. The protected zones in the vicinity of 

nodes are defined to measure the node conflict. A conflict is identified when the 

latest exit time of the leading aircraft exceeds the earliest entry time of the 

following aircraft within the same detection zone. 𝑁𝑖𝑗
𝑛(𝑠) represents both the 

conflict number and conflict time proportion between aircraft pair 𝑖, 𝑗 at node 

𝑛. 

• Link conflicts. For aircraft flying on the same link, the current aircraft and the 

leading aircraft must keep a safe separation distance and a fixed sequence when 

they are entering, exiting the link and flying on the link. We use the 𝐿𝑖𝑗
𝑙 (𝑠) to 

define both the conflict number and conflict time percentage which reveals the 

conflict severity of the consequent aircraft 𝑖 and 𝑗 at link 𝑙. 

• Separation constraints in the final approach. As discussed in Subsection 5.2.2, 

the aircraft separation 𝑠𝑖𝑗 in the final approach towards the runway is under 

constraints from several aspects. The conflict situation of the adjacent aircraft 

pair on runway 𝑟 is defined as: 

 

 𝑃𝑖𝑗(𝑠) = {
1, if 0 ≤ 𝑡𝑖

𝑟(𝑠) − 𝑡𝑗
𝑟(𝑠) < 𝑡𝑖𝑗  

0, otherwise 
 (6-3) 

 

• Earliest TMA entry time and runway arrival time in the rolling horizon. In the 

rolling horizon, the decisions of flights optimised in the last time horizon will 
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be frozen and serve as constraints for optimisation in the current time horizon. 

Specifically, the TMA entry time for flights under optimisation should be no 

less than the latest TMA entry time of each corresponding entry waypoint 

decided in the last horizon. Furthermore, the earliest runway arrival time on the 

current horizon should maintain a safe separation deviation with the largest 

arrival time in the last frozen flight set. 

  In conclusion, the total conflict regarding the decision vector 𝑠 is: 

 

 

𝐴(𝑠) = ∑ { ∑ 𝑁𝑖𝑗
𝑛(𝑠)

𝑛∈𝐶𝑛

+ ∑ 𝐿𝑖𝑗
𝑙 (𝑠)

𝑙∈𝐶𝑙

+ ∑𝑆𝑖𝑗(𝑠)}

𝑖,𝑗∈𝐹,𝑖≠𝑗

 (6-4) 

 

where 𝐶𝑛 and 𝐶𝑙 are the set of nodes and links at the STARs, respectively. In addition, 

the conflicts relating to separation are all manifested in time-based on flight speed. 

 

6.2.2.4. Objectives 

  In this study, the conflicts are considered as a relaxation of optimisation criteria. The 

objective function 𝐿 of this problem is thus a weighted sum of conflict situations at 

the TMA network and the total flight time relating to flight efficiency, which can be 

described as: 

 𝐿(𝑠) = 𝛼 ⋅ 𝐴(𝑠) + 𝛽 ⋅ 𝐵(𝑠) (6-5) 

 𝐵(𝑠) = ∑ 𝑡𝑖

𝑖∈𝐹

− 𝑛 ⋅ 𝑚𝑖𝑛
𝑖=1

𝑛

𝑡𝑖
𝑜 (6-6) 

 

𝐴(𝑠)  represents the total number and extent of conflicts, and 𝐵(𝑠)  defines the 

aggregate deviation of each aircraft's arrival time from the earliest reference arrival time. 
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In the rolling horizon framework, the reference arrival time is updated by the output in 

the last time horizon. 𝛼 and 𝛽, respectively, indicate the weighting coefficients for the 

conflict term and the flight time term. 

   

6.3. Methodologies 

  This section describes the research problem, which includes data acquisition, model 

development, and simulation-based optimisation to dynamically predict the separation 

of aircraft wake turbulence and optimise runway scheduling accordingly. The 

complexity of the large-scale operational problem increases with aircraft number. Given 

that aircraft landing scheduling is recognised as NP-hard (Beasley et al., 2000), 

heuristics and hybrid methods may provide more effective solutions than exact 

algorithms. This study introduces a time decomposition strategy paired with a simulated 

annealing algorithm to integrate terminal arrival flow management and runway 

scheduling, while accommodating dynamic wake separation requirements. 

 

6.3.1.1. Simulated annealing 

  Simulated annealing models the thermal annealing process of metals by heating up 

and subsequently cooling them to achieve an optimal energy state (Laarhoven et al., 

1987). The objective function in SA is minimised and analogous to this physical process. 

The heat-up phase investigates the solution space to identify the initial temperature 𝑇0 

that facilitates thorough and extensive exploration during the cooling phase. The 

cooling phase involves gradually lowering the temperature, which traps out of local 

minima and corresponds to a reduced likelihood of accepting inferior solutions while 

navigating the solution space. 

  At each temperature step, multiple iterations are performed to refine the solution. If 
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the objective of the newly generated solution is smaller or larger than the objective of 

the current solution with a probability 𝑒Δ𝑌/𝑇 where Δ𝑌 is the difference in these two 

objectives, the current solution may be replaced by this randomly generated new 

solution in the neighbourhood. The decreased probability of objective value becomes 

smaller and smaller with temperature decreases, ultimately guiding the algorithm 

toward convergence at or near a global optimum. 

 

6.3.1.2. K-Conditional position shift 

  In the SA algorithm used in (Ma et al., 2019), aircraft in the current time horizon are 

optimised based on a fixed sequence (0, 1, 2 ... aircraft number) of estimated arrival 

time. The optimisation sequence in this study is determined by the TMA entry sequence 

of aircraft in the flight set. In fact, this optimisation based on the First-Come-First-

Served strategy makes it easy to get into greedy and local searches. Therefore, we 

proposed the K-CPS strategy to generate several alternative aircraft sequences with 

aircraft position constraints to avoid this challenge. In K-CPS, aircraft can only move 

forward or backward by a maximum of K positions within a given sequence. This 

constraint allows for the generation of multiple alternative sequences, as shown in the 

pseudo-code of Table 6-1, which decides the decision-making sequences among aircraft 

in the flight set and enables certain aircraft to be prioritised under the current solution 

context. Finally, the K-CPS sequence with the minimum objective value is picked to 

get the optimal performance. 

 

 

Table 6-1. Pseudo-code of algorithm of K-CPS-based simulated annealing. 

Initialisation: 

number of transition under each temperature 𝑛𝑏𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 ; 𝑌𝑐𝑝𝑠_𝑚𝑖𝑛 = 10000000 ; 
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sequences of aircraft indices for optimisation generated with CPS 𝑐𝑝𝑠_𝑠𝑒𝑞_𝑎𝑟𝑟𝑎𝑦; 

alternative sequence number generated by CPS 𝑐𝑝𝑠_𝑠𝑒𝑞_𝑛𝑢𝑚; 

Iterate aircraft sequence generated with K-CPS: 

for row=0 to 𝑐𝑝𝑠_𝑠𝑒𝑞_𝑛𝑢𝑚 do 

  𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑒𝑡_𝑖𝑛𝑑𝑖𝑐𝑒𝑠 = 𝑐𝑝𝑠_𝑠𝑒𝑞_𝑎𝑟𝑟𝑎𝑦[𝑟𝑜𝑤] 

  HeatUpLoop for one cps sequence: 

  Initialise: 

  initial temperature T = 0.01, temperature heat up rate 𝛼 = 0.1; 

  𝑛𝑏𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1000;  

    𝑖𝑛𝑑𝑒𝑥 = 0; 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡_𝑛𝑢𝑚; 𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦 

  While acceptRate 𝜃 < 0.8 do 

    acceptCount 𝜃 ← 0 

    for 𝑖 = 0 to 𝑛𝑏𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 do 

      aircraft ←  𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦[𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑒𝑡_𝑖𝑛𝑑𝑖𝑐𝑒𝑠[𝑖𝑛𝑑𝑒𝑥]] 

      Evaluate current objective 𝑋1(𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡), 𝑌1 

      Select a new solution 𝑋2(𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡) = generateNeighborhood(𝑋1) 

      Evaluate new objective, 𝑌2 

      Generate random number, 𝜆 

      If 𝑌1 > 𝑌2 then 

        𝑋1 = 𝑋2 

        𝜃 + + 

      else if 𝜆 < 𝑒𝑥𝑝(𝑌2 − 𝑌1)/𝑇 

        X_1 = X_2 

        𝜃 + + 

      end if  

      index = (index+1) % 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡_𝑛𝑢𝑚 

    end for 

    Θ = 𝜃/𝑛𝑏𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 

  𝑇 = 𝑇 ⋅ (1 + 𝛼) 

  End while 

  𝑇𝑖𝑛𝑖𝑡 = 𝑇 

  Return 𝑇𝑖𝑛𝑖𝑡 

CoolingLoop for one cps sequence: 

Initialise: 

initial temperature T = 𝑇𝑖𝑛𝑖𝑡; temperature cooling rate 𝛼 = 0.999;  

𝑛𝑏𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 1000;  initial solution 𝑋0, 𝑌𝑎𝑙𝑙_𝑚𝑖𝑛 = 10000000 ; index=0; 

𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡_𝑛𝑢𝑚 
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While 𝑇 > 0.0001 ∗ 𝑇𝑖𝑛𝑖𝑡 

  For 𝑖 = 0 to 𝑛𝑏𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 do 

  Aircraft ← 𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑒𝑡_𝑎𝑟𝑟𝑎𝑦[𝑓𝑙𝑖𝑔ℎ𝑡𝑠𝑒𝑡_𝑖𝑛𝑑𝑖𝑐𝑒𝑠[𝑖𝑛𝑑𝑒𝑥]] 

  Evaluate current objective 𝑋1(𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡), 𝑌1 

  Select a new solution 𝑋2(𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡)= generateNeighborhood(𝑋1) 

  Evaluate new objective, 𝑌2 

  Generate a random number 𝜆 

  If 𝑌1 > 𝑌2 then 

        𝑋1 = 𝑋2 

  else if 𝜆 < 𝑒𝑥𝑝(𝑌2 − 𝑌1)/𝑇 

        X_1 = X_2 

  end if  

  index = (index+1) % 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡_𝑛𝑢𝑚 

  if index=0 then 

    Calculate objective values of all aircraft, 𝑌𝑎𝑙𝑙 

    If 𝑌𝑎𝑙𝑙 < 𝑌𝑎𝑙𝑙_𝑚𝑖𝑛 then 

      𝑌𝑎𝑙𝑙_𝑚𝑖𝑛 = 𝑌𝑎𝑙𝑙 

  𝑇 = 𝑇 ⋅ 𝛼 

 End while 

 Getting the minimum objectives: 

 If 𝑌𝑎𝑙𝑙_𝑚𝑖𝑛 < 𝑌𝑐𝑝𝑠_𝑚𝑖𝑛 then 

   𝑌𝑐𝑝𝑠_𝑚𝑖𝑛 = 𝑌𝑎𝑙𝑙_𝑚𝑖𝑛 

 row ++ 

end while 

Output best solution 𝑌𝑐𝑝𝑠_𝑚𝑖𝑛 

 

6.3.1.3. Time decomposition with sliding window 

  The time sliding-window decomposition approach tackles the initial problem by 

breaking it down into smaller sub-problems through the use of a sliding window. This 

technique reduces both the complexity of the problem and the associated computational 

load. It is a generic approach that can be adapted to various real-time operational 

problems. 

  As shown in Figure 6-3 of a given long time interval [𝑇𝑆𝑇𝐴𝑅𝑇 , 𝑇𝐸𝑁𝐷] that we intend 
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to optimise over, we can divide it into 𝐾 sliding windows with a time length of 𝐿 and 

a shift length of 𝑆 . Further, the starting time 𝑡𝑠
𝑘  and end time 𝑡𝑒

𝑘  of the sliding 

window 𝑘(𝑘 ∈ 𝐾) are [𝑇𝑆𝑇𝐴𝑅𝑇 + 𝐾𝑆, 𝑇𝑆𝑇𝐴𝑅𝑇 + 𝐾𝑆 + 𝐿], respectively. For the sliding 

window 𝑘  that is active, if the estimated earliest entry time or the estimated latest 

arrival time of a flight is in this window, then this flight is ongoing or active in this time 

horizon. The flight is finished if its latest arrival time is less than the start time of this 

horizon, and the flight is in the planning phase if its earliest entry time is larger than the 

end time of this window. In addition, the earliest arrival in this window should be larger 

than the latest arrival time of the finished flights, plus a deviation of separation time. 

Furthermore, the flight entry time for each entry waypoint in this window should also 

be larger than the optimised entry time of corresponding completed flights entering 

from the same entry waypoints. In addition, a time interval is assigned for the starting 

time and end time of each sliding window. The starting time interval is [𝑡𝑠
𝑘 −

Δ𝑡𝑚𝑖𝑛, 𝑡𝑠
𝑘 + Δ𝑡𝑚𝑎𝑥], and the end time spreads in [𝑡𝑠

𝑘 − Δ𝑡𝑚𝑖𝑛, 𝑡𝑠
𝑘 + Δ𝑡𝑚𝑎𝑥]. 

 

Figure 6-3. Rolling time horizon frame for long-term arrival optimisation. 
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6.4. Numerical experiments 

6.4.1. Test instances and experimental setting 

  In addition to the wake separation model constructed in Section 5.2.2, this study also 

analyses historical arrival flight data from February 20, 2019, involving 384 flights at 

HKIA. At that time, the runway configuration comprises two independent runways for 

arrivals and departures, respectively. The analysis focuses on single-runway landing 

problems during peak hours to reduce scheduling complexity. As shown in Table 6-2, 

the majority of landings on this day are in categories CAT_B and CAT_D, with only 3% 

in categories CAT_A, CAT_C, and CAT_E. Figure 6-4 illustrates the hourly arrival 

numbers for the day and highlights the strong crosswinds exceeding 3 m/s throughout 

the peak traffic period. 

 

Table 6-2. Landing flight distribution by aircraft weight category in peak hours of 2019-02-20 

at HKIA.  

Aircraft weight category Landing flight distribution 

CAT_A 4 (1.04%) 

CAT_B 216 (56.25%) 

CAT_C 3 (0.78%) 

CAT_D 156 (40.6%) 

CAT_E 5 (1.3%) 

Total 384 
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Figure 6-4. Arrival flight number by hour and daily METAR crosswind at HKIA on 2019-02-

20.  

 

  The terminal air traffic flow model is implemented in Java and executed in the same 

hardware environment. All experiments in this study were performed using an Intel 

Core i7-12700K processor, an NVIDIA GeForce RTX 3060 Ti GPU (1.78 GHz), and 

32 GB of DDR5 RAM. The deep learning models were developed and trained using 

Keras on TensorFlow 2.5.0. The TCN model consists of four residual 1D convolutional 

layers, in addition to the input and output layers, while the MLP model includes three 

hidden fully connected layers. The Gradient Boosting, K-Nearest Neighbors, and 

Decision Trees (DT) are benchmarking models. Notably, data from February 20, 2019, 

was reserved exclusively for the test dataset, without participating in the training and 

validation phases. 

 

6.4.2. Wake prediction performance 

  Table 6-3 presents the performance of the proposed models in wake separation 
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prediction, contrasting them with three benchmark machine learning models. It 

highlights the superior performance of the MLP model compared to the benchmarks, 

particularly with an 11.48% reduction in MAE based on the DT model. Additionally, 

the TCN model, with its ability to capture temporal features, reduces the MAE and 

RMSE of wake separation time by nearly 50% compared to the MLP model. The results 

also show that predictions based only on wake and flight data are less accurate than 

those incorporating weather conditions, underscoring the influence of wind on wake 

movement and separation. Notably, the TCN model's performance in predicting wake 

location declines significantly without weather features. Nonetheless, this impact is less 

pronounced for separation time predictions, which is attributed to an additional margin 

added to the wake pair region, resulting in more conservative separation estimates. 
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Table 6-3. Performance of proposed models in wake attributes prediction and wake separation prediction. 

Probabilistic wake prediction model Features MAE(m) MAE(s) RMSE(m) RMSE(s) 

𝑋𝑙  𝑍𝑙  𝑋𝑟 𝑍𝑟  Separation 𝑋𝑙  𝑍𝑙  𝑋𝑟 𝑍𝑟  Separation 

Probabilistic TCN model Wake and flight info. + weather 23.48 7.52 22.45 8.23 8.82 33.87 10.09 33.73 11.05 14.33 

Wake, flight info. 52.42 7.84 54.70 7.57 18.80 82.62 10.90 83.82 10.55 29.02 

Probabilistic MLP Wake and flight info. + weather - - - - 22.04 - - - - 29.71 

Wake, flight info. - - - - 23.52 - - - - 31.46 

Gradient Boosting Wake and flight info. + weather - - - - 22.25 - - - - 29.81 

Wake, flight info. - - - - 20.61 - - - - 27.86 

KNN Wake and flight info. + weather - - - - 22.85 - - - - 31.30 

Wake, flight info. - - - - 23.01 - - - - 31.18 

DT Wake and flight info. + weather - - - - 24.90 - - - - 34.95 

Wake, flight info. - - - - 24.48 - - - - 34.45 
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6.4.3. Performance of 3-level wake separation matrices in single test cases 

  This subsection demonstrates the impact of reduced wake separation on terminal 

aircraft arrival management. The SA algorithm modelled in this study tackles the 

terminal arrival flow management problem by rapidly searching for high-quality 

solutions for TMA entry time, flight speed and entry route for each aircraft to achieve 

conflict-free and most time-saving flight operations. The weight ratios of conflict and 

total arrival time are tuned to avoid conflicts within the TMA while enhancing overall 

arrival performance for all test scenarios, as shown in Figure 6-5. As illustrated in 

Table 6-4, the hourly arrival performance derived under the above-mentioned two 

weather-related wake separation matrices (LW and SW for short) alongside the 

traditional RECAT-EU wake separation (denoted as REGULAR) are compared. In this 

analysis, the entry times of each aircraft are restricted to be no less than the estimated 

times and no more than 30 minutes later. Flight speed changes are limited to a range of 

-0.1 to 0.2 times the planned flight speed. Arrival performance metrics assessed include 

total arrival time and average flight delay, with the values in parentheses in the “Total 

arrival time” column indicating reductions relative to REGULAR separation. 

Additionally, the variations in decision variables such as average entry time delay, 

maximum speed changes, and the proportion of shortest routes selected based on 

corresponding entry waypoints are also examined. 
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Figure 6-5. Trade-of between the weight of conflict and the weight of arrival time of Scenario 

2 under regular RECAT-EU separation. 

 

  For the heavy traffic situation on February 20, 2019, the results reveal a prominent 

trend of total arrival time decrease when the wake separation is reduced from regular 

separation to separation under light and strong winds. Specifically, Scenario 7, which 

involves 30 arrival flights between 16:40 and 17:36, demonstrates the greatest reduction 

in total arrival time under strong-wind wake separation, achieving a 15.4% decrease 

compared to the standard RECAT-EU protocol. This improvement is primarily 

attributed to adjustments in flight speed and routing. Furthermore, although the average 

TMA entry time delay and length of flight route are reduced, the significant arrival 

efficiency improvement in this scenario occurred despite an average arrival time delay 

of 2 minutes. In contrast, other scenarios show less pronounced reductions in total 

arrival time, with only minor deviations in decision variables and average flight delay. 

This suggests a potential for enhancing runway operational efficiency while still 

accommodating the needs of other stakeholders. 
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Table 6-4. Simulation results of 3-level wake separation matrices under heavy traffic hours on February 20, 2019. 

Scenarios/Time interval/ 

Aircraft number 

Separation scenarios Total arrival time 

(s) 

Average flight 

delay (min) 

Average entry 

time delay (min) 

Maximum speed 

change 

Shortest route 

percentage 

1 10:12-11:15 (35) REGULAR 4654 6.95 5.70 -0.51% 51.42% 

LW 4094 (12%) 6.82 3.44 -1.11% 40% 

SW 4094 (12%) 4.70 3.28 -0.34% 51.42% 

2 11:00-12:01 (28) REGULAR 4105 5.83 1.74 -0.78% 57.14% 

LW 4195 5.37 2.00 -0.71% 78.57% 

SW 4017 (2.2%) 4.52 0.63 -0.67% 60.71% 

3 11:56-13:02 (38) REGULAR 4305 7.28 4.56 -0.36% 71.05% 

LW 4286 (0.44%) 8.79 5.36 -0.44% 63.15% 

SW 4220 (1.97%) 6.14 4.10 -0.40% 62.16% 

4 13:03-14:09 (33) REGULAR 4599 8.34 5.52 -0.04% 50.28% 

LW 4389 (4.56%) 6.71 2.71 -0.06% 54.39% 

SW 4334 (5.76%) 7.42 3.6 -0.07% 68.47% 

5 14:09-14:59 (28) REGULAR 3449 7.18 6.11 -0.39% 39.28% 

LW 3451 6.66 5.38 -0.28% 67.85% 

SW 3451 6.48 4.48 -0.39% 67.85% 

6 15:02-16:02 (28) REGULAR 3721 4.95 2.98 -0.14% 71.42% 

LW 3719 5.34 1.12 -0.67% 60.71% 
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SW 3631 (2.41%) 5.66 2.96 -0.64% 71.42% 

7 16:40-17:36 (30) REGULAR 3888 6.90 6.04 -0.13% 50% 

LW 3370 (13.32%) 8.95 6.33 -0.36% 43.33% 

SW 3289 (15.4%) 8.91 5.34 -0.76% 56.67% 

8 17:40-18:44 (37) REGULAR 4192 4.50 4.42 -0.54% 48.64% 

LW 4163 (0.69%) 5.22 3.65 -0.56% 51.35% 

SW 4124 (1.62%) 4.35 4.32 -0.27% 64.86% 

9 19:11-21:16 (70) REGULAR 7951 9.14 6.28 -0.2% 52.85% 

LW 7902 (0.61%) 9.58 5.68 -0.72% 58.57% 

SW 7845 (1.33%) 8.92 4.59 -0.48% 57.14% 
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  Figure 6-6 presents the iteration of objectives for Scenarios 4 and 7 as temperature 

decreases. The initial temperature for the cooling-up phase is established following the 

heating process. As the temperature lowers, the objective values generally decrease 

across all three levels of wake separation, suggesting convergence toward an optimal 

solution. The observed fluctuations in the curves reflect the stochastic nature of the SA 

algorithm, which permits occasional uphill moves in the solution space to escape local 

optima. Interestingly, the optimisation of wake separation under light wind conditions 

starts with a temperature similar to that used in strong wind scenarios, but converges 

more slowly and often to less optimal solutions. Notably, the initial temperature in 

traditional wake separation contexts is significantly higher than those observed with 

reduced wake separation. Furthermore, the curve corresponding to the traditional 

RECAT-EU standard serves as a benchmark, revealing that the performance of the SA 

algorithm is poorest under conservative wake separation conditions regarding arrival 

time. 

 

 

(a) Iteration of objective values in Scenario 
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  (b) Iteration of objective values in Scenario 7 

Figure 6-6. Objective performance of Scenarios 4 and 7 in Table 6-4 in the process of 

temperature decrease of the SA algorithm. 

 

  Figure 6-7 illustrates the converging process of the conflict situations, including the 

total conflict number and conflict on both nodes and links. Although the improvement 

of arrival time performance in Scenario 4 is less evident compared to Scenario 7, it 

exhibits a more consistent convergence pattern in conflict resolution. Figure 6-8 depicts 

the deviations in decision variables across three levels of wake separation, highlighting 

the distinct control strategies employed in these scenarios to achieve superior arrival 

efficiency. The decisions of prominent flight speed decrease within the most wake 

separation reduction is made for both two scenarios to achieve both smaller total arrival 

time in Table 6-4. Furthermore, both scenarios result in reduced TMA entry delays, as 

shown in the first subplot of Figure 6-8, compared to the REGULAR wake separation. 

Nonetheless, it is noteworthy that the total length of optimised flight routes in Scenario 

7, under strong-wind wake separation, is greater than that observed under the baseline 

RECAT-EU wake separation. 

 



180 

 

  

  (a) Conflict performance of Scenario 4      (b) Conflict performance of Scenario 7 

Figure 6-7. Iteration of conflict performance for Scenarios 4 and 7 in Table 6-4 in the process 

of temperature decrease. 
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(a) Change of decision variables of Scenario 4 (b) Change of decision variables of Scenario 7 

Figure 6-8. Iteration of decision variables of Scenarios 4 and 7 in Table 6-4 in the optimisation 

process.  

 

  The distributions of flight numbers under the optimised solutions for Scenario 4 are 

also specified in Figure 6-9 across these three distinct wake separation matrices. Figure 

6-9(a) indicates that implementing the reduced wake separations during the final 

approach can decrease the extreme arrival delay from 60 minutes to 20 minutes while 

also increasing the proportion of flights arriving without delay by 12.5%. Regarding 

TMA entry time deviation, Figure 6-9(b) also shows that the "SW" wake matrix exhibits 

a more concentrated distribution around the zero-deviation mark, implying the flights 

experience less variability in their entry time following the flight speed control in Figure 

6-9(c). 
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(a) Arrival delay 

 

(b) Entry time deviation 

 

(c) Average speed change 

Figure 6-9. Deviations in average flight delay, TMA entry time and the flight speed of Scenario 

4 under 3-level wake separation matrices in Table 6-4. 
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  In addition, this study has also explored the performance impact of employing the 

earliest TMA entry time strategies for heavy traffic scenarios in Table 6-5. It is evident 

that allowing for an earlier entry time into the TMA, specifically 5 minutes and 10 

minutes ahead of schedule, results in a more significant reduction in total arrival time 

compared to the scenarios presented in Table 6-4. This reduction is particularly 

pronounced under the "SW" separation scenario, where a 10.43% decrease is observed 

for Scenario 4 and an 11.95% decrease for Scenario 8. These percentages indicate a 

substantial improvement in overall traffic flow management and more efficient use of 

airspace during peak traffic periods. Despite the reduction in total arrival time, the 

average flight delay does not experience a substantial increase. This suggests that the 

strategy of adjusting the entry time into the TMA can effectively manage traffic without 

significantly impacting individual flight delays. It is noteworthy that the performance 

increase under the "LW" matrix is not as pronounced as under the "SW" matrix. This 

can be attributed to the conservative nature of the "LW" separation matrix values. 

  Figure 6-10 visualises the distribution of flights on flight delay time, entry time 

deviations, and average speed changes for Scenario 4, allowing aircraft to earlier enter 

TMA by up to 10 minutes. By enabling more flights to enter the TMA earlier (Figure 

6-10(b), the system reduces the overall arrival delay, with especially a noticeable 

decrease in the number of flights under extreme delay ranges (beyond 10 minutes). 

Furthermore, the reduction in speed changes contributes to a more predictable flight 

environment, which in turn reduces the burden of ATCOs and pilots. Finally, the wake 

separation reduction has the potential to offer a promising approach to optimising air 

traffic flow, enhancing punctuality, and improving overall airspace management. 
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Table 6-5. Performance effect of the earliest TMA entry time for heavy traffic scenarios on 

February 20, 2019.  

Scenarios/Time 

interval / 

Aircraft 

number 

Entry 

time 

period 

(min) 

Separation 

scenarios 

Total 

arrival 

time (s) 

Average 

flight 

delay 

(min) 

Average 

entry 

time 

delay 

(min) 

Average 

speed 

change 

percentage 

Shortest 

route 

percentage 

4 13:00-14:09 

(33) 

[-5, 

30] 

REGULAR 4336 6.43 5.17 -0.21% 72.72% 

LW 4131 

(4.72%) 

6.98 5.52 -0.09% 75.75% 

SW 3980 

(8.21%) 

5.03 4.69 -0.36% 63.63% 

[-10, 

30] 

REGULAR 4296 6.84 6.86 -0.65% 57.57% 

LW 3883 

(9.61%) 

6.48 7.01 -0.12% 75.75% 

SW 3848 

(10.43%) 

7.54 8.09 -0.27% 69.69% 

8 17:40-18:44 

(37) 

[-5, 

30] 

REGULAR 4322 7.66 7.36 -0.89% 45.94% 

LW 3997 

(7.52%) 

5.88 6.40 -0.64% 62.16% 

SW 3954 

(8.51%) 

6.08 6.32 -0.64% 54.05% 

[-10, 

30] 

REGULAR 4157 8.60 9.50 -0.35% 43.24% 

LW 4018 

(3.34%) 

6.68 7.22 -0.59% 40.54% 

SW 3660 

(11.95%) 

7.02 8.03 -0.56% 67.56% 

 

 

 

 

(a) Average flight delay 
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(b) Entry time deviation 

 

(c) Average speed change 

Figure 6-10. Deviations in average flight delay, TMA entry time and flight speed of Scenario 

4 under the early three levels of the wake separation matrix and the early entry.  

 

  Table 6-6 compares the performance impacts of employing three different wake 

separation matrices under non-peak traffic scenarios on February 20, 2019. It indicates 

that the implementation of reduced wake separation matrices (LW and SW) does not 

significantly affect the overall operational intervals and arrival times of flights. The 

ample runway capacity and larger time buffers during off-peak hours mitigate the need 

for resource-intensive efforts to further reduce separation intervals. This also suggests 

that air traffic management strategies of dynamic wake separation can be tailored to 
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traffic density. 

 

Table 6-6. Performance comparison of 3-level wake separation matrices under non-peak traffic 

scenarios on February 20, 2019.  

Scenarios / 

Time 

interval / 

Aircraft 

number 

Separation 

scenarios 

Total 

arrival 

time (s) 

Average 

flight 

delay 

(min) 

Average 

entry time 

delay 

(min) 

Maximum 

speed 

change 

Shortest 

route 

percentage 

14 2:00-

3:00 (8) 
REGULAR 3166 4.05 4.68 -0.12% 75% 

LW 3153 4.08 4.70 -0.37% 100% 

SW 3154 4.25 4.33 -0.25% 87.5% 

15 4:00-

5:01 (11) 
REGULAR 2766 4.03 4.62 0% 90.90% 

LW 2768 3.50 3.68 -0.72% 81.81% 

SW 2769 3.20 4.78 -0.81% 72.72% 

16 5:02-

6:59 (15) 
REGULAR 3327 2.48 4.25 -0.33% 93.33% 

LW 3369 2.27 4.42 -0.4% 80% 

SW 3376 2.38 4.5 -0.26% 93.33% 

 

6.4.4. Performance of dynamic wake separation in large-scale scenarios 

  In addition to the previously discussed static wake separation reductions relative to 

the RECAT-EU standard, this study explores the potential of dynamic pairwise wake 

separation in large-scale scenarios. Table 6-7 compares the performance of three levels 

of static wake separation matrices with the dynamic wake separation (DW) matrix. The 

DW separation is tailored to pairwise approaching aircraft and varying crosswind 

conditions as depicted in Figure 6-4, with wake separation values predicted by TCN 

model and the final approach separation determined by Eq. (1).  

  During the time interval from 10:00 to 11:00 (Scenario 11), crosswind values are 

noted at around 3-5 m/s. Under these conditions, the DW standard demonstrates a 

significant improvement in total arrival time compared to the REGULAR standard, 

achieving a 7.97% reduction. However, it demonstrates less efficiency enhancement 

when compared to the SW standard, which yields a 10.89% reduction. In Scenarios 12 

and 13, crosswinds increase between 11:00 and 13:00, prompting the TCN model to 
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predict dynamic wake separation intervals that align more closely with minimum 

separation requirements in strong crosswinds. Consequently, the efficiency gains for 

both DW and SW standards become comparable. Moreover, the DW standard exhibits 

superior runway efficiency compared to both REGULAR and LW standards, 

highlighting its potential as an effective strategy in air traffic management for 

optimizing safety and efficiency under dynamic atmospheric conditions. 

 

Table 6-7. Simulation results of dynamic wake separation under heavy traffic scenarios of 

February 20, 2019. 

Scenarios / 

Time 

interval / 

Aircraft 

number 

Separation 

scenarios 

Total 

arrival 

time (s) 

Average 

flight 

delay 

(min) 

Average 

entry time 

delay 

(min) 

Average 

speed 

change 

percentage 

Shortest 

route 

percentage 

11 10:01-

10:58 (31) 
REGULAR 3579.56 10.10 6.51 -0.38% 41.93% 

LW 3483.68 

(2.67%) 

7.49 6.04 -0.22% 48.38% 

DW 3293.98 

(7.97%) 

7.89 6.53 -0.38% 61.29% 

SW 3189.73 

(10.89%) 

9.18 5.84 -0.45% 48.38% 

12 11:00-

11:59 (27) 
REGULAR 3627.45 4.32 4.00 -0.37% 55.55% 

LW 3652.40 3.56 5.14 -0.37% 81.48% 

DW 3538.93 

(2.44%) 

3.39 4.05 -0.59% 77.77% 

SW 3515.17 

(3.09%) 

2.65 3.75 -0.40% 62.96% 

13 12:01-

12:58 (33) 
REGULAR 3605.37 6.25 6.21 -0.45% 75.75% 

LW 3629.70 

(0.44%) 

7.10 6.28 -0.42% 60.60% 

DW 3466.24 

(3.85%) 

6.42 5.96 -0.15% 66.66% 

SW 3460.07 

(4.03%) 

6.05 5.56 -0.24% 57.57% 

 

  Compared to the general SA algorithm for optimising aircraft based on the TMA 

entry sequence, which is the FCFS sequence, Table 6-8 also explores the performance 

of the K-CPS SA algorithm for Scenario 4 under strong-wind wake separation 

conditions. The K-CPS strategy generates several alternative aircraft optimisation 
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sequences based on the FCFS entry order and a defined K value, which constrains the 

maximum positional displacement of the aircraft relative to its original position. As the 

K value increases, the number of alternative aircraft sequences increases exponentially, 

resulting in excessive time to traverse these decision sequences. Therefore, we 

randomly selected 100 sequences for performance evaluation under limited CPU 

conditions. The values in parentheses of the "Makespan" column are the percentages 

decrease compared to the K=0 scenario. Compared with the determined optimisation 

sequence, the performance of the K-CPS-based SA algorithm tends to improve with 

increasing K values. By limiting the range of position shifts, K-CPS promotes broader 

exploration of scheduling sequences, enhancing solution diversity and avoiding local 

optima. For example, with 11 aircraft, the “Makespan” (last arrival time decreases the 

earliest arrival time) at K = 2 and 3 exhibit reductions of 14.32% and 13.36%, 

respectively, compared to the baseline scenario without K-CPS. In the scenario with 20 

aircraft, K = 1 and K = 2 demonstrate comparable performance but different 

computational times, highlighting the need to balance search space exploration and 

computational efficiency. Notably, for a scenario with 15 aircraft, K = 1 outperformed 

K = 3, likely due to limitations in the selected sequence sets. We must acknowledge that 

using the K-CPS algorithm is similar to simulating the single case many times, the CPU 

time is also doubled compared with only simulating once. Therefore, more time-

efficient strategies and mature hardware environments can be implemented to reduce 

the time burden. 
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Table 6-8. Performance of the CPS-based SA algorithm for Scenario 4 in strong winds.  

Aircraft number K value in CPS Alternative 

sequence 

number 

selected/ all 

sequence 

number 

Makespan (s) CPU time (s) 

5 0 1 410 10.77 

1 8 381 (7.07%) 73.41 

2 31 378 (7.8%) 487.08 

3 78 367 (10.48%) 1247.69 

11 0 1 1250 20.60 

1 144 1116 (10.72%) 2995.02 

2 100/5081 1071 (14.32%) 2518 

3 100/60216 1083 (13.36%) 2726 

15 0 1 2045 27.31 

1 100/987 1966 (3.86%) 2760 

2 100/150639 1983 (3.03%) 3354 

3 100/5284109 2008 (1.8%) 3530 

20 0 1 2622 40 

1 100/10946 2434 (7.17%) 3977 

2 100/10423761 2423 (7.58%) 4867 

 

  To facilitate the implementation of the proposed air traffic flow management under 

dynamic wake separation in large-scale aircraft operations, we have evaluated the 

overall arrival performance by scheduling in the rolling horizon. Figure 6-11 illustrates 

operational runway throughput during heavy traffic on February 20, 2019, with the 

rolling horizon encompassing one-hour intervals, shifting forward hourly from 10 AM 

to 7 AM. The data indicates that historical hourly aircraft arrivals, as scheduled by air 

traffic controllers using the FCFS method, exhibit significant fluctuations, particularly 

during peak periods. In contrast, the proposed SA algorithm, applied under dynamic 

wake separation, has the potential to significantly redistribute the arrival patterns, 
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leading to a more uniform distribution of aircraft arrivals over time. As represented by 

the light purple bars in the figure, this algorithm markedly increases the number of 

arrivals in certain hours, effectively optimizing the use of available airspace and runway 

capacity. Consequently, this results in improved airport throughput and potential 

reductions in delays for both airlines and passengers. The notable decrease in arrivals 

between 17:00 and 19:00 can be attributed to the concluding phase of the rolling process, 

during which later-scheduled flights are not considered. 

 

 

Figure 6-11. Overall runway throughput improvement under rolling horizon and dynamic wake 

separation compared to actual arrival on February 20, 2019.  

 

6.5. Managerial implications and result discussion 

  This study presents the integrated terminal traffic flow management and runway 

scheduling under deep learning-driven dynamic wake separation prediction based on 

the LiDAR wake detection and ADS-B flight trajectory data at HKIA. The performance 

of dynamic wake separation in runway efficiency improvement is verified from several 

aspects. The findings are anticipated to provide the following managerial implications: 

1. Runway resource utilisation and traffic flow enhancement. The results 
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indicate that the strong-wind wake separation matrix can bring a significant 

reduction in maximum delays and an increase in the proportion of on-time 

flights. It also leads to decreased entry time deviation and a more stable average 

speed profile. These enhancements collectively reduce the workload for ATCOs 

and simplify the operational complexity for pilots. Consequently, this approach 

fosters a more efficient, predictable, and streamlined air traffic management 

system that leverages existing infrastructure to mitigate challenges associated 

with the demand-supply imbalance. 

2. Adaptive dynamic wake vortex intervals. illustrates the efficacy of dynamic 

wake separation in managing heavy traffic scenarios, particularly under varying 

crosswind conditions. Figure 6-11 highlights a significant advancement over 

the traditional FCFS approach, achieving a more balanced hourly distribution 

of arriving aircraft and increasing the maximum number of flights 

accommodated per hour. The dynamic wake vortex intervals can be tailored 

based on traffic density and weather conditions, thereby increasing the 

flexibility of air traffic controllers in scheduling. This adaptability allows for 

real-time adjustments that can accommodate varying levels of traffic and 

weather-related challenges, enhancing the overall efficiency and safety of air 

traffic operations. 

3. Integrated terminal and runway scheduling. By managing the overall flow 

more effectively, the integrated approach to terminal traffic flow management 

and runway scheduling greatly alleviates the pressure on the final approach 

driven by reduced separation. This holistic strategy ensures that the reduction in 

separation intervals does not compromise safety, leading to an efficient and 

secure terminal approach. 
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The explanation of results in this paper and future research are discussed as follows: 

• Table 6-5 and Figure 6-10 demonstrate the benefits of allowing aircraft to enter 

the TMA early, which increases the punctuality of arrivals and shortens overall 

arrival times. However, this strategy also requires coordination with en-route 

aircraft scheduling and consideration of traffic density and control regulations 

during that phase. Furthermore, the feasibility and complexities of the dynamic 

wake separation concept and how it affects controller workload and situational 

awareness still require to be verified in real-world implementation. 

• These dynamic wake separation intervals are totally time-based and are derived 

based on actual LiDAR data on wake evolution, making them more promising 

than that in (Morris et al., 2013). However, the current separation matrices are 

primarily tailored based on stable and strong crosswind conditions to 

demonstrate their operational performance. To realise higher dimensional 

dynamic separation, other atmospheric data, such as the headwind and tailwind, 

can be considered to capture three-dimensional wake transport (Hallock et al., 

2018). 

• The flight speed adjustments discussed in this paper refer to the overall ground 

speed of the aircraft from a kinematic perspective. In actual operations, ATCOs' 

instructions may target at the airspeed, and the true ground speed may be 

influenced by high-altitude winds. In addition, the headwinds and tailwinds at 

low altitudes also affect the final approach. The impact of wind could be 

conducted in future research. Additionally, time-based interval prediction can 

also be integrated with 4D trajectory prediction to support longer-term and more 

accurate forecasting and scheduling decisions (Fusaro et al., 2019). 
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• In fact, Figure 6-2 shows the STARs in the extended TMA area. The reason we 

consider the reference arrival time in the objective function is that the developed 

SA algorithm in this paper optimises decision variables of a single aircraft every 

time, rather than adjusting all aircraft at the same time. There may exist 

situations in which the total arrival time is minimal, but the largest arrival time 

of the last aircraft is not optimal. Therefore, the reference arrival time provides 

a baseline for the optimisation to maximise the effectiveness of separation 

reduction and reduce computational burden. 

 

6.6. Conclusion 

  This study suggests a new deep learning-based and prediction-driven approach for 

terminal approach path planning and runway sequencing, specifically addressing the 

challenges associated with dynamic pairwise wake separation. The objectives of this 

problem are to keep safe and conflict-free flights in the terminal network and improve 

arrival efficiency. This tailored approach to wake separation reduction under light-wind 

and strong-wind conditions aims to enhance airspace utilisation while maintaining 

stringent safety protocols. 

  Overall, two deep-learning models are proposed to predict pairwise aircraft wake 

separation utilising historical LiDAR wake data and ADS-B flight trajectory data at 

HKIA. Two wake separation matrices with reduction under two levels of crosswinds 

are proposed based on the RECAT-EU standards. Furthermore, dynamic wake 

separations are customised to fit individual circumstances of aircraft pairs and varying 

wind conditions. Further, the terminal traffic flow problem under dynamic wake 

separation is modelled and solved with the proposed K-CPS-based SA algorithm. 

Finally, the runway operational performances under these three wake separation 
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matrices and the dynamic wake separation are evaluated on both heavy-traffic and non-

peak arrival scenarios. The influence of wake separation reduction in several aspects of 

operational performance is discussed, including the total arrival time, average flight 

delay, TMA entry time delay, flight speed change and route selection. The superior 

performance presented by the proposed algorithm indicates a promising alternative 

approach for improving runway operational throughput and efficiency for airports with 

constrained configurations. 
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Chapter 7. Conclusion 

7.1. Conclusion of the thesis 

  The terminal area and final approach zone are critical for efficient flight dispatch, yet 

current methods often rely on static, conservative wake separation constraints that 

hinder optimal traffic flow at airports. These conventional methods prioritise safety but 

limit capacity and efficiency. With increasing air traffic demands, innovative solutions 

are essential to enhance runway performance within existing constraints. Dynamic 

wake separation offers a promising approach by adjusting separation distances based 

on real-time conditions, potentially improving runway throughput and efficiency. This 

concept considers the variability in aircraft wake behaviour influenced by 

meteorological conditions and aircraft types, allowing for more flexible and efficient 

traffic management. Additionally, the impact of reducing separation distances in the 

final approach on overall terminal traffic control remains underexplored.  

  Given the above research context, this thesis presents an innovative approach to 

enhancing terminal traffic management by leveraging deep learning-driven 

methodologies for dynamic wake separation prediction and optimisation using LiDAR 

data and actual meteorological data. By analysing historical wake turbulence data from 

Hong Kong International Airport, the research will identify patterns and predict 

dynamic separations, contributing to enhanced operational performance in both runway 

and terminal airspace. This involves four stages: recognising wake vortex patterns, 

forecasting their spatiotemporal evolution, and optimising runway and terminal arrivals. 

  To be more specific, this research formulated a data-driven intelligent strategy for 

quantifying the dynamic wake separation and scheduling the runway and terminal 

arrival in a holistic manner. The online and near real-time aircraft wake vortex 

recognition, and long-term prediction are researched in Chapter 3 and Chapter 4. A 
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novel two-stage deep convolutional neural network framework is developed for precise 

and rapid recognition of aircraft wake vortices using LiDAR-scanned images, focusing 

on vortex location and strength estimation. By integrating DCNN with the ATCN 

network, the research delivers a robust system for near real-time wake detection and 

decay forecasting, supporting dynamic time-based separation minima under varying 

wind conditions. The probabilistic prediction models incorporate spatiotemporal 

features, enabling accurate and trustworthy assessments of wake vortex evolution. The 

potential of flight separation reduction in final approach phases is analysed statistically 

using the predicted vortex spatial-temporal features of aircraft wake vortices, with the 

effects of crosswind in vortex lateral transport examined. 

  This study further evaluates the operational impact of dynamic wake separation on 

runway capacity and throughput, proposing tailored separation matrices for different 

crosswind scenarios. These findings demonstrate significant improvements in reducing 

flight delays, enhancing arrival efficiency, and optimising runway utilisation without 

compromising safety. The proposed K-CPS-based SA algorithm offers an effective 

solution for terminal traffic flow and runway sequencing under high traffic density, 

accommodating the unique needs of aircraft pairs and atmospheric variability. 

  Overall, this research provides a comprehensive framework for integrating advanced 

machine learning techniques into air traffic operations, offering actionable insights for 

air traffic controllers and airport managers. It underscores the potential of dynamic 

separation strategies to address the growing demands of modern aviation. By balancing 

safety and efficiency, this thesis contributes to the development of a proactive, data-

driven decision-support system, paving the way for more resilient and intelligent 

airspace management solutions. 



197 

 

7.2. Contributions of the thesis 

  This thesis is expected to provide preconditions for holistic traffic flow management 

and improve the automation and efficiency of terminal approach dispatch through a 

dynamic wake separation strategy. The contributions of the above four-aspect research 

are mainly threefold: 

(1) Online aircraft wake monitoring and encounter risk analysis. The study 

introduces a two-stage wake vortex recognition and evolution prediction 

framework powered by deep learning, achieving both high precision and 

computational speed. This enables near real-time monitoring of wake vortices 

and supports onboard decision-making to reduce air traffic controller workload. 

The probabilistic estimation and decision transparency of the wake prediction 

models enhance reliability, facilitating safety-critical implementations. This 

strengthens the ability to predict and manage wake vortex risks dynamically and 

robustly. The hybrid deep learning framework improves wake vortex state 

recognition and evolution prediction, supports the development of dynamic 

flight separation systems and ensures safe traffic flow under complex conditions. 

(2) Improvement of runway operational capacity and throughputs. The 

implementation of time-based wake separation standards, aligned with RECAT-

EU, under certain wind conditions, allows for reduced approach separation 

while maintaining safety. This strategy can boost throughput without requiring 

additional infrastructure. Dynamic wake vortex intervals, tailored to traffic 

density and weather conditions, enable flexible adjustments that accommodate 

varying operational scenarios. These intervals increase the number of flights 

handled per hour, balancing arrivals and improving overall runway utilisation.  

(3) Integrated terminal traffic operational efficiency without sacrificing flight 
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safety. The study integrates terminal traffic flow management and runway 

scheduling using dynamic wake separation models based on LiDAR detection 

and ADS-B data. This holistic approach effectively manages terminal and 

runway flow, reduces delays, stabilises flight speed profiles, and simplifies air 

traffic controller operations without compromising safety. The adaptive 

scheduling strategies accommodate weather variability and traffic demand, 

which are expected to enhance overall system efficiency and safety in heavy 

traffic scenarios, and support rapid recovery from adverse weather and 

emergencies, ensuring smooth and secure terminal operations.  

 

  In conclusion, this research expects to facilitate the development of the near real-

time aircraft wake monitoring and dynamic separation suggestion system. A 

comprehensive understanding of how dynamic wake separation impacts both runway 

and terminal area operations is evaluated by assessing the trade-offs between dynamic 

and time-based separation and maintaining safety. Ultimately, the study seeks to 

quantify the extent of efficiency improvements while adhering to safety and scheduling 

limitations within the TMA in a unified framework, contributing to more effective and 

safe air traffic management solutions against operational disruptions by a robust 

decision-support tool for air traffic controllers.  

 

7.3. Areas of future research 

Despite the achievement in this research of integrated terminal approach optimisation 

under the dynamic wake separation, the completed studies have some limitations for 

future exploration. The following aspects are proposed as potential directions for future 

work: 
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(1) Exploring the societal impacts of this research. The societal impacts of this 

research extend beyond operational efficiencies and safety, particularly in the 

context of noise pollution and community well-being. As dynamic wake 

separation strategies are implemented to enhance runway capacity and reduce 

delays, there is a potential trade-off with increased aircraft noise due to more 

frequent take-offs and landings. This could disproportionately affect 

communities living near airports, especially in urban areas with high traffic 

density. To mitigate these impacts, future studies should explore the relationship 

between separation enhancement and noise levels, emphasising the need for 

quieter aircraft design and advanced noise abatement procedures. Collaboration 

between researchers, aircraft manufacturers, and regulatory bodies will be 

essential to develop technologies and operational practices that balance capacity 

improvements with environmental sustainability. By addressing these societal 

concerns, the aviation industry can ensure that advancements in wake vortex 

management contribute positively to both operational efficiency and 

community quality of life. 

(2) Consideration of three-dimensional wake vortex simulation with 

atmospheric factors. Future studies should integrate more comprehensive 

atmospheric conditions, including headwinds, tailwinds, wind shear, and 

dynamic crosswinds, to develop a more realistic three-dimensional wake vortex 

simulation. These factors significantly influence vortex transport and decay, 

especially in high-altitude and low-altitude airspaces. Combining these 

simulations with physical wake models and computational fluid dynamics will 

support the development of physics-informed aircraft wake vortex prediction 

models. These models can capture complex interactions between wake vortices 
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and dynamic atmospheric conditions, improving the accuracy and reliability of 

wake separation decisions. 

(3) Model validation across multiple airports. While this study demonstrates the 

applicability of wake recognition and evolution prediction models at the Hong 

Kong International Airport, future research should evaluate model performance 

across different airports. Factors such as variations in runway configurations 

(e.g., closely spaced parallel runways or cross runways), traffic density, and 

regional weather patterns can influence wake vortex behaviour. In these layouts, 

wake turbulence generated on one runway can significantly impact operations 

on adjacent runways, wake vortices may drift from one runway to the other 

under certain wind conditions, requiring increased separation to maintain safety. 

Similarly, in cross-runway configurations, the interaction of wake vortices with 

intersecting traffic steams introduces additional complexity. Testing the models 

under diverse operational and meteorological conditions will verify their 

robustness, scalability, and generalisability, enhancing their utility for global air 

traffic management systems.  

(4) Integrating runway configuration switch with dynamic separation. The 

combination of runway configuration changes and dynamic wake separation 

should be investigated to evaluate the overall runway capacity envelope. This 

approach can optimise departure and arrival sequencing while accommodating 

fluctuating traffic patterns and weather conditions. By considering both arrival 

and departure dynamics, future studies can provide a holistic assessment of how 

dynamic wake separation impacts total runway throughput and operational 

efficiency. Incorporating these strategies into runway scheduling frameworks 

will enable a more adaptive and integrated terminal management system. 
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Appendix Ⅰ – Flight separation standards 

 

Table 1. ICAO wake separation minima under categories of maximum take-off mass. 

Leader/ Follower 

(NM) 

A380 Heavy Medium Light 

A380 MRS 6 7 8 

Heavy MRS 4 5 6 

Medium MRS MRS MRS 5 

Light  MRS MRS MRS MRS 

Note: MRS refers to the minimum radar separation, which remains 2.5/3NM, and NM represents the 

nautical mile. 

 

Table 2. RECAT-EU distance-based separation minima on approach.  

Leader/ Follower (NM) Super 

heavy 

Upper 

heavy 

Lower 

heavy 

Upper 

medium 

Lower 

medium 

Light  

A B C D E F 

Super heavy A 3 4 5 5 6 8 

Upper heavy B MRS  3 4 4 5 7 

Lower heavy C MRS  MRS  3 3 4 6 

Upper 

medium 

D MRS  MRS  MRS MRS MRS 5 

Lower 

medium 

E MRS MRS MRS MRS MRS 4 

Light   F MRS MRS MRS MRS MRS 3 
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Appendix II – Literature review of flight trajectory prediction 

 

Table 3. Review of dataset of the selected machine learning models for flight trajectory prediction. 

Model Trajectory 

data source  

Trajectory 

data period 

Year of data Region Input 

sequence 

length 

Sampling 

length 

Flight profile Ref  

ML models 

without deep 

learning 

Radar tracks 

 

2 months July 2006, Jan 

2007 

Paris-Orly and Paris-

Charles-de-Gaulle 

airports 

11 15s Climbing phase with longitudinal 

acceleration and climb rate 

(Alligier et al., 2013) 

Radar tracks 1 year None City of Paris, France None None En-route flight (Tastambekov et al., 

2014) 

Radar data  2 months March and 

May 2012 

Incheon International 

Airport 

NS NS Approaching phase (Hong et al., 2015) 

 

SSR Mode S  4 months 03/06/09/12 

2016 

Tokyo, Sendai in 

Japan 

NS NS Cruise phase (Takeichi, 2018) 

IFS radar 

tracks 

1 month April 2016 Barcelona- 

Madrid, Spanish 

None None  En-route flight (Georgiou et al., 

2020) 

SDPS data 2 months 2019 Guangzhou 

International Airport 

None None  Approaching phase with ETA 

estimation  

(Gui et al., 2021) 

DNN 

 

ADS-B data 1 month July 2017 TMA of Beijing 

Capital International 

Airport 

NS NS  Approaching phase with ETA 

estimation 

(Wang et al., 2018) 

ADS-B data  2 years 2014, 2015 Spain ATC centre NS NS Vertical descent phase with pressure 

altitude estimation 

(Verdonk et al., 

2018) 

ADS-B data  NS NS Qingdao airport to 

Beijing Capital 

International Airport 

3s NS En-route flight (Wu et al., 2020) 

ADS-B data  1 month July 2017 TMA of BCIA 4 None  Approaching phase with ETA 

estimation 

(Wang et al., 2020) 

RNN 

 

ADS-B data 4 months August-

November 

2018 

Baiyun 

International Airport, 

China 

35 for 

takeoff; 

48 for 

landing 

NS Landing and take-off phase 

  

(Zeng et al., 2020) 
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ADS-B data 5 months June – 

November 

2017 

NS 10 15s Climbing, cruising, 

descending/approaching phases 

(Shi et al., 2021) 

ADS-B data 12 days NS Beijing to Changchun, 

China 

11 days None En-route flight  (Han et al., 2021) 

ADS-B data; 

Flight Radar 

24  

5 months February-June 

2020 

Mumbai airport to 

Bangalore airport 

5 NS En-route flight 

 

(Sahadevan et al., 

2022) 

ADS-B data  1 month March-April 

2019 

Singapore 10 15s En-route flight 

 

(Tran et al., 2022) 

QAR onboard 

flight data 

4 months Dec 2021- Mar 

2022 

Chengdu Shuangliu 

Airport to Guangzhou 

Baiyun Airport 

8 2s, 6s, 10s En-route flight (Zhao et al., 2023) 

ADS-B data 8 months Jan-Aug 2019 Incheon International 

Airport (ICN), South 

Korea 

None None  Approaching phase (Deng et al., 2022) 

GAN  ADS-B data 2 months June-August, 

2019 

Beijing to Chengdu, 

China 

NS NS En-route flight (Wu et al., 2022) 

DGP NS 1 month October-

November 

2018 

NS 40 NS Cruise; heading regulating; 

climb/descent; 

acceleration/deceleration 

(Chen et al., 2020) 

Transformer ADS-B data 45 days Feb 1 to Mar 

15, 2021 

NS 9 (3min) 20s Climbing; climbing and turning right; 

descending; maintain; turn; climbing 

and maintain 

(Guo et al., 2023) 

Hybrid models SFDPS 

messages 

2 months Dec 2018 – 

Feb 2019 

VC Bird International 

Airport to Miami 

International Airport 

20 12s En-route flight (Zhang et al., 2020) 

ADS-B data 4 months Feb-May 2017 Qingdao to Beijing, 

China 

6 NS En-route flight (Ma et al., 2020) 

ADS-B data 

from 

OpenSky*   

4 years March 2016 – 

March 2020 

Hartsfield–Jackson 

Atlanta 

International Airport 

100 

timestamps 

1 

timestamp 

Taking-off, landing, and flying over  (Sahfienya et al., 

2021; Shafienya et 

al., 2022) 

ADS-B data 1 year Mar 2021-Mar 

2022 

NS 6 5s En-route flight (Ding et al., 2022) 

ADS-B data 1 month May 2019 Guangzhou NS 1s Cruise phase (Zhou et al., 2022) 

ADS-B data 1 year 2018 CAN to NNG NS None En-route flight (Zhao et al., 2022) 

Multiple-flight 

prediction 

NS 1 month January 2006 Oakland International 

Airport 

20 (100s) 5s Approaching phase (Xu et al., 2021) 
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Notes: “None” means “not applicable”, “NS” denotes “not specified in this research. For the input length column, the value without unit represents the length of sequence. 

 

Table 4. Features of input of the selected machine learning models for flight trajectory prediction. 

Radar tracks 7 days Aug 2019 KATL airport 20 

timestamps 

5s Approaching phase (Pang et al., 2021; 

Pang et al., 2022) 

Trajectory features Other features Flight profile Ref  

Thrust law; Mass Wind; Temperature Climbing phase with longitudinal acceleration and 

climb rate 

(Alligier et al., 2013) 

Latitude; Longitude; Altitude; Speed Aircraft type En-route flight (Tastambekov et al., 2014) 

Latitude; Longitude; Altitude; Speed  Aircraft type Approaching phase (Hong et al., 2015) 

Mach number; Flight distance Wind; Temperature Cruise phase (Takeichi, 2018) 

Latitude; Longitude; Altitude Flight plan; Wind; Temperature; Humidity; 

Aircraft type 

En-route flight (Georgiou et al., 2020) 

Altitude; Longitude; Latitude; Speed; Heading Historical states (mean flight time, landing runway, 

etc.); Traffic density; Wind; Metering fix 

Approaching phase with ETA estimation  (Gui et al., 2021) 

Positions in Cartesian coordinate (X, Y, Z); 

Heading; Speed 

None Approaching phase with ETA estimation (Wang et al., 2018) 

Latitude; longitude; Flight level; Ground 

velocity; Descent rate 

Aircraft type; Operational procedure (cleared flight 

levels) 

Vertical descent phase with pressure altitude estimation (Verdonk et al., 2018) 

Latitude; Longitude; Altitude; Velocity; 

Heading; Vertical speed 

None En-route flight (Wu et al., 2020) 

Position in Cartesian coordinate (X, Y, Z); 

Heading; Ground speed 

None  Approaching phase with ETA estimation (Wang et al., 2020) 

Latitude; Longitude; Altitude; Velocity; 

Course   

Aircraft type Landing and take-off phase (Zeng et al., 2020) 

Latitude; Longitude; Altitude; Heading Top of climb; Way-points; Takeoff and landing 

airports 

Climbing, cruising, descending/approaching phases (Shi et al., 2021) 

Latitude; Longitude; Height; Airspeed  Time of wheel block En-route flight  (Han et al., 2021) 

Latitude; Longitude; Altitude; Speed; Heading None En-route flight (Sahadevan et al., 2022) 

Positions in Cartesian coordinate (X, Y, Z) Aircraft intents (flight plans; reconstructed 

trajectory turning points) 

En-route flight (Tran et al., 2022) 

Latitude; Longitude; Altitude; Heading; 

Velocity  

Aircraft performance parameters; Wind; Flight 

phase 

En-route flight (Zhao et al., 2023) 
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Table 5. Literature review of Machine Learning techniques in flight trajectory prediction.  

Model Publish 

year 

Model 

structure 

Prediction 

time span 

Flight phase Evaluation 

metrics 

Benchmark 

model(s)  

Advantages Limitations 

mentioned 

Ref  

ML models 

without deep 

learning 

2013 Polynomial 

regression 

10min Climb phase RMSE BADA Learn unknown 

parameters of the 

point-mass model 

with ML 

• Limited class 

of trajectories 

utilised; 

• No 

comparison 

with standard 

ML models 

(Alligier et 

al., 2013) 

Latitude; Longitude; Altitude; Horizontal and 

vertical speed 

Standard Terminal Arrival Routes Approaching phase (Deng et al., 2022) 

Positions in Cartesian coordinates (X, Y, Z); 

Horizontal speed; Vertical speed; Heading 

None  En-route flight (Wu et al., 2022) 

Positions in Cartesian coordinate (X, Y, Z) Flight plan (waypoint sequence, cruise speed and 

altitude) 

Cruise; heading regulating; climb/descent; 

acceleration/deceleration 

(Chen et al., 2020) 

Latitude; Longitude; Altitude; Velocity  None  Climbing; climbing and turning right; descending; 

maintain; turn; climbing and maintain 

(Guo et al., 2023) 

Latitude; Longitude; Altitude; Horizontal and 

vertical velocity 

Flight plan (4D) En-route flight (Zhang et al., 2020) 

Latitude; Longitude; Latitude; Velocity; 

Heading  

None  En-route flight (Ma et al., 2020) 

Latitude; Longitude; Altitude; Velocity; 

Heading; Vertical rate 

None Taking-off, landing, and flying over  (Sahfienya et al., 2021; 

Shafienya et al., 2022) 

Latitude; Longitude; Altitude; velocity Distance from reference point; Sine and cosine of 

Angle from reference point 

En-route flight (Ding et al., 2022) 

Latitude; Longitude; Altitude; Velocity; 

Heading 

Trajectory intention deviation; Wind  Cruise phase (Zhou et al., 2022) 

Latitude; Longitude; Altitude; Heading; Speed  Weather (temperature, wind direction, wind speed, 

humidity) 

En-route flight (Zhao et al., 2022) 

Latitude; Longitude; Altitude  None Approaching phase (Xu et al., 2021) 

Latitude; longitude None  Approaching phase (Pang et al., 2021; Pang et al., 

2022) 
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2014 

 

Local linear 

functional 

regression + 

wavelet 

decomposition 

10–30 min En-route flight RPE MLR Regression without 

physical 

parameters 

Lack observed 

weather 

parameters 

(Tastambekov 

et al., 2014) 

2015 Hierarchical 

clustering with 

DTW + MLM 

NS (short-

term) 

Approaching phase RMSE  Regression without 

clustering 
• Include traffic 

density in 

regression 

model; 

• Identify 

vectoring 

patterns of 

ATCOs  

Lack 

meteorological 

and other 

operational 

features 

 

(Hong et al., 

2015) 
 

2018 GMM + MLR + 

Adaptive 

prediction 

None Cruise phase with flight 

time prediction 

RMSE 

 

Static linear 

prediction 

Onboard flight time 

estimation with 

adaptive 

uncertainty 

prediction 

• Without 

considering 

ascent and 

descent 

trajectories 

(Takeichi, 

2018) 

2020 Semantic 

clustering + 

HMM/ LR/ RT/ 

DNN 

NS (long-

term) 

En-route flight MAPE 

RMSE 

Single HMM/ LR/ 

RT/ DNN without 

clustering 

• Constraint-based 

waypoint 

lightweight 

predictors 

utilising flight 

plans; 

• Nonuniform 

graph—based 

grid with low 

complexity 

• Only one flight 

route 

considered; 

• Prediction 

performed on 

discrete 

waypoints; 

• 3D spatial 

features 

predicted 

individually 

(Georgiou et 

al., 2020) 

2021 K-means with 

DTW + RF/ 

XGBoost  

None   Approaching phase with 

ETA estimation  

RMSE 

MAE 

Single RF/ 

XGBoost without 

clustering 

• Multiple stages 

strategy in data-

driven ETA 

prediction; 

• consider traffic 

situations and 

meteorology 

conditions 

Lack 

explanation of 

correlation 

between fight 

patterns and 

flight time 

estimation 

(Gui et al., 

2021) 
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DNN 

 

2018 PCA+DT/ K-

means/ 

DBSCAN + 

MCNN 

None  Approaching phase with 

ETA estimation 

MAE 

RMSE 

Single multiple 

linear regression 

Parallel trajectory 

prediction for 

different traffic 

patterns 

• Trajectory 

resampled into 

the same 

length; 

• Limited time 

scale of 

dataset 

(Wang et al., 

2018) 

2018 PCA + 

DBSCAN + 

MLM + 

PMM/ANN 

NS (short-

term) 

Vertical descent phase  Mean of 

residuals; 

RMSE 

 

ANN/PMM model 

without input of 

operational 

procedure 

• Comparison of 

physical model-

based prediction 

with ML 

methods; 

• Consider 

operational 

factors in ANN  

• Made 

assumption 

regarding 

temperature 

and wind in 

PMM model; 

• Consider only 

two aircraft 

types 

(Verdonk et 

al., 2018) 

2020 Hierarchical K-

means + BPNN 

1s En-route flight  MAX 

RMSE 

MAE 

SVM 4D trajectory 

prediction 
• Trajectory 

resampled into 

the same time 

interval; 

• Lack weather 

and regulatory 

information 

(Wu et al., 

2020) 

2020 Clustering + 

stacked model 

None  Approaching phase ETA 

estimation 

MAE 

RMSE 

MLR; BPNN; 

KNN; GBM; RF 

Model stacking to 

combine high-

performance 

individual models 

Lack weather 

and other factors 

in prediction 

(Wang et al., 

2020) 

RNN 

 

2020 SS-DLSTM 90s for 

takeoff; 

150s for 

landing 

Landing and take-off  

  

EE 

ATE 

CTE 

Altitude Error 

BP-NN; 

LFR; LSTM 

Sequence-to-

sequence LSTM for 

takeoff and landing 

4D FTP 

Lack weather 

and other factors 

in prediction 

(Zeng et al., 

2020) 

2021 LSTM  1 step (15s) 

 

Climbing, cruising, 

descending/approaching 

phases 

RMSE 

MAE 

MRE 

DTW 

LSTM; 

SVM; 

wMM; 

MM; 

KF 

Embedding flight 

constraints in loss 

function of LSTM 

model for 4D FTP 

in these flight 

phases 

Lack weather 

and regulatory 

factors in 

prediction 

(Shi et al., 

2021) 

2021 K-means + 

online-learning 

1 day En-route flight RMSE Single GRU/ LSTM 

without clustering 

Real-time FTP of 

next day with K-

NS (Han et al., 

2021) 
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GRU + LSTM means clustering to 

categorise 

historical 

trajectories 

2022 Bi-directional 

LSTM 

5 steps En-route flight 

 

MAE 

RMSE 

MAPE 

Uni-directional 

LSTM; CNN-

LSTM; 

BPNN 

• 4D trajectory 

prediction; 

• Utilise flight 

trajectory with 

variable length 

without 

interpolation 

Lack weather 

and other factors 
(Sahadevan et 

al., 2022) 

2022 Encoder (1D 

Conv) – 

Decoder (GRU)  

1-10 min En-route flight 

 

RMSE 

MAE 

ATE 

CTE 

LSTM with flight 

constraints 

embedding in loss 

function (Shi et 

al., 2021); 
BlueSky ATC 

simulator 

• Reconstruct 

aircraft intents 

from flight track 

data; 

• Predict future 

trajectories with 

flexible time 

horizon 

Without 

considering 

actual ATC 

clearance data, 

or ATCOs 

management 

strategies 

(Tran et al., 

2022) 

2022 Agglomerative 

hierarchical 

clustering + 

DTW; LSTM; 

ETA 

None Approaching phase RMSE K-means; 

GMM 
• LSTM model for 

trajectory pattern 

classification; 

capture complex 

and diverse flight 

patterns 

Without 

meteorological 

data or 

operational data 

(Deng et al., 

2022) 

2023 LSTM; 

XGBoost 

1 En-route flight RMSE 

MAE 

Unbalanced overall 

prediction model 

Consider aircraft 

performance 

parameters such as 

Mach number, 

pitch angle) in 

prediction 

Individual 

prediction model 

for 3D spatial 

positions. 

(Zhao et al., 

2023) 

GAN 2022 Conv2D-GAN; 

Conv1D-GAN; 

LSTM-GAN  

NS (long-

term) 

En-route flight  IS 

FID 

MMD 

MED 

None  • Trajectories in 

RGB image 

format in 

modelling; 

probabilistic 4D 

FTP 

Without 

considering 

features of 

weather or traffic 

control strategies 

(Wu et al., 

2022) 
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DGP 2020 Gaussian 

process + DNN 

3min Cruise; heading 

regulating; climb/descent; 

acceleration/deceleration 

Time error; 

Mean error of 

DTW; Mean 

prewarning time 

KDA; 

Kalman; 

GP 

• Probabilistic FTP 

with application 

in conflict 

detection; 

• Several-stage 

prediction in 

altitude, flight 

time and 

positions  

Only one hidden 

layer in DGP 

model; 

Not end-to-end 

method in flight 

altitude and 

speed prediction 

(Chen et al., 

2020) 

Transformer  2023 Binary 

encoding + 

transformer + 

predictor 

20s, 1min, 

3min, 5min 

Climbing; climbing and 

turning right; descending; 

maintain; turn; climbing 

and maintain 

MAE 

RMSE 

Average time 

costs 

LSTM; BiLSTM; 

KF; transformer 

replaced with 

LSTM/BiLSTM 

Formulate FTP as 

multi-binary 

classification 

problem with 

trajectory encoded 

as binary 

Prediction model 

is flight phase-

oriented 

(Guo et al., 

2023) 

Hybrid 

models 

2018 Hybrid DNN+ 

LSTM model + 

MC Dropout 

2 min En-route flight RMSE 

MAE 

LR; SVM; DTR; 

Single RNN  
• Prediction based 

on the trajectory 

deviation; 

probabilistic 

prediction for 

multiple flights 

with separation 

safety 

measurement 

Without 

consideration of 

weather 

conditions 

(Zhang et al., 

2020) 

2020 CNN(1D)-

LSTM  

1,3,5 En-route flight RMSE 

MAT 

MAPE 

Single BP; single 

LSTM 

1D convolution to 

extract spatial 

trajectory features 

and LSTM to 

extract temporal 

dimension  

• Prediction 

model for a 

single route; 

• Without 

considering 

meteorological 

conditions and 

other control 

orders 

(Ma et al., 

2020) 

2021 PCA + 

CNN(3D)-GRU 

+ 3D-CNN + 

MC Dropout 

5 

timestamps 

Taking-off, landing, and 

flying over  

MAE 

RMSE 

Single CNN; CNN-

GRU  

3D convolution for 

both spatial and 

temporal feature 

extraction 

Lack 

consideration of 

other uncertainty 

sources 

(Sahfienya et 

al., 2021; 
Shafienya et 

al., 2022) 

2022 CNN-BiLSTM 

+dual attention 

1 En-route flight MAE 

RMSE 

BiLSTM; LSTM;  

CNN-LSTM; F-
• Autotuning 

hyperparameter 

Without 

considering 
(Ding et al., 

2022) 
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mechanism  CNN-BiLSTM; T-

CNN-BiLSTM 

  

with genetic 

algorithm; 

• Temporal 

attention 

mechanism 

other factors 

affecting 

trajectory 

2022 Velocity trend 

extrapolation; 

LSTM; stateful-

LSTM; BPNN; 

1D-ConvNet; 

KF 

1 Cruise phase MSE None Combine several 

models for 4D FTP 

according to their 

advantages in 

different prediction 

time horizon 

Lack verification 

of model 

performance in 

other flight 

phases 

(Zhou et al., 

2022) 

2022 DBSCAN + 

Gaussian 

mixture model 

+ LSTM 

network 

None En-route flight in pre-

tactical stage 

EE 

ATE 

CTE 

BPNN; HMM; 

generic algorithm 

Probabilistic FTP 

with aircraft 

intention predicting 

based on   

Bayesian theory 

Aircraft 

intension is 

predicted with 

regard to only 

meteorological 

conditions 

(Zhao et al., 

2022) 

Multiple-

flight 

prediction 

2021 Social-LSTM 

network 

30 (150s) Approaching phase Mean Absolute 

Point-wise 

horizontal error; 

Mean Absolute 

Point-wise 

vertical error; 

APE 

Local weighted 

linear regression; 

HMM; BPNN; 

LSTM 

FTP of multiple 

flights with 

capturing aircraft 

interaction 

Lack 

consideration of 

meteorological 

conditions 

(Xu et al., 

2021) 

2022 Graph-based 

spatial 

transformer 

module + 

temporal 

module 

8  Approaching phase Average 

Displacement 

Error; Final 

Displacement 

Error 

Social LSTM; State 

refined LSTM; 

Social attention; 

TrafficPredict; 

TAR; Social GAN; 

Trajectron; STAR-

Dropout 

• Graph-based 

spatial 

transformer 

module; 

• trajectory 

prediction of 

multiple flights 

Without 

consideration of 

airspeed, altitude 

dimensions 

(Pang et al., 

2021; Pang et 

al., 2022) 
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