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Abstract

Signed graphs have emerged as effective models for capturing positive and negative

relationships in social networks. To analyze such graphs, signed graph neural networks

(SGNNs) have been widely employed, leveraging the unique structural characteristics

of signed graphs. However, it is surprising to discover that the balance theory, which

is commonly integrated into SGNNs to effectively model positive and negative links,

can unintentionally serve as a vulnerability, susceptible to exploitation as a black-box

attack. In this study, we introduce a novel black-box attack termed balance-attack,

specifically designed to diminish the balance degree of signed graphs. To address the

associated NP-hard optimization problem, we propose an efficient heuristic algorithm.

Furthermore, combating various adversarial attacks on signed graphs has become an

urgent concern. We observe that these attacks often result in a reduction of the bal-

ance degree in signed graphs. Similar to the restoration of unsigned graphs through

structural learning, we propose balance learning techniques to improve the balance

degree of compromised graphs. However, we encounter the challenge of “Irreversibility

of Balance-related Information”, wherein the restored edges may not align with the

original targets of the attacks, leading to suboptimal defense effectiveness. To over-

come this challenge, we present a robust SGNN framework called Balance Augmented-

Signed Graph Contrastive Learning (BA-SGCL), which integrates Graph Contrastive

Learning principles with balance augmentation techniques. This approach facilitates

the attainment of a high balance degree in the latent space, indirectly addressing the
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challenge of “Irreversibility of Balance-related Information”. We extensively evalu-

ate our proposed balance-attack and robust BA-SGCL on multiple popular SGNN

models and real-world datasets. The experimental results validate the effectiveness of

balance-attack and the resilience of BA-SGCL. This research significantly contributes

to enhancing the security and reliability of signed graph analysis within the context

of social network modeling.
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Chapter 1

Introduction

Human relationships encompass a wide range of connections, including both positive

interactions such as liking and trust, as well as negative associations such as dis-

trust and dislike. In order to represent these relationships, social networks are often

abstracted as graphs. However, conventional graph structures are unable to simulta-

neously capture positive and negative edge relationships. To address this limitation,

signed graphs have gained popularity by assigning corresponding signs (+/-) to the

edges. Various online platforms, such as Slashdot, Bitcoin Alpha, Bitcoin OTC, and

e-commerce sites, generate signed graphs through user tagging, rating, and reviewing

systems. The analysis of signed networks, including tasks such as link sign prediction

and node ranking, has been greatly influenced by machine learning techniques. In

recent years, researchers have focused on network representation learning for signed

graphs, aiming to learn low-dimensional representations of nodes for downstream net-

work analysis tasks. Graph neural networks (GNNs), as deep learning-based meth-

ods operating on graphs, have gained attention due to their promising performance.

However, the presence of negative edges in signed graphs introduces challenges to the

standard message-passing mechanism, necessitating the development of new GNN

models specifically designed for signed graphs, known as signed graph neural net-
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Chapter 1. Introduction

works (SGNNs).

Despite the success of SGNNs, there has been limited research focusing on adversar-

ial attacks specifically targeting signed graphs or SGNNs. Adversarial attacks refer

to malicious attempts to manipulate a system, leading to misidentification or mis-

classification. In the context of signed graphs, attackers can disrupt relationships by

manipulating a subset of the edge connections. These attacks can significantly im-

pact the performance of SGNNs, potentially deteriorating social relationships. The

implications of such attacks are particularly significant in various real-world scenar-

ios. In e-commerce platforms like Taobao and Amazon, signed networks naturally

form between users and merchants through rating systems. Malicious users might

deliberately give false negative ratings, damaging merchant reputations and business

relationships. This represents a form of adversarial attack that can significantly im-

pact business operations and trust within the platform. Similarly, in cryptocurrency

trading platforms such as BitcoinAlpha and BitcoinOTC, user trust networks are

crucial for secure transactions, where manipulated relationship signals could lead to

significant financial risks. Social media platforms like WhatsApp, Instagram, and

WeChat present another critical domain where signed networks play a vital role. In

these platforms, user relationships form complex signed networks based on positive

and negative interactions. Malicious actors might spread false information about re-

lationships or misrepresent their connections with others (e.g., pretending to have

positive relationships while harboring negative intentions), which can destabilize so-

cial structures and compromise platform security. These attacks, when manifested in

signed graphs, can have far-reaching consequences for social cohesion and user trust.

Existing adversarial attack approaches for normal graphs are not suitable for signed

graphs, necessitating the development of new attack methods. Most SGNN models

rely on balance theory, which suggests that signed triangles should have an even num-

ber of negative edges. Balance theory suggests that a balanced state occurs when two

individuals either like or dislike each other, while an imbalance arises when there are
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mixed sentiment relations. In triadic relations, balance is achieved when the algebraic

multiplication of signs in the triad is positive. Empirical studies have confirmed that

real-world signed graph datasets adhere to these conditions. Existing models incor-

porate balance theory in their loss functions or aggregation strategies to learn a new

signed graph with a high balance degree. By integrating balance theory into SGNNs,

models like SGCN and SNEA adopt a two-part representation and a more involved

aggregation scheme. For instance, when considering a node, the positive part of its

representation can aggregate information from the positive representations of its pos-

itive neighbors and the negative representations of its negative neighbors. However,

the reliance on balance theory also opens up opportunities for attacks. Through pilot

experiments, we found that no matter what the goal of the existing limited number

of attacks on signed graphs is (maybe to reduce the test results of the training set),

their common impact is to reduce the balance degree of signed graphs.

Based on this finding, we propose a novel black-box attack called “balance-attack”

that targets the vulnerability of SGNNs by reducing the balance degree. By develop-

ing an approximative algorithm to manipulate balance, our proposed attack proves

to be effective in compromising the robustness of SGNNs.

Furthermore, the adversarial robustness of SGNNs has received limited research atten-

tion. Adversarial robustness refers to a network’s ability to resist small perturbations

that can lead to misclassification or incorrect results. To ensure the reliability of

SGNNs, it is crucial to develop models that can defend against adversarial attacks.

Existing approaches, such as RSGNN, focus on incorporating structure-based regular-

izers to reduce vulnerability to input noise but do not specifically address adversarial

robustness. Based on previous experiments, we propose the utilization of balance

learning as an effective approach to enhance adversarial robustness in SGNNs. This

approach draws inspiration from the widely used method of structural learning in

normal graphs. When normal graphs are subjected to poisoning attacks, they often

experience a significant decrease in homophily. By applying structural learning tech-
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Chapter 1. Introduction

niques, the original balance of the graph can be successfully restored. In the context

of signed graphs, we introduce a novel concept called balance learning, which follows

a similar rationale. Adversarial attacks on signed graphs typically result in a low

balance degree, indicating an imbalance in positive and negative edges. Our aim is

to restore the balance of the graph by leveraging balance theory principles. By in-

creasing the balance degree, we strive to recover a more balanced and representative

graph that accurately captures social relationships.

However, we found that balance learning alone does not inherently confer robustness

to the model. Our analysis reveals that while balance learning effectively enhances

the balance degree of the resulting graph, it does not restore the original signs of the

edges. This presents a significant challenge, termed the “Irreversibility of Balance-

related Information.” In other words, the original sign information of the edges is

lost during the balance restoration process, making it difficult to fully recover the

structural and sign information of the clean graph through balance learning alone.

To defend against adversarial attacks and tackle the aforementioned challenge, we

propose a novel robust SGNN model named Balance Augmented-Signed Graph Con-

trastive Learning (BA-SGCL), which builds upon the Graph Contrastive Learning

(GCL) framework to indirectly tackle the challenge of Irreversibility of Balance-related

Information. Specifically, we consider the graph obtained by enhancing the balance

degree as the positive view, while the negative view corresponds to the original input

graph. To perturb the positive view, we utilize the balance degree as a guiding factor

to shape the Bernoulli probability matrix within a learnable augmenter. Due to the

Irreversibility of Balance-related Information challenge, it is difficult to recover the

structural and sign information of the clean graph through balance learning. Our

method makes the final node embeddings in latent space characterized with a high

balance degree by contrasting positive and negative views. By maximizing the mutual

information between the embeddings of two views and that between the embeddings

and labels, our approach can achieve defend against attacks and improve prediction
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accuracy.

The major contributions of our paper can be summarised are as follows:

• We introduce a novel black-box attack for signed graph neural networks by cor-

rupting the balance degree. Also, we propose an effective and efficient algorithm

to reduce the balance degree of signed graphs, a problem that has been proven

to be NP-hard [14].

• We conduct a comprehensive theoretical analysis of attacks targeting signed

graph analysis, shedding light on the fundamental nature of these attacks from

an information theoretical perspective.

• We propose a novel robust model BA-SGCL based on the graph contrastive

learning framework. We also present the theoretical reasoning of why our model

can effectively combat attacks.

• Our extensive experiments provide compelling evidence for the effectiveness and

generality of our proposed balance-attack. Furthermore, the experiments con-

ducted on our BA-SGCL model consistently outperform other baseline methods

when subjected to different types of adversarial attacks on signed graphs.
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Chapter 2

Related Work

Extensive research has been conducted in the machine learning and security commu-

nities to explore adversarial attacks across different types of models. While naturally

occurring outliers in graphs present certain challenges, adversarial examples are inten-

tionally crafted to deceive machine learning models with unnoticeable perturbations.

GNNs are particularly susceptible to these small adversarial perturbations in the

data. As a result, numerous studies have focused on investigating adversarial attacks

specifically targeted at graph learning tasks.

Bojchevski et al. [4] propose poisoning attacks on unsupervised node representation

learning or node embedding, leveraging perturbation theory to maximize the loss

incurred after training DeepWalk. Zugner et al. [104], on the other hand, tackle

the inherent bi-level problem in training-time attacks by employing meta-gradients,

effectively treating the graph as a hyper-parameter to optimize.

However, it is important to note that previous studies have predominantly focused

on unsigned graphs, with limited research addressing adversarial attacks on signed

graphs. While Godziszewski et al. [23] introduced an approach for attacking sign

prediction, where attackers aim to conceal target link signs by manipulating non-

target link signs, their method was not specifically designed for SGNN models. The
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Fairness and Goodness Algorithm (FGA), despite being a widely-adopted trust sys-

tem in signed social networks, has been shown vulnerable to the vicinage-attack

method [5], which formulates the attack as a combination optimization problem.

This method mines candidate attacking edges through perturbation space construc-

tion and polymorphic strong tie inference, effectively reducing target nodes’ trust

scores and outperforming baseline approaches. However, existing attack methods, in-

cluding vicinage-attack, primarily operate in white-box settings. To our knowledge,

no research has yet explored black-box adversarial attacks specifically designed for

signed graphs.

Extensive research has been devoted to studying the robustness of graph learning

models [45] [68] [100] by exploring various attack and defense methods. Recent

studies [23] [97] [101] have also explored the vulnerabilities of signed graph anal-

ysis models. For instance, balance-attack [97] can effectively attack SGNNs in a

black-box manner by decreasing the balance degree of signed graphs. Unfortunately,

SGNNs currently lack strong defense mechanisms to effectively counter such attacks.

RSGNN [91] is considered as a leading robust model that enhances robustness by

integrating structure-based regularizers. However, while RSGNN excels at handling

random noise, its ability to defend against adversarial attacks produces only average

results.

Our approach in this paper builds upon Graph Contrastive Learning (GCL) [62] [67],

which aims to maximize correspondence between related objects in a graph while

capturing their invariant properties, enabling models to learn more invariant and

generalized node representations. One key step in GCL is to define positive and neg-

ative views for contrastive pairs. One common approach uses graph augmentation

to generate multiple views for flexible contrastive pairs [3] [31] [71]. The augmented

views can provide different perspectives of the original graph, enhancing the model’s

ability to capture important graph properties. Specifically for signed graphs, SGCL

[65] applies graph contrastive learning to signed graphs, combining augmented graph
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Chapter 2. Related Work

and signed structure contrasts. UGCL [42] improves stability with Laplacian pertur-

bation, making it applicable to various graph types.

Below, we provide a detailed explanation of the most commonly used Graph Neural

Networks (GNNs) and specifically focus on Signed Graph Neural Networks (SGNNs),

which are applicable to our study. We also discuss attacks and defenses in the context

of graph representation learning. Finally, we introduce the graph contrastive learning

technique adopted in our method, as well as the graph augmentation involved.

2.1 Graph Neural Networks

2.1.1 Introduction to Graphs in Machine Learning

Graphs are data structures used to model a set of objects, consisting of nodes and

their relationships represented by edges. In the realm of machine learning, graphs

provide a rich representation for data with complex relationships, enabling a deeper

understanding of interconnected systems. The nodes in a graph can represent entities

such as users in a social network, molecules in a chemical compound, or words in a

document, while the edges capture the connections or interactions between these

entities.

The utilization of machine learning techniques for graph analysis has gained significant

attention in recent years. The inherent flexibility and expressive power of graphs

make them well-suited for capturing intricate patterns and dependencies in diverse

datasets. By leveraging machine learning algorithms, researchers and practitioners

can extract valuable insights from graph-structured data, leading to advancements in

various fields.

Graphs find applications across a wide range of domains, illustrating their versatility

and utility [76] [98]. In social sciences, graphs can model social relationships, influ-
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2.1. Graph Neural Networks

ence networks, and information diffusion processes. In natural sciences, graphs are

used to represent biological networks, chemical compounds, and ecological systems.

Moreover, in bioinformatics, graphs play a crucial role in modeling protein-protein

interaction networks, genetic interactions, and disease pathways.

2.1.2 Graph Analysis Tasks

Graph analysis, a field focused on the study of non-Euclidean data [66] structures,

encompasses a diverse set of tasks crucial for unraveling complex relationships and

patterns within interconnected datasets. Among the fundamental tasks in graph

analysis are node classification [77], link prediction [86], and community detection [17].

Node classification [77] involves the assignment of labels or categories to nodes within

a graph based on their attributes and connectivity patterns. By leveraging informa-

tion from neighboring nodes and the overall graph structure, machine learning algo-

rithms can accurately classify nodes, aiding in tasks such as identifying community

influencers in social networks or predicting protein functions in biological networks.

Link prediction [86] is another essential task in graph analysis, aiming to forecast

the likelihood of connections between nodes that are not currently linked. This task

is particularly valuable for recommendation systems [81], social network analysis,

and predicting potential interactions in various domains. By analyzing the network

topology and node features, predictive models can uncover latent relationships and

missing links within the graph.

Community detection [17] focuses on identifying cohesive subgroups or communities

within a graph based on the density of connections between nodes. This task is

instrumental in understanding the modular structure and functional units within

complex networks [6], leading to insights into network dynamics, group behavior, and

information diffusion processes [16].
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Beyond node classification [77], link prediction [86], and community detection [17],

several other essential tasks play a pivotal role in extracting insights from graph-

structured data.

Graph clustering [99], a fundamental task in graph analysis, involves partitioning

the nodes of a graph into clusters or groups based on their structural similarities or

connectivity patterns. By identifying densely connected regions within the graph,

clustering algorithms reveal underlying structures and help in understanding the or-

ganization of complex networks.

Anomaly detection [1] [56] in graphs is another critical task that focuses on identifying

outliers or anomalies within the network. These anomalies could represent unusual

patterns, deviations from the norm, or potentially fraudulent activities. Detecting

such anomalies is essential for maintaining the integrity and security of networked

systems.

Graph summarization [54] is a task that aims to condense large and complex graphs

into more manageable and insightful representations. By capturing the essential

characteristics and key properties of the original graph, summarization techniques

facilitate a more concise and interpretable view of the underlying data, enabling

efficient analysis and visualization.

Additionally, graph embedding [7] or graph representation learning [9] [83] has gained

prominence as a task that involves mapping nodes or entire graphs into low-dimensional

vector spaces while preserving their structural information and semantic relationships.

These learned embeddings serve as powerful features for downstream machine learn-

ing tasks, enabling efficient information retrieval, similarity computation, and graph

visualization.

GNNs have emerged as a powerful paradigm for analyzing graph-structured data,

offering a scalable and expressive framework for learning representations from graph

topology and node attributes. GNNs have garnered significant attention in recent
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years for their exceptional performance across a wide range of graph analysis tasks.

Their ability to capture intricate relationships and dependencies within graphs has

led to breakthroughs in fields like social network analysis, bioinformatics, and recom-

mendation systems [18] [32].

2.1.3 Types of GNNs

Graph Neural Networks (GNNs) have emerged as a powerful class of deep learn-

ing models tailored for processing and analyzing graph-structured data, exhibiting

remarkable capabilities across various domains. Within the realm of GNNs, a spec-

trum of architectures has been devised to cater to different aspects of graph learn-

ing and representation. Among these architectures, Graph Convolutional Networks

(GCNs) [87] stand out as a prevalent and effective framework for capturing local

structural information [37] between nodes in a graph. GCNs excel in tasks such as

node classification and link prediction, where understanding the local neighborhood

relationships is crucial for accurate predictions and classifications. GCNs operate

based on the principle of message passing between nodes in a graph. Initially pro-

posed by Kipf and Welling, GCNs iteratively aggregate information from neighboring

nodes, allowing each node to update its representation based on the information re-

ceived from its local neighborhood. This process mimics the convolutional operation

in traditional convolutional neural networks but is adapted to the graph domain.

By capturing and propagating local structural information through multiple layers,

GCNs can effectively model the graph’s topology and learn meaningful node repre-

sentations. This localized information aggregation makes GCNs particularly effective

for tasks that rely on understanding the relationships and structures within a node’s

immediate vicinity.

On the other hand, Graph Attention Networks (GATs) [73] introduce attention mech-

anisms [61] into graph learning, enabling nodes to selectively attend to informative
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neighbors during message passing. At the core of GATs is the attention mechanism,

which allows each node to assign different importance weights to its neighbors based

on learned attention coefficients. By dynamically focusing on relevant nodes and

aggregating their representations with adaptive weights, GATs can effectively cap-

ture essential information within the graph structure. This attention-driven mecha-

nism enables GATs to prioritize and incorporate crucial information from neighboring

nodes, making them particularly adept at modeling complex relationships and depen-

dencies within graph data.

GraphSAGE [28] represents another significant advancement in GNNs, employing

node sampling and aggregation techniques to learn node representations effectively,

especially in scenarios involving large-scale graph data [57] [58]. The key principle be-

hind GraphSAGE is the idea of sampling a fixed-size neighborhood around each node

and aggregating information from these sampled nodes to update the target node’s

representation. This approach allows GraphSAGE to scale effectively to massive

graphs while preserving the graph’s essential structural information. By aggregating

information from diverse neighborhood samples, GraphSAGE can capture both local

and global graph properties in the learned node representations. The sampling and

aggregation process in GraphSAGE enables it to overcome computational challenges

associated with processing large graphs, making it a versatile and scalable solution

for learning representations in graph-structured data.

Furthermore, Gated Graph Neural Networks (GGNNs) [52] [63] incorporate gate

mechanisms to control the flow and update of information throughout the network.

These mechanisms enable GGNNs to manage long-range dependencies within the

graph structure more efficiently, enhancing the model’s ability to capture intricate re-

lationships and patterns that span across distant nodes. GGNNs have demonstrated

effectiveness in scenarios where temporal dependencies and long-range interactions

play a critical role in the learning process.

In a different vein, Graph Isomorphism Networks (GINs) [70] focus on learning global,
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permutation-invariant graph representations while preserving the isomorphic proper-

ties of the graph structure. By considering the entire graph as a whole during the

representation learning process, GINs excel in scenarios where capturing the overall

structural information of the graph is essential for downstream tasks such as graph

classification and regression.

These diverse types of GNN architectures collectively provide a rich toolkit for ana-

lysts and researchers working with graph data, offering a range of choices to address

specific challenges and requirements within graph-based learning tasks. By leveraging

the unique strengths and capabilities of each GNN variant, practitioners can tailor

their approach to suit the nuances of the dataset and the complexity of the task at

hand, ultimately contributing to advancements in graph analysis, machine learning,

and related fields.

2.1.4 Applications of GNNs

In the field of social network analysis, Graph Neural Networks (GNNs) are widely

applied due to their ability to effectively capture and utilize the complex relationships

and interaction patterns between nodes in social networks [60] [90]. Nodes in social

networks typically represent individual users, while edges represent relationships or

interactions between users. Through node classification, GNNs can effectively dis-

tinguish and categorize individuals within the social network, thereby identifying

potential user groups or social relationships. This is of significant importance for user

recommendation, targeted advertising, and social influence analysis on social media

platforms. For instance, by classifying nodes, platforms can identify user groups with

similar interests or behavior patterns, enabling precise ad targeting, which increases

ad conversion rates and user satisfaction.

Moreover, the application of GNNs in link prediction helps forecast potential new re-

lationships between users, thereby promoting the development and evolution of social
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networks. Link prediction can assist platforms in identifying opportunities for friend

recommendations and social circle expansions, enhancing user interaction and engage-

ment. For example, by analyzing mutual friends, interests, and other information,

GNNs can predict which users are likely to form new connections, thus recommending

new friends or social circles to users and improving their social experience.

Through community detection, GNNs can reveal hidden groups and community

structures within social networks, providing insights and decision support for social

network managers and researchers. Community detection helps platforms identify

tightly-knit user groups, enabling more targeted content recommendations and event

planning. For instance, by identifying core users within a community, platforms can

push relevant activities or content to that community, increasing user engagement

and satisfaction.

In the field of recommendation systems [19] [20] [43] [76], the application of GNNs

offers a new perspective and technical means for personalized recommendations. Tra-

ditional recommendation systems typically rely on users’ historical behavior data,

such as browsing and purchase records. In contrast, GNNs model the interaction

relationships between users and items as a graph structure, allowing for a more accu-

rate capture of users’ interests and preferences, thereby improving the accuracy and

user satisfaction of recommendation systems. Through the graph structure, GNNs

can comprehensively consider various information, such as user similarities and item

associations, to generate more precise recommendation results.

Especially when facing the cold start problem, GNNs can utilize existing graph infor-

mation and node representation learning techniques to provide personalized recom-

mendations for new users and items, thereby improving the performance and coverage

of recommendation systems. The cold start problem is a significant challenge in rec-

ommendation systems, referring to how to provide effective recommendations for new

users or items. By leveraging GNNs, recommendation systems can use information

within the graph structure, such as social relationships between users and similarities
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between items, to generate initial recommendation lists for new users or items, thus

alleviating the cold start issue.

Additionally, recommendation systems that incorporate social network information

utilize users’ social relationships and interaction patterns to provide more targeted

and personalized recommendation services, thereby enhancing user experience and

platform stickiness. By analyzing users’ social networks, recommendation systems

can identify users’ social circles, interests, and other information to generate more

personalized recommendation results. For example, by analyzing users’ friend rela-

tionships, recommendation systems can recommend items liked by friends to users,

thereby increasing the relevance of recommendations and user satisfaction.

In summary, GNNs exhibit tremendous potential and development space in the appli-

cations of social network analysis and recommendation systems. They not only help

in deeply understanding the complex structures and relationships within social net-

works but also provide more intelligent and personalized recommendation algorithms

for recommendation systems. By combining the powerful representation learning ca-

pabilities of graph neural networks with the rich information in social networks, we

can expect to see more innovations and breakthroughs in the fields of social network

analysis and recommendation systems, bringing more high-quality and meaningful

service experiences to users and platforms.

2.1.5 Training and Optimization of GNNs

Training and optimizing Graph Neural Networks (GNNs) involves critical steps and

techniques to ensure their effectiveness in various applications. Prior to training

GNNs, data preparation is essential, encompassing the representation of graph struc-

tures and node features in formats compatible with GNN models. Selecting a suitable

GNN architecture is the second step, based on the specific task and characteristics

of the graph data, such as Graph Convolutional Networks (GCNs), Graph Attention
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Networks (GATs), and GraphSAGE.

To measure performance and guide the training process, selecting an appropriate loss

function, such as node classification, link prediction, or graph regression, is neces-

sary. Utilizing optimization algorithms like stochastic gradient descent (SGD) [2],

Adam [39], or RMSprop [102] to update model parameters is crucial, with fine-

tuning [59] of hyperparameters like learning rate, weight decay, and momentum for

optimal performance.

Within the training loop, iterating through training data, passing it through the

GNN model, calculating losses, and updating model parameters via backpropagation

is essential. Monitoring the training process ensures convergence and guards against

overfitting [64]. Apart from training, optimizing GNNs involves a range of strategies.

To prevent overfitting and enhance the model’s generalization capabilities, regular-

ization techniques like L2 regularization or dropout can be applied. Optimizing hy-

perparameters such as learning rate, batch size, number of layers, and hidden units

improves the model’s performance on validation sets.

Gradient clipping [10] prevents exploding gradients during training by capping gra-

dient values at predefined thresholds. Enriching input features with node attributes,

edge features, or graph structure information enhances the learned representations of

the GNN model.

Effective parameter initialization is critical. Utilizing appropriate initialization tech-

niques ensures stable training and faster convergence. Additionally, implementing

early stopping based on validation losses prevents overfitting on training data and

enhances generalization to unseen data.

By adhering to these training and optimization strategies, researchers and practi-

tioners can effectively train and fine-tune GNN models for tasks in social network

analysis, recommendation systems, and other graph-related applications, improving

performance and generalization to unseen data.
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2.1.6 Cross-Domain Applications of GNNs

Graph Neural Networks (GNNs) have shown remarkable potential in various domains,

including healthcare [49], finance [12], and transportation [82] [95], by effectively

modeling complex relational data and addressing real-world challenges in innovative

ways.

In healthcare [49], GNNs have revolutionized patient care and medical research by

leveraging patient records, biological interactions, and medical knowledge graphs.

GNNs can predict disease progression, recommend personalized treatments, and assist

in drug discovery by analyzing molecular structures and interactions. For instance,

GNNs can identify potential drug targets, predict patient outcomes, and optimize

clinical workflows, leading to more efficient healthcare delivery and improved patient

outcomes.

GNNs have transformed the financial sector by enhancing risk management, fraud

detection, and investment strategies [12]. In finance, GNNs can analyze transaction

networks to detect suspicious activities, predict market trends, and optimize portfolio

management. By capturing intricate dependencies in financial data, GNNs enable

more accurate risk assessment, fraud prevention, and investment decision-making,

ultimately increasing efficiency and reducing financial risks.

In transportation [82] [95], GNNs are being used to optimize traffic flow, enhance

route planning, and improve public transportation systems. By modeling transporta-

tion networks and analyzing traffic patterns, GNNs can predict congestion, recom-

mend optimal routes, and facilitate real-time decision-making for traffic management.

GNNs can also assist in predicting demand, optimizing logistics, and enhancing over-

all transportation efficiency, leading to reduced commute times and improved urban

mobility.

GNN technology addresses complex real-world challenges by effectively capturing the

underlying structures and relationships in diverse datasets. By leveraging graph rep-
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resentations and learning from interconnected data points, GNNs excel at tasks re-

quiring relational reasoning, pattern recognition, and predictive analytics. For exam-

ple, in healthcare, GNNs can predict patient outcomes based on medical records and

genetic data. In finance, GNNs can detect fraudulent transactions by analyzing trans-

action networks. In transportation, GNNs can optimize traffic flow by considering

road connectivity and traffic patterns.

Overall, GNN technology offers a powerful framework for addressing complex real-

world challenges across diverse domains, empowering industries to make data-driven

decisions, improve operational efficiency, and drive innovation in healthcare, finance,

transportation, and beyond.

2.1.7 Advantages of GNNs

There are several reasons for the adoption of Graph Neural Networks (GNNs). Firstly,

traditional deep learning models like Convolutional Neural Networks (CNNs) [53]

are not well-suited for non-Euclidean data structures, necessitating the need for

GNNs [50]. GNNs excel at capturing and leveraging the complex relationships and

interaction patterns between nodes in graph-structured data, such as social networks

and recommendation systems. Secondly, graph representation learning aims to learn

meaningful representations of graph nodes, edges, or subgraphs in the form of low-

dimensional vectors [29]. This capability allows GNNs to integrate both node features

and graph topology, enabling more accurate and context-aware predictions. The in-

creasing interest in machine learning for graph analysis can be attributed to the

expressive power of graphs as versatile representations for various systems and the

unique challenges they pose, which necessitate specialized methods such as GNNs.

As a result, GNNs significantly enhance performance in tasks like node classification,

link prediction, and community detection by providing deeper insights into the un-

derlying structure of the data. In recommendation systems [76], GNNs can better
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understand user preferences and item similarities, leading to more personalized and

precise recommendations. This ultimately enhances user experience and engagement

by delivering content that is more relevant and tailored to individual needs. Ad-

ditionally, GNNs are particularly effective in addressing challenges such as the cold

start problem, where they can utilize existing graph information to make informed

predictions even for new users or items. Overall, the ability of GNNs to harness

the full potential of graph-structured data makes them a powerful tool in various

applications, driving innovation and improving outcomes across multiple domains.

2.2 Signed Graph Neural Networks

The widespread influence of online platforms such as social media, business transac-

tions, and cryptocurrency exchanges has led to a significant increase in graph datasets.

These datasets possess complex and interconnected structures, posing significant chal-

lenges for analysis. Over the past decade, graph machine learning methods, partic-

ularly Graph Neural Networks (GNNs) [28] [40] [73], have garnered attention from

academia and industry, demonstrating significant progress in various applications

such as link prediction, node classification, and graph classification.

Even as GNNs have advanced considerably, many current GNN approaches are tai-

lored for unsigned graphs that predominantly contain positive edges. In reality, node

connections extend beyond positive ties like friendship and trust to encompass nega-

tive relationships such as enmity and distrust. These negative links disrupt the flow

of information propagation, prompting the need for novel models like Signed Graph

Neural Networks (SGNNs) to effectively accommodate both positive and negative

connections.

Within the realm of signed graph analysis, there exist important surveys [69] [92]

that delve into the properties and analysis tasks associated with signed graphs. These
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surveys shed light on social balance [30], a critical collective property of signed graphs,

covering fundamental measures and detection algorithms. However, the exploration

of graph representation learning methods within these surveys is limited, a domain

that has only recently garnered attention.

Currently, the analysis methods for signed graphs primarily utilize two approaches:

signed graph embedding and, more predominantly, SGNNs. Among these methods,

SiNE [74] represents a signed graph embedding approach that leverages deep neural

networks and employs a loss function based on extended structural balance theory.

The field has seen significant advancement with the introduction of various SGNN

models. SGCN [13] pioneers a novel information aggregator grounded in balance the-

ory, successfully extending GCN’s application to signed graphs. Building upon this,

SNEA [51] adapts the graph attention network (GAT) for signed graphs, maintaining

its foundation in balance theory. BESIDE [11] takes a comprehensive approach by in-

tegrating both balance and status theories, specifically utilizing status theory to learn

“bridge” edge information and combining it with triangle information. A notable

breakthrough comes with SGCL [65], which is the first to extend Graph Contrastive

Learning (GCL) to signed graphs. SDGNN [33] advances the field by combining

balance and status theories while introducing four weight matrices for neighbor fea-

ture aggregation based on edge types. The development continues with RSGNN [91],

which enhances SGNN performance through structure-based regularizers, effectively

highlighting signed graphs’ intrinsic properties while reducing vulnerability to input

graph noise. Additional innovations include SDGCN [41], which introduces a spec-

tral graph convolution encoder with a magnetic Laplacian, and UGCL [42], which

presents a GCL framework incorporating Laplacian perturbation. While these di-

verse approaches demonstrate the rapid development of signed graph analysis meth-

ods, there is still considerable room for improvement in terms of model accuracy,

and importantly, the security aspects of these methods remain largely unexplored in

current research.
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2.3 Attacks and Defenses for Graph Learning

In recent years, there has been a surge of interest in studying the robustness of graph

learning models [80], leading to the exploration of various attack and defense meth-

ods [68]. This increased focus stems from the growing realization of the vulnerabilities

present in these models when faced with adversarial manipulation [103]. Researchers

have been actively investigating how these vulnerabilities can be exploited and what

measures can be taken to mitigate these risks effectively.

Significantly, an in-depth exploration of adversarial attacks and defenses in images,

graphs, and text has offered invaluable insights into the complex realm of security

challenges present in various fields [79]. This exploration acts as a cornerstone re-

source, illuminating the varied threats that confront these models, spanning from

image recognition systems to applications in natural language processing. Grasping

the extensive scope and intricacies of these vulnerabilities is essential for crafting re-

silient defense strategies capable of standing up against advanced adversarial tactics.

Furthermore, researchers have delved into the specific challenges and techniques for

defending graph convolutional networks against adversarial attacks [24] [48] [89].

These investigations have revealed the intricacies involved in safeguarding these net-

works, particularly when considering the complex interplay between the network

structure and the potential attack vectors. By dissecting these challenges and de-

veloping tailored defense strategies, researchers aim to bolster the resilience of graph

convolutional networks in the face of evolving adversarial threats.

Centered on signed graph analysis models, existing work has delved deeply into ad-

versarial attacks on graph neural networks through the utilization of meta-learning

techniques. These investigations have exposed the inherent vulnerabilities present in

signed GNNs and showcased the feasibility of crafting targeted attacks that exploit

these weaknesses. By unraveling the nuances of these attacks, avenues are being paved

for the development of proactive defense mechanisms that can effectively counter such
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threats.

Moreover, attention has been given to understanding the impact of adversarial at-

tacks on the integrity and accuracy of signed graph analysis within the existing lit-

erature [84] [97]. These explorations have shed light on the disruptive nature of

adversarial attacks on the fundamental operations of signed graph analysis models,

emphasizing the importance of fortifying these models against malicious interven-

tions [5] [22] [55] [91] [96]. By identifying the implications of such attacks, previous

work provides insights for devising robust defense strategies that can uphold the re-

liability and accuracy of signed graph analysis in the face of adversarial challenges.

2.4 Graph Contrastive Learning

Graph Contrastive Learning (GCL) [27] [75] [93] is a cutting-edge technique in the

field of graph representation learning. It focuses on enhancing node representations

within graph structures by leveraging contrastive learning methods. The core con-

cept of GCL involves training models to differentiate between positive and negative

node pairs effectively. By maximizing the similarity between positive pairs and min-

imizing the similarity between negative pairs, GCL aims to learn informative node

representations that capture the underlying structure of the graph.

One key technical aspect of GCL is the selection of an appropriate contrastive loss

function, such as InfoNCE [72] [78] or NT-Xent [35] [38]. These loss functions guide

the model in embedding similar nodes closer together while pushing dissimilar nodes

apart in the embedding space. Additionally, the construction of positive and negative

node pairs plays a crucial role in the training process. Positive pairs typically consist

of nodes from the same graph structure, while negative pairs can be generated through

random sampling [36] or other strategies to ensure a diverse training signal for the

model.
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GCL offers several advantages that make it a compelling approach in graph repre-

sentation learning. Firstly, it enhances the quality of representation learning by en-

couraging the model to learn more discriminative and informative node embeddings.

Secondly, GCL is adept at capturing both local and global structural information

within graphs, leading to a deeper understanding and better representation of graph

data. Furthermore, GCL boosts the model’s robustness against noise and adversarial

perturbations, making the learned representations more resilient [15] [21]. Lastly,

GCL’s simplicity and effectiveness make it a versatile tool applicable across vari-

ous graph-related tasks, showcasing significant performance improvements in diverse

applications.

2.5 Graph Augmentation

In Graph Contrastive Learning (GCL), graph augmentation plays a pivotal role in

enriching the training dataset by applying various transformations and operations to

the original graph data [85]. The primary goal is to generate new data samples to

enhance the model’s generalization capabilities and performance. Graph augmenta-

tion is a crucial strategy in GCL, introducing diverse data augmentation techniques

to provide the model with richer training signals, enabling it to better capture the

underlying features and structural information present in the graph data.

Within GCL, graph augmentation can be implemented in various ways, including

random node additions or deletions, edge permutations or removals, subgraph sam-

pling [34], among others. These operations aim to introduce varying degrees of noise

and perturbations, encouraging the model to learn more robust and generalizable rep-

resentations. By incorporating these diverse data augmentation strategies, GCL can

train more powerful models with enhanced robustness and generalization capabilities,

leading to superior performance in real-world applications.
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Through graph augmentation, models not only receive diverse inputs during train-

ing but also adapt better to different data distributions and graph structures. This

targeted data augmentation approach helps improve the model’s generalization abil-

ities, enabling it to handle unseen data samples more effectively and exhibit better

performance in complex real-world environments.
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Preliminaries

3.1 Balance Theory

The social balance theory [94] stipulates that people tend to maintain relative sym-

metry in their social relations, especially triadic ones. It encapsulates the notion that

“the friend of my friend is my friend” and “the enemy of my enemy is my friend”.

Following this, triangles in signed networks are classified as either balanced or unbal-

anced based on whether they consist of either even or odd number of negative links,

respectively [46] [47]. For instance, the first two triads in Fig. 3.1, where all three

users are friends or only one pair of them are friends, are considered balanced. To

quantitatively assess the balance-related information, a metric known as the balance

degree D3(G) was introduced [8]. This measure computes the proportion of balanced

triads within the graph using the following formula:

D3(G) =
Tr(A3) + Tr(|A|3)

2Tr(|A|3)
, (3.1)

where Tr(·) represents the trace of a matrix, A is the signed adjacency matrix of the

signed graph G. The balance degree D3 of signed graph datasets commonly exhibits
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a range of 0.85 to 0.95.

Balance theory plays an essential role in signed graph representation learning. In

particular, SGCN [13] incorporates it into the aggregation process. Other SGNN

models, such as SGCL [65] and SDGNN [33], leverage balance theory in augmentation

or the construction of the loss function.

3.2 Signed Graph Analysis

SGCN [13], the pioneering SGNN model, extends GCN to handle signed graphs by

incorporating balance theory to determine positive and negative relationships between

nodes. To provide further clarity, the representation of a node vi at a given layer l is

defined as:

h
(l)
i = [h

pos(l)
i , h

neg(l)
i ], (3.2)

where h
pos(l)
i and h

neg(l)
i respectively denote the positive and negative representation

vectors of node vi ∈ V at the lth layer, and [·, ·] denotes the concatenation operation.

The updating process for l > 1 layer could be written as:

t
pos(l)
i =AGG(l)(h

pos(l−1)
j :vj∈N+

i , h
neg(l−1)
j :vj∈N−

i )

h
pos(l)
i =COM (l)(h

pos(l−1)
i , t

pos(l)
i )

t
neg(l)
i =AGG(l)(h

neg(l−1)
j :vj∈N+

i , h
pos(l−1)
j :vj∈N−

i )

h
neg(l)
i =COM (l)(h

neg(l−1)
i , t

neg(l)
i ),

(3.3)

where AGG and COM refers to the aggregation and combination processes, respec-

tively. ti represents the temporary node representation vectors after the aggregation

step. The set N corresponds to the neighbors of node vi. SGNNs handle positive

and negative edges by employing a two-part representation and a unique aggregation

scheme. In other SGNN models, they hold similar mechanism. SGCL [65] and UGCL

[42] utilize graph contrastive learning for signed graphs.. SGDNN [33] combines bal-

ance theory and status theory along with the introduction of four weight matrices.
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Figure 3.1: Balanced and unbalanced triangles. Positive and negative edges are

represented by blue and red lines, respectively.

RSGNN [91] incorporates structure-based regularizers to enhance performance.

3.3 Link Sign Prediction

In this paper, we focus on the adversarial robustness of link sign prediction. Link sign

prediction is a crucial task of analyzing signed graphs, as it entails deducing the signs

of edges in the uncharted section of the graph. This prediction relies on a known

subgraph, encompassing both its structure and edge signs. In the realm of signed

graph analysis, link sign prediction takes precedence over other tasks such as node

ranking.

Formally, we define a signed graph G = (V , E+, E−) where V = {v1, v2, · · · , vn} rep-

resents the set of n nodes. The positive edges are denoted by E+ ⊆ V × V , while the

negative edges are E− ⊆ V × V , and E+ ∩ E− = ∅. We denote the sign of edge eij as

σ(eij) ∈ {+,−}. The structure of G is captured by the adjacency matrix A ∈ R|V|×|V|.

Note that for signed graphs, a node is normally not given a feature. Z ∈ R|V|×d is a

node embedding matrix and d is the dimension of nodes.
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Problem Definition and Our

Preliminary Analysis

We focus on the task of link sign prediction, which involves predicting the signs

of edges in the complementary part of a given subgraph of a signed graph with

known structure and edge signs. To begin, we introduce the necessary notations and

formulate the attack model and defense model accordingly. We consider an analyst

predicting missing signs from a collected signed graph, while an attacker aims to

disrupt the prediction task. The attacker can manipulate the data collection process,

resulting in a poisoned graph used for training the prediction model. We assume a

strong attacker with full access to the training data, including the graph structure

and link signs, and the ability to change signs within a specified budget.

4.1 Notations

Formally, let G = (V,E+, E−) be a signed-directed graph where V = {v1, v2, · · · , vn}

represents the set of n nodes. The positive edges are denoted by E+ ⊆ V × V ,

while the negative edges are E− ⊆ V × V , and E+ ∩ E− = ∅. Let I{·} be the

28



4.2. Threat Model

indicator function, and sign(·) be the sign function. We denote the sign of edge

eij as sign(eij) ∈ {+,−}. The structure of G is captured by the adjacency matrix

A ∈ R|V |×|V |, where each entry Aij ∈ {1,−1, 0} represent negative edges, positive

edges, or the absence of an edge in the signed graphs. We denote the training edges

and testing edges by Dtrain and Dtest, respectively, and each edge e ∈ Dtrain ∪ Dtest

has its sign label sign(e). Let Ltrain be the training loss of the target model based

on Dtrain, and θ denote the model parameter. The model predictions for the sign of

edges are denoted as fθ∗(G), and fθ∗(G)e ∈ {+,−} is the prediction for the given

edge e ∈ E+ ∩E−. Ltrain is the training loss of the target model and Latk represents

the objective that the attacker seeks to optimize.

4.2 Threat Model

4.2.1 Attacker’s goal

Our study aims to investigate the vulnerability of link sign prediction models by

developing a black-box attack that aims to assess the extent to which the predictions

of the algorithm can be disturbed. Following [104], we focus on global attacks, aiming

to decrease the overall prediction performance of the model. We leverage an attack

method to manipulate the graph effectively. The modified graph is then utilized to

train SGNNs, intentionally aiming to degrade their performance.

4.2.2 Attacker’s knowledge

We assume that the attackers have access to the training data, enabling them to

observe both the graph structure and edge signs, but they do not know the model

structure and parameters.
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4.2.3 Attacker’s capability

To ensure effective and inconspicuous adversarial attacks, we impose a budget con-

straint denoted as ∆, limiting the number of changes made to the graph. Specifically,

the constraint restricts the number of altered edges ∥A − Â∥0 to stay within ∆. In

our case, we disregard changes in edge signs and assume graph symmetry, resulting

in a budget constraint of 2∆. We also take precautions to prevent node disconnection

during the attack process. Unnoticeability of changes is maintained by imposing a

constraint on the degree distribution. Although our current focus is altering edge

signs, our algorithm can be easily adapted to modify the overall graph structure.

These constraints are consolidated as the set of permissible perturbations on the

given graph G, denoted as Φ(G; ∆).

4.3 Problem of Attack

In the case of global and unspecific attacks, the primary aim of the attacker is to

reduce the model’s generalization performance on the testing nodes. Poisoning attacks

can be mathematically formulated as a bi-level optimization problem:

min
Ĝ∈Φ(G;∆)

Latk =
∑

e∈Dtest

I{fθ∗(Ĝ)e = sign(e)}, (4.1)

s.t. θ∗ = arg min
θ
Ltrain(fθ(Ĝ)),

where the attacker aims to reduce the number of testing edges to be correctly classified

by manipulating the graph, and the model itself is trained on the manipulated graph.

We consider an analyst predicting missing signs from a collected signed graph, while

an attacker aims to disrupt the prediction task. The attacker can manipulate the

data collection process, resulting in a poisoned graph used for training the prediction

model. We assume a strong attacker with full access to the training data, including

the graph structure and link signs, and the ability to change signs within a specified
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budget.

Table 4.1: Comparison of SGCN without/with Balance Learning under balance-

attack (Ratio: Overlapping Ratio of Graphs; D3: Balance Degree)

Dataset Ptb(%)
SGCN SGCN+balance learning

AUC ratio(%) D3 AUC ratio(%) D3

BitcoinAlpha

0 0.7992 100.00 0.9232 0.7981 97.75 0.9976

10 0.6913 89.98 0.2006 0.6962 84.77 0.9856

20 0.6535 79.94 0.1054 0.6153 63.82 0.9616

BitconOTC

0 0.8253 100.00 0.9267 0.8113 96.62 0.9978

10 0.7504 89.99 0.2072 0.7324 79.32 0.9598

20 0.6985 79.98 0.0881 0.6687 64.92 0.9335

Slashdot

0 0.8153 100.00 0.9331 0.7957 98.57 0.9981

10 0.6892 89.78 0.2345 0.6668 84.13 0.9436

20 0.6348 79.96 0.1472 0.6092 68.23 0.9031

Epinions

0 0.7763 100.00 0.8099 0.7814 97.47 0.9889

10 0.7383 89.97 0.3889 0.7253 88.58 0.9384

20 0.6881 79.83 0.2197 0.6824 75.92 0.9081

4.4 Problem of Defense

Given a poisoned graph, the defender (i.e., the analyst) aims to train a robust SGNN

model to mitigate the impact of the attack. The primary objective for the defender

is to restore the prediction accuracy to a level comparable to that of an unpolluted

graph. It is important to note that the defender is only aware of the poisoned graph

and does not have access to a clean version. We emphasize that the defender does

not know the attack algorithm. That is, the defender’s goal is to develop a model

that would stay robust possibly against different types of attacks.
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4.5 Our Preliminary Analysis

The attacks proposed in the literature, balance-attack [97] and FlipAttack [101] in

particular, have been shown to considerably reduce the balance degree of the graph. In

response, a natural defense strategy is to restore the balance of the poisoned graph. To

this end, we adapt the widely used structural learning technique for unsigned graphs

and employ it to train a robust SGNN model. Specifically, this method regards the

signs as variables and employs the balance degree as a regularizer to iteratively update

the graphs, aiming to maximize the balance degree by updating signs without altering

the graph structure. We term this method as balance learning.

Table 4.2: Comparison of SGCN without/with Balance Learning under FlipAttack

(Ratio: Overlapping Ratio of Graphs; D3: Balance Dsegree)

Dataset Ptb(%)
SGCN SGCN+balance learning

AUC ratio(%) D3 AUC ratio(%) D3

BitcoinAlpha

0 0.7992 100.00 0.9232 0.7981 97.75 0.9976

10 0.6746 89.98 0.6942 0.6634 86.24 0.9883

20 0.5601 79.94 0.6806 0.5429 74.79 0.9628

BitconOTC

0 0.8253 100.00 0.9267 0.8113 96.62 0.9978

10 0.6844 89.99 0.6988 0.6792 85.23 0.9782

20 0.6315 79.98 0.6557 0.6159 73.04 0.9553

Slashdot

0 0.8153 100.00 0.9331 0.7957 98.57 0.9981

10 0.6412 89.78 0.6423 0.6382 87.53 0.9723

20 0.6041 79.96 0.6153 0.5923 73.24 0.9358

Epinions

0 0.7763 100.00 0.8099 0.7814 97.47 0.9889

10 0.6898 89.97 0.6336 0.6792 87.82 0.9624

20 0.6149 79.83 0.5961 0.6234 75.46 0.9314

We measure the performance of balance learning under different perturbation ratios

of balance-attack [97] and FlipAttack [101] and show AUC in Tab. 4.1 and Tab.
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Table 4.3: Overlapping Ratios of RSGNN under Adversarial Attacks

Dataset Ptb(%) balance-attack(%) FlipAttack(%)

BitcoinAlpha
10 74.87 86.22

20 56.71 74.77

BitcoinOTC
10 75.33 85.05

20 61.19 72.83

Slashdot
10 83.72 87.12

20 66.06 73.89

Epinions
10 88.04 86.67

20 74.57 75.78

+

+

+-

-

+ +

-

+

(a) (b) (c)

Figure 4.1: An example of the Irreversibility of Balance-related Information challenge.

(a) The initial balanced graph; (b) The unbalanced graph after attack; (c) A recovered

graph, which is balanced but has a different sign distribution from the graph in (a).

4.2, respectively. We observe that while balance learning can significantly recover

the degree of balance, it can not improve the model performance as measured by

AUC. In addition, balance learning will also result in a lower overlapping ratio be-

tween the poisoned graphs and the clean graphs, as observed when comparing the

overlapping ratio before and after applying balance learning, thereby indicating its

incapacity to recover the signs. We evaluate the comparable metrics for methods

such as RSGNN [91], which incorporates a high balance degree as part of their regu-

larizers, thereby leveraging balance learning techniques. On RSGNN, we observe the

same phenomenon as in the above test, as illustrated in Tab. 4.3.
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The primary reason for the ineffectiveness of balance learning is that different dis-

tributions of the signs could result in the same degree of balance (a toy example is

shown in Fig. 4.1). Consequently, it is difficult to reversely restore the sign distri-

bution of the clean graph using the balance degree as the single guidance. Indeed

as shown in Tab. 4.1, while the balance degree is restored, the distribution of the

signs is still quite different from that of the clean graph. We term this observation as

Irreversibility of Balance-related Information.
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Methodologies

In this section, we divide our discussion into three parts: 1) Our black-box attacks, 2)

Our robust SGNN models, and 3) The theoretical foundations of the aforementioned

methods.

5.1 Proposed Black-Box Attack

5.1.1 Formulation of black-box attack

Since the model structure and labels of the testing data are always unavailable, di-

rectly optimizing Eq. (4.1) becomes infeasible. To address this challenge, we adopt

an alternative approach by minimizing the balance degree of the graph. According to

the analysis conducted in a previous study [91], it has been determined that SGNNs

lack the ability to effectively learn precise node representations from unbalanced tri-

angles. From this finding, we can infer that targeting the balance attribute of graphs

has the potential to degrade the performance of SGNNs. Consequently, if the target

model θ is trained on a poisoned graph that has a low balance degree, it is expected

to exhibit an also low Latk value. Therefore, we replace the optimization problem Eq.
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(4.1) with the optimization problem as follows:

min
Ĝ∈Φ(G;∆)

D3(Ĝ). (5.1)

5.1.2 Attack Method

In the training phase, our objective is to minimize the balance degree of the subgraph

Ĝ within a specified budget ∆. This problem, however, is challenging due to the

discrete nature of the signs. As mentioned in [14], optimizing this problem is known

to be NP-hard. To approximate the optimization problem, we propose an algorithm

based on gradient descent and greedy edge selection.

Our solution revolves around the core concept of computing the gradient of the objec-

tive function D3(Ĝ) with respect to the adjacency matrix A. The primary approach

employed is an iterative and greedy strategy that involves flipping the sign of an exist-

ing edge with the highest absolute gradient value and the correct sign, while ensuring

compliance with the budget constraint. In the given scenario, if the candidate edge

possesses a positive sign and its gradient value is negative, updating the adjacency

value through gradient descent would result in a value exceeding 1, thereby violating

the constraints inherent in an adjacency matrix. The modification options available

encompass the selection of positive edges with the maximum positive gradient values

or negative edges with the maximum negative gradient values. Consequently, during

each epoch, one edge is chosen from these options for updating. This iterative process

continues until the budget is exhausted. During each iteration, we update an element

in the adjacency matrix using the following procedure:

i∗, j∗ = arg max
{i,j|aij ̸=0∧sign(aij)=

sign(∇ijD3(Ĝ))}

|∇ijD3(Ĝ)|,

aij = −ai∗j∗ ,

(5.2)

where aij represents an element located at row i and column j of the adjacency

matrix. The variable ∇ijD3(Ĝ) denotes the gradient of each edge computed through
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5.2. Balance Augmented-Signed Graph Contrastive Learning

back-propagation.

To provide a clearer understanding of our approach, we outline the steps of our greedy

flips method in Alg. 1.

Algorithm 1 Algorithm of balance-attack via Greedy Flips

Input: Adjacency matrix A of G, perturbation budget ∆.

Output: Attacked adjacency matrix S (s is the element in S).

1: Initialize S ← A.

2: while Number of changed edges ≤ ∆ do

3: Calculate D3(S).

4: Calculate gradient matrix ∇(D3(S)).

5: Filter candidate edges Ce = {i, j|sij ̸= 0 ∧ sign(sij) = sign(∇ijD3(S))}.

6: if i∗, j∗ = arg max{i,j∈Ce} |∇ij(D3(S))| then

7: Update si∗j∗ = −si∗j∗ .

8: Number of changed edges + = 1.

9: end if

10: end while

11: Return S.

5.2 Balance Augmented-Signed Graph Contrastive

Learning

5.2.1 Overview

Directly addressing the Irreversibility of Balance-related Information is a daunting

task as the clean graph is not accessible. To address this issue, we introduce Balance

Augmented-Signed Graph Contrastive Learning (BA-SGCL), which utilizes Graph

Contrastive Learning (GCL) to generate robust embeddings from the attacked graph
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Figure 5.1: The Overview of BA-SGCL.

instead of increasing the balance degree directly. BA-SGCL integrates Graph Con-

trastive Learning (GCL) with a novel learnable balance augmentation to improve the

robustness of embeddings. Specifically, we design the positive and negative views

augmentation in GCL such that one view has an improved balanced degree while

the other view is the poisoned graph tends to have a smaller balanced degree. Al-

though it is difficult to directly recover the structural and sign information of the

clean graph through balance learning, our method makes the final node embeddings

in latent space characterized with a high balance degree by using GCL. Our proposed

solution maximizes the mutual information between the embedding of the poisoned

graph and the joint distribution of the positive view’s embedding and labels in order

to effectively achieve the defense objective. The framework of BA-SGCL is illustrated

in Fig. 5.1. In the following, we first describe the model details and then delve into

the theoretical underpinnings of the attacks and also elucidate how our model can

enhance representation learning from an information theoretical perspective.
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5.2.2 Learnable Balance Augmentation

Despite the difficulty in restoring the clean graph with a highly balanced degree accu-

rately, we mitigate the issue via balance augmentation leveraging a GCL framework.

GCL mainly relies on generating pairs of positive and negative views to conduct self-

supervised learning. In the context of defending against poisoning attacks, we only

have knowledge of the poisoned graphs where the attacker has hindered the balanced

degrees. These poisoned graphs can serve as negative views. To generate a positive

view with increased balance, we introduce a novel balance augmentation technique

involving flipping the signs on the poisoned graph.

Specifically, we learn a Bernoulli distribution to determine the flipping of the signs

that increase the balanced degree. Let ∆ = [∆ij]n×n ∈ [0, 1]n×n denote the probability

of flipping. The key to our balance augmentation is to learn the optimal ∆. We further

represent the edge flipping Bernoulli distribution as B(∆ij). Then, we can sample a

sign perturbation matrix denoted as E ∈ {0, 1}n×n, where Eij ∼ B(∆ij) indicates

whether to flip the sign of edge (i, j). If Eij = 1, we flip the sign; otherwise not. The

sampled augmented positive graph can be represented as Ap as follows:

Ap = A + C ◦ E, (5.3)

where C = −2 × A denotes legitimate edge sign flipping for each node pair. Specif-

ically, changing the sign of positive edge (i, j) to negative is allowed if Cij = −2,

while changing the negative edge sign to positive is allowed if Cij = 2. By taking the

Hadamard product C ◦ E, we obtain valid sign perturbations for the graph.

Since E is a matrix of random variables following Bernoulli distributions, we can

easily obtain the expectation of sampled augmented graphs as E[Ap] = A + C ◦ ∆.

Therefore, the probability matrix ∆ controls the balance augmentation scheme. To

learn the parameter ∆, we next define the augmentation learning as the following

problem:
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min
Ap∈Φ(A)

Lptb = −
Tr(A3

p) + Tr(|Ap|3)
2Tr(|Ap|3)

,

s.t. Ap = A + C ◦ E,C = −2× A,Eij ∼ B(∆ij),

(5.4)

where Lptb is the negative balance degree. By minimizing it, we aim to generate

positive view with balance degree as large as possible. To avoid deformation of original

adjacency matrix A, we add a constraint denoted by Φ(A) to limit the maximum

number of edge flipping from A. In practice, we choose the top n% of ∆ij to sample

Eij, where n% is the perturbation budget. With the positive view generated, we will

next demonstrate the graph encoder and the contrastive loss that are used to learn

the robust embedding.

We adopt SDGCN [41] as our encoder, which is currently the state-of-the-art SGNN

encoder. SDGCN overcomes the limitations of the graph Laplacian and utilizes com-

plex numbers to represent both the sign and direction information of edges in signed

graphs.

5.2.3 Design of Loss Function

The losses include the contrastive loss Lcon, label loss Llabel, and balance loss Lbalance,

which correspond to contrastive learning, the link sign prediction task, and balance

augmentation, respectively. We utilize the combination of contrastive loss Lcon and

label loss Llabel to train the encoder’s parameters, while the balance loss Lbalance is

employed to train the probability matrix ∆ within the augmentation scheme.

Contrastive loss

The contrastive objective focuses on aligning the latent representations of the same

node while distinguishing them from other nodes. Two identical nodes from differ-

ent graph views are considered as an inter-positive pair, while other node pairs are
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considered inter-negative pairs. For example, a node u from G1 and the same node

u from G2 form an inter-positive pair. Conversely, any other node v ∈ V ; v ̸= u from

G2 and node u of G1 form an inter-negative pair. Even though the nodes in the inter-

positive pair come from different graph views, they are the same nodes. The goal of

the inter-view objective is to maximize the similarity of positive pairs and minimize

the similarity of negative pairs. The inter-view loss function is defined as:

Linter =
1

|V|
∑
u∈V

log
exp((zu1 · zu2 )/τ)∑
v∈V exp((zu1 · zv2)/τ)

. (5.5)

where zu1 and zu2 represent the low-dimensional embedding vectors of node u from

view 1 and view 2, respectively.

The intra-view loss serves the purpose of calculating the discriminative loss within a

single graph view, in contrast to the inter-view loss which compares the latent rep-

resentations of nodes between two distinct graph views. It plays a critical role in

ensuring that the latent representations of all nodes are distinct from one another,

taking into account their individual and unique characteristics. The primary ob-

jective is to promote distinctiveness among the latent representations of all nodes.

Mathematically, the intra-view loss can be defined as follows:

Lintra =
1

K

K∑
k=1

1

|V|
∑
u∈V

log
1∑

v∈V,u̸=v exp((zuk · zvk)/τ)
, (5.6)

where k indicates the graph view index.

The contrastive loss is the sum of the inter-view and intra-view loss functions:

Lcon = Linter + Lintra. (5.7)

Label Loss

The augmented views serve as input to the graph encoders, generating node repre-

sentations Z1 and Z2. These representations are concatenated and pass through the
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output layer to produce the final node embedding as:

R = σ([Z1||Z2]W
out + Bout). (5.8)

Specifically, after generating the final representations for all nodes by Eq. (5.8), we

utilize a 2-layer MLP to estimate the sign scores from i to j:

ŷi,j = σ([ri||rj]Wpred + Bpred). (5.9)

The loss function of the link sign prediction is formulated based on the cross entropy:

Llabel =−
∑

(i,j)∈Ω+

yi,jlogσ(ŷi,j)

−
∑

(i′,j′)∈Ω−

(1− yi′,j′)log(1− σ( ˆyi′,j′)),
(5.10)

where Ω+ and Ω− denote the training positive node pairs and negative node pairs

respectively, σ()̇ is the sigmoid function, and yi,j represents the sign ground truth.

Balance Loss

Balance loss Lbalance is the same as Eq. (5.4). To enhance the positive views, the

balance degree serves as a guiding factor. By enhancing the balance degree of positive

views to above approximately 0.8, we simulate the high balance degree characteristic

of clean signed graphs.

5.2.4 Model Training

Contrastive learning can be viewed as the regularization of the target task, thus we

update model encoder’s parameters using the combination, as follow:

L = α× Lcon + Llabel. (5.11)

To augment the positive view, the probability matrix ∆ in the augmentation scheme

is updated using the balance loss Lbalance. This updated ∆ is then used to sample the
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Algorithm 2 BA-SGCL Training Algorithm

1: for epoch = 0, 1, . . . do

2: // Learnable Graph Augmentations

3: (Generate a random augmentation scheme initially)

4: Sample a positive view via Eq. (5.3)

5: // Graph Encoders

6: Obtain two representations of two views Z1 and Z2

7: // Contrastive Learning

8: Compute inter-view contrastive loss Linter, intra-view contrastive loss Lintra,

combined contrastive loss Lcon via Eq. (5.5), (5.6), and (5.7)

9: // Model Training

10: Compute the loss of sign link prediction task Llabel via Eq. (5.10) and combi-

nation loss L via Eq. (5.11)

11: Compute balance loss via Eq. (5.4)

12: Update model parameter θ by ∂L
∂θ

and augmentation scheme ∆ by ∂Lbalance

∂∆

13: end for

14: return node representations Z

positive view. The introduction of balance loss in every training iteration, followed

by the training of contrastive loss and label loss, would result in substantial time

overhead. Therefore, we propose to train the above losses at one stage and arrange

them uniformly in the model training stage. The learning algorithm is outlined in

Alg. 2.

5.3 Theoretical Analysis

In this section, we undertake an analysis of adversarial attacks through the lens

of mutual information and then present the theoretical foundations of our defense

framework.
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Theorem 1. The essence of adversarial attacks specified for signed graphs is to de-

crease the mutual information between balanced information and labels Y by the per-

turbed balanced information B̂, thus reducing model performance:

arg min
B̂

I(B̂;Y ), (5.12)

where I(;̇)̇ is mutual information.

Proof. Suppose the SGNN model fθ accepts a signed graph G as the input and output

the embedding Z: Z = fθ(G). Due to there being no node attributes in real-world

signed graph datasets [25] [26] [44], existing SGNN aims at capturing structural in-

formation and balance-related information to predict labels Y , we can formulate the

embedding of SGNN models as follows:

arg max
θ

I(fθ(A,B);Y ), (5.13)

where A and B are structural information and balance-related information respec-

tively. The goal of SGNN is to maximize the mutual information between embeddings

and labels.

Theorem. 1 provides the insight that offers guidance for defending against attacks:

a robust model should conversely increase the mutual information between balance-

related information and labels. Next, we introduce the theoretical foundation of our

robust model BA-SGCL.

Since A and B are independent, we can rewrite Eq. (5.13) as:

arg max
g1,g2

I((g1(A), g2(B));Y ), (5.14)

where g1 and g2 are two functions that capture structure information and balance-

related information, respectively. Suppose hA = g1(A) and hB = g2(B), according to

properties of the mutual information, we have:

I((g1(A), g2(B));Y ) = I((hA, hB);Y )

= I(hA;Y ) + I(hB;Y |hA).
(5.15)
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Conversed with the goal of SGNN models, the goal of attackers is minimizing Eq. (5.13)

via certain perturbations to induce the model to give wrong predictions.

Specifically, the balance-related attack perturbs the balance degree of the input signed

graph while maintaining its structure. Therefore, A remains unchanged while B is

converted to B̂. The target of the attack can be formulated as:

arg min
B̂

I(fθ(A, B̂);Y ) = arg min
B̂

I((hA, hB̂);Y )

= I(hA;Y ) + I(hB̂;Y |hA).

(5.16)

Both A and Y remain unchanged, thus the target of the balance-related attack is

minimizing I(hB̂;Y |hA), which means the attack aims at minimizing the mutual

information between balance-related information and labels that are not related to

structural information.

Theorem 2. BA-SGCL generates robust embeddings by maximizing the mutual in-

formation between the perturbed graph’s embeddings Z2 and the joint distribution of

the embeddings of positive sample Z1 and labels Y : max I((Z1, Y );Z2).

Proof. According to principles of mutual information, we can rewrite I((Z1, Y );Z2)

as follows:

max I((Z1, Y );Z2) = max(I(Z1,Z2) + I(Z2;Y |Z1)).

The first term on the right-hand side of the equation implies that the embedding of the

positive view should share as much mutual information as possible with the embedding

of the original graph, or in other words, the robust embedding should capture high

balance characteristics. The second term indicates that the defense model should

maximize the mutual information between the embedding and the labels, thereby

enabling accurate label predictions.
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In summary, increasing the balance degree of the positive view requires meeting dual

requirements: accurately representing the original graph and accurately predicting

the labels. The first requirement is achieved through the GCL framework and the

contrastive loss proposed by us. The second requirement is fulfilled by the label loss.
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Experiments

This section includes separate evaluations of balance-attack and BA-SGCL.

We perform experiments on four real-world datasets to showcase the efficacy of the

proposed balance-attack in diminishing the performance of SGNNs compared to ran-

dom attacks in link sign prediction. Additionally, we apply balance-attack to five

state-of-the-art methods in signed graph representation. We will answer the follow-

ing questions:

• Q1: Can balance-attack decrease the balance degree of signed graphs signifi-

cantly?

• Q2: How does balance-attack perform on existing SGNN models compared with

random attack?

• Q3: How applicable is balance-attack on various SGNN models?

We test the performance of link sign prediction with nine state-of-the-art SGNNs and

our robust model BA-SGCL under different adversarial attacks specifically designed

for signed graphs. We aim to provide insights for the following two major questions:

47



Chapter 6. Experiments

• Q4: How does BA-SGCL perform compared with other SGNN methods under

different signed graph adversarial attacks?

• Q5: How effective is balance augmentation in BA-SGCL compared to random

augmentation in original SGCL?

6.1 Datasets

We conduct experiments on four public real-world datasets: Bitcoin-Alpha, Bitcoin-

OTC [44], Epinions [25], and Slashdot [26]. The Bitcoin-Alpha and Bitcoin-OTC

datasets are publicly available and collected from Bitcoin trading platforms. These

datasets are obtained from platforms where users have the ability to label other users

as either trust (positive) or distrust (negative) users. This labeling system serves as a

means to prevent transactions with fraudulent and risky users from trading or perform

transactions, given the anonymity of these trading platforms. Slashdot is a renowned

technology-related news website that boasts a distinctive user community. Within

this community, users have the option to tag each other as friends or foes based on

their interactions and relationships. Similarly, Epinions represents an online social

network centered around a general consumer review site called Epinions.com. The

users of this site have the autonomy to decide whether they trust other members or

not, forming a network based on mutual trust relationships. In the experiments, we

randomly select 80% links as training set and the remaining 20% as testing set. Since

these datasets have no attributes, we randomly generate a 64-dimensional vector for

each node as the initial node attribute. More detailed dataset statistics are shown in

Tab. 6.1.
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Table 6.1: Dataset Statistics

Dataset #Nodes #Pos-Edges #Neg-Edges %Pos-Ratio %Density

Bitcoin-Alpha 3,784 22,650 1,536 93.65 0.3379%

Bitcoin-OTC 5,901 32,029 3,563 89.99 0.2045%

Slashdot 33,586 295,201 100,802 74.55 0.0702%

Epinions 16,992 276,309 50,918 84.43 0.2266%

6.2 Setup

To conduct our evaluation, we divide the available datasets randomly, allocating 80%

of the links for training purposes and reserving the remaining 20% for testing. As the

datasets lack attributes, we generate a random 64-dimensional vector as the initial

node attribute.

6.2.1 Attack Setup

We follow the hyper-parameter setting suggestions by those papers and set the em-

bedding dimension to 64 for all SGNN models to achieve a fair comparison. To speed

up the attack process, we opt to modify 10 edges per epoch. Specifically, we target the

10 elements in the adjacency matrix that possess the highest absolute gradient values

and the correct signs, when doing back-propagation. In the experiment, the pertur-

bation rate varies from 5% to 20% of total edges. To evaluate our method, we employ

three metrics: micro-average F1 score (Micro-F1), binary-average F1 score (Binary-

F1), and macro-average F1 score (Macro-F1). These metrics have been widely used in

previous studies and provide valuable insights into the performance of SGNN models.

Lower values of these metrics indicate poorer model performance and greater effec-

tiveness of attack methods. However, we find that the area under the curve (AUC)

metric may not be suitable for assessing the performance of models on signed graph

datasets. AUC tends to yield misleading results on imbalanced datasets, which is the
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Figure 6.1: Balance Degree of 4 Datasets under 2 Attacks.

case for signed graph datasets that predominantly contain positive edges. Therefore,

we exclude the AUC metric from our evaluation.

6.2.2 Defense Setup

To assess the effectiveness of our approach, we employ four commonly used metrics:

AUC, Micro-F1, Binary-F1, and Macro-F1. These metrics have been widely utilized

in previous studies. Higher values represent better performance. By convention,

the best comparison results are denoted in bold, while the second-best results are

underlined, unless otherwise specified.

For adversarial attacks and SGNN models, we utilize the parameters specified in their

respective papers. Our proposed model, BA-SGCL, is implemented using PyTorch,

with a learning rate set to 0.001. To ensure an adequate balance degree for the

positive view, we impose a lower limit of 0.9 (within the range of 0 to 1).
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6.3 Baselines

6.3.1 Attack Baselines

With the above benchmark datasets, we evaluate balance-attack on five popular

SGNN models, as follows:

• SGCN [13] aims to bridge the gap between unsigned GCN and the analysis of

signed graphs. It strives to develop a novel information aggregator by leveraging

balance theory, thereby extending the applicability of GCN to signed graphs.

• SGCL [65] is the first work to generalize graph contrastive learning to signed

graphs, which employs graph augmentations to reduce the harm of noisy inter-

actions and enhances the model robustness.

• SDGNN [33] combines both balance theory and status theory, and introduces

four weight matrices to aggregate neighbor features based on edge types.

• RSGNN [91] incorporates structure-based regularizers to enhance the perfor-

mance of SGNNs by emphasizing the intrinsic properties of a signed graph and

mitigating their vulnerability to potential edge noise in the input graph.

• UGCL [42] introduces a novel contrastive learning framework that incorporates

Laplacian perturbation, offering a unique advantage through the utilization of

an indirect perturbation method that ensures stability and maintains effective

perturbation effects.

6.3.2 Defense Baselines

To establish a baseline for comparison, we employ a random attack strategy since there

is currently no established black-box attack model specifically designed for signed
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graphs. The applicability of unsigned graph methods [88] [104] to signed graphs is

limited due to their strong dependence on node labels and node features, rendering

them unsuitable for the present scenario. In the case of the random attack, we

randomly select a set of edges from the input signed graph and flip their signs.

We evaluate attacks on nine popular SGNN models, which are categorized as with /

without attack-tolerant signed graph representation learning (attack-tolerant SNE/SNE):

SiNE [74], SGCN [13], SNEA [51], BESIDE [11], SDGNN [33] and SDGCN [41] are

methods without attack-tolerant proporties. RSGNN [91], SGCL [65] and UGCL [42]

are attack-tolerant methods.

• SiNE [74] is a signed graph embedding method that uses deep neural networks

and extended structural balance theory-based loss function.

• SGCN [13] introduces a novel information aggregator based on balance theory,

expanding the application of GCN to signed graphs.

• SNEA [51] generalizes Graph Attention Network (GAT) [73] to signed graphs

and is also based on the balance theory.

• BESIDE [11] combines balance and status theory. It utilizes status theory to

learn “bridge” edge information and combines it with triangle information.

• SGCL [65] is the first work to generalize GCL to signed graphs.

• SDGNN [33] combines both balance and status theory, and introduces four

weight matrices to aggregate neighbor features based on edge types.

• RSGNN [91] improves SGNN performance by using structure-based regulariz-

ers to highlight the intrinsic properties of signed graphs and reduce vulnerability

to input graph noise.

• SDGCN [41] defines a spectral graph convolution encoder with a magnetic

Laplacian.
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• UGCL [42] presents a GCL framework that incorporates Laplacian perturba-

tion.

We utilize two adversarial attacks on signed graphs:

• balance-attack [97]: A type of black-box attack that effectively reduces the

degree of balance in signed graphs. The author’s rationale stems from the

observation that signed graphs commonly exhibit a high balance degree, leading

them to propose reducing the balance degree as a means to achieve the desired

effect of adversarial attacks.

• FlipAttack [101]: An adversarial attack method against trust prediction in

signed graphs, which can effectively downgrade the classification performances

for typical machine learning models. The attack was first designed to target rep-

resentative trust prediction models, formulating it as a hard bi-level optimiza-

tion problem. The attack was further refined by integrating conflicting metrics

as penalty terms into the objective function, resulting in secrecy-awareness.

Both methods manipulate signed graphs by modifying the sign information while

preserving the topological information. Furthermore, due to the constraints imposed

by the attack methods, excessively large datasets (such as Slashdot and Epinions)

necessitate testing using subsets. In our experimental setup, we iteratively extract a

subgraph comprising 2000 nodes as a representative dataset, which is subsequently

partitioned into training and testing sets in a proportional manner.

6.4 Balance Degree of Signed Graphs after At-

tacks (Q1)

To validate the effectiveness of our method, we first apply our approach and obtain

conclusive results: the balance degree of signed graphs is significantly reduced com-
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pared to the balance degree under the random attack. We present the comparison

results of the balance-attack and random attack in Fig. 6.1. Initially, in each dataset,

the balance degree ranges from 0.85 to 0.9. When subjected to random attacks with a

perturbation rate of 20%, the minimum balance degree drops to approximately 0.65.

However, by utilizing our designed balance-attack method with a perturbation rate

of 5%, the balance degree becomes more lower, ranging between 0.35 and 0.55. Fur-

thermore, at a perturbation rate of 20%, the balance degree can be further reduced to

about 0.1, which is significantly lower than what is achieved through random attacks.

These results unequivocally demonstrate the effectiveness of our proposed method in

significantly reducing the balance degree of the graph.

6.5 Attack Performance of balance-attack (Q2)

We conduct a comparative analysis between random attack and balance-attack on

five existing SGNN models. To evaluate their performance, we tested the models

at perturbation rates from 0% to 20% based on the three metrics mentioned before

to evaluate the attack performance. RSGNN is a model known for its resilience

against random attacks. While its original design may not have explicitly focused on

adversarial attacks, we can infer that it possesses greater robustness against various

attack scenarios compared to other SGNN models. Based on the results in Tab. 6.2,

it is evident that RSGNN can maintain satisfactory performance even when subjected

to random attacks. However, when exposed to our balance-attack, the performance

of RSGNN experiences a significant decline. Similar results are observed in the other

four SGNN models as presented in Tab. 6.3 and Tab. 6.4.
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6.6 Applicability of balance-attack on various SGNNs

(Q3)

In addition to assessing balance-theory-based models, we also evaluate the perfor-

mance of our proposed attack on non-balance-based models (i.e. UGCL). Even though

our attack method is designed based on the intuition that many SGNNs rely on

balance theory, we surprisingly find that it also proves to be effective against non-

balance-based SGNNs. This showcases the versatility and efficacy of balance-attack

across different SGNNs.

6.7 Defense Performance against Attacks (Q4)

To answer Q4, we first use the attack methods to poison the graph, varying the per-

turbation ratio within the range of 0 to 20%. These two attacks are global attacks and

can flip edge signs, without any capability to add or delete edges. The perturbation

ratio represents the proportion of edges that can change their signs within the entire

set of edges. We then train models on the poisoned graph and evaluate the link sign

prediction performance achieved by these methods.

Link sign prediction results with AUC and Macro-F1 under adversarial attacks for

BA-SGCL and other baselines are shown in Tab. 6.5 and Tab. 6.6. Micro-F1 and

Binary-F1 are shown in Tab, 6.7 and Tab. 6.8. Notably, both AUC and Macro-

F1 exhibit significant improvements in comparison to other baselines. Regarding

Micro-F1 and Binary-F1, their performance closely aligns with that of the current

state-of-the-art models.

We make the following observations from the results. Firstly, existing SGNNs de-

grade significantly under various attacks, while our model maintains high performance

with minimal degradation, indicating its robustness. Secondly, RSGNN performs well
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against random attacks but exhibits weaker defense against adversarial attacks, likely

due to the direct enhancement of the balance degree, which encounters the Irreversibil-

ity of Balance-related Information challenge. Thirdly, even with an attack rate of 0,

BA-SGCL outperforms other GCL models, attributed to guided balance augmenta-

tion for capturing more graph invariance and obtaining higher-quality embeddings.

6.8 Analysis of Balance Augmentation (Q5)

To evaluate the effectiveness of balance augmentation, we compare BA-SGCL with a

control model called random-SGCL. In random-SGCL, sign perturbation is applied

to an augmented view, randomly changing the sign of links. The another view re-

mains unchanged. For the remaining parts, we adopt the same settings as BA-SGCL.

The remaining components of random-SGCL are the same as those in BA-SGCL.

Detailed results of the effectiveness of balance augmentation under balance-attack

and FlipAttack are shown in Tab. 6.9 and Tab. 6.10, respectively. The superior

performance of BA-SGCL in comparison to random-SGCL is evident. These results

clearly demonstrate the effectiveness of our balance augmentation.

6.9 Ablation Study

To confirm that the improved robust performance of our model is a result of the com-

bination of the GCL framework and balance augmentation instead of the SDGCN

encoder, we conduct experiments where we replaced the SDGCN encoder with other

encoders, such as SGCN [13], while keeping the remaining modules unchanged. The

performance comparison between BA-SGCL using SGCN encoder with the original

SGCN model under balance-attack are shown in Tab. 6.11 and Tab. 6.12, respec-

tively. More comprehensive results are shown in Appendix C. It is evident that

the performance of BA-SGCL (SGCN encoder) significantly outperforms that of the
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Figure 6.2: Parameter Analysis with Perturbation Rate = 10%. The first line is under

balance-attack, the second line is under FlipAttack.

SGCN model, thus affirming the efficacy of our proposed GCL framework and the

balance augmentation technique.

6.10 Parameter Analysis

We explore the sensitivity of hyper-parameters α in the loss function. Our objective

is to examine how varying the value of α can impact the performance of BA-SGCL.

Specifically, we experiment with different hyper-parameter values ranging from 1e-3

to 1e3. The performance of BA-SGCL under attacks with a perturbation rate of 10%

is depicted in Fig. 6.2. The parameter analysis test with a perturbation rate equals to

20% is shown in Fig. 6.3. Considering four metrics, we conclude that proper settings

of the parameter α can enhance the performance of BA-SGCL. However, if the value

of α is too small or too large, it can significantly impair the model’s performance.
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Figure 6.3: Parameter Analysis with Perturbation Rate = 20%. The first line is under

balance-attack, the second line is under FlipAttack.
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Table 6.2: Link Sign Prediction Performance of RSGNN under Random Attack and

balance-attack

Dataset Ptb Attack Micro f1 Binary f1 Macro f1

Bitcoin-Alpha

0 - 0.8820 0.9341 0.6841

10%
ranodm 0.7726 0.8642 0.5831

balance 0.6802 0.7984 0.5123

20%
random 0.6839 0.8010 0.5165

balance 0.6308 0.7631 0.4635

Bitcoin-OTC

0 - 0.8919 0.9382 0.7553

10%
random 0.8242 0.8950 0.6782

balance 0.7134 0.8158 0.5849

20%
random 0.7828 0.8673 0.6341

balance 0.6424 0.7625 0.5194

Slashdot

0 - 0.7823 0.8574 0.6988

10%
random 0.7092 0.7982 0.6390

balance 0.6719 0.7761 0.5813

20%
random 0.6637 0.7576 0.6044

balance 0.6009 0.7165 0.5215

Epinions

0 - 0.8280 0.8932 0.7261

10%
random 0.7711 0.8516 0.6754

balance 0.7342 0.8234 0.6432

20%
random 0.7409 0.8285 0.6492

balance 0.6832 0.7836 0.5962
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Table 6.3: Link Sign Prediction Performance of UGCL and SGCL under Random

Attack and balance-attack with Perturbation Rate = 20%

Model Dataset Attack Micro F1 Binary F1 Macro F1

UGCL

Bitcoin-Alpha
random 0.9199 0.9576 0.6192

balance 0.8044 0.8883 0.5526

Bitcoin-OTC
random 0.8988 0.9442 0.6983

balance 0.7752 0.8643 0.6044

Slashdot
random 0.8538 0.9173 0.6318

balance 0.7826 0.8704 0.5971

Epinions
random 0.8635 0.9237 0.6390

balance 0.8328 0.9018 0.6665

SGCL

Bitcoin-Alpha
random 0.9305 0.9636 0.6007

balance 0.8108 0.8931 0.5312

Bitcoin-OTC
random 0.9026 0.9480 0.6131

balance 0.7931 0.8785 0.5919

Slashdot
random 0.8338 0.9072 0.5578

balance 0.7002 0.8163 0.5001

Epinions
random 0.8482 0.9160 0.5673

balance 0.7385 0.8371 0.5872
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Table 6.4: Link Sign Prediction Performance of SDGNN and SGCN under Random

Attack and balance-attack with Perturbation Rate = 20%

Model Dataset Attack Micro F1 Binary F1 Macro F1

SDGNN

Bitcoin-Alpha
random 0.8616 0.9234 0.6062

balance 0.7775 0.8698 0.5528

Bitcoin-OTC
random 0.8333 0.9028 0.6593

balance 0.7388 0.8371 0.5893

Slashdot
random 0.8405 0.8981 0.6966

balance 0.7326 0.8286 0.6106

Epinions
random 0.8336 0.9023 0.6714

balance 0.7696 0.8550 0.6467

SGCN

Bitcoin-Alpha
random 0.6614 0.7842 0.4991

balance 0.6022 0.7346 0.4704

Bitcoin-OTC
random 0.6833 0.7925 0.5620

balance 0.6265 0.7434 0.5288

Slashdot
random 0.6835 0.7752 0.6204

balance 0.5939 0.7029 0.5307

Epinions
random 0.6725 0.7712 0.5977

balance 0.6453 0.7497 0.5706
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Table 6.5: AUC and Macro-F1 of SGNNs on Link Sign Prediction under balance-

attack
Ptb(%)

SNE Attack-tolerant SNE Proposed

SiNE SGCN SNEA BESIDE SDGNN SDGCN RSGNN SGCL UGCL BA-SGCL

Metrics AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1

B
it

co
in

A
lp

h
a

0 0.8109 0.6712 0.7992 0.6656 0.8013 0.6724 0.8635 0.7106 0.8552 0.7145 0.8598 0.7201 0.8034 0.6841 0.8491 0.7121 0.8645 0.7351 0.8948 0.7772

5 0.7412 0.5811 0.7354 0.5648 0.7421 0.5794 0.7972 0.6332 0.8038 0.6481 0.8002 0.6425 0.7454 0.5848 0.8074 0.6546 0.8266 0.6729 0.8461 0.6908

10 0.6879 0.5212 0.6913 0.5125 0.6994 0.5231 0.7569 0.6047 0.7791 0.5744 0.7782 0.5689 0.7063 0.5323 0.7614 0.6056 0.7843 0.6225 0.7997 0.6527

15 0.6715 0.4911 0.6855 0.4836 0.6912 0.4986 0.7328 0.5495 0.7466 0.5478 0.7431 0.5397 0.6199 0.5014 0.7256 0.5681 0.7485 0.5777 0.7716 0.5994

20 0.6512 0.4755 0.6535 0.4704 0.6693 0.4881 0.6977 0.5139 0.7186 0.5128 0.6925 0.5078 0.6025 0.4835 0.6919 0.5312 0.7244 0.5426 0.7479 0.5742

B
it

co
in

O
T

C

0 0.8211 0.7612 0.8253 0.7501 0.8304 0.7613 0.8858 0.7607 0.8962 0.7511 0.8846 0.7638 0.8171 0.7553 0.8931 0.7711 0.8942 0.7801 0.9108 0.8079

5 0.7613 0.6612 0.7753 0.6471 0.7814 0.6514 0.8373 0.7236 0.8565 0.6928 0.8412 0.6847 0.7954 0.6574 0.8458 0.7218 0.8602 0.7559 0.8774 0.7814

10 0.7494 0.6232 0.7504 0.6142 0.7511 0.6287 0.8039 0.6455 0.8266 0.6327 0.8104 0.6385 0.7452 0.5849 0.8091 0.6611 0.8329 0.6863 0.8476 0.6984

15 0.7151 0.5798 0.7271 0.5814 0.7351 0.5934 0.7713 0.5914 0.7969 0.5824 0.7859 0.5747 0.6923 0.5486 0.7827 0.6091 0.7951 0.6402 0.8134 0.6456

20 0.6812 0.5589 0.6985 0.5621 0.7045 0.5698 0.7411 0.5565 0.7561 0.5393 0.7305 0.5238 0.6603 0.5194 0.7407 0.5715 0.7654 0.5944 0.7926 0.6111

S
la

sh
d

ot

0 0.8214 0.6812 0.8153 0.6834 0.8296 0.6945 0.8389 0.7092 0.8909 0.7203 0.8933 0.7298 0.7829 0.6988 0.8848 0.6874 0.8885 0.7375 0.8956 0.7549

5 0.7322 0.6328 0.7432 0.6332 0.7524 0.6473 0.7832 0.6873 0.8285 0.6867 0.8015 0.6774 0.7184 0.6484 0.8155 0.6506 0.8479 0.6948 0.8561 0.7485

10 0.6912 0.5811 0.6892 0.5719 0.6998 0.5824 0.7622 0.6743 0.7691 0.6334 0.7406 0.6257 0.6564 0.5813 0.7465 0.5611 0.7771 0.6658 0.8017 0.7329

15 0.6412 0.5412 0.6497 0.5404 0.6591 0.5563 0.7393 0.6439 0.7391 0.5989 0.7098 0.5825 0.6377 0.5557 0.6918 0.5009 0.7365 0.6397 0.7701 0.6842

20 0.6211 0.5164 0.6348 0.5207 0.6415 0.5258 0.7152 0.6057 0.6972 0.5706 0.6706 0.5669 0.5976 0.5215 0.6589 0.5001 0.6911 0.5871 0.7643 0.6581

E
p

in
io

n
s

0 0.7911 0.6847 0.7763 0.6957 0.7912 0.6998 0.8575 0.7104 0.8591 0.7141 0.8613 0.6784 0.7821 0.7161 0.8512 0.7155 0.8723 0.6861 0.8731 0.7301

5 0.7815 0.6501 0.7711 0.6603 0.7833 0.6724 0.8074 0.6958 0.8261 0.7032 0.8052 0.6583 0.7535 0.6739 0.8034 0.6661 0.8352 0.6846 0.8523 0.7203

10 0.7421 0.6114 0.7383 0.6125 0.7421 0.6231 0.7478 0.6605 0.7981 0.6898 0.7823 0.6366 0.7419 0.6432 0.7881 0.6536 0.8127 0.6789 0.8444 0.7321

15 0.7273 0.5889 0.7142 0.5843 0.7156 0.5895 0.7203 0.6339 0.7812 0.6598 0.7653 0.6105 0.7257 0.6201 0.7442 0.6165 0.7871 0.6632 0.8037 0.7032

20 0.6912 0.5712 0.6881 0.5606 0.6891 0.5679 0.6997 0.6075 0.7583 0.6367 0.7424 0.6075 0.6981 0.5962 0.7136 0.5872 0.7711 0.6465 0.7887 0.6772

Table 6.6: AUC and Macro-F1 of SGNNs on Link Sign Prediction under FlipAttack
Ptb(%)

SNE Attack-tolerant SNE Proposed

SiNE SGCN SNEA BESIDE SDGNN SDGCN RSGNN SGCL UGCL BA-SGCL

Metrics AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1 AUC Macro-F1

B
it

co
in

A
lp

h
a

0 0.8109 0.6712 0.7992 0.6656 0.8013 0.6724 0.8635 0.7106 0.8552 0.7145 0.8598 0.7201 0.8034 0.6841 0.8491 0.7121 0.8645 0.7351 0.8948 0.7772

5 0.7136 0.5618 0.7114 0.5782 0.7223 0.5892 0.7886 0.6549 0.7485 0.6312 0.7428 0.6314 0.7301 0.5847 0.7749 0.6328 0.7991 0.6597 0.8204 0.6708

10 0.6854 0.5764 0.6746 0.5543 0.6885 0.5623 0.7441 0.5987 0.7252 0.5775 0.7395 0.5783 0.6908 0.5431 0.7202 0.5579 0.7565 0.5972 0.7828 0.6241

15 0.5913 0.4923 0.5984 0.4987 0.6014 0.5038 0.6651 0.5721 0.6614 0.5632 0.6639 0.5682 0.6261 0.5057 0.6598 0.5139 0.7081 0.5671 0.7299 0.5901

20 0.5714 0.4412 0.5601 0.4322 0.5772 0.4423 0.6404 0.5197 0.6325 0.5088 0.6258 0.5082 0.5783 0.4574 0.5888 0.4801 0.6293 0.5047 0.6745 0.5395

B
it

co
in

O
T

C

0 0.8211 0.7612 0.8253 0.7501 0.8304 0.7613 0.8858 0.7607 0.8962 0.7511 0.8846 0.7638 0.8171 0.7553 0.8931 0.7711 0.8942 0.7801 0.9108 0.8079

5 0.7301 0.6434 0.7397 0.6538 0.7419 0.6634 0.7871 0.6875 0.7746 0.6755 0.7824 0.6792 0.7447 0.6799 0.7721 0.6885 0.7836 0.6849 0.8005 0.7056

10 0.6905 0.5996 0.6844 0.6086 0.6924 0.6134 0.7066 0.6117 0.7086 0.5987 0.7123 0.5983 0.7013 0.6278 0.6817 0.6014 0.7233 0.6298 0.7442 0.6636

15 0.6598 0.5596 0.6518 0.5639 0.6634 0.5698 0.6953 0.5919 0.6889 0.5848 0.6942 0.5912 0.6741 0.5856 0.6647 0.5895 0.7117 0.5986 0.7413 0.6333

20 0.6424 0.5587 0.6315 0.5512 0.6412 0.5634 0.6508 0.5822 0.6714 0.5813 0.6739 0.5821 0.6677 0.5732 0.6438 0.5628 0.7037 0.5762 0.7227 0.6277

S
la

sh
d

ot

0 0.8214 0.6812 0.8153 0.6834 0.8296 0.6945 0.8389 0.7092 0.8909 0.7203 0.8933 0.7298 0.7829 0.6988 0.8848 0.6874 0.8885 0.7375 0.8956 0.7549

5 0.7221 0.6024 0.7193 0.6092 0.7285 0.6124 0.7812 0.6356 0.7695 0.6234 0.7584 0.6173 0.7253 0.6118 0.7735 0.6301 0.7864 0.6421 0.8014 0.6623

10 0.6398 0.5279 0.6412 0.5212 0.6593 0.5331 0.7395 0.5689 0.7193 0.5589 0.7158 0.5498 0.6608 0.5323 0.7214 0.5665 0.7455 0.5812 0.7626 0.6094

15 0.6195 0.5027 0.6128 0.5058 0.6245 0.5285 0.6914 0.5582 0.6819 0.5452 0.6845 0.5412 0.6274 0.5112 0.6745 0.5412 0.6979 0.5633 0.7234 0.5757

20 0.6124 0.4681 0.6041 0.4776 0.6184 0.4872 0.6725 0.5193 0.6519 0.4989 0.6537 0.5028 0.6235 0.4898 0.6596 0.5025 0.6803 0.5234 0.7035 0.5412

E
p

in
io

n
s

0 0.7911 0.6847 0.7763 0.6957 0.7912 0.6998 0.8575 0.7104 0.8591 0.7141 0.8613 0.6784 0.7821 0.7161 0.8512 0.7155 0.8723 0.6861 0.8731 0.7301

5 0.7113 0.5789 0.7124 0.5824 0.7296 0.5983 0.7764 0.6387 0.7437 0.6358 0.7363 0.6382 0.7387 0.6121 0.7765 0.6453 0.7889 0.6412 0.7967 0.6554

10 0.6814 0.5168 0.6898 0.5215 0.6934 0.5353 0.7214 0.5885 0.7355 0.5712 0.7295 0.5872 0.7146 0.5524 0.7216 0.5812 0.7311 0.5898 0.7564 0.6018

15 0.6592 0.4919 0.6698 0.4989 0.6774 0.5034 0.6934 0.5415 0.7044 0.5339 0.6985 0.5389 0.6822 0.5123 0.6977 0.5416 0.7012 0.5543 0.7219 0.5718

20 0.6087 0.4996 0.6149 0.4884 0.6255 0.4982 0.6611 0.5268 0.6708 0.5279 0.6684 0.5287 0.6435 0.5051 0.6598 0.5331 0.6784 0.5413 0.6943 0.5612
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6.10. Parameter Analysis

Table 6.7: Micro-F1 and Binary-F1 of SGNNs on Link Sign Prediction under balance-

attack
Ptb(%)

SNE Attack-tolerant SNE Proposed

SiNE SGCN SNEA BESIDE SDGNN SDGCN RSGNN SGCL UGCL BA-SGCL

Metrics Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1

B
it

co
in

A
lp

h
a

0 0.8495 0.8953 0.8525 0.9041 0.8613 0.9188 0.9291 0.9497 0.9114 0.9443 0.9216 0.9475 0.8821 0.9341 0.9231 0.9591 0.9481 0.9731 0.9526 0.9751

5 0.7133 0.8246 0.7263 0.8134 0.7325 0.8276 0.8954 0.9216 0.8754 0.9241 0.8739 0.9275 0.7563 0.8534 0.9165 0.9353 0.9215 0.9579 0.9297 0.9626

10 0.6598 0.7574 0.6602 0.7684 0.6737 0.7758 0.8584 0.9144 0.8303 0.8981 0.8219 0.8895 0.6802 0.7984 0.8848 0.9175 0.8838 0.9364 0.9037 0.9454

15 0.6154 0.7485 0.6205 0.7562 0.6309 0.7633 0.8082 0.8986 0.7961 0.8712 0.7889 0.8693 0.6605 0.7862 0.8565 0.9008 0.8452 0.9135 0.8435 0.9166

20 0.5989 0.7296 0.6022 0.7346 0.6137 0.7487 0.7635 0.8797 0.7375 0.8398 0.7329 0.8275 0.6308 0.7631 0.8051 0.8731 0.7993 0.8751 0.8088 0.8802

B
it

co
in

O
T

C

0 0.8681 0.9184 0.8791 0.9296 0.8824 0.9374 0.9129 0.9454 0.9044 0.9439 0.9127 0.9397 0.8919 0.9382 0.9202 0.9564 0.9361 0.9651 0.9383 0.9662

5 0.7739 0.8526 0.7829 0.8661 0.7959 0.8775 0.8845 0.9357 0.8677 0.9224 0.8648 0.9276 0.7971 0.8761 0.9074 0.9447 0.9156 0.9531 0.9224 0.9571

10 0.7312 0.8301 0.7474 0.8409 0.7532 0.8537 0.8269 0.9046 0.8143 0.8891 0.8048 0.8843 0.7134 0.8158 0.8549 0.9194 0.8669 0.9239 0.8596 0.9189

15 0.6946 0.8097 0.7066 0.8104 0.7159 0.8259 0.7878 0.8715 0.7651 0.8569 0.7662 0.8573 0.6787 0.7909 0.8135 0.8946 0.8234 0.8964 0.8134 0.8896

20 0.6724 0.7846 0.6833 0.7925 0.6983 0.8094 0.7409 0.8421 0.7088 0.8171 0.7175 0.8275 0.6424 0.7625 0.7731 0.8665 0.7752 0.8643 0.7743 0.8636

S
la

sh
d

ot

0 0.8012 0.8614 0.8127 0.8788 0.8235 0.8853 0.8549 0.9145 0.8698 0.9295 0.8648 0.9275 0.7823 0.8574 0.8739 0.9291 0.8791 0.9297 0.8792 0.9301

5 0.7015 0.7988 0.7199 0.8091 0.7206 0.8137 0.8364 0.8789 0.8578 0.9161 0.8426 0.9086 0.7444 0.8225 0.8281 0.8995 0.8732 0.9278 0.8747 0.9269

10 0.6412 0.7461 0.6518 0.7528 0.6648 0.7648 0.8094 0.8512 0.8056 0.8812 0.7984 0.8775 0.6719 0.7761 0.7572 0.8553 0.8533 0.9156 0.8708 0.9103

15 0.6012 0.6914 0.6025 0.7093 0.6196 0.7183 0.7839 0.8215 0.7704 0.8568 0.7637 0.8429 0.6378 0.7466 0.7221 0.8331 0.8301 0.9011 0.8391 0.9054

20 0.5859 0.6911 0.5939 0.7029 0.6069 0.7138 0.7426 0.8014 0.7326 0.8286 0.7286 0.8119 0.6009 0.7165 0.7002 0.8163 0.7826 0.8704 0.7817 0.8637

E
p

in
io

n
s

0 0.8095 0.8724 0.8181 0.8863 0.8285 0.8964 0.8549 0.9153 0.8727 0.9265 0.8637 0.9258 0.8281 0.8932 0.8673 0.9232 0.8762 0.9304 0.8742 0.9279

5 0.7624 0.8448 0.7734 0.8528 0.7849 0.8637 0.8366 0.9005 0.8618 0.9196 0.8533 0.9074 0.7736 0.8542 0.8478 0.9125 0.8726 0.9281 0.8718 0.9279

10 0.6914 0.7871 0.7038 0.7976 0.7119 0.8094 0.7939 0.8814 0.8374 0.9032 0.8229 0.9054 0.7342 0.8234 0.8218 0.8951 0.8679 0.9249 0.8608 0.9181

15 0.6616 0.7689 0.6711 0.7707 0.6839 0.7843 0.7695 0.8412 0.8097 0.8837 0.7974 0.8854 0.7068 0.8016 0.7758 0.8636 0.8532 0.9152 0.8451 0.9084

20 0.6374 0.7443 0.6453 0.7497 0.6576 0.7586 0.7332 0.8141 0.7696 0.8551 0.7527 0.8496 0.6832 0.7836 0.7385 0.8371 0.8328 0.9018 0.8219 0.8938

Table 6.8: Micro-F1 and Binary-F1 of SGNNs on Link Sign Prediction under FlipAt-

tack
Ptb(%)

SNE Attack-tolerant SNE Proposed

SiNE SGCN SNEA BESIDE SDGNN SDGCN RSGNN SGCL UGCL BA-SGCL

Metrics Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1 Micro-F1 Binary-F1

B
it

co
in

A
lp

h
a

0 0.8495 0.8953 0.8525 0.9041 0.8613 0.9188 0.9291 0.9497 0.9114 0.9443 0.9216 0.9475 0.8821 0.9341 0.9231 0.9591 0.9481 0.9731 0.9526 0.9751

5 0.7295 0.8342 0.7259 0.8293 0.7312 0.8388 0.8533 0.9124 0.8331 0.9021 0.8315 0.9123 0.7502 0.8469 0.8675 0.9165 0.8816 0.9265 0.8741 0.9212

10 0.6724 0.8023 0.6747 0.7982 0.6884 0.8044 0.8285 0.8792 0.8173 0.8592 0.8042 0.8758 0.6992 0.8102 0.8201 0.9045 0.8599 0.9222 0.8577 0.9205

15 0.6399 0.7721 0.6315 0.7632 0.6448 0.7735 0.7835 0.8624 0.7667 0.8425 0.7523 0.8315 0.6645 0.7859 0.7706 0.8733 0.8166 0.8994 0.8152 0.8943

20 0.5724 0.7124 0.5798 0.7074 0.5872 0.7263 0.7386 0.8315 0.7123 0.8123 0.7045 0.8093 0.5909 0.7266 0.6913 0.8183 0.7458 0.8346 0.7459 0.8369

B
it

co
in

O
T

C

0 0.8681 0.9184 0.8791 0.9296 0.8824 0.9374 0.9129 0.9454 0.9044 0.9439 0.9127 0.9397 0.8919 0.9382 0.9202 0.9564 0.9361 0.9651 0.9383 0.9662

5 0.7684 0.8583 0.7786 0.8614 0.7985 0.8776 0.8224 0.9036 0.8124 0.9195 0.8068 0.9112 0.8009 0.8767 0.8416 0.9033 0.8505 0.9113 0.8601 0.9188

10 0.7244 0.8278 0.7238 0.8253 0.7474 0.8369 0.8123 0.8787 0.8012 0.8824 0.7998 0.8775 0.7502 0.8413 0.7939 0.8843 0.8484 0.9049 0.8572 0.9113

15 0.6682 0.7748 0.6713 0.7764 0.6835 0.7894 0.7785 0.8649 0.7662 0.8535 0.7524 0.8438 0.6963 0.7998 0.7791 0.8724 0.8144 0.8889 0.8181 0.8864

20 0.6489 0.7512 0.6425 0.7597 0.6553 0.7627 0.7643 0.8327 0.7464 0.8251 0.7354 0.8048 0.6781 0.7848 0.7348 0.8425 0.8037 0.8812 0.8072 0.8885

S
la

sh
d

ot

0 0.8012 0.8614 0.8127 0.8788 0.8235 0.8853 0.8549 0.9145 0.8698 0.9295 0.8648 0.9275 0.7823 0.8574 0.8739 0.9291 0.8791 0.9297 0.8792 0.9301

5 0.7149 0.7424 0.7086 0.7592 0.7186 0.7626 0.7747 0.8616 0.7798 0.8637 0.7685 0.8548 0.7103 0.7797 0.8034 0.8557 0.8243 0.8797 0.8206 0.8842

10 0.6736 0.7419 0.6867 0.7475 0.6943 0.7583 0.7718 0.8512 0.7626 0.8537 0.7535 0.8386 0.7023 0.7635 0.7942 0.8521 0.8114 0.8716 0.8024 0.8736

15 0.6695 0.7286 0.6642 0.7329 0.6708 0.7428 0.7538 0.8379 0.7429 0.8398 0.7388 0.8181 0.6887 0.7532 0.7732 0.8328 0.7809 0.8465 0.7885 0.8573

20 0.6264 0.7018 0.6286 0.7092 0.6378 0.7212 0.7274 0.8092 0.7219 0.8217 0.7266 0.8007 0.6532 0.7328 0.7443 0.8192 0.7574 0.8321 0.7637 0.8386

E
p

in
io

n
s

0 0.8095 0.8724 0.8181 0.8863 0.8285 0.8964 0.8549 0.9153 0.8727 0.9265 0.8637 0.9258 0.8281 0.8932 0.8673 0.9232 0.8762 0.9304 0.8742 0.9279

5 0.7143 0.7715 0.7125 0.7768 0.7244 0.7886 0.8189 0.8637 0.8143 0.8662 0.8023 0.8629 0.7386 0.7958 0.8234 0.8635 0.8319 0.8986 0.8352 0.8975

10 0.7017 0.7627 0.7098 0.7635 0.7212 0.7759 0.7982 0.8521 0.8023 0.8511 0.7982 0.8476 0.7328 0.7837 0.8026 0.8529 0.8278 0.8946 0.8323 0.8905

15 0.6935 0.7378 0.7023 0.7441 0.7145 0.7528 0.7989 0.8314 0.7993 0.8392 0.7928 0.8242 0.7148 0.7648 0.8015 0.8321 0.8253 0.8726 0.8213 0.8774

20 0.6889 0.7219 0.6835 0.7289 0.6982 0.7375 0.7823 0.8291 0.7723 0.8272 0.7635 0.8192 0.6983 0.7456 0.7864 0.8265 0.7992 0.8375 0.8023 0.8432
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Chapter 6. Experiments

Table 6.9: Effectiveness of Balance Augmentation under balance-attack

Dataset Ptb(%)
random-SGCL BA-SGCL

AUC Macro-F1 Micro-F1 Binary-F1 AUC Macro-F1 Micro-F1 Binary-F1

BitcoinAlpha

0 0.8363 0.7258 0.9221 0.9601 0.8948 0.7772 0.9526 0.9751

10 0.7692 0.6123 0.8778 0.9103 0.7997 0.6527 0.9037 0.9454

20 0.7034 0.5401 0.8005 0.8762 0.7479 0.5742 0.8088 0.8802

BitconOTC

0 0.8894 0.7723 0.9189 0.9587 0.9108 0.8079 0.9383 0.9662

10 0.8023 0.6632 0.8541 0.9083 0.8476 0.6984 0.8596 0.9189

20 0.7539 0.5885 0.7724 0.8623 0.7926 0.6111 0.7743 0.8636

Slashdot

0 0.8814 0.6889 0.8746 0.9223 0.8956 0.7549 0.8792 0.9301

10 0.7498 0.5789 0.7982 0.8779 0.8017 0.7329 0.8708 0.9103

20 0.6798 0.5122 0.7652 0.8523 0.7643 0.6581 0.7817 0.8637

Epinions

0 0.8582 0.7123 0.8698 0.9223 0.8731 0.7301 0.8742 0.9279

10 0.7943 0.6579 0.8625 0.9123 0.8444 0.7321 0.8608 0.9181

20 0.7331 0.6293 0.8241 0.8996 0.7887 0.6772 0.8219 0.8938

Table 6.10: Effectiveness of Balance Augmentation under FlipAttack

Dataset Ptb(%)
random-SGCL BA-SGCL

AUC Macro-F1 Micro-F1 Binary-F1 AUC Macro-F1 Micro-F1 Binary-F1

BitcoinAlpha

0 0.8523 0.7329 0.9441 0.9712 0.8948 0.7772 0.9526 0.9751

10 0.7423 0.5889 0.8512 0.9198 0.7828 0.6241 0.8577 0.9205

20 0.6182 0.5021 0.7421 0.8327 0.6745 0.5395 0.7459 0.8369

BitconOTC

0 0.8829 0.7789 0.9351 0.9612 0.9108 0.8079 0.9383 0.9662

10 0.7179 0.6143 0.8427 0.9024 0.7442 0.6636 0.8572 0.9113

20 0.6988 0.5613 0.7989 0.8769 0.7227 0.6277 0.8072 0.8885

Slashdot

0 0.8853 0.7214 0.8679 0.9123 0.8956 0.7549 0.8792 0.9301

10 0.7332 0.5721 0.8097 0.8687 0.7626 0.6094 0.8024 0.8736

20 0.6712 0.5179 0.7527 0.8305 0.7035 0.5412 0.7637 0.8386

Epinions

0 0.8647 0.6932 0.8726 0.9228 0.8731 0.7301 0.8742 0.9279

10 0.7267 0.5823 0.8198 0.8943 0.7564 0.6018 0.8323 0.8905

20 0.6665 0.5402 0.7994 0.8279 0.6943 0.5612 0.8023 0.8432
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6.10. Parameter Analysis

Table 6.11: Ablation Study under balance-attack

Dataset Ptb(%)
SGCN BA-SGCL (SGCN encoder)

AUC Macro-F1 Micro-F1 Binary-F1 AUC Macro-F1 Micro-F1 Binary-F1

BitcoinAlpha

0 0.7992 0.6656 0.8525 0.9041 0.8447 0.7226 0.9298 0.9615

10 0.6913 0.5125 0.6602 0.7684 0.7723 0.6113 0.8832 0.9225

20 0.6535 0.4704 0.6022 0.7346 0.6954 0.5383 0.7921 0.8718

BitconOTC

0 0.8253 0.7501 0.8791 0.9296 0.8957 0.7821 0.9244 0.9557

10 0.7504 0.6142 0.7474 0.8409 0.8229 0.6743 0.8578 0.9143

20 0.6985 0.5621 0.6833 0.7925 0.7449 0.5823 0.7742 0.8598

Slashdot

0 0.8153 0.6834 0.8127 0.8788 0.8851 0.7044 0.8724 0.9211

10 0.6892 0.5719 0.6518 0.7528 0.7559 0.5962 0.7973 0.8721

20 0.6348 0.5207 0.5939 0.7029 0.6776 0.5543 0.7685 0.8427

Epinions

0 0.7763 0.6957 0.8181 0.8863 0.8623 0.7083 0.8661 0.9292

10 0.7383 0.6125 0.7038 0.7976 0.7998 0.6737 0.8574 0.9046

20 0.6881 0.5606 0.6453 0.7497 0.7478 0.6122 0.7992 0.8575

Table 6.12: Ablation Study under FlipAttack

Dataset Ptb(%)
SGCN BA-SGCL (SGCN encoder)

AUC Macro-F1 Micro-F1 Binary-F1 AUC Macro-F1 Micro-F1 Binary-F1

BitcoinAlpha

0 0.7992 0.6656 0.8525 0.9041 0.8447 0.7226 0.9298 0.9615

10 0.6746 0.5543 0.6747 0.7982 0.7445 0.5689 0.8332 0.9098

20 0.5601 0.4322 0.5798 0.7074 0.6052 0.4925 0.7121 0.8232

BitconOTC

0 0.8253 0.7501 0.8791 0.9296 0.8957 0.7821 0.9244 0.9557

10 0.6844 0.6086 0.7238 0.8253 0.6929 0.6077 0.8112 0.8923

20 0.6315 0.5512 0.6425 0.7597 0.6639 0.5723 0.7661 0.8524

Slashdot

0 0.8153 0.6834 0.8127 0.8788 0.8851 0.7044 0.8724 0.9211

10 0.6412 0.5212 0.6867 0.7475 0.7278 0.5752 0.8003 0.8661

20 0.6041 0.4776 0.6268 0.7092 0.6723 0.5114 0.7476 0.8212

Epinions

0 0.7763 0.6957 0.8181 0.8863 0.8623 0.7083 0.8661 0.9292

10 0.6898 0.5215 0.7098 0.7635 0.7259 0.5778 0.8132 0.8776

20 0.6149 0.4884 0.6835 0.7289 0.6662 0.5387 0.7889 0.8236
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Chapter 7

Conclusion

In this paper, we present the balance-attack, a novel black-box attack designed to

reduce the balance degree in signed graphs. To tackle this NP-hard problem, we pro-

pose an efficient heuristic algorithm. We conduct extensive experiments using popular

SGNN models to validate the effectiveness and generality of the attack. Through our

research, we aim to enhance the understanding of the limitations and resilience of

robust models when confronted with attacks on SGNNs.

Furthermore, we shed light on the vulnerability of existing SGNNs to adversarial at-

tacks, which significantly impact the balance of signed graphs. To address this issue,

we introduce the balance learning method for restoring attacked graphs. However,

during the course of our investigation, we encounter the challenge of Irreversibility

of Balance-related Information. In response, we propose BA-SGCL, a novel robust

SGNN model that combines balance augmentation and GCL techniques. This ap-

proach aims to defend against adversarial attacks and indirectly tackle the aforemen-

tioned challenge. The theoretical foundation of our approach is supported by mutual

information theory. Through empirical evaluations on various signed graph bench-

marks under attacks, we demonstrate the effectiveness of our model in defense. This

work represents a pioneering effort in the field of robust learning to defend against ad-
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versarial attacks in signed graph representation learning, holding promising potential

for future advancements.

Looking ahead, there are several promising directions for future research in the field

of signed graph security. While some studies have explored dynamic signed graph

neural networks, the security aspects of these temporal structures remain largely

unexplored. Future work could investigate how adversarial attacks evolve and prop-

agate in dynamic signed networks, and develop adaptive defense mechanisms that

account for temporal dependencies. The extension to heterogeneous signed graphs

presents another crucial direction, where the interplay between different node types

and their relationships could introduce new security challenges. Beyond the devel-

opment of more sophisticated targeted attacks, future research could delve into the

interpretability of SGNN models to better understand their decision-making processes

and vulnerabilities. Additionally, privacy preservation in signed graphs presents an-

other critical challenge, particularly in scenarios where relationship polarities may

contain sensitive information. The examination of fairness in signed graph learn-

ing also warrants attention, ensuring that models maintain equitable performance

across different subgroups and relationship types. These directions, combined with

the ongoing advancement in robust learning techniques, could significantly enhance

our understanding and capability to secure signed graph-based systems.
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