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Abstract

Cellular-enabled unmanned aerial vehicle (UAV) communication or cellular-

connected UAV is a promising approach for realizing high-quality UAV-to-ground

communications. In this thesis, we investigate brand new challenges for cellular-

connected UAVs, separately focusing on a sensing problem for a target whose

exact location is unknown and random and a handover awareness problem for

cellular-enabled UAV communication.

Firstly, we study a trajectory optimization of a cellular-connected UAV

which bears a mission of sensing the location of a ground target based on its

prior location distribution information where the UAV maintains satisfactory

communication with ground base stations (GBSs). We focus on a challenging

scenario where the exact location of the target to be sensed is unknown and

random, while its prior distribution is known and stored in a novel target location

distribution map. Based on this map, the probability for the UAV to successfully

sense the target can be extracted as a function of the UAV’s location. The

UAV exploits the target location distribution map to visit specific locations to

maximize the sensing probability. We aim to optimize the UAV’s trajectory

between two pre-determined locations to maximize the total sensing probability

during its flight, subject to a GBS-UAV communication quality constraint at

each time instant during its flight and a maximum mission completion time

constraint. However, this new problem is a constrained longest path problem

(CLPP), which is non-convex and NP-Hard. Particularly, the optimal trajectory
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needs to strike the best balance between the total probability, expected SNR,

and maximum flying distance. To address this problem, we propose three high-

quality suboptimal solutions, which can achieve significantly improved sensing

performance.

Secondly, we study a cellular-connected UAV which aims to complete a

mission of flying between two pre-determined locations while maintaining sat-

isfactory communication quality with the GBSs. Due to the potentially long

distance of the UAV’s flight, frequent handovers may be incurred among dif-

ferent GBSs, which leads to various practical issues such as large delay and

synchronization overhead. To this end, we mathematically derive the handover

function, which is critically dependent on the UAV’s trajectory and GBS-UAV

associations. We aim to minimize the number of GBS handovers by jointly op-

timizing the UAV’s flight trajectory and the GBS-UAV association, subject to

a communication quality constraint and a maximum mission completion time

constraint. Although this problem is non-convex and difficult to solve, we derive

useful structures of the optimal solution, based on which we propose an efficient

algorithm based on graph theory and Lagrangian relaxation for finding a high-

quality suboptimal solution in polynomial time. Numerical results validate the

effectiveness of our proposed trajectory design.

In summary, this thesis studies two cellular-connected UAV trajectory op-

timization problems in future wireless networks, and proposes high-quality so-

lutions to tackle them. For sensing a target without exact location information,

the proposed trajectory designs achieve significantly improved sensing perfor-

mance by leveraging the prior location distribution information of the target,

which provides a useful guideline for cellular-connected UAVs to sense targets.

Moreover, the investigation of handovers provides a new model for handover

analysis, and the designed trajectory significantly decreases the number of han-

dovers, which provides valuable principles for cellular-connected UAVs on their
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safe flight.
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1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have seen

rapid advancements and widespread applications across various sectors. Specifi-

cally, UAVs are employed in various missions in both areas of human activity and

natural environments, depending on their strong maneuverability under three-

dimensional (3D) [1–6]. For instance, in environmental protection, UAVs can

detect gas/oil spills and assist in litter collection [7–9]; in the military, UAVs

provide reconnaissance, surveillance, and combat support [10, 11]; in agricul-

ture, UAVs are used for pesticide spraying and vegetation monitoring [12, 13];

UAVs have become invaluable in rescue operations by providing communication

services and delivering supplies [14, 15]. To fully exploit and enhance the ap-

plication value of UAVs, numerous practical problems have been identified and

comprehensively researched, e.g., UAV trajectory design, UAV swarming design,

and UAV deployment. However, with the innovation of wireless communication

technologies, massive missions that UAVs can achieve are rising, thereby deriving

further investigation into UAV application problems.

To achieve various flight missions, it is of paramount importance to ensure

that UAVs can be timely operated, which requires high-quality communications

between UAVs and their controllers. To ensure the safety of UAVs, an effi-

cient solution is cellular-enabled UAV communication or cellular-connected UAV,

where UAVs act as a new type of aerial users served by the ground base stations

(GBSs) in the cellular network [15–23]. Specifically, by utilizing GBSs to serve
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UAVs in cellular networks, the links between the UAVs and GBSs can achieve

ultra-reliable, low latency, and high-speed backhaul links, which effectively sup-

ports low-rate two-way control and non-payload communication (CNPC) for

ensuring the safety of UAVs and the high-rate payload communication (PC) for

the deliveration of acquire information to the cellular network. Compared with

traditional Wi-Fi based UAV communication, cellular-enabled UAV communi-

cation can extend the service range from visual line-of-sight (VLoS) to beyond

VLoS, thus supporting much longer flying distances and much wider applica-

tion scenarios. The exploration of cellular-connected UAVs promises numerous

applications, such as enhanced delivery services, improved disaster response,

and efficient traffic monitoring and management. However, this integration be-

tween cellular networks and UAVs introduces challenges, particularly in terms of

network congestion, interference management, and ensuring reliable and secure

communication links. It is worth noting that although many existing works have

studied these challenges, e.g., [15–17, 19, 20], with the development of wireless

networks in the future, the upgrade of wireless network technology will not only

make such challenges more complicated, but also generate more new challenges.

To overcome those challenges for cellular-connected UAVs in future wireless

networks, one of the keys to cellular-connected UAVs in practical applications

is trajectory optimization or so-called path planning. Specifically, by exploiting

the cellular-connected UAV’s flexibility in 3D space, flight mission requirements

and enhanced performance can be achieved via the proper design of the UAV’s

trajectory. To this end, the cellular-connected UAV trajectory design aims to

optimize the flight trajectory for UAVs to achieve specific objectives while ad-

hering to various constraints. In detail, the objectives and constraints of cellular-

connected UAV trajectory optimization are mainly based on the consideration of

personalized missions and UAV flight safety, among which representative ones

include minimizing flight time, minimizing energy consumption, and avoiding
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obstacles [17, 19, 24–32]. In addition, it is worth noting that how to effectively

improve the communication performance of cellular-connected UAVs by design-

ing their trajectories is also a challenging problem, such as sum-rate maximiza-

tion, throughput maximization, and interference minimization [19,20,25,33]. On

the other hand, the evolving UAV products have richer and more diverse func-

tions, and the development of wireless network technology has brought more

in-depth mission requirements, both of which have caused the application sce-

narios of UAVs to increase dramatically, but the UAV trajectory optimization

problem has also become more challenging simultaneously, e.g., applications for

integrated sensing and communication (ISAC), terahertz (THz) spectrum, and

intelligent reflecting surfaces assisted UAV. In order to further expand the space

for cellular-connected UAV applications, this thesis is dedicated to solving brand

new challenging trajectory optimization problems for cellular-connected UAVs

in practice.

The rest of this chapter is organized as follows. Section 1.1 presents an

overview of UAV trajectory optimization. Section 1.2 provides the motivations

and challenges of the problems proposed in this thesis. Section 1.3 and Section

1.4 present the organization and major contributions of this thesis, respectively.

1.1. Overview of UAV Trajectory Optimization

In this section, we provide an overview of UAV trajectory optimization.

Specifically, we first introduce the basic concept of UAV and specify several

typical trajectory designs. Then, we highlight challenges for UAV trajectory

optimization in wireless networks. Finally, we propose some future applications

that UAV trajectory optimization can achieve.
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1.1.1 Introduction to UAV Trajectory Optimization

UAV trajectory optimization is a vital area of research and development

aimed at enhancing the performance and efficiency of UAV operations. By de-

termining optimal flight paths, UAVs can ensure efficient energy usage, maintain

robust connectivity with cellular networks, and adapt to dynamic environments.

This optimization process is essential for maximizing the UAVs’ capabilities

and integrating them into future wireless networks. The trajectory optimiza-

tion of UAVs mainly aims to ensure the safety of UAVs and complete given

missions [15,17,19,34–41]. Specifically, a UAV bears some missions while main-

taining satisfactory communication quality with one of M GBSs. The UAV

needs to fly to complete these missions, where the time-varying location of the

UAV is given by u(t) = (x(t), y(t), H(t)), 0 ≤ t ≤ T , as shown in Fig. 1.1. By

optimizing flight trajectory {u(t), 0 ≤ t ≤ T}, the UAV can safely fly along

the designed trajectory with the consideration of speed V meters/second (m/s),

height H(t), mission requirements, etc.

 � � ,  0 ≤  � ≤  �  ?

UAVStart location
Final location

GBS 1

GBS 3

GBS 2

GBS M…

: GBS-UAV communication link 
: Possible GBS-UAV communication link 

: UAV trajectory
 : Coverage boundaries of GBSs

Figure 1.1: Illustration of trajectory design for a UAV with considerations of
missions and communication.

It is worth noting that the UAV can be employed in more complex missions

that are derived from the development of wireless network technology. [15,17,19]
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studied the cellular-connected UAV trajectory optimization for communication

performance improvement, including the outage duration, interference manage-

ment, and connectivity. The promising ISAC technology involves UAVs perform-

ing sensing tasks while maintaining communication links. This dual functionality

is essential for applications such as environmental monitoring and smart city in-

frastructure. For instance, [33, 42–44] achieved better sensing performance by

optimizing the UAV trajectory with the joint consideration of advanced beam-

forming techniques. Tracking applications require UAVs to follow or maintain a

line of sight with a moving target. This is crucial in scenarios like wildlife mon-

itoring, law enforcement, and search and rescue operations. [45–47] investigated

the UAV trajectory optimization problem for tracking, which involves following

a moving target to gather data or maintain surveillance.

1.1.2 Challenges of UAV Trajectory Optimization

UAVs have inherent advantages of low cost, flexible deployment, and high

maneuverability, which make them well suited to perform a variety of missions

that are challenging or impractical for ground systems. By optimizing their

trajectories, UAVs can maximize these advantages, ensuring that they operate

efficiently in various scenarios. However, optimizing trajectories of UAVs for

various missions generally involves addressing several complex constraints and

challenges:

Connectivity: Ensuring uninterrupted connectivity with the cellular net-

work is crucial for real-time data transmission and control. UAVs must navigate

areas with varying signal strengths and avoid dead regions where connectivity

is lost, in which the UAV trajectory optimization should consider the locations

of GBSs.

Energy Efficient and Power: UAVs are typically powered by batter-

ies, which have limited capacity. Efficient energy management is essential to
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extend flight time and operational range. Trajectory optimization should con-

sider energy consumption to ensure UAVs can complete their missions without

exhausting their power supply.

Collision Avoidance: UAVs often operate in environments with various

obstacles, such as buildings, trees, and other structures. Obstacle detection and

avoidance are necessary to prevent collisions and ensure safe operation for UAV

flights. In particular, urban environments with their dense and varied structures,

present more challenges for trajectory optimization, as UAVs must fly through

tight spaces. Moreover, the trajectory optimization for a UAV swarm must

consider the collision problem with other UAVs.

Communication Constraints: UAV trajectory optimization should achieve

various communication constraints, such as signal strengths and SNR constraints,

which ensures the UAV can successfully receive the control command. Mean-

while, there are other considerations in some special scenarios, e.g., the rate for

data transmission, the secret rate for UAV communication against eavesdrop-

pers, interference, and spectrum management.

Regulatory and Safety Constraints: UAV operations are subject to a

range of regulatory constraints, including restrictions on flight paths, altitude

limits, and no-fly zones. Additionally, UAVs must be operated in a manner

that ensures safety for people and property on the ground. Moreover, UAVs

must adhere to local, national, and international regulations, which can vary

widely depending on the location and type of operation. Compliance with these

regulations is essential to ensure safe and legal operation.

Handling Environmental Factors: Environmental conditions, such as

wind, rain, and temperature, can significantly affect UAV performance. Tra-

jectory optimization should account for these factors to ensure that UAVs can

complete their mission safely and effectively.

Nevertheless, other important challenges in UAV trajectory optimization
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come from mission objectives. In general, the coupling between customized

mission objectives and the challenges mentioned above makes the trajectory op-

timization problem more difficult to solve. To address these challenges, tailored

trajectory optimization algorithms should be developed that enable UAVs to

perform their missions effectively while maintaining reliable connectivity and

adhering to regulatory requirements.

1.1.3 Future Applications of UAV Trajectory Optimiza-

tion

UAV trajectory optimization added to future wireless networks (e.g., 6G

and beyond) opens up a wide range of advanced applications in various fields.

The integration of UAVs with future wireless networks will enable UAVs to

perform missions more efficiently, reliably, and intelligently. The following are

some key future applications that UAV trajectory optimization can achieve:

Autonomous Air to Ground Traffic Command: In the future, using

UAVs to control ground traffic is a viable solution, especially for dealing with

road congestion. By optimizing UAVs’ trajectories, UAVs can safely and quickly

fly to congested sections in crowded urban environments, and use sensing and

data analysis technologies to analyze the causes of road congestion and quickly

solve it. In addition, future wireless networks can support ultra-low latency com-

munications, allowing real-time adjustments to UAV trajectory designs based on

changing traffic patterns, weather conditions, and other variables, which ensures

the safety and operational efficiency of UAV command systems.

Disaster Response and Emergency Services: UAVs can be deployed

rapidly in disaster areas to assess damage, support service, and deliver essential

supplies. Trajectory optimization allows UAVs to navigate complex environ-

ments, avoid hazards, and prioritize critical areas for inspection or delivery.

Advanced wireless networks can provide a strong communication link, enabling
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UAVs and ground teams to coordinate in real time. Meanwhile, UAVs can also

assist future wireless networks in providing communication services and com-

pleting missions such as target sensing and survivor localization.

Precision Agriculture: UAVs will be able to effectively monitor large

areas of farmland to ensure that crops receive the appropriate amount of wa-

ter and nutrients and are protected from pests. The UAV trajectory design

allows UAVs to cover the field in the most effective mode, reducing overlap

and ensuring complete coverage. Future wireless networks will provide real-time

data connectivity, allowing UAVs to adjust their paths based on sensing data,

weather conditions, and crop health indicators, which can significantly improve

agricultural productivity and resource efficiency.

Smart Infrastructure Management: UAVs will be deployed to inspect

and monitor infrastructure such as bridges, power lines, and pipelines. Opti-

mized UAV trajectories will enable UAVs to effectively cover large infrastruc-

ture networks, ensuring thorough inspections while minimizing flight time and

energy consumption. Future wireless networks will support high-bandwidth data

transmission, enabling UAVs to send real-time video and sensing data back to

control centers for immediate analysis, which will enhance the ability to detect

and respond to potential problems in critical infrastructure.

Privacy and Security in ISAC Systems: While ISAC offers signifi-

cant benefits, such as spectrum efficiency and reduced hardware costs, it also

raises new challenges, particularly concerning the privacy and security of non-

sensing targets. These non-sensing targets in ISAC systems should be protected,

ensuring that their information is not inadvertently disclosed or abused. One

promising solution involves exploiting UAVs to enhance privacy and security

within ISAC systems. UAVs can be deployed to actively protect non-sensing

targets by introducing artificial noise, creating physical barriers, or performing

other privacy-preserving actions, which can be achieved by utilizing advanced
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point-to-point communication in future wireless networks.

1.2. Motivations and Challenges

In this section, we specify two key challenges for the trajectory optimiza-

tion of cellular-connected UAVs, which are not yet addressed in the existing

literature, thus motivating our investigation in this thesis.

1.2.1 How to Sense a Target Whose Location Is Random

and Unknown for Cellular-Connected UAV?

Motivated by the emergence of new applications which require the sensing

function, the role of UAV in performing sensing missions has recently attracted

significant research attention [33, 48–52]. Specifically, by exploiting the UAV’s

flexibility in the three-dimensional (3D) space, enhanced sensing performance

can be achieved via the proper design of the UAV’s trajectory. However, ex-

isting studies typically considered the ideal scenario where the exact locations

of the targets to be sensed are known. Based on the known exact locations of

targets, many traditional sensing missions can be addressed, mainly including

localization, data acquisition, speed estimation, etc. For instance, [20] con-

sidered the case where multiple known target locations need to be visited for

sensing; [43,53] aimed to ensure that sufficient power is radiated to every target

location; [54] studied the achievable rate maximization problem with the con-

sideration of given target locations and user locations; [55] proposed a trade-off

between the time for UAV sensing and that for UAV transmission during UAV

sensing target.

However, in practice, such exact location information may not be available.

Moreover, the target may appear at different locations with distinct probabil-

ities, which cannot be characterized by existing models and studies. In this
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thesis, we consider a practical and challenging scenario where the exact target

location is unknown and random, while its statistical distribution is known a

priori based on empirical measurements or target movement pattern [56–59]. It

is worth noting that the scenario we consider is a reflection of many real appli-

cation problems, especially in the field of environmental protection. One such

application is detecting and modeling oil spill regions, a critical mission requiring

precise and timely intervention to mitigate environmental damage. In practice,

since the oil spills are dynamic and prone to drifting due to currents and winds,

the possible spill regions are unknown and random. We leverage UAVs to sense

oil spill regions for collecting data. The obtained data can be used to analyze

and model oil spill regions, providing an innovative and efficient solution for this

environmental pollution event. By designing UAV flight trajectories, UAVs can

maximally sense potential spill regions. In detail, the UAV needs to conduct

control communication with the GBSs, and simultaneously send sensing signals

to obtain the oil layer information. The other application is UAV-assisted forest

health assessment, which aims to leverage UAVs to monitor and evaluate large

forested areas efficiently and accurately. When any anomalies are presented

in the obtained images as the prior information, we need to further sense the

locations where anomalies may appear. Since the spread of anomalies in the

forest is unknown and random, we can obtain the statistical characteristics of

the locations where anomalies appear based on some empirical measurements or

propagation patterns. This knowledge allows us to optimize UAV flight trajecto-

ries to ensure that high-risk areas are inspected more frequently and thoroughly.

These scenarios can be represented by a simple model, as shown in Fig. 1.2.

we propose a novel target location distribution map to characterize and store

the probabilities of the appearance of the target over a geographical region, which

can also quantify the probabilities for the UAV to successfully sense the target

when it flies to the waypoint near each possible location. Based on this, how to
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Figure 1.2: Illustration of a target sensing model for a cellular-connected UAV.

design the UAV’s trajectory for maximizing the overall probability of successfully

sensing a target during its flight is a new challenging problem, which requires

careful exploitation of the target location distribution map such that the UAV

can prioritize its flight near highly-probable target locations. Moreover, how to

guarantee satisfactory communication quality with the GBSs while performing

the UAV’s sensing task efficiently is also an open problem, which requires the

trajectory design to strike the optimal balance among communication, sensing,

and mission completion performances.

Motivated by the above communications and sensing issues, we aim to devise

the trajectory optimization of a cellular-connected UAV that can achieve the best

balance between the sensing mission, satisfactory communication performance,

and the constraints for flight requirements.
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1.2.2 HowWill Network Handovers Affect the Flight Tra-

jectory for Cellular-Connected UAV?

To maintain satisfactory communication quality with the GBSs, the UAV’s

trajectory needs to be carefully designed. Particularly, there exists a non-trivial

trade-off between the communication quality and the mission completion per-

formance (e.g., mission completion time), since the UAV should generally fly

near the GBSs to enhance the communication link quality, which, on the other

hand, may result in detoured paths in completing the mission. [15] studied the

trajectory optimization for minimizing the mission completion time subject to a

constant communication quality constraint throughout the flight, and proposed

an efficient polynomial-time algorithm for finding an approximate solution with

arbitrarily low performance gap with the optimal solution. [17] extended this

work by allowing tolerable connection disruptions with the GBSs, while [19,60]

took the interference issue into consideration. On the other hand, [20] studied

the communication-constrained UAV trajectory design for the specific mission

of information collection.

However, a critical practical issue overlooked in the existing literature lies

in the potentially frequent handovers among multiple GBSs that consecutively

associate with the UAV. Specifically, to complete a given flight mission, UAVs

will fly long distances in the cellular network in general. If UAVs must fly to a

waypoint that exceeds the coverage boundary of a single GBS in the cellular net-

work, the network handover is inevitable for the completion of the given mission,

as shown in Fig. 1.3. Due to the generally long distances of the UAV’s flight, the

UAV may have to frequently change the associated GBS, which may cause heavy

signaling overhead and affect the service continuity [61–63]. Specifically, network

handovers involve multiple signaling exchanges between the UAV, the current

GBSs, and the next GBSs, which include steps such as measuring signal quality,
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Figure 1.3: Illustration of an inevitable handover in cellular-connected UAV
trajectory design.

making the handover decision, disconnecting the connection, and establishing a

new connection. Many works focus on reducing network handovers to achieve

seamless communication, but there is always a risk of temporary service disrup-

tion during the handover from one GBS to another GBS. For instance, in hard

handovers (break-before-make), UAVs momentarily disconnect from the current

GBS before establishing a connection with the next one, leading to brief inter-

ruptions in communication [64]. For soft handovers (make-before-break), where

the UAV connects to the new GBS before disconnecting from the current one,

there can still be issues related to synchronization and data consistency [65,66].

These disruptions can be particularly problematic in applications, such as real-

time video streaming, remote control of UAVs, or emergency response opera-

tions, since even a brief communication loss may lead to operational failures. In

addition, the ping-pong effect caused by frequent handovers will downgrade the

network security [67–69]. Experiments have shown that increasing the number

of handovers leads to more frequent delay peaks [70,71]. Although the handover

issue has been analyzed and studied in e.g., [61,63,72–75], how to minimize the

number of handovers via UAV trajectory design is still an unaddressed open

problem, which motivates the study in this thesis.

Motivated by this, we aim to formulate the total number of handovers and
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study the trajectory optimization problem for a cellular-connected UAV, which

can minimize the total number of handovers during the UAV flight.

1.3. Organization of the Thesis

Motivated by the above challenging issues, in this thesis, we study the

cellular-connected UAV trajectory optimization under the following two scenar-

ios: a cellular-connected UAV bears a sensing mission, which requires the UAV

to fly to sense a target whose location is random and unknown within a given

maximum flight distance constraint; moreover, a new cellular-connected UAV

has a mission to fly from an initial location to a final location, where we aim

to minimize the number of handovers to avoid the degrade of quality of service.

The rest of this thesis is organized as follows.

In Chapter 2, we propose a target location distribution map to characterize

the target location information and the sensing performance to overcome the

challenges of the sensing mission. We study the sensing performance maximiza-

tion problems by optimizing the trajectory of the cellular-connected UAV. The

proposed solutions can significantly increase their performance compared with

benchmarks.

In Chapter 3, to solve the handover minimization problem, we model a

novel handover function to represent the number of handovers during the UAV

flight. We study a trajectory optimization problem for the cellular-connected

UAV, which is NP-Hard and non-convex. To address this challenging issue, we

propose a high-quality approximation solution based on some structural prop-

erties. Numerical results validate that the number of handovers in our proposed

design is significantly decreased and outperforms the benchmark scheme.

In Chapter 4, we conclude this thesis and propose some useful guidelines

for future work.
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1.4. Major Contributions

The major contributions of this thesis are summarized as follows.

1.4.1 Useful Guidelines of Trajectory Optimization of Cellular-

connected UAVs for Sensing

In Chapter 2, we draw useful guidelines for the cellular-connected UAV

trajectory design for target sensing. The detailed contributions of this chapter

are summarized as follows:

� First, we propose a target location distribution map to characterize and

store the probabilities of the appearance of the target over a geographi-

cal region. Leveraging the target information presented by target location

distribution map, we can quantify the probabilities for the UAV to suc-

cessfully sense the target when it flies to the waypoint near each possible

location under 3D space. By utilizing this map, the objective function is

derived as the total sensing probability, and based on this, our goal is to

maximize this objective function by optimizing the UAV trajectory.

� Next, we study the trajectory optimization of a cellular-connected UAV

which bears a mission of sensing the location of a ground target based

on its prior location distribution information, while maintaining satisfac-

tory communication quality with the GBSs for ensuring its safety. We

consider a general channel with potential obstructions between the UAV

and GBSs, and propose to adopt the radio map technique for charac-

terizing the expected signal-to-noise ratio (SNR) at each UAV’s possible

location [19, 76–78]. We aim to optimize the UAV’s trajectory to maxi-

mize the total (overall) probability for successfully sensing the target, sub-

ject to a minimum expected SNR threshold at each time instant during
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the UAV’s flight and a mission completion time constraint. This prob-

lem is non-convex and NP-hard. In particular, our object is completely

opposite to the traditional objects in the UAV trajectory optimization

problems that minimize the flight time or distance during the UAV flight

(e.g., [15,17,20,43,49,51]), which is of high practical and novel interest in

UAV trajectory optimization.

� Finally, by exploiting the unique structures of the problem, we propose

three algorithms for finding high-quality suboptimal solutions with poly-

nomial complexity. Based on our proposed solutions, the total sensing

probability is significantly improved for the different parameters of maxi-

mum mission completion time. Numerical results show that our proposed

designs achieve significantly increased total sensing probability compared

to the conventional shortest-distance trajectory design.

To the best of our knowledge, this work is the first to consider using the

prior probability distribution information of the target location to design the

constrained longest path when the UAV flies to sense the target. To overcome

the challenges posed by the nature that the target location is random and un-

known, we consider a promising model that cellular-enabled UAV communica-

tion supports the UAV in sensing more possible target locations safely. As a

new work focused on prolonging trajectory to improve sensing performance, we

consider offline trajectory optimization for sensing the target under the com-

munication constraint, thus being a valuable framework for the case that path

design requires passing through more inspection points in practice.
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1.4.2 Efficient Handover-aware Trajectory design for Cellular-

Connected UAV

In Chapter 3, we draw useful guidelines for the cellular-connected UAV

trajectory design for handover minimization. The detailed contributions of this

chapter are summarized as follows:

� First, we mathematically define a novel handover function to represent the

number of handovers by characterizing the connection and disconnection

behaviors for GBS-UAV communication while the UAV flies at the cellular

network. By utilizing the handover function, the objective function is

derived as a step function, and based on this, our goal is to minimize this

objective function by optimizing the UAV trajectory.

� Next, we consider a cellular-connected UAV which needs to fly from a given

initial location to a given final location. To ensure its safety, it needs to

maintain a satisfactory communication quality constraint with a GBS at

every time instant. We aim to optimize the UAV’s trajectory to minimize

the number of handovers during the flight, subject to the communication

quality constraint and a maximum threshold on the mission completion

time. This problem is non-convex and difficult to solve.

� By judiciously exploring the problem structure, we transform the problem

into a more tractable form, based on which we propose a polynomial-time

algorithm by applying graph theory and Lagrangian relaxation to find a

high-quality suboptimal solution. It is shown via numerical results that

our proposed design requires fewer handovers compared with handover-

unaware trajectory design.

To our understanding, this work is the first to consider network handovers

for designing the UAV trajectory. We propose a novel mathematical model
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that characterizes the connection and disconnection processes in GBS-UAV com-

munications, enabling the calculation of the total number of handovers. This

work focused on the affection of network handovers for trajectory design of the

cellular-connected UAV, and we consider offline trajectory optimization that

aims to minimize the total number of handovers under the connectivity con-

straint. Moreover, this work provides valuable insights into the selection of

communication performance metrics, particularly in scenarios where users or

ground vehicles require high-quality communication services in practice.
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2. UAV Trajectory Optimization

for Sensing Exploiting Target Lo-

cation Distribution Map

2.1. Introduction

In this chapter, we study the trajectory optimization of a cellular-connected

UAV which aims to sense the location of a target while maintaining satisfactory

communication quality with the GBSs. In contrast to most existing works which

assumed the target’s location is known [43, 53], we focus on a more challenging

scenario where the exact location of the target to be sensed is unknown and ran-

dom, while its distribution is known a priori and stored in a novel target location

distribution map. Based on this map, the probability for the UAV to success-

fully sense the target can be extracted as a function of the UAV’s trajectory. On

the other hand, to achieve satisfactory communication between GBSs and the

UAV, the channel characteristics are presented by utilizing the radio map tech-

nique. We aim to optimize the UAV’s trajectory between two pre-determined

locations to maximize the overall sensing probability during its flight, subject

to a GBS-UAV communication quality constraint at each time instant and a

maximum mission completion time constraint. Despite the non-convexity and

NP-hardness of this problem, we devise three high-quality suboptimal solutions
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tailored for it with polynomial complexity. Numerical results show that our

proposed designs outperform various benchmark schemes.

The remainder of this chapter is organized as follows. Section 2.2 presents a

literature review. Section 2.3 introduces the system model, including the commu-

nication model and the target sensing model. Section 2.4 presents the trajectory

optimization problem. Section 2.5 reformulates a more tractable problem and

further presents three efficient and alternative approaches to the initial prob-

lem. Numerical results are provided in Section 2.6 to evaluate the performance

of proposed solutions. Finally, Section 2.7 concludes the chapter.

2.2. Literature Review

UAVs combined with sensing technologies have become a crucial approach

across various fields, including agriculture, environmental monitoring, and disas-

ter management. This section highlights key research studies that have explored

different aspects of UAV-based sensing technologies, discussing their contribu-

tions, methodologies, and findings.

UAV-enabled sensing has been studied in many works. UAVs can carry

a hardware device to sense a target, e.g., high-resolution optical cameras and

radars. [51] studied radar sensing for cellular-connected UAVs, where the UAV’s

trajectory in terms of energy efficiency is designed. [45] considered that ground

targets with radio transmitters can send radio signals that can be captured by the

UAV for tracking. Furthermore, ISAC is a promising new sensing technology

that integrates sensing and communication into a system, enabling UAVs to

simultaneously sense targets and transmit data. [33, 48] investigated the use of

UAVs on ISAC technology for target sensing. They provided overviews of UAV-

enabled ISAC systems and proposed various solutions for sensing performance

and communication performance. [43,44] explored UAV maneuver (deployment
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location or flight trajectory) and the transmit beamforming for a UAV-enabled

ISAC system, to maximize the communication performance of ground users.

They achieved the balances between sensing and communication according to

different beampattern gain thresholds. [79] studied a new integrated periodic

sensing and communication mechanism for a UAV-enable ISAC system. [50]

explored trajectory planning for a cellular-connected UAV to enable an ISAC

system.

Note that these works considered that the locations of targets sensed by

UAVs are known, or the locations of the sensing areas are determined. However,

in practice, the locations of targets may be random and unknown. Therefore,

in this case, how to design the UAV trajectory to sense targets has not been

studied in the existing works to our best knowledge.

2.3. System Model

We consider a cellular-connected UAV which bears a mission of sensing a

target while flying from an initial location US to a final location UF. Under a 3D

Cartesian coordinate system, let (xS, yS, H) and (xF, yF, H) in meters (m) denote

the location coordinates of US and UF, respectively. To ensure the safety of the

UAV, the UAV needs to maintain satisfactory connectivity with the ground

via communicating with a GBS in the cellular network. Let M ≥ 1 denote

the number of GBSs that are available for communication. For the purpose of

drawing essential insights, we assume that the UAV flies at a constant altitude

of H m with constant speed V meters/second (m/s), and let U ⊂ R2×1 denote

the feasible region of the UAV’s flight projected to the horizontal plane. Let

u(t) = [x(t), y(t)]T ∈ U denote the UAV’s horizontal location at each time

instant t, and T denote the UAV’s mission completion time. We aim to optimize

the UAV’s horizontal trajectory {u(t), 0 ≤ t ≤ T} to maximize the sensing
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performance, subject to a communication quality constraint at each time instant

during the flight, and a maximum mission completion time threshold denoted

by T̄ s which is equivalent to a maximum flying distance threshold given by

D̄ = V T̄ m.

2.3.1 GBS-UAV Communication Model

At every time instant during the UAV’s flight, the UAV needs to conduct

control and non-payload communication with one of the GBSs for ensuring its

safety [15], which requires low data volume and high reliability, thus single-

stream transmission is preferred regardless of the numbers of antennas at the

GBS and the UAV. In this thesis, we focus on downlink communication from

the GBS to the UAV, while our results are also directly applicable to the case of

uplink communication. Denote the effective channel gain from the m-th GBS to

the UAV at horizontal location u as gm(u) = ḡm(u)g̃m(u) ∈ R, where ḡm(u) ∈ R

and g̃m(u) ∈ R denote the large-scale channel gain and the small-scale fading

gain, respectively, with E[g̃2m(u)] = 1. Specifically, ḡm(u) consists of the path

loss, shadowing, and antenna gains at the GBS and the UAV, thus being a

static function of the location of the m-th GBS, u, and the UAV’s altitude H.

Therefore, ḡm(u) for any u ∈ U can be measured or calculated prior to the UAV’s

flight [19]. On the other hand, g̃m(u) is determined by the real-time small-scale

fading which changes rapidly over channel coherence intervals. Denote Pm as

the transmit power at the m-th GBS, and σ2 as the effective noise power at the

UAV receiver. The received SNR at the UAV if the m-th GBS is selected for

transmission is given by ρm(u) =
Pmg2m(u)

σ2 = Pmḡ2m(u)g̃2m(u)
σ2 .

Since the small-scale fading gain g̃m(u) is generally a random variable

and cannot be known prior to the UAV’s flight, we adopt the expected SNR

as the communication performance metric in the trajectory optimization, and
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consider a minimum threshold for it denoted by ρ̄.1 Under this metric, the

GBS with the highest expected SNR should be associated with the UAV for

communication, which leads to a resulting expected SNR at the UAV given by

ρ̄(u) = max
m∈M

E[ρm(u)] = max
m∈M

Pmḡ2m(u)
σ2 ≥ ρ̄, ∀u = u(t), 0 ≤ t ≤ T .

Note that the expected SNR ρ̄(u) is determined by ḡm(u), which consists of

the shadowing effect and is critically dependent on the terrain features (e.g., loca-

tion, height, and shape of the obstacles). In general, it is difficult to analytically

model ḡm(u) and consequently ρ(u) as explicit and tractable functions of u to

facilitate trajectory optimization. In this thesis, we adopt a map-based approach

to characterize the expected SNR, where the values of ρ̄(u) for all u ∈ U ’s are

stored in an expected SNR map [19]. Specifically, we first quantize the continuous

region U into D×D square grids each with length ∆D. For simplicity, we assume

U is an L m ×L m square region and D = L
∆D

. The quantization granularity

∆D is selected as a sufficiently small value such that the large-scale channel gain

and consequently the expected SNR remains approximately constant in each

grid. Thus, all locations in each (i, j)-th grid can be well-represented by the grid

center (or “grid point”) denoted by uD(i, j) = [i − 1
2
, j − 1

2
]T∆D, i, j ∈ D with

D = {1, · · ·, D}. Based on this, we can use a D×D matrix to store the expected

SNR values at all grid points denoted by S ∈ RD×D, where each (i, j)-th element

is given by [S]i,j = ρ̄(uD(i, j)) = max
m∈M

Pmḡ2m(uD(i,j))
σ2 , i, j ∈ D. It is worth noting

that S can be efficiently obtained via measurement or ray-tracing methods prior

to the UAV’s flight [19]. By depicting S for all grid points (i.e., all i, j ∈ D), we

have a so-called expected SNR map. In Fig. 2.1, we illustrate an expected SNR

map under the setup in Section V.

Based on the above and by noting that ∆D is sufficiently small, we propose

a discretized trajectory structure for the UAV. Specifically, the path of the UAV

1Note that in ρm(u), we did not consider real-time beamforming at the GBS/UAV based
on the instantaneous small-scale channel. If such beamforming is considered, ρm(u) and the
expected SNR can be further improved; the expected SNR is still guaranteed to be higher
than the required threshold ρ̄.
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Figure 2.1: Illustration of an expected SNR map S.

is composed of connected line segments, where the two end points of each line

segment are two adjacent grid points, i.e., those with a distance no larger than
√
2∆D. Therefore, the UAV’s trajectory can be represented by a series of grid

points {uD(in, jn)}NS
n=1, where in, jn ∈ D and NS denotes the total number of

points. Consequently, to satisfy the expected SNR constraint, [S]in,jn ≥ ρ̄, ∀n

should hold. Note that as ∆D → 0, the discretized trajectory approaches the

continuous trajectory.

2.3.2 Target Sensing Model

In the target sensing mission, the UAV aims to sense the location of a tar-

get on the ground. Specifically, the horizontal location of the target denoted

by uT = [xT, yT]
T is unknown and random, while its spatial distribution over

the two-dimensional (2D) space is known a priori for exploitation, which can be

obtained based on empirical data or target movement pattern. Let pxT,yT(xt, yt)

denote the probability density function (PDF) for the target’s horizontal loca-

tion uT, where [xt, yt]
T ∈ U . We assume that the UAV is able to sense the
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target if the target’s horizontal location lies in the same grid as the UAV, i.e.,

|uD(in, jn) − uT| ⪯ [∆D

2
, ∆D

2
]T .2 In this case, the probability for the UAV to

sense a target when it is located at uD(in, jn) is given by the integral of the

probabilities over all possible target locations in the corresponding grid, namely,∫ in∆D

(in−1)∆D

∫ jn∆D

(jn−1)∆D
pxT,yT(xt, yt)dytdxt.

We aim to design the UAV’s trajectory to maximize the total probability of

sensing the target during the flight, which is given by

NS∑
n=1

∫ in∆D

(in−1)∆D

∫ jn∆D

(jn−1)∆D

pxT,yT(xt, yt)dytdxt. (2.1)

To this end, we introduce a target location distribution map, which is represented

by a matrix denoted by P ∈ RD×D consisting of the target appearance prob-

abilities and equivalently sensing probabilities in all D × D grids. Specifically,

each (i, j)-th element in P is given by

[P ]i,j =

∫ i∆D

(i−1)∆D

∫ j∆D

(j−1)∆D

pxT,yT(xt, yt)dytdxt, i, j ∈ D. (2.2)

Hence, the total sensing probability during the UAV’s flight is
∑NS

n=1[P ]in,jn .

By further noting that visiting a grid point more than once is not beneficial to

sensing, communication, or mission completion performance, we consider a non-

repeated flight where each grid point is visited at most once, i.e., uD(in, jn) ̸=

uD(im, jm), ∀n ̸= m, n,m ∈ N ∆
= {1, · · ·, NS}.

Remark (Example of a Target Location Distribution): A practical target

location distribution model is the 2D Gaussian mixture model, where the PDF

2Note that this model is applicable to various sensing methods. For camera-based sensing
where the UAV senses a target by capturing video/image of it, this can guarantee a suffi-
ciently high resolution. For radar sensing where the UAV is equipped with multiple antennas
that constitute multiple-input multiple-output (MIMO) radar over non-overlapping frequency
bands with GBS-UAV communication, this can guarantee that the received echo signal has
sufficiently strong power, which leads to a sufficiently low sensing mean-squared error (MSE).
It is also worth noting that the sensing accuracy can always be improved with a smaller grid
granularity, such that the UAV is closer to the continuous locations in a grid, at a cost of
higher complexity in map storage and trajectory optimization.
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is the weighted sum of S ≥ 1 2D Gaussian PDFs, each with mean (xs, ys), vari-

ance σ2
s , and weight ps ∈ [0, 1] that satisfies

∑S
s=1 ps = 1, namely, pxT,yT(xt, yt) =∑S

s=1
ps

2πσ2
s
e
− (xt−xs)

2+(yt−ys)
2

2σ2
s . In Fig. 2.2, we illustrate a target location distribu-

tion map P under this model, with ∆D = 30 m, p1 = p2 = 0.5, σ1 = 1.8∆D,

σ2 = 2∆D, (x1, y1) = (13∆D, 5∆D), and (x2, y2) = (6∆D, 15∆D).

Figure 2.2: Illustration of a target location distribution map P .

2.4. Problem Formulation

We aim to optimize the UAV’s trajectory to maximize the total sensing

probability, subject to an expected SNR constraint at each time instant during

the flight and a maximum flying distance constraint. For ease of exposition,

we assume that uS
∆
= [xS, yS]

T and uF
∆
= [xF, yF]

T are grid points.3 Under the

discretized trajectory structure, the problem is formulated as

3If uS and uF are not grid points, we can let the UAV firstly fly to the nearest grid point
from uS and lastly fly from the nearest grid point to uF.
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(P1) max
{in,jn}

NS
n=1

NS∑
n=1

[P ]in,jn (2.3)

s.t. uD(i1, j1) = uS,uD(iN , jN) = uF (2.4)

[S]in,jn ≥ ρ̄, ∀n ∈ N (2.5)

NS−1∑
n=1

|uD(in+1, jn+1)− uD(in, jn)∥ ≤ D̄ (2.6)

∥uD(in+1, jn+1)− uD(in, jn)∥ ≤
√
2∆D, ∀n ∈ N (2.7)

uD(in, jn) ̸= uD(im, jm), ∀n ̸= m, n,m ∈ N (2.8)

in, jn ∈ D, ∀n ∈ N . (2.9)

In detail, constraint (2.4) specifies the initial and final locations; constraint

(2.5) represents the expected SNR constraint, where each grid point in any feasi-

ble trajectory should satisfy the constraint (2.5) to ensure flight safety; constraint

(2.6) gives a maximum flight distance constraint based on the consideration of

energy or mission requirements; constraint (2.7) defines the discretized structure

of the trajectory; and a non-repetitive flight trajectory is considered in constraint

(2.8). Note that (P1) is a non-convex combinatorial optimization problem due to

the integer optimization variables in {in, jn}NS
n=1. Moreover, (P1) is a constrained

longest path problem, which can be shown to be NP-hard [80]. Particularly, note

that to achieve a high total sensing probability, the optimal trajectory needs to

traverse all grid points, which may lead to unaffordable flying distance. On

the other hand, a trajectory that solely aims to traverse grid points with high

sensing probabilities may be infeasible due to the expected SNR constraint. To

summarize, the optimal trajectory needs to strike the best balance among the

total probability, expected SNR, and flying distance, which makes (P1) very

difficult to solve.
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2.5. Proposed Solutions

2.5.1 Graph-based Problem Reformulation

To overcome the above challenges in solving (P1), we first propose to replace

the objective function of (P1) with a lower bound of it given by

NS∑
n=1

[P ]in,jn ≥ 1/

(
NS∑
n=1

1/[P ]in,jn

)
, (2.10)

where the inequality holds due to the relationship between geometric mean and

arithmetic mean.4 Since (P1) is a constrained longest path problem, there is no

efficient algorithm to solve it, to the best of our knowledge. To make the problem

(P1) more tractable, we employ a lower bound of (P1) to find a suboptimal

solution to (P1). Based on this, we transform (P1) into (P2) below:

(P2) min
{in,jn}

NS
n=1

NS∑
n=1

1/[P ]in,jn (2.11)

s.t. uD(i1, j1) = uS,uD(iN , jN) = uF (2.12)

[S]in,jn ≥ ρ̄, ∀n ∈ N (2.13)

NS−1∑
n=1

|uD(in+1, jn+1)− uD(in, jn)∥ ≤ D̄ (2.14)

∥uD(in+1, jn+1)− uD(in, jn)∥ ≤
√
2∆D, n ∈ N (2.15)

uD(in, jn) ̸= uD(im, jm), ∀n ̸= m, n,m ∈ N (2.16)

in, jn ∈ D, ∀n ∈ N . (2.17)

Next, we propose a graph-based model for (P2). Specifically, we construct

an undirected weighted graph G = (V,E) with two sets of weights. The vertex

4If [P ]i,j = 0, we can assign a small value to [P ]i,j to make it invertible.
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set V is given by

V = {UD(i, j) : [S]i,j ≥ ρ̄, i, j ∈ D}, (2.18)

where UD(i, j) denotes the (i, j)-th grid point at location uD(i, j) that satisfies

the expected SNR constraint. The edge set E is given below for (i, j) ̸= (k, l):

E = {(UD(i, j), UD(k, l)) : ∥uD(i, j)− uD(k, l)∥ ≤
√
2∆D}, (2.19)

where an edge exists between two vertices if and only if they are adjacent. For

each edge, we have a distance weight given below which represents the distance

between two locations:

WD (UD(i, j), UD(k, l)) = ∥uD(i, j)− uD(k, l)∥ . (2.20)

We also have a probability weight which denotes the inverse of sensing probability

at the location of the latter vertex:

WP (UD(i, j), UD(k, l)) = 1/[P ]k,l. (2.21)

Note that any path in G from UD(i1, j1) to UD(iNS
, jNS

) can be characterized by a

2×NS matrix I = [[i1, j1]
T , [i2, j2]

T , · · ·, [iNS
, jNS

]T ], for which the corresponding

trajectory always satisfies the expected SNR constraint. The sum flying distance

of I is given by

fD(I) =

NS−1∑
n=1

WD(UD(in, jn), UD(in+1, jn+1)). (2.22)
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The sum sensing probability inverse of I is given by

fP(I) =
1

[P ]i1,j1
+

NS−1∑
n=1

WP(UD(in, jn), UD(in+1, jn+1)). (2.23)

Therefore, (P2) is equivalent to the following problem:

(P3) min
I:fD(I)≤D̄

fP(I). (2.24)

The feasibility for (P3) and consequently (P2) and (P1) can be checked

by finding the shortest path from UD(i1, j1) to UD(iNS
, jNS

) with respect to the

distance weight fD(I) via the Dijkstra algorithm [81]. If the resulting minimum

distance is no larger than D̄, (P3) and (P1) are feasible. In the following, we

study (P3) assuming it has been verified to be feasible.

Note that (P3) is still a non-convex problem due to the integer variables in

I. Moreover, it is a constrained shortest path problem which is also NP-hard [17].

Finding the optimal solution to (P3) via exhaustive search requires complexity

O(D2!), which is unaffordable even for moderate map size. In the following,

we propose a low-complexity high-quality suboptimal solution to (P3) via graph

theory and convex optimization, which is also a suboptimal solution to (P1).

2.5.2 Proposed Solution I

In this subsection, we employ the Lagrangian relaxation method to obtain

a suboptimal solution to (P3). Specifically, the Lagrangian of (P3) is given

by L (I, λ) = fP(I) + λfD(I), where λ is the dual variable. The Lagrange

dual function is then given by g(λ) = min
I

L (I, λ) = min
I
fP(I) + λfD(I).

Consequently, the dual problem is given by

(P3-Dual) max
λ≥0

min
I

fP(I) + λfD(I). (2.25)
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Note that the dual problem (P3-Dual) is a convex optimization problem.

However, the duality gap between (P3) and (P3-Dual) is generally non-zero, due

to the non-convexity of (P3). Inspired by [17] which deals with a similar problem,

we propose to solve (P3-Dual) and further find a high-quality primal solution

denoted by II via subgradient-based method andK-shortest path algorithm [17].

The details of this algorithm can be found in [17]. Note that this algorithm

is guaranteed to obtain a feasible solution to (P3) and (P1). The worst-case

complexity of the algorithm can be shown to be O(D8 log2D2 +D6K), which is

significantly reduced compared to that for finding the optimal solution, O(D2!)

[17].

Note that due to the replacement of objective function in (P3), the optimal

solutions to (P1) and (P3) may not be the same, which may also lead to a

difference between proposed solution I to (P3) and the optimal solution to (P1).

In the following, we aim to mitigate such difference by proposing two further-

improved solutions tailored to the structure of (P1).

2.5.3 Proposed Solution II

Although proposed solution I provides a systematic approach of finding a

feasible solution to (P1), the minimizing nature of the transformed problem (P3)

tends to reduce the number of grids visited by the UAV, which may limit the

total sensing probability. For example, some grids with high sensing probabilities

may be missed in proposed solution I.

To address this issue, we propose to utilize proposed solution I as an ini-

tial trajectory, and improve it by allowing the UAV to deviate from it at one

waypoint and fly to a nearby grid point with high sensing probability before

completing the flight. Firstly, we identify all the feasible grid points which sat-

isfy the expected SNR constraint but were not selected in the initial trajectory

and let VF denote its set. Secondly, we sort them in a decreasing order of their
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corresponding sensing probabilities, and select the top RI ≥ 1 ones with the

highest probabilities, which are denoted by {UD(kr, lr)}RI
r=1 in graph G. Thirdly,

for each UD(kr, lr), we find its nearest location in the initial trajectory denoted

by UD(k
′
r, l

′
r) in G. Based on this, we propose a new trajectory for each r de-

noted by Ir that consists of three parts: 1) UD(i1, j1) to UD(k
′
r, l

′
r) same as the

initial trajectory; 2) UD(k
′
r, l

′
r) to UD(kr, lr) as the shortest-distance trajectory

under expected SNR constraint obtained via the Dijkstra algorithm over graph

G; 3) UD(kr, lr) to UD(iNS
, jNS

) as the shortest-distance trajectory under ex-

pected SNR constraint obtained via the Dijkstra algorithm over graph G. For

each Ir, we obtain the sum flying distance fD(Ir) according to (2.22). If we can-

not find a trajectory that satisfies the above requirements, we set fD(Ir) = ∞.

Finally, among all Ir’s and the initial trajectory II, we select the best trajectory

as the one with a sum flying distance no larger than D̄ and a maximum total

sensing probability (the original objective function of (P1)). The obtained so-

lution denoted by III (proposed solution II) is guaranteed to achieve no smaller

total sensing probability compared to II due to the above selection procedure.

The worst-case complexity for obtaining III based on II can be shown to be

O(D2 +RI(2D
4)). Note that as RI increases, the performance will increase at a

cost of higher complexity. Thus, the value of RI can be flexibly chosen according

to practical requirements.

2.5.4 Proposed Solution III

In proposed solution III, we further enhance the performance by includ-

ing multiple extra waypoints and allowing more flexible waypoint visiting order.

Consider proposed solution I as the initial trajectory. Firstly, we select the top

RII ≥ 1 feasible grid points in VF with the highest probabilities. Secondly, we aim

to construct a new trajectory from the initial location UD(i1, j1) to the final loca-

tion UD(iNS
, jNS

) in G which traverses all waypoints in the initial trajectory and
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all RII new points with highest sensing probabilities. In light of the maximum

flying distance constraint, this trajectory is designed to minimize the sum flying

distance, which corresponds to a traveling salesman problem (TSP). Although

TSP is an NP-hard problem, various algorithms have been developed for finding

a high-quality suboptimal solution, such as the ant colony optimization (ACO)

algorithm. Let IRII
denote the obtained trajectory with RII more waypoints. If

no feasible IRII
exists or fD(IRII

) > D̄, we will repeat the above procedures by

incorporating one fewer, i.e., RII − 1, new waypoints with highest sensing prob-

abilities, until a feasible solution is obtained or the number of new waypoints is

reduced to zero (i.e., the trajectory is the same as the initial trajectory). The re-

sulting proposed solution III denoted by IIII is guaranteed to achieve no smaller

total sensing probability than the initial trajectory due to the above selection

procedure. The worst-case complexity for proposed solution III via ACO for

TSP can be shown to be O(RII(CA(RII +N)2 + (RII +N)D4) + (RII +N)2D4),

where C is the number of iterations and A is the number of ants in ACO.

2.6. Numerical Results

We consider a scenario shown in Fig. 2.3, with L = 600 m andM = 3 GBSs

which have common height of 10 m and same transmit power of Pm = 25 dBm,

∀m. The large-scale channel is modeled under the urban micro (UMi) setup

specified in 3GPP. The UAV flies at an altitude of H = 80 m and has an average

receiver noise power of σ2 = −90 dBm. The grid granularity is set as ∆D = 30 m

if not specified otherwise. The expected SNR map is shown in Fig. 2.1. For the

target location distribution, we consider a truncated version of the map shown

in Fig. 2.2 under Gaussian mixture PDF. Specifically, we remove the grids with

obstacles and normalize the sensing probabilities of the entire area such that the

sum sensing probabilities over all grids that do not overlap with obstacles is still
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Figure 2.3: Illustration of trajectory designs with D̄ = 2700 m, ∆D = 30 m.

1. We consider an expected SNR target of ρ̄ = 7 dB, under which the infeasible

grid points are shown in Fig. 2.3. We consider a benchmark scheme where the

UAV flies in the shortest-distance trajectory under the expected SNR constraint,

without considering the sensing probability [19].

In Fig. 2.3, we show the trajectory designs via our proposed solutions I,

II, III and the benchmark scheme under D̄ = 2700 m. It is observed that our

proposed solutions tend to traverse grids with high sensing probabilities at the

cost of higher flying distance compared to the benchmark scheme. In Fig. 2.4,

we show the total sensing probability versus the maximum flying distance D̄ for

the aforementioned schemes, as well as proposed solutions II and III with the

benchmark scheme (shortest-distance trajectory) as the initial trajectory. It is

observed that all the proposed solutions outperform the benchmark scheme, and

both proposed solutions II and III outperform proposed solution I due to the

further improvements. Moreover, when the flying distance constraint is tight

(i.e., D̄ is small), proposed solution II outperforms proposed solution III since
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Figure 2.4: Illustration of total sensing probability versus D̄ with ∆D = 30 m.

the limited flying distance may not allow the inclusion of many high-probability

locations; while when the flying distance constraint becomes relaxed (i.e., D̄

is large), proposed solution III outperforms proposed solution II since it incor-

porates more high-probability locations with flexible visiting order design. In

this setup, proposed solution III can improve the overall probability from 0.1649

(proposed solution II) to 0.7404 with D̄ = 2700 m. Finally, it is observed that

for proposed solutions II and III, using proposed solution I as the initial trajec-

tory generally leads to improved performance compared with using the shortest-

distance trajectory, due to the joint consideration of the sensing probability and

flying distance via the Lagrange relaxation method. In addition, we evaluate the

performance under ∆D = 60 m in Fig. 2.5, where the performance is observed to

be worse than the case with ∆D = 30 m. In Fig. 2.6, we show the computation

time of different designs, where the case with ∆D = 60 m is observed to consume

less computation time, thus validating the performance-complexity trade-off in
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Figure 2.5: Illustration of total sensing probability versus D̄ with ∆D = 60 m.

selecting ∆D.

2.7. Chapter Summary

In this chapter, we studied the trajectory optimization of a cellular-connected

UAV in a sensing mission. Under a challenging scenario where the location of the

target is unknown and random, we quantified the successful sensing probability

at each possible UAV location, and further studied the trajectory optimization

problem to maximize the total sensing probability over the flight, subject to

a communication quality constraint and a mission completion time constraint.

To achieve the challenges in solving this constrained longest path problem, we

transferred the problem into a more trackable form by utilizing a lower bound

of the objective function. Based on graph theory and Lagrangian relaxation

techniques, we designed an effective algorithm to find an approximate solution.

To close the optimal solution to the initial problem, we proposed two solutions

to further enhance the performance. Numerical results showed that the UAV’s
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Figure 2.6: Illustration of computation time with D̄ = 2700 m.

trajectories are numerically verified, and our proposed solutions significantly

increase the overall probability compared with benchmark schemes.
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3. Handover-Aware Trajectory Op-

timization for Cellular-Connected

UAV

3.1. Introduction

In this chapter, we study a cellular-connected UAV which aims to complete

a mission of flying between two pre-determined locations while maintaining sat-

isfactory communication quality with the ground base stations (GBSs). Due to

the potentially long distance of the UAV’s flight, frequent handovers may be

incurred among different GBSs, which leads to various practical issues such as

large delay and synchronization overhead. To address this problem, we inves-

tigate the trajectory optimization of the UAV to minimize the number of GBS

handovers during the flight, subject to a communication quality constraint and

a maximum mission completion time constraint. Although this problem is non-

convex and difficult to solve, we derive useful structures of the optimal solution,

based on which we propose an efficient algorithm based on graph theory and La-

grangian relaxation for finding a high-quality suboptimal solution in polynomial

time. Numerical results validate the effectiveness of our proposed trajectory

design.

The remainder of this chapter is organized as follows. Section 3.2 presents
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a literature review. Section 3.3 introduces the system model for a cellular-

connected UAV and formulates the handover function. Section 3.4 presents this

trajectory optimization problem. Section 3.5 proposes some structural properties

for the optimal UAV trajectory, and reformulates a more tractable problem.

Section 3.6 proposes a high-quality solution. Numerical results are provided in

Section 3.7 to evaluate the performance of proposed solutions. Finally, Section

3.8 concludes the chapter.

3.2. Literature Review

As UAVs operate in dynamic environments and often move across wide

geographical areas, effective handover mechanisms are crucial to maintaining

seamless communication, especially when they rely on heterogeneous cellular

networks. This literature review examines the existing research on UAV han-

dover management.

Handover mechanisms can be broadly categorized based on their operational

strategies, including hard handover and soft handover. [64–66] studied those

handover mechanisms and their performance analysis for UAV communication.

Moreover, handover mechanisms rely on various communication protocols to

manage the transition between service supporters. [67–69] proposed secure and

efficient protocols for UAV communication. In addition, [61–63, 70] analyze the

handover process and effection for UAV communication. Their research demon-

strated that handover will affect the communication quality, including handover

latency, packet loss, throughput, and signal strength.

Compared with other performance metrics such as the mission completion

time, the number of handovers is a discrete-valued function that is difficult to be

characterized explicitly with respect to the UAV’s trajectory. Moreover, there

exists non-trivial trade-offs among the handover performance, mission comple-
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tion performance, and communication performance, which make handover-aware

trajectory optimization more challenging. Note that existing works proposed

new protocols and handover mechanisms to reduce the number of handovers

and decrease the negative impact of the handovers. In practice, the decreased

number of handovers can be achieved by optimizing UAVs’ trajectory. However,

how to design the UAV trajectory to minimize the total number of handovers

has not been studied in the existing literature to our best knowledge.

3.3. System Model

We consider a cellular-enabled UAV communication system with M ≥ 1

heterogeneous GBSs and a UAV. Both the UAV and each GBS are equipped

with one single antenna.1 We assume that the UAV flies at a constant height

of H in meters (m), and its three-dimensional (3D) location at time instant t is

denoted as (x(t), y(t), H), 0 ≤ t ≤ T . Specifically, T represents the completion

time of the UAV’s mission in seconds (s), which should be no longer than a pre-

defined maximum mission completion time threshold Tmax. The mission of the

UAV is to fly from an initial point U0 to a final point UF, for which the locations

are denoted by [x0, y0, H]T and [xF, yF, H]T , respectively. During the flight, the

UAV is required to maintain satisfactory downlink communication quality with

the GBSs at every time instant.

We consider a heterogeneous network where each GBS may have a differ-

ent antenna height and a different transmit power for downlink UAV commu-

nication. For each m-th GBS, we let Hm and Pm denote the antenna height

and transmit power for UAV communication, respectively, and (am, bm, Hm) de-

note its 3D location. For illustration, we further define gm = [am, bm]
T and

u(t) = [x(t), y(t)]T to represent the horizontal locations of each m-th GBS and

1It is worth noting that our results can be readily extended to the case with multiple
antennas at the GBSs/UAV by re-quantifying the communication quality with multi-antenna
gain/beamforming taken into account.
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the UAV at time instant t, respectively. In addition, we define ū0 = [x0, y0]
T

and ūF = [xF, yF]
T , with u(0) = ū0 and u(T ) = ūF. We consider a max-

imum speed constraint of the UAV denoted by Vmax, which yields ∥u̇(t)∥ ≤

Vmax. The link distance between the m-th GBS and the UAV at each time

instant t is given by dm(t) =
√

(H −Hm)2 + ∥u(t)− gm∥2, m ∈ M, where

M = {1, · · ·,M}. For ease of understanding the fundamental trade-offs among

handover, mission completion time, and communication quality, we consider the

LoS channel model between GBSs and the UAV. Let hm(t) ∈ C denote the

complex baseband equivalent channel coefficient from each m-th GBS to the

UAV at time instant t. The corresponding channel power gain is modeled as

|hm(t)|2 = β0

d2m(t)
= β0

(H−Hm)2+∥u(t)−gm∥2 , m ∈ M, where β0 denotes the channel

power gain at reference distance d0 = 1 m. We assume that the UAV communi-

cates with one GBS indexed by I(t) ∈ M at each time instant t, and a dedicated

time-frequency resource block is allocated for UAV communication. The receive

SNR at the UAV at time instant t is thus given by

ρI(t)(t) =
PI(t)β0

σ2((H −HI(t))2 + ∥u(t)− gI(t)∥2)
, 0 ≤ t ≤ T, (3.1)

where σ2 denotes the average noise power at the UAV receiver. We consider a

communication quality requirement specified by a minimum receive SNR thresh-

old denoted by ρ̄. Namely, the UAV can satisfactorily communicate with GBS

I(t) at time instant t if and only if ρI(t)(t) ≥ ρ̄ or equivalently ∥u(t)− gI(t)∥ ≤

d̄I(t) ≜
√

PI(t)β0

σ2ρ̄
− (H −HI(t))2 holds, i.e., the horizontal location of the UAV

lies in the disk-shaped (horizontal) coverage region of GBS I(t) centered at gI(t)

with radius d̄I(t), as illustrated in Fig. 3.1.

Note that at each time instant t, there may exist multiple GBSs that can

satisfy the communication constraint when associated with the UAV. However,

frequent change of the GBS-UAV association I(t) over time leads to frequent
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GBS handovers, and consequently causes increased delay and overhead (e.g., for

synchronization). Motivated by this, we aim to judiciously design the UAV’s

trajectory and GBS-UAV associations I(t)’s to minimize the total number of

handovers during the UAV’s mission, while maintaining satisfactory communi-

cation quality and mission completion time.

To this end, we first mathematically characterize the number of handovers.

We consider that a handover happens when the UAV reaches the boundary

of the coverage region of the GBS currently associated with the UAV, and is

about to enter the coverage region of another GBS, as illustrated in Fig. 3.1.

Specifically, define χ(t) to indicate whether the UAV has reached the boundary

of the coverage region of the currently associated GBS:

χ(t) =
∑

t′∈{τ :∥u(τ)−gI(τ)∥−d̄I(τ)=0, τ∈[0,T ]}

δ(t− t′), 0 ≤ t ≤ T, (3.2)

where δ(·) denotes the Dirac-delta function. Moreover, let ψ(t) indicate whether

the UAV is ready to enter the coverage region of another GBS, which is given

by

ψ(t) =


1, if min

m∈M\{I(t)}
∥u(t)− gm∥ − d̄m ≤ 0

0, otherwise

, 0 ≤ t ≤ T. (3.3)

Note that ψ(t) = 1 indicates that the UAV is ready to be associated with

another GBS indexed by m ∈ M\{I(t)} that is different from the associated

one, and ψ(t) = 0 otherwise. Notice that χ(t)ψ(t) consists of multiple time-

shifted Dirac-delta functions, each taking a non-zero value at a handover time

instant. Therefore, the total number of handovers during the UAV’s flight can

be expressed as:

N =

∫ T

0

χ(t)ψ(t)dt. (3.4)

53



GBS 5

GBS 1

GBS 3 GBS 2

GBS 4

x (m)

y (m)

U0 UF

UAV

�1

�2

�4�3

�5

 : Coverage boundaries
 : Handover location

 : Trajectory (3 handovers)

GBS coverage region

Figure 3.1: Illustration of handover locations for a cellular-connected UAV with
different trajectories.

Note that the number of handovers in (3.4) is critically dependent on the

UAV’s trajectory {u(t), 0 ≤ t ≤ T} and GBS-UAV associations {I(t), 0 ≤ t ≤

T}, which also critically affect the communication quality and mission comple-

tion time. In general, there exists a non-trivial trade-off among the handover,

communication, and mission completion performances. For example, to maxi-

mize the receive SNR, the UAV should fly near the GBSs during its flight as

much as possible, which, on the other hand, may result in a large number of han-

dovers and long mission completion time. To resolve this trade-off, we will jointly

optimize the UAV’s trajectory and GBS-UAV associations for minimizing the

number of handovers subject to communication quality and mission completion

requirements.

3.4. Problem Formulation

We aim to jointly optimize the UAV’s trajectory {u(t), 0 ≤ t ≤ T} and the

GBS-UAV associations {I(t), 0 ≤ t ≤ T} to minimize the number of handovers,

subject to a communication quality constraint specified by a minimum receive

SNR threshold ρ̄ and a maximum mission completion time threshold Tmax. The
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optimization problem is formulated as

(P1) min
T,{u(t),0≤t≤T},
{I(t),0≤t≤T}

N (3.5)

s.t. u(0) = ū0, u(T ) = ūF (3.6)

∥u(t)−gI(t)∥−d̄I(t)≤0, 0≤ t≤T (3.7)

I(t) ∈ M, 0 ≤ t ≤ T (3.8)

∥u̇(t)∥ ≤ Vmax, 0 ≤ t ≤ T (3.9)

T ≤ Tmax. (3.10)

Note that the objective function defined in (3.4) is in a complex form which

is a non-decreasing step function of the mission completion time T . Moreover,

both u(t) and I(t) are continuous functions over time. Thus, (P1) involves

an infinite number of optimization variables. Furthermore, I(t)’s are discrete

optimization variables and the objective functionN is an integer-valued function.

To summarize, (P1) is a non-convex optimization problem for which the optimal

solution is difficult to obtain. Particularly, the new consideration of the number

of handovers brings brand new challenges compared to existing works on the

trajectory optimization for cellular-connected UAV (e.g., [15, 17, 19]). In the

following, we will first transform the problem into a more tractable equivalent

form by exploiting its structural properties.

3.5. Structural Properties of the Optimal Solu-

tion and Problem Reformulation

First, we introduce a set of auxiliary variables {Ti}Ni=0, where Ti, 1 ≤ i ≤

N − 1, denotes the time duration between the i-th handover and the (i+ 1)-th

handover; T0 represents the time duration from the mission start to the first
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handover; and TN denotes the time duration from the N -th handover to the

mission completion. Moreover, we let an auxiliary vector I = [I0, · · ·, Ii, · · ·, IN ]T

with Ii ∈ M, ∀i represent the GBS-UAV association sequence, where I0 =

I(t), t ∈ [0, T0], and Ii = I(t), t ∈
[ i−1∑
j=0

Tj,
i∑

j=0

Tj

]
, i = 1, · · ·, N . Based on this,

(P1) can be equivalently transformed into

(P2) min
T,{u(t),0≤t≤T},

I,{Ti}Ni=0

N (3.11)

s.t. (3.6), (3.9), (3.10) (3.12)

∥u(t)− gIi∥ − d̄Ii ≤ 0,

t ∈

[
i−1∑
j=0

Tj,
i∑

j=0

Tj

]
, i = 0, · · ·, N (3.13)

Ii ∈ M, i = 0, · · ·, N. (3.14)

Note that compared to (P1), (P2) replaces the continuous-time I(t) with a dis-

crete sequence I, based on which the number of handovers can also be expressed

as the cardinality of I. However, there are still MN+1 possible solutions of I,

which motivates us to provide the following proposition.

Proposition 1 The optimal number of handovers satisfies N ≤ M − 1. The

optimal I to (P2) satisfies

Ii ̸= Ij, ∀i ̸= j, i, j = 0, · · ·, N. (3.15)

Proof : Consider a feasible trajectory to (P2) denoted by {û(t), 0 ≤ t ≤ T̂}

with repeated GBS-UAV associations, where the association sequence is denoted

by Î = [Î0, · · ·, Îk, · · ·, Îq, · · ·, ÎN̂ ]T with k < q and Îk = Îq. We prove Proposi-

tion 1 by showing that a new feasible trajectory can be constructed without

repeated association and with reduced number of handovers. Specifically, we

construct the GBS-UAV association sequence by removing the (k + 1)-th to
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the q-th elements in Î, which is given by Ĩ = [Î0, · · ·, Îk, Îq+1, · · ·, ÎN̂ ]T . The

new feasible trajectory is then constructed by replacing the part in the original

trajectory from û(
∑k

j=0 T̂j) to û(
∑q−1

j=0 T̂j) (during which the UAV leaves the

association with GBS Îk and becomes associated with it again) by a straight-

line path with maximum speed from û(
∑k

j=0 T̂j) to û(
∑q−1

j=0 T̂j). Note that since

û(
∑k

j=0 T̂j) and û(
∑q−1

j=0 T̂j) are both within the disk-shaped coverage region of

GBS Îk, the newly constructed trajectory satisfies the communication quality

constraint. Moreover, the replaced part consumes no longer time compared to

the original part, as it incurs shortest distance with maximum speed, thus the

newly constructed trajectory satisfies the mission completion time constraint.

Finally, the newly constructed trajectory yields a smaller number of handovers

of Ñ = N̂ − q + k < N̂ . This thus completes the proof of Proposition 1.

Proposition 1 indicates there should be no more than M − 1 handovers in

the UAV’s mission, and significantly reduces the feasible set of I based on (3.15).

Furthermore, we let ui = u
( i−1∑

j=0

Tj

)
represent the location where the UAV is

handed over from GBS gIi−1
to GBS gIi . For completeness, we define the initial

location u0 = u(0) = ū0 and the final location uN+1 = u(T ) = ūF. Based on

{ui}N+1
i=0 defined above, we propose the following proposition.

Proposition 2 Without loss of optimality, the optimal solution to (P2) can be

assumed to satisfy the following conditions:

Ti =
∥ui+1 − ui∥

Vmax

, i = 0, · · ·, N (3.16)

u(t) = ui +
(
t−

i−1∑
j=0

Tj

)
Vmax

ui+1 − ui

∥ui+1 − ui∥
,

t ∈

[
i−1∑
j=0

Tj,

i∑
j=0

Tj

]
, i = 0, · · ·, N. (3.17)

Proof : We prove Proposition 2 by showing that for any feasible solution

to (P2) denoted by (T̂ , {û(t), 0 ≤ t ≤ T̂}, I, {T̂i}Ni=0) that does not satisfy the
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conditions in (3.16), (3.17), we can always construct a feasible solution to (P2)

denoted by (T, {u(t), 0 ≤ t ≤ T}, I, {Ti}Ni=0) that satisfies these conditions with

the same objective value. We set the handover locations in {u(t), 0 ≤ t ≤ T}

as the same ones in {û(t), 0 ≤ t ≤ T̂}, i.e., ui = û
( i−1∑

j=0

T̂j

)
, i = 0, · · ·, N + 1.

Based on this, the new solution is constructed based on (3.16), (3.17). Note

that T̂i denotes the time duration for the UAV to fly from ui+1 to ui, where

T̂i =
∥ui+1−ui∥

∥u̇(t)∥ , thus T̂i ≥ ∥ui+1−ui∥
Vmax

should hold due to the constraint in (3.9).

By noting that Ti =
∥ui+1−ui∥

Vmax
, we have Ti ≤ T̂i, i = 0, · · ·, N , and consequently

T =
N∑
i=0

∥ui+1−ui∥
Vmax

≤ T̂ =
N∑
i=0

∥ui+1−ui∥
∥u̇(t)∥ ≤ Tmax. Moreover, the newly constructed

solution also satisfies the communication quality constraint since the line seg-

ment between two consecutive handover locations is guaranteed to lie in the

disk-shaped GBS coverage region. Thus, the new solution is feasible for (P2)

with unchanged objective value N , which completes the proof of Proposition 2.

Proposition 2 indicates that the optimal horizontal trajectory is composed of

multiple connected line segments, and the UAV flies along these line segments at

maximum speed Vmax. Specifically, the i-th line segment’s start and end points

are the (i − 1)-th handover location ui−1 and the i-th handover location ui,

respectively. Based on this, we equivalently transform (P2) and consequently
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(P1) into the following problem:

(P3) min
{ui}N+1

i=0 ,I
N (3.18)

s.t. (3.6), (3.14), (3.15) (3.19)

u0 = ū0, uN+1 = ūF (3.20)

N∑
i=0

∥ui+1 − ui∥ ≤ TmaxVmax (3.21)

∥ui − gIi∥ ≤ d̄Ii , i = 0, · · ·, N (3.22)

∥ui − gIi−1
∥ = d̄Ii−1

, i = 1, · · ·, N (3.23)

∥uN+1 − gIN∥ ≤ d̄IN . (3.24)

Note that in contrast to (P1), the equivalent problem (P3) is a joint opti-

mization problem of the GBS-UAV association sequence and handover locations,

which does not involve any continuous function over time. However, it is still

a non-convex optimization problem due to the non-convex constraint in (3.23)

and the discrete optimization variables in I. In the following, we will leverage

graph theory to handle (P3).

3.6. Proposed Solution to Problem (P3)

Note that a key difficulty in (P3) lies in the mixture of the continuous and

discrete optimization variables representing the handover locations and GBS-

UAV association sequence, respectively. To address this challenge, we first pro-

pose an effective structural design of the handover locations, based on which

(P3) can be modeled and tackled via graph theory.
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3.6.1 Handover Location Design

Motivated by Proposition 2 and the fact that the communication quality

improves as the UAV flies closer to the GBS, we propose a structural handover

location design. Specifically, the UAV firstly flies from the start location to the

location on top of the firstly connected GBS. Then, the UAV flies in a straight

line between the locations on top of the sequentially associated GBSs, where the

i-th (horizontal) handover location ui is located at the intersection of the line

segment from the Ii−1-th to the Ii-th GBSs and the coverage boundary of the

Ii−1-th GBS. Finally, the UAV flies from the location above the lastly associated

GBS to the final destination, as illustrated in Fig. 3.1. We let T̃i, 1 ≤ i ≤ N,

represent the time duration for the UAV to fly between the locations on top of

GBSs Ii−1 and Ii; T̃0 denote the time duration for the UAV to fly from the initial

location to the location above the firstly associated GBS; T̃N+1 denote the time

duration for the UAV to fly from the location above the lastly associated GBS

to the final destination. The UAV’s trajectory and mission completion time are

thus given by

u(t) =



u0 + tVmax
gI0−u0

∥gI0−u0∥ , t ∈ [0, T̃0]

gI0 +
(
t−

i∑
j=0

T̃j

)
Vmax

gIi+1
−gIi

∥gIi+1
−gIi∥

,

t ∈

[
i∑

j=0

T̃j,
i+1∑
j=0

T̃j

]
, i = 0, · · ·, N−1

gIN +
(
t−

N∑
j=0

T̃j

)
Vmax

uN+1−gIN
∥uN+1−gIN ∥ ,

t ∈

[
N∑
j=0

T̃j, T

]
, (3.25)

T =
∥u0 − gI0∥

Vmax

+
∥uN+1 − gIN∥

Vmax

+
N−1∑
i=0

∥gIi+1
−gIi∥

Vmax

. (3.26)
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Based on the above handover location structure, (P3) can be transformed

to the following problem:

(P4) min
I

N (3.27)

s.t. (3.6), (3.14), (3.15) (3.28)

∥u0−gI0∥+∥uN+1−gIN∥+
N−1∑
i=0

∥gIi+1
−gIi∥

≤ TmaxVmax (3.29)

∥gIi−gIi−1
∥−d̄Ii−d̄Ii−1

≤ 0, i=1, · · ·, N. (3.30)

Notice that the only variable in (P4) is the GBS-UAV association sequence I,

which should satisfy the constraint in (3.30) such that each pair of GBSs Ii−1

and Ii can be consecutively associated with the UAV. Although the optimal

solution to (P4) may not be optimal to (P3) and consequently (P1) due to the

specific handover location design considered, it enables an equivalent graph-

based modeling, as shown below.

3.6.2 Equivalent Graph-Based Model and Solution for

(P4)

Note that an edge exists between two vertices if and only if their corre-

sponding GBSs can be potentially consecutively associated with the UAV, or

the UAV can be associated with a GBS at the start or the end of the mission.

We define a novel handover weight of each edge, which is given by

E = {(U0, Gm) : ∥u0 − gm∥ ≤ d̄m, m ∈ M}

∪ {(Gm, Gn) : ∥gm − gn∥ ≤ d̄m + d̄n, m, n ∈ M, m ̸= n}

∪ {(UF, Gm) : ∥uF − gm∥ ≤ d̄m, m ∈ M}. (3.31)
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Note that an edge exists between two vertices if and only if their corresponding

GBSs can be potentially consecutively associated with the UAV, or the UAV

can be associated with a GBS at the start or the end of the mission. We define

a novel handover weight of each edge, which is given by

WH(U0, Gm) = 0,WH(Gm, Gn) = 1,

WH(UF, Gm) = 0, m, n ∈ M, m ̸= n. (3.32)

Moreover, we define a distance weight of each edge given by

WD(U0, Gm) = ∥u0 − gm∥,WD(Gm, Gn) = ∥gm − gn∥,

WD(UF, Gm) = ∥uF − gm∥, m, n ∈ M, m ̸= n. (3.33)

Note that any path from U0 to UF denoted by (U0, GI0 , GI1 , · · ·, GIN , UF) rep-

resents a feasible GBS-UAV association sequence I = [I0, · · ·, IN ]T , based on

which the communication quality constraint can be satisfied with the proposed

handover location design. The corresponding total number of handovers can

be represented as N = fH(I) = WH(U0, I0) +
N−1∑
i=0

WH(Ii+1, Ii) +WH(IN , UF),

and the corresponding mission completion time can be represented as fT(I) =

(WD(U0, I0) +
N−1∑
i=0

WD(Ii+1, Ii) +WD(IN , UF))/Vmax. Thus, (P4) can be equiv-

alently expressed as

(P5) min
I∈κ

fH(I) (3.34)

s.t. fT(I) ≤ Tmax, (3.35)

where κ = {[I0, · · ·, IN ]T : Ii ∈ M, Ii ̸= Ij, ∀i ̸= j}. Note that (P5) is still a

non-convex optimization problem belonging to the class of constrained shortest

path problems (or weight constrained shortest path problems), which has been

shown to be NP-hard [82]. To tackle this problem, we propose an efficient
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algorithm based on Lagrangian relaxation and graph theory [17]. Specifically,

the Lagrangian of (P5) is given by L (I, λ) = fH(I) + λ(fT(I) − Tmax), where

λ ≥ 0 denotes the dual variable associated with the constraint in (3.35). The

Lagrange dual function is then given by g(λ) = min
I

L (I, λ) = min
I
fH(I) +

λ(fT(I)− Tmax). Consequently, the dual problem of (P5) is given by

(P5-Dual) max
λ≥0

min
I∈κ

fH(I) + λ(fT(I)− Tmax). (3.36)

(P5-Dual) is a convex optimization problem which can be solved by iteratively

updating λ via the subgradient method. Due to the non-convexity of (P5),

the duality gap between (P5) and (P5-Dual) is generally non-zero. To reduce

this gap, we apply the K-shortest path method to obtain K best solutions for

minimizing fH(I)+λ
⋆fT(I) via Yen’s algorithm, where λ⋆ is the optimal solution

to (P5-Dual). Then, the final solution of I is selected as the best solution among

the optimal I to (P5-Dual) and the K additional solutions. More details can

be found from Appendix E of [17] and are omitted due to limited space. The

worst-case complexity of this algorithm is O(M4 log2M +M3K), which is much

lower than that for solving (P5) via exhaustive search, i.e., O(M !) [17].

3.7. Numerical Results

In this section, we provide numerical results to evaluate the performance

of our proposed handover-aware trajectory design. We set Vmax = 50 m/s,

σ2 = −90 dBm, β0 = −30 dB, and H = 90 m. In Fig. 3.2, we randomly

generate the locations of M = 20 GBSs in a 10 × 10 km2 square region. We

consider one large GBS indexed by 2 with transmit power 35.7 dBm and antenna

height 20 m, two medium GBSs indexed by 14 and 19 with transmit power 25.6

dBm and antenna height 15 m, and 17 small GBSs with transmit power 20 dBm

and antenna height 12.5 m [83].
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Figure 3.2: Illustration of the proposed trajectory design.

For comparison, we consider a shortest path trajectory which aims to min-

imize the mission completion time subject to a receive SNR constraint ρ̄ using

Method I in [15] based on a similar handover location design as in Section V-

A. Moreover, we consider a benchmark scheme which aims to solve (P5) via

the genetic algorithm [84]. Under a setup of Tmax = 270 s and ρ̄ = 17.7 dB,

we show the trajectories via the proposed handover-aware design, the shortest

path trajectory, and the benchmark scheme in Fig. 3.2. It is observed that

the proposed design yields a GBS-UAV association sequence of [1, 14, 19, 20]T ,

while the shortest path trajectory and the benchmark scheme yield sequences

with more handovers, i.e., [1, 7, 10, 13, 16, 20]T and [1, 9, 15, 18, 20]T , respectively.

Furthermore, under ρ̄=17.7 dB, we show in Fig. 3.3 the number of handovers

versus the mission completion time threshold Tmax for different trajectories. It is

observed that the handover performance improves as increased time is allowed

for the UAV’s flight, which enables higher design flexibility. In contrast, the

shortest path trajectory yields a constant number of handovers which is much

larger compared to the proposed design, and the benchmark scheme is also out-
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Figure 3.3: Illustration of number of handovers versus Tmax.

performed by the proposed design. Under Tmax=270 s, we show in Fig. 3.4 the

number of handovers versus the minimum SNR threshold ρ̄. It is observed that

all three designs yield larger numbers of handovers as the communication quality

constraint becomes more stringent, while our proposed design still outperforms

the other two schemes, thus validating its effectiveness.
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Figure 3.4: Illustration of number of handovers versus SNR threshold ρ̄.

65



3.8. Chapter Summary

In this chapter, considering a cellular-connected UAV with a mission of

flying between two locations, this paper studied the trajectory optimization to

minimize the number of GBS handovers along the flight, subject to a commu-

nication quality constraint and a maximum mission completion time constraint.

The formulated optimization problem was non-convex and involved infinite op-

timization variables. By exploiting the problem structure and leveraging graph

theory as well as Lagrange duality, a polynomial-time algorithm was proposed

to find an approximate solution. Numerical results showed that the proposed

trajectory design effectively reduces the number of handovers compared with

various benchmark schemes.
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4. Conclusion and Future Work

4.1. Conclusion

The development of cellular-enabled UAV communication offers a promis-

ing, effective, and cost-efficient solution for various applications in future wireless

communication systems. This thesis conducted in-depth studies on the trajec-

tory optimization for cellular-connected UAVs in the face of brand new chal-

lenges in wireless communication systems. Specifically, we proposed effective

high-quality solutions to address the challenges posed by new target distribu-

tion features for the target sensing mission, and we presented a handover-aware

trajectory design for a cellular-connected UAV by applying various optimization

methods. The findings of this study provided new insights into the design and

practical implementation of cellular-connected UAV trajectories in future wire-

less communication systems. In the following, we summarize the main results of

this thesis.

� In Chapter 2, we studied a cellular-connected UAV, where the UAV needs

to complete a flight mission to sense a target. Since the exact location of

the target is random and unknown, we proposed a target location distribu-

tion map to quantify the UAV’s ability to sense the target. We presented

three high-quality approximate solutions that have been proven to signif-

icantly enhance the UAV’s sensing performance by designing the UAV’s

trajectory. The results provided useful guidance for the UAVs’ trajectory
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designs with sensing missions.

� In Chapter 3, we studied a cellular-connected UAV with a flight mission

from a starting location to a final location. We took note of the handover

problem in cellular networks for UAVs, and derived a handover function to

characterize the relationship between the number of handovers, the UAV’s

flight trajectory, and the GBS-UAV association. We proposed a UAV tra-

jectory design where the number of handovers is significantly decreased.

The results provided a useful guideline for optimizing UAVs’ flight trajec-

tories to ensure high-quality communications between UAVs and GBSs.

4.2. Future Work

Based on the methods and solutions proposed in this thesis and the exten-

sion of the research results, we identify multiple promising research directions for

further investigation. In the following, we list some of these interesting future

research directions.

4.2.1 Trajectory Design of Cellular-connected UAVs for

Target Sensing

In Chapter 2, we studied a single cellular-connected UAV, where its trajec-

tory was designed to complete the sensing mission for one ground target. We

list some future research directions and challenges as follows.

3D Trajectory Optimization: It is worthwhile extending our studies to

more general 3D trajectory optimization with advanced GBS-UAV communica-

tion techniques, such as multi-GBS cooperative communication. Due to the fact

that the distance between the UAV and the ground target will affect the success-

ful sensing probability, a fundamental challenge is how to quantify UAV sensing

performance when the UAV flies at different heights in complex 3D space.
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Multi-Target Sensing: An important direction for future research is the

exploration of multi-target sensing, where the UAV needs to simultaneously

sense multiple targets, each of which may have different spatial and temporal

characteristics. To this end, algorithms should be able to process the prior

location information of multiple targets and design trajectories to achieve the

best balance between GBS-UAV communication, the location distributions of

multiple targets, and the mission completion time.

4.2.2 Handover Analysis and Handover Protocol Design

for Cellular-connected UAVs

In Chapter 3, we designed a handover-aware trajectory for a cellular-connected

UAV to complete its flight mission. There are several aspects of handover that

require deeper analysis and more refined protocol development to improve reli-

ability and efficiency.

Comprehensive Handover Analysis: It is worth noting that a more de-

tailed analysis of the handover process should be considered for cellular-enabled

UAV communication, including factors such as handover failure probability, the

probability of the ping-pong effect, and handover duration. Detailed studies on

handover duration and its impact on service quality in UAV communication will

also be critical.

Actual Ground-to-Air Channel: The actual shape of the coverage area,

influenced by factors such as antenna tilt and environmental variables (e.g.,

obstacles), is rarely a perfect circle. Future work should consider these real-

world complexities in the ground-to-air channel to refine trajectory optimization

algorithms, thus enhancing communication quality between UAVs and GBSs.
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4.2.3 Trajectories Design for Multi-UAV

Employing multi-UAV or a UAV swarm can not only significantly reduce

the time required for sensing but also enhance mission performance. However,

this approach introduces new challenges that must be addressed.

Dynamic Mission Allocation: Research should focus on developing dy-

namic mission allocation frameworks that can respond in real-time to changing

conditions and mission demands, optimizing resource use across multiple UAVs.

The trajectories of multiple UAVs should be jointly optimized with the consid-

eration of mission allocation to maximize mission performance.

Complex Communication Networks: Future studies should focus on

deploying advanced network architectures, possibly utilizing emerging technolo-

gies like 6G networks, to support high-capacity communications for multiple

UAVs. Meanwhile, effective communication interference management technol-

ogy or beamforming technology should also be proposed for enhancing multi-

UAV communications.

Collision Avoidance Systems: As the density of UAV operations in-

creases, so does the risk of in-air collisions. Future work must develop more

advanced collision avoidance systems that integrate real-time sensory data and

predictive analytics to ensure safe operations.
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