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Abstract

This thesis is concerned with an important class of sparse optimization problems

with least squares constraints. The motivation for this work arises from the well

established model known as Basis Pursuit Denoising (BPDN), which aims to find a

sparse representation (or approximation) of a solution to an underdetermined least

squares problem. This sparse representation problem has a wide range of applications

in various fields such as signal processing and statistics. In this thesis, inspired by

the recently developed level set approaches, we will propose an efficient sieving based

secant method to address the challenges posed by the targeted problems.

Firstly, an efficient dimension reduction technique, called adaptive sieving, will be

introduced for solving unconstrained sparse optimization problems. This technique

addresses the original problem by solving a series of reduced problems that have

substantially lower dimensionality. Extensive numerical experiments demonstrate

the high efficiency and promising performance of this technique in solving sparse

optimization problems, especially in high dimensional settings. The significance of

this technique is its integration into the secant method discussed later, which will

efficiently reduce the dimension of the level set subproblems for computing the value

function.

Secondly, we will develop the sieving based secant method to solve the sparse

optimization problems with least squares constraints. In the literature, people use

the bisection method to find a root of a univariate nonsmooth equation φ(λ) = ϱ
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for some ϱ > 0, where φ(·) is the value function computed by a solution of the

corresponding regularized least squares optimization problem. When the objective

function in the constrained problem is a polyhedral gauge function, we prove that

(a) for any positive integer k, φ(·) is piecewise Ck in an open interval containing

the solution λ∗ to the equation φ(λ) = ϱ; (b) the Clarke Jacobian of φ(·) is always

positive. These results allow us to establish the essential ingredients of the fast

convergence rates of the secant method.

Finally, with all the preparations completed, we will then develop our package,

called SMOP, as it is a root finding based secant method for solving the sparse

optimization problems. The high efficiency of SMOP is demonstrated by extensive

numerical results on high dimensional real applications. We point out that, in the

special case where the objective function is the ℓ1 norm, our numerical results show

that the secant method and the semismooth Newton method are comparable in

terms of the number of iterations, which also demonstrates the high efficiency of the

secant method. Note that, different from the semismooth Newton method, the secant

method does not need to compute the generalized Jacobian of the value function.

This paves the way for using the introduced secant method to solve more complicated

sparse optimization problems with least-squares constraints, where the computation

of the generalized Jacobian of the value function is impractical.
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Chapter 1

Introduction

In this thesis, we focus on designing efficient algorithms for solving sparse optimiza-

tion problems with least squares constraints. In particular, we are interested in the

following problem

min
x∈Rn

{p(x) | ∥Ax− b∥ ≤ ϱ} , (CP(ϱ))

where A ∈ Rm×n and b ∈ Rm are given data, ϱ is a given parameter satisfying 0 < ϱ <

∥b∥, and p : Rn → (−∞,+∞] is a proper closed convex function with p(0) = 0 that

possesses the property of promoting sparsity. Without loss of generality, we assume

that (CP(ϱ)) admits active solutions here. Owing to the rapid development of data

engineering and technology, modern datasets often have much higher dimensions

than before, making it increasingly challenging to solve (CP(ϱ)). In this thesis, we

aim to design highly efficient algorithms to address (CP(ϱ)) with a given function

p(·), such as the ℓ1 norm function.

1.1 Motivations and related methods

The motivation for solving the general sparse optimization problems with least

squares constraints (CP(ϱ)) arises from the following problem:

min
x∈Rn

{∥x∥1 | ∥Ax− b∥ ≤ ϱ} , (1.1)
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where ∥ · ∥1 denotes the ℓ1 norm function. This problem was introduced in (Donoho

et al., 2005; Donoho and Elad, 2006; Candés et al., 2006; Tropp, 2006) and is com-

monly known as the basis pursuit denoising problem (BPDN), which is a relaxation

of the basis pursuit problem (BP) proposed in (Chen and Donoho, 1994; Chen et al.,

2001; Donoho and Elad, 2003). Originally, BP was designed to find a representation

of the signal that minimizes the ℓ1 norm of its coefficients with a given dictionary

A. Subsequently, BPDN was proposed to accommodate the presence of noise in the

data, where the only difference between BPDN and BP is that BPDN relaxes the

constraint in BP from Ax = b to ∥Ax − b∥ ≤ ϱ. Note that when the noise exists,

BPDN is not the only form for combining the ℓ1 norm and least squares functions

for sparse approximation. For a positive number λ, Chen et al. (2001) suggested the

regularized least squares problem

min
x∈Rn

{
1

2
∥Ax− b∥2 + λ∥x∥1

}
, (1.2)

which is the so called Lagrangian form of the following problem proposed by Tibshi-

rani (1996):

min
x∈Rn

{∥Ax− b∥ | ∥x∥1 ≤ ϑ} , (1.3)

where ϑ > 0.

The relationship between (1.1), (1.2) and (1.3) is that, with appropriate choices

of the parameters ϱ, λ and ϑ, the solutions to these problems coincide, indicating

that the three problems are equivalent in some sense (Van den Berg and Friedlander,

2008). However, this equivalent relationship is impractical, as the parameters that

establish the equivalence are often unknown in most cases, except for special situa-

tions, such as when A is orthogonal. Although (1.3) is originally named Lasso, the

equivalence between (1.2) and (1.3), along with the widespread use of (1.2), makes

that some also refer to problem (1.2) as Lasso. In this thesis, we will refer to the
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unconstrained version as Lasso. We are particularly interested in the scenario where

the noise level ϱ can be estimated approximately. In this case, the model (1.1) is

preferred. Although Chen et al. (2001) suggested that when the noise level is known,

one can set λ = ϱ
√
2logn to achieve certain optimal properties related to the mean

squared error, this result normally holds under the condition that A is orthogonal.

We then generalize the penalty function in (1.1) from ℓ1 norm function to a

proper closed convex function p(·) that satisfies p(0) = 0 to encourage sparsity. This

forms the main problem (CP(ϱ)) that we address in this thesis. Similar to what

we discussed in the case where p(·) = ∥ · ∥1, the constrained optimization problem

(CP(ϱ)) is usually preferred in practical modeling since we can regard ϱ as the noise

level, which can be estimated in many applications. However, the optimization

problem (CP(ϱ)) is perceived to be more challenging to solve in general due to the

complicated geometry of the feasible set (Aravkin et al., 2019).

The sparse optimization problem (CP(ϱ)) has a wide range of applications in

various fields such as signal processing and statistics. It plays a crucial role in

significant areas such as the signal/image reconstruction: the sparse signal recovery

(Candés and Romberg, 2006; Candés and Wakin, 2008; Cai et al., 2009, 2016) and the

MRI reconstruction (Lustig et al., 2007, 2008), the image denoising (Papageorgiou

et al., 2017; Baraldi et al., 2019) and the robust linear regression (Jin and Rao,

2010). In practical applications, datasets often have high dimensional characteristics,

which drives us to develop efficient and robust algorithms to handle them and meet

contemporary demands.

1.1.1 The dimension reduction techniques

Before discussing the algorithms for addressing (CP(ϱ)), we will first introduce di-

mension reduction techniques for the unconstrained sparse optimization problem. In

this thesis, our algorithm solves (CP(ϱ)) by finding the root of a univariate nonlinear
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equation, where each iteration requires computing a value function by solving an

unconstrained sparse optimization problem. Consequently, it is crucial to solve the

unconstrained sparse optimization problem efficiently.

Let λ > 0 be a given positive parameter. We can also generalize (1.2) to the

following regularized problem of the form:

min
x∈Rn

{
1

2
∥Ax− b∥2 + λp(x)

}
. (PLS(λ))

A dimension reduction technique is crucial for reducing the computational complex-

ity of solving (PLS(λ)). Tibshirani et al. (2012) proposed strong screening rules

(SSR) conditioned on a unit slope bound for regression problems with the ℓ1 norm

penalty function. However, this screening rule is not considered safe (the unit slope

bound assumption may be violated). Therefore, the authors suggested using the

Karush–Kuhn–Tucker (KKT) conditions for verification. In light of this limitation,

several safe screening rules have been proposed. The first safe screening rule, pro-

posed by El Ghaoui (2012), involves adding constraints to the dual problem and

then checking the KKT conditions to eliminate variables when p(·) = ∥ · ∥1. Later,

Wang et al. (2013) introduced a new safe screening rule based on the dual polytope

projections (DPP) and an enhanced version of DPP, for the case that p(·) is the

ℓ1 norm and the grouped ℓ1 norm, by carefully studying the geometry of the dual

problem. Then, Liu et al. (2014) demonstrated that the DPP can be viewed as a

relaxed version of their proposed safe screening rule using variational inequalities

(Sasvi). This approach uses the variational inequality that offers the necessary and

sufficient optimality conditions for the dual problem. For other safe screening rules,

one may refer to the survey by Xiang et al. (2016) and the references therein. The

safe screening rules can eliminate variables that are guaranteed to be zero. While

this is advantageous because it does not discard nonzero elements, it also presents

a limitation in practice, as it typically identifies only a small subset of these zero
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elements. Then, Zeng et al. (2021) proposed hybrid safe-strong rules (HSSR), which

combines the SSR and the safe screen rules. The motivation for proposing HSSR is

primarily to replace the unnecessary KKT checks required by SSR with safe screen-

ing rules. However, these screening rules are often specific to particular problems

and can be challenging to apply to models with general regularizers. Moreover, it is

necessary for the reduced problems to be solved exactly.

Recently, the adaptive sieving (Yuan et al., 2023, 2022) has been proposed for

solving sparse optimization problems in the form of

min
x∈Rn
{Φ(x) + P (x)} ,

where Φ : Rn → R is a continuously differentiable convex function, and P : Rn →

(−∞,+∞] is a closed proper convex function. This strategy sequentially identifies

the index set of zeros using a proximal residual function defined by the KKT condi-

tions, and the authors showed that this strategy stops in a finite number of iterations.

Specifically, the adaptive sieving makes solving the original problem by addressing a

sequence of reduced problems with dimensions much smaller than that of the origi-

nal problem. The high efficiency of the adaptive sieving technique for addressing a

broad range of sparse optimization problems has been demonstrated in (Yuan et al.,

2023, 2022; Li et al., 2023; Wu et al., 2023). Note that, in numerical experiments, we

observed that the adaptive sieving strategy can often reach a satisfactory solution in

just a few iterations.

Apparently, (PLS(λ)) fits within the general framework of the problem addressed

by the adaptive sieving strategy. Now, let us consider how to solve the subproblems

within it for (PLS(λ)). The dual of (PLS(λ)) can be written as

max
y∈Rm,u∈Rn

{
−1

2
∥y∥2 + ⟨b, y⟩ − λp∗(u) |ATy − λu = 0

}
, (DLS(λ))

where p∗(·) is the Fenchel conjugate function of p(·), i.e., p∗(z) = supx∈Rn {⟨z, x⟩ −
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p(x)}, z ∈ Rn. There are several dual based approaches that have demonstrated

superior performance. The semismooth Newton augmented Lagrangian (SSNAL, Li

et al. (2018b)) has demonstrated exceptional performance in solving the ℓ1 penalized

least squares problem ((PLS(λ)) with p(·) = ∥ · ∥1). It addresses the dual prob-

lem (DLS(λ)) using the augmented Lagrangian method, with each subproblem being

solved by a semismooth Newton method. Additionally, it exhibits an asymptotic su-

perlinear convergence rate. Similarly, when p(x) =
∑n

i=1 γi|x|(i), x ∈ Rn with given

parameters γ1 ≥ γ2 ≥ · · · ≥ γn ≥ 0 and γ1 > 0, where |x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(n),

Luo et al. (2019) introduced a semismooth Newton based augmented Lagrangian

method (Newt-ALM) to solve (DLS(λ)). When the penalty function is the non-

overlapping group Lasso regularization, i.e, p(x) =
∑g

l=1wl∥xGl
∥, where for any

l = 1, 2, · · · , g, wl > 0 and Gl ⊆ {1, 2, · · · , n} is the index set that includes all the

features in the l-th group, Zhang et al. (2020) proposed a Hessian based algorithm

that implements a superlinearly convergent inexact semismooth Newton method.

Note that dual based methods are preferred due to their computational advantages,

mainly because the dimension n of the problems being addressed is usually much

larger than m (the number of rows of A). However, the situation we face may

change now, as the adaptive sieving strategy may reduce the dimension of the sub-

problem to less than m. In this situation, a primal based algorithm may offer some

computational advantages.

For addressing the primal problem (PLS(λ)), Khanh et al. (2023) proposed the

generalized damped Newton algorithms, assuming that ATA is positive definite.

However, this assumption is quite stringent. We may then employ a smoothing

method to address the primal problem directly. Let F : Rn → Rn be a locally Lip-

schitz continuous function. Consider the equation F (x) = 0, x ∈ Rn. Generally,

a smoothing method begins by constructing a smoothing approximation function

G : R++ × Rn → Rn for F (·). This function is designed such that for any ϵ > 0,
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G′(ϵ, ·) is continuously differentiable on Rn. Furthermore, for any x ∈ Rn, it holds

that ∥F (x) − G(ϵ, x)∥ → 0 as ϵ ↓ 0. Then, a smoothing method addresses the

equation F (x) = 0 by (inexactly) solving the following problems for a given positive

sequence {ϵk}, k = 0, 1, 2, · · · : G(ϵk, x) = 0. In (Chen et al., 1998), the authors

introduced a smoothing Newton method that incorporates the derivative of G(·, ·)

with respect to the variable x in the Newton iteration. The update rule is given by:

xk+1 = xk − tkG′
x(ϵ

k, xk)−1F (xk), (1.4)

where the parameter ϵk > 0, the stepsize tk > 0, and G′
x(ϵ

k, xk) denotes the deriva-

tive of G(·, ·) with respect to x at (ϵk, xk). The analysis of the convergence of this

smoothing method relies on two key assumptions: (a) the Jacobian consistency prop-

erty, as defined in (Chen et al., 1998, Definition 2.1), is satisfied, and (b) there exists

a constant µ > 0 such that for any ϵ ∈ R++ and x ∈ Rn,

∥G(ϵ, x)− F (x)∥ ≤ µϵ. (1.5)

It has been verified in (Chen et al., 1998) that many smoothing functions satisfy

the Jacobian consistency property, however, some smoothing functions do not meet

the condition in (1.5). To circumvent such challenges, a class of squared smoothing

Newton methods was introduced in (Qi et al., 2000; Qi and Sun, 2002). Subsequently,

Gao and Sun (2009) presented an inexact smoothing Newton method for reducing

the computational cost.

Then, drawing inspiration from the work of (Gao and Sun, 2009), we will develop

a smoothing Newton method to directly solve (PLS(λ)) by finding a solution of

F (x) = x− Proxλp(x− ATAx+ AT b) = 0, x ∈ Rn,

where Proxλp(·) is the proximal mapping associated with λp(·). Let G : R×Rn → Rn

be a locally Lipschitz continuous function such that

G(ϵ, x̃)→ F (x) as (ϵ, x̃)→ (0, x), (1.6)
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and the function G(·, ·) is continuously differentiable around (ϵ, x) ∈ R× Rn except

when ϵ = 0. Denote E : R× Rn → R× Rn as

E(ϵ, x) :=

(
ϵ

G(ϵ, x)

)
, ∀ (ϵ, x) ∈ R× Rn. (1.7)

Then, we will solve F (x) = 0, x ∈ Rn by solving

E(ϵ, x) = 0. (1.8)

So far, we have only provided details of the smoothing Newton method for the case

that p(·) = ∥ · ∥1, while other cases will be addressed in the future work. Specifically,

we use the Huber function to approximate

Proxλ∥·∥1(x− ATAx+ AT b), x ∈ Rn,

and then use the inexact Newton method to solve the corresponding smooth equa-

tion (1.8). Furthermore, we will show that the smoothing Newton method ex-

hibits quadratic convergence under the Linear independence constraint qualification

(LICQ) condition to the dual problem.

1.1.2 Related algorithms

Some algorithms such as the alternating direction method of multipliers (ADMM)

(Glowinski and Marroco, 1975; Gabay and Mercier, 1976) are applicable to solve

(CP(ϱ)). Nevertheless, to obtain an acceptable solution remains challenging for

these algorithms. In particular, when applying the ADMM for solving (CP(ϱ)), it

is computationally expensive to form the matrix AAT or to solve the linear systems

involved in the subproblems. Even though dimension reduction techniques exist, it

is still unclear how to apply dimension reduction techniques to (CP(ϱ)) due to the

potential infeasibility issue for reduced problems.
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A popular approach for solving (CP(ϱ)) and the more general convex constrained

optimization problems is the level set method (Van den Berg and Friedlander, 2008,

2011; Aravkin et al., 2019), which has been widely used in many interesting appli-

cations (Van den Berg and Friedlander, 2008, 2011; Aravkin et al., 2019; Li et al.,

2018b). The idea of exchanging the role of the objective function and the constraints,

which is the key for the level set method, has a long history and can date back to

Queen Dido’s problem (see (Richard and George, 2001, Page 548)). Readers can refer

to (Aravkin et al., 2019, Section 1.3) and the references therein for a discussion of

the history of the level set method. In particular, the level set method developed in

(Van den Berg and Friedlander, 2008, 2011) solves the optimization problem (CP(ϱ))

by finding a root of the following univariate nonlinear equation

ϕ(τ) = ϱ, (Eϕ)

where ϕ(·) is the value function of the following level set problem

ϕ(τ) := min
x∈Rn

{∥Ax− b∥ | p(x) ≤ τ}, τ ≥ 0. (1.9)

Therefore, by executing a root finding procedure for (Eϕ) (e.g., the bisection method),

one can obtain a solution to (CP(ϱ)) by solving a sequence of problems in the form

of (1.9) parameterized by τ . In implementations, one needs an efficient procedure to

compute the metric projection of given vectors onto the constraint set Fp(τ) := {x ∈

Rn | p(x) ≤ τ, τ > 0}. However, such an efficient computation procedure may not

be available. One example can be found in (Li et al., 2018b), where p(·) is the fused

Lasso regularizer (Tibshirani et al., 2005). Moreover, it is still not clear to us how

to deal with the infeasibility issue when a dimension reduction technique is applied

to (1.9).

Recently, Li et al. (2018b) proposed a level set method for solving (CP(ϱ)) via

solving a sequence of (PLS(λ)). Let Ω(λ) be the solution set to (PLS(λ)). Define the
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gauge Υ(· | C) of a nonempty convex set C ⊆ Rn as Υ(x | C) := inf{ν ≥ 0 | x ∈

νC}, x ∈ Rn. Denote ∂p(0) as the subdifferential of p(·) at the origin. We assume

λ∞ := Υ(AT b | ∂p(0)) ∈ (0,+∞) (1.10)

and that for any λ′ > 0, there exists (y(λ′), u(λ′), x(λ′)) ∈ Rm × Rn × Rn satisfying

the following KKT system

x ∈ ∂p∗(u), y − b+ Ax = 0, ATy − λ′u = 0, (KKT)

where ∂p∗(·) is the subdifferential of p∗(·). Consequently, the solution set Ω(λ) to

(PLS(λ)) is nonempty, and b−Ax(λ) is invariant for all x(λ) ∈ Ω(λ) since the solution

(y(λ), u(λ)) to (DLS(λ)) is unique. Based on this fact, Li et al. (2018b) proposed to

solve (CP(ϱ)) by finding the root of the following equation with the bisection method:

φ(λ) := ∥Ax(λ)− b∥ = ϱ, (Eφ)

where x(λ) ∈ Ω(λ) is any solution to (PLS(λ)). We assume that (Eφ) has at least

one solution λ∗ > 0. We then know that any x(λ∗) ∈ Ω(λ∗) is a solution to (CP(ϱ))

(Li et al., 2018b; Friedlander and Tseng, 2007). There are several advantages to

this approach. Firstly, it requires computing the proximal mapping of p(·), which is

normally easier than computing the projection over the constraint set of (1.9). Sec-

ondly, efficient algorithms are available to solve the regularized least squares problem

(PLS(λ)) for a wide class of functions p(·) (Li et al., 2018a,b; Luo et al., 2019; Zhang

et al., 2020; Beck and Teboulle, 2009; Glowinski and Marroco, 1975). More impor-

tantly, this approach is well suited for applying dimension reduction techniques to

solve (PLS(λ)) as can be seen in subsequent sections.

In this thesis, we propose an efficient sieving based secant method for solving

(CP(ϱ)) by finding the root of (Eφ). We call our algorithm SMOP as it is a root

finding based Secant Method for solving the Optimization Problem (CP(ϱ)). We
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focus on the case where p(·) is a gauge function (see (Rockafellar, 1970, Section 15)),

i.e., p(·) is a nonnegative positively homogeneous convex function with p(0) = 0. We

start by studying the properties of the value function φ(·) and the convergence rates

of the secant method for solving (Eφ). To address the computational challenges for

solving (PLS(λ)) and computing the function value of φ(·), we incorporate the adap-

tive sieving technique into the secant method to effectively reduce the dimension

of (PLS(λ)). We point out that the adaptive sieving technique is naturally imple-

mented in the level set method. This is because, in the level set method, we need

to solve problems with a sequence of penalty parameters. As a result, each adaptive

sieving iteration (except the first) is warm started. Extensive numerical results will

be presented in this thesis to demonstrate the superior performance of the proposed

algorithm in solving (CP(ϱ)). Moreover, in the special case that p(·) is the ℓ1 norm

function, we also present numerical results of the semismooth Newton method for

(Eφ). The results indicate that the secant method and the semismooth Newton

method are comparable in terms of the number of iterations. However, unlike the

semismooth Newton method, the secant method does not require the computation

of the generalized Jacobian of the value function. This makes it convenient to use

the secant method for more complex sparse optimization problems with least squares

constraints, where calculating the generalized Jacobian is impractical.

1.2 Contributions

To efficiently solve the sparse optimization problem (CP(ϱ)), we introduce a sieving

based secant method for finding the root of (Eφ). Previously, the level set method

introduced by Li et al. (2018b) solves (CP(ϱ)) by finding the root of (Eφ) using

the bisection method, with each subproblem addressed by SSNAL (Li et al., 2018a).

We then improve the efficiency of this level set method in two key ways. Firstly, we
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improve the efficiency of solving subproblems in the level set method by implementing

the adaptive sieving strategy (Yuan et al., 2023, 2022). Additionally, we introduce

a primal based algorithm that works with SSNAL to address the reduced problems

generated by the adaptive sieving strategy. Secondly, we propose a secant method

for finding the root of (Eφ), which significantly reduces the number of iterations

needed compared to the bisection method.

In each iteration of the level set method, we need to compute the value function,

which is derived from solving an unconstrained sparse optimization problem. There

are several dual based algorithms that can be applied to solve unconstrained sparse

optimization problems with a specified p(·). For example, SSNAL (Li et al., 2018a)

is suited for p(·) = ∥ · ∥1 and Newt-ALM (Luo et al., 2019) is applicable in cases

where p(·) is the sorted ℓ1 norm function. However, directly using such algorithms is

not sufficiently efficient. Our first improvement involves implementing the adaptive

sieving technique, which allows us to solve the original problem by addressing several

reduced problems with significantly smaller dimensions. The second improvement we

made is the introduction of the smoothing Newton method for directly solving the

primal problem. When combined with the dual based algorithms, this approach

allows for higher efficiency in solving the reduced problems in the adaptive sieving

strategy. This is because that we can choose to use either the primal or dual based

algorithm depending on the relationship between the dimensionality of the reduced

problem and the number of rows in A. So far, we have only provided details of the

smoothing Newton method for the case where p(·) = ∥ · ∥1, while other cases will

be addressed in the future work. In this case, we show that the algorithm converges

quadratically to a solution under the assumption that the LICQ condition to the

dual problem holds, which is less stringent than the condition presented in (Khanh

et al., 2023) for the generalized damped Newton algorithm. At last, we point out

that the adaptive sieving technique is naturally applicable in the level set method, as
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it involves solving subproblems with a sequence of penalty parameters. This allows

each problem solved in the adaptive sieving strategy to be warm started, except for

the first one.

To find the root of (Eφ), we develop the secant method by carefully analyzing

the properties of the value function. Specifically, when p(·) is a gauge function,

we prove that φ(·) is (strongly) semismooth for a wide class of instances of p(·)

via connecting (DLS(λ)) to a metric projection problem. More importantly, when

p(·) is a polyhedral gauge function, we show that φ(·) is locally piecewise Ck on

(0, λ∞) for any integer k ≥ 1; and for any λ̄ ∈ (0, λ∞), v > 0 for any v ∈ ∂φ(λ̄).

Then, under the assumption that p(·) is a polyhedral gauge function, we show that

the secant method converges at least 3-step Q-quadratically for solving (Eφ), and if

∂Bφ(λ
∗) is a singleton, the secant method converges superlinearly with Q-order at

least (1 +
√
5)/2. Furthermore, for a general strongly semismooth function φ(·), if

∂φ(λ∗) is a singleton and nondegenerate, the secant method converges superlinearly

with R-order of at least (1 +
√
5)/2.

With all the preparations completed, we develop a package, named SMOP, for ad-

dressing (CP(ϱ)). This incorporates a fast convergent secant method for root finding

of (Eφ), along with an adaptive sieving technique for efficiently reducing the dimen-

sionality of subproblems in the form of (PLS(λ)), where each subproblem is solved

by a fast primal or dual based algorithm. The efficiency of the proposed algorithm

for solving (CP(ϱ)) will be demonstrated by extensive numerical experiments.

1.3 Thesis organization

The remainder of the thesis is organized as follows. In Chapter 2, we will present

some preliminaries relevant to the following chapters. This includes useful properties

associated with the Moreau-Yosida regularization and semismooth functions. Then,
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we will review the existing results of the secant method for semismooth equations

and present the details of the ADMM for (CP(ϱ)). In Chapter 3, we will introduce

the adaptive sieving technique for the unconstrained sparse optimization problems,

and develop a smoothing Newton method to directly address the subproblems (1.1)

in the adaptive sieving strategy with quadratic convergence under the assumption

that the LICQ to the dual problem holds. Additionally, we present a warm-started

path-following adaptive sieving approach for extremely large unconstrained sparse

optimization problems. In Chapter 4, we will develop the secant based method for

solving (CP(ϱ)). We begin by analyzing the properties of the value function φ(·) and

constructing the HS-Jacobian of φ(·) for some p(·). Next, we will demonstrate the

fast convergence of the secant method for solving (Eφ) and design a global version of

the algorithm. The extensive numerical experiments on real datasets are presented

in Chapter 5, where p(·) is the ℓ1 norm function, sorted ℓ1 norm function, and an

interesting example in which p(·) is a non-polyhedral function. In Chapter 6, we will

present the final conclusions of this thesis and explore several potential directions for

the future research.

1.4 Notation

Let X , Y and Z be real finite dimensional Euclidean spaces, each equipped with

an inner product ⟨·, ·⟩ and the induced norm ∥ · ∥. Let n ≥ 1 be any given integer.

Denote the nonnegative orthant and the positive orthant of Rn as Rn
+ and Rn

++,

respectively. We denote [n] := {1, 2, . . . , n}. We denote the subvector generated by

x ∈ Rn indexed by K ⊆ [n] as xK and submatrix generated by the columns (rows)

of A ∈ Rm×n indexed by K ⊆ [n] (K ⊆ [m]) as A:K (AK:). For any x ∈ Rn and

any integer q ≥ 1, the ℓq norm of x is defined as ∥x∥q := q
√
|x1|q + · · ·+ |xn|q. We

denote ∥ · ∥ = ∥ · ∥2. Let U ⊆ Rn be an open set. We say that a function f : U → R
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is Ck for some integer k ≥ 1 if f(·) is k-times continuously differentiable on U . Let

p : Rn → (−∞,+∞] be a proper closed convex function. The conjugate p∗(·) of p(·)

is defined by

p∗(x∗) = sup
x∈Rn

{⟨x, x∗⟩ − p(x)} , x∗ ∈ Rn.

Let p(·) be a nonnegative positively homogeneous convex function such that p(0) = 0,

i.e. a gauge function (Rockafellar, 1970, Section 15), then the polar of p(·) is defined

by

p◦(y) := inf{ν ≥ 0 | ⟨y, x⟩ ≤ νp(x), ∀x ∈ Rn}, y ∈ Rn.

Let C ⊆ Rn be a convex set. The interior intC of C and the relative interior riC of

C are defined as

intC = {x | ∃ϵ > 0, x+ ϵB ⊂ C} ,

riC = {x ∈ affC | ∃ ϵ > 0, (x+ ϵB) ∩ affC ⊂ C} ,

where affC denotes the affine hull of C and B denotes the Euclidean unit ball. The

effective domain dom f of a convex function f : Rn → (−∞,+∞] is defined by

dom f = {x ∈ Rn | f(x) < +∞}.
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Chapter 2

Preliminaries

In this chapter, we will begin by introducing the Moreau-Yosida regularization, a

useful technique for approximating nonsmooth functions and facilitating efficient op-

timization methods. Then, we will introduce semismooth functions, an important

subclass of Lipschitz continuous functions. The property of semismoothness plays a

crucial role in analyzing the convergence rates of various algorithms, including New-

ton’s method for nonsmooth equations. Since we will be using the secant method in

our algorithm, in this chapter, we will summarize the existing results on the conver-

gence properties of the secant method for solving semismooth equations. Besides,

we will also introduce the well known alternating direction method of multipliers

(ADMM) to solve equation (CP(ϱ)). Its numerical performance will be compared

with that of our algorithm in Section 5.

We start this chapter with some basic definitions. Let g : X → Y be a mapping.

Various definitions of directional differentiability are available. For example, one can

find some of these definitions in (Shapiro, 1990; Bonnans and Shapiro, 2000) and the

references therein. We adopted the following definition from (Bonnans and Shapiro,

2000, Definition 2.44).

Definition 2.1 (Directionally differentiability). We say that g(·) is directionally
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differentiable at a point x ∈ X in a direction h ∈ X if the limit

g′(x;h) := lim
t↓0

g(x+ th)− g(x)
t

(2.1)

exists. If g(·) is directionally differentiable at x in every direction h ∈ X , then g(·)

is said to be directionally differentiable at x.

A concept, Bouligand differentiability (B-differentiability), is related to the di-

rectional differentiability, and the definition is given as follows.

Definition 2.2 (B-differentiability). (Pang, 1990, Definition 1) We say that g(·) is

B-differentiable at a point x ∈ X if there is a function BD(x) : X → Y, which is

positively homogeneous of degree 1 (i.e., BD(x)(th) = tBD(x)(h), for all t ≥ 0 and

for all h ∈ X ) such that

g(x+ h)− g(x)−BD(x)(h) = o(∥h∥). (2.2)

If g(·) is B-differentiable at all points in a set S, we then say g(·) is B-differentiable

in S.

Shapiro (1990) showed that if g(·) is further assumed to be locally Lipschitz con-

tinuous, then g(·) is B-differentiable at x ∈ X if and only if g(·) is directionally

differentiable, and BH(x)(h) = g′(x;h) for all h ∈ X . We say that g(·) is direc-

tionally differentiable at a point x ∈ X of degree γ ∈ (0,+∞) if g(·) is directionally

differentiable at x and for all h→ 0,

g(x+ h)− g(x)− g′(x;h) = O(∥h∥1+γ). (2.3)

If g(·) is directionally differentiable at x of degree γ in every direction h ∈ X , then

g(·) is said to be directionally differentiable at x of degree γ. Therefore, if g(·)

is locally Lipschitz continuous and directionally differentiable at a point x ∈ X of

degree 1, it is also calmly B-differentiable at x (Ding et al., 2014; Ye and Zhou, 2017).
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Fréchet differentiability is a commonly used concept, and the definition is given

below.

Definition 2.3 (Fréchet differentiability). (Shapiro, 1990) Let O be an open subset

of X . We say that g(·) is Fréchet differentiable at a point x ∈ O if there is a

continuous linear operator FD(x) : X → Y such that

lim
h→0

∥g(x+ h)− g(x)− FD(x)(h)∥
∥h∥

= 0.

The continuous linear operator FD(x) is called the Fréchet derivative of g(·) at x.

The following theorem is crucial for the generalized Jacobian defined in Section

2.6 of (Clarke, 1983).

Theorem 2.1 (Rademacher’s theorem). Let O be an open subset of X . If g(·) is

locally Lipschitz continuous on O, then g(·) is almost everywhere (Fréchet) differen-

tiable in O.

Henceforth, we make the assumption that g(·) is locally Lipschitzian. According

to Rademacher’s theorem, we know that g(·) is almost everywhere (Fréchet) differ-

entiable. Let Dg be the set of points at which g(·) is differenable and g′(x) be the

Jacobian of g(·) at x ∈ Dg. The Bouligand subdifferential (B-subdifferential) of g at

x ∈ X is defined as

∂Bg(x) =

{
lim
xk→x

g′(xk), xk ∈ Dg

}
, (2.4)

and the Clark generalized Jacobian of g(·) at x ∈ X is defined as the convex hull of

∂Bg(x), i.e.,

∂g(x) = conv {∂Bg(x)} . (2.5)

For finitely valued convex functions, the Clarke generalized Jacobian is the same as

the subdifferential in convex analysis (Clarke, 1983, Proposition 2.27). Summarizing
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from (Clarke, 1983, Proposition 2.6.2) and (Clarke, 1983, Proposition 2.6.5), we have

the following properties about ∂g(·).

Proposition 2.1. Let g(·) be locally Lipschitz on an open subset O of X . For any

x ∈ O, the following properties holds:

(a) ∂g(x) is a nonempty convex compact subset of R|X |×|Y|.

(b) ∂g(·) is closed at x; that is, if xk → x, V k ∈ ∂g(xk), and V k → V , then

V ∈ ∂g(x).

(c) ∂g(·) is upper semicontinuous at x: for any ϵ > 0, there is δ > 0 such that, for

all z in x+ δB,

∂g(z) ⊂ ∂g(x) + ϵB|X |×|Y|, (2.6)

where B|X |×|Y| denotes the open unit ball in R|X |×|Y|.

(d) For any z ∈ O, one has

g(z)− g(x) ∈ conv {∂g(s)(z − x) | s ∈ [z, x]} , (2.7)

where [z, x] is the line segment connecting z and x.

2.1 The Moreau-Yosida regularization

In this section, we will introduce an important tool, the Moreau-Yosida regulariza-

tion, which can be seen as a possible way to smooth a nonsmooth function in some

sense. Let f(·) be a proper closed convex function from X to (−∞,+∞]. Then, the

Moreau envelope function Φf (·) of f(·) is defined by

Φf (x) := min
y∈X

{
f(y) +

1

2
∥y − x∥2

}
, ∀x ∈ X . (2.8)

It can be found in (Moreau, 1965; Yosida, 1964) that the following property holds,

demonstrating that (2.8) is well defined.
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Proposition 2.2. For any x ∈ X , problem (2.8) has a unique optimal solution.

Definition 2.4 (Proximal mapping). The unique optimal solution of (2.8) is called

the proximal mapping Proxf (·) associated with f(·), that is

Proxf (x) := argmin
y∈X

{
f(y) +

1

2
∥y − x∥2

}
, ∀x ∈ X . (2.9)

Note that, for any x ∈ X , Proxf (x) is usually referred to as the proximal point

of x associated with f(·). The following are two well known proximal mappings

associated with the ℓ1 norm and the ℓ2 norm. For any given ς > 0 and v ∈ Rn,

Proxς∥·∥1(v) = sign(v)⊙max{|v| − ςe, 0},

Proxς∥·∥2(v) =

{
v

∥v∥ max{∥v∥ − ς, 0}, if v ̸= 0,

0, otherwise,

(2.10)

where ⊙ denotes the pointwise multiplication.

The following proposition is important for providing useful properties of the

Moreau-Yosida regularization, and the proof can be found in (Hiriart-Urruty and

Lemaréchal, 1993, Theorem 4.1.4).

Proposition 2.3. Let f(·) be a proper closed convex function from X to (−∞,+∞],

and Proxf (·) be the associated proximal point mapping. Then, the following properties

hold.

(a) Both Proxf (·) and (I − Proxf )(·) are firmly non-expansive, i.e., ∀x, y ∈ X ,

∥Proxf (x)− Proxf (y)∥2 ≤ ⟨Proxf (x)− Proxf (y), x− y⟩, (2.11)

∥(x−Proxf (x))− (y−Proxf (y))∥2 ≤ ⟨(x−Proxf (x))− (y−Proxf (y)), x− y⟩.

(2.12)
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(b) The Moreau envelope Φf (·) is continuously differentiable, and furthermore, it

holds that

∇Φf (x) = x− Proxf (x), ∀x ∈ X .

A notably elegant and valuable property of the Moreau-Yosida regularization is

the following theorem.

Theorem 2.2 (Moreau’s decomposition theorem). Let f(·) be a proper closed convex

function from X to (−∞,+∞] and f ∗(·) be its conjugate. Let τ be a positive scalar.

Then one has the following decomposition

x = Proxτf (x) + τProxτ−1f∗(τ−1x), ∀x ∈ X . (2.13)

Proof. For any x ∈ X , let z = Proxτf (x). From (Rockafellar, 1970, Theorem 23.5),

we have x − z ∈ τ∂f(z) and then z ∈ ∂f ∗(τ−1x − τ−1z). Thus τ−1x − τ−1z =

Proxτ−1f∗(τ−1x). Consequently, x = z + τProxτ−1f∗(τ−1x). This completes the

proof.

Now, we consider a special application of the Moreau-Yosida regularization. Let

C ⊆ X be a closed convex set and define the indicator function of C as

δC(x) =

{
0, if x ∈ C,
+∞, otherwise,

∀x ∈ X .

Then, for any x ∈ X , the proximal point of x associated with δC(·) simplifies to the

metric projection of x onto C, due to the observation that

min
y∈X

{
δC(y) +

1

2
∥y − x∥2

}
⇐⇒ min

y∈C

1

2
∥y − x∥2.

Thus, we denote

ΠC(x) := ProxδC (x), ∀x ∈ X .
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When f(·) = δC(·), we have from Proposition 2.3 (a) that ΠC(·) is globally

Lipschitz continuous with modulus 1. Then, by Theorem 2.1, we know that it is

differentiable almost everywhere on X . Therefore, the B-subdifferential ∂BΠC(·)

and the Clarke generalized Jacobian ∂ΠC(·) of ΠC(·) are well defined. Then, we

introduce the following lemma (Meng et al., 2005, Proposition 1), which provides

several important properties of ∂ΠC(·).

Proposition 2.4. Let C ⊆ X be a closed convex set. Then, for any x ∈ X and

V ∈ ∂ΠC(·), the following properties hold.

(a) V is self-adjoint, i.e., ⟨V y, z⟩ = ⟨y, V z⟩ for any y, z ∈ X .

(b) ⟨d, V d⟩ ≥ 0 for all d ∈ X .

(c) ⟨V d, d⟩ ≥ ∥V d∥2 for all d ∈ X .

2.2 Semismooth functions

The concept of semismoothness was introduced in (Mifflin, 1977) to define an impor-

tant subclass of Lipschitz functions. Later, Qi and Sun (1993) extended the definition

of semismoothness to vector valued functions in order to analyze the convergence of

Newton’s method for solving nondifferentiable equations.

When a vector valued function g : X → Y is locally Lipschitzian (but not differ-

entiable), the concept of semismoothness, as defined in Mifflin (1977) originally, was

extended by Qi and Sun (1993).

Definition 2.5 (Semismoothness). Let g : X → Y be a locally Lipschitz continuous

function. The function g(·) is said to be semismooth at x ∈ X if g(·) is directionally

differentiable at x and for any V ∈ ∂g(x+ h) and h→ 0,

g(x+ h)− g(x)− V (h) = o(∥h∥). (2.14)
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The function g(·) is said to be γ-order (0 < γ < ∞) semismooth at x ∈ X if g(·) is

semismooth and directional differentiable of degree γ at x and

g(x+ h)− g(x)− V (h) = O(∥h∥1+γ). (2.15)

In particular, if g(·) is first-order semismooth, we call it strongly semismooth.

We know from (Qi and Sun, 1993) that the above definition of semismoothness

coincides with that in (Potra et al., 1998). According to (Mifflin, 1977), we have

that the convex functions are semismooth. It is well established in the nonsmooth

optimization that twice continuously differentiable functions are strongly semismooth

(indicated by (Facchinei and Pang, 2003a, Proposition 7.4.5)). Next, we introduce

an important class of functions that is (strongly) semismooth.

Definition 2.6 (Piecewise affine/linear functions). (Scholtes, 2012) A function g(·)

is called piecewise affine if it is continuous and there is a finite set of affine functions

gi(·), i = 1, · · · , l such that

g(x) ∈ {g1(x), · · · , gl(x)} , ∀x ∈ X .

If all gi(·), i = 1, · · · , l are linear, then g(·) is called piecewise linear.

A more general class of functions is the piecewise Ck function, where k ≥ 1. It is

defined as follows: a function g(·) : O ⊆ X → Y is called piecewise Ck on the open set

O if it is continuous and, for any x̄ ∈ O, there is a neighborhood Nx̄ ⊂ O of x̄ and a

finite set of Ck functions gi(·), i = 1, · · · , l such that g(x) ∈ {g1(x), · · · , gl(x)} , ∀x ∈

Vx̄. It follows from (Ulbrich, 2011, Proposition 2.26) that piecewise C1 (also called

piecewise smooth) functions are semismooth and piecewise C2 functions are strongly

semismooth. Apparently, a piecewise affine/linear function is also piecewise Ck for

all k ≥ 1. Therefore, it is strongly semismooth.

The following result on semismoothness is derived in (Mifflin, 1977, Theorem 5),

while the result on γ-order semismoothness is given in (Fischer, 1997, Theorem 19).
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Proposition 2.5. Let g(·) : X → Y be (γ-order) semismooth at x ∈ X and f(·) :

Y → Z be (γ-order) semismooth at g(x). Then the composite function (f ◦ g)(·) is

(γ-order) semismooth at x.

This results indicate that the (strong) semismoothness is preserved under op-

erations such as the sum and difference of two (strongly) semismooth functions.

Besides, in (Qi and Sun, 1993, Corollary 2.4), it has been established that if each

component of the function g(·) is (strongly) semismooth, then g(·) itself is (strongly)

semismooth. In particular, the projection operator ΠK(·) is a piecewise affine func-

tion when K is a nonempty closed convex polyhedron (Rockafellar and Wets, 2009,

Example 12.31), which implies that ΠK(·) is strongly semismooth. The property of

strong semismoothness in the projection onto a set is applicable not only to closed

convex polyhedral sets but also to some non-polyhedral sets, such as the positive

semidefinite cone (Sun and Sun, 2002), the second-order cone (Chen et al., 2003)

and the ℓ2 norm ball (Zhang et al., 2020). Additionally, we know that the norm

function ∥ · ∥c : X → R+, c ∈ [1,+∞] is strongly semismooth (Facchinei and Pang,

2003a, Proposition 7.4.8).

There is another type of function that has been proven to be strongly semismooth.

Let us start with the following definition given in (Coste, 2000, Definition 1.4 and

1.5) and (Bolte et al., 2009, Definition 1).

Definition 2.7 (o-minimal structure). A structure expanding the real closed field

is a collection S = {Sn}, where each Sn is a set of subsets of the affine space Rn,

satisfying the following statements:

(a) All algebraic subsets of Rn are in Sn, i.e., Sn contains every subset in the form

{x ∈ Rn | s1(x) = ... = sk(x) = 0},

where si : Rn → R, i ∈ [k] are polynomials.
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(b) For every n, Sn is a Boolean subalgebra of subsets of Rn, i.e., Sn is closed

under finite unions and intersections and taking complement.

(c) If U ∈ Sm and V ∈ Sn, then U × V ∈ Sm+n.

(d) If Π : Rn+1 → Rn is the canonical projection on the first n coordinates and

Q ∈ Sn+1, then Π(Q) ∈ Sn.

The elements of Sn are called the definable subsets of Rn. Moreover, we say that the

structure S is o-minimal if it further satisfies

(e) The elements of S1 are the finite unions of points and intervals.

A map f : V ⊂ Rn → Rm is called definable in S if its graph is a definable subset of

Rn × Rm.

Subsequently, we can present the definition of the tame function as follows.

Definition 2.8 (Tame function). (Bolte et al., 2009, Definition 2) A set U ⊂ Rn is

called tame if for every r > 0 there exists an o-minimal structure S over R such that

U ∩ [−r, r]n is definable in S. A mapping f : V ⊂ Rn → Rm is tame if its graph is

a tame subset of Rn × Rm.

We know from (Bolte et al., 2009, Theorem 1) that any locally Lipschitz tame

mapping f : U ⊂ Rn → Rm is semismooth. Furthermore, in (Bolte et al., 2009),

it is pointed that function f(·) achieves γ-order (γ > 0) semismoothness if f(·)

is (globally) semialgebraic or subanalytic and Lipschitz continuous (definitions are

given in (Bolte et al., 2009, Example 1 and Example 2 (a))).

We will then introduce the implicit function theorem, which connects the semis-

moothness of a Lipschitz function and its corresponding implicit function. Let

H : X × Y → Y be a locally Lipschitz continuous function in a neighborhood of

(x̄, ȳ), where (x̄, ȳ) ∈ X × Y is a solution to H(x, y) = 0. Let πy∂H(x, y) be the
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canonical projection of ∂H(x, y) onto Y . We say that πy∂H(x, y) is of maximal rank

if everyM ∈ πy∂H(x, y) has maximal rank. Now, we can state the following implicit

function theorem due to (Clarke, 1976).

Theorem 2.3. Let H : X × Y → Y be a locally Lipschitz continuous function

in a neighborhood of (x̄, ȳ), which is a solution to H(x, y) = 0. If πy∂H(x, y) is of

maximal rank, then there is an open neighborhood X of x̄ and a Lipschitzian function

G(·) : X → Y such that G(x̄) = ȳ and for every x ∈ X, H(x,G(x)) = 0.

Based on the above Clarke’s implicit function, Sun (2001) established the follow-

ing result.

Theorem 2.4. Suppose that all conditions in Theorem 2.3 hold. If H(·, ·) is (strongly)

semismooth at (x̄, ȳ), then G(·) is (strongly) semismooth at some point in the neigh-

borhood X of x̄.

Note that the assumption of the maximal rank for πy∂H(x, y) in Theorems 2.3

and 2.4 is equivalent to the following Clark’s nonsingularity condition

∀ d ∈ Y , 0 ∈ ∂H(x̄, ȳ)(0, d)⇒ d = 0. (2.16)

This condition is stricter than

∀ d ∈ Y , 0 ∈ D∗H(x̄, ȳ)(0, d)⇒ d = 0, (2.17)

where D∗H(x̄, ȳ)(0, d) denotes the strict derivative of H(·, ·) at (x̄, ȳ) in the direction

(0, d) consisting of all points

lim
(xk,yk)→(x̄,ȳ), tk↓0

H((xk, yk) + tk(0, d))−H(xk, yk)

tk
.

It follows from (Kummer, 1991b) that

∂BH(x̄, ȳ)(u, v) ⊆ D∗H(x̄, ȳ)(u, v) ⊆ ∂H(x̄, ȳ)(u, v), ∀ (u, v) ∈ X × Y . (2.18)
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Note that, if we replace the assumption of maximal rank for πy∂H(x, y) with (2.17),

the results stated in Theorems 2.3 and 2.4 still hold according to (Kummer, 1991a,

Theorem 1) and (Meng et al., 2005, Corollary 2).

2.3 The secant method for semismooth equations

In this section, we will introduce the secant method for solving semismooth equations.

The classical secant method is one of the most efficient methods for solving smooth

equations, and it is well known that the classical secant method converges superlin-

early with Q-order of at least (1+
√
5)/2 (Traub, 1964). Later, Potra et al. (1998) gen-

eralized the secant method for solving (strongly) semismooth equations and showed

that the secant method converges 2-step or 3-step Q-superlinear (-quadratically).

Let f : R→ R be a real valued functional. Denote for x ̸= y that

δf (x, y) := (f(x)− f(y)) /(x− y). (2.19)

For finding a zero of the function f(·), the secant method performs the following

update iteration at the k-th iteration:

xk+1 = xk − δf (xk, xk−1)−1f(xk).

The expression δf (x
k, xk−1) represents the divided difference approximation of the

derivative f ′(xk) (if it exists) using the previous two iterates xk and xk−1 along with

their values. If f(·) is smooth at a zero x∗ of f(x) = 0, x ∈ R and the derivative

f ′(x∗) is nonzero, the secant method is superlinearly convergent in the sense that

|xk+1−x∗| = o(|xk−x∗|). Furthermore, if the derivative f ′(·) is Lipschitz continuous

in the neighborhood of x∗, then the secant method converges superlinearly with a

Q-order of at least (1 +
√
5)/2, as shown by Traub (1964). For a specific class

of nonsmooth equations known as (strongly) semismooth equations, Potra et al.
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(1998) demonstrated that the secant method exhibits Q-superlinear (or quadratic)

convergence in either 2 or 3 steps

Let f : R→ R be a locally Lipschitz continuous function which is semismooth at

a solution x∗ to the equation

f(x) = 0. (2.20)

The following lemma is useful for analyzing the convergence of the secant method.

Part (a) of this lemma is from (Potra et al., 1998, Lemma 2.2), and Part (b) can be

proved by following a similar procedure as in the proof of (Potra et al., 1998, Lemma

2.3).

Lemma 2.1. Assume that f : R → R is semismooth at x̄ ∈ R. Denote the lateral

derivatives of f at x̄ by

d̄− := −f ′(x̄;−1) and d̄+ := f ′(x̄; 1). (2.21)

(a) Then the lateral derivatives d̄− and d̄+ exist and

∂Bf(x̄) = {d̄−, d̄+};

(b) It holds that

d̄− − δf (u, v) = o(1) for all u ↑ x̄, v ↑ x̄; (2.22)

d̄+ − δf (u, v) = o(1) for all u ↓ x̄, v ↓ x̄; (2.23)

moreover, if f(·) is γ-order semismooth at x̄ for some γ > 0, then

d̄− − δf (u, v) = O(|u− x̄|γ + |v − x̄|γ) for all u ↑ x̄, v ↑ x̄; (2.24)

d̄+ − δf (u, v) = O(|u− x̄|γ + |v − x̄|γ) for all u ↓ x̄, v ↓ x̄. (2.25)

We analyze the convergence of the secant method described in Algorithm 1 with

two generic starting points x−1 and x0. The convergence properties of the secant

method for semismooth equations can be found in Theorem 2.5.
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Algorithm 1 A secant method for solving (2.20)

1: Input: x−1, x0 ∈ R.
2: Initialization: Set k = 0.
3: while f(xk) ̸= 0 do
4: Step 1. Compute

xk+1 = xk − (δf (x
k, xk−1))−1f(xk). (2.26)

5: Step 2. Set k = k + 1.
6: end while
7: Output: xk.

Theorem 2.5 (Potra, Qi, and Sun (1998, Theorem 3.2)). Suppose that f : R → R

is semismooth at a solution x∗ of (2.20). Let d− and d+ be the lateral derivatives of

f(·) at x∗ as defined in (2.21). If d− and d+ are both positive (or negative), then there

are two neighborhoods U and N of x∗, U ⊆ N , such that for x−1, x0 ∈ U , Algorithm

1 is well defined and produces a sequence of iterates {xk} such that {xk} ⊆ N . The

sequence {xk} converges to x∗ 3-step Q-superlinearly, i.e., |xk+3−x∗| = o(|xk−x∗|).

Furthermore, if

α :=
|d+ − d−|

min{|d+|, |d−|}
< 1,

then {xk} converges to x∗ Q-linearly with Q-factor α; If f is strongly semismooth at

x∗, then the sequence {xk} converges to x∗ 3-step Q-quadratically.

When the values d− and d+ have the same sign, Theorem 2.5 states that the se-

quence xk exhibits 3-step Q-superlinear (Q-quadratic if f(·) is strongly semismooth)

convergence. On the other hand, when d− ·d+ < 0, the sequence {xk} converges to x∗

with 2-step Q-superlinear (Q-quadratic if f(·) is strongly semismooth) convergence

(Potra et al., 1998, Theorem 3.3). We point out that when |d+ − d−| is small and

f(·) is strongly semimsooth, we know from Theorem 2.5 that the secant method con-

verges with a fast linear rate and 3-step Q-quadratic rate. We provide a numerical
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example slightly modified from (Potra et al., 1998, Equation (3.15)) to illustrate the

convergence rates shown in Theorem 2.5. We test Algorithm 1 with x−1 = 0.01 and

x0 = 0.005 for finding the zero x∗ = 0 of

f(x) =

{
x(x+ 1) if x < 0,
−βx(x− 1) if x ≥ 0,

(2.27)

where β is chosen from {1.1, 1.5, 2.1}. The numerical results are shown in Table

(2.1), which coincide with the theoretical results.

Table 2.1: The numerical performance of finding the zero of (2.27). Case I: β =
1.1, d+ = 1.1, d− = 1, and α = 0.1; Case II: β = 1.5, d+ = 1.5, d− = 1, and α =
0.5; Case III: β = 2.1, d+ = 2.1, d− = 1, and α = 1.1.

Case Iter 1 2 3 4 5 6 7 8
I x -5.1e-5 -4.3e-6 2.2e-10 -2.2e-11 -1.8e-12 4.1e-23 -4.1e-24 -3.4e-25
II x -5.1e-5 -1.7e-5 8.4e-10 -4.2e-10 -1.1e-10 4.5e-20 -2.2e-20 -5.6e-21
III x -5.1e-5 -2.6e-5 1.3e-9 -1.5e-9 -5.1e-10 7.4e-19 -8.2e-19 -2.8e-19

The secant method for strongly semismooth equations has an R-order of at least

3
√
2 when d− · d+ > 0, and an R-order of at least

√
2 when d− · d+ < 0, as follows

from the next proposition.

Proposition 2.6 (Potra, Qi, and Sun (1998, Lemma 4.1)). If {xk} is a convergent

sequence with limit x∗ and satisfies

|xk+p − x∗| = O(|xk − x∗|r),

then the R-order of convergence of {xk} is at least p
√
r.

2.4 The alternating direction method of multipli-

ers

In this section, we will introduce an important and well known iteration method, the

alternating direction method of multipliers (ADMM, Glowinski and Marroco (1975);

Gabay and Mercier (1976)), for solving the problem (CP(ϱ)) studied in this thesis.
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We begin this section with a more general form. Consider the convex optimization

problem characterized by the following separable structure

min
x∈X , y∈Y

f(x) + g(y)

s.t. Ax+By = c,

(2.28)

where f : X → (−∞,+∞] and g : Y → (−∞,+∞] are closed proper convex func-

tions, A : X → Z and B : Y → Z are linear operators. The ADMM solves problem

(2.28) by the procedures given in Algorithm 2. When τ = 1, Eckstein and Bertsekas

Algorithm 2 The ADMM for solving (2.28)

1: Input: (x0, y0, z0) ∈ X × Y × Z.
2: Initialization: Set k = 0.
3: while A termination criterion is not met do
4: Step 1. Set{

xk+1 = argminx∈X f(x)− ⟨zk, Ax⟩+ ρ
2
∥Ax+Byk − c∥2,

yk+1 = argminy∈Y g(y)− ⟨zk, By⟩+ ρ
2
∥Axk+1 +By − c∥2,

(2.29)

where ρ > 0 is the penalty parameter.
5: Step 2. Set

zk+1 = zk − τρ(Axk+1 +Byk+1 − c), (2.30)

where τ ∈ (0, (1 +
√
5)/2) is the step length.

6: Step 3. Set k = k + 1.
7: end while
8: Output: (xk, yk, zk).

(1992) has shown that the ADMM, being a special case of the Douglas–Rachford

splitting (Gabay, 1983), is an application of the proximal point algorithm on the

dual problem for a specially constructed operator. When B = I and A is surjective,

the global convergence of the ADMM with τ ∈ (0, (1+
√
5)/2) has been demonstrated

by Glowinski and Oden (1985) and Fortin and Glowinski (1983).

We consider the following constraint qualification (CQ): There exists (x, y) ∈

ri(domf × domg) ∩ Q, where Q is the constraint set in (2.28). Under this CQ, we
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know from (Rockafellar, 1970, Corollary 28.3.1) that (x̄, ȳ) ∈ X × Y is an optimal

solution to (2.28) if and only if there exists a Lagrange multiplier z̄ ∈ Z such that

A∗z̄ ∈ ∂f(x̄), B∗z̄ ∈ ∂g(ȳ), Ax̄+Bȳ − c = 0. (2.31)

Besides, any z̄ ∈ Z is an optimal solution to the dual of (2.28). Furthermore, since

f(·) and g(·) are both closed proper convex functions, it is known from (Rockafellar

and Wets, 2009, Theorem 12.17) (the subdifferential mappings of the closed proper

convex functions are maximal monotone) that there are two self adjoint and positive

semidefinite operators, Σf and Σg, such that, for any x, x̂ ∈ domf , v ∈ ∂f(x) and

v̂ ∈ ∂f(x̂),

f(x) ≥ f(x̂) + ⟨v̂, x− x̂⟩+ 1

2
∥x− x̂∥2Σf

and ⟨v − v̂, x− x̂⟩ ≥ ∥x− x̂∥2Σf
,

and for any y, ŷ ∈ domg, w ∈ ∂f(y) and ŵ ∈ ∂f(ŷ),

f(y) ≥ f(ŷ) + ⟨ŵ, y − ŷ⟩+ 1

2
∥y − ŷ∥2Σg

and ⟨w − ŵ, y − ŷ⟩ ≥ ∥y − ŷ∥2Σg
.

We can then introduce the following convergence result of ADMM for (2.28) from

(Fazel et al., 2013, Theorem B.1).

Theorem 2.6. Assume that the solution set to (2.28) is nonempty and that the CQ

holds. If both Σf + ρA∗A and Σg + ρB∗B are positive definite, then the sequences

{(xk, yk)} and {zk} generated by Algorithm 2 converge to an optimal solution of

(2.28) and to an optimal solution of the dual of (2.28), respectively.

Now, recall the main problem (CP(ϱ)) that we are interested

min
x∈Rn
{p(x) | ∥Ax− b∥ ≤ ϱ} .

It is clear that we can assume Ax − b ̸= 0 for all x ∈ Rn; otherwise, the problem

would become trivial and lose its significance. Note that, we can rewrite (CP(ϱ))
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into an equivalent form

min
x∈Rn, w∈Rm

p(x) + δD(w)

s.t. Ax− b = w,

(2.32)

where D = {w ∈ Rm | ∥w∥ ≤ ϱ}. We will not solve this equivalent problem using

ADMM, as n is generally much larger than m (the number of rows of A). In such

cases, using ADMM to address the primal problem is typically more computationally

expensive than solving its dual.

We have δ∗D(y) = ϱ∥y∥, since δ∗D(y) = sups∈D{⟨s, y⟩} = sups∈D{∥s∥∥y∥} = ϱ∥y∥.

Then, we can readily obtain the dual of (2.32) as

min
y∈Rm,z∈Rn

ϱ∥y∥+ ⟨b, y⟩+ p∗(z)

s.t. ATy + z = 0.

(2.33)

However, when applying ADMM to (2.33), the variable y is updated in k-th iteration

by solving the following problem:

min
y∈Rm

ϱ∥y∥+ ⟨b− Axk, y⟩+ ρ

2
∥ATy + zk∥2,

which may not be straightforward to compute. Thus, we introduce another variable

s ∈ Rm to rewrite (2.33) into:

min
y∈Rm,s∈Rm,z∈Rn

ϱ∥s∥+ ⟨b, y⟩+ p∗(z)

s.t.

(
AT 0
−I I

)(
y
s

)
+

(
I
0

)
z = 0.

(2.34)

Then, through some straightforward derivation, we obtain Algorithm 3 from Algo-

rithm 2 by treating

(
y
s

)
as the first variable and z as the second one. Moreover, from

Theorem 2.6, we know that under the assumption that the solution set of (2.33) is
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nonempty and that the CQ holds for (2.33), the sequences {(yk, zk)} and {xk} gen-

erated by Algorithm 3 converge to an optimal solution of (2.33) and to an optimal

solution of (CP(ϱ)), respectively.

Algorithm 3 The ADMM for solving (2.34)

1: Input: (y0, s0, z0, x0, w0) ∈ Rm × Rm × Rn × Rn × Rm; ρ > 0; and τ ∈ (0, (1 +√
5)/2).

2: Initialization: Set k = 0.
3: while A termination criterion is not met do
4: Step 1. Update yk+1 by solving

ρ(AAT + I)y = ρsk + A(xk − ρzk)− wk − b.

5: Step 2. Set {
sk+1 = Proxϱ∥·∥/ρ(y

k+1 + wk/ρ),

zk+1 = Proxp∗/ρ(x
k/ρ− ATyk+1),

(2.35)

6: Step 3. Set {
xk+1 = xk − τρ(ATyk+1 + zk+1);

wk+1 = wk − τρ(sk+1 − yk+1).
(2.36)

7: Step 4. Set k = k + 1.
8: end while
9: Output: (yk, sk, zk, xk, wk).
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Chapter 3

The adaptive sieving technique for

sparse optimization problems

In this chapter, we will focus on the unconstrained sparse optimization problems

with a dimension reduction technique introduced. This technique, called adaptive

sieving, addresses the original sparse optimization problem by solving several re-

duced problems with much smaller dimensions compared to the original. Several

dual based approaches exist for solving the subproblems within the adaptive sieving

strategy. However, we may encounter situations where m (the number of rows of

A) is much larger than the dimension of the reduced problem. In such scenarios,

dual based algorithms may not be the most efficient option. To further enhance

computational efficiency, we will introduce a smoothing Newton method for the pri-

mal problem. Additionally, we will present a warm-started path-following adaptive

sieving technique specifically designed to tackle extremely large scale problems.

3.1 The adaptive sieving technique

In this section, we will first introduce the adaptive sieving technique developed in

(Yuan et al., 2023, 2022) for solving unconstrained sparse optimization problems.

This technique addresses the original problem by solving a sequence of reduced prob-

lems. The dimensionality of these reduced problems is significantly smaller than that
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of the original problem. We will conduct extensive numerical experiments on the pre-

cision matrix estimation problem to demonstrate that this technique can significantly

improve the overall efficiency.

3.1.1 The adaptive sieving technique for sparse optimization
problems

We introduce the adaptive sieving technique for solving sparse optimization problems

of the following form:

min
x∈Rn
{Φ(x) + P (x)} , (3.1)

where Φ : Rn → R is a continuously differentiable convex function, and P : Rn →

(−∞,+∞] is a proper closed convex function. We assume that the convex composite

optimization problem (3.1) has at least one solution. We define the proximal residual

function R : Rn → Rn as

R(x) := x− ProxP (x−∇Φ(x)), x ∈ Rn. (3.2)

The norm of R(x) is a standard measurement for the quality of an obtained solution,

and x is a solution to (3.1) if and only if R(x) = 0.

Let I ⊆ [n] be an index set. We consider the following constrained optimization

problem with the index set I:

min
x∈Rn

{Φ(x) + P (x) | xIc = 0} , (3.3)

where Ic = [n]\I is the complement set of I. A key fact is that, a solution to (3.3)

is also a solution to (3.1) if there exists a solution x̄ to (3.1) such that supp(x̄) ⊆ I.

The adaptive sieving technique is motivated by this fact. Specifically, starting with

a reasonable guessing I0 ⊆ [n], the adaptive sieving technique is an adaptive strategy

to refine the current index set Ik based on a solution to (3.3) with I = Ik. We present

the details of the adaptive sieving technique for solving (3.1) in Algorithm 4.
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Algorithm 4 The adaptive sieving strategy for solving (3.1)

1: Input: an initial index set I0 ⊆ [n], a given tolerance ϵ ≥ 0 and a given positive integer
kmax (e.g., kmax = 500).

2: Output: a solution x∗ to the problem (3.1) satisfying ∥R(x∗)∥ ≤ ϵ.
3: 1. Find

x0 ∈ argmin
x∈Rn

{
Φ(x) + P (x)− ⟨δ0, x⟩ | xIc0 = 0

}
, (3.4)

where δ0 ∈ Rn is an error vector such that ∥δ0∥ ≤ ϵ and (δ0)Ic0 = 0.
2. Compute R(x0) and set s = 0.

4: while ∥R(xs)∥ > ϵ do
5: 3.1. Create Js+1 as

Js+1 =
{
j ∈ Ics | (R(xs))j ̸= 0

}
. (3.5)

If Js+1 = ∅, let Is+1 ← Is; otherwise, let k be a positive integer satisfying k ≤
min{|Js+1|, kmax} and define

Ĵs+1 =
{
j ∈ Js+1 | |(R(xs))j | is among the first k largest values in {|(R(xs))i|}i∈Js+1

}
.

Update Is+1 as:

Is+1 ← Is ∪ Ĵs+1.

6: 3.2. Solve the constrained problem:

xs+1 ∈ argmin
x∈Rn

{
Φ(x) + P (x)− ⟨δs+1, x⟩ | xIcs+1

= 0
}
, (3.6)

where δs+1 ∈ Rn is an error vector such that ∥δs+1∥ ≤ ϵ and (δs+1)Ics+1
= 0.

7: 3.3: Compute R(xs+1) and set s← s+ 1.
8: end while
9: return: Set x∗ = xs.

It is worthwhile mentioning that, in Algorithm 4, the error vectors δ0, {δs+1} in

(3.4) and (3.6) are not given but imply that the corresponding minimization problems

can be solved inexactly. We can just take δs = 0 (for s ≥ 0) if we solve the reduced

subproblems exactly. The following proposition shows that we can obtain an inexact

solution by solving a reduced problem with a much smaller dimension.

Proposition 3.1 (Yuan, Lin, Sun, and Toh (2023, Proposition 1)). For any given
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nonnegative integer s, the updating rule of xs in Algorithm 4 can be interpreted in

the procedure as follows. Let Ms be a linear map from R|Is| to Rn defined as

(Msz)Is = z, (Msz)Ics = 0, z ∈ R|Is|,

and Φs, P s be functions from R|Is| to R defined as Φs(z) := Φ(Msz), P
s(z) :=

P (Msz) for all z ∈ R|Is|. Then xs ∈ Rn can be computed as

(xs)Is := ProxP s(ẑ −∇Φs(ẑ)),

and (xs)Ics = 0, where ẑ is an approximate solution to the problem

min
z∈R|Is|

{
Φs(z) + P s(z)

}
, (3.7)

which satisfies

∥ẑ − ProxP s(ẑ −∇Φs(ẑ)) +∇Φs(ProxP s(ẑ −∇Φs(ẑ)))−∇Φs(ẑ)∥ ≤ ϵ, (3.8)

and ϵ is the parameter given in Algorithm 4.

The finite termination property of Algorithm 4 for solving (3.1) is shown in the

following proposition.

Proposition 3.2 (Yuan, Lin, Sun, and Toh (2023, Theorem 1)). For any given ini-

tial index set I0 ⊆ [n] and tolerance ϵ ≥ 0, the while loop in Algorithm 4 will terminate

after a finite number of iterations.

The high efficiency of the adaptive sieving technique for solving a wide class of

sparse optimization problems in the form of (3.1) has been demonstrated in (Yuan

et al., 2023, 2022; Li et al., 2023; Wu et al., 2023), such as the (group) Lasso penalized

least square problem and the (exclusive) Lasso logistic regression problem.

3.1.2 Numerical experiments for the precision matrix esti-
mation problem

In this section, we will present in detail the adaptive sieving technique for addressing

the precision matrix estimation problem to demonstrate the performance of this
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technique (Li et al., 2023). An ℓ1-penalized D-trace loss estimator was proposed

in (Zhang and Zou, 2014; Liu and Luo, 2015) for estimating the precision matrix

(or inverse covariance matrix). This estimator is derived from solving a convex

composite optimization problem that incorporates a quadratic loss function along

with an ℓ1-regularized penalty:

min
Ω∈Sp

{
1

2
tr(ΩΣ̂ΩT )− tr(Ω) + λ ∥Ω∥1,off

}
, (3.9)

where Sp is the space of p×p real symmetric matrices and ∥ · ∥1,off is the off-diagonal

ℓ1-norm, i.e., ∥Ω∥1,off =
∑

i ̸=j |Ωi,j|.

We will develop a dual based approach to solve problem (3.9). To facilitate the

designing of the dual approach, we write problem (3.9) equivalently as

min
Ω∈Sp

{
1

2
∥ΩA∥2F − ⟨Ω, Ip⟩+ λ ∥Ω∥1,off

}
, (3.10)

where A is a real matrix with rank n such that AAT = Σ̂. Note that instead

of applying the singular value decomposition (SVD) on Σ̂, the matrix A can be

efficiently obtained by applying a thin SVD on the p× n dimensional centered data

matrix. The thin SVD requires significantly less space and time than the full SVD,

especially in the high-dimensional setting. Without loss of generality, we assume

that A is a p×n matrix with rank n. For later use, we denote θ(Ω) := ∥Ω∥1,off,∀Ω ∈

Sp. Moreover, we further denote the optimal solution set of (3.10) by Θλ, and the

associated proximal residual mapping by

Rλ(Ω) := Ω− Proxλθ(Ω− h(Ω)), ∀Ω ∈ Sp,

where h(Ω) := 1
2
(ΩΣ̂ + Σ̂Ω) − Ip with Ip being the p dimensional identity matrix,

and δBλ
is the indicator function with Bλ = {Z ∈ Sp | Zii = 0, |Zij| ≤ λ, i, j =
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1, · · · , p, i ̸= j}, i.e., δBλ
(Z) = 0 for any Z ∈ Bλ and δBλ

(Z) = +∞ otherwise. We

know that Ω̃ ∈ Θλ if and only if Rλ(Ω̃) = 0.

We call our algorithm MARS, since it is designed for Matrix estimation via

an Adaptive sieving Reduction strategy and a Semismooth Newton augmented La-

grangian algorithm. Then, we will conduct several tests to illustrate the performance

of our MARS. For comparison, we consider several popular solvers including scio (Liu

and Luo, 2015), EQUAL (Wang and Jiang, 2020), glasso (Friedman et al., 2008), and

QUIC (Hsieh et al., 2014). We point out that the main purpose of presenting the

performances of “glasso” and “QUIC”, which are designed for the graphical lasso

model, is not for comparison. Note that, the graphical lasso model was developed

much earlier and has been widely used in many research areas for years, and less

attention was given to the D-trace loss estimator. The main reason that we com-

pare MARS with “glasso” and ”QUIC” is to provide users with a more intuitive

demonstration that there is an alternative and more efficient choice for estimating

the precision matrix with our developed package. Since the existing popular meth-

ods are mainly first order methods and the stopping criteria of those algorithms are

different from each other and also ours, for better comparison, we will also test some

other algorithms for solving (3.10) (all the details of those algorithms can be found in

(Li et al., 2023, Section 6.1)). Specifically, we will conduct tests with a second-order

algorithm, namely a semismooth Newton augmented Lagrangian method (SSNAL),

and two kinds of alternating direction methods of multipliers (ADMM), where one

is derived by solving the sub-problem inexactly (iADMM) and the other derived by

solving it exactly (eADMM).

Before proceeding to the experiments, we provide some explanations about our

MARS. In our MARS, we use the relative KKT residual

η =
∥R(Ω)∥F

1 + ∥h (Ω) ∥F + ∥Ω∥F
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to measure the accuracy of the generated solution Ω. That is, we use η to decide

whether our MARS should be stopped. Unless otherwise specified, we set the stop-

ping tolerance to 10−4 for all the solvers/algorithms except EQUAL in the following

experiments. Based on several tests, the stopping tolerance of EQUAL is set to 10−6.

The reason for such an adjustment is that their stopping criterion is determined by

the distance between two solutions in two consecutive iterations, and a slightly larger

stopping tolerance may cause the generated solution to be too far from the optimal

solution set, in terms of the relative KKT residual.

All the numerical results in this section are obtained by running Microsoft R

Open 4.0.2 on a Windows workstation (Intel(R) Core(TM) i7-10700 CPU @2.90GHz

2.00GHz RAM 32GB). For simplicity, we will use R to represent Microsoft R Open

4.0.2.

Now, we will use some real data sets to demonstrate the promising performance of

our MARS for generating a solution path. The publicly available data sets we are go-

ing to use include a prostate data set (https://web.stanford.edu/~hastie/CASI_

files/DATA/prostate.html) and a breast cancer data set (Hess et al., 2006), which

can be found on (https://bioinformatics.mdanderson.org/public-datasets/).

The prostate data set contains two groups, the first one is 6033 genetic activity mea-

surements of 50 control subjects and the other is that of 52 prostate cancer subjects.

Thus, the number of variables contained in the precision matrix that needs to be

estimated is more than 18 million. As for the breast cancer data set, it contains

the measurements of 22283 genes with 133 subjects, where 99 of them are labeled

as residual disease (RD) and the remaining 34 subjects are labeled as pathological

complete response (pCR). For this data set, the estimated precision matrix contains

about 250 million parameters.

After standardizing the two groups of the prostate data set, we use MARS, SS-

NAL, EQUAL, and scio to generate solution paths for the two groups separately. We
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should note that, when λ is too small, there may not exist optimal solutions for the

precision matrix estimator. Therefore, before going further to the main comparison

tests, we should conduct some pretests to find a suitable smallest λ. By comparing

the objective value and η (details can be dound in (Li et al., 2023)), we conclude

that MARS and SSNAL can outperform both EQUAL and scio since all the η are

smaller than the set tolerance 10−4. Although both MARS and SSNAL can generate

satisfactory solutions, from Table 3.1, we find that MARS is much more efficient. In

particular, the computation time of SSNAL to generate the solution path is more

than 14 times that of MARS in the Control group and more than 18 times that of

MARS in the Cancer group. This can also be seen in Figure 3.1, which illustrates

that MARS has high efficiency in generating solutions for each λ. Besides, we ob-

tain the final precision matrix estimations of the two different groups through 5-fold

cross-validation, and the corresponding graphs are shown in Figure 3.2. From this

figure, we can clearly see that the genes of the control group and the cancer group

have different connections.

Table 3.1: The computation time (seconds) of different algorithms for generating a
solution path with the prostate data set.

MARS SSNAL EQUAL scio

control group 113.6 1629.88 1325.67* 5690.73+
cancer group 112.43 2108.06 1273.22* 5949.71+

1. The symbol “∗” indicates that none of the relative KKT
residuals of EQUAL is less than 10−3.
2. The symbol “+” indicates that, due to out of memory,
the time here does not include the time for generating es-
timations by scio with the two smallest λ.

Next, we will test the performance of MARS and glasso on the breast cancer

data set. We follow the same assumption stated in (Cai et al., 2011) that this gene

measurements data are normally distributed with N(µk,Σ), k = 1, 2, where Σ is the

same for RD group and pCR group, but the means are different. Some two-sample
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Figure 3.1: The computation time of MARS and SSNAL for each λ with the prostate
data set.

Figure 3.2: The estimated graphs chosen by five-fold cross-validation generated by
MARS with the prostrate data set.
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t-tests are performed with given p-value tolerances, which are set to 0.005, 0.01,

0.05, 0.1, and 1, to obtain the most significant genes (with a smaller p-value). Under

those set p-values, the numbers of chosen genes are 1228, 1646, 3640, 5418, and 22283

respectively. Note that, the last one contains all the genes with nearly 250 million

parameters. We point out that, the λ paths for all the tests, except the test with

p-value tolerance 0.05, are set from λmin to 1 by 0.01, where λmin is decided by some

pre-tests with the D-trace estimator. When the p-value tolerance is set to 0.05, if

the gap between two subsequent regularization parameters in the path is 0.01, glasso

will fail due to insufficient memory, so we set the λ gap for this test to 0.02. The

regularization parameters for each test are chosen by five-fold cross-validation, and

the total computation times are concluded in Table 3.2. The stopping tolerance for

MARS and glasso is set to 10−4 to ensure that all the relative KKT residuals are

less than 10−4. The estimated graphs obtained by MARS and glasso with p-value

tolerance 0.005, 0.01, and 0.01 can be found in Figure 3.3. From this figure, we

notice that the graphs obtained by MARS and glasso are similar to each other, but

the times taken by MARS are obviously less than those taken by glasso. Especially

when the p-value tolerance is 0.05, the total computation time of glasso is more than

20 times that of MARS. Besides, Figure 3.3 also shows the estimated graphs obtained

by MARS when the p-value tolerances are 0.1 and 1, but the figure for the latter one

only plots the connections among the most significant 5418 genes.

3.2 Algorithms for addressing the subproblems in

the adaptive sieving strategy

In this section, we explore various algorithms that address the subproblem within

the adaptive sieving strategy, with a particular emphasis on problems of the form
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Table 3.2: Test results of MARS and glasso on the breast cancer data sets with
different p-value tolerances.

p-value tolerance No. of genes
time (mins) including cross-validation

No. of λ
MARS glasso

0.005 1228 20.26 71.51 63
0.01 1646 23.06 159.79 60
0.05 3640 58.32 1257.81 28
0.1 5418 150.54 − 54
1 22283 553.35 − 29

The symbol “−” indicates out of memory.

Figure 3.3: The estimated graphs for the breast cancer data set chosen by five-fold
cross-validation with using MARS and glasso under different p-value tolerances.

presented in (PLS(λ)) with different penalty function p(·). Recall that

min
x∈Rn

{
1

2
∥Ax− b∥2 + λp(x)

}
. (PLS(λ))

There are numerous algorithms that tackle this problem with different p(·) by focus-

ing on the dual problem. Then, we will first provide a summary of these methods. It

is important to note that the dual problem has been addressed previously because, in

practical applications, the dimension n is typically much larger than m (the number

of rows in A). Consequently, solving the dual problem is often more advantageous in
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terms of computational complexity. However, with the introduction of the adaptive

sieving strategy, we may encounter situations where m is greater than n. In such

cases, addressing the dual problem no longer offers significant advantages. There-

fore, we propose a smoothing Newton method to directly solve the primal problem,

particularly when p(·) = ∥ · ∥1, while deferring the consideration of other cases for

future research.

3.2.1 Dual based approaches

In this subsection, we will summarize several dual based approaches for addressing

(PLS(λ)) with different penalty functions p(·).

Let λ > 0. The dual of (PLS(λ)) is

max
y∈Rm,u∈Rn

{
−1

2
∥y∥2 + ⟨b, y⟩ − λp∗(u) |ATy − λu = 0

}
. (DLS(λ))

The semismooth Newton augmented Lagrangian method (SSNAL, Li et al. (2018b))

has demonstrated exceptional performance in solving the ℓ1 penalized least squares

problem ((PLS(λ)) with p(·) = ∥ · ∥1) comparied to other algorithms, such as ADMM

and the accelerated proximal gradient (APG) algorithm (Nesterov, 1983; Beck and

Teboulle, 2009). It addresses the dual problem (DLS(λ)) using an inexact augmented

Lagrangian method, with each subproblem being solved by a semismooth Newton

method. Moreover, we know that SSNAL is of an asymptotic superlinear convergence

rate for solving (DLS(λ)) when p(·) = ∥ · ∥1. Given ρ > 0, the augmented Lagrangian

function associated to the dual problem is

Lρ(y, u, x) :=
1

2
∥y∥2 − ⟨b, y⟩+ λp∗(u) +

ρ

2
∥ATy − λ∥2, ∀ (y, u, x) ∈ Rm × Rn × Rn.

Then, in the k-th iteration of the inexact augmented Lagrangian method, (yk+1, uk+1)

is updated by approximately solving miny,u Lρk(y, u, x
k) with the semismooth New-
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ton method (Zhao et al., 2010), while also exploring second-order sparsity to en-

hance efficiency. Then, when p(x) =
∑n

i=1 γi|x|(i), x ∈ Rn with given parameters

γ1 ≥ γ2 ≥ · · · ≥ γn ≥ 0 with γ1 > 0, where |x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(n), Luo

et al. (2019) introduced a semismooth Newton-based augmented Lagrangian method

(Newt-ALM) to solve (DLS(λ)). When the penalty function is the non-overlapping

group lasso regularization, i.e., p(x) =
∑g

l=1wl∥xGl
∥, where for any l = 1, 2, · · · , g,

wl > 0 and Gl ⊆ {1, 2, · · · , n} is the index set that includes all the features in the

l-th group, Zhang et al. (2020) proposed a Hessian-based algorithm that implements

a superlinearly convergent inexact semismooth Newton method.

The algorithms mentioned above can be employed to solve the subproblems in the

adaptive sieving strategy. However, since the adaptive sieving strategy constructs

reduced problems that may have a dimensionality smaller than m, the dual based

algorithm may not be the optimal choice in this context. To enhance efficiency

further, we will introduce a smoothing Newton method for directly solving the primal

problem in the following section. This method will be integrated with a dual based

algorithm to address the subproblems within the adaptive sieving strategy.

3.2.2 A smoothing Newton method for the primal problem

In this subsection, we will introduce a smoothing Newton method to solve the un-

constrained optimization problem (PLS(λ)). Additionally, we will provide a detailed

description of this algorithm specifically for the case when p(·) = ∥ · ∥1.

Let F : Rn → Rn be a locally Lipschitz continuous function. Consider the

equation

F (x) = 0, x ∈ Rn. (3.11)

Let G : R× Rn → Rn be a locally Lipschitz continuous function such that

G(ϵ, x̃)→ F (x) as (ϵ, x̃)→ (0, x), (3.12)
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and the function G(·, ·) is continuously differentiable around (ϵ, x) ∈ R× Rn except

when ϵ = 0. Denote E : R× Rn → R× Rn as

E(ϵ, x) :=

(
ϵ

G(ϵ, x)

)
, ∀ (ϵ, x) ∈ R× Rn. (3.13)

Then, we solve (3.11) by solving

E(ϵ, x) = 0. (3.14)

Define the merit function ψ : R× Rn → R+ by

ϕ(ϵ, x) := ∥E(ϵ, x)∥2, (ϵ, x) ∈ R× Rn. (3.15)

Given a scalar r ∈ (0, 1). Denote

ζ(ϵ, x) := rmin{1, ϕ(ϵ, x)}, (ϵ, x) ∈ R× Rn. (3.16)

Then, the detailed iterations of the inexact smoothing Newton method are given in

Algorithm 5.

The convergence properties of the inexact smoothing Newton method are pre-

sented below, and more information can be found in (Gao and Sun, 2009).

Theorem 3.1. Assume that, for any (ϵ, x) ∈ R++ × Rn, E ′(ϵ, x) is nonsingular.

Then Algorithm 5 is well defined and generates an infinite sequence {(ϵk, xk)} with

(ϵk, xk) ∈ N := {(ϵ, x) | ϵ ≥ ζ(ϵ, x)ϵ̂} such that any accumulation point (ϵ̄, x̄) of

{(ϵk, xk)} is a solution of E(ϵ, x) = 0.

Theorem 3.2. Assume that, for any (ϵ, x) ∈ R++ × Rn, E ′(ϵ, x) is nonsingular,

and (ϵ̄, x̄) is an accumulation point (ϵ̄, x̄) generated by Algorithm 5. Further assume

that E(·, ·) is semismooth at (ϵ̄, x̄) and all V ∈ ∂BE(ϵ̄, x̄) are nonsingular. Then the

sequence {(ϵk, xk)} converges to (ϵ̄, x̄) superlinearly, that is,

∥(ϵk+1 − ϵ̄, xk+1 − x̄)∥ = o(∥(ϵk − ϵ̄, xk − x̄)∥).
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Algorithm 5 The inexact smoothing Newton method for solving (3.14)

1: Input: Let ϵ̂ ∈ (0,∞) and η ∈ (0, 1) be such that

δ :=
√
2max{rϵ̂, η} < 1.

Choose constants ρ ∈ (0, 1), σ ∈ (0, 1/2), τ ∈ (0, 1), and τ̂ ∈ [1,∞). Set ϵ0 := ϵ̂.
Let x0 ∈ Rm be an arbitrary point.

2: Initialization: Set k = 0. If E(ϵk, xk) = 0, then stop. Otherwise, calculate

ζk := rmin{1, ϕ(ϵk, yk)}, ηk := min{τ, τ̂∥E(ϵk, yk)∥}.

3: while A termination criterion is not met do
4: Step 1. Solve

E(ϵk, xk) + E ′(ϵk, xk)

[
∆ϵk

∆xk

]
=

[
ζk ϵ̂
0

]
(3.17)

approximately such that

∥Rk∥ ≤ min{ηk∥G(ϵk, xk) +G′
ϵ(ϵ

k, xk)∆ϵk∥2, η∥E(ϵk, xk)∥}, (3.18)

where ∆ϵk := −ϵk + ζk ϵ̂ and

Rk := G(ϵk, xk) +G′(ϵk, xk)

[
∆ϵk

∆xk

]
.

5: Step 2. Let lk be the smallest nonnegative integer l such that

ϕ(ϵk + ρl∆ϵk, xk + ρl∆yk) ≤ [1− 2σ(1− δ)ρl]ϕ(ϵk, xk). (3.19)

Define (ϵk+1, xk+1) := (ϵk + ρlk∆ϵk, xk + ρlk∆xxk).
6: Step 3. k = k+1;
7: end while
8: Output: (ϵk, xk).

Furthermore, if E(·, ·) is strongly semismooth at (ϵ̄, x̄), then the sequence (ϵk, xk)

converges to (ϵ̄, x̄) quadratically, that is,

∥(ϵk+1 − ϵ̄, xk+1 − x̄)∥ = O(∥(ϵk − ϵ̄, xk − x̄)∥2).

In the remainder of this section, we will specifically consider the ℓ1-penalized least
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squares problem

min
x∈Rn

{
1

2
∥Ax− b∥2 + λ∥x∥1

}
, (3.20)

and provide further details on the smoothing Newton method used to solve it. We

can see that the solution set to (3.20) is nonempty and bounded, since it is level

bounded (Rockafellar and Wets, 2009, Theorem 1.9). Besides, x ∈ Rn is an optimal

solution to (3.20) if and only if

F (x) = x− Proxλ∥·∥1(x− ATAx+ AT b) = 0. (3.21)

Since Proxλ∥·∥1(·) is globally Lipschitz continuous, it follows that F (·) is also globally

Lipschitz continuous. Consequently, we can solve (3.21) using the inexact smoothing

Newton method previously introduced.

Note that,

Proxλ∥·∥1(x) = max{x− λ, 0} −max{−x− λ, 0}, ∀x ∈ Rn.

Additionally, there is a well known smoothing function called the Huber function,

which approximates max{(w, 0)}, w ∈ R by

θ(ϵ, w) :=


0, if w ≤ −|ϵ|/2,
w, if w ≥ |ϵ|/2,
(w+|ϵ|/2)2

2|ϵ| , otherwise,

∀ (ϵ, w) ∈ R× R.

Therefore, we can use the function Θ(ϵ, u) :=

θ(ϵ, u1)...
θ(ϵ, un)

, ∀u ∈ Rn to approximate

F (·) in the following manner: for any (ϵ, x) ∈ R× Rn,

F̃ (ϵ, x) = x−Θ(ϵ, f(x)− λ) + Θ(ϵ,−f(x)− λ), (3.22)

where f(x) := x − ATAx + AT b. Note that, when ϵ ̸= 0, the partial derivatives of

G(·, ·) respect to ϵ and u are

Θ′
ϵ(ϵ, u) = diag (θ′ϵ(ϵ, u1), · · · , θ′ϵ(ϵ, un)) and Θ′

u(ϵ, u) = diag (θ′w(ϵ, u1), · · · , θ′w(ϵ, un)) ,
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where

θ′ϵ(ϵ, w) =


0, if |w| ≥ |ϵ|

2
,

1
8
− w2

2ϵ2
, if |w| < |ϵ|

2
& ϵ > 0,

w2

2ϵ2
− 1

8
, if |w| < |ϵ|

2
& ϵ < 0,

and θ′w(ϵ, w) =


0, if w ≤ − |ϵ|

2
,

1, if w ≥ |ϵ|
2
,

w
|ϵ| +

1
2
, otherwise.

Before discussing the properties of F̃ (·, ·), we present the following definition for

a P0 (P ) matrix.

Definition 3.1 (P0 (P ) matrix). A matrix M ∈ Rn×n is referred to as a P0 (P )

matrix if and only if all its principle minors are nonnegative (or positive).

Proposition 3.3. Let F̃ (·, ·) be defined by (3.22). Then the following properties

hold.

(a) F̃ (·, ·) is globally Lipschitz continuous on R× Rn.

(b) F̃ (·, ·) continuously differentiable around any (ϵ, x) ∈ R × Rn, except when

ϵ = 0. Moreover, for any fixed ϵ ̸= 0, F̃ ′
x(ϵ, x), x ∈ R is a P0 matrix.

(c) F̃ (·, ·) is strongly semismooth at (0, x), x ∈ Rn.

Proof. (a) Given that the Huber function is globally Lipschitz continuous, it follows

that F̃ (·, ·) is also globally Lipschitz continuous.

(b) It is clear from the definition of the Huber function that F̃ (·, ·) continuously

differentiable around any (ϵ, x) ∈ R× Rn, except when ϵ = 0.

Fix ϵ ̸= 0. Then the partial derivative of F̃ (·, ·) respect to x can be computed

by

F̃ ′
x(ϵ, x) = I − U

(
I − ATA

)
= I − U + UATA, (3.23)

where U = Θ′
u(ϵ, f(x) − λ) + Θ′

u(ϵ,−f(x) − λ). The positive semidefiniteness

of ATA implies that it is also a P0 matrix. Therefore, by (Cottle et al., 1992,
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Theorem 3.4.2), we know that, for any h ̸= 0, there is an index i, such that

hi ̸= 0 and

⟨hi, (ATAh)i⟩ ≥ 0.

Besides, it can be observed that for all i ∈ {1, · · · , n}, the i-th diagonal com-

ponents ui of U lies within the interval [0, 1]. Consequently, we obtain that

⟨hi, (F̃ ′
x(ϵ, x)h)i⟩ ≥ 0,

which implies that F̃ ′
x(ϵ, x) is a P0 matrix.

(c) Since piecewise affine functions and twice continuously differentiable functions

are strongly semismooth, along with Proposition 2.5, we can conclude that

F̃ (·, ·) is strongly semismooth at (0, x).

Let κ ∈ (0,+∞) be a given scalar. Define

G(ϵ, x) := F̃ (ϵ, x) + κ|ϵ|x, ∀ (ϵ, x) ∈ R× Rn. (3.24)

The reason why we define G(·, ·) by adding a term to F̃ (·, ·) is to ensure that, for any

ϵ ̸= 0, G′
x(ϵ, ·) is a P matrix (by Proposition 3.3 and (Cottle et al., 1992, Theorem

3.4.2)). Define

E(ϵ, x) :=

(
ϵ

G(ϵ, x)

)
=

(
ϵ

F̃ (ϵ, x) + κ|ϵ|x

)
, ∀(ϵ, x) ∈ R× Rn. (3.25)

We can then apply Algorithm 5 to solve the equation E(ϵ, x) = 0, and the convergence

properties are detailed in the following theorem.

Theorem 3.3. Algorithm 5 is well defined and generates an infinite sequence {(ϵk, xk)}

with (ϵk, xk) ∈ N := {(ϵ, x) | ϵ ≥ ζ(ϵ, x)ϵ̂} such that any accumulation point (ϵ̄, x̄) of

{(ϵk, xk)} is a solution of E(ϵ, x) = 0 and limk→∞ ϕ(ϵk, xk) = 0. Moreover, {(ϵk, xk)}

is bounded.
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Proof. From Proposition 3.3 (b) and the definition of G(·, ·), we know that, for any

(ϵ, x) ∈ R++ × Rn, G′
x(ϵ, x) is a P matrix, which implies that E ′(ϵ, x) is also a P

matrix. Then from Theorem 3.1, we have that Algorithm 5 is well defined and gen-

erates an infinite sequence {(ϵk, xk)} with (ϵk, xk) ∈ N such that any accumulation

point (ϵ̄, x̄) of {(ϵk, xk)} is a solution of E(ϵ, x) = 0.

From the design of Algorithm 5, we know that {ϕ(ϵk, xk)} is a decreasing sequence,

thus limk→∞ ϕ(ϵk, xk) exists. Denote ϕ̄ := limk→∞ ϕ(ϵk, xk) ≥ 0. Suppose that ϕ̄ > 0.

Then there exists ϵ̃ > 0 such that, for any k ≥ 0, we have ϵk ≥ ϵ̃. Using a similar

argument as in the proof of (Gao and Sun, 2009, Theorem 4.1), we have that for any

x ≥ 0,

{x ∈ Rn | ∥G(ϵ, x)∥ ≤ v, ϵ ∈ [ϵ̃, ϵ̂]}

is bounded. This implies that the set {(ϵk, xk)} is bounded, and therefore it has

at least one accumulation point, which is a solution to the equation E(ϵ, x) = 0.

However, this contradicts the assumption that ϕ̄ > 0. Therefore, we conclude that

ϕ̄ = 0.

Since the objective function in (3.20) is level bounded, the solution set is nonempty

and compact (Rockafellar and Wets, 2009, Theorem 1.9). It follows from (Rockafel-

lar, 1970, Corollary 31.2.1) that the solution set to the dual of (3.20) is nonempty,

and that the optimal solutions to the primal and dual are equivalent and finite.

Moreover, the strong convexity of the dual implies that the solution set of the dual is

bounded. Therefore, the solution set of E(ϵ, x) = 0 is also nonempty and compact.

It then follows from (Ravindran and Gowda, 2001, Theorem 2.5) that {(ϵk, xk)} is

bounded.

Let (ϵ̄, x̄) be an accumulation point of {(ϵk, xk)} generated by Algorithm 5. From

the above theorem we know that ϵ̄ = 0 and F (x̄) = 0, which indicates that x̄ is

an optimal solution to (3.20). Let ȳ = b − Ax̄ and ū = AT ȳ/λ. It follows from
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(Rockafellar, 1970, Corollary 31.2.1) and the strong convexity of the dual problem

(DLS(λ)) that (ȳ, ū) is the unique optimal solution to (DLS(λ)).

For deriving the quadratic convergence of Algorithm 5, we need to consider the

linear independence constraint qualification (LICQ) to the dual problem (DLS(λ)).

In the nonlinear programming, the LICQ requires that the gradients of the active

inequality constraints and the gradients of the equality constraints are linearly inde-

pendent at the relevant point. After some straightforward calculations, we find that

the constraint qualification holds at ū ∈ Rn if

AT
J(ū)AJ(ū) ≻ 0, where J(ū) := {j ∈ {1, · · · , n} | |ūj| = 1}. (3.26)

Proposition 3.4. Let F̃ (·, ·) be defined by (3.22). Assume that the constraint non-

degeneracy (3.26) holds at ū. Then for any W ∈ ∂F̃ (0, x̄), there exists i ∈ {1, · · · , n}

such that for any nonzero h ∈ Rn,

hi (W (0, h))i > 0. (3.27)

Proof. Suppose that there exists h ̸= 0 such that

max
i
hi (W (0, h))i ≤ 0. (3.28)

We have that

W (0, h) = h−D1(0, h− ATAh)−D2(0, h− ATAh) = h−D(0, h− ATAh),

where D1 ∈ ∂BΘ(0, f(x̄)−λ), D2 ∈ ∂BΘ(0,−f(x̄)−λ), and D = D1+D2. By some

simple calculations, we know that there is a nonnegative vector d ∈ Rn with

di =

{
1, if i ∈ J(ū),
0, otherwise,

such that (
D(0, h− ATAh)

)
i
= dihi − di(ATAh)i, i = 1, · · · , n.
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Then, from (3.28), we have that

{
hi(A

TAh)i ≤ 0, if i ∈ J(ū),
hi = 0, otherwise,

(3.29)

which implies that ⟨hJ(ū), AT
J(ū)AJ(ū)⟨hJ(ū)⟩ = 0. This contradicts the assumption in

(3.26), thereby concluding the proof.

Theorem 3.4. Let (ϵ̄, x̄) be an accumulation point of {(ϵk, yk)} generated by Al-

gorithm 5. Assume that the constraint nondegeneracy (3.26) holds at ū. Then the

sequence {(ϵk, xk)} converges to (ϵ̄, x̄) quadratically, i.e.,

∥(ϵk+1 − ϵ̄, xk+1 − x̄)∥ = O(∥(ϵk − ϵ̄, xk − x̄)∥2).

Proof. It follows from Proposition 3.3 (c) and the fact that the modulus function | · |

is strongly semismooth on R that E(·, ·) is strongly semismooth at (ϵ̄, x̄).

Let V ∈ ∂BE(ϵ̄, x̄) be arbitrarily chosen. We can then derive from Proposition

3.4 and (3.25) that, for any d ∈ Rn+1, there exists i ∈ {1, · · · , n, n+ 1} such that

di(V d)i > 0.

Therefore, according to (Cottle et al., 1992, Theorem 3.3.4), we conclude that V is a

P matrix, which implies that it is nonsingular. By applying the result from Theorem

3.2, we can directly obtain the conclusion of this theorem.

3.3 A warm-started path-following adaptive siev-

ing technique

Modern data driven applications have posed great challenges for solving the corre-

sponding large scale optimization problems under restrictive efficiency and memory

constraints. Inspired by the recently developed level set method (Li et al., 2018b), we

design an efficient warm-started path-following algorithm in this section to address
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the computational challenges for solving large scale sparse optimization problems

(3.1). In particular, we obtain a solution to the original problem by sequentially solv-

ing a set of regularized problems, where the adaptive sieving and warm-start strate-

gies are naturally incorporated to efficiently solve these problems. Consequently, we

can take advantage of the solution sparsity and only solve a sequence of reduced

problems with much smaller problem dimensions, which are computationally and

memory efficient.

3.3.1 A warm-started path-following adaptive sieving tech-
nique for large scale sparse optimization problems

For any given λ > 0, instead of directly solving the original problem, we adopt

an iterative approach by solving a sequence of problems with penalty parameters

λ1 > λ2 > · · · > λ. Each problem is warm-started and significantly smaller in dimen-

sionality compared to the original problem, achieved by implementing the adaptive

sieving strategy. Although there could be several possible ways to determine the

penalty parameter sequence, we present a straightforward implementation based on

numerical observations. While this approach may not be the optimal solution, it

offers a practical alternative. Our experiments on (3.20) revealed that the relation-

ship between solution sparsity and the penalty parameter is not linear. Rather, it

generally follows a functional form that resembles inverse proportionality. We then

drew inspiration from the bisection method to construct the sequence of penalty pa-

rameters within the interval [λ, λ0], where λ0 > λ. At the i-th iteration, we set the

current point as (λi−1+λ)/2. Then the penalty parameter will gradually approach λ

until the absolute difference between the current point and λ is less than a specified

tolerance τ > 0. At that point, we set the final penalty parameter to be λ itself.

Now, we provide the detailed steps of our algorithm in Algorithm 6.

We will demonstrate the numerical performance of Algorithm 6 on two widely
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Algorithm 6 A warm-started path-following algorithm for solving (PLS(λ))

1: Input: a given penalty parameter λ > 0, an initial maximum penalty parameter
λ0 > λ, an initial point x0 ∈ Rn, a given tolerance τ > 0 and a given positive
integer kmax. Let i = 1.

2: Output: an approximate solution x∗ to the problem (PLS(λ)).
3: while λi > λ do
4: if |λi−1 − λ| > τ then
5:

λi =
λ+ λi−1

2
;

6: else
7: Set λi = λ.
8: end if
9: 3.1: Create I i−1 as

I i−1 =
{
j ∈ {1, · · · , n} | ((xi−1))j ̸= 0

}
. (3.30)

If |I i−1| ≤ kmax, go to step 3.2; otherwise, define I i−1 as the union of all indices
of the kmax largest absolute values in xi−1.

10: 3.2: Call Algorithm 4 with the penalty parameter λi, initializing the starting
point as xi−1 and the initial set as I i−1. Then set xi as the corresponding
output.

11: 3.3: Set i← i+ 1.
12: end while
13: return: Set x∗ = xi.

used models. The first model is the ℓ1 penalized least squares problem (3.20). The

other model is the ℓ1 penalized logistic regression problem, which is a combination of

the logistic regression (Cox, 1958) and the ℓ1 penalty to perform variable selection.

It can be expressed as follows:

min
x∈Rn

{
m∑
i=1

log
(
1 + exp

(
− bi(AT

i x)
))

+ λ∥x∥1

}
, (3.31)

where Ai ∈ Rn, i ∈ 1, · · · ,m ( which is the i-th column of the feature matrix A)

and the label vector b ∈ {−1, 1}m are given. The ℓ1 penalized logistic regression

model is extensively employed for feature selection (Ng, 2004; Wainwright et al.,

2006; Ravikumar et al., 2010), predictive classification (Ryali et al., 2010; Liang
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et al., 2013), and others.

We will use (3.20) as an example to discuss a practical way to choose the initial

penalty parameter λ1. We know that for all λ ≥ λmax > 0, the origin is an optimal

solution to (3.20) (Li et al., 2024, Proposition 3.1 (i)). Here, λmax is defined as the

value of the gauge function over ∂p(0) on AT b, given by

λmax = γ(AT b | ∂p(0)). (3.32)

Therefore, for any given λ ∈ (0, λmax), we can set λ0 = λmax and then obtain

λ1 =
λ+ λmax

2
.

It is important to note that the value of λ1 provided above may not be the optimal

choice, as there are scenarios where a smaller initial penalty parameter could be more

beneficial. For example, if the solution obtained with the specified λ1 is overly sparse,

selecting a smaller initial penalty parameter could enhance computational efficiency

by minimizing unnecessary iterations. For model (3.31), the only difference compared

to the above case is that λmax = γ(−AT b/2 | ∂p(0)).

Then, we will perform extensive numerical experiments to demonstrate the high

efficiency of our algorithm in solving two popular models (3.20) and (3.31) on real

applications compared to some state-of-the-art algorithms. Since our algorithm is a

warm-started path-following algorithm implementing the adaptive sieving strategy,

we refer to it as WarmPAS. To evaluate the efficiency of WarmPAS, we compare it

to two other algorithms:

1. SSNAL, a standalone algorithm;

2. AS, which employs the adaptive sieving strategy with each subproblem

solved by SSNAL (and the smoothing Newton algorithm (Section 3.2.2) for

(3.20) only).
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For any approximate solution x̂, we measure the accuracy of the solution using

the following relative KKT residual:

η :=
∥x̂− Proxλp(x̂−∇f(x̂))∥

1 + ∥x̂∥+ ∥∇f(x̂)∥
.

Let nnz(x) denotes the number of nonzeros in the solution vector x ∈ Rn. It is defined

as nnz(x) := min
{
k |

∑k
i=1 |x|(i) ≥ 0.999∥x∥1

}
. The numerical results presented

in this section are generated using MATLAB R2023a on a Windows workstation

equipped with the following specifications: a 12-core Intel(R) Core(TM) i7-12700

(2.10GHz) processor and 64 GB of RAM.

3.3.2 Numerical experiments on the ℓ1 penalized least squares
problem

In this subsection, we will evaluate the superior performance of our algorithm in

solving the large scale ℓ1 penalized least squares problem (3.20) on several UCI

datasets, comparing it with AS and SSNAL. The UCI datasets used in this subsection

are sourced from the UCI Machine Learning Repository, as mentioned in (Li et al.,

2018a,b).

Table 3.3: The computation time of WarmPAS, AS, and SSNAL in solving the large
scale ℓ1 penalized linear regression problem on some UCI datasets, where the penalty
parameter λ is set to c∥AT b∥ and the stopping tolerance is set to 10−6.

Name m n sparsity(A) c nnz(x)
Time (s)

WarmPAS AS SSNAL

E2006.train 16087 150360 0.0083
1e-6 25 0.515 1.844 6.392
2e-7 520 1.312 3.563 20.487

log1p.E2006.train 16087 4272227 0.0014
5e-4 39 3.111 3.784 57.620
1e-4 599 5.189 6.769 135.249

E2006.test 3308 150358 0.0092
1e-6 51 0.156 0.187 1.766
2e-7 692 4.767 8.454 11.565

log1p.E2006.test 3308 4272226 0.0016
5e-4 49 1.406 6.178 24.194
1e-4 1081 2.656 29.559 62.396

pyrim5 74 201376 0.5405
5e-5 78 0.500 0.719 1.516
5e-6 96 0.610 0.907 1.797

triazines4 186 635376 0.6569
5e-3 475 1.813 1.563 16.886
1e-4 261 5.160 6.373 108.964
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The experiments were conducted with a stopping tolerance of 10−6 for all algo-

rithms. Additionally, the penalty parameter λ was determined as c∥AT b∥, where

c > 0 was chosen to ensure a reasonable number of nonzero solutions. Table 3.3 dis-

plays the computational performance of WarmPAS, AS, and SSNAL when applied

to solve the large-scale ℓ1 penalized linear regression problem (3.20) on the UCI

datasets, where all the algorithms achieved a solution within the specified stopping

tolerance. The results clearly demonstrate that WarmPAS significantly outperforms

SSNAL across all tests, achieving a remarkable speed improvement of up to 26 times.

In comparison to AS, WarmPAS outperforms it in all but one test, where it is slightly

slower by approximately 1.16 times. In all other tests, however, WarmPAS shows

speed enhancements of up to 11 times faster than AS.

3.3.3 Numerical experiments on the ℓ1 penalized logistic re-
gression problems

In this subsection, we will demonstrate the superior performance of our algorithm

in solving the ℓ1 penalized logistic regression problem (3.31) on several large scale

real datasets. All the data sets used in here are sourced from the following website:

https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.

Similar to the previous subsection, we will compare our algorithm, WarmPAS,

with AS and SSNAL, and set the penalty parameter λ as c∥AT b∥, where c > 0 is

chosen to maintain a reasonable number of nonzero solutions. The stopping tolerance

for all tests is set to 10−6. The numerical results of the experiments are provided

in Table 3.4 and all the algorithms achieved a solution within the specified stopping

tolerance. It is important to highlight that our algorithm demonstrates superior

performance, particularly in terms of efficiency compared to SSNAL, achieving a

time speed-up of over 50 times in the best-case scenario. Even with the adaptive

sieving strategy employed by AS to exploit the sparsity of the solution, our algorithm
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still outperforms it, achieving a speed-up of up to 5 times.

Table 3.4: The computation time of WarmPAS, AS and SSNAL for solving the
large scale ℓ1 penalized logistic regression problem on some real data sets, where the
penalty parameter λ is set to c∥AT b∥ and the stopping tolerance is set to 10−6.

Name m n sparsity(A) c nnz(x)
Time (s)

WarmPAS AS SSNAL

news20.binary 19996 1355191 3.36e-4
8e-3 491 2.453 4.767 32.474
5e-3 691 4.336 6.470 41.805

rcv1 train.binary 20242 47236 1.57e-3
1e-2 275 0.750 1.969 2.814
5e-3 450 1.594 3.736 4.876

real-sim 72309 20958 2.45e-3
1e-2 239 2.203 5.923 13.597
5e-3 424 5.221 8.752 23.892

kddb-raw-libsvm.t 748401 1163024 7.74e-6
1e-3 37 5.048 10.473 85.082
7e-4 50 8.797 22.590 120.696

kdda.t 510302 2014669 1.87e-5
5e-2 46 3.422 8.689 116.998
2e-2 80 6.392 35.539 326.797

kddb.t 748401 2990384 9.81e-6
1e-2 53 6.126 19.100 178.954
7e-3 80 10.657 28.885 299.886
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Chapter 4

SMOP: A root finding based

secant method for solving the

sparse optimization problem with

least squares constraints

In this chapter, we will develop an efficient sieving based Secant Method for solving

the sparse Optimization Problem (CP(ϱ)), called SMOP, by finding the root of the

equation (Eφ). We begin this chapter by discussing the properties of the value

function φ(·), which are essential for designing the secant method to find the root of

(Eφ). In the subsequent section, we will study the HS-Jacobian (Han and Sun, 1997)

of the value function φ(·). It is important to note that the HS-Jacobian introduced

in (Han and Sun, 1997) provides a solid foundation for our research. With these

preparations in place, we will then be ready to introduce the secant method for

solving the main problem (CP(ϱ)) in the next two sections. In particular, under

the assumption that p(·) is a polyhedral gauge function, we show that the secant

method converges at least 3-step Q-quadratically for solving (Eφ), and if ∂Bφ(λ
∗) is a

singleton, the secant method converges superlinearly with Q-order at least (1+
√
5)/2.

Furthermore, for a general strongly semismooth function φ(·), if ∂φ(λ∗) is a singleton

and nondegenerate, the secant method converges superlinearly with R-order of at
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least (1 +
√
5)/2.

4.1 The properties of the value function φ(·)

In this section, we explore several useful properties of the value function φ(·), par-

ticularly its (strong) semismoothness property when p(·) is a (polyhedral) gauge

function. This preliminary analysis lays the groundwork for the subsequent design

of the secant method to solve (CP(ϱ)).

Since p(·) is assumed to be a nonnegative positively homogeneous convex function

such that p(0) = 0, i.e. a gauge function (Rockafellar, 1970, Section 15), we have

that 0 ∈ ∂p(0).

Proposition 4.1. Assume that λ∞ ∈ (0 +∞). It holds that

(a) for all λ ≥ λ∞, y(λ) = b and 0 ∈ Ω(λ);

(b) the value function φ(·) is nondecreasing on (0,+∞) and for any 0 < λ1 < λ2 <

+∞, φ(λ1) = φ(λ2) implies p(x(λ1)) = p(x(λ2)), where for any λ > 0, x(λ) is

an optimal solution to PLS(λ).

Proof. (a) Since 0 ∈ ∂p(0), for all λ > λ∞, it holds that

AT b/λ ∈ ∂p(0),

which implies that 0 ∈ Ω(λ). Since λ∞ > 0 and ∂p(0) is closed, we know

AT b/λ∞ ∈ ∂p(0),

which implies that 0 ∈ Ω(λ∞). Therefore, for all λ ≥ λ∞, 0 ∈ Ω(λ) and y(λ) = b .

(b) Let 0 < λ1 < λ2 < ∞ be arbitrarily chosen. Let x(λ1) ∈ Ω(λ1) and x(λ2) ∈

Ω(λ2). Then, we have

1

2
∥Ax(λ1)− b∥2 + λ1p(x(λ1)) ≤

1

2
∥Ax(λ2)− b∥2 + λ1p(x(λ2)), (4.1)

1

2
∥Ax(λ2)− b∥2 + λ2p(x(λ2)) ≤

1

2
∥Ax(λ1)− b∥2 + λ2p(x(λ1)), (4.2)
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which implies that

(λ1 − λ2)(p(x(λ1))− p(x(λ2))) ≤ 0. (4.3)

Since λ1 − λ2 < 0, we know that p(x(λ1)) ≥ p(x(λ2)). It follows from (4.1) that

1

2
∥Ax(λ1)− b∥2 ≤

1

2
∥Ax(λ2)− b∥2 + λ1(p(x(λ2))− p(x(λ1))) ≤

1

2
∥Ax(λ2)− b∥2,

which implies that p(x(λ1)) = p(x(λ2)) if φ(λ1) = φ(λ2). This completes the proof

of the proposition.

Due to Proposition 4.1, we can apply the bisection method to solve (Eφ) and for

any ϵ > 0 we can obtain a solution λε satisfying |λε−λ∗| ≤ ε in O(log(1/ε)) iterations,

where λ∗ is a solution to (Eφ). We will design a more efficient secant method for

solving (Eφ) later. To achieve this goal, we first study the (strong) semismoothness

property of φ(·).

We focus on the case where p(·) is a gauge function, as this is a very common

case. In most of the applications, p(·) is a norm function, which is automatically a

gauge function. We will leave the study of the (strong) semismoothness of φ(·) for a

general p(·) as future work.

Since p(·) is a gauge function, then p∗(·) = δ(· | ∂p(0)) and the optimization

problem DLS(λ) is equivalent to

max
y∈Rm

{
−1

2
∥y∥2 + ⟨b, y⟩ | λ−1y ∈ Q

}
, (4.4)

where

Q := {z ∈ Rm | AT z ∈ ∂p(0)}. (4.5)

Then by performing a variable substitution, we have the following useful observation

about the solution mapping to (4.4).
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Proposition 4.2. Let p(·) be a gauge function, for any 0 < λ < +∞, the unique

solution to (4.4) can be written as

y(λ) = λΠQ(λ
−1b) = ΠλQ(b). (4.6)

The following proposition is useful in understanding the semismoothness of y(·)

and φ(·) even if p(·) is non-polyhedral. Part (b) of the proposition is generalized

from (Li et al., 2018b, Proposition 1 (iv)) (p(·) is assumed to be a polyhedral gauge

function in (Li et al., 2018b)) and we provide a more explicit proof that does not

rely on the piecewise linearity of the solution mapping y(·) in (4.6).

Proposition 4.3. Let p(·) be a gauge function. It holds that

(a) the functions y(·) and φ(·) are locally Lipschitz continuous on (0,+∞);

(b) if 0 < λ∞ < +∞, φ(·) is strictly increasing on (0, λ∞];

(c) if the set Q is tame, φ(·) is semismooth on (0,+∞);

(d) if Q is globally subanalytic, φ(·) is γ-order semismooth on (0,+∞) for some

γ > 0.

Proof. For convenience, we denote ỹ(λ) := ΠQ(λ
−1b) for any λ > 0.

(a) Since ΠQ(·) is Lipschitz continuous with modulus 1, both ỹ(·) and y(·) are

locally Lipschitz continuous on (0,+∞). Therefore, φ(·) = ∥y(·)∥ is locally Lipschitz

continuous on (0,+∞).

(b) It follows from Proposition 4.1 that φ(·) is nondecreasing. We will now prove

that φ(·) is strictly increasing on (0, λ∞]. We prove it by contradiction. Assume that

there exist 0 < λ1 < λ2 ≤ λ∞ such that φ(λ1) = φ(λ2). Let x(λ1) ∈ Ω(λ1) and

x(λ2) ∈ Ω(λ2) be arbitrarily chosen. From Proposition 4.1 (ii), we know that

p(x(λ1)) = p(x(λ2)),
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which implies that x(λ1) ∈ Ω(λ2) and x(λ2) ∈ Ω(λ1). Therefore, we get

y(λ1) = b− Ax(λ1) = b− Ax(λ2) = y(λ2).

Thus, by using the facts 0 ∈ λ2Q, y(λ2) = Πλ2Q(b), and λ
−1
1 λ2y(λ2) = λ−1

1 λ2y(λ1) ∈

λ2Q, we obtain from the properties of the metric projector Πλ2Q(·) that

⟨b− y(λ2), 0− y(λ2)⟩ ≤ 0, ⟨b− y(λ2), λ−1
1 λ2y(λ2)− y(λ2)⟩ ≤ 0.

Therefore,

⟨b− y(λ1), y(λ1)⟩ = ⟨b− y(λ2), y(λ2)⟩ = 0.

Since λ1 < λ∞ and y(λ1) = Πλ1Q(b), we know that y(λ1) ̸= b. Hence,

⟨b− y(λ1), λ−1
∞ λ1b− y(λ1)⟩ = λ−1

∞ λ1∥b− y(λ1)∥2 > 0.

However, λ−1
∞ λ1b ∈ λ1Q and y(λ1) = Πλ1Q(b) imply that

⟨b− y(λ1), λ−1
∞ λ1b− y(λ1)⟩ ≤ 0,

which is a contradiction. This contradiction shows that φ(·) is strictly increasing on

(0, λ∞].

(c) Since ỹ(·) is locally Lipschitz continuous on (0, λ∞), it follows from (Bolte

et al., 2009) that ỹ(·) is semismooth on (0,+∞) if Q is a tame set. Since ∥ · ∥

is strongly semismooth, we know that g1(·) = ∥ỹ(·)∥ is semismooth on (0, λ∞).

Therefore, φ(·) is semismooth on (0, λ∞) (Facchinei and Pang, 2003b, Proposition

7.4.4, Proposition 7.4.8).

(d) The γ-order semismoothness of φ(·) can be proved similarly as for (c).

The above proposition can be used to prove the semismoothness of φ(·) for a wide

class of functions p(·). For example, the next corollary shows the semismoothness

of φ(·) when p(·) is the nuclear norm function defined on Rd×n, using the fact that

∂p(0) is linear matrix inequality representable (Recht et al., 2010).
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Corollary 4.1. Denote the adjoint of the linear operator A : Rd×n → Rm as A∗.

Let p(·) = ∥ · ∥∗ be the nuclear norm function defined on Rd×n. Then Q = {z ∈

Rm | A∗z ∈ ∂p(0)} is a tame set and ΠQ(·) is semismooth.

Next, we will show that φ(·) can be strongly semismooth for a class of important

instances of p(·).

Proposition 4.4. Let p(·) be a gauge function. Define Φ(x) := 1
2
∥Ax− b∥2, x ∈ Rn

and

H(x, λ) := x− Proxp(x− λ−1∇Φ(x)), (x, λ) ∈ Rn × R++.

For any (x, λ) ∈ Rn×R++, denote ∂xH(x, λ) as the Canonical projection of ∂H(x, λ)

onto Rn. It holds that

(a) if Π∂p(0)(·) is strongly semismooth and ∂xH(x̄, λ̄) is nondegenerate at some

(x̄, λ̄) satisfying H(x̄, λ̄) = 0, then y(·) and φ(·) are strongly semismooth at λ̄;

(b) if p(·) is further assumed to be polyhedral, the function y(·) is piecewise affine

and φ(·) is strongly semismooth on R++.

Proof. (a) It follows from the Moreau identity (Rockafellar, 1970, Theorem 31.5)

that for any (x, λ) ∈ Rn × R++,

H(x, λ) = x− ((x− λ−1∇Φ(x))− Proxp∗(x− λ−1∇Φ(x)))
= λ−1∇Φ(x) + Π∂p(0)(x− λ−1∇Φ(x)).

The rest of the proof can be obtained from the fact that ∇Φ(·) is linear and the

Implicit Function Theorem for semismooth functions (Theorem 2.4).

(b) When p(·) is a polyhedral gauge function, we know that the set Q defined in

(4.5) is a convex polyhedral set (Rockafellar, 1970, Theorem 19.3) and the projector

ΠQ(·) is piecewise affine (Facchinei and Pang, 2003b, Proposition 4.1.4). Therefore,

y(·) is a piecewise affine function on (0,+∞). Then both y(·) and φ(·) are strongly
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semismooth on (0,+∞) (Facchinei and Pang, 2003b, Proposition 7.4.7, Proposition

7.4.4, Proposition 7.4.8).

Remark 4.1. We make some remarks on the assumptions in Part (a) of Proposi-

tion 4.4. On one hand, the strong semismoothness of the projector ΠK(·) has been

proved for some important non-polyhedral closed convex sets K, such as the positive

semidefinite cone (Sun and Sun, 2002), the second-order cone (Chen et al., 2003),

and the ℓ2 norm ball (Zhang et al., 2020, Lemma 2.1). On the other hand, the as-

sumption of the nondegeneracy of ∂xH(·, ·) at the concerned point is closely related to

the important concept of strong regularity of the KKT system of (PLS(λ)). One can

refer to the Monograph (Bonnans and Shapiro, 2000) and the references therein for

a general discussion, and to (Sun, 2006; Chan and Sun, 2008) for the semidefinite

programming problems.

4.2 The HS-Jacobian of φ(·) for some special p(·)

In this section, we assume by default that 0 < λ∞ < +∞. Inspired by the generalized

Jacobian for the projector over a polyhedral set derived by Han and Sun (1997),

which we call the HS-Jacobian, we will derive the HS-Jacobian of the value function

φ(·). As an important implication, we will prove that the Clarke Jacobian of φ(·)

at any λ ∈ (0, λ∞) is positive. Note that the open interval (0, λ∞) contains the

solution λ∗ to (Eφ). Additionally, we also study a special case of the polyhedral

gauge function, the k-norm function. This is because the derivation for the general

polyhedral gauge function does not easily yield the HS-Jacobian of φ(·) at λ ∈ (0, λ∞)

and its nondegeneracy.
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4.2.1 When p(·) is a polyhedral gauge function

Let p(·) be a polyhedral gauge function. Then the set ∂p(0) is polyhedral (Rockafel-

lar, 1970, Theorem 19.2), which can be assumed without loss of generality, to take

the form of

∂p(0) := {u ∈ Rn |Bu ≤ d} (4.7)

for some B ∈ Rq×n and d ∈ Rq.

Let λ ∈ (0, λ∞) be arbitrarily chosen. Let (y(λ), u(λ)) be the unique solution to

(DLS(λ)) with the parameter λ. Here, we denote (y, u) = (y(λ), u(λ)) to simplify

our notation and hide the dependency on λ. Then there exists x ∈ Ω(λ) such that

(y, u, x) satisfies the following KKT system:

u = Π∂p(0)(u+ x), y − b+ Ax = 0, ATy − λu = 0. (4.8)

Therefore, u is the unique solution to the following optimization problem

min
z∈Rn

{
1

2
∥z − (u+ x)∥2 |Bz ≤ d

}
(4.9)

and there exists ξ ∈ Rq such that (u, ξ) satisfies the following KKT system for (4.9):

BT ξ − x = 0, Bu− d ≤ 0, ξ ≥ 0, ξT (Bu− d) = 0. (4.10)

As a result, there exists (x, ξ) ∈ Rn × Rq such that (y, u, x, ξ) satisfies the following

augmented KKT system

{
BT ξ − x = 0, Bu− d ≤ 0, ξ ≥ 0, ξT (Bu− d) = 0,

y − b+ Ax = 0, ATy − λu = 0.
(4.11)

Let M(λ) be the set of Lagrange multipliers associated with (y, u) defined as

M(λ) := {(x, ξ) ∈ Rn × Rq | (y, u, x, ξ) satisfies (4.11)} .
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Since x = BT ξ, we obtain the following system by eliminating the variable x in

(4.11): {
Bu− d ≤ 0, ξ ≥ 0, ξT (Bu− d) = 0,

y − b+ Âξ = 0, ATy − λu = 0,
(4.12)

where Â = ABT ∈ Rm×q. Denote

M̂(λ) := {ξ ∈ Rq | (y, u, ξ) satisfies (4.12)} . (4.13)

Then, the set M(λ) is equivalent to

M(λ) =
{
(x, ξ) ∈ Rn × Rq |x = BT ξ, ξ ∈ M̂(λ)

}
. (4.14)

Denote the active set of u as

I(u) := {i ∈ [q] |Bi:u− di = 0}. (4.15)

For any λ ∈ (0, λ∞), we define

B(λ) :=
{
K ⊆ [q] | ∃ ξ ∈ M̂(λ) s.t. supp(ξ) ⊆ K ⊆ I(u) and rank(Â:K) = |K|

}
.

(4.16)

Since the polyhedral set M̂(λ) does not contain a line, this implies that M̂(λ) has at

least one extreme point ξ̄ (Rockafellar, 1970, Corollary 18.5.3). Note that 0 < λ < λ∞

and x ̸= 0, which implies that ξ̄ ̸= 0 and B(λ) is nonempty.

Define the HS-Jacobian of y(·) as

H(λ) :=
{
hK ∈ Rm |hK = Â:K(Â

T
:KÂ:K)

−1dK , K ∈ B(λ)
}
, λ ∈ (0, λ∞), (4.17)

where dK is the subvector of d indexed by K. For notational convenience, for any

λ ∈ (0, λ∞) and K ∈ B(λ), denote

PK = I − Â:K(Â
T
:KÂ:K)

−1ÂT
:K . (4.18)
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Define

V(λ) :=
{
t ∈ R | t = λ∥h∥2/φ(λ), h ∈ H(λ)

}
, λ ∈ D, (4.19)

where D = {λ ∈ (0, λ∞) |φ(λ) > 0}. The following lemma is proved by following the

same line as in (Han and Sun, 1997, Lemma 2.1).

Lemma 4.1. Let λ̄ ∈ (0, λ∞) be arbitrarily chosen. It holds that

y(λ̄) = PKb+ λ̄hK , ∀hK ∈ H(λ̄). (4.20)

Moreover, there exists a positive scalar ς such that N (λ̄) := (λ̄− ς, λ̄+ ς) ⊆ (0, λ∞)

and for all λ ∈ N (λ̄),

(a) B(λ) ⊆ B(λ̄) and H(λ) ⊆ H(λ̄);

(b) y(λ) = y(λ̄) + (λ− λ̄)h, ∀h ∈ H(λ).

Proof. Choose a sufficiently small ς > 0 such that N (λ̄) := (λ̄− ς, λ̄ + ς) ⊆ (0, λ∞)

and let λ ∈ N (λ̄)\λ̄ be arbitrarily chosen. Denote (ȳ, ū) = (y(λ̄), u(λ̄)) and (y, u) =

(y(λ), u(λ)) for notational simplicity.

Let K ∈ B(λ̄) be arbitarily chosen. From (4.12), there exists ξ̄ ∈ M̂(λ̄) with

supp(ξ̄) ⊆ K ⊆ I(ū) such that (ȳ, ū, ξ̄) satisfies

ȳ = b− Â:K ξ̄K , BAT ȳ = ÂT ȳ = λ̄Bū, BK:ū = dK , ξKc = 0, (4.21)

where Kc is the complement of K, which implies

λ̄dK = ÂT
:K(b− Â:K ξ̄K).

Since Â:K is of full column rank, we have

ξ̄K = (ÂT
:KÂ:K)

−1(ÂT
:Kb− λ̄dK).

Consequently, we have

ȳ = PKb+ λ̄hK ,
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where hK = Â:K(Â
T
:KÂ:K)

−1dK ∈ H(λ̄).

(a) It follows from Proposition 4.3 that u(·) is locally Lipschitz continuous, which

implies that I(u) ⊆ I(ū). Next, we prove that B(λ) ⊆ B(λ̄). If not, then there exists

a sequence {λk}k≥1 ⊆ N (λ̄) converges to λ̄, such that for all k, there is an index set

Kk ∈ B(λk)\B(λ̄). Denote the solution to (DLS(λ)) with the parameter λk as (y
k, uk).

Since there exist only finitely many choices for the index sets in B(·), if necessary by

taking a subsequence we assume that the index sets Kk are identical for all k ≥ 1.

Denote the common index set as K̃. Then, the matrix Â:K̃ has full column rank and

there exists ξk ∈ M̂(λk) (and (BT ξk, ξk) ∈ M(λk)) such that supp(ξk) ⊆ K̃ ⊆ I(uk)

but K̃ ̸∈ B(λ̄). Since I(uk) ⊆ I(ū), then there is no ξ ∈ B(λ̄) such that supp(ξ) ⊆ K̃.

However, since ξk ∈ M̂(λk), it satisfies

yk − b+ Â:K̃ξ
k
K̃
= 0. (4.22)

As y(·) is locally Lipschitz continuous and Â:K̃ is of full column rank, the sequence

{ξk}k≥1 is bounded. Let ξ̃ be an accumulation point of {ξk}k≥1, then ξ̃ ∈ B(λ̄) and

supp(ξ̃) ⊆ K̃. This is a contradiction. Therefore, B(λ) ⊆ B(λ̄). From the definition

of H(·) in (4.17), we also have H(λ) ⊆ H(λ̄).

(b) Let K ∈ B(λ) be arbitarily chosen. It follows from (4.20) that

y = PKb+ λhK ,

where hK = Â:K(Â
T
:KÂ:K)

−1dK ∈ H(λ). Since K ∈ B(λ) ⊆ B(λ̄) and hK ∈ H(λ) ⊆

H(λ̄), in a same vein, we have

ȳ = PKb+ λ̄hK .

As a result, for all h ∈ H(λ),

y = ȳ + (λ− λ̄)h.

We complete the proof of the lemma.

75



Next, we prove the nondegeneracy of ∂φ(λ̄) for any λ̄ ∈ (0, λ∞), which is impor-

tant for analyzing the convergence rates of the secant method for solving (Eφ).

Theorem 4.1. Let p(·) be a polyhedral gauge function. Assume that 0 < λ∞ < +∞.

For any λ̄ ∈ (0, λ∞), it holds that

(a) for any integer k ≥ 1, the function φ(·) is piecewise Ck in an open interval

containing λ̄;

(b) all v ∈ ∂φ(λ̄) are positive.

Proof. Choose a sufficiently small ς > 0 such that N (λ̄) = (λ̄ − ς, λ̄ + ς) ⊆ (0, λ∞)

and B(λ) ⊆ B(λ̄) for any λ ∈ N (λ̄). Let λ ∈ N (λ̄)\λ̄ and K ∈ B(λ) be arbitrarily

chosen. Denote

hK = Â:K(Â
T
:KÂ:K)

−1dK .

Then, we have hK ∈ H(λ) ⊆ H(λ̄).

Now, we prove Part (a) of the theorem. From the fact

⟨PKb, hK⟩ = 0

and Lemma 4.1, we know that

φ(λ) =
√
∥PKb∥2 + λ2∥hK∥2 and φ(λ̄) =

√
∥PKb∥2 + (λ̄)2∥hK∥2.

Define φK : R→ R+ by

φK(s) :=
√
∥PKb∥2 + s2∥hK∥2, s ∈ R. (4.23)

From Proposition 4.3, we know that φ(·) is strictly increasing on (0, λ∞]. Therefore,

it holds that

φK(λ) = φ(λ) ̸= φ(λ̄) = φK(λ̄), (4.24)
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which implies that hK ̸= 0. Since K ∈ B(λ) is arbitrarily chosen, we obtain that

hK ̸= 0, ∀K ∈ B(λ). (4.25)

Thus, for any integer k ≥ 1, φK(·) is Ck on N (λ̄).

Denote B̄ =
⋃

λ∈N (λ̄)\λ̄ B(λ). We know that B̄ ⊆ B(λ̄) and |B̄| is finite. Moreover,

φ(s) ∈ {φK(s)}K∈B̄, ∀ s ∈ N (λ̄), (4.26)

which implies that for any k ≥ 1, φ(·) is piecewise Ck on N (λ̄).

Next, we prove Part (b) of the theorem. It follows from (4.25) that for any K ∈ B̄

and λ > 0,

hK ̸= 0 and (φK)′(λ) = λ∥hK∥2/φK(λ) > 0. (4.27)

By (Clarke, 1983, Theorem 2.5.1) and the upper semicontinuity of ∂Bφ(·), we have

∂φ(λ̄) ⊆ conv({λ̄∥hK∥2/φ(λ̄) |K ∈ B̄}), (4.28)

which implies

v > 0, ∀ v ∈ ∂φ(λ̄).

We complete the proof of the theorem.

The following proposition shows that for the least squares constrained Lasso

problem, ∂HSφ(λ̄) is positive for any λ̄ ∈ (0, λ∞).

Proposition 4.5. Suppose that p(·) is a polyhedral gauge function and ∂p(0) has the

expression as in (4.7). Assume that 0 < λ∞ < +∞ and let λ̄ ∈ (0, λ∞) be arbitrarily

chosen. Let B(λ̄) and V(λ̄) be the sets defined as in (4.16) and (4.19) for λ = λ̄. If

dK ̸= 0 for all K ∈ B(λ̄), then v > 0 for all v ∈ V(λ̄). Moreover, dK ̸= 0 for all

K ∈ B(λ̄) when p(·) = ∥ · ∥1.
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Proof. Recall that B(λ̄) is nonempty. Let K ∈ B(λ̄) be arbitrarily chosen. We know

that Â:K is of full column rank. Denote hK = Â:K(Â
T
:KÂ:K)

−1dK ∈ H(λ̄). Since

dK ̸= 0, it holds that

∥hK∥2 = ⟨Â:K(Â
T
:KÂ:K)

−1dK , Â:K(Â
T
:KÂ:K)

−1dK⟩ = ⟨dK , (ÂT
:KÂ:K)

−1dK⟩ > 0.

Therefore, it follows from Lemma 4.1 and the facts λ̄ > 0 and ⟨PKb, hK⟩ = 0 that

φ(λ̄) =
√
∥PKb∥2 + λ̄2∥hK∥2 > 0,

which implies that

vK = λ̄∥hK∥2/φ(λ̄) ∈ V(λ̄) and vK > 0.

Since K ∈ B(λ̄) is arbitrarily chosen, we know that v > 0 for all v ∈ V(λ̄).

When p(·) = ∥ · ∥1, the set ∂p(0) has the representation of

∂p(0) = {u ∈ Rn | − 1 ≤ ui ≤ 1, i ∈ [n]}.

In other words, B = [In − In]T ∈ R2n×n and d = e2n. Therefore, dK ̸= 0 for any

λ̄ ∈ (0, λ∞) and K ∈ B(λ̄).

4.2.2 When p(·) is a k-norm function

In this section, we focus on the discussion of the HS-Jacobian of φ(·) when p(·) is

the k-norm function. While the k-norm function is indeed a particular example of

a polyhedral gauge function, we adopt a direct approach to studying results similar

to those previously obtained, rather than transforming the set ∂p(0) into the form

presented in (4.7). This is motivated by the challenges of constructing the set ∂p(0)

in that form. Additionally, this method is essential for deriving the HS-Jacobian

of φ(·), which is necessary for employing the semismooth Newton method to solve

(CP(ϱ)) and to compare its performance with our secant method in Chapter 5.
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Let n > 2. For any given k ∈ {1, · · · , n}, the k-norm function p(·) is defined by

p(x) := ∥x∥(k) =
k∑

i=1

|x(i)|, ∀ x ∈ Rn,

where |x(1)| ≥ · · · ≥ |x(k)| are the k largest absolute values of the elements in x.

Specifically, when k = 1, the k-norm function reduces to the infinity norm function,

i.e., p(x) = ∥x∥∞, and when k = n, it becomes the ℓ1-norm function, i.e., p(x) =

∥x∥1. We now turn our attention to the k-norm penalized least squares problem

(PLS(λ)).

Recall that, for any λ > 0, the dual problem of (PLS(λ)) is given by:

max
y∈Rn,u∈Rn

{
−1

2
∥y∥2 + ⟨b, y⟩+ p∗(u) | ATy − λu = 0

}
, (DLS(λ))

where we know from (Rockafellar, 1970, Corollary 13.2.1) that

p∗(·) = δ(· | ∂p(0)). (4.29)

Moreover, it follows from (Watson, 1992, Theorem 1) that

∂p(0) = {u ∈ Rn | ∥u∥∗(k) ≤ 1}, (4.30)

where the dual norm ∥ · ∥∗(k) of ∥ · ∥(k) is ∥u∥∗(k) = max{∥u∥1/k, ∥u∥∞}, u ∈ Rn.

Therefore, the KKT system associated with (PLS(λ)) and (DLS(λ)) is
y − b+ Ax = 0,

u = Π∂p(0)(u+ x),

ATy − λu = 0,

(y, u, x) ∈ Rm × Rn × Rm. (4.31)

For any u and x with u = Π∂p(0)(u + x), it follows from (4.30) that u is the unique

optimal solution to

min
w∈Rn

{
1

2
∥w − (u+ x)∥2 | ∥u∥1 ≤ k, ∥u∥∞ ≤ 1

}
. (4.32)
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It then follows from (Rockafellar, 1970, Theorem 28.2) that there exist some α, β ∈ R

such that 

x ∈ α∂∥u∥1 + β∂∥u∥∞,
∥u∥1 ≤ k, α ≥ 0,

α(∥u∥1 − k) = 0,

∥u∥∞ ≤ 1, β ≥ 0,

β(∥u∥∞ − 1) = 0.

(4.33)

Let λ ∈ (0, λ∞). Since λ < λ∞ = max{∥AT b∥1/k, ∥AT b∥∞}, it is not possible for

both α and β to be equal to 0 at the same time. This is because when α = 0 and

β = 0, from (4.31) and (4.33), we have that ∥AT b∥1 ≤ kλ and ∥AT b∥∞ ≤ λ, which

contradicts to the assumption that λ < λ∞. Also, we know from (4.33) that u ̸= 0.

Let (y, u) ∈ Rm×Rn denotes the unique optimal solution to (DLS(λ)). It follows

from an example in (Rockafellar, 1970, Section 23, Page 215) that

∂∥u∥∞ = conv{sign(uj)ej | j ∈ Ju}, Ju = {j | |uj| = 1}, (4.34)

where ej represents the vector that forms the j-th column of the n×n identity matrix.

For any integer i ∈ {1, · · · , n}, we know from the inclusion x ∈ α∂∥u∥1 + β∂∥u∥∞

and (4.34), that

xi ∈


{sign(ui) · (α + β · ωi · ei)}, if |ui| = 1,

[−α, α], if ui = 0,

{sign(ui) · α}, if 0 < |ui| < 1,

(4.35)

where ωi ≥ 0, and
∑

i ωi = 1. Denote

I(u) = I0(u) ∪ I1(u), Ī(u) := {1, · · · , n}\I(u),

where

I0(u) := {i | ui = 0}, I1(u) := {i | |ui| = 1}.

Additionally, from (4.35), we have{
sign(ui) · [xi − sign(ui) · α], i ∈ I1(u)

}
∈ β∆|I1(u)|,
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where ∆|I1(u)| represents the |I1(u)| dimensional simplex, with |I1(u)| representing

the cardinality of the set I1(u). Therefore,

{
β =

∑
i∈I1(u) sign(ui) · xi − α · |I1(u)|,

sign(ui) · xi − α ≥ 0, i ∈ I1(u).

Consequently, (4.31) becomes



y − b+ Ax = 0,

β =
∑

i∈I1(u) sign(ui) · xi − α · |I1(u)|,
sign(ui) · xi − α ≥ 0, i ∈ I1(u),
xi ≤ α, i ∈ I0(u),
xi ≥ −α, i ∈ I0(u),
xi = sign(ui) · α, i ∈ Ī(u),
α ≥ 0, β ≥ 0,

α(∥u∥1 − k) = 0,

∥u∥∞ ≤ 1, ∥u∥1 ≤ k,

β(∥u∥∞ − 1) = 0,

ATy − λu = 0.

(4.36)

LetM(λ) be the nonempty set of multipliers (x, α, β) ∈ Rn×R+×R+ that satisfies

the KKT condition (4.36). Denote

S(x, α) := {i | |xi| ≠ α}.

We then define the family B(λ) of indices {1, · · · , n} as follows: K ∈ B(λ) if and only

if S(x, α) ⊆ K ⊆ I(u), for some (x, α, β, y, u, λ) satisfying the KKT system (4.36),

and the vectors {Ai, i ∈ K} are linearly independent. Let AK denote the matrix

consisting of the columns of A indexed by K. The family B(λ) is non-empty due to

the existence of an non-zero extreme point ofM(λ). Denote K = {1, · · · , n}\K.

Define

H(λ) =
{
h ∈ Rn | h = r(u, x,K) · PKAKsign(xK) + AK(A

T
KAK)

−1uK , K ∈ B(λ)
}
,
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where

r(u, x,K) =


∥uK∥1−⟨AKsign(xK),AK(AT

KAK)−1uK⟩
∥AKsign(xK)∥2PK

, if ∥AKsign(xK)∥2PK
̸= 0,

0, otherwise,

and

PK = I − AK(A
T
KAK)

−1AT
K .

Proposition 4.6. Let λ̄ ∈ (0, λ∞).

(a) There exists a neighborhood N (λ̄) of λ̄ such that

B(λ) ⊆ B(λ̄), H(λ) ⊆ H(λ̄), ∀λ ∈ N (λ̄). (4.37)

(b) When B(λ) ⊆ B(λ̄), then

y − ȳ = (λ− λ̄) · h, ∀h ∈ H(λ), (4.38)

where y and ȳ denote the unique optimal solutions to (DLS(λ)) and (DLS(λ̄)),

respectively.

Proof. Since λ̄ ∈ (0, λ∞), we may choose N (λ̄) to be sufficiently small such that

λ ∈ (0, λ∞) holds for all λ ∈ N (λ̄). Hence, B(λ), H(λ) and T (λ) are well-defined.

Let (ȳ, ū) denote the unique optimal solution to the corresponding (DLS(λ̄)).

(a) According to the definition of H, it is only necessary to establish that B(λ) ⊆

B(λ̄) in this proof. We prove that B(λ) ⊆ B(λ̄) using a proof by contradiction.

Suppose that there is a sequence {λk} converging to λ̄ such that Kk ∈ B(λk)

but Kk ̸∈ B(λ̄) for all k. Since the number of such index sets is finite, we can

assume, by taking a subsequence if necessary, that Kk is the same for all k.

Let us denote this common index set by K. From the definition of B, we know
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that {Ai, i ∈ K} are linearly independent and there is (xk, αk, βk) ∈ M(λk)

such that

S(xk, αk) ⊆ K ⊆ I(uk).

By refining the subsequence of {λk} appropriately, we can chose (xk, αk) ∈

M(λk) such that for all k, the signs of the entries of xk
K

coincide with each

other.

We will now establish that the sequence {xk, αk, βk} is bounded. For any λ,

since the objective value of (PLS(λ)) tends to∞ as |x| → ∞, the solution set of

(PLS(λ)) is nonempty and compact (Rockafellar and Wets, 2009, Theorem 1.9).

Let Ωλ be the optimal solution set to (PLS(λ)). For any 0 < λ1 < λ2 < λ∞ and

any x1 ∈ Ωλ1 , x2 ∈ Ωλ2 , we have

1

2
∥Ax1 − b∥2 + λ1p(x1) ≤

1

2
∥Ax2 − b∥2 + λ1p(x2),

1

2
∥Ax2 − b∥2 + λ2p(x2) ≤

1

2
∥Ax1 − b∥2 + λ2p(x1).

(4.39)

By adding the two inequalities in (4.39) and considering that λ1 < λ2, we can

conclude that

(λ2 − λ1)(p(x2)− p(x1)) ≤ 0,

which in turn implies that p(x1) ≤ p(x2). Therefore, for any κ > p(x{1}) with

x{1} ∈ Ωmax{λk}, all elements of the sequence {xk} are contained within the

closed and bounded convex level set {x | p(x) ≤ κ}. The closeness property

follows from the fact that p(·) is closed (Rockafellar, 1970, Theorem 7.1), and

the property of being bounded corresponds to the behavior of p(x) approaching

infinity as the absolute value of x approaches infinity. From the observation

of (4.36), it follows that the sequence {xk, αk, βk} is bounded. Since λk → λ̄,

there exists an accumulation point of the set {xk, αk, βk} that belongs toM(λ̄)

and satisfies K ∈ B(λ̄). This is a contradiction.
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(b) LetK ∈ B(λ). Let (y, u) be the unique solution to DLS(λ) and (x, α, β) ∈M(λ)

with S(x, α) ⊆ K ⊆ I(u). From (4.36), we have{
y = b− AKxK − α · AKsign(xK),

AT
Ky = λuK , AT

K
y = λuK .

Then, substituting y into the last two equations, we obtain{
xK = (AT

KAK)
−1

[
AT

Kb− α · AT
KAKsign(xK)

]
− λ(AT

KAK)
−1uK ,

λuK = AT
K
b− (AT

K
AK)xK − α · AT

K
AKsign(xK).

This implies that

λ(uK − AT
K
AK(A

T
KAK)

−1uK) = AT
K
PKb− α · AT

K
PKAKsign(xK).

Moreover, since λ∥uK∥1 = ⟨sign(xK), λuK⟩, we then have

λ
(
∥uK∥1 − ⟨AKsign(xK), AK(A

T
KAK)

−1uK⟩
)
= ⟨AKsign(xK), PKb⟩−α·∥AKsign(xK)∥2PK

.

Let (ȳ, ū) be the unique solution to DLS(λ̄) and (x̄, ᾱ, β̄) ∈M(λ̄).

If ∥AKsign(xK)∥2PK
̸= 0, we have that

α =
⟨AKsign(xK), PKb⟩ − λ

(
∥uK∥1 − ⟨AKsign(xK), AK(A

T
KAK)

−1uK⟩
)

∥AKsign(xK)∥2PK

.

It is important to note that α cannot be zero. If α = 0, then, based on the

definition of B(λ), it follows that xK must equal 0. However, this contradicts

the assumption that ∥AKsign(xK)∥2PK
̸= 0. Moreover, from (4.36), we have

that ∥u∥1 = k. It then follows from the above discussion that

y = PK [b− α · AKsign(xK)] + λAK(A
T
KAK)

−1uK .

Note that K ∈ B(λ̄) and sign(xK) = sign(x̄K). Thus, PKAKsign(xK) =

PKAKsign(x̄K). Therefore, we have

ȳ = PK [b− ᾱ · AKsign(xK)] + λ̄AK(A
T
KAK)

−1ūK ,
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where

ᾱ =
⟨AKsign(xK), PKb⟩ − λ̄

(
∥ūK∥1 − ⟨AKsign(xK), AK(A

T
KAK)

−1ūK⟩
)

∥AKsign(xK)∥2PK

.

A similar argument can be made in the case ∥AKsign(x̄K)∥2PK
̸= 0 to show that

ᾱ ̸= 0 and hence that ∥ū∥1 = k. Moreover, we know that uK = ūK . Thereby

∥uK∥1 = ∥ūK∥1. As a result, we have

y − ȳ = (λ− λ̄) ·
{
r(u, x,K) · PKAKsign(xK) + AK(A

T
KAK)

−1uK
}
. (4.40)

If ∥AKsign(xK)∥2PK
= 0, we know that PKAKsign(xK) = 0 (note that P 2

K =

PK), which implies that

y = PKb+ λAK(A
T
KAK)

−1uK and y = PKb+ λ̄AK(A
T
KAK)

−1ūK

with ūK = uK . This completes the proof.

Then, we define the HS-Jacobian of φ(·) at λ ∈ (0, λ∞) as follows

V(λ) =
{
v ∈ R | v = λ∥h∥2/φ(λ), h ∈ H(λ)

}
.

From (4.38) and the strictly increasing property of φ(·) on (0, λ∞], we know that

for any λ ∈ (0, λ∞) and h ∈ H(λ), ∥h∥ > 0 holds. Therefore, for any λ ∈ (0, λ∞),

the value v ∈ V(λ) is also strictly greater than 0. Finally, we remark that when the

function p(·) is the ℓ1 norm, which is a special case of the k-norm function, then for

any λ ∈ (0, λ∞), we have

H(λ) =
{
h ∈ Rn | h = AK(A

T
KAK)

−1uK , K ∈ B(λ)
}
. (4.41)

This is because, when p(·) is the ℓ1 norm function, we have sign(xK) = 0.
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4.3 A fast convergent secant method for semis-

mooth equations

With all preparations finalized, this section will analyze the convergence properties

of the secant method. Specifically, we will demonstrate that the sequence {λk}

generated by the secant method converges 3-step Q-superlinearly (quadratically)

to a solution λ∗ of φ(λ) = ϱ, λ ∈ (0,+∞) when φ(·) is (strongly) semismooth.

Moreover, if p(·) is polyhedral and ∂φ(λ∗) is a singleton, then {λk} converges to λ∗

Q-superlinearly with a Q-order of at least 1+
√
5

2
.

We start our discussion of the secant method for a general semismooth equation.

Let f : R → R be a locally Lipschitz continuous function which is semismooth at a

solution x∗ to the following equation

f(x) = 0. (4.42)

Then, we will analyze the convergence of the secant method described in Algorithm

1 with two generic starting points x−1 and x0.

The convergence results of Algorithm 1 are given in the following proposition.

The proof can be obtained by following the procedure in the proof of (Potra et al.,

1998, Theorem 3.2).

Proposition 4.7. Suppose that f : R→ R is semismooth at a solution x∗ to (4.42).

Let d− and d+ be the lateral derivatives of f at x∗ as defined in (2.21). If d− and

d+ are both positive (or negative), then there are two neighborhoods U and N of

x∗, U ⊆ N , such that for x−1, x0 ∈ U , Algorithm 1 is well defined and produces a

sequence of iterates {xk} such that {xk} ⊆ N . The sequence {xk} converges to x∗

3-step Q-superlinearly, i.e., |xk+3 − x∗| = o(|xk − x∗|). Moreover, it holds that

(a) |xk+1 − x∗| ≤ |d+−d−+o(1)|
min{|d+|,|d−|}+o(1)

|xk − x∗| for k ≥ 0;
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(b) if α := |d+−d−|
min{|d+|,|d−|} < 1, then {xk} converges to x∗ Q-linearly with Q-factor α;

(c) if f is γ-order semismooth at x∗ for some γ > 0, then |xk+3 − x∗| = O(|xk −

x∗|1+γ) for sufficiently large k; the sequence {xk} converges to x∗ 3-step quadrat-

ically if f is strongly semismooth at x∗.

Here, we only consider the case for d+ · d− > 0 since the function φ(·) we are

interested in is nondecreasing. For the case d+ ·d− < 0, one can refer to (Potra et al.,

1998, Theorem 3.3).

Note that (Potra et al., 1998, Lemma 4.1) implies that the sequence {xk} gener-

ated by Algorithm 1 converges suplinearly with R-order at least 3
√
2. Next, we will

prove that the sequence {xk} generated by Algorithm 1 converges superlinearly to a

solution x∗ to (4.42) with R-order at least (1+
√
5)/2 when f is strongly semismooth

at x∗ and ∂f(x∗) is a singleton and nondegenerate.

Proposition 4.8. Let x∗ be a solution to (4.42). Let {xk} be the sequence generated

by (1) for solving (4.42). For k ≥ −1, denote ek := xk−x∗ and assume that |ek| > 0.

For k ≥ −1, denote ck := |ek|/(|ek−1||ek−2|). Assume that ∂f(x∗) is a singleton and

nondegenerate. It holds that

(a) if f is semismooth at x∗, the sequence {xk} converges to x∗ Q-superlinearly;

(b) if f is strongly semismooth at x∗, then either one of the following two properties

is satisfied: (1) {xk} converges to x∗ superlinearly with Q-order at least (1 +
√
5)/2; (2) {xk} converges to x∗ superlinearly with R-order at least (1+

√
5)/2

and for any constant C > 0, there exists a subsequence {cik} satisfying cik <

Ci−ik
k .

Proof. Let N and U be the neighborhoods of x∗ specified in Theorem 4.7. Assume

that x−1, x0 ∈ U . Then Algorithm 1 is well defined and it generates a sequence
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{xk} ⊆ N which converges to x∗. Denote ∂f(x∗) = {v∗} for some v∗ ̸= 0. Let d−

and d+ be the lateral derivatives of f at x∗ as defined in (2.21). Then,

d+ = d− = v∗.

Let K1 be a sufficiently large integer. For all k ≥ K1, we have

ek+1 = δf (x
k, xk−1)−1[δf (x

k, xk−1)− δf (xk, x∗)]ek. (4.43)

(a) Assume that f is semismooth at x∗. We estimate

δf (x
k, xk−1)−1[δf (x

k, xk−1)− δf (xk, x∗)]

by considering the following two cases.

(a-a) xk, xk−1 > x∗ or xk, xk−1 < x∗. From Lemma 2.1, we obtain that

|ek+1| = |δf (xk, xk−1)−1[δf (x
k, xk−1)− δf (xk, x∗)]ek|

= |(v∗ + o(1))−1[(v∗ + o(1))− (v∗ + o(1))]ek|

= o(|ek|).

(a-b) xk−1 < x∗ < xk or xk < x∗ < xk−1. We will consider the first case. The

second case can be treated similarly. By Lemma 2.1, it holds that

δf (x
k, xk−1) =

f(xk)− f(x∗) + f(x∗)− f(xk−1)

xk − xk−1

=
(v∗ek + o(|ek|))− (v∗ek−1 + o(|ek−1|))

xk − xk−1

= v∗ + o(1).

Therefore,

|ek+1| = |δf (xk, xk−1)−1[δf (x
k, xk−1)− δf (xk, x∗)]ek|

= |(v∗ + o(1))−1||(v∗ + o(1))− (v∗ + o(1))||ek|

= o(|ek|).
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Thus, we prove that the sequence {xk} converges to x∗ Q-superlinearly.

(b) Now, assume that f is strongly semismooth at x∗. We build the recursion for

ek for sufficiently large integers k by considering the following two cases.

(b-a) xk, xk−1 > x∗ or xk, xk−1 < x∗. From Lemma 2.1, we obtain

|ek+1| = |δf (xk, xk−1)−1[δf (x
k, xk−1)− δf (xk, x∗)]ek|

= |v∗ +O(|ek|+ |ek−1|)|−1|(O(|ek|+ |ek−1|))||ek|

= O(|ek|(|ek|+ |ek−1|)).

(b-b) xk−1 < x∗ < xk or xk < x∗ < xk−1. We will consider the first case. The

second case can be treated similarly. By Lemma 2.1, it holds that

δf (x
k, xk−1) =

f(xk)− f(x∗) + f(x∗)− f(xk−1)

xk − xk−1

=
(v∗ek +O(|ek|2))− (v∗ek−1 +O(|ek−1|2))

xk − xk−1

= v∗ +O(|ek|+ |ek−1|)

and

|ek+1| = |δf (xk, xk−1)−1[δf (x
k, xk−1)− δf (xk, x∗)]ek|

= |v∗ +O(|ek|+ |ek−1|)|−1|O(|ek|+ |ek−1|)||ek|

= O(|ek|(|ek|+ |ek−1|)).

Therefore, for sufficiently large integers k, we have

|ek+1| = O(|ek|2 + |ek||ek−1|) (4.44)

and

lim sup
k→∞

ck = O(1/|v∗|) < +∞. (4.45)
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Then, there exists a constant C̄ > 0 and a positive integer K2 such that

|ek+1| ≤ C̄|ek||ek−1|, ∀ k ≥ K2.

Therefore, it follows from (Ortega and Rheinboldt, 1970, Theorem 9.2.9) that {xk}

converges to x∗ with R-order at least (1 +
√
5)/2.

If there exists a constant C > 0 such that ck ≥ Ck−k for all k sufficiently large, it

follows from (Potra, 1989, Corollary 3.1) that {xk} converges to x∗ Q-superlinearly

with Q-order at least (1 +
√
5)/2. We complete the proof.

Proposition 4.9. Let p(·) be a polyhedral gauge function and λ∗ be the solution to

(Eφ). Assume that 0 < λ∞ < +∞. If ∂φ(λ∗) is a singleton, the sequence {λk}

generated by Algorithm 1 for solving (Eφ) converges to λ∗ Q-superlinearly with Q-

order at least (1 +
√
5)/2.

Proof. The assumption ∂φ(λ∗) is a singleton implies that φ(·) is strictly differentiable

at λ∗ (Clarke, 1983, Proposition 2.2.4). It follows from Proposition 4.1 that φ′(λ∗) >

0 and φ(·) is piecewise Ck for any positive integer k ≥ 1 in a neighborhood of λ∗.

Choose a sufficiently small ς > 0 such that N (λ∗) := (λ∗ − ς, λ∗ + ς) ⊆ (0, λ∞)

and B(λ) ⊆ B(λ∗) for any λ ∈ N (λ∗). Denote B̄ =
⋃

λ∈N (λ∗)\λ∗ B(λ). Let K ∈ B̄ be

arbitrarily chosen. Define φK : R→ R+ by

φK(s) :=
√
∥PKb∥2 + s2∥hK∥2, s ∈ R.

By choosing a smaller ς if necessary, we assume that {φK}K∈B̄ is a minimal local rep-

resentation for φ(·) at λ∗. Therefore, it follows from (Qi and Tseng, 2007, Theorem

2) that

φ′(λ∗) = (φK)′(λ∗) = λ∗∥hK∥2/φ(λ∗), ∀K ∈ B̄.

Since φ′(λ∗) > 0, we have

∥hK∥ = ∥hK′∥, ∥PKb∥ = ∥PK′
b∥, ∀K,K ′ ∈ B̄.
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Therefore, φ(·) is Ck on N (λ∗) for any integer k ≥ 1. It follows from (Traub,

1964, Example 6.1) that {λk} converges to λ∗ Q-superlinearly with Q-order at least

(1 +
√
5)/2.

We give the following example to show that a function satisfying the assumptions

in (b) of Theorem 4.8 is not necessarily piecewise smooth:

f(x) =


κx, if x < 0,

−1
3

(
1
4k

)
+ (1 + 1

2k
)x, if x ∈

[
1

2k+1 ,
1
2k

]
∀k ≥ 0,

2x− 1
3

if x > 1,

(4.46)

where κ is a given constant.

Proposition 4.10. The function f(·) defined in (4.46) is strongly semismooth at

x = 0 but not piecewise smooth in the neighborhood of x = 0.

Proof. By the construction of f(·), we know that it is not piecewise smooth in the

neighborhood of x = 0 since there are infinitely many non-differentiable points. Next,

we show that f(·) is strongly semismooth at x = 0.

Firstly, it is not difficult to verify that f(·) is Lipschitz continuous with modulus

L = max{|κ|, 2}. Secondly, we know that f ′(0;−1) = κ, and for any integer k ≥ 0,

it holds that

1 +
1

3× 2k
≤ f(x)/x ≤

(
1 +

1

3× 2k−1

)
∀x ∈

[
1

2k+1
,
1

2k

]
,

which implies that

f ′(x; 1) = lim
x↓0

f(x)/x = 1.

Therefore, f(·) is directionally differentiable at x = 0. Note that both ∂f(0) and

∂Bf(0) are singleton when κ = 1.
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Next, we show that f(·) is strongly G-semismooth at x = 0. On the one hand,

for any x < 0, we have

|f(x)− f(0)− κx| = |κx− κx| = 0.

On the other hand, for any integer k ≥ 1 and x ∈
[

1
2k+1 ,

1
2k

]
, we know

1 + 2−k ≤ |v| ≤ 1 + 21−k, ∀ v ∈ ∂f(x),

which implies that

|f(x)− f(0)− v(x)x| =
∣∣∣∣−1

3

(
1

4k

)
+

(
1 +

1

2k

)
x− v(x)x

∣∣∣∣ ≤ 1

2k−1
x ≤ 4x2.

Therefore,

|f(x)− f(0)− v(x)x| = O(|x|2), ∀x→ 0.

The proof of the proposition is completed.

4.4 The level set methods for the sparse optimiza-

tion problem with least squares constraints

In this section, we propose a globally convergent secant method for solving (CP(ϱ))

via finding the root of (Eφ), called SMOP. Alternatively, we can replace the secant

method with a semismooth Newton method based on the HS-Jacobian, when the

HS-Jacobian is available. We refer to this variant as NMOP. To better illustrate

the efficiency of SMOP, we will compare its performance to NMOP for solving (Eφ)

on the least squares constrained Lasso problem, where the HS-Jacobian is available.

The numerical results will show that the secant method and the semismooth Newton

method are comparable for solving the least squares constrained Lasso problem,

which also demonstrates the high efficiency of the secant method even for the case

that the HS-Jacobian can be computed.
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The detailed steps of SMOP are described in Algorithm 7 and the convergence

properties are given in Theorem 4.2.

Algorithm 7 A globally convergent secant method for (CP(ϱ))

1: Input: A ∈ Rm×n, b ∈ Rn, µ ∈ (0, 1), λ−1, λ0, λ1 in (0, λ∞) satisfying φ(λ0) > ϱ,
and φ(λ−1) < ϱ.

2: Initialization: Set i = 0, λ = λ−1, and λ = λ0.
3: for k = 1, 2, . . . do
4: Compute

λ̂k+1 = λk −
λk − λk−1

φ(λk)− φ(λk−1)
(φ(λk)− ϱ). (4.47)

5: if λ̂k+1 ∈ [λ−1, λ0] then
6: Compute x(λ̂k+1) and φ(λ̂k+1). Set i = i+ 1.
7: if either (i) or (ii) holds: (i) i ≥ 3 and |φ(λ̂k+1) − ϱ| ≤ µ|φ(λk−2) − ϱ| (ii)

i < 3, then set λk+1 = λ̂k+1, x(λk+1) = x(λ̂k+1); else go to line 9.
8: else
9: if φ(λ̂k+1) > ϱ, then set λ = min{λ, λ̂k+1}; else set λ = max{λ, λ̂k+1}.
10: Set λk+1 = 1/2(λ+ λ). Compute x(λk+1) and φ(λk+1). Set i = 0.
11: end if
12: if φ(λk+1) > ϱ, then set λ = min{λ, λk+1}; else set λ = max{λ, λk+1}.
13: end for
14: Output: x(λk) and λk.

Theorem 4.2. Let p(·) be a gauge function and assume that 0 < λ∞ < +∞. Denote

λ∗ as the solution to (Eφ). Then Algorithm 7 is well defined and the sequences {λk}

and {x(λk)} converge to λ∗ and a solution x(λ∗) to (CP(ϱ)), respectively. Denote

ek = λk − λ∗ for all k ≥ 1. Suppose that both d+ and d− of φ(·) at λ∗ as defined in

(2.21) are positive, the following properties hold for all sufficiently large integer k:

(a) If φ(·) is semismooth at λ∗, then |ek+3| = o(|ek|);

(b) if φ(·) is γ-order semismooth at λ∗ for some γ > 0, then |ek+3| = O(|ek|1+γ);

(c) if ∂φ(λ∗) is a singleton and φ(·) is semismooth at λ∗, then {ek} converges to

zero Q-superlinearly; if p(·) is further assumed to be polyhedral and ∂φ(λ∗) is

a singleton, then {ek} converges to zero superlinearly with Q-order (1+
√
5)/2.
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Proof. When p(·) is a gauge function, we know from Proposition 4.3 that φ(·) is

strictly increasing on (0, λ∞], which implies that the sequences {λ̂k} and {λk} gen-

erated in Algorithm 7 are well defined. For any k ≥ 1, if we run the algorithm for

three more iterations, then it holds that either (1) (λ−λ) will reduce at least half; or

(2) |φ(λk+3) − ϱ| ≤ µ|φ(λk) − ϱ|. Therefore, the sequence {λk} will converge to λ∗.

Suppose that φ(·) is semismooth at λ∗ and both d+ and d− are positive. We know

from Theorem 4.7 that there exists a positive integer kmax such that for all k ≥ kmax,

λ̂k ∈ [λ−1, λ0] and

|λ̂k+3 − λ∗| = o(|λk − x∗|). (4.48)

Therefore, it follows from Lemma 2.1 that

|φ(λ̂k+3)− ϱ|
|φ(λk)− ϱ|

=
δφ(λ̂k+3, λ

∗)

δφ(λk, λ∗)
× |λ̂k+3 − λ∗|
|λk − λ∗|

≤ max{d+, d−}+ o(1)

min{d+, d−}+ o(1)
× o(1).

Thus, for all k ≥ kmax,

|φ(λ̂k+3)− ϱ| ≤ µ|φ(λk)− ϱ|.

The rest of the proof of this theorem follows from Theorem 4.7 and Proposition

4.9.
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Chapter 5

Numerical experiments

In this chapter, we will present numerical results to demonstrate the high effi-

ciency of our proposed SMOP. We will focus on solving (CP(ϱ)) with two objec-

tive functions: (1) the ℓ1 penalty: p(x) = ∥x∥1, x ∈ Rn; (2) the sorted ℓ1 penalty:

p(x) =
∑n

i=1 γi|x|(i), x ∈ Rn with given parameters γ1 ≥ γ2 ≥ · · · ≥ γn ≥ 0 and

γ1 > 0, where |x|(1) ≥ |x|(2) ≥ · · · ≥ |x|(n), which serve as illustrative examples

to highlight the efficiency of our algorithm. It is worthwhile mentioning that the

sorted ℓ1 penalty is not separable. For demonstration purposes only, we will test the

performance of SMOP when p(·) is a non-polyhedral function at the last section.

Table 5.1: Statistics of the UCI test instances.

Problem idx Name m n Sparsity(A) norm(b)

1 E2006.train 16087 150360 0.0083 452.8605
2 log1p.E2006.train 16087 4272227 0.0014 452.8605
3 E2006.test 3308 150358 0.0092 221.8758
4 log1p.E2006.test 3308 4272226 0.0016 221.8758
5 pyrim5 74 201376 0.5405 5.7768
6 triazines4 186 635376 0.6569 9.1455
7 bodyfat7 252 116280 1.0000 16.7594
8 housing7 506 77520 1.0000 547.3813

In our numerical experiments, we measure the accuracy of the obtained solution
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x̃ for (CP(ϱ)) by the following relative residual:

η :=
|φ̃− ϱ|

max{1, ϱ}
,

where φ̃ := ∥Ax̃−b∥. We test all algorithms on datasets from UCI Machine Learning

Repository as in (Li et al., 2018a,b), which are originally obtained from the LIBSVM

datasets (Chih-Chung, 2011). Table 5.1 presents the statistics of the tested UCI

instances. All our computational results are obtained using MATLAB R2023a on a

Windows workstation with the following specifications: 12-core Intel(R) Core(TM)

i7-12700 (2.10GHz) processor, and 64 GB of RAM. In all the tables presented in

this section, nnz(x) represents the number of elements in the solution x obtained by

SMOP (with a stopping tolerance of 10−6) for solving (CP(ϱ)) that have an absolute

value greater than 10−8. Besides, We denote BMOP (NMOP) as the root finding

based bisection method (hybrid of the bisection method and the semismooth Newton

method) for solving the optimization problem (CP(ϱ)).

5.1 The ℓ1 penalized problems with least squares

constraints

In this section, we focus on the problem (CP(ϱ)) with p(·) = ∥ · ∥1. We will compare

the efficiency of SMOP to the state-of-the-art SSNAL-LSM algorithm (Li et al.,

2018b), SPGL1 solver (Van den Berg and Friedlander, 2008, 2019) and ADMM

(Section 2.4). Moreover, we perform experiments to demonstrate that our secant

method is considerably more efficient than the bisection method for root finding while

performing on par with the semismooth Newton method, where the HS-Jacobian is

computable.

In practice, we have multiple choices for solving the subproblems in SMOP. In

our experiments, we use the squared smoothing Newton method (Section 3.2.2) and
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Table 5.2: The values of c to obtain ϱ = c∥b∥ for the ℓ1 penalized problems with
least squares constraints. In this table, cLS = λ∗

∥AT b∥∞ represents the regularization

parameter for the corresponding PLS(λ
∗), where the optimal solution λ∗ to φ(λ) = ϱ

is obtained by SMOP.

Test idx 1 2 3 4 5 6 7 8

I

c 0.1 0.1 0.08 0.08 0.05 0.1 0.001 0.1
nnz(x) 339 110 246 405 79 655 107 148
cLS 2.6-7 2.8-4 4.2-7 2.1-4 5.7-3 2.8-3 1.1-6 1.3-3

II

c 0.09 0.09 0.06 0.06 0.015 0.03 0.0001 0.04
nnz(x) 1387 1475 884 1196 92 497 231 377
cLS 1.1-7 6.2-5 1.7-7 9.6-5 3.0-4 5.6-5 3.8-8 3.0-5

Test I

Test II

Figure 5.1: The ratio of the computation time between BMOP (B) and NMOP (N)
to the computation time of SMOP in solving (CP(ϱ)) with the ℓ1 regularization.
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SSNAL (Li et al., 2018a) to solve the subproblems in SMOP. The maximum number

of iterations for SPGL1, SSNAL, and ADMM is set to 100,000, while for SMOP

and SSNAL-LSM, the maximum number of iterations of the outermost loop is set

to 200. Additionally, we have set the maximum running time to 1 hour. To select

ϱ, we use the values of c in Table 5.2 for each instance listed in Table 5.1, and let

ϱ = c∥b∥. At last, we point out that the adaptive sieving technique is not employed

in the SSNAL-LSM.

Table 5.3: The performance of SMOP (A1), SSNAL-LSM (A2), SPGL1 (A3) and
ADMM (A4), in solving the ℓ1 penalized problems with least squares constraints
(CP(ϱ)) with ϱ = c∥b∥, where the specific value of c for each problem is listed in
Table 5.2. In the table, the underline is used to mark cases where the algorithm
fails to reach the given tolerance. For simplicity, we omit the “e” in the scientific
notation.

idx
time (s) η outermost iter

A1 | A2 | A3 | A4 A1 | A2 | A3 | A4 A1 | A2 | A3 | A4

Test I with stoptol = 10−4

1 1.39+0 | 2.18+2 | 3.51+2 | 4.22+2 2.3-5 | 4.9-5 | 1.0-4 | 1.0-4 24 | 29 | 7342 | 2049
2 2.29+0 | 5.12+2 | 1.45+3 | 6.84+2 3.1-6 | 7.8-5 | 9.0-5 | 8.7-5 12 | 16 | 3445 | 1470
3 4.02−1 | 5.83+1 | 3.21+2 | 8.87+1 9.4-6 | 2.6-5 | 1.0-4 | 1.0-4 24 | 30 | 21094 | 4918
4 1.59+0 | 2.06+2 | 7.19+2 | 9.90+1 1.2-5 | 7.3-5 | 9.5-5 | 1.3-5 13 | 15 | 3174 | 854
5 2.73−1 | 1.20+1 | 9.81+0 | 5.63+0 6.9-6 | 5.4-6 | 7.4-5 | 2.2-5 6 | 14 | 498 | 273
6 2.32+0 | 1.74+2 | 3.35+2 | 1.01+2 5.8-6 | 4.4-5 | 9.1-5 | 7.5-5 9 | 17 | 1987 | 571
7 4.35−1 | 9.12+0 | 8.98+0 | 8.59+0 2.8-5 | 5.9-5 | 9.8-5 | 9.9-5 15 | 18 | 539 | 583
8 2.99−1 | 9.07+0 | 1.29+1 | 7.94+0 2.6-5 | 8.6-5 | 1.0-4 | 9.0-5 10 | 14 | 515 | 424

Test I with stoptol = 10−6

1 1.45+0 | 3.22+2 | 1.51+3 | 7.06+2 2.5-7 | 6.1-8 | 9.9-7 | 1.0-6 25 | 36 | 28172 | 3539
2 2.52+0 | 6.68+2 | 1.75+3 | 3.42+3 9.9-8 | 3.5-8 | 9.2-7 | 9.9-7 13 | 24 | 4155 | 8725
3 4.12−1 | 7.40+1 | 2.11+3 | 1.81+2 1.1-8 | 2.3-7 | 6.2-6 | 1.0-6 25 | 35 | 100000 | 10100
4 1.72+0 | 3.40+2 | 1.04+3 | 4.03+2 1.3-9 | 5.7-7 | 7.2-7 | 7.9-7 14 | 26 | 4584 | 3820
5 2.93−1 | 1.61+1 | 4.58+1 | 3.95+2 1.0-7 | 6.0-8 | 9.1-7 | 9.8-7 7 | 19 | 2468 | 20155
6 2.47+0 | 2.13+2 | 8.24+2 | 2.31+3 3.0-7 | 4.0-7 | 8.2-7 | 3.4-7 10 | 23 | 5578 | 13672
7 4.68−1 | 1.18+1 | 9.11+0 | 1.85+1 1.9-9 | 9.6-7 | 2.7-7 | 9.9-7 17 | 22 | 544 | 1250
8 3.28−1 | 1.45+1 | 3.84+1 | 4.40+1 2.4-7 | 8.4-8 | 4.0-7 | 8.7-7 11 | 24 | 1539 | 2427

Test II with stoptol = 10−4

1 7.26+0 | 4.51+2 | 1.38+3 | 6.12+2 3.0-6 | 4.6-5 | 1.0-4 | 1.0-4 26 | 30 | 27775 | 3014
2 6.79+0 | 1.54+3 | 1.32+3 | 4.01+2 1.8-5 | 3.6-5 | 9.7-5 | 6.8-5 14 | 21 | 3000 | 733
3 3.51+0 | 1.84+2 | 1.50+3 | 1.34+2 1.3-5 | 2.3-5 | 8.7-2 | 1.0-4 25 | 29 | 100000 | 7333
4 2.91+0 | 6.91+2 | 6.23+2 | 4.94+1 7.5-6 | 3.6-6 | 9.6-5 | 5.8-5 14 | 22 | 2694 | 385
5 6.23−1 | 1.53+1 | 8.65+0 | 2.01+1 2.8-5 | 7.9-6 | 6.6-5 | 9.5-5 9 | 13 | 395 | 1000
6 9.02+0 | 3.46+2 | 3.60+3 | 3.82+2 6.8-6 | 3.7-5 | 7.6-2 | 9.9-5 12 | 17 | 24924 | 2232
7 1.50+0 | 1.59+1 | 3.06+2 | 3.39+1 1.6-5 | 8.7-6 | 9.9-5 | 9.8-5 12 | 18 | 19820 | 2340
8 2.37+0 | 1.90+1 | 1.69+2 | 1.19+1 1.4-6 | 8.9-5 | 9.1-5 | 9.8-5 13 | 18 | 5914 | 644

Test II with stoptol = 10−6

1 7.23+0 | 5.96+2 | 3.60+3 | 8.82+2 3.7−9 | 2.9-7 | 3.6-2 | 1.0-6 27 | 35 | 62384 | 4453
2 7.37+0 | 1.85+3 | 2.04+3 | 1.46+3 1.4−7 | 3.9-7 | 9.7-7 | 1.0-7 15 | 27 | 4688 | 3464
3 3.59+0 | 2.36+2 | 1.49+3 | 1.99+2 8.1-10 | 8.3-7 | 8.7-2 | 1.0-6 26 | 36 | 100000 | 11051
4 3.02+0 | 8.44+2 | 1.37+3 | 2.18+2 3.1−9 | 4.3-7 | 9.9-7 | 6.0-7 15 | 28 | 5912 | 1980
5 6.37−1 | 2.49+1 | 4.14+2 | 1.48+2 2.4−7 | 3.0-8 | 8.7-7 | 9.7-7 10 | 22 | 22091 | 7592
6 9.37+0 | 4.25+2 | 3.60+3 | 3.60+3 5.4-11 | 6.7-7 | 7.5-2 | 1.2-7 14 | 22 | 25158 | 21556
7 1.59+0 | 2.09+1 | 3.37+2 | 8.54+1 3.2−7 | 1.9-8 | 8.8-7 | 9.7-7 13 | 23 | 21523 | 5817
8 2.39+0 | 2.68+1 | 1.65+3 | 3.34+1 4.5−7 | 6.9-7 | 8.8-7 | 9.8-7 14 | 26 | 59147 | 1834

We compare SMOP to SPGL1, SSNAL-LSM and ADMM to solve (CP(ϱ)) with

the tolerances of 10−4 and 10−6, respectively. The test results are presented in Table
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5.3. These results indicate that SMOP successfully solves all the tested instances

and outperforms SSNAL-LSM, SPGL1 and ADMM. It can be seen from Table 5.3

that SMOP can achieve a speed-up of up to 1,000 times compared to SPGL1 for the

problems that can be solved by SPGL1 (a significant number of instances cannot

be solved by SPGL1 to the required accuracy). Regarding ADMM, SMOP remains

significantly superior in terms of efficiency for all cases, with a speed-up of over 1300

times. Furthermore, compared to SSNAL-LSM, SMOP also shows vast superiority,

with efficiency improvements up to more than 260 times. Note that SPGL1 has

two modes: the primal mode (denoted by SPGL1) and the hybrid mode (denoted

by SPGL1 H). We do not print the results of SPGL1 H since SPGL1 outperforms

SPGL1 H in most of the cases in our tests.

Subsequently, we perform numerical experiments to compare the performance of

the secant method to the bisection method and the HS-Jacobian based semismooth

Newton method for finding the root of (Eφ) to further illustrate the efficiency of

SMOP. Figure 5.1 presents the ratio of the computation time between BMOP and

NMOP to the computation time of SMOP on solving (CP(ϱ)) for some instances.

The numerical results show that SMOP easily beats BMOP, with a large margin

when a higher precision solution is required. The results also reveal that SMOP

performs comparably to NMOP for solving the ℓ1 penalized least squares constrained

problem, in which the HS-Jacobian are computable. This is another strong evidence

to illustrate the efficiency of SMOP.

Next we perform tests on BMOP and SMOP to generate a solution path for

(CP(ϱ)) involving multiple choices of tuning parameters ϱ > 0. In this test, we solve

(CP(ϱ)) with ϱi = ci ·c∥b∥, i = 1, . . . , 100, where ci = 1.5−0.5×(i−1)/99 and c is the

same constant as in Table 5.2. In this test, we apply the warm-start strategy to both

algorithms. The average iteration numbers of BMOP and SMOP and the ratio of the

computation time of BMOP to the computation time of SMOP are shown in Figure
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(a) Test I (b) Test II

Figure 5.2: The performance of BMOP and SMOP in generating a solution path for
(CP(ϱ)) with the ℓ1 regularization and stopping tolerance 10−6.

5.2 with a tolerance of 10−6. From this figure, it is evident that utilizing the secant

method for root-finding significantly reduces the number of iterations by around 4

times. The reduction in iterations results in a substantial decrease in computation

time for SMOP, which is typically less than one-third of the time required by BMOP.

5.2 The sorted ℓ1 penalized problems with least

squares constraints

In this section, we will present the numerical results of SMOP in solving the sorted ℓ1

penalized problems with least squares constraints (CP(ϱ)). For comparison purposes,

we also conducted tests on Newt-ALM-LSM (similar to SSNAL-LSM, but with the
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subproblems solved by Newt-ALM (Luo et al., 2019)) and ADMM (Section 2.4) for

(CP(ϱ)).

Table 5.4: The performance of SMOP (A1), Newt-ALM-LSM (A2) and ADMM (A4),
in solving the sorted ℓ1 penalized problems with least squares constraints (CP(ϱ))
with ϱ = c∥b∥. In the table, cLS = λ∗

∥AT b∥∞ represents the regularization parameter

for the corresponding PLS(λ
∗), where the optimal solution λ∗ to φ(λ) = ϱ is obtained

by SMOP. The stopping tolerance is set to 10−6 and the underline is used to mark
cases where the algorithm fails to reach the given tolerance. For simplicity, we omit
the “e” in the scientific notation.

idx c | nnz(x) | cLS

time (s) η outermost iter

A1 | A2 | A4 A1 | A2 | A4 A1 | A2 | A4

Test I

2 0.15 | 3 | 2.4-2 3.84+0 | 1.34+2 | 3.60+3 1.1-7 | 5.3-7 | 2.8-1 8 | 21 | 8637
4 0.1 | 3 | 4.8-3 4.79+0 | 1.35+2 | 3.60+3 6.0-7 | 8.9-7 | 2.9-4 10 | 17 | 28891
5 0.1 | 113 | 1.9-2 6.29−1 | 4.98+1 | 4.23+2 1.0-7 | 4.5-7 | 1.5-7 7 | 22 | 17974
6 0.15 | 413 | 1.0-2 3.10+0 | 2.43+2 | 3.60+3 2.7-7 | 1.6-7 | 1.9-4 9 | 21 | 19071
7 0.002 | 22 | 1.9-5 3.56−1 | 1.67+1 | 2.44+1 3.6-9 | 6.0-7 | 9.9-7 14 | 22 | 1616
8 0.15 | 95 | 6.9-3 6.06−1 | 2.55+1 | 1.57+2 1.3-7 | 7.7-7 | 9.0-7 10 | 23 | 8329

Test II

1 0.1 | 339 | 2.6-7 2.53+1 | 1.40+2 | 5.13+2 2.9-7 | 5.6-7 | 1.0-6 25 | 34 | 2490
2 0.095 | 629 | 1.0-4 5.39+1 | 4.82+2 | 2.87+3 1.7-7 | 2.9-7 | 9.4-7 17 | 27 | 6770
3 0.08 | 246 | 4.2-7 4.98+0 | 6.54+1 | 1.60+2 2.0-8 | 7.1-7 | 1.0-6 25 | 36 | 8491
4 0.07 | 758 | 1.4-4 2.26+1 | 4.26+2 | 5.86+2 4.0-8 | 9.0-7 | 9.8-7 16 | 27 | 4550
5 0.02 | 95 | 5.7-4 2.05+0 | 9.87+1 | 3.58+2 3.2-8 | 5.6-7 | 7.6-7 11 | 20 | 15582
6 0.05 | 997 | 5.5-4 2.32+1 | 1.04+3 | 3.60+3 8.4-7 | 2.1-7 | 3.5-6 10 | 23 | 19159
7 0.001 | 107 | 1.1-6 1.02+0 | 2.85+1 | 1.30+1 5.9-8 | 6.9-9 | 9.5-7 17 | 22 | 826
8 0.08 | 206 | 4.3-4 3.38+0 | 1.03+2 | 5.58+1 5.7-9 | 7.4-7 | 3.8-7 13 | 25 | 2842

In our numerical experiments, we choose the parameters γi = 1 − (i − 1)/(n −

1), i = 1, . . . , n, in the sorted ℓ1 penalty function p(x) =
∑n

i=1 γi|x|(i), x ∈ Rn.

The maximum iteration number is set to 200 for SMOP and Newt-ALM-LSM, and

100,000 for ADMM. The subproblems in SMOP are solved by Newt-ALM in this

test. In all experiments within this section, the stopping tolerance is set to 10−6.

The results obtained with a tolerance of 10−4 are similar to those obtained with a

tolerance of 10−6, therefore, we will not present them in order to save space. We

set ϱ = c∥b∥, where the values of c are specified in Table 5.4. The numerical results

are presented in Table 5.4. From the table, it is evident that SMOP outperforms

Newt-ALM-LSM and ADMM for all the cases. More specifically, SMOP can be up

to around 80 times faster than Newt-ALM-LSM and up to more than 600 times
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Figure 5.3: The ratio of the computation time between BMOP to the computation
time of SMOP in solving (CP(ϱ)) with the sorted ℓ1 regularization.

faster than ADMM for the problems that can be solved by ADMM. Additionally,

Figure 5.3 presents the computation time ratio between BMOP and SMOP for both

Test I and Test II. This also demonstrates the significance of the secant method in

root-finding for achieving higher efficiency.

5.3 A group lasso penalized problems with least

squares constraints

In this ection, we will present the numerical experiments conducted to solve a group

lasso penalized problems with least squares constraints. The purpose of this demon-

stration is to illustrate the potential and high efficiency of our proposed secant

method in solving the equation φ(λ) = ϱ for the non-polyhedral function penalized

problems with least squares constraints. We will compare our algorithm, SMOP, with

other state-of-the-art algorithms to demonstrate its high efficiency and robustness.

We consider the following penalty function p(·) in this section:

p(x) =
l∑

t=1

√
x22t−1 + x22t, x ∈ R2l. (5.1)

For the purpose of demonstration, we will keep using the UCI dataset that was

utilized in the previous two subsections. However, it is necessary to ensure that the
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Table 5.5: The values of c to obtain ϱ = c∥b∥ for the group lasso penalized problems
with least squares constraints. In the table, cLS = λ∗

∥AT b∥∞ represents the regular-

ization parameter for the corresponding PLS(λ
∗), where the optimal solution λ∗ to

φ(λ) = ϱ is obtained by SMOP.

idx c nnz(x) cLS

Test I

4 0.1 6 4.4-3
5 0.1 50 2.4-2
6 0.15 138 1.3-2
7 0.002 28 2.4-5
8 0.15 66 8.4-3

Test II

1 0.105 95 7.5-7
3 0.08 403 4.3-7
4 0.08 731 2.2-4
5 0.02 120 9.1-4
6 0.05 372 6.3-4
7 0.001 186 1.3-6
8 0.08 260 4.9-4

value of n is even. Next, we group the i-th and (i + 1)-th elements together for all

i = 1, 3, · · · , n−1. The values of c utilized to obtain ϱ = c∥b∥ are presented in Table

5.5. In SMOP, the subproblems are solved by SSNAL (Zhang et al., 2020). The

maximum iteration number for both SMOP and SSNAL-LSM is set to 200, while

for SPGL1 and ADMM, their maximum iteration number is set to 100,000. As for

the maximum running time, it remains set at 1 hour. Next, we will compare SMOP

with the state-of-the-art algorithms SSNAL-LSM, SPGL1, and ADMM. The results

of the tests are presented in Table 5.6. From the table, it is evident that SMOP

outperforms SSNAL-LSM, SPGL1, and ADMM with speed-ups of up to 300, 900,

and 1,100, respectively. In addition, Figure 5.4 illustrates the ratio of computation

time between BMOP and SMOP. This figure clearly shows that using the secant

method can greatly enhance overall efficiency, resulting in a speed improvement

of approximately 1.5-4 times, even when dealing with the non-polyhedral penalty

function (5.1).
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Table 5.6: The performance of SMOP (A1), SSNAL-LSM (A2), SPGL1 (A3) and
ADMM (A4), in solving the group lasso penalized problems with least squares con-
straints (CP(ϱ)) with ϱ = c∥b∥. The stopping tolerance is set to 10−6 and the
underline is used to mark cases where the algorithm fails to reach the given toler-
ance. For simplicity, we omit the “e” in the scientific notation.

idx
time (s) η outermost iter

A1 | A2 | A3 | A4 A1 | A2 | A3 | A4 A1 | A2 | A3 | A4

Test I

4 3.75+0 | 1.16+2 | 8.49+2 | 3.60+3 1.3−7 | 3.1-7 | 6.37-7 | 7.2-5 11 | 21 | 3024 | 22125
5 8.14−1 | 2.74+2 | 2.96+1 | 9.16+2 1.4−9 | 3.5-7 | 6.05-7 | 1.0-6 11 | 21 | 1319 | 38530
6 5.19+0 | 1.46+3 | 1.70+2 | 3.02+3 3.2-10 | 4.5-7 | 5.98-7 | 9.8-7 10 | 22 | 1086 | 15768
7 5.98−1 | 8.80+0 | 3.02+1 | 2.59+1 3.7−8 | 5.0-7 | 2.07-7 | 1.0-6 14 | 19 | 2102 | 1627
8 6.88−1 | 1.41+2 | 8.30+0 | 1.19+2 1.8−8 | 2.6-7 | 2.46-7 | 9.6-7 9 | 22 | 334 | 6211

Test II

1 3.29+0 | 4.33+1 | 3.18+3 | 1.12+3 2.7-7 | 2.7-7 | 9.8-7 | 1.0-6 24 | 29 | 55596 | 5826
3 3.83+0 | 3.00+1 | 2.06+3 | 2.57+2 1.3-7 | 3.4-7 | 3.8-6 | 1.0-6 22 | 36 | 100000 | 13031
4 2.97+1 | 2.42+3 | 1.19+3 | 5.86+2 5.2-7 | 9.6-9 | 8.6-7 | 7.4-7 13 | 27 | 4241 | 3401
5 1.70+0 | 1.29+2 | 3.30+2 | 9.27+1 8.0-7 | 1.7-8 | 8.9-7 | 6.5-7 9 | 20 | 18001 | 3959
6 2.51+1 | 1.39+3 | 3.60+3 | 3.60+3 1.3-8 | 1.4-7 | 5.8-5 | 2.6-7 11 | 22 | 20646 | 19075
7 1.22+0 | 1.88+1 | 5.99+2 | 2.69+1 5.3-8 | 2.1-8 | 6.9-7 | 9.9-7 15 | 23 | 41578 | 1685
8 5.75+0 | 1.47+2 | 1.14+2 | 1.94+2 2.5-7 | 3.7-7 | 4.4-7 | 9.8-7 15 | 25 | 4373 | 9974

Figure 5.4: The ratio of the computation time between BMOP to the computation
time of SMOP in solving (CP(ϱ)) with the group lasso regularization.
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Chapter 6

Conclusions and future work

In this thesis, we have developed an efficient sieving based secant method for solving

the sparse optimization problems with least squares constraints (CP(ϱ)).

In each iteration of the proposed algorithm, computing the value function φ(·)

involves solving an unconstrained sparse optimization problem (PLS(λ)). Conse-

quently, we need to solve (PLS(λ)) with a sequence of penalty parameters. This

allows for the natural implementation of the adaptive sieving strategy (Yuan et al.,

2023, 2022), where each reduced subproblem (except the first) is warm-started using

the solution from the previous iteration. Note that, the dimension of the reduced

subproblems could be much smaller than the number of rows in A, solving the primal

problem may provide greater benefits than addressing the dual problem. We have

introduced a smoothing Newton method to directly solve the primal problem, which

will be combined with the existing dual-based algorithms to serve as solvers for the

subproblems in the adaptive sieving strategy. Moreover, we have shown that, when

p(·) is the ℓ1 norm function, the smoothing Newton method converges quadratically

to a solution of (PLS(λ)) under the assumption that the LICQ condition for the dual

problem holds.

When p(·) is a polyhedral gauge function, we have proven that for any λ̄ ∈ (0, λ∞),

all v ∈ ∂φ(λ̄) are positive. Consequently, when p(·) is a polyhedral gauge function,
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the secant method can solve (Eφ) with at least a 3-step Q-quadratic convergence rate.

We have demonstrated the high efficiency of our method for solving (CP(ϱ)) by two

representative instances, specifically, the ℓ1 and the sorted ℓ1 penalized constrained

problems. Moreover, our numerical results on the ℓ1 penalized constrained problems,

in which the ∂HSφ(·) is computable as shown in Proposition 4.5, have verified that

the efficiency of SMOP is not compromised compared to the performance of the HS-

Jacobian based semismooth Newton method. This motivates us to use the secant

method instead of the semismooth Newton method for solving (Eφ) regardless of the

availability of the generalized Jacobians.

We point out that the work done in this thesis is far from comprehensive in

addressing sparse optimization problems with least squares constraints. Below, we

briefly list several research directions that deserve more explorations.

• Is it theoretically possible to extend the secant method for finding the root of

(Eφ) when p(·) is a non-polyhedral function?

• When A is given in operator form rather than matrix form, can one find a

dimension reduction technique that efficiently solves (PLS(λ))?

• Can one design a simpler and better algorithm than the smoothing Newton

method to directly address the primal problem (PLS(λ))?
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