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Abstract

The history of options trading started prior to 1973. Many different types of
options are regularly traded throughout the world. Options on stocks have been
traded in Hong Kong since September 1995. Because of the early exercise
opportunity, American-type options are more flexible and popular than European-
type options. Although many researchers have contributed to deriving pricing
formulas for European options, however there are no closed-form formulas for the
prices of American options in most cases. The main difficulty is that it is a free
boundary value problem.

To price an American option, it is important to determine the optimal
exercise boundary (and the optimal stopping time). For a perpetual American option,
the optimal exercise boundary turns out to be constant through time. The -word
“perpetual” means that the option has no expiry date.

This thesis discusses the martingale approach to pricing perpetual American-
type options. A main tool in our approach is the principle of smooth pasting. For
simplicity, options in one-stock case are éonsidered first. These options include the
perpetual American put option, call option and the perpetual maximum option on
one stock. Then we extend our analysis to two-stock case. The perpetual maximum
option on two stocks, the perpetuz'll uncapped Margrabe option, the perpetual capped

Margrabe options and the perpetual dynamic fund protection are discussed.
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Chapter 1

Introduction

The Chicago Board of Trade was founded in 1848; some futures-type
contracts were first introduced within a few years. After that, futures, forward
contracts, swaps, options and other derivatives were introduced and traded
increasingly in the twentieth century. In financial markets, different types of options
are currently actively traded. The Chicago Board of Option Exchange (CBOE) now
trades options on over 1,500 stocks and many different stock indices. Options have
proved to be very popular contracts.

On 8 March 1995, the Hong Kong Legislative Council passed a motion
urging the Government to introduce as expeditiously as possible a mandatory,
privately managed retirement protection system with provision for the preservation
and portability of benefits. The Government subsequently established the Mandatory
Provident Fund (MPF) Authority. MPF was implemented on 1 December 2000. As
at the end of March 2004, 97.1 per cent of all employers, 96.0 per cent of relevant
employees and 80.3 per cent of all self-employed persons have enrolled in an MPF
scheme. Many of the MPF products sold by life insurance companies and banks
contain guarantees or options. For example, the return of many MPF products is
linked to an equity index, such as the Hang Seng Index; a minimum guarantee (an
option} may be provided in order to protect the policyholders from the downside risk
of the market. Such guarantees and options should be priced, reserved and hedged

using modern option pricing theory.



There is a long history of the theory of option pricing. It began in 1900 when
the French mathematician Louis Bachelier deduced an option pricing formula by
assuming that stock prices follow a Brownian motion. After that, numerous
researchers have contributed in this field. The major breakthrough is the Black-
Scholes theory of option pricing (1973).

As demonstrated in Theorem 8.12 of Merton (1990), the value of a European
put option is completely determined once the value of the Eur;Jpean call option is
known if the stock pays no dividends. However, the valuation of European options is
not valid for the American put options because of the positive probability of
exercising before the expiry date. Myneni (1992) summarized the essential results on
the pricing of American options. To price an American option, it is important to
determine the optimal exercise boundary (and the optimal stopping time). However,
there is no closed-form solution for the price of an American put option since the
optimal exercise boundary has no closed-form formula. Since there is no closed-
form formula for the problem, Lindberg, Marcusson and Nordman (2002)
approximated the optimal exercise boundary with a polynomial. In fact, the
asymptotic behavior of the optimal exercise boundary is known as the time to expiry
goes to infinity. It is possible to obtain a closed-form formula for the price of a
perpetual American option, i.e., the American option without an expiry date. Many
researchers analyze and provide new insights in the pricing of perpetual American
options. Usually, the formulas for pricing perpetual American options are derived by
solving differential equations. Here, the martingale approach is used to avoid

differential equations.



This thesis is organized as follows. After giving a brief introduction, Chapter
2 presents some classical assumptions, shows some basic principals of option pricing
and discusses the martingale approach. In the first part of this thesis, one-stock cases
are considered. Under the geometric Brownian motion assumptions, Chapter 3
discusses the pricing of perpetual American put and call options and the perpetual
maximum options on one stock by considering the asymptotic behavior of the
optimal exercise boundary. By considering the logarithm of the stock price as a
shifted compound Poisson process, Chapter 4 derives pricing formulas for the
perpetual American put options with upward jumps and downward jumps.

In the second part of this thesis, option pricing in two-stock cases are
discussed. As an extension to Section 3.3, Chapter 5 studies the perpetual maximum
options on two stocks. One of the first papers analyzing options on two or more
stocks is Margrabe (1978). He extended the Black-Scholes theory of option pricing
and derived a closed-form formula for pricing a European option on two stocks
driven by geometric Brownian motion. More precisely, he studied an option to
exchange one stock for another at the end of some specified period. Such kind of
options is called a Margrabe option. Here, Chapter 6 derives explicit formulas for
the prices of standard perpetual Margrabe options and perpetual Margrabe options
with proportional cap. Chapter 7 discusses the pricing of dynamic fund protection

without expiry date. Finally, Chapter 8 draws a conclusion for this thesis.



PART1 ONE-STOCK CASE
Chapter 2

Fundamentals of Option Pricing

The long history for the theory of option pricing began in 1900. Numerous
researchers have contributed in pricing different types of options. Some assumptions
are essential to bring into the existence of many option pricing formulas. The risk-
neutral probability measure plays an important role in option pricing. This chapter
discusses some classical assumptions and the risk-neutral probability measure on

option pricing. Further, we introduce some equivalent martingales.

2.1  Some Classical Assumptions

It 1s assumed that the market is complete and frictionless. In a frictionless
market, there are no taxes, no transaction cost and no restriction on borrowing or
short sales. Trading is continuous. One of the classical assumptions is that the
logarithm of the stock price is assumed to be a Brownian motion.

Let S(t) be the price of a stock at time t and define X(t) by

S()=S0)*®, t20. (2.1)
We assume that the process {X(t), t=0} is a Brownian motion (or Wiener process)

with instantaneous variance o”and drift parameter p . The Brownian motion

assumption will be applied in the following chapters except Chapter 4 in which

{X(t), t =0} is assumed to be a jump process.



Let r be the risk-free force of interest, { be the dividend yield rate of the
stock. It is assumed that r and { are positive constants, and dividends of amount

ES(t)dt are paid between time t and time ¢ + dt.

2.2 Risk-neutral Probability Measure

In mathematical finance, a risk-neutral probability measure is a probability
measure in which today’s fair (i.e. no arbitrage) price of a security is equal to the
discounted expected value of the future payoffs of the security. The assumption of
the completeness of market ensures the existence of a unique risk-neutral probability
measure.

As demonstrated in Panjer, et al. (1998), the absence of arbitrage is
equivalent to the existence of a risk-neutral probability measure in a discrete model.
This is the Fundamental Theorem of Asset Pricing. A risk-neutral probability
measure is also called an equivalent martingale measure. Delbaen and
Schachermayer (2004) illustrated the arbitrage opportunity and martingale

(equivalent martingale measure) by a simple but apparent “toy ekample”.

23 Martingale Approach

In the risk-neutral world, the prices of American options can be calculated as
the maximum of the discounted expected values of their corresponding payoffs over
all stopping times. Thus, in order to derive pricing formulas, we want to simplify

some expectations. Normally, the expectations are calculated by integration or



summation. Here, by the martingale approach, we can igndre a sequential

complicated calculation. In the following, we introduce a martingale.
Under a risk-neutral measure, the stochastic process {e_r leg‘S(t);t 20} is a

martingale. The martingale condition is

E’ [e‘”eC‘S(t)} = T+ L5 (2.2)

or

E*[e—rt+§t+)((t)]=e(}_
Thus, we have
(—r+&+(p’ +%(12)02)t =0, (2.3)

ie.

2
u*=r—C—%. 2.4)

Here, the asterisk signifies that the expectation is taken with respect to the risk-
neutral probability measure. {X(t)} is a Wiener process with drift parameter p’

which is given by (2.4). The diffusion parameter of {X(t)} remains ¢ under the risk-

neutral measure.



Chapter 3
Pricing Perpetual American Options

under Geometric Brownian Motion

A call (or put) option is a contract that gives its holder the right but not the
obligation to buy (or sell) an asset for a certain price (the strike price) within a
specific period of time (the expiry date). European options may be exercised only at
the expiry date. American options are contracts that can be exercised early, prior to
the expiry date. A perpetual American option is a contract without an expiry date. It
can be exercised at any time.

Note that an American option always must be worth at least its payoff since
it can be exercised at any time prior to the expiry date. An American option is more
interesting and complex to evaluate than a European option. In contrast to pricing
European options, pricing American options is a challenging problem because of the
early exercise opportunity. A main difficulty in pricing American options is to
determine the optimal exercise boundary. This problem could be formulated into a
free boundary value problem which was observed by McKean (1965). The free
boundary problem is to solve a partial differential equation with its Dirichlet
conditions and a Neumann condition for the determination of the unknown exercise
boundary. See also Allegretto, Barone-Adesi and Elliott (1994). Up to now, closed-
form formula for the optimal exercige boundary of the American option has not yet

been determined. However, for some perpetual American options, the optimal



exercise boundary turns out to be constant through time. This will be illustrated in
Section 3.1.

In this chapter, we assume that the logarithm of stock price is a Brownian
motion (or Wiener Process). This is a special case of the model in which the
logreturn of a stock is driven by a fractional Brownian motion as in Elliott and Chan
(2004). After discussing the optimal exercise boundary which is crucial for pricing
American options, the pricing formulas for perpetual American put options, call
options and perpetual maximum options on one stock are derived in detail in the

coming sections. At the end of this chapter, some numerical examples are provided.

3.1 The Optimal Exercise Strategy

For an American option, the optimal exercise strategy is the stopping time
for which the maximum value of the expected discounted payoff is attained. (The
expectation is taken with respect to the risk-neutral measure.) For some perpetual
options, the optimization problem can be simplified to the problem of determining
the optimal values of one or two parameters. A detailed derivation of these one or
two endpoints of the optimal non-exercise interval is provided.

Now let us look at a put option. If a put option with exercise price K is
exercised at time t, the payoff is

[I(S(t)) = max(K - S(t), 0),
where S(t) is the price of a stock at time t. See Figure 3.1. Since an American option
can be exercised at any time prior to the expiry date, choosing the optimal time to

exercise is a crucial problem.



Figure 3.1 The Pavoff Function of a Put Qption

A gs)

Before discussing on how to choose a stopping time, let us consider the
optimal exercise boundary first. The optimal exercise boundary has to be found for
the price of an American put option to be obtained. The optimal exercise boundary
separates the region where one should continue to hold the option and the region
where one should exercise it. Here, we consider the optimal exercise boundary as a
function of the expiry date. As shown in Figure 3.2, there are four optimal exercise
boundaries for an American put option corresponding to four finite expiry dates. For
a specific expiry date, the corresponding optimal exercise boundary implies that one
should continue to hold the option if the stock price is above the boundary curve and
one should exercise the option when the stock price falls on or below the optimal
exercise boundary. Now, let us consider the asymptotic behavior of the optimal
exercise boundary. It is observed that as we extend the expiry date, the curve of the
optimal exercise boundary becomes flatter and flatter. This can be explained by the
independent increments property of the Brownian motion. By applying the property,

as we adjust the expiry date, the optimal exercise boundary can be obtained by



shifting along time for different expiry dates. Following the trend, we can at last
observe a level boundary as the expiry date tends to infinity. Thus, a level boundary
1s the optimal exercise boundary for a perpetual American put option. To know more
about the analysis of the optimal exercise boundary of an American put option, see ,
for example, Basso, Nardon and Pianca (2002), Kuske and Keller (1998) and

Lindberg, Marcusson and Nordman (2002).

Figure 3.2  Optimal Exercise Boundaries of

an American Put Option

3.2 Perpetual American Put Options

Let us illustrate the pricing of a perpetual American put option. For an
American put option with exercise price K, its payoff is
H(S(1) = (K = S(t)., (3.1)
where m, = Max(m, 0). If the owner of the option exercises it at a time t, then he

will get (K — S(t)),.

10



As discussed in the previous section, the optimal exercise boundary of a
perpetual American put option is constant through time. Consider the exercise
strategy that 1s to exercise the option as soon as the stock price falls to the level L for
the first time. For 0 <L <K and L < S(0), define the stopping time T |_ as

TrL=min{t|S{t)=L}. (3.2)

See Figure 3.3. The value of this exercise strategy Ty is
PsiL) =E'| ¢ IIS(TL) 500 =3 . (3.3)

where 1 is the risk-free force of interest.

Figure 3.3 _ The Stopping Time T.

7 S(t)

S

Since
L=8(T,)=S(0)e" ") =ge*™ (3.4)

and
IS(TY)=(K-S(T)),=(K-L),=K-L,

formula (3.3) can be simplified to

11



P(s; L) = E‘[e‘”L(K—L) |S(0) =s}

= (K —L)E*[e““ S(0) = s]. (3.5)
Thus, the problem is to find the value of E’ [e_rTL S(0) = s].
Let us consider the stochastic process {e’r”me} o’ This process is a
12

martingale with respect to the risk-neutral measure if

E |:e_”+8x(‘)]=e0 (3.6)
or

—rt+6u't +%6202t =0, (3.7
e,

%ozez +u0-r=0, (3.8)

where | is given by (2.4). Let 8, and 6, be the two roots of the quadratic equation

(3.8). Since

one root is negative and the other is positive. Assume that 6, <0 and 6, > 0. For the

negative root 0,, the stochastic process {e_rt+9'x(‘)}0 , is a martingale bounded
St<T,

el
between 0 and (LJ . By the optional sampling theorem, we have
s

12



* -r * 8 * -r %
oo ]egon oo el (5] s
s

or

E' [e-fTL] _ (_IS:J"G‘ _ (3.10)

Thus, for s>Land K > L, it follows from (3.5) and (3.10) that the value of the

strategy T is
L™
P(s;L)=(K-—L)(—} , (3.11)
$

which is shown in Figure 3.4.

Figure 3.4 _ The Value of the Strategy T. and

the Price of the Perpetual American Put Qption

K I{s)

P(s; I:)

Now, for the optimal exercise strategy, we seek the value L that maximizes
P(s;L). This value is denoted by L. The optimal value L can be obtained by

differentiating P(s; L) with respect to L and setting the derivative equal to zero, i.e.,

13



=0 (3.12)

or

- \-0, ~ \=6,
_GIK(L)@} _(_elﬂ)[&) 0. 6.13)
LJ)is 8

Solving equation (3.13) yields the optimal exercise boundary
£-"% g, (3.14)
1-9,
which is the same as (3.9) in Gerber and Shiu (1994) if their 8, is our 9,.

For s > L, it follows from (3.11) and (3.14) that

~ --{-)l
P(s;I:)z(K—I:)(LJ

5

-8,
LTI . T
1-96, s1-9,

-8,
_ K ( -K8, :
_1-9,[3(1—9,)] ' G-13)

See Figure 3.4. Note that for L < K, as L tends to L, the value of P(s; L) increases,
i.e., it is approaching the maximum value P(s;L). Thus, the price of the perpetual
American put option is

K-s if s<L,

_ -8, ) . (3.16)
K Ko, ifs>L.

Remark: it follows from (3.14) that L < K. Now

14



JI1(s) :M =—1 7 (3.17)
O |s=f 05 ls-f
and
aP(s; L (LY
9P(siL) =9.(K_ﬁ)_[_J
ds s=L S\ S _
s=L
:%Lﬂ=_1_ (3.18)
Thus, it follows that
oP(s; L) O (3.19)
os .. O ls-f .

This is known as the smooth pasting condition or the high contact condition. To
know more about the smooth pasting condition, see Dixit (1993). It can be shown
that condition (3.19) is equivalent to the first-order condition (3.12).

Since O, can be expressed in terms of the constant dividend yield rate { by

(2.4) and (3.8), the values of L and P(s; I:) are affected by (. Let us consider a

special case that the stock pays no dividends, i.e. { = 0. It follows from (2.4) and

2
(3.8) that u” =r—% and 6, =——2—§—. Thus, for s>L, by (3.14) and (3.15), we
: o
obtain
2t
. 2 K
7 52 )
I+—=  —4r 1+—
2
c 2 2r

which is the same as (37) in Elliott and Chan (2004) with H =% and X =K, and

15



2riat

2
oK J 21K 321)
s(

P(s;f.) =
[02 +2r ol+ 2r)

which is the same as (39) in Elliott and Chan (2004) if K is replaced by X.

3.3 Perpetual American Call Options

After deriving a closed-form formula for the price of the perpetual American
put option, the perpetual American call option is discussed in this section. If the
underlying stock pays no dividends, it can be proved that it is never optimal to
exercise an American call option early and there is no need to determine the optimal
exercise boundary since the price of the American call option is equal to the price of
its European counterpart. However, this is not the case for an American call option
on a dividend-paying stock. In theory, the American call option is liable to be
exercised early immediately before any ex-dividend date if the stock pays discrete
dividends. Pricing such options is more complicated and requires determining the
optimal exercise boundary. Assume that the dividend yield rate is constant. A
pricing formula for the perpetual American call option is derived in this section.

Now, let us consider an American call option whose payoff function is

[(S(1) = (S - K., (3.22)
where S(t) is the stock price at time t and K is the exercise price. To prevent
immediate exercise, we assume that K > S(0). The price of the option at time t is

bounded below by its payoff ((S(t) — K),) and above by the underlying stock price

16



S(t) at time t. Similar to American put options, a crucial step for pricing American
call options is to determine the optimal exercise boundary.

Here, a figure similar to Figure 3.2 can be obtained to illustrate the optimal
exercise boundary of an American call option. Figure 3.5 shows the trend of the
optimal exercise boundary if we extend the expiry date of an American call option.
We observe a level optimal ekercise boundary for a perpetual American call option.
In contrast to the level optimal exercise boundary for a perpetual American put
option, this optimal exercise boundary is an upper bound for those of the American

call option with expiry date. See Figure 3.5.

Figure 3.5  Optimal Exercise Boundaries of

an American Call Option

» Expiry
date

For a perpetual American call option, it is sufficient to consider the exercise
strategy that is to exercise the option as soon as the stock price rises to a level U for

the first time. For U > §(0) and U > K, define a stopping time of the form

17



Ty = min{t| S(t) = U}. (3.23)

See Figure 3.6. The value of this exercise strategy Ty is
C(s;U)= E' [e_rT”H(S(TU)) l S(0) = s]. (3.24)
Since
[S(Ty) = (S(Ty)-K) =U-K,
+
formula (3.24) can be simplified to

-rTy

C(s;U)=(U-K)E’ [e

S(0) = s]. (3.25)

$(0) = s] .

Now, the problem is simplified to determine the expectation E' [e_rT”

Figure 3.6  The Stopping Time Ty

A S

Let us consider a martingale in the form of {e_r”ex(')} . The martingale

[ =4

condition is given by (3.8) which is a quadratic equation in 6. It was shown in the

previous section that there is a negative root 8, and a positive root 0, for this
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quadratic equation. The stochastic process {e‘r““elx(”}o.< ;. is a bounded
UsTy

martingale for the positive root 8, . By the optional sampling theorem, we obtain

E' [e‘”” S(0) = s] = (%Jez . (3.26)

Thus, for U > s and U > K, it follows from (3.25) and (3.26) that the value of the

exercise strategy Ty is
s )
C(s;U)=(U—K)(—GJ . 3.27)

Formula (3.27) can be considered as a function of U. Now, let us seek the

optimal value of U, denoted by U, that maximizes C(s; U). The optimal value can
be determined by the first-order condition

dC(s; U)

=0, 3.28
30 (3.28)

u=0

or equivalently, the smooth pasting condition

oC(s; U) _ 9Ils) (3.29)
s | _5 0 |ig '
It follows that the optimal value of U is
0=-22 g ) (3.30)
82 _I

which is the same as (3.16) in Gerber and Shiu (1994) if their 6, is our 8, . Thus, for

s< U, by (3.27) and (3.30),
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__K [S(ez—l)Jez, (3.31)

and the price of the perpetual American call option is

6,
K_[5(6,-1) if s< 0
8,-1 8,K ’

s—K ifs>0,

(3.32)

where K is the exercise price and s = $(0) and 0, is the positive root of (3.8).

3.4 Perpetual Maximum Option on One Stock

In this section, we show how to derive pricing formula for a perpetual
maximum option on one stock. A maximum option is an option whose payoff is the
maximum of two or more stocks or assets, e.g.

[1(z,, z3, 23, 24) = max(z,, 23, Z3, 24), Zi, Z2, Z3, Z4 = 0.
We also call it an alternative option or greater-of option. Maximum options can be
found in firms choosing among mutually exclusive investment alternative, or in
employment switching decisions by agents. It also has an application in pension
design and valuation (see Sherris (1993)). In some employees’ retirement systems,
the maximum option is one of the retirement options for the members. Under this
option, the retiree receives the largest monthly benefit possible.

Let us consider a perpetual American option with payoff function

TI(S(1)) = max(K, S(1)), (3.33)
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where S5(t) 1s the stock price at time t and K > 0 is the guaranteed price or the floor
price. This payoff function can be regarded as a one stock case of the maximum
option which is the maximum of a stock and a positive constant K.
Consider an option-exercise strategy of the form:
Tyy = min{t|S(t) =uor S(t) = v}, (3.34)
with 0 <u €5 = §(0) < v. The strategy T, . is to exercise the option as soon as the
stock price rises to a level v or falls to a level u for the first time; the value of this

strategy is

V(s;u,v)=E" |:€_rTu'vH (S (TU»" ))

S(O)=sj|, O<u<s<y, (3.35)

where r is the risk-free force of interest. See Figure 3.7.

Figure 3.7  The Stopping Time T..

A SO

" A

Following Section 10.10 in Panjer, et al. (1998), we express formula (3.35)

as
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V(s;u, v) = I(u) A(s; u, v) + II(v) B(s; u, v}, O<u<s<y, (3.36)

where
A(s;u,v)=E’ [e-rTu.vI(S(Tu'v) = u) 5(0)= s], (3.37)
and
B(s;u,v) =E’ [e“rT“‘“I(S(TUIV J=v)|s(0)= s]. (3.38)
Again, we consider a martingale {e‘“*s’“”}tzo. For =0, and 8=0,, the

stochastic process {¢™"' *®*®} _ ¢ is a bounded martingale. Here, 8, and 0, are

negative and positive roots of the quadratic equation (3.8) with ¢ being the diffusion

coefficient of the Brownian motion {InS(t)} and { the constant dividend-yield rate.

By the optional sampling theorem, we have

1=E [e""u-“*ex‘“'"’] . (3.39)

Since
1=1(S(T, ) =u)+I(S(Tu,\,) =v),

(3.39) can be rewritten as

0 @
1=E' [I(S(TM) —u)e v (EJ }L E’ 1:I(S(Tu_v) =v)e ‘T (i) } (3.40)
S S

It follows from (3.37), (3.38) and (3.40) that

) £]
As;u, v)[BJ +B(s:u, v)(i) =1. (3.41)
s S

That is,
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0, 0,
A(s;u,v)(EJ +B(s;u,v)[—v-J =1 (3.42)
S S

and

‘ B, 0,
Als:u, v)[EJ +B(s:u, v)(l) =1 (3.43)
s

5

Solving from (3.42) and (3.43), we obtain

8,6 8.0
v Zsl_v |S 2

A(S0,V) = —————s (3.44)
vZul_vlul

and

8, 6 .0 8
S Zul_s lu 2

B(s;u,v)=——F——5—. (3.45)
v2u l_vlu'l

Now, we can substitute expressions (3.44) and (3.45) in the right-hand side of (3.36)

to get

Vg8 _ B8, 28 0%

Vis;u,v) =II(u) N +I1I{v) NONCRNNOR (3.46)

which is the value of the Strategy T, , as shown in Figure 3.8.

The next problem is to find u and v, the values of u and v that maximize
V{s;u,v) . Then V(s;u4,v), for 1 <s=S(0)<V, is the priée of the perpetual
American option. The optimal values @ and ¥ can be obtained by the first-order
condition:

Vy(s; a,v) = 0, ' 3.47)
V(s u,v) = 0; (3.48)
or, by the high contact or smooth pasting condition:

V(a:a,v) = T (i), (3.49)
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Ve(V;0,V) = IT'(v). (3.50)
We now show that the first-order condition is equivalent to the high contact

condition.

Figure 3.8 The Value of the Strategy T.. and

the Price of the Perpetual Maximum Option on One Stock

t /

V(s; 4, v)
I1(s) \
K \l \'““*"”T/
i V(s;u,v)
-  —
u u v A% S

By differentiating (3.36) with respective to u and setting s = u, we have
Vu(u;u, v) = IT(u) + Iu) Ay(u; u, v) + TI(v) By(u; u, v). (3.51)
On the other hand, differentiate (3.36) with respective to s and set s = u to obtain
Vis(u;u, v) = THu) Ag(u; u, v) + TI(V) By(u; u, v). (3.52)
Let us introduce a new parameter x, where u < x < s < v. We observe that
As; u,v) and B(s; u,v) can be factorized as
A(s;u, v) = A x, v) Ak u, v). (3.53)

and

B(s; u, v} = A(s; x, v) B(x; u, v) + B(s; x, v). (3.54)
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Equations (3.53) and (3.54) can be interpreted as follows. For a stock price starting
from s, it may reach the level u for the first time 1n only one way, 1.e., it must reach
the level x first and then reach the level u. On the other hand, there are two
possibilities for a stock price starting from s to reach the level v for the first time.
One posstibility is that the stock price reaches the level x first and then reaches the
level v. Another possibility is that the stock price reaches the level v directly for the
first time. We can also check (3.53) and (3.54) by expressions (3.44) and (3.45).
By differentiating (3.53) and (3.54) with respect to x and setting x = s = u,
we have
Ay(u;u, v) + Aj(uyu,v) =0, (3.59)
and
B,(u;u,v) + Bg{u;u,v) =0, (3.56)
A new identity can be obtained by combining the identities (3.51) and (3.52).
Substituting (3.55) and (3.56) into the new identity and simplifying yields
Vulu; u,v) + V(u;u,v) = IT°(u). (3.57)
Likew1se, we can obtain
Vo(v;u, v) + Vi(v;u, v) = IT'(v). (3.58)
This shows that the first-order condition {3.47) and (3.48) is equivalent to the high
contact condition (3.49) and (3.50).
Now, let us solve for u and v. With G < K < v, it follows from (3.33),
(3.46), (3.49) and (3.50) that

Y{e,-.)
- -6, (92 "1)
L= o>

< | e

25



which is denoted as ¢ in Gerber and Shiu (2003). Further, we can determine & and

v in terms of 6, and 8. We obtain

v (-8 -6, /(0,-9,) 0, 8, /(0,-0)) 60
K |1-8, 0, -1 ’ ’
which is denoted as ¢ in Gerber and Shiu (2003), and
- I (1-6,)/{8,-8) (8,-1)/(8,-9,)
4_vi_ |8 5, , (3.61)
K Kv {1-9 0,-1

which is denoted as b in Gerber and Shiu (2003). Thus, with & < K < ¥, for the

perpetual American option whose payoff is given by (3.33), its price is

K ifs<i
[(3)A(s; 6, ) + TI(¥)B(s:,9)  if0<i<s<?, (3.62)
s ifsz2v
or
(K ifs<i
0 -\0
0,(s/d)™ 0, (s/ii)"
J Qa(s78) " -6, (s/) if0<i<s<v, (3.63)
92_91
s ifs=v

which is shown in Figure 3.8. For detail derivation of @ and Vv, refer to Yu (2003b).

3.5 Numerical Examples

As shown in the previous sections, by assuming the logarithm of the stock
price as a geometric Brownian motion, we have derived explicit formulas for pricing

perpetual American put options, call options and perpetual maximum options on one
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stock. This section presents some numerical examples for such options according to
the pricing formulas (3.16), (3.32) and (3.63) respectively.

Under the assumption of geometric Brownian motion, only one parameter,
i.e. the variance 62, has to be estimated. Thus the Brownian motion is simpler than
other processes with several parameters. This is the major reason for its popularity.
Here, we consider a certain stock with ${0) =100, 6 =0.1,r=0.1 and { = 0.02. The _
strike prices K ranges between 80 and 120.

Let us consider the perpetual American put option first. It follows from (3.8)

that the negative root is 8, = —-16.232. By applying formulas (3.14) and (3.16), the

three columns on the left side of Table 3.1 shows the values of optimal exercise
boundary and the prices of the perpetual American put option for various strike
prices K. It is obvious that both the value of the optimal exercise boundary and the
option price increase as the strike price increases. It is also interestiﬁg to explore the
option prices corresponding to different values of 0. Now, suppose that the strike
price is fixed, e.g. K = 80, and o varies from 0.1 to 0.3, The values of S(0), r and

{ remain 100, 0.1 and 0.02 respectively. The variations of ©,, L and the option

prices for different ¢ are shown in the three columns on the ri ght-side of Table 3.1.
It is observed that the option price increases as G increases.

Similarly, we can obtain Table 3.2 for the perpetual American call option.
From the table, it is easy to observe variations of the value of the optimal exercise
boundary and the price of the perpetual American put option comresponding to
different strike prices or 0. By comparing Table 3.1 with Table 3.2, we perceive that

both the prices of the perpetual American put options and call options are directly
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proportional to the value of ¢. However, the price of perpetual American call

options is inversely proportional to the strike price which 1s opposite for perpetual

American put options.

For the perpetual maximum options on one stock, Table 3.3 is constructed to

illustrate how the strike price or ¢ affects the price of the perpetual maximum option

on one stock. We assume that S{(Q) =100, 6 =0.1,r = 0.1, {=0.02 and the strike

price ranges between 80 and 120 for the left four columns in Table 3.3. On the other

hand, it is assumed that the strike price is fixed to be 80, & varies from 0.1 to 0.3,

$(0) = 100, r = 0.1 and { = 0.02 for the remaining columns in Table 3.3.

Table 3.1 The Perpetual American Put Option

Strike | Optimal Exercise{ Option Negative Optimal Exercise [ Option
Price K| Boundary L Price o Root 6, Boundary L Price
80 75.36 0.05 0.100 | -16.23 75.36 0.05
85 80.07 0:13 0.125 | -10.46 73.02 0.26
90 84.78 0.36 0.150 | -7.32 70.39 0.73
95 89.49 091 0.175 -5.43 67.55 1.48
100 94.20 2.20 0.200| -4.19 64.59 2.47
105 98.91 5.10 0.225 -3.34 61.58 3.64
110 103.62 10.00 0.250 -2.73 58.56 4.97
115 108.33 15.00 0.275 -2.28 55.59 6.41
120 113.04 20.00 0300] -1.93 52.69 7.93
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Table 3.2 The Perpetual American Call Option

Strike |Optimal Exercise | Option Positive | Optimal Exercise Option
Price K| Boundary U Price c |Root 6,1 Boundary U Price
80 424 .64 58.02 0.100 | 1.23 424.64 58.02
85 451.18 57.21 0.125 | 1.22 438.23 5877
90 477.72 56.45 0.150 { 1.21 454.61 59.63
95 504.26 55.75 0.175 | 1.20 473.70 60.59
100 530.80 55.09 0200 | 1.19 495.41 61.61
105 557.34 54.47 0225 | 1.18 519.67 62.69
110 583.88 53.88 0.250 | 1.17 546.44 63.79
115 610.42 53.33 0.275 | 1.16 575.66 6491
120 636.96 52.81 0.300 | 1.15 607.31 66.04
Table 3.3 The Perpetual Maximum Option on One Stock
guarantee] optimal exercise optimal exercise
price boundary option boundary option
K i \ price c u v price
80 78.56 93.97 100.00 0.100 78.56 93.97 100.00
85 83.47 99.84 | 100.00 0.125 76.96 97.39 100.00
50 88.38 | 105.72 | 98.26 0.150 74.87 99.94 100.00
95 93.29 111.59 | 98.36 0.175 72.37 101.54 99.14
100 98.20 117.46 | 100.30 0.200 69.57 102.24 99.88
105 103.11 | 12334 | 105.00 0.225 66.57 102.17 100.97
110 108.02 | 129.21 | 110.00 0.250 63.47 101.49 102.30
115 11293 | 135.08 j 115.00 0.275 60.34 100.35 103.81
120 117.84 | 140.96 | 120.00 0.300 57.25 98.89 100.00
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Chapter 4
Pricing Perpetual American Options

for Jump Processes

Chapter 3 has considered the classical model where the logarithm of the
stock price is a Brownian motion. Another model will be introduced here. This
chapter considers two models in which the logarithm of the stock price is a shifted
compound Poisson process. A great advantage of the Poisson process is its simple
sample paths with which it is easy to track the process. Actually, a limiting case of
the Poisson process is a Brownian motion. This is shown in Section 4.4.

For the Poisson process, in an infinitesimal time interval, only two
possibilities can happen: there is a jump or no jump. For a jump, it could be upward
or downward. In the first model, all jumps of the stock price are upwards, and all
jumps are downwards in the second model. A model where the stock price has
jumps was suggested and discussed by Merton (1975). Gerber and Shiu (1998) have
derived some pricing formulas for some perpetual options for jump processes.
Recently, Kou (2002) proposed a jump-diffusion model for option pricing, in which
the logarithm of the asset price is assumed to follow a Brownian motion plus a
compound Poisson process with jump sizes double exponentially distributed, to
incorporate the “volatility simile” and to strike a balance between reality and

tractability.
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This chapter is arranged as follows. Section 4.1 briefly presents the
assumptions and the problem to be solved. Sections 4.2 and 4.3 discuss the pricing
of perpetual American put options with upward jumps and downward jumps
respectively. Finally, Section 4.4 illustrates the limiting cases of those two models

discussed in Sections 4.2 and 4.3,

4.1 Assumptions and the Problem

Let S(t) be the price of a stock at time t. We assume that the market is risk-

neutral, the stock does not pay any dividends and the risk-free force of interest is a

positive constant r. Thus, we assume that the stochastic process {e_”S(t); t= 0} is a

martingale.
Now, let us define X(t) by
S =80, t>0.
We suppose that {X(t)} is a process with stationary and independent increments. In

the previous chapter, it is assumed that the process { X(t), t 2 0} is a Wiener process

2
_ . . 9) .
with instantaneous variance o and drift parameter = r-—?. In this chapter, the

assumption 1s that

Xty =X0)—ct+ Y(1), 4.1
in which the jumps are upward, and

X(t) = X(0) +ct— Y{(t), 4.2)
in which the jumps are downward. Here, c is a positive constant, and {Y(t)} is a

compound Poisson process with parameter A > 0 (expected number of jumps per unit
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time)} and jump amount distribution P(z), z>0, where p(z)zad—P(z) is the
z

probabulity density function of jump amounts.

The compound Poisson process assumption means that

Y(t)= NZ((:)ZJ. =Z,tZ,+2Z, +eo Ly
=
where {N(t)} is a Poisson process with parameter &, {Z, Zy, Z3, ...} are independent
and identically distributed random variables. {Z} and N(t) are also assumed to be
independent of each other.

Our goal is to find the price of a perpetual American put option. Consider an
American put option with exercise price K, K < §(0) = s. If the option is exercised at
time t, its payoff is given by (3.1). As demonstrated in Section 3.2, an exercise
strategy of a perpetual American put option is to exercise the option as soon as the
stock price falls to a level L for the first time, where L 'is a positive constant exercise

boundary. For 0 <L <K and L <S(0), let us consider the stopping time Ty given by

(3.2). The problem is to find the value of the exercise strategy Ty,
V(s:L)= E[e‘“TL [1(S(T, ) \ $(0) = s], 21, 43)

and to determine the optimal exercise boundary L which maximizes V(s; L). Thus,

the price of the option is

V(s;L) if s>L
[1(s) ifs<L
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4.2 Perpetual American Put Options with Upward Jumps

For a model with upward jumps defined by (4.1), it is obvious that the
sample paths of the stock process {S(t)} are free of downward jumps; so we have
S(Tr) = L. See Figure 4.1 for the stopping time for a model with upward jumps.

Hence, formula (4.3) can be simplified to

V(s:L) = E[é‘ T

S(0) = s:| II(L), s=2L. 4.4)

. . . -T
Now, it remains to find the value of the expectation E[e rL

5(0) = s] .

Figure 4.1 _ The Stopping Time T. for a Model with Upward Jumps

A S(1)
L '\]l i 1 k
>t
T,
Let us consider the stochastic process {e_“S(t)g}po. This process is a
martingale if
E[e7'S(0)° | =s%**@. 4.5)

Since

e_”S(t)g =T gBREX() _ oot §Seb XM EY (- Ecl,
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the martingale condition (4.5) can be simplified to

e—rl—ciiE[eéY(l}} -1 (4.6)
Since

E[e‘:’N(l)] = ieén (lt)ne_;u Inl=erteM = eA‘(cg']) ,
=0

and {Z} and N(t) are independent of each other, by the definition of Y(t), we have

E[eiY(t)} - E{E[exp(&_,%) zj] N(I)J]

_ E{E[eaz]““) ] _ el ] , 4.7

where

EZ ] _ [T k=
E[e ]— jﬂ e>“p(z)dz.
It follows from (4.6) and (4.7) that

e—rt fc§t+ll[E[e§z]—l] -1,

or
A[E[e&]—l]—r—cgzo, (4.8)

which is the same as (5) in Gerber and Shiu (1998) if z = x.

Let
f(g)=x[5[eéz]-1]—r—c§. (4.9)
Differentiate (4.9) with respect to & twice to obtain

£°(§) =AE[ 2%% ],
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which is positive. Thus, we can conclude that (4.9) is a convex function. There are

at most two real solutions for equation (4.8). Since we have assumed that the
stochastic process {e"‘S(t);t 20} is a martingale, one solution of (4.8) is & = I.
Because f(0)=-r and f(£) >asf —» -w , the second solution is negative,

&, =—R <0. For the negative root —R, the stochastic process {e'” S(t)'R}OSlST
L

a bounded.martingale. By the optional sampling theorem, we have

s = E[e'”" S(TL)™ ‘S(O) = s] = E[e"’“

$(0) = s] LR
or

E[e_rTL S(0) =s:| =&JR. @.10)

Thus, it follows from (4.4) and (4.10) that the value of the strategy Ty, is

L R
V(s;L)=(—) (L), s2L, @.11)
S

which has the same form as (3.11).

Now, for the optimal exercise strategy, we seek L, the optimal value of L.

that maximizes V(s; L). It can be obtained by the first-order condition

~ R ~ R
0=2V&L) =5[EJ H(E)+[E] (D),
aL L=L Lis 5
or
R_ o -
0==T(D)+1T(E). @.12)

Note: from (4.11), we have
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dV(s;L)
0s

R I: R+1
RS

b}

5=

s=L

We can see from (4.12) and (4.13) that

dV(s;L)
ds

-=rniy

s=L

R _ .
=—=T(0).

(4.13)

(4.14)

This is known as the smooth junction condition. The functions I(s), s<L, and

V(s; f,), s>L , have a smooth junction at the point s = L.

Since L < K, TI(L) = max(K -L,0) =K —L and IT(L) =1, it follows from

(4.12) that

E:K—B—.
1+ R

Thus, the price of a perpetual American put option is

~ wR
[EJ(K—i) if s>L
S

1

K-s if s<L

ar

R
( RK ] ( K J if s>L
s(1+R) 1+R .

K-s if s<L

(4.15)

(4.16)

Remark: To determine the negative root —R of (4.8), we need to know the

probability density p(z). We suppose that p(z)=fe ®*, z > 0. In this case, we must

assumed that B> 1, otherwise E[S(t)] would be infinite. For this probability density,

we have, for £ <3,
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[ :, regzp(z)dz~reéz[}e Pz iz =+ p 4.17

B-&
It follows from (4.8) and (4.17} that
e
or
B2+ (A +1—Pc)—Pr=0. (4.18)

Since & = 1 and &, = — R are roots of (4.18) and { &, = Br , we have
c

r=Br 4.19)

Thus, we can substitute (4.19) in the right-hand side of (4.15) to obtain

r

r+c/BK' (4.20)

L=

4.3 Perpetual American Put Options with Downward Jumps

Now, let us consider the model in which the assumption is

X(t) = X(0) + ct - Y(1).
For the stochastic process {e_” S(t)g} " the martingale condition is
t2
B[ S(1)} | =%,

or

e—rt+c§lE|:e-§Y(t)]___1‘ 4.21)

It follows from (4.7) that
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E[e-éY(t)]=ell[E[e_éz]_']' (4.22)

Thus, the martingale condition (4.21) can be simplified to

-rt+c et -
o t+ §t+lt(E[ ] l)=l,

or
A(E[e‘éz]—l)—wcé:o, . 4.23)

which is the same as (10} in Gerber and Shiu (1998) if z = x.

Similar to (4.8), there are at most two real roots for equation (4.23). Since

{e'" S(t)é} o is a martingale, one root is £, = 1. And the other root, if it exists, is
| =

negative, & = - R. For the negative root, the stochastic process

{e_”S(t)'R} is a martingale bounded between 0 and L™® . Applying the

0<i<T,

optional sampling theorem, we obtain
sR= E‘:e_rTL S(T )R ’ S(0) = s:|. (4.24)

As S(T1) < L and the distribution of S(Ty) is not known in general, the
problem here is more complicated than that in the previous section. To get around

the difficulty, we assume that the jump amounts have an exponential distribution, i.e.,
p(z) =Be P for z>0. This distribution has the no-memory property. If the value of

TL and the stock price immediately before the jump occurring at time Ty, the

property asserts that the conditional distribution of InL~InS(T,) has the same

exponential distribution. It follows from (4.24) that
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3

-R E!:e—rTL e—R[(lnS(TL)—ln L)-i—lnL] S(O):Sj|

- E[e_rTL ¢ RI-Z ‘ S(0) = S}L*R

=E[e_rTL

$(0) = s} E[e"‘[‘zl] LR, (4.25)

Since the second expectation on the right-hand side of (4.25) is

E[e_R['ZI]= I:eRzBe‘gz dz = B[—SR .

we can rearrange and simplify (4.25) to

R
S(0) =s}=(%) B-R (4.26)

Elio:—rTL B

Thus, it follows from (4.3) and (4.26) that the value of the exercise strategy Ty, is

V(s;L)= (%)R ﬁ;ﬁfi [H(Le‘z )] s2L,

[8}]
S

Now, the problem is to find the optimal value L that maximizes V(s;L). The

first-order condition is

3
0=—V(s:L
oL &L

L=L

(5] - & (i) ans (e

by differentiating (4.27) with respect to L. The above is equivalent to
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= =

J‘:H(ﬁe'z)e_ﬁz dz = —J:l‘['(f:e_z)e_ze_ﬁz dz.

_ I TP
——E[H(L)—BL H(Le )e dzJ (4.28)
| by integration by parts. Thus
(L) =@-R) I:H(Le_z)e_ﬂz dz. (4.29)

It follows from (4.27) and (4.29) that

V(L;L)=11(L). (4.30)
This 1s known as the continuous junction condition. It can be shown that conditions
(4.28) and (4.30) are equivalent. Equation (4.30) implies that the functions TI(s),
s<L,and V(s;I:), s> L, match at the point s = L.

Since L<K and z>0 , we have IT(L)=max(K-L,0)=K-L and

MI{Le *) =K —Le 2. It follows from (4.29) that
_ e TaZl.-Bz = T
B R)jo (K-Le*)eP*dz=K-L. 4.31)

The integral on the left-hand side of (4.31) can be simplified to

g I o~ Z)a-B2z K i‘
jo (K——Le )e B dz:ﬁ_ﬁ'

Thus, we can simplify and rearrange (4.31) to obtain

- __R(1+B)

L= KE(—I+—R) . (4.32)

Comparing (4.32) with (4.15), we can see that the expression of L for a model with

downward jumps is quite different from that for a model with upward jumps.
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Now, let us determine the negative root —R of equation (4.23). By the
assumption of p(z) =Be ™ for z> 0, equation (4.23) can be simplified to
X —(A+r—Po)E—Pr=0. (4.33)
The product of the roots of the quadratic equation above is ~Br/c. As & =1and

& =—R are two roots of equation (4.33), it follows that

_Pr. | (4.34)
C

By substituting (4.34) in (4.32), we obtain

[=K (4.35)

c—r
r+—o

B+1

4.4 Limiting Cases

Based on the formulas obtained in Sections 4.2 and 4.3, we can obtain
limiting cases for models with an exponential jump amount distribution. It is shown
in this section that a Brownian motion can be obtained as a limit.

Let us consider the model as discussed in Section 4.2. Since &; = 1 is one root
of the martingale condition (4.18), it follows that

c+{A+r—PBc)-Pr=0. (4.36)
Here, we have three parameters ¢, A and . Our goal is to vary one parameter (3,
while the other two parameters are expressed by 3, to obtain the limiting case.

As {Y(t)} is a process with stationary and independent increments, we can

define
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Var(Y(t)) =o’t, (4.37)

where o? is the variance per unit time. On the other hand, it follows from (4.7) and

(4.17) that the moment generating function of Y(t) is

E[eéY(‘):I:exp"?Lt[B—?&-l)], (4.38)

from which we obtain

Var (Y(1)) = [23_’2% . (4.39)

Thus, we have

é—z”s 2 (4.40)
Now, by (4.36) and (4.40), ¢ and A can be expressed by f as
}L _ BZGZ
2
and
2.2
c= b0 -r,
2(B-1)
which leads to
c__Bo r 4.41)
B 2(B-1) B

2
In the limiting case as b — oo, it is observed from (4.41) that %—> % Thus,

by (4.19) and (4.20), in the limit § — >, we have R = —2% and
8]
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r

L=—r
r+o° /2

(4.42)

which is the same as the optimal exercise boundary for a perpetual American put
option under geometric Brownian motion given by (3.20). Actually, as we increase

the value of 3, the value of A is increasing. That is the frequency of the jumps of

the Poisson process is increasing by which the Brownian motion will be obtained in
the limit.

Similarly, we can show that the limiting case of the model in Section 4.3 is a
Brownian motion in an appropriate manner. For the process {Y(t}}, we also have
(4.40) here. On the other hand, for §,; = 1, the martingale condition (4.33) becomes

c—(A+r-PBc)-fPr=0,

or
A
-r=—. 4.43
1+p (443)
Now, by (4.40) and (4.42), we obtain
cr. g i , (4.44)
1+ 2\1+8

by which in the limit § — e, (4.35) becomes (4.42). Formula 4.42 can also be found

in Merton (1973), Gerber and Landry (1998) and in some textbooks, for example

Lamberton and Lapeyre (1996).
Now, let us illustrate by a numerical example. Suppose the initial stock price

s =100, r = 0.01, 0=0.1 and { =0. Denote the models in Section 4.2 and Section
4.3 by Model I and Model II respectively. Table 4.1 shows V(s;L) in Model I and

Model I for different values of B and K, and compares with P(s;L) under the
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geometric Brownian motion. From Table 4.1, we observe that the values of a

perpetual put option in Model I are quite different from those in Model If when B is
small. As [} becomes larger and larger, the difference becomes smaller. At last when
B — oo, the values of a perpetual put option in Model I and Model II are equal to

those under a geometric Brownian motion.

Tabled.1 Prices of Some Perpetual Put Options

K 90 100 110
beta Model I | Model IT | Model I | Model I | Model I | Model II
2 10.80 11.33 14.81 14.29 19.72 17.62
3 8.91 12.00 12.75 15.47 17.63 19.47
4 8.91 12.10 12.75 15.82 17.63 20.14
5 9.10 12.06 12.96 15.90 17.84 2041
10 9.80 11.66 13.73 15.67 18.62 20.47
20 10.27 11.29 14.24 15.33 19.13 20.21
100 10.69 1091 14.70 14.93 19.60 19.84
1000 10.79 10.81 14.80 14.83 19.71 19.73
10000 10.80 10.80 14.81 14.82 19.72 19.72
o0 10.800 | 10.800 § 14.815 | 14.815 19.719 19.719
Brownian
. 10.800 14.815 19.719
motion
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PART 2 TWO-STOCK CASE
Chapter 5

Pricing Perpetual Options on Two Stocks

Starting from this chapter, we consider the pricing of perpetual options on

two stocks in the rest of this thesis. For a perpetual option, we assume that its payoff

function, given by [1(z, 23), is homogeneous of degree one. Thus, we have

H(zl,zz)=z2n[ﬂ,1] for z; 22 > 0. (5.1)
Z,

Here are some examples. For a Maximum option, its payoff is
M(z,,z,)=max(z,,2,),

the pricing of which will be illustrated in Section 5.3;
(2.2, )= (2~ 2,),

the payoff function for a Margrabe option which is discussed in Section 6.1;
M(z,2,) =z~ 2],

which is the payoff function for a symmetric Margrabe option; and
I1(z,,z,) = min [(z, ~2,), ,kzz] :

the payoff function for a Margrabe option with proportional cap which is analyzed in

Section 6.2.

First of all, Section 5.1 discusses some classical assumptions for option

pricing in two-stock case. Under the assumptions, Section 5.2 discusses a general
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idea of the optimal exercise strategy for perpetual options with homogeneous payoff
functions, which provides a broad base for the pricing of perpetual options ‘on. two
stocks in the following chapters. As an example, Secti(;n 3.3 derives a pricing
formula for the perpetual maximum option on two stdcks. Finally, Section 5.4
illustrates how dividend paying on stocks affects the price of the perpetual maximum

option on two stocks.

5.1 Some Classical Assumptions

First of all, let us consider the classical assumption in which the stock price
process is assumed to be a geometric Brownian motion. Let Si(t) be the price of
stock i attimet,i=1,2. Fori=1, 2, define X;(t) by

Si(t) = Si(0) 5@, t20.
We assume that the process {Xi(t), Xz(t), t=0} is a bivariate Brownian motion

with instantaneous variance o7, o5, drift parameter y,, M, , and corelation

coefficient p.

Let r be the risk-free force of interest, and {; be the constant dividend yield
rate of stock i for i = 1, 2. It is assumed that r, {, and {, are positive constants.

Dividends of amount {,; Si(t)dt are paid for stock i between time t and time t + dt.
We assume that the stochastic process {e'“ec"[Si (t);tZO} is a martingale. The

martingale condition is

E'[e7"e%s, (0| =¢85 (0) (5.2)
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or
B [e—rt+ G+ Xi(:):’: c{).

Thus, we have
B N PN
r+Ci+(l)ui+5(l )o.” {t=0, (5.3)

ie.,

2
* a.
u;=r—Ci-7', (5.4)

for i = 1, 2. Here, the asterisk signifies that the expectation is taken with respect to
the risk-neutral probability measure. Under the risk-neutral measure, {X;(t)} is a
Wiener process with drift parameter p.:‘ which is given by (5.4). The diffusion

parameter of {X;(t)} remains o, under the risk-neutral measure.

5.2 The Optimal Exercise Strategy

Under the non-arbitrage assumption, the price of a perpetual option is the

supremum over all stopping time T of
E[e"T1(S,(1),S,(D) ],
which is the expected discounted value of the payoff, i.e. TI(S(t),S,(0)}), for

stopping time T. Let us denote the price as V(sy, s2), where s, = 5;(0) > 0 and s; =
S2(0) > 0. As pointed out in Gerber and Shiu (1996), the optimal continuation region
(non-exercise region) can be considered as a union of infinite sectors in the first

quadrant of the form
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{s;>0,5,>0[i<s,/s, <¥}.

Here, we consider a single sector which is illustrated in Figure 5.1.

Figure 5.1 Continuation Region and Exercise Region

for a Perpetual Option on Two Stocks

A s S

-— =1
§3
Exercise
region L
Continuation
I(s;.s,) region S
L .
\Y : sy
(81,8551, V) 5,
Exercise
region
I(s,,s,)
- S|
Let us consider an exercise strategy (a stopping time) of the form
T,,=minjt m=u or m=v (5.5)
’ S,(t) S, (1)
for 0 < u <sy/s; < v. The value of this exercise strategy is
V(s;,8,u,v) =E’ [e_rT“'"H(S,(Tu.v),Sz(Tu,v))] . u<sifs<v. (5.6)

It follows from (5.1) and (5.6) that
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V(s;,5,;0,v)=E | e S, (T, )T S‘(T“'"),l : (5.7)
‘ S2(Tu,v)

which is a homogeneous function of degree one with respect to the variables s; and
sz. Thus, by defining

n(z)=T(z1),

we can express formula (5.6) as

V(s 50, v) =1(u) As;, 8550, v)+7(v)B(s, 5,51, V) (5.8)
where
A(s;,8,;u,v)=E’ e Tuvs (T, )1 51T ) =y (5.9)
1:52,4, AL ERY $,(T, ) :
and
B(s,,s,;u,v)=E e S, (T, )1 SilT,) =v (5.10)
[+222 % 2 u,v SZ(TU‘V) . .

Now, our goal is to determine the expectations A(s,,s,;u,v) and B(s,s,;u,V) in
(5.8). These two expectations can be evaluated by considering two appropriate

martingales.

S, (t)
S, (1)

. 0
Consider the stochastic process {e'"Sz(t)( J } . Under the risk-
'z

neutral measure, this process is a martingale if

e "'E’ [e(l —G)Xz(t)+9X|(t)] =1

or
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—r+0u; +(1-0)p, +%820'f +%(1-(—))20§ +8(1-8)ps,0, =0, (5.11)

where ;,1: and l»l; are given by (5.4). It can be shown that (5.11) is a quadratic

equation of 8 and the left-hand side of (5.11) is a convex function of 6. We observe
that this convex function is less than zero for 8 =0 or 0=1. Thus, the quadratic

equation has one root 8, <0and another root 8, >1. For these two roots =9, and

8 =8,, the stochastic process

0
e " Sz(t)( Sl(t)) . with u < s;/s3 <v,
S,(0)
0<(<T

= tuyw

is a bounded martingale. By the optional sampling theorem, we obtain

[=E" [e-rfu +xzm,me(x.(n‘v)—xzm,v))}

el S,(Tu.\,)=u o S;(T,.,) _y e—rTu'v+X2(Tu',,)+6(X,(Tut\,)—Xz(Tu‘,,))
SZ(Tu,v) SZ(Tu.v)

6 0
_ElT S/(T,,) —u e—rTu‘v+X2(Tu‘v)[_l_l_SlJ el S(T,.) _y e—-rTu‘v+X1(Tu.\,)(_ViJ
Sz(Tu,v) Sl SZ(TU.V) Sl

(5.12)
It follows from (5.9), (5.10) and (5.12) that
8 6
(us2 J A(s,555u,v) +(VS2J B(s,,55;u,V) -1 (5.13)
5 $2 5 S3
Since there are two roots 6 =0, and 6=0,, we obtain two formulas
o) 8,
[uszJ A(s,,5531,V) +(vs2] B(s,,5,5;u,Vv) -1 (5.14)
1 §2 S $3
and
50
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0 0
(uszJ : A(s,,sz;u,v)+(vszJ z B(s,s,;u,v) -1 (5.15)

8 S Sy Sy

Thus, A(s,s,;u,v) and B(s;,8,:u,v) can be solved from (5.14) and (5.15), and be

el 92
szvez (E-'-) - sz\fel [-SlJ
vy=—3 = (5.16)

PN

92 Bl
6, S| 8, SI
o) 5

uel vez - uez Vel

expressed as

A(s;,s,5u

and

: (5.17)

B(s|.8550,v) =
respectively. The solution above can be written as a matrix equation

0,
-1 (S [i
[A(sl,sz;u,v)J_[ue' Va,) : 84

B(s,s;5u,v) ¥ B

For 0 <u < 1 < v, substitute expressions (5.16) and (5.17) in the right-hand

side of (5.8) to obtain

8 0, 6, &
A 8| S 8| 5 &[5 P Y
S,V (S—J mspv | S N Bl Bt
2 2 +ﬂ:(\’) 2 2

V(s),55;u,v) =7(u) 5

(5.18)

or
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) (5.19)

1 vel -
V(sk,sz;u,\’)=(“(u) ”(")){ue ez]

92
s
A%
which is a formula for the value of the exercise strategy.

Now, our problem is simplified to finding the maximum value of

V(si,8,3u,v) in (5.18), i.e. the price of the perpetual option on two stocks. We are

to find 4 and v, the optimal values of u and v respectively, that maximize

V(s,,s,:u,v). One method is by the first-order condition

dV(s,,s,;u,v)

—l220 0 7 =0, 5.20
al.l u=i,v=Vv ( )

oV(s,s5,50,v)

_ =0. 5.21
ov u=i,v=7 20

The values of i and v can be determined by solving a system of equations (5.20)
and (5.21). However, it is observed from (5.18) that the function V(s;,85;u,v) is

complicated and it is difficult to find its partial derivatives with respect to u and v.

Let us consider another method by using the high contact or smooth pasting

conditions:
V,, (085,553 0, V) =TI (us,,s,), (5.22)
Vs, (U85,8,:0, V) =TI (Us,,s,), (5.23)
Vs] (vs$,,5,;4,V) =I'ISl (vs,,8,) (5.24)
and
V., (¥85,85:0, V) =TI, (¥s,,5,). (5.25)
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The subscripts of s, or s; signify partial differentiations with respect to s; or s2. Since
there are two variables to be determined, only two equations are required here. Thus,

we can choose any two equations from four smooth pasting conditions above.

5.3 Pricing Perpetual Maximum Options on Two Stocks

In Section 3.4, we have derived a formula for the price of the perpetual
maximum option on one stock. Now, let us consider a more general case, the
perpetual maximum option on two stocks. Its payoff function is

[1(zy, z;) = max(z, z2), Z1,2220.
Such a payoff function I1(z;, z;) is homogeneous of degree one. Thus, we have
I(z,,2,)=2, max{z—;,l}. (5.26)
Our goal is to derive an explicit formula for the price of the perpetual maximum
option on two stocks, S;(t) and Sy(t).

Following from Section 5.2, the value of the exercise strategy of a perpetual
maximum option can be expressed as (5.18) or (5.19). Here, to obtain the price of
the perpetual maximum option, conditions (5.22) and (5.25) will be used since the
right-hand sides of (5.22) and (5.25) are equal to zero in the case of the maximum
option. Apply (5.19) to conditions (5.22) and (5.25} and combine these two

conditions to get

(n(i) n(a))(f:: V:) [ee;: ((11__992';;:}(0 0). (5.27)

53



-1
is non-singular, the
u 2z v 1

. - - |
Since 0 and V are nonzero and the matrix [ o

0,a%" (1-6,)v"

determinant of the matrix [ '

o, | must be zero, i.e.
0,i%" (1-9,)7%

6;(1-8,)a" " v -8, (1-6,)d% ' ¥* =0.

Rearrange the equation above to obtain a relationship between i and v,

92_ 1
_ (MJW : )_ (5.28)

-1 _
(5 (=0)3" .
i% %) {(1-9,)¥™
which can be rewritten as
-1
3/9)" 1) (1-
o 9@ V)e [ e')=0. (5.29)
(@re)* 1) \I-8,

By substituting (5.28) into (5.29) and simplifying, we can obtain an expression for v,

i.e.

-0,/(8,-8,) 8,/(8,-8,)
V= (:B_IJ [ 9, ) ) (5.30)

Hence, the expression for {i can be obtained by replacing ¥ in (5.28) with the right-

hand side of (5.30) and simplifying,

(1-8,)/(8,-9,) (62-1)/(6,-8,)
a:{i) { % ] . (5.31)

1-8,
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For0< i <1< ¥, the price of the perpetual maximum options on two stocks is
S5 if s, /s, <0
V(s),s,:1, V)

if i<s, /s, <V,
5

(5.32)
if s;/s,2v
where u and v are given by (5.30) and (5.31) respectively.

If 4 <s,/sy < ¥,by(5.18), the price can be rewritten as

8, 6, - .9, 8, ~\8; o
5 $) u 51 u >
g 9 I e Ol Y e O
V(SI,SQ_;"];;'): f 8, - 922 +v 3 9
u u u
)6 ON

which can be simplified to

— (5.33)
TERE

by (5.28) and (5.30). By substituting with the right-hand side of (5.28) and

rearranging, the denominator of (5.33) can be simplified to

(6, —1)(1—61)[(%j91 _(gjel]ze_z;ﬁ'

— (5.34)
v
by (5.30). Thus, it follows from (5.33) and (5.34) that
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- 8 9,
V(s,.8,3 i, ¥) = —2 (92—1)(%] +(1-el)(-j°-"—] . (5.35)

8, -0, Vs,

As shown in Gerber and Shiu (1996), four equivalent formulas for the price

of the perpetual maximum option have been derived. Formula (5.35) is the same as
formula (8.15) in Gerber and Shiu (1996) if ¥, 8, and 6, are replaced by b, 0, and
8, respectively. By (5.30) and (5.31), formula (5.35) can be rearranged and

simplified to

E;I 92
V(s,,55:0,¥) = —2 92[.8') —9.[75'—J , (5.36)
6, -9, us, us,

which is the simplest among four equivalent formulas shown in Section 8 of Gerber

and Shiu (1996).

54 Some Special Cases of Dividend Paying

With the definition of w; and {;, quadratic equation (5.11) can be rewritten

as
a0 +b0+c =0,

two roots of (5.11), 6, <0 and 8, >1, can be expressed as

_~b- b? —4ac

0 5.37
: 2a ( )
and
—b++b? -4
0, = b —dac (5.38)

2a
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where

1 1 1 1
a =—2—c,2 +50§ ~p0,0, =—2—(012 +05 —2p0,02)=EVar[Xl(1)—X2(I)] :

b=llr—l~*;_0%+p‘3|02 =, -a
and

« 1

It is assumed that , > 0 and , > 0 in the classical assumption. Now, let us see

what happen if this assumption is relaxed. Some extreme cases are considered here.

Case I: Consider {; >0 and {, = 0. Here, stock 2 pays no dividends. We observe
that b=-C, ~a and ¢ =0. It follows from (5.37) and (5.38) that
6,=0 (5.39)
and

92=‘—b=1+5. (5.40)

D

For 0,=0 , the stochastic process {e'“Sz(t)(glig)} readily
2

t

becomes {e"”Sz(t)}l>0 which is a martingale as {, = 0. It follows from

(5.30), (5.31), (5.39) and (5.40) that
i=0 (5.41)

and
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1

D
™~

o

5 =1+ —, (5.42)

which means that as Cz tends to 0, v tends to l+i. By the definition of
1

the stopping time given by (5.6), for the boundary G =0, the perpetual
maximum  option will never exercise since the price ratio of stock 1 to
stock 2 will never  fall to the level 0. Now, by (5.35), (5.39), (5.40) and

(5.42), it 1s observed that

8,
V(st,sz;ﬁ,ﬁ)z%—[(62—1)+(_—S’—] }

<!

as, sy

Gifa
=TS0 ’82+C]+a ((€1+a)SZJ (5.43)

Case II: Consider {; =0 and {, > 0, i.e. stock 1 pays no dividends. Now, we get

b=(,-a, 9,'=——C—2 and 6, =1. By (5.31), we have
a

Q , O S .

Hence, by (5.36), we obtain

9:I
V(s,,8,;0,V) = 52 -_SL -9, f—‘
1-6,1 as, us,
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~{,/a
5, -2 [(gf’a)s'] . (5.44)

Cz+a Czsz

as ;>0

It is observed that as {, tends to 0, ¥ tends (o oo: which implies that the

perpetual maximum option will never exercise.

Case [II: Let us consider the case that both stock 1 and stock 2 pay no dividends, i.e.

£, =0and {, = 0. Following from (5.37) and (5.38), it is obvious that

=0. And it follows from (5.33),

<] =

8, =0 and 0, =1. By (5.28), we obtain

(5.39), (5.40) and (5.42) that

- 6,
- - S,V S
V(s,,5,;0,V) P )é ,i(ez-l)+(—‘7—sl—J J
2 2

s, {(e2 -1)s, ]92

> 8, +
=G0 Lo0 S TS (5.45)
In this case, the perpetual maximum option will never be exercised.,
Case IV: Consider the case that {, = C,. Since b = — a, it follows from (5.37) and

(5.38) that ©,+8, =1. By (5.30) and (5.31), @ and ¥ can be simplified to

=
-9,

_]/(l‘zel)
[ -9, J (5.46)

and
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<|I!-—~

1/(1-28,)
- _el
= — = 47
u (I-B,J (547

Thus, it follows from (5.35) and (5.46) that

i g, 1/1-20)) % oo
V(SlaSZ;ﬁ’{')z 1—558 ’:(-Bl) " (l_el)l 81] !:[—SSH;_J +(SS—;J ‘
l

Now, let us illustrate by a numerical example for Case I and Case I1. Suppose
that the initial prices of stock 1 and stock 2 are 100 and 95 respectively; r = 0.1,

0,=0.2, ,=0.1 and p=0.5. We want to check the limits (5.42) and (5.43) in
Case I and (5.44) in Case II. Tables 5.1 and 5.2 show V(s,,s,;u,V) for different
values of {, and T, respectively, and compare with the limits in Case I and Case II.

We observe from Table 5.1 and Table 5.2 that V(s,s,;d, V) increases when
either £, or {, decreases. In Table 5.1, as {, is very small and approaching 0, the
values of v and V(s,s,;1,¥) are approaching those calculated by (5.42) and (5.43)
in the last row. Similarly, when £, is very small and approaching 0, the value of

V(s,,5,;4, V) is approaching that calculated by (5.44) in the last row of Table 5.2.
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Table 5.1 Price of the Perpetual Maximum Option

for Different Values of {,

Gy Ca 9, 0, i v V(s,,55:1,7)
0.03 0.02 -0.591 2.257 0.745 1.295 104.420
0.03 0.015 0414 2414 0.707 1.319 105.122
0.03 0.0t -0.257 2.591 0.652 1.350 106.097
0.03 0.005 -0.120 2.786 0.555 1.397 107.623
0.03 0.001 -0.023 2.956 0.354 1.464 110.009
0.03 0.0005 -0.011 2.978 0.286 1.478 110.558
.03 0.00001 0.000 3.000 0.079 1.499 111.380
0.03 0.0000001 | 0.000 3.000 0.017 1.500 111.415

In the limiting case as {, tends to O:
0.03 0 I 0.000 3.000 0.000 1.500 111,415
Table 5.2 Price of the Perpetual Maximum Option
for Different Values of C,
C! gz el 92 ﬁ {" V(Sl,Sz;ﬁ,{')
0.03 002 | -0.591 2.257 0745 | 1.295 104.420
0.025 0.02 -0.667 2.000 0.731 1.337 105.085
0.02 0.02 -0.758 1.758 0.716 1.397 105.929
0.01 0.02 -1.000 1.333 0.673 1.641 108.632

0.005 0.02 -1.155 1.155 0.639 2.000 111.189

0.0005 0.02 -1.314 1.014 0.585 4.636 116.406
0.000001 0.02 -1.333 1.000 0.571 64.364 118.021

0.00000001 0.02 -1.333 1.000 0.571 463.151 118.030
In the limiting case as {, tends to 0:
0 | 002 | -1.333 1.000 0.571 o0 118.030
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Chapter 6

Pricing Perpetual Margrabe Options

In 1978, Margrabe (1978) extended the Black-Scholes theory of option
pricing and derived a closed-form formula for the price of a European option to
exchange one asset for another driven by geometric Brownian motion. Such option
is called Margrabe option or exchange option. The Margrabe option was originated
from currency option which gives the holder the right to exchange one currency for
another at a prearranged exchange rate on a specific date. Magrabe options have
many applications in many fields, e.g. banks, fund companies and insurance
companies. Consider a life insurance company holding a fixed-rate asset has agreed
to pay a floating-rate interest to annuity policyholders. The company may use a
Margrabe option to convert its floating-rate liability to fixed-rate liability, which can
protect it from an increase in the floating rate without changing the cost for its asset.
The main advantage of these options is that they allow investors more efficient
transter of risk and greater flexibility in managing portfolio.

The payoff function of a Margrabe option is

Iz, 22) = (z) ~ 22) » = max(z, ~ 22, 0), 1z, 2, >0, (6.1)
which can be rewritten as

Iz, 2;) = max(z,, z) — 2, (6.2)
where max(z;, z;) is the payoff function of a maximum option. Thus, under the same
assumptions and with the same maturity date, the price of a European Margrabe

option is equal to the price of a European maximum option minus the expected
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discounted value of stock 2. However, this relationship is not true for their American
counterparts, except for the case that stock 2 pays no dividends. It is discussed in

details later in this chapter.

6.1 Standard Perpetual Margrabe Options

In this section, our goal is to derive a closed-form foﬁnula for the price of a
perpetual Margrabe option, i.e. American Margrabe option without expiry date. A
key for the problem is to determine the stopping time which is equivalent to
determine the optimal exercise boundary. For two stocks Si(t) and Sy(t), by

assuming the homogeneity of the payoff function given by (6.1), we have’

_ S5 _
H(S,(t),Sz(t))—Sz(t)max[s > 1,0). (6.3)

2

Now, it is sufficient to consider the stopping time of the form

SO _
S0 M}, 6.4)

T,, = min {t

S,(0) s . . . .
S0 s, < M . The exercise strategy is to exercise the option as

2 SZ

where M >1 and

soon as the ratio of the prices of stock 1 to stock 2 rises to a level M for the first time.

Thus, the value of this exercise strategy Twm 18
V(s;.5,;M)=E’ [e“"“ [1(S,(Tyy ). S, (T, ))} , ©6.5)

where r is the constant risk-free force of interest. See Figure 6.1.
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Figure 6.1 Continuation Region and Exercise Region

for a Perpetual Margrabe Option

A S,
Continuation S _ M
region S,
V{s.5,;M)
Exercise
region
I(s,s,)
s
. 5(Ty,) .
Since =M>1, it follows from (6.3) and (6.5) that
S,(Ty,)

S,(T,,)
S,(Ty)

M(S,(T,,),S,(Ty)) =SZ(TM)max( —1,0): (M-1)$,(T,,) (6.6)

and
V(s,,5,;M) =5, (M~ DE" [e"TM”z(T“’]. 6.7)

Thus, the problem is simplified to finding the value of the expectation

E [e—rTM +X3(Ty) ]
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0
Let us consider a stochastic process e "' Sz(t)(:'it;) } . If this process
t
2

is a martingale, the martingale condition is given by (5.11). There are two real roots

0, <0 and 6, >1 for the quadratic equation (5.11). For the positive root 8,, the

(1)
S,(1)

82
stochastic  process {e‘”Sz(t)[ J } is a martingale. Note that
1<

st=ly

SO

8,
lim,_.e"'S,(t)=0 almost surely, and ( )J is bounded above by M % for

2

t<T,, . (See page 308 of Gerber and Shiu (1996).) Thus, we can apply the optional

sampling theorem to obtain

0,
= [e—rTM + Xp{Tyy) + 82X (Tyy) —X,_(TM))] -F !e—rTM+X2(TM) (Ms2 ] }
§

or

i
Et[e_ﬂmxz(m):':[l\;; Jz_ 6.8)
2

It follows from (6.7} and (6.8) that the value of the exercise straiegy Tm is

8,
V(sl,sz;M)=sz(M—l)(I\:; ] . 6.9)
2

For the optimal exercise strategy, the price of the perpetual Margrabe option
is the maximum value of (6.9). Let us seek M which is the optimal value of M that

maximizes V(s,,s,;M). By the first-order condition, we have
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or

6,

. 6.10
0, -1 (€19

M=

Thus, for SLeMm . it follows from (6.9) and (6.10) that the price of the perpetual
s, :

~ S, * 8, -1 !
V(s,5,:M) = 9— -S—— . (6.11)
2 2

Now, let us compare the price of a perpetual Margrabe option with that of a

Margrabe option is

perpetual maximum option under the same assumptions, i.e., compare formula (6.11)
with (5.35). The difference between the prices of these two perpetual options can be

obtained by subtraction, t.e.,

V(s,,s,;4, G)—V(S,,SZ;M)

s,V s, ) s ) s Y2 (e, -1)*"
-2 1| 2w — i {2 2
_92‘91 [(92 1)[{’52] +(l 91)({'52] } (GJ [ S2 ] . €12

The above formula is a bit complicated. A simpler form can be obtained in

the special case that stock 2 pays no dividends, i.e. {, = 0. In this case, we have

E)2=1+é
a

where

a =—;—(c5,2 +03 —2pclcrz).
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By (6.11), we have

as 1+, /a C L
V(51’322M):(a_+lC—J (j]
! 2

or

Ci/a
N = 351 Cisy
V(s,,5,; M) Q,+a[(Cl+a)Sz) ) (6.13)

Thus, it follows from (5.43) and (6.13) that the difference between the price of a
perpetual Margrabe option and that of a perpetual maximum option is
V(8,.8,;8,¥) = V(s,,5,; M) =5,, (6.14)
which is the expected discounted value of stock 2, i.e. the initial price of stock 2.
Note that the call and put options on one stock are special cases of the
Margrabe option. Considering the payoff function of a Margrabe option, if Sx(t) is

replaced by a constant K in the payoff function, we obtain
[1(S,(1) =(S,(1H-K),
which is the payoff function of a call option on one stock. One the other hand, if we

replace S;(t) by a constant K in the payoff function, we have
(S,(0) = (K-S,0), .
which is the payoff function of a put option on one stock.

Now, let us illustrate by a numerical example. Suppose that the initial prices

of stock 1 and stock 2 are 100 and 95 respectively; r = 0.1, ¢, =0.2, o,=0.1 and
p=0.5. Table 6.1 shows the value of V(s;,s,;M) for different values of {,. By

comparing the last row of Table 5.1 with that of Table 6.1, we observe that as (,
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tends to 0, the difference between the prices of the perpetual maximum option and

the perpetual Margrabe option is 95 which is exactly the initial price of stock 2.

Table 6.1 Price of the Perpetual Margrabe Option
for Different Values of {,

& &, 6, M V(s,,5,;M)
0.03 0.02 2.257 1.795 22.640
0.03 0.015 2414 1.707 20.906
0.03 0.01 2.591 1.629 19.278
0.03 0.005 2.786 1.560 17.778
0.03 0.001 2.956 1.511 16.677
0.03 0.0005 2.978 1.506 16.545
0.03 0.00001 3.000 1.500 16.418
0.03 0.0000001 3.000 1.500 16.415

In the limiting case as {, tends to 0
0.03 0 3.000 1.500 16415

6.1.1 Alternative Derivations for the Pricing Formula

Alternatively, the optimal exercise boundary and the pricing formula for the
perpetual Margrabe option can be obtained by two other methods. One alternative
method is folrlowing the optimal exercise strategy in Section 5.2. The value of the

exercise strategy to exercise the perpetual Margrabe option in two boundary levels

can also be expressed as (5.18) or (5.19). Since we have n(u)=0 and n(v)=v-1,

it follows from (5.18) that
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8, o,
szue' Ll —szuel 2
S2 5y
V(s;,8,;u,v) =(v-1)

81 | 9I
(2] (2
=(v-1)—=2 2/ (6.15)

NN

Note that the lower optimal exercise boundary is i=0. Since 0, <0 and
8, >1 are two roots of (5.11), it follows from (6.15) that

9,
51
V(s;,85:0,v) = (v-1)—2L 6.16)

dV(s,,s,;0,v)

v -
V=

which is a function of v. By the first-order condition =0, we can

obtain an expression for the optimal value of v that maximizes V(s,,s,;0,v) as

V= , (6.17)

which is the same as M in (6.10). Hence, by (6.16) and (6.17), we can obtain an
expression for the price of the perpetual Margrabe option V(s,,s,;0, V) which is the
same as V(s;,s,;M) in (6.11).

Another alternative method 15 discussed in the following. Let us rewrite the

payoff function of the standard Margrabe option as

S, (t
I1(S,(1),S,(1)) =Sl(t)max[l— S?((t)) ,OJ. (6.18)

We consider the stopping time of the form
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T, =min{t ’ ?zN}, (6.19)

where 0 < N < 1. Now, the exercise strategy is to exercise the option as soon as the
price ratio of stock 2 to stock 1 falls to a level N for the first time. The value of this

exercise strategy can be expressed as (6.5) where M is replaced by N.

Since §-2(T—“) =N<1, we have
I(TN
T1(S,(Ty),8,(Ty)) = (1-N)$,(Ty), (6.20)

and the value of the exercise strategy T, is
V(sl,sz;N)=sl(1—N)E"[e"T”*X'(T"’]. (6.21)
The expectation on the right-hand side of (6.21) is to be determined.

5O

Consider a martingale of the form Je™"" S,(t)(
§,(t)

3
] } . The martingale
tz0

condition is
) .1 1
—r+Eu, + (1-E)p, +—2—§20§ +-2-(1—§)2cs,2 +E(1~E)po,0, =0, (6.22)

which is the same as (5.11) if £=1-6. Since there are two roots for (5.11), i.e.,

0, <0 and 8, > 1; there are also two roots for (6.21), € =1-0,>1 and

§,=1-6,<0 . For the negative root &, , the stochastic process
5,0

e'”Sl(t)(Sz(t)] is a martingale. Since lim,__e™"'S;(t)=0 almost
! 01Ty
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52
surely, and [iz—an is bounded above by N2 for t<Ty, the optional sampling

theorem can be applied to obtain

3}
_E |:e—rTN + X T+ Ey( Xy (Ty) - X,(TN)]:I -E e_rTN+ X (Ty} [ Ns, J

$2

or

£y
E' [e-r'rwxl('rn)]:(l\sr_l;) . (6.23)
i

Substituting (6.23) in the right-hand side of (6.21) yields

€2
V(s 5, N) =5,(1- N)[I—E—] . (6.24)
1

Now, it is ready to find the price of the perpetual Margrabe option which is

the maximum value of (6.24). V(s,s,; N} can be viewed as a function of N. Hence,

the price can be obtained by determining the optimal value of N, denoted by N,

which maximizes V(s;,s,;N). By the first-order condition, we have

R=—o2 (6.25)
1-§,
Thus, for LN , by (6.24) and (6.25), the price of the perpetual Margrabe option is
E)
. s |"E_,2 —é -E-JZ
V(s;,s,;N) = [—'—J (——ZJ (6.26)
1-¢&, 53

which is the same as (6.11) since &, =1-6,.
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6.2  Perpetual Margrabe Options with Proportional Cap

As discussed at the beginning of this chapter, Margrabe options have many
uses. They are common in financial markets. Based on the standard Margrabe option,

we introduce an option with a payoff function of the form
0(z,2,) =min|(z,-2,), .kz, |, m,22>0, (6.27)
where k > 0 is a constant and (z, —z_z)+ is the payoff function of a standard

Margrabe option. This option is called a Margrabe option with proportional cap kz,.

The option with cap is designed to limit the payment amount. Obviously, the payoff
of this option is always less or equal to the payoff of a standard Margrabe option.

For a capped Margrabe option on two stocks S,(t) and S, (1), its price is the
supremum of
E[eTTI(S, (T),8,(T)]

over all stopping time T. It is crucial to determine the stopping time T which is
equivalent to determine the exercise boundary of the option. Once we have
determined the optimal exercise boundary, it is straightforward to obtain the price of
the option. Our goal is to derive an explicit formula for the price of a perpetual
Margrabe option on two stocks Si(t) and Sx(t) with proportional cap kS(t).
According to Broadie and Detemple (1997), the immediate exercise
boundary of an American Margrabe option with proportional cap kSy(t) is the
minimum of the exercise boundary of an uncapped Margrabe option and | + k. This
is shown later. Broadie and Detemple (1997) also represented the value of a capped

American Margrabe option in terms of the value of its uncapped counterpart and the
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payoff at the cap. However, they had not derived a closed-form solution for the
optimal exercise boundary of a capped American Margrabe option since the optimal
exercise boundary of an uncapped American Margrabe option has not been
determined. Although the exercise boundary of an American Margrabe option is
difficult to determine, however the exercise boundary of a perpetual Margrabe
option is comparably easy to observe. The optimal exercise boundary of a perpetual
Margrabe option is constant through time. Section 6.1 has derived a closed-form
formula for the optimal exercise boundary of a perpetual Margrabe option. Thus, the
optimal exercise boundary of a perpetual Margrabe option with proportional cap can
also be obtained.

Since the homogeneity of the payoff function H(zl,zz) given by (6.27), it

can be rewritten as

I'I(z],zz)=min[z2 max(-z—l—l,O] : kz{l
z

2

=z, {min [max(z—',l}nk]—l}. (6.28)
Zy

Let us consider the payoff function I1(S(t),S,(t)) of a Margrabe option with

broportional cap kS,(t). It is sufficient to consider the stopping time of the form

T, =min<t S10) =m (6.29)
S,(t)
S0
for SI—EO)) =% < m. The exercise strategy is to exercise the option as soon as the
2 S2 :

stock price ratio rises to a level m for the first time. As shown in Figure 6.2, for
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m < 1+k, the shaded region is the exercise region. The value of exercise strategy

T is

m

V(s,,5p;m) =E’ [e‘”’" n(s,(1,).5,(T. ))] . (6.30)

Figure 6.2 Continuation Region and Exercise Region

for a Perpetual Margrabe Option with Proportional Cap

A s

. . —=m
Continuation S5
region

s
V(s;,5,;m) o1+k

It is observed from (6.28) that m should be larger than one; otherwise the

S (T,
payoff of the option will be zero. Since St ET"’)) =m >1, it follows from (6.28) and
2 'm
(6.30) that
I'I(S,(Tm),Sz(Tm))={min[m,l+k]~1}Sz(Tm) 6.31)
and



V(sl,sz;m):sz{min[m,1+k]ml}E*[e"r1‘m+x2(Tm]]. (6.32)
Now, the problem is simplified to finding the value of the expectation

E [e_rT"’dz(T"’)J. Similar to the derivation of E'[e_rme’(T”)] as shown in

. . . T+t X[ Ty
Section 6.1, we can obtain an expression for E’ [e ‘ o )] as

8,
£ [e»rmxzhm)] z[-s'—J , (6.33)

where 0, is the positive root of the quadratic equation (5.11). Thus, the value of the

exercise strategy T is

82
V(sy,sp;m) =5, {min[m,l+k]—1} (i] , (6.34)
ms,

which is illustrated by a numerical example later in this section.

Since k is constant, we seek the optimal value of m, denoted by m, that

maximizes V(s,,sz;m) which can be considered as a function of m. Hence, we can
obtain V(sl,sz;rﬁ) which is the price of a perpetual Margrabe option with

proportional cap. Normally, the optimal value of m can be obtained by the first-order

condition. However, the function V(s,,s,;m) given by (6.34) is a bit complicated,
Let us discuss the function V (s;,s,;m} first.
It is obvious that there are only two possible values for min[m,1+k] , L.e.,

1+k and m. Considering min[m,1+k]=1+k, by (6.34), we have
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GZ
V(spsznn)=ksz(—ﬂ—J (6.35)
ms,

which is a decreasing function of m. Since min[m,l+k]=1+k implies that

mz1l+k, it follows that the optimal exercise boundary is m=1+k . Thus, for

e » the price of a perpetual Margrabe option with proportional cap is
53

9,
V@ﬁﬁﬁk&%(aﬁa:), (6.36)
2

in which the option is exercised at the cap.
On the other hand, for min[m,(+k]=m, it follows from (6.26) that

9,
V(sy.5,:m)=s, (m—l)[——sl—] (6.37)

ms,

in which by applying the first-order condition, we obtain the optimal exercise
boundary of a perpetual Margrabe option with proportional cap as

92
0,1

= =M (6.38)

where M is the optimal exercise boundary of a perpetual uncapped Margrabe option.

Thus, for IR M, the price of a perpetual Margrabe option with proportional cap 1s
83

8,
V(s,s,:m0) =5, (1\71—1) [-1\%—} (6.39)
2

which is the same as a perpetual uncapped Margrabe option under the same
assumptions. Note that to obtain (6.39), we should make sure that m=M<l+k;

otherwise, for M >1+k , we will obtain (6.36).
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We conclude from above that the perpetual Margrabe option with

proportional cap is exercised either at the cap or on the optimal exercise boundary of
a perpetual uncapped Margrabe option. Since we have either m=M if M<1+k, or
f=1+k if 1+k<M , the optimal exercise boundary of a perpetual Margrabe

option with proportional cap can be expressed as
m=min{M,l+k}, (6.40)
which has been proved by Broadie and Detemple (1997).
Now, we consider another capped Margrabe option with payoff function
M(z).2;,) =min[(z,-2,), .kz, |, 21, 2>0, (6.41)

which is obtained by replacing the cap kz; in (6.27) by kz,. By the assumption of

homogeneity of degree one for the payoff function, (6.41) can be rewritten as

M(z,.2,) =2, min|:(l——z-—2-l ,1—(1—k)}. (6.42)

Z)

For an option with this payoff, it is sufficient to consider an exercise strategy

(stopping time) that exercises the option as soon as the price ratio of stock 2 to stock

1 falls to a level n for the first time. The exercise strategy can be denoted as T, and

in the form of (6.19) if N is replaced by n, for 0 < n < 1. Thus, the value of exercise

strategy T, is V(s;,s,;n) and can be expressed as (6.5) where M is replaced by n.

In order to derive an explicit expression for V(sl,sz;n), we need to simplify

=n <1,we have

an expectation. Since
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r(s,(T,).8; (T.)) =S (T, )min[i-n . k]. (6.43)
Hence, V(s,,s,;n) can be simplified to

V(s;.5;n) =s,min[l1-n , k]E*[e"T"*X‘(T")]. (6.44)
The expectation on the right-hand side of (6.44) can be derived in the same way as

for E [c_rwa’(T")} in Section 6.1.1. By replacing N by n in (6.23), we obtain a

simple expression for E' [e_rTn+ X’(T“):| . Substitute the expression in (6.44) to get

&
V(s,8,30) =s, min[1-n, k](—sz—] . (6.45)
ns,

It remains to seek the maximum value of V(s,,sz;n).

Let us consider V(s,,s,;n) as a function of n and determine the optimal
value of n that maximizes the function. Since there are two values for min [1— n, k]
in (6.45), function V(s,,5,;n) can be distinguished into two situations. For

min{l-n, k] =k, it follows from (6.45) that
s, )P
V(sl,sz;n)=ksl(—2-] , (6.46)
ns,

which is an increasing function of n. It implies that n <1—k in this situation. Thus
the optimal value of n is i =1-k and the price of the perpetual capped Margrabe

option with payoff (6.41) is

&
. s S, _ -
V(S"Sz;n)zksl((l—;)sl] , for s—;— > 1. (6.47)
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In this situation, the option is exercised at the cap.

For another value min[l—n , k]=1-n, we have (6.24) if n is instead of N.

Finally, we obtain n = N where N is given by (6.25). And the price of a perpetual
Margrabe option with proportion cap k5)(t) is the same as the price of a perpetual
uncapped Margrabe option given by (6.26). It turns out that the option is exercised at
the optimal exercise boundary of a perpetual uncapped Margrabe option. To make
this result feasible, we must check for N>1-k. If N <1-k, it goes to the result in
the previous situation.

From the above, we conclude that if N>1-k, we have ii= N ; else, we
have fi =1-k. Thus, a perpetual Margrabe option with proportional cap kS;(t) is
exercised either at the cap or on the exercise boundary of its uncapped counterpart.
Its optimal exercise boundary can be expressed as

i =max{N, 1—_k}, (6.48)

which is illustrated in Section 6.2.1.

6.2.1 Numerical Examples

Now, we illustrate by some numerical examples. Suppose that the initial

prices of stock 1 and stock 2 are 100 and 95 respectively; r=0.1, 6,=0.2, 6, =0.1,
p=0.5, {,=0.03 and {, =0.02. Under these assumptions, we obtain M=1.795.

The values of the exercise strategy T ., given by (6.34), for different values of m

and k are displayed in Table 6.2 and Figure 6.3. As shown in Table 6.2, the
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maximum value in each column is shaded. Actually, these shaded values are the
prices of the perpetual Margrabe option with proportional cap kS»(t) for different

values of k. We can also observe from Table 6.2 and Figure 6.3 that for k = 0.4 and
k=06,1e. 1+k< M , the maximum value is obtained when m reaches 1+k; for k =
08,10and 1.2,1e. 1+k> M, the maximum value is obtained -when m reaches M.
Similarly, for a perpetual Margrabe option with proportional cap k5(t), we
can also calculate the values of the exercise strategy T, for different values of n and
k, which are displayed in Table 6.3 and Figure 6.4. The maximum value in each
column is also shaded. Here, N =0.557 . We observe from Table 6.3 that whenever

1-k < N, the option is exercised at the boundary N.

Table 6.2 Values of the Exercise Strategy T, in (6.34)
for Different Values of m and k

m\ k 0.2 0.4 0.6 0.8 1.0 1.2
1.1 86015 | 86015 | 8.6015 | 8.6015 | 8.6015
1.2 [HIGsTE| 14.1351 | 14.1351 | 14.1351 | 14.1351 | 14.1351
1.3 117986 | 17.6979 | 17.6979 | 17.6979 |17.6979 | 17.6979
1.4 90811 |ERIO9GI2a 19.9622 | 19.9622 | 19.9622 | 19.9622
1.5 8.5417 170833 | 213541 | 213541 |21.3541 | 213541

1.6 73837 | 147673 [gB2H510% 22.1510 |22.1510 | 22.1510
1.7 64393 | 128786 | 193179 | 22.5376 |22.5376 | 22.5376
1.8 56598 | 113197 | 169795 | 22.6393 |22.6393 | 22.6393
1.9 50096 | 10.0191 | 15.0287 | 20.0382 |22.5430 | 22.5430
2.0 4.4618 89237 | 13.3855 | 17.8473 |22.3092 | 22.3092
2.2 3.5981 71963 | 10.7944 | 14.3925 | 17.9906 | 21.5888
2.4 2.9565 59130 | 8.8694 | 11.8259 |14.7824 | 17.7389
2.6 24678 | 49355 | 7.4033 | 9.8711 |12.3389| 14.8066
2.8 20876 | 41753 | 62629 | 8.3505 |10.4382| 12.5258

M 5.6931 56931 | 17.0793 D2 600505 630500 0100
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Figure 6.3 Value of V(s, s:; m) as a Function of m
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Table 6.3 Values of the Exercise Strategy T, in (6.45)

for Different Values of n and k

n\k 0.2 0.4 0.6 0.8 1.0 1.2
0.10 1.1795 23590 | 35386 | 4.7181 | 53078 | 5.3078
0.15 1.9639 39277 | 58916 | 7.8554 | 83464 | 83464
0.20 2.8197 56394 | 84590 | 11.2787 |11.2787 | 11.2787
0.25 3.7329 74658 | 11.1988 | 13.9984 | 13.9984 | 13.9984
0.30 4.6947 93894 | 14.0840 | 164314 | 164314 | 164314
0.35 5.6988 113975 | 17.0963 | 18.5210 | 18.5210 | 18.5210
0.40 6.7406 13.4811 | 202217 | 202217 | 202217 | 202217
0.45 7.8165 15.6330 | 21.4953 | 21.4953 | 21.4953 | 21.4953
0.50 8.9237 17.8473 | 223092 | 223092 | 22.3092 | 223092
0.60 112228 [EOOUA56RE 22.4456 | 22.4456 | 22.4456 | 224456
0.70 20.4346 | 20.4346 | 204346 | 20.4346 | 20.4346
0.80 [@l6il13>as 16.1135 | 16.1135 | 16.1135 | 16.1135 | 16.1135
0.90 9.3428 93428 | 93428 | 93428 | 9.3428 | 9.3428
0.95 5.0000 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000
N 102210 | 204420 [HP2763955 38997630558 2563953
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Chapter 7

Pricing Perpetual Dynamic Fund Protection

Up to now, we have derived explicit formulas for several perpetual options
on one stock or on two stocks. In practice, options can be acted as protection tools.
For éxample, for a investor who holds a certain amount of a stock, he may buy a
European put option to protect himself from suffering a great loss due to an
unexpected drop of the stock price. However, a drawback for a put option is that its
holder has little hope of having more than K at the expiry date. In this situation,
dynamic protections can provide a better protection to the investor.

In this chapter, we discuss the dynamic fund protection which was proposed
by Gerber and Pafumi (2000). The concept is that the primary fund is upgraded to a
protected fund. It guarantees that the protected fund does not fall below a guaranteed
level at all time on or before the expiry date. The dynamic fund protection has also
been investigated in a number of research articles. Imai and Boyle (2001} studied the
protection in which the primary fund price follows a constant elasticity of variance
(CEV) process. Explicit pricing formulas for European protections and perpetual
protections have been derived by Gerber and Shiu (2003a, 2003b). As a discussion,
Yu (2003a) provided an alternative evaluation of the expectation (89) which is the
price of a European protection in Gerber and Shiu (2003a). For numerical analysis,
Fung and Li (2003) illustrated the pricing of dynamic fund protections under discrete
monitoring. Recently, Chu and Kwok (2004) investigated the price of the dynamic

fund protection by considering its reset and withdraw righ_ts.
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As studied in Gerber and Pafumi (2000), the guaranteed level for .':in
investment fund was considered to be constant in all times. Gerber and Shiu (2003b)
suggested that the guaranteed level is not necessarily constant or exponential, but
can be stochastic. They considered the guaranteed level as a stock price or stock
index. This chapter considers the guaraniee level as a stock price and expresses the
dynamic fund protection in terms of two stocks. Our goal is to derive a pricing
formula for a perpetual dynamic fund protection by the exercise strategy stated in

Section 5.2.

7.1  Derivation of the Pricing Formula

Let S;(t) and S,(t} be the prices of stock 1 and stock 2 at time t, t=20. We
assume that the stock price process is a geometric Brownian motion. Let us define

the time-t value of the upgraded fund as follows

~ 3 S5,(1)
Sz(t)—Sz(t)max{l,org?;(l——a—sz(r)}, for t20, 7.1)

This can be viewed as the payoff function of a dynamic fund protection option. Here,
S1(t) and S,(t) can be viewed as the guaranteed level at time t and the time-t value of
the primary fund respectively. Note that the payoff is path-dependent which is
different from those path-independent payoffs discussed in the previous chapters,
because the payoff depends on the maximum value of the stock-price ratio during

the monitoring period in the option life.
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We assume that 5,(0} < S;(0), 1re. ?—Eg-;—d. At time 0, the value of the

2

protected fund is equal to S3(0). Since

max {1, max —S—@}Zl, (7.2)

We always have gz (t) =S, (t). With the guarantee, the time-t value of the protected

fund is prevented from falling below the guaranteed level Sy(t). Similar to the
interpretation of (2.1} in Gerber and Shiu (2003b), (7.1) can be interpreted as follow.
Whenever the value of the protected fund threatens to fall below the guaranteed
level, just enough funds Will be added to prevent this from happening.

The price of a protected fund, i.e. the price of an option with payoff function

(7.1), is the supremum of
B[ $,(D)]
over all stopping times T, where r is assumed to be the constant risk-free
force of interest. Here, the price is denoted by V(s,.s,), where s; = §,(0) > 0 and s,
= 8,(0) > 0. Note that V(s,,s,) is homogenous of degree one.

As proposed in Section 5.2, we obtain a general form of the exercise strategy

for a perpetual option on two stocks with a homogenous payoff function. That is to

consider the exercise strategy in the form of T,, given by (5.5) in which to

exercise the option as soon as the stock-price ratio falls to a level u or rises to a level

v for the first time. The value of this exercise strategy is V(s,,s,;u,v) which 1s
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given by (5.6). The exercise strategy T, , can also be applied here. Thus, for the

perpetnal dynamic fund protection, the value of the exercise strategy is

| o Tun 5,(1)
V(s;,5,;u,v)=E l:e Ty, S,(T, ,)max {l'osr?sa?u‘v S;(T)H' (7.3)

Following from Section 5.2, by the definition of A(s,,s,;u,v) and
B(s,,s,;u,v) in (5.9) and (5.10), we can express (7.3) as

V(s,,5550,v) = V{(u,1;u, V) A(s),8530, V) + Vv, Eu, v)B(s;, 85,0, V) (7.4)
Here, A(s,,$,;u,v) and B(s;,s,;u, V) can be solved and expressed as (5.16) and

(5.17).

Similar to the derivation of @ and ¥ in Chapter 5, we can also obtain the
relationship between i and v. Does this mean that the expressions of the optimal
exercise boundaries for a perpetual dynamic fund protection option are the same as
those for a perpetual maximum option on two stocks? The answer is No because
there are more restrictions on the exercise region for the dynamic fund protection. It
will be explained in the following.

If we compare (7.1) with (5.26) which is the payoff function of a maximum
option on two stocks, we observe that although they look quite similar; however, we

always have

max 5,(0) > Sit)
0<r<t S, (T) S,(t)

which reveals that the dynamic fund protection is more expensive than the maximum

option.
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: S . N o
Attime 0, we have —- <1 by assumption. The continuation region is
§3

{(s,,sz)|V(sl,sz)>s2}. (7.5)

Since V(s,,s,) is a homogenous function of degree one, it follows from (7.5) that

{(sl,sz) V(:—;,I)M}.

s . : : s
Because V(-—-’—, l] is a non-decreasing function of -, we have

o)

for some w where 0 <m<1. On the other hand, we know that the value of the

LIS m} (1.6)

5,

protected fund is prevented to fall below the guaranteed level. Whenever the price of
stock 2 reaches the price of stock 1, the dynamic fund protection option will be
exercised. It follows from (7.6) that the continuation region for the perpetual

dynamic fund protection is -

{(s.,sz)

Thus, for the perpetual dynamic fund protection, the exercise boundaries, u and v,

w<3< 1}. (1.7
P

are replaced by 1 and o respectively. It follows from (7.4) that the value of the
exercise strategy 1s

V(51,8500 = V(0 1;0,1) AGs;,85;0,1) + V(I L, DB(sy,55;w, 1), (71.8)
which is similar to expression (6.3) in Gerber and Pafumi (2000).

Note that V(u),l;(n, 1) =1 and V(1,1;,1) can be derived and expressed as
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8, -6,
(8, 1) +({1-8, )’ ’

V(L L;m1)= (7.9)

which is the same as (3.15) in Gerber and Shiu (2003b). Here, 6, <0 and 6, >1 are

two roots of the quadratic equation (5.11). For detail derivation of (7.9), see Gerber

and Shiu (2003b). Thus, it follows from (5.16), (5.17), (7.8) and (7.9) that

3 0, ; 0,
Sl g |
8, 5

V(s,8,;0,1) =

W -m:?
0, 8,
+ 8, -6, e: %2 (7.10)
6 0, 9, 0, ’ ’
(6,-1)" +(1-6,)w w'-w

V(s;,89;0,1) = (7.11)

Let us consider (7.11) as a function of @ and determine the optimal value of

w, denoted by @, that maximizes V(s;,s,;®,1). It is observed from the right-hand

side of (7.11) that only the denominator depends on ® and the maximum value of

V(s,,5,;®,1) can be obtained by minimizes the denomirator. By applying the first-
order condition to the denominator, we have
6,(8, -1)&" " +8,(1-6,)a"" =0,

or

1/(8,-6,)
(‘{):[9.1_(1_6_2)} s (7.12)
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which is the optimal value of ® that minimizes the denominator and maximizes
V{(s,,s,:®,1) . Note that the ratio of ® to 1 1is
1/(6,-0
o 8,(1-0,) £{6:-0,)

which is the same as the ratio of G to v given by (5.28).

Since the value of the protected fund is prevented from falling below the

guaranteed level, the region 315 1is not applicable here. Thus, for 0 <@®<1, the
53

price of the perpetual dynamic fund protection is

Sy if5,/s,<®
- o = ) (7.13)
V (5.8, @,1) if d<s, /s, <1
or
s, if s, /5, <®

) sz[(e2 -1)(2—2}91 +(1—9,)[§l—)92} . (714)

ifo<s /s, <1

\

which is the expansion of (2.17) in Gerber and Shiu (2003b) if G@={. See also

Young (2003) for alternative method of deriving the pricing function V in (2.17).

7.2  Comparison with the Price of a Perpetual Maximum Option

This section compares the price of a perpetual dynamic fund protection with
that of a perpetual maximum option under the same assumptions. As shown in

Section 5.3, some formulas for the price of the perpetual maximum option have been
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derived. It follows from (5.32) and (5.36) that the price of a perpetual maximum

option is
s,
8]
s $ S
0, -0, us, us,
St

92
) ] if Gi<s, /s, <V.

if s, /s,2v

if s,/s, <1

(7.15)

Our goal is to find the difference between (7.14) and (7.15).

First of all, let us learn about the relationship between ®, u and v. We

already have 0<®<1 and 0 <d <l<v. Since

— | &

it follows that

O<m<u<l<y,

<tfei

, we have 1 =@V > ®@. Thus,

(7.16)

Now, we can subtract (7.15) from (7.14) to obtain the price difference between the

perpetual dynamic fund protection and the perpetual maximum option as

if 5, /s, <®

if @<s, /s, <u

90

0
] . o
0,-1)| 2| +(1-9,)| L
(6,-1) 1
S2 §3
<szl- =5 — = =8,
(8, -1)@" +(1-6,)®™
8, 8,
-0 2] «0-0)(2]
84 Sy S, 5 s,
o L J_
2 (8,-1)@% +(1-0,)&™ 0,-8,| |as,

8, 0,
) —el(-_iJ } if i<s, /s, <I.
us,

(7.17)



Let us use a numerical example for illustration. Assume thatr = 0.1, 6, =0.2,
0,=0.1, {,=003,,=002and p=0.5. We construct two tables. Table 7.1

displays the price of a perpetual dynamic fund protection given by (7.14) for
different values of s; and sa. It also shows that the price of a perpetual dynamic fund
protection increases as either of initial stock price increases. The hyphens signify
that it is not applicable to calculate the price of the protection in those situations.
'According to (7.17), Table 7.2 shows the variation of the price difference between
the perpetual dynamic fund protection and the perpetual maximum option when we
modify the values of s; and s;. We observe that as s; increases, the price difference

increases; however, as s, increases, the price difference decreases.
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Table 7.1 Price of the Perpetual Dynamic Fund Protection

for Different Values of s, and s,

$2\ 5 100 105 110 115 120 125 130 135
100 129.48 — — - —_ —_ — —
105 129.79 | 13596 — — — — —_ —
110 130.67 | 136.25 | 144.18 — — — — —
115 132.06 | 137.09 | 144.59 | 148.90 — — — —
120 133.90 | 13842 | 145.53 | 149.17 | 155.38 - — —
125 136.15 | 140.19 | 146.94 | 149.95 | 155.64 | 161.85 —_ —
130 138.77 | 14236 | 148.78 | 151.18 | 156.38 | 162.10 | 168.33 —
135 14172 | 14488 | 151.01 | 152.82 | 157.57 | 162.82 | 168.57 | 174.80
140 145.00 | 147.74 | 153.59 | 154.83 | 159.15 | 163.96 | 169.26 | 175.03
145 148.56 | 15090 | 156.50 | 157.19 | 161.09 | 16549 | 170.36 | 175.70
150 152.38 | 154.35 | 159.71 | 159.86 | 163.38 | 167.37 | 171.84 | 176.77
155 156.46 | 158.05 | 163.21 | 162.83 | 165.97 { 169.58 | 173.66 | 178.20
160 160.78 | 162.01 | 166.96 | 166.07 | 168.84 | 172.09 { 175.81 | 179.97
165 165.31 | 166.20 | 170.96 | 169.56 | 17199 | 17489 | 178.25 | 182.05
170 170.06 | 170.60 | 175.19 | 173.29 | 17538 | 177.94 | 180.96 | 184.42
175 175 17522 | 17964 | 177.25 | 179.01 | 181.24 | 183.93 | 187.06
180 180 180.02 | 184.29 | 181.41 | 182.86 | 184.78 | 187.14 | 189.95
185 185 185 189.15 | 185.78 | 186.92 | 188.53 | 190.58 | 193.08
190 190 190 194.18 | 190.34 | 191.18 | 19248 | 194.24 | 196.43
195 195 195 195 195.08 | 195.62 | 196.63 | 198.10 | 200.00
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Table 7.2 Price Difference between the Perpetual Dynamic Fund

Protection and the Perpetual Maximum Option

for Different Values of s, and s,

AR 100 105 110 115 120 125 130 135
100 22.53 — — — — — — —
105 19.87 | 23.66 — — — — -— —
110 17.38 | 2099 | 24.79 —_ — — — —
115 15.04 | 1849 | 22.12 | 2591 — — — —
120 12.82 16.13 19.60 | 2324 | 27.04 — — —
125 10.70 | 13.89 17.23 | 2072 | 2436 | 2817 — —
130 8.67 1175 14.97 18.33 | 21.83 | 2549 | 29.29 —
135 6.72 9.71 12.81 16.05 1943 | 2295 | 26.61 3042
140 5.00 7.73 10.74 13.88 17.14 | 2053 | 24.06 | 27.73
145 3.56 5.90 8.75 11.79 | 1495 1823 | 21.64 | 25.18
150 2.38 4.35 6.85 9.77 12.84 16.02 1932 | 2275
155 1.46 3.05 5.18 7.83 10.81 13.89 17.09 | 20.41
160 0.78 2.01 3.78 6.07 8.84 11.84 14.95 18.17
165 0.31 1.20 2.62 4.56 6.99 9.85 12.88 16.01
170 0.06 0.60 1.69 3.29 5.38 7.94 10.88 13.93
175 0.00 0.22 0.97 2.25 4.01 6.24 8.93 11.91
180 0.00 0.02 0.46 141 2.86 4.78 7.14 9.94
185 0.00 0.00 0.14 0.78 1.92 3.53 5.58 8.08
190 0.00 0.00 0.01 0.34 1.18 2.48 4.24 6.43
195 0.00 0.00 0.00 0.08 0.62 1.63 3.10 5.00
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Chapter 8

Conclusions

This thesis has derived closed-form formulas for pricing several perpetual
options. In the first part of this thesis, we have discussed the pricing of perpetual
options on one stock. After givén a brief introduction in Chapter 1 and discussed the
fundamentals of option pricing in Chapter 2, we illustrated the pricing of perpetual
American put options, perpetual American call options and the perpetual maximum
option on one stock in Chapter 3. All the options discussed in Chapter 3 are under
geometric Brownian motion. For comparison, Chapter 4 discussed the pricing of
perpetual American put options for jump processes. It was shown that the limiting
case of the Poisson process is a Brownian motion.

In the second part of this thesis, we considered perpetual options on two
stocks. Chapter 5 derived explicit pricing formulas for perpetual maximum options
on two stocks. Chapter 6 studied the pricing of perpetual uncapped Margrabe
options and perpetual Margrabe options with proportional cap. Finally, Chapter 7
discussed the pricing of perpetual dynamic fund protection options in which its
payoff is path-dependent. This chapter will conclude the thesis and give some
suggestions for further research.

For further research, the optimal exercise strategy discussed in Section 5.2
can be applied to price perpetual options with homogeneous payoffs. Also, this

strategy can be extended and applied to price perpetual options on two or more
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stocks. Moreover, we can use the exercise strategy to price some more complicated
perpetual options, such as “path-dependent options” or “exotic options™.

As discussed in Chapter 7, we introduced a dynamic fund protection option
with a path-dependent payoff. A path-dependent payoff depends on the maximum or
minimum of the stock price during the monitoring period in the option life. Since
path-dependent options are more flexible than path-independent options, they
become more and more popular in financial markets. Other examples of the path-
dependent options are lookback options and Asian options. Although pricing
formulas for some European path-dependent options have been derived by some
researchers, see for example, Goldman et al. (1979) and Lee (2002); however there
are no explicit formulas for pricing their American counterparts. As illustrated in
Hull (2002), American path-dependent options could be priced by binomial trees
method. But this method is time consuming and not efficient. In the risk-neutral
world, the martingale approach is more efficient and can be extended to price

perpetual American path-dependent options.
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