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Abstract

Optimization over sign-constrained Stiefel manifold requires that certain columns of

variables in the Stiefel manifold are nonnegative and the remaining are nonpositive.

When all columns are nonnegative, optimization problems with nonnegative orthog-

onal constraints arise, which have wide applications in fields such as signal and image

processing. The properties of the constraints endow these models’ physical mean-

ings but also make the optimization problems hard to solve due to the combinatory

property, for example, the quadratic assignment problem. One way to handle the

difficulties is to seek help from penalty methods. The error bounds are commonly

used to prove the exact penalty property, but the existence of the error bounds on

the sign-constrained Stiefel manifold is unknown. In this thesis, we investigate the

error bounds on the sign-constrained Stiefel manifold and design an effective algo-

rithm called the smoothing proximal reweighted method (SPR) to solve the penalty

problems.

In the first part, the sign-constrained Stiefel manifold in Rn×r is a segment of

the Stiefel manifold with fixed signs (nonnegative or nonpositive) for some entries

of the matrices. We begin with the special case, the nonnegative Stiefel manifold,

to discuss the error bounds, then extend the results to the sign-constrained Stiefel

manifold. We present global and local error bounds that provide an inequality with

easily computable residual functions and explicit coefficients to bound the distance

from matrices in Rn×r to the sign-constrained Stiefel manifold. Moreover, we show
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that the error bounds cannot be improved except for the multiplicative constants

under some mild conditions, which explains why two square-root terms are necessary

for the bounds when 1 < r < n and why the `1 norm can be used in the bounds

when r = n or r = 1 for the sign constraints and orthogonality, respectively. The

error bounds are applied to derive exact penalty methods for minimizing a Lipschitz

continuous function with orthogonality and sign constraints. To this end, we show

the improvement of adding nonnegativity to the first column of the variable for

the sparse principal component analysis problem. In addition, the performance of

penalizing one or both constraints to the objective function is compared through

testing problems.

In the second part, we propose a proximal iteratively reweighted `2 algorithm to

solve the non-Lipschitz penalized problem. Under the assumption that the objective

function in the original problem is continuous, our algorithm has subsequence conver-

gence property, a sufficient decrease in each iteration, and the distance between two

adjacent iteration points is square summable, any accumulation point is a stationary

point. Extensive numerical experiments including Projection to Sn,r
+ and Quadratic

Assignment Problem show the effectiveness of our algorithm.

This thesis contains research results of the following paper which is accepted

during the period of my Ph.D. study.

• X. Chen, Y. He and Z. Zhang, Tight Error Bounds for the Sign-Constrained Stiefel

Manifold, SIAM Journal on Optimization, 35(1):302-329, 2025.
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Chapter 1

Introduction

1.1 Problem statement

Let n and r be two integers such that 1 ≤ r ≤ n, and Sn,r := {X ∈ Rn×r : XTX = Ir}

be the Stiefel manifold, where Ir is the r × r identity matrix. Given two disjoint

subsets P and N of {j : 1 ≤ j ≤ r}, denote

Rn×r
S

:=
{
X ∈ Rn×r : Xi,j ≥ 0 for j ∈ P and Xi,j ≤ 0 for j ∈ N , 1 ≤ i ≤ n

}
,

which is a subset of Rn×r with column-wise nonnegative or nonpositive constraints

on some columns.

In this thesis, we consider the sign-constrained Stiefel manifold defined as

Sn,r
S

:= Sn,r∩ Rn×r
S .

When P = {j : 1 ≤ j ≤ r}, Rn×r
S reduces to the nonnegative orthant Rn×r

+ , and Sn,r
S

reduces to the nonnegative Stiefel manifold Sn,r
+ := {X ∈ Sn,r : X ≥ 0}.

If we define the sign matrix S ∈ Rn×r as the matrix with

Si,j =


1, if j ∈ P ,
−1, if j ∈ N ,
0, otherwise,

1 ≤ i ≤ n, (1.1.1)

then Sn,r
S can be formulated as

Sn,r
S = {X ∈ Rn×r : S ◦X ≥ 0, XTX = Ir},
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where ◦ signifies the Hadamard product. We will investigate error bounds

dist(X, Sn,r
S ) ≤ ν‖(S ◦X)−‖qF for X ∈ Sn,r, (1.1.2)

dist(X, Sn,r
S ) ≤ ν‖XTX − Ir‖qF for X ∈ Rn×r

S , (1.1.3)

dist(X, Sn,r
S ) ≤ ν(‖(S ◦X)−‖qF + ‖XTX − Ir‖qF) for X ∈ Rn×r, (1.1.4)

where ν and q are positive constants, and Y− := max{−Y, 0} stands for the entry-

wise nonnegative part of −Y for any matrix Y . The bounds (1.1.2)–(1.1.4) are global

error bounds for Sn,r
S relative to Sn,r, Rn×r

S , and Rn×r, respectively, with the first two

being special cases of the last one.

According to the error bound of Luo-Pang presented in [22, Theorem 2.2], there

exist ν > 0 and q > 0 such that the inequalities in (1.1.2)–(1.1.4) hold for all X in a

compact subset of Rn×r. Moreover, due to the error bound for polynomial systems

given in [17, Corollary 3.8], for all X in a compact subset of Rn×r, there exists a ν

such that the inequalities in (1.1.2)–(1.1.4) hold with a dimension-dependent value

of q that is less than 6−2nr. However, to the best of our knowledge, the explicit value

of ν and the value of q that is independent of the dimension in (1.1.2)–(1.1.4) are

still unknown even in the special case of Sn,r
S = Sn,r

+ , and it is also unknown whether

the error bounds hold in an unbounded set.

Being a fundamental concept in optimization, error bound plays a crucial role in

both theory and methods for solving systems of equations and optimization prob-

lems [22, 25]. One of its applications is to develop penalty methods for constrained

optimization problems. Let F : Rn×r → R be a continuous function. The minimiza-

tion problem

min {F (X) : X ∈ Sn,r
S } (1.1.5)

can be found in a wide range of optimization models in data science, including

nonnegative principal component analysis [18, 36], nonnegative Laplacian embed-

ding [21], discriminative nonnegative spectral clustering [34], orthogonal nonnegative
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matrix factorization [26, 35], and some K-indicators models for data clustering [3, 31].

Even in the special case of Sn,r
S = Sn,r

+ , the constraints of problem (1.1.5) are

challenging to handle due to their combinatorial nature (note that, for example, Sn,n
+

equals the set of all permutation matrices on Rn). To deal with these difficult con-

straints, the penalty problems

min {F (X) + µ‖(S ◦X)−‖qF : X ∈ Sn,r} , (1.1.6)

min
{
F (X) + µ‖XTX − Ir‖qF : X ∈ Rn×r

S

}
, (1.1.7)

min
{
F (X) + µ(‖(S ◦X)−‖qF + ‖XTX − Ir‖qF) : X ∈ Rn×r} , (1.1.8)

have been widely used for solving (1.1.5) with Sn,r
S = Sn,r

+ , where µ is the penalty

parameter. See for example [1, 27, 34, 36] and the references therein.

The recent two paper [14, 27] use different error bounds to derive different exact

penalty models for optimization on the nonnegative Stifel manifold Sn,r
+ . In [14], the

nonnegative Stifel manifold is reformed as Sn,r
+ = OBn,r

+

⋂
{X ∈ Rn×r : ‖XV ‖F = 1},

where OBn,r
+ is the oblique manifold and V is a constant matrix satisfying ‖V ‖F = 1

and mini,j∈[r]

[
V V T

]
ij
> 0, they elaborate the error bound over Sn,r

+ for X ∈ OBn,r
+

and the residue function is (‖XV ‖qF − 1 + ε)
p
2 , where p, q > 0 and ε ≥ 0. On

contrast, [27] obtain a local Lipschitzian error bound over for those feasible points

without zero rows when n > r > 1, specifically, for all X ∈ B(X̄, δ), where X̄ has no

zero rows and δ > 0, it holds dist(X, Sn,r
+ ) ≤ (κ + 1)(dist(X,Rn×r

+ ) + dist(X, Sn,r)) .

One advantage of this error bound is the exponent of the penalty function ‖(X)−‖`1

can be set to 1. Moreover, when n > r = 1 or n = r, their error bound can be

a global one. However, the exactness of problems (1.1.6)–(1.1.8) regarding global

minimizers and local minimizers of problem (1.1.5) is not well understood.
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1.2 Contribution of the thesis

The first contribution of this thesis is to establish the error bounds (1.1.2)–(1.1.4)

with ν = 15r
3
4 and q = 1/2 without any additional restriction on X. Moreover,

we demonstrate that the error bounds cannot hold for q > 1/2 under mild con-

ditions when 1 < r < n and Sn,r
S = Sn,r

+ . In addition, we show that the error

bounds (1.1.2)–(1.1.4) hold with q = 1 and ν = 7
√
r when |P| + |N | = 1, and hold

with q = 1 and ν = 9n when |P| + |N | = n, but they cannot hold with q > 1.

As an application of error bounds (1.1.2)–(1.1.4) with ν = 15r
3
4 and q = 1/2, we

show the exactness of the penalty problems (1.1.6) and (1.1.7) under the assumption

that F is Lipschitz continuous, taking Sn,r
S = Sn,r

+ as an example. Moreover, we show

the existence of Lipschitz continuous functions such that penalty problems (1.1.6)

and (1.1.7) with q > 1/2 are not exact for global and local minimizers of the corre-

sponding constrained problems. The values of q in error bounds (1.1.2)–(1.1.4) for

some special sign matrices S ∈ Rn×r defined in (1.1.1) by P and N are summarized

in Table 1.1.

S hold fail

|P| = r or |N | = r, 1 < r < n q = 1/2 q > 1/2

|P| = 1 or |N | = 1, 1 ≤ r ≤ n q = 1 q > 1

|P|+ |N | = n, r = n q = 1 q > 1
Table 1.1: The cases that error bounds (1.1.2)–(1.1.4) hold or fail for some special

sign matrices S ∈ Rn×r

Very recently, our error bounds and matrix inequalities have been used to study

constant modulus optimization and optimal orthogonal channel selection [2, 19, 20],

which have a wide variety of applications in signal processing, communications, and

data science.

The second contribution of this thesis is to design an algorithm to solve prob-

lem (1.1.5). We penalize the sign-constraint to the objective function and propose
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the proximal iteratively reweighted `2 algorithm to solve the non-Lipschitz penalized

problem. Under the assumption that the objective function in the original problem

is continuous, our algorithm has subsequence convergence property, a sufficient de-

crease in each iteration, the distance between two adjacent iteration points is square

summable, and any accumulation point is a stationary point. Extensive numerical

experiments including Projection to Sn,r
+ and Quadratic Assignment Problem show

the effectiveness of our algorithm.

1.3 Organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we introduce some no-

tation and preliminaries. Chapter 3 derives the error bounds (1.1.2)–(1.1.4) in the

special case of Sn,r
S = Sn,r

+ , then extends these bounds to the general case. Chapter 4

investigates the exactness of the penalty problems (1.1.6)–(1.1.8) using the new error

bounds and comprises the proximal iteratively reweighted `2 algorithm (PIRL2) and

convergence properties. Chapter 5 discusses some issues and advantages of penalty

method for (1.1.5) via sparse trace minimization problem, it also includes the nu-

merical experiments of PIRL2. We conclude the thesis in Chapter 6.
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Chapter 2

Basic notations and preliminaries

2.1 Basic notations

For matrix X ∈ Rn×r, X+ := max{X, 0} = X+X− is the projection of X onto Rn×r
+ .

In addition, the singular value vector of X is denoted by σ(X) ∈ Rr, the entries

of which are in the descent order. Meanwhile, Σ(X) ∈ Rn×r is the matrix such

that X = UΣ(X)V T is the singular value decomposition of X, the diagonal of Σ(X)

being σ(X). We use 1 to denote the vector with all entries being one, and its

dimension will be clear from the context.

Unless otherwise specified, ‖ · ‖ stands for a general vector norm. For any con-

stant p ∈ [1,+∞), we use ‖ · ‖p to represent either the `p-norm of vectors or the

operator norm induced by this vector norm for matrices. In addition, we use ‖ · ‖`p

to denote the entry-wise `p-norm of a matrix, namely the `p-norm of the vector that

contains all the entries of the matrix. Note that ‖ · ‖`2 is the Frobenius norm, which

is also denoted by ‖ · ‖F. When Rn×r is equipped with the Frobenius norm, we

use B(X, δ) to represent the open ball in Rn×r centered at a point X ∈ Rn×r with

a radius δ > 0, and dist(X, T ) to denote the distance from a point X ∈ Rn×r to a

set T ⊂ Rn×r. Finally, given a minimization problem, we use Argmin to denote the

set of global minimizers.
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2.2 Matrix inequalities

Lemma 2.1 is fundamental for the analysis of distances between matrices. This

lemma is stated for unitarily invariant norms (see [12, Section 3.5] for this concept),

although we are most interested in the case with the Frobenius norm.

Lemma 2.1 (Mirsky). For any matrices X ∈ Rn×r and Y ∈ Rn×r, we have

‖Σ(X)− Σ(Y )‖ ≤ ‖X − Y ‖ (2.2.1)

for any unitarily invariant norm ‖ · ‖ on Rn×r. When ‖ · ‖ is the Frobenius norm,

the equality holds in (2.2.1) if and only if there exist orthogonal matrices U ∈ Rn×n

and V ∈ Rr×r such that X = UΣ(X)V T and Y = UΣ(Y )V T.

The square case (i.e., n = r) of inequality (2.2.1) is due to Mirsky [23, Theorem 5],

and the general case can be found in [13, Theorem 7.4.9.1]. A direct corollary of

Lemma 2.1 is the following Hoffman-Wielandt [11] type bound for singular values,

which is equivalent to the von Neumann trace inequality [30, Theorem I] (see also [16,

Theorem 2.1]).

Lemma 2.2 (von Neumann). For any matrices X ∈ Rn×r and Y ∈ Rn×r, we have

‖σ(X)− σ(Y )‖2 ≤ ‖X − Y ‖F,

and equivalently, tr(XTY ) ≤ σ(X)Tσ(Y ).

The following lemma is another consequence of Lemma 2.1. For this result,

recall that each matrix X ∈ Rn×r has a polar decomposition in the form of X = UP ,

where U belongs to Sn,r and P = (XTX)
1
2 , with U being called a unitary polar factor

of X. The square case of this lemma is due to Fan and Hoffman [9, Theorem 1]. For

the general case, see [10, Theorem 8.4], which details a proof based on Lemma 2.1.

8



Lemma 2.3 (Fan-Hoffman). If U ∈ Rn×r is a unitary polar factor of a matrix X ∈

Rn×r, then

‖X − U‖ = min{‖X − V ‖ : V ∈ Sn,r}

for any unitarily invariant norm ‖ · ‖ on Rn×r.

Lemma 2.4 collects a few basic facts on the distance from a matrix in Rn×r to Sn,r.

Lemma 2.4. For any matrix X ∈ Rn×r, we have

dist(X, Sn,r) = ‖σ(X)− 1‖2 ≤ min
{
‖XTX − Ir‖F, r

1
4‖XTX − Ir‖

1
2
F

}
.

In addition, ‖XTX − Ir‖F ≤ (‖X‖2 + 1)‖σ(X)− 1‖2.

Proof. Let U ∈ Sn,r be a unitary polar factor of X. By Lemma 2.3,

dist(X, Sn,r) = ‖X − U‖F = ‖UT(X − U)‖F = ‖(XTX)
1
2 − Ir‖F = ‖σ(X)− 1‖2.

The entry-wise inequalities |σ(X)− 1| ≤ |σ(X)2− 1| ≤ (‖X‖2 + 1)|σ(X)− 1| imply

‖σ(X)− 1‖2 ≤ ‖σ(X)2 − 1‖2 ≤ (‖X‖2 + 1)‖σ(X)− 1‖2. (2.2.2)

Noting that ‖σ(X)2 − 1‖2 = ‖XTX − Ir‖F, we obtain from (2.2.2) that

‖σ(X)− 1‖2 ≤ ‖XTX − Ir‖F ≤ (‖X‖2 + 1)‖σ(X)− 1‖2.

Finally, since |σ(X)− 1|2 ≤ |σ(X)2 − 1|, we have

‖σ(X)− 1‖2
2 ≤ ‖σ(X)2 − 1‖1 ≤

√
r‖σ(X)2 − 1‖2 =

√
r‖XTX − Ir‖F.

The proof is complete.

By Lemmas 2.3 and 2.4, dist(X, Sn,r
+ ) = ‖σ(X) − 1‖2 if X has a nonnega-

tive unitary polar factor. It is the case in the following lemma, where this factor

is X(XTX)−
1
2 .
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Lemma 2.5. For a matrix X ∈ Rn×r
+ , if XTX is nonsingular and diagonal, then

dist(X, Sn,r
+ ) = ‖σ(X)− 1‖2.

Lemma 2.6 is an elementary property of Sn,r
+ . We omit the proof.

Lemma 2.6. For a matrix X ∈ Sn,r
+ , each row of X has at most one nonzero entry.
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Chapter 3

Error bounds for the
sign-constrained Stiefel manifold

This chapter will establish the error bounds (1.1.2)–(1.1.4). Section 3.1 to Section 3.4

discusses the special case of error bounds over Sn,r
S = Sn,r

+ , where S ◦X reduces to X.

Section 3.2 demonstrates (1.1.2)–(1.1.4) with q = 1 when r = 1 or r = n, and points

out that they cannot hold with q > 1 regardless of r ∈ {1, . . . , n}. In Section 3.3,

we derive the bounds (1.1.2)–(1.1.4) with q = 1/2 for 1 ≤ r ≤ n, and Section 3.4

elaborates on the tightness of these bounds when 1 < r < n. As an application of

our results, we briefly discuss the linear regularity of Rn×r
+ and Sn,r in Section 3.5.

Based on the analysis in previous sections, we derive the error bounds for Sn,r
S in

Sections 3.6 and Section 3.7.

3.1 Brief discussion on error bounds

General discussions on error bounds can be found in [8, Section 6.1]. Here we focus

on error bounds for Sn,r
+ defined by two special functions

ρ1(X) := ‖X−‖q1F + ‖σ(X)− 1‖q22 ,

ρ2(X) := ‖X−‖q1F + ‖XTX − Ir‖q2F ,

where q1 and q2 are positive constants. These functions are residual functions for Sn,r
+

relative to Rn×r, namely nonnegative-valued functions on Rn×r whose zeros coincide
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with the elements of Sn,r
+ . The residual function ρ2 is easily computable and it reduces

to the one in (1.1.4) when q1 = q2 = q.

We say that ρ1 defines a local error bound for Sn,r
+ relative to Rn×r if there exist

positive constants ε and ν such that

dist(X, Sn, r
+ ) ≤ νρ1(X) (3.1.1)

for all X ∈ Rn×r satisfying ‖X−‖F +‖XTX− Ir‖F ≤ ε, and we say it defines a global

error bound for Sn,r
+ relative to Rn×r if (3.1.1) holds for all X ∈ Rn×r. Likewise,

we can use ρ1 to define error bounds for Sn,r
+ relative to any set S ⊂ Rn×r that

contains Sn,r
+ , for example, S = Rn×r

+ , in which case ρ1 reduces to its second term.

Similar things can be said about ρ2. Theorems 3.3 and 3.6 will specify the precise

range of q1 and q2 so that ρ1 and ρ2 define local or global error bounds for Sn,r
+ relative

to Rn×r.

3.2 Tight error bounds with r = 1 or r = n

In this section, we show that the error bounds (1.1.2)–(1.1.4) hold for q = 1 when r =

1 or r = n. Moreover, we explain why bounds (1.1.2)–(1.1.4) cannot hold for q > 1

in general.

The bound for r = 1 is easy to establish due to the simple fact that

dist(x, Sn,1
+ ) = dist(x, Sn,1) =

∣∣‖x‖2 − 1
∣∣ for all x ∈ Rn

+. (3.2.1)

Indeed, when x = 0, this is trivial; when x 6= 0, equality (3.2.1) is true because the

projection of x onto Sn,1
+ equals its projection onto Sn,1, which is x/‖x‖2 ≥ 0.

Theorem 3.1. For any vector x ∈ Rn,

dist(x, Sn,1
+ ) ≤ 2‖x−‖2 +

∣∣‖x‖2 − 1
∣∣.
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Proof. As observed above, dist(x+, Sn,1
+ ) =

∣∣‖x+‖2 − 1
∣∣. Meanwhile,∣∣‖x+‖2 − 1

∣∣− ∣∣‖x‖2 − 1
∣∣ ≤ ∣∣‖x+‖2 − ‖x‖2

∣∣ ≤ ‖x+ − x‖2 = ‖x−‖2.

Thus dist(x, Sn,1
+ ) ≤ ‖x−‖2 + dist(x+, Sn,1

+ ) ≤ 2‖x−‖2 +
∣∣‖x‖2 − 1

∣∣.
To establish the error bounds for r = n, we first prove Proposition 3.1, which

is essentially a weakened version of the observation (3.2.1) in the current situation.

Note that the matrix Y defined in the proof below is indeed the rounding matrix

proposed in [14, Procedure 1].

Proposition 3.1. For any matrix X ∈ Rn×n
+ , if ‖σ(X)− 1‖2 < 1/(4

√
n), then

dist(X, Sn,n
+ ) ≤ 7

√
n‖σ(X)− 1‖2. (3.2.2)

Proof. For each i ∈ {1, . . . , n}, take the smallest integer li ∈ {1, . . . , r} so that

Xi,li = max {Xi,j : j = 1, . . . , r}.

Consider the matrix Y ∈ Rn,r
+ defined by

Yi,j =

{
Xi,li if j = li,

0 otherwise.
(3.2.3)

We will demonstrate (3.2.2) by establishing bounds for ‖X − Y ‖F and dist(Y, Sn,n
+ ).

Consider ‖X − Y ‖F first. Due to the fact that ‖σ(X)− 1‖2 < 1/(4
√
n), all the n

singular values of X are at least 3/4. Since X ≥ 0 and Xi,li = max{Xi,j : j =

1, . . . , n}, we have

Xi,li ≥
1√
n

(
XXT

) 1
2

i,i
≥ 3

4
√
n

for each i ∈ {1, . . . , n}.

Fix an integer j ∈ {1, . . . , r}. For each l ∈ {1, . . . , r}, define

1(j 6= l) = 1(l 6= j) =

{
1 if l 6= j,

0 if l = j.
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With xj and yj denoting the jth columns of X and Y , respectively, we have

9

16n
‖xj − yj‖2

2 =
9

16n

n∑
i=1

X2
i,j1(j 6= li)

≤
n∑

i=1

X2
i,li
X2

i,j1(li 6= j)

≤
n∑

l=1

n∑
i=1

X2
i,lX

2
i,j1(l 6= j)

≤
n∑

l=1

(
n∑

i=1

Xi,lXi,j

)2

1(l 6= j)

=
n∑

l=1

(
XTX − In

)2

l,j
1(l 6= j).

Hence

‖X − Y ‖F ≤
4

3

√
n‖XTX − In‖F.

By Lemma 2.4 and the fact that ‖X‖2 ≤ 1 + ‖σ(X)− 1‖2 ≤ 5/4, we have further

‖X − Y ‖F ≤
4

3

√
n(‖X‖2 + 1)‖σ(X)− 1‖2 ≤ 3

√
n‖σ(X)− 1‖2. (3.2.4)

Now we estimate dist(Y, Sn,n
+ ). According to inequality (3.2.4) and Lemma 2.2,

‖σ(Y )− 1‖2 ≤ ‖X − Y ‖F + ‖σ(X)− 1‖2 ≤ 4
√
n‖σ(X)− 1‖2. (3.2.5)

Since ‖σ(X)−1‖2 < 1/(4
√
n), we have ‖σ(Y )−1‖2 < 1, which implies that Y TY is

nonsingular. Since Y has at most one nonzero entry in each row, it is clear that Y TY

is diagonal. Thus we can invoke Lemma 2.5 and obtain

dist(Y, Sn,n
+ ) = ‖σ(Y )− 1‖2.

Therefore, combining inequalities (3.2.4) and (3.2.5), we conclude that (3.2.2) is

true.
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Theorem 3.2 presents global and local error bounds for Sn,n
+ relative to Rn×n.

Theorem 3.2. For any matrix X∈ Rn×n, we have

dist(X, Sn,n
+ ) ≤ 9n (‖X−‖F + ‖σ(X)− 1‖2) . (3.2.6)

Moreover, if ‖X−‖F + ‖σ(X)− 1‖2 < 1/(4
√
n), then

dist(X, Sn,n
+ ) ≤ 8

√
n (‖X−‖F + ‖σ(X)− 1‖2) . (3.2.7)

Proof. We first prove (3.2.7), assuming that ‖X−‖F + ‖σ(X) − 1‖2 < 1/(4
√
n). By

Lemma 2.2, this assumption ensures ‖σ(X+)−1‖2 < 1/(4
√
n). Thus Proposition 3.1

renders

dist(X+, Sn,n
+ ) ≤ 7

√
n‖σ(X+)− 1‖2 ≤ 7

√
n (‖X−‖F + ‖σ(X)− 1‖2) ,

which justifies inequality (3.2.7) since dist(X, Sn,n
+ ) ≤ ‖X−‖F + dist(X+, Sn,n

+ ).

Now we consider inequality (3.2.6). If ‖X−‖F+‖σ(X)−1‖2 < 1/(4
√
n), then (3.2.6)

holds due to (3.2.7). When ‖X−‖F + ‖σ(X) − 1‖2 ≥ 1/(4
√
n), inequality (3.2.6) is

justified by

dist(X, Sn,n
+ ) ≤ dist(X, Sn,n) + 2

√
n

≤ ‖σ(X)− 1‖2 + 8n(‖X−‖F + ‖σ(X)− 1‖2)

≤ 9n (‖X−‖F + ‖σ(X)− 1‖2) ,

where the first inequality holds because the diameter of Sn,n is 2
√
n.

Remark 3.1. Since
∣∣‖x‖2 − 1

∣∣ ≤ ∣∣‖x‖2
2 − 1

∣∣ and ‖σ(X) − 1‖2 ≤ ‖XTX − In‖F,

Theorems 3.1 and 3.2 imply the error bounds (1.1.2)–(1.1.4) with q = 1 for r ∈

{1, n}. These bounds cannot be improved except for the multiplicative constants.
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Indeed, for any matrix X ∈ Rn×r with r ∈ {1, . . . , n} and ‖X‖2 ≤ 1, we have

dist(X, Sn,r
+ ) ≥ max

{
dist(X, Rn×r

+ ), dist(X, Sn,r)
}

≥ 1

2

[
dist(X, Rn×r

+ ) + dist(X, Sn,r)
]

=
1

2
(‖X−‖F + ‖σ(X)− 1‖2)

≥ 1

2
‖X−‖F +

1

4
‖XTX − Ir‖F,

(3.2.8)

where the last two lines apply Lemma 2.4. This also implies that the bounds (1.1.2)–(1.1.4)

cannot hold for any r ∈ {1, . . . , n} with q > 1.

Theorem 3.3 is an extension of Theorems 3.1 and 3.2. It specifies the possible

exponents of ‖X−‖F and ‖σ(X) − 1‖2 or ‖XTX − Ir‖F in local and global error

bounds for Sn,r
+ relative to Rn×r for r ∈ {1, n}. As we will see from (b) of this

theorem and its proof, when r = 1 or r = n, the error bound (1.1.2) can hold if and

only if q ≤ 1, whereas (1.1.3) and (1.1.4) can hold if and only if 1/2 ≤ q ≤ 1.

Theorem 3.3. Let q1 and q2 be positive constants. Suppose that r = 1 or r = n.

(a) The function ρ1(X) := ‖X−‖q1F + ‖σ(X) − 1‖q22 defines a local error bound

for Sn,r
+ relative to Rn×r if and only if q1 ≤ 1 and q2 ≤ 1, and it defines a global

error bound if and only if q1 ≤ q2 = 1.

(b) The function ρ2(X) := ‖X−‖q1F + ‖XTX − Ir‖q2F defines a local error bound

for Sn,r
+ relative to Rn×r if and only if q1 ≤ 1 and q2 ≤ 1, and it defines a global

error bound if and only if q1 ≤ 1 and 1/2 ≤ q2 ≤ 1.

Proof. We consider only the case with r = n. The other case is similar.

(a) Based on (3.2.7) and (3.2.8), it is easy to check that ρ1 defines a local error

bound for Sn,n
+ relative to Rn×n if and only if q1 ≤ 1 and q2 ≤ 1. Hence we only need

to consider the global error bound.
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Suppose that q1 ≤ q2 = 1. Let us show that

dist(X, Sn,n
+ ) ≤ 9n (‖X−‖q1F + ‖σ(X)− 1‖2) = 9nρ1(X) (3.2.9)

for X ∈ Rn×n. If ‖X−‖F ≤ 1, then (3.2.9) follows from (3.2.6). When ‖X−‖F > 1,

dist(X, Sn,n
+ ) ≤ dist(X, Sn,n) + 2

√
n ≤ ‖σ(X)− 1‖2 + 2

√
n‖X−‖q1F ,

which validates (3.2.9) again. Hence ρ1 defines a global error bound for Sn,n
+ relative

to Rn×n.

Now suppose that ρ1 defines a global error bound for Sn,n
+ relative to Rn×n. Then

it also defines a local error bound, implying q1 ≤ 1 and q2 ≤ 1. Consider a se-

quence {Xk} ⊂ Rn×n
+ such that XT

kXk = kIn for each k ≥ 1. Then

dist(Xk, Sn,n
+ ) ≥ dist(Xk, Sn,n) = ‖σ(Xk)− 1‖2 = [ρ1(Xk)]

1
q2 → ∞.

By assumption, dist(Xk, Sn,n
+ ) ≤ νρ1(Xk) for each k ≥ 1 with a constant ν. Hence

we know q2 ≥ 1. To conclude, we have q1 ≤ q2 = 1. The proof for (a) is complete.

(b) Based on (3.2.7), (3.2.8), and the fact that ‖σ(X) − 1‖2 ≤ ‖XTX − In‖F

(Lemma 2.4), it is easy to check that ρ2 defines a local error bound for Sn,n
+ relative

to Rn×n if and only if q1 ≤ 1 and q2 ≤ 1. Hence we consider only the global error

bound.

Suppose that q1 ≤ 1 and 1/2 ≤ q2 ≤ 1. We will show that

dist(X, Sn,n
+ ) ≤ 9n

(
‖X−‖q1F + ‖XTX − In‖q2F

)
= 9nρ2(X) (3.2.10)

for X ∈ Rn×n. If ‖XTX − In‖F ≤ 1, then (3.2.10) holds because of (3.2.9) and the

fact that ‖σ(X)− 1‖2 ≤ ‖XTX − In‖F. When ‖XTX − In‖F > 1,

dist(X, Sn,n
+ ) ≤ dist(X, Sn,n) + 2

√
n

≤ n
1
4‖XTX − In‖

1
2
F + 2

√
n‖XTX − In‖q2F

≤ (n
1
4 + 2

√
n)‖XTX − In‖q2F ,
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justifying (3.2.10) again, where the second inequality applies Lemma 2.4. Hence ρ2

defines a global error bound for Sn,n
+ relative to Rn×n.

Now suppose that ρ2 defines a global error bound for Sn,n
+ relative to Rn×n.

Then q1 ≤ 1 and q2 ≤ 1, as ρ2 also defines a local error bound. Consider again

a sequence {Xk} ⊂ Rn×n
+ such that XT

kXk = kIn for each k ≥ 1. Then

dist(Xk, Sn,n
+ ) ≥ ‖σ(Xk)− 1‖2 = (

√
k − 1)

√
n,

ρ2(Xk) = ‖XT
kXk − In‖q2F = [(k − 1)

√
n]q2 .

By assumption, dist(Xk, Sn,n
+ ) ≤ νρ2(Xk) for each k ≥ 1 with a constant ν. Hence

we have q2 ≥ 1/2. The proof for (b) is complete.

3.3 Error bounds with 1 ≤ r ≤ n

Now we shift our attention to the general case with 1 ≤ r ≤ n. Given previous bounds

for r ∈ {1, n}, we are particularly interested in the situation where 1 < r < n.

We will first prove a local error bound for Sn,r
+ relative to Rn×r

+ as detailed in

Proposition 3.2. This bound will play a role similar to what observation (3.2.1) and

Proposition 3.1 do in the cases of r = 1 and r = n, respectively. To simplify its

proof, we start with the following lemma.

Lemma 3.1. For any matrix X ∈ Rn×r
+ , there exists a matrix Y ∈ Rn×r

+ such

that Y TY is diagonal and

max
{
‖xj − yj‖2,

∣∣‖yj‖2 − 1
∣∣} ≤ ‖zj‖ 1

2
1 for each j ∈ {1, . . . , r}, (3.3.1)

where xj, yj, and zj denote the jth column of X, Y , and Z = XTX−Ir, respectively.

Proof. Define li (1 ≤ i ≤ n) and Y as in the proof of Proposition 3.1. Since Y TY is

diagonal as mentioned before, it suffices to establish (3.3.1) for this Y .
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Fix an index j ∈ {1, . . . , r}. Recalling that 0 ≤ Xi,j ≤ Xi,li for each i ∈

{1, . . . , n}, we have

‖xj − yj‖2
2 =

n∑
i=1

X2
i,j1(j 6= li)

≤
n∑

i=1

Xi,liXi,j1(li 6= j)

≤
r∑

l=1

(
n∑

i=1

Xi,lXi,j

)
1(l 6= j).

(3.3.2)

Since XTX and Z have the same off-diagonal entries, inequality (3.3.2) yields

‖xj − yj‖2
2 ≤

r∑
l=1

|Zl,j|1(l 6= j) = ‖zj‖1 − |Zj,j|. (3.3.3)

It remains to prove
∣∣‖yj‖2 − 1

∣∣2 ≤ ‖zj‖1. To this end, note that

∣∣‖yj‖2 − 1
∣∣2 ≤ ∣∣‖yj‖2

2 − 1
∣∣ ≤ ∣∣‖xj‖2

2 − 1
∣∣+ ‖xj − yj‖2

2, (3.3.4)

where the first inequality uses the fact that |t− 1|2 ≤ |t2 − 1| for any t ≥ 0, and the

second one is because ‖xj‖2
2−‖yj‖2

2 = ‖xj−yj‖2
2 due to the special construction (3.2.3)

of Y . Since ‖xj‖2
2 − 1 = Zj,j, we can combine (3.3.3) and (3.3.4) to obtain

∣∣‖yj‖2 − 1
∣∣2 ≤ ∣∣‖xj‖2

2 − 1
∣∣+
(
‖zj‖1 − |Zj,j|

)
= ‖zj‖1.

The proof is complete.

Remark 3.2. As mentioned earlier, the matrix Y in the proof of Lemma 3.1 is

the rounding matrix in [14, Procedure 1]. Inequality (3.3.2) is essentially the second

inequality in Case II of the proof for [14, Lemma 3.1]. The columns of X are assumed

to be normalized in [14], but such an assumption has no effect on this inequality.
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Proposition 3.2. For any matrix X ∈ Rn×r
+ , if ‖σ(X)− 1‖2 < 1/(3

√
r), then

dist(X, Sn,r
+ ) ≤ 2

√
7r

3
‖σ(X)− 1‖

1
2
2 . (3.3.5)

Proof. Let Y and Z be the matrices specified in Lemma 3.1. Then (3.3.1) leads to

‖X − Y ‖2
F =

r∑
j=1

‖xj − yj‖2
2 ≤

r∑
j=1

‖zj‖1 = ‖Z‖`1 . (3.3.6)

Since Y TY is diagonal, the entries of σ(Y ) are ‖y1‖2, . . . , ‖yr‖2. Thus (3.3.1) also

provides

‖σ(Y )− 1‖2
2 =

r∑
j=1

(‖yj‖2 − 1)2 ≤
r∑

j=1

‖zj‖1 = ‖Z‖`1 . (3.3.7)

Comparing (3.3.5) with (3.3.6)–(3.3.7), we only need to prove that ‖σ(X) − 1‖2 <

1/(3
√
r) ensures

‖Z‖`1 ≤
7r

3
‖σ(X)− 1‖2 (3.3.8)

and

dist(Y, Sn,r
+ ) = ‖σ(Y )− 1‖2. (3.3.9)

Since ‖Z‖`1 =
∑n

i=1

∑r
j=1 |Zij| ≤ r‖Z‖F, inequality (3.3.8) is a direct consequence

of

‖Z‖F = ‖XTX − Ir‖F ≤ (‖X‖2 + 1)‖σ(X)− 1‖2 ≤
7

3
‖σ(X)− 1‖2, (3.3.10)

where the last inequality is because ‖X‖2 ≤ ‖σ(X) − 1‖2 + 1 < 4/3. Meanwhile,

inequality (3.3.10) also leads to

‖zj‖1 ≤
√
r‖Z‖F ≤

7
√
r

3
‖σ(X)− 1‖2 < 1 for each j ∈ {1, . . . , r}.

Therefore, inequality (3.3.1) implies that Y does not contain any zero column. Hence

the diagonal entries of Y TY are all positive, which ensures the nonsingularity of this

matrix since it is diagonal. Thus Lemma 2.5 yields (3.3.9). The proof is complete.
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Remark 3.3. In [27, Lemma 3.2], by choosing X̄ =
[
Ir 0r×(n−r)

]T
and special δ

such that ‖σ(X)−1‖2 < 1/(3
√
r) for X ∈ B(X̄, δ) one can derive the same result in

Proposition 3.2.

Now we are ready to establish a local error bound for Sn,r
+ relative to Rn×r.

Theorem 3.4. For any matrix X ∈ Rn×r, if ‖X−‖F +‖σ(X)−1‖2 < 1/(3
√
r), then

dist(X, Sn,r
+ ) ≤ 4

√
r
(
‖X−‖

1
2
F + ‖σ(X)− 1‖

1
2
2

)
. (3.3.11)

Proof. According to Lemma 2.2,

‖σ(X+)− 1‖2 ≤ ‖X−‖F + ‖σ(X)− 1‖2.

Thus ‖σ(X+)− 1‖2 < 1/(3
√
r) by assumption, and hence Proposition 3.2 implies

dist(X+, Sn,r
+ ) ≤ 2

√
7r

3

(
‖X−‖

1
2
F + ‖σ(X)− 1‖

1
2
2

)
. (3.3.12)

On the other hand, since ‖X−‖F < 1/(3
√
r), it holds that

‖X −X+‖F = ‖X−‖F ≤
1
√

3r
1
4

‖X−‖
1
2
F ≤

√
r

3
‖X−‖

1
2
F . (3.3.13)

Inequality (3.3.11) follows from (3.3.12) and (3.3.13) because 2
√

7/3+1/
√

3 < 4.

Theorem 3.4 presents only a local error bound. Indeed, ‖X−‖
1
2
F +‖σ(X)−1‖

1
2
2 does

not define a global error bound for Sn,r
+ relative to Rn×r, which will be explained later

by Theorem 3.6. To have a global error bound, we need to replace the term ‖σ(X)−

1‖2 with ‖XTX − Ir‖F as in the following theorem.

Theorem 3.5. For any matrix X ∈ Rn×r, we have

dist(X, Sn,r
+ ) ≤ 5r

3
4

(
‖X−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
. (3.3.14)
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Moreover, if ‖X−‖F + ‖XTX − Ir‖F < 1/(3
√
r), then

dist(X, Sn,r
+ ) ≤ 4

√
r
(
‖X−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
. (3.3.15)

Proof. Recall that ‖σ(X) − 1‖2 ≤ ‖XTX − Ir‖F (Lemma 2.4). Thus (3.3.15) is a

direct consequence of Theorem 3.4 when ‖X−‖F + ‖XTX − Ir‖F < 1/(3
√
r).

Now we prove (3.3.14). Let us assume that

‖X−‖F + ‖XTX − Ir‖F ≥
1

3
√
r
,

as (3.3.14) is already justified by (3.3.15) when this inequality does not hold. Under

this assumption,

‖X−‖
1
2
F + ‖XTX − Ir‖

1
2
F ≥

1
√

3r
1
4

. (3.3.16)

Noting that the diameter of Sn,r is 2
√
r, we then have

dist(X, Sn,r
+ ) ≤ dist(X, Sn,r) + 2

√
r

≤ r
1
4‖XTX − Ir‖

1
2
F + 2

√
3r

3
4

(
‖X−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
≤ 5r

3
4

(
‖X−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
,

(3.3.17)

where the second inequality applies Lemma 2.4 and (3.3.16).

Recently, Theorem 3.5 has been used in [19, 20] to establish error bounds for

dist(X, Sn,r
+ ) for X in the unit ball of spectral norm, i.e., {X ∈ Rn×r : ‖X‖ ≤ 1}.

See (31) in [19].

3.4 Tightness of the error bounds when 1 < r < n

The following proposition shows that the bounds presented in Theorems 3.4 and 3.5

are tight up to multiplicative constants when 1 < r < n, no matter whether X
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belongs to Sn,r, Rn×r
+ , or neither of them. Consequently, the error bounds (1.1.2)–

(1.1.4) cannot hold with q > 1/2 when 1 < r < n.

Proposition 3.3. Suppose that 1 < r < n.

(a) There exists a sequence {Xk} ⊂ Sn,r \ Rn×r
+ such that (Xk)− → 0 and

dist(Xk, Sn,r
+ ) ≥ 1√

2
‖(Xk)−‖

1
2
F . (3.4.1)

(b) There exists a sequence {Xk} ⊂ Rn×r
+ \ Sn,r such that XT

kXk → Ir and

dist(Xk, Sn,r
+ ) ≥ 1√

2
‖XT

kXk − Ir‖
1
2
F . (3.4.2)

(c) There exists a sequence {Xk} ⊂ Rn×r \ (Rn×r
+ ∪ Sn,r) such that (Xk)− → 0,

XT
kXk → Ir, and

dist(Xk, Sn,r
+ ) ≥ 1√

2 + 1

(
‖(Xk)−‖

1
2
F + ‖XT

kXk − Ir‖
1
2
F

)
. (3.4.3)

Proof. Take a sequence {εk} ⊂ (0, 1/2) that converges to 0. For each k ≥ 1, let Xk ∈

Rn×r be a matrix such that its first 3 rows are

εk εk

r − 2︷ ︸︸ ︷
0 . . . 0

ak bk 0 . . . 0
ck dk 0 . . . 0


with ak, bk, ck, dk being specified later, its 4th to (r + 1)th rows are the last r − 2

rows of Ir (if r ≥ 3), and its other rows are zero (if any). In addition, let X̄k be a

projection of Xk onto Sn,r
+ . Then the first row of X̄k contains at most one nonzero

entry according to Lemma 2.6. Hence

dist(Xk, Sn,r
+ ) = ‖Xk − X̄k‖F ≥ εk. (3.4.4)
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Moreover, it is clear that (Xk)− → 0 and XT
kXk → Ir if

ak → 1, bk → 0, ck → 0, and dk → 1. (3.4.5)

In the sequel, we will configure ak, bk, ck, and dk subject to (3.4.5) so that {Xk}

validates (a), (b), and (c) one by one.

(a) Define

ak =
√

1− ε2
k, bk = −ε

2
k

ak
, ck = 0, and dk =

√
1− ε2

k − b2
k.

Then Xk ∈ Sn,r \ Rn×r
+ . Clearly, ‖(Xk)−‖F = ε2

k/ak. Hence (3.4.1) holds according

to (3.4.4) and the fact that ak ≥
√

1− ε2
k > 1/2 (recall that εk < 1/2).

(b) Define ak = dk = 1 and bk = ck = 0. Then Xk ∈ Rn×r
+ \ Sn,r. By straightfor-

ward calculations,

‖XT
kXk − Ir‖F = 2ε2

k.

Thus (3.4.2) holds according to (3.4.4).

(c) Define ak = dk = 1, bk =−ε2
k, and ck = 0. Then Xk∈ Rn×r \ (Rn×r

+ ∪ Sn,r). In

addition, we can calculate that

‖XT
kXk − Ir‖F =

√
ε4
k + (ε2

k + ε4
k)2 ≤

√
ε4
k +

(
ε2
k +

ε2
k

4

)2

≤ 2ε2
k

and ‖(Xk)−‖F = ε2
k. Therefore, (3.4.3) holds according to (3.4.4).

Theorem 3.6 extends Theorems 3.4 and 3.5, allowing ‖X−‖F and ‖σ(X)− 1‖2 or

‖XTX− Ir‖F to have different exponents in the error bounds. It specifies the precise

range of these exponents in local and global error bounds for Sn,r
+ relative to Rn×r

when 1 < r < n. As we will see from (b) of this theorem and its proof, when 1 < r <

n, the error bound (1.1.2) can hold if and only if q ≤ 1/2, whereas (1.1.3) and (1.1.4)

can hold if and only if q = 1/2.
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Theorem 3.6. Let q1 and q2 be positive constants. Suppose that 1 < r < n.

(a) The function ρ1(X) := ‖X−‖q1F + ‖σ(X) − 1‖q22 defines a local error bound

for Sn,r
+ relative to Rn×r if and only if q1 ≤ 1/2 and q2 ≤ 1/2, but it cannot

define a global error bound no matter what values q1 and q2 take.

(b) The function ρ2(X) := ‖X−‖q1F + ‖XTX − Ir‖q2F defines a local error bound

for Sn,r
+ relative to Rn×r if and only if q1 ≤ 1/2 and q2 ≤ 1/2, and it defines a

global error bound if and only if q1 ≤ q2 = 1/2.

Proof. (a) Based on (3.3.11), it is easy to check that ρ1 defines a local error bound

for Sn,r
+ relative to Rn×r if q1 ≤ 1/2 and q2 ≤ 1/2. Conversely, if ρ1 defines a local

error bound for Sn,r
+ relative to Rn×r, then q1 ≤ 1/2 and q2 ≤ 1/2 according to (a)

and (b) of Proposition 3.3, respectively.

Now we prove that ρ1 cannot define a global error bound. According to what

has been shown above, we assume that q2 ≤ 1/2, as a global error bound must be

a local one. Consider a sequence {Xk} ⊂ Rn×r
+ with ‖Xk‖F → ∞. Then ρ2(Xk) =

‖σ(Xk)− 1‖q22 , and hence

dist(Xk, Sn,r
+ )

ρ1(Xk)
≥ ‖σ(Xk)− 1‖2

‖σ(Xk)− 1‖q22

→ ∞.

Thus ρ1 cannot define a global error bound for Sn,r
+ relative to Rn×r.

(b) Similar to (a), we can show that ρ2 defines a local error bound for Sn,r
+ relative

to Rn×r if and only if q1 ≤ 1/2 and q2 ≤ 1/2. Hence we only need to consider the

global error bound.

Suppose that q1 ≤ q2 = 1/2. Let us show that

dist(X, Sn,r
+ ) ≤ 5r

3
4

(
‖X−‖q1F + ‖XTX − Ir‖

1
2
F

)
= 5r

3
4ρ2(X) (3.4.6)

for all X ∈ Rn×r. If ‖X−‖F ≤ 1, then (3.4.6) follows from (3.3.14). When ‖X−‖F > 1,

dist(X, Sn,r
+ ) ≤ dist(X, Sn,r)+2

√
r ≤ r

1
4‖XTX−Ir‖

1
2
F +2
√
r‖X−‖q1F ≤ 5r

3
4ρ2(X),
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where the second inequality applies Lemma 2.4. Hence ρ2 defines a global error

bound for Sn,r
+ relative to Rn×r.

Now suppose that ρ2 defines a global error bound for Sn,r
+ relative to Rn×r. Then

it defines a local error bound, implying q1 ≤ 1/2 and q2 ≤ 1/2. Similar to the proof

for (b) of Theorem 3.3, by considering a sequence {Xk} ⊂ Rn×r
+ such that XT

kXk =

kIr for each k ≥ 1, we can prove q2 ≥ 1/2. The proof is complete.

Even though the function ρ1 in Theorem 3.6 can only define a local error bound

for Sn,r
+ relative to Rn×r, global error bounds can still be established if we add a

suitable power of ‖σ(X) − 1‖2 or ‖XTX − Ir‖F to ρ1. This will be detailed in

Remark 3.4 after we prove the following proposition.

Proposition 3.4. Let φ1 and φ2 be two nonnegative functions on Rn×r. If there

exist positive constants γ1, γ2, c1 and c2 such that

dist(X, Sn,r
+ ) ≤ γ1φ1(X) when φ1(X) ≤ c1, (3.4.7)

dist(X, Sn,r) ≤ γ2φ2(X) when dist(X, Sn,r) ≥ c2. (3.4.8)

Then dist(X, Sn,r
+ ) ≤ max{γ1, γ2, c

−1
1 (2
√
r + c2)}[φ1(X) + φ2(X)] for all X ∈ Rn×r.

Proof. Fix an X ∈ Rn×r. We only consider the situation where φ1(X) > c1, due

to (3.4.7). Note that

dist(X, Sn,r
+ ) ≤ 2

√
r + dist(X, Sn,r). (3.4.9)

If dist(X, Sn,r) < c2, then (3.4.9) implies that

dist(X, Sn,r
+ ) ≤ c−1

1 (2
√
r + c2)φ1(X).

If dist(X, Sn,r) ≥ c2, then (3.4.8) and (3.4.9) imply that

dist(X, Sn,r
+ ) ≤ max{2c−1

1

√
r, γ2}[φ1(X) + φ2(X)].

The proof is complete.
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Remark 3.4. Suppose that 1 < r < n, 0 < q1 ≤ 1/2, and 0 < q2 ≤ 1/2. According

to Theorem 3.6, Proposition 3.4, and Lemma 2.4, ρ1(X) + ‖σ(X)− 1‖q2 with q ≥ 1

defines a global error bound for Sn,r
+ relative to Rn×r. So does ρ1(X) + ‖XTX − Ir‖qF

with q ≥ 1/2. However, the powers in ρ1 cannot be greater than 1/2 even with the

additional terms for the global error bounds. The same can be said about ρ2.

3.5 Linear regularity of Rn×r
+ and Sn,r

Before ending this section, we briefly mention that our analysis enables us to char-

acterize the linear regularity of Rn×r
+ and Sn,r for r ∈ {1, . . . , n}.

A pair of sets A1 and A2 in Rn×r with A1 ∩ A2 6= ∅ are said to be boundedly

linearly regular if for any bounded set T ⊂ Rn×r there exists a constant γ such that

dist(X, A1 ∩ A2) ≤ γmax {dist(X, A1), dist(X, A2)} (3.5.1)

for all X ∈ T , and they are linearly regular if (3.5.1) holds for all X ∈ Rn×r. Linear

regularity is a fundamental concept in optimization and is closely related to error

bounds. See [24] and [7, Section 8.5] for more details. Note that we can replace the

maximum in (3.5.1) with a summation without essentially changing the definition

of (boundedly) linear regularity.

Proposition 3.5 clarifies whether Rn×r
+ and Sn,r are linearly regular.

Proposition 3.5. The two sets Rn×r
+ and Sn,r are linearly regular if and only if r = 1

or r = n.

Proof. Recall that dist(X, Rn×r
+ ) = ‖X−‖F and dist(X, Sn,r) = ‖σ(X)−1‖2 for X ∈

Rn×r. The “if” part of this proposition holds because of the global error bounds in

Theorems 3.1 and 3.2. The “only if” part holds because ‖X−‖F + ‖σ(X)− 1‖2 does

not define a global error bound for Sn,r
+ relative to Rn×r when 1 < r < n, as we can

see from (a) of Theorem 3.6.
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Proposition 3.5 remains true if we change “linearly regular” to “boundedly lin-

early regular”. The “if” part is weakened after this change, and the other part holds

because ‖X−‖F + ‖σ(X) − 1‖2 does not define a local error bound for Sn,r
+ relative

to Rn×r when 1 < r < n according to (a) of Theorem 3.6.

3.6 A special case of error bounds

To derive the error bounds for Sn,r
S , we first consider the special case with

P = {1, . . . , r1} and N = ∅,

where r1 ∈ {1, . . . , r}. Define r2 = r − r1 henceforth. In this case, Sn,r
S reduces to

Sn,r
r1,+

:=
{
X = (X1, X2) | X1 ∈ Rn×r1

+ , X2 ∈ Rn×r2 , XTX = Ir
}
, (3.6.1)

with Sn,r
r1,+ being Sn,r

+ if r1 = r.

Note that the results established in Chapters 2 and 3 are still valid when r is

replaced with r1 or r2. In the sequel, we will apply these results directly without

restating this fact.

Lemma 3.2. Suppose that r1 < r. Consider matrices Y1 ∈ Rn×r1 and Y2 ∈ Rn×r2.

If Y T
1 Y2 = 0, then there exists a matrix Z that is a projection of Y2 onto Sn,r2 and

satisfies Y T
1 Z = 0.

Proof. Define k = n − rank(Y1). Take a matrix V ∈ Sn,k such that range(V ) is the

orthogonal complement of range(Y1) in Rn. Since k ≥ r−r1 = r2, the matrix V TY2 ∈

Rk×r2 has a polar decomposition UP with U ∈ Sk,r2 and P ∈ Rr2×r2 , the latter being

positive semidefinite. Define Z = V U ∈ Rn×r2 . Then

ZP = V UP = V V TY2 = Y2,

where the last equality holds because range(Y2) ⊂ range(V ) according to Y T
1 Y2 = 0,

and V V T is the orthogonal projection onto range(V ). Besides, ZTZ = UTV TV U =
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Ir2 . Thus ZP is a polar decomposition of Y2. Hence Z is a projection of Y2 onto Sn,r2

by Lemma 2.3. Moreover, Y T
1 Z = Y T

1 V U = 0.

Note that Sn,r
r1,+ can also be formulated as

Sn,r
r1,+ =

{
(X1, X2) | X1 ∈ Sn,r1

+ , X2 ∈ Sn,r2 , XT
1 X2 = 0

}
.

This formulation motivates us to develop the following lemma, which provides a

global error bound for Sn,r
r1,+ relative to Rn×r.

Lemma 3.3. Suppose that r1 < r. For any matrix X = (X1, X2) with X1 ∈ Rn×r1

and X2 ∈ Rn×r2, we have

dist(X, Sn,r
r1,+) ≤ (2‖X2‖2+1) dist(X1, Sn,r1

+ )+dist(X2, Sn,r2)+2‖XT
1 X2‖F. (3.6.2)

Proof. Let Y1 be a projection of X1 onto Sn,r1
+ and Y2 = (In − Y1Y

T
1 )X2 ∈ Rn×r2 .

Then Y T
1 Y2 = 0. By Lemma 3.2, there exists a matrix Z that is a projection of Y2

onto Sn,r2 with Y T
1 Z = 0. Define X̄ = (Y1, Z), which lies in Sn,r

r1,+. Let us esti-

mate ‖X − X̄‖F. It is clear that

‖X − X̄‖F ≤ ‖(X1, X2)− (Y1, Y2)‖F + ‖(Y1, Y2)− (Y1, Z)‖F

≤ ‖X1 − Y1‖F + ‖X2 − Y2‖F + ‖Y2 − Z‖F.

Since ‖Y2 − Z‖F = ‖σ(Y2)− 1‖2 (Lemma 2.4) and ‖σ(X2)− σ(Y2)‖2 ≤ ‖X2 − Y2‖F

(Lemma 2.2), it holds that ‖Y2 − Z‖F ≤ ‖σ(X2)− 1‖2 + ‖X2 − Y2‖F. Therefore,

‖X − X̄‖F ≤ ‖X1 − Y1‖F + ‖σ(X2)− 1‖2 + 2‖X2 − Y2‖F. (3.6.3)

Meanwhile, recalling that Y2 = (In − Y1Y
T

1 )X2 and Y1 ∈ Sn,r1 , we have

‖X2 − Y2‖F = ‖Y1Y
T

1 X2‖F = ‖Y T
1 X2‖F ≤ ‖(Y1 −X1)TX2‖F + ‖XT

1 X2‖F. (3.6.4)

Plugging (3.6.4) into (3.6.3) while noting ‖(Y1 −X1)TX2‖F ≤ ‖X1 − Y1‖F‖X2‖2, we

obtain

‖X − X̄‖F ≤ (2‖X2‖2 + 1)‖X1 − Y1‖F + ‖σ(X2)− 1‖2 + 2‖XT
1 X2‖F.
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This implies (3.6.2), because ‖X1 − Y1‖F = dist(X1, Sn,r1
+ ) by the definition of Y1,

and ‖σ(X2)− 1‖2 = dist(X2, Sn,r2) by Lemma 2.4.

In light of Lemma 3.3, we can establish error bounds for Sn,r
r1,+ using those for Sn,r

+ ,

as will be done in Propositions 3.6 and 3.7. To this end, it is useful to note for any

matrix X = (X1, X2) that

‖XTX − Ir‖F ≥ max
{
‖XT

1 X1 − Ir1‖F, ‖XT
2 X2 − Ir2‖F,

√
2‖XT

1 X2‖F

}
. (3.6.5)

Proposition 3.6. For any matrix X ∈ Rn×r with x1 being its first column, we have

dist(X, Sn,r
1,+) ≤ 7

√
r
(
‖(x1)−‖2 + ‖XTX − Ir‖F

)
. (3.6.6)

Moreover, if ‖XTX − Ir‖F < 1/3, then

dist(X, Sn,r
1,+) ≤ 7

(
‖(x1)−‖2 + ‖XTX − Ir‖F

)
. (3.6.7)

Proof. If r = 1, then (3.6.6) and (3.6.7) hold because of Theorem 3.1. Hence we

suppose that r > 1 in the sequel. We first assume ‖XTX − Ir‖F < 1/3 and estab-

lish (3.6.7). Let X2 be the matrix containing the last r− 1 columns of X. According

to Theorem 3.1 and Lemma 2.4,

dist(x1, Sn,1
+ ) ≤ 2‖(x1)−‖2 +

∣∣xT1 x1 − 1
∣∣, (3.6.8)

dist(X2, Sn,r−1) ≤ ‖XT
2 X2 − Ir−1‖F. (3.6.9)

Plugging (3.6.8) and (3.6.9) into Lemma 3.3 while noting (3.6.5), we have

dist(X, Sn,r
1,+) ≤ (2‖X2‖2 + 1) · 2‖(x1)−‖2 +

[
(2‖X2‖2 + 1) + 1 +

√
2
]
‖XTX − Ir‖F

≤ 7
(
‖(x1)−‖2 + ‖XTX − Ir‖F

)
,

where the second inequality uses the fact that ‖X2‖2
2 ≤ ‖XTX − Ir‖2 + 1 ≤ 4/3.

To prove (3.6.6), we now only need to focus on the case with ‖XTX−Ir‖F ≥ 1/3.

In this case,

dist(X, Sn,r
1,+) ≤ dist(X, Sn,r) + 2

√
r ≤ ‖XTX − Ir‖F + 6

√
r‖XTX − Ir‖F,
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which implies (3.6.6). The proof is complete.

Proposition 3.7. For any matrix X ∈ Rn×r with X1 being its submatrix containing

the first r1 columns, we have

dist(X, Sn,r
r1,+) ≤ 15r

3
4

(
‖(X1)−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
. (3.6.10)

Moreover, if ‖(X1)−‖F + ‖XTX − Ir‖F < 1/(3
√
r), then

dist(X, Sn,r
r1,+) ≤ 15

√
r
(
‖(X1)−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
. (3.6.11)

Proof. If r1 = r, then (3.6.10) and (3.6.11) hold because of Theorem 3.5. Hence we

suppose that r1 < r in the sequel. We first assume ‖(X1)−‖F + ‖XTX − Ir‖F <

1/(3
√
r) and establish (3.6.11). Let X2 be the matrix containing the last r2 = r− r1

columns of X. According to (3.6.5), our assumption implies

‖(X1)−‖F + ‖XT
1 X1 − Ir1‖F <

1

3
√
r1

, ‖XT
2 X2 − Ir2‖F ≤

1

3
.

Hence Theorem 3.5 and Lemma 2.4 yield

dist(X1, Sn,r1
+ ) ≤ 4

√
r1

(
‖(X1)−‖

1
2
F + ‖XT

1 X1 − Ir1‖
1
2
F

)
, (3.6.12)

dist(X2, Sn,r2) ≤ ‖XT
2 X2 − Ir2‖F ≤

1√
3
‖XT

2 X2 − Ir2‖
1
2
F . (3.6.13)

In addition, inequality (3.6.5) and our assumption also provide

‖XT
1 X2‖F ≤

1√
2
‖XTX − Ir‖F ≤

1√
6
‖XTX − Ir‖

1
2
F . (3.6.14)

Plugging (3.6.12)–(3.6.14) into Lemma 3.3 while noting (3.6.5), we obtain

dist(X, Sn,r
r1,+) ≤

[
4
√
r1(2‖X2‖2 + 1) +

1√
3

+
2√
6

](
‖(X1)−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
≤ 15

√
r
(
‖(X1)−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
,
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where the second inequality uses the fact that ‖X2‖2
2 ≤ ‖XTX − Ir‖2 + 1 ≤ 4/3.

Now we prove (3.6.10). By the same technique as the proof of (3.3.17), we have

dist(X, Sn,r
r1,+) ≤ 5r

3
4

(
‖(X1)−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
when ‖(X1)−‖F+‖XTX−Ir‖F ≥ 1/(3

√
r). Combining this with (3.6.11), we conclude

that (3.6.10) is valid. The proof is complete.

3.7 The general case of error bounds

We now present the error bounds for Sn,r
S , detailed in Theorems 3.7–3.9. Theorems 3.7

and 3.8 can be proved using Proposition 3.6 and Theorem 3.2, respectively. We omit

the proofs because they are essentially the same as that of Theorem 3.9 below.

Theorem 3.7. Suppose that |P|+ |N | = 1. For any matrix X ∈ Rn×r, we have

dist(X, Sn,r
S ) ≤ 7

√
r
(
‖(S ◦X)−‖F + ‖XTX − Ir‖F

)
.

Moreover, if ‖XTX − Ir‖F < 1/3, then

dist(X, Sn,r
S ) ≤ 7

(
‖(S ◦X)−‖F + ‖XTX − Ir‖F

)
.

Theorem 3.8. Suppose that |P|+ |N | = n. For any matrix X∈ Rn×n, we have

dist(X, Sn,n
S ) ≤ 9n (‖(S ◦X)−‖F + ‖σ(X)− 1‖2) .

Moreover, if ‖(S ◦X)−‖F + ‖σ(X)− 1‖2 < 1/(4
√
n), then

dist(X, Sn,n
S ) ≤ 8

√
n (‖(S ◦X)−‖F + ‖σ(X)− 1‖2) .

Theorem 3.9. For any matrix X ∈ Rn×r, we have

dist(X, Sn,r
S ) ≤ 15r

3
4

(
‖(S ◦X)−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
. (3.7.1)

Moreover, if ‖(S ◦X)−‖F + ‖XTX − Ir‖F < 1/(3
√
r), then

dist(X, Sn,r
S ) ≤ 15

√
r
(
‖(S ◦X)−‖

1
2
F + ‖XTX − Ir‖

1
2
F

)
. (3.7.2)
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Proof. Let Q = {1, . . . , r} \ (P ∪N ). With MP , MN , and MQ being the submatrices

of Ir containing the columns indexed by P , N , and Q, respectively, we take the

permutation matrix

Π = (MP , MN , MQ) ∈ Rr×r.

In addition, we take the diagonal matrix D ∈ Rr×r with Dj,j = −1 if j ∈ N

and Dj,j = 1 otherwise. Define r1 = |P| + |N |. If r1 = 0, then (3.7.1) and (3.7.2)

hold because of Lemma 2.4. Hence we suppose that r1 ≥ 1 in the sequel.

Consider any matrix X ∈ Rn×r. Let Y = XDΠ, and Ȳ be the projection of Y

onto Sn,r
r1,+ defined in (3.6.1). Set X̄ = ȲΠTD, which lies in Sn,r

S . Then

dist(X, Sn,r
S ) ≤ ‖X − X̄‖F = ‖YΠTD − ȲΠTD‖F = ‖Y − Ȳ ‖F.

Invoking Proposition 3.7, we have

‖Y − Ȳ ‖F ≤ 15r
3
4

(
‖(Y1)−‖

1
2
F + ‖Y TY − Ir‖

1
2
F

)
,

where Y1 is the submatrix of Y containing the first r1 columns. It is straightforward

to verify that ‖(Y1)−‖F = ‖(S ◦X)−‖F and ‖Y TY − Ir‖F = ‖XTX − Ir‖F. Hence we

obtain (3.7.1). The bound (3.7.2) can be established in a similar way.
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Chapter 4

Exact penalties for optimization on

the nonnegative Stiefel manifold

In this chapter, as an application of the error bounds established in this thesis, we

consider exact penalties for optimization problem (1.1.5). For simplicity, we will

focus on the special case with

Sn,r
S = Sn,r

+ ,

applying the bounds in Section 3.3. Essentially the same results can be established

in the general case by exploiting the bounds in Section 3.6. The exact penalty results

only require (local) Lipschitz continuity of F , and hence can be applied to nonsmooth

optimization, for example, F involving a group sparse regularization term [32].

The exactness of penalty methods for problem (1.1.5) with Sn,r
S = Sn,r

+ has been

studied in [14, 27]. In [14], an error bound is established for Sn,r
+ relative to the set

{X ∈ Rn×r
+ : (XTX)j,j = 1, j = 1, . . . , r},

and then the bound is used to analyze a penalty method. However, the error bound

in [14] cannot be used to derive the values of ν and q in (1.1.2)–(1.1.4). In [27],

the authors consider the penalty problem (1.1.6) with q = 1, and show this problem

has the same global minimizers as problem (1.1.5) if each global optimal solution

of (1.1.5) has no zero rows. Our exact penalty results only need the Lipschitz con-
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tinuity of the objective function F in (1.1.5). In Section 4.3, we give a warning of

using penalty method for solve optimization problem over nonnegative Stiefel mani-

fold. The exponent of penalty function should be seriously consider, otherwise errors

will occur. In Section 4.4, we design the smoothing proximal reweighted algorithm

to solve the penalty problem and analysis the convergence properties in Section 4.5

4.1 Exactness for Lipschitz continuous objective

functions

The error bounds (1.1.2)–(1.1.4) established in this thesis enable us to have the

exactness of the penalized problem

min
{
F (X) + µ

(
‖X−‖q1`p + ‖XTX − Ir‖q2`p

)
: X ∈ S

}
(4.1.1)

for solving (1.1.5) with Sn,r
S = Sn,r

+ only under the (local) Lipschitz continuity of

function F . Here the set S ⊂ Rn×r is a set that contains Sn,r
+ , while the parame-

ters µ, p, q1, and q2 are all positive. If p = 2 and q1 = q2 = q, then the penalized

problem (4.1.1) reduces to problems (1.1.6) and (1.1.7) when S equals Sn,r and Rn×r
+ ,

respectively.

During the revision of this thesis, a very recent work [20] studied another exact

penalty problem for (1.1.5) with Sn,r
S = Sn,r

+ based on an error bound for Sn,r
+ relative

to the set

{X ∈ Rn×r
+ : (XTX)j,j ≤ 1, j = 1, . . . , r}. (4.1.2)

Since our error bounds for Sn,r
+ are established relative to Rn×r, we allow the feasible

set of our penalty problem to be any set S containing Sn,r
+ , whereas the feasible set

in [20] can only be the set (4.1.2). In addition, with the error bounds established

in Section 3.6, our results can be readily extended to the case where Sn,r
S is a sign-

constrained Stiefel manifold other than Sn,r
+ , which is not considered in [20].
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Due to the equivalence between norms, it is indeed possible to establish the

exactness of (4.1.1) when the entry-wise `p-norm is changed to other ones. We

choose to use the entry-wise `p-norm in (4.1.1) because it is easy to evaluate.

Theorem 4.1 presents the exactness of problem (4.1.1) regarding global optimizers

when the objective function F : S → R is an L-Lipschitz continuous function, namely

|F (X)− F (Y )| ≤ L‖X − Y ‖F (4.1.3)

for all X and Y in S, where L ∈ (0,∞) is a Lipschitz constant of F with respect to the

Frobenius norm. Note that the global Lipschitz continuity of the objective function F

is assumed on a set S containing Sn,r
+ . For example, if F (X) = trace(XTATAX)

and S = {X ∈ Rn×r : ‖X‖F ≤ γ} with γ >
√
r, the global Lipschitz continuity of F

holds on S with the Lipschitz constant L = 2γ‖A‖2
2. Indeed, our theory holds even

if F is undefined out of S. The proof of Theorem 4.1 is standard and we include it

in Appendix 7 for completeness.

Theorem 4.1 (Exact penalty (4.1.1) with F being Lipschitz continuous). Suppose

that S ⊂ Rn×r is a set containing Sn,r
+ , F : S → R is an L-Lipschitz function,

and p ≥ 1 is a constant. If 0 < q ≤ 1/2 and µ > 5Lr
3
4 max

{
1, (nr)

p−2
4p

}
, then

Argmin{F (X) : X∈ Sn,r
+ } = Argmin

{
F (X) + µ

(
‖X−‖q`p + ‖XTX−Ir‖

1
2
`p

)
: X∈ S

}
.

Theorem 4.2 presents the exactness of problem (4.1.1) regarding local minimizers

when F is locally Lipschitz continuous on S, meaning that for any X̄ ∈ S there

exists a constant L ∈ (0,∞) such that (4.1.3) holds for all X and Y in a certain

neighborhood of X̄ in S. We will refer to this L as a Lipschitz constant of F

around X̄. The proof of Theorem 4.2 is also given in Appendix 7.

Theorem 4.2 (Exact penalty (4.1.1) with F being locally Lipschitz continuous).

Let S ⊂ Rn×r be a set containing Sn,r
+ , F : S → R be a locally Lipschitz continuous
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function, and p ≥ 1 be a constant. Suppose that 0 < q1 ≤ 1/2 and 0 < q2 ≤ 1/2. For

any local minimizer X∗ of F on Sn,r
+ , X∗ is also a local minimizer of

min
{
F (X) + µ(‖X−‖q1`p + ‖XTX − Ir‖q2`p) : X ∈ S

}
(4.1.4)

for all µ > 4L∗
√
rmax

{
1, (nr)

q1(p−2)
2p , r

q2(p−2)
p

}
, where L∗ is a Lipschitz constant of F

around X∗. Conversely, if X∗ lies in Sn,r
+ and there exists a constant µ such that X∗

is a local minimizer of (4.1.4), then X∗ is also a local minimizer of F on Sn,r
+ .

Suppose that p ≤ 2. It is noteworthy that the thresholds for µ in Theorems 4.1

and 4.2 are independent of n (even the dependence on r is mild). This is favorable

in practice, as r can be much smaller than n in applications. We also note that

the second part of Theorem 4.2 requires X∗ ∈ Sn,r
+ . This is indispensable without

additional assumptions on the problem structure (see [7, Remark 9.1.1]).

4.2 The exponents in the penalty term

When 1 < r < n, the requirements on the exponents of ‖X−‖F and ‖XTX − Ir‖F

in Theorems 4.1 and 4.2 cannot be relaxed. This is elaborated in Proposition 4.1,

with S = Rn×r being an example. Similar results can be proved for S = Sn,r

and S = Rn×r
+ .

Proposition 4.1. Suppose that 1 < r < n, p ≥ 1, q1 > 0, and q2 > 0. Define the

function ρ(X) = ‖X−‖q1`p + ‖XTX − Ir‖q2`p for X ∈ Rn×r. There exists a Lipschitz

continuous function F : Rn×r → R such that the following statements hold.

(a) Argmin{F (X) : X ∈ Sn,r
+ } = Sn,r

+ .

(b) If q1 > 1/2 or q2 6= 1/2, then any X∗ ∈ Sn,r
+ is not a global minimizer of F +µρ

on Rn×r for any µ > 0.
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(c) If q1 > 1/2 or q2 > 1/2, then there exists an X∗ ∈ Sn,r
+ that is not a local

minimizer of F + µρ on Rn×r for any µ > 0.

Proof. Define

F (X) = − dist(X, Sn,r
+ ) for X ∈ Rn×r.

Then F is Lipschitz continuous on Rn×r. We will justify (a)–(c) one by one.

(a) This holds because F takes a constant value 0 on Sn,r
+ .

(b) Assume for contradiction that there exists an X∗ ∈ Sn,r
+ such that X∗ is a

global minimizer of F + µ∗ρ on Rn×r for a certain µ∗ > 0. Then

F (X) + µ∗ρ(X) ≥ F (X∗) + µ∗ρ(X∗) = 0 for all X ∈ Rn×r.

By the definition of F , we then have dist(X, Sn,r
+ ) ≤ µ∗ρ(X) for all X ∈ Rn×r.

Hence ρ defines a global error bound for Sn,r
+ relative to Rn×r, contradicting (b) of

Theorem 3.6 (note that ‖ · ‖`p and ‖ · ‖F are equivalent norms).

(c) According to (b) of Theorem 3.6, the function ρ does not define a local error

bound for Sn,r
+ relative to Rn×r. Thus there is a sequence {Xk} ⊂ Rn×r such that

‖(Xk)−‖F + ‖XT
kXk − Ir‖F ≤ k−1, (4.2.1)

dist(Xk, Sn,r
+ ) > kρ(Xk) (4.2.2)

for each k ≥ 1. According to (4.2.1), ‖XT
kXk‖F ≤

√
r + k−1. Thus {Xk} has a

subsequence {Xk`} that converges to a certain point X∗. Using (4.2.1) again, we

have ‖X∗−‖F + ‖(X∗)TX∗ − Ir‖F = 0, and hence X∗ ∈ Sn,r
+ . It remains to show

that X∗ is not a local minimizer of F + µρ for any µ > 0. Assume for contradiction

that X∗ is such a local minimizer for a certain µ∗ > 0. Then for all sufficiently

large `,

F (Xk`) + µ∗ρ(Xk`) ≥ F (X∗) + µ∗ρ(X∗) = 0.

By the definition of F , we then have dist(Xk` , S
n,r
+ ) ≤ µ∗ρ(Xk`), contradicting (4.2.2).

The proof is complete.
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When r = 1 or r = n, since the exponents of ‖X−‖F and ‖XTX − Ir‖F in the

error bounds can be increased from 1/2 to 1, their exponents in the penalty term

of (4.1.1) can be taken from a larger range while keeping the exactness of (4.1.1).

This is briefly summarized in Remark 4.1.

Remark 4.1. Suppose that r = 1 or r = n. If F is Lipschitz continuous on S, then

we can establish a result similar to Theorem 4.1 for 0 < q1 ≤ 1 and 1/2 ≤ q2 ≤ 1

based on the error bound (3.2.10). When F is only locally Lipschitz continuous,

similar to Theorem 4.2, the exactness of problem (4.1.1) regarding local minimizers

can be established if 0 < q1 ≤ 1 and 0 < q2 ≤ 1. Proposition 4.1 can also be adapted

to the case of r = 1 or r = n. It is also worth noting that Sn,n
+ is precisely the

set of n × n permutation matrices, and hence min{F (X) : X ∈ Sn,n
+ } represents

optimization problems over permutation matrices.

4.3 Warning of penalty methods for optimization

over nonnegative Stifel manifold

When Sn,r
S = Sn,r

+ , problem (1.1.5) reduces to the nonnegative orthogonal constrained

optimization problem

min
X∈Sn,r

+

F (X). (4.3.1)

Many papers use penalty methods for problem (4.3.1) with penalty functions ‖·‖2
F, ‖·

‖F or ‖·‖`1 of X− or XTX−Ir, e.g., [1, 21, 34, 36]. However, there is not a satisfactory

answer in existing literature whether the penalty problem using ‖ · ‖2
F, ‖.‖F or ‖ · ‖`1

is an exact penalty regarding local and global minimizers of problem (4.3.1) for a

Lipschitz continuous objective function.

In 2024, the authors of [27] proved that the penalty problem

min
X∈Sn,r

F (X) + µ‖X−‖`1 (4.3.2)
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is a global exact penalty for problem (4.3.1) under the assumption that any global

minimizer has no zero rows. Moreover, they aimed to show that such strong assump-

tion cannot be removed by Example 3.9 in [27], which is as follows

min
X∈S3,2+

f(X) := −2X1,1 − 2X2,2 −X3,1 −X3,2. (4.3.3)

The authors of [27] claimed X∗ =

[
1 0 0
0 1 0

]T
is a global minimizer of (4.3.3), but

is not a solution of the penalty problem

min
X∈S3,2

f(X) + µ‖X−‖`1

for any µ > 0. However, X∗ is not a global minimizer of (4.3.3), since f(X∗) = −4

> −
√

5 − 2 = f(X̂), where X̂ =

[
2/
√

5 0 1/
√

5
0 1 0

]T
. Thus the claim with this

example in [27] is wrong.

The column vectors of an orthogonal matrix are not only satisfy unity but also

orthogonal to each other, which is also one of the difficulties in the optimization over

the Stiefel manifold. Coupling-constrained optimization problems are often challeng-

ing. It seems the authors in [27] want to increase the weight of some elements in the

orthogonal matrix in the objective function to satisfy the unity and orthogonality

with a simple matrix which submatrix is an identity matrix, but such an operation

fails to decouple all the relationships. To be specific, there is a conflict between the

linearity of the objective function and the unity, orthogonality, and non negativity

of the column vectors.

In this thesis, we give a warning for the penalty problem (4.3.2) in the case where

the objective function is only Lipschitz continuous. From Proposition 4.1, we know

that there is a Lipschitz continuous function F such that any global (local) minimizer
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of (4.3.1) is not a global (local) minimizer of (4.3.2) for any µ > 0. On the other

hand, from Theorem 4.1 and Theorem 4.2, we know that

min
X∈Sn,r

F (X) + µ‖X−‖q`1

is an exact penalty problem for (4.3.1) regarding global and local minimizers for

µ > 5Lr
3
4 and q ∈ (0, 1/2], where L is a Lipschitz constant of F . Our results provide

theoretical warning and guarantee for penalty methods of nonnegative orthogonal

constrained optimization problem (4.3.1).

4.4 The smoothing proximal reweighted algorithm

Let f : Rn×r → R be a convex and L-Lipschitz continuous function and Sn,r
S = Sn,r

+ .

Consider the following nonnegative orthogonal constrained optimization problem,

min
X∈Sn,r

+

f(X). (4.4.1)

We can construct the following penalized optimization problem,

min f(X) + λ

(
n∑

i=1

r∑
j=1

max(−Xij, 0)

) 1
2

s.t. XTX = Ir,

(4.4.2)

where λ > 5Lr
3
4 is a penalty parameter. Setting S = Sn,r in (5.1.1), by the argument

in Chapter 5, it is clear that (4.4.1) and (4.4.2) share the same global minimizers.

Since the inequality (t+ s)
1
2 ≤ t

1
2 + s

1
2 holds for any two nonnegative numbers t

and s, we have

(
n∑

i=1

r∑
j=1

max(−Xij, 0)

) 1
2

≤
n∑

i=1

r∑
j=1

max(−Xij, 0)
1
2 .
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This observation motivates us to consider the following optimization problem,

min F (X) := f(X) + λP (X)

s.t. XTX = Ir,
(4.4.3)

where

P (X) :=
n∑

i=1

r∑
j=1

max(−Xij, 0)
1
2 .

Then it can be readily verified that the global minimizers of problems (4.4.1) and

(4.4.3) coincide with each other. However, it is highly challenging to solve problem

(4.4.3) since its objective function fails to be locally Lipschitz continuous. To address

this issue, we endeavor to solve the approximation problem of (4.4.3) as follows,

min Fε(X) := f(X) + λPε(X)

s.t. XTX = Ir,
(4.4.4)

where

Pε(X) :=
n∑

i=1

r∑
j=1

(max(−Xij, 0) + ε)
1
2 ,

and ε > 0 is a small constant.

The Lagrangian function of problem (4.4.4) is

L(X,Λ) = f(X) + λPε(X)− 1

2
〈Λ, XTX − Ir〉.

For any local minimizer X̃, the corresponding KKT system is

0 ∈ ∂L(X̃,Λ), X̃TX̃ = Ir.

Here, Λ is the associated Lagrangian multiplier, which is symmetric due to the sym-

metry of XTX. Then there exists Ṽ ∈ ∂f(X̃) and P̃ ∈ ∂Pε(X̃) such that

Ṽ + λP̃ − X̃Λ = 0.
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By solving the above equation, we can obtain that Λ = X̃T(Ṽ +λP̃ ). Together with

the symmetric condition, we derive the following first-order necessary condition of

(4.4.4), 
(In − X̃X̃T)(Ṽ + λP̃ ) = 0,

X̃T(Ṽ + λP̃ ) = (Ṽ + λP̃ )TX̃,

X̃TX̃ = Ir.

(4.4.5)

Definition 4.1. A point X̃ is called a limiting stationary point of problem (4.4.4)

if there exists Ṽ ∈ ∂f(X̃) and P̃ ∈ ∂Pε(X̃) such that the conditions in (4.4.5) are

satisfied.

In this chapter, we follow the idea of [6] to apply the iteratively reweighted `2

minimization algorithm (IRL2) to solve problem (4.4.4). For convenience, we define

Yij = max(−Xij, 0) + ε. Let

Qε(Y ) :=
n∑

i=1

r∑
j=1

Y
1
2
ij .

Then it holds that

Pε(X) = Qε(Y ).

In our algorithm, at the current iterate Xk, we construct an approximation of

Fε(X) as follows,

F k
ε (X) := f(X) + λP k

ε (X),

where

P k
ε (X) :=

n∑
i=1

r∑
j=1

W k
ij(max(−Xij, 0) + ε)2,

and

W k
ij :=

1

4
(max(−Xk

ij, 0) + ε)−
3
2
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is the (i, j)-th entry of the weight matrix W k. Let

Qk
ε(Y ) :=

n∑
i=1

r∑
j=1

W k
ijY

2
ij .

Then we have

P k
ε (X) = Qk

ε(Y ).

Algorithm 1 outlines the complete procedure of our approach for solving problem

(4.4.4), which is named proximal iteratively reweighted `2 method and abbreviated to

PIRL2. In each iteration, we solve the following proximal reweighted problem

min F k
ε (X) +

γk
2
‖X −Xk‖2

F.

s.t. XTX = Ir

(4.4.6)

to update the next iterate Xk+1. The first-order stationary condition of a point X̃

for problem (4.4.6) can be stated as follows,


(In − X̃X̃T)(Ṽ + λP̃ + γk(X̃ −Xk)) = 0,

X̃T(Ṽ + λP̃ + γk(X̃ −Xk)) = (Ṽ + λP̃ + γk(X̃ −Xk))TX̃,

X̃TX̃ = Ir,

(4.4.7)

where Ṽ ∈ ∂f(X̃) and P̃ ∈ ∂P k
ε (X̃).

In the remaining part of this chapter, we will prove that any accumulation point

of the iterate sequence generated by Algorithm 1 is a stationary point of problem

(4.4.4).
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Algorithm 1: Proximal Iteratively Reweighted `2 Method (PIRL2) for
(4.4.4).

Input: γ0 > 0, γ̄ > 0, τ > 1.
1 Initialization: Generate the initial point X0 ∈ Sn,r randomly.
2 for k = 0, 1, · · · do
3 Update Xk+1 by solving the following subproblem,

Xk+1 ∈ arg min
XTX=Ir

F k
ε (X) +

γk
2
‖X −Xk‖2

F. (4.4.8)

4 Set γk+1 = min(τγk, γ̄)

5 end
6 /Post-procedure

In the post-procedure of PIRL2, we adopt the same method in [14, Algorithm

4.1] to improve the quality of the solution.

4.5 Sufficient decrease and subsequence conver-

gence

Lemma 4.1. Let {Xk} be the sequence generated by PIRL2. Then we have

Fε(X
k)− Fε(X

k+1) ≥ γk
2
‖Xk+1 −Xk‖2

F. (4.5.1)

Proof. By the global optimality of Xk+1 in the subproblem (4.4.8), we have

F k
ε (Xk+1) +

γk
2
‖Xk+1 −Xk‖2

F ≤ F k
ε (Xk),

which implies that

Fε(X
k+1)− Fε(X

k) ≤ λPε(X
k+1)− λPε(X

k)

+ λP k
ε (Xk)− λP k

ε (Xk+1)

− γk
2
‖Xk+1 −Xk‖2

F.

(4.5.2)

Consider the univariate function r(x) = x
1
2 . Since∇2r(x) = −1

4
x−

3
2 < −1

4
(1+ε)−

3
2 <

−2−3, the function r is −2−3- strongly concave over [ε, 1+ε]. Similarly, the univariate
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function rkij(x) = W k
ijx

2 is 2−2-strongly convex since ∇2rk(x) = 2W k
ij = 1

2
(Y k

ij )
− 3

2 >

2−2 due to Yij ∈ [ε, 1 + ε]. By virtue of the relationships Qε(Y ) =
∑n

i=1

∑r
j=1 r(Yij)

and Qk
ε(Y ) =

∑n
i=1

∑r
j=1 r

k
ij(Yij), we can obtain that

Fε(X
k+1)− Fε(X

k) ≤ λ(Pε(X
k+1)− Pε(X

k) + P k
ε (Xk)− P k

ε (Xk+1))

− γk
2
‖Xk+1 −Xk‖2

F

≤ λ(Qε(Y
k+1)−Qε(Y

k) +Qk
ε(Y k)−Qk

ε(Y k+1))

− γk
2
‖Xk+1 −Xk‖2

F

≤ λ(〈∇Qε(Y
k), Y k+1 − Y k〉 − 2−4‖Y k+1 − Y k‖2

F

− 〈∇Qk
ε(Y k), Y k+1 − Y k〉 − 2−3‖Y k+1 − Y k‖2

F)

− γk
2
‖Xk+1 −Xk‖2

F

≤ − 2−3λ‖Y k+1 − Y k‖2
F −

γk
2
‖Xk+1 −Xk‖2

F

≤ − γk
2
‖Xk+1 −Xk‖2

F.

(4.5.3)

Here, we use the strong concavity of Qε and strong convexity of Qk
ε to derive the

third inequality.

Lemma 4.2. Let {Xk} be the sequence generated by PIRL2. Then we have

∞∑
k=1

‖Xk+1 −Xk‖2
F < ∞. (4.5.4)

47



Proof. From Lemma 4.1, we have

k∑
i=1

‖Xk+1 −Xk‖2
F ≤

k∑
i=1

2

γi
(Fε(X

i)− Fε(X
i+1))

≤ 2
k∑

i=1

Fε(X
i)− Fε(X

i+1)

≤ 2
k∑

i=1

Fε(X
i)− Fε(X

i+1)

= 2(Fε(X
1)− Fε(X

k+1)).

(4.5.5)

Notice that Fε is bounded below. We finish the proof by combining the last equality

of (4.5.5) and letting k →∞.

Theorem 4.3. Let {Xk} be the sequence generated by PIRL2. Then any accumula-

tion point of {Xk} is a limiting stationary point of problem (4.4.4).

Proof. To begin with, the sequence {Xk} is bounded due to the compactness of the

Stiefel manifold Sn,r. Hence, there exists a convergent subsequence {Xnk} of {Xk}.

We assume that it converges to X̄ ∈ Sn,r. Since Xnk is a first-order stationary

point of (4.4.6), there exists vnk(Xnk) ∈ ∂f(Xnk) and pnk−1(Xnk) ∈ ∂P nk−1
ε (Xnk)

satisfying the necessary condition (4.4.7), where

(pnk−1(Xnk))ij = 2W nk−1
ij (max(−Xnk

ij , 0) + ε)Cnk
ij (4.5.6)

with some Cnk
ij ∈ ∂max(−Xnk

ij , 0).

Next, it follows from Lemma 4.2 that lim
k→∞
‖Xnk − Xnk−1‖F = 0. Since Xnk
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converges to X̄, there exists C̄ij ∈ ∂max(−X̄ij, 0) such that

lim
k→∞

(pnk−1(Xnk))ij = lim
k→∞

1

2
(max(−Xnk−1

ij , 0) + ε)−
3
2 (max(−Xnk

ij , 0) + ε)Cnk
ij

= lim
k→∞

1

2
(max(−Xnk

ij , 0) + ε)−
3
2 (max(−Xnk

ij , 0) + ε)Cnk
ij

=
1

2
(max(−X̄ij, 0) + ε)−

1
2 C̄ij,

(4.5.7)

where the last equality holds due to the upper hemicontinuity of subdifferentials

[29, 28]. Similarly, we can prove that there exists v(X̄) ∈ ∂f(X̄) such that

lim
k→∞

vnk(Xnk) = v(X̄).

Let (p(X̄))ij = 1
2
(max(−X̄ij, 0) + ε)−

1
2 C̄ij. Then it is clear that p(X̄) ∈ ∂Pε(X̄).

Combining with the fact that Xnk is a first-order stationary point of (4.4.6), we have


(In −Xnk(Xnk)T)(vnk(Xnk) + λpnk−1(Xnk) + γnk−1(Xnk −Xnk−1)) = 0,
(Xnk)T(vnk(Xnk) + λpnk−1(Xnk) + γnk−1(Xnk −Xnk−1))
= (vnk(Xnk) + λpnk−1(Xnk) + γnk−1(Xnk −Xnk−1))TXnk ,

(X̄)TX̄ − Ir = 0.

Taking k →∞ in the above relationships, we can obtain that


(In − X̄X̄T)(v(X̄) + λp(X̄)) = 0,
(X̄)T(v(X̄) + λp(X̄)) = (v(X̄) + λp(X̄))TX̄,
(X̄)TX̄ − Ir = 0.

Therefore, X̄ is a limiting stationary point of problem (4.4.4).

Remark 4.2. In this thesis, we use the penalty method to solve the optimization

problem with the sign and orthogonality constraints. Firstly, we establish the error

bound over the sign-constrained Stiefel manifold to derive the exact penalty model.

Then we use the reweighted method to solve the exact penalty model (4.4.3) in Sec-

tions 4.4 and 4.5. The exact penalty model of the problem (1.1.5) can be solved in
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the same way by replacing P (X) :=
∑n

i=1

∑r
j=1 max(−Xij, 0)

1
2 with P (X) :=∑n

i=1

∑r
j=1 max(−SijXij, 0)

1
2 . Moreover the above convergence properties can be ap-

plied to the sign-constrained Stiefel manifold optimization problem (1.1.5) similarly.
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Chapter 5

Numerical experiments

In this chapter, we first show the advantages of posing sign-constraint via the sparse

trace minimization problem in Section 5.1. In the following two sections, we test the

performance of PIRL2 based on two applications, including projection to nonnegative

Stiefel manifold and quadratic assignment problem.

5.1 Sparse trace minimization with sign-constraint

Note that Remark 4.1 can be extended to the case |P| + |N | = 1 or |P| + |N | = n.

In particular, the penalty problem

min
X∈Sn,r

F (X) + µ‖(S ◦X)−‖`1

is an exact penalty problem of (1.1.5) with Si,1 = 1 and Si,j = 0, for j 6= 1, i =

1, . . . , n.

Consider the following sparse trace maximization problem [4]

min
X∈Sn,r

−tr(XTATAX) + λ‖X‖`1 , (5.1.1)

where A ∈ Rm×n is a given matrix. If ATA is a positive or an irreducible nonnegative

matrix, then by the Perron-Frobenius theorem, the largest eigenvalue of ATA is

positive and the corresponding eigenvector is positive. Hence, for a dense nonnegative
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data matrix A, it is interesting to consider

min
X∈Sn,r

S

−tr(XTATAX) + λ‖T ◦X‖`1 , (5.1.2)

with Si,1 = 1, Si,j = 0, Ti,1 = 0, Ti,j = 1, for j 6= 1, i = 1, . . . , n. Since the objective

function of (5.1.2) is Lipschitz continuous with Lipschitz constant L = 2‖A‖2
2 +rλ

√
n

over Sn,r, our results show that

min
X∈Sn,r

−tr(XTATAX) + λ‖T ◦X‖`1 + µ‖(S ◦X)−‖`1 (5.1.3)

is an exact penalty problem of (5.1.2) with µ > 5Lr
3
4 .

In [4], Chen et. al proposed a ManPG (Manifold Proximal Gradient) algorithm

to solve the following nonsmooth optimization problem

min
X∈Sn,r

F (X) := f(X) + h(X),

where f is smooth, ∇f is Lipschitz continuous and h is nonsmooth, convex and

Lipschitz continuous. The objective functions in problem (5.1.1) and problem (5.1.3)

satisfy these conditions. Numerical results in [4] show that ManPG outperforms some

existing algorithms for solving problem (5.1.1). We compare the two models (5.1.1)

and (5.1.3) for sparse trace maximization problem by using the code of [4] downloaded

from https://github.com/chenshixiang/ManPG, with the same initial points that are

randomly generated by the code. Other algorithms for solving nonsmooth matrix

optimization over Sn,r can be found in [38] and its references. Moreover, we can also

replace the orthogonal constraint by adding a penalty term ‖XTX − Ir‖`1 to (5.1.3).

5.1.1 Synthetic simulations

For given m,n, we randomly generated 20 nonnegative matrices and then normalized

the columns by Matlab functions as follows

A = rand(m,n), A = normc(A).
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For each randomly generated matrix A, we use ManPG to find an approximate

solution X̂ of (5.1.1) and (5.1.3), respectively. The reconstructed matrix and its

relative reconstruction error (RRE) and percentage of explained variance (PEV) [37]

by using X̂ are defined by

Â = AX̂(X̂TX̂)−1X̂T, RRE =
‖A− Â‖F

‖A‖F

, PEV =
tr(ÂTÂ)

tr(ATA)
(×100%). (5.1.4)

In Table 5.1 and Table 5.2, we report the average values of RRE and PEV of Â

by using the randomly generated 20 nonnegative matrices A for each m and n to

compare models (5.1.1) and (5.1.3) with r = 10. All computed solutions X̂ for

calculating RRE and PEV in Table 5.1 and Table 5.2, satisfy

‖X̂TX̂ − Ir‖F ≤ 10−14 and ‖X̂TX̂ − Ir‖F + ‖(S ◦ X̂)−‖`1 ≤ 10−14,

for model (5.1.1) and model (5.1.3), respectively.

m = 40, n = 30

λ, µ 0.6, 150 0.6, 170 0.6, 190 0.6, 200 1, 100 1, 110 1, 130

model (5.1.1) 0.4029 0.4029 0.4029 0.4029 0.4046 0.4046 0.4046
model (5.1.3) 0.3999 0.3992 0.3988 0.3953 0.4029 0.4008 0.3981

λ = 0.6, µ = 100

m,n 50, 25 50, 50 80, 25 80, 40 80, 80 200, 25 200, 50

model (5.1.1) 0.3811 0.4427 0.3846 0.4315 0.4652 0.3860 0.4464
model (5.1.3) 0.3806 0.4409 0.3843 0.4284 0.4636 0.3847 0.4451

Table 5.1: Comparison on RRE with different (m,n, λ, µ) by randomly generated A

5.1.2 Numerical results using Yale face dataset

The Yale Face dataset contains 165 GIF format gray scale images of 15 individuals

with 11 images for each subject, and one for each different facial expression or config-

uration. From http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html, we

download the 165 × 1024 facial image matrix Face. The (15 × (i − 1) + t)-th row

of Face is the t-th image of the i-th person, with i = 1, . . . , 15 and t = 1, . . . , 11.

53



m = 40, n = 30

λ, µ 0.6, 150 0.6, 170 0.6, 190 0.6, 200 1, 100 1, 110 1, 130

model (5.1.1) 0.8376 0.8376 0.8376 0.8376 0.8363 0.8363 0.8363
model (5.1.3) 0.8400 0.8406 0.8410 0.8410 0.8376 0.8391 0.8404

λ = 0.6, µ = 100

m,n 50, 25 50, 50 80, 25 80, 40 80, 80 200, 25 200, 50

model (5.1.1) 0.8547 0.8040 0.8520 0.8138 0.7836 0.8510 0.8007
model (5.1.3) 0.8551 0.8055 0.8523 0.8164 0.7850 0.8520 0.8019

Table 5.2: Comparison on PEV with different (m,n, λ, µ) by randomly generated A

Each row of Face defines a 32× 32 nonnegative matrix. We use the all rows of Face,

which include 11 images of all people, to get 165 32 × 32 nonnegative matrices and

then use Matlab function normc to normalize each of these matrices.

For each 32 × 32 matrix A, we use ManPG to find an approximate solution X̂

of (5.1.1) and (5.1.3), respectively. We compute the reconstructed matrix Â and its

RRE and PEV by using computed X̂ as (5.1.4).

From Figure 5.1 to Figure 5.6, we can see that in almost every case, the recon-

structed matrix Â by model (5.1.3) has lower values RRE and higher values PEV

than that computed by model (5.1.1) without sacrificing the sparsity of solutions. In

our numerical experiments, we only restricted the power of the penalty term to be

one, but did not restrict the penalty parameter µ > 5Lr
3
4 .

5.2 Projection to Sn,r+

Consider the following problem that finds the projection of a given matrix C ∈ Rn×r

onto Sn,r
+

min
1

2
‖X − C‖2

F

s.t. XTX = Ir

X ≥ 0.

(5.2.1)

Define gap := |‖X̄ − C‖F/‖X∗ − C‖F − 1|, where X̄ is the solution found by
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Figure 5.1: Comparison of the first eight people’s average values of RRE by
models (5.1.1) with λ = 1 and (5.1.3) with λ = 1, µ = 6, respectively,

for r = 1, . . . , 32.

55



0 5 10 15 20 25 30 35

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
R

E

(6.6)

(6.8)

0 5 10 15 20 25 30 35

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
R

E

(6.6)

(6.8)

0 5 10 15 20 25 30 35

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
R

E

(6.6)

(6.8)

0 5 10 15 20 25 30 35

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
R

E

(6.6)

(6.8)

0 5 10 15 20 25 30 35

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
R

E

(6.6)

(6.8)

0 5 10 15 20 25 30 35

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
R

E

(6.6)

(6.8)

0 5 10 15 20 25 30 35

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
R

E

(6.6)

(6.8)

Figure 5.2: Comparison of the last seven people’s average values of RRE by
models (5.1.1) with λ = 1 and (5.1.3) with λ = 1, µ = 6, respectively,

for r = 1, . . . , 32.
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Figure 5.3: Comparison of the first eight people’s average values of PEV by
models (5.1.1) with λ = 1 and (5.1.3) with λ = 1, µ = 6, respectively,

for r = 1, . . . , 32.
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Figure 5.4: Comparison of the last seven people’s average values of PEV by
models (5.1.1) with λ = 1 and (5.1.3) with λ = 1, µ = 6, respectively,

for r = 1, . . . , 32.
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Figure 5.5: Comparison of the first eight people’s average values of sparsity by
models (5.1.1) with λ = 1 and (5.1.3) with λ = 1, µ = 6, respectively,

for r = 1, . . . , 32.
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Figure 5.6: Comparison of the last seven people’s average values of sparsity by
models (5.1.1) with λ = 1 and (5.1.3) with λ = 1, µ = 6, respectively,

for r = 1, . . . , 32.
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PIRL2 and X∗ is the optimal point of the test problem, the initial point X0 is same

as EP4Orth+ [14].

We use PenCF [33] to solve the subproblem (4.4.8) and the code of PenCF can

be downloaded from this website https://portrait.gitee.com/stmopt/stop.

When the algorithm is completed, we adopt the same post-procedure in [14,

Algorithm 4.1] to improve the quality of the solutions. The parameter ξ in the

following tables controls the noise level when generating matrix C, the larger the ξ,

the harder it is to find the projection of C, one can refer [14, Section 6.1] for more

detail.

We run 60 times for PIRL2 choose alternating Barzilai–Borwein stepsize, and set

the tolerance for KKT violation to 10−8, the maximum number of iterations to 800

in the PenCF’s option. We run 50 times for each case and take the average relative

gap as the final result.

We use Pencf to solve

min
1

2
‖X − C‖2

F + λ‖max(−X, 0)‖2
F

s.t. XTX = Ir,

(5.2.2)

and use PencfQuad instead of Pencf in Table to avoid ambiguity. Under the same

framework of Algorithm 1, we change

P k
ε (X) :=

n∑
i=1

r∑
j=1

W k
ij(max(−Xij, 0) + ε), (5.2.3)

where W k
ij = 1

2
(max(−Xk

ij, 0) + ε)−
1
2 , the modified algorithm is called PIRL1.

Table 5.3 to Table 5.8 show PIRL2 can improve the results than directly solving

quadratic penalty model (5.2.2) by Pencf and `2 weight performs better than `1

weight.

For problems with size n = 2000, r = 10 to r = 400, we compare the relative
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Table 5.3: The comparison of relative gap among PencfQuad, PIRL2 and PIRL2
for problem size n = 2000, r = 10

PencfQuad PIRL1 PIRL2
ξ = 0.5 0 2.43e-02 0
ξ = 0.7 0 5.49e-05 0
ξ = 0.9 1.63e-05 1.62e-03 0
ξ = 0.95 1.46-04 1.98e-02 0
ξ = 0.98 9.88e-05 2.18e-02 1.36e-05
ξ = 1 1.53e-04 2.31e-02 8.60e-05

Table 5.4: The comparison of relative gap among PencfQuad, PIRL1 and PIRL2
for problem size n = 2000, r = 50

PencfQuad PIRL1 PIRL2
ξ = 0.5 0 6.12e-03 0
ξ = 0.7 3.66e-05 1.36e-02 0
ξ = 0.9 8.69e-04 2.09e-02 0
ξ = 0.95 8.42e-04 2.18e-02 1.4e-04
ξ = 0.98 8.38e-04 2.24e-02 2.4e-04
ξ = 1 6.93e-04 2.27e-02 2.3e-04

gap computed by PIRL2 and EP4Orth+ from Table 5.9 to Table 5.14. PIRL2 per-

forms better than EP4Orth+ when r ≤ 100 while EP4Orth+ performs better as the

problem size increases. Generally, PIRL2 exhibits superior performance in relatively

small-scale cases, whereas EP4Orth+ demonstrates better performance in relatively

large-scale cases.

In Table 5.15, PIRL2 gives the lowest relative gap among the three algorithms

Table 5.5: The comparison of relative gap among PencfQuad, PIRL1 and PIRL2
for problem size n = 2000, r = 100

PencfQuad PIRL1 PIRL2
ξ = 0.5 0 1.6e-02 0
ξ = 0.7 5.07e-04 2.3e-02 0
ξ = 0.9 1.12e-03 2.0e-02 0
ξ = 0.95 9.50e-04 1.9e-02 2.7e-04
ξ = 0.98 7.77e-04 2.0e-02 2.6e-04
ξ = 1 5.73e-04 2.0e-02 2.1e-04
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Table 5.6: The comparison of relative gap among PencfQuad, PIRL1 and PIRL2
for problem size n = 2000, r = 200

PencfQuad PIRL1 PIRL2
ξ = 0.5 0 2.0e-03 0
ξ = 0.7 4.14e-04 1.0e-02 0
ξ = 0.9 6.91e-04 1.4e-02 0
ξ = 0.95 5.31e-04 1.4e-02 3.5e-04
ξ = 0.98 4.17e-04 1.5e-02 3.1e-04
ξ = 1 3.05e-04 1.5e-02 2.3e-04

Table 5.7: The comparison of relative gap among PencfQuad, PIRL1 and PIRL2
for problem size n = 2000, r = 300

PencfQuad PIRL1 PIRL2
ξ = 0.5 0 1.4e-02 0
ξ = 0.7 6.22e-04 1.4e-02 0
ξ = 0.9 6.85e-04 1.4e-02 0
ξ = 0.95 5.58e-04 4.3e-02 4.2e-04
ξ = 0.98 4.28e-04 4.2e-02 3.4e-04
ξ = 1 3.62e-04 4.1e-02 2.7e-04

but consumes more time than SEPPG and EP4Orth+.

5.3 Quadratic assignment problem

The quadratic assignment problem (QAP) was first proposed by Koopmans and

Beckmann (1957) [15]. Consider aij the flow from i-th facility to j-th facility, and bij

the distant between location k and location l, the mathematical expression of QAP

Table 5.8: The comparison of relative gap among PencfQuad, PIRL1 and PIRL2
for problem size n = 2000, r = 400

PencfQuad PIRL1 PIRL2
ξ = 0.5 1.35e-05 1.6e-02 0
ξ = 0.7 6.73e-04 1.4e-02 0
ξ = 0.9 7.13e-04 1.3e-02 0
ξ = 0.95 5.80e-04 3.8e-02 4.7e-04
ξ = 0.98 5.05e-04 3.7e-02 3.8e-04
ξ = 1 4.11e-04 3.6e-02 3.1-04
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Table 5.9: The comparison of relative gap between PIRL2 and EP4Orth+ for
problem size n = 2000, r = 10

PIRL2 EP4Orth+
gap gap

ξ = 0.5 0 0
ξ = 0.7 0 0
ξ = 0.9 0 0
ξ = 0.95 0 7.2e-05
ξ = 0.98 1.36e-05 8.9e-4
ξ = 1 8.60e-05 1.2e-3

Table 5.10: The comparison of relative gap between PIRL2 and EP4Orth+ for
problem size n = 2000, r = 50

PIRL2 EP4Orth+
gap gap

ξ = 0.5 0 0
ξ = 0.7 0 0
ξ = 0.9 0 0
ξ = 0.95 1.4e-04 2.1e-04
ξ = 0.98 2.4e-04 5.0e-4
ξ = 1 2.3e-04 2.6e-3

Table 5.11: The comparison of relative gap between PIRL2 and EP4Orth+ for
problem size n = 2000, r = 100

PIRL2 EP4Orth+
gap gap

ξ = 0.5 0 0
ξ = 0.7 0 0
ξ = 0.9 0 0
ξ = 0.95 2.72e-04 6.6e-07
ξ = 0.98 2.67e-04 8.0e-4
ξ = 1 2.16e-04 2.6e-3
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Table 5.12: The comparison of relative gap between PIRL2 and EP4Orth+ for
problem size n = 2000, r = 200

PIRL2 EP4Orth+
gap gap

ξ = 0.5 0 0
ξ = 0.7 0 0
ξ = 0.9 0 0
ξ = 0.95 3.59e-04 0
ξ = 0.98 3.19e-04 4.5e-4
ξ = 1 2.36e-04 1.9e-3

Table 5.13: The comparison of relative gap between PIRL2 and EP4Orth+ for
problem size n = 2000, r = 300

PIRL2 EP4Orth+
gap gap

ξ = 0.5 0 0
ξ = 0.7 0 0
ξ = 0.9 0 0
ξ = 0.95 4.21e-04 0
ξ = 0.98 3.45e-04 2.5e-4
ξ = 1 2.79e-04 1.8e-3

Table 5.14: The comparison of relative gap between PIRL2 and EP4Orth+ for
problem size n = 2000, r = 400

PIRL2 EP4Orth+
gap gap

ξ = 0.5 0 0
ξ = 0.7 0 0
ξ = 0.9 0 0
ξ = 0.95 4.73e-04 0
ξ = 0.98 3.85e-04 1.7e-4
ξ = 1 3.11e-04 1.6e-3
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Table 5.15: Comparison of relative gap, infeasibility and computation time among
PIRL2, SEPPG and EP4Orth+ for the projection problems onto Sn,r

+

(ξ, n, r)
PIRL2 SEPPG EP4Orh+

Relgap Infeas Time Relgap Infeas Time Relgap Infeas Time
(0.5,500,5) 0 0 3.6 3.80e-09 4.10e-08 0.1 0 0 0
(0.8,500,5) 0 0 4.9 4.10e-06 6.30e-08 0.2 0 0 0.1
(1,500,5) 0 0 4.6 2.60e-05 5.10e-08 0.6 2.80e-04 0 0.1

(0.5,1000,10) 0 0 13.7 3.50e-09 5.60e-08 0.6 0 0 0.3
(0.8,1000,10) 0 0 13.3 3.20e-06 5.30e-08 3.4 0 0 0.5
(1,1000,10) 3.70e-05 0 14 1.10e-03 0 10.1 4.10e-04 0 0.5

is

min
n∑

i,j=1

n∑
k,l=1

aijbklxikxjl

s.t.
n∑

i=1

xij = 1 1 ≤ j ≤ n,

n∑
j=1

xij = 1 1 ≤ i ≤ n,

xij ∈ {0, 1} 1 ≤ i, j ≤ n.

(5.3.1)

Let A = (aij), B = (bij) and X = (xij), by the definition of aij and bkl, we know A,

B are nonnegative. Notice X is a permutation matrix in QAP, together with the

trace operator, the QAP can be written in the following matrix form

min 〈A,XBXT〉

s.t. XTX = In,

X ∈ Rn×n
+ .

(5.3.2)

Due to the combinatorial property, QAP is an NP-hard problem and a hard problem

when n > 15. Moreover, we adopt the same reformulation of (5.3.2) as (5.4) in [27],
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i.e.,

min 〈A, (X ◦X)B(X ◦X)T〉

s.t. XTX = In,

X ∈ Rn×n
+ .

(5.3.3)

We use the 133 instants in QAPLIB to test PIRL2, and compare its perfor-

mance with SEPPG [27] and EP4Orth+ [14]. Since the matrix A in “esc16f” is

zero matrix, the optimal solutions or bounds in “tai10a” and “tai10b” are not pro-

vided, we exclude the three cases in the numerical tests. The subprobem (4.4.8)

in PIRL2 is still solved by Pencf. One can find the data in QAPLIB via the link

https://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/.

Define the violation of nonnegativity

Ninf := ‖max(−X, 0)‖l1 , (5.3.4)

and the relative gap

relgap :=

[
f(X̄)− Best

Best
× 100

]
%, (5.3.5)

where X̄ is the solution obtained by PIRL2 and Best is the optimal objective value or

the lower bounds provided by QAPLIB. The relative gap will be used for measuring

the efficiency of different algorithms. SEPPG contains two versions of algorithms

SEPPG+ and SEPPG0, we use the better result between them as the result of

SEPPG. The initial points of PIRL2 are generated randomly by the MATLAB

functions,

X̃0 = randn(n, r), X0 = orth(X̃0), (5.3.6)

in the same way as the initial points are generated in Section 5.3 in [27]. The

maximum number of iterations in Pencf is set to 500, while the number of outer loop

iterations in PIRL2 is set to 20.
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Since the initial points are generated randomly, we run 100 times PIRL2 for each

case and report the minimum and median relative gap of 133 instances in Table 5.16

and Table 5.17. When the relative gap equals 0, it means that our algorithm finds

the optimal solution or better lower bound. Due to the exact penalty property of

our model and the post-procedure, the solutions found by PIRL2 always lie in Sn,n
+ ,

therefore, the feasibility of the solutions is not reported in Table 5.16 and Table 5.17.

In Table 5.18, we compare relative gap, violation of nonnegativity and computa-

tion time among PIRL2, SEPPG and EP4Orth+ for 21 QAPLIB cases with n ≥ 80.

PIRL2 obtains lower relative gap on “sko”, “tai80a” , “tai256c”and“tho150” than

SEPPG and EP4Orth+, but consumes more time than SEPPG. For the left cases,

SEPPG achieves the lowest relative gap.

From Table 5.19 and Table 5.20, the performance of SEPPG is the best among

the three algorithms, followed by PIRL2.
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Table 5.16: Relative gap calculated by PIRL2 algorithm from bur26a to nug15
Name Min gap Median gap Name Min gap Median gap
bur26a 0.37 1.18 esc32c 0 5.919
bur26b 0.3427 1.2281 esc32d 1 13.9487
bur26c 0.1759 1.2076 esc32e 0 0
bur26d 0.003 1.283 esc32g 0 33.3333
bur26e 0.2065 1.1579 esc32h 0.6018 6.1817
bur26f 0.0894 1.2574 esc64a 0 4.3898
bur26g 0.2908 1.6345 esc128 0 21.875
bur26h 0.3223 1.8002 had12 0.6053 6.4165
chr12a 21.8802 73.361 had14 0.0185 5.4104
chr12b 9.1768 99.4798 had16 1.9355 5.8065
chr12c 18.806 86.5005 had18 1.4184 5.2072
chr15a 23.848 133.7692 had20 1.7914 5.1719
chr15b 44.9812 148.6859 kra30a 0 0
chr15c 27.8199 141.8245 kra30b 0 0
chr18a 60.6596 171.8418 kra32 6.4374 13.3897
chr18b 14.2112 43.1551 lipa20a 1.6527 4.2357
chr20a 44.3431 118.1113 lipa20b 0 22.3741
chr20b 37.859 111.9669 lipa30a 0.6643 2.6764
chr20c 47.6453 204.8084 lipa30b 12.3717 21.3824
chr22a 15.757 43.2099 lipa40a 0.798 2.0971
chr22b 17.7591 46.1737 lipa40b 7.5861 22.7184
chr25a 58.6407 136.2094 lipa50a 0.5698 1.853
els16 0 0 lipa50b 12.5726 22.351

esc16a 0 17.6471 lipa60a 1.6341 1.9162
esc16b 0 0.6849 lipa60b 20.4867 23.8722
esc16c 0 6.5202 lipa70a 0.471 1.1192
esc16d 0 0.9984 lipa70b 22.11 22.8882
esc16e 0.026 21.4286 lipa80a 1.1785 1.4157
esc16g 0 16.376 lipa80b 21.0963 23.5712
esc16h 0 0 lipa90a 0.9223 1.1933
esc16i 0 0 lipa90b 0 24.642
esc16j 0 9.9287 nug12 0.126 9.9958
esc32a 23.0769 42.259 nug14 2.9586 14.6943
esc32b 23.8095 45.2381 nug15 4.1739 15.3913
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Table 5.17: Relative gap calculated by PIRL2 algorithm from nug16a to wil100
Name Min gap Median gap Name Min gap Median gap

nug16a 1.2865 11.9278 tai15a 3.2848 10.6269
nug16b 1.1272 12.1965 tai15b 0.6879 1.7339
nug17 2.2943 10.9122 tai17b 2.6978 7.216
nug18 3.1612 12.5389 tai20a 5.7844 12.3436
nug20 5.1362 13.3337 tai20b 3.4 8.9205
nug21 4.5119 16.0788 tai25a 5.0486 9.0112
nug22 4.505 13.7653 tai25b 3.2056 16.9442
nug24 6.3073 14.7015 tai30a 4.6263 7.7533
nug25 5.9497 12.8324 tai30b 1.5413 17.3936
nug27 3.5921 9.7822 tai35a 3.9346 9.4566
nug28 5.6523 11.9628 tai35b 2.1468 12.1028
nug30 5.454 9.03 tai40a 0 8.9766
rou12 5.1272 14.3613 tai40b 3.6644 11.8569
rou15 2.6402 16.3776 tai50a 6.6278 8.6116
rou20 6.3585 11.908 tai50b 2.1821 9.1281
scr12 8.1312 32.9322 tai60a 0 0
scr15 5.6332 23.1776 tai60b 1.3827 9.0733
scr20 4.277 24.0246 tai64c 0.5412 4.0924
sko42 3.1363 5.8548 tai80a 0 0
sko49 2.5531 5.0757 tai80b 3.6573 7.5264
sko56 3.941 6.3672 tai100a 4.2627 5.9205
sko64 0 0 tai100b 2.7349 6.6633
sko72 0 0 tai150b 1.9384 4.2301
sko81 0 0 tai256c 0.6928 1.218
sko90 0 0 ste36a 8.6041 21.8551

sko100a 0 0 ste36b 9.0242 28.2887
sko100b 0 0 ste36c 0 0
sko100c 0 0 tho30 0 0
sko100d 0 0 tho40 3.7279 8.0257
sko100e 0 0 tho150 0 0
sko100f 0 0 wil50 1.2537 2.6868
tai12a 1.7161 12.656 wil100 1.1603 1.9671
tai12b 0 13.5227
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Table 5.18: Comparison of the relative gap, violation of nonnegativity and
computation time among PIRL2, SEPPG and EP4Orth+ for 21 QAPLIB cases

with n ≥ 80

Name
PIRL2 SEPPG EP4Orth+

Median gap Time Ninf Median gap Time Ninf Median gap Time
esc128 21.875 27.2 0 4.156 73.9 3.40e-06 194 56
lipa80a 1.415 10.2 0 0.778 17.7 1.60e-06 2.028 0.7
lipa80b 23.571 10.4 0 14.891 1.6 0 27.207 22.9
lipa90a 1.193 12.2 0 0.703 18.6 6.10e-07 1.82 1
lipa90b 24.642 12.3 0 13.541 1.8 0 27.7 23.8
sko81 0 16.1 0 1.618 5.1 0 13.24 33
sko90 0 18.9 0 1.637 5.7 0 12.87 38.7

sko100a 0 24.1 0 1.426 7.2 0 12.773 51.7
sko100b 0 24.1 0 1.451 7.1 0 12.29 51
sko100c 0 22.3 0 1.622 7.5 0 13.234 51.6
sko100d 0 25.1 0 1.471 7 0 12.54 51.7
sko100e 0 30.7 0 1.66 7.2 0 13.478 52.5
sko100f 0 21.8 0 1.464 7.3 0 12.25 51.7
tai80a 0 11.8 0 3.02 1.3 0 9.481 22.3
tai80b 7.526 12.7 0 4.58 48.4 0 33.349 34.7
tai100a 5.920 16.1 0 2.737 2.1 0 8.72 29.9
tai100b 6.663 20.3 0 3.908 76.9 0 39.591 58.5
tai150b 4.230 36.9 0 2.991 35 0 22.58 154.6
tai256c 1.218 280.2 0 1.216 32.7 0 203.637 317.5
tho150 0 32.4 0 1.885 12.2 0 15.948 147.2
wil100 1.967 22.8 0 0.686 8.3 0 8.162 52.6

Table 5.19: Level of the minimum relative gaps on the 133 QAPLIB instances

Min gap(≤ %) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4
PIRL2 35 39 41 43 46 47 49 54 55 55 56 71 79 90
SEPPG 46 55 62 64 70 75 79 89 93 97 98 112 119 121

EP4Orth+ 6 6 6 7 7 9 9 11 14 14 14 18 22 25
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Table 5.20: Level of the median relative gaps on the 133 QAPLIB instances

Median gap(≤ %) 0.3 0.5 0.7 1 3 5 7 10 15 20 25 30 40
PIRL2 21 21 21 24 42 46 59 74 94 101 114 115 117
SEPPG 4 9 17 25 58 86 96 102 114 117 121 122 122

EP4Orth+ 0 0 0 0 10 15 17 23 44 53 73 84 91
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Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, we solve the optimization problem over the sign-constrained Stiefel

manifold by establishing the exact penalty model and designing an efficient algo-

rithm.

In the first part, we present the error bounds (1.1.2)–(1.1.4) with explicit val-

ues of ν and q in Theorems 3.1, 3.2 and 3.5 for Sn,r
S = Sn,r

+ . Furthermore, we show

that these error bounds cannot hold with q > 1/2 when 1 < r < n in Proposi-

tion 3.3, and point out that they cannot hold with q > 1 for any r ∈ {1, . . . , n} in

Remark 3.1. In Chapter 4 we present the error bounds (1.1.2)–(1.1.4) with explicit

values of ν and q in Theorems 3.7–3.9 for the sign-constrained Stiefel manifold. The

exponent q in the error bounds is 1/2 for any r ∈ {1, . . . , n} and can take the value 1

for |P| + |N | ∈ {1, n}. The new error bounds help us to establish the exactness

of penalty problems (1.1.6)–(1.1.8) for problem (1.1.5). Compared with existing re-

sults on error bounds for the set Sn,r
+ and penalty methods for minimization with

nonnegative orthogonality constraints, our results have explicit values of the error

bound parameters and penalty parameters, and do not need any condition other

than the (local) Lipschitz continuity of the objective function for the exact penalty.

Moreover, exponents in our error bounds are independent of the dimension of the
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underlying space.

In the second part, we propose a proximal iteratively reweighted `2 algorithm to

solve the nondifferentiable non-Lipschitz penalized problem. Under the assumption

that the objective function in the original problem is continuous, our algorithm has

subsequence convergence property, a sufficient decrease in each iteration, and the

distance between two adjacent iteration points is square summable, any accumulation

point is a stationary point. In numerical parts, we use projection to Sn,r
+ and QAP

two problems to test the PIRL2 algorithm and compare its performance with SEPPG

and EP4Orth+. Extensive numerical examples show the effectiveness of the PIRL2

algorithm.

6.2 Future work

In this thesis, the sign constraint is posed on each column of the matrix in the Stiefel

manifold, we wish to extend the sign constraint to each component of the matrix,

but the significance of the component sign constraint remains to be explored. The

fraction exponent in the error bounds leads to the non-Lipschitz of the penalty term,

we ever changed the exponent of the penalty term to 1 in some numerical experiments

and found that it had little effect on the results, so we guess there may exist some

conditions to improve the exponents in these error bounds. In the framework of

PIRL2, the accuracy and speed of solving subproblems greatly affect the effectiveness

of the entire algorithm, moreover, in this thesis, we obtain the first-order stationary

point of the subproblem with the help of the Pencf algorithm, so we hope to design

a better algorithm to solve this subproblem in the future.
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Chapter 7

Appendix. Proofs of Theorems 4.1

and 4.2

We first present the following lemma on a simple inequality between the entry-wise `p-

norm and the Frobenius norm. Its proof is elementary and hence omitted.

Lemma 7.1. For any X ∈ Rn×r and any p ≥ 1,

‖X‖F ≤ max
{

1, (nr)
p−2
2p

}
‖X‖`p .

The proofs of Theorems 4.1 and 4.2 are as follows.

Proof of Theorem 4.1. Define h(X) = ‖X−‖q`p + ‖XTX − Ir‖
1
2
`p

for X ∈ S, and set

ν = 5r
3
4 max

{
1, (nr)

p−2
4p

}
. By (3.4.6) and Lemma 7.1, we have

dist(X, Sn,r
+ ) ≤ 5r

3
4

(
‖X−‖qF + ‖XTX − Ir‖

1
2
F

)
≤ νh(X) for X ∈ S.

For any X ∈ S, setting X̄ to a projection of X onto Sn,r
+ , and combining the

L-Lipschitz continuity of F with the above error bound, we have

F (X̄) ≤ F (X) + L dist(X, Sn,r
+ ) ≤ F (X) + µh(X).

This implies that

inf{F (X) : X ∈ Sn,r
+ } ≤ inf{F (X) + µh(X) : X ∈ S}.
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Meanwhile, inf{F (X) : X ∈ Sn,r
+ } ≥ inf{F (X) + µh(X) : X ∈ S} as h is zero

on Sn,r
+ ⊂ S. Thus

inf{F (X) : X ∈ Sn,r
+ } = inf{F (X) + µh(X) : X ∈ S}. (7.0.1)

For any X∗ ∈ Argmin{F (X) : X ∈ Sn,r
+ }, we have h(X∗) = 0 and

F (X∗) + µh(X∗) = F (X∗) = inf{F (X) : X ∈ Sn,r
+ },

which together with (7.0.1) ensures X∗ ∈ Argmin{F (X) + µh(X) : X ∈ S}.

Now take any X∗ ∈ Argmin{F (X)+µh(X) : X ∈ S}, and let X̄∗ be a projection

of X∗ onto Sn,r
+ . Then we have

F (X∗) + µh(X∗) ≤ F (X̄∗) + µh(X̄∗) = F (X̄∗) ≤ F (X∗) + νLh(X∗).

This leads to h(X∗) = 0, as µ > νL and h(X∗) ≥ 0. Hence X∗ lies in Sn,r
+ , and

F (X∗) = F (X∗) + µh(X∗) = inf{F (X) + µh(X) : x ∈ S},

which implies that X∗ ∈ Argmin{F (X) : X ∈ Sn,r
+ } with the help of (7.0.1). We

complete the proof.

Proof of Theorem 4.2. Define h(X) = ‖X−‖q1`p + ‖XTX − Ir‖q2`p for X ∈ S, and

set ν = 4
√
rmax

{
1, (nr)

q1(p−2)
2p , r

q2(p−2)
p

}
. For any X ∈ Sn,r

+ and any Y ∈ S such

that ‖Y −X‖F < 1/(6
√
r), we have

‖Y−‖F + ‖σ(Y )− 1‖2 ≤ ‖Y −X‖F + ‖σ(Y )− σ(X)‖2 ≤ 2‖Y −X‖F <
1

3
√
r
,

where the first inequality is because X− = 0 and σ(X) − 1 = 0, while the second

invokes Lemma 2.2. Hence (3.3.15) and Lemma 7.1 yield

dist(Y, Sn,r
+ )

≤ 4
√
r
(
‖Y−‖q1F + ‖Y TY − Ir‖q2F

)
≤ 4
√
r
(

max
{

1, (nr)
q1(p−2)

2p

}
‖Y−‖q1`p + max

{
1, (r2)

q2(p−2)
2p

}
‖Y TY − Ir‖q2`p

)
≤ νh(Y ).
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Given a local minimizer X∗ of F on Sn,r
+ , there exists a δ ∈ (0, 1/(3

√
r)) such

that X∗ is a global minimizer of F on Sn,r
+ ∩B(X∗, δ) and F is L∗-Lipschitz continuous

in the same set.

It suffices to demonstrate thatX∗ is a global minimizer of F+µh on S∩B(X∗, δ/2)

for all µ > νL∗. Take any point Y ∈ S ∩ B(X∗, δ/2), let Ȳ be a projection of Y

onto Sn,r
+ , and note that Ȳ lies in B(X∗, δ), which is because

‖Ȳ −X∗‖F ≤ ‖Ȳ − Y ‖F + ‖Y −X∗‖F ≤ ‖X∗ − Y ‖F + ‖Y −X∗‖F < δ.

Then, using the fact that h(X∗) = 0, we have

F (X∗) + µh(X∗) = F (X∗) ≤ F (Ȳ ) ≤ F (Y ) + L∗ dist(Y, Sn,r
+ ) ≤ F (Y ) + µh(Y ),

which is what we desire.

If X∗ is a local minimizer of F + µh on S, and X∗ happens to lie in Sn,r
+ , then

F (X∗) = F (X∗) + µh(X∗) ≤ F (Y ) + µh(Y ) = F (Y )

for any Y that is close to X∗ and located in Sn,r
+ ⊂ S. Hence X∗ is also a local

minimizer of F on Sn,r
+ . We complete the proof.
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