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Abstract

Nonmonotone Variational Inequalities (VIs) are widely applied in the fields of data

sciences and machine learning. However, the design of algorithms towards nonmono-

tone VIs is still a challenge. State-of-the-art algorithms can only solve nonmonotone

VIs under some strong assumptions, such as pseudomonotonicity or Minty’s condi-

tion. The main purpose of this thesis is to study a class of nonmonotone VIs with

box constraints, which is equivalent to a system of nonsmooth equations. The thesis

is primarily divided into two parts.

In the first part of the thesis, we propose a smoothing Quasi-Newton Subspace

Trust Region (QNSTR) algorithm for the least squares problems defined by the

smoothing approximation of nonsmooth equations. Based on the structure of the

nonmonotone VI, we use an adaptive quasi-Newton formula to approximate the

Hessian matrix and solve a low-dimensional strongly convex quadratic program with

ellipse constraints in a subspace at each step of the QNSTR algorithm efficiently.

Moreover, we study the relationship between solutions of the VI and first order

stationary points of the least squares problem, and prove the global convergence of

the QNSTR algorithm to a solution of the VI under some mild conditions. We also

propose a strategy to update the smoothing parameter and establish its complexity.

In the second part of the thesis, we implement the QNSTR algorithm to solve a

box constrained nonconvex-nonconcave minimax optimization problem with applica-

tion to practical problems. Since the objective function of the optimization problem
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has expectation, we apply the Sample Average Approximation (SAA) method to

solve the optimization problem. We prove that any accumulation points of the glob-

al minimax point, first order stationary point, second order stationary point of the

SAA problem is a global minimax point, first order stationary point, second order

stationary point of the original problem respectively, as the sample size N tends to

be infinity. We formulate the first order optimality condition of the box constrained

SAA minimax problem as a nonmonotone VI, and apply the QNSTR to find a first

order stationary point of the SAA problem via the nonmonotone VI. We also present

numerical results based on the QNSTR algorithm with different subspaces for gen-

erative adversarial networks on several practical adversarial learning problems using

real data on eyes. The numerical results show that the QNSTR algorithm is efficient

and effective for solving large scale minimax optimization problems.
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Chapter 1

Introduction

The first chapter provides an introduction to the background of variational inequal-

ities (VIs) and reviews relevant results related to current works on nonmonotone

variational inequality problems.

1.1 Background

Let H : Rn → Rn be a continuous operator and Z ⊆ Rn be a closed convex set. A

finite-dimensional variational inequality, denoted as VI(Z, H), is to find a z∗, such

that

〈H(z∗), z − z∗〉 ≥ 0, ∀z ∈ Z. (1.1.1)

Recall that the tangent cone to a convex set Z ⊆ Rn at z̄ ∈ Z, denoted by TZ(z̄),

is defined as [6, Definition 6.1]

TZ(z̄) :=

{
w| zk − z̄

tk
→ w as k →∞ for some zk

Z→ z̄ and tk ↓ 0 as k →∞
}
,

where zk
Z→ z̄ means that {zk} ⊆ Z and zk → z̄ as k → ∞. The normal cone to Z

at z̄, denoted by NZ(z̄), is defined as

NZ(z̄) := {v| 〈v, w〉 ≤ 0, ∀w ∈ TZ(z̄)} = {v| 〈v, z − z̄〉 ≤ 0,∀z ∈ Z}.
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(1.1.1) can be represented as

〈H(z∗), v〉 ≤ 0, ∀v ∈ TZ(z∗), (1.1.2)

or

H(z∗) ∈ NZ(z∗). (1.1.3)

VI(Z, H) in (1.1.1) has many important applications in many fields including

physics, economics, statistics, and engineering. A wide range of constrained opti-

mization problems and equilibrium problems, including Nash equilibrium, economic

equilibrium, and traffic equilibrium, can be equivalently reformulated as variational

inequalities. This highlights the versatility of VIs as a uniform framework for tackling

a diverse array of important optimization and equilibrium problems.

Given the widespread applicability of the VI(Z, H), it is of significant interest to

develop efficient algorithms to solve this problem (1.1.1).

In this thesis, we focus on box constrained variational inequalities, i.e., we assume

that in (1.1.1), the feasibility set Z is defined as follows:

Z := {z ∈ Rn| l ≤ z ≤ u}, (1.1.4)

where l ∈ Rn, u ∈ Rn and l < u. Furthermore, we assume that H is continuously

differentiable and ∇H is locally Lipschitz continuous. Under the assumption for the

feasible set in (1.1.4), we can guarantee that the solution set of VI(Z, H), denoted

as SOL(Z, H), is nonempty. This is because H is continuous and Z in (1.1.4) is

compact (See Corollary 2.2.5 in [7]).

1.2 Literature review

The studies of finite-dimensional VIs can be dated back to 1960s and after that, many

algorithms for solving VIs have been proposed. An important type of algorithm
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for solving VIs is known as projection-type methods. The earliest projection-type

methods can date back to (gradient) projection method proposed by Sibony [8],

proximal method proposed by Martinet [9], and extra-gradient method proposed

by Korpelevich [10]. In 1995, Tseng studied the convergence of projection-type

methods of VIs [11]. After that, a number of algorithms such as modified forward-

backward method [13], mirror-prox method [14], dual-extrapolation method [15, 16],

hybrid proximal extra-gradient method [17], OGDA [18, 19], and extra-point method

[20] are proposed. The above approaches are called first-order projection methods.

Except for the first-order projection methods, there are also researches for developing

high-order projection methods [21, 22, 23, 26]. An important property of VIs for

designing algorithms is the (strong) monotonicity, which requires the operator H to

be (strongly) monotone. We say an operator H is monotone if

〈H(u)−H(v), u− v〉 ≥ 0, ∀u, v ∈ Z. (1.2.1)

Moreover, if there exists some µ > 0 such that

〈H(u)−H(v), u− v〉 ≥ µ‖u− v‖2, ∀u, v ∈ Z, (1.2.2)

we say H is strongly monotone.

All the aforementioned approaches are designed to tackle monotone problems.

However, monotonicity is often too idealistic to accurately model real-world prob-

lems. Currently, many practical problems, particularly in the domains of machine

learning and artificial intelligence, do not satisfy the monotonicity assumption. This

necessitates the development of new algorithms that can effectively handle nonmono-

tone VIs. Very recently, the development of algorithms for different nonmonotone

VIs has garnered significant attention, driven by their applications in machine learn-

ing [27, 28, 29, 30, 31, 32]. Most existing algorithms for nonmonotone VIs rely on

assumptions that relax the monotonicity requirement. We note that there are sev-
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eral conditions that can be imposed on the structure of H, which can help relax the

monotonicity assumption.

• Pseudo-monotonicity:

〈H(z), z′ − z〉 ≥ 0 =⇒ 〈H(z′), z′ − z〉 ≥ 0, ∀z, z′ ∈ Z. (1.2.3)

• Quasi-monotonicity:

〈H(z), z′ − z〉 > 0 =⇒ 〈H(z′), z′ − z〉 ≥ 0, ∀z, z′ ∈ Z. (1.2.4)

• Minty’s condition: there exists z∗ ∈ SOL(Z, H) such that

〈H(z), z − z∗〉 ≥ 0, ∀z ∈ Z. (1.2.5)

Based on the aforementioned assumption, projection-type methods can be ex-

tended to tackle variational inequalities with pseudomonotonicity [7, 27, 33], quasi-

monotonicity [31], and those that satisfy Minty’s condition [28].

To the best of our knowledge, Minty’s condition is the weakest condition known to

guarantee the convergence of nonmonotone VIs. However, even Minty’s condition is

quite stringent. We provide a counterexample to demonstrate that Minty’s condition

does not always hold.

Example 1.1. Consider the following VI:

0 ∈ H(z) +NZ(z) (b1)

with z ∈ R, H(z) = sin(z) and Z = [−6, 6]. Obviously, SOL(Z, H) = {−6,−π, 0, π, 6}.

However, for any z∗ ∈ {0, π, 6}, there exists a z ∈ [−6,−π) such that

〈H(z), z − z∗〉 = sin(z)(z − z∗) < −π sin(z) < 0.

Therefore, we know none of z∗ ∈ {0, π, 6} satisfies Minty’s condition in (1.2.5).

Similarly, we claim that no solution exists on {−6,−π}. Thus, we can conclude that

Minty’s condition does not hold on (b1).
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In fact, in most real-world optimization problems, Minty’s condition is difficult

to verify, and the convergence properties of current algorithms for nonmonotone VIs

may fail to hold. An alternative approach to solve (1.1.1) is to reformulate VI(Z, H)

into equivalent forms. For example, VI(Z, H) with Z in (1.1.4) can be reformulated

as a nonsmooth equations system

F (z) := z −mid(l, u, z −H(z)) = 0, (1.2.6)

where “mid” is the middle operator in the componentwise sense, that is

mid(l, u, z −H(z))i =


li, if (z −H(z))i < li,
ui, if (z −H(z))i > ui, i = 1, · · · , n.
(z −H(z))i, otherwise,

Moreover, since SOL(Z, H) is nonempty, solving the nonsmooth equations system is

equivalent to solve the nonsmooth minimization problem as follows:

min
z

r(z) :=
1

2
‖F (z)‖2. (1.2.7)

Obviously, the global optimizer z∗ of r, that is r(z∗) = 0 is the necessary and sufficient

condition of z∗ ∈ SOL(Z, H).

Several algorithms have been developed to solve VI(Z, H) via the nonsmooth e-

quation system (1.2.6) or the minimization problem (1.2.7), including quasi-Newton

methods [34], semismooth-Newton methods [35], inexact-Newton methods [36], and

trust region methods [37]. By incorporating strategies such as line search to select a

suitable step size, the global convergence of these methods can be established. How-

ever, these approaches typically require solving a high-dimensional linear system of

equations at each iteration, which can be computationally challenging for large-scale

problems. This limitation motivates us to develop a new method for nonmonotone

VIs, particularly tailored for large-scale problems.

In this thesis, we introduce a Quasi-Newton Subspace Trust Region (QNSTR)

algorithm to solve the nonmonotone VIs via the least squares problems (1.2.7).
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1.3 Summary of contributions

The contributions of this thesis are as follows:

• We propose a smoothing QNSTR algorithm for (1.1.1) via the least squares

problem (1.2.7). Leveraging the structure of (1.2.7), we employ an adaptive

quasi-Newton formula to approximate the Hessian matrix and solve a low-

dimensional strongly convex quadratic program with elliptical constraints in

a subspace at each iteration. Additionally, we explore the relationship be-

tween the solutions of the VI(Z, H) and the least squares problem (1.2.7),

demonstrating the global convergence of the QNSTR algorithm to a solution

of VI(Z, H). Under the assumption that the Jacobian matrix of F at all ac-

cumulation points of the sequence generated by QNSTR are nonsingular, we

prove that the complexity of the QNSTR to obtain a ε-solution of (1.1.1) is

O(ln(ε−2)ε−3).

• We investigate the connection between VIs and practical optimization problem-

s, with a focus on nonconvex-nonconcave minimax optimization problems with

expectation. Initially, we employ the Sample Average Approximation (SAA)

method to discretize the problem, examining the relationship between the orig-

inal minimax problem and its SAA. We then present numerical results obtained

from the QNSTR algorithm across various subspaces, which demonstrate its ef-

ficiency and effectiveness in solving large-scale minimax optimization problems.

Moreover, we implement the QNSTR algorithm and apply it to practical im-

age segmentation problems. The results showcase the promise of our proposed

algorithm for a broad range of adversarial learning problems, particularly in

scenarios where data is limited.
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1.4 Organization

The thesis is organized as follows.

• In Chapter 1, we introduce the background and provide a literature review for

the related topic.

• In Chapter 2, we first introduce the smoothing approximation for the nons-

mooth (1.2.7) and obtain a closed form of the smoothing approximation of

(1.2.7). Based on the differentiable smoothing problem, the QNSTR with

quasi-Newton approximation dedicated in the structure of least squares is de-

veloped. The global asymptotic convergence property is established under suit-

able assumptions. Moreover, we propose the update strategy of the smoothing

parameter and give the complexity of the QNSTR.

• In Chapter 3, we implement the QNSTR algorithm to address a nonconvex-

nonconcave minimax optimization problem. Initially, we apply the SAA method

to convert the problem into a discrete summation form, to examine the rela-

tionship between the original minimax problem and its SAA representation.

Furthermore, we apply the QNSTR on some minimax problems in practice to

show its outperformance comparing with other algorithms.

• In Chapter 4, we apply the QNSTR algorithm on some real image segmenta-

tion problems. We use three different datasets on eye and apply the QNSTR

algorithm on a mix Generative Adversarial Network (GAN), which can be rep-

resented as a nonconvex-nonconcave minimax problem. We apply F1-score,

Sensitivity, Specificity and Accuracy to judge the quality of the segmentation

results. According to the results, we show that the QNSTR is efficient and

effective on large scale minimax optimization problems.

7



• In Chapter 5, we summarize the main results of the thesis and discuss some

future work.
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Chapter 2

A globally convergent

Quasi-Newton Subspace Trust

Region (QNSTR) algorithm for

nonsmooth least squares problems

In this chapter, we propose the QNSTR algorithm to solve the nonlinear equations

(1.2.6) via the nonlinear nonsmooth least squares problem (1.2.7), which has the

global convergence property under some suitable assumptions.

Since H is locally Lipschitz continuous, we know F is locally Lipschitz continuous.

According to Rademacher’s theorem, F is differentiable almost everywhere. The

Clarke generalized Jacobian of F at z [40] is defined as

∂F (z) = con∂BF (z), (2.0.1)

and

∂BF (z) = {v| ∇F (z′)→ v, F is differentiable at z′, z′ → z},

where “con” denotes the convex hull. Similarly, the Clarke generalized gradient of r

in (1.2.7) is defined as:

∂r(z) = con{v| ∇r(z′)→ v, r is differentiable at z′, z′ → z},

and a vector z is called a Clarke stationary point of (1.2.7) if 0 ∈ ∂r(z).
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Because of the nonsmoothness of F , we first give the smoothing approximation

F̃ of F . We will study the relationship between F̃ and F in the next section.

2.1 Smoothing approximation

Definition 2.1. Let F : Rn → Rn be a continuous function. For a smoothing

function F̃ : Rn × R++ → Rn, if

1. F̃ (·, µ) is continuously differentiable in Rn for any fixed µ > 0,

2. for any z ∈ Rn,

lim
z̄→z,µ↓0

F̃ (z̄, µ) = F (z)

holds, we say F̃ (·, µ) is a smoothing approximation of F and µ is the smoothing

parameter.

2.1.1 Closed form of the smoothing approximation and basis
properties

Let q(z) = z − H(z). The function F is not differentiable at z when q(z)i = li or

q(z)i = ui for some 1 ≤ i ≤ n. To handle the nonsmoothness of F (z), we adopt its

smoothing approximation

F̃ (z, µ) := z − h(z, µ),

where h(z, µ) is a smoothing approximation of the term mid(l, u, q(z)), which is given

by (see [38, 39])

h(z, µ)i :=

∫ ∞
−∞

(mid(li, ui, q(z)i − µt) ρ(t)dt

for i = 1, · · · , n, where ρ : R → R+ is a density function with a bounded absolute

mean, that is, ∫ ∞
−∞
|t| ρ(t)dt <∞.
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In this case, we have, for i = 1, · · · , n, that

lim
µ↓0
∇zF̃ (z, µ)i = lim

µ↓0
∇z(zi − h(z, µ)i)

= lim
µ↓0

(
ei −

(∫ (q(z)i−li)/µ

(q(z)i−ui)/µ
ρ(t)dt

)
(ei −∇H(z)i)

)

=


∇H(z)i, if q(z)i ∈ (li, ui),

ei − (
∫ 0

−∞ ρ(t)dt)(ei −∇H(z)i), if q(z)i = li,

ei − (
∫∞

0
ρ(t)dt)(ei −∇H(z)i), if q(z)i = ui,

ei, otherwise,

where ei is the i-th column of the n× n identity matrix.

The smoothing function h(·, µ) can be expressed explicitly with some specific

density functions ρ. To see this, we give the following example.

Example 2.1 ([34]). 1. If ρ(t) = e−t

(1+e−t)2 , then

h(z, µ)i = li + µ log(1 + e(q(z)i−li)/µ)− µ log(1 + e(q(z)i−ui)/µ). (2.1.1)

2. If ρ(t) = 2

(t2+4)
3
2

, then

h(z, µ)i =
1

2

(√
(q(z)i − li)2 + 4µ2 −

√
(ui − q(z)i)2 + 4µ2 + ui + li

)
. (2.1.2)

3. If ρ(t) =

{
1, |t| ≤ 0.5,

0, otherwise,
then for any 0 < µ ≤ min1≤i≤n (ui − li), we have

h(z, µ)i =



− 1
2µ

(ui − q(z)i + µ
2
)2 + ui, |ui − q(z)i| ≤ µ

2
,

1
2µ

(li − q(z)i − µ
2
)2 + li, |li − q(z)i| ≤ µ

2
,

li, q(z)i < li − µ
2
,

ui, q(z)i > ui + µ
2
,

q(z)i, otherwise.

(2.1.3)

In the remainder of the thesis, we will apply the smoothing form in (2.1.3).

We first give some properties of the smoothing function (2.1.3) for the “mid”

function.
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Proposition 2.1. The function h(·, µ) in (2.1.3) is continuously differentiable for

any fixed µ ∈ (0, µ̂) with µ̂ := min1≤i≤n (1, ui − li) and satisfies the following proper-

ties:

(i) |h(z, µ)i −mid(l, u, q(z))i| ≤ µ
8

for any z ∈ Rn and µ ∈ (0, µ̂);

(ii) h(z, µ)i = mid(l, u, q(z))i if |q(z)i − li| > µ
2

and |q(z)i − ui| > µ
2
;

(iii) ‖∇zh(z, µ)i − ∇zh(z′, µ)i‖ ≤ ‖∇q(z)i‖
µ
‖q(z)i − q(z′)i‖ + ‖∇q(z)i − ∇q(z′)i‖ for

any z, z′ ∈ Rn.

Proof. By the definition of h in (2.1.3), we obtain

|h(z, µ)i −mid(l, u, q(z))i| =



1
2µ

(ui − q(z)i + µ
2
)2, if ui < q(z)i < ui + µ

2
,

1
2µ

(ui − q(z)i − µ
2
)2, if ui − µ

2
≤ q(z)i ≤ ui,

1
2µ

(li − q(z)i + µ
2
)2, if li < q(z)i < li + µ

2
,

1
2µ

(li − q(z)i − µ
2
)2, if li − µ

2
< q(z)i < li,

0, otherwise.

(2.1.4)

This implies (i) and (ii). By straightforward calculation, we can verify that h(z, µ)

is continuously differentiable with respect to z, and the closed form of ∇h(z, µ)i can

be represented as

∇h(z, µ)i = g(q(z), µ)iei∇q(z)i, (2.1.5)

with

g(t, µ)i =


− 1
µ
(ti − ui − µ

2
), if |ui − ti| ≤ µ

2
,

1
µ
(ti − li + µ

2
), if |li − ti| ≤ µ

2
,

1, if li + µ
2
≤ ti ≤ ui − µ

2
,

0, otherwise.

(2.1.6)

Obviously, we know ‖g(t, µ)iei‖ ≤ 1 for any t ∈ Rn. According to Proposition 4.2.2

(c) in [7], we know g(·, µ) is globally Lipschitz continuous with a Lipschitz constant
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(a) (b)

Figure 2.1: Smoothing approximations of mid(l, u, q(z)) with l = −1, u = 1, q(z) = z
for −2 ≤ z ≤ 2: (a) h(·, µ) in (2.1.3) with different values of µ; (b) comparison
of h(·, µ) in (2.1.3) and the smoothing functions h(·, µ) in (2.1.1) and (2.1.2) with
µ = 0.3.

1
µ
. Then

‖∇zh(z, µ)i −∇zh(z′, µ)i‖ ≤ ‖g(q(z), µ)iei∇q(z)i − g(q(z′), µ)iei∇q(z′)i‖

≤ ‖(g(q(z), µ)i − g(q(z′), µ)i)ei∇q(z)i‖+ ‖g(q(z′), µ)iei(∇q(z)i −∇q(z′)i)‖

≤ 1

µ
‖∇q(z)i‖‖q(z)i − q(z′)i‖+ ‖∇q(z)i −∇q(z′)i‖

(2.1.7)

for any fixed µ ∈ (0, µ̂) and the estimation in (iii) holds.

By Proposition 2.1 (ii), it holds that for any fixed z ∈ Rn, if q(z)i 6= li and

q(z)i 6= ui for i = 1, · · · , n, there exists µ̄, such that h(z, µ) = mid(l, u, q(z)). This is

the main advantage of h(·, µ) in (2.1.3) compared with the other approximation forms

such as (2.1.1) or (2.1.2). Figure 2.1 (a) shows that the smoothing function h(z, µ)

for mid(l, u, q(z)) with different values of µ when l = −1, u = 1 and q(z) = z for

z ∈ [−2, 2], while Figure 2.1 (b) shows the relationship of “mid” and its smoothing

approximation forms defined in (2.1.1), (2.1.2) and (2.1.3).

Comparing with other smoothing approximation forms such as (2.1.1) and (2.1.2),

(2.1.3) has better approximation quality towards the nonsmooth “mid” function for
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given smoothing parameter µ. Moreover, (2.1.3) can be formulated as a piecewise

quadratic form of q, which is easy to calculate in practical computation. If h(·, µ) is

defined in (2.1.3), the closed form of F̃ (·, µ) can be formulated as

F̃ (z, µ)i =


1
2
(H(z)i + zi) + 1

2µ
(ui − q(z)i)

2 + µ
8
− ui

2
, if |ui − q(z)i| ≤ µ

2
,

1
2
(H(z)i + zi)− 1

2µ
(li − q(z)i)

2 − µ
8
− li

2
, if |li − q(z)i| ≤ µ

2
,

F (z)i, otherwise.

(2.1.8)

In what follows, we summarize some useful properties of the smoothing function

F̃ (·, µ).

Lemma 2.1. Let F̃ (·, µ) be a smoothing approximation of F (·) defined in (2.1.8).

Then for any µ ∈ (0, µ̂), F̃ (·, µ) is continuously differentiable and has the following

properties.

(i) There is a κ =
√
n

8
such that for any z ∈ Rn and µ > 0,

‖F̃ (z, µ)− F (z)‖ ≤ κµ. (2.1.9)

(ii) For any z ∈ Rn, we have

lim
µ↓0

d(∇zF̃ (z, µ), ∂CF (z)) = 0,

where ∂CF (z) = ∂F (z)1 × ∂FN(z)2 × · · · × ∂F (z)n, and ∂(F (z))i is the Clarke

generalized gradient of F (·)i at z for i = 1, . . . , n. Moreover, there exists a

µ̄ > 0 such that for any µ ∈ (0, µ̄), we have ∇F̃ (z, µ) ∈ ∂CF (z).

Proof. Since (ii) has been proved in [35], we only need to prove the conclusion in (i).

According to (i) in Proposition 2.1, we know

‖F̃ (z, µ)− F (z)‖2 = ‖h(z, µ)−mid(l, u, q(z))‖2

≤ n‖h(z, µ)−mid(l, u, q(z))‖2
∞

≤ n

64
µ2,
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which implies (i).

By introducing the smoothing F̃ (·, µ), we can formulate a smoothing least squares

problem as follows

min
z
r̃(z, µ) :=

1

2
‖F̃ (z, µ)‖2. (2.1.10)

And the gap between the minimizers of (1.2.7) and (2.1.10) can be controlled by

the smoothing parameter µ. Next, we will introduce the algorithm to solve (2.1.10).

Before we give the algorithm, we first give two definitions as follows, which are

relevant to the results of the proposed algorithm.

Definition 2.2. [40] A function r : Rn → R is said to be regular at z ∈ Rn if for all

v ∈ Rn, its directional derivative exists and

r(z; v) = lim
t↓0

r(z + tv)− r(z)

t
= lim sup

z̄→z,t↓0

r(z̄ + tv)− r(z̄)

t
. (2.1.11)

If r is regular at all z ∈ Rn, r is said to be regular.

Definition 2.3. [39] A smoothing function r̃ of r : Rn → R is said to satisfy the

gradient consistency at z ∈ Rn if

con{v| ∇z r̃(z̄, µ)→ v for z̄ → z, µ ↓ 0} = ∂r(z). (2.1.12)

If r̃ satisfies gradient consistency at all z ∈ Rn, we say r̃ satisfies gradient consisten-

cy.

2.2 Structure of the QNSTR algorithm

Problem (2.1.10) has been extensively studied for several decades, with various meth-

ods such as Newton’s method, inexact Newton’s method, Levenberg-Marquardt

method, quasi-Newton’s method and trust region method are purposed to solve
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(2.1.10) (See [12]). However, in each step of these methods, they need to solve a

linear system in full scale. This means that the iteration subproblem will be difficult

to solve when the dimension n is sufficiently large. Therefore, we propose the QN-

STR for (2.1.10), which can be regarded as the combination of subspace trust region

method and quasi-Newton method. The global convergence to its Clarke stationary

point is established under suitable assumptions.

2.2.1 Quasi-Newton approximation of least squares problem

In this subsection, we study the structure of the least squares problem. For simplicity,

we use ∇r̃(z, µ) and ∇F̃ (z, µ) to represent ∇z r̃(z, µ) and ∇zF̃ (z, µ) respectively,

and use Fk, gk, Jk to denote F̃ (xk, µk), ∇z r̃(zk, µk) and ∇zF̃ (zk, µk) respectively. If

F̃ (·, µ) is twice continuously differentiable, the gradient and Hessian of r̃(·, µ) can be

expressed as:

∇r̃(z, µ) = ∇F̃ (z, µ)>F̃ (z, µ), (2.2.1)

∇2r̃(z, µ) = ∇F̃ (z, µ)>∇F̃ (z, µ) +
n∑
i=1

F̃ (z, µ)i∇2F̃ (z, µ)i. (2.2.2)

Since F̃ (·, µ) defined in (2.1.3) is not twice continuously differentiable, the sec-

ond part in (2.2.2) is unfeasible. In order to give a globally convergent algorithm

for problem (1.2.7) without using the second order derivatives, we keep the term

∇F̃ (z, µ)>∇F̃ (z, µ) in (2.2.2), and approximate
∑n

i=1 F̃ (z, µ)i∇2F̃ (z, µ)i by quasi-

Newton form. Thus, the Hessian approximation at the k-th iteraion point zk is given

by

Hk = J>k Jk + Ak, (2.2.3)

where

Ak+1 =

{
Bk+1, if ‖Bk+1‖ ≤ γ and (v>k sk)/(s

>
k sk) ≥ ε̄,

‖Fk+1‖In, otherwise,
(2.2.4)
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and

Bk+1 =

{
Bk −

Bksks
>
k B
>
k

s>k Bksk
+

vkv
>
k

s>k vk
, if ‖Bk+1‖ ≤ γ and (v>k sk)/(s

>
k sk) ≥ ε̄,

Bk, otherwise
(2.2.5)

with sk := zk+1 − zk and vk := (Jk+1 − Jk)>Fk+1‖Fk+1‖/‖Fk‖.

Moreover, we choose {d1
k, · · · , dL−1

k } (L ≥ 2) to let −gk, d1
k, · · · dL−1

k be L linearly

independent vectors. In each iteration of the QNSTR, we update zk+1 as

zk+1 =zk + pk,

pk =α1
k(−gk) +

L∑
i=2

αikd
i−1
k .

This is equivalent to adding a constraint of p ∈ Lk on the trust region subproblem

such that

pk = arg min
p∈Lk

r̃(zk) + g>k p+
1

2
p>Hkp,

s.t. ‖p‖ ≤ ∆k

(2.2.6)

with Lk = span{−gk, d1
k, · · · , dL−1

k }. Let Vk = [−gk, d1
k, · · · , dL−1

k ] ∈ Rn×L and denote

Gk := V >k Vk, ck := V >k gk, Qk := V >k HkVk,

we can reformulate (2.2.6) as

αk = arg min
α∈RL

mk(α) := r̃(zk) + c>k α + 1
2
α>Qkα,

s.t. ‖Vkα‖ ≤ ∆k.
(2.2.7)

In each iteration, QNSTR algorithm only solves a low dimensional strongly convex

quadratic subproblem (2.2.7) in L dimensions. Here, the strong convexity can be

guaranteed for initializing H0 as positive definite because in [41], they proved Hk+1

would be always positive definite if Hk is positive definite.
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Focusing on the difficulty of storing and calculating the approximate Hessian

matrix Hk for large-scale problems in practice, we announce the tricks as follows to

avoid the whole Hessian storage or computation. First, we denote

K1 := {k| ‖Bk+1‖ ≤ γ and (v>k sk)/(s
>
k sk) ≥ ε̄} and K2 = N \ K1,

and Qk can be represented as

Qk =

{
(JkVk)

>JkVk + V >k BkVk, k ∈ K1,

(JkVk)
>JkVk + ‖Fk+1‖V >k Vk, k ∈ K2.

(2.2.8)

‖Fk+1‖V >k Vk can be computed directly. For the term (JkVk)
>JkVk in (2.2.8), we

compute JkVk in a component-wise way

Jkgk ≈
F̃ (zk + εgk)− F̃ (zk)

ε
, Jkd

i
k ≈

F̃ (zk + εdik)− F̃ (zk)

ε
, i = 1, · · · , L− 1.

Since the above calculations are independent, they can be computed in parallel effi-

ciently. For the computation of V >k BkVk, k ∈ K1, we know

BkVk = B0Vk +
∑
k′∈K1

Bk′sk′s
>
k′B

>
k′

s>k′Bk′sk′
Vk +

∑
k′∈K1

vk′v
>
k′

v>k′sk′
. (2.2.9)

Suppose k is the (J+1)-th element in K1 and we use k1 < k2 < · · · < kJ to represent

the J elements in K1 before k. According to the update rules of Ak in (2.2.4) and

(2.2.5), then

BkVk = BkJVk −
BkJskJs

>
kJ
B>kJ

s>kJBkJskJ
Vk +

vkJv
>
kJ

v>kJskJ
Vk

= Bk1Vk −
J∑
j=1

Bkjskjs
>
kj
Bkj

s>kjBkjskj
Vk +

J∑
j=1

vkjv
>
kj

v>kjskj
Vk

= Bk1Vk −
J∑
j=1

(akj )
> ⊗ (Bkjskj) +

J∑
j=1

(bkj )
> ⊗ vkj ,

(2.2.10)
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where (akj )
> =

(Akj
skj )>Vk

s>kj
Akj

skj
, (bkj )

> =
v>kj

Vk

v>kj
skj

and ⊗ represents the Kronecker product.

Moreover, Bkjskj in (2.2.10) can be computed by

Bkjskj = Bkj−1
skj −

Bkj−1
skj−1

s>kj−1
B>kj−1

s>kj−1
Bkj−1

skj−1

skj +
vkj−1

v>kj−1

v>kj−1
skj−1

skj

= Bk1skj −
j−1∑
i=0

(
s>kiB

>
ki
skj

s>kiBkiski
)Bkiski +

j−1∑
i=0

(
v>kiskj
v>kiski

)vki .

(2.2.11)

If we initialize B0 = In, from update rule in (2.2.5), we know B0 = · · · = Bk1 = In.

Thus, the computation of quasi-Newton matrix BkVk can be replaced by a sequence

of vector-vector products involving {sk}k∈K1 , {vk}k∈K1 and the column vectors of Vk.

Consequently, Qk can be calculated efficiently without computing and storing the

full information of Hk. To compute vk, we can leverage automatic differentiation

techniques to compute

J>k+1Fk+1 = ∇z(F̃ (z, µk+1)>Fk+1)|z=zk+1
and J>k Fk+1 = ∇z(F̃ (z, µk)

>Fk+1)|z=zk

respectively. Moreover, we can make a truncation for the computation and only

use the information of last L1 iterations to update Hk, this is called limit-memory

strategy [12]. It is significantly efficient to solve large-scale least squares optimization

problems with real data when the dimension n is much larger than L1. Moreover,

if we apply the limit-memory strategy, then obviously we know ‖Bk+1‖ is bounded.

Therefore, we can drop the judgment of ‖Bk+1‖ ≤ γ in (2.2.4) and (2.2.5) if we apply

limit-memory strategy.

The structure of the QNSTR is given in Algorithm 1.

19



Algorithm 1 QNSTR Algorithm

Given: 0 < β1 < 1 < β2, 0 < η ≤ ζ1 < ζ2 < 1, 0 ≤ ∆ < +∞, 0 < ν ≤ 1, τ > 0,
Kmax < +∞; and initial value 0 < µ0 < min1≤i≤n (1, ui − li), ∆0 ∈ (0,∆), z0 ∈ Z.
Set k = 0.

while k < Kmax do
If ‖gk‖ = 0, set zk+1 = zk and go to Step 5.
Else go to Step 1.
Step 1. Solve (2.2.7) for αk.
Step 2. Compute the reduction ratio at iterate k:

ρk =
r̃(zk, µk)− r̃(zk + Vkαk, µk)

mk(0)−mk(αk)
. (2.2.12)

Step 3. Update

∆k+1 =


min{β2∆k,∆}, if ρk ≥ ζ2 and ‖Vkαk‖ = ∆k,

β1∆k, if ρk < ζ1,

∆k, otherwise.

(2.2.13)

Step 4. Update

zk+1 =

{
zk + Vkαk, if ρk > η,

zk, otherwise.
(2.2.14)

Step 5. Update

µk+1 =

{
νµk, if ‖∇r̃(zk+1, µk)‖ ≤ τµk,

µk, otherwise,
(2.2.15)

and let k = k + 1.
end while

We next show the convergence of the QNSTR in Algorithm 1.

2.3 Convergence analysis

In this section, we are concerned with the convergence and stability of the QNSTR.

Next, we show the QNSTR has globally convergent property of nonlinear nonsmooth

least squares problems under some mild assumptions. For converience, we let R =

max1≤i≤n (ui − li) and denote three sets as follows:
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S̄ : =

{
z ∈ Rn| d(z,Z) ≤

√
n

2
(1 +

√
n

4
)R

}
, (2.3.1)

Sµ : =

{
z ∈ Rn| r̃(z, µ) ≤ n

2
(R +

√
n

8
µ)2

}
, (2.3.2)

S : =

{
z ∈ Rn| r(z) ≤ n

2
(1 +

√
n

4
)2R2

}
. (2.3.3)

Then for arbitrary µ ∈ (0, µ̂) with µ̂ := min1≤i≤n (1, ui − li), we have the following

relationship between the sets.

Lemma 2.2. Let S̄, Sµ and S be the sets defined in (2.3.1), (2.3.2) and (2.3.3)

respectively, then we have

Z ⊆ Sµ ⊆ S ⊆ S̄.

Proof. We first show that Z ⊆ Sµ. By definition, for any z ∈ Z, we have

r(z) =
1

2
‖z −mid(l, u, q(z))‖2

≤ n

2
‖z −mid(l, u, q(z))‖2

∞

≤ n

2
max

(
‖z − l‖2

∞, ‖z − u‖2
∞
)

≤ n

2
R2.

(2.3.4)
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Moreover, from (i) in Lemma 2.1, we know

|r̃(z, µ)− r(z)| = 1

2

∣∣∣‖F̃ (z, µ)‖2 − ‖F (z)‖2
∣∣∣

≤ 1

2

n∑
i=1

∣∣∣F̃ (z, µ)i + F (z)i

∣∣∣ · ∣∣∣F̃ (z, µ)i − F (z)i

∣∣∣
≤ 1

2

n∑
i=1

‖F̃ (z, µ)− F (z)‖∞ ·
∣∣∣F̃ (z, µ)i + F (z)i

∣∣∣
≤ 1

2

n∑
i=1

κµ
∣∣∣F̃ (z, µ)i + F (z)i

∣∣∣
=

1

2

n∑
i=1

κµ
∣∣∣F̃ (z, µ)i − F (z)i + 2F (z)i

∣∣∣
≤ 1

2
κµ‖F̃ (z, µ)− F (z)‖1 + κµ‖F (z)‖1

≤ n

2
κµ‖F̃ (z, µ)− F (z)‖∞ +

√
nκµ‖F (z)‖

≤ n

2
(κµ)2 +

√
2nκµ

√
r(z).

(2.3.5)

This implies that

r̃(z, µ) ≤ r(z) +
√

2nκµ
√
r(z) +

n

2
(κµ)2

≤ n

2
R2 + nκµR +

n

2
(κµ)2

=
n

2
(R + κµ)2

=
n

2
(R +

√
n

8
µ)2

(2.3.6)

for any z ∈ Z, which means Z ⊆ Sµ. Next, we show that Sµ ⊆ S. By Lemma
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2.1 (i), we know

|r̃(z, µ)− r(z)| ≤ 1

2

n∑
i=1

κµ
∣∣∣F̃ (z, µ)i + F (z)i

∣∣∣
=

1

2

n∑
i=1

κµ
∣∣∣F (z)i − F̃ (z, µ)i + 2F̃ (z, µ)i

∣∣∣
≤ 1

2
κµ‖F̃ (z, µ)− F (z)‖1 + κµ‖F̃ (z, µ)‖1

≤ n

2
κµ‖F̃ (z, µ)− F (z)‖∞ +

√
nκµ‖F̃ (z, µ)‖

≤ n

2
(κµ)2 +

√
2nκµ

√
r̃(z, µ).

(2.3.7)

This implies for any z ∈ Sµ,

r(z) ≤ r̃(z, µ) +
√

2nκµ
√
r̃(z, µ) +

n

2
(κµ)2

≤ n

2
(R + κµ)2 + nκµ(R + κµ) +

n

2
(κµ)2

=
n

2
(R + 2κµ)2.

(2.3.8)

Plugging the equality that κ =
√
n

8
and the inequality

0 < µ ≤ min
i

(ui − li) ≤ max
i

(ui − li) = R

into (2.3.8), then we get the relationship that Sµ ⊆ S immediately. Finally, we show

S ⊆ S̄ by proving its contrapositive. For all z /∈ S̄, we have z /∈ S due to

r(z) = ‖z −mid(l, u, q(z))‖2

≥ (d(z,Z))2

>
n

2
(1 +

√
n

4
)2R2.

(2.3.9)

Then we complete the proof.
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The relationship in Lemma 2.2 brings some useful pieces of information:

(1) For an arbitrary initial point z0 ∈ Z, we know z0 ∈ S.

(2) Suppose {zk}∞k=1, {µk}∞k=1 are the sequences generated by Algorithm 1 with

given z0 ∈ Z and µ0 ∈ (0, µ̂), we know zk ∈ S, ∀k ∈ N.

(3) S is bounded and ‖z − z′‖ ≤
√

n
2
(1 +

√
n

4
)R, ∀z, z′ ∈ S.

Denote S(R0) := {z ∈ Rn| d(z,S) ≤ R0} for some R0 > 0 and obviously S(R0)

is compact. Then we know ∇z r̃(·, µ) is Lipschitz continuous on S(R0).

Lemma 2.3. Let q(z) = z − H(z) and F̃ (·, µ) be the smoothing approximation of

F (·) in (2.1.8). There exists a constant M̂ > 0, such that

‖q(z)− q(z′)‖ ≤M̂‖z − z′‖, (2.3.10)

‖∇q(z)−∇q(z′)‖ ≤M̂‖z − z′‖ (2.3.11)

for all z, z′ ∈ S(R0). With the same constant M̂ , we have

‖∇q(z)‖ ≤M̂, (2.3.12)

‖F̃ (z, µ)‖ ≤M̂, (2.3.13)

‖∇zF̃ (z, µ)‖ ≤M̂ (2.3.14)

for all z ∈ S(R0), and all µ ∈ (0, µ̂). Moreover, ∇z r̃(·, µ) is Lipschitz continuous in

S(R0), that is

‖∇z r̃(z, µ)−∇z r̃(z
′, µ)‖ ≤ C

µ
‖z − z′‖, ∀z, z′ ∈ S(R0),

where C =
√
nM̂3 + (

√
n+ 1)M̂2.
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Proof. First of all, because of the continuity of ∇q, and the boundedness of S(R0),

we know there exists M1 > 0, such that

‖∇q(z)‖ ≤M1 (2.3.15)

for all z ∈ S(R0). (2.3.15) also implies (2.3.10). Moreover, by the local Lipschitz

continuity of ∇H, we know ∇q is locally Lipschitz continuous. Then we know there

exists M2 > 0 such that

‖∇q(z)−∇q(z′)‖ ≤M2‖z − z′‖ (2.3.16)

for all z, z′ ∈ S(R0). For any z ∈ S(R0), we know

‖F̃ (z, µ)‖ ≤ ‖F (z)‖+ ‖F (z)− F̃ (z, µ)‖

≤ ‖F (z)‖+

√
n

8
µ̂.

(2.3.17)

Since F is continuous and S(R0) is compact, we know ‖F (z)‖ is bounded by M3 for

some M3 > 0 in S(R0). Thus, we know

‖F̃ (z, µ)‖ ≤M3 +

√
n

8
µ̂. (2.3.18)

For ‖∇F̃ (z, µ)‖, we know

‖∇F̃ (z, µ)‖ ≤ ‖∇F̃ (z, µ)‖F

≤
n∑
i=1

‖∇F̃ (z, µ)i‖

≤ n‖ei −∇zh(z, µ)i‖

≤ n‖ei‖+ n‖∇q(z)i‖

≤ n(1 + ‖∇q(z)‖)

≤ n(1 +M1).

(2.3.19)
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The third to last inequality holds because of the fact that ‖h(z, µ)i‖ ≤ ‖∇q(z)i‖

in (2.1.5). Let M̂ := max
(
n(1 +M1),M2,M3 +

√
n

8
µ̂
)

, we proved (2.3.10), (2.3.11),

(2.3.12), (2.3.13), (2.3.14) already. Noting that (2.3.14) also implies

‖F̃ (z, µ)− F̃ (z′, µ)‖ ≤ M̂‖z − z′‖, (2.3.20)

and

‖∇F̃ (z, µ)−∇F̃ (z′, µ)‖2 ≤‖∇F̃ (z, µ)−∇F̃ (z′, µ)‖2
F

=
n∑
i=1

‖∇zh(z, µ)i −∇zh(z′, µ)i‖2

≤
n∑
i=1

(
‖∇q(z)i‖

µ
‖q(z)i − q(z′)i‖+ ‖∇q(z)i −∇q(z′)i‖

)2

≤
n∑
i=1

‖∇q(z)i‖2

µ2
‖q(z)i − q(z′)i‖2 + ‖∇q(z)i −∇q(z′)i‖2

+ 2
‖∇q(z)i‖

µ
‖q(z)i − q(z′)i‖‖∇q(z)i −∇q(z′)i‖

≤nM̂
4

µ2
‖z − z′‖2 + nM̂2‖z − z′‖2 + 2n

M̂3

µ
‖z − z′‖2

=nM̂2(
M̂

µ
+ 1)2‖z − z′‖2,

(2.3.21)

where the second last inequality holds because of Proposition 2.1 (iii). Then we have

‖∇F̃ (z, µ)−∇F̃ (z′, µ)‖ ≤
√
nM̂(

M̂

µ
+ 1)‖z − z′‖. (2.3.22)
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Now, we can prove the Lipschitz continuity of ∇r̃(·, µ).

‖∇r̃(z, µ)−∇r̃(z′, µ)‖ = ‖∇F̃ (z, µ)>F̃ (z, µ)−∇F̃ (z′, µ)>F̃ (z′, µ)‖

≤ ‖∇F̃ (z, µ)−∇F̃ (z′, µ)‖‖F̃ (z, µ)‖+ ‖∇F̃ (z′, µ)‖‖F̃ (z, µ)− F̃ (z′, µ)‖

≤ M̂‖∇F̃ (z, µ)−∇F̃ (z′, µ)‖+ M̂‖F̃ (z, µ)− F̃ (z′, µ)‖

≤

(
√
n
M̂3

µ
+ (
√
n+ 1)M̂2

)
‖z − z′‖.

(2.3.23)

When µ < 1, we immediately have

‖∇z r̃(z, µ)−∇z r̃(z
′, µ)‖ ≤ C

µ
‖z − z′‖

with C :=
√
nM̂3 + (

√
n+ 1)M̂2.

Lemma 2.4. Let {zk}∞k=1 be the sequence generate by Algorithm 1 and {Hk}∞k=1 be

the sequence generated by the formulas (2.2.3), (2.2.4) and (2.2.5), then we know

there exists a constant M1 > 0, and ‖Hk‖ ≤M1,∀k ∈ N.

Proof. First of all, by the conclusion in Lemma 2.3, we know {zk}∞k=1 ∈ S is bounded.

According to (2.3.19), we know there exists a constant M̄ > 0, such that ‖J>k Jk‖ ≤

M̄ . Let

K1 := {k ∈ N| ‖Bk+1‖ ≤ γ and (v>k sk)/(s
>
k sk) ≥ ε̄}, and K2 := N \ K1.

Obviously, by the update rules in (2.2.4) and (2.2.5), we know ‖Ak‖ ≤ γ for k ∈ K1.

For k ∈ K2, we know

‖Ak‖ = ‖F̃ (zk, µk)‖ ≤ ‖F (zk)‖+

√
n

8
R ≤ n(1 +

√
n

4
)R +

√
n

8
R. (2.3.24)

The first inequality holds because of the fact that µ ≤ max1≤i≤n (ui − li) = R and

Lemma 2.1 (i). Let M1 := M̄ + max
((
n(1 +

√
n

4
) +

√
n

8

)
R, γ

)
, we obtained the

lemma.
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2.3.1 Asymptotic convergence of the QNSTR to exact solu-
tion of VIs

We first consider the convergence of the QNSTR with the assumption that ‖∇r̃(zk+1, µk)‖ >

τµk for all k ∈ N. In this case, µ0 = µ1 = · · · = µ reduce to a single fixed constant

and F̃ (z, µ), r̃(z, µ) reduce to a function only correlated with z. For simplicity, we

denote F̃ (z, µ), r̃(z, µ) as F̃ (z), r̃(z) respectively. Let M := max
(
C
µ
,M1

)
, we now

consider the following one-dimensional problem:

min
τ
mk(τα

s
k) s.t. ‖τVkαsk‖ ≤ ∆k, τ > 0, (2.3.25)

where αsk is an optimal solution of

min
α

c>k α s.t. ‖Vkα‖ ≤ ∆k. (2.3.26)

Let τk denote an arbitrary optimal solution of problem (2.3.25). Then αCk := τkα
s
k is

a feasible solution of problem (2.2.7).

In what follows, we give the closed form of αCk step by step. For this purpose, we

consider the Karush-Kuhn-Tucker (KKT) condition of problem (2.3.26) as follows:

λGkα + ck = 0, 0 ≤ λ⊥∆2
k − α>Gkα ≥ 0,

where λ is a multiplier. Since gk 6= 0 and Vk is of full column rank, we have ck 6= 0

and Gk is invertible. Thus, we know λ > 0, and the above KKT system gives

α = −1

λ
G−1
k ck, ∆2

k = α>Gkα.

Then we obtain 1
λ

=

√
∆2

k

(G−1
k ck)>Gk(G−1

k ck)
, and the solution of (2.3.26) can be written

28



as

αsk = − ∆k√
(G−1

k ck)>Gk(G
−1
k ck)

G−1
k ck

= − ∆k√
c>kG

−1
k ck

G−1
k ck

= − ∆k√
g>k Vk(V

>
k Vk)

−1V >k gk
G−1
k ck

= − ∆k

‖gk‖
G−1
k ck.

The above last equality holds because Vk(V
>
k Vk)

−1V >k d = d if d is the column

vector of Vk. Hence, the objective function of (2.3.25) has the following form

mk(τα
s
k) = r̃(zk) + τc>k α

s
k +

τ 2

2
(αsk)

>Qkα
s
k

= r̃(zk)− τ
∆k

‖gk‖
c>kG

−1
k ck +

τ 2

2

(
∆k

‖gk‖

)2

(G−1
k ck)

>QkG
−1
k ck

= r̃(zk)−∆k‖gk‖τ +
τ 2

2

(
∆k

‖gk‖

)2

g>k Hkgk

and the constraint of (2.3.25) satisfies

‖ταsk‖Gk
:=
√
τ 2(αsk)

>Gkαsk = τ
∆k

‖gk‖

√
c>kG

−1
k GkG

−1
k ck = τ∆k ≤ ∆k,

which is equivalent to 0 < τ ≤ 1.

Therefore, problem (2.3.25) can be equivalently rewritten as

min
τ
−∆k‖gk‖τ + τ2

2

(
∆k

‖gk‖

)2

g>k Hkgk, s.t. 0 < τ ≤ 1. (2.3.27)

Since Hk is positive definite (see (2.2.4), (2.2.5)), problem (2.3.27) has the unique

solution and the closed form of its solution can be written as

τk = min
(
‖gk‖3/(∆kg

>
k Hkgk), 1

)
.
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Finally, we obtain

αCk = −min
(
‖gk‖3/(∆kg

>
k Hkgk), 1

) ∆k

‖gk‖
G−1
k ck. (2.3.28)

Lemma 2.5. Let αk be the unique optimal solution of subproblem (2.2.7) at the k-th

step. Then

mk(0)−mk(αk) ≥
1

2
‖gk‖min

(
∆k,
‖gk‖
‖Hk‖

)
.

Proof. Since αCk is a feasible solution of problem (2.2.7), we have

mk(0)−mk(αk) ≥ mk(0)−mk(α
C
k ).

In what follows, we verify

mk(0)−mk(α
C
k ) ≥ 1

2
‖gk‖min

(
∆k,
‖gk‖
‖Hk‖

)
.

If ‖gk‖3/(∆kg
>
k Hkgk) < 1, substituting αCk (see (2.3.28)) into (2.2.7), we have

mk(0)−mk(α
C
k ) = −c>k αCk −

1

2
(αCk )>Qkα

C
k

=
‖gk‖2

g>k Hkgk
c>kG

−1
k ck −

1

2

‖gk‖4

(g>k Hkgk)2
c>kG

−1
k QkG

−1
k ck

=
‖gk‖4

g>k Hkgk
− 1

2

‖gk‖4

(g>k Hkgk)2
g>k Hkgk

=
1

2

‖gk‖4

g>k Hkgk
≥ 1

2

‖gk‖4

‖Hk‖‖gk‖2
=

1

2

‖gk‖2

‖Hk‖
.

(2.3.29)
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If ‖gk‖3/(∆kg
>
k Hkgk) ≥ 1 (i.e., g>k Hkgk ≤ ‖gk‖3

∆k
), we have

mk(0)−mk(α
C
k ) = −c>k αCk −

1

2
(αCk )>Qkα

C
k

=
∆k

‖gk‖
c>kG

−1
k ck −

1

2

∆2
k

‖gk‖2
c>kG

−1
k QkG

−1
k ck

= ∆k‖gk‖ −
1

2

∆2
k

‖gk‖2
g>k Hkgk

≥ ∆k‖gk‖ −
1

2

∆2
k

‖gk‖2

‖gk‖3

∆k

=
1

2
‖gk‖∆k.

(2.3.30)

Combining (2.3.29) and (2.3.30), we complete the proof.

In the remainder of Section 2.3.1, we only consider the case that gk 6= 0 because

the conclusion holds obviously if gk = 0 for some k > 0.

Lemma 2.6. Let {zk}∞k=0 be a sequence generated by Algorithm 1. Then for any

index k, there exists a k̄ > k such that ‖gk̄‖ < ‖gk‖/2.

Proof. We give the proof by contradiction. Suppose that there exists a k̂ with ‖gk̂‖ =

2ε for some ε > 0, and ‖gk‖≥ε, ∀k ≥ k̂. Then we know from Lemma 2.5 that

mk(0)−mk(αk) ≥
1

2
‖gk‖min

(
∆k,
‖gk‖
‖Hk‖

)
≥ 1

2
εmin

(
∆k,

ε

M

)
. (2.3.31)

According to the definition of ρk in (2.2.12), we have

|ρk − 1| =
∣∣∣∣ r̃(zk)− r̃(zk + Vkαk)− (mk(0)−mk(αk))

mk(0)−mk(αk)

∣∣∣∣
=

∣∣∣∣mk(αk)− r̃(zk + Vkαk)

mk(0)−mk(αk)

∣∣∣∣ .
(2.3.32)

By Taylor expansion, we have

r̃(zk + Vkαk) = r̃(zk) + g>k Vkαk +

∫ 1

0

(∇r̃(zk + tVkαk)−∇r̃(zk))>Vkαkdt.
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Then

|mk(αk)− r̃(zk + Vkαk)| =
∣∣∣∣12α>kQkαk −

∫ 1

0

(∇r̃(zk + tVkαk)−∇r̃(zk))>Vkαkdt
∣∣∣∣

≤ (M/2)‖Vkαk‖2 +M‖Vkαk‖2 ≤ 3∆2
kM/2,

(2.3.33)

where the first inequality follows from Qk = V >k HkVk and the mean-value theorem,

and the second inequality follows from ‖Vkαk‖ ≤ ∆k due to the constraint in problem

(2.2.7).

Then, by (2.3.31), (2.3.32) and (2.3.33), we get

|ρk − 1| ≤ 3∆2
kM/2

(ε/2) min(∆k, ε/M)
.

Denote

∆̃ := min

(
(1− ζ1)ε

3M
,R0

)
.

For any ∆k ≤ ∆̃, we have

|ρk − 1| ≤ 3∆2
kM/2

(ε/2) min(∆k, ε/M)
=

3M∆2
k

ε∆k

=
3M∆k

ε
≤ 3M∆̃

ε
≤ 1− ζ1,

which implies ρk ≥ ζ1, where the first equality follows from the fact that

∆k ≤ ∆̃ = min

(
(1− ζ1)ε

3M
,R0

)
≤ ε

3M
<

ε

M
.

The above observation together with update rules in (2.2.13) indicates that ∆k+1 ≥

∆k when ∆k ≤ ∆̃ (and thus ρk ≥ ζ1). In other words, if ∆k > ∆̃, ρk < ζ1 holds. In

this case,

∆k+1 = β1∆k > β1∆̃

when ∆k > ∆̃. To summarize the two cases, we then have

∆k ≥ min(∆k−1, β1∆̃) ≥ · · · ≥ min(∆k̂, β1∆̃), ∀k ≥ k̂. (2.3.34)
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Then we prove the sequence {∆k}∞k≥k̂ is bounded from below. Denote a subse-

quence of {k̂, k̂ + 1, · · · } as

K := {k ∈ N+| ρk ≥ ζ1, k ≥ k̂}. (2.3.35)

Then one of the following two cases holds.

Case 1: K is a finite set. Then, there exists a K > k̂, such that for all k > K,

∆k+1 = β1∆k. It is easy to obtain ∆k → 0 as k →∞, since β1 < 1. However, this is

contradicted by the fact that ∆k is bounded from below (see (2.3.34)).

Case 2: K is a infinite set. In this case, we have from the definition of ρk (see

(2.2.12)) and ρk ≥ ζ1 that

r̃(zk)− r̃(zk+1) ≥ ζ1(mk(0)−mk(αk)) ≥ ζ1
1

2
εmin(∆k, ε/M) > 0,

where the second inequality follows from Lemma 2.5 and ‖gk‖ ≥ ε for all k ∈ K.

Therefore, {r̃(zk)}k∈K is strictly decreasing. Since {r̃(zk)}k∈K is bounded from

below (note that r̃(z) ≥ 0 for any z), we know that the sequence {r̃(zk)}k∈K is

convergent and r̃(zk) − r̃(zk+1) ↓ 0 as k
K→ ∞. Thus, ∆k → 0 as k

K→ ∞, which is

also contradicted by (2.3.34).

Now we are ready to give the proof of Theorem 2.1.

Theorem 2.1. Let {zk}∞k=0 be an infinite sequence generated by Algorithm 1. We

have limk→∞ ‖gk‖ = 0.

Proof. Let

ε :=
1

2
‖gk‖ and R := min

( ε

M
,R0

)
. (2.3.36)

Note that B(zk, R) = {z : ‖z − zk‖ ≤ R} ⊆ S(R0), and thus ∇r̃(·) is Lipschitz

continuous on B(zk, R) with Lipschitz modulus M . Thus, for ∀z ∈ B(zk, R), we have

‖∇r̃(z)−∇r̃(zk)‖ ≤M ‖z − zk‖ ≤MR = M min
( ε

M
,R0

)
≤ ε.
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For ∀z ∈ B(zk, R), we have by the triangle inequality that

‖∇r̃(z)‖ ≥ ‖gk‖ − ‖∇r̃(z)−∇r̃(zk)‖ = 2ε− ‖∇r̃(z)−∇r̃(zk)‖ ≥ 2ε− ε = ε.

According to Lemma 2.6, we know that there exists an index l ≥ k satisfying ‖gl+1‖ <

ε. Furthermore, we assume that zl+1 is the first point that iterates out of the ball

B(zk, R) after zk as well as satisfying ‖gl+1‖ < ε. Consequently, ‖gi‖ ≥ ε for i =

k, k + 1, · · · , l. Then we have

r̃(zk)− r̃(zl+1) =
l∑

i=k

r̃(zi)− r̃(zi+1) =
l∑

i=k,
zi 6=zi+1

ρi(mi(0)−mi(αi))

≥
l∑

i=k,
zi 6=zi+1

η(mi(0)−mi(αi)) ≥
η

2
ε

l∑
i=k,

zi 6=zi+1

min
(

∆i,
ε

M

)
,

(2.3.37)

where the second equality follows from (2.2.12), the first inequality follows from

ρi ≥ η when zi 6= zi+1. Since ‖gk‖ = 2ε and ‖gl+1‖ < ε, we have zl+1 6= zk, which

implies that {k, · · · , l} ∩ {j : zj 6= zj+1} 6= ∅.

If ∆i ≤ ε/M for all i ∈ {k, · · · , l} ∩ {j : zj 6= zj+1}, we continue (2.3.37) as

follows:

r̃(zk)− r̃(zl+1) ≥ η

2
ε

l∑
i=k,

zi 6=zi+1

∆i ≥
η

2
ε

l∑
i=k

‖zi+1 − zi‖

≥ η

2
ε ‖zk − zl+1‖ ≥

η

2
εR =

η

2
εmin

( ε

M
,R0

)
,

where the second inequality follows from ‖zi+1 − zi‖ ≤ ∆i, the third inequality fol-

lows from the triangle inequality, the last inequality follows from the fact that zl+1

is the first point that iterates out of the ball B(zk, R) after zk.

If ∆i > ε/M for some i ∈ {k, · · · , l} ∩ {j : zj 6= zj+1}, we continue (2.3.37) as

follows:

r̃(zk)− r̃(zl+1) ≥ η

2
ε

l∑
i=k,

zi 6=zi+1

ε

M
≥ η

2
ε
ε

M
,
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where the last inequality follows from {k, · · · , l}∩{j : zj 6= zj+1} 6= ∅. To summarize,

we obtain

r̃(zk)− r̃(zl+1) ≥ η

2
εmin

( ε

M
,R0

)
. (2.3.38)

Since the sequence {r̃(zi)}∞i=0 is a decreasing and bounded sequence from below,

there exists r∗ ≥ 0 such that limi→∞ r̃(zi) = r∗. Hence

r̃(zk)− r∗ ≥ r̃(zk)− r̃(zl+1) ≥ η

2
εmin

( ε

M
,R0

)
=
η

4
‖gk‖min

(
‖gk‖
2M

,R0

)
,

where the second inequality follows from (2.3.38), the last equality follows from

(2.3.36).

Due to the arbitrariness of k, by letting k →∞, we know

η

4
‖gk‖min

(
‖gk‖
2M

,R0

)
→ 0,

which implies limk→∞ ‖gk‖ = 0.

Next, we give the convergence of the QNSTR in Algorithm 1. Since ∆ > 0

and 0 < ν < 1, {µk}∞k=0 will be a nonincreasing sequence of value and we have the

following global convergence theorem for Algorithm 1.

Lemma 2.7. Let {zk}∞k=0 and {µk}∞k=0 be the sequences generated by Algorithm 1.

Define the index set

Kµ := {k| ‖∇z r̃(zk, µk)‖ ≤ τµk}. (2.3.39)

Then Kµ defined in (2.3.39) is an infinite set.

Proof. Suppose Kµ is finite. Then based on the definition of Kµ and the design of

Algorithm 1, there exists a nonnegative integer K̂, such that for all nonnegative

integers j, the smoothing parameter reduce to a constant, µK̂+j = µK̂ and

‖∇z r̃(zK̂+j, µK̂+j)‖ > τµK̂ . (2.3.40)
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Noting that r̃(zK̂+j, µK̂) ≤ n
2
(1 +

√
n

8
)2R2 for all j > 0. According to Theorem 2.1,

we know

lim
j→∞
∇z r̃(zK̂+j, µK̂+j) = 0.

Since µK̂ > 0, there exists a positive integer J̄ , such that

‖∇z r̃(zK̂+j, µK̂)‖ < τµK̂ , ∀j ≥ J̄ . (2.3.41)

This contradicts to the conclusion in (2.3.40), which is derived under the assumption

that Kµ is finite. Thus, Kµ is an infinite set.

Theorem 2.2. Let {zk}∞k=0 and {µk}∞k=0 be the sequences generated by Algorithm 1.

Then

lim inf
k→∞
‖∇r̃(zk, µk)‖ = 0. (2.3.42)

Proof. Let Kµ = {kj| j = 1, 2, · · · } with k1 < k2 < k3 < · · · . From 0 < ν < 1, we

know that

0 < µkj < νµkj−1 = νµkj−2 = · · · = νµkj−1+1 < ν2µkj−1
= ν2µkj−1−1 = · · · νj−1µk1 .

Since Kµ is an infinite set, we get limj→∞ µkj = 0. This implies that limk→∞ µk =

0 because our algorithm generates a monotonically decreasing sequence {µk}∞k=1.

Therefore, the following inequality

‖∇z r̃(zkj , µkj)‖ ≤ τµkj ≤ τνj−1µk0 (2.3.43)

gives that limj→∞ ‖∇z r̃(zkj , µkj)‖ = 0. Consequently, lim infk→∞ ‖∇z r̃(zk, µk)‖ =

0.

In the above analysis, we have shown that lim infk→∞∇r̃(zk, µk) = 0. Then

we can conclude that there exists an accumulation point of {zk}∞k=0 generated by

the QNSTR (in Algorithm 1) is a Clarke stationary point of (1.2.7). Moreover,
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if all elements in the Clarke generalized Jacobian of F at the accumulation points

are nonsingular, the accumulation point is a solution of VI(Z, H). To ensure that

any accumulation point of {zk}∞k=0 generated by the QNSTR algorithm is a Clarke

stationary point of (1.2.7), we need functions F (·)i , i = 1, · · · , n to be regular and

their smoothing functions F̃i to satisfy the gradient consistency. However, “mid”

function does not satisfy the Clarke regularity. Therefore, we introduce the QNSTR

with fixed smoothing parameter µ to a inexact solution of (1.1.1). In the next

section, we will study the complexity of the QNSTR with fixed smoothing parameter

to receive an inexact solution of (1.1.1) with tolerance error ε.

2.3.2 Complexity analysis of the QNSTR to an inexact so-
lution of VIs

In this subsection, we analyze the complexity of the QNSTR with fixed smoothing

parameter µ converging to an inexact solution of (1.1.1) with ε tolerance. Since µ is a

fixed scalar, we inherit the simplified notations of the discussion for fixed smoothing

parameter in subsection 2.3.1. We use r̃(z), F̃ (z) and ∇r̃(z) to represent r̃(z, µ),

F̃ (z, µ) and ∇r̃(z, µ) respectively.

We first give the definition of ε-solution of (1.1.1).

Definition 2.4 (ε-solution of (1.1.1)). For given ε > 0, a point z is called an ε-

solution of (1.1.1), if ‖F (z)‖ ≤ ε.

Next, we propose the inexact-QNSTR algorithm with fixed smoothing parameter

µ to converge to an ε-solution of (1.1.1) and study its complexity.
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Algorithm 2 The inexact-QNSTR Algorithm

Input: ∆̄ > 0, ∆0 ∈ (0, ∆̄), 0 < β1 < 1 < β2, 0 ≤ η < ζ1 < ζ2 ≤ 1, tolerance
parameter δ > 0, ε > 0, smoothing parameter µ in suitable range, z0 ∈ Z.

1: while k < Kmax do
2: If ‖F (zk)‖ ≤ ε or ‖gk‖ ≤ δ, terminate.
3: Otherwise, go to Step 1.
4: Step 1: Solve (2.2.7) for αk.
5: Compute the reduction ratio at iterate k:

ρk =
r̃(zk)− r̃(zk + Vkαk)

mk(0)−mk(αk)
. (2.3.44)

6: Step 2: Update ∆k+1 as

∆k+1 =


β1∆k, if ρk < ζ1,

min{β2∆k, ∆̄}, if ρk > ζ2 and ‖Vkαk‖ = ∆k,

∆k, otherwise.

(2.3.45)

7: Step 3: Update

z̄k =

{
zk + Vkαk, if ρk > η,

zk, otherwise.
(2.3.46)

8: Step 4: Update zk+1 = z̄k and let k = k + 1.
9: end while

The complexity analysis of the inexact-QNSTR algorithm is based on the follow-

ing assumption.

Assumption 2.1. Let {zk}∞k=0 be the sequence generated by Algorithm 2 and Z∗ be

the set of all accumulation points of {zk}∞k=0. We assume that, for all z∗ ∈ Z∗, we

have ∇F̃ (z∗) is nonsingular.

Let z∗ ∈ Z∗, based on the above assumption and the continuity of ∇F̃ , we know

for all z in a neighbourhood of z∗, ∇F̃ (z) is nonsingular and ‖∇F̃ (z)−1‖ ≤ C1 for

some C1 > 0. Thus

‖F̃ (z)‖ = ‖∇(F̃ (z)>)−1∇r̃(z)‖ ≤ ‖∇F̃ (z)−1‖‖∇r̃(z)‖ ≤ C1‖∇r̃(z)‖. (2.3.47)
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Moreover, according to (i) in Lemma 2.1, we know

‖F (z)‖ − ‖F̃ (z)‖ ≤ ‖F (z)− F̃ (z)‖ ≤
√
n

8
µ. (2.3.48)

Combining (2.3.47) and (2.3.48), we have

‖F (z)‖ ≤ C1δ +

√
n

8
µ.

If Algorithm 2 is terminated by ‖F (zk)‖ ≤ ε, then zk is an ε-solution of (1.1.1).

If Algorithm 2 is terminated by ‖gk‖ ≤ δ, zk can be guaranteed as an ε-solution

of (1.1.1) by properly selected parameters δ and µ such that C1δ +
√
n

8
µ ≤ ε. In

particular, if µ
√
n � ε, finding an ε-solution of (1.1.1) is essentially equivalent to

finding a point that satisfies ‖gk‖ ≤ δ with δ = ε/C1. This implies if we set µ in

a suitable range, we can approximately regard that finding an ε-solution of (1.1.1)

and finding a point that satisfies ‖gk‖ ≤ ε have the same complexity. Next, we

will analyze the complexity of Algorithm 2 for (1.1.1) by examining the number of

iterations k required for Algorithm 2 to produce a point zk that satisfies ‖gk‖ ≤ ε.

Lemma 2.8. Let {zk}∞k=0 be the sequence generated by Algorithm 2 with fixed smooth-

ing parameter µ ∈ (0,min1≤i≤n (1, ui − li)) and given tolarence parameter ε > 0.

Then there exists a constant C̄ ≥ 1 such that ‖∇r̃(z) − ∇r̃(z′)‖ ≤ C̄
µ
‖z − z′‖ for

any z, z′ ∈ S(R0) and ‖Hk‖ ≤ C̄ for k ∈ N. Moreover, the searching radius ∆k+1

satisfies the following inequality

β1(1− ζ1)µ‖gk‖
3C̄

≤ ∆k+1, ∀k ∈ N. (2.3.49)

Proof. First of all, by the conclusions in Lemma 2.4 and (2.3.23), there exists C̄ =

max{1, C,M}.
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Next, we will prove that ∆k+1 ≥ β1(1−ζ1)µ‖gk‖
3C̄

for all k ∈ N. Substituting the

Lipschitz constant C̄
µ

of ∇r̃(·) and the upper bound C̄ of ‖Hk‖ into (2.3.33), we

immediately have

|ρk − 1| ≤
( C̄
µ

+ C̄
2

)∆2
k

1
2
‖gk‖min(∆k, ‖gk‖/C̄)

≤
3C̄
µ

∆2
k

‖gk‖min(∆k, ‖gk‖/C̄)
.

The second inequaliy holds because of the setting that µ ≤ 1.

Denote

∆̃k :=
(1− ζ1)µ‖gk‖

3C̄
.

For any ∆k ≤ ∆̃k, we have

∆k ≤ ∆̃k =
(1− ζ1)µ‖gk‖

3C̄
≤ ‖gk‖

3C̄
<
‖gk‖
C̄

.

Then

|ρk − 1| ≤
3C̄
µ

∆2
k

‖gk‖min(∆k, ‖gk‖/C̄)
=

3C̄∆2
k

µ‖gk‖∆k

=
3C̄∆k

µ‖gk‖
≤ 3C̄∆̃k

µ‖gk‖
≤ 1− ζ1,

which implies ρk ≥ ζ1. The above observation together with update rules in Algo-

rithm 2 indicates that

∆k+1 ≥ β1∆̃k =
β1(1− ζ1)µ‖gk‖

3C̄
. (2.3.50)

Because if ∆k+1 < β1∆̃k implies that ∆k < ∆̃k and ∆k+1 ≥ ∆̃k, which causes a

contradiction. Thus, we proved (2.3.49).

Lemma 2.9. At iteration k ≥ 1, let αk be the solution of (2.2.7). if ρk > η, we have

the following amount of decrease on mk(αk):

r̃(zk+1)− r̃(zk) ≤ −
ηβ1(1− ζ1)µ‖gk‖min(‖gk‖, ‖gk−1‖)

3C̄
. (2.3.51)
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Proof. According to Lemma 2.5 and the update rule of zk, we have:

r̃(zk+1)− r̃(zk) ≤ η(mk(αk)−mk(0)) ≤ −η
2
‖gk‖min

(
∆k,
‖gk‖
‖Hk‖

)
. (2.3.52)

If ∆k ≤ ‖gk‖
‖Hk‖

, by the boundedness ∆k ≥ β1(1 − ζ1)µ‖gk−1‖
3C̄

given in Lemma 2.8,

we have that

mk(αk)−mk(0) ≤ −1

2
‖gk‖∆k

≤ −1

2
‖gk‖β1(1− ζ1)µ

‖gk−1‖
3C̄

≤ −1

2
β1

(1− ζ1)µ‖gk‖‖gk−1‖
3C̄

.

(2.3.53)

If ‖gk‖‖Hk‖
< ∆k, we have

mk(αk)−mk(0) ≤ −1

2
‖gk‖
‖gk‖
C̄

< −1

2
β1

(1− ζ1)µ‖gk‖2

3C̄
.

(2.3.54)

The second inequality holds because of the fact that β1, ζ1, µ < 1. Combining

(2.3.52), (2.3.53) and (2.3.54), then we complete the proof.

Lemma 2.10. Let {(∆k, ρk)}∞k=1 be the sequence of radius generated by Algorithm

2. Denote

K := {k ∈ N| ρk ≥ η}

and let ki be the i-th element in K in increasing order. Let k0 = 0 and divide the

sequence into groups {(∆k, ρk)}k1
k=k0

, {(∆k, ρk)}k2
k=k1

, · · · . Then we know ki+1 − ki ≤

dlogβ1

(
(1−ζ1)µ‖gki‖

3C̄∆̄

)
e+ 2 for any i ∈ N.

Proof. We give the proof by contradiction. Suppose that there exist an index i

such that {(∆k, ρk)}ki+1−1
k=ki

, and ki+1 − ki > dlogβ1
(

(1−ζ1)µ‖gki‖
3C̄∆̄

)e + 2. This implies
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ρk < η < ζ1 for all k ∈ [ki, ki+1− 1]. According to the update rules of ∆k and zk, we

know gk = gki for all k ∈ [ki, ki+1 − 1] and ∆ki+1−1 = β
ki+1−ki−1
1 ∆ki . Moreover, since

∆ki ≤ ∆̄, we have

∆ki+1−1 ≤
β1(1− ζ1)µ‖gki‖

3C̄
=
β1(1− ζ1)µ‖gki+1−2‖

3C̄
.

However, this is contradicted with the conclusion in Lemma 2.8, then we completed

the proof.

Theorem 2.3. Under the parameters setting in Algorithm 2, the QNSTR runs at

most O(logβ1
( (1−ζ1)ε2

3C̄∆̄
)

3
2
nC̄(R+

√
n

8
)2

ηβ1(1−ζ1)
ε−3) iterations to reach an iterate zk+1 that satisfies

an ε-first order stationary point.

Proof. Let K be the iteration for sequence {zk}∞k=0 that first time reaches an ε-first

order stationary point. This implies that ‖gk‖ > ε for all k ≤ K. Lemma 2.9

indicates that the residual function r̃ has an amount of decrease once the QNSTR

(in Algorithm 2) succeed in updating, that is

r̃(zk+1)− r̃(zk) ≤ −
ηβ1(1− ζ1)µ‖gk‖min(‖gk‖, ‖gk−1‖)

3C̄
≤ −ηβ1(1− ζ1)µε2

3C̄
.

(2.3.55)

And Lemma 2.10 indicates that in each dlogβ1

(
(1−ζ1)µ‖gki‖

3C̄∆̄

)
e+2 iterations, one of the

iterations for successful updating must exist. Moreover, the total amount of decrease

cannot exceed n
2
(R +

√
n

8
)2 because

r̃(z0, µ)− r̃inf ≤ r̃(z0, µ) ≤ n

2
(R +

√
n

8
)2 (2.3.56)

for any z0 ∈ Z. Combining the results of Lemma 2.9, Lemma 2.10 and (2.3.56), we

immediately know

K ≤ logβ1
(
(1− ζ1)µε

3C̄∆̄
)

3
2
nC̄(R +

√
n

8
)2

ηβ1(1− ζ1)µ
ε−2.
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Moreover, by the dicussion in last section,
√
nµ � ε. Let µ = ε

C2
√
n

with C2 being

a large given constant. Since β1 < 1, then we can conclude the complexity of the

QNSTR in Algorithm 2 is O(ln(ε−2)ε−3).
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Chapter 3

Application of the QNSTR on

nonconvex-nonconcave minimax
problems

In this chapter, QNSTR is applied to solve the nonconvex-nonconcave minimax prob-

lems.

3.1 Nonconvex-nonconcave minimax problems

Minimax optimization problems have a wide range of applications in game theory

[42], distributional robustness optimization [43], robust machine learning [44], Gen-

erative Adversarial Networks (GANs) [45], reinforcement learning [46], distributed

optimization [47], among others.

Mathematically, a convexly constrained minimax optimization problem can be

formulated as follows:

min
x∈X

max
y∈Y

f(x, y) := EP [`(x, y, ξ)] , (3.1.1)

where X ⊆ Rm1 and Y ⊆ Rm2 are nonempty, closed and convex sets, ξ is an s-

dimensional random vector obeying the probability distribution P with support set

Ξ, ` : Rm1 × Rm2 × Rs → R is nonconvex-nonconcave for fixed ξ, i.e., `(x, y, ξ) is
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neither convex with respect to x nor concave with respect to y. Hence the objective

function f(x, y) is also nonconvex-nonconcave in general.

Due to the nonconvexity-nonconcavity of the objective function f , problem (3.1.1)

may not have a saddle point. Consequently, the concept of global or local saddle

points are untimely to characterize the optimality of problem (3.1.1). Recently,

motivated by practical applications, the so-called global and local minimax points are

proposed to describe the global and local optima of nonconvex-nonconcave minimax

optimization problems in [48] from the viewpoint of sequential games. Moreover,

the optimality necessary condition for a local minimax point is studied in [48] for

unconstrained minimax optimization problems. In [49, 50], the optimality condition

for a local minimax point is studied for constrained minimax optimization problems.

Numerical methods for minimax optimization problems have been extensively

studied. These algorithms can be broadly categorized into four classes based on the

convexity or concavity of problems: (i) the convex-concave case (see, e.g., [14, 15,

51, 52]), (ii) the nonconvex-concave case (see, e.g., [53, 54, 55]), (iii) the convex-

nonconcave case (see, e.g., [53, 54, 55]) and (iv) the nonconvex-nonconcave case (see,

e.g., [56, 57]).

To solve (3.1.1) numerically, we first apply the SAA approach to obtain a discrete

form. We collect N independent identically distributed (i.i.d.) samples of ξ (e.g.

generated by the Monte Carlo method), denoted by ξ1, · · · , ξN , The resulting of a

discrete counterpart of (3.1.1) is then given by:

min
x∈X

max
y∈Y

f̂N(x, y) :=
1

N

N∑
i=1

`(x, y, ξi). (3.1.2)

46



3.2 Sample Average Approximation (SAA) and

asymptotic convergence

In this section, we focus on the asymptotic convergence between problems (3.1.2) and

(3.1.1) regarding to the global minimax point and the first-order stationary point.

To this end, we first give some preliminaries on how to describe the optima of a

minimax optimization problem.

Definition 3.1 (global and local minimax points, [48, Definitions 9 & 14]).

(i) (x̂, ŷ) ∈ X × Y is called a global minimax point of problem (3.1.1), if

f(x̂, y) ≤ f(x̂, ŷ) ≤ max
y′∈Y

f(x, y′), ∀(x, y) ∈ X × Y .

(ii) (x̂, ŷ) ∈ X ×Y is called a local minimax point of problem (3.1.1), if there exist

a δ0 > 0 and a function τ : R+ → R+ satisfying τ(δ) → 0 as δ → 0, such

that for any δ ∈ (0, δ0] and any (x, y) ∈ X × Y satisfying ‖x− x̂‖ ≤ δ and

‖y − ŷ‖ ≤ δ, we have

f(x̂, y) ≤ f(x̂, ŷ) ≤ max
y′∈{y∈Y:‖y−ŷ‖≤τ(δ)}

f(x, y′).

Remark 3.1. The concept of saddle points has been commonly used to characterize

the optima of minimax problems. A point (x̂, ŷ) ∈ X × Y is called a saddle point of

problem (3.1.1), if

f(x̂, y) ≤ f(x̂, ŷ) ≤ f(x, ŷ), ∀(x, y) ∈ X × Y , (3.2.1)

and (x̂, ŷ) ∈ X × Y is called a local saddle point of problem (3.1.1) if there exists

δ > 0 such that

f(x̂, y) ≤ f(x̂, ŷ) ≤ f(x, ŷ), ∀(x, y) ∈ X ∩ B(x̂, δ)× Y ∩ B(ŷ, δ). (3.2.2)
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However, as pointed out in [48], saddle points and local saddle points may not exist

in many applications of machine learning, especially in the nonconvex-nonconcave

case. Also, (local) saddle points are solutions from the viewpoint of simultaneous

game, where the minimization operator and the maximization operator act simulta-

neously. However, many applications, such as GANs and adversarial training, seek

for solutions in the sense of sequential game, where the minimization operator acts

first and the maximization operator acts latter. The global and local minimax points

exist under some mild conditions (see [48, Proposition 11 and Lemma 16]) and also

describe the optima in the sense of sequential game.

The following lemma gives the first-order and second-order necessary optimality

conditions of local minimax points for problem (3.1.1) when X and Y are boxes,

which is a special form of [50, Theorem 3.2 & Corollary 3.1].

Lemma 3.1. Let X = [a, b] and Y = [c, d], where a < b with a, b ∈ Rm1 and

c < d with c, d ∈ Rm2. Assume that f is continuously differentiable and the tuple

(x̂, ŷ) ∈ X × Y is a local minimax point of problem (3.1.1).

(i) Then {
0 ∈ ∇xf(x̂, ŷ) +NX (x̂),

0 ∈ −∇yf(x̂, ŷ) +NY(ŷ),
(3.2.3)

where NX (x̂) = N[a1,b1](x̂1) × · · · × N[am1 ,bm1 ](x̂m1) and NY(ŷ) = N[c1,d1](ŷ1) ×

· · · × N[cm2 ,dm2 ](ŷm2) and for i = 1, · · · ,m1 and j = 1, · · · ,m2,

N[ai,bi](x̂i) =


[0,+∞), x̂i = bi,

{0}, ai < x̂i < bi,

(−∞, 0], x̂i = ai

and N[cj ,dj ](ŷj) =


[0,+∞), ŷj = dj,

{0}, cj < ŷj < dj,

(−∞, 0], ŷj = cj.
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(ii) If f is twice continuously differentiable, then

{
〈w1,∇2

xxf(x̂, ŷ)w1〉 ≥ 0, ∀w1 ∈
⋃
δ>0

(⋂
y′∈B(ŷ,δ) Γ1(x̂, y′)

)
,〈

w2,∇2
yyf(x̂, ŷ)w2

〉
≤ 0, ∀w2 ∈ Γ2(x̂, ŷ),

(3.2.4)

where

Γ1(x̂, y′) :={w1 ∈ TX (x̂) : w1⊥∇xf(x̂, y′)},

Γ2(x̂, ŷ) :={w2 ∈ TY(ŷ) : w2⊥∇yf(x̂, ŷ)},

TX (x̂) = T[a1,b1](x̂1)×· · ·×T[am1 ,bm1 ](x̂m1), TY(ŷ) = T[c1,d1](ŷ1)×· · ·×T[cm2 ,dm2 ](ŷm2),

T[ai,bi](x̂i) =


(−∞, 0], x̂i = bi,

(−∞,+∞), ai < x̂i < bi,

[0,+∞), x̂i = ai

and T[cj ,dj ](ŷj) =


(−∞, 0], ŷj = dj,

(−∞,+∞), cj < ŷj < dj,

[0,+∞), ŷj = cj.

Assume, further, that τ(δ) = O(δ) where τ(·) is defined in Definition 3.1. Then

the first assertion in (3.2.4) can be replaced by

〈
w1,∇2

xxf(x̂, ŷ)w1

〉
≥ 0, ∀w1 ∈ Γ1(x̂, ŷ). (3.2.5)

In what follows, we tacitly assume that f is continuously differentiable, X = [a, b]

and Y = [c, d] are defined in Lemma 3.1.

Definition 3.2. (x̂, ŷ) ∈ X × Y is called a first-order stationary point of prob-

lem (3.1.1) if (3.2.3) holds. If, in addition, (3.2.4) holds, (x̂, ŷ) is called a second-

order stationary point of problem (3.1.1). Specially, if (x̂, ŷ) satisfies both (3.2.4)

and (3.2.5), we call such point a strong second-order stationary point. (x̂, ŷ) ∈

X × Y is called a first-order stationary point, second-order stationary point, strong

second-order stationary point of problem (3.1.2) if (3.2.3) holds, (3.2.3),(3.2.4) holds,

(3.2.3), (3.2.4), (3.2.5) hold with replacing f by f̂N , respectively.
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Hereafter, we will focus on finding a first-order stationary point of (3.1.2).

As for the exponential rate of convergence of the first-order and second-order

stationary points of a specific GAN, one can refer to [50, Proposition 4.3]. In what

follows, we mainly focus on the almost surely convergence analysis between problems

(3.1.1) and (3.1.2). If the problem is well-behaved and the global minimax points

are achievable, we will consider the convergence of global minimax points between

problems (3.1.1) and (3.1.2). Otherwise, at best, the first-order and second-order

stationary points (Definition 3.2) can be calculated. Thus, we will also consider

the convergence of first-order and second-order stationary points between problems

(3.1.1) and (3.1.2) as N tends to infinity.

Denote the optimal value, the set of global minimax points, the set of first-order

stationary points and the set of second-order stationary points of problem (3.1.1) by

ϑg, Sg and S1st, S2ed, respectively. Let ϑ̂Ng , ŜNg , ŜN1st and ŜN2ed denote the optimal

value, the set of global minimax points, the set of first-order stationary points and

the set of second-order stationary points of problem (3.1.2), respectively.

Lemma 3.2. Suppose that: (a) X and Y are compact sets; (b) `(x, y, ξ) is dominated

by an integrable function for every (x, y) ∈ X × Y. Then

sup
(x,y)∈X×Y

∣∣∣f̂N(x, y)− f(x, y)
∣∣∣→ 0

w.p.1 as N →∞.

If, further, (c) ‖∇x`(x, y, ξ)‖ and ‖∇y`(x, y, ξ)‖ are dominated by an integrable

function for every (x, y) ∈ X × Y, then

sup
(x,y)∈X×Y

∥∥∥∇f̂N(x, y)−∇f(x, y)
∥∥∥→ 0

w.p.1 as N →∞.

If (d) ‖∇2
xx`(x, y, ξ)‖ and

∥∥∇2
yy`(x, y, ξ)

∥∥ are dominated by an integrable function
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for every (x, y) ∈ X × Y, then

sup
(x,y)∈X×Y

∥∥∥∇2
xxf̂N(x, y)−∇2

xxf(x, y)
∥∥∥→ 0,

sup
(x,y)∈X×Y

∥∥∥∇2
yyf̂N(x, y)−∇2

yyf(x, y)
∥∥∥→ 0

w.p.1 as N →∞.

Proof. Since the samples are i.i.d. and X and Y are compact, it is known from [58,

Theorem 7.53] that the above uniform convergence results hold.

The following proposition gives the nonemptiness of ŜNg , Sg, ŜN1st and S1st.

Proposition 3.1. If conditions (a)-(c) in Lemma 3.2 hold, then Sg and S1st are

nonempty and ŜNg and ŜN1st are nonempty for any N ∈ N+.

Proof. Since the continuity of f(x, y) and f̂N(x, y) w.r.t. (x, y) and the boundedness

of X and Y , we know from [48, Proposition 11] the nonemptiness of Sg and ŜNg .

Note that both S1st and ŜN1st are solution sets of VI(Z, H). Then we have from [7,

Corollary 2.2.5] that S1st and ŜN1st are nonempty.

Based on the uniform laws of large numbers in Lemma 3.2, we have the following

convergence results.

Theorem 3.1. Let conditions (a)-(c) in Lemma 3.2 hold. Then

d
(
ŜNg ,Sg

)
→ 0, (3.2.6)

d
(
ŜN1st,S1st

)
→ 0 (3.2.7)

w.p.1 as N → ∞. If, further, (d) in Lemma 3.2 is satisfied; (ii) S2ed and ŜN2ed (for

sufficiently large N) are nonempty, then

d
(
ŜN2ed,S2ed

)
→ 0 (3.2.8)
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w.p.1 as N →∞.

Proof. (3.2.7) follows from [59, Proposition 19] directly. Thus, in what follows, we

only consider (3.2.6) and (3.2.8). We first vertify (3.2.6). From Proposition 3.1, we

know that ŜNg and Sg are nonempty for any N ∈ N+. Let zN = (xN , yN) ∈ ŜNg

and zN → z̄ = (x̄, ȳ) w.p.1 as N → ∞. Then we just verify that z̄ ∈ Sg w.p.1.

If {zN} is not a convergent sequence, due to the boundedness of X and Y , we can

choose a convergent subsequence. Denote ϕ(x) := maxy∈Y f(x, y) and ϕ̂N(x) :=

maxy∈Y f̂N(x, y). Note that

max
x∈X
|ϕ̂N(x)− ϕ(x)| = max

x∈X

∣∣∣∣max
y∈Y

f̂N(x, y)−max
y∈Y

f(x, y)

∣∣∣∣
≤ max

(x,y)∈X×Y

∣∣∣f̂N(x, y)− f(x, y)
∣∣∣

→ 0

(3.2.9)

w.p.1 as N →∞, where the last convergence assertion follows from Lemma 3.2.

Next, we show

ProjxŜNg = arg min
x∈X

ϕ̂N(x) and ProjxSg = arg min
x∈X

ϕ(x), (3.2.10)

where Projx denotes the projection onto the x’s space. Based on the definition of

global minimax points, we have, for any (x̂, ŷ) ∈ Sg, that

f(x̂, y) ≤ f(x̂, ŷ) ≤ max
y′∈Y

f(x, y′), ∀(x, y) ∈ X × Y ,

which implies

ϕ(x̂) = max
y∈Y

f(x̂, y) ≤ max
y′∈Y

f(x, y′) = ϕ(x), ∀x ∈ X .

This means ProjxSg ⊆ arg minx∈X ϕ(x). On the other hand, for any x̂ ∈ arg minx∈X ϕ(x),

we let ŷ ∈ arg maxy∈Y f(x̂, y). Then it is not difficult to examine that (x̂, ŷ) is a global
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minimax point, i.e., arg minx∈X ϕ(x) ⊆ ProjxSg. The ProjxŜNg = arg minx∈X ϕ̂N(x)

can be similarly verified. Hence (3.2.10) holds.

Then (3.2.9) and (3.2.10) indicate, according to [60, Lemma 4.1], that

d
(

projxŜNg , projxSg
)
→ 0 (3.2.11)

w.p.1 as N →∞. We know from (3.2.11) that x̄ ∈ ProjxSg.

Moreover, we know that∣∣∣ϑ̂Ng − ϑg∣∣∣ =

∣∣∣∣min
x∈X

ϕ̂N(x)−min
x∈X

ϕ(x)

∣∣∣∣
≤ max

x∈X
|ϕ̂N(x)− ϕ(x)|

→ 0

w.p.1 as N →∞, where ϑg and ϑ̂Ng are optimal values of problems (3.1.1) and (3.1.2),

respectively. Due to Lemma 3.2 and the continuity of f , we know that∣∣∣f̂N(xN , yN)− f(x̄, ȳ)
∣∣∣ ≤ ∣∣∣f̂N(xN , yN)− f(xN , yN)

∣∣∣+
∣∣f(xN , yN)− f(x̄, ȳ)

∣∣
→ 0.

Since ϑ̂Ng = f̂N(xN , yN), we know that ϑg = f(x̄, ȳ), which, together with x̄ ∈

ProjxSg, implies that (x̄, ȳ) ∈ Sg.

Next, we focus on verifying (3.2.8). Analogously, let zN = (xN , yN) ∈ ŜN2ed and

zN → z̄ = (x̄, ȳ) w.p.1 as N → ∞, and we verify that z̄ ∈ S2ed w.p.1. Note that

zN ∈ ŜN2ed is equivalent to
〈
w1,∇2

xxf̂N(xN , yN)w1

〉
≥ 0, ∀w1 ∈ Γ1,N(xN , yN),〈

w2,∇2
yyf̂N(xN , yN)w2

〉
≤ 0, ∀w2 ∈ Γ2,N(xN , yN),

(3.2.12)

where

Γ1,N(xN , yN) :={w1 ∈ TX (xN) : w1⊥∇xf̂N(xN , yN)},

Γ2,N(xN , yN) :={w2 ∈ TY(yN) : w2⊥∇yf̂N(xN , yN)}.
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Since both Γ1,N(xN , yN) and Γ2,N(xN , yN) are cones, (3.2.12) can be equivalently

rewritten as 
〈
w1,∇2

xxf̂N(xN , yN)w1

〉
≥ 0, ∀w1 ∈ Γ̃1,N(xN , yN),〈

w2,∇2
yyf̂N(xN , yN)w2

〉
≤ 0, ∀w2 ∈ Γ̃2,N(xN , yN),

where Γ̃1,N(xN , yN) := Γ1,N(xN , yN)∩B, Γ̃2,N(xN , yN) := Γ2,N(xN , yN)∩B. Assume,

by contradiction, that there exist w̄1 ∈ Γ̃1(x̄, ȳ) := Γ1(x̄, ȳ) ∩ B and w̄2 ∈ Γ̃2(x̄, ȳ) :=

Γ2(x̄, ȳ) ∩ B where Γ1(x̄, ȳ) and Γ2(x̄, ȳ) are defined in Lemma 3.1, such that

〈
w̄1,∇2

xxf(x̄, ȳ)w̄1

〉
< 0 or

〈
w̄2,∇2

yyf(x̄, ȳ)w̄2

〉
> 0. (3.2.13)

Note in Lemma 3.1 that TX (x̄) ⊆ TX (xN) and TY(ȳ) ⊆ TY(yN) for sufficiently

large N . Moreover, due to the convergence results in Lemma 3.2, {w1 ∈ Rm1 :

w1⊥∇xf̂N(xN , yN)} ∩ B converges to {w1 ∈ Rm1 : w1⊥∇xf(x̄, ȳ)} ∩ B in the sense

of Hausdorff distance, and {w2 ∈ Rm2 : w2⊥∇yf̂N(xN , yN)} ∩ B converges to {w2 ∈

Rm2 : w2⊥∇yf(x̄, ȳ)}∩B in the sense of Hausdorff distance. Therefore, for any ε > 0,

there exists N0 (depending only on ε) such that

Γ̃1(x̄, ȳ) ⊆ Γ̃1,N(xN , yN) + εB and Γ̃2(x̄, ȳ) ⊆ Γ̃2,N(xN , yN) + εB

for any N ≥ N0. Thus, we have

w̄1 ∈ Γ̃1(x̄, ȳ) ⊆ Γ̃1,N(xN , yN) + εB

and

w̄2 ∈ Γ̃2(x̄, ȳ) ⊆ Γ̃2,N(xN , yN) + εB,

which implies that

w̄1 = wN1 + εuN1 and w̄2 = wN2 + εuN2 ,
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where wN1 ∈ Γ̃1(x̄, ȳ), wN2 ∈ Γ̃2(x̄, ȳ) and uN1 , u
N
2 ∈ B. Notice that


〈
wN1 ,∇2

xxf̂N(xN , yN)wN1

〉
≥ 0,〈

wN2 ,∇2
yyf̂N(xN , yN)wN2

〉
≤ 0,

which implies that


〈
w̄1 − εuN1 ,∇2

xxf̂N(xN , yN)(w̄1 − εuN1 )
〉
≥ 0,〈

w̄2 − εuN2 ,∇2
yyf̂N(xN , yN)(w̄2 − εuN2 )

〉
≤ 0.

By letting N →∞, due to the arbitrariness of ε, we obtain

{
〈w̄1,∇2

xxf(x̄, ȳ)w̄1〉 ≥ 0,〈
w̄2,∇2

yyf(x̄, ȳ)w̄2

〉
≤ 0,

which contradicts with (3.2.13). Thus, (3.2.8) holds.

Based on Theorem 3.1, it is well-founded for us to employ problem (3.1.2) to

approximately solve problem (3.1.1). In the sequel, we will focus on how to compute

an ε-first-order stationary point of problem (3.1.2).

Let z := (x>, y>)> ∈ Rn, Z := X × Y ⊆ Rn and n = m1 + m2. Suppose f̂N is

continuously differentiable. Let

HN(z) :=

(
∇xf̂N(x, y)

−∇yf̂N(x, y)

)
.

Then the first-order optimality condition for a local minimax point of problem (3.1.2)

can be presented as the following variational inequality

0 ∈ HN(z) +N[l,u](z), (3.2.14)

where l, u ∈ Rn with l = (a>, c>)> and u = (b>, d>)>. We call z∗ a first-order

stationary point of problem (3.1.2) if it satisfies (3.2.14).
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The VI (3.2.14) can be equivalently reformulated as

FN(z) := z − Proj[l,u](z −HN(z)) = 0, (3.2.15)

where the closed form of Proj[l,u](·) is given in (1.2.6).

Obviously, z∗ is a first-order stationary point of (3.1.2) if it is an optimal solution

of the following least-squares problem:

min
z∈Rn

rN(z) :=
1

2
‖FN(z)‖2 (3.2.16)

and rN(z∗) = 0. We can apply (2.1.8) to approximate (3.2.15). Then, we can

find a first-order stationary point of (3.1.2) via solving the smoothing minimization

problem in (2.1.10).

3.3 Numerical experiments

In this section, we report some numerical results by using the QNSTR algorithm for

finding an ε-first-order stationary point of problem (3.1.2). Also, we compare the

QNSTR algorithm with several state-of-the-art algorithms for minimax problems.

All of the numerical experiments in this thesis are implemented using TensorFlow

1.13.1, Python 3.6.9 and Cuda 10.0 on a server with 1 Tesla P100-PCIE GPU (16 GB

memory, 1.3285 GHz) and an operating system of 64 bits in the University Research

Facility in Big Data Analytics (UBDA) of the Hong Kong Polytechnic University.

(UBDA website: https://www.polyu.edu.hk/ubda/.)

We evaluate the performance of our algorithm with two problems. A logistic

regression minimax problem with synthetic data and a GAN-based image generation

problem using MNIST hand-writing data. In these experiments, we use notation

QNSTR(L) to denote that in the QNSTR algorithm, the dimension of the subspace

spanned by the columns of Vk is L, and we test the efficiency of the QNSTR(L) under
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different choices of L and directions {dik}L−1
i=1 . Next, we investigate different choices

of the subspace spanned by the columns of Vk. Specifically, denote

V z
k = [−gk, (zk − zk−1), · · · , (zk−L+2 − zk−L+1)],

V F
k = [−gk, F (zk), · · · , F (zk−L+2)],

V g
k = −[gk, gk−1, · · · , gk−L+1],

V z,H
k = [−gk, (zk − zk−1), H(zk), · · · , (zk−L′+2 − zk−L′+1), H(zk−L′+2)],

for L ≥ 2 and L′ ≥ 2. Note that the choice of L′ is related to the subspace dimension

L by the equation L = 2L′ − 1.

3.3.1 Logistic regression min-max problems

We consider the following nonconvex-nonconcave minimax problem

min
x∈X

max
y∈Y

fRµ (x, y) := c(x, y) + λ1

m1∑
i=1

s(xi, µ)− λ2

m2∑
j=1

s(yj, µ) (3.3.1)

with

c(x, y) :=
N∑
k=1

log(1 + e−αka
>
k x) + x>Ay −

N∑
k=1

log(1 + e−βkb
>
k y),

where X := [−1, 1]m1 , Y := [−1, 1]m2 , ak ∈ {0, 1}m1 , bk ∈ {0, 1}m2 , A ∈ {0, 1}m1×m2

and αk, βk ∈ {−1, 1} for all k ∈ [N ].

s(t, µ) :=

{
1, if |t| > µ,

3( t
µ
)4 − 8sign(t)( t

µ
)3 + 6( t

µ
)2, otherwise,

(3.3.2)

is a smoothing approximation form of `0 norm, and we report the approximation

results in Figure 3.1. Thus, it can be regarded as a smoothing relaxation model of

the following sparse min-max model [24]

min
x∈X

max
y∈Y

f(x, y) := c(x, y) + λ1‖x‖0 − λ2‖y‖0. (3.3.3)
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(a) (b)

Figure 3.1: Results for the smoothing function s(·, µ): (a) s(·, µ) in (3.3.2) with
different values of µ; (b) comparison of s(·, µ) in (3.3.2) and SCAD [1], MCP [2] with
µ = 0.2.

Although (3.3.1) is neither convex nor concave, the following proposition estab-

lishes the existence of the saddle point for (3.3.1).

Proposition 3.2. There exists a µ̄ > 0 such that (3.3.1) has a local saddle point for

any µ ∈ (0, µ̄).

Proof. Obviously, we know that the saddle point of minx∈X maxy∈Y c(x, y) exists

since c(·, ·) is convex for x with respect to fixed y and concave for y with respect to

fixed x. Let (x∗, y∗) be a saddle point of minx∈X maxy∈Y c(x, y), i.e. (3.2.2) holds.

Denote

A(x∗) := {i| |x∗i | 6= 0} and B(y∗) := {j| |y∗j | 6= 0}.

Let ϑ = min{1, |x∗i |, |y∗j | : i ∈ A(x∗), j ∈ B(y∗)} and set µ̄ = ϑ, then |x∗i | ≥ µ̄,

|y∗j | ≥ µ̄, ∀i ∈ A(x∗), j ∈ B(y∗). Choose µ ∈ (0, µ̄). Obviously, there exists a δ1 > 0,

such that for any i ∈ A(x∗), j ∈ B(y∗), x ∈ B(x∗, δ1) and y ∈ B(y∗, δ1), it holds

|xi| > µ and |yj| > µ, since s(t, µ) = ‖t‖0, ∀t ∈ (−∞,−µ] ∪ [µ,+∞), we know that

s(xi, µ) = 1 and s(yj, µ) = 1.
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This means that, for any x ∈ B(x∗, δ1) and y ∈ B(y∗, δ1),

m1∑
i=1

s(x∗i , µ) ≤
m1∑
i=1

s(xi, µ) and

m2∑
j=1

s(y∗j , µ) ≤
m2∑
j=1

s(yj, µ). (3.3.4)

Together (3.2.2) with (3.3.4), we obtain

fRµ (x∗, y) ≤ fRµ (x∗, y∗) ≤ fRµ (x, y∗), x ∈ B(x∗, δ) ∩ X , y ∈ B(y∗, δ) ∩ Y ,

which means that (x∗, y∗) is a local saddle point of (3.3.1).

Let z = (x>, y>)>, Z = X×Y , H(z) =

(
∇xf

R
µ (x, y)

−∇yf
R
µ (x, y)

)
, we say z∗ = ((x∗)>, (y∗)>)>

a first-order stationary point of (3.3.1) if

〈H(z∗), z − z∗〉 ≥ 0, ∀z ∈ Z. (3.3.5)

The synthetic data sets, chosen independently for each problem setting, indexed

by m1, m2, and N , where each entry is sampled (with respect to the binary choice

listed) with probability p = 0.5. We compare the performance of our QNSTR

algorithm, with L = 5 for V z
k , V F

k , V g
k and V z,H

k , against the alternating Adam

method. The parameters in Algorithm 2 are set as follows: ∆̄ = 100, ∆0 = 1,

β1 = 0.5, β2 = 5, ζ1 = 0.2, ζ2 = 0.5 and η = 0.1. The parameter ε̄ in (2.2.4)

and (2.2.5) is chosen as ε̄ = 10−4. We apply limit memory strategy with L1 = 20

in these experiments. To determine the optimal step-size for Adam, we perform a

grid search over the estimates {0.005, 0.001, 0.0005} and select the optimal one a-

mong all parameter choices. We present our results in Table 3.1 and Table 3.2 with

different initialization of x and y. For each problem setting among combinations

of (m1,m2, N) ∈ {500, 1000, 2000} × {500, 1000, 2000} × {2000, 5000, 10000}, where

m1 ≥ m2. Each experiment with individual setting was repeated 5 times, and the

average results were taken. In Table 3.1, we report the comparison of the perfor-

mance of the QNSTR with V z,H
k (the most effective choice of Vk) and Adam with
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Time to reach ‖F (x)‖ ≤ 10−10

N=2000 N=5000 N=10000
m1/m2 Adam QNSTR Adam QNSTR Adam QNSTR
500/500 22.6s 19.7s 59.2s 83.6s 224.1s 192.6s
1000/500 37.9s 22.1s 339.1s 180.3s 340.4s 222.4s
1000/1000 51.0s 29.8s 231.2s 128.5s 450.8s 336.0s
2000/500 144.9s 81.2s 338.1s 229.3s 683.2s 340.0s
2000/1000 104.6s 86.1s 398.7s 268.5s 702.7s 368.1s
2000/2000 148.2s 141.4s 475.2s 276.2s 1305.7s 392.5s

Table 3.1: Performance of the QNSTR algorithm and alternating Adam with x0 =
0.2e, y0 = 0.2e.

Time to reach ‖F (x)‖ ≤ 10−10

N=2000 N=5000 N=10000
m1/m2 Adam QNSTR Adam QNSTR Adam QNSTR
500/500 218.9s 43.0s 277.6s 163.1s 590.2s 201.8s
1000/500 624.0s 50.5s 408.5s 174.4s 802.6s 427.9s
1000/1000 722.4s 89.2s 682.1s 159.2s 1155.9s 727.7s
2000/500 576.9s 844.6s 608.8s 477.2s 734.2s 517.9s
2000/1000 1142.6s 991.0s 1098.7s 468.5s 1868.2s 982.4s
2000/2000 1676.1s 1284.2s 2817.1s 584.2s 4177.8s 1210.5s

Table 3.2: Performance of the QNSTR algorithm and alternating Adam with x0 =
0.8e, y0 = 0.8e.

initial points x0 = 0.2e ∈ X , y0 = 0.2e ∈ Y . In Table 3.2, we report the comparison

of the performance of the QNSTR with V z,H
k (the most effective choice of Vk) and

Adam with initial points x0 = 0.8e ∈ X , y0 = 0.8e ∈ Y . In each table in 3.1 and 3.2,

we report the time (in seconds) before achieving a residual value ‖F (z)‖ less than

10−10. Furthermore, Tables 3.3 and 3.4 provide a comparison of the sparsity of the

solutions obtained by the QNSTR and Adam under the two kinds of initial point set-

ting. Our results collectively indicate that the QNSTR outperforms Adam in solving

the logistic regression minimax problem, demonstrating its superior efficiency.
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Sparsity of the solution
N=2000 N=5000 N=10000

m1/m2 Adam QNSTR Adam QNSTR Adam QNSTR
500/500 28.2/42.2 28.2/42.2 26.0/22.8 27.6/22.4 22.4/16.2 22.4/16.2
1000/500 80.8/37.6 80.8/37.6 39.0/18.4 39.0/18.4 39.6/14.2 39.6/14.2
1000/1000 65.4/72.6 65.4/72.6 51.8/51.6 51.8/51.6 33.6/36.2 33.6/36.2
2000/500 119.8/27.4 123.8/27.4 84.6/19.0 89.8/19.2 73.4/17.2 73.4/17.2
2000/1000 163.0/76.4 171.4/58.2 161.2/81.2 161.2/81.2 168.6/74.6 168.6/74.6
2000/2000 167.4/152.2 167.4/152.2 104.8/107.6 104.4/112.4 109.8/103.0 109.8/103.0

Table 3.3: Number of elements whose absolute value is less or equal to 10−5 in
stationary point found by the QNSTR algorithm and alternating Adam for (3.3.1)
with x0 = 0.2e, y0 = 0.2e.

Sparsity of the solution
N=2000 N=5000 N=10000

m1/m2 Adam QNSTR Adam QNSTR Adam QNSTR
500/500 32.8/35.2 19.6/23.2 31.6/26.6 27.0/27.4 21.4/19.2 21.4/19.2
1000/500 77.0/37.4 82.4/37.4 47.0/25.0 47.0/25.2 30.0/21.2 30.2/24.6
1000/1000 73.2/75.4 79.4/73.6 48.2/57.2 48.2/57.2 34.6/36.0 34.6/36.0
2000/500 123.0/32.2 121.4/28.2 86.4/22.2 79.2/18.4 84.6/19.0 84.6/19.0
2000/1000 153.8/72.0 141.4/78.2 112.8/82.0 111.2/82.2 78./40.8 78./40.8
2000/2000 147.4/145.8 160.8/147.6 104.4/108.8 105.4/110.2 74.8/81.2 74.8/77.6

Table 3.4: Number of elements whose absolute value is less or equal to 10−5 in
stationary point found by the QNSTR algorithm and alternating Adam for (3.3.1)
with x0 = 0.8e, y0 = 0.8e.

3.3.2 Two-layer GAN on MNIST data

In this subsection, we are mainly interested in problem (3.1.1) arising from GANs

[45], which is formulated as follows:

min
x∈X

max
y∈Y

f(x, y) := EP1

[
log(D(y, ξ2))

]
+ EP2

[
log(1−D(y,G(x, ξ1)))

]
, (3.3.6)

where X ⊆ Rm1 and Y ⊆ Rm2 are nonempty, closed and convex sets, ξi is Rsi-valued

random vector with probability distribution Pi for i = 1, 2, G : Rm1 × Rs1 → Rs2 is

a generator, D : Rm2 × Rs2 → (0, 1) is a discriminator. Generally, the generator G

and discriminator D are two feedforward neural networks. For example, G can be a
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p-layer neural network and D can be a q-layer neural network:

G(x, ξ2) = σpG(W p
Gσ

p−1
G (· · ·σ1

G(W 1
Gξ2 + b1

G) + · · · ) + bpG),

D(y, ξ1) = σqD(W q
Dσ

q−1
D (· · ·σ1

D(W 1
Dξ1 + b1

D) + · · · ) + bqD),

where W 1
G, · · · ,W

p
G, b1

G, · · · , b
p
G and W 1

D, · · · ,W
q
D, b1

D, · · · , b
q
D are the weight matrices,

biases vectors of G and D with suitable dimensions, σ1
G, · · · , σ

p
G and σ1

D, · · · , σ
q
D are

proper activation functions, such as Rectified Linear Unit (ReLU), Gaussian Error

Linear Units (GELU), Sigmoid, etc. Denote

x := (vec(W 1
G)>, · · · , vec(W p

G)>, (b1
G)>, · · · , (bpG)>)>,

y := (vec(W 1
D)>, · · · , vec(W q

D)>, (b1
D)>, · · · , (bqD)>)>,

where vec(·) denotes the vectorization operator. Then problem (3.3.6) can be for-

mulated in (3.1.1) if let ξ := (ξ1, ξ2) ∈ Ξ and

`(x, y, ξ) := log(D(y, ξ2)) + log(1−D(y,G(x, ξ1))).

Therefore, (3.3.6) is a special case of problem (3.1.1).

To ensure that HN is continuously differentiable, we employ GELU [61] as the

activation function in each hidden layer of both the discriminatorD and the generator

G. The GELU activation function is defined as:

σ(x) = x

∫ x

−∞

e
−t2

2Σ2

√
2πΣ

dt

with a standard deviation of Σ = 10−4. In contrast, we use the Sigmoid activation

function:

σ(x) =
1

1 + e−x

in the output layers for both D and G.
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In this subsection, we report some preliminary numerical results of the QNSTR

algorithm for solving the following SAA counterpart

min
x∈X

max
y∈Y

1

N

N∑
i=1

(
log(D(y, ξi2)) + log(1−D(y,G(x, ξi1)))

)
(3.3.7)

of problem (3.3.6). We consider a two-layer GAN on MNIST handwritting data,

where

ξi1 ∈ R100, ξi2 ∈ R784,

W 1
G ∈ RN1

G×100, W 2
G ∈ R784×N1

G , W 1
D ∈ RN1

D×784, W 2
D ∈ R1×N1

D

with different choices of dimensions N1
G and N1

D for hidden outputs. Here {ξi2} are

generated by an uniform distribution U(−1, 1)100. All initial weight matrices W i
G

and W i
D for i = 1, 2 are randomly generated by using the Gaussian distribution with

mean 0 and standard deviation 0.1, and all initial bias vectors biG and biD for i = 1, 2

are set to be zero. X and Y are set as [−1, 1]m1 and [−1, 1]m2 , respectively. Among

all the experiments in the sequel, the initial point z0 is the result for running 10000

steps of the alternating Adam with step size 0.0005. The parameters in Algorithm

2 are set as ∆̄ = 100, ∆0 = 1, β1 = 0.5, β2 = 2, η = 0.01, ζ1 = 0.02, ζ2 = 0.05.

The parameter ε̄ in (2.2.4) is chosen as ε̄ = 10−4. In practical, an important problem

is how to choose a suitable sample size N and smoothing parameter µ. We will

first study how to choose N and µ before the generation experiments of MNIST

hand-writing data.

We first study the performance of SAA problems under different sample sizes on

a GAN model with a two-layer generator with N1
G = 64 and a two-layer discriminator

with N1
D = 64, respectively. We set N̂ = 10000 as the benchmark to approximate

the original problem (3.3.6) and let N = 100, 500, 1000, 2000, 5000. For each N , we

solve FN(z) = 0, 50 times with different samples by using the QNSTR algorithm.
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We stop the iteration either

‖FN(zk)‖ ≤ 10−5 (3.3.8)

or the number of iterations exceeds 5000. In these experiments, we set µ = 10−8.

We use z∗N to denote the first point that satisfies (3.3.8) in the iteration for N =

100, 500, 1000, 2000, 5000, and we measure its optimality by the residual

resN := ‖z∗N −mid (l, u, z∗N −HN̂(z∗N) ‖.

Figure 3.2 shows the convergence of resN to zero as N grows. Table 3.5 presents the

average of mean, standard deviation (std) and the width of 95% CI of resN . It shows

that all values decrease as the sample size N increases. Both Figure 3.2 and Table

3.5 validate the convergence results in Section 3.2.

Figure 3.2: The convergence of resN as N grows (Left: the range of resN with different
N ; Right: the boxplot of resN with different N)

N 100 500 1000 2000 5000
Mean 2.16× 10−3 2.01× 10−4 6.22× 10−5 3.58× 10−5 1.49× 10−5

std 1.76× 10−3 1.65× 10−4 4.95× 10−5 2.93× 10−5 1.18× 10−5

95% CI [1.76, 2.56]×10−3 [1.65, 2.36]×10−4 [4.95, 7.49]×10−5 [2.93, 4.23]×10−5 [1.18, 1.79]×10−5

Table 3.5: Means, variances and 95% CIs of resN with different N

Next, we study how the smoothing parameter µ affects the residual ‖F̃ (z, µ)‖.

Specifically, we fixed the sample size as N = 2000, and we generate 50 test problems
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for µ = 10−t, t = 1, 2, 4, 5, 6, 8, respectively. For each µ, we solve problem F̃ (z, µ) = 0

by the QNSTR algorithm. We stop the iteration either condition ‖F̃ (zk, µ)‖ ≤ 10−5

holds or the number of iterations exceeds 5000. We use z∗µ to denote the first point

that satisfies (3.3.8) in the iteration, and we measure the residual of z∗µ by

resµ := ‖z∗µ −mid(l, u, z∗µ −HN(z∗µ))‖.

The numerical results are presented in Figure 3.3, which shows that resµ decreas-

es as smoothing parameter µ decreases. In fact, the residual resµ becomes stable

when µ ≤ 10−5. We consider problem (3.3.7) with a two-layer discriminator and

Figure 3.3: The convergence of resµ as µ decreases (Left: the range of resµ with
different µ; Right: the boxplot of resµ with different µ).

a two-layer generator using MNIST handwritting data. We set X = [−5, 5]m1 ,

Y = [−5, 5]m2 , N1
G = N1

D = 64, N1
G = N1

D = 128, µ = 10−t, t = 0, 1, . . . , 6

and N = 1000, 2000, 10000, respectively. Based on the uniform distribution over

[−10, 10]m1+m2 , we generate 1000 points zi ∈ [−10, 10]m1+m2 , i = 1, · · · , 1000. De-

note the “approximation error” by

approximation error :=
1

1000

1000∑
i=1

‖FN,µ(zi)− FN(zi)‖∞.

In Figure 3.4, we plot the average of “approximation error” under different choices

of µ and N with 20 sets of 1000 points in [−10, 10]m1+m2 . From the figure, we can
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observe that for each N = 1000, 2000, 10000, the “approximation error” converges to

zero as µ tends to zero.

Figure 3.4: Smoothing approximation error of FN,µ(z) to FN(z) for N =
1000, 2000, 10000.

Finally, we report some numerical results to compare the QNSTR algorithm with

some commonly-used methods. To this end, we set N = 2000 and µ = 10−8. We use

‖FN,µ(zk)‖ to measure performance of these algorithms and apply Frechet Inception

Distance (FID) score to measure the quality of image generated by the generator G

trained by different algorithms. We terminate all these algorithms when one of the

three cases holds: ‖FN,µ(zk)‖ ≤ 10−6, ‖∇FN,µ(zk)
>FN,µ(zk)‖ ≤ 10−10, the number of

iterations exceeds 5000.

We present the numerical results in Figure 3.5 and Figure 3.6. Specially, for

highlighting the outperforms of V z,H
k , we put itself in Figure 3.5 and put the results

of others in Figure 3.6. It is evident from these figures that the QNSTR algorithm

performs exceptionally well, and V z,H
k is the optimal choice for the search subspace.

We also compare the QNSTR algorithm with some commonly-used algorithms

in training GANs including simultaneous and alternate Gradient Descent-Ascent

(GDA) [62, 63, 25], simultaneous and alternate Optimistic Gradient Descent-Ascent
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(a) V z,H
k (b) V z,H

k

Figure 3.5: The residual ‖FN,µ(zk)‖ with V z,H
k (left: N1

G = N1
D = 64; right: N1

G =
N1
D = 128)

(OGDA) [62, 63], γ-alternate Adam, Projected Point Algorithm (PPA) [64, 56].

The initial point z0 of all these methods are given by alternating Adam with step

size 0.0005 and 10000 iterations. We use the grid search for the selection of hyper-

parameters in these methods. For simultaneous and alternate GDA and simultaneous

and alternate OGDA, we choose the step size α ∈ {0.5, 0.05, 0.005, 0.001, 0.0005}.

For γ-alternate Adam, we set the step size as 0.0005 and the ratio is choosen in

γ ∈ {1, 2, 3, 5, 10}. For PPA, we use the extragradient method with step size as 0.1
2L

to solve the subproblem of the PPA at the k-th step, the stopping criteria of the

k-th subproblem is set as the residual is less than 0.01
k2 or the number of iterations

exceeds 100. The comparison results between the QNSTR algorithm and the γ-

alternate Adam, the QNSTR algorithm and PPA are given in Figures 3.7 and 3.8,

respectively. According to the results, we can see the γ-alternate Adam also shows a

outstanding convergence tendency under a suitable hyper-parameter and the QNSTR

algorithm can even better than the γ-alternate Adam if a suitable searching space

Vk is selected. The PPA performs poorly in these comparisons.

The comparison results between the QNSTR algorithm and simultaneous and
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(a) V z
k (b) V z

k

(c) V F
k (d) V F

k

(e) V g
k (f) V g

k

Figure 3.6: The residual ‖FN,µ(zk)‖ with different choice of Vk (left: N1
G = N1

D = 64;
right: N1

G = N1
D = 128)

68



(a) N1
G = N1

D = 64 (b) N1
G = N1

D = 128

Figure 3.7: Comparison results between the QNSTR algorithm for V z
k , V F

k , V g
k , V z,H

k

and γ-alternate Adam (left: N1
G = N1

D = 64; right N1
G = N1

D = 128)

(a) N1
G = N1

D = 64 (b) N1
G = N1

D = 128

Figure 3.8: Comparison results between the QNSTR algorithm for V z
k , V F

k , V g
k , V z,H

k

and PPA (left: N1
G = N1

D = 64; right N1
G = N1

D = 128)

69



(a) N1
G = N1

D = 64 (b) N1
G = N1

D = 128

Figure 3.9: Comparison results between the QNSTR algorithm for V z
k , V F

k , V g
k , V z,H

k

and γ-alternate Adam (left: N1
G = N1

D = 64; right N1
G = N1

D = 128)

alternate GDA, simultaneous and alternate OGDA are given in Figure 3.9. To show

these comparison results more clearly, we only report the results of each method with

the optimal stepsize α in the search range.

We can observe from these figures that the QNSTR algorithm outperforms, which

validates that the QNSTR algorithm is more efficient in finding an ε-first-order sta-

tionary point of problem (3.3.7).

We also record the final Frechet Inception Distance (FID) score of each algorith-

m’s output. All results are given in Tables 3.6 and 3.7. They show the generator of

GANs trained by the QNSTR algorithm can generate high quality images. In next

chapter, we apply the QNSTR on several applications for image segmentation prob-

lems to show its feasibility on real problems. Because of its outstanding performance

for the experiments in this section, we will apply V z,H
k on these real problems.
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QNSTR
L 2 3 4 5
V z
k 31.27 32.34 34.48 36.74

V F
k 31.76 31.01 30.16 33.80
V g
k 33.97 32.62 34.07 33.13

V z,H
k - 31.76 - 30.01

PPA

L 10 100 500 1000 5000
30.44 31.43 34.88 33.14 34.42

γ-alt Adam
γ 1 2 3 5 10

30.13 31.58 32.69 34.55 36.60

sGDA, aGDA, sOGDA, aOGDA
α 0.5 0.05 0.01 0.005 0.0005

sGDA 33.09 31.89 31.64 31.32 32.52
aGDA 32.21 31.72 31.46 30.64 30.33

sOGDA 30.98 30.93 31.26 32.51 34.06
aOGDA 32.97 32.53 32.53 30.13 33.52

Table 3.6: FID scores of different algorithms with N1
D = N1

G = 64
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QNSTR
L 2 3 4 5
V z
k 32.33 32.95 31.86 32.01

V F
k 31.81 30.98 31.02 32.91
V g
k 32.09 33.17 36.21 31.46

V z,H
k - 28.97 - 30.46

PPA

L 10 100 500 1000 5000
30.18 29.96 32.12 32.13 32.42

γ-alt Adam
γ 1 2 3 5 10

27.12 26.98 31.69 33.55 34.60

sGDA, aGDA, sOGDA, aOGDA
α 0.5 0.05 0.01 0.005 0.0005

sGDA 32.86 31.35 30.98 33.04 33.87
aGDA 32.01 30.31 29.97 31.05 30.17

sOGDA 33.21 31.32 30.98 29.04 29.06
aOGDA 32.97 31.05 29.84 30.42 32.82

Table 3.7: FID scores of different algorithms with N1
D = N1

G = 128
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Chapter 4

Image segmentation by mix

generative adversarial networks

using the QNSTR

In this chapter, we focus on some practical image segmentation problems that are

implemented using GANs. Specifically, we apply the QNSTR method to solve these

problems.

4.1 Image segmentation problem

Image segmentation is an important component in many visual understanding sys-

tems, which is the process of partitioning a digital image into multiple image seg-

ments [65]. Image segmentation plays a central role in a broad range of applications

[66], including computer aided diagnosis, autonomous vehicles (e.g., navigable sur-

face and pedestrian detection), video surveillance and augmented reality. In recent

years, machine learning-based methods have achieved excellent performance in com-

puter vision. Supervised learning based Convolutional Neural Network (CNN) is one

of the extensive application approaches for image segmentation. These problems can
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be formulated as the following minimization:

min
x∈X

1

N

N∑
i=1

ψ
(
ξi1, G(x, ξi2)

)
. (4.1.1)

In (4.1.1), {ξ1, ξ2}Ni=1 are the N pairs images data with annotations, where ξi1 ∈ Rs1

is the original image and ξi2 ∈ Rs2 is the corresponding manual segmentation result.

G(x, ·) is the CNN model with parameters x. ψ(·, ·) is some given loss function

to judge the error between the output of give ξ2 on G(x, ·) and its corresponding

manual annotation ξ1. Although CNN models in supervisied learning have been

achieved outstanding performance in the domain of image segmentation, the over-

requirement of high quality data has become the bottleneck of the development of

CNN models. This shortage is prominent in the medical domain because the medical

images data always expresses as characters like small size of the samples, difficulty

of manual annotation and strict requirement of the segmentation accuracy.

One of the ideas to improve the performance of CNN on medical image segmen-

tation domain is to apply a mix model with CNN and a GAN. The mix model has

the following form

min
x∈X

max
y∈Y

f̂N(x, y) :=
1

N

N∑
i=1

λ · ψ
(
ξi1, G(x, ξi2)

)
+

( 1

N

N∑
i=1

(
log(D(y, ξi1)) + log(1−D(y,G(x, ξi2)))

)
,

(4.1.2)

where X , Y are two bounded boxes, {(ξi1, ξi2)}Ni=1 is the finite collected data, ξi2 is the

original data while the ξi1 is the corresponding label. The model can be regarded as a

combination of a classical supervised learning problem and a generative adversarial

problem with a trade-off parameter λ ∈ [0,∞). When λ = 0, problem (4.1.2)

reduces to a classical supervised learning problem (4.1.1). When λ → ∞, problem
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(4.1.2) tends to become a vanilla GAN. The mixed model has been widely used in

the medical domain, and most studies have shown that it can improve segmentation

results compared to traditional supervision models[67, 68].

In the remainder of this chapter, QNSTR is applied to find a solution of a

nonconvex-nonconcave minimax problem in which to use the mix model in (4.1.2)

to implement medical eye images segmentation on three different data sets with t-

wo types of data. To achieve better segmentation results, a series of common data

preprocessing methods are applied in all the experiments. The details of the process

are as follows: (1) We converted raw RGB images into single channel images because

single channel images show the better vessel background contrast than RGB images

[69]; (2) We applied normalization and Contrast Limited Adaptive Histogram Equal-

ization (CLAHE) [70] to the entire dataset to enhance the foreground-background

contrast. (3) We introduced gamma correction to further improve the image quality.

All the experiments in this section apply a Unet structure [71] of segmenta-

tion model G(x, ·) which includes 18 layers with m1 = 121435 parameters, and a

deep Convolutional Neural Network (CNN) structure of discrimination model D(y, ·)

which contains 5 convolutional layers and 1 fully connected layer with m2 = 142625

parameters. The feasible sets X and Y are set as [−5, 5]m1 and [−5, 5]m2 , respec-

tively. We employ the GELU activation function for each hidden layer in both D

and G, and the Sigmoid activation function for the output layer of both D and G.

We compare our results based on problem (4.1.2) with some existing models. In our

experiment, we use λ = 100 and V z,H
k with L = 5. Next, we introduce 2 partical

problems in medical domains and use the mix GAN model in (4.1.2) for solving these

problems.
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4.2 Blood vessel segmentation of Digital Retinal

Images (DRI)

The fundoscopic exam is a crucial procedure to provide information to diagnose d-

ifferent retinal degenerative diseases such as Diabetic Retinopathy, Macular Edema

and Cytomegalovirus Retinitis. A highly accurate system to sketch out the blood

vessel and find abnormalities on fundoscopic images is necessary. Although the super-

visied learning models with framework of network such as Unet are able to segment

macrovessels accurately, they failed for segmenting microvessels with high certain-

ty. We apply two different open source Digital Retinal Images (DRI) data, DRIVE

(https://drive.grand-challenge.org/) and CHASE BD1 (https://researchdata.kingston.ac.uk/96/).

We compare the segmentation results by the traditional metrics such as F1-score,

Sensitivity, Specificity and Accuracy. The form of these metrics are given as follows:

Sensivity =
1

N

N∑
i=1

|GTi ∩ SRi|
|GTi ∩ SRi|+ |GTi ∩ SRc

i |
, (4.2.1)

Specificity =
1

N

N∑
i=1

|GTc
i ∩ SRc

i |
|GTc

i ∩ SRc
i |+ |GTc

i ∩ SRi|
, (4.2.2)

Accuracy =
1

N

N∑
i=1

|GTi ∩ SRi|+ |GTc
i ∩ SRc

i |
Ω

, (4.2.3)

Precision =
1

N

N∑
i=1

|GTi ∩ SRi|
|GTi ∩ SRi|+ |GTc

i ∩ SRi|
, (4.2.4)

F1 =
2Precision× Sensitivity

Precision + Sensitivity
, (4.2.5)

where Ω is the universal set of all pixel indices in an image. GTi represents the

ground truth vessel indices for the i-th image, and SRi represents the indices of
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pixels labeled as vessels in the segmentation result of the i-th image. Furthermore, we

apply the Area Under Curve-Receiver Operating Characteristic (AUC-ROC) [72] and

Structural Similarity Index Measure (SSIM) [73] to judge the segmentation quality

from mixed model (4.1.2) trained by QNSTR.

4.2.1 Segmentation results of DRIVE data

We utilized the DRIVE dataset, which comprises 20 retinal images with manually

annotated segmentation labels. We allocated 16 images for training and reserved 4

images for testing purpose.

The segmentation results of the test data obtained using the QNSTR algorithm

for model (4.1.2) are presented in Figure 4.1. The top two rows of subfigures in Figure

4.1 display the original fundus images and their corresponding manual annotations,

respectively. The third row of subfigures show the segmentation results produced by

model (4.1.2) using the QNSTR algorithm. The fourth and fifth rows of subfigures

illustrate the error maps, highlighting the discrepancies between the segmentation

results of model (4.1.2) and the manual annotations. The results presented in Figure

4.1 provide an intuitive visualization of the segmentation performance achieved by

the QNSTR algorithm. To further demonstrate its effectiveness, we will present a

comparative analysis with other methods, highlighting the superior performance of

the QNSTR.

We report the comparison results of alternating Adam and QNSTR for model

(4.1.2) in Figure 4.2. The first column of subfigures display the manual segmentation

results, serving as the ground truth. The second and fourth columns of subfigures

show the segmentation results obtained by model (4.1.2) using alternating Adam and

QNSTR, respectively. The third and fifth columns of subfigures illustrate the error

maps, highlighting the discrepancies between the segmentation results produced by

Adam, QNSTR, and the ground truth in the first column, respectively. Through the
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Molds F1 score Sensitivity Specificity Accuracy AUC-ROC SSIM

Residual Unet[3] 0.8149 0.7726 0.9820 0.9553 0.9779 -
RecurrentUnet[3] 0.8155 0.7751 0.9816 0.9556 0.9782 -

R2Unet[3] 0.8171 0.7792 0.9813 0.9556 0.9784 -
DFUNet[4] 0.8190 0.7863 0.9805 0.9558 0.9779 0.8789
IterNet[5] 0.8205 0.7735 0.9838 0.9573 0.9816 0.9008
Alt Adam 0.7956 0.7830 0.9807 0.9591 0.9751 0.8912
QNSTR 0.8028 0.8363 0.9804 0.9654 0.9791 0.9015

Table 4.1: Performance of the QNSTR algorithm and alternating Adam for model
(4.1.2), and other methods in [3, 4, 5] for model (4.1.1) on DRIVE

intuitive visualization provided by Figure 4.2, it is evident that QNSTR outperforms

Adam. To further substantiate this observation, we present a comprehensive com-

parison of QNSTR and Adam, as well as other state-of-the-art methods [3, 4, 5], in

terms of sensitivity (4.2.1), specificity (4.2.2), accuracy (4.2.3), precision (4.2.4), and

F1-score (4.2.5) in Table 4.1. Table 4.1 shows that the QNSTR algorithm outper-

forms Adam across all evaluation metrics. Compared to other methods, it achieves

superior performance in Specificity, Accuracy, and SSIM, indicating that it is com-

parable to some state-of-the-art methods. Overall, we can conclude that QNSTR

is a promising approach for solving problem (4.1.2) in the context of blood vessel

segmentation in the DRIVE dataset.

4.2.2 Segmentation results of CHASE DB1 data

We download the CHASE BD1 includes 28 retinal images with manual segmentation

label. We applied 20 of the 28 images as training data. Similarly, we report in

Figure 4.3, Figure 4.4 to visually display the segmentation results of the QNSTR

on model (4.1.2) and its comparison with Adam. We also report the comparison of

segmentation results by the QNSTR, alternating Adam and the state-of-art results

in [3, 5]. Table 4.2 shows that the QNSTR algorithm is a promising approach for

solving problem (4.1.2) in the context of blood vessel segmentation in the CHASE

dataset. Next, we report the segmentation results of the mix GAN model in (4.1.2)
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Molds F1 score Sensitivity Specificity Accuracy AUC-ROC SSIM

DenseBlock-Unet[3] 0.8006 0.8178 0.9775 0.9631 0.9826 0.8867
DFUNet[3] 0.8001 0.7859 0.9822 0.9644 0.9834 0.9175
IterNet[5] 0.8073 0.7970 0.9823 0.9655 0.9851 0.9123
Alt Adam 0.7762 0.7957 0.9788 0.9652 0.9715 0.9096
QNSTR 0.7831 0.7937 0.9879 0.9695 0.9838 0.9182

Table 4.2: Performance of the QNSTR algorithm and alternating Adam for model
(4.1.2), and other methods in [3, 4, 5] for model (4.1.1) on CHASE DB1.

for another different partical problem.

4.3 Eye image segmentation for optic disc

The optic nerve disc, commonly referred to as the optic disc, is typically the brightest

area in a normal color fundus camera image. As a vital tissue of the eye, the optic

disc plays a crucial role in diagnosing various eye diseases. For instance, in the

case of glaucoma, doctors assess the cup-disc diameter ratio (CDR) to determine the

likelihood of the disease. A normal CDR is relatively small, whereas a ratio exceeding

0.7 often indicates a high risk of glaucoma. Furthermore, since Age-related Macular

Degeneration (AMD) typically occurs near the macula, many macular localization

and segmentation algorithms rely on identifying the optic disc’s position first. By

leveraging prior knowledge that the distance between the optic disc and macula is

approximately twice the width of the optic disc, these algorithms can effectively

localize the macula region. Additionally, in coronary retinal image analysis, optic

disc localization is a precursor to measuring retinal vessel caliber. Therefore, accurate

localization and segmentation of the optic disc are essential components of intelligent

diagnostic algorithms for fundus diseases.

RIM-ONE(https://www.kaggle.com/datasets/lucascunhadecarvalho/rimoner2),

which comprises 455 retinal images with manually annotated segmentation labels, is

implemented on optic segmentation problem. We allocated 440 images for training
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and reserved 15 images for testing purposes.

The segmentation results of the test data obtained using the QNSTR algorithm

for model (4.1.2) are presented in Figure 4.5. The top of two rows of subfigures

in Figure 4.5 display the original fundus images and their corresponding manual

annotations, respectively. The third row of subfigures show the segmentation results

produced by model (4.1.2) using the QNSTR algorithm. The fourth and fifth rows

of subfigures illustrate the error maps, highlighting the discrepancies between the

segmentation results of model (4.1.2) and the manual annotations.

We report the comparison results of alternating Adam and QNSTR for model

(4.1.2) in Figures 4.6 and 4.7. The first column of subfigures display the manual seg-

mentation results, serving as the ground truth. The second and fourth columns of

subfigures show the segmentation results obtained by model (4.1.2) using alternating

Adam and QNSTR, respectively. The third and fifth columns of subfigures illustrate

the error maps, highlighting the discrepancies between the segmentation results pro-

duced by Adam and QNSTR, respectively, and the ground truth in the first column.

Figure 4.7 visually displays the results of manual annotations, segmentation results

of model trained by Adam and segmentation results of model trained by QNSTR.

Thoughout the comparison, we can easily conclude that QNSTR is outperformed

compared with Adam.
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Figure 4.1: Results on DRIVE: Row 1. fundus image, Row 2. manual segmentation,
Row 3. vessel map generated by GANs with the QNSTR algorithm, Row 4. yellow
(correct); red (wrong); green (missing), Row 5. error.
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Figure 4.2: Comparison of alternating Adam and the QNSTR algorithm on DRIVE.
Columns from left to right are: 1. manual segmentation, 2. vessel map generated
by GANs with alternating Adam, 3. yellow (correct); red (wrong); green (missing)
of alternating Adam, 4. vessel map generated by GANs with QNSTR algorithm, 5.
yellow (correct); red (wrong); green (missing) of the QNSTR algorithm.
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Figure 4.3: Results on CHASE DB1: Row 1. fundus image, Row 2. manual seg-
mentation, Row 3. vessel map generated by GANs with QNSTR algorithm, Row 4.
yellow (correct); red (wrong); green (missing), Row 5. error.
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Figure 4.4: Comparison of alternating Adam and the QNSTR algorithm on
CHASE DB1. Columns from left to right are: 1. manual segmentation, 2. vessel
map generated by GANs with alternating Adam, 3. yellow (correct); red (wrong);
green (missing) of alternating Adam, 4. vessel map generated by GANs with QN-
STR algorithm, 5. yellow (correct); red (wrong); green (missing) of the QNSTR
algorithm.
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Figure 4.5: Results on RIM-ONE: Column 1. fundus image, Column 2. manual
segmentation, Column 3. optic dist segmented by GANs with QNSTR algorithm,
Column 4. yellow (correct); red (wrong); green (missing), Column 5. Error.
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Figure 4.6: Comparison of alternating Adam and QNSTR algorithm on
RIM ONE R2. Columns from left to right are: 1. original images, 2. manual
segmentation, 3. yellow (correct); red (wrong); green (missing) of QNSTR, 4. yellow
(correct); red (wrong); green (missing) of alternating Adam.
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Figure 4.7: The segmentation results along with the ground truth. blue (ground
truth); red (results of alternating Adam); green (results of QNSTR algorithm).
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Chapter 5

Conclusions and future work

In this chapter, we conclude this thesis and give some remarks for further research.

5.1 Conclusions

In this thesis, we mainly study a class of nonmonotone VIs with box constraints, and

investigate the following two research problems in detail.

1. We consider the residual function of the VI(Z, H) with box constraints in

(1.1.4), which can be formulate as a nonsmooth least squares problem. We

propose a QNSTR algorithm for solving VI(Z, H) via the merit function. In

order to deal with the nonsmoothness of problem (1.2.7), we introduce a s-

moothing relaxation problem (2.1.10) and establish the relationship between

problem (1.2.7) and problem (2.1.10). By exploiting the special structure of

problem (2.1.10), we propose the QNSTR algorithm (Algorithm (1)). In the

algorithm, we solve a low dimensional strongly convex with ellipse constraint

subproblem in each step and we demonstrate that all computational processes

involved in the QNSTR algorithm can be efficiently computed using simple

techniques. We prove that there exist an accumulation point of {zk}∞k=0 gen-

erated by the QNSTR is a Clarke stationary point of (1.2.7). Moreover, if

each elements in the Clarke generalized Jacobian at this accumulation point is
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nonsingular, it is a solution of (1.1.1). We also implement inexact-QNSTR (Al-

gorithm 2) with fixed smoothing parameter and show that any accumulation

point of the sequence generated by QNSTR with fixed smoothing parameter

is an ε-first order stationary point of (2.1.10). If the Jacobian matrix at the

accumulation point is nonsingular, it is an ε solution of (1.1.1). Additionally,

we establish that the complexity of QNSTR with fixed smoothing parameters

is O(ln(ε−2)ε−3).

2. We apply the QNSTR algorithm to solve a class of minimax problems with box

constraints (3.1.1). We consider a discrete form (3.1.2) of the minimax prob-

lem (3.1.1) by using SAA and establish a relationship between optimal values,

global minimax point, first-order stationary points and second-order station-

ary points of the problem (3.1.1) and (3.1.2) in Theorem 3.1. We apply the

QNSTR algorithm to find a first-order stationary point of (3.1.2). Finally, we

present some numerical results in image segmentation to show the effectiveness

of the QNSTR algorithm. The results show that the QNSTR algorithm for

solving problem (4.1.2) exhibits superior performance in segmentation, making

it a more promising approach for these applications.

5.2 Future work

Related topics for the future research work are listed below.

1. In this thesis, we introduce the QNSTR algorithm and demonstrate that its

computational process can be simplified using various techniques. Furthermore,

we show that the QNSTR is well-suited for problems with high-dimensional pa-

rameters. However, a notable limitation of the proposed QNSTR algorithm is

that it requires the use of all training data at each step, which can be compu-

tationally expensive and memory-intensive when dealing with large datasets.
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Many practical problems in machine learning and artificial intelligence involve

vast amounts of data, a promising direction for future research is the develop-

ment of a stochastic version of QNSTR that leverages mini-batch data at each

iteration, thereby addressing the scalability challenges associated with large

datasets.

2. The selection of a searching subspace Vk is a crucial aspect of our algorithm,

and the linear independence among the column vectors is a necessary condition.

However, the searching subspace used in the numerical part of this work does

not guarantee that Vk will always be of full column rank. Developing a strategy

to ensure the linear independence of the column vectors in Vk would be a

meaningful contribution to the QNSTR algorithm. Furthermore, our numerical

results suggest that the choice of searching subspace can significantly impact

the performance of the algorithm. Therefore, designing a strategy to guide the

selection of the searching subspace Vk is an interesting and important problem

that warrants further investigation.
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