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Abstract

Maritime transport serves as the backbone of the global supply chain. Ship fuel

consumption constitutes a significant portion of maritime transport costs, while

its emissions pose substantial environmental risks. Predicting and optimizing ship

fuel consumption under varying scenarios is a pivotal procedure in enhancing ship

fuel efficiency and sustainablemaritime transport. This thesis leverages real-world

data, machine learning models, optimization techniques, and domain knowledge

in the shipping industry to prompt intelligent fuel consumption management.

The first study designs an innovative post hoc algorithm to correct the predic-

tions of fuel consumption obtained by the off-of-shelf machine learning model—

classification and regression trees (CART). We call this algorithm “PH-CART”,

which serves as a semi-domain knowledge-aware decision tree to combine domain

knowledge in maritime transport with CART using a linear optimization model.

Based on a real-world dataset, the experiment demonstrates that PH-CART out-

performs CART in terms of both accuracy and robustness. Furthermore, the PH-

CART model exhibits a high level of interpretability because it generates a uni-

variate function representing the relationship between ship sailing speed and fuel

consumption. This function is developed by incorporating all contextual informa-

tion from other variables. The study contributes to sustainable maritime transport
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by offering more accurate and robust predictions of ship fuel consumption. More-

over, this study provides a new perspective by applying domain knowledge to an

industry-specific issue in the transportation domain.

The second study uses domain knowledge to develop two innovative meth-

ods for predicting ship fuel consumption—the first is a physics-informed neural

network (PI-NN) model that improves the interpretability of the black-box model

while maintaining accuracy and the second is a mixed-integer quadratic optimiza-

tion (MIQO) model that considers more forms of feature variable expressions in

an additive white-box model. The proposed approaches address the tradeoff be-

tween model interpretability and model accuracy in ship fuel consumption pre-

diction. The experiment results demonstrate that the PI-NN model improves the

interpretability of the black-box model while preserving accuracy. The MIQO

model considers alternative variable expressions, leading to the flexibility of the

white-box model. Finally, SHapley Additive exPlanations (SHAP) is used to ex-

plain how each feature value contributes to the predictions of the black-box model,

thereby providing insights into how each value of feature variables affects fuel

consumption. This study provides a solution to the tradeoff between model in-

terpretability and model accuracy and can promote the application of data-driven

models in ship fuel consumption prediction. Moreover, this study gives implica-

tions for the application of explainable machine learning models in practice.

Many shipping companies are unwilling to share their raw data because of

data privacy concerns. However, certain problems in the maritime industry be-

come much more solvable or manageable if data are shared. In the third study, we

develop a two-stage method based on federated learning (FL) and optimization

techniques to predict ship fuel consumption and optimize ship sailing speed. Be-

ii



cause FL only requires parameters rather than raw data to be shared during model

training, it can achieve both information sharing and data privacy protection. Our

experiments show that FL develops a more accurate ship fuel consumption pre-

diction model in the first stage and thus helps obtain the optimal ship sailing speed

setting in the second stage. The proposed two-stage method can reduce ship fuel

consumption by 2.5%–7.5% compared to models using the initial individual data.

Moreover, the proposed FL framework protects the data privacy of shipping com-

panies while facilitating the sharing of information among shipping companies.

Keywords: maritime transport; ship fuel consumption management; green ship-

ping; sailing speed optimization; machine learning; data-driven optimization.
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1 Introduction

1.1 Background

Maritime transport is the foundation of the global supply chain (Bläser et al., 2024;

Zhou et al., 2019). It is responsible for transporting more than 80% of global trade

in terms of volume (UNCTAD, 2022). Ships mainly rely on heavy oil as their

source of power, which results in emissions (e.g., carbon dioxide and sulfur diox-

ide) being released into the environment. Therefore, there is an urgent need to

reduce emissions. A possible solution is to use clean energy. However, imple-

menting such measures can be costly and requires government support and ad-

vancement. The more cost-effective option is to address shipping emissions at the

operational level (Psaraftis & Kontovas, 2014). This process typically consists of

two main steps. The first step is to predict a ship’s fuel consumption; the second

step is then to optimize its sailing speed based on this prediction (Du et al., 2019;

Yan et al., 2020).

Data-driven research has become a prominent topic in the maritime domain.

Exploring how to utilize data to extract more information and guidemaritime oper-

ations is a valuable subject of study. In the field of ship fuel consumption manage-

ment, some literature, e.g., Du et al. (2019) and Yan et al. (2020), uses ship noon

reports to train machine learning models. Following the two-stage paradigm, they

first employ off-the-shelf machine learning models to predict ship fuel consump-

tion and then use the predicted results to optimize the ship’s sailing speed. Instead

of relying on off-the-shelf machine learning models, this thesis explores how to

tailor machine learning models to align with domain knowledge in the maritime

industry or directly incorporate domain knowledge to modify the internal struc-

ture of the machine learning models. We also employ the two-stage paradigm to
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1 Introduction

examine the critical impact of more accurate fuel consumption predictions on fuel

management.

1.2 Thesis Outline

This thesis comprises three studies that use data-driven approaches to achieve in-

telligent fuel consumption management. The thesis is structured around three in-

terrelated studies as shown in Figure 1.1. Study I (i.e., Chapter 2) focuses on

integrating domain knowledge with machine learning to enhance both predictive

accuracy and model interpretability. This chapter investigates how we can in-

corporate domain knowledge and constraints to guide machine learning models

toward more meaningful and actionable insights. Study II (i.e., Chapter 3) dives

deeper into the trade-off between interpretability and accuracy in ship fuel con-

sumption modeling. This chapter analyzes when and how simpler models can

perform competitively with complex black-box models. Study III (i.e., Chapter 4)

combines prediction and optimization, extends the research to federated learning,

and proposes a privacy-preserving and distributed framework for fuel consumption

prediction and sailing speed optimization. Chapter 4 addresses data sensitivity and

decentralization issues in the maritime industry and enables collaborative model

training across multiple data holders without compromising data privacy.

Chapter 2: Integrating Domain Knowledge with Machine Learning: En-

hancing Predictive Accuracy and Interpretability.1 Chapter 2 introduces a

post-hoc algorithm designed to refine fuel consumption predictions generated by

classification and regression trees (CART), a widely used method in ship fuel con-
1This study is under revision at Transportation Research Part C: Emerging Technologies.
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1 Introduction

Ship fuel consumption management

Prediction

Optimization Ship sailing speed

Physics-based methods
(e.g., Holtrop-Mennen method)

Data-driven methods

Expert Experience/Domain knowledge

Study I:
Integrating domain knowledge with machine 
learning: Enhancing predictive accuracy and 

interpretability

Study II:
Balancing interpretability and accuracy in fuel 

consumption models: A domain-driven perspective

Study III:
Federated learning for fuel consumption prediction 
and optimization: Towards privacy-preserving and 

distributed data analytics

Figure 1.1: The framework the thesis

sumption prediction (Yan et al., 2020). Given that all other feature variables re-

main fixed, the relationship between the specified feature variable and the target

predicted by CART follows a piecewise linear function. This piecewise linear

function is entirely data-driven without any constraints, allowing it to be either

monotonic or non-monotonic, which may contradict the domain knowledge in the

shipping industry. Chapter 2 focuses on a well-known domain knowledge: the re-

lationship between ship sailing speed and fuel consumption is characterized as a

convex non-decreasing function. By solving a linear optimization model to obtain

a piecewise linear surrogate function, the proposed post-hoc algorithm adjusts the

CART results to alignwith domain knowledge, thereby enhancing prediction accu-

racy and robustness. Moreover, the piecewise linear surrogate function enhances

the interpretability of machine learning models.

Chapter 3: Balancing Interpretability andAccuracy in Fuel Consumption

5



1 Introduction

Models: A Domain-Driven Perspective.2 Chapter 3 develops two models for

ship fuel consumption prediction: one is a tailored neural network model, and

the other is a mixed-integer quadratic optimization approach. The two proposed

models strike a balance between model interpretability and model accuracy. We

analyze and compare the performance of these twomodels, providing explanations

and insights based on maritime domain knowledge. Finally, we employ SHapley

Additive exPlanations (SHAP) to explain how each feature value contributes to

the predictions of the final ship fuel consumption.

Chapter 4: Federated Learning for Fuel Consumption Prediction and

Optimization: Towards Privacy-Preserving and Distributed Data Analytics.3

Chapter 4 utilizes a new learning approach: federated learning, which enables de-

centralized training of machine learning models across multiple devices or data

sources while keeping the data localized. As the maritime industry is a relatively

traditional sector and is highly monopolized, data privacy and security pose sig-

nificant barriers to the widespread adoption of data-driven methods. Federated

learning provides a solution for data sharing and privacy protection. Chapter 4

validates the feasibility of federated learning in fuel consumption management.

Moreover, we employ a two-stage paradigm, demonstrating that the more accu-

rate prediction results achieved through federated learning can assist in optimizing

ship sailing speed in the second stage.

At last, Chapter 5 concludes the thesis by summarizing the key findings and
2This study has been published: Wang, H., Yan, R., Wang, S., Zhen, L. (2023). Innovative ap-

proaches to addressing the tradeoff between interpretability and accuracy in ship fuel consumption
prediction. Transportation Research Part C: Emerging Technologies, 157, 104361.

3This study has been published: Wang, H., Yan, R., Au, M. H., Wang, S., Jin, Y. J. (2023).
Federated learning for green shipping optimization and management. Advanced Engineering In-
formatics, 56, 101994.
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discussing the emerging trends in fuel consumption prediction.
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2 Integrating Domain Knowledge with Machine Learning

2.1 Introduction

Ship fuel consumption is affected by many factors, e.g., ship sailing speed, ship

size, cargo weight, draft, and weather conditions (Lo &McCord, 1995). The most

widely studied influencing factor is ship sailing speed because the physical char-

acteristics of a ship are fixed. Both academia and industry recognize that there is a

non-decreasing convex functional relationship between ship sailing speed and fuel

consumption (Adland et al., 2020). Ronen (1982) mentioned that “the bunker fuel

consumption of themain engines is directly related to the third power of the speed”.

In real-world scenarios, complex external conditions (e.g., waves and currents),

the condition of the hull (e.g., fouling and wear), variations in engine efficiency, as

well as ship design and operational practices, collectively contribute to deviations

of the fuel consumption curve from the ideal cubic relationship (Edyvean, 2010;

Fan et al., 2022). For example, using real-world data from a global liner shipping

company, Wang and Meng (2012) find that there is a power function relationship

between ship sailing speed and fuel consumption, with the exponent value rang-

ing from 2.7 to 3.3 based on different ship types and voyage legs. Their results

demonstrate that the third power relationship is indeed a good approximation. The

roughly cubic relationship between a ship’s sailing speed and fuel consumption,

as well as the critical role of sailing speed in predicting fuel consumption, is well-

established domain knowledge in maritime studies.

Recently, many studies have acknowledged the superior performance of ma-

chine learning models, as these advanced models are capable of incorporating a

greater number of factors and capturing more complex relationships (Uyanık et al.,

2020). Machine learning models that analyze the importance of different factors

9



2 Integrating Domain Knowledge with Machine Learning

further confirm that ship sailing speed is the most important variable in determin-

ing fuel consumption (Yan et al., 2020). However, most machine learning models

are complex and off-the-shelf machine learning models cannot impose constraints

on the relationship between two variables during the learning process based on

data. In our context, if machine learning methods are applied to predict fuel con-

sumption, we cannot guarantee the non-decreasing convex relationship between

fuel consumption and ship sailing speed. Note that, in practical situations, ship

sailing speed and fuel consumption do not follow a perfect cubic relationship.

Therefore, the domain knowledge emphasized in our study is the non-decreasing

convex relationship between ship sailing speed and fuel consumption. This rela-

tionship cannot be guaranteed by machine learning models, which motivates us to

develop a semi-domain knowledge-aware machine learning model specifically de-

signed for predicting ship fuel consumption. To explain further, since the machine

learning model can ensure the important role of ship sailing speed in principle, the

domain knowledge that we use in our study is that the relationship between ship

sailing speed and fuel consumption is characterized as a convex non-decreasing

function.

To incorporate domain knowledge in predicting ship fuel consumption into the

machine learning model, we propose a post hoc correction algorithm that lever-

ages the output results of the machine learning model. Specifically, we use a clas-

sification and regression tree (CART) model as the underlying machine learning

model and introduce an infinite-dimensional optimization model to apply domain

knowledge to correct the results. However, due to the inherent complexity of solv-

ing infinite-dimensional optimization problems, we transform the problem into a

linear optimization model, supported by theoretical evidence. The proposed pro-

10



2 Integrating Domain Knowledge with Machine Learning

cess, including the CART model and post hoc correction using a linear optimiza-

tion model, is called “PH-CART” and is proven to be more accurate and robust

than the CART model. Furthermore, the PH-CART model ultimately produces a

univariate non-decreasing linear piecewise convex function between ship sailing

speed and fuel consumption. This function effectively incorporates contextual in-

formation from other variables to produce more accurate predictions and has high

interpretability. Overall, the PH-CART model provides a fresh perspective, com-

bining domain knowledge and the machine learning model to produce a model

with both superior performance and high interpretability.

The remainder of this chapter is organized as follows. Section 2.2 summarizes

the relevant literature and discusses our research contributions to theory and prac-

tice. Section 2.3 describes the research problem in detail, develops models, and

proves theoretical evidence. Section 2.4 conducts experiments based on a public

dataset and analyses the results. Finally, conclusions are drawn in Section 2.5.

2.2 Literature Review

In this section, we review two streams of studies that are closely related to our

study: 1) ship fuel consumption prediction, and 2) interpretable models. We then

summarize the contributions of our work in Section 2.2.3.

2.2.1 Research on Ship Fuel Consumption Prediction

The prediction of ship fuel consumption has attracted considerable attention in

maritime studies due to the dominant role of fuel costs in ship operations (Meng et

al., 2016). Fuel consumption is also recognized as a key factor in ensuring the sus-
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tainability of shipping practices. Studies explore various approaches to predicting

ship fuel consumption, aiming to provide valuable operational guidance to reduce

fuel consumption and thus contribute to enhancing the efficiency and sustainabil-

ity of ship operations (Ozsari, 2023; Yan et al., 2020). Early studies in the field of

ship fuel consumption forecasting predominantly rely on hydromechanics princi-

ples (Holtrop & Mennen, 1982) and statistical models (Meng et al., 2016; Wang

& Meng, 2012). In recent years, there has been a notable shift toward using ship

operating data and advanced machine learning or deep learning models to predict

fuel consumption. Our study also falls into this category. Data collection technolo-

gies have made it increasingly feasible to gather detailed information about ship

operations, such as ship sailing speed, draft, and weather conditions. Taking ad-

vantage of such data, the development of data-driven models enables more precise

and reliable predictions of fuel consumption. Wang et al. (2018a) propose to use

LASSO regression to address the multicollinearity problem when applying vari-

ables to predict ship fuel consumption. Their approach is proven to be effective.

Du et al. (2019) develop a neural network model to predict ship fuel consump-

tion based on a ship’s noon report—a report prepared by the captain at noon each

day to describe the sailing profile to onshore officers. They find that the neural

network model outperforms statistical models. Yan et al. (2020) use the random

forest algorithm as a predictive tool for ship fuel consumption. The predicted value

of ship fuel consumption also provides an efficient input to the downstream opti-

mization model. Uyanık et al. (2020) conduct a comprehensive study of machine

learning models used in ship fuel consumption. They compare the performance of

various machine learning models, including ridge and LASSO regression, support

vector regression, and tree-based algorithms. Le et al. (2020b) use a multilayer

12
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perceptron artificial neural network to predict ship fuel consumption and validate

the performance of the model using real-world data from container ships of differ-

ent sizes. Readers are referred to Fan et al. (2022) for a comprehensive summary

of all models adopted in predicting ship fuel consumption, as we only summarize

studies using machine learning methods here.

Based on the above literature review on the use of machine learning models

to predict ship fuel consumption, current research primarily focuses on applying

machine learning models using ship operating data (Yan et al., 2020). However,

there is a lack of research on combining domain knowledge in maritime transport

with machine learning models. Integrating domain knowledge can enhance the

accuracy and interpretability of such models. The best-known domain knowledge

in ship fuel consumption is that the relationship between ship fuel consumption

and sailing speed is a non-decreasing convex function (Wang & Meng, 2012).

However, this relationship cannot be guaranteed in off-the-shelf machine learning

models, which are typically designed to capture data patterns without explicitly

considering domain-specific constraints or principles. Therefore, this study pro-

poses the innovative PH-CART model to conduct a post hoc correction on the

results of the CART model. PH-CART is a machine learning method that consid-

ers the relationship between ship fuel consumption and sailing speed, and is thus

highly interpretable.

2.2.2 Research on Interpretable Models

Loyola-Gonzalez (2019) dividemodels intowhite-boxmodels and black-boxmod-

els. White-box models require no additional models to explain the results, while

13
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black-box models are challenging to interpret, often requiring additional models to

help explain the outcomes. Mainstream machine learning models (tree-based al-

gorithms and neural network models) are all black-box models (Loyola-Gonzalez,

2019). Model interpretability has thus attracted attention in recent years. Lundberg

(2017) provide milestone work in improving the interpretability of machine learn-

ing models. They propose the innovative SHapley Additive explanation (SHAP)

method, which uses Shapley values from game theory to assign a SHAP value to

each feature in each data sample. Their work is widely recognized and has over

14,000 citations. Many studies adopt SHAP to interpret the results of machine

learning models based on their specific research questions (Wang et al., 2022b;

Yan et al., 2022). For example, Yan et al. (2022) apply SHAP to interpret the re-

sults of gradient boosting regression trees in the port state control problem. Wang

et al. (2022b) adopt SHAP to explain the prediction results of venue popularity and

to further quantify the contribution of each variable. Chen et al. (2024) use SHAP

to explain how prediction results are affected by class imbalance data. In general,

interpretable machine learning models aim to explain the results of machine learn-

ing models, thereby making the principles of black-box models clearer and more

convincing to industry experts. Our study also adopts a post hoc approach simi-

lar to SHAP, thus improving the interpretability of the machine learning model.

In the domain of management science/operations management (MS/OM), some

studies hold the opinion that model interpretability refers to the ability of a model

to directly generate decision rules (Sun et al., 2022). For example, Ban et al.

(2019) propose to use a residual tree method to prescribe the decision rules in a

dynamic procurement problem. Sun et al. (2022) develop a risk-based port effi-

ciency evaluation model, which provides an interpretable framework to quantify
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the efficiency of a port. Elmachtoub and Grigas (2022) propose to revise the loss

functions of decision trees to directly minimize decision loss and thus obtain op-

timal decision rules. From this point of view, our study also contributes to the

interpretability of decision rules because we can obtain a highly interpretable uni-

variate non-decreasing convex function that fits the domain-specific requirement

and simultaneously takes into account information from other dimensions (e.g.,

weather conditions and draft).

Little research focuses on model interpretability in the context of ship fuel

consumption prediction models. To the best of our knowledge, the study of Wang

et al., 2023 is the only study that considers interpretability in predicting ship fuel

consumption. However, their study focuses on developing two models—a highly

interpretable regressionmodel and a neural networkmodel with high accuracy—to

discuss the trade-off between interpretability and accuracy. In contrast, our study

aims to correct the results of the CART model using domain knowledge and thus

directly improve model interpretability. Moreover, our PH-CARTmodel produces

a function between ship fuel consumption and sailing speed, which can provide a

reference for ship operators in various weather conditions and can thus be viewed

as a decision rule under different conditions.

2.2.3 Research Contributions

The theoretical and practical contributions of our research are summarized as fol-

lows.

Theoretical contributions. The theoretical contributions of our study are

highlighted throughout the literature review. First, our study tackles an important
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issue in maritime studies—the prediction of ship fuel consumption. The proposed

PH-CART model outperforms the off-the-shelf CART model in terms of accuracy

and robustness. This improved performance can be attributed to the incorporation

of domain knowledge pertaining to ship fuel consumption and sailing speed. Thus,

in contrast to previous studies that solely apply machine learning models to predict

ship fuel consumption, our research offers a fresh perspective by integrating do-

main knowledge with machine learning models. Second, our PH-CARTmodel in-

tegrates machine learning techniques with optimization methods. We also provide

theoretical evidence supporting the development of a linear optimization model to

obtain a piecewise linear surrogate function. Third, the PH-CART model exhibits

a high level of interpretability, as it provides a univariate function representing the

relationship between ship fuel consumption and sailing speed. Although previous

studies explore this relationship, they do not consider the incorporation of other

contextual information. The PH-CART model demonstrates that incorporating

contextual information contributes to more accurate predictions. Overall, the PH-

CART model successfully leverages contextual information while simultaneously

enhancing model interpretability.

Practical contributions. This study has twomain practical applications. First,

shipping is a traditional industry and expert opinion plays a pivotal role in the

decision-making process of ship navigation. Advanced machine learning models

are used infrequently in shipping practice due to the difficulty of explaining their

results, which experts often struggle to interpret. Our study addresses this limi-

tation by conducting a post hoc correction to align the outcomes of the machine

learning model with domain-specific requirements. As a result, our research of-

fers a novel perspective that can foster the practical application of machine learn-
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ing models in the shipping industry. Second, as the PH-CART model generates

more accurate and robust predictions, these results can be utilized in ship opera-

tions to support decision making during voyages. Consequently, our study also

contributes to energy conservation and environmental protection.

2.3 Problem Description and Methodology

2.3.1 Preliminaries

State-of-the-art decision tree methods, e.g., CART (Breiman et al., 1984), C4.5

(Quinlan, 1993), and ID3 (Quinlan, 1986), are widely applied in classification and

regression problems. They all take a top-down approach to determine the split

criteria by solving an optimization problem. Amongst the various decision tree

methods, CART stands out as a prominent technique (Bertsimas & Dunn, 2017),

serving as the foundation for the widely recognized random forest method. How-

ever, relying solely on the principles of decision trees may not necessarily yield

results that align with practical considerations or domain knowledge. Nanfack et

al. (2023) emphasize that machine learning models need to comply with domain-

specific requirements, which could also improve the interpretability of machine

learning models.

To facilitate clear expression, we here represent the ship sailing speed (denoted

by s) and other feature variables (denoted byx) separately, despite their shared role

as auxiliary data when predicting ship fuel consumption rate, denoted by y. The

collected data is denoted by SN = {(xi, si, yi)}Ni=1, where i = 1, ..., N specifies a

certain data record.
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CART is proposed by Breiman et al. (1984). It provides a top-down mech-

anism to address both classification and regression problems by employing dif-

ferent split criteria. As ship fuel consumption rate is a continuous variable, we

here briefly introduce the process of realizing regression by CART. Suppose x is

a n-dimensional vector. In our case, there are a total of n+1 feature variables, in-

cluding ship sailing speed as one of the variables. We use x(j) (j = 1, ..., n+1) to

denote the j-th feature variable. Vj represents the set of all feature values of x(j)

and vj ∈ Vj specifies a certain feature value. From the root node, CART splits

nodes by choosing the optimal pair (x(j), vj) that minimizes the sum of squared

errors for both the left and right nodes. We denote the left space and right space

by R1(j, vj) = {(x, s)|x(j) ≤ vj} and R2(j, vj) = {(x, s)|x(j) > vj}, respec-

tively. The optimal pair (x(j), vj) is selected by minimizing the following problem

(Breiman et al., 1984):

min
x(j),vj∈Vj ,j=1,...,n+1




∑

{i|(xi,si)∈R1(j,vj)}

(
yi −

∑
{i|(xi,si)∈R1(j,vj)} yi

|R1|

)2

+
∑

{i|(xi,si)∈R2(j,vj)}

(
yi −

∑
{i|(xi,si)∈R2(j,vj)} yi

|R2|

)2


 ,

(2.1)

where |R1| and |R2| denotes the number of samples in setR1 andR2, respectively.

That is, the CART traverses all the possible pairs (x(j), vj) and then selects the

optimal one that minimizes Problem (2.1). CART adopts two parameters to restrict

the complexity of the tree: the maximum depth of a tree and the minimum sample

number per leaf (Breiman et al., 1984). That is, after reaching the maximum depth

of a tree or the minimum sample number per leaf, the tree stop splitting and we
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get a constructed tree.

2.3.2 Problem Description

By collecting historical data SN = {(xi, si, yi)}Ni=1, we first train a CART model,

denoted by Tθ(x, s), where θ represents the parameters of the constructed tree. For

the newly observed data (x0, s0), we can obtain the piecewise constant function

Tθ(x0, s) by inputting the vector of the feature variables x0, i.e., by reducing the

space dimension to a two-dimensional plane with only fuel consumption rate and

ship sailing speed throughx0. Based on the piecewise constant function Tθ(x0, s),

this study develops a non-decreasing piecewise linear surrogate function to calcu-

late the final estimated fuel consumption rate. This process utilizes all information

provided by feature variables and considers the domain-specific requirement. By

and large, we develop a semi-domain knowledge-aware machine learning model

in ship fuel consumption prediction, which could improve the prediction accuracy

and model interpretability at the same time.

To simplify notation, we use Tθ(x, s) to refer to the trained tree in the subse-

quent discussion. For the newly observed data (x0, s0), the prediction value of

ship fuel consumption rate is obtained by averaging all samples belonging to the

same leaf node as (x0, s0):

Tθ(x0, s0) =
N∑

i=1

1(xi,si)∈R(x0,s0)

|{(xj, sj) ∈ R(x0, s0)}|
yi, (2.2)

where {(xi, si) ∈ R(x0, s0)} represents the set of samples belonging to the same

leaf node as the new observation (x0, s0), and |{(xj, sj) ∈ R(x0, s0)}| calculates

the number of elements in the set. Additionally, by providing only x0 as input, we
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can obtain the piecewise constant function Tθ(x0, s).

In maritime transport, predicting fuel consumption is a key process for guid-

ing ship operations. Decision tree methods and their advanced counterparts (e.g.,

random forest) are widely used to predict ship fuel consumption (Li et al., 2022;

Uyanık et al., 2020; Yan et al., 2020). However, no study has taken domain knowl-

edge into account when developing tree-based models to predict ship fuel con-

sumption. In the context of ship fuel consumption, the crucial domain knowledge

is that the correlation between ship sailing speed and fuel consumption follows

a non-decreasing convex function. However, no off-the-shelf machine learning

model can guarantee this relationship.

In a tree-based model, the relationship between ship fuel consumption and ship

sailing speed is a piecewise constant function, which is not non-decreasing convex.

This is because the principle of the CART model is to divide the input space into

multiple non-overlapping regions based on conditional rules, with the output in

each region being either a fixed value or the result of a simple linear relationship.

We illustrate this point by Example 1.

Example 1. Using the public dataset provided by Petersen (2011) (we will de-

scribe the details about this dataset in Section 2.4.1), we randomly select a voyage

and randomly select 80% records of this voyage as the training dataset to train the

CART model to predict the ship fuel consumption rate (unit: kg/s). Since our fo-

cus is primarily on highlighting the issue of piecewise constant functions, we here

only select two feature variables: ship sailing speed through water (unit: knot) and

the crosswind speed (unit: m/s), for the purpose of visualization. We present the

statistical characteristics of the three selected variables for the voyage in Table 2.1.

As Figure 2.1(a) shows, the two feature variables split the space into rectangles.
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Given a new observation with the values of ship sailing speed and crosswind, the

corresponding predicted fuel consumption rate can be found by mapping the point

in the 3D space. Inspecting Figure 2.1(b), it shows that when the value of cross-

wind is given, the relationship between ship sailing speed and fuel consumption

rate can be obtained by projecting the XOZ plane, which results in a piecewise con-

stant function. Figure 2.2 shows the piecewise constant function when the value

of crosswind is 5.60 m/s. Obviously, the result in Figure 2.2 is not in line with the

domain knowledge in maritime transport—ship sailing speed and fuel consump-

tion follow a non-decreasing convex function because it is neither non-decreasing

nor convex.

Table 2.1: Statistical characteristics of the three selected variables

Variables Mean Standard deviation

Fuel consumption rate (kg/s) 0.570 0.117

Ship sailing speed (knot) 17.715 5.238

Crosswind speed (m/s) 6.242 4.298

(a) The divided 3D space by the CART model (b) The projection of the XOZ plane

Figure 2.1: The result of the CART model
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Figure 2.2: The piecewise constant function

2.3.3 PH-CART Model

In the PH-CART model, we need to conduct a post hoc correction on the relation-

ship between ship sailing speed and fuel consumption rate. Given any new obser-

vation x0, we can obtain the piecewise constant function Tθ(x0, s). We use Px0 to

denote the number of line segments in the piecewise constant function Tθ(x0, s).

For example, Px0 = 5 in Figure 2.2. For different x0, the value of Px0 may be

different. Moreover, the value of Px0 is less than or equal to the number of leaf

nodes in Tθ(x, s) because we first utilize auxiliary data x0 to prescribe Tθ(x0, s).

Still using Figure 2.1 as an example, there might be two leaf nodes with distinct

split conditions like this: the split condition of one leaf node is that if ship sailing

speed is larger than 18.20 knots and crosswind is larger than 7.11 m/s, fuel con-

sumption rate is 0.70 kg/s; the split condition of another node is that if ship sailing

speed is larger than 18.20 knots and crosswind is smaller than 6.88 m/s, fuel con-
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sumption rate is 0.61 kg/s. Considering a specific sample where the crosswind is

5.60 m/s, the first leaf node would be eliminated after providing the crosswind in-

put to derive the piecewise constant function between ship sailing speed and fuel

consumption rate. Consequently, Px0 remains less than or equal to the number of

leaf nodes in Tθ(x, s). In this section, we develop methods for achieving post hoc

correction to make the results of CART in line with the domain knowledge in mar-

itime transport—the correlation between ship sailing speed and fuel consumption

follows a non-decreasing convex function.

Given the piecewise constant function Tθ(x0, s), we aim to find the optimal

non-decreasing convex function g∗x0
(s):

[M1]

g∗x0
(s) ∈ argmin

gx0 (s)∈G

∫ smax

smin

|gx0(s)− Tθ(x0, s)|ds, (2.3)

where G = {gx0(s)|gx0(λs1 + (1− λ)s2) ≤ λgx0(s1) + (1− λ)gx0(s2), 0 < λ <

1, smin ≤ s1 ≤ smax, smin ≤ s2 ≤ smax; gx0(s3) ≤ gx0(s4), smin ≤ s3 < s4 ≤

smax; gx0(s) ≥ ymin, gx0(s) ≤ ymax}.

That is, G denotes the family of non-decreasing convex functions that satisfy

gx0(s) ≥ ymin and gx0(s) ≤ ymax. The smin and smax here denote the minimum and

maximum ship sailing speeds and ymin and ymax are values of the minimum and

maximum fuel consumption rate. For example, smin and smax could be the mini-

mum and maximum values of the in-sample ship sailing speed1, respectively; ymin

and ymax could be the minimum and maximum values of the in-sample ship fuel
1Note that we use the minimum value and the maximum value of the in-sample data as the left

and the right endpoint, respectively. If a smaller value or a larger value than the left endpoint or
the right endpoint occurs in the test dataset, the left endpoint or the right endpoint should be that
smaller or larger value in the test dataset.
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consumption rate, respectively. Obviously, the optimal g∗x0
(s) should be as close

as possible to Tθ(x0, s) as it reflects the contextual information provided by x0.

However, finding such an optimal g∗x0
(s) is an infinite-dimensional optimization

problem, which is difficult to handle (Warwicker & Rebennack, 2022). Therefore,

we propose to develop a piecewise linear surrogate function for post hoc correc-

tion.

We denote the piecewise linear surrogate function by fx0(s). A small enough

interval ∆ is defined to discretize the line segments in Tθ(x0, s). For example,

∆ = 0.001 knot. Then, the total number of intervals is Q = smax−smin
∆ . We assume

that Q is an integer because we can always find a small enough interval∆ to split

these line segments into integer sub-segments. As a result, we obtainQ+1 points,

including the left and right endpoints (see Figure 2.2 for an example). We denote

each point after discretization as sq, q = 1, ..., Q + 1. The approximated value

of ship fuel consumption for each sq is denoted by ŷq, which should be as close

as possible to Tθ(x0, sq). Connecting all (sq, ŷq), q = 1, ..., Q + 1, we obtain the

piecewise linear surrogate function fx0(s):

fx0(s)− ŷq
ŷq+1 − ŷq

=
s− sq

sq+1 − sq
, q = 1, ..., Q. (2.4)

To approximate all the values of ŷq and thus obtain the piecewise linear surro-

gate function fx0(s), four criteria are employed:

i) fx0(s) is a non-decreasing function;

ii) fx0(s) is a convex function;

iii) fx0(s) ≥ ymin and fx0(s) ≤ ymax;

iv) fx0(s) is as close as possible to Tθ(x0, s).
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Our objective is to identify the optimal piecewise linear surrogate function

f ∗
x0
(·) from the family of all possible piecewise linear surrogate functions F :

[M2]

f ∗
x0
(·) ∈ argmin

fx0 (·)∈F

∫ smax

smin

|fx0(s)− Tθ(x0, s)|ds, (2.5)

where

F =






fx0(s)

fx0(s) =
(s−sq)(ŷq+1−ŷ1)

∆ + ŷq,

s ∈ [sq, sq+1), s1 = smin, sQ+1 = smax, ŷq ∈ R, q = 1, . . . , Q;

fx0(λs
′
+ (1− λ)s

′′
) ≤ λfx0(s

′
) + (1− λ)fx0(s

′′
), 0 < λ < 1;

smin ≤ s
′ ≤ smax, smin ≤ s

′′ ≤ smax;

fx0(s
′
) ≤ fx0(s

′′
), smin ≤ s

′
< s

′′ ≤ smax;

fx0(s) ≥ ymin, fx0(s) ≤ ymax






.

(2.6)

Proposition 1 lim∆→0(
∫ smax
smin

|f ∗
x0
(s)− Tθ(x0, s)|ds−

∫ smax
smin

|g∗x0
(s)− Tθ(x0, s)|ds) = 0.

Proof. We originally aim to find the optimal g∗x0
(s) by solving Problem (2.3),

i.e., [M1]. Suppose that we split g∗x0
(s) into Q sub-segments of equal length by

∆. By connecting all the points (sq, g∗x0
(sq)), q = 1, ..., Q+1, we can construct a

piecewise linear function, denoted by f #x0
(s). Obviously, f #x0

(s) ∈ F . As shown in

Figure 2.3, f #x0
(s)must be on or above g∗x0

(s) because g∗x0
(s) is a convex function.
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Figure 2.3: The illustration of Proposition 1

Therefore, the gap between g∗x0
(s) and f #x0

(s) is:

gap1(∆) =

∫ smax

smin

|f #x0
(s)− Tθ(x0, s)|ds−

∫ smax

smin

|g∗x0
(s)− Tθ(x0, s)|ds

=
Q∑

q=1

(

∫ sq+1

sq

|f #x0
(sq)− Tθ(x0, s)|ds−

∫ sq+1

sq

|g∗x0
(sq)− Tθ(x0, s)|ds).

(2.7)

Moreover, gap1(∆) satisfies the following condition:

gap1(∆) ≤
Q∑

q=1

∆

2
×(g∗x0

(sq+1)−g∗x0
(sq)) ≤

∆

2
×(g∗x0

(smax)−g∗x0
(smin)). (2.8)

As ymin ≤ g∗x0
(s) ≤ ymax, we have:

gap1(∆) ≤ ∆

2
× (ymax − ymin). (2.9)

When ∆ → 0, ∆
2 × (ymax − ymin) → 0. Therefore, when ∆ → 0, gap1(∆) can
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approach 0.

Because f ∗
x0
(s) is the optimal solution of [M2], we have:

∫ smax

smin

|f ∗
x0
(s)− Tθ(x0, s)|ds ≤

∫ smax

smin

|f #x0
(s)− Tθ(x0, s)|ds. (2.10)

Additionally, because g∗x0
(s) is the optimal solution of [M1] and F ⊆ G, we have:

∫ smax

smin

|g∗x0
(s)− Tθ(x0, s)|ds ≤

∫ smax

smin

|f #x0
(s)− Tθ(x0, s)|ds. (2.11)

and

∫ smax

smin

|g∗x0
(s)− Tθ(x0, s)|ds ≤

∫ smax

smin

|f ∗
x0
(s)− Tθ(x0, s)|ds. (2.12)

Therefore, the gap between g∗x0
(s) and f ∗

x0
(s), denoted by gap2(∆), must be

no more than gap1 because:

gap2(∆) =

∫ smax

smin

|f ∗
x0
(s)− Tθ(x0, s)|ds−

∫ smax

smin

|g∗x0
(s)− Tθ(x0, s)|ds

≤
∫ smax

smin

|f #x0
(s)− Tθ(x0, s)|ds−

∫ smax

smin

|g∗x0
(s)− Tθ(x0, s)|ds

= gap1(∆)

(2.13)

Thus, 0 ≤ gap2(∆) ≤ gap1(∆). According to Squeeze theorem, gap2(∆) →

0when∆→ 0 becausewe prove gap1(∆)→ 0when∆→ 0 in Formula (2.9). We

can conclude that lim∆→0(
∫ smax
smin

|f ∗
x0
(s)−Tθ(x0, s)|ds−

∫ smax
smin

|g∗x0
(s)−Tθ(x0, s)|ds) =

0. !

Through Proposition 1, we establish the proof that the optimal piecewise lin-
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ear surrogate function f ∗
x0
(s) can serve as a highly accurate approximation to

g∗x0
(s). Additionally, the gap between g∗x0

(s) and f ∗
x0
(s) could approach 0 when

∆ approach 0. Proposition 1 underscores the rationale behind the development

and utilization of a piecewise linear surrogate function. However, calculating
∫ smax
smin

|fx0(s) − Tθ(x0, s)|ds in [M2] poses challenges due to the complex rela-

tionship between the values of fx0(s) and Tθ(x0, s). To be more specific, it is

hard to analyze the magnitude relationship between the values of these two func-

tions. This intricate relationship makes it difficult to determine and quantify the

enclosed area between fx0(s) and Tθ(x0, s), thereby hindering the access to de-

riving f ∗
x0
(s) by [M2]. Therefore, we next develop [M3] to minimize the absolute

errors between ŷq and Tθ(x0, sq) multiplying by ∆.

[M3]

min
ŷq

∆
Q+1∑

q=1

|ŷq − Tθ(x0, sq)| (2.14)

subject to

ŷq+1 ≥ ŷq, q = 1, ..., Q (2.15)

ŷq+2 − ŷq+1

sq+2 − sq+1
≥ ŷq+1 − ŷq

sq+1 − sq
, q = 1, ..., Q− 1 (2.16)

ŷq ≥ 0, q = 1, ..., Q+ 1 (2.17)

ŷ1 ≥ ymin (2.18)

ŷQ+1 ≤ ymax, (2.19)

where ŷq, q = 1, ...Q + 1 denote the decision variables. Based on the optimal

solutions of [M3], we can construct the piecewise linear surrogate function ac-
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cording to Equation (2.4). We denote the piecewise linear surrogate function ob-

tained by [M3] as fAE∗x0
(s). Constraints (2.15) ensure that the satisfaction of the

first criterion—fAE∗x0
(s) is a non-decreasing function—by restricting the magni-

tude relationship between the adjacent two estimates. In Constraints (2.16), we

restrict the slopes among three adjacent points to realize criterion ii), i.e., the con-

vexity of the piecewise linear surrogate function. Note that sq+2− sq+1 is equal to

sq+1−sq in Constraints (2.16). We keep these terms in Constraints (2.16) for easy

understanding. Constraints (2.17)–(2.19) guarantees criterion iii) by giving the

domain of decision variables. Objective function (2.14) achieves criterion iv) by

minimizing the sum of absolute errors between ŷq and Tθ(x0, sq). We next prove

that minimizing the sum of absolute errors is equivalent to solving problem (2.5),

i.e., [M2], when ∆ → 0. That is, the optimal piecewise linear surrogate function

fAE∗x0
(s) prescribed by [M3] is equivalent to the optimal piecewise linear surrogate

function f ∗
x0
(s) obtained by [M2] when ∆→ 0.

Proposition 2 lim∆→0(
∫ smax
smin

|f ∗
x0
(s)−Tθ(x0, s)|ds−

∫ smax
smin

|fAE∗
x0

(s)−Tθ(x0, s)|ds) =

0. That is, lim∆→0(
∫ smax
smin

|f ∗
x0
(s)−Tθ(x0, s)|ds−∆

∑Q+1
q=1 |ŷ∗q −Tθ(x0, sq)|) = 0,

where ŷ∗q , q = 1, ..., Q denotes the optimal solutions of [M3].

Proof. We now prove that fAE∗x0
(s) highly approximates f ∗

x0
(s). Without loss

of generality, we use Figure 2.4 as an example to prove Proposition 2. The black

line represents the piecewise constant function Tθ(x0, s), and the red line repre-

sents the piecewise linear surrogate function obtained by solving [M3]. There are

four cases in terms of the enclosed area.

Firstly, for these piecewise lines that connect adjacent points within the same

line segments but do not cross the line segment, e.g., l6,7 in Figure 2.4, we should
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Figure 2.4: The illustration of Proposition 2

minimize the enclosed area (|ŷq−Tθ(x0, sq)|+|ŷq+1−Tθ(x0, sq+1)|)×∆
2 , which is

equivalent tominimizing the corresponding objective function∆(|ŷq−Tθ(x0, sq)|+

|ŷq+1−Tθ(x0, sq+1)|) as∆ is a fixed constant. Actually, we can find that the error

between ŷq and Tθ(x0, sq) contributes one-half to the area of the two trapezoids

on each side. Therefore, minimizing the sum of absolute errors can directly lead

to the minimum enclosed area with any value of ∆. Note that the situation where

the piecewise line overlaps with the piecewise constant function (e.g., l1,2 in Fig-

ure 2.4) can also be classified into this case.

Secondly, if the adjacent points cross the line segment, e.g., l8,9 in Figure 2.4,

the enclosed area equals ∆1
2 × |ŷq−Tθ(x0, sq)|+ ∆2

2 × |ŷq+1−Tθ(x0, sq+1)|, which

is (∆1
2 + ∆2

2 ×
∆2
∆1

) × |ŷq − Tθ(x0, sq)| (see Figure 2.4 for the meaning of new

notations). Regarding the Objective function (2.14), the sum of absolute errors

can be re-expressed as ∆
2 (|ŷq − Tθ(x0, sq)| + ∆2

∆1
|ŷq − Tθ(x0, sq)|). Multiplying

by ∆1
2 + ∆2

2 ×
∆2
∆1

and multiplying by ∆
2 (1 + ∆2

∆1
) are not equivalent. And the
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difference is (∆2 (1+
∆2
∆1

)−(∆1
2 + ∆2

2 ×
∆2
∆1

))× |ŷq−Tθ(x0, sq)|, which is∆2× |ŷq−

Tθ(x0, sq)|. Recall that we have fAE∗x0
(s) ≥ ymin and fAE∗x0

(s) ≤ ymax. Therefore,

∆2 × |ŷq − Tθ(x0, sq)| ≤ ∆2(ymax − ymin). Additionally, there are at most Px0

such cases because Tθ(x0, s) is a piecewise constant function and fAE∗x0
(s) is a

non-decreasing function. Therefore, in this case, the difference is no more than

Px0×∆2(ymax−ymin). As∆→ 0 and∆2 ≤ ∆, we havePx0×∆2(ymax−ymin)→ 0,

which indicates that such Px0 cases only have a minuscule impact.

Thirdly, we need to analyze the case that piecewise lines connecting adjacent

points cross two line segments. As shown in Figure 2.4, the enclosed area between

the second and third line segments is |ŷ10−Tθ(x0,s10)|+h2

2 ×∆3+
h3+|ŷ11−Tθ(x0,s11)|

2 ×

∆4. Additionally, the area of the two shaded triangles in Figure 2.4 is fixed because

h2 + h3 is pre-determined by Tθ(x0, sq) and ∆3 + ∆4 = ∆. Therefore, in this

case, we need to minimize |ŷq−Tθ(x0,sq)|×∆3

2 + |ŷq+1−Tθ(x0,sq+1)|×∆4

2 . The objective

function minimizes ∆
2 (|ŷq − Tθ(x0, sq)| + |ŷq+1 − Tθ(x0, sq+1)|). The difference

is ∆−∆3
2 × |ŷq − Tθ(x0, sq)| + ∆−∆4

2 × |ŷq+1 − Tθ(x0, sq+1)|. There are at most

(Px0 − 1) such cases. Same logic as the second case, the difference is no more

than (Px0 − 1)× (∆4
2 × (ymax− ymin) +

∆3
2 × (ymax− ymin)), which is (Px0 − 1)×

∆
2 × (ymax − ymin). When ∆→ 0, the difference approaches 0.

Finally, we analyze the situation at the endpoints of the beginning and end of

the whole piecewise constant function. The absolute error of the right endpoint,

e.g., s14 in Figure 2.4, actually contributes 1
2 to the enclosed area, which equals

∆
2 ×|ŷ13−Tθ(x0, s13)|+∆

2 ×|ŷ14−Tθ(x0, s14)|. This case is different from the first

case because s14 is the endpoint and thus only contributes 1
2 to the enclosed area.

Therefore, there is a difference between the objective function and the enclosed

area. And the difference equals ∆
2 × |ŷQ+1− Tθ(x0, sQ+1)| for any right endpoint
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sQ+1. Obviously, ∆
2 × |ŷQ+1 − Tθ(x0, sQ+1)| ≤ ∆

2 × (ymax − ymin). By the same

logic, the difference for the left endpoint is ∆
2 × |ŷ1−Tθ(x0, s1)|, which is also no

more than ∆
2 × (ymax− ymin). Therefore, the total difference at the endpoints is no

more than ∆× (ymax − ymin). As ∆→ 0, this difference approaches 0.

Considering the aforementioned four cases, the value of (
∫ smax
smin

|f ∗
x0
(s)−Tθ(x0, s)|ds−

∫ smax
smin

|fAE∗x0
(s)− Tθ(x0, s)|ds) is no more than Px0 ×∆× (ymax − ymin) + (Px0 −

1) × ∆
2 × (ymax − ymin) + ∆ × (ymax − ymin), which approaches 0 when ∆ → 0.

Therefore, we can conclude that the piecewise linear surrogate function fAE∗x0
(s)

serves a high approximation to the piecewise linear surrogate function f ∗
x0
(s). !

Model [M3] is a nonlinear optimization problem and we further linearize it to

the following model:

[M4]

min
ŷ,zq

Q+1∑

q=1

zq. (2.20)

subject to

(2.15)–(2.19)

zq ≥ ŷq − Tθ(x0, sq), q = 1, ..., Q+ 1 (2.21)

zq ≥ Tθ(x0, sq)− ŷq, q = 1, ..., Q+ 1, (2.22)

where zq is the auxiliary decision variable that replaces the absolute in the objective

function. Model [M4] is a linear optimization model that can be solved by off-the-

shelf optimization solvers, such as CPLEX and Gurobi. Note that the last line in
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Tθ(x0, s) has no right endpoint. For example, the fuel consumption rate predicted

by the CART model in Figure 2.2 is 0.61 kg/s for all ship sailing speed larger than

18.2 knots. As discussed before, we view the maximum value of the in-sample

data (smax) as the right endpoint for the last line (Arora et al., 2023). And we adopt

the minimum value of the in-sample data (smin) as the left endpoint (Arora et al.,

2023).

In summary, Proposition 1 guarantees the rationale behind developing a piece-

wise linear function as an approximation for the optimal convex function. Proposi-

tion 2, on the other hand, provides proof that the method used to find the piecewise

surrogate linear function fAE∗x0
(s) ensures optimality as ∆ → 0. The algorithm of

the PH-CART model is summarized below.
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Algorithm 1: PH-CART
Input: Training dataset SN = {(xi, si, yi)}Ni=1; testing dataset

SM = {(xi, si, yi)}Mi=1.

Output: The estimated values of the testing dataset by CART and the

piecewise linear surrogate function.

begin
Step 1. Tθ(x, s)← Train the CART model by dataset

SN = {(xi, si, yi)}Ni=1 based on Problem (2.1)

Step 2. smax = max{si, i = 1, ..., N}, smin = min{si, i = 1, ..., N},

Q = smax−smin
∆

for i = 1 : M do
Tθ(xi, s)← Inputting xi to Tθ(x, s) to get the piecewise constant

function

for q = 1 : Q+ 1 do
Tθ(xi, sq)← Inputting sq to Tθ(xi, s) to get the estimated

value for sq
end

// Note that the q mentioned below represents the

subscript q = 1, ..., Q+ 1, instead of inheriting

the final result of the above loop

ŷq, q = 1, ..., Q+ 1← Solve the optimization model [M4]

Develop fAE∗xi
(s) based on (sq, ŷ∗q ), q = 1, ..., Q+ 1 and

Equation (2.4)

Output the estimated value fAE∗xi
(si) and Tθ(xi, si)

end

end
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2.4 Experiment

2.4.1 Data

We use a public dataset2 of ship fuel consumption provided by Petersen (2011)

to conduct our experiment. Petersen (2011) uses sensors to collect data from a

ferry sailing between Tórshavn and Suðuroy in the Faroe Islands, Denmark. They

collected many variables related to ship navigation, e.g., fuel density, fuel volume

flow rate, latitude, longitude, wind speed, and wind direction. For the reader’s

convenience, we show the detailed raw data provided by Petersen (2011) in Ta-

ble 2.2. From the comprehensive set of variables examined in Petersen (2011),

we perform further calculations on the data to derive the target variable (i.e., ship

fuel consumption rate) and feature variables that are widely acknowledged in both

industry and academia for their significant influence on ship fuel consumption.

2http://cogsys.imm.dtu.dk/propulsionmodelling/data.html

35

http://cogsys.imm.dtu.dk/propulsionmodelling/data.html


2 Integrating Domain Knowledge with Machine Learning

Table 2.2: Details of raw data provided by Petersen (2011)

No. Collected items Units

1 Fuel density kg/L

2 Fuel volume flow rate L/s

3 Inclinometer trim angle degrees

4 Latitude \

5 Longitude \

6 Port level measurements m

7 Starboard level measurements m

8 Speed through water knot

9 Port propeller pitch −10–10 V

10 Port rudder angle −10–10 V

11 Speed over ground knot

12 Starboard propeller pitch −10–10 V

13 Starboard rudder angle −10–10 V

14 Track degree magnetic degrees

15 Track degree true degrees

16 True heading degrees

17 Wind angle degrees

18 Wind speed m/s

Firstly, we calculate the fuel consumption rate (denoted by yi) using the first

two items in Table 2.2: yi (kg/s) = Fuel density (kg/L)× Fuel volume flow rate (L/s).

Secondly, The inclinometer trim angle (i.e., the third item in Table 2.2) refers

to the trim angle of the ship measured by an inclinometer. Specifically, it describes

the longitudinal balance of the ship, i.e., the angle caused by the height difference

between the bow and the stern. In practical operation, the range of variation in the
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trim angle is usually small (typically within a few degrees). Therefore, its impact

on the overall resistance of the ship is relatively limited. Intuitively, the latitude

and longitude of the ship are not related to the ship’s fuel consumption.

Thirdly, itemsNo. 6 andNo. 7 in Table 2.2 are important variables because they

can be used to calculate the ship’s draft, which significantly impacts the ship’s hy-

drodynamic resistance and, consequently, affects fuel consumption. In Figure 2.5,

we illustrate how the sensors are installed on the ship to measure the distance to the

sea surface. There are two sensors on the port side and the starboard side, resulting

in the two measurements of port level and starboard level. The draft on both sides

can be calculated by subtracting the detected distance by the sensor multiplied by

cosα from the vertical distance between the sensor and the bottom of the hull.

Petersen, 2011 provides the value of α and the vertical distance between the sen-

sor and the bottom of the hull on both the port and starboard sides. Specifically,

α = 19.0◦ with a distance of 19.3m on the port side, and α = 12.6◦ with a distance

of 22.1m on the starboard side. Then, we can take the average of the draft on both

the port and starboard sides to obtain the final overall draft.

vertical distance 
between the 
sensor and the 
bottom of the 
hull

sea level

bottom of the ship
draft

the detected distance 
by the sensor !

sensor

Figure 2.5: The detected distance by sensor
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Fourthly, item No. 8 provides the required sailing speed.

Fifthly, items No. 9 to No. 15 do not contribute to our prediction of ship fuel

consumption. Port propeller pitch (item No. 9), port rudder angle (item No. 10),

starboard propeller pitch (item No. 12), and starboard rudder angle (item No. 13)

are primarily responsible for the ship’s navigation and do not have a direct impact

on fuel consumption Since we already obtain speed through water, we do not need

speed over ground (item No. 11). Track degree magnetic and track degree (items

No. 14 and No. 15) true measure the ship’s course relative to magnetic north and

true north, respectively, and have no impact on the ship’s fuel consumption.

Finally, by combining items No. 16 to No. 18, we can calculate the crosswind

and headwind relative to the ship’s sailing direction, which are external factors

that influence the ship’s fuel consumption.

By and large, the primary factor influencing fuel consumption is sailing speed.

The ship’s draft also has a significant impact on fuel consumption, as it directly de-

termines the hydrodynamic resistance of the hull in the water. Additionally, there

are other external environmental factors, e.g., hull fouling, wind speed, and water

current. From the data, we can only obtain wind speed. To facilitate our analy-

sis and model performance, we conduct calculations on these selected indicators,

resulting in the generation of the feature vector xi. The final variables used and

their corresponding calculation procedures are presented in Table 2.3.

We remove data records with null values and instances where the ship’s sailing

speed is below 8 knots, which indicates that the vessel has not entered a sailing

state. Finally, our experimental dataset consists of 150,831 records, encompassing

244 voyages. From this dataset, we randomly allocate 200 voyages (comprising

123,243 records) for training purposes, while the remaining 44 voyages (compris-
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Table 2.3: Data description

Variable Description Units Calculation

yi The ship fuel consumption per second kg/s Fuel density times fuel volume flow
rate

si Ship sailing speed through water knot Directly using the raw data

xi

draft The average draft of the ship m Taking an average of the port levelmea-
surement and starboard level measure-
ment by considering the angle between
the sensor device and the hull.

headwind Headwind speed m/s The relative wind speed times the co-
sine of the angle of the wind.

crosswind Crosswind speed m/s The relative wind speed times the sine
of the angle of the wind.

ing 27,588 records) are used for testing. In essence, our training phase involves

using 200 voyages to train the CART model, followed by evaluating the perfor-

mance of the trained CART model and the PH-CART model using the 44 test

voyages. As the data change little during one voyage, we randomly select five

samples from each voyage to fit the linear surrogate function. We thus ultimately

fit 220 linear surrogate functions.

2.4.2 Experimental Settings

First, all of our experiments are performed on a MacBook Pro computer with an

Apple M2 processor (3.5 GHz), 8 cores, and 16 GB of RAM. The optimization

model [M2] is solved using IBM ILOG CPLEX Optimizer 20.1.0 via Python API.

Second, the hyperparameters (the maximum depth of a tree and the minimum

number of samples per leaf) of CART are tuned using GridSearchCV and 5-fold
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cross-validation in the training dataset. We summarize the search space and the

optimal hyperparameters in Table 2.4.

Table 2.4: Searching space and the optimal hyperparameters of CART

Hyperparameter Searching space Optimal setting

The maximum depth of a tree [4,5,6,7,8,9,10] 6

The minimum sample number per leaf [1,2,3,4,5,6] 4

Third, the minimum and maximum values of the in-sample sailing speed of

ships are 8.030 knots and 21.975 knots, respectively. The minimum and maxi-

mum values of the fuel consumption rate per second are 0.045 kg/s and 0.773 kg/s,

respectively. Therefore, smin = 8.030 knots, smax = 21.975 knots, ymin = 0.045

kg/s, and ymax = 0.773 kg/s. To facilitate the selection of an appropriate value for

∆, we simplify the process by setting the minimum value of s (smin) to 8.000 knots

and the maximum value of s (smax) to 22.000 knots during the experiment. More-

over, to avoid encountering test samples that exceed the ymin and ymax thresholds,

we take a cautious approach during our experiment by expanding ymin to 0 kg/s and

ymax to 1.000 kg/s. We conduct a thorough analysis and confirm that no samples

in the test dataset exceed these thresholds established during our experiment. This

reinforces the robustness and reliability of our approach.

Fourth, it is important to note that Problem (2.1) uses a quadratic loss function,

in which the mean serves as the optimal estimate. In contrast, the optimization

model [M3] is based on minimizing the sum of the mean absolute error (MAE)

values, making the median the optimal estimate in this context. Considering this

distinction, we select both MAE and the root mean squared error (RMSE) as eval-

uation metrics to assess the performance of CART and PH-CART. Moreover, we
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calculate the variance of the errors between the real fuel consumption rate and the

predicted fuel consumption rate obtained by CART and PH-CART. The variance

of the errors serves as a metric to measure the robustness of the models.

2.4.3 Result

The results are presented in Table 2.5. As the unit of the fuel consumption rate is

“kg/s,” which leads to very small values for the error metrics, we report the error

metrics by scaling them 100 times. Our results indicate that the accuracy of the PH-

CART model surpasses that of the CART model when ∆ = 0.1, 0.01, and 0.001.

As the value of ∆ decreases, the accuracy of the PH-CART model improves. For

instance, when ∆ changes from 1 to 0.1, MAE decreases from 3.304 to 3.193,

reflecting a notable improvement of 3.360% attributable to the PH-CART model.

Additionally, RMSE decreases from 4.617 to 4.444, indicating an improvement

of 3.747% using the PH-CART model. This is because as ∆ decreases, the fit-

ting accuracy of the piecewise linear function improves, leading to more precise

fuel consumption predictions. Based on the results in Table 2.5, we can conclude

that PH-CART achieves higher accuracy compared to CART. Upon examining

the existing literature, we find that the accuracy performance of PH-CART is out-

standing. For example, Ozsari (2023) adopts neural network models to predict the

main engine power of container ships and achieves an accuracy level of 10−1. Our

results indicate an accuracy level of 10−2. Although our study focuses on ferries,

whose fuel consumption is typically lower than that of container ships, we believe

that achieving an accuracy level of 10−2 is already highly commendable.

Moreover, our experimental results show that the PH-CART model exhibits
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a lower error variance than the CART model when ∆ = 0.1. As ∆ decreases,

the robustness of the PH-CART model further improves. However, for ∆ = 1,

the discretization interval proves too large to achieve the desired effect. On care-

ful examination of Table 2.5, we observe that the accuracy and robustness of the

PH-CART model exhibit minimal changes when ∆ varies from 0.01 to 0.001.

Therefore, we recommend setting ∆ = 0.01. This yields a solution time of less

than 3 seconds for [M4] when∆ = 0.01, which is perfectly acceptable in practical

scenarios.

Table 2.5: Results of CART and PH-CART

Methods CART PH-CART
∆ = 1

PH-CART
∆ = 0.1

PH-CART
∆ = 0.01

PH-CART
∆ = 0.001

MAE (×100) 3.206 3.304 3.193 3.180 3.180

RMSE (×100) 4.517 4.617 4.444 4.437 4.436

Variance of errors (×100) 0.202 0.213 0.197 0.197 0.196

We assume that the ship operator can make suitable operational adjustments

to mitigate fuel consumption based on the predicted values, thereby eliminating

the discrepancies between the two methods. By using the PH-CART model with

∆ = 0.01, the ship has the potential to significantly reduce fuel consumption, by

2246.4 kg per day (recall that in our dataset, the unit of ship fuel consumption

is “kg/s”). This reduced fuel consumption is not only advantageous in terms of

cost savings, as fuel constitutes a substantial portion of ship operating expenses,

but it also contributes to the sustainable development of the shipping industry. By

consuming less fuel, ships can reduce their environmental impact and help the

maritime sector become more environmentally friendly and efficient.

We randomly select two examples of the optimal piecewise linear surrogate
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function and visualize them in Figure 2.6. The optimal piecewise linear surrogate

function captures the convex and non-decreasing relationship between ship sail-

ing speed and fuel consumption by considering contextual information at the same

time. Specifically, Figure 2.6(a) represents the case where the contextual informa-

tion consists of a draft of 4.829 m, a headwind of 3.792 m/s, and a crosswind of

0.252m/s, denoted byx0 = [4.829, 3.792, 0.252]. Based onx0, the dimensionality

of the CART results is reduced to a univariate piecewise constant function (illus-

trated by the blue lines in Figure 2.6(a)). We then perform a post hoc correction on

the piecewise constant function using PH-CART and thus obtain the optimal piece-

wise linear surrogate function (depicted by the red lines in Figure 2.6(a)). This op-

timal surrogate function enables to predict a ship’s fuel consumption rate for any

given value of sailing speed in the same context. Figure 2.6(b) shows another ex-

ample with different contextual information. As the contextual information varies,

the resulting mapped piecewise constant function also differs, yielding a distinct

optimal piecewise linear surrogate function. Consequently, our PH-CART model

is capable of generating various optimal piecewise linear surrogate functions based

on different contextual information. It is noteworthy that while previous studies

explore the relationship between ship sailing speed and fuel consumption, they fo-

cus solely on deriving a convex non-decreasing function between these two vari-

ables without considering additional contextual information. In contrast, our PH-

CART model incorporates such contextual information in the post hoc correction

process, resulting in the optimal fAE∗xi
(s), which effectively characterizes the rela-

tionship between ship sailing speed and fuel consumption.
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(a) The optimal piecewise linear surrogate function––Example 1 (b) The optimal piecewise linear surrogate function––Example 2

Figure 2.6: The optimal piecewise linear surrogate function

2.5 Conclusion

In this study, we develop the PH-CART model to conduct a post hoc correction on

the results obtained by the CARTmodel. The PH-CARTmodel takes into account

the specific requirement of the maritime domain: the relationship between ship

sailing speed and fuel consumption follows a non-decreasing convex function. To

achieve this post hoc correction, we first propose an infinite-dimensional opti-

mization model, which is difficult to solve. With the help of theoretical support,

we finally convert it into a linear optimization model, which delivers a piecewise

linear surrogate function that is consistent with domain knowledge. We exam-

ine the performance of the PH-CART and CART models using a publicly avail-

able shipping dataset. The experimental results show that PH-CART outperforms

CART in terms of accuracy and robustness. Moreover, PH-CART can provide

a univariate function between ship sailing speed and fuel consumption, thereby

improving model interpretability. It is important to emphasize that this univari-

ate function also considers the contextual information provided by other variables

because PH-CART reduces the dimensionality of the CART model to two dimen-
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sions based on the values of other variables. Therefore, PH-CART exhibits both

high performance and high interpretability.
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3.1 Introduction

Ship navigation brings severe pollution to the environment as ships are mainly

driven by heavy oil (Wang et al., 2022c). In order to promote the sustainable de-

velopment of the shipping industry, governments and scholars all pay attention

to improving ship fuel consumption efficiency and thus realizing green shipping

(Fagerholt et al., 2015; IMO, 2020a; Meng et al., 2016; Wang et al., 2018b).

For example, the International Maritime Organ (IMO) has promulgated a series

of regulations to help achieve green shipping, such as the global sulfur content

limit in fuel (IMO, 2022). Ship fuel consumption is a hot, important, and ongo-

ing research topic in the field of maritime studies (Yang et al., 2019) because fuel

cost dominates the costs of a ship (Meng et al., 2016) and generates emissions,

which in turn affect sustainability (Wang et al., 2022c). Academic studies on ship

fuel consumption abound and developing models to predict ship fuel consump-

tion is a key research topic (Fan et al., 2022; Yan et al., 2021b). Some literature

proposes advanced models to deliver accurate ship fuel consumption prediction.

However, these advanced models in literature may be hard to be implemented in

practice because they are difficult to interpret and thus experts are wary of re-

lying on these models since shipping is a traditional industry (Yan et al., 2022)

and domain knowledge plays an important role in decision-making. Therefore,

developing interpretable ship fuel consumption prediction models using domain

knowledge is urgently needed.

Ship fuel consumption prediction models in the literature are typically cate-

gorized as either black-box or white-box models, following the classification pro-

vided in Loyola-Gonzalez (2019). Black-box models are models based on hyper-
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planes (e.g., support vector machines), biological neural networks such as those

of animal brains (e.g., artificial neural networks), and probabilistic and combina-

tory logic (e.g., probabilistic logic networks) or models with local approximation

functions (e.g., k-nearest neighbors) (Loyola-Gonzalez, 2019). White-box models

are self-explanatory and do not require an additional model to explain the results

(Loyola-Gonzalez, 2019). For example, linear regression is a typical white-box

model. Using historical data, linear regression can yield an exact expression of

the relationships between the feature variables and the estimated values. More-

over, the coefficients of the feature variables in the expressions show how these

feature variables affect the outcome. White-box models are favored in practice

because of their interpretability; black-box models usually have better prediction

performance than white-box models (Parkes et al., 2018) but are less interpretable.

Many recent studies explore the use of explainable artificial intelligence (XAI) for

improving the explainability of black-boxmodels (Gunning et al., 2019; Lundberg,

2017; Ribeiro et al., 2016). One way of achieving XAI is to develop an additional

white-box model to interpret the results of a black-box model (Lundberg, 2017;

Ribeiro et al., 2016; Sundararajan & Najmi, 2020). That is, a black-box model is

first presented and then a white-box model is used to explain it; thus, the process

involves ex-post explainability. This study is not limited to ex-post explainability.

Instead, explainability or interpretability in this study indicates that the model is

interpretable by itself or can be explained using a white-box model. Note that this

study does not distinguish between the specific definitions of explainability and

interpretability as there is no universal consensus on the definitions of either term

(Doshi-Velez & Kim, 2017). The scope of explainability or interpretability in this

study is in line with the definition in Doshi-Velez and Kim (2017)—“to explain or
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to present in understandable terms”.

3.1.1 Literature Review

We review two streams of literature that are closely related to our research: i)

ship fuel consumption prediction models; and ii) interpretable models in maritime

studies.

3.1.1.1 Ship Fuel Consumption Prediction Models

Fuel consumption is a critical factor in ship routing as it generates high costs and

environmental pollution. There are many studies that take into account ship fuel

consumption when optimizing ship sailing speed (Fagerholt et al., 2010). In recent

years, with the development of informatization and the accumulation of data, an

increasing number of studies have recognized the new insights that data can pro-

vide for fuel consumption prediction. For example, Du et al. (2019) study the ship

sailing speed and trim optimization problem. They first predict fuel consumption

rates using a neural networkmodel based on the noon report data and then optimize

the speed of the shipping route by the dynamic programming algorithm. Utilizing

historical ship voyage data to develop more accurate fuel consumption prediction

models, thereby optimizing vessel operations, has become a significant topic in

maritime research (Yan et al., 2021b).

The literature on ship fuel consumption predictionmodels is divided into black-

box models and white-box models, and details are shown in Table 3.1. In short,

the critical issue in ship fuel consumption prediction is to obtain the influencing

variables and then develop an accurate ship fuel consumption prediction model
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based on these variables. The first stream of studies favors black-box models (Du

et al., 2019; Le et al., 2020b; Yan et al., 2020), which usually outperform white-

box models (Le et al., 2020b; Ma et al., 2023). However, the results of black-box

models are hard to interpret. Sometimes, even experts in the maritime industry

struggle to explain the outcomes of black-box models, and managers in shipping

companies may consider it risky to apply models with low interpretability in prac-

tice. The second stream of studies presents statistic models which are white-box

models with high interpretability. White-boxmodels have advantages in exploring

the explicit relationship between ship fuel consumption and its influencing factors

(Adland et al., 2020; Le et al., 2020a; Meng et al., 2016; Wang & Meng, 2012).

But they usually cannot capture complex interactions among feature variables and

thus the prediction performance of white-box models is usually not as good as

black-box models.

Therefore, there is a tradeoff in predicting ship fuel consumption: white-box

models provide high interpretability but poor prediction performance, and black-

box models provide low interpretability but good prediction performance. In prac-

tice, both model interpretability and accuracy are important (Carvalho et al., 2019;

Loyola-Gonzalez, 2019). However, the literature does not address the tradeoff be-

tween interpretability and accuracy on the ship fuel consumption prediction prob-

lem. Studies on ship fuel consumption do not consider how to improve the in-

terpretability of black-box models using constraints based on domain knowledge.

Moreover, the literature mainly uses off-the-shelf white-box models and does not

consider using domain knowledge available in the shipping field to develop more

flexible white-box models by expanding the forms of feature variable expressions.

Therefore, a theoretical solution to this tradeoff is urgently needed.
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Table 3.1: Literature on ship fuel consumption prediction

Literature1 White-box
model

Black-box
model Contents and findings

Wang and Meng (2012) " There is a power function relationship between
ship sailing speed and fuel consumption, and the
power of sailing speed is between 2.7 and 3.3.

Meng et al. (2016) " Analyze the relationship between fuel consump-
tion and its influencing factors by Spearman’s rank
correlation coefficients.

Du et al. (2019) " Develop neural networkmodels to predict ship fuel
consumption and optimize the ship sailing speed
dynamically.

Yan et al. (2020) " Adopt random forest to predict ship fuel consump-
tion and optimize the ship sailing speed based on
the predicted results.

Adland et al. (2020) " Estimate the ship fuel consumption-speed curve
and doubt the slow-steaming strategy based on em-
pirical findings.

Le et al. (2020a) " Adopt a linear regressionmodel to predict ship fuel
consumption.

Le et al. (2020b) " " Develop a black-box multilayer perceptron artifi-
cial neural network (MLP) to predict ship fuel con-
sumption and compare its prediction performance
with two white-box multiple-regression models,
showing the effectiveness of the MLP model.

Ma et al. (2023) " " Develop both white-box model and black-box to
predict ship fuel consumption and find that the
white-box model has poor performance.

Uyanık et al. (2023) " Develop decision tree model and neural network
model to predict ship fuel consumption. The neural
network model is proven to be more effective than
the decision tree model.

1 Note that studies on ship fuel consumption prediction are not limited to those listed in Table 3.1.
As there are literature reviews on ship fuel consumption, this study does not go through it in a
detailed way. Readers are referred to Yan et al. (2021b) and Fan et al. (2022) and the references
therein.

3.1.1.2 Interpretable Models in Maritime Studies

A few recent studies focus on the interpretability of black-box models in the mar-

itime domain. Kim and Lim (2022) propose machine learning models for predict-

ing maritime accidents and develop additive white-box models based on SHAP
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(SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic

Explanations) to interpret the predicted values. Zhang et al. (2022a) also adopt

SHAP to interpret the outcomes of tree-based machine learning models in predict-

ing maritime accidents. Veerappa et al. (2022) use SHAP to explore the internal

mechanisms for classifying the types of ships. He et al. (2021) identify the factors

affecting ship detention using SHAP. Yan et al. (2022) adopt SHAP to provide ex-

planations for the port state control problem. All of these studies develop posterior

explanatorymodels—they first build a black-boxmachine learningmodel and then

develop an additive white-box model based on SHAP to interpret the results of the

black-box model. In detail, SHAP assigns an important value to each feature value

for all the predictions (Kim et al., 2021). By aggregating the important values of

all feature values in a sample and themean value of the predicted target in the train-

ing dataset, SHAP develops an additive white-box model to explain the predicted

values of each sample (Lundberg, 2017). Therefore, SHAP provides insights into

how the predicted values are obtained in a black-box model and thus is suitable for

ex-post explanations. In this study, after proposing two self-explanatory models,

SHAP is adopted to interpret the results of an off-of-shelf black-box model. SHAP

can interpret how the black-box model arrives at each predicted value of ship fuel

consumption and how ship fuel consumption is affected by feature variables of

different values. To the best of our knowledge, this study is the first to explore

the issue of interpretability in predicting ship fuel consumption, with the aim of

providing a comprehensive solution to the tradeoff between interpretability and

accuracy.

Based on domain knowledge, this study proposes two approaches to using do-

main knowledge to address the tradeoff between interpretability and accuracy in
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predicting ship fuel consumption. This study differs from earlier studies on ship

fuel consumption prediction in several ways. First, a black-boxmodel is developed

for predicting ship fuel consumption that uses the physics constraints identified in

domain knowledge to improve the model’s interpretability. Second, by consider-

ing different forms of feature variable expressions from the perspective of domain

knowledge, a mixed-integer quadratic optimization (MIQO) model is solved to fit

a linear regression model, which is an additive white-box model with a high level

of flexibility. Last, SHAP is adopted to identify how black-box models yield pre-

dicted values and how a change in a feature value affects the predicted ship fuel

consumption.

3.1.2 Objectives and Research Questions

Two innovative approaches are developed for balancing model interpretability and

model accuracy. The first method applies the constraints of physics (i.e., do-

main knowledge) to construct a neural network model. This model is named the

physics-informed neural network (PI-NN) model, which is on par with the fully-

connected neural network (fully-NN) model in terms of performance but has high

interpretability because the PI-NN model uses domain knowledge to make the

neural network model more intuitive. The second method uses an MIQO model

to fit a linear regression model by selecting the best form of variable expressions

that influence ship fuel consumption. This model is called the MIQO model for

solving the best forms (BF) of variable expressions (MIQO-BF). The MIQO-BF

model is an additive white-box model that aims to give the best linear regres-

sion formula. The two proposed models provide solutions to the tradeoff between
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interpretability and flexibility (i.e., accuracy). The PI-NN model helps improve

the interpretability of black-box models while preserving prediction performance,

and the MIQO-BF model allows the statistical models to consider more forms of

variable expressions while maintaining explainability. Moreover, by solving the

MIQO-BF model, this study gains insights into the forms in which the variables

affect fuel consumption and yield the optimal linear regression model at the same

time. The performance of the MIQO-BF model may be slightly poorer than that

of the PI-NN model, but it is highly explainable.

By building the two models, this study answers the following three research

questions.

Q1: To what extent can the PI-NN model explain the fully-NN model? That

is, is there a way to build a convincing neural network model to predict ship fuel

consumption using domain knowledge that improves model interpretability while

maintaining model accuracy?

Q2: In what forms do feature variables affect fuel consumption? That is, what

relationship does the MIQO-BF model obtain between the feature variables and

ship fuel consumption? Is the obtained relationship explainable in practice?

Q3: What are the differences among the MIQO-BF, the PI-NN, and other arti-

ficial intelligence (AI)models (e.g., fully-NN) in terms of prediction performance?

In addition to the two proposed self-interpretable models, this study also uses

SHAP for the posterior explanation of the black-box model. SHAP directly shows

how the predicted values of ship fuel consumption are obtained from different fea-

ture values and offers an additive white-box model. Unlike the MIQO-BF model,

SHAP has to be developed after the machine learning model is used. Thus, the

MIQO-BF model, the PI-NN model, and SHAP explore the issue of interpretabil-
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ity in ship fuel consumption prediction from different perspectives.

3.1.3 Innovation and Contributions

The theoretical and practical contributions of this research are summarized as fol-

lows.

Theoretical contributions. This study presents significant theoretical contri-

butions in the context of the ship fuel consumption prediction problem by intro-

ducing two innovative models: the PI-NN model and the MIQO-BF model. First,

applying the knowledge of physics to reconstruct a neural network model is an

innovation in ship fuel consumption prediction. By dissecting the neural network

into two components, one addressing air resistance and the other water resistance,

interpretability is notably enhanced without compromising model accuracy. Em-

pirical experiments confirm the effectiveness of the PI-NN model, underscoring

the improvement in interpretability for black-box models. Second, the MIQO-BF

model yields an optimal additive model by solving the MIQO programming. Un-

like other additivemodels, MIQO-BF accommodates a wider range of feature vari-

able expressions, thereby enhancing the flexibility of white-box models. Lastly,

the application of SHAP for interpreting machine learning models, while not novel

in itself, marks the rare instance of SHAP being used to explain ship fuel consump-

tion predictions. These results emphasize the paramount role of ship sailing speed

in fuel consumption, particularly in operational routes where the impact of wind

is less pronounced.

Practical contributions. This study also offers substantial practical contri-

butions. First, it provides practical solutions to the trade-off between model in-
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terpretability and accuracy. Practitioners and managers can leverage their do-

main knowledge to enhance the interpretability of black-box models or opt for the

MIQO-BF model, which is more flexible and considers various forms of feature

variable expressions. Second, the findings establish clear relationships between

feature variables and ship fuel consumption, offering invaluable insights into the

key determinants of fuel consumption. Lastly, by enhancing the interpretability of

black-box models, this study encourages the adoption of such models in practice.

These advancedmodels exhibit high predictive performance and have the potential

to reduce vessel emissions, thus benefiting both industry and the environment.

In summary, this study delivers comprehensive insights into the crucial issue

of interpretability versus accuracy in ship fuel consumption prediction, resulting in

significant theoretical and practical contributions. The introduction of innovative

models, the demonstration of how domain knowledge can strike a balance between

interpretability and accuracy, and the practical implications for other industries

underscore the far-reaching impact of this research. Given the limited focus on

model interpretability in previous studies, this research has the potential to promote

the application of advanced, interpretable black-box models, ultimately leading to

increased industry profitability and reduced environmental impact.

The remainder of this chapter is organized as follows. Section 3.2 develops

methodologies: the PI-NN model and the additive MIQO-BF model. Section 3.3

introduces the dataset used in the experiments. Section 3.4 illustrates the settings

for methods and shows the results. Section 3.4 also makes a further analysis based

on the results. Section 3.5 provides an ex-post way to understand the prediction

results of machine learning models. Conclusions are presented in Section 3.6.
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3.2 Methodologies

As shown in Figure 3.1, James et al. (2013) provide an illustration of interpretabil-

ity and flexibility. Flexibility refers to the degree to which a model can capture dif-

ferent forms among the feature variables. For example, the linear regressionmodel

is restrictive as it can generate only a linear function between the input variables

and the output. However, the linear regression model is easy to understand. In

general, white-box models are highly interpretable but inflexible, whereas black-

box models are flexible because they can capture complex relationships between

the inputs and the output. Note that there is no clear metric in the literature for

measuring model flexibility; hence, many studies use accuracy as an alternative

(Gunning et al., 2019; James et al., 2013). This study argues that flexibility and

accuracy are complementary—highly flexible models perform better as they can

capture more complex relationships between the feature variables and the output.

Therefore, this study does not strictly delineate accuracy and flexibility.
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Figure 3.1: Tradeoff between interpretability and flexibility
(excerpted from James et al., 2013 page 25 and adapted)
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Figure 3.1 shows that the PI-NNmodelmoves to a point of higher interpretabil-

ity from the class of deep learning models. As the physics constraints are added

to the neural network model, the flexibility of the PI-NN model decreases. The

MIQO-BF model shifts from least squares to a point of higher flexibility because

more forms of feature variable expressions are considered. However, the inter-

pretability of the MIQO-BF model decreases slightly as it changes the original

values of the feature variables. Therefore, this study provides two options for ad-

dressing the tradeoff between model interpretability and model accuracy in the

ship fuel consumption prediction problem. The proposed PI-NN model makes the

black-box model more interpretable while preserving accuracy. The MIQO-BF

model considers more forms of the feature variable expressions while developing

an explainable additive model. We next introduce the two models in detail.

3.2.1 PI-NN Model for Ship Fuel Consumption Prediction

The vector of feature variables is denoted by x. When predicting ship fuel con-

sumption, prevailing methods develop a model to solve the function:

y = F (x), (3.1)

where y kg/s represents the fuel consumption per second (the unit of ship fuel

consumption can be changed according to the recorded data). Note that it may be

difficult to give explicit expressions for some complex black-box models. Here

Formula (3.1) is just adopted to emphasize that the current research usually directly

inputs feature variables into the model without additional constraints based on

domain knowledge.
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From a physical point of view, oil consumed by ships is used to produce en-

ergy; specifically, burning oil is the process of converting chemical energy into

internal energy and then converting internal energy into mechanical energy. The

mechanical energy generated mainly overcomes the resistance of water and air and

is finally converted into internal energy. According to Newton’s Third law, a ship

gains thrust and thus velocity. E(y) denotes the energy generated by y kg/s fuel.

Thus, the following formula can be formulated:

E(y) ∝ EA(xA) + EW (xW ), (3.2)

where EA(xA) and EW (xW ) are the energy used to overcome air resistance and

water resistance, respectively, and xA and xW are the vectors of variables that

affect air and water resistance, respectively. Therefore, from the perspective of

domain knowledge or physics, different kinds of variables could be distinguished,

i.e., xA and xW , when building the fuel consumption prediction model to improve

model interpretability and persuasiveness. Raissi et al. (2020) develop a physics-

informed deep-learning framework that takes the Navier-Stokes equations into ac-

count. They add a hidden layer to capture the Navier-Stokes equations. Motivated

by their research, this study proposes the PI-NN model that restricts the relation-

ship shown in Formula (3.2).

The structure of the proposed PI-NN model is shown in Figure 3.2. The input

layer consists of three types of variables: variables xA′ that only affect EA, vari-

ables xW ′ that only affect EW , and variables xAW that affect both EA and EW .

For example, wind speed affectsEA (Meng et al., 2016), ocean current affectsEW

(Chang et al., 2013), and draft affects both EA and EW (Rakke et al., 2012). The
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history data of xA′ and xW ′ will input to the separated two parts of hidden lay-

ers in Figure 3.2. And the history data of xAW will be input to all hidden layers.

The neurons of the last layer in the two split hidden layer parts will be connected

to two different neurons, respectively. The values of these two neurons after the

activation function f are denoted by f(ŷA) and f(ŷW ), which represent the fuel

consumed by the ship to overcome air resistance andwater resistance, respectively.

According to the above-mentioned physics (see Formula (3.2)), the sum of f(ŷA)

and f(ŷW ) should be the predicted value of ship fuel consumption, denoted by

ŷ. The structure indicates that the PI-NN model prunes a fully connected neural

network model based on domain knowledge. Specifically, by adopting domain

knowledge, this study trains two neural network models in the hidden layer level

and finally combines the output using an equation provided by physics constraint.

The input variables of the two separated neural network models are classified by

domain knowledge, which is also the pruning of the neural network model from

the input layer. Moreover, if there is only one class of variables in the input layer,

the PI-NN model will become an ordinary neural network model. Note that al-

though there are two separate parts of neurons in the hidden layer, the PI-NN is

an integrated neural network model as only the final fuel consumption data can be

collected in practice.

According to the principle of the neural network model, the final predicted

value ŷ is obtained by multiplying input values and the weights of all connected

neurons and then summing the values that are calculated by the activation function.

The process of calculating the predicted value based on weights is called forward

calculation. The key problem in the model training process is to get the optimal

weights that connect consecutive neurons. The backpropagation method (Rumel-
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Figure 3.2: The structure of PI-NN model

hart et al., 1986) is used to obtain the optimal weights in the PI-NN model. Mean

squared error (MSE) is used as the loss function since this study targets a regres-

sion problem:

L(y, ŷ) =
1

2
(y − ŷ)2 =

1

2
(y − (f(ŷA) + f(ŷW )))2. (3.3)

Notations a and w denote the neurons in the last hidden layer of the two separated

hidden layers, respectively. The weights of connected neurons between the last

hidden layer and neurons A and W (see Figure 3.2) are denoted by ωaA and ωwW ,

respectively. According to the backpropagation method, the update increments of

the weights ωaA and ωwW should be:
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∆ωaA = −η∂L(y, ŷ)
∂ωaA

= −η∂L(y, ŷ)
∂f(ŷA)

∂f(ŷA)

∂ωaA

= η[y − (f(ŷA) + f(ŷW ))](f
′
(ŷA)× ya)

(3.4)

∆ωwW = −η∂L(y, ŷ)
∂ωwW

= −η∂L(y, ŷ)
∂f(ŷW )

∂f(ŷW )

∂ωwW

= η[y − (f(ŷA) + f(ŷW ))](f
′
(ŷW )× yw),

(3.5)

where ya and yw are the values of the neurons in the last hidden layer of the two

separated hidden layers, respectively. And the values of ya and yw can be obtained

by the forward calculation of the PI-NN model. η denotes the learning rate, which

determines the convergence speed of the PI-NNmodel. The backpropagation pro-

cess of other neurons is the same as the idea of the Formula (3.4) and Formula (3.5).

In summary, the PI-NN model first randomly initializes each weight and conducts

forward calculation to predict the ship fuel consumption, and then optimizes the

weights according to the backpropagation method. For example, the updated val-

ues ofωaA andωwW are (ωaA+∆ωaA) and (ωwW+∆ωwW ), respectively. Then, the

forward calculation is performed according to the updated weights and the back-

propagation process is conducted again to optimize the weights. When the preset

number of iterations is reached, the PI-NNmodel outputs the final predicted value.

The used dataset will be introduced in Section 3.3. The detailed hyperparam-

eter settings, e.g., the number of neurons in each hidden layer, the learning rate η,
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and the activation function, will be explained in Section 3.4. In summary, by intro-

ducing domain knowledge, the PI-NN model is proposed to give a solution to the

tradeoff between accuracy and interpretability from the perspective of improving

the interpretability of black-box models. The PI-NN model may not outperform

the fully connected neural network model with the same network structure, but

it can explain the black-box model at over 97% level as shown in results in Sec-

tion 3.4.

3.2.2 MIQO-BF Model for Ship Fuel Consumption Prediction

Given that navigators or managers in shipping companies already have domain

knowledge and have applied their knowledge and experience to make decisions for

many years (Yan et al., 2021a), black-boxmodels are not so widely used in practice

in the shipping industry because even experts in the maritime industry struggle to

interpret these models and thus hold the opinion that applying black-box models

in practice is unreliable (Yan et al., 2022). Models with high interpretability are

preferred in practice (Yan et al., 2022). In Section 3.2.1, the interpretability of

black-box models is improved by domain knowledge. However, some white-box

models, e.g., linear approximation, may be more prevalent in practice (Yan et al.,

2021b) though theymay not perform as well as black-boxmodels (Le et al., 2020b;

Parkes et al., 2018; Uyanık et al., 2020). Therefore, this section proposes a method

to consider different forms of feature variable expressions and thus improve the

flexibility of white-box models.
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3.2.2.1 Preliminary

Linear regression is a common choice for developing highly explainable models.

However, in some scenarios, there are many feature variables and informative fea-

ture variables need to be selected to build regression models that can interpret data

accurately with high comprehensibility (Tan et al., 2008). The task of selecting

k, k ≤ p out of p feature variables in a linear regression model given n obser-

vations, is the best subset selection problem (Natarajan, 1995). Given predictor

matrixX ∈ Rn×p, response vector Y ∈ Rn, and regression coefficients β ∈ Rp,

the best subset of feature variables can be obtained by solving the following non-

convex problem:

min
β

1

2
‖Y −Xβ‖22 subject to ‖β‖0 ≤ k, (3.6)

where ‖β‖0 =
∑p

i=1 I(βi += 0) and I(·) denotes the indicator function. The best

subset selection problem is an NP-hard problem (Natarajan, 1995). By solving

Problem (3.6), the best k feature variables that interpret the target variable can be

obtained.

Research on adopting optimization techniques to solve the best subset selection

problem mainly lies in solving a convex approximation of Problem (3.6) (Bertsi-

mas & King, 2016). Bertsimas et al. (2016) propose an MIQO approach to solve

the best subset selection problem. By introducing binary decision variables that re-

strict the number of selected feature variables, the solution to the MIQO approach

will be the solution to the best subset selection problem, i.e., Problem (3.6). The

general MIQO formulation is

64



3 Balancing Interpretability and Accuracy in Fuel Consumption Models

min
β,z

1

2
‖Y −Xβ‖22 (3.7)

subject to
p∑

i=1

zi ≤ k (3.8)

−Mzi ≤ βi ≤Mzi, i = 1, ..., p (3.9)

zi ∈ {0, 1}, i = 1, ..., p (3.10)

β, z ∈ Rp, (3.11)

where zi is a binary variable and
∑p

i=1 zi indicates the number of nonzeros in

β. That is, Constraint (3.8) ensures that the number of selected feature variables

cannot exceed k. M is a constant that satisfiesM ≥ ‖β̂‖∞, where β̂ is the vector

of estimated coefficients. Constraints (3.9) guarantee that βi = 0 if zi = 0. MIQO

is proven to handle small tomoderate instances of the best subset selection problem

(Hazimeh & Mazumder, 2020).

3.2.2.2 Method for Solving Additive Models Exactly

Referring to the idea that adopts theMIQOmodel to solve the best subset selection

problem, an MIQO model is proposed to select the best forms of feature variable

expressions. Suppose that there is a set of feature variables F = {1, ..., |F |},

where f ∈ F indicates the index of feature variables and the total number of in-

dexes is |F |. This study considers V different forms of feature variables and use

v = 1, ..., V to denote each form of expression. Suppose that all the feature vari-

ables are continuous variables. Therefore, the model ends up with |F |×V feature
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variables. For example, there is a dataset of ship fuel consumption that contains

8 feature variables in the beginning. In addition to the 8 feature variables, the

model also considers their logarithmic transformation, exponential transformation,

quadratic and cubic transformation. That is, there are |F | = 8 feature variables in

the beginning, V = 5 forms of expressions, and |F | × V = 40 feature variables

in the end. The task is to minimize the prediction error by selecting |F | feature

variables among |F | × V feature variables and guarantee that only one form of

expression can be selected for the same index of feature variables. Although some

heuristic algorithms for solving the best subset selection problem, such as forward

stepwise and backward stepwise (Derksen &Keselman, 1992; Hastie et al., 2020),

can be revised by adding the constraints of selecting one form of expression for the

same index of feature variables, they do not guarantee to provide the optimal solu-

tions (Derksen & Keselman, 1992). Therefore, MIQO programming is adopted to

select the best forms of feature variable expression and this study abbreviates the

model asMIQO-BF. Instead of original feature variables, theMIQO-BFmodel en-

ables more forms of variables to be extended in a linear regression model and thus

improves model flexibility. To the best of our knowledge, this is the first attempt to

solve the variable expressions usingMIQO. The objective of the MIQO-BFmodel

is to minimize the MSE to select optimal forms of expressions of feature variables

because the additive white-box model refers to linear regression in this study.

[MIQO-BF]

min
β,z

1

2
‖Y −Xβ‖22 (3.12)

subject to
V∑

v=1

zvf = 1, f ∈ F (3.13)
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−Mzvf ≤ βv
f ≤Mzvf , f ∈ F, v = 1, ..., V (3.14)

zvf ∈ {0, 1}, f ∈ F, v = 1, ..., V (3.15)

β, z ∈ RP , (3.16)

where P denotes the value of |F | × V , and thus X ∈ Rn×P , Y ∈ Rn, and

β ∈ RP . Continuous decision variable βv
f represents the coefficient value of each

feature variable, and binary decision variable zvf represents whether a certain form

of expression is selected. Constraints (3.13) ensure that one feature can only be

formulated by one form of expression. Thus, the MIQO-BF model is a typical

MIQO model, which can be solved by off-the-shelf optimization solvers.

The MIQO-BF model is developed to take different forms of feature variable

expressions into account with the aim of maintaining the interpretability of the

model and improving its flexibility. The MIQO-BF model gives the exact expres-

sion between ship fuel consumption and feature variables. That is, it can be known

how feature variables affect ship fuel consumption from theMIQO-BFmodel, and

then infer how the predicted value of fuel consumption is obtained given certain

values of feature variables. Domain knowledge is also helpful in determining the

forms of variables. For example, the widely recognized relationship between ship

sailing speed and fuel consumption is cubic. Wang andMeng (2012) exactly show

that the power of sailing speed is between 2.7 and 3.3 using data from five ships.

Therefore, when transforming the variable of shipping sailing speed, the MIQO-

BF model considers performing the power of 2.7, the power of 2.9, the power of

3.0, the power of 3.1, and the power of 3.3 transformations. Moreover, the ob-

tained optimal expressions of variables also provide insights into the relationship
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between ship fuel consumption and feature variables in turn. The detailed infor-

mation on feature variables and their transformations is discussed in Section 3.4.

In summary, two ways are proposed to trade-off between model accuracy and

model interpretability: improve the interpretability of black-box models while

maintaining accuracy or provide more forms of feature variable expressions for

white-box models while preserving interpretability. The first approach uses the

PI-NN model, which combines domain knowledge and the black-box model to

improve interpretability without losing too much accuracy. The second uses the

MIQO-BF model, which is an explainable white-box model obtained by solving

an MIQO model. Two solutions are provided for addressing the tradeoff by com-

paring the performance of the PI-NN model and the MIQO-BF model. That is,

the PI-NN model is more suitable for cases that require a high level of accuracy

whereas the MIQO-BF model is more suitable for cases that require a high level

of interpretability. To the best of our knowledge, both approaches are innovative

in predicting ship fuel consumption.

3.3 Data

A public dataset1 of ship fuel consumption provided by Petersen (2011) is used for

the experiment. As shown in Figure 3.3, there is a ferry sailing between Tórshavn

and Suðuroy, Faroe islands. The sailing time of one voyage is about 2 hours. Tak-

ing advantage of sensors, the dataset in Petersen (2011) records the fuel consump-

tion data and other relevant variables (e.g., port and starboard level measurements,

speed through water, and wind speed) of the ferry (Petersen et al., 2012a; Petersen
1http://cogsys.imm.dtu.dk/propulsionmodelling/data.html
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et al., 2012b). Readers are referred to Petersen (2011) for a detailed description

of the data. The variables used in this study are shown in Table 3.2. In view of

the different sampling frequencies of each sensor and thus the different statistical

frequencies of each variable, 10 seconds is chosen as a unit to merge data. Next,

this study introduces how to calculate the needed feature variables based on the

originally recorded variables in Table 3.2.

Figure 3.3: The shipping line between Tórshavn and Suðuroy

Draft. The ferry is equipped with two level measurement devices on the port

side and the starboard side (Petersen, 2011). As shown in Figure 3.4, there is an

angle θ between the device and the hull, and the device detects the distance to sea

level (D). Given the vertical distance between the sensor and the bottom of the

hull (H), the draft of the ship (d) when the ship is sailing can be calculated by the
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Table 3.2: Data description

Variable Description Units

FD Fuel density kg/L

FV Fuel volume flow rate L/s

Ldraft Port level measurement m

Rdraft Starboard level measurement m

STW Speed through water knot

ρ The angle of the wind relative to the heading direction of the ship degrees

WS Relative wind speed measured by an onboard sensor m/s

following equation:

d (m) = H −D × cos θ. (3.17)

The installation parameters, i.e.,H and θ, of the device are known. For the device

on the port side, H = 19.3m and θ = 19◦ (Petersen, 2011). And for the device

on the starboard side, H = 22.1m and θ = 12.6◦ (Petersen, 2011). The detected

distanceD, i.e., Ldraft andRdraft, is recorded by the device. The average of the port

and starboard drafts is taken as the ship’s draft. Therefore, the final obtained draft

of the ship, denoted by davg, is:

davg (m) =
(19.3− Ldraft × cos 19◦) + (22.1−Rdraft × cos 12.6◦)

2
. (3.18)

Using knowledge of physics in shipping, davg is classified as a variable affecting

both EW and EA because the draft determines the area of the ship in contact with

water and air (Rakke et al., 2012), thus affecting the friction from water and air.

Headwind and crosswind. Through relative wind speedWS and the angle of
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sea level

the bottom of the ship

𝜃

𝐻

𝑑draft

the vertical distance between
the sensor and the bottom of
the hull

Figure 3.4: Draft measurement

the wind relative to the heading direction of the ship (see Figure 3.5), the headwind

Shead and crosswind Scross can be obtained:

Shead (m/s) = WS × cos ρ (3.19)

Scross (m/s) = WS × sin ρ. (3.20)

According to Figure 3.5 and Formula (3.19), the negative value of headwind Shead

represents tailwind and the positive value of headwind Shead means that the ship

is sailing against the wind. According to Formula (3.20), the value of crosswind

Scross can be positive or negative, which indicates the different directions of the

crosswind. Based on domain knowledge in shipping, the direction of the crosswind

does not matter because the crosswind is in the vertical direction. Therefore, the

absolute value of Scross is used as the basic form of crosswind in the following

experiments. Obviously, Shead and Scross are variables that affect EA.

Speed through the water. The variable STW indicates the ship’s sailing

speed through the water, which combines the ship’s sailing speed over the ground
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Heading direction

𝑊𝑆
𝜌
𝑆ℎ𝑒𝑎𝑑

𝑆𝑐𝑟𝑜𝑠𝑠

Figure 3.5: Wind measurement

and ocean currents (Petersen, 2011). Therefore, this variable can be used directly.

STW is classified as a variable affectingEW because it measures the sailing speed

over the ground and ocean currents (Petersen, 2011).

Ship fuel consumption. Finally, the fuel consumption can be calculated by

the following formula:

y (kg/s) = FD × FV. (3.21)

Outlier records are deleted from the experimental dataset. First, records with

null values are deleted. Second, records of ship sailing speed lower than 8 knots

are deleted because these records infer that the ship is at anchor or just begins

sailing. Finally, there are 150,831 records containing 245 voyages in the exper-

imental dataset. This study randomly chooses 200 voyages (including 123,243

records) for training and 45 voyages (including 27,588 records) for testing in the

experiment. The magnitude of the data used in this study is far greater than that of

many other studies that use ship noon reports (one record per day) to predict ship

fuel consumption (Du et al., 2019; Wang & Meng, 2012; Yan et al., 2020), which

makes the results more convincing.

72



3 Balancing Interpretability and Accuracy in Fuel Consumption Models

3.4 Experiment

All experiments are performed on a MacBook Pro computer with an Apple M2

processor (3.5 GHz), 8 cores, and 16 GB of RAM. Gurobi 10.0.0 is used as the

optimization solver.

The optimal parameter settings of the PI-NN model are shown in Table 3.3.

The optimal hyperparameters are obtained through o3 on the training dataset con-

sisting of the randomly selected 200 voyages. The fully-NNmodel for comparison

is equippedwith the same network structure and the neuron number between layers

is 4-10-10-10-2-1. According to the literature, the feature variables are normalized

when training the neural network model (Beşikçi et al., 2016).

Table 3.3: Parameter settings of the PI-NN model

Parameter Searching space Optimal setting

Number of hidden layers [1,2,3,4] 3

Number of neurons in each hidden layer1 [6,8,10,12] 10

Number of neurons in the input layer \ 4

Number of neurons in the output layer \ 2

Activation function [Relu,Sigmoid] Sigmoid

Learning rate [0.001,0.01,0.1] 0.1

Number of epochs [50,80,100] 100

Number of batch size [32,64,128] 64

1 The number of neurons in each hidden layer consists of the number of neurons in each
hidden layer of the two separate parts in the PI-NN model. Therefore, 10 neurons
indicate that there are 5 neurons in each layer of the separated two parts of hidden
layers.
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3.4.1 Settings for the MIQO-BF Model

For variables davg, Shead, and Scross, their square root transformation, logarithmic

transformation, quadratic and cubic transformation are considered. As discussed

in Section 3.3, the absolute value of Scross is used because the direction of the cross-

wind does not matter. But the direction of the headwind will affect fuel consump-

tion. Obviously, sailing with a tailwind will save fuel consumption. Therefore,

when making transformations, the sign of Shead needs to be preserved. Parameter

µ is defined to keep the sign

µ = 2× I(Shead > 0)− 1, (3.22)

where I(·) is an indicator function. If Shead > 0, then I(Shead > 0) = 1; if

Shead <= 0, then I(Shead > 0) = 0. Therefore, µ = 1 if the ship is sailing against

the wind and −1 otherwise. It is well-recognized that there is an approximately

cubic relationship between ship sailing speed and fuel consumption. Wang and

Meng (2012) show that the value of the power is between 2.7 and 3.3. Thus, the

expressions of STW 2.7, STW 2.9, STW 3.0, STW 3.1 and STW 3.3 is considered.

The forms of expressions of feature variables are summarized in Table 3.4.

Table 3.4: Forms of expressions of variables

Variable Expression 1 Expression 2 Expression 3 Expression 4 Expression 5

STW STW 2.7 STW 2.9 STW 3.0 STW 3.1 STW 3.3

davg davg ln(davg)
√

davg d2avg d3avg

Shead Shead ln(|Shead|) µ
√
|Shead| µS2

head S3
head

Scross |Scross| ln(|Scross|)
√
|Scross| S2

cross |Scross|3
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3.4.2 Results and Discussion

The performance of the PI-NN model, the fully-NN model, and the MIQO-BF

model are shown in Table 3.5. To illustrate the universality of the neural network

model, a tree-based machine learning model—XGBoost model (XGB)—is also

applied for comparison (Chen & Guestrin, 2016). And the hyperparameters of

XGB are tuned by GridSearchCV (Yan et al., 2021a) the finally adopted hyper-

parameters are shown in Table 3.6. The mean absolute error (MAE), MSE, and

the mean absolute percentage error (MAPE) are used to measure the accuracy of

the models. The variances of absolute value difference between predicted fuel

consumption and real fuel consumption are calculated, providing a measure of the

stability of the model performance:

V ar =

∑N
n=1(|yn − ŷn|− (

∑N
n=1 |yn−ŷn|

N ))2

N
, (3.23)

where N is the total number of samples in the test dataset and n = 1, .., N .

Table 3.5: Results of three models

Metrics PI-NN fully-NN XGB MIQO-BF

MAE 0.0285 0.0278 0.0317 0.0353

MSE 0.0034 0.0029 0.0033 0.0035

MAPE 4.70% 4.63% 5.27% 5.88%

V ar 0.0026 0.0021 0.0023 0.0023

The results show that all four models have a small variance in their absolute

errors, which indicates that the models are stable. Table 3.5 shows that the PI-NN

model is only slightly poorer than the fully-NN model. The MAE and MSE of

the fully-NN model account for 97.54% and 85.29% of the MAE and MSE of the
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Table 3.6: Parameter settings of XGB model

Parameter Searching space Selected setting

max_depth [4,6,8,10] 6

n_estimators [50,100,150] 100

learning_rate [0.05,0.1,0.2,0.3] 0.3

sub_sample [0.6,0.8,1] 1

colsample_bytree \ 1

colsample_bynode \ 1

min_child_weight [1,2,3] 1

PI-NN model, respectively. That is, the PI-NN model can replace the fully-NN

model at a level of more than 97% as measured by the MSE, which means that the

domain knowledge introduced into the neural network model increases model in-

terpretability while preserving accuracy. Moreover, the number of weights in the

PI-NN model is fewer than the number of weights in the fully-NN model, which

indicates that the training time of the PI-NN model is less than the training time

of the fully-NN model. Specifically, there are 282 weights between connected

neurons in the fully-NN model, which is more than double the number of weights

in the PI-NN model (135). The PI-NN model saves almost 10% of training time

compared with the fully-NN model in the experiment. The performance of the

XGB model is slightly poorer than both the PI-NN and fully-NN models. The

neural network model is inferred to be more suitable for predicting ship fuel con-

sumption.

The MIQO-BF model does not perform as well as the other three AI models.

And this result is consistent with existing literature (Le et al., 2020b; Parkes et al.,

2018; Uyanık et al., 2020). However, the MIQO-BF model is highly explainable.
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According to the values of decision variables, the corresponding formula of the

MIQO-BF model is:

y ∝ STW 2.9 + ln(davg) + S3
head +

√
|Scross|. (3.24)

Formula (3.24) indicates that the 2.9th power of ship sailing speed is proportional

to fuel consumption, which is in line with previous studies (Le et al., 2020a; Meng

et al., 2016; Wang &Meng, 2012). The logarithmic form of the ships’ draft is pro-

portional to fuel consumption. That is, the draft has a smooth effect on ship fuel

consumption. Surprisingly, headwinds seem to have a greater effect on ship fuel

consumption than crosswinds because the optimal expression of the crosswind is a

root transformation but the optimal expression of the headwind is a cubic transfor-

mation. Based on common sense, the effect of the crosswind may be greater than

that of the headwind when a ship sails. Such a counterintuitive result might be

caused by the wind angle on the actual sailing route of the ferry. Figure 3.6 shows

the histogram of the frequency distribution of the wind angle in the dataset. In

most cases, the wind angle breaks up more wind force horizontally than vertically.

This study argues that no shipping company wants to operate a sailing route that

is subject to perennial crosswinds, as these create dangerous sailing conditions.

Thus, as the ferry between Tórshavn and Suðuroy is already in operation, its sail-

ing route should be appropriate for sailing, and the counterintuitive result (that the

crosswind has a smaller effect than the headwind) based on the data generated by

the ferry may be obtained. In summary, the result is reasonable because the exper-

iment is based on a dataset generated by a ship in operation and the effect of the

crosswind may already be taken into account by managers in the decision stage.
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Contribute more to the headwind

Figure 3.6: The distribution of wind angle

The findings answer the three questions put forward in Section 3.1.

R1: The proposed PI-NN model is on par with the fully-NN model to a de-

gree of 97%. That is, the PI-NN model achieves the goal of improving model

interpretability while maintaining model accuracy because it takes advantage of

domain knowledge. By adding the constraints of physics, the PI-NN model be-

comes more acceptable to practitioners, thereby predicting ship fuel consumption

more accurately.

R2: The findings indicate that the 2.9th power of ship sailing speed, the log-

arithmic form of draft, the root transformation of the crosswinds, and the cubic

transformation of the headwinds are the best formations for fitting a linear re-

gression model to predict ship fuel consumption. The MIQO-BF model is an ex-

plainable additive model and the relationship between selected forms of variable

expressions and ship fuel consumption is in line with practice. The results of the

MIQO-BF model indicate that sailing speed is the most important factor in ship

fuel consumption. The results of the MIQO-BF model also suggest that the head-
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wind and crosswind are important variables but are not always influential because

an established sailing route does not have frequent strong winds. Moreover, as

wind and draft are objective, uncontrollable factors, ship captains should focus

more on the effect of sailing speed on fuel consumption.

R3: The MIQO-BF model is slightly poorer than the other AI models in terms

of performance, which is consistent with the findings of the literature (Le et al.,

2020b; Parkes et al., 2018). Moreover, the neural network model is more suitable

for predicting ship fuel consumption than the state-of-the-art tree-based models.

All of the four models own good stability. In summary, the PI-NN model im-

proves the interpretability of black-box models and the MIQO-BF model allows

more variable expressions to be considered in a linear regression model. Man-

agers can flexibly choose between the two models according to their needs for

model accuracy and model interpretability.

3.5 Extension: SHAP Values

SHAP is proposed by Lundberg (2017). SHAP uses Shapley values from game

theory to explain the prediction results and assigns a SHAP value to each feature

value in each data sample (Lundberg, 2017; Wang et al., 2022b). SHAP provides

a unified approach to interpreting model predictions and it is especially useful for

explaining the prediction results of machine learning models. Different from the

MIQO-BF model and the PI-NN model, SHAP is developed based on a machine

learning model to interpret the already predicted value of that machine learning

model. Therefore, SHAP addresses the interpretability issue from the perspective

of hindsight. To make the research more comprehensive, SHAP is further adopted
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to explore the feature importance for each predictor, i.e., davg, STW , Shead, and

Scross and quantifies the contribution of each feature value.

Referring to Wang et al. (2022b) and Yan et al. (2022), feature importance

values (SHAP values) are calculated from two angles: global interpretability and

local interpretability. Global interpretability means that the absolute SHAP val-

ues of each variable from the training data are averaged to measure the feature

importance globally. Local interpretability shows how the contribution of an in-

dividual predictor varies across selected samples (Wang et al., 2022b). Readers

are referred to Lundberg (2017) for more details about SHAP. All the following

figures are created by the SHAP Python module (Lundberg, 2017).

Figure 3.7 shows the contributions of each predictor from the global inter-

pretability perspective. Note that “avgLEVEL” is davg. Variables are ranked in

descending order. The top variable is STW , which indicates that the ship’s sailing

speed is the most important factor affecting fuel consumption. And this result is

in line with the consensus in the maritime field (Meng et al., 2016; Wang &Meng,

2012). The second important feature variable is davg, followd by Shead and Scross.

The ordering of Shead and Scross is consistent with what this study has addressed in

Section 3.4.2.

Four samples are randomly selected in the dataset and analyze how the four

feature variables contribute to the final predictions. The expectation value (i.e.,

the base value) in Figure 3.8 indicates that the predicted value of ship fuel con-

sumption per second is 0.569kg/s when any values of the feature variables are

not revealed. The base value is the mean value of all the ship fuel consumption

records in the training dataset. Taking the values of the feature variables into ac-

count, the final prediction is the sum of the SHAP value of each feature variable
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Figure 3.7: The SHAP variable importance on global interpretability

and the base value. For example, the predicted value of ship fuel consumption

in Figure 3.8(b) is 0.536kg/s, which is the sum of 0.569kg/s (the base value), -

0.06kg/s (the contribution of the ship sailing speed), 0.01kg/s (the contribution of

headwind), 0.01kg/s (the contribution of the draft), and 0.01kg/s (the contribution

of crosswind). Note that the third digit is different as the values are displayed to the

last two decimal places. Figure 3.8 shows that sailing speed contributes the most

to ship fuel consumption in all of the samples. In Figure 3.8(a), the crosswind

value contributes positively to ship fuel consumption because the feature value

of crosswind is 265.352m/s, which is quite high and increases fuel consumption.

The value of the headwind variable (-18.555m/s) decreases fuel consumption as a

negative headwind value indicates a tailwind. However, the feature value is low,

and thus the effect is small. In Figure 3.8(b), the SHAP value of STW is negative,

which means when the ship is sailing at 16.533 knots, the sailing speed is less than

the average ship sailing speed, creating a negative SHAP value that is subtracted

from the base value in the calculation of the predicted value. It is also found that

the value of ship sailing speed in Figures 3.8(a), Figure 3.8(c), and Figure 3.8(d)

all contribute positively to ship fuel consumption because the value of STW in
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

Figure 3.8: The SHAP value: local interpretability

these three samples is large. The SHAP values for the crosswind and headwind in

Figure 3.8(b) are all positive because there are strong crosswinds and headwinds

and the ship sails against the wind. In Figure 3.8(c), the SHAP values of all the

variables except ship sailing speed are low. Figure 3.8(d) indicates that the ship

sails against the wind and the effect of the headwind is large. The contribution of

each feature variable is not independent and the SHAP value of one feature vari-

able is influenced by other feature variables in the sample. For example, there is

no big difference between the value of draft in Figures 3.8(a) and 3.8(c) but the

direction of the effect is different.

These findings show that SHAP is helpful for understanding the effect of fea-

ture values on the output. The global interpretability of SHAP makes it possible

to determine the average effect of all of the feature variables on the predicted val-

ues. The local interpretability of SHAP clearly quantifies the contribution of each

feature value to the final predicted value and helps in understanding the internal
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mechanisms in black-box models. SHAP provides a posterior alternative for ex-

plaining machine learning models. That is, a machine learning model is trained

in the first stage and then SHAP is used to interpret it in the second stage. This

study comprehensively explores the issue of interpretability in ship fuel consump-

tion prediction by improving interpretability from a model-building perspective

and presenting SHAP for the posterior explanation.

3.6 Conclusion

Ship fuel consumption is an important issue in the shipping industry. In this study,

two innovative approaches are developed for predicting ship fuel consumption that

addresses the tradeoff between model interpretability and model accuracy. Al-

though some black-box models are quite advanced and can deliver accurate pre-

dictions, they lack interpretability and hence are rarely applied in practice. The

proposed PI-NN model incorporates the constraints of physics into a neural net-

work model; the results of the experiment using real-world data demonstrate that

the effectiveness of the PI-NN model is on par with that of the fully-NN model to

a degree of 97%. An additive white-box model, the MIQO-BF model, is also de-

veloped to consider more forms of feature variable expressions based on domain

knowledge. The MIQO-BF model can give an explicit expression for predicting

ship fuel consumption by solving MIQO programming. Practitioners can choose

between the two approaches depending on their requirements: the PI-NNmodel is

more suitable in scenarios requiring a high level of accuracy, whereas the MIQO-

BF model is more suitable in scenarios requiring a low level of accuracy but a

high level of interpretability. SHAP, a popular interpretability method, is adopted
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to provide explanations for the results of the machine learning model.

This study helps to promote the application of data-driven models in mar-

itime practice as models are developed based on domain knowledge, thereby mak-

ing them more acceptable to practitioners. This study argues that using data-

driven models for predicting ship fuel consumption will decrease fuel consump-

tion, whichwill help to reduce operating costs, protect the environment, and achieve

green shipping. AI has immense potential in the shipping industry. This study pro-

videsmethods for couplingAImodels with domain knowledge; this study also pro-

vides alternatives for interpreting black-box AI models. This research contributes

to the application of AI in the shipping industry as the findings show that domain

knowledge can complement AI models. With the help of domain knowledge, AI

can lead to digital transformation, energy efficiency, and predictive analytics in

the maritime industry.
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4.1 Introduction

The shipping industry causes harm to the environment, because ships are mainly

powered by heavy fuel oil (Wang et al., 2022c). For example, the maritime indus-

try is responsible for 15% of global carbon dioxide emissions and 13% of sulfur

dioxide emissions (Faber et al., 2020; Wang et al., 2022d). The International Mar-

itime Organization (IMO) and other official bodies have issued many regulations

to reduce ship emissions. We extract some of them listed in Table 4.1. How-

ever, emissions from the maritime industry continue to increase overall (IMO,

2020b) and the resulting pollution is a matter of concern for both governments

and the shipping industry. Many governments have proposed that ships use clean

energy, e.g., liquefied natural gas, or be equipped with pollutant processors to re-

duce emissions. These two approaches are costly, and shipping companies may

not be willing to implement them out of consideration for their interests, which

leads to the need for government subsidies to promote their implementation (Wang

et al., 2022d). In terms of ship operations, a captain can control the emission of

pollutants by adjusting ship speed, as a high sailing speed usually generates more

fuel consumption and thus more emissions (Du et al., 2019). Controlling sailing

speed involves no additional investment, although it is necessary to arrive at port

on time, and thus is a feasible method of emission control in practice. The prob-

lem of controlling sailing speed and optimizing total ship fuel consumption has

attracted the attention of many scholars (Du et al., 2019; Yan et al., 2020). Our

study similarly aims to reduce total fuel consumption by finding the optimal sail-

ing speed setting. However, we take a different approach in terms of methodology

and also innovatively consider the data privacy of ships.
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Table 4.1: Regulations for reducing ship emissions

Organization Regulation Main contents

Hong Kong Marine De-
partment (2008)

Cap. 413M Imposing a 3.5% sulfur limit on
vessel fuel.

IMO (2009) Guidelines for voluntary
use of the ship energy effi-
ciency operational indica-
tor (EEOI)

Define EEOI and provide guide-
lines for shipping operators.

IMO (2022) MEPC.328(76) Promulgate a series of regula-
tions to prevent air pollution
from ships, such as emission
control areas and global sulfur
content limit.

European Commission
(2015)

EU 2015/757 Monitor, report and verify emis-
sions caused by ships.

The emerging of the Internet of Things (IoT) has led to the paradigm of the

Internet of Ships (IoS) (Zhang et al., 2021). According to Aslam et al. (2020), IoS

refers to the process of intelligently connecting maritime objects, e.g., electronic

devices in ships or ports, with the aim of improving efficiency, safety, and envi-

ronmental sustainability. After these maritime objects are connected by sensors

and communication devices, they can share data and information (Aslam et al.,

2020; IMO, 2019). Three major IoS applications are smart ships, smart ports, and

smart transportation (Aslam et al., 2020). The IoS paradigm can promote the ac-

cumulation of data, which facilitates data mining; in turn, this increases the use of

data-driven applications in the maritime industry and improves decision-making.

For example, the shipowner China Merchants Energy Shipping, mining company

BHP, and classification society DNV announced a joint venture on November

17, 2022 with the goal of achieving energy efficiency and reducing greenhouse
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gas emissions by sharing navigation datasets (Lloyd’s List, 2022). However, not

all companies are willing to share data. TradeLens, a shipping trade data and

document-sharing platform jointly established by IBM and Maersk in 2018, de-

clared at the end of November 2022 that it would cease operations after the first

quarter of 2023 (TradeLens, 2022). The original vision of the platform is to achieve

global information sharing and collaboration across a highly fragmented industry.

Unfortunately, this high level of cooperation and support proved impossible to

achieve. Concerns about the security of data sharing are a major reason why the

platform failed. In this context, one key issue is how to protect private shipping-

company data while still making full use of data from all parties.

Federated learning (FL) provides a solution. In short, FL replaces the direct

transmission of raw data between parties with the transmission of model param-

eters (e.g., the weight coefficients of the neural network); that is, it utilizes the

data of all parties while reducing the risk of data leakage and also the difficulties

associated with the transmission of a large amount of data (McMahan et al., 2017).

With the FL method, data owners can train models locally with their own data and

then transfer the parameters to a central server, which will aggregate the parame-

ters from all data owners and then distribute these aggregated parameters back to

them. FL already has practical applications in some industries. For example, We-

Bank has successfully used FL for credit evaluation in the financial industry (We-

Bank, 2022). FL is also a very promising avenue in the maritime industry because

the data protection mechanism should increase shipping companies’ willingness

to share information, which will facilitate the realization of the IoS. As discussed

in many studies, shipping companies often form alliances to make shared use of

ships. That is, the containers of one company can be loaded onto the ship of an-
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other company within the alliance (a revenue distribution model is agreed upon

in advance); in this way, it is possible to increase ships’ full load rate or achieve

economies of scale. Because different shipping companies can form alliances to

share ships, it would seem natural for them to form alliances to share data. Un-

der the FL mechanism, ships from different companies share information without

revealing the original data, which should greatly improve the companies’ willing-

ness to take part in information-sharing. In this study, we explore the application

of FL in the maritime industry using the example of ship fuel consumption and

emission reduction. We show that FL can be used to reduce total ship fuel con-

sumption by developing a more accurate fuel consumption prediction model and

solving a speed optimization model.

Our research has three main objectives. First, we propose an FL framework

that enables multiple ships to collaboratively train a model by sharing parameters

without the risk of data leakage. Second, after adopting the trained model derived

from the FL framework, we use optimization techniques to get the optimal ship

sailing speed that minimizes total ship fuel consumption over the voyage while

ensuring the ship arrives on time. Third, we demonstrate the feasibility of FL

applications in the marine industry. The theoretical and practical contributions of

our research can be summarized as follows.

Theoretical contributions. (1) To the best of our knowledge, this is the first

study of the application of FL to ship fuel consumption prediction and optimiza-

tion, and our study provides a theoretical reference point for practical applications

of FL. (2) By sampling and generating data, we show that FL can greatly improve

the performance of the ship fuel consumption prediction model, which will help

reduce emissions caused by fuel oil. (3) We also prove that all parties participating
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in the FL mechanism will maintain the integrity from the perspective of cooper-

ation. (4) The FL framework also provides a theoretical solution to the data silo

problem in the maritime industry.

Practical contributions. (1) Our study will encourage firms to cooperate un-

der the FL mechanism in practice, as we show that FL can benefit all parties. (2)

Our findings suggest that the companies that cooperate should have considerable

scale, to avoid the issue free riders; this finding can provide guidance for the adop-

tion of FL in practice. (3) The results of our proposed sailing speed optimization

model have implications for captains’ daily operations.

The remainder of this paper is organized as follows. Section 4.2 reviews the

existing literature related to our study. Section 4.3 proposes the ship fuel con-

sumption prediction method based on FL and develops models to optimize the

sailing speed to reduce emissions. Section 4.4 analyzes the honest participation

of shipping companies in the alliance. Section 4.5 conducts a series of numerical

experiments to verify the effectiveness of our proposed method. Conclusions are

presented in Section 4.6.

4.2 Literature Review

In this section, we focus on the review of the following two streams of studies

that are closely related to our work: (i) ship fuel consumption prediction in the

maritime industry; (ii) the principle of FL and its applications.
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4.2.1 Ship Fuel Consumption Prediction in Maritime Industry

Over the past decades, ship fuel consumption prediction has been the focus in the

maritime field as ship fuel consumption affects the cost of shipping companies

(Yan et al., 2021b) and environmental and sustainability issues, which are a matter

of great concern to the government all over the world. By and large, the research

on ship fuel consumption prediction can be divided into two categories. The first

category is mainly based on statistical analysis, which combines physics principles

and domain knowledge to mine the influencing factors of ship fuel consumption,

establishes the relationship equation between ship fuel consumption and its in-

fluencing factors, and then realizes ship fuel consumption prediction. Wang and

Meng (2012) estimate the bunker consumption by sailing speed because sailing

speed is a key factor affecting ship fuel consumption. They find that there is a

power function relationship between ship sailing speed and ship fuel consumption

and the value of the power is between 2.7 and 3.3. Meng et al. (2016) develop

a statistical model to explore the decisive factors for ship fuel consumption rate.

They find that ship sailing speed is the most important decisive factor, followed by

weather conditions. Their model is verified by the shipping log data of four con-

tainer ships in practice. Bialystocki and Konovessis (2016) fit a curve between

ship fuel consumption and ship sailing speed by considering many practical fac-

tors, such as the ship’s draft and displacement, weather conditions, and hull and

propeller roughness. They use the noon report—a report made by the captain at

noon each day to describe the sailing profile to the onshore officers (Du et al.,

2019)—to test their function, which is proven to be accurate and can be applied

to sister ships. Adland et al. (2020) design a dynamic data-driven framework to
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estimate the ship sailing speed-fuel curve based on noon reports from 16 crude

oil tankers. They present that the cubic law for ship fuel consumption does not

always hold. There are also many studies using this paradigm—adopting statis-

tic analysis to explore the relationship between ship fuel consumption and other

factors (Medina et al., 2020; Yao et al., 2012). Although different studies present

different statistical models and analyze different factors, in general, they all agree

that the most important factor affecting ship fuel consumption is ship sailing speed

and that weather conditions and physical characteristics of the ship are some sig-

nificant factors (Meng et al., 2016; Wang & Meng, 2012; Wang et al., 2013).

The second category is based on machine learning and deep learning methods

that have emerged in recent years, that is, training a model to obtain ship fuel

consumption predictions through input variables. These models could consider

more complex influence relationships and are favored by many scholars. Du et

al. (2019) put forward a two-stage framework based on ANN (artificial neural

network) model to optimize ship’s fuel efficiency. Using data from two 9000-TEU

(Twenty-foot Equivalent Unit, TEU) container ships, they prove that their models

can help save over 5% bunker fuel. Yan et al. (2020) also develop a two-stage

ship fuel consumption prediction model. In the first stage, they use random forest

regression model to predict ship fuel consumption by inputting variables such as

sailing speed, total cargo weight, and sea conditions. And then they optimize the

sailing speed to reduce the ship fuel consumption in the second stage. Uyanık et al.

(2020) test the performance of many machine learning models, e.g., lasso (least

absolute shrinkage and selection operator) regression, support vector regression,

tree-based models, and boosting algorithms, when being adopted to predict ship

fuel consumption. The experiment results show that bayesian ridge regression,

92



4 Federated Learning for Fuel Consumption Prediction and Optimization

kernel ridge regression, multiple linear regression, and ridge regression perform

better than other machine learning models. Yan et al. (2021b) give an exhaustive

literature review on principles and models being used in ship fuel consumption

prediction. Readers are referred to their study for more details.

We can draw two insights from the above literature. First, the close relationship

between ship sailing speed and ship fuel consumptionmeans that research on either

of these topics must consider both. Wu (2020) shows that the optimal speeds for

large ships are larger than those for small ships when the goal is reducing ship fuel

consumption. Most studies focus not only on predicting ship fuel consumption, but

also on optimizing ship fuel consumption by changing sailing speed, based on the

relationship between ship fuel consumption and sailing speed and other variables

(Du et al., 2019; Wang & Meng, 2012; Wang & Wang, 2016; Wang et al., 2013;

Yan et al., 2020). Therefore, in this study, we also focus on optimizing the ship

sailing speed while reducing ship fuel consumption using the developed ship fuel

consumption prediction model. Second, almost all studies use non-public datasets

from partner companies. Indeed, the maritime industry does not have a public

dataset that includes ship fuel consumption records and the variables that influence

ship fuel consumption, such as sailing speed and sea conditions. Although weather

condition data can be obtained, other necessary variables—ship fuel consumption

and ship sailing speed—are not available to the public. Therefore, the results of

previous studies are the results of very limited testing, e.g., with data from one ship

or a group of sister ships. In our study, we do not use data from a specific ship

or shipping company. Instead, we sample and generate data based on previous

research, which is a more general approach and can be reproduced.
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4.2.2 Federated Learning

FL is first developed by McMahan et al. (2017). The main idea of FL is to allow

models to be trained locally. To be more specific, we usually need to collect a large

amount of data and train the machine learning models or deep learning models on

a central server. In the process of FL, the central server does not collect any data

from clients. Instead, it distributes the model parameters to each client, and each

client trains the model locally using its own data and then updates the model pa-

rameters to the central server (Li et al., 2020a; McMahan et al., 2017). According

to the certain aggregation rules, the central server updates global parameters and

distributes them to clients again (Yue et al., 2023). After multiple rounds of com-

munication, a model that meets the accuracy requirements is finally obtained (Li et

al., 2020b). The Federated Averaging (FedAvg) algorithm proposed by McMahan

et al. (2017) is the pioneering work in FL, and the subsequent studies are almost

all based on their work to make improvements or list their work as a benchmark.

Our work is also based on FedAvg. The aggregation rules in FedAvg are to sum

and average the parameters of all clients in each round, which is quite straightfor-

ward but effective. Many studies explore more complex aggregation ways. For

example, Yue et al. (2023) add a regularization term in the aggregation function

to penalize those clients who contribute less to the loss function. In other words,

their work takes into account fairness in FL. Mohri et al. (2019) also put forward

a framework that considers fairness when aggregating parameters. Pillutla et al.

(2022) develop a robust aggregation approach to deal with the corrupted update

problem. As FL needs to be implemented through constant communications be-

tween the central server and clients, the communication efficiency (Niknam et al.,
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2020) and information security in transmission (Liu et al., 2020) are also key con-

cerns. These research perspectives have little to do with our research scope, so we

do not elaborate on them too much. Prior to FL, many studies develop frameworks

towards distributed learning. We need to emphasize that distributed learning and

FL are very different, especially in the assumption about data distribution (McMa-

han et al., 2017). Distributed learning aims to achieve parallel computing based

on independent and identically distributed (IID) datasets (Zhang et al., 2015). FL

originally aims at mining information on datasets that are not independent and

identically distributed (Non-IID) (McMahan et al., 2017) and many scholars con-

duct research on the problem of Non-IID dataset in FL (Zhao et al., 2018; Zhu

et al., 2021).

Since FL was proposed, it has attracted attention in various fields. The main

advantages of FL are improving data privacy (because no personal data needs to

be collected) and allowing parallel training (because the model is trained simul-

taneously and locally on each terminal) (Yue et al., 2023). FL has great potential

to be applied in practice. The most common application is in scenarios related to

mobile devices. For example, prediction tasks in the keyboard or language-related

topics (Passban et al., 2022) and prediction of human trajectory or behavior (Xiao

et al., 2021). And FL is very suitable for application in the medical field because

patient data is usually private (Pfitzner et al., 2021). Recently, some studies have

explored the potential value of FL in the maritime industry. Zhang et al. (2021)

present that FL can play an important role in shipping with the development of the

IoS paradigm. And they develop an FL framework for fault diagnosis in ships.

Liu et al. (2022) and Ma et al. (2022) hold the opinion that FL provides a new way

for avoiding serious cyber security threats to maritime transportation systems.
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Research on FL in the maritime industry is in its infancy. Previous studies

mainly focus on communication security when adopting FL in ships (Liu et al.,

2022; Ma et al., 2022). In addition, to the best of our knowledge, the use of FL

for fault diagnosis is the only specific industry application that has been discussed

(Zhang et al., 2021). No study has considered using FL for ship fuel consumption

prediction and optimization. As discussed in Section 4.2.1, ship fuel consumption

is an important issue in the maritime industry, and it is directly affected by the

operation of the ship. Some ships may consume more fuel due to poor handling or

their physical characteristics (Yan et al., 2021b) and they do not want to let others

know, which makes them unwilling to share raw data. FL provides a new approach

that makes it possible for ships to share information without revealing raw data.

Through the application of the FLmechanism, it is feasible to combine information

from many more ships and thus achieve a win–win situation. Therefore, our study

explores the value of FL in the shipping field, especially in ship fuel consumption

prediction and optimization. We also show that ship owners have incentives to

participate honestly in the FL system.

4.3 Ship Fuel Consumption Prediction andOptimiza-

tion

The datasets used for studying ship fuel consumption prediction in the literature

mainly come from ships’ noon reports (Du et al., 2019; Yan et al., 2020), which

means that there are only 365 data records in total for each ship per year. Although

some studies collect data from multiple sister ships, the amount of data is still too
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limited to be suitable for constructing machine learning or deep learning models.

Therefore, motivated by the studies of McMahan et al. (2017), Du et al. (2019),

and Yan et al. (2020), we develop an FL-based framework to predict ship fuel

consumption and optimize ship fuel consumption efficiency by deciding the op-

timal sailing speed. Under the proposed framework, ships can share information

without revealing their own raw data. In this way, more shipping companies will

be willing to share information, and thus more knowledge can be mined and the

problem of isolated data islands between ships can be solved. The main notations

used in this chapter are shown in Table 4.2.

We first introduce the FL ideas. As shown in Figure 4.1, the central server will

distribute model parameters to each ship at the beginning. And then ships train the

same deep learning model based on their own data. After certain rounds of itera-

tions, ships will update the parameters to the central server which will aggregate all

parameters. Again, the central server will distribute the updated global parameters

to the ships and they will train the model using the new updated global parameters.

After certain rounds of communication, we can obtain a trained model. The key

point in this process is that the raw data of each ship does not need to be shared

with other ships or the central server, which greatly protects the privacy of ships.

Note that different ships may belong to the same ship company. In our study, we

take a ship as a client during the training process and we will show that companies

have incentives to take part in the FL mechanism. As all ships are located in the

same scenarios, i.e., sailing on the sea, they can obtain the same types of feature

variables and thus the FL in our study refers to the horizontal category (Li et al.,

2020a; Li et al., 2020b).

We use back propagation neural network (Rumelhart et al., 1986) as the ba-
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Table 4.2: Notations of FL and [M1]
Sets
I Set of shipping segments, i ∈ I
K Set of ships, k ∈ K
J Set of ship companies, j ∈ J

Parameters
R Number of communication rounds
c The fraction of ships participating in training each

round
E Number of iterations in each local training
η Learning rate
θ Parameters of neural network model
Li The length of segment i
smin The minimum sailing speed
smax The maximum sailing speed
svi Ship’s discrete sailing speed on segment i
T The maximum sailing time allowed between two

ports
ti The cumulative sailing time to the i-th segment
nj Number of ships belonging to company j
Function
F (x, s) Neural networkmodel predicting daily ship fuel con-

sumption (tons) with inputting feature variables x
and sailing speed s

Decision Variables
si Ship’s sailing speed on segment i
zvi Binary decision variable that equals 1 if a ship sails

with speed svi on segment i and 0 otherwise

sic deep learning model in each client. The number of hidden layers is 3 and the

Sigmoid function is used as the activation function. The details of our neural net-

work model and parameter setting are shown in Appendix A. The parameters that

need to be transmitted between ships are the weights between nodes in the adjacent

layers of the network. Note that in addition to the feature variables, e.g., sailing

speed and weather conditions, we also take into account time series variables, i.e.,

the ship’s historical fuel consumption data. Therefore, our study actually adopts a
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Figure 4.1: The process of FL in shipping

back propagation neural network by inputting both feature variables and time se-

ries variables, which is innovative as few studies have considered the information

of ship ages. After R rounds of communication, we get the trained model. As the

ship’s historical fuel consumption data are also adopted as input features, we will

collectively refer to them as feature variables in the following, unless otherwise

specified. And we distinguish only the speed variable from the feature variables

in the following.

Referring to Yan et al. (2020) and Du et al. (2019), we adopt the two-stage

process to optimize ship fuel consumption efficiency. That is, we get the trained

model which can give the prediction value of ship fuel consumption by inputting

sailing speed and other feature variables. And then we optimize the ship’s fuel

consumption by deciding the optimal ship sailing speed in the case of satisfying

a series of constraints for speed being the only variable that can be decided by

the vessel captain and having a significant impact on ship fuel consumption. The

innovation in the proposed two-stage process in our study is that instead of col-

lecting data from ships, we use the idea of FL in the first stage, which allows each

ship to train the model locally and then transfer the parameters. We use F (x, s) to

denote the neural network model that predicts ship fuel consumption by inputting
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feature variables x and ship’s sailing speed s and F (x, s) can be obtained by the

trained neural network model. Set I = {1, ..., |I|} denotes the set of shipping seg-

ment between Port A and Port B, i ∈ I . And si (nautical miles per hour) denotes

the sailing speed on segment i and Li (nautical mile) represents the length of each

segment. smin and smax are minimum and maximum sailing speed requirements of

ships. Since the existing studies mainly use noon reports to conduct data analysis,

we also assume that our data is obtained on a daily basis and the unit of predicted

ship fuel consumption is tons per day. Subject to the constraints of ensuring that

the ship arrives on time, we can formulate the following optimization model.

[M1]

min
∑

i∈I

F (x, si)
Li

24× si
(4.1)

subject to

ti = ti−1 +
Li

si
, i ∈ I (4.2)

t|I| ≤ T (4.3)

t0 = 0 (4.4)

smin ≤ si ≤ smax, i ∈ I (4.5)

where T denotes the maximum sailing time allowed between Port A and Port B,

and ti represents the cumulative voyage time until the end of the i-th segment.

Thewhole process of the FL-Prediction-Optimization (FLPO) process is shown

in Algorithm 2. FLPO is a two-stage framework. In the first stage, a neural net-

work model for predicting ship fuel consumption is obtained based on FL which

considers the ship’s data privacy. In the second stage, ship sailing speed is op-
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timized to reduce fuel consumption. As F (x, si) represents the neural network

model, which is hard to give an explicit expression, we discretize si in the unit of

0.1 knot for solving [M1] (Yan et al., 2020). The discretized ship sailing speed

is denoted by svi . That is, we can obtain the corresponding fuel consumption by

inputting each svi together with other feature variables. And thus F (x, svi ) can be

viewed as a parameter in the objective. We further introduce a binary decision

variable to indicate which discretized ship sailing speed is selected with the con-

straint that only one speed can be chosen in one segment. Therefore, model [M1]

is transferred to a solvable integer optimization model, denoted by model [M2].

The details are shown in Appendix B. [M1] and [M2] are optimization models for

one ship to solve. There will be many ships in the FL mechanism, and we use K

to denote the total number of ships and set Ik to denote the shipping segments of

each ship k.
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Algorithm 2: FLPO
Input: the number of communication rounds R, the number of ships K,

the fraction of ships that participate in training in each round c,
the number of iterations in local training E, learning rate η, initial
parameter setting θ, feature variables and ship sailing speed, and
parameters needed in optimization process

Output: θ∗, sk∗i , k = 1, ..., K, i ∈ Ik
// θ∗ is the finally obtained optimal parameters of the

neural network model and sk∗i is the optimal sailing
speed of ship k in segment i

Stage 1
begin

θ0 = θ
for r = 0 : (R− 1) do

m← max(c×K, 1)
Kr ←set of randomly selectedm ships
// Kr is the set of randomly selected ships by the

central server, i.e., m ships will participate
in training in round r. If all ships are
selected, m = K

for k ∈ Kr do
θr+1
k ← BackPropagation(η, θr, E)

// θr+1
k represents the parameters of ship k's

model in round r + 1 and ships train model in
parallel

end
// The central server will collect parameters from

ship k ∈ Kr, integrate these parameters, and
then distribute θr+1 to all ships

θr+1 ← 1
|Kr|

∑
k∈Kr

θr+1
k

end
// The central server will distribute the final θR to

all ships
θ∗ = θR

end
Stage 2
begin

// F (x, s) can be obtained by θ∗. For each ship k, its
feature variables and sailing speed in segment i
are denoted by xk

i and ski , respectively
for k = 1 : K do

solve [M2] to obtain sk∗i , k = 1, ..., K, i ∈ Ik
// The details of [M2] are shown in Appendix B

end
end
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4.4 Integrity of Alliance Parties in the FL Mecha-

nism

Generally speaking, for machine learning models or deep learning models, as the

number of samples increases, the training accuracy increases and the magnitude

of the increase decreases (Wang et al., 2022a). Cui and Gong (2018) find that the

exponential form is appropriate to fit the relationship between prediction accuracy

and sample size. In this study, we also adopt the exponential function to character-

ize the curve of prediction accuracy and sample size, i.e., the curve of prediction

accuracy and the number of ships. We use set J to denote the set of shipping

companies, j ∈ J , and each company j has nj ships. Suppose that if a shipping

company joins the FL mechanism, all the ships belonging to this company will be

used as clients. The total number of participating ships is n =
∑

j∈J nj and we

treat n as a function of nj . The prediction accuracy is affected by many factors,

e.g., sample size, data quality, and the problem itself. As we take a dataset corre-

sponding to the same length of the period from all ships for model training in our

study, e.g., noon reports for the past 180 days, we assume that the number of ships

participating in training is the variable that affects the prediction accuracy and the

influence of other factors can be regarded as constant, which could be eliminated

for simplifying notation. Then, the general function that describes the relationship

between prediction accuracy and the number of participating ships, denoted by

H(n), is

H(n) = a× e
n
b + c, a < 0, b < 0, c > 0, (4.6)
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where a, b, and c are estimated parameters.

Proposition 3 All participating shipping companies will honestly participate in

the federal organization from the perspective of cooperation.

Proof. The derivative of H(n) with respect to nj is

∂H(n)

∂nj
=

dH(n)

dn

∂n

∂nj
=

a× e
n
b

b
, j ∈ J, (4.7)

which is always greater than 0, which means that the more ships serve as clients,

the more accurate the model will be. Therefore, the company will let all ships be

clients to maximize its own interests and the overall interests. The second deriva-

tive of H(n) with respect to nj is

∂2H(n)

∂n2
j

=
∂

∂nj

(
dH(n)

dn

∂n

∂nj

)

=
d2H(n)

dn2

(
∂n

∂nj

)2

+
∂2n

∂n2
j

dH(n)

dn

=
a× e

n
b

b2
, j ∈ J

(4.8)

which is always less than 0 because a < 0. And thus, the marginal utility is di-

minishing. If company j
′ chooses to cheat, i.e., they do not use real data to train

the local model, the accuracy or convergence speed of the global model will be

reduced. We use α, α > 0, to denote the influence coefficient as these cheat-

ing samples may reduce the model’s accuracy. The function Ĥ(n, nj′ ) with one

cheating company j ′ can be written as follows:

Ĥ(n, nj′ ) = a× e
−αn

j
′ +n−n

j
′

b + c, j
′ ∈ J, (4.9)
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As Equation (4.7) is strictly greater than 0, Equation (4.6) is definitely greater

than Equation (4.9). Therefore, companies have no incentive to cheat from the

perspective of cooperation and they will let all ships honestly participate in the

federal organization. !

Proposition 4 Although the global accuracywill be reduced if one company chooses

to cheat, the company may still benefit from the FL mechanism if the number of

the company’s ship satisfies:

−αnj′ + n− nj′ > nj′ . (4.10)

which means the company may cheat from the perspective of competition.

Proof. Figure 4.2 gives intuitive proof. If −αnj′ + n − nj′ > nj′ , then the

accuracy of the global model will still exceed the accuracy of the company j
′’

own individually trained model, which means that company j ′ may cheat from the

perspective of competition. Because in this way, the company’s own utility will

increase, but other companies’ utility will decrease. !

We can find from the proof of Proposition 2 that the smaller the companies, the

more likely that it chooses to cheat from the perspective of competition. But these

large ship companies, e.g., company j# in Figure 4.2, will have no incentive to

cheat from the perspective of both cooperation and competition because cheating

will reduce both their own and the global utility. Therefore, the integrity of large

ship companies will guarantee the effectiveness of the FL mechanism. Moreover,

it is more appropriate that the alliance is made up of companies of comparable size,

which will significantly reduce the possibility of cheating and avoiding the free-

riders in the FL mechanism. For example, if a small shipping company consisting
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Figure 4.2: Prediction accuracy with different participating companies

of only 100 ships takes part in an FL mechanism composed of large companies

with more than 1000 ships per company, he may be a free rider.

4.5 Numerical Experiments

4.5.1 Data

Recall that we need to train a neural network model F (x, s) based on feature vari-

ables x and sailing speed s to predict daily ship fuel consumption. In our study,

we choose wave direction (0 − 180◦ angle relative to the ship’s heading direc-

tion), wave height, wind force, cargo weight, and the historical daily ship fuel

consumption data for the past two weeks as feature variables x to train the model
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together with sailing speed s. The parameter settings of our neural network model

are shown in Table A1, Appendix A. We also use one month’s historical vessel

fuel consumption data to test the performance of FL and individual training in Ap-

pendix C. According to the existing literature, the cube of sailing speed is related to

ship fuel consumption andWang andMeng (2012) exactly show the power of sail-

ing speed is between 2.7 and 3.3 using data from five ships. That is, we can roughly

hold the opinion that there is a cubic relationship between ship sailing speed and

ship fuel consumption, but the power may vary among different ships. The rela-

tionship between ship fuel consumption and other feature variables is unclear in

the existing studies. We assume that ship fuel consumption, wave direction, wave

height, wind force, and cargo weight jointly follow the normal distribution, i.e.,

X ∼ N(µ,Σ), where X is the vector of five variables, µ is the mean vector,

and Σ is the covariance matrix. The following steps are adopted to sample and

generate data. We finally sample and generate 180 records (i.e., the noon report

for half a year) for each of the 20 ships.

Step 1. Sample fromX ∼ N(µ,Σ),X ∈ -5 using Cholesky decomposition

(Seeger, 2004).

Step 2. Sample from ε ∼ N(0, I), ε ∈ -5 and X̄ = X + ε. (The purpose of

this step is to add the disturbance term because real-world data often have noise.)

Step 3. Randomly select the value of power within [2.85,3.15], which is the

results of a 5% fluctuation of the third power. The value of sailing speed is obtained

by solving the power function between sailing speed and ship fuel consumption,

which is sampled in Step 2.

The above sampling and generating process require the values of the mean

vector and covariance matrix, i.e., we need to know the mean of ship fuel con-
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sumption, wave direction, wave height, wind force, and cargo weight, and their

covariance matrix. We use the mean and variance in Yan et al. (2020) and the cor-

relation coefficient matrix, which can be used to calculate the covariance matrix

given the variance, in Wang et al. (2018a) to sample and generate variables. De-

tails are shown in Table 4.3. We assume that the correlation coefficients between

different variables are the general rules. Therefore, we can sample by adopting the

correlation coefficient matrix from one study and then using the mean and variance

from another study. Moreover, we normalize all the feature variables and sailing

speed and map the daily ship fuel consumption data using the Sigmoid function

for model training.

Table 4.3: Variable correlation coefficients and descriptive statistics
Correlation coefficients

Daily fuel
consumption
(ton/day)

Wave direction
(degree)

Wave height
(meter)

Wind force
(beaufort force

number)

Cargo weight
(tons)

Daily ship fuel
consumption 1

Wave direction 0.76 1
Wave height 0.15 0.28 1
Wind force 0.17 0.35 0.38 1
Cargo weight 0.62 0.68 0.06 0.05 1
The mean value and standard deviation of variables
Mean value 16.95 87.34 2.00 4.90 28685.06
Standard deviation 9.16 98.74 0.82 1.21 2411

As mentioned in Section 4.2, the data in each client in FL is usually Non-IID

(Zhao et al., 2018). Because we assume that the feature variables and fuel con-

sumption follow a joint distribution, the above data generation process actually

simulates two Non-IID situations: the same fuel consumption with different fea-

ture values and the same feature values with different fuel consumption. We argue

that these two kinds of Non-IID are in line with the practice since different ships
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sailing in different weather conditions may generate the same fuel consumption.

We need to clarify that we do not consider forming an FL mechanism using differ-

ent types of ships. For example, container ships can be served as clients in one FL

mechanism and LNG carriers can be served as clients in another FL mechanism.

But we do not consider forming an FL mechanism using both container ships and

LNG carriers simultaneously because these two types of ships differ a lot in terms

of physical characteristics. Thus, we argue that label distribution skew and feature

distribution skew (Zhang et al., 2022b) do not exist within our research scope.

4.5.2 Results of Daily Ship Fuel Consumption Prediction

Using 180 records from each of the 20 ships, we carry out several experiments to

validate the FL mechanism. We randomly select 60% of the records of each ship

as the training dataset, 20% as the validation dataset, and 20% as the test dataset.

Mean absolute error (MAE) and root mean square error (RMSE) are chosen to

measure the predictive accuracy of the model. As stated in Algorithm 2, the num-

ber of communication roundsR, the fraction of ships that participate in training in

each round c, and the number of iterations in local training E, i.e., the number of

epochs in each round, are three key parameters in the FLmechanism (McMahan et

al., 2017). We first set R = 10 and c = 0.5 to show the difference between the FL

mechanism and individual training. That is, we randomly select 50% of all ships

to participate in each communication round and perform parameter aggregations

10 times. The results are shown in Figure 4.3. Figure 4.3(a)−(c) show the results

of MAE and Figure 4.3(d)−(f) show the results of RMSE by adopting different

epochs. We can find that the FL mechanism outperforms individual training on
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both MAE and RMSE for each epoch set. We further calculate the average MAE

and RMSE for the 20 ships and then calculate the percentage improvements (the

ratio of the absolute value of the difference between the average prediction results

of the two methods to the individual training prediction accuracy) made by the FL

mechanism. As shown in Table 4.4, the FL mechanism brings almost more than

50% improvement to the accuracy at each epoch set. Moreover, it is intuitive that

the fluctuations of accuracy metrics in the FL mechanism are smaller. Summarily,

the FL mechanism performs better than individual training in terms of accuracy

and stability.

Figure 4.3: Prediction results withR = 10 and c = 0.5

Next, we fix E = 10 and c = 0.5 to explore the changes in accuracy with the

number of communication rounds. As shown in Figure 4.4, the prediction accu-

racy is greatly improved when the number of communication rounds is changed

from 10 to 30. After that, the two accuracy metrics do not change significantly

as the number of communication rounds increases. Considering that communica-

tion is time-consuming, we suggest that there is no need to take too many times
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Table 4.4: Comparision of FL mechanism and individual training
Metrics E % Improvements of of FL mechanism
MAE 10 50.80%
RMSE 10 49.57%
MAE 50 58.84%
RMSE 50 57.81%
MAE 100 58.40%
RMSE 100 58.53%

of communication and 30 times are enough for our dataset. Moreover, increasing

local training iterations should be considered first since communication is more

time-consuming than local training (McMahan et al., 2017).

Finally, we test the impact of sampling rate c by setting E = 10 and R =

10. Results are shown in Figure 4.5. We can find that the values of MAE and

RMSE are greatly reduced when the fraction of ships participating in training in

each communication round increases from 0.5 to 0.8. The difference between the

two accuracy metrics is not obvious when c = 0.8 and c = 1.0. After several

rounds of experiments, we propose that the optimal parameter configuration of

the FL mechanism in our study is R = 30, E = 50, and c = 0.8. In practice,

we recommend that increasing the number of local training times should be first

consideredwhen optimizingmodel parameters, followed by increasing the number

of joined clients in each round and finally increasing the number of communication

rounds because of the communication costs.

4.5.3 Results of Ship Sailing Speed Optimization Model

The trained model F (x, s) can be obtained by using the optimal parameter settings

and the data records of the 20 ships. We randomly select two ships to validate the
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Figure 4.4: Prediction results with E = 10 and c = 0.5

Figure 4.5: Prediction results with E = 10 andR = 10

performance of the proposed ship sailing speed optimization model using CPLEX

Python API 20.1.0. And we treat the last 7 days as seven segments and optimize

the daily sailing speed. The experiments are run on a laptop computer equipped

with 2.6 GHz of Intel Core i7 CPU and 16 GB of RAM. According to the sampled

data, we set smin = 14 knots and smax = 18 knots. As we do not have real sailing

segment data, we solve model [M3] in Appendix B instead of model [M2], which

can be considered equivalent because sailing speed guarantees the estimated time

of arrival. The optimization model [M3] of each ship can be solved within 1 sec-
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ond. Results are shown in Table 4.5 and Table 4.6 respectively. Ship 1 consumes

112.30 tons of fuel and Ship 2 consumes 113.66 tons of fuel in the last 7 days after

optimization. Compared with the ship fuel consumption before optimization, ship

1 saves 6.25% and ship 2 saves 2.68%.

Table 4.5: Optimization results of Ship 1
Days Original speed (knot) Optimized speed (knot)

7th day to last 14.39 15.60
6th day to last 14.56 14.00
5th day to last 14.05 17.50
4th day to last 17.30 15.00
3rd day to last 17.16 15.60
2nd day to last 16.80 14.70
1st day to last 15.91 17.90

Total ship fuel consumption (tons) 119.79 112.30 (−6.25%)

Table 4.6: Optimization results of Ship 2
Days Original speed (knot) Optimized speed (knot)

7th day to last 17.47 18.00
6th day to last 16.27 14.00
5th day to last 13.71 14.60
4th day to last 14,34 14.60
3rd day to last 16.53 15.70
2nd day to last 15.75 17.10
1st day to last 14.27 14.60

Total ship fuel consumption (tons) 116.79 113.66 (−2.68%)

4.6 Conclusion

This study develops a two-stage FL-Prediction-Optimization framework to solve

the problem of ship fuel consumption and sailing speed optimization. We first

adopt FL to obtain a trained neural network model while protecting the privacy
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of each ship’s data. Then we solve the optimization problem to obtain the opti-

mal sailing speed by making use of the trained model. Our numerical experiments

show that our proposed two-stage method can reduce total ship fuel consumption

while still ensuring that the ship arrives at the port on time; thus it can make an

important contribution to emission reduction and environmental protection. Our

study is the first to investigate ship fuel consumption prediction models under the

FL mechanism, and provides a new way to overcome the barriers to data shar-

ing among shipping companies. Once the FL mechanism is implemented, ship

companies will be more willing to share information without fears of data leak-

age. Moreover, we analyze the integrity of allied parties in the FL mechanism and

show that it is more appropriate for companies of comparable size to participate

in one FL mechanism.

Our paper is not without limitations. First, we do not consider outlier identi-

fication as part of the process of data cleaning. However, this problem is worth

addressing in further studies, as raw shipping log data are very noisy. Second, we

perform our experiments in a laboratory environment, without taking into account

problems that may be encountered on an actual voyage, such as the loss of the

ship’s signal or the inability to communicate. Third, the numerical data is gener-

ated based on assumptions because it is impractical to get data from many ships.

The data sources for the existing studies using real data are only collected from

a few sister ships. Moreover, to make the generated numerical data closer to re-

ality, we refer to the mean and variance of feature variables, and the covariance

between feature variables in the existing literature, which leads to limited cate-

gories of feature variables. We hope that our study can bring new insight to the

industry such that shipping companies are willing to form an FL alliance, which
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makes it possible for future research to test the performance of FL with real data.
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Concluding remarks

116



5 Concluding Remarks

Chapter 2 considers the specific requirements of domain knowledge in the

shipping industry, specifically that the relationship between ship sailing speed and

fuel consumption follows a non-decreasing convex function. This insight is crucial

for developing accurate models that can predict fuel consumption based on vary-

ing operational speeds, ensuringmore effective fuel management and optimization

strategies. The PH-CART method proposed in Chapter 2 improves prediction ac-

curacy by nearly 4%, leading to a daily fuel consumption saving of 2246.4 kg.

Chapter 3 presents two innovative methods tailored to domain knowledge,

aimed at addressing the trade-off between model interpretability and model ac-

curacy in ship fuel management. These methods strike a balance, ensuring that

the models remain both understandable and effective in ship fuel consumption

prediction. The proposed PI-NN model achieves over 95% of the performance of

the fully-NN model, while the MIQO-BF model provides an explicit expression

for fuel consumption prediction.

Chapter 4 addresses the practical data privacy issues in maritime practice by

proposing the use of federated learning for model training. This approach en-

ables decentralized model development while ensuring that sensitive data remains

secure and localized, overcoming challenges related to data sharing and privacy

concerns in the industry. The results show that after using the model trained with

federated learning to solve the optimization problem in the second stage, fuel con-

sumption can be reduced by more than 6%. This has significant implications for

the development of green shipping.

Although there are some classic hydrodynamic-based modeling approaches

for predicting ship fuel consumption, e.g., the Holtrop-Mennen method (Holtrop

&Mennen, 1982), these methods are mostly suited for predicting resistance under
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calmwater conditions and are typically applied during the ship design stage. When

dealing with complex sailing environments, it becomes necessary to predict fuel

consumption based on real-time factors, e.g., waves, currents, or wind. Classic

hydrodynamic modeling methods struggle to achieve this level of adaptability. In

recent years, with the development of the Internet of Things (IoT) technology, the

concept of digital twin has started to gain prominence (Lee et al., 2022; Mauro &

Kana, 2023). A digital twin ship is a virtual and digital representation of a physical

entity. It can both represent the actual status of the physical ship and predict the

future behavior of the ship by integrating data from various sensors, systems, and

historical records (Mauro &Kana, 2023). Digital twin ships offer a novel perspec-

tive on fuel consumption: collecting real-time data from onboard sensors, simu-

lating various scenarios, and predicting and optimizing fuel efficiency. However,

implementing digital twin technology requires expensive hardware and software

support, and real-time data transmission imposes higher demands on system secu-

rity to prevent data breaches or attacks. Moreover, achieving data standardization

and integration across different stakeholders and ship types remains a significant

challenge. Therefore, before the implementation of digital twin ships becomes a

reality in practice, the mainstream approach remains collecting fuel consumption

and environmental data during ship operations and usingmodels for fuel consump-

tion prediction. Given that machine learning models can capture complex rela-

tionships among variables, developing machine learning-based fuel consumption

prediction methods continues to hold both theoretical and practical significance.
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Appendix A

We first briefly introduce the back propagation method proposed by Rumelhart

et al. (1986) in a general form and then give details about the parameters in our

model.

A typical neural network consists of an input layer, a hidden layer, and an

output layer. We use symbols i, h, and j to denote the nodes in each layer, re-

spectively. The weight coefficients between input layer nodes and hidden layer

nodes, hidden layer nodes and output layer nodes are represented by wih and whj

respectively. As shown in Figure A1, we use k to denote each sample, which has

input variables xk
i and the target tkj . The output layer outputs zkj , the closer to tkj

the better. For each sample trained by the network, it undergoes the following

calculations.

From the input layer to the hidden layer, the hidden layer first calculates the

weighted sum of these input nodes:

netkh =
∑

i

wihx
k
i . (A1)
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Figure A1: The structure of a typical neural network

And then activation function, denoted by f , calculates the final output of the hid-

den layer:

ykh = f(netkh) = f(
∑

i

wihx
k
i ). (A2)

The output layer then calculates the weighted sum of inputs from the hidden layer:

netkj =
∑

h

whjy
k
h =

∑

h

whjf(
∑

i

wihx
k
i ). (A3)

The final outputs will be:

zkj = f(netkj ) = f(
∑

h

whjf(
∑

i

wihx
k
i )). (A4)
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To simplify notation, we use a fully connected neural network with one hidden

layer as an example. For non-fully connected neural networks, we only need to

exclude the corresponding weight coefficients during the derivation process. And

for neural networks with multiple hidden layers, more partial derivatives of errors

and weights between layers need to be calculated. The errors can be calculated by:

E(w)k =
1

2

∑

j

(tkj − zkj )
2 =

1

2

∑

j

(tkj − f(
∑

h

whjf(
∑

i

wihx
k
i )))

2. (A5)

We use η to denote the learning rate. Then, we have:

∆whj = −η
∂E(w)k

∂whj

= −η
∑

k

∂E(w)k

∂netkj

∂netkj
∂whj

= η
∑

k

(tkj − zkj )f
′
(netkj )y

k
h

= η
∑

k

δkj y
k
h

(A6)
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where δkj =f
′
(netkj )(t

k
j − zkj ). Similarly,

∆wih = −η∂E(w)k

∂wih

= −η
∑

k,j

∂E(w)k

∂zkj

∂zkj
∂wih

= η
∑

k,j

(tkj − zkj )
∂zkj
∂wh

i

= η
∑

k,j

(tkj − zkj )
∂zkj
∂netkj

∂netkj
∂ykh

∂ykh
∂wh

i

= η
∑

k,j

(tkj − zkj )f
′
(netkj )whj

∂ykh
∂netkh

∂netkh
∂wih

= η
∑

k,j

(tkj − zkj )f
′
(netkj )whjf

′
(netkh)x

k
i

= η
∑

k,j

whjf
′
(netkh)x

k
i

= η
∑

k

(f
′
(netkh)

∑

j

δkjwhj)x
k
i

= η
∑

k

δkhx
k
i

(A7)

where δkh=f
′
(netkh)

∑
j
whjδkj . Therefore, the network can update weight coeffi-

cients according to ∆whj and ∆wih.

In our study, we adopt a three-hidden-layer neural network with 20 neurons.

Based on the characteristics of our problem, there are twenty input nodes—sailing

speed, wave direction, wave height, wind force, cargo weight, historical daily ship

fuel consumption for the past two weeks, and one node for bias—and one output

node—daily ship fuel consumption (see Figure A2). We determine the parameter

settings of our model after experiments and the details are shown in Table A1.
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Figure A2: The structure of our neural network model

Appendix B

The ship speed si is discretized in units of 0.1 knot. We define

V = .smax − smin
0.1

/+ 1. (B1)

We set v = 0, 1, ..., V . The discretized speeds are s0i = smin, s1i = smin + 0.1,

s2i = smin + 0.1× 2, s3i = smin + 0.1× 3,...,sVi = min{smin + 0.1× V, smax}. We

use binary decision variable zvi to indicate which speed is adopted and zvi equals 1

if a ship sails with speed svi in segment i and 0 otherwise. Then, model [M1] can

be linearized as follows.
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Table A1: Parameter settings
Parameter Setting
Number of hidden layers 3
Number of neurons in each hidden layer 20
Number of neurons in the input layer 6
Number of neurons in the output layer 1
Activation function Sigmoid
Learning rate 0.1
Number of epochs 50
Number of batch size 10

[M2]

min
∑

i∈I

V∑

v=0

zvi × F (x, svi )×
Li

24× svi
(B2)

subject to

ti = ti−1 +
V∑

v=0

(
Li

svi
× zvi ), i ∈ I (B3)

V∑

v=0

zvi = 1, i ∈ I (B4)

t|I| ≤ T (B5)

t0 = 0 (B6)

zvi ∈ {0, 1}, i ∈ I, v = 0, ..., V. (B7)

When conducting numerical experiments, we only have noon report data, which

does not include segment data. Therefore, we develop model [M3] to replace

model [M2]. We treat one day as one segment. The original sailing speed on

segment i, i.e., on the day i, is denoted by s#i .

[M3]

min
∑

i∈I

V∑

v=0

zvi × F (x, svi ) (B8)
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subject to
∑

i∈I

V∑

v=0

zvi × svi ≥
∑

i∈I

s#i (B9)

V∑

v=0

zvi = 1, i ∈ I (B10)

zvi ∈ {0, 1}, i ∈ I, v = 0, ..., V. (B11)

Appendix C

We test the performance of FL and individual training by changing the length of

the input fuel consumption history data to one month. Results are shown in Ta-

ble C1. We find that using one month of fuel consumption data does not improve

the performance of both models in terms of MAE and RMSE. Considering the

computing efficiency, we believe that two weeks of data is enough.
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Table C1.: The performance of FL under different fuel consumption historical
data inputs

Ship number MAE RMSE
Individual training FL mechanism Individual training FL mechanism

Two weeks of fuel consumption historical data
1 0.0094 0.0024 0.0109 0.0031
2 0.0085 0.0014 0.0093 0.0016
3 0.0030 0.0016 0.0034 0.0021
4 0.0040 0.0024 0.0050 0.0030
5 0.0024 0.0023 0.0028 0.0026
6 0.0018 0.0015 0.0022 0.0020
7 0.0054 0.0023 0.0065 0.0029
8 0.0070 0.0022 0.0092 0.0028
9 0.0022 0.0020 0.0028 0.0025
10 0.0021 0.0020 0.0027 0.0027
11 0.0019 0.0016 0.0024 0.0021
12 0.0015 0.0015 0.0017 0.0018
13 0.0021 0.0021 0.0025 0.0026
14 0.0021 0.0017 0.0024 0.0021
15 0.0020 0.0020 0.0027 0.0026
16 0.0060 0.0023 0.0068 0.0028
17 0.0066 0.0019 0.0072 0.0024
18 0.0072 0.0019 0.0084 0.0024
19 0.0024 0.0015 0.0030 0.0019
20 0.0039 0.0022 0.0046 0.0027

Mean value 0.0041 0.0019 0.0048 0.0024
Standard deviation 0.0025 0.0003 0.0028 0.0004
One month of fuel consumption historical data

1 0.0094 0.0024 0.0109 0.0031
2 0.0085 0.0014 0.0093 0.0016
3 0.0030 0.0016 0.0034 0.0021
4 0.0040 0.0024 0.0050 0.0030
5 0.0024 0.0023 0.0028 0.0026
6 0.0018 0.0015 0.0022 0.0020
7 0.0054 0.0023 0.0065 0.0029
8 0.0070 0.0022 0.0092 0.0028
9 0.0022 0.0020 0.0028 0.0025
10 0.0021 0.0020 0.0027 0.0027
11 0.0019 0.0016 0.0024 0.0021
12 0.0015 0.0015 0.0017 0.0018
13 0.0021 0.0021 0.0025 0.0026
14 0.0021 0.0017 0.0024 0.0021
15 0.0020 0.0020 0.0027 0.0026
16 0.0060 0.0023 0.0068 0.0028
17 0.0066 0.0019 0.0072 0.0024
18 0.0072 0.0019 0.0084 0.0024
19 0.0024 0.0015 0.0030 0.0019
20 0.0039 0.0022 0.0046 0.0027

Mean value 0.0050 0.0023 0.0060 0.0028
Standard deviation 0.0021 0.0006 0.0025 0.0007
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