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Abstract

Recurrent neural networks (RNNs) are widely used to model sequential data in a

wide range of areas, such as natural language processing, speech recognition, ma-

chine translation, and time series forecasting. The training process of RNNs with

nonsmooth activation functions is formulated as an unconstrained optimization prob-

lem. The objective function of the problem is nonconvex, nonsmooth and has a

highly composite structure, which poses significant challenges. State-of-the-art op-

timization methods, such as gradient descent-based methods (GDs) and stochastic

gradient descent-based methods (SGDs), often lack a well-defined generalized gra-

dient of the nonsmooth objective function and do not provide rigorous convergence

analysis. In the thesis, we propose an augmented Lagrangian method (ALM) to solve

the nonconvex, nonsmooth and highly composite optimization problem and provide a

rigorous convergence analysis. Moreover, the aforementioned unconstrained problem

arising from the RNN training process is typically a sample average approximation

(SAA) of the original optimization problem whose objective function is formulated

with an expectation. Therefore, it is necessary to prove that any accumulation point

of minimizers and stationary points of the SAA problems is almost surely a minimizer

and a stationary point of the original problem, respectively. The thesis is primarily

divided into two parts.

In the first part of the thesis, we focus on the method to solve the nonconvex,

nonsmooth and highly composite optimization problem. Specifically, we first re-
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formulate the aforementioned unconstrained optimization problem equivalently as a

constrained optimization problem with a simple smooth objective function by uti-

lizing auxiliary variables to represent the composition structures and treating these

representations as constraints. We prove the existence of global solutions and Karush-

Kuhn-Tucker (KKT) points of the constrained problem. Moreover, we propose an

ALM and design an efficient block coordinate descent (BCD) method to solve the

subproblems of the ALM. The update of each block of the BCD method has a

closed-form solution. The stop criterion for the inner loop is easy to check and can

be satisfied in finite steps. Moreover, we demonstrate that any accumulation point of

the sequences generated by the BCD method is a directional stationary point of the

subproblem. Furthermore, we establish the global convergence of the ALM to a KKT

point of the constrained optimization problem. Compared with state-of-the-art al-

gorithms, numerical results demonstrate the efficiency and effectiveness of the ALM

for training RNNs on synthetic datasets, the MNIST handwritten digit recognition

task, the TIMIT audio denoising task, and the volatility of S&P index forecasting

task.

In the second part of the thesis, we investigate the convergence of minimizers and

stationary points of the SAA problems. Specifically, we first establish the existence

of optimal solutions for both the original problem and the SAA problems. Next,

we prove that any accumulation point of the sequences of minimizers and stationary

points of the SAA problems is, respectively, a minimizer and a stationary point of

the original problem with probability one, as the sample size goes to infinity. We

also derive the uniform exponential rates of convergence of the objective functions

of the SAA problems to those of the original problem.
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Chapter 1

Introduction

Recurrent neural networks (RNNs) are a class of neural networks to model sequential

data, as they can caption temporal dynamic behavior. RNNs have been applied in a

wide range of areas, such as speech recognition [22, 48], natural language processing

[38, 54] and nonlinear time series forecasting [27, 39].

1.1 Problems of training recurrent neural
networks (RNNs)

Once the model is selected, the training process can be described as follows: esti-

mating the weight matrices and bias vectors in the RNNs such that the differences

between the outputs from the model and the true values are minimized. The RNN

training process can be represented by the following optimization problems.

1.1.1 Optimization problem in RNN training pro-

cess for time series forecasting tasks

In this section, we present the optimization problem that arises from using RNNs to

forecast time series. Given input data xt ∈ Rn and output data yt ∈ Rm, t = 1, . . . , T ,
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a widely used minimization problem is formulated as follows (see [21, p. 381]):

min
A,W,V,b,c

1

T

T∑
t=1

∥∥∥∥yt − (Aσ(W(...σ(V x1 + b)...
)

+ V xt + b
)

+ c

)∥∥∥∥2 , (1.1.1)

where W ∈ Rr×r, V ∈ Rr×n and A ∈ Rm×r are unknown weight matrices, b ∈ Rr

and c ∈ Rm are unknown bias vectors. Furthermore, σ : R → R is a nonsmooth

activation function that is applied component-wise for vectors. The training process

by (1.1.1) can be interpreted as looking for proper weight matrices A, W, V, and

bias vectors b, c in RNNs to minimize the difference between the true value yt and

the output from RNNs across all time steps. The composite structure in (1.1.1)

represents the mathematical formulation of RNNs. It is worth mentioning that the

RNNs share the same weight matrices and bias vectors at different time steps as

shown in (1.1.1) [21, p. 374].

1.1.2 Optimization problem in RNN training pro-

cess for general regression tasks

In section 1.1.1, the sample size of the input data xt and the output data yt at each

time step t is equal to one, the scenario that primarily arises in time series forecasting

tasks. In this section, we consider a more general case where the sample size at each

time t equals N . This generalization leads to a new optimization problem that can

represent general regression tasks for sequences, which is formulated as follows:

min
A,W,V,b,c

1

NT

N∑
i=1

T∑
t=1

∥∥∥∥yit −(Aσ
(
W
(
...σ
(
Wσ(V xi1 + b) + V xi2 + b

)
...
)
+ V xit + b

)
+ c

)∥∥∥∥2
2

, (1.1.2)

where xit and yit, t ∈ [T ], i ∈ [N ], denote the i-th sample of the known input and

output data at time t, respectively.

Solving problems (1.1.1) and (1.1.2) are incredibly challenging due to the nons-

moothness and highly composite structures in their objective functions.
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1.1.3 Optimization problem arising from the RNN

training process with expectation

Denote X i =
(
(xi1)

⊤, (xi2)
⊤, ..., (xiT )⊤

)⊤
and Y i =

(
(yi1)

⊤, (yi2)
⊤, ..., (yiT )⊤

)⊤
, i =

1, 2, ..., N , where {X i} and {Y i} can be viewed as independent and identically

distributed (i.i.d.) samples of the random vectors X =
(
(X1)

⊤, · · · , (XT )⊤
)⊤

and

Y =
(
(Y1)

⊤, · · · , (YT )⊤
)⊤

respectively. Problem (1.1.2) can thus be identified as a

sample average approximation (SAA) of the following problem [13]:

min
A,W,V,b,c

E

[
1

T

T∑
t=1

∥∥∥∥Yt −
(
Aσ
(
W
(
...σ
(
Wσ(V X1 + b) + V X2 + b

)
...
)
+ V Xt + b

)
+ c

)∥∥∥∥2
2

]
, (1.1.3)

where the expectation is related to the joint distribution of X and Y.

Compared with (1.1.1) and (1.1.2), problem (1.1.3) involves an expectation whose

closed-form expression is challenging to obtain [60]. The SAA method is commonly

used to approximate the expectation [45, 51]. Nevertheless, an important theoretical

problem needs to verify that any accumulation point of minimizers of SAA problem

(1.1.2) is a minimizer of problem (1.1.3) as the sample size goes to infinity with

probability one.

1.2 Literature reviews

1.2.1 Methods for solving nonconvex and nons-

mooth optimization problems as training RNNs

The traditional backpropagation through time (BPTT) method with gradient de-

scent methods (GDs) or stochastic gradient descent-based methods (SGDs) [12, 68]

is commonly used to train RNNs. However, the “gradient” of the loss function asso-

ciated with the weight matrices via the “chain rule” is calculated even if the “chain

rule” does not hold. Furthermore, the “gradients” might exponentially increase to

a very large value or shrink to zero as time t increases, which makes RNNs training

3



with large time length T very challenging [4]. To overcome this shortcoming, various

techniques have been proposed, including gradient clipping [38], gradient descent

with Nesterov momentum [3], initialization with small values [42], the addition of

sparse regularization [2], and so on. Because the essence of the above methods is

to restrict the initial values of weight matrices or gradients, they are sensitive to

the choice of initial values [32]. Moreover, GDs and SGDs for training RNNs lack

rigorous convergence analysis.

The objective functions in (1.1.1) and (1.1.2) are nonsmooth nonconvex and have

highly composite structures. In this paper, we equivalently reformulate (1.1.1) and

(1.1.2) as constrained optimization problems with simple, smooth objective functions

by employing auxiliary variables to represent the composition structures and treat-

ing these representations as constraints. Utilizing auxiliary variables to reformulate

highly nonlinear composite structured problems as constrained optimization prob-

lems has been adopted for training Deep Neural Networks (DNNs) [11, 17, 36, 35, 69].

However, these algorithms for DNNs cannot be used for RNNs directly because of

the difference between their architectures. In fact, RNNs share the same weight

matrices and bias vectors across different layers, whereas DNNs have distinct weight

matrices and bias vectors in different layers. In DNNs, the weight matrices and

bias vectors can be updated layer by layer, whose gradients can be calculated sep-

arately. However, in RNNs, the weight matrices and bias vectors must be updated

simultaneously. Therefore, it is necessary to establish effective algorithms tailored

to the characteristics of RNNs. To the best of our knowledge, the proposed ALM in

this paper is the first first-order optimization method for training RNNs with solid

convergence results.

After equivalently reformulating (1.1.1) and (1.1.2) as constrained optimization

problems with the nonconvex smooth objective function and nonconvex nonsmooth

constraints, we can solve them by the augmented Lagrangian method (ALM), which

4



is a type of classical methods to solve constrained optimization. The ALM extends

the quadratic penalty method to reduce the possibility of ill conditioning by intro-

ducing explicit Lagrangian multiplier to the function [41, p. 514]. In recent years,

with the rapid growth of data dimensions, the ALM has attracted increasing atten-

tion due to its ability to efficiently handle large-scale problems. The ALM was first

proposed by Hestenes [25] and Powell [44] in 1969 to solve equality constrained prob-

lems. Subsequently, Bertsekas extended the method to address nonconvex problems

[6, 5]. Furthermore, during that time, some works further expanded the ALM to

handle convex problems with inequality constraints [46, 30].

Recently, several augmented Lagrangian-based methods have been proposed for

nonconvex nonsmooth problems with composite structures. In [14], Chen et al.

proposed an ALM for non-Lipschitz nonconvex programming, which requires the

constraints to be smooth. Hallak and Teboulle in [23] transformed a comprehensive

class of optimization problems into constrained problems with smooth constraints

and nonsmooth nonconvex objective functions, and proposed a novel adaptive aug-

mented Lagrangian-based method to solve the constrained problem. However, the

assumption on the smoothness of constraints in [14, 23] is not satisfied for the op-

timization problem arising in training RNNs with nonsmooth activation functions

considered in this paper. Several studies have also focused on extending the ALM

to handle constrained problems with nonsmooth constraints. Specifically, Xu et al.

[64] proposed a smoothing ALM to solve problems with nonsmooth and nonconvex

constraints. However, it is tricky to adjust the smoothing parameters in practical

computations. Furthermore, Kanzow et al. [28] applied the ALM for cardinality-

constrained optimization problems. They equivalently reformulated the problem

with non-continuous cardinality constraint into a continuous constrained problem

with an orthogonality-type constraint, and then employed a safeguarded ALM to

solve the reformulated constrained problem. The reformulation technique is tailored

5



for cardinality constraints. Therefore, this method cannot be extended to address

our problems. Very recently, Xiao et al. [59] developed Lagrangian-based meth-

ods for nonsmooth constrained problems with expectation. Their work focused on

linearized Lagrangian-based methods, where the primal variables are updated by a

single proximal gradient step. They further embedded proximal SGD, proximal mo-

mentum SGD and proximal ADAM into Lagrangian-based methods. Moreover, they

proved the global convergence of the method to the KKT points of the nonsmooth

constrained problem in the sense of conservative Jacobians. In the thesis, we will

investigate solving the constrained problem (1.1.1) and (1.1.2) with nonconvex and

nonsmooth constraints by the Powell-Hestenes-Rockafellar (PHR) ALM, where the

subproblems are required to be solved within controlled accuracy.

1.2.2 Properties of sample average approximation

(SAA)

Stochastic programming focuses on those optimization problems involving uncertain

parameters, which arise in almost all areas of science and engineering [50]. We focus

on a class of problems whose objective function involves the expectation, where

the closed-form expression of the expectation is unknown in general. A widely used

method to solve the problem is SAA, which approximates the expectation by samples

[49]. It is natural to ask whether the solutions of SAA problems converge to those

of the original problem with expectation. That is, whether the solutions of SAA

problems approximate the solutions of the original problem well. Many studies have

already established a framework for analyzing such convergence.

For those problems whose objective functions are convex and lower semicontin-

uous (lsc), Rockafellar and Wets (1997) [47, Chapter 7] proved that the sequence

of objective functions in SAA problems uniformly converges to the objective func-

tion of the original problem via epi-convergence. Thereby, the convergence of the
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sequences of optimal values and optimal solutions of SAA problems has been estab-

lished. Shapiro (2003) [49] extended the convergence results of the optimal value and

the optimal solutions for SAA to problems with nonconvex objective functions and

compact feasible sets.

However, optimal solutions for problems with nonconvex and nonsmooth ob-

jective functions are generally unavailable. Instead, numerical algorithms typically

yield stationary points of such problems. Therefore, it is necessary to analyze the

convergence of stationary points from the SAA problems to the original problem.

In nonsmooth analysis, the stationary points have various definitions, such as the

limiting (l-) stationary point and the Clarke (C-) stationary point. The detailed

definitions of the above will be stated in section 2. When the set of stationary points

of the SAA problem is bounded, it was established that any accumulation point of

the sequence of weak C-stationary points of the SAA problem is a weak C-stationary

point of the true problem with probability one (w.p.1) [61]. This result needs to

consider the relationship between the Clarke subdifferential of expectation and the

expectation of the Clarke subdifferential, which is also a challenging task.

1.3 Contribution of the thesis

The contributions of this thesis are summarized as follows.

• In the first part, we propose a method to solve problems (1.1.1) and (1.1.2),

whose objective functions are nonconvex, nonsmooth, and highly composite.

Specifically, we first reformulate (1.1.1) and (1.1.2) equivalently as constrained

optimization problems with smooth objective functions. This is achieved by in-

troducing auxiliary variables to represent the composition structures and treat-

ing these representations as constraints. We prove that the solution sets of the

constrained problems with ℓ2 regularization are nonempty and compact. Fur-
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thermore, we establish that any feasible point of the constrained optimization

problems satisfies the no nonzero abnormal multiplier constraint qualification

(NNAMCQ), which immediately guarantees that any local minimizer of the

constrained problems is a Karush-Kuhn-Tucker (KKT) point.

Moreover, we propose an augmented Lagrangian method (ALM) to solve the

constrained optimization problems with ℓ2-norm regularization, and design a

block coordinate descent (BCD) method to address the subproblem of the ALM

at each iteration. The solutions of the BCD subproblems are straightforward

to be computed in closed-form. We prove that any accumulation point of the

sequence generated by the BCD method is a directional stationary point of the

subproblem. Furthermore, we establish that the stopping criterion of the BCD

method for solving the subproblem of the k-th iteration of the ALM can be

satisfied within O
(
1/(ϵk−1)

2
)

finite steps for any ϵk−1 > 0. Additionally, we

show that there exists at least an accumulation point of the sequence generated

by the ALM, and any accumulation point of the sequence is a KKT point of

the constrained problem with ℓ2-norm regularization.

We compare the performance of the ALM with several state-of-the-art methods

on synthetic datasets and real-world tasks, such as forecasting the volatility of

the S&P index, denoising TIMIT audios and denoising MNIST images. The

numerical results verify that our ALM outperforms other algorithms on both

the training sets and the test sets.

• In the second part, we prove that any accumulation point of minimizers and

stationary points of the SAA problems is a minimizer and a stationary point

of the original problem, respectively, w.p.1 as the sample size goes to infinity.

To be specific, we first explore the properties of the objective functions of (1.1.2)

and (1.1.3). After that, the convergence of the optimal value and the optimal
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solutions of SAA problems has been established through the uniform conver-

gence of the objective functions. Moreover, we prove that any accumulation

point of stationary points of SAA problem (1.1.2) is almost surely a station-

ary point of problem (1.1.2). Finally, numerical experiments are conducted to

verify the theoretical results.

1.4 Organization of the thesis

The thesis is organized as follows.

• In Chapter 1, we introduce the optimization problem with the expectation from

the RNN training process, and its corresponding SAA representation, which

are main problems addressed in the thesis. We then summarize existing works

that tackle these types of problems. In the last of the chapter, we summarize

the main contributions of the thesis.

• In Chapter 2, we define basic notation and outline the primary knowledge

required in the following chapters.

• In Chapter 3, we propose an ALM to solve the SAA problems (1.1.1) and (1.1.2)

in section 3.1 and 3.2, respectively. The methods for two problems are similar,

that is, we model the SAA form of RNNs training problem with the nonsmooth

activation functions as constrained optimization problem with smooth noncon-

vex objective functions and piecewise smooth nonconvex constraints. Then, we

propose an ALM and design an efficient BCD method to solve the subproblems

of the ALM. Furthermore, we establish the global convergence of the ALM to

a KKT point of the constrained optimization problem. Compared with the

state-of-the-art algorithms, numerical results demonstrate the efficiency and

effectiveness of the ALM for training RNNs.
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• In Chapter 4, we analyze the convergence of the solutions and stationary points

of the SAA problems. Numerical experiments are also provided to support

these results.

• In Chapter 5, we conclude the main results of our work and give some possible

further works.
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Chapter 2

Basic Notation and Preliminaries

In this chapter, we introduce the basic notation and preliminary concepts that will

be used throughout the thesis.

2.1 Basic notation

For column vectors x1, x2, . . . , xl, let

x := (x1;x2; . . . ;xl) = (x⊤1 , x
⊤
2 , . . . , x

⊤
l )⊤.

For a given matrix D ∈ Rk×l, we denote by D.j the j-th column of D and use

vec(D) = (D.1;D.2; . . . ;D.l) ∈ Rkl to represent a column-wise vectorization for ma-

trix D. For a given vector g, we use diag(g) to represent the diagonal matrix, whose

(i, i)-entry is the i-th component gi of g. We use el to represent the vector of all ones

in Rl. For ν ∈ R, ⌈ν⌉ refers to the smallest integer that is greater than or equal to ν.

Let N denote the set of natural numbers and N+ denote the set of positive integers.

For a given N ∈ N+, we denote [N ] := {1, 2, . . . , N}. Let R++ represent the set of

strictly positive real numbers. We use ∥ · ∥ and ∥ · ∥∞ to denote the ℓ2-norm and

infinity norm of a vector or a matrix, respectively. We denote by ∥ ·∥F the Frobenius

norm of a matrix. For two functions f : P → Q and g : Q → Z, the composite

function g(f(·)) is denoted by (g ◦ f)(·).
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For two sets P ,Q ⊂ Rn, d(x,P) := infx′∈P ∥x − x′∥ denotes the distance from

any x ∈ Rn to P , and D(P ,Q) := supx∈P d(x,Q) denotes the deviation of P from

the set Q. Moreover, H(P ,Q) := max{D(P ,Q),D(Q,P)} represents the Hausdorff

distance between the two sets.

2.2 Preliminaries

In this subsection, we introduce some fundamental concepts and definitions that will

be used throughout the thesis. We first state the definition of the local Lipschitz

continuity of a function.

In the following definitions in the section, let U represent an open subset of Rn1 .

Definition 2.1. (Local Lipschitz continuity) We say f : U → R is locally Lipschitz

continuous on U if for any x1 and x2 in U , x1 ̸= x2, the following inequality is

satisfied:

|f(x1) − f(x2)| ≤ Lf∥x1 − x2∥,

where Lf > 0 is the Lipschitz constant of f .

We then show the Lipschitz continuity for composite functions.

Lemma 2.1. [18, Theorem 12.6] Let f1 be Lipschitz continuous on a set D1 with

Lipschitz constant a1 and f2 be Lipschitz continuous on D2 with Lipschitz constant a2

such that f1(D1) ⊂ D2. Then the composite function f2 ◦ f1 is Lipschitz continuous

on D1 with Lipschitz constant a1a2.

We now introduce relevant definitions related to random variables. Let ξ : Ω → Ξ

denote a random variable defined on the probability space (Ω,F , P ). The expectation

of ξ is denoted by E[ξ].

Definition 2.2. [50, p. 361] It is said that E[ξ] is well-defined if ξ is measurable

and either E[(ξ)+] < +∞ or E[(−ξ)+] < +∞.
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Definition 2.3. (Integrable) [50, p. 361] It is said that ξ is integrable if E[ξ] is

well-defined and finite.

2.3 Stationary points of the nonsmooth
optimization

The problems (1.1.1), (1.1.2) and (1.1.3) are nonconvex and nonsmooth. Due to

the nonsmoothness of the objective function in these problems, the gradients at

nondifferential points are not well-defined. Therefore, the generalized gradients are

proposed for nonsmooth functions [16]. In this situation, the generalized gradients

at a point are not unique, where the collection of all generalized gradients at this

point is named as the subdifferential of the point. Various definitions are proposed to

represent subdifferentials for nonconvex functions. The following are the definitions

for different subdifferentials.

Definition 2.4. (Fréchet subdifferential and limiting subdifferential) [31, Definition

1.1][47, Definition 8.3, p. 301] Suppose that f : Rn1 → R is a lower semicontinuous

(lsc) function defined on Rn1. The Fréchet (F-) subdifferential ∂̂f(x̄) and the limiting

(l-) subdifferential ∂f(x̄) of f at x̄ ∈ Rn1 are respectively defined as

∂̂f(x̄) :=

{
g ∈ Rn1 : lim inf

x→x̄,x ̸=x̄

f(x) − f(x̄) − ⟨g, x− x̄⟩
∥x− x̄∥

≥ 0

}
,

∂f(x̄) :=
{
g ∈ Rn1 : ∃xk f→ x̄, gk → g with gk ∈ ∂̂f(xk), ∀k

}
,

where xk
f→ x̄ denotes xk → x̄ and f(xk) → f(x̄). Furthermore, the l-subdifferential

is also named the Mordukhovich subdifferential [40].

Definition 2.5. (Clarke subdifferential) For an lsc function f : Rn1 → R, the Clarke

(C-) subdifferential of f at x̄ is defined as follows:

∂cf(x̄) := conv ∂f(x̄),
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where conv represents the convex hull of the l-subdifferential of f at x̄.

A point x̄ is said to be a Fréchet stationary point of min f(x) if 0 ∈ ∂̂f(x̄), x̄ is

said to be a limiting stationary point of min f(x) if 0 ∈ ∂f(x̄), and x̄ is said to be a

Clarke stationary point of min f(x) if 0 ∈ ∂cf(x̄).

Then we give the definition of the directional (d-) stationary point, which corre-

sponds to the directional derivative of functions, i.e.,

Definition 2.6. (Directional derivative) [16, p. 30] The usual (one-side) directional

derivative of f at x in the direction d ∈ Rn1 is

f ′(x; d) := lim
λ↓0

f(x+ λd) − f(x)

λ
,

when the limit exists.

According to [43, Definition 2.1], we say that a point x̄ ∈ Rn1 is a d(irectional)-

stationary point of min f(x) if

f ′(x̄; d) ≥ 0, ∀d ∈ Rn1 .

The relationships among the above subdifferentials of f at x̄ are as follows:

∂̂f(x) ⊆ ∂f(x) ⊆ ∂cf(x), (2.3.1)

that is, a F-stationary point is a l-stationary point, and a l-stationary point is a

C-stationary point, but not vice versa [36, 34].

We now introduce a class of nonsmooth functions, known as Clarke regular func-

tions, which possess several desirable properties related to the subdifferential.

Definition 2.7. (Generalized directional derivative) [16, p. 10] The generalized

directional derivative of f at x in the direction d ∈ Rn1 is defined as follows:

f o(x; d) := lim sup
y→x
λ↓0

f(y + λd) − f(y)

λ
.
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Chapter 3

An Augmented Lagrangian

Method for Training Recurrent

Neural Networks

This chapter outlines the core contributions of the thesis, introducing an augmented

Lagrangian method (ALM) to solve the SAA problems (1.1.2) and (1.1.1) with non-

convex and nonsmooth objective functions, which arise from training RNNs. We

begin by introducing the method for problem (1.1.1) in section 3.1, which can be

regarded as a special case of problem (1.1.2) when the sample size N is set to one.

The practice significance of (1.1.1) lies in the application of time series forecasting

using RNNs , where only a single sample point is available at each time step. For

example, when forecasting the daily S&P index, we can only obtain one sample point

per day. After presenting the details of the ALM and its corresponding convergence

results, we extend the method to the more general problem (1.1.2) in section 3.2. The

frameworks of the ALM in these two sections are the same, with only modifications

to some expressions.
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3.1 ALM for problem (1.1.1)

Recall problem (1.1.1):

min
A,W,V,b,c

1

T

T∑
t=1

∥∥∥∥yt − (Aσ(W(...σ(V x1 + b)...
)

+ V xt + b
)

+ c

)∥∥∥∥2 .
In this section, we first equivalently reformulate problem (1.1.1) as a nonsmooth

nonconvex constrained minimization problem with a simple smooth objective func-

tion, showing that the solution set of the constrained problem with regularization

is nonempty and bounded, and give the first-order necessary optimality conditions

for the constrained problem and the regularized problem in subsection 3.1.1. After

that, we propose the ALM for the constrained problem with regularization, as well

as the BCD method for the subproblems of the ALM in subsection 3.1.2. We estab-

lish the convergence results of the BCD method, and the ALM in subsection 3.1.3.

Finally, we conduct numerical experiments on both the synthetic and real data in

subsection 3.1.4, which demonstrate the effectiveness and efficiency of the ALM for

the reformulated optimization problem.

3.1.1 Problem reformulation and optimality con-

ditions

For simplicity, we focus on the activation function σ: R → R as the ReLU function,

i.e.,

σ(u) = max{u, 0} = (u)+. (3.1.1)

It is worth mentioning that the models, algorithms, and theoretical analysis can be

generalized to the leaky ReLU and the ELU activation functions. Detailed analysis

for the extensions will be given in section 3.1.3.
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Problem reformulation

We utilize auxiliary variables h, u and denote vectors w, a, z, s as

h = (h1;h2; ...;hT ) ∈ RrT , u = (u1;u2; ...;uT ) ∈ RrT ,

w = (vec(W ); vec(V ); b) ∈ RNw , a = (vec(A); c) ∈ RNa ,

z = (w; a) ∈ RNw+Na , s = (z;h;u) ∈ RNw+Na+2rT ,

where Nw = r2 + rn+ r and Na = mr +m.

We reformulate problem (1.1.1) as the following constrained optimization prob-

lem:

min
s

1

T

T∑
t=1

∥yt − (Aht + c)∥2

s.t. ut = Wht−1 + V xt + b,

h0 = 0, ht = (ut)+, t = 1, 2, ..., T.

(3.1.2)

Problems (1.1.1) and (3.1.2) are equivalent in the sense that if (A∗,W ∗, V ∗, b∗, c∗) is

a global solution of (1.1.1), then s∗ = (z∗;h∗;u∗) is a global solution of (3.1.2) where

z∗ is defined by (A∗,W ∗, V ∗, b∗, c∗) and h∗,u∗ satisfy the constraints of (3.1.2) with

W ∗, V ∗, b∗. Conversely, if s∗ is a global solution of (3.1.2), then z∗ is a global

solution of (1.1.1).

Let us denote the mappings Φ : Rr 7→ Rm×Na and Ψ : RrT 7→ RrT×Nw as

Φ(ht) =
[
h⊤t ⊗ Im Im

]
, Ψ(h) =


0⊤
r ⊗ Ir x⊤1 ⊗ Ir Ir
h⊤1 ⊗ Ir x⊤2 ⊗ Ir Ir

...
...

...
h⊤T−1 ⊗ Ir x⊤T ⊗ Ir Ir

 , (3.1.3)

where ⊗ represents the Kronecker product, Ir and Im are the identity matrices with

dimensions r× r and m×m respectively, and 0r is the zero vector with dimension r.
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Thus, the objective function and constraints in problem (3.1.2) can be represented

as

ℓ(s) :=
1

T

T∑
t=1

∥yt − Φ(ht)a∥2 ,

C1(s) := u− Ψ(h)w = 0, C2(s) := h− (u)+ = 0.

(3.1.4)

To mitigate the overfitting, we further add a regularization term

p(s) := λ1∥A∥2F + λ2∥W∥2F + λ3∥V ∥2F + λ4∥b∥2 + λ5∥c∥2 + λ6∥u∥2 (3.1.5)

with λi > 0, i = 1, 2, . . . , 6 in the objective of problem (3.1.2), and consider the

following problem:

min R(s) := ℓ(s) + p(s)

s.t. s ∈ F := {s : C1(s) = 0, C2(s) = 0}.
(3.1.6)

Problem (3.1.2) and problem (3.1.6) have the same feasible set F . The constraint

function C1 is continuously differentiable, while the other constraint function C2 is

linear in h and piecewise linear in u. We denote by JC1(s) the Jacobian matrix of the

function C1 at s, and by JzC1(s), JhC1(s), JuC1(s) the Jacobian matrix of function

C1 at s with respect to the block z, h and u, respectively. Similarly, we use JhC2(s)

to represent the Jacobian matrix of C2 at s with respect to h. Moreover, for a fixed

vector ζ ∈ RrT , we use ∂
(
ζ⊤C2(s)

)
to denote the l-subdifferential of ζ⊤C2 at s and

∂u
(
ζ⊤C2(s)

)
to denote the l-subdifferential of ζ⊤C2 at s with respect to u.

The following lemma shows that the NNAMCQ [67, Definition 4.2, p. 1451] holds

at any feasible point s ∈ F .

Lemma 3.1. The NNAMCQ holds at any s ∈ F , i.e., there exist no nonzero vectors

ξ = (ξ1; ξ2; ...; ξT ) ∈ RrT and ζ = (ζ1; ζ2; ...; ζT ) ∈ RrT such that

0 ∈ JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
.
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Proof. By direct computation,

JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
=

 JzC1(s)⊤ξ
JhC1(s)⊤ξ + JhC2(s)⊤ζ
JuC1(s)⊤ξ + ∂u

(
ζ⊤C2(s)

)
 , (3.1.7)

where

JhC1(s)⊤ξ + JhC2(s)⊤ζ =
[
−W⊤ξ2 + ζ1; ...;−W⊤ξT + ζT−1; ζT

]
, (3.1.8)

JuC1(s)⊤ξ + ∂u
(
ζ⊤C2(s)

)
= ξ + ∂u(−ζ⊤(u)+). (3.1.9)

In order to achieve 0 ∈ JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
, it is necessary to require ζT = 0,

which is located in the last row of JhC1(s)⊤ξ+JhC2(s)⊤ζ. By ζT = 0 and (3.1.9), we

find ξT = 0. Substituting the results into (3.1.8) and (3.1.9) recursively and setting

(3.1.8) and (3.1.9) equal to 0, we can derive that there exist no nonzero vectors ξ

and ζ such that 0 ∈ JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
.

Definition 3.1. We say that s ∈ F is a KKT point of problem (3.1.2) if there exist

ξ ∈ RrT and ζ ∈ RrT such that

0 ∈ ∇ℓ(s) + JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
.

We say that s ∈ F is a KKT point of problem (3.1.6) if there exist ξ ∈ RrT and

ζ ∈ RrT such that

0 ∈ ∇R(s) + JC1(s)⊤ξ + ∂
(
ζ⊤C2(s)

)
.

Now we can establish the first-order necessary conditions for problem (3.1.2) and

problem (3.1.6).

Theorem 3.1. (i) If s̄ is a local solution of problem (3.1.2), then s̄ is a KKT point

of problem (3.1.2). (ii) If s̄ is a local solution of problem (3.1.6), then s̄ is a KKT

point of problem (3.1.6).
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Proof. Note that the objective functions of problem (3.1.2) and problem (3.1.6) are

continuously differentiable. The constraint functions C1 is continuously differentiable,

and C2 is Lipschitz continuous at any feasible point s ∈ F . By Lemma 3.1, NNAMCQ

holds at any s̄ ∈ F . Therefore, the conclusions of this theorem hold according to

[67, Remark 2 and Theorem 5.2].

Nonempty and compact solution set of (3.1.6)

Let S1 be the solution set of problem (3.1.6), and denote the level set

DR(ρ) := {s ∈ F : R(s) ≤ ρ} (3.1.10)

with a nonnegative scalar ρ.

Lemma 3.2. For any ρ > R(0), the level set DR(ρ) is nonempty and compact.

Moreover, the solution set S1 of (3.1.6) is nonempty and compact.

Proof. It is clear that 0 ∈ DR(ρ) and consequently DR(ρ) is nonempty. Moreover,

∥A∥2F ≤ ρ/λ1, ∥W∥2F ≤ ρ/λ2, ∥V ∥2F ≤ ρ/λ3, (3.1.11)

∥b∥2 ≤ ρ/λ4, ∥c∥2 ≤ ρ/λ5, ∥u∥2 ≤ ρ/λ6,

from R(s) ≤ ρ, ℓ(s) ≥ 0 and p(s) ≥ 0. Hence for s = (z;h;u) ∈ DR(ρ), z and u are

bounded, and consequently h is also bounded because h = (u)+.

Up to now, we have obtained the boundedness of DR(ρ). By the continuity of

R(s), we can assert that DR(ρ) is closed according to [47, Theorem 1.6]. Thus, we

can claim that the level set DR(ρ) is nonempty and compact for any ρ > R(0). Then,

the solution set S1 is nonempty and compact according to [7, Proposition A.8].

3.1.2 ALM with BCD method for (3.1.6)

To solve the regularized constrained problem (3.1.6), we develop in this section an

ALM. The subproblems of ALM are approximately solved by a BCD method whose
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update of each block owns a closed-form expression. This is not an easy task due

to the nonsmooth nonconvex constraints. The framework of the ALM is given in

Algorithm 1, in which the updating schemes for Lagrangian multipliers and penalty

parameters are motivated by [14]. It is worth mentioning that in [14], the constraints

are smooth. In problem (3.1.6), the constraints are nonsmooth nonconvex. For

solving the subproblems in the ALM, we design the BCD method in Algorithm 2

and provide the closed-form expression for the update of each block in the BCD.

Due to the nonsmooth nonconvex constraints in (3.1.6), the convergence analysis is

complex, which will be given in subsection 3.1.3.

The augmented Lagrangian (AL) function of problem (3.1.6) is

L(s, ξ, ζ, γ) := R(s) + ⟨ξ,u−Ψ(h)w⟩+ ⟨ζ,h− (u)+⟩+ γ
2 ∥u−Ψ(h)w∥2 + γ

2 ∥h− (u)+∥2

= R(s) +
γ

2

∥∥∥∥u−Ψ(h)w +
ξ

γ

∥∥∥∥2 + γ

2

∥∥∥∥h− (u)+ +
ζ

γ

∥∥∥∥2 − ∥ξ∥2

2γ
− ∥ζ∥2

2γ
, (3.1.12)

where ξ = (ξ1; ξ2; ...; ξT ) ∈ RrT and ζ = (ζ1; ζ2; ...; ζT ) ∈ RrT are the Lagrangian

multipliers, and γ > 0 is the penalty parameter for the two quadratic penalty terms

of constraints u = Ψ(h)w and h = (u)+. For convenience, we will also write

L(z,h,u, ξ, ζ, γ) to represent L(s, ξ, ζ, γ) when the blocks of s are emphasized.

We develop some basic results in the following two lemmas relating to the AL

function L. The explicit formulas for the gradients of L with respect to z and h in

Lemma 3.3 (iii) and (iv) will be used for obtaining the closed-form updates for the z

and h blocks in the BCD method, respectively. The Lipschitz constants L1(ξ, ζ, γ, r̂)

and L2(ξ, ζ, γ, r̂) in Lemma 3.4 are essential to design a practical stopping condition

(3.1.36) of the BCD method in Algorithm 2. The results will also be used for the

convergence results of the BCD method in Theorems 3.2 and 3.3.

Lemma 3.3. For any fixed γ, ξ and ζ, the following statements hold.
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(i) The AL function L is lower bounded that satisfies

L(s, ξ, ζ, γ) ≥ −∥ξ∥2

2γ
− ∥ζ∥2

2γ
for all s.

(ii) For any ŝ and Γ̂ ≥ r̂ := L(ŝ, ξ, ζ, γ), the level set

ΩL(Γ̂) := {s : L(s, ξ, ζ, γ) ≤ Γ̂}

is nonempty and compact.

(iii) The AL function L is continuously differentiable with respect to z, and the

gradient with respect to z is

∇zL(z,h,u, ξ, ζ, γ) =

[
Q̂1(s, ξ, ζ, γ)w + q̂1(s, ξ, ζ, γ)

Q̂2(s, ξ, ζ, γ)a + q̂2(s, ξ, ζ, γ)

]
,

where

Q̂1(s, ξ, ζ, γ) = γΨ(h)⊤Ψ(h) + 2Λ1, q̂1(s, ξ, ζ, γ) = −Ψ(h)⊤(ξ + γu),

Q̂2(s, ξ, ζ, γ) =
2

T

T∑
t=1

Φ(ht)
⊤Φ(ht) + 2Λ2, q̂2(s, ξ, ζ, γ) = − 2

T

T∑
t=1

Φ(ht)
⊤yt,

Λ1 = diag
((
λ2er2 ;λ3ern;λ4er

))
, Λ2 = diag

((
λ1erm;λ5em

))
.

(iv) The AL function L is continuously differentiable with respect to h, and the

gradient with respect to h is

∇hL(z,h,u, ξ, ζ, γ)

=
(
∇h1L(z,h,u, ξ, ζ, γ);∇h2L(z,h,u, ξ, ζ, γ); . . . ;∇hTL(z,h,u, ξ, ζ, γ)

)
,
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where

∇htL(z,h,u, ξ, ζ, γ) =

{
D1(s, ξ, ζ, γ)ht − d1t(s, ξ, ζ, γ), if t ∈ [T − 1],
D2(s, ξ, ζ, γ)hT − d2T (s, ξ, ζ, γ), if t = T,

D1(s, ξ, ζ, γ) = γW⊤W + 2
T
A⊤A+ γIr,

D2(s, ξ, ζ, γ) = 2
T
A⊤A+ γIr,

d1t(s, ξ, ζ, γ) = W⊤ (ξt+1 + γ(ut+1 − V xt+1 − b)) + γ(ut)+ − ζt + 2
T
A⊤(yt − c),

d2T (s, ξ, ζ, γ) = γ(uT )+ − ζT + 2
T
A⊤(yT − c).

Proof. Statement (i) can be easily obtained by the expression of L(s, ξ, ζ, γ) in

(3.1.12) and the nonnegativity of R(s) in (3.1.6).

For statement (ii), the nonemptiness and closeness of the level set ΩL(Γ̂) are

obvious. Moreover, R(s) and ∥h− (u)+ + ζ
γ
∥ are upper bounded for all s in ΩL(Γ̂).

The fact that R(s) is upper bounded implies that w, a,u are bounded. Then the

boundedness of ∥h− (u)+ + ζ
γ
∥ indicates that h is also bounded. Thus, s is bounded

and statement (ii) holds.

Statements (iii) and (iv) can be obtained by direct computation.

Lemma 3.4. For any z,h,u,h′,u′ in the level set ΩL(r̂), we have

∥∇zL(z,h′,u′, ξ, ζ, γ) −∇zL(z,h,u, ξ, ζ, γ)∥ ≤ L1(ξ, ζ, γ, r̂)

∥∥∥∥ h′ − h
u′ − u

∥∥∥∥ , (3.1.13)

∥∇hL(z,h,u′, ξ, ζ, γ) −∇hL(z,h,u, ξ, ζ, γ)∥ ≤ L2(ξ, ζ, γ, r̂) ∥u′ − u∥ , (3.1.14)

where

L1(ξ, ζ, γ, r̂) =
√

2 max{γδ1, δ2 + δ3 + δ4}, L2(ξ, ζ, γ, r̂) = γδ5, (3.1.15)
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with X := (x1;x2; ...;xT ) ∈ RnT ,

δ = r̂ +
∥ξ∥2

2γ
+

∥ζ∥2

2γ
, δ0 =

√
2δ

γ
+

√
δ

λ6
+

∥ζ∥
γ
, δ1 =

√
r(δ2 + ∥X∥2 + T ),

δ2 = 2γδ1

√
rδ

min{λ2, λ3, λ4}
, δ3 =

√
r∥ξ∥ + γ

√
rδ

λ6
,

δ4 =
2
√
m√
T

(
2
√
m(δ20 + 1)

√
δ

min{λ1, λ5}
+ max

1≤t≤T
∥yt∥

)
, δ5 =

√
δ(T − 1)

λ2
+
√
T .

Proof. Using Lemma 3.3 (iii), we have

∇zL(z,h′,u′, ξ, ζ, γ) −∇zL(z,h,u, ξ, ζ, γ) (3.1.16)

=

[
γ∆1w − (Ψ(h′) − Ψ(h))⊤ ξ − γ∆3

2
T

∑T
t=1 ∆2,ta− 2

T

∑T
t=1 (Φ(h′t) − Φ(ht))

⊤ yt

]
,

where ∆1 = Ψ(h′)⊤Ψ(h′) − Ψ(h)⊤Ψ(h) and ∆2,t = Φ(h′t)
⊤Φ(h′t) − Φ(ht)

⊤Φ(ht) and

∆3 = Ψ(h′)u′ − Ψ(h)u. It is easy to see that

∥∆1∥ = ∥Ψ(h′)⊤Ψ(h′) − Ψ(h′)⊤Ψ(h) + Ψ(h′)⊤Ψ(h) − Ψ(h)⊤Ψ(h)∥

≤ (∥Ψ(h′)∥ + ∥Ψ(h)∥) ∥Ψ(h′) − Ψ(h)∥. (3.1.17)

Similarly, we have

∥∆2,t∥ ≤ (∥Φ(h′t)∥ + ∥Φ(ht)∥) ∥Φ(h′t) − Φ(ht)∥, ∀t ∈ [T ], (3.1.18)

∥∆3∥ ≤ ∥Ψ(h′)∥∥u′ − u∥ + ∥u∥∥Ψ(h′) − Ψ(h)∥. (3.1.19)

Since s, s′ ∈ ΩL(Γ̂), we know that

ℓ(s) + p(s) +
γ

2

∥∥∥∥u− Ψ(h)w +
ξ

γ

∥∥∥∥2 +
γ

2

∥∥∥∥h− (u)+ +
ζ

γ

∥∥∥∥2 ≤ δ.

This, together with the expressions of ℓ(s) in (3.1.6) and p(s) in (3.1.5), yields

∥W∥F ≤
√

δ

λ2
, ∥a∥ ≤

√
δ

min{λ1, λ5}
, ∥w∥ ≤

√
δ

min{λ2, λ3, λ4}
, ∥u∥ ≤

√
δ

λ6
.

(3.1.20)
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Moreover, since ∥h∥ − ∥(u)+ − ζ
γ
∥ ≤ ∥h− (u)+ + ζ

γ
∥ ≤

√
2δ
γ

, we find

∥h∥ ≤ δ0. (3.1.21)

Using (3.1.3), we can easily obtain that

∥Ψ(h) − Ψ(h′)∥ ≤
√
r∥h′ − h∥, ∥Φ(h′t) − Φ(ht)∥ ≤

√
m∥h′t − ht∥, (3.1.22)

∥Ψ(h)∥ =
√
r(∥h∥2 + ∥X∥2 + T ), ∥Φ(ht)∥ =

√
m(∥ht∥2 + 1). (3.1.23)

Using the facts that for any ι1, ι1, . . . , ιj ∈ R, any g1, g2, . . . , gj ∈ Rnr , and any

matrices B1, B2, . . . , Bj ∈ Rnc×nr , ∥B1∥ ≤ ∥B1∥F , and∥∥∥∥∥∥
(j)∑
i=1

ιjBjgj

∥∥∥∥∥∥ ≤
j∑
i=1

|ιj|∥Bj∥∥gj∥,

j∑
i=1

∥ιigi∥ ≤ max
1≤i≤j

{|ιi|}
√
j∥(g1; . . . ; gj)∥,

(3.1.24)

taking the norm of both sides of (3.1.16), and employing (3.1.17)-(3.1.23), we can

get (3.1.13) with the expression of L1(ξ, ζ, γ, r̂) in (3.1.15) as desired.

Using Lemma 3.3 (iv), we have by direct computation

∇hL(z,h,u′, ξ, ζ, γ) −∇hL(z,h,u, ξ, ζ, γ)

= γW T

T−1∑
t=1

(ut+1 − u′t+1) + γ
T∑
t=1

((ut)+ − (u′t)+).

Taking the norm of both sides of the above system of equations, employing (3.1.20),

(3.1.24), and the facts ∥(ut)+ − (u′t)+∥ ≤ ∥u′t − ut∥ for each t, we can get (3.1.14)

with L2(ξ, ζ, γ, r̂) in the form of (3.1.15) as desired.

ALM for the regularized RNNs

To solve the regularized constrained problem (3.1.6), we propose the ALM in Algo-

rithm 1. The ALM first approximately solves (3.1.25) that aims to minimize the AL
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function with the fixed Lagrange multipliers ξk−1 and ζk−1, and the fixed penalty

parameter γk−1 for the quadratic terms, until sk satisfies the approximate first-order

optimality necessary condition (3.1.26) with tolerance ϵk−1. Then, the Lagrange

multipliers are updated, and the tolerance ϵk is reduced so that the subproblem is

solved more accurately in the next iteration. Moreover, the penalty parameter γk is

unchanged if the feasibility of sk is sufficiently improved compared to that of sk−1,

otherwise, γk is increased.

Algorithm 1 The augmented Lagrangian method (ALM) for (3.1.6)

1: Set an initial penalty parameter γ0 > 0, parameters η1, η2, η4 ∈ (0, 1) and η3 > 1,
an initial tolerance ϵ0 > 0, vectors of Lagrangian multipliers ξ0, ζ0, and a feasible
initial point s0 = (z0, ĥ, û) where ĥ0 = 0, ût = W 0ĥt−1+V 0xt+b

0 and ĥt = (ût)+
for t ∈ [T ].

2: Set k := 1.
3: Step 1: Solve

min
s

L(s, ξk−1, ζk−1, γk−1) (3.1.25)

to obtain sk satisfying the following condition

dist
(
0, ∂L(sk, ξk−1, ζk−1, γk−1)

)
≤ ϵk−1. (3.1.26)

4: Step 2: Update ϵk = η4ϵk−1, ξ
k−1 and ζk−1 as

ξk = ξk−1 + γk−1

(
uk − Ψ(hk)wk

)
, ζk = ζk−1 + γk−1

(
hk − (uk)+

)
. (3.1.27)

5: Step 3: Set γk = γk−1, if the following condition is satisfied

max
{
∥C1(sk)∥, ∥C2(sk)∥

}
≤ η1 max

{
∥C1(sk−1)∥, ∥C2(sk−1)∥

}
. (3.1.28)

Otherwise, set

γk = max
{
γk−1/η2,

∥∥ξk∥∥1+η3 ,∥∥ζk∥∥1+η3} . (3.1.29)

6: Let k − 1 := k and go to Step 1.

Remark 3.1. The main operation of Algorithm 1 is to approximately solve the sub-
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problem (3.1.25). Furthermore, to show that Algorithm 1 is well-defined requires that

the algorithm for solving the subproblem (3.1.25) can be terminated within finite steps

to meet the stopping condition in (3.1.26).

In the next subsection, we will design a BCD method to solve the subproblem

(3.1.25). The update of each block of the BCD method owns a closed-form formula,

which makes the BCD method efficient. Moreover, the stopping condition (3.1.26)

can be replaced by a more straightforward condition (3.1.36) as will be shown in

Theorem 3.2.

BCD method for subproblem

To solve the nonsmooth nonconvex problem (3.1.25) in Step 1 of Algorithm 1, we

propose a BCD method in Algorithm 2 to solve the subproblem at the k-th itera-

tion in the ALM. The main idea of the BCD method is to split the variables into

several blocks and update each block by fixing the other components, so that a

complex optimization problem can be solved by addressing several simpler subprob-

lems. This method performs competitively in various applications, including several

in computational statistics and machine learning [58]. The BCD method has made

significant strides in recent years, with techniques such as randomization, accelera-

tion, and parallel computing being successfully applied to enhance its performance

and scalability. Meanwhile, the convergence of the BCD method has also been grad-

ually established. In the early stages of using the BCD method to solve nonconvex

and nonsmooth problems, Tseng [55] proposed that for a nondifferentiable and non-

convex problem with N block variables, if N − 1 subproblems have at most one

minimum, any accumulation point of the sequences is a coordinate-wise minimum

point of the objective function. At this stage, each subproblem was required to be

solved exactly and must yield a unique minimizer, which is difficult to achieve for

many problems. Subsequently, the prox-linear update scheme was proposed to inex-
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actly solve each subproblem, and the algorithm was shown to globally converge to

a critical point [56, 8]. The new scheme makes the BCD method easier to compute

and gives a better solution overall. Furthermore, Xu and Yin [65] used extrapolation

to accelerate the convergence of the prox-linear update scheme, and they further

established its global convergence (of the whole sequence) to a critical point under

the Kurdyka– Lojasiewicz property of the objective function [66].

By observing our subproblems (3.1.25),

L(s, ξk−1, ζk−1, γk−1) =R(s) + ⟨ξk−1,u− Ψ(h)w⟩ + ⟨ζk−1,h− (u)+⟩

+ γk−1

2
∥u− Ψ(h)w∥2 + γk−1

2
∥h− (u)+∥2 ,

we find that the nonconvexity is mainly caused by the bilinear term −Ψ(h)w, as

well as the term −(u)+. Therefore, we divide the variable s into three blocks z, h,

and u, and alternatively update each block. Furthermore, each subproblem admits

a closed-form solution. The details of our method are presented below.

Let us choose a constant Γ such that

Γ ≥ L
(
s0, ξ0, ζ0, γ0

)
. (3.1.30)

Because at the k-th iteration of the ALM, ξk−1, ζk−1, γk−1 are fixed, we just

write ξ, ζ, γ in the BCD method for brevity. Furthermore, for the BCD solving the

subproblem appearing at the k-th iteration of the ALM, we define

sk−1,j
z := (zk−1,j;hk−1,j−1;uk−1,j−1), sk−1,j

h := (zk−1,j;hk−1,j;uk−1,j−1)(3.1.31)

to denote the point obtained after updating the z block, and updating the h block

at the j-th iteration of the BCD method, and we use

sk−1,j = (zk−1,j;hk−1,j;uk−1,j) (3.1.32)

to represent the point obtained at the j-th iteration of the BCD method after up-

dating the u block.

28



Algorithm 2 Block Coordinate Descent (BCD) method for (3.1.25)

1: Set the initial point of BCD algorithm as

sk−1,0 =

{
sk−1, if k > 1 and L

(
sk−1, ξ, ζ, γ

)
≤ Γ,

s0, otherwise.

Compute r̂k−1 = L(sk−1,0, ξ, ζ, γ), L1,k−1 = L1(ξ, ζ, γ, r̂k−1) and L2,k−1 =
L2(ξ, ζ, γ, r̂k−1) by formula (3.1.15).

2: Set j := 1.
3: while the stop criterion is not met do
4: Step 1: Update blocks zk−1,j, hk−1,j and uk−1,j separately as

zk−1,j = arg min
z

L
(
z,hk−1,j−1,uk−1,j−1, ξ, ζ, γ

)
, (3.1.33)

hk−1,j = arg min
h

L
(
zk−1,j,h,uk−1,j−1, ξ, ζ, γ

)
, (3.1.34)

uk−1,j ∈ arg min
u

L
(
zk−1,j,hk−1,j,u, ξ, ζ, γ

)
+ β

2

∥∥u− uk−1,j−1
∥∥2 . (3.1.35)

Then set sk−1,j = (zk−1,j;hk−1,j;uk−1,j).
5: Step 2: If the stop criterion∥∥sk−1,j − sk−1,j−1

∥∥ ≤ ϵk−1

max{L1,k−1, L2,k−1, β}
(3.1.36)

is not satisfied, then set j := j + 1 and go to Step 1.
6: end while
7: return sk = sk−1,j.

Condition (3.1.26) is satisfied when (3.1.36) holds, which will be proved in The-

orem 3.2. The closed-form solutions of problems (3.1.33), (3.1.34) and (3.1.35) are

provided below.

Update zk−1,j: Problem (3.1.33) is an unconstrained optimization problem with

a smooth and strongly convex objective function. By employing Lemma 3.3 (iii) and

solving

∇zL(sk−1,j
z , ξ, ζ, γ) = 0,
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the unique global minimizer zk−1,j = (wk−1,j; ak−1,j) can be computed as

wk−1,j = −Q̂1(s
k−1,j
z , ξ, ζ, γ)

−1
q̂1(s

k−1,j
z ; ξ, ζ, γ),

ak−1,j = −Q̂2(s
k−1,j
z , ξ, ζ, γ)

−1
q̂2(s

k−1,j
z , ξ, ζ, γ).

Update hk−1,j: The objective function of (3.1.34) is also strongly convex and

smooth. By employing Lemma 3.3 (iv) and solving ∇hL(sk−1,j
h , ξ, ζ, γ) = 0, we get

its unique global minimizer, given by

hk−1,j
t =

{
D1(s

k−1,j
h , ξ, ζ, γ)

−1
d1t(s

k−1,j
h , ξ, ζ, γ), if t ∈ [T − 1],

D2(s
k−1,j
h , ξ, ζ, γ)

−1
d2T (sk−1,j

h , ξ, ζ, γ), if t = T.
(3.1.37)

Update uk−1,j: Although problem (3.1.35) is nonsmooth nonconvex, one of its

global solutions is accessible, because the objective function of problem (3.1.35) can

be separated into rT one-dimensional functions with the same structure. Thus, we

aim to solve the following one-dimensional problem:

min
u∈R

φ(u) := γ
2
(u− θ1)

2 + γ
2
(θ2 − (u)+)2 + β

2
(u− θ3)

2 + λ6u
2, (3.1.38)

where θ1, θ2, θ3 ∈ R are known real numbers. Denote

u+ := arg min
u∈R+

φ(u) and u− := arg min
u∈R−

φ(u). (3.1.39)

By direct computation,

u+ =


γθ1 + γθ2 + βθ3

2γ + 2λ6 + β
, if γθ1 + γθ2 + βθ3 > 0,

0, otherwise,
(3.1.40)

and

u− =


γθ1 + βθ3
γ + 2λ6 + β

, if γθ1 + βθ3 < 0,

0, otherwise.
(3.1.41)
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Then a solution of (3.1.38) can be given as

u∗ =

{
u+, if φ(u+) ≤ φ(u−),
u−, otherwise.

By setting

θ1 = (Ψ(hk−1,j)wk−1,j)i −
ξi
γ
, θ2 = hk−1,j

i +
ζi
γ
, θ3 = uk−1,j−1

i ,

uk−1,j
i = u∗, ui

+ = u+, ui
− = u−,

we obtain a closed-form solution of problem (3.1.35) as

uk−1,j
i =

{
u+
i , if φ(u+

i ) ≤ φ(u−
i ),

u−
i , otherwise, i = 1, . . . , rT.

Remark 3.2. It is important to mention that the solution set of problem (3.1.35)

may not be a singleton. To ensure the selected solution is unique, we set uk−1,j
i = u+

i

when φ(u+
i ) = φ(u−

i ) for every i ∈ [rT ].

3.1.3 Convergence analysis

In this section, we show the convergence results of both the BCD method for the

subproblem of the ALM, as well as the ALM for (3.1.6).

Convergence analysis of Algorithm 2

It is clear that

L(s, ξ, ζ, γ) = g(s, ξ, γ) + q(s, ζ, γ), (3.1.42)

where

g(s, ξ, γ) = R(s) +
γ

2

∥∥∥∥u− Ψ(h)w +
ξ

γ

∥∥∥∥2 − ∥ξ∥2

2γ
, (3.1.43)

q(s, ζ, γ) =
γ

2

∥∥∥∥h− (u)+ +
ζ

γ

∥∥∥∥2 − ∥ζ∥2

2γ
. (3.1.44)
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The function g is smooth but nonconvex, because it contains the bilinear structure

Ψ(h)w. The function q is nonsmooth nonconvex.

For the convergence analysis below, we further use s
(j)
z and s

(j)
h to represent

sk−1,j
z and sk−1,j

h in (3.1.31), and use s(j) to represent sk−1,j in (3.1.32) for brevity.

We emphasize that the point sk is generated by the ALM in Algorithm 1, while the

point s(j) is generated by the BCD method in Algorithm 2 for solving the subproblem

(3.1.25) in the ALM at the k-th iteration.

The following two lemmas will be used in proving the convergence results of the

BCD method.

Lemma 3.5. Let {s(j)} represent the sequence generated by Algorithm 2. Then {s(j)}

belongs to the level set ΩL(Γ), which is compact.

Proof. By (3.1.33), (3.1.34) and (3.1.35), we know that for any j ∈ N,

L
(
s(j), ξ, ζ, γ

)
≤ L

(
s
(j)
h , ξ, ζ, γ

)
≤L
(
s(j)z , ξ, ζ, γ

)
≤L
(
s(j−1), ξ, ζ, γ

)
. (3.1.45)

By the definition of Γ in Algorithm 2 and (3.1.45), we can deduce that

L
(
s(j), ξ, ζ, γ

)
≤ Γ, ∀j ∈ N. (3.1.46)

By the definition of ΩL(Γ) and Lemma 3.3 (ii), the proof is completed.

Lemma 3.6. The AL function L is locally Lipschitz continuous and directionally

differentiable on ΩL(Γ).

Proof. It is clear that ΩL(Γ) is compact by Lemma 3.3 (ii). For the smooth part g in

L, its gradient for those s ∈ ΩL(Γ) is upper bounded. Now, let us turn to consider

the nonsmooth part q in L. Let s = (z;h;u) and s′ = (z′;h′;u′) be any two points
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in ΩL(Γ). We have∣∣q(s′, ζ, γ) − q(s, ζ, γ)
∣∣

≤ γ
2

∣∣∣∥∥h′ − (u′)+ + ζ
γ

∥∥2 − ∥∥h− (u)+ + ζ
γ

∥∥2∣∣∣
≤ γ

2

∥∥h′ − (u′)+ − (h− (u)+)
∥∥∥∥h′ − (u′)+ + h− (u)+ + 2 ζ

γ

∥∥
≤
(

2γ max
s∈ΩL(Γ)

{∥h∥∞ + ∥u∥∞} + ∥ζ∥
)

(∥h′ − h∥ + ∥u′ − u∥).

Up to now, we have proved the Lipschitz continuity of g and q on ΩL(Γ), which

implies that L is Lipschitz continuous on ΩL(Γ).

The above result, together with the piecewise smoothness of function L, yields

that L is directionally differentiable on ΩL(Γ) by [37].

We can now show that the stop criterion (3.1.36) in Algorithm 2 can be satisfied

in finite steps, and condition (3.1.26) in Algorithm 1 is satisfied when (3.1.36) holds.

These results guarantee that the ALM in Algorithm 1 is well-defined, when the

subproblems are solved by the BCD method in Algorithm 2.

Theorem 3.2. At the k-th iteration of ALM in Algorithm 1, the BCD method in

Algorithm 2 for the subproblem (3.1.25) can be stopped within finite steps to satisfy

the stop criterion in (3.1.36), which is of order O(1/(ϵk−1)
2). Moreover, condition

(3.1.26) of the ALM in Algorithm 1 is satisfied at the output sk of Algorithm 2.

Proof. Since L is strongly convex with respect to the blocks z and h, respectively,

from (3.1.33) and (3.1.34), we obtain

L(s(j−1), ξ, ζ, γ) − L(s(j)z , ξ, ζ, γ) ≥ α1

2
∥z(j−1) − z(j)∥2, (3.1.47)

L(s(j)z , ξ, ζ, γ) − L(s
(j)
h , ξ, ζ, γ) ≥ α2

2
∥h(j−1) − h(j)∥2, (3.1.48)

where α1 and α2 are the minimum eigenvalues of the Hessian matrices ∇2
zL(s, ξ, ζ, γ)

and ∇2
hL(s, ξ, ζ, γ) for all s in the compact set ΩL(Γ), respectively. Furthermore, by
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(3.1.35), we have

L(s
(j)
h , ξ, ζ, γ) − L(s(j), ξ, ζ, γ) ≥ β

2

∥∥u(j) − u(j−1)
∥∥2 .

It follows that

L(s(j−1), ξ, ζ, γ) − L(s(j), ξ, ζ, γ)

=
(
L(s(j−1), ξ, ζ, γ) − L(s(j)z , ξ, ζ, γ)

)
+
(
L(s(j)z , ξ, ζ, γ) − L(s

(j)
h , ξ, ζ, γ)

)
+
(
L(s

(j)
h , ξ, ζ, γ) − L(s(j), ξ, ζ, γ)

)
≥ α1

2
∥z(j) − z(j−1)∥2 + α2

2
∥h(j) − h(j−1)∥2 + β

2
∥u(j) − u(j−1)∥2

≥ max{α1

2
, α2

2
, β
2
}∥s(j) − s(j−1)∥2.

Summing up L(s(j−1), ξ, ζ, γ) − L(s(j), ξ, ζ, γ) from j = 1 to J , we have

L(s(0), ξ, ζ, γ) − L(s(J), ξ, ζ, γ) ≥ max{α1

2
, α2

2
, β
2
}

J∑
j=1

∥s(j) − s(j−1)∥2 (3.1.49)

≥ J max{α1

2
, α2

2
, β
2
}min

j∈[J]
{∥s(j) − s(j−1)∥2}.

This, together with Lemma 3.3 (i), yields that

min
j∈[J]

{∥s(j) − s(j−1)∥2} ≤
L(s(0), ξ, ζ, γ) + ∥ξ∥2

2γ
+ ∥ζ∥2

2γ

J max{α1

2
, α2

2
, β
2
}

.

It follows that the stop criterion (3.1.36) holds, as long as

J ≥ Ĵ :=

⌈(
L(s(0), ξ, ζ, γ) + ∥ξ∥2

2γ
+ ∥ζ∥2

2γ

)
(max{L1,k−1, L2,k−1, β})2

max{α1

2
, α2

2
, β
2
}(ϵk−1)2

⌉
. (3.1.50)

Therefore, at the k-th iteration of the ALM in Algorithm 1, the BCD method in

Algorithm 2 can be stopped in at most Ĵ iterations defined in (3.1.50) and output

sk, which is of order O(1/(ϵk−1)
2).
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Once condition (3.1.36) is satisfied, condition (3.1.26) in Algorithm 1 also holds,

which will be proved in the following. By Step 1 in Algorithm 2, the first order

optimality condition of the three blocked subproblems (3.1.33), (3.1.34) and (3.1.35)

are

0 = ∇zL(s(j)z , ξ, ζ, γ), 0 = ∇hL(s
(j)
h , ξ, ζ, γ),

0 ∈ ∇ug(s(j), ξ, γ) + ∂uq(s
(j), ζ, γ) + β(u(j) − u(j−1)).

Furthermore, the l-subdifferential of the function L at s(j) can be written as

∂L(s(j), ξ, ζ, γ) =
(
∇zL(s(j), ξ, ζ, γ);∇hL(s(j), ξ, ζ, γ);∇ug(s(j), ξ) + ∂uq(s

(j), ζ)
)
.

Hence  ∇zL(s(j), ξ, ζ, γ) −∇zL(s
(j)
z , ξ, ζ, γ)

∇hL(s(j), ξ, ζ, γ) −∇hL(s
(j)
h , ξ, ζ, γ)

−β(u(j) − u(j−1))

 ∈ ∂L(s(j), ξ, ζ, γ).

By Lemma 3.4, we obtain

dist
(
0, ∂L(s(j), ξ, ζ, γ)

)
≤

∥∥∥∥∥∥
∇zL(s(j), ξ, ζ, γ) −∇zL(s

(j)
z , ξ, ζ, γ)

∇hL(s(j), ξ, ζ, γ) −∇hL(s
(j)
h , ξ, ζ, γ)

−β(u(j) − u(j−1))

∥∥∥∥∥∥
≤ max{L1,k−1, L2,k−1, β}∥s(j) − s(j−1)∥.

Thus condition (3.1.36) that ∥s(j) − s(j−1)∥ ≤ ϵk−1/max{L1,k−1, L2,k−1, β}, together

with sk = s(j), implies dist(0, ∂L(s(k), ξ, ζ, γ)) ≤ ϵk−1 in condition (3.1.26).

In Theorem 3.2, we have proved that a BCD method, with subproblems admitting

closed-form solutions and employing a cyclic updating rule, achieves an iteration com-

plexity of O(1/ϵ2) for nonconvex and nonsmooth problems, while the BCD method

achieves an iteration complexity of O(1/ϵ) for nonsmooth and convex problems [26],

and O(log(1/ϵ)) for smooth and strongly convex problems [1].
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Theorem 3.2 guarantees that the BCD method in Algorithm 2 terminates within

finite steps to meet the stop criterion (3.1.36) for a fixed ϵk−1 > 0. In the rest of this

subsection, we discuss the convergence of Algorithm 2 for the case ϵk−1 = 0, i.e., we

replace the stop criterion (3.1.36) by

∥∥sk−1,j − sk−1,j−1
∥∥ = 0. (3.1.51)

We will show in Theorem 3.4 that the BCD method converges to a d-stationary

point if ϵk−1 = 0. For this purpose, we first show the following theorem that provides

the convergence of the sequences of the function values L with respect to the three

blocks, as well as the convergence of the subsequences of the iterative points with

respect to the three blocks.

Theorem 3.3. Suppose that (3.1.36) is replaced by (3.1.51) in Algorithm 2. If there

is j̄ such that (3.1.51) holds, then

L(s(j̄)z , ξ, ζ, γ) = L(s
(j̄)
h , ξ, ζ, γ) = L(s(j̄), ξ, ζ, γ) and s(j̄)z = s

(j̄)
h = s(j̄). (3.1.52)

Otherwise, Algorithm 2 generates infinite sequences {s(j)z }, {s(j)h } and {s(j)}, and the

following statements hold.

(i) The sequences {L(s
(j)
z , ξ, ζ, γ)}, {L(s

(j)
h , ξ, ζ, γ)} and {L(s(j), ξ, ζ, γ)} all con-

verge to a constant L∗.

(ii) There exists a subsequence {ji} ⊆ {j} such that {s(ji)z }, {s(ji)h } and {s(ji)}

converge to the same point.

Proof. If there is j̄ such that (3.1.51) holds, then (3.1.52) is derived directly from

sk−1,j̄ = sk−1,j̄−1 and (3.1.33)-(3.1.35).

If there is no j̄ such that (3.1.51) holds, then Algorithm 2 generates infinite

sequences {s(j)z }, {s(j)h } and {s(j)}.
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(i) By Lemma 3.5, there exists an infinite subsequence {ji} ⊆ {j} such that

s(ji) → s̄ as ji → ∞. Let L∗ = L(s̄). We can easily deduce that statement (i) holds,

by the descent inequality (3.1.45) and the lower boundedness of {L(s(j), ξ, ζ, γ)}

according to Lemma 3.3 (i).

(ii) To further prove that {s(ji)z } and {s(ji)h } also converge to s̄, it is sufficient to

prove

lim
i→∞

∥s(ji) − s(ji)z ∥ = 0, lim
i→∞

∥s(ji) − s
(ji)
h ∥ = 0. (3.1.53)

Letting J go to infinity and replacing (j) in (3.1.49) by (ji), it is easy to have

that
∑∞

i=1 ∥s(ji) − s(ji−1)∥2 <∞. Hence,

lim
i→∞

∥s(ji) − s(ji−1)∥ = 0,

which together with

∥s(ji) − s(ji)z ∥ ≤ ∥h(ji) − h(ji−1)∥ + ∥u(ji) − u(ji−1)∥,

∥s(ji) − s
(ji)
h ∥ ≤ ∥u(ji) − u(ji−1)∥,

implies the validity of (3.1.53).

Now, we show that Algorithm 2 generates a d-stationary point of problem (3.1.25).

For convenience, we adopt a simple expression for the directional derivative of a func-

tion, emphasizing the blocks of the direction. For example, if d = (dz; dh; du), we also

write L′(s, ξ, ζ, γ; d) = L′(s, ξ, ζ, γ; (dz, dh, du)) instead of L′(s, ξ, ζ, γ; (dz; dh; du)).

Lemma 3.7. If the directional derivatives of L at s̄ ∈ ΩL(Γ) satisfy

L′(s̄, ξ, ζ, γ; (dz, 0, 0)
)
≥ 0, L′(s̄, ξ, ζ, γ; (0, dh, 0)

)
≥ 0, L′(s̄, ξ, ζ, γ; (0, 0, du)

)
≥ 0,

along any dz ∈ RNw+Na, dh ∈ RrT and du ∈ RrT , then

L′(s̄, ξ, ζ, γ; d) ≥ 0, ∀ d ∈ RNw+Na+2rT .
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Proof. By (3.1.42), the directional derivative of L at s̄ along d ∈ RNw+Na+2rT refers

to L′(s̄, ξ, ζ, γ; d) = g′(s̄, ξ, γ; d) + q′(s̄, ζ, γ; d). It is clear that

g′(s̄, ξ, γ; d) = ⟨∇zg(s̄, ξ, γ), dz⟩ + ⟨∇hg(s̄, ξ, γ), dh⟩ + ⟨∇ug(s̄, ξ, γ), du⟩. (3.1.54)

The directional derivative of nonsmooth part q remains to be considered. The func-

tion q can be separated into rT one-dimensional functions with the same structure,

i.e.,

ϕ(h̄, ū) = (h̄− (ū)+ + ν1)
2 − ν21 ,

where h̄, ū ∈ R are variables and ν1 ∈ R is a constant. The directional derivative of

ϕ along the direction (d̄1; d̄2) ∈ R2 can be represented as the sum of the directional

derivatives of ϕ along (d̄1; 0) and (0; d̄2) by the definition of directional derivative,

i.e.,

ϕ′
(
h̄, ū; (d̄1, d̄2)

)
= lim

λ↓0

(
h̄+ λd̄1 −

(
ū+ λd̄2

)
+
+ ν1

)2
−
(
h̄−

(
ū
)
+
+ ν1

)2
λ

= ϕ′
(
h̄, ū; (d̄1, 0)

)
+ ϕ′

(
h̄, ū; (0, d̄2)

)
− lim

λ↓0

2λd̄1
(
(u+ λd̄2)+ − (u)+

)
λ

,

where

ϕ′(h̄, ū; (d̄1, 0)
)

= lim
λ↓0

(
h̄+ λd̄1 − (ū)+ + ν1

)2 − (h̄− (ū)+ + ν1
)2

λ

= lim
λ↓0

(h̄+ λd̄1 + ν1)
2 − (h̄+ ν1)

2 − 2(λd̄1)(ū)+
λ

,

ϕ′(h̄, ū; (0, d2)
)

= lim
λ↓0

(
h̄+ ν1 − (ū+ λd̄2)+

)2 − (h̄+ ν1 − (ū)+
)2

λ

= lim
λ↓0

(ū+ λd̄2)
2
+ − (ū)2+ − 2(h̄+ ν1)

(
(ū+ λd̄2)+ − (ū)+

)
λ

,

and limλ↓0
2λd̄1((u+λd̄2)+−(u)+)

λ
= 0. By setting h̄ = h̄i, ū = ūi, d̄1 = (dh)i, d̄2 = (du)i,
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ν1 = ζi
γ

, we have

q′(s̄, ζ, γ; d̄) =
γ

2

rT∑
i=1

ϕ′(h̄i, ūi; ((dh)i, (du)i)
)

=
γ

2

rT∑
i=1

ϕ′(h̄i, ūi; ((dh)i, 0)
)

+ ϕ′
i

(
h̄i, ūi; (0, (du)i)

)
= q′

(
s̄, ζ, γ; (0, dh, 0)

)
+ q′

(
s̄, ζ, γ; (0, 0, du)

)
.

This, along with (3.1.54), yields that

L′(s̄, ξ, ζ, γ; d)

= ⟨∇zg(s̄, ξ, γ), dz⟩ + ⟨∇hg(s̄, ξ, γ), dh⟩ + ⟨∇ug(s̄, ξ, γ), du⟩

+q′
(
s̄, ζ, γ; (0, dh, 0)

)
+ q′

(
s̄, ζ, γ; (0, 0, du)

)
= L′(s̄, ξ, ζ, γ; (dz, 0, 0)) + L′(s̄, ξ, ζ, γ; (0, dh, 0)) + L′(s̄, ξ, ζ, γ; (0, 0, du)).

Hence, Lemma 3.7 holds.

As problem (3.1.25) is nonsmooth nonconvex, there are many kinds of stationary

points for it, such as a Fréchet stationary point, a limiting stationary point, and a d-

stationary point. It is known that a limiting stationary point is a Fréchet stationary

point, and a d-stationary point is a limiting stationary point, but not vice versa

[36]. The theorem below guarantees that either the BCD method terminates at a d-

stationary point of problem (3.1.25) in finite steps, or any accumulation point of the

sequence generated by the BCD method is a d-stationary point of problem (3.1.25).

Theorem 3.4. Suppose that (3.1.36) is replaced by (3.1.51) in Algorithm 2. If there

is j̄ such that (3.1.51) holds, then s(j̄) is a d-stationary point of problem (3.1.25).

Otherwise, Algorithm 2 generates an infinite sequence {s(j)} and any accumulation

point of {s(j)} is a d-stationary point of problem (3.1.25).
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Proof. If there is j̄ such that (3.1.51) holds, then sk−1,j̄ = sk−1,j̄−1, i.e., s(j̄) = s(j̄−1).

This, combined with (3.1.52) of Theorem 3.3, yields that s
(j̄)
z = s

(j̄)
h = s(j̄) = s(j̄−1).

Thus by (3.1.33)-(3.1.35) in Algorithm 2, we have for any λ > 0 and any dz ∈

RNw+Na , dh ∈ RrT , du ∈ RrT ,

L(s(j̄), ξ, ζ, γ) ≤ L
(
s(j̄) + λ(dz, 0, 0), ξ, ζ, γ

)
,

L(s(j̄), ξ, ζ, γ) ≤ L
(
s(j̄) + λ(0, dh, 0), ξ, ζ, γ

)
,

L(s(j̄), ξ, ζ, γ) ≤ L
(
s(j̄) + λ(0, 0, du), ξ, ζ, γ

)
.

By Lemma 3.6 and the definition of the directional derivative, we get for any dz, dh,

du,

L′(s(j̄), ξ, ζ, γ; (dz, 0, 0)) ≥ 0, L′(s(j̄), ξ, ζ, γ; (0, dh, 0)) ≥ 0,

L′(s(j̄), ξ, ζ, γ; (0, 0, du)) ≥ 0.

The above inequalities, along with Lemma 3.7, yield that L′(s(j̄), ξ, ζ, γ; d) ≥ 0 for

any d ∈ RNw+Na+2rT . Hence, s(j̄) is a d-stationary point of problem (3.1.25).

If there is no j̄ such that (3.1.51) holds, then Algorithm 2 generates an infinite

sequence {s(j)}. By (3.1.35), we have

L(s(j), ξ, ζ, γ) ≤ L(s(j), ξ, ζ, γ) +
β

2
∥u(j) − u(j−1)∥2 ≤ L(s

(j)
h , ξ, ζ, γ).

Letting j → ∞ in the above inequalities and using Theorem 3.3 (i), we have

lim
j→∞

∥u(j) − u(j−1)∥ = 0.

By Theorem 3.3 (ii), let {s(ji)z }, {s(ji)h } and {s(ji)} be any convergent subsequence

with limit s̄. Furthermore, by (3.1.33)-(3.1.35) in Algorithm 2, we have for any
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λ > 0 and any dz ∈ RNw+Na , dh ∈ RrT , du ∈ RrT ,

L(s(ji)z , ξ, ζ, γ) ≤ L
(
s(ji)z + λ(dz, 0, 0), ξ, ζ, γ

)
,

L
(
s
(ji)
h , ξ, ζ, γ

)
≤ L

(
s
(ji)
h + λ(0, dh, 0), ξ, ζ, γ

)
,

L(s(ji), ξ, ζ, γ) ≤ L
(
s(ji) + λ(0, 0, du), ξ, ζ, γ

)
+ β

2
∥u(ji) + λdu − u(ji−1)∥2.

As i→ ∞, the above inequalities imply that for any λ > 0 and any dz, dh, du,

L(s̄, ξ, ζ, γ) ≤ L
(
s̄ + λ(dz, 0, 0), ξ, ζ, γ

)
, L(s̄, ξ, ζ, γ) ≤ L

(
s̄ + λ(0, dh, 0), ξ, ζ, γ

)
,

L(s̄, ξ, ζ, γ) ≤ L
(
s̄ + λ(0, 0,du), ξ, ζ, γ

)
+ β

2
λ2∥du∥2.

By Lemma 3.6 and the definition of directional derivative, it follows that

L′(s̄, ξ, ζ, γ; (dz, 0, 0)) ≥ 0, L′(s̄, ξ, ζ, γ; (0, dh, 0)) ≥ 0, L′(s̄, ξ, ζ, γ; (0, 0, du)) ≥ 0,

for any dz, dh and du. The above inequalities, along with Lemma 3.7, yield that s̄ is

a d-stationary point of problem (3.1.25).

Convergence analysis of Algorithm 1

By Theorem 3.2, the ALM in Algorithm 1 is well-defined, since Step 1 can always

be fulfilled in finite steps by the BCD method in Algorithm 2.

It is well known that the classical ALM may converge to an infeasible point. In

contrast, the following theorem guarantees that any accumulation point of the ALM

in Algorithm 1 is a feasible point. The delicate strategy for updating the penalty

parameter γk in Step 3 of Algorithm 1 plays an important role in the proof of the

theorem.

Theorem 3.5. Let
{
sk
}
be the sequence generated by Algorithm 1. Then the follow-

ing statements hold.

(i) limk→∞
∥∥uk − Ψ(hk)wk

∥∥ = 0 and limk→∞
∥∥hk − (uk)+

∥∥ = 0.
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(ii) There exists at least one accumulation point of {sk}, and any accumulation

point is a feasible point of (3.1.6).

Proof. (i) Let the index set

K :=
{
k : γk = max{γk−1/η2, ∥ξk∥1+η3 , ∥ζk∥1+η3}

}
.

If K is a finite set, then there exists K ∈ N+, such that for all k > K,

max
{
∥C1(sk)∥, ∥C2(sk)∥

}
≤ η1 max

{
∥C1(sk−1)∥, ∥C2(sk−1)∥

}
≤ ηk−K1 max

{
∥C1(sK)∥, ∥C2(sK)∥

}
. (3.1.55)

Since η1 ∈ (0, 1), we get limk→∞ max
{
∥uk − Ψ(hk)wk∥, ∥hk − (uk)+∥

}
= 0. The

statement (i) can thus be proved for this case.

Otherwise, K is an infinite set. Then for those k − 1 ∈ K,

max

{
∥ξk−1∥
γk−1

,
∥ζk−1∥
γk−1

}
≤ (γk−1)

−η3
1+η3 , max

{
∥ξk−1∥2

γk−1
,
∥ζk−1∥2

γk−1

}
≤ (γk−1)

1−η3
1+η3 .

The above inequalities, together with (3.1.29) and η3 > 1 yield that

lim
k→∞,k−1∈K

max

{∥∥ξk−1
∥∥

γk−1

,

∥∥ζk−1
∥∥

γk−1

,

∥∥ξk−1
∥∥2

γk−1

,

∥∥ζk−1
∥∥2

γk−1

}
= 0. (3.1.56)

Recalling (3.1.12), and employing condition (3.1.46) and Step 1 of Algorithm 2, we

have

0 ≤
∥∥uk − Ψ(hk)wk + ξk−1

γk−1

∥∥2 +
∥∥hk − (uk)+ + ζk−1

γk−1

∥∥2
≤ 2
γk−1

(
Γ −R(sk)

)
+
(∥ξk−1∥
γk−1

)2
+
(∥ζk−1∥
γk−1

)2
.

(3.1.57)

Then by (3.1.56) and the lower boundedness of
{
R(sk)

}
, we have

lim
k→∞,k−1∈K

∥uk − Ψ(hk)wk∥ = 0 and lim
k→∞,k−1∈K

∥hk − (uk)+∥ = 0. (3.1.58)

To extend the results in (3.1.58) to any k > K, let lk denote the largest element

in K satisfying lk < k. If lk = k − 1, the limitations are the same as (3.1.58). If
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lk < k − 1, let us define an index set Ik := {i : lk < i < k}. The updating rule for

the penalty parameter, as stated in (3.1.29), implies that γi = γlk . This, combined

with the updating rules for the Lagrangian multipliers, yields that for all i ∈ Ik, the

following holds:

∥ξi∥
γi

=
∥ξi∥
γi−1

≤ ∥ξi−1∥
γi−1

+
∥∥ui − Ψ(hi)wi

∥∥ , (3.1.59)

∥ζ i∥
γi

=
∥ζ i∥
γi−1

≤ ∥ζ i−1∥
γi−1

+
∥∥hi − (ui)+

∥∥ . (3.1.60)

Summing up inequalities (3.1.59) and (3.1.60) for every i ∈ Ik, we have

∥ξk−1∥
γk−1

≤ ∥ξlk∥
γlk

+

k−lk−1∑
i=1

∥∥uk−i − Ψ(hk−i)wk−i∥∥ , (3.1.61)

∥ζk−1∥
γk−1

≤ ∥ζ lk∥
γlk

+

k−lk−1∑
i=1

∥∥hk−i − (uk−i)+
∥∥ . (3.1.62)

By the updating rule of γk in (3.1.28), (3.1.61) and (3.1.62), we obtain

∥ξk−1∥
γk−1

≤ ∥ξlk∥
γlk

+
η1

1− η1
max

{∥∥∥ulk+1 −Ψ(hlk+1)wlk+1
∥∥∥ ,∥∥∥hlk+1 − (ulk+1)+

∥∥∥} ,
∥ζk−1∥
γk−1

≤ ∥ζ lk∥
γlk

+
η1

1− η1
max

{∥∥∥ulk+1 −Ψ(hlk+1)wlk+1
∥∥∥ ,∥∥∥hlk+1 − (ulk+1)+

∥∥∥} .
This, together with (3.1.56), (3.1.58) and η1 ∈ (0, 1), yields that

lim
k→∞

∥∥ξk−1
∥∥

γk−1

= 0, lim
k→∞

∥∥ζk−1
∥∥

γk−1

= 0.

By the inequality (3.1.57) and nondecreasing sequence {γk}, we conclude that

lim
k→∞

∥uk − Ψ(hk)wk∥ = 0, lim
k→∞

∥hk − (uk)+∥ = 0,

using the same manner for showing (3.1.58).

(ii) When K is finite, there exists a constant K such that γk−1 = γK for those

k > K. Then, we turn to consider the boundedness of {ξk−1} and {ζk−1}. Summing
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up (3.1.27) for those k > K, and using (3.1.28), we find

max{{∥ξk−1∥, ∥ζk−1∥}

≤ max{∥ξK∥, ∥ζK∥} +
η1γK

1 − η1
max

{∥∥uK − Ψ(hK)wK
∥∥ ,∥∥hK − (uK)+

∥∥} .
From the above, the boundedness of {ξk−1} and {ζk−1} are thus proved. Together

with γk−1 = γK for those k > K, we can further deduce that ∥ξk−1∥2/γk−1 and

∥ζk−1∥2/γk−1 are bounded for those k ∈ N+.

When the set K is infinite, by (3.1.56) we know that ∥ξk−1∥2/γk−1 and ∥ζk−1∥2/γk−1

are bounded for k− 1 ∈ K. Therefore, no matter K is finite or infinite, ∥ξk−1∥2/γk−1

and ∥ζk−1∥2/γk−1 are bounded for k − 1 ∈ K.

Moreover, we can deduce the following inequality according to the expression of

Lk−1, condition (3.1.46), and sk = sk−1,j:

R(sk) +
γk−1

2

∥∥∥∥uk − Ψ(hk)wk +
ξk−1

γk−1

∥∥∥∥2 +
γk−1

2

∥∥∥∥hk − (uk)+ +
ζk−1

γk−1

∥∥∥∥2

≤ Γ +
∥ξk−1∥2

2γk−1

+
∥ζk−1∥2

2γk−1

.

(3.1.63)

The above inequality, along with the boundedness of

{
∥ξk−1∥2/γk−1

}
k−1∈K ,

{
∥ζk−1∥2/γk−1

}
k−1∈K ,

yields the boundedness of {sk}k−1∈K by the same manner in Lemma 3.3 (ii). Hence

there exists at least one accumulation point of {sk}.

Any accumulation point is a feasible point of (3.1.6), which can be derived im-

mediately by (i), because of the continuity of the functions in the constraints of

(3.1.6).

Below we show the main convergence result of the ALM.
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Theorem 3.6. Every accumulation point of {sk} generated by Algorithm 1 is a KKT

point of problem (3.1.6).

Proof. Let {ski} be a subsequence of {sk} converging to s̄. Then s̄ ∈ F by Theorem

(3.5) (ii). We claim that

∂L
(
ski , ξki−1, ζki−1, γki−1

)
= ∇R(ski) + ∇s

(
⟨ξki−1,uki − Ψ(hki)wki⟩ +

γki−1

2

∥∥uki − Ψ(hki)wki
∥∥2)

+ ∂s

(
⟨ζki−1,hki − (uki)+⟩ +

γki−1

2

∥∥hki − (uki)+
∥∥2)

= ∇R(ski) + JC1(ski)⊤ξki + ∂
(

(ζki)⊤C2(ski)
)
,

(3.1.64)

where C1 and C2 are defined in (3.1.4).

First, by employing (3.1.27) and by direct computation, we have

∇s

(
⟨ξki−1,uki − Ψ(hki)wki⟩ +

γki−1

2

∥∥uki − Ψ(hki)wki
∥∥2)

= JC1(ski)⊤
(
ξki−1 + γki−1(u

ki − Ψ(hki)wki)
)

= JC1(ski)⊤ξki .
(3.1.65)

Then, it remains to verify that

∂s(⟨ζki−1,hki − (uki)+⟩ +
γki−1

2
∥hki − (uki)+∥2) = ∂

(
(ζki)⊤C2(ski)

)
. (3.1.66)

To verify (3.1.66), it can be divided into the subdifferential associated with h and u.

We first prove that (3.1.66) is satisfied associated with h. By simple computation,

∇h

(
⟨ζki−1,hki − (uki)+⟩ +

γki−1

2

∥∥hki − (uki)+
∥∥2)

= JhC2(zki ,hki ,uki)⊤
(
ζki−1 + γki−1(h

ki − (uki)+)
)

= JhC2(zki ,hki ,uki)⊤ζki = ∇h

(
⟨ζki ,hki − (uki)+⟩

)
.

(3.1.67)

Then we prove that (3.1.66) is satisfied associated with u, which can be replaced

by proving rT one dimensional equations with the similar structure as follows:

∂uj

(
ζki−1
j (hkij − (ukij )+) +

γki−1

2
(hkij − (ukij )+)2

)
= ∂uj

(
ζkij (hkij − (ukij )+)

)
, (3.1.68)
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where j = 1, 2, ..., rT . When ukij ̸= 0, equation (3.1.68) can be easily deduced by

the same proof method as in (3.1.67). When ukij = 0, the validity of (3.1.68) can be

proved as follows:

∂uj

(
ζki−1
j (hkij − (ukij )+) +

γki−1

2
(hkij − (ukij )+)2

)
=

{
{0,−ζki−1

j − γki−1(h
ki
j − ukij )}, if γki−1h

ki
j + ζki−1

j ≥ 0,[
0,−ζki−1

j − γki−1(h
ki
j − ukij )

]
, if γki−1h

ki
j + ζki−1

j < 0,

=

{
{0,−ζkij }, if ζkij ≥ 0,[
0,−ζkij

]
, if ζkij < 0,

= ∂uj

(
ζkij (hkij − (ukij )+)

)
.

(3.1.69)

Combining (3.1.65) and (3.1.66) yields the validity of (3.1.64).

Up to now, we have verified that equation (3.1.64) holds. Thus, there exists a

sequence {ςki} satisfying ∥ςki∥ ≤ ϵki such that

ςki ∈ ∇R(ski) + JC1(ski)⊤ξki + ∂
(

(ζki)⊤C2(ski)
)
. (3.1.70)

However, the boundedness of {ξki} and {ζki} in (3.1.70) are still not sure. Define

ϱi = max{∥ξki∥∞, ∥ζki∥∞} and assume that {ϱi} is unbounded. It is trivial to have

bounded sequences {ξki/ϱi} and {ζki/ϱi} according to the definition of ϱi. Without

loss of generality, we assume {ξki/ϱi} → ξ̄ and {ζki/ϱi} → ζ̄ as k → ∞ and thus

have

max{∥ξ̄∥∞, ∥ζ̄∥∞} = 1. (3.1.71)

Dividing by ϱi on both sides of (3.1.70) and taking i→ ∞, and using the facts that

the l-subdifferential is outer semicontinuous [47, Proposition 8.7], and ςki → 0 as

i→ ∞, we derive that

0 ∈ JC1(s̄)⊤ξ̄ + ∂
(
ζ̄⊤C2(s̄)

)
. (3.1.72)
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Combining (3.1.72) and Lemma 3.1 yields that ξ̄ = 0 and ζ̄ = 0, which contradicts

(3.1.71). Therefore, {ξki} and {ζki} are bounded. Without loss of generality, we

assume {ξki} → ξ̄ and {ζki} → ζ̄ as i→ ∞. Letting i→ ∞ in (3.1.70), we obtain

0 ∈ ∇R(s̄) + JC1(s̄)⊤ξ̄ + ∂
(
ζ̄⊤C2(s̄)

)
.

Therefore, s̄ is a KKT point of problem (3.1.6).

Extensions to other activation functions

Now we discuss the possible extensions of our methods, algorithms and theoretical

analysis, using other activation functions rather than the ReLU.

First, we claim that the activation functions are required to be locally Lipschitz

continuous, because the local Lipschitz continuity of the ReLU function is used in

L2(ξ, ζ, γ, r̂) of Lemma 3.4 that depends on the Lipschitz constant of the ReLU

function on a compact set. Then we find that in the analysis above only the following

two places make use of the special piecewise linear structure of the ReLU function:

P1. Explicit formula for uk−1,j in (3.1.35) of the BCD method in Algorithm 2.

P2. Equation (3.1.69) for proving (3.1.68) in the proof of Theorem 3.6.

For P1, even if the activation function in (3.1.1) is replaced by others, the ob-

jective function in problem (3.1.35) can still be separated into rT one-dimensional

functions, which is obtained by substituting the ReLU function (u)+ in (3.1.38) by a

more general activation function. For P2, if an arbitrary smooth activation function

is considered, then (4.29) holds obviously because the l-subdifferential reduces to

the gradient. Below we illustrate in detail the leaky ReLU and the ELU activation

functions as examples for extensions. It is clear that the expression of L2(ξ, ζ, γ, r̂)

in Lemma 3.4 remains unchanged for the two activation functions because they all

have Lipschitz constant 1, the same as that of the ReLU.
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Extension to the leaky ReLU Let us replace the ReLU activation function

σ(u) = (u)+ with the leaky ReLU activation function defined by

σlRe(u) := max{u,ϖu},

where ϖ ∈ (0, 1) is a fixed parameter. The leaky ReLU activation function has been

widely used in recent years. With regard to P1, by direct computation, a closed-form

global solution of

min
u∈R

φlRe(u) := γ
2
(u− θ1)

2 + γ
2
(θ2 − σlRe(u))2 + β

2
(u− θ3)

2 + λ6u
2 (3.1.73)

can be obtained similarly using the procedures for ReLU in (3.1.39)-(3.1.41), except

that the expression u− of (3.1.41) changes to

u− =


γθ1 + γϖθ2 + βθ3
γ + γϖ2 + 2λ6 + β

, if γθ1 + βθ3 < 0,

0, otherwise.
(3.1.74)

For P2, (3.1.69) is modified as follows: when ukij = 0,

∂uj

(
ζki−1
j (hkij − σlRe(u

ki
j )) +

γki−1

2
(hkij − σlRe(u

ki
j ))2

)
=

{
{−ϖζkij ,−ζ

ki−1
j − γki−1(h

ki
j − ukij )}, if γki−1h

ki
j + ζki−1

j ≥ 0,[
−ϖζkij ,−ζ

ki−1
j − γki−1(h

ki
j − ukij )

]
, if γki−1h

ki
j + ζki−1

j < 0,

=

{
{−ϖζkij ,−ζ

ki
j }, if ζkij ≥ 0,[

−ϖζkij ,−ζ
ki
j

]
, if ζkij < 0,

= ∂uj

(
ζkij (hkij − σlRe(u

ki
j ))
)
.

(3.1.75)

Extension to the ELU Let us replace the ReLU activation function with the

convex and smooth activation function ELU defined by

σELU(u) :=

{
u, if u ≥ 0,

eu − 1, if u < 0.
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When u ≥ 0, the ELU activation function is the same as the ReLU function. Thus

for P1, the solution of (3.1.73) can be obtained similarly as the ReLU case, except

that we do not have the explicit formula of u−, which is a global solution of

min
u∈(−∞,0]

φELU(u) := γ
2
(u− θ1)

2 + γ
2
(θ2 − (eu − 1))2 + β

2
(u− θ3)

2 + λ6u
2, (3.1.76)

due to the presence of the exponential function in the ELU activation function.

Now we illustrate that u− can be obtained numerically by solving several one-

dimensional minimization problems. First, using the formula of φELU(u) and the fact

that φELU(u) → +∞ as u→ −∞, we can easily find a lower bound u < 0 such that

(3.1.76) is equivalent to

min
u∈[u,0]

φELU(u). (3.1.77)

The objective function φELU is smooth on (−∞, 0]. We thus calculate the second-

order derivative of φELU as

φ′′
ELU(u) = 2γe2u − γ(θ2 + 1)eu + β + γ + 2λ6. (3.1.78)

Let z = eu. (3.1.78) can be represented as

ψELU(z) := 2γz2 − γ(θ2 + 1)z + β + γ + 2λ6,

which is a quadratic function. Hence there are at most two distinct roots of

ψELU(z) = 0,

and consequently at most two distinct roots for φ′′(u) = 0 on [u, 0]. Hence the

convexity and concavity can only be changed at most three times in [u, 0]. That is,

we can divide [u, 0] into at most three closed intervals, and in each interval φELU

is either convex or concave. We minimize the objective function φELU in each of

those intervals that φELU is convex, and obtain a global solution in each interval

numerically. Then, we select a point among those solutions, 0, and u that has the

minimal objective value. This point is a global solution of (3.1.76).

49



3.1.4 Numerical experiments

We employ a real-world dataset, Volatility of S&P index, and synthetic datasets

to evaluate the effectiveness of our reformulation (3.1.6) and Algorithm 1 with Algo-

rithm 2. To be specific, we first use RNNs with unknown weight matrices to model

these sequential datasets, and then utilize the ALM with the BCD method to train

RNNs. After the training process, we can predict future values of these sequential

datasets using the trained RNNs.

The numerical experiments consist of two components. The first part involves

assessing whether the outputs generated by the ALM adhere to the constraints in

(3.1.6). The second part is to compare the training and forecasting performance of

the ALM with state-of-the-art gradient descent-based algorithms (GDs). All the nu-

merical experiments were conducted using Python 3.9.8. For the datasets, Synthetic

dataset (T = 10) and Volatility of S&P index, experiments were carried out on

a desktop (Windows 10 with 2.90 GHz Inter Core i7-10700 CPU and 32GB RAM).

Additionally, experiments for Synthetic dataset (T = 500) were implemented on

a server (2 Intel Xeon Gold 6248R CPUs and 768GB RAM) at the high-performance

servers of the Department of Applied Mathematics, the Hong Kong Polytechnic Uni-

versity.

Datasets

The process of generating synthetic datasets is as follows. We randomly generate

the weight matrices Â, Ŵ , V̂ , the bias vectors b̂, ĉ, and the noise ẽt, t = 1, 2, ..., T ,

and the input data X with some distributions. Then we calculate the output data

Y = (y1; . . . ; yt) by yt = (Â(Ŵ (...(V̂ x1 + b̂)+...) + V̂ xt + b̂)+ + ĉ) + ẽt for t ∈ [T ].

In the numerical experiments, we generate two synthetic datasets with T = 10 and

T = 500. The detailed information of the two synthetic datasets is listed in Table
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3.1. Moreover, the ratio of splitting for the training and test sets is about 9 : 1.

Table 3.1: Synthetic datasets

T n m r
Distributions

weight matrices the noise the input data

10 5 3 4 N (0, 0.8) N (0, 10−3) U(−1, 1)

500 80 30 100 N (0, 0.05) N (0, 10−5) U(−1, 1)

The dataset, Volatility of S&P index, consists of the monthly realized volatility

of the S&P index and 11 corresponding exogenous variables from February 1973 to

June 2009, totaling 437 time steps, i.e., T = 437, n = 11 and m = 1. The dataset

was collected in strict adherence to the guidelines in [9] and contains no missing

values. In the dataset, the monthly realized volatility of S&P index is appointed as

the output variable, while 11 exogenous variables are input variables. For training

the RNNs, we first standardize the dataset as zero mean and unit variance, and then

allocate 90% of the dataset, consisting of 393 time steps, as the training set, while

the remaining 44 time steps are the test set. Moreover, we have r = 20 for the real

dataset.

Evaluations

We define FeasVio := max{∥u − Ψ(h)w∥, ∥h − (u)+∥} to evaluate the feasibility

violation for constraints u = Ψ(h)w and h = (u)+. Moreover, the training and test

errors are used to evaluate the forecasting accuracy of RNNs in training and test sets
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denoted as

TrainErr :=
1

T1

T1∑
t=1

∥yt − (A(W (...(V x1 + b)+...) + V xt + b)+ + c∥2,

TestErr :=
1

T2

T1+T2∑
t=T1+1

∥yt − (A(W (...(V x1 + b)+...) + V xt + b)+ + c)∥2,

where T1 and T2 are the time lengths of the training set and test set, and A, W , V ,

b and c are the output solutions from ALM.

Investigating the feasibility

In this subsection, we aim to verify the outputs from the ALM satisfying the con-

straints of (3.1.2) through numerical experiments, while we have already proved the

feasibility of any accumulation point of a sequence generated by the ALM in section

4. Initial values of weight matrices A0, W 0, V 0 are randomly generated from the

standard Gaussian distribution N (0, 0.1). Moreover, the bias b0 and c0 are set as 0.

For all three datasets, we stop the outer loop (ALM) when it reaches 100 iterations,

and the inner loop (BCD method) terminates at 500 iterations. Other parameters

are listed in Table 3.2.

Table 3.2: Parameters of the ALM: the parameters for the given datasets are set
as γ0 = 1, ξ0 = 0, ζ0 = 0, ϵ0 = 0.1, Γ = 102, β = 10−5, λ1 = τ/rm, λ2 = τ/r2,
λ3 = τ/rn, λ4 = τ/r, λ5 = τ/m, λ6 = 10−8.

Datasets Regularization parameters Algorithm parameters

Synthetic dataset (T = 10) τ = 1.2 η1 = 0.99, η2 = 5/6,
η3 = 0.01, η4 = 5/6.Volatility of S&P index τ = 1

Synthetic dataset (T = 500) τ = 500
η1 = 0.90, η2 = 0.90,
η3 = 0.015, η4 = 0.8.
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From Figure 3.1, we observe that the feasibility violation in each dataset is very

small at the beginning, which implies that the selected initial point is feasible. As it

turns to the first iteration, the feasibility violation goes to a large value. After that,

the value goes to exhibit an oscillatory decrease and tends to zero. This indicates

that the points generated by the ALM gradually satisfy the constraint conditions as

the number of iterations increases.
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Figure 3.1: The feasibility violation of the ALM in different datasets

(a) Synthetic dataset (T = 10)

(b) Volatility of S&P index

(c) Synthetic dataset (T = 500)
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Comparisons with state-of-the-art GDs

In this subsection, we compare the training and forecasting accuracy of RNNs using

different methods. Specifically, we compare our ALM with the state-of-the-art GDs

and SGDs with special techniques, i.e., gradient descent (GD), gradient descent

with gradient clipping (GDC), gradient descent with Nesterov momentum (GDNM),

Mini-batch SGD and Adam.

For the initial values of A0, W 0, V 0, we use the following initialization strategies:

random normal initialization [2] with zero mean and standard deviations of 10−3 and

10−1, He initialization [24], Glorot initialization [20], and LeCun initialization [29].

Notably, the initial values of bias, b0 and c0, were both set to 0 according to [21, p.

305].

We search the learning rates for GDs and SGDs over {10−4, 10−3, 10−2, 10−1,

1}, as well as the clipping norm of GDC over {0.5, 1, 1.5, 2, 3, 4, 5, 6}. We employ

the leave-P-out cross validation and repeated each method 30 trials with P = 1

in Synthetic dataset (T = 10), and P = 10 in Volatility of S&P index and

Synthetic dataset (T = 500). We then select the learning rates and clipping norm

with the best test error averaged over 30 trials, which are recorded in Table 3.3. The

batch size for SGDs is set to 2 for Synthetic dataset (T = 10), 50 for Volatility

of S&P index, and 100 for Synthetic dataset (T = 500). We employ the Keras

API [15] running on TensorFlow 2 to implement the GDs and SGDs. Additionally,

the parameters for the ALM are listed in Table 3.2.

Remark 3.3. The values of regularization parameters λi, i ∈ [6], influence the per-

formance of the model. If these parameters are set too small, the regularization term

fails to take effect, which may result in overfitting. Furthermore, small regulariza-

tion parameters may result in large norms of the variables, making the solutions

of subproblems in the BCD method more challenging. On the other hand, if the
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regularization parameters are set too large, the method focuses primarily on mini-

mizing p(·), causing the norm of variables to become excessively small, which results

in underfitting. Since the regularization parameters are primarily used to control the

norms of variables, their selection strategy is closely related to the dimensions of the

corresponding variables.

Table 3.3: The learning rates for GDs and SGDs, and the clipping norm value for
GDC (the second number in each cell for parameters) under different initialization
strategies.

He N (0, 10−3) N (0, 10−1) Glorot LeCun

GD Synthetic dataset (T = 10) 1e-4 1e-3 1e-4 1 1

Volatility of S&P index 1e-4 0.01 0.01 0.01 0.01

Synthetic dataset (T = 500) 0.01 0.01 0.01 1e-3 1e-3

GDC Synthetic dataset (T = 10) 1 (6) 1e-4 (1) 1e-4 (1) 1 (6) 1 (6)

Volatility of S&P index 1e-4 (3) 0.01 (1) 0.1 (1) 0.1 (4) 0.1 (1)

Synthetic dataset (T = 500) 1e-4 (1) 0.01 (1) 0.01 (4) 0.01 (1.5) 0.1 (0.5)

GDNM Synthetic dataset (T = 10) 1e-3 1e-4 1e-4 1e-4 0.1

Volatility of S&P index 1e-4 0.01 0.01 0.01 0.01

Synthetic dataset (T = 500) 0.01 0.01 0.01 0.01 0.01

SGD Synthetic dataset (T = 10) 0.1 0.1 0.1 0.1 0.1

Volatility of S&P index 0.01 0.01 0.01 0.01 0.01

Synthetic dataset (T = 500) 0.01 1e-3 0.01 0.01 0.01

Adam Synthetic dataset (T = 10) 0.1 0.01 0.01 0.01 0.01

Volatility of S&P index 0.01 0.01 0.01 0.01 0.01

Synthetic dataset (T = 500) 0.01 0.01 0.01 0.01 0.01

To evaluate the performance of different methods under various initialization

strategies, we conducted the following experiments: each method was repeated 10

times under each initialization strategy. In each repetition, we recorded the final

test error and the training error. We then calculated their means (TrainErr and

TestErr) and the corresponding standard deviations, and listed them in Table 3.4.
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Each row records the results for a certain optimization method from different ini-

tialization strategies, with the best TrainErr or TestErr highlighted in bold. Each

column provides the results of all the optimization methods with the same initial

values, where the best TrainErr and TestErr are highlighted underline.

Table 3.4a and Table 3.4c demonstrate that for Synthetic dataset (T = 10) and

Synthetic dataset (T = 500), no matter which initialization strategy is employed,

our ALM method achieves the best TrainErr and TestErr among all the methods.

Table 3.4b illustrates that our ALM achieves the best TrainErr under two types of

initialization strategies, and obtains the best TestErr under three types of initializa-

tion strategies for Volatility of S&P index. For any of the three datasets, our ALM

achieves the best TrainErr and TestErr among all combinations of optimization

methods and initialization strategies, which we highlight in blue.

Table 3.4: Results of training RNNs using different optimization methods and ini-
tialization strategies across multiple trials.

(a) Synthetic dataset (T = 10): For the ALM method, the maximum iteration for the outer loop
is 50 and 10 for the inner loop. For GDs and SGDs, the number of epochs is set to 500.

He N (0, 10−3) N (0, 10−1) Glorot LeCun

ALM
TrainErr 0.345 ± 0.24 0.113± 0.03 0.143 ± 0.04 0.206 ± 0.10 0.279 ± 0.22

TestErr 4.770 ± 1.25 4.437± 0.28 4.660 ± 0.35 4.628 ± 1.17 4.650 ± 0.62

GD
TrainErr 4.459 ± 0.77 2.747 ± 1.5e-6 2.768 ± 0.01 1.814 ± 0.27 1.604± 0.17

TestErr 6.432 ± 2.15 5.311 ± 9.3e-6 5.057 ± 0.07 4.696± 0.90 5.056 ± 1.10

GDC
TrainErr 1.479± 0.32 2.769 ± 1.4e-6 2.768 ± 0.01 1.684 ± 0.23 1.502 ± 0.26

TestErr 5.376 ± 0.88 5.079 ± 1.0e-6 5.057 ± 0.07 4.922± 1.20 5.266 ± 0.96

GDNM
TrainErr 2.689 ± 0.40 2.769 ± 1.4e-6 2.768 ± 0.01 3.340 ± 0.54 0.801± 0.60

TestErr 6.169 ± 2.06 5.079 ± 1.0e-6 5.057 ± 0.07 7.469 ± 2.30 4.844± 0.64

SGD
TrainErr 2.224± 0.02 2.247 ± 0.02 2.232 ± 0.02 2.238 ± 0.02 2.225 ± 0.02

TestErr 6.455 ± 0.23 6.230± 0.23 6.373 ± 0.18 6.543 ± 0.23 6.446 ± 0.18

Adam
TrainErr 2.283 ± 0.07 2.244 ± 0.02 2.237 ± 0.02 2.231± 0.01 2.239 ± 0.03

TestErr 6.335± 0.61 6.432 ± 0.27 6.411 ± 0.25 6.508 ± 0.14 6.406 ± 0.20
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(b) Volatility of S&P index: For the ALM method, the maximum iteration for the outer loop is
200 and 500 for the inner loop. For GDs and SGDs, the number of epochs is set to 5000.

He N (0, 10−3) N (0, 10−1) Glorot LeCun

ALM
TrainErr 0.058 ± 0.02 0.004 ± 3.6e-5 0.003± 1.4e-4 0.009 ± 0.002 0.013 ± 0.002

TestErr 0.229 ± 0.13 0.041 ± 4.7e-4 0.032± 0.005 0.064 ± 0.04 0.053 ± 0.03

GD
TrainErr 0.005± 0.001 0.015 ± 1.8e-4 0.012 ± 9.2e-4 0.020 ± 0.003 0.025 ± 0.006

TestErr 0.124 ± 0.10 0.077 ± 0.03 0.0429± 0.01 0.206 ± 0.20 0.307 ± 0.20

GDC
TrainErr 0.567 ± 0.47 0.015 ± 1.8e-4 0.016 ± 0.009 0.003± 5.6e-4 0.011 ± 0.003

TestErr 1.135 ± 0.55 0.077 ± 0.03 0.047 ± 0.02 0.107 ± 0.03 0.041± 0.01

GDNM
TrainErr 0.005 ± 0.001 0.015 ± 1.8e-4 0.012 ± 9.2e-4 0.003± 5.8e-4 0.004 ± 6.6e-4

TestErr 0.124 ± 0.10 0.077 ± 0.03 0.043± 0.01 0.097 ± 0.03 0.102 ± 0.02

SGD
TrainErr 0.005± 1.8e-4 0.006 ± 0.002 0.006 ± 0.002 0.006 ± 0.002 0.006 ± 0.002

TestErr 0.072± 0.01 0.095 ± 0.02 0.086 ± 0.02 0.085 ± 0.01 0.096 ± 0.01

Adam
TrainErr 0.006 ± 0.001 0.005± 7.6e-4 0.006 ± 0.002 0.006 ± 0.001 0.005± 7.6e-4

TestErr 0.079 ± 0.01 0.074± 0.01 0.084 ± 0.01 0.080 ± 0.02 0.080 ± 0.02

(c) Synthetic dataset (T = 500): For the ALM method, the maximum iteration for the outer loop
is 100 and 500 for the inner loop. For GDs and SGDs, the number of epochs is set to 1000.

He N (0, 10−3) N (0, 10−1) Glorot LeCun

ALM
TrainErr 4.639 ± 0.78 3.461± 0.06 3.472 ± 0.05 3.472 ± 0.06 3.475 ± 0.06

TestErr 14.77 ± 0.93 12.418 ± 0.16 12.407 ± 0.27 12.394± 0.22 12.517 ± 0.16

GD
TrainErr 58.137 ± 2.42 30.010 ± 0.003 30.013 ± 0.008 30.000 ± 0.008 29.985± 0.007

TestErr 58.314 ± 2.76 28.644 ± 0.006 28.641 ± 0.009 28.630 ± 0.006 28.626± 0.009

GDC
TrainErr 250.471 ± 399.70 30.004± 0.003 30.144 ± 0.001 30.143 ± 8.8e-4 30.144 ± 0.001

TestErr 119.007 ± 66.71 28.640± 0.007 28.723 ± 0.007 28.730 ± 0.006 28.725 ± 0.01

GDNM
TrainErr 58.137 ± 2.42 30.010 ± 0.003 30.013 ± 0.008 30.000 ± 0.008 29.985± 0.007

TestErr 58.314 ± 2.76 28.644 ± 0.006 28.641 ± 0.009 28.730 ± 0.006 28.626± 0.009

SGD
TrainErr 30.142 ± 3.5e-6 30.142 ± 4.7e-6 30.142± 5.2e-6 30.142 ± 4.4e-6 30.142 ± 4.8e-6

TestErr 28.725± 3.2e-5 28.725 ± 4.4e-5 28.725 ± 4.7e-5 28.725 ± 3.9e-5 28.725 ± 4.1e-5

Adam
TrainErr 30.142± 7.1e-5 30.142 ± 6.5e-5 30.142 ± 7.3e-5 30.142 ± 5.1e-5 30.142 ± 5.7e-5

TestErr 28.726 ± 6.1e-4 28.725 ± 5.0e-4 28.726 ± 5.9e-4 28.726 ± 5.0e-4 28.725± 4.8e-4
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Figure 3.2: Comparisons of the performance of the ALM, GDs, and SGDs for
Volatility of S&P index.
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Figure 3.3: Comparisons of the performance of the ALM, GDs, and SGDs for Syn-
thetic dataset (T = 500)
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We plot in Figure 3.3 the TrainErr and TestErr versus CPU time measured in

seconds using Volatility of S&P index and Synthetic dataset (T = 500). Each

line corresponds to a certain optimization method as indicated in the legend, with

its most appropriate initialization strategy that leads to the final TestErr in bold

as outlined in Table 3.4. For the real-world dataset, Volatility of S&P index, the

ALM achieves the smallest test error among all the methods. For the larger-scale

Synthetic dataset (T = 500) with Nw = 1.81× 104, Na = 3.03× 103 and r = 500,

the ALM exhibits superior performance in terms of both training and test errors.

In this section, the minimization model (1.1.1) for training RNNs is equivalently

reformulated as problem (3.1.2) by using auxiliary variables. We propose the ALM

in Algorithm 1 with Algorithm 2 to solve the regularized problem (3.1.6). The BCD

method in Algorithm 2 is efficient for solving the subproblems of the ALM, which has

a closed-form solution for each block problem. We establish the solid convergence

results of the ALM to a KKT point of problem (3.1.6), as well as the finite termination

of the BCD method for the subproblem of the ALM at each iteration. The efficiency

and effectiveness of the ALM for training RNNs are demonstrated by numerical

results with real-world datasets and synthetic data, and comparison with state-of-

art algorithms.

3.2 ALM for problem (1.1.2)

In the previous section, we have already stated an ALM to solve problem (1.1.1)

whose sample size equals one. Now, we extend the ALM to the more general case.

Recall problem (1.1.2)

min
A,W,V,b,c

1

NT

N∑
t=1

T∑
i=1

∥∥∥∥yit − (Aσ(W(...σ(Wσ(V xi1 + b) + V xi2 + b
)
...
)

+ V xit + b
)

+ c

)∥∥∥∥2 .
We follow the similar procedure as in section 3.1 to deal with problem (1.1.1),
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which involves utilizing auxiliary variables to represent the composite structure in the

objective function and then setting them as constraints, adding a regularization term

to the objective function, and employing the ALM to solve the modified constrained

problem. The auxiliary variables for (1.1.2) are set as follows:

u := (u1; ...;ui; ...;uN) ∈ RrNT , ui := (ui1;u
i
t; ...;u

i
T ) ∈ RrT , i = 1, 2, ..., N, (3.2.1)

h := (h1; ...;hi; ...;hN) ∈ RrNT , hi := (hi1;h
i
t; ...;h

i
T ) ∈ RrT , i = 1, 2, ..., N, (3.2.2)

and A, W , V , b and c are vectorized by the same method as section 3.1, i.e.,

w = (vec(W ); vec(V ); b), a = (vec(A); c), z = (w; a), (3.2.3)

s = (z;h;u) ∈ Rd+2rNT . (3.2.4)

To guarantee the existence of solutions, we still add the regularization term p(·)

in (3.1.5) to the objective function. Now, the problem under consideration is the

following:

min

s

1

NT

N∑
i=1

T∑
t=1

∥∥yit − (Ahit + c)
∥∥2 + p(z)

s.t. uit = Whit−1 + V xit + b,

hi0 = 0, hit = (uit)+, t ∈ [T ], i ∈ [N ].

(3.2.5)

To further simplification, the problem becomes

min

s

R(s) := L(s) + p(z)

s.t. C1(z) = 0, C2(z) = 0,

(3.2.6)
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where

L(s) :=
1

NT

N∑
i=1

T∑
t=1

∥∥yit − Φ(hit)a
∥∥2 , (3.2.7)

C1(z) := u− Λ(h)w, C2(z) := h− (u)+, (3.2.8)

Φ(hit) =
[
(hit)

⊤ ⊗ Im Im

]
, Λ(h) =

(
Ψ(h1); Ψ(h2); ...; Ψ(hN)

)
, (3.2.9)

Ψ(hi) =


0⊤
r ⊗ Ir (xi1)

⊤ ⊗ Ir Ir

(hi1)
⊤ ⊗ Ir (xi2)

⊤ ⊗ Ir Ir
...

...
...

(hiT−1)
⊤ ⊗ Ir (xiT )⊤ ⊗ Ir Ir

 . (3.2.10)

3.2.1 ALM with BCD method for (3.2.6)

The augmented Lagrangian (AL) function of problem (3.2.6) is

L(s, ς, ζ, γ) (3.2.11)

:= R(s) + ⟨ς,u− Λ(h)w⟩ + ⟨ζ,h− (u)+⟩ + γ
2
∥u− Λ(h)w∥2 + γ

2
∥h− (u)+∥2

= R(s) +
γ

2

∥∥∥∥u− Λ(h)w +
ς

γ

∥∥∥∥2 +
γ

2

∥∥∥∥h− (u)+ +
ζ

γ

∥∥∥∥2 − ∥ς∥2

2γ
− ∥ζ∥2

2γ
,

where ς = (ς1; ...; ς i; ...; ςN) ∈ RrNT , ς i = (ς i1; ς
i
2; ...; ς

i
T ), ζ = (ζ1; ...; ζ i; ...; ζT ) ∈ RrNT

and ζ i = (ζ i1; ζ
i
2; ...; ζ

i
T ) are the Lagrangian multipliers, and γ > 0 is the penalty

parameter for the two quadratic penalty terms of constraints u = Λ(h)w and u =

(h)+.

The AL function L is continuously differentiable with respect to z, and the gra-

dient with respect to z is

∇zL(s, ς, ζ, γ) =

 Q̂1(s, ς, ζ, γ)w + q̂1(s, ς, ζ, γ)

Q̂2(s, ς, ζ, γ)a + q̂2(s, ς, ζ, γ)

 ,
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where

Q̂1(s, ς, ζ, γ) = γ
N∑
i=1

Ψ(hi)⊤Ψ(hi) + 2Λ1, q̂1(s, ς, ζ, γ) = −
N∑
i=1

Ψ(hi)⊤(ς i + γui),

Q̂2(s, ς, ζ, γ) =
2

NT

N∑
i=1

T∑
t=1

Φ(hit)
⊤Φ(hit) + 2Λ2, q̂2(s, ς, ζ, γ) = − 2

NT

N∑
i=1

T∑
t=1

Φ(hit)
⊤yit,

Λ1 = diag
((
λ2er2 ;λ3ern;λ4er

))
, Λ2 = diag

((
λ1erm;λ5em

))
.

The AL function L is continuously differentiable with respect to h, and the gra-

dient with respect to h is

∇hL(s, ς, ζ, γ)

=
(
∇h1L(s, ς, ζ, γ); . . . ;∇hiL(s, ς, ζ, γ); . . . ;∇hNL(s, ς, ζ, γ)

)
,

where

∇hiL(s, ς, ζ, γ)

=
(
∇hi

1
L(s, ς i, ζ i, γ);∇hi

2
L(s, ς i, ζ i, γ); . . . ;∇hi

T
L(s, ς i, ζ i, γ)

)
,

∇hit
L(s, ς i, ζ i, γ) =

 D1(z,u
i,hi, ς i, ζ i, γ)hit − d1t(z,u

i,hi, ς i, ζ i, γ), if t ∈ [T − 1],

D2(z,u
i,hi, ς i, ζ i, γ)hiT − d2T (z,ui,hi, ς i, ζ i, γ), if t = T,

D1(z,u
i,hi, ς i, ζ i, γ) = γW⊤W + 2

NT
A⊤A+ γIr,

D2(z,u
i,hi, ς i, ζ i, γ) = 2

NT
A⊤A+ γIr,

d1t(z,u
i,hi, ς i, ζ i, γ) = W⊤

(
ς it + γ(uit+1 − V xit+1 − b)

)
+ γ(uit)+ − ζ it + 2

NT
A⊤(yit − c),

d2T (z,ui,hi, ς i, ζ i, γ) = γ(uiT )+ − ζ iT + 2
NT
A⊤(yiT − c).

The objective function of problem (3.2.6) can be separated into rNT one-dimensional

functions with the same structure. Thus, we aim to solve the following one-dimensional

problem:

min
u∈R

φ(u) := γ
2
(u− θ1)

2 + γ
2
(θ2 − (u)+)2 + β

2
(u− θ3)

2 + λ6u
2, (3.2.12)
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where θ1, θ2, θ3 ∈ R are known real numbers. Denote

u+ := arg min
u∈R+

φ(u) and u− := arg min
u∈R−

φ(u).

By direct computation,

u+ =


γθ1 + γθ2 + βθ3

2γ + 2λ6 + β
, if γθ1 + γθ2 + βθ3 > 0,

0, otherwise,

u− =


γθ1 + βθ3
γ + 2λ6 + β

, if γk−1θ1 + βθ3 < 0,

0, otherwise,

and

θ1 = [Ψ(hi)w]k −
[ς i]k
γ
, θ2 = [hi]k +

[ζ i]k
γ
, θ3 = [ui]k.

Then a solution of (3.2.12) can be given as

u∗ =

 u+, if φ(u+) ≤ φ(u−),

u−, otherwise.

The detailed method to solve (3.2.6) is listed in Algorithm 3 and Algorithm 4.

Compared to problem (3.1.2), problem (3.2.6) has N times more constraints.

However, the expressions of additional constraints are similar to N = 1. Therefore,

Algorithm 3 and Algorithm 4 are not fundamentally different from Algorithm 1 and

Algorithm 2. Hence, the convergence analysis for Algorithm 3 and Algorithm 4

follow analogous approaches to those of Algorithm 1 and Algorithm 2, and we omit

the detailed discussion here.
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Algorithm 3 The augmented Lagrangian method (ALM) for (3.2.6)

1: Set an initial penalty parameter γ0 > 0, parameters η1, η2, η4 ∈ (0, 1) and η3 > 1,
an initial tolerance ϵ0 > 0, vectors of Lagrangian multipliers ς0, ζ0, and a feasible
initial point s0 = (z0, û, ĥ) where ĥ0 = 0, ût = W 0ĥt−1+V 0xt+b

0 and ĥt = (ût)+
for t ∈ [T ].

2: Set k := 1.
3: Step 1: Solve

min
s

L(s, ςk−1, ζk−1, γk−1) (3.2.13)

to obtain sk satisfying the following condition

dist
(
0, ∂L(sk, ςk−1, ζk−1, γk−1)

)
≤ ϵk−1.

4: Step 2: Update ϵk = η4ϵk−1, ς
k−1 and ζk−1 as

ςk = ςk−1 + γk−1

(
uk − Λ(hk)wk

)
, ζk = ζk−1 + γk−1

(
hk − (uk)+

)
.

5: Step 3: Set γk = γk−1, if the following condition is satisfied

max
{
∥C1(sk)∥, ∥C2(sk)∥

}
≤ η1 max

{
∥C1(sk−1)∥, ∥C2(sk−1)∥

}
. (3.2.14)

Otherwise, set

γk = max
{
γk−1/η2,

∥∥ςk∥∥1+η3 , ∥∥ζk∥∥1+η3} .
6: Let k − 1 := k and go to Step 1.

3.2.2 Numerical experiments

In subsection 3.1.4, we have demonstrated that the ALM exhibits superior perfor-

mance in solving optimization problems when applying RNNs to model time series

forecasting tasks. Problem (3.2.5) is the optimization problem in using RNNs to

model more general sequential regression tasks, such as the image denoising and the

audio denoising.
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Algorithm 4 Block Coordinate Descent (BCD) method for (3.2.13)

1: Set the initial point of the BCD algorithm as

sk−1,0 =

{
sk−1, if k > 1 and L

(
sk−1, ς, ζ, γ

)
≤ Γ,

s0, otherwise.

Compute r̂k−1 = L(sk−1,0, ς, ζ, γ), L1,k−1 = L1(ς, ζ, γ, r̂k−1) and L2,k−1 =
L2(ς, ζ, γ, r̂k−1) by formula (3.4) in [57].

2: Set j := 1.
3: while the stop criterion is not met do
4: Step 1: Update blocks zk−1,j, hk−1,j and uk−1,j separately as

zk−1,j = arg min
z

L
(
z,hk−1,j−1,uk−1,j−1, ς, ζ, γ

)
, (3.2.15)

hk−1,j = arg min
h

L
(
zk−1,j,h,uk−1,j−1, ς, ζ, γ

)
, (3.2.16)

uk−1,j ∈ arg min
u

L
(
zk−1,j,hk−1,j,u, ς, ζ, γ

)
+ β

2

∥∥u− uk−1,j−1
∥∥2 . (3.2.17)

Then set sk−1,j = (zk−1,j;hk−1,j;uk−1,j).
5: Step 2: If the stop criterion∥∥sk−1,j − sk−1,j−1

∥∥ ≤ ϵk−1

max{L1,k−1, L2,k−1, σ}
,

is not satisfied, then set j := j + 1 and go to Step 1.
6: end while
7: return sk = sk−1,j.

Datasets

Synthetic dataset: The synthetic dataset is generated by the following method.

The weight matrices and bias Â, Ŵ , V̂ , b̂, ĉ are randomly generated where each com-

ponent of them follows the normal distribution N (0, 0.8). And for each sample of

input data, X i = (xi1, ..., x
i
T ) ∈ Rn×T , i = 1, 2, ..., N , it is generated following the mul-

tivariate normal distribution N (0nT ,Σ), where the covariance matrix Σ ∈ RnT×nT

is a randomly generated positive-definite matrix. Then, corresponding output data

Y i = (yi1, ..., y
i
T ) is calculated by yit = (Â(Ŵ (...(V̂ xi1 + b̂)+...) + V̂ xit + b̂)+ + ĉ) + ẽt

for t ∈ T , where each component of ẽt follows the normal distribution N (0, 10−3).
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Repeating the generating process of input and output data N times, we have the

synthetic dataset. The N sample points are divided into training and test sets fol-

lowing the ratio 7 : 3. The specific dimensions of the synthetic dataset are following:

n = 5, m = 3, r = 4, T = 10 and N = 100.

Pixel-MNIST: The dataset, Pixel-MNIST, is a commonly used toy example for

RNNs, which is modified from the general MNIST handwritten digit database [33].

To be specific, we flattened each 28 × 28 pixel matrix from left to right and top to

bottom, resulting in a sequence of 784 pixels. We then normalized the data. After

that, we added noise following a normal distribution N (0, 1) to the sequential data

and used it as the input. Consequently, we employed a RNN model with n = 1,

m = 1, r = 5 and T = 784 to perform the denoising task on the sequential Pixel-

MNIST dataset. The total sample size is N = 7× 104, which is divided into training

and test sets in a 6 : 1 ratio.

TIMIT Audio: TIMIT [19] is a widely used audio dataset for speech recogni-

tion and denoising tasks. It contains 6,300 sentences, which are read by 630 speakers

from 8 major dialects of American English and encoded at a sampling rate of 16

KHz. In this work, we use 90 of these sentences from 14 speakers as the original

clean dataset and randomly add noise audio at a sampling rate of 16 kHz derived

from airport, train, subway, babble, or drill environments to create a mixed noisy

dataset. It is worth mentioning that we input frequency features of the audio samples

to the RNNs, rather than the temporal waveforms directly, because frequency fea-

tures can effectively reduce computational costs. For both the original clean dataset

and the mixed noisy dataset, we extract the spectrograms of the audio samples using

the Short-Time Fourier Transform (STFT) with an FFT size of 512, a hop size of

214, and Hann windows. The spectrograms serve as the frequency features of the

audio. After the above process, we input the frequency features of the mixed noisy

dataset into the RNNs, use the model to perform denoising, and approximate a clean
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dataset with dimensions n = 257, m = 257, r = 200, and T = 173. The total sample

size is N = 140, and we divide the data into training and test sets with a 7:3 ratio.

Comparisons with state-of-the-art GDs

This section aims to show that the ALM method is good at solving problem (1.1.2)

compared with state-of-the-art methods, i.e., gradient descent with gradient clipping

(GDC) and Adaptive Moment Estimation (Adam). All the numerical experiments

were conducted using Python 3.9.8 on a server (2 Intel Xeon Gold 6248R CPUs

and 768GB RAM) at the high-performance servers of the Department of Applied

Mathematics, the Hong Kong Polytechnic University.

We employ the following TrainErr and TestErr to measure the performance of

training sets and test sets in different methods:

TrainErr :=
1

N1T

N1∑
i=1

T∑
t=1

∥∥∥∥yi
t −

(
A
(
W
(
...
(
W (V xi

1 + b)+ + V xi
2 + b

)
+
...
)
+ V xi

t + b
)
+
+ c

)∥∥∥∥2 ,

TestErr :=
1

N2T

N2∑
i=1

T∑
t=1

∥∥∥∥yi
t −

(
A
(
W
(
...
(
W (V xi

1 + b)+ + V xi
2 + b

)
+
...
)
+ V xi

t + b
)
+
+ c

)∥∥∥∥2 ,
where N1 and N2 are the sample size of the training sets and test sets, and A, W ,

V , b and c are the output solutions from the ALM.

The initialization strategies of variables are the same as those in section 3.1.

Furthermore, the methods for selecting hyper-parameters in GDs and SGDs are

also consistent with those outlined in section 3.1 and the results are listed in Table

3.5. It is worth mentioning that the cross-validation values of He initialization,

Glorot initialization and LeCun initialization may exceed 103 as selecting proper

hyper-parameters. Therefore, these three initialization strategies are excluded in the

following analysis. Moreover, The parameters for the ALM in Algorithm 2 and 3 are

provided in Table 3.6.

69



Table 3.5: The learning rates for GDs and SGDs, and the clipping norm value for
GDC (the second number in each cell for parameters) under different initialization
strategies.

N (0, 10−3) N (0, 10−2) N (0, 10−1)

GD Synthetic dataset 1e-3 1e-3 1e-3

Pixel-MNIST 0.1 0.1 0.1

TIMIT Audio 0.1 0.1 0.01

GDC Synthetic dataset 1e-3 (1) 1e-3 (1) 0.1 (1)

Pixel-MNIST 0.1(1) 0.1(1) 0.1(1)

TIMIT Audio 1 (0.5) 0.1 (0.5) 1 (0.5)

GDNM Synthetic dataset 0.1 0.1 0.1

Pixel-MNIST 0.1 0.1 0.1

TIMIT Audio 1 0.1 0.01

SGD Synthetic dataset 0.1 0.1 0.1

Pixel-MNIST 1e-3 1e-3 1e-3

TIMIT Audio 0.1 0.1 0.1

Adam Synthetic dataset 0.1 0.1 0.1

Pixel-MNIST 1e-3 1e-3 1e-3

TIMIT Audio 0.01 0.01 0.01

To assess the performance of various methods under different initialization strate-

gies, we conducted a series of experiments, with each method being executed 5 times

for each initialization strategy. In each trial, we recorded both the final test error

and the training error. Subsequently, we computed their means along with the cor-

responding standard deviations, the results of which are presented in Table 3.7. The

notation rules in the table are the same as those in Table 3.4.

Table 3.7 show that as the initialization strategy is selected as N (0, 10−1), ALM

achieves the best TrainErr and TestErr among all combinations of optimization

methods and initialization strategies for all three datasets, which we highlight in

blue.
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Table 3.6: Parameters for the ALM: the parameters for the given datasets are set
as γ0 = 1, ς0 = 0, ζ0 = 0, ϵ0 = 0.1, Γ = 102, β = 10−5, λ1 = τ/rm, λ2 = τ/r2,
λ3 = τ/rn, λ4 = τ/r, λ5 = τ/m, λ6 = 10−8.

Datasets
Regularization
parameters τ

Algorithm parameters

Synthetic dataset 5× 10−2 η1 = 0.99, η2 = 5/6,
η3 = 0.01, η4 = 5/6.

Pixel-MNIST 0.25
η1 = 0.90, η2 = 0.70,
η3 = 0.02, η4 = 0.7.

TIMIT Audio 5× 10−4 η1 = 0.90, η2 = 0.70,
η3 = 0.02, η4 = 0.7.

Table 3.7: Results of training RNNs using different optimization methods and ini-
tialization strategies across multiple trials.

(a) Synthetic dataset: For the ALM method, the maximum iteration for
the outer loop is 10 and 50 for the inner loop. For GDs and SGDs, the
number of epochs is set to 2000. The batch size for SGDs is set to 20.

N (0, 10−3) N (0, 10−2) N (0, 10−1)

ALM
TrainErr 0.629± 0.05 0.827± 0.30 0.502± 0.08

TestErr 0.685± 0.05 0.871± 0.29 0.548± 0.08

GD
TrainErr 3.000± 3.3e-6 2.997± 1.3e-3 2.673± 0.24

TestErr 3.000± 3.3e-6 2.997± 1.3e-3 2.698± 0.21

GDC
TrainErr 3.000± 3.3e-6 2.997± 1.3e-3 0.696± 0.08

TestErr 3.000± 3.3e-6 2.997± 1.3e-3 0.767± 0.09

GDNM
TrainErr 0.657± 0.01 2.997± 1.3e-3 0.685± 0.09

TestErr 0.726± 0.01 2.997± 1.3e-3 0.754± 0.09

SGD
TrainErr 0.617± 0.01 2.027± 0.36 0.685± 0.10

TestErr 0.678± 0.02 2.089± 0.37 0.751± 0.11

Adam
TrainErr 0.621± 0.01 1.206± 0.45 0.626± 0.01

TestErr 0.690± 0.01 1.248± 0.43 0.692± 0.01
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(b) Pixel-MNIST: For the ALM method, the maximum iteration for the outer
loop is 100 and 200 for the inner loop. For GDs and SGDs, the number of epochs
is set to 1000. The batch size for SGDs is set to 500.

N (0, 10−3) N (0, 10−2) N (0, 10−1)

ALM
TrainErr 0.092± 2.9e-3 0.093± 2.4e-3 0.092± 1.1e-3

TestErr 0.100± 3.1e-3 0.100± 2.6e-3 0.099± 1.2e-3

GD
TrainErr 0.095± 1.1e-9 0.095± 6.5e-10 0.095± 8.9e-10

TestErr 0.102± 1.6e-9 0.102± 2.3e-9 0.102± 1.3e-9

GDC
TrainErr 0.095± 1.2e-9 0.095± 6.3e-10 0.095± 8.9e-10

TestErr 0.102± 2.2e-9 0.102± 3.2e-9 0.102± 1.3e-9

GDNM
TrainErr 0.095± 1.2e-9 0.095± 8.7e-10 0.095± 8.9e-10

TestErr 0.102± 3.3e-9 0.102± 2.5e-9 0.102± 1.3e-9

SGD
TrainErr 0.095± 6.9e-4 0.094± 8.9e-4 0.095± 5.1e-4

TestErr 0.102± 7.5e-4 0.101± 9.7e-4 0.102± 5.5e-4

Adam
TrainErr 0.095± 2.8e-8 0.095± 1.2e-8 0.095± 1.7e-8

TestErr 0.102± 3.2e-8 0.102± 1.4e-9 0.102± 2.0e-8

(c) TIMIT Audio: For the ALM method, the maximum iteration for the
outer loop is 10 and 50 for the inner loop. For GDs and SGDs, the number of
epochs is set to 2000. The batch size for SGDs is set to 20.

N (0, 10−3) N (0, 10−2) N (0, 10−1)

ALM
TrainErr 4.788± 0.03 4.604± 5.2e-3 4.412± 0.03

TestErr 4.387± 9.9e-3 4.121± 5.7e-3 3.955± 0.03

GD
TrainErr 6.742± 0.01 5.006± 7.3e-3 8.086± 0.08

TestErr 6.021± 0.01 4.472± 6.6e-3 7.180± 0.06

GDC
TrainErr 5.106± 1.2e-4 5.006± 7.3e-3 4.903± 0.18

TestErr 4.571± 1.3e-4 4.472± 6.6e-3 4.377± 0.18

GDNM
TrainErr 6.766± 0.05 5.006± 7.3e-3 8.086± 0.08

TestErr 6.057± 0.04 4.472± 6.6e-3 7.180± 0.06

SGD
TrainErr 4.855± 8.0e-6 4.856± 4.1e-7 4.855± 1.7e-6

TestErr 4.330± 7.6e-6 4.330± 3.5e-7 4.330± 3.6e-6

Adam
TrainErr 4.846± 2.1e-4 4.845± 8.1e-4 4.845± 1.7e-3

TestErr 4.324± 1.9e-4 4.324± 5.2e-3 4.324± 1.5e-3
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Chapter 4

SAA for Training Recurrent

Neural Networks

In this chapter, we propose a method to solve (1.1.2) which is an approximation

of (1.1.3) by the SAA method. Therefore, in this chapter, we aim to prove that

any accumulation point of minimizers and stationary points of the SAA problems

is a minimizer and a stationary point of the original problem respectively w.p.1 as

the sample size goes to infinity. At the beginning of the chapter, we reformulate

problems (1.1.2) and (1.1.3) to facilitate the subsequent analysis and investigate the

properties of these two problems. We then establish the convergence of minimizers

and stationary points of the SAA problem (1.1.2). Next, we discuss the uniform

exponential rates of convergence of the objective function of the SAA problem (1.1.2)

to those of the original problem (1.1.3).
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4.1 Reformulations for (1.1.2) and (1.1.3),
and properties of their objective func-
tions

For simplicity of analysis, we define the nonsmooth activation function σ : R → R

in (1.1.2) and (1.1.3) as the leaky ReLU function, i.e.,

σlRe(u) := max{u,ϖu},

where ϖ ∈ (0, 1) is a fixed parameter.

4.1.1 Reformulations for (1.1.2) and (1.1.3)

We introduce the following notation:

z =
(
vec(W ); vec(V ); b; vec(A); c

)
∈ RNz ,

X =
(
X1;X2; ...;XT

)
, Y =

(
Y1;Y2; ...;YT

)
, ξ =

(
X;Y

)
, (4.1.1)

mt(z, ξ) := σlRe

(
Wmt−1(z, ξ) + VXt + b

)
, t ∈ [T ], m0(z, ξ) ≡ 0, (4.1.2)

ot(z, ξ) := Amt(z, ξ) + c, ℓt(z, ξ) := ∥Yt − ot(z, ξ)∥2, t ∈ [T ], (4.1.3)

ℓ(z, ξ) =
1

T

T∑
t=1

ℓt(z, ξ), ‘ (4.1.4)

where RNz = mr + rn + r2 + r + m. Random vectors X : Ωx → X ⊂ RnT , Y :

Ωy → Y ⊂ RmT and ξ : Ωξ → Ξ ⊂ RnT+mT are defined on the probability space

(Ωx,Fx, Px), (Ωy,Fy, Py) and (Ωξ,F ξ, Pξ) respectively, where Ωξ = Ωx × Ωy. We

assume that Ξ is compact. Moreover, ℓ : RNz ×Ξ → R is named as the loss function.

Then, problem (1.1.3) can be equivalently represented as

min
z

f(z) := E [ℓ(z, ξ)] , (4.1.5)

and problem (1.1.2) is equivalently expressed as follows:

min
z

f̂N(z) :=
1

N

N∑
i=1

ℓ(z, ξi). (4.1.6)
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To have bounded solution sets, we add the following regularized term:

p(z) = λ1∥A∥2F + λ2∥W∥2F + λ3∥V ∥2F + λ4∥b∥2 + λ5∥c∥2, (4.1.7)

to the objective function of problems (4.1.5) and (4.1.6) with λi > 0, i = 1, 2, . . . , 5.

Then, the regularized problems of (4.1.5) and (4.1.6) respectively refer to

min
z

ψ(z) := f(z) + p(z), (4.1.8)

and

min
z

ψ̂N(z) := f̂N(z) + p(z). (4.1.9)

For the sake of analysis, we make the following assumption.

Assumption 4.1. There exists a constant ϱ ≥ 0 such that for any ξ ∈ Ξ, ∥ξ∥ ≤ ϱ.

It is worth mentioning that the assumption is assumed to be held throughout this

chapter. The assumption ensures that each sample point drawn from the random

variable ξ is almost surely bounded. This aligns with the fact that, in practice, data

typically does not attain infinite value.

Remark 4.1. Random variable ξ satisfying Assumption 4.1 implies that ξ is inte-

grable.

4.1.2 Properties of ψ and ψ̂N

To aid in the following analysis, we define a compact set as follows:

Gι := {z ∈ RNz : ∥z∥ ≤ ι}, (4.1.10)

with

ι =

√
max{θ, ρ}

mini∈[5]{λi}
,

where θ and ρ are constants satisfying θ > ψ̂N(0) and ρ > ψ(0).
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By the expression of ψ and ψ̂N , we first explore properties of ℓ : RNz × Ξ → R

defined in (4.1.4) on Gι × Ξ, where Gι is a compact set defined in (4.1.10). We first

show that for any fixed ξ, ℓ(·, ξ) is Lipschitz continuous on Gι. For this purpose, we

define the following two functions:

g1(z, h̃) := σlRe

(
W h̃ + V x+ b

)
, g2(z, ũ) := Aũ + c,

where x ∈ Rn is a fixed vector, the meaning of A, W , V , b, c, z are same as the

above, h̃ and ũ are in the bounded set H := {h̃ : ∥h̃∥ ≤ ã1} and U := {ũ : ∥ũ∥ ≤ ã2}

respectively. Then, we can deduce the following lemma.

Lemma 4.1. For any z, z′ ∈ Gι, h̃, h̃′ ∈ H, ũ, ũ′ ∈ U , we have the following

inequalities:

∥g1(z, h̃) − g1(z
′, h̃′)∥ ≤ ι∥h̃− h̃′∥ + max{ã1, ∥x∥, 1}∥z− z′∥, (4.1.11)

∥g2(z, ũ) − g2(z
′, ũ′)∥ ≤ ι∥ũ− ũ′∥ + max{ã2, 1}∥z− z′∥. (4.1.12)

Proof. It is known that the leaky ReLU function is Lipschitz continuous on compact

sets with Lipschitz constant 1. Thus, by Lemma 2.1 and Lemma 4.3, we have that

∥g1(z, h̃) − g1(z
′, h̃′)∥ = ∥σlRe

(
Wh+ V x+ b

)
− σlRe

(
W ′h′ + V ′x+ b′

)
∥

≤ ∥
(
W h̃ + V x+ b

)
−
(
W ′h̃′ + V ′x+ b′

)
∥

≤ ∥W h̃−W ′h̃ +W ′h̃−W ′h̃′∥ + ∥V ′ − V ∥∥x∥ + ∥b′ − b∥

≤ ∥W −W ′∥∥h̃∥ + ∥W ′∥∥h̃− h̃′∥ + ∥V ′ − V ∥∥x∥ + ∥b′ − b∥

≤ ι∥h̃− h̃′∥ + max{ã1, ∥x∥, 1}∥z− z′∥,

and

∥g2(z, ũ) − g2(z
′, ũ′)∥ = ∥(Aũ + c) − (A′ũ′ + c′)∥

= ∥Aũ− A′ũ + A′ũ− A′ũ′∥ + ∥c− c′∥

≤ ∥A− A′∥∥ũ∥ + ∥A′∥∥ũ− ũ′∥ + ∥c− c′∥

≤ ι∥ũ− ũ′∥ + max{ã2, 1}∥z− z′∥.
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The following lemma shows the boundedness of ∥mt(z, ξ)∥ for any t ∈ [T ].

Lemma 4.2. For any t ∈ [T ] and any fixed ξ ∈ Ξ, we have that

∥mt(z, ξ)∥ ≤ κt(ξ),

for any z ∈ Gι, where

κt(ξ) =
t∑
i=1

ιi∥Xt−i+1∥ +
t∑
i=1

ιi, t ∈ [T ], κ0(ξ0) = 0.

Proof. By the expression of mt(z, ξ) in (4.1.2) and the compactness of Gι, it follows

that

∥m1(z, ξ)∥ = ∥σlRe(VX1 + b)∥ ≤ ∥V ∥F∥X1∥ + ∥b∥ ≤ ι(∥X1∥ + 1) := κ1(ξ),

and

∥m2(z, ξ)∥ = ∥σlRe(Wm1(z, ξ) + VX2 + b)∥

≤ ∥W∥F∥m1(z, ξ)∥ + ∥V ∥F∥X2∥ + ∥b∥

≤ ι2∥X1∥ + ι∥X2∥ + ι2 + ι := κ2(ξ).

Using the above method recursively, we can deduce that

∥mt(z, ξ)∥ ≤
t∑
i=1

ιi∥Xt−i+1∥ +
t∑
i=1

ιi := κt(ξ).

By the above lemmas, we can thus deduce the local Lipschitz continuity of ℓ(z, ξ)

on Gι.

Theorem 4.1. If Assumption 4.1 holds, the following statements hold.
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(i) For any fixed ξ ∈ Ξ, ℓ(·, ξ) is Lipschitz continuous on Gι with the Lipschitz

constant Lℓ(ξ), where

Lℓ(ξ) =
2

T

T∑
t=1

(
∥Yt∥ + ι(κt(ξ) + 1)

)
ωt(ξ), (4.1.13)

ωt(ξ) =
t∑
i=1

ιi max{∥Xt−i+1∥, κt−i(ξ), 1} + max{κt(ξ), 1}. (4.1.14)

(ii) There exists a nonnegative constant Θ such that for any ξ ∈ Ξ, |Lℓ(ξ)| ≤ Θ.

Furthermore, Lℓ(·) is a nonnegative integrable function on Ξ.

Proof. (i) We first deduce that for any t ∈ [T ] and any fixed ξ ∈ Ξ, ot(z, ξ) is Lipschitz

continuous on Gι. The function ot(z, ξ) can be represented by the compositions of g1

and g2 as follows:

ot(z, ξ) = g2
(
z,mt(z, ξ)

)
=
(
g2 ◦ g1

)(
z,mt−1(z, ξ)

)
=
(
g2 ◦ g1 ◦ ... ◦ g1

)(
z,m0(z, ξ)

)
.

The above together with Lemma 2.1, Lemma 4.1, and Lemma 4.2 implies that for

any z, z′ ∈ Gι,

∥ot(z, ξ) − ot(z
′, ξ)∥

≤ι∥mt(z, ξ) −mt(z
′, ξ)∥ + max{κt(ξ), 1}∥z− z′∥

≤
(
ιmax{∥Xt∥, κt−1(ξ), 1} + max{κt(ξ), 1}

)
∥z− z′∥ (4.1.15)

+ ι2∥mt−1(z, ξ) −mt−1(z
′, ξ)∥

≤

(
t∑
i=1

ιi max{∥Xt−i+1∥, κt−i(ξ), 1} + max{κt(ξ), 1}

)
∥z− z′∥ (4.1.16)

=ωt(ξ)∥z− z′∥,

where Lemma 4.2 is repeatedly used from (4.1.15) to (4.1.16). Then, according to
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Remark 4.2, we can further deduce that

∥ℓ(z, ξ) − ℓ(z′, ξ)∥ ≤ 1

T

T∑
t=1

∥ℓt(z, ξ) − ℓt(z
′, ξ)∥

≤ 2

T

T∑
t=1

(
∥Yt∥ + ∥ot(z, ξ)∥

)
∥ot(z, ξ) − ot(z

′, ξ)∥

≤ 2

T

T∑
t=1

(
∥Yt∥ + ι(κt(ξ) + 1)

)
ωt(ξ)∥z− z′∥

≤ Lℓ(ξ)∥z− z′∥,

where Lℓ(ξ) = 2
T

∑T
t=1

(
∥Yt∥ + ι(κt(ξ) + 1)

)
ωt(ξ).

(ii)Without loss of generality, we assume that T in the expression of Lℓ(ξ) is finite.

The above together with Assumption 4.1 implies that there exists a nonnegative

constant Θ such that for any ξ ∈ Ξ, |Lℓ(ξ)| ≤ Θ.

By the expression of Lℓ(·) deduced in (i) and the boundedness of Lℓ(·), it is easy

to derive that Lℓ(ξ) is nonnegative and E[Lℓ(ξ)] <∞ for any ξ ∈ Ξ.

According to Theorem 4.1, we can deduce the following conclusions.

Proposition 4.1. For any z ∈ Gι, ℓ(z, ·) is dominated by a nonnegative integrable

function Bℓ(·) where

Bℓ(ξ) := Lℓ(ξ)ι+ ϱ2,

that is, there exists a nonnegative valued measurable function Bℓ(ξ) such that E[Bℓ(ξ)] <

+∞ and |ℓ(z, ξ)| ≤ Bℓ(ξ) holds w.p.1, for those ξ ∈ Ξ.

Proof. At first, we deduce the boundedness of ℓ(·, ξ) for any fixed ξ ∈ Ξ based on

Theorem 4.1. To be specific, according to the Lipschitz continuity of ℓ(·, ξ) proved

in Theorem 4.1 and the triangle inequality, it follows that for any z ∈ Gι,

|ℓ(z, ξ)| − |ℓ(0, ξ)| ≤ Lℓ(ξ)∥z∥.
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It is easy to derive that |ℓ(0, ξ)| = 1
T

∑T
t=1 ∥Yt∥2 ≤ ϱ2 and ∥z∥ ≤ ι. Hence, the

conclusion can be established, i.e.,

|ℓ(z, ξ)| ≤ Lℓ(ξ)ι+ ϱ2 = Bℓ(ξ).

It has been proved that Lℓ(ξ) is nonnegative and integrable. Furthermore, ℓ

defined in (4.1.10) and ϱ defined in Assumption 4.1 are both finite. Hence, we can

claim that ℓ(z, ·) is dominated by an integrable function Bℓ(·) for any z ∈ Gι.

Proposition 4.2. Under Assumption 4.1, ψ and ψ̂N are both Lipschitz continuous

on Gι with a Lipschitz constant Θ + 1.

Proof. We begin by establishing that ψ is Lipschitz continuous on Gι. By the ex-

pression of ψ in (4.1.8) and the Lipschitz continuity of ℓ(·, ξ), ∀ ξ ∈ Ξ, proved in

Theorem 4.1, it follows that for any z1 and z2 in Gι,

|ψ(z1) − ψ(z2)| ≤ |E[ℓ(z1, ξ)] − E[ℓ(z2, ξ)]| + |p(z1) − p(z2)|

≤ E [|ℓ(z1, ξ) − ℓ(z2, ξ)|] + ∥z1 − z2∥

≤ (E[Lℓ(ξ)] + 1)∥z1 − z2∥

≤ (Θ + 1)∥z1 − z2∥.

Hence, ψ is Lipschitz continuous on Gι with Lipschitz constant Θ + 1.

Moreover, according to Theorem 4.1, we can derive that for any z1, z2 ∈ Gι,

|ψ̂N(z1) − ψ̂N(z2)| ≤
1

N

N∑
i=1

∣∣ℓ(z1, ξi) − ℓ(z2, ξ
i)
∣∣+ |p(z1) − p(z2)| (4.1.17)

≤ 1

N

N∑
i=1

Lℓ(ξ
i)∥z1 − z2∥ + ∥z1 − z2∥ (4.1.18)

≤ (Θ + 1)∥z1 − z2∥. (4.1.19)

The statement is thus established.

Having established properties for ℓ, we proceed to prove ψ is well-defined.
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Theorem 4.2. The expectation value function ψ : RNz → R is well-defined and

continuous on Gι.

Proof. By Theorem 4.1 and Remark 4.1, it is easy to derive that ψ(z) is finite for

any z ∈ Gι. Furthermore, it is known that ℓ(z, ·) is measurable. Therefore, ψ is

well-defined on Gι. According to [50, Theorem 7.43], we can also derive that ψ is

continuous on Gι.

We then establish the nonemptiness and compactness for the solution sets of

problems (4.1.8) and (4.1.9), and prove that these solution sets are contained in the

compact set Gι.

Lemma 4.3. The solution set of (4.1.8), denoted by S∗, is nonempty and compact.

Moreover, S∗ is contained within the compact set Gι, i.e., S∗ ⊂ Gι.

Proof. We define the following level set:

Γψ(ρ) := {z ∈ RNz : ψ(z) ≤ ρ},

where ρ is a constant satisfying ρ > ψ(0). Now, we establish the nonemptiness and

compactness of the level set. As z = 0, we have that

ψ(0) = E

[
1

T

T∑
t=1

∥Yt∥2
]
,

which together with Remark 4.1 implies that ψ(0) is finite. The above together with

ρ > ψ(0) implies that 0 ∈ Γψ(ρ), which guarantees the nonemptiness of the level set

Γψ(ρ).

We then turn to consider the boundedness of Γψ(ρ). The expressions of f and p

in (4.1.5) and (4.1.7) imply that f(z) ≥ 0 and p(z) ≥ 0 for any z ∈ RNz . Then we

can deduce that for those z ∈ Γψ(ρ),

∥z∥ ≤
√
ρ/min

i∈[5]
{λi}. (4.1.20)
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The boundedness of Γψ(ρ) can thus be proved. The closeness of Γψ(ρ) can also be

derived based on the continuity of function ψ according to [47, Theorem 1.6].

Therefore, we can deduce that S∗ is nonempty, compact and S∗ ⊂ Γψ(ρ) ac-

cording to the nonemptiness and compactness of the level set Γψ(ρ) based on [7,

Proposition A.8].

Additionally, we can infer that Γψ(ρ) ⊆ Gι by (4.1.10) and (4.1.20), which together

with S∗ ⊂ Γψ(ρ) implies that S∗ ⊂ Gι.

Remark 4.2. From the definition of Γψ(ρ) and the expression of f(z), we can also

derive that f(z) = E[ℓ(z, ξ)] ≤ ρ. The above, together with the definition of expecta-

tion, implies that for any fixed ξ ∈ Ξ,

∥Yt − ot(z, ξ)∥ ≤
√
ρT , ∀t ∈ [T ].

We proceed to prove that for any N ∈ N+, the solution set of the SAA problem

(4.1.9) is nonempty, compact and contained within Gι.

Lemma 4.4. For any N ∈ N+, the solution set of problem (4.1.9), denoted by SN ,

is nonempty and compact w.p.1. Moreover, SN is contained within the compact set

Gι w.p.1, i.e., SN ⊂ Gι.

Proof. To prove the result, we define the following level set of ψ̂N for any N ∈ N+:

ΓN
ψ̂

(θ) := {z ∈ RNz : ψ̂N(z) ≤ θ},

where θ is a constant satisfying θ > ψ̂N(0), ∀N ∈ N+. Specifically, by Assumption

4.1, it follows that

ψ̂N(0) =
1

NT

N∑
i=1

T∑
t=1

∥yit∥2 ≤ ϱ2, (4.1.21)
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where ψ̂N(0) is bounded by a constant ϱ2 for any N ∈ N+. The existence of θ can

thus be proved. Hence, for any N ∈ N+, 0 ∈ ΓN
ψ̂

(θ) and thereby ΓN
ψ̂

(θ) is nonempty

w.p.1.

Furthermore, by the definition of level set ΓN
ψ̂

(θ) and the expression of ψ̂N in

(4.1.6)-(4.1.9), we infer that

∥z∥ ≤
√
θ/min

i∈[5]
{λi}, (4.1.22)

which implies the boundedness of the level set ΓN
ψ̂

(θ). By the similar proof method

as in Lemma 4.3, we can deduce that SN is bounded, compact and SN ⊂ ΓN
ψ̂

(θ) for

any N ∈ N+ w.p.1.

Additionally, according to (4.1.22), where θ is independent of the sample size N ,

we can deduce that ΓN
ψ̂

(θ) ⊂ Gι. The above along with SN ⊂ ΓN
ψ̂

(θ) implies that

SN ⊂ Gι for any N ∈ N+.

4.2 Convergence of SAA problems

In this section, we first show that any accumulation point of minimizers of the SAA

problems is a minimizer of the original problem w.p.1 as N → ∞. After that, we

explore the convergence of the stationary points of SAA problems.

4.2.1 Convergence of the optimal value and opti-

mal solutions of the SAA problem

Recall that S∗ denotes the global solution set of problem (4.1.8), and SN denotes the

global solution set of problem (4.1.9) when the sample size is N . Furthermore, let ν∗

and ν̂N denote the optimal value of problem (4.1.8) and (4.1.9) respectively. Before

the formal statement of the convergence, we first show that function ψ̂N uniformly

converges to ψ w.p.1 on the compact set Gι as N → ∞.
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Lemma 4.5. Under Assumption 4.1 and the i.i.d samples of ξ, ψ̂N uniformly con-

verges to ψ on Gι w.p.1, as N → ∞.

Proof. Proposition 4.1 shows that the loss function ℓ(z, ξ), z ∈ Gι, is dominated by

an integrable function Bℓ(ξ). Moreover, the sample {ξ1, ξ2, ..., ξN} is i.i.d. Thus, we

can claim that ψ̂N(z) converges to ψ(z) w.p.1, as N → ∞, uniformly on Gι based on

[49, Proposition 7].

Now, we present the main results of the convergence of SAA problems.

Theorem 4.3. Under Assumption 4.1 and the i.i.d samples of ξ, ν̂N converges to ν∗

w.p.1 as N → ∞. Furthermore, the solution set of SAA problem (4.1.9), denoted by

SN , converges to the solution set of problem (4.1.8), denoted by S∗, w.p.1 as N → ∞.

That is, D(SN ,S∗) → 0 w.p.1 as N → ∞.

Proof. The convergence of ν̂N to ν∗ w.p.1 for N large enough can be equivalently

represented as |ν̂N − ν∗| ≤ ϵ w.p.1 as N → ∞. This can be derived by Lemma 4.5,

which implies that for any ϵ > 0, supz∈Gι
|ψ̂N(z) − ψ(z)| ≤ ϵ as N → ∞.

Now, we turn to prove the convergence of solution sets of SAA problems. We

have already proved that the solution set S∗ is nonempty in Lemma 4.3, and S∗ ⊂ Gι

in Lemma 4.3. Furthermore, Proposition 4.2 shows that ψ(z) is finite valued and

continuous on Gι. Moreover, It has been proved that ψ̂N(z) converges to ψ(z) w.p.1,

as N → ∞, uniformly on Gι in Lemma 4.5. At last, the condition where for N large

enough the set SN is nonempty and SN ⊂ Gι has been established in Lemma 4.4 and

Lemma 4.4.

According to [49, Proposition 6], the assertion can thus be established.
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4.2.2 Convergence of stationary points of SAA prob-

lems

In the previous section, we utilized the SAA method to approximate problem (4.1.8)

whose objective function involves expectation and discussed the convergence of the

optimal solutions and the optimal value of the SAA problems (4.1.9). However, it is

also challenging to derive the global or local optimal solutions for the SAA problems

with nonconvex and nonsmooth objective functions. In general, stationary points of

those nonconvex nonsmooth SAA problems can be obtained by numerical algorithms.

Therefore, as an alternative, we focus on the convergence of stationary points of the

SAA problems (4.1.9) to those of problem (4.1.8), which is related to the first-order

optimality condition of the corresponding problem.

The first-order necessary conditions of problem (4.1.8) associated with l-subdifferential

and C-subdifferential are as follows, respectively:

0 ∈ A(z) := ∂zE[ℓ(z, ξ)] + ∇p(z), (4.2.1)

0 ∈ Ac(z) := ∂czE[ℓ(z, ξ)] + ∇p(z). (4.2.2)

Furthermore, the first-order necessary condition of problem (4.1.9) associated with

l-subdifferential is

0 ∈ ÂN(z) := ∂z

( 1

N

N∑
i=1

ℓ(z, ξi)
)

+ ∇p(z). (4.2.3)

Definition 4.1. (Stationary points) We say a point z ∈ RNz is a limiting stationary

point or Clarke stationary point of (4.1.8) if it satisfies (4.2.1) or (4.2.2), respectively.

Moreover, a point z ∈ RNz is a limiting stationary point (4.1.9) if it satisfies the

generalized equation (4.2.3).

Now we define weak first-order necessary conditions of problems (4.1.8) and

(4.1.9). The weak first-order necessary conditions of problem (4.1.8) associated with
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l-subdifferential and C-subdifferential are as follows, respectively:

0 ∈ W(z) := E[∂zℓ(z, ξ)] + ∇p(z), (4.2.4)

0 ∈ Wc(z) := E[∂czℓ(z, ξ)] + ∇p(z). (4.2.5)

The weak first-order necessary condition of problem (4.1.9) associated with l-subdifferential

is as follows:

0 ∈ ŴN(z) =
1

N

N∑
i=1

∂zℓ(z, ξ
i) + ∇p(z). (4.2.6)

Definition 4.2. (Weak stationary points) It is said that a point z ∈ RNz is a weak

limiting stationary point of (4.1.8) if it satisfies (4.2.4) and is a weak Clarke sta-

tionary point of (4.1.8) if it satisfies (4.2.5). A point z ∈ RNz is a weak limiting

stationary point of (4.1.9), if it satisfies the generalized equation (4.2.6).

Remark 4.3. We refer to (4.2.4) and (4.2.5) as the weak first-order necessary con-

ditions of problem (4.1.8) due to the following relationship established in [10, p. 230]:

∂zE[ℓ(z, ξ)] ⊆ ∂czE[ℓ(z, ξ)] ⊆ E[∂czℓ(z, ξ)].

Additionally, by the Lipschitz continuity of ℓ(·, ξ) on the compact set Gι and the rule

of the sum of l-subdifferential [47, Corollary 10.9], the following relationship can be

established for any z ∈ int(Gι):

∂z

( 1

N

N∑
i=1

ℓ(z, ξi)
)
⊆ 1

N

N∑
i=1

∂zℓ(z, ξ
i). (4.2.7)

The above implies that (4.2.6) is a weak first-order necessary condition for problem

(4.1.9), in comparison to (4.2.3).

After that, we establish that the above set-valued mappings ÂN , ŴN , A, Ac, W ,

and Wc are well-defined.
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Lemma 4.6. Under Assumption 4.1, the set-valued mappings ÂN , ŴN , A, Ac, W,

and Wc are well-defined on Gι. That is, for every z ∈ Gι, the images of these mapping

at z are nonempty.

Proof. At first, we prove that ÂN , ŴN , A and Ac are well-defined on Gι. By the

Lipschitz continuity of ℓ(·, ξ) proved in Theorem 4.1 (i) , and the Lipschitz continuity

of ψ̂N and ψ proved in Proposition 4.2, it is easy to derive that ÂN(z), ŴN(z)

and A(z) are nonempty for any z ∈ Gι based on [47, Theorem 9.13], and Ac(z) is

nonempty according to [16, Proposition 2.1.2].

After that, we prove that W and Wc are well-defined. The Lipschitz continuity

of ℓ(·, ξ) on Gι also guarantees the boundedness of ∂zℓ(·, ξ) and ∂czℓ(·, ξ) as well

according to [47, Theorem 9.13] and [16, Proposition 2.1.2]. Thus, we derive that

E[H(0, ∂zℓ(z, ξ))] <∞ and E[H(0, ∂czℓ(z, ξ))] <∞ for any z ∈ Gι. The above implies

that W and Wc are well-defined according to [62, p. 291].

Now we can establish the convergence of the stationary points of the SAA prob-

lems according to [61, Theorem 4.2].

Theorem 4.4. Let zN be a solution of (4.2.3). Suppose that the sequence {zN}

is contained in the compact set Gι. Then any accumulation point of {zN} satisfies

(4.2.5) w.p.1 as N → ∞.

Proof. Due to zN is a solution of (4.2.3), we have that w.p.1

0 ∈ ÂN(zN), ∀ N ∈ N+.

Let {zNk
} denote a subsequence of {zN} converging to z∗.

Now we prove that w.p.1

D
(
ÂNk

(zNk
),Wc(z∗)

)
→ 0, as Nk → ∞. (4.2.8)
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According to (4.2.7), it is easy to derive that

D
(
ÂNk

(zNk
),Wc(z∗)

)
≤ D

(
ŴNk

(zNk
),Wc(z∗)

)
. (4.2.9)

Moreover, by the Lipschitz continuity of ∂ℓ(·, ξ) proved in Theorem 4.1, we infer that

∂ℓ(·, ξ) is closed and locally bounded on compact set Gι according to [47, Theorem

9.13]. Therefore, ∂ℓ(·, ξ) is upper semicontinuous on Gι based on [47, Theorem 5.19].

From the above, we can also deduce that

∥∂ℓ(z, ξ)∥ ≤ Lℓ(ξ), ∀(z, ξ) ∈ Gι × Ξ.

By applying [53, Theorem 2] and [63, Theorem 4.3], we can infer that

D
(
ŴNk

(zNk
),Wc(z∗)

)
→ 0, as Nk → ∞.

The above together with (4.2.9) implies that

0 ∈ Wc(z∗).

The conclusion can thus be proved.

4.3 Exponential rates of convergence

In the previous section, we proved that the solution sets of the SAA problems con-

verge to the solution set of the original problem as the sample size becomes sufficiently

large. In this subsection, we show the uniform exponential rate of convergence of ψ̂N

to ψ(z) on Gι.

A core concept to deduce the exponential convergence is the Cramér’s Large Devi-

ation (LD) theorem, which provides an exponential upper bound for the probabilities

of large deviations. The formal statement of Cramér’s LD theorem is presented as

follows [49, p. 418]:

Lemma 4.7. (Cramér’s LD Theorem) Let {r1, r2, ..., rN} be an i.i.d sequence of

replications of the random variable r : Ωr → R ⊂ R. Furthermore, let r̄N :=
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N−1
∑N

i=1 r
i denote the corresponding sample average. Suppose that r has finite mean

µr := E[ξ]. For any real number ϵ satisfying ϵ ≥ µr, we obtain that

P(r̄N ≥ ϵ) ≤ e−NI(ϵ),

where

I(ϵ) := sup
τ∈R

{τϵ− lnM(τ)}

is called the rate function of r, and M(τ) := E[eτ r] is the moment generating function

(MGF) of r.

Let function D : RNz × Ξ → R have the following representation:

D(z, ξ) := ℓ(z, ξ) − f(z),

and its corresponding MGF and rate function are

MD(τ) := E
[
eτD(z,ξ)

]
, ID(ϵ) := sup

τ∈R
{τϵ− lnMD(τ)}.

Furthermore, denote the MGF and rate function of Lℓ(ξ) as follows:

MLℓ
(τ) := E

[
eτLℓ(ξ)

]
, ILℓ

(ϵ) := sup
τ∈R

{τϵ− lnMLℓ
(τ)}.

Lemma 4.8. Under Assumption 4.1, MLℓ
(τ) is finite valued for any τ ∈ Bϵ(0) :=

{τ : ∥τ∥ ≤ ϵ}.

Proof. According to Theorem 4.1 (ii), we can deduce the following:

MLℓ
(τ) = E

[
eτLℓ(ξ)

]
=

∫
eτLℓ(ξ)dPξ ≤

∫
eτΘdPξ = eτΘ,

where Θ is a nonnegative constant. Hence, we prove the statement.

Lemma 4.9. Under Assumption 4.1, MD(τ) is finite valued for any z ∈ Gι and any

τ ∈ Bϵ(0) := {τ : |τ | ≤ ϵ}.
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Proof. By definition, the moment generating function (MGF) of D is given by

MD(τ) = E
[
eτD(z,ξ)

]
=

∫
eτ(ℓ(z,ξ)−f(z)) dPξ = e−τf(z)

∫
eτℓ(z,ξ) dPξ. (4.3.1)

We first bound the integral
∫
eτℓ(z,ξ) dPξ for any fixed z ∈ Gι. Using Proposition

4.1 and Theorem 4.1 (ii), we have∫
eτℓ(z,ξ) dPξ ≤

∫
eτB(ξ) dPξ ≤

∫
eτ(Θι+ϱ

2) dPξ = eτ(Θι+ϱ
2). (4.3.2)

Additionally, since ℓ(·, ξ) is a nonnegative integrable function, we conclude that

f(z) = E [ℓ(z, ξ)] ≥ 0, ∀z ∈ Gι. (4.3.3)

We now consider two cases based on the sign of τ :

Case 1: τ ≥ 0. In this case, since f(z) ≥ 0, the factor e−τf(z) ≤ 1. Thus,

substituting (4.3.2) and (4.3.3) into (4.3.1) we obtain

MD(τ) = e−τf(z)
∫
eτℓ(z,ξ) dPξ ≤ eτ(Θι+ϱ

2).

Since the right-hand side is finite for all τ with |τ | ≤ ϵ, MD(τ) is finite for τ ≥ 0.

Case 2: τ < 0. For negative τ , note that ℓ(z, ξ) ≥ 0 implies

eτℓ(z,ξ) ≤ 1.

Thus, we have ∫
eτℓ(z,ξ) dPξ ≤

∫
1 dPξ = 1.

It follows that

MD(τ) = e−τf(z)
∫
eτℓ(z,ξ) dPξ ≤ e−τf(z).

Since τ ∈ Bϵ(0), we have |τ | ≤ ϵ. In particular, for τ < 0,

−τ ≤ ϵ,
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so that

e−τf(z) ≤ eϵf(z).

Because f(z) is finite (due to the integrability of ℓ(z, ξ)), it follows that MD(τ) is

finite for τ < 0 as well.

Combining the two cases, we conclude that for any z ∈ Gι and any τ ∈ Bϵ(0) the

moment generating function MD(τ) is finite.

Now, we consider the exponential convergence for SAA problems.

Theorem 4.5. If Assumption 4.1 holds, then for any ϵ > 0 there exist positive

constants Cϵ and χϵ, independent of N , such that

P
(

sup
z∈Gι

|ψ̂N(z) − ψ(z)| ≥ ϵ

)
≤ Cϵe

−Nχϵ . (4.3.4)

Proof. The proof is primarily based on the proof of [52, Theorem 5.1].

Due to the finiteness of Gι is unknown, we can use ν-net to approximate Gι as a

finite set. Specifically, for a ν > 0, let z̄1, z̄2, ..., z̄U ∈ Gι be such that for any z ∈ Gι

there exists z̄i, i ∈ [U ], such that ∥z−z̄i∥ ≤ ν. {z̄1, z̄2, ..., z̄U} is a ν-net in Gι. The ν-

net can be chosen by U ≤ ⌈O(1)d/ν⌉Nz , where d := supz,z′∈Gι
∥z−z′∥ is the diameter

of Gι and O(1) represents the generic constant. Let i(z) ∈ arg mini∈[U ] ∥z− z̄i∥, where

z ∈ Gι. We can thus deduce the following inequality:

sup
z∈Gι

|ψ̂N(z) − ψ(z)| (4.3.5)

≤ sup
z∈Gι

|ψ̂N(z) − ψ̂N(z̄i(z))| + max
i∈[U ]

|ψ̂N(z̄i(z)) − ψ(z̄i(z))| + sup
z∈Gι

|ψ(z̄i(z)) − ψ(z)|.

By Proposition 4.2, the first term and the last term in (4.3.5) can be deduced as
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follows:

sup
z∈Gι

|ψ̂N(z) − ψ̂N(z̄i(z))| ≤ (Θ + 1)ν, (4.3.6)

sup
z∈Gι

|ψ(z̄i(z)) − ψ(z)| ≤ (Θ + 1)ν. (4.3.7)

We turn to consider the second term in (4.3.5). The event {maxi∈[U ] |ψ̂N(z̄i(z)) −

ψ(z̄i(z))| ≥ ϵ} is equal to the union of the event {|ψ̂N(z̄i(z)) − ψ(z̄i(z))| ≥ ϵ}, i ∈ [U ].

The above, together with Cramér’s LD theorem, implies that

P
(

max
i∈[U ]

|ψ̂N(z̄i(z)) − ψ(z̄i(z))| ≥ ϵ2

)
≤

U∑
i=1

P
(
|ψ̂N(z̄i(z)) − ψ(z̄i(z))| ≥ ϵ2

)
(4.3.8)

≤ 2
U∑
i=1

e−N min{ID(ϵ2),ID(−ϵ2)}.

Substituting (4.3.6)-(4.3.8) into (4.3.5) and denote ϵ2 = ϵ − 2(Θ + 1)ν, we can

deduce that

P
(
sup
z∈Gι

|ψ̂N (z)− ψ(z)| ≥ ϵ

)
≤ P

(
max
i∈[U ]

|ψ̂N (z̄i(z))− ψ(z̄i(z))| ≥ ϵ2

)
(4.3.9)

≤ 2

U∑
i=1

e−N min{ID(ϵ2),ID(−ϵ2)}.

By Lemma 4.9, we can derive that ID(ϵ2) and ID(−ϵ2) are positive based on [50,

pp. 388-389]. Furthermore, the choice of ν-net does not depend on the sample. We

thus obtain (4.3.4).

4.4 Numerical experiments

In this subsection, we aim to prove that the function value of stationary points of

SAA problem (4.1.9) converges to the original problem with expectation in (4.1.8)

w.p.1 as the sample size N goes to infinity.
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We employ Synthetic dataset and Pixel-MNIST datasets described in section

3.2.2 for the numerical experiment in this section. The process of the experiment

can be described as follows: we repeatedly employ the ALM to solve problem (3.2.6)

and record the function values of the final output solutions 30 times with the sample

size N = 50, 100, 150, 200 for Synthetic dataset and N = 50, 100, 200, 500 for

Pixel-MNIST stated in section 3.2.2 respectively. It is worth mentioning that the

parameters for all datasets are the same as those listed in Table 3.6. We then draw

boxplots of the 30 times function values for each sample size respectively.

Figure 4.1 illustrates the convergence trend of the function value of stationary

points as the sample size N increases.
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Figure 4.1: Box plots of optimal values under different sample size N .

(a) Synthetic dataset

(b) Pixel-MNIST
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Chapter 5

Conclusions and Future Work

This chapter draws conclusions on the thesis and points out some possible research

directions related to the work done in this thesis.

5.1 Conclusions

In this thesis, we study optimization problems arising from the training process of

RNNs, which are widely used in natural language processing, speech recognition, and

time series forecasting.

• We propose an augmented Lagrangian-based method to solve SAA problems

(1.1.2) and (1.1.1) arising from training RNNs, which are both nonconvex nons-

mooth and highly composite. The method first reformulates (1.1.2) and (1.1.1)

as (3.1.4) and (3.2.5), respectively using auxiliary variables. After adding a

regularization term, we focus on solving the regularized problem (3.1.6) and

(3.2.6). For (3.1.6), we present the ALM in Algorithm 1 along with BCD

method in Algorithm 2. The BCD method in Algorithm 2 is efficient for solving

the subproblems of the ALM, which has a closed-form solution for each block

problem. We establish the solid convergence results of the ALM to a KKT

point of problem (3.1.6), as well as the finite termination of the BCD method

for the subproblem of the ALM at each iteration. Similar algorithms are pro-
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posed for problem (3.2.6). The efficiency and effectiveness of the ALM for

training RNNs are demonstrated by numerical results with real-world datasets

and synthetic data, and then comparison with state-of-art algorithms.

• We analyze the convergence of the optimal value, the solution set, and limiting

stationary points of SAA problem (1.1.2) to those of the original problem (1.1.3)

as the sample size goes to infinity. To achieve this, we first reformulate (1.1.2)

and (1.1.3) as (4.1.8) and (4.1.9), respectively, and add regularization terms

for them. We then investigate properties of the objective functions in problem

(4.1.8) and (4.1.9). Based on the analysis, we established the convergence of the

optimal value, solutions, and limiting stationary points of the SAA problems.

Finally, we conduct numerical experiments to verify the theoretical convergence

results.

5.2 Future work

In the future, we plan to enhance our algorithm by extending it into a stochastic

framework, which holds great potential for efficiently addressing problems involving

massive datasets. By incorporating stochastic techniques, we aim to significantly

reduce computational costs while maintaining high levels of accuracy and scalability,

enabling our method to handle large-scale problems that are common in real-world

applications. This extension will open up new possibilities for deploying our approach

in scenarios where deterministic algorithms may struggle due to the sheer size or

complexity of the data.

Moreover, our proposed method, along with its theoretical analysis, has the flexi-

bility to be adapted to more sophisticated and widely-used RNN architectures, such

as Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units (GRUs).

These advanced architectures are particularly well-suited for capturing long-term de-
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pendencies and handling sequential data with greater complexity. By extending our

framework to these models, we aim to broaden the applicability of our method and

provide a more comprehensive solution for complex time-series analysis, natural lan-

guage processing, and other sequence modeling tasks. This future work will not only

solidify the robustness of our approach but also contribute to the advancement of

efficient learning algorithms in the domain of deep learning.
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