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Abstract 

Solar photovoltaic (PV) harvesting is a significant force leading to the rapid expansion of 

renewable energy. To facilitate the installation of PV modules at solar-abundant locations, an 

accurate estimation of solar PV spatial potential is indispensable. Solar energy could be 

reflected on high-albedo building surfaces inside the urban canyon. However, using constant 

albedos to represent the urban vertical surfaces or ignoring the indirect components in 

estimating received irradiation is the typical solution in current research, which leads to 

inaccuracies in final results. Using conventional ways to construct albedo datasets for 

different building surfaces is extremely labor-intensive.  

In this study, we address these challenges by proposing a novel framework that integrates 

façade material identification using street-view images. This framework incorporates the 

effects of multi-reflection, enabling both qualitative and quantitative analysis of the impact of 

façade albedo on solar energy distribution. To achieve this, we built a façade material dataset 

from street views and developed an segmentation model to effectively identify façade 

materials from street view images. Furthermore, this study provides the first accurate 

estimation of solar energy potential in complex metropolitan environments and elucidates 

how metropolitan environments with different albedo characteristics affect solar potential 

distribution. 

Due to the distinguishable features between materials in terms of the subtle texture and 

patterns rather than just their shapes and colors, identification requires more details from 

images, which makes a multi-scale inference structure a promising solution. Compared with 

existing methods combining scale features at the pixel level, we proposed a novel Multi-Scale 

Contextual Attention Network (MSCA) using a Multi-Scale Object-Contextual 

Representation (OCR) block to exploit and combine contextual information from different 

scales in high dimensional layers. The experimental results show that the proposed model 

significantly outperforms the existing models, achieving a mean Intersection over Union 



 

ii 

 

(mIOU) of 70.23%. The results indicate that the MSCA can effectively obtain the materials 

information from street views and can be a reliable solution to providing urban albedo 

information for solar estimation. 

The segmentation results of the façade materials are further projected onto a 3D GIS model, 

which allows precise albedo values to be assigned to each urban surface. This enables the 

accurate simulation of solar potential, incorporating both direct and reflected solar radiation, 

as well as capturing the complex multi-reflection effects occurring in dense urban 

environments. By simulating how solar radiation interacts with various building surfaces, we 

provide a realistic estimation of solar potential distribution and comprehensively discuss the 

effects that the sophisticated albedo environment might bring to the solar potential. The 

experimental results show that the discrepancies in albedo significantly affect the overall 

solar potential by 8.0% to 9.1%. If multiple reflections among buildings are disregarded, the 

impact can reach 11.9% to 17.8%. 

The findings of this study offer valuable insights for urban planning by providing a scalable 

method for more precise solar potential assessment. The integration of real-world material 

data with 3D GIS enhances the decision-making process for optimizing photovoltaic (PV) 

deployment in urban areas, thereby contributing to more sustainable urban energy planning 

and efficient use of renewable resources. 
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Chapter 1 Introduction 

1.1 Background and Research Gaps 

Electricity is the lifeblood of modern societies and economies, providing the energy needed 

to power homes, businesses, and industries. However, the production of electricity is also a 

significant contributor to carbon dioxide (CO2) emissions worldwide, which are a major 

cause of climate change. In order to mitigate the impact of these emissions, there has been a 

rapid expansion of renewable energy sources, such as solar, wind power, and hydroelectricity, 

which is leading the transition to net zero emissions while the world's total renewable 

electricity capacity is predicted to rise to 4500 gigawatts (GW) in 2024 (IEA, 2023).  

1.1.1 Renewable energy in Hong Kong 

In this context, solar photovoltaic (PV) systems are becoming increasingly popular in 

metropolitan cities. These systems use solar panels to convert sunlight into electricity, 

providing a clean and renewable source of energy. In Hong Kong, for example, the solar 

energy produced increased from 47 terajoules (TJ) in 2018 to 74 TJ in 2019, representing a 

significant increase of 57% in just two years (Electrical and Mechanical Services Department, 

2021).  This growth is part of Hong Kong’s broader push towards carbon neutrality by 2050, 

as outlined in the "Hong Kong's Climate Action Plan 2050". The plan sets a target of 

reducing Hong Kong’s total carbon emissions by 50% before 2035 compared to the 2005 

levels, with renewable energy, including solar, expected to play a crucial role in achieving 

these goals. Although renewable energy currently accounts for less than 1% of the city's total 

electricity generation, there is a strong focus on increasing its share in the energy mix to 

between 7.5%-10% by 2030 and to 15% gradually thereafter (Hong Kong Government, 

2021).  
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In addition, another factor driving the growth of solar PV systems is that many governments 

and organizations are offering incentives and subsidies to encourage the adoption of solar 

energy, making it an attractive option for both individuals and businesses. Solar PV systems 

provide a way for individuals and businesses to take action and reduce their carbon footprint 

while also saving money on their energy bills. In Hong Kong, the government has 

implemented the Feed-in Tariff (FiT) scheme, which incentivizes individuals and businesses 

to invest in solar PV systems by allowing them to sell excess electricity generated back to the 

grid at attractive rates. Under the FiT scheme, participants can earn between HKD 2.5 and 

HKD 4 per kilowatt-hour of electricity exported, depending on the capacity of the system 

installed. As of 2021, over 16,000 applications for renewable energy installations, 

representing a total capacity of around 265MW, mainly solar PV, have been approved, 

further encouraging the development of solar infrastructure in both residential and 

commercial sectors (China Light and Power Company, 2021). The increasing popularity of 

solar PV systems in metropolitan cities is a positive trend that is helping to drive the 

transition to a cleaner and more sustainable energy future. As the awareness of the need to 

reduce greenhouse gas emissions grows, it is likely that the use of solar PV systems will 

continue to expand and play an increasingly important role in the global energy mix. 

1.1.2 2D Solar potential estimation  

To enhance the efficiency of PV equipment deployments, some studies have estimated the 

urban PV potentials in different cities (Gassar et al., 2021; Choi et al., 2019). These studies 

provide an essential basis for energy policy decision-making and panel deployment in 

metropolitan cities. By understanding the potential for solar energy production in a given city, 

policymakers and energy companies can make informed decisions about where to install solar 

panels and how to optimize their use (Zhu et al., 2023). For example, Zhu et al., (2019) 

estimated the urban PV potential in Hong Kong, while a study by Dehwah et al., (2018) 

estimated the potential in the residential sector of the Kingdom of Saudi Arabia (KSA). 
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Izquierdo et al., (2011) build on an existing geo-referenced method for determining available 

roof area for solar facilities in Spain to produce a quantitative picture of the likely limits of 

roof-top solar energy. These studies provide valuable information about the amount of solar 

energy that could be produced in these cities, as well as the potential economic and 

environmental benefits of deploying solar PV systems. Overall, the estimation of urban PV 

potentials is an important tool for enhancing the efficiency of PV equipment deployments in 

metropolitan cities. By providing information about the potential for solar energy production 

and the challenges and barriers to deployment, these studies can help policymakers and 

energy companies make informed decisions about the use of solar PV systems and contribute 

to the transition to a cleaner and more sustainable energy future. 

In recent years, there has been a growing interest in improving the efficiency and accuracy of 

the land surface solar irradiation estimation (Gassar et al., 2021). This is an important task 

that is essential for understanding the potential for solar energy production in different areas 

and making informed decisions about the deployment of solar PV systems. In empirical 

models, multiple meteorological parameters, e.g., temperature, relative humidity, and 

precipitation, are utilized to describe the long- or short-term distribution of solar potential in 

large-scale areas (Chen et al., 2019). While these models can provide a general understanding 

of the solar potential in a given area, they have certain limitations. With the increasing 

variables, traditional models are not capable of reflecting complex and nonlinear relationships 

(Ağbulut et al., 2021). To overcome the limitation, machine learning methods have been 

increasingly used in recent years. These methods are more effective in explaining complex 

and nonlinear relationships and can provide more accurate estimates of the solar potential in a 

given area (Meenal et al., 2018; Jiang et al., 2017; Ibrahim et al., 2017). However, these 

approaches still have certain limitations. One of the main limitations is the lack of 

incorporation of urban microclimate conditions and the interaction among buildings, such as 

shadowing and solar multi-reflections. This can lead to inaccurate results, as these factors can 

significantly affect the amount of solar energy that is available for use (Freitas et al., 2015; 
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Zhu et al., 2023). Another limitation of these approaches is the neglect of solar irradiation 

received by urban vertical surfaces, such as building façades. This can vastly underestimate 

the solar PV potential in cities, as the façades can generate more energy than rooftops due to 

their larger area, despite the less vertical irradiation and high shadow covering rate. For 

example, a study by Redweik et al., (2013) found that if the experiments only considered the 

roof area of the Campus of the University of Lisbon, the total potential of solar energy 

production would be about 34 GW h/year. However, if the potential of the building façades is 

also taken into account, the total potential would be almost double, at about 53 GW h/year. 

This is because, although the average annual irradiation per unit area on the façades is lower 

than that of the roofs, the much larger area of the façades means that a significant amount of 

solar energy reaches them throughout the year. In this case, the façades receive about 19 GW 

h/year of solar energy, which significantly contributes to the campus's total solar potential.  

Especially in metropolitan cities, due to the high density and large ratio of façade area/roof 

area, the urban morphology conclusively determines the solar photovoltaic distribution, 

which is difficult to incorporate in two-dimensional estimation (Walch et al., 2020; Park et al., 

2021; Assouline et al., 2015). However, most studies only consider urban areas as a 

two-dimensional plane, using satellite images and cloud coverage data to estimate the solar 

radiation received by rooftops (Walch et al., 2020; Park et al., 2021; Assouline, Mohajeri et 

al., 2017). This approach neglects the solar irradiation received by urban vertical surfaces, 

which can significantly affect the solar PV potential in cities. For example, a study by Walch 

et al., (2020) used Machine Learning to incorporate high spatial resolution building and 

environmental information in parts of Switzerland but did not consider the solar irradiation 

received by building façades. Similarly, a study by Park et al., (2021) used satellite images 

and cloud coverage data to estimate the solar radiation received by rooftops in a dense urban 

area but did not consider the solar irradiation received by building façades. These studies 

have omitted multi-reflected solar radiation made by façades in the estimation of the solar 
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potential in city-wide studies, which should be deemed as a significant component of 

received solar radiation (Sánchez et al., 2015; Boccalatte et al., 2020). 

1.1.3 3D Solar potential estimation  

The 3D geographic information system (GIS) model has proven to be a promising approach 

for accurate solar analysis at the building scale (Zhu et al., 2020; Zhu et al., 2019; Li et al., 

2016; Erdélyi et al., 2014; Zhu et al.,2022). This approach involves creating a 3D model of a 

building or urban area, which can be used to quantify the building occlusion and the solar PV 

potential on the vertical surface. No matter the Level-of-Detail (LoD), 3D models can 

provide valuable information about the solar potential in a given area and have been used in a 

number of studies to estimate the solar potential in different cities. However, despite the 

potential of 3D GIS models for accurate solar analysis, there are still certain limitations that 

need to be addressed. One of the main limitations is the lack of consideration of radiation 

reflections in the calculation. While some studies have proposed 3D models for the 

estimation of the solar potential, radiation reflections are not incorporated in the calculation 

(Calcabrini et al., 2019; Jakubiec et al., 2013; Li et al., 2016). For example, a study by 

Redweik et al., (2013) used a 3D model to estimate the solar potential in a dense urban area 

but did not consider the effect of radiation reflections on solar irradiation. Due to the lack of 

information on urban envelopes albedo, the inter-building reflection, which should be 

deemed as a significant component of solar irradiation, has been omitted in most studies. This 

is a significant limitation, as the inter-building reflection can significantly affect solar 

irradiation in densely populated urban areas. On the contrary, a study by Zhu et al.,  (2020) 

used a 3D GIS model to estimate the solar potential in ten cities, including Athens, Honolulu, 

Lisbon, Hong Kong, Los Angeles, Mandalay, New York, Paris, Singapore, and Toronto. The 

study indicates that the solar reflection simulation provides a more accurate estimation of 

solar distribution in urban environments, as the high albedo in cities can significantly alter the 

distribution. The study also suggests that, under the same conditions (latitude and clouds), 
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cities with a higher density of tall buildings and an irregular fluctuation of building heights 

tend to have a larger solar capacity. In contrast, some studies apply a constant value to 

represent the albedo of all urban façades. For example, a study by Zhu et al., (2020), they 

incorporated reflection into the 3D model by applying a constant value to represent the 

albedo of all urban façades. However, this approach has certain limitations, as the albedo of 

urban façades can vary significantly depending on the architectural style and materials used. 

In metropolitan cities, where there is a wide range of architectural styles and materials, the 

irradiation of reflected solar light could vary significantly in different districts. For instance, a 

rooftop near a commercial building with a high albedo glass façade is likely to receive higher 

irradiation than a rooftop near an old residential building with a mosaic tile façade. 

1.1.4 Research Gaps   

It is challenging to accurately estimate the solar potential incorporating albedo-based 

multi-reflection and quantify the effect of façade albedo on solar PV distribution, as the 

albedo collection is exceptionally labor-intensive at a city scale. In this study, we propose a 

multi-scale contextual attention network to extract the material information from street views, 

which can link the results with 3D models and hence improve the accuracy of solar 

estimation. However, there are still some difficulties that need to be addressed before 

extracting the material information. Since the major objective of this study is obtaining 

facade material information on a large scale, using street view images as a source of 

information has become a very intuitive, economical, and effective method. The significant 

challenge when utilizing street-level images is the unstable image qualities, with massive 

occlusion, over-exposure, and unclear perspective. The other reason that makes the use of 

street-level images for material identification a challenging task is that the colors and shapes 

of different materials may have similar visible spectral characteristics, making it difficult to 

distinguish between them. In addition, there is a lack of specific datasets dedicated to façade 

material identification, which can further complicate the task. Although there are some 
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datasets for material identification, such as the Materials in Context Database (MINC) (Bell 

et al., 2015) and the dataset from MIT (Sharan et al., 2009), no specific dataset is dedicated to 

façade material identification. This can make it difficult to train and evaluate the performance 

of material identification models. In the past few years, previous works (Liu et al., 2017; Ma 

et al., 2020; Dai et al., 2019) have applied convolutional neural networks (CNN) to façade 

parsing, which have achieved better performances than traditional models (Gadde et al., 

2016). However, the same challenges still exist in current research. Most façade related 

research was conducted by utilizing non-street-level images, which simplifies complicated 

environments and obstacles and thus reduces the generalization of methods. This can limit the 

applicability of these methods to real-world scenarios, where street-level images are often the 

only available data source. Therefore, this study proposes a novel street-level semantic 

segmentation dataset. The dataset collected street view images of different streets and regions 

in Hong Kong, including ShekMun, LaiChiKok, WestKowloon, Kowloon Bay, NorthPoint, 

and Central, under different weather and time conditions. This aims to enhance the robustness 

of the model in identifying materials in different complex urban environments, such as new 

and old residential areas, commercial areas, government land, etc.  

Furthermore, another difficulty is that the colors and shapes of different materials may have 

similar visible spectral characteristics in street-view images. This makes identifying materials 

much more challenging than identifying façade components, like windows or balconies. The 

model needs to have strong semantic understanding ability to be competent in this task. In 

current research, there are two main methods for identifying materials: semantic 

segmentation and object recognition. Semantic segmentation involves dividing an image into 

multiple regions and assigning a label to each region or pixel, indicating the type of material 

present in that region. Object recognition, on the other hand, involves identifying specific 

objects within an image and classifying them with bounding boxes. Both semantic 

segmentation and object recognition have their own advantages and disadvantages, and the 

choice of method depends on the specific requirements of the task. Object recognition is 
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useful for identifying specific objects within an image, such as windows or doors, and 

classifying them based on their characteristics. This can be useful for tasks such as building 

facade parsing, where it is important to identify specific building components and their 

properties. However, object recognition may not be as effective at identifying materials in 

complex scenes, as it may not be able to distinguish between different materials that are 

present in the same region. This study chooses to use a segmentation model to extract 

material information from street views. This approach allows us to identify materials in 

complex scenes and makes it easier to map the identified results of different building parts 

into a 3D GIS model. In semantic segmentation models, it is critical to balance the network 

dimensions (i.e., width, depth, and resolution) (Tan et al., 2019). Some studies use 

low-resolution images as input to cover a relatively larger receptive field and lower 

floating-point operations per second (FLOPS) (Richter et al., 2021). Façade materials 

identification has a high demand on pixel-level details to differentiate specific materials, 

which means maintaining the image original resolution is crucial. In addition, finer-resolution 

inputs usually mean better performance in detecting small objects while coarser is good for 

large ones. Using multi-scale inference is a popular way to handle the trade-off. Lin et al., 

(2017) used average pooling to combine the features between scales. Tao et al., (2020) 

proposed the attention mechanism to determine the weighted mask and then use the mask to 

trade off the information of different scales. However, it is still a pixel-level operation, which 

cannot fully exploit the contextual information of the output tensor. 

In this study, a multi-scale contextual attention network (MSCA) is proposed for the façade 

segmentation. Compared with previous works (Chen et al., 2016; Tao et al., 2020), MSCA 

combines contextual information in high-dimension feature space to achieve feature-level 

fusion between scales. The main idea of our work is to use the attention layers to fuse 

hierarchical information in a revised Object-Contextual Representation (OCR) module (Yuan 

et al., 2019) rather than after the segmentation head of the network. This can significantly 

improve the contextual comprehending ability of the network and thus could better handle the 
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trade-offs between high demand on details and contextual comprehension ability on large 

objects. 

Based on the extensive material information obtained from the MSCA, this research aims to 

develop a comprehensive evaluation framework for investigating the effect of albedo on solar 

PV potential distribution. The proposed framework is designed to provide a systematic 

approach for evaluating the influence of albedo on solar PV potential distribution, taking into 

account various factors such as building function, façade materials, and inter-building 

reflections. After MSCA, the segmentation results are projected to the 3D GIS model, which 

allowed for the visualization and further analysis of the study area in a spatial context. Based 

on the identified materials, each building in the study area was assigned one of three different 

albedos: constant albedo, simulation albedo, or segmentation-based albedo. The 3D building 

models with different albedo strategies were then used to evaluate the effect on solar potential 

distribution. At the end of the study, the quantitative results were compared and discussed to 

assess the impact of different albedos in urban areas on the solar PV potential distribution.  

1.2 Research Objectives 

Solar photovoltaic (PV) systems are increasingly becoming popular in metropolitan cities. To 

provide an essential basis for energy policy decision-making and panel deployment in 

metropolitan cities, this study proposes to realize an accurate estimation of solar potential by 

incorporating the effect of the multi-reflective solar radiation made by façades. To handle this 

challenge, this study has the following major objectives:  

1) To develop a semantic segmentation dataset for façade material recognition.  

2) To develop a deep learning model for façade material recognition.  

3) To convert the 2D material segmentation results into albedo information and project it 

into the 3D model.  
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4) To develop a solar potential estimation model that incorporates the effect of the 

multi-reflective solar radiation made by façades. 

1.3 Thesis outline 

The remaining parts of this thesis were organized as follows. The first chapter introduces the 

background, research gaps, and objectives of this study. Chapter 2 reviews related work and 

current technology, including façade imagery analysis, existing material Bidirectional 

Reflectance Distribution Function (BRDF) library, and solar potential estimation solutions. 

Chapter 3 presents the study area and data collection. In Chapter 4, we describe the 

methodology of this study, including the framework of this study, assumption, data 

annotation process, structure model, and detail formulas. In Chapter 5, we evaluate the 

performance of the proposed method and the quantitative results were compared and 

discussed to assess the impact of different albedos in urban areas on the solar PV potential 

distribution. Chapter 6 summarized the conclusion of this study and followed by future work 

for this study.   
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Chapter 2 Literature Review 

 

This section first reviews the current approaches for solar potential estimation, including 

traditional approaches and machine learning-based approaches. The existing limitations are 

also summarized in the chapter. It then reviews the research on material recognition, façade 

imagery analysis, and multi-scale segmentation, identifying the current gaps in accessing 

large-scale façade information. 

2.1 Solar potential estimation 

2.1.1 Overview of Estimation Methods 

Accurate solar potential estimation is critical for designing and optimizing photovoltaic (PV) 

systems, especially in urban environments. Various methods have been developed to estimate 

solar potential, which can be broadly classified into empirical, physical, and machine 

learning-based models. As shown in Table 2.1, these methods range from simple statistical 

approaches to advanced AI-driven models, and their application depends on the complexity 

of the study area, available data, and the required accuracy. 
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Table 2.1 Comparison of solar potential estimation methods 

Methods Description 
Study 

Area 
Accuracy 

Representative 

works 

Empirical 

Models 

Based on statistical 

analysis of historical 

data 

Large 

regions 

 
 

Medium 
Chen et al. (2019); 

Makade et al. 

(2019) 
 

Physical 

Models 

Simulates solar 

radiation processes 

based on principles of 

physics 

Urban, 

Street 
High Nguyen et al. (2013) 

3D Ray-Tracing 
Urban, 

Street 
Very High 

Zhu et al. (2020); Li 

et al. (2016) 

Machine 

Learning 

Models 

Uses algorithms like 

SVM and ANN to 

predict 

Various 
High 

(data-dependent) 

Assouline et al. 

(2015); Nwokolo et 

al. (2023) 

Empirical models, as documented by Chen et al. (2019) and Makade et al. (2019), are derived 

from statistical analysis of historical data and are often used for their simplicity and ease of 

application. Physical models, on the other hand, as described by Nguyen et al. (2013) and 

Zhu et al. (2020), are grounded in the fundamental principles of physics and attempt to 

simulate the actual processes affecting solar radiation. Machine learning models, as explored 

by Assouline et al. (2015, 2017) and Nwokolo et al. (2023), employ algorithms that can learn 

from data and identify complex patterns, thereby providing a more dynamic approach to solar 

potential estimation. 
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2.1.2 Horizontal solar potential estimation 

Models for estimating solar potential using two-dimensional input parameters have been 

extensively studied. The conventional meteorological parameters such as cloud cover, 

ambient temperature, and relative humidity, which have been widely acknowledged by 

researchers including Besharat et al. (2013), there is a growing body of literature that 

suggests the incorporation of additional data points like sunshine duration or rainfall. These 

parameters have been shown to optimize the estimation process, as demonstrated by Quej et 

al. (2016) and Meenal et al. (2016). The rationale behind this is to utilize a more 

comprehensive set of variables that influence solar irradiance, thereby enhancing the 

predictive capability of the models. However, as the number of parameters that are found to 

be relevant to solar distribution increases, traditional models often exhibit a lack of sufficient 

generalization ability to accurately map the relationships between independent (input) and 

dependent (output) variables. This limitation has prompted researchers like Meenal et al. 

(2018) to employ data mining tools such as the Waikato Environment for Knowledge 

Analysis (WEKA) to identify the most influential factors. They evaluated the accuracy of 

advanced computational techniques such as Support Vector Machine (SVM) and Artificial 

Neural Network (ANN) in capturing the complex interdependencies between the variables. 

2.1.3 Vertical solar potential estimation 

To further refine the accuracy of solar potential estimations, three-dimensional modelling 

techniques have been introduced. Li et al. (2016) proposed a 3D model that calculates the 

shadow effects on rooftops, which is critical for understanding the availability of solar 

radiation in urban environments. Similarly, the SORAM model, developed by Erdélyi et al. 

(2014), employs a sophisticated ray-tracing algorithm to assess whether a 3D ray vector 

intersects with a voxel, thereby enabling the calculation of dynamic shading effects from 

urban structures. Moreover, the assessment of solar potential on vertical surfaces has been 

increasingly recognized as an important factor in comprehensive solar resource evaluation. 
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This aspect has been incorporated into models by researchers such as Xu et al. (2019), An, 

Chen et al. (2023), and Willenborg et al. (2018b). Meanwhile, researchers like Bill et al. 

(2016) and Willenborg et al. (2018a) leverage advanced technologies such as Light Detection 

and Ranging (LiDAR) data, semantic 3D city models, and 3D mesh models to achieve higher 

levels of detail (LoD) and accuracy in 3D model.  

Despite these advancements, only a handful of studies, such as those by Zhu et al. (2020, 

2022), have included the complex phenomenon of inter-building reflection in their 

estimations. In these studies, the albedo, which represents the reflectivity of urban surfaces, is 

often assigned a constant value. This simplification has led to less precise results, as the 

variability of albedo in urban environments can significantly influence the distribution of 

reflected solar radiation. The challenge lies in quantifying the effect of this variability on 

solar potential estimation, which remains an area for further research and refinement.  

The integration of photovoltaic systems into building façades, termed Building Integrated 

Photovoltaics (BIPV), is increasingly recognized for its potential to enhance the sustainability 

of urban structures. One of the critical factors influencing the performance of BIPV systems 

is their sensitivity to the variations in solar indirect components, notably multi-reflection 

phenomena, which are significantly influenced by the reflectivity of surrounding surfaces 

(Fouad et al., 2017). These reflections can substantially alter the amount of solar energy 

received by photovoltaic systems. Kotak et al. (2015) conducted a detailed investigation into 

this phenomenon and utilized the empirical equation formulated by Liu et al. (1963) to 

estimate the contributions of reflected energy. Their findings indicated a substantial increase 

in energy gain, specifically recording a 48% enhancement when factoring in the reflective 

properties of nearby structures. Zhu et al. (2020) further contributed to this body of 

knowledge by selecting an empirical parameter of 0.4 for their estimations based on 

observations that the average albedo of commonly used building materials ranged between 
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0.32 and 0.38. Despite these advances, the challenge of accurately acquiring reliable albedo 

information for building materials in specific study areas persists. 

Traditionally, the acquisition of albedo data relied heavily on conducting in situ 

investigations, which can be both time-consuming and resource-intensive. In earlier research 

efforts, such as those by Dana et al. (1999), and subsequent studies by Fritz et al. (2004) and 

Mallikarjuna et al. (2006), the focus was primarily on material recognition through the 

analysis of textures in close-up photographs devoid of any contextual background. This 

method saw significant development over time, shifting towards the recognition of materials 

on real-world objects beyond mere texture distinctions, as evidenced in the studies by Sharan 

et al. (2014) and Bell et al. (2015).  

However, these techniques predominantly targeted indoor objects and did not address the 

unique challenges presented by urban envelope materials, which must often be identified 

from greater distances, with more complex environmental conditions, and with less distinct 

shapes. 

2.2 Material Recognition 

2.2.1 Close-up images identification 

In the domain of computer vision, distinguishing materials from images represents a notably 

complex challenge when compared to tasks such as object detection or scene understanding. 

The intrinsic difficulty lies in the fact that materials can manifest a highly diverse range of 

appearances, complicating the identification of consistent image features that can reliably 

categorize them. Initial efforts in material recognition primarily focused on analyzing textures 

captured in close-up photographs without any contextual background. This approach is 

exemplified by the work of Dana et al. (1999), who introduced the CUReT dataset, 

comprising 61 material surfaces photographed under more than 200 different illumination 
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and viewing conditions. However, a significant limitation of CUReT is that each class 

includes only a single instance of each material, which severely restricts the dataset's ability 

to generalize across varied real-world scenarios. 

2.2.2 Real-world objects identification 

To address these limitations, subsequent datasets such as KTH-TIPS (Fritz et al. 2004) and 

KTH-TIPS2 (Mallikarjuna et al., 2006) expanded the variety of samples for about ten 

different materials, including textiles like corduroy, linen, and cotton. These datasets included 

multiple instances of each material, which helped improve the robustness and generalization 

of material recognition algorithms. Nevertheless, the challenge of recognizing materials on 

real-world objects remains substantially greater than identifying close-up textures due to the 

complexity and variability of objects in natural settings. 

This recognition challenge was further addressed by Sharan et al. (2014), who created the 

FMD, a dataset consisting of 1,000 images of complete objects categorized into ten different 

types. This dataset was designed to minimize irrelevant background interference, thereby 

focusing on the materials themselves. Following this, the OpenSurfaces dataset (Bell et al., 

2013) provided over 25,000 images captured in more typical indoor settings rather than 

close-ups, offering a more realistic view of materials within everyday environments. Building 

on this, Bell et al. (2015) developed the MINC dataset, which included 7,061 labelled 

material segmentations across 23 categories, with a more uniform representation of materials 

aimed at enhancing the performance of automated classification systems. 

2.2.3 Façade materials in Hong Kong 

A survey was conducted during 2004, to analyse the materials used for external wall finishes 

in 111 private residential buildings in Hong Kong (Ho et al., 2004). The study identified 

seven categories of commonly used materials: Paints, Mosaic Tiles, Ceramic Tiles, Mosaic 

and Ceramic Tiles, Mosaic and Others, Ceramic and Others, and Others (including granite 
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and marble cladding). The frequency distribution revealed that Ceramic Tiles were the most 

prevalent, accounting for 40.5% of the sample, followed by Mosaic Tiles at 27%, and Paints 

at 13.5%. Notably, the use of Paints and Mosaic Tiles has significantly declined in recent 

developments. Most buildings with paint finishes were over 20 years old, aligning with 

findings from Shui On et al. (1984). However, Paints has seen a resurgence in public rental 

housing due to advancements in paint technology, offering better durability and a wider range 

of colours. Additionally, the adoption of metal formwork has facilitated the use of Paints 

without compromising the aesthetic appeal of the buildings. 

Despite these advancements, based on the surveys on façade materials in Hong Kong, a 

significant gap remains in the datasets, which primarily focus on indoor objects and settings. 

In contrast, materials featured on building façades in urban street views present unique 

challenges. These materials are often captured from greater distances, resulting in images 

with blurrier details and more complex backgrounds. Furthermore, the less distinct shapes 

and the dynamic lighting conditions typical of outdoor environments add additional layers of 

complexity to the task of material recognition. This distinction underscores the need for 

developing specialized methodologies and datasets that are tailored for the identification and 

classification of materials in outdoor urban environments, specifically those that can address 

the challenges posed by variable distances, complex scenes, and diverse lighting conditions. 

2.3 Façade imagery analysis 

2.3.1 Façade parsing 

The utilization of street view imagery for façade analysis presents numerous advantages, 

primarily due to the ease of access and the potential for crowdsourced data collection. This 

approach enables the compilation of extensive datasets that can be employed to enhance the 

understanding and classification of building façades. In this context, Gadde et al. (2016) 

introduced an innovative approach by employing an unsupervised clustering method. This 
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method focused on aggregating simple rules into complex patterns, offering an alternative to 

traditional methods that rely on handcrafted grammars specifically designed for parsing 

distinct classes of building façades. Such methodologies demonstrate a shift from rigid, 

predefined models to more flexible and adaptive learning frameworks capable of 

understanding the variability in urban architecture. 

The utilization of street view imagery for façade analysis presents numerous advantages, 

primarily due to the ease of access and the potential for crowdsourced data collection. This 

approach enables the compilation of extensive datasets that can be employed to enhance the 

understanding and classification of building façades. In this context, Gadde et al. (2016) 

introduced an innovative approach by employing an unsupervised clustering method. This 

method focused on aggregating simple rules into complex patterns, offering an alternative to 

traditional methods that rely on handcrafted grammars specifically designed for parsing 

distinct classes of building façades. Such methodologies demonstrate a shift from rigid, 

predefined models to more flexible and adaptive learning frameworks capable of 

understanding the variability in urban architecture. 

Further advancing the field, Liu et al. (2017) proposed a novel neural network architecture 

equipped with a symmetric regularizer. This design leverages the inherent structural 

symmetry found in man-made architectures, particularly in building façades, which are often 

characterized by highly regularized shape priors and fine-grained details. The researchers 

highlighted a significant challenge associated with the direct application of standard deep 

learning techniques, such as those discussed by Schmitz et al. (2016), which do not 

consistently achieve optimal results in façade imagery analysis. This discrepancy is largely 

due to the unique architectural features that are not adequately captured by conventional 

segmentation models primarily designed for more generic applications. 

In response to the limitations observed in both grammar-based approaches, which heavily 

depend on prior architectural knowledge, and the underperformance of standard segmentation 
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models, Kong et al. (2020) introduced a novel convolutional neural network (CNN) pipeline. 

Their approach synergistically combines pixel-wise segmentation with global object 

detection to address the complexities inherent in street-level datasets. This methodology aims 

to improve the generalization capabilities of façade analysis tools by effectively integrating 

detailed local texture analysis with broader structural recognition. 

However, the task of extracting material categories from façade imagery introduces 

additional complexities that surpass those encountered in the identification of façade 

components such as windows or balconies. The primary challenge arises from the subtle 

differences in shape and spectral characteristics among various building materials, such as 

ceramic tiles and marble, which are often much less pronounced than the distinctions between 

different architectural components. This subtlety makes the task of accurately categorizing 

façade materials using image analysis techniques more arduous than simply identifying 

different structural elements of a façade. As such, developing robust methods that can discern 

these subtle differences is critical for advancing the capabilities of automated façade analysis 

models, which are essential for applications ranging from urban planning to heritage 

conservation. 

2.3.2 Data collection for façade recognition 

Accurate façade recognition relies heavily on the quality and source of the data collected. 

Various methods exist for gathering façade imagery, each with its own set of advantages and 

disadvantages. Common data sources include Mobile Mapping Systems (MMS), handheld 

devices, Baidu, Google, panorama images, and cell phone images. As shown in Table 2.2, 

these methods differ in terms of resolution, availability of open-source databases, and 

suitability for specific study areas. 
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Table 2.2 Comparison of different data collection methods 

Data 

Collection 

Method 

Advantages Disadvantages Resolution Open-Source Area 

Mobile 

Mapping 

Systems 

(MMS) 

High resolution, with 

high-precision 

geographic 

coordinates 

Expensive, 

limited 

availability 

High Limited Urban 

Baidu Street 

View 

Wide coverage, 

relatively accessible 

Inadequate 

resolution, 

privacy concerns 

Medium Yes 
Primarily 

China 

Google Street 

View 

Wide coverage, 

relatively accessible 

Inadequate 

resolution, 

privacy concerns 

Medium Yes Global 

Panorama 

images 

Comprehensive 

spatial context 

Difficult to 

process for model 
Medium No Urban 

Cell Phone 

Images 

Highly accessible, 

easy to collect 

Varies greatly by 

phone quality 

Medium to 

high 
No 

Highly 

localized 

While these methods provide valuable data for general façade recognition tasks, they have 

significant limitations when applied to the specific task of identifying façade materials. The 

primary issue lies in resolution and accuracy. High-resolution images are necessary for 

distinguishing subtle differences in building materials, such as the textures of ceramic tiles 
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versus marble. However, many widely available sources, such as Google Street View and 

Baidu Street View, lack the resolution required for such fine-grained material segmentation. 

Additionally, panorama images, while offering high resolution and comprehensive spatial 

context, are difficult for typical segmentation models to process. 

Moreover, the inconsistency in resolution and accuracy across different platforms makes it 

challenging to apply segmentation models to datasets from multiple sources. In the context of 

this study, which aims to develop robust material segmentation methods, the limitations in 

available datasets underscore the need for controlled, high-quality image data. Therefore, 

freely available resources like Google Street View, while useful for general façade analysis, 

are unsuitable for our research, which requires high precision in identifying façade materials 

through semantic segmentation. 

2.4 Segmentation method 

Semantic segmentation is a significant area of computer vision that involves partitioning 

given images into segments by assigning a class label to each pixel. The goal of semantic 

segmentation is to label regions of an image with their corresponding object categories. It 

plays an essential role in tasks like autonomous driving, medical image analysis, and urban 

mapping, where pixel-level classification is required to understand the scene. 

2.4.1 Semantic segmentation  

In semantic segmentation, deep learning architectures such as Fully Convolutional Networks 

(FCNs) (Long et al., 2015) have been pivotal in the evolution of this field. These models 

replace the fully connected layers of traditional convolutional neural networks (CNNs) with 

convolutional layers, thus enabling pixel-wise classification for end-to-end image 

segmentation. This approach has become foundational for many applications where high 

spatial resolution is crucial for identifying small objects and details within an image. 
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Typical semantic segmentation architectures often rely on fixed-size receptive fields, which 

can limit the model's ability to capture contextual information. While they excel in detecting 

fine-grained details, such as edges or small objects, their lack of ability to scale effectively 

can cause underperformance when identifying larger or more complex objects. For instance, 

objects like buildings or landscapes require a larger context to be accurately classified. As a 

result, semantic segmentation models frequently encounter difficulties balancing 

high-resolution predictions with the understanding of broader contextual features (Chen et al., 

2017; Zhao et al., 2017). 

To mitigate these challenges, various improvements have been introduced, including 

encoder-decoder architectures and skip connections. These additions allow for the 

preservation of high-level semantic information while maintaining fine-grained spatial 

resolution. Models such as UNet (Ronneberger et al., 2015), which use these techniques, have 

shown considerable improvements in achieving pixel-level accuracy across different scales, 

especially in medical imaging and remote sensing applications. 

Despite these advancements, typical semantic segmentation methods often struggle with 

capturing multi-scale features, particularly in scenarios where objects of varying sizes coexist 

within the same image. This limitation has motivated the development of multi-scale 

segmentation techniques, which extend the ability of segmentation models to recognize 

objects across different resolutions. 

2.4.2 Multi-scale segmentation 

In the domain of pixel semantic segmentation within deep learning frameworks, recent 

advancements have predominantly employed low output stride backbones to enhance the 

resolution of predictions, thereby facilitating the identification of fine-grained details in 

images. However, as noted by Wei et al. (2017), these architectures typically suffer from 

small receptive fields, which, although beneficial for capturing minute details, tend to 



Chapter 2 Literature Review 

23 

 

underperform when tasked with identifying larger objects. This limitation underscores a 

significant challenge in balancing the need for detail with the ability to comprehend larger 

contextual elements within an image. 

To address this inherent trade-off, Zhao et al. (2017) developed the Pyramid Scene Parsing 

Network (PSPNet), which incorporates a pyramid pooling module to aggregate contextual 

information across multiple scales effectively. This innovative approach allows the network 

to maintain high-resolution insights while also capturing broader contextual data necessary 

for understanding larger image segments. Simultaneously, other studies have explored the use 

of encoder-decoder structures complemented by skip connections, as exemplified by the 

UNet architecture proposed by Ronneberger et al. (2015). These designs facilitate the 

seamless transfer of contextual information between layers of varying depth within the 

network, thereby enhancing the feature integration across different scales. 

Nevertheless, Chen et al. (2016) identified a critical issue with traditional pooling operations, 

such as average or max pooling. They observed that these operations often render the features 

extracted at each scale either uniformly important or selectively sparse. To mitigate this issue, 

they introduced an attention mechanism designed to dynamically fuse features across scales, 

thereby enabling the model to adaptively focus on the most pertinent scales for any given 

task. 

Expanding upon this foundation, Tao et al. (2020) further optimized the model by reducing 

the computational cost associated with scale integration. They achieved this by predicting 

relative weightings between adjacent scales, thus obviating the need for introducing 

additional scales into the network. However, despite these advancements, the specific 

challenge of material segmentation at the pixel level, as highlighted by Schwartz et al. (2016), 

remains a daunting task. This is primarily due to the difficulty in precisely distinguishing the 

material origins of patterns within an image. This study proposes to handle the contextual 
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information at the feature level by applying the attention module before the segmentation 

head instead of employing it at the end of the network. 

To more effectively tackle this challenge, this study proposes a novel approach that applies 

the attention module prior to the segmentation head rather than at the end of the network. By 

manipulating the contextual information at the feature level earlier in the processing pipeline, 

this methodology aims to enhance the precision of material categorization, ensuring that the 

segmentation network can more accurately and reliably determine the material composition 

of various objects within an image. This adjustment not only refines the process of feature 

integration but also aligns the network’s focus more closely with the nuanced requirements of 

material segmentation. 
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Chapter 3 Study area and data collection 

3.1 Study area  

This study primarily aims to evaluate the solar potential in metropolitan cities, taking into 

account the significant impact of façade reflections. Hong Kong, a densely populated 

metropolis in southern China known for its economic development and dense architectural 

landscape, serves as the ideal research site for this investigation. The city's diverse building 

styles, ranging from skyscrapers and museums to aged residential structures, contribute to a 

wide variety of façade materials, making the albedos of these façades a critical factor in 

assessing the indirect part of solar potential.  

First, to address the challenge of material identification on building façades, this study 

constructs a segmentation dataset. The data was collected by a mobile mapping system. The 

street view images cover various districts, ensuring the façade types of Hong Kong are 

comprehensively collected, which includes Shek Mun, Lai Chi Kok, West Kowloon, 

Kowloon Bay, North Point, and Central. The specific routes are illustrated in Figure 3.1. 

Figure 3.1 The data collection routes of constructed dataset, including ShekMun, 

LaiChiKok, WestKowloon, Kowloon Bay, NorthPoint, and Central in Hong Kong 
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As shown in Figure 3.2, in the subsequent phase of solar potential analysis, the research 

narrows its focus to the North Point area, which belongs to the Eastern District, located in the 

northeastern part of Hong Kong Island. The high population density, more than 25000 people 

per square kilometre (Hong Kong Government, 2021), in North Point results in complex land 

utilization and heterogeneous façades. As shown in Figure 3.3, according to the land 

utilization data (Planning Department, 2023), the eastern land of North Point is mostly used 

for residential purposes. According to on-site investigations, the residential buildings in this 

area were typically built in the last century. The façades of this kind of building are usually 

mosaic tiles and painted. In contrast, the west and south parts of North Point are more 

multifunctional, consisting of residential, commercial, industrial, and a large percentage of 

institutional land use. Therefore, the corresponding architectural materials are more diverse, 

like glass, ceramic, and metals, which form a sophisticated environment for estimating solar 

reflection in this district. Moreover, the southern region of North Point, in comparison with 

the bustling, high-density downtown areas adjacent to the seaside, is bordered by expansive 

woodlands. This natural barrier fosters a setting where residential buildings are relatively 

Figure 3.2 Study area (North Point, Eastern District) for the estimation of 

solar potential. 
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spaced apart, minimizing the phenomenon of inter-building reflection. This spatial 

arrangement provides an excellent baseline for comparison with the high-density urban 

districts, allowing for more controlled observations of solar reflection dynamics. The 

isolation and reduced density of the buildings in this part of North Point make it an ideal 

control group for studies focused on understanding the impact of urban density on solar 

reflection. This nuanced understanding of the varying land use and architectural materials 

across different parts of North Point is crucial for developing accurate models of solar energy 

potential across urban landscapes. 

 

Figure 3.3 Land utilization and corresponding percentages in the North Point. 

3.2 Data collection  

This research, conducted in partnership with the Hong Kong Highways Department, 

developed a façade segmentation dataset aimed at enhancing the understanding of urban 

envelope materials environments. The data acquisition spanned from 2017 to 2019, during 

which the Hong Kong Highways Department systematically collected street view imagery. 

These images were captured under a variety of weather conditions and solar illuminations, as 

per the designated collection routes detailed in Figure 3.1. 

To optimize the quality of the dataset, the research team implemented a rigorous selection 

process post-data collection, where images compromised by duplication, overexposure, or 

underexposure were discarded. Despite these exclusions, the dataset maintained a rich 
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diversity in architectural styles, encompassing over 10,000 distinct buildings, thereby 

providing a solid foundation for subsequent experiments. 

    

Figure 3.4 The mobile mapping system. 

The street view images were collected by the vehicle-based mobile mapping system, Leica 

Pegasus: Two, as shown in Figure 3.4 (Leica Geosystems, 2024). Leica Pegasus: Two 

contains 8 cameras, which means that we can obtain street view images in eight directions 

along the data acquisition track. The detailed parameters are shown in Table 3.1. Furthermore, 

the instrument also contains navigation systems including low noise FOG IMU and the triple 

band – L-Band, SBAS, and QZSS for GPS, GLONASS, Galileo, and BeiDou constellations. 

The precision of these navigational aids is documented in Table 3.2. The high accuracy of the 

positioning system, with horizontal and vertical Root Mean Square (RMS) errors below 0.020 

meters in open sky conditions, facilitates the precise georeferencing of images within the 

Hong Kong 1980 (HK80) coordinate system. Additionally, the accurate coordinates 

significantly streamline the integration of semantic segmentation results into 

three-dimensional urban models. This high level of precision in data collection critically 

supports the project's aim to create detailed and reliable façade segmentation models, which 

are pivotal for the subsequent solar potential estimation. 
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Table 3.1 Camera sensors parameters of the mobile mapping system. 

Item Configuration 

Number of cameras 8 

CCD size 2000 x 2000 

Pixel size 5.5 x 5.5 microns 

Lens 8.0 mm focal, ruggedized; 2.7 mm focal, top 

Coverage 360° x 270° excluding rear down facing 

camera 

 

Table 3.2 GNSS/IMU/SPAN sensor parameters of the mobile mapping system. 

Item Configuration 

Frequency 200 Hz 

Mean Time Between 

Failures 
35,000 hour 

Gyro bias in-run stability 

(±deg/hr) 
0.75 

Gyro bias offset (deg/hr) 0.75 

Gyro angular rand. walk 

(deg/√hr) 
0.1 

Gyro scale factor (ppm) 300 

Gyro range (±deg/s) 450 

Accelerometer bias (mg) 1 

Accelerometer scale 

factor (ppm) 
300 

Accelerometer range (±g) 5 

Position accuracy after 

10 sec 

of outage duration 

0.020 m RMS horizontal, 0.020 m RMS vertical, 0.008 degrees 

RMS pitch/roll, 0.013 degrees RMS heading 
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Chapter 4 Methodology 

In this chapter, a novel Multi-Scale Contextual Attention Network (MSCA) is proposed to 

identify façade materials from street view images, bridging the gap of lack of large-scale 

façade information in existing studies. The proposed model uses a Multi-Scale 

Object-Contextual Representation (OCR) block to exploit and combine contextual 

information from different scales in high-dimensional layers. To validate the effectiveness of 

the proposed model, comparative analyses against baseline models, including DeepLabv3, 

DeepLabv3+, OCR, and Hierarchical MSA, across diverse datasets are also designed in this 

chapter. Moreover, this chapter delineates a methodology for integrating segmentation 

outcomes into a 3D GIS model, subsequently leveraging these results to allocate albedo 

values to each surface within the designated study area. Based on the identified materials, an 

evaluation method of quantifying the effect of façade albedo on Solar potential distribution is 

also presented in this chapter. 

4.1 Research framework 

The comprehensive evaluation framework developed for this study is depicted in Figure 4.1. 

The framework is designed to quantitatively assess the impact of façade materials on solar 

potential within urban environments, leveraging advanced geospatial technologies and image 

processing techniques. 
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Figure 4.1 The evaluation framework. (a) Using the vehicle-based mobile mapping system to 

collect street view images with geographical coordinates. (b) MSCA is utilized to identify the 
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material categories from street views. (c) Projecting the 2D segmentation results to the 3D 

urban GIS model. (d) Based on three different albedo schemes, mapping the identified 

materials to distinct albedo: constant albedo, simulation albedo, and segmentation-based 

albedo. (e) Solar potential estimation based on three albedo schemes. (f) Analysing the solar 

potential distributions with different albedo schemes and spatial characteristics. 

As delineated in Figure 4.1 (a), the initial phase of data acquisition employs a vehicle-based 

mobile mapping system, which is outfitted with the Global Navigation Satellite System 

(GNSS) and Inertial Measurement Unit (IMU) apparatus. This sophisticated setup enables the 

capture of street view imagery, which is not only high-resolution but also precisely annotated 

with high-precision geographical coordinates. The integration of GNSS and IMU ensures that 

each image is accurately geo-referenced, providing a robust foundation for subsequent image 

analysis and material identification processes. 

Subsequently, as illustrated in Figure 4.1 (b), the acquired street view images serve as inputs 

to the Multi-Scale Contextual Attention Network (MSCA). The MSCA is developed to 

identify a variety of materials from street-level imagery on a large scale. In this step, we 

introduce a multi-scale attention structure designed to capture and interpret contextual 

information contained within high-level features of images. This approach is a pivotal 

component of the entire research, as it enables the extraction of specific material information 

from the urban envelopes, which is essential for the accurate assessment of solar potential. 

In the subsequent step, depicted in Figure 4.1 (c), the study employs the Collinearity equation 

to transform the pixel coordinates from the image coordinate system to the Hong Kong 1980 

Grid System. This transformation is a critical step in associating the segmentation results with 

the corresponding 3D model, thereby facilitating a seamless integration of two-dimensional 

image data with three-dimensional spatial models. 
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Once all buildings within the study area have been accurately identified, the study proposes 

the application of various albedo schemes to evaluate the influence of these materials on solar 

potential. As demonstrated in Figure 4.1 (d), the framework contemplates multiple albedo 

assignment strategies. The upper row of (d) illustrates a simplified scheme where all surfaces, 

irrespective of material categories, are assigned a uniform albedo value. This approach 

provides a baseline for understanding the general impact of albedo on solar potential. In 

contrast, the bottom row of (d) presents a more nuanced scheme that allocates distinct albedo 

values to each material type based on the segmentation results obtained from the MSCA. This 

scheme acknowledges the heterogeneity of urban surfaces and aims to reflect the varied 

reflective properties of different materials. However, recognizing the limitations in the 

number of material categories that the MSCA can currently identify, the study introduces a 

third scheme, as shown in the middle row of (d). This scheme involves a further classification 

of the initial categories identified by the MSCA into more detailed subclasses, thereby 

simulating a more intricate urban environment. The intent behind this additional classification 

is to create a more comprehensive simulation that can better capture the complex interplay of 

multi-reflections in an environment with diverse albedo characteristics.  

Furthermore, this study primarily focuses on façade material albedo contributions, which are 

inherently more complex to obtain and quantify than rooftop. For rooftop albedo estimation, 

we derived simplified classifications based on color intensity (e.g., dark vs. light surfaces) 

through satellite imagery, assigning albedo values to each category. 

Finally, in step (f), the study quantifies and discusses the effects of albedo and other spatial 

factors, such as land utilization, building height, density, and function, on solar potential. 

This comprehensive analysis not only sheds light on the direct impact of material albedo on 

solar potential but also considers the broader urban context in which these materials are 

situated. By integrating spatial factors into the evaluation, the study provides a holistic 
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understanding of the interdependencies between urban morphology, material properties, and 

solar potential distribution. 

4.2 Hong Kong Façades Materials Segmentation Dataset  

This section delineates the development of the proposed dataset designed to enhance façade 

analysis in metropolitan environments. Metropolitan cities are characterized by intricate 

street configurations and densely packed building structures, presenting unique challenges for 

urban façade segmentation. Traditional datasets in this domain, such as those reported by 

Korc et al. (2009), Teboul et al. (2011), and Riemenschneider et al. (2012), predominantly 

feature single-view images of façades with relatively sparse building distributions and 

minimal obstructions. Such datasets often fail to capture the complexity and density typical of 

metropolitan cityscapes, thereby limiting their practical applicability for detailed urban 

façade analysis. In response to this gap, our research collaboration with the Hong Kong 

Highways Department has led to the creation of a specialized façade segmentation dataset. 

This dataset comprises 1,823 street-level images, specifically curated to reflect the dense and 

intricate urban fabric of Hong Kong. The choice of Hong Kong as the research site is 

strategic, given its status as a densely populated metropolis with a diverse range of building 

styles and façade configurations. This setting provides an ideal backdrop for developing a 

dataset representing the complexities encountered in large urban centers. 

The data routes were strategically designed to ensure comprehensive coverage of Hong 

Kong’s urban diversity. Routes were selected to span districts with varying building densities 

(e.g., high-rise clusters in Central vs. mixed-use areas in Lai Chi Kok), façade styles (modern 

glass towers in West Kowloon vs. traditional structures in North Point), and street geometries 

(narrow alleys vs. arterial roads). Data collection utilized a vehicle-mounted mobile mapping 

system equipped with calibrated cameras and the IMU systems, operating during daylight 

hours under diverse lighting conditions (sunny, overcast) to enhance robustness. Regarding 

dataset size, while 1,823 images are large compared to current datasets, it is still not sufficient 

for deep-learning. So, the model is first pre-trained on Cityscapes to learn urban scene priors 

(e.g., object boundaries, occlusion patterns), then fine-tuned on our dataset to specialize in 

façade material features. This strategy further expand effective training samples, ensuring 

generalizability across Hong Kong’s heterogeneous urban fabric.   
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However, the construction of this dataset also necessitates some methodological concessions. 

To adapt the façade segmentation model to the complex styles of modern urban façades and 

the variable solar lighting conditions typical in such environments, we introduced several 

assumptions. These assumptions are essential for simplifying the model to a manageable 

complexity while still maintaining a reasonable approximation of real-world conditions. Such 

compromises aim to balance the trade-offs between model accuracy, generalizability, and 

computational efficiency.  

4.2.1 Data specifications 

The Highways Department used a vehicle-based mobile mapping system to collect data. The 

geographical scope of this data gathering included Shek Mun, Lai Chi Kok, West Kowloon, 

North Point, and Central. These locations were selected due to their varied urban 

compositions, ranging from older residential zones to dynamic business districts, thereby 

ensuring a broad scope of façade types and architectural styles. 

The mobile mapping system was equipped with cameras oriented in eight different directions, 

allowing for comprehensive data capture from multiple perspectives. Following the initial 

data collection phase, a data cleaning process was implemented. This involved the exclusion 

of images that were overexposed, repetitive, blurred, or illegible, ensuring that only 

high-quality images were retained for dataset compilation. Ultimately, from the extensive 

collection of captured images, 1,823 were selected to form the dataset. Regarding dataset 

utilization, approximately 1,463 images (80.2% of the total dataset) were designated for the 

training set, while the remaining 360 images (equivalent to 19.7%) were allocated to the 

validation and testing sets. Labeling of the dataset was carried out using the "Labelme" tool 

(Russell et al., 2008), a well-regarded annotation software that facilitates precise and efficient 

manual annotation of images. Following the initial labeling, a rigorous cross-checking 

process was instituted. This quality control measure was essential to verify the consistency 

and accuracy of the annotations, ensuring that the labels correctly represent the diverse 

characteristics of the urban façades captured in the dataset. 
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Figure 4.2 Comparison of existing façade-related datasets and the proposed dataset. The 

images on the left are the original images. The annotated images on the right side are used as 

the ground truth. In (a)(b)(c), different colors represent different façade opponents (i.e. 
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windows, balconies, doors and so on). In (d), different colors represent different materials of 

façade.  

Compared to existing façade datasets, such as those reported by Korc et al. (2009), Teboul et 

al. (2011), Riemenschneider et al. (2012), and more recently by Kong et al. (2020), our 

dataset offers several distinctive advantages, which are stated as follow:  

⚫ Enhanced Façade Styles and High-Resolution Imaging: Existing datasets in the 

domain of façade recognition are generally limited both in the diversity of 

architectural styles and the number of images, which constrains the training and 

testing effectiveness of deep learning models. For instance, the eTRIMS dataset 

(Korc et al., 2009) comprises merely 60 annotated images, ECP2011 (Teboul et al., 

2011) includes 104, and Graz2012 (Riemenschneider et al., 2012) contains only 50 

images. Although FaçadeWHU (Kong et al., 2020) significantly increases this 

number to 900, it still falls short of the variety required to train models capable of 

accurately identifying façade materials in the diverse architectural environments of 

modern cities. Furthermore, these datasets predominantly feature monotonous 

building types, limiting their generalizability to different urban settings. In contrast, 

our dataset is comprised of 1,823 manually annotated images encompassing over 

10,000 buildings, thereby offering a rich diversity of façade styles. Additionally, our 

images are captured at a resolution of 2046×2046 pixels, which surpasses most 

existing datasets, providing finer detail and supporting more accurate segmentation 

results. 

⚫ Accounting for Complex Urban Environments: Accounting for Complex Urban 

Environments: typical façade-related datasets often portray buildings with regular 

façade shapes taken from frontal views, devoid of occluding objects to simplify 

façade segmentation. For instance, as shown in Figure 4.2, ECP2011 focuses on 

close-up photos of building façades, meticulously cropped to minimize occlusion 

interference. Similarly, eTRIMS contains minimal background information, 

optimizing clarity but sacrificing environmental realism. By comparison, 

FaçadeWHU incorporates street-level images, enhancing generalization capabilities. 
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However, it still contains minimal occlusions such as pedestrians and billboards, 

which do not adequately reflect the cluttered environments of metropolitan areas. 

⚫ Inclusion of Dynamic Urban Elements and Variable Lighting Conditions: Our 

dataset distinctly includes street-level images capturing complex foreground 

occlusions such as trees, commercial signage, and dense traffic, significantly 

challenging the model's capability to isolate and identify façades accurately. 

Moreover, the dataset encompasses images under varied lighting conditions, 

affecting the hue, brightness, and saturation of façades, which introduces additional 

challenges but also opportunities for improving the robustness and adaptability of 

façade segmentation models. We posit that the heterogeneous quality and the 

realistic urban complexity represented in our images will substantially enhance the 

model's generalization across different urban settings and lighting conditions. 

The greater diversity in building types and architectural styles and more comprehensive 

coverage of various urban environments make our dataset a valuable resource for 

advancing research in façade segmentation, particularly in the context of complex urban 

landscapes. 

 

4.2.2 Assumption 

In addressing the inherent challenges in identifying materials from Red Green Blue (RGB) 

images, this study introduces two critical assumptions that significantly reduce the 

complexities associated with labeling and minimize the associated labor costs:  

⚫ Each building has at most two components. 

This research posits that each building can be segmented into at most two major 

components, each potentially composed of different materials. This assumption is based 

on observations and analyses of prevalent building types within Hong Kong. As depicted 

in Figure 4.3, most buildings in Hong Kong can be roughly divided into three categories. 

1) Free-standing buildings, which are primarily for residential functions. The entire 

façade of this type of building is usually made of consistent material. 2) Complexes, 
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which typically consist of two parts, lower for commercial function while upper is a 

residential zone. The façade material of each component can be independent. 3) Special 

buildings, such as museums or cultural institutions, where façades may incorporate 

innovative and irregular material applications to convey unique aesthetic or thematic 

expressions. 

⚫ Each component consists of only one primary material. 

Despite the observable fact that many building façades incorporate multiple material 

types, ranging from glass in windows to metal elements and decorative coatings, it 

remains technically challenging to accurately label every material type due to their 

complexity and the fine granularity required. Furthermore, buildings often feature 

alternating patterns and non-uniform distributions of materials that complicate the 

annotation process. To address these issues, this study focuses on identifying only the 

primary material of each component, strategically ignoring less dominant materials. 

Considering the first assumption, it is assumed that the façade of an individual building 

can be segmented into at most two major materials. 

 

Figure 4.3 Common building structures in our dataset. 

4.2.3 Classes and annotations 

In the research conducted by Ho et al. (2004), it was identified that mosaic and ceramic tiles 

are predominantly used as façade materials in domestic buildings within Hong Kong. This 
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preference is primarily attributed to their self-cleaning properties and the relatively low cost 

associated with their maintenance. In stark contrast, the architectural landscape of 

commercial buildings, particularly in central business districts, shows a preference for 

high-rise structures where glass and glass-mixed façades are favored. These materials are 

chosen for their safety features, aesthetic appeal, and ability to confer a modern and 

prestigious appearance to the buildings. 

For the purposes of this study, a comprehensive dataset has been developed, within which 

nine distinct annotation classes have been defined. These include background, ceramic tile, 

glass, hybrid, metal, mosaic tile, paint, tree, and unidentified materials. The selection of these 

classes was strategically informed by several key factors: the reflectivity of the materials, 

their visual distinguishability, and the relative effort required for accurate annotation. It is 

important to note that classes comprising materials that were exceedingly rare in the dataset 

were intentionally omitted to maintain a focus on prevalent and representatively significant 

materials. Furthermore, including trees as a distinct category helps isolate structural materials 

from common occlusions in urban imagery, preventing the misclassification of vegetation as 

part of the building facade. Besides, separating trees enables potential downstream 

applications like quantifying urban greenery coverage while ensuring material-focused 

models prioritize architectural elements. The primary challenge in material identification 

from images lies in the visual distinguishability of the materials, which is particularly 

problematic in images captured from a distance. Reflectivity, although an important 

characteristic, does not always guarantee high visual distinguishability. This necessitated 

some compromise in terms of differentiating materials based solely on their reflectivity.  

Specifically, as illustrated in Figure 4.4 (e), façades composed of small, closely packed tiles 

are common in residential areas. While these tiles might be made from a variety of materials 

such as ceramic, wood, or brick, their similar visual appearances make them difficult to 

differentiate and label individually. Consequently, for pragmatic reasons related to visual 

distinguishability, all façades featuring small tiles were collectively categorized under the 

Mosaic tile class.  
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Figure 4.4 Examples of façade material pictures for each class. 

Similarly, distinguishing between façades made from genuine marble and those made from 

marble-like ceramic materials poses significant challenges due to their similar appearances. 

As shown in Figure 4.4 (a), in this study, the classification 'Ceramic tile' has been assigned to 

façades consisting predominantly of large tiles, regardless of whether they mimic marble 

textures. Furthermore, the 'Hybrid' class, depicted in Figure 4.4 (c), includes façades that 

generally consist of a combination of glass and another material. The 'Metal' category 

encompasses façades made from metal materials such as aluminum plates or other metal 

alloys, which are typically seen in commercial settings. 'Paint' refers to façades that are 

primarily covered with ordinary paint coatings, commonly found in older residential 

communities. 'Glass', as shown in Figure 4.4 (b), is designated for typical glass-dominated 

office buildings. 

In the annotation process, multiple resources, including field investigations and Google Street 

View, were utilized to provide a variety of perspectives, thereby aiding in the verification and 
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classification of façade materials. Images where material identification was particularly 

challenging due to visual ambiguities were labeled as 'Unidentified materials.' This approach 

aims to ensure that the dataset not only reflects a high level of accuracy in material 

classification but also accommodates the inherent complexities in urban architectural 

environments. 

4.3 Semantic Segmentation of Urban Building Surface Materials using 

Multi-Scale Contextual Attention Network  

4.3.1 Architecture 

In this study, we introduce a sophisticated multi-scale attention structure designed to capture 

and interpret contextual information contained within high-level features of images. This 

approach is instrumental in understanding the nuanced variations and general information in 

street views, which is critical for effective semantic segmentation in complex imaging 

environments. The proposed model, which incorporates innovative modifications to the 

existing Hierarchical Multi-Scale Attention (Hierarchical MSA) framework as described by 

Tao et al. (2020), includes the integration of Multi-Head Attention (MHA) mechanisms 

following the HRNet architecture, as well as enhanced attention mechanisms within OCRNet. 

These refinements are targeted at bolstering the model's capability to process and interpret 

complex feature sets for better segmentation accuracy.  
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Figure 4.5 Network Architecture: Up and Down panels show Hierarchical MSA vs. MSCA 

(Ours) architectures, respectively. 

To elucidate, the former modification embeds the extracted features into diverse 

representation subspaces. This embedding facilitates a broader and more detailed perspective 

on the semantic classes being analyzed, allowing the model to capture a more comprehensive 

set of feature interactions and dependencies. The subsequent enhancement, as illustrated in 

Figure 4.5, introduces a Multi-Scale OCR mechanism that empowers the network to 

adaptively concentrate on the salient semantic information at the feature level. Compared to 
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the Hierarchical MSA framework, which operates by combining features from different 

scales after the segmentation head and utilizes a weighted tensor derived from an attention 

head to modulate the feature fusion process, the proposed model optimizes the fusion of 

features before arriving at the segmentation head. This mechanism allows for a more 

integrated processing of contextual information across multiple scales.  

 

Figure 4.6 Attention Module: The details of the Multi-Heads Attention Module and Attention 

Module. Specifically, two different attention blocks are used in distinct modules. 

Further detailing the model’s architecture, as shown in Figure 4.5, the HRNet-W48 (Sun et al., 

2019) serves as the backbone of our network. This decision is predicated on the exceptional 

ability of HRNet-W48 to retain fine-grained details from high-resolution imagery, which 

confers a significant advantage over other prevalent backbone architectures such as 

ResNet-101 (He et al., 2016). Next, the integration of MHA with HRNet further enhances the 

feature processing capabilities of the proposed model. In this step, MHA projects the 

backbone-derived features into different representation subspaces, with each 'head' in the 

MHA module interpreting semantic information in an individual manner. Preliminary 

experimental results have led us to configure the number of heads in the MHA to correspond 

with the number of semantic classes, thereby achieving optimal performance. The output 

generated by MHA is then utilized to compute the auxiliary loss, serving as a preliminary 

result. 
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Following the feature enhancement through MHA, the refined features from two distinct 

scales are transformed into query and value matrices. Concurrently, the high-resolution 

feature set is employed as the key vector, which is instrumental in calculating the attention 

scores that delineate the interdependencies of contextual information across various scales. 

The multi-scale attention mechanism within OCRNet is then employed to amalgamate crucial 

contextual information based on these scores, channelling it toward the segmentation head. In 

an effort to refine the segmentation outputs, we explored the possibility of deepening the 

segmentation head. However, this approach encountered certain limitations, such as 

exacerbated degradation issues and diminished accuracy. To circumvent these challenges, our 

study adopts a segmentation head that incorporates a residual block in lieu of a more 

profound structure. At the end of the network, the model yields an output tensor that 

represents a detailed probability map for each semantic class. 

4.3.2 Multi-head attention 

In this research, the methodology diverges from the conventional approach of directly 

leveraging the outcomes derived from the backbone architecture. Instead, it introduces an 

innovative mechanism that employs multiple attention functions to execute linear projections. 

This strategic modification enables the model to concurrently interpret and analyse the 

features extracted from various representations. The underlying principle of this approach is 

to enhance the model's ability to discern and prioritize relevant information from a complex 

dataset. The computational process is delineated as follows: 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖(𝐹𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒)       (4-1) 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝐹𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒) = ρ(𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝑁))     (4-2) 

for each attention head, denoted as ℎ𝑒𝑎𝑑𝑖, the operation 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖(·) is performed, where 

Fbackbone represents the feature matrix obtained from the backbone, characterized by its 

dimensions [batch size, 720, 256, 256]. As shown in the left part of Figure 4.5, multiple 

attention blocks are used to process Fbackbone. The number of attention blocks, N, is 8, which 

has been tested to achieve optimal results in the preliminary stage of experiments. Then the 
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information from all attention heads is packed together by convolutional layers 𝜌(·)  and 

trained jointly. Furthermore, the experimentation phase involved the utilization of two 

distinct types of attention blocks across different modules. The first type, employed within 

the Multi-Heads Attention Module, draws conceptual parallels to the attention mechanism 

proposed by Tao et al. (2020). Unlike traditional methods that rely on query and key matrices, 

this approach generates a dense mask directly from the features, which is then subjected to 

pixel-wise multiplication to derive the final output, as elucidated in the middle plate of Figure 

4.5. By contrast, the attention in Multi-scale OCR is a self-attention module. This module is 

specifically designed to evaluate and integrate inputs across different scales. It accomplishes 

this by calculating attention scores for inputs of varying scales, subsequently amalgamating 

them following a softmax operation. 

4.3.3 Multi-scale OCR 

The Multi-scale Object-Contextual Representations (OCR) methodology is a sophisticated 

approach that systematically integrates contextual information at the feature level, derived 

from image features across multiple scales. This integration is crucial for enhancing the 

semantic segmentation capabilities of the network by providing a comprehensive 

understanding of the scene at different resolutions. The process begins with the extraction of 

features from a pair of input images, denoted as 𝐹𝑙𝑎𝑟𝑔𝑒 and 𝐹𝑠𝑚𝑎𝑙𝑙, which are the outputs of 

a Multi-Head Attention (MHA) mechanism. These features encapsulate the visual 

information from the images at varying scales, with 𝐹𝑙𝑎𝑟𝑔𝑒 representing the features from 

the larger scale image and 𝐹𝑠𝑚𝑎𝑙𝑙 from the smaller scale. 

The initial phase of the multi-scale OCR involves the computation of pixel representations 

from the large-scale features, 𝐹𝑙𝑎𝑟𝑔𝑒, using a convolutional operation defined by the function 

𝑔(·). This operation is expressed mathematically as: 

𝑃𝑙𝑎𝑟𝑔𝑒 = 𝑔(𝐹𝑙𝑎𝑟𝑔𝑒)       (4-3) 
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Here, 𝑃𝑙𝑎𝑟𝑔𝑒 is the pixel representation corresponding to the large-scale image features. The 

function 𝑔(·) is composed of a convolutional layer with a 3x3 kernel size, followed by a 

batch normalization layer and a ReLU activation layer. This sequence of operations is 

designed to capture the detailed textural information present in the large-scale features. 

Following the acquisition of pixel representations, the contextual information for the large 

scale, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑙𝑎𝑟𝑔𝑒, is aggregated using the following equation: 

Contextlarge = f(Flarge, Plarge)       (4-4) 

In this context, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑙𝑎𝑟𝑔𝑒 represents the object region representation within the OCRNet 

framework. The function 𝑓(·) employs a softmax operation to compute the probability 

distribution of each pixel representation 𝑃  belonging to various object regions. This 

probability distribution is then element-wise multiplied with the feature matrix 𝐹, resulting 

in a contextually enriched feature representation that emphasizes the relevant object regions. 

The subsequent stage involves the application of an Attention Module, as depicted in Figure 

4.5, to calculate attention scores and fuse features from different scales. The attention scores 

for the large and small scales are computed as follows: 

𝑆𝑐𝑜𝑟𝑒𝑙𝑎𝑟𝑔𝑒 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑃𝑙𝑎𝑟𝑔𝑒 , 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑙𝑎𝑟𝑔𝑒)    (4-5) 

Scoresmall = Attention(Plarge, Contextsmall)    (4-6) 

In formulations, the network utilizes a self-attention mechanism to calculate the interaction 

scores between the pixel representations P and their respective contextual information 

𝐶𝑜𝑛𝑡𝑒𝑥𝑡. Given that 𝑃𝑙𝑎𝑟𝑔𝑒 contains more detailed information compared to 𝑃𝑠𝑚𝑎𝑙𝑙 , it is 

strategically used to compute both 𝑆𝑐𝑜𝑟𝑒𝑙𝑎𝑟𝑔𝑒  and 𝑆𝑐𝑜𝑟𝑒𝑠𝑚𝑎𝑙𝑙 with their corresponding 

contexts. As illustrated in the right section of Figure 4.5, 𝑃𝑙𝑎𝑟𝑔𝑒 is employed to generate the 

query matrix, which is then used to estimate the attention scores by interacting with the key 
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and value matrices from both scales. The 𝑀𝑢𝑙𝑡𝑖𝑆𝑐𝑎𝑙𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒  is then constructed by 

linearly combining these attention scores, with the equation: 

MultiScaleFeature = r ⋅ Scoresmall + Scorelarge    (4-7) 

In this formulation, to maximize the utilization of fine-grained details, the network prioritizes 

𝑆𝑐𝑜𝑟𝑒𝑙𝑎𝑟𝑔𝑒 as the primary contributor to the 𝑀𝑢𝑙𝑡𝑖𝑆𝑐𝑎𝑙𝑒𝐹𝑒𝑎𝑡𝑢𝑟𝑒. In contrast, 𝑆𝑐𝑜𝑟𝑒𝑠𝑚𝑎𝑙𝑙, 

which benefits from larger receptive fields, acts as an enhancement mask within this 

architecture, providing additional contextual breadth. A dropout function is introduced on the 

branch corresponding to 𝑆𝑐𝑜𝑟𝑒𝑠𝑚𝑎𝑙𝑙  to prevent overfitting and to reduce the network's 

dependence on less distinct features from the smaller scale. In this context, 𝑟 is a vector of 

independent Bernoulli random variables with a probability of 0.5, which serves as a 

regularization mechanism to promote model robustness.  

The multi-scale OCR framework can be characterized as a process that generates contextual 

information from features at multiple scales and utilizes this information to compute a 

weighted output. The weights are determined by the relationships between the pixel 

representations and the region representations from the multi-scale contexts. This weighting 

mechanism ensures that the network assigns appropriate importance to different regions of 

the image, based on their relevance to the object categories of interest. By doing so, the 

multi-scale OCR effectively captures both the fine details and the broader contextual 

information, leading to a more accurate and contextually aware semantic segmentation. 

4.3.4 Loss function 

In this study, the cross-entropy loss function is employed as a fundamental component of the 

total loss. In the domain of machine learning and in tasks that involve classification, the 

cross-entropy loss function is a cornerstone metric for evaluating the performance of a 

predictive model. This loss function, also known as log loss, measures the dissimilarity 

between two probability distributions: the true distribution, as defined by the ground truth 
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labels, and the predicted distribution, as output by the model. Cross-entropy loss is 

particularly favoured in scenarios where the outputs can be interpreted as probabilities, as it is 

inherently designed to quantify the degree of uncertainty in these probabilistic predictions. 

The cross-entropy loss function is mathematically articulated for a multi-class classification 

problem in following Equation: 

𝑙𝑜𝑠𝑠 = − ∑ 𝑦𝑖
𝑁
𝑖=1 𝑙𝑜𝑔(𝑝𝑖)       (4-8) 

Here, (N) represents the total number of possible classes. The variable 𝑦𝑖 is a binary 

indicator, which is set to 1 if the true class label corresponds to class (i), and 0 otherwise. The 

term 𝑝𝑖 denotes the predicted probability that the given input is classified as belonging to 

class 𝑖. The cross-entropy loss function is adept at capturing the penalty for incorrect 

predictions, with the penalty escalating as the predicted probability deviates from the actual 

label. The logarithmic term in the equation ensures that the loss is sensitive to the confidence 

of the predictions, with highly confident but incorrect predictions incurring a greater penalty. 

This characteristic of the cross-entropy loss function is instrumental in guiding the model 

towards more calibrated and accurate probability estimates. 

The total loss for the network is an amalgamation of the main loss and auxiliary losses, as 

specified by Equation: 

𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = α ⋅ 𝑙𝑜𝑠𝑠𝑎𝑢𝑥
𝑠 + β ⋅ 𝑙𝑜𝑠𝑠𝑎𝑢𝑥

𝑙 + 𝑙𝑜𝑠𝑠𝑚𝑎𝑖𝑛    (4-9) 

In this composite loss function, 𝑙𝑜𝑠𝑠𝑚𝑎𝑖𝑛 signifies the cross-entropy loss computed on the 

final output of the network, serving as the principal training signal. The auxiliary losses, 

𝑙𝑜𝑠𝑠𝑎𝑢𝑥
𝑠  and 𝑙𝑜𝑠𝑠𝑎𝑢𝑥

𝑙 , are derived from the preliminary results 𝑆𝑠  and 𝑆𝑙 , respectively. 

These auxiliary components are introduced to provide additional gradient signals during the 

training process, which can be particularly beneficial in stabilizing the learning trajectory and 

enhancing the convergence of deep or complex networks. The gradient signal from the main 
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loss may attenuate as it propagates through multiple layers, and the auxiliary losses can help 

to mitigate this issue by reinforcing the gradient flow. 

The coefficients α and β are hyperparameters that act as weighting factors for the auxiliary 

losses and are set to 0.5 in this study, in alignment with the methodology adopted by the 

Hierarchical MSA framework (Tao et al., 2020). The selection of these hyperparameters is 

pivotal, as they modulate the relative impact of the auxiliary losses in comparison to the main 

loss. By setting equal weights for both auxiliary losses, the study posits that the contributions 

of the small-scale and large-scale preliminary results to the learning process are of 

commensurate significance. 

The auxiliary losses are computed using the same cross-entropy loss function as the main loss, 

ensuring a consistent optimization objective across the various components of the network. 

Employing the cross-entropy loss for both the main and auxiliary losses facilitate a 

harmonized approach to penalizing incorrect predictions and fosters the learning of precise 

class probabilities at all scales of the network's output. 

In summary, the total loss function in this study is a linear combination of the main 

cross-entropy loss and two auxiliary cross-entropy losses. The auxiliary losses act as 

supplementary training signals, enhancing the robustness of the learning process across the 

network's hierarchy. This composite loss structure is meticulously crafted to optimize the 

network's performance by capitalizing on multi-scale information and ensuring 

comprehensive learning at all hierarchical levels of the network's architecture. 

4.3.5 Experiments setups 

In this section, we delve into the specifics of the training regimen and present a 

comprehensive analysis of the experimental outcomes. This study evaluates the performance 

of the proposed model by comparing it against the latest state-of-the-art algorithms using our 

Hong Kong street view dataset and the FaçadeWHU dataset. The comparative results 
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unequivocally demonstrate the superior performance of our model on both datasets. 

Additionally, ablation studies are conducted to dissect and scrutinize the contributions of 

each sub-module within our model. The findings from these studies substantiate the 

effectiveness and integral value of the proposed modules. 

4.3.5.1 Training details 

The development and experimentation of the proposed model were carried out using the 

PyTorch framework (Paszke et al., 2019). The computational experiments were performed on 

a high-performance server equipped with two TITAN RTX GPUs, enabling efficient 

processing of the large-scale data involved in this study. 

The input images for the pipeline were processed at two distinct scales: 1.0x to capture finer 

details and 0.5x to provide a larger receptive field. This dual-scale approach ensures that the 

model can leverage both high-resolution details and broader contextual information. Due to 

the high computational cost associated with processing these images, the experiments 

involved cropping the images to dimensions of 896×896 pixels. The batch size was set to 2 

per GPU to optimize the balance between computational efficiency and memory constraints. 

Table 4.1 Details of experiment configuration. 

Item Configuration 

Image scale  {1, 0.5} 

Crop size 896x896 

Batch size 2 per GPU 

Learning rate  0.02 

Optimizer  SGD 

Learning rate scheduler  Polynomial 

Power of learning rate scheduler  1 

Minimum learning rate  0.0001 

Loss function Cross-Entropy Loss 
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For optimization during training, we employed the Stochastic Gradient Descent (SGD) 

algorithm with a momentum of 0.9 and a weight decay of 0.0001. This choice of optimizer is 

well-suited for our task, as it helps effectively navigate the complex loss landscape of deep 

neural networks. We conducted a comparative analysis of polynomial decay with power 

parameters of 1.0 and 2.0 for the learning rate scheduler. Based on this analysis, we selected a 

linear decay with power 1.0, which aligns with the methodology used by Tao et al. (2020). 

The specific configurations and hyperparameters used in our experiments are detailed in 

Table 4.1. 

To rigorously validate the effectiveness of the proposed Multi-Scale Contextual Attention 

(MSCA) network, we conducted a comparative analysis with several renowned algorithms: 

DeepLabv3 (Chen et al., 2017), DeepLabv3+ (Chen et al., 2018), OCR (Yuan et al., 2019), 

and Hierarchical MSA (Tao et al., 2020). It is noteworthy that Hierarchical MSA achieved 

optimal results on the Cityscapes validation set, thus serving as a critical benchmark for our 

comparisons. In our experimental setup, both the baseline models and the backbone of the 

MSCA were pre-trained on the Cityscapes dataset and subsequently fine-tuned on our 

proposed dataset under similar configurations to ensure consistency and comparability. 

4.3.5.2 Evaluation Metrics 

The evaluation of the model’s performance was conducted using several key metrics that are 

widely recognized in the field of semantic segmentation. Specifically, we selected mean 

Intersection over Union (mIOU), precision, recall, and F1-score to assess the experimental 

results quantitatively. These metrics provide a comprehensive view of the model’s accuracy 

and reliability. Among them, the mIOU is calculated using the formula: 

𝑚𝐼𝑂𝑈 =
1

𝑁+1
∑

𝑇𝑃𝑖

𝐹𝑁𝑖+𝐹𝑃𝑖+𝑇𝑃𝑖

𝑁
𝑖=0        (4-10) 

In this equation, 𝑁 denotes the number of classes, with 𝑁 + 1 including the 'background' 

class. The term 𝑇𝑃𝑖 stands for the true positives for class 𝑖, representing the number of 



Chapter 4 Methodology 

53 

 

pixels correctly identified as belonging to class 𝑖. 𝐹𝑁𝑖 represents the false negatives, which 

are the pixels that belong to class 𝑖 but were incorrectly identified as another class. 𝐹𝑃𝑖 

denotes the false positives, which are the pixels incorrectly identified as class 𝑖 when they 

actually belong to another class. Then, the precision for the multi-class scenario is computed 

as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚 =
1

𝑁
∑

𝑇𝑃𝑖

𝐹𝑃𝑖+𝑇𝑃𝑖

𝑁
𝑖=0        (4-11) 

Here, precision measures the proportion of true positive predictions among all pixels 

predicted to belong to class 𝑖. It evaluates the accuracy of the positive predictions. Recall for 

the multi-class scenario is given by: 

𝑅𝑒𝑐𝑎𝑙𝑙𝑚 =
1

𝑁
∑

𝑇𝑃𝑖

𝐹𝑁𝑖+𝑇𝑃𝑖

𝑁
𝑖=0       (4-12) 

Recall measures the proportion of true positives among all actual pixels of class 𝑖, providing 

an indication of the model's ability to capture all relevant instances of the class. The F1-score, 

which is the harmonic mean of precision and recall, is calculated as: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒𝑚 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑅𝑒𝑐𝑎𝑙𝑙𝑚

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚+𝑅𝑒𝑐𝑎𝑙𝑙𝑚
     (4-13) 

The F1-score combines both precision and recall into a single metric, balancing the trade-off 

between the two to provide a more comprehensive evaluation of the model’s performance for 

each class. 

To ensure a balanced evaluation across all classes, we utilized macro-averaging (Sokolova et 

al., 2009) to calculate the mean values of these metrics. This approach aggregates the metrics 

by giving equal weight to each class, thereby avoiding biases that could arise from class 

imbalance. In most of the evaluations presented in this paper, background and unidentified 

materials were excluded from consideration to focus specifically on the model’s ability to 

accurately segment and identify meaningful categories. 
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Furthermore, to explore the relationship between receptive field and model performance, we 

calculated the theoretical receptive field (TRF) of pixels at the network's output layer. The 

TRF represents the maximum area in the input image that can influence a pixel in a specific 

layer and is computed using the following equation: 

𝑟 = ∑ ((𝑘𝑙 − 1) ∏ 𝑠𝑖
𝑙−1
𝑖=1 )𝐿

𝑙=1 + 1      (4-14) 

where 𝑟 is the receptive field size of the network. 𝑘𝑙 is the kernel size of layer 𝑙. 𝑠 is 

stride. The actual impacted area, known as the effective receptive field (ERF), is typically 

smaller than TRF (Gu et al., 2021). The specific ERF depends on the information utilization 

ability by different networks. 

4.4 Effect of Façade Albedo on Solar Potential Distribution in 

Different Urban Districts: A Case Study of Hong Kong  

After obtaining extensive material information from the MSCA, this section introduces the 

proposed framework for comprehensively investigating the effect of albedo on solar PV 

potential distribution. The proposed framework is designed to provide a systematic approach 

for evaluating the influence of albedo on solar PV potential distribution, taking into account 

various factors such as building function, façade materials, and inter-building reflections. 

4.4.1 Materials and methods 

This section introduces the details of the evaluation framework that investigates the effect of 

albedo on solar PV potential distribution. The framework includes the deep learning pipeline 

which acquires real-world building reflectance information at a large scale, a methodology 

that converts segmentation output into reflectance and connects them to a 3D model, and the 

solar irradiation estimation that incorporates multi-reflection. 

4.4.1.1 Solar Potential Estimation in Street Canyon 
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The procedure for evaluating the effect of albedo on solar potential estimation is 

comprehensively illustrated in Figure 4.7. The process begins with the segmentation 

outcomes obtained from previous work using the Multi-Scale Contextual Attention network, 

which are initially presented as 2D images. However, these 2D images cannot be directly 

utilized in a 3D GIS model, necessitating a crucial step of converting the pixel data from the 

image coordinate system to the Hong Kong 1980 Grid System. This transformation is 

essential for associating the segmentation results with the 3D model accurately. In the first 

step, image correction is performed to minimize distortion effects and ensure the accuracy of 

this conversion. Without this correction, pixels located at the periphery of the image would 

suffer from significant projection errors when mapped over distances extending tens to 

hundreds of meters. The corrected pixel coordinates, along with the viewpoint location in the 

HK80 System, are then used to construct 3D rays that extend from the viewpoint to infinity, 

intersecting the buildings in the urban environment. The next step involves identifying the 

first intersection point of these 3D rays with the 3D GIS model of the buildings. This 

intersection point represents the projection of the corresponding pixels onto the 3D model. 

Once all segmentation results are accurately projected onto the 3D buildings, the material 

category and RGB distribution of each building can be established. 

Based on this material and RGB distribution data, the study proposes several albedo schemes 

to evaluate the impact of different materials on solar potential. The lower section of Figure 

4.7 delineates three distinct albedo schemes. The first scheme, depicted in the left column, 

directly applies the identified material categories to assign different albedo values based on 

the segmentation results. However, recognizing the limited material categories that MSCA 

can determine, the second scheme, illustrated in the middle column, introduces a more 

nuanced classification. This approach further categorizes the initial material types into 

detailed subclasses, simulating a more complex urban environment. This refined 

classification aims to emulate the multi-reflections in diverse albedos, providing a deeper 

understanding of how materials with varied reflective properties interact in an urban context. 
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The third scheme, shown in the right column of Figure 4.7, takes a different strategy by 

assigning a constant albedo value to all surfaces within the study area, regardless of the 

material categories. This uniform albedo application serves as a control scenario, offering a 

baseline against which the other schemes can be compared. 

After applying these three albedo schemes to the 3D models in parallel, the study proceeds to 

estimate the annual solar potential distribution, incorporating the effects of multi-reflection. 

This comprehensive evaluation not only enhances the precision of solar potential estimates 

but also allows for a detailed analysis of how different materials and their reflective 

properties influence the overall solar potential in an urban environment. 
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Figure 4.7 The procedure after segmentation. 

4.4.1.2 Façade materials acquiring 
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To efficiently acquire material information for urban façades, this study utilizes the MSCA to 

identify the materials of building façades from street view images. In prior research, two 

foundational assumptions were established to streamline the segmentation process: 1) Each 

building is composed of no more than two primary components. 2) Each component consists 

predominantly of a single material. These assumptions are essential for simplifying the model 

to a manageable complexity while still maintaining a reasonable approximation of real-world 

conditions. Besides, this also enhances annotation efficiency at the expense of some accuracy. 

This approach is considered reasonable for the context of Hong Kong, where buildings 

typically feature a mix of upper residential sections and lower commercial sections, justifying 

the assumptions as a practical compromise.  

Furthermore, since the original MSCA is trained on the dataset of Hong Kong street views, 

which is also the study area in this study, this research uses the same pretrained model and 

segmentation strategies to acquire the façade materials. Based on the reflectivity and visual 

distinguishability of different materials, façades are divided into ceramic tile, glass, hybrid, 

metal, mosaic tile, and paint. However, due to the complex reflection characteristics of 

materials and the restriction of visual manner, the original classification does not completely 

accord with the material albedos. Furthermore, the limited number of identified categories 

does not fully capture the diversity of albedo environments in urban settings. 
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Table 4.2 Further classification of facade materials and the characteristics of each subclass. 

Class No. Color Description 

Ceramic C1 brown glazed 
 C2 red glazed 
 C3 black smooth 
 C4 grey uneven,new 
 C5 grey granite-like, polished 
 C6 grey granite-like, glazed 
 C7 red granite-like, glazed 
 C8 red granite-like, weathered 

Metal M1 grey paint-sprayed, smooth 
 M2 green painted, smooth 
 M3 grey aluminium, shiny 

Paint P1 grey concrete 
 P2 grey concrete, porous 
 P3 grey concrete, fine roughness 
 P4 grey concrete, smooth 
 P5 grey painted, smooth 
 P6 brown concrete 
 P7 indigo concrete 
 P8 light grey concrete 
 P9 bronze concrete 
 P10 cedar concrete 
 P11 dark red concrete 

Hybrid H1 grey glass-ceramic hybrid, polished 
 H2 grey glass-ceramic hybrid, glazed 
 H3 red glass-ceramic hybrid, glazed 
 H4 red glass-ceramic hybrid, smooth 
 H5 grey glass-paint hybrid, concrete 
 H6 grey glass-paint hybrid, concrete 
 H7 grey glass-paint hybrid 

 

Therefore, according to the three albedo schemes, which are applied to evaluate the effects of 

materials on solar potential, this study makes some adjustments and conducts a further 

classification on the segmentation result of MSCA. For the segmentation-based scheme, we 

merge the mosaic tile and ceramic tile because they have only minor distinctions in materials, 
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apart from significant differences in appearance. As a result, there are only five classes in this 

scheme (ceramic tile, glass, hybrid, metal, and paint). The classification method is basically 

based on the segmentation results of MSCA, which makes the materials identification and 

albedo assignment in this scheme have relatively high reliability, with 0.80 precision, 0.84 

recall, and 0.82 F1-score.   

Besides the segmentation-based scheme, this study proposes to use a further classification to 

simulate the complex albedo environment in urban areas. As shown in Table 4.2, excluding 

glass, the original four materials are further divided into 29 more detailed categories. Each 

subcategory in the table is visually distinguishable from each other, including differences in 

color or roughness. After obtaining the material from MSCA, the RGB information and 

segmentation results of each pixel in street views are projected to the 3D model. Based on the 

preliminary results, the RGB distribution of each building is collected and used to calculate 

similarity between other subclasses under the identified category (like ceramic tile, glass, 

hybrid, metal, and paint). This study measures the similarities between material distributions 

on building façades by calculating the Jensen–Shannon (JS) divergence, an important metric 

in information theory. The JS divergence is used to quantify the relative entropy or the 

difference in information content between two probability distributions. It is formulated as 

follows: 

𝐽𝑆(𝑃1 ||𝑃2) =
1

2
 𝐾𝐿(𝑃1 ||

(𝑃1+𝑃2)

2
) +

1

2
 𝐾𝐿(𝑃2 ||

(𝑃1+𝑃2)

2
)    (4-15) 

where 𝐾𝐿(∙) is the Kullback–Leibler divergence. 𝑃1  is the distribution of the building 

while 𝑃2 is the distribution of each subclass from albedo library.
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In this formula, the Kullback–Leibler (KL) divergence is a crucial component. 𝑃1 is the 

distribution of the building while 𝑃2 is the distribution of each subclass from albedo library. 

Furthermore, the 𝐾𝐿(∙) from a distribution 𝑝 to a distribution 𝑞 is defined by: 

𝐾𝐿(𝑝||𝑞) = ∑ [𝑝(𝑥𝑖) log 𝑝(𝑥𝑖) − 𝑝(𝑥𝑖) log 𝑞(𝑥𝑖)]𝑁
𝑖=1 ]   (4-16) 

where 𝐾𝐿(∙) is the Kullback–Leibler divergence. 𝑃1  is the distribution of the building 

while 𝑃2  is the distribution of each subclass from albedo library. The KL divergence 

measures the relative entropy between two distributions, indicating how much one 

distribution diverges from a second, expected distribution. However, KL divergence is 

asymmetric and can yield infinite values under certain circumstances. The JS divergence 

addresses these limitations by averaging the KL divergences between each distribution and 

their midpoint distribution  
(𝑃1+𝑃2)

2
, ensuring the measure is symmetric and finite. This 

makes it particularly useful for comparing the empirical distributions derived from the RGB 

values of building façades 𝑃1 with the theoretical distributions from the albedo library 𝑃2. 

By calculating the JS divergence, this study can effectively measure and compare the 

reflective properties of various materials, aiding in the accurate classification and analysis of 

urban façades. 

4.4.1.3 Image correction 

In urban façade analysis, particularly when using street-level imagery to identify and classify 

building materials, image correction is a crucial preprocessing step. Image distortion, often 

caused by the camera lens, can significantly impact the accuracy of projecting 2D pixel data 

onto a 3D model. The greater the distortion, the lower the accuracy, which can lead to 

substantial errors when estimating the locations and properties of building materials. 

Image distortion is typically caused by imperfections in the camera lens, which can result in 

nonlinear mapping of the scene. The two primary types of distortion are radial and tangential. 

Radial distortion occurs when light rays bend more near the edges of the lens than at the 
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center, causing straight lines to appear curved. This effect is more pronounced in wide-angle 

lenses. Tangential distortion arises when the lens and the image plane are not perfectly 

parallel, causing some areas of the image to be shifted. The OpenCV library provides a 

powerful function, cv2.undistort, to correct these distortions. The function requires a camera 

matrix and distortion coefficients, which can be obtained through a camera calibration 

process. The undistort function works by transforming the distorted pixel coordinates back to 

their original, undistorted positions. The basic formula underlying this process is as follows: 

𝑖𝑚𝑔𝑢𝑛𝑑𝑖𝑠𝑡𝑜𝑟𝑒𝑑 = 𝑢𝑛𝑑𝑖𝑠𝑡𝑜𝑟𝑡(𝑖𝑚𝑔𝑑𝑖𝑠𝑡𝑜𝑟𝑒𝑑, 𝐾, 𝑑𝑖𝑠𝑡𝐶𝑜𝑒𝑓𝑓𝑠)  (4-17) 

Where 𝑖𝑚𝑔𝑑𝑖𝑠𝑡𝑜𝑟𝑒𝑑 and 𝑖𝑚𝑔𝑢𝑛𝑑𝑖𝑠𝑡𝑜𝑟𝑒𝑑 are the coordinates of the undistorted and distorted 

pixels, respectively. 𝐾 is the input camera matrix, which can be formula as follow: 

𝐾 = |
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

|       (4-18) 

𝑑𝑖𝑠𝑡𝐶𝑜𝑒𝑓𝑓𝑠  are the distortion coefficients (k1, k2, p1, p2, k3). Image correction is a 

fundamental preprocessing step in urban façade analysis, especially when using street-level 

imagery. 𝑓𝑥 and 𝑓𝑦 represent the focal lengths of the camera in the x and y directions 

(measured in pixels). 𝑐𝑥 and 𝑐𝑦 are the coordinates of the principal point (optical center) in 

the image plane, defining where the optical axis intersects the imaging sensor. The undistort 

function is instrumental in reducing image distortion, thereby enhancing the accuracy of 

projecting 2D pixel data onto 3D models. By applying the image correction, this study 

ensures that the material classifications obtained from the MSCA network are precisely 

aligned with the 3D representations of buildings. This approach enables the RGB distribution 

and material identification result from multiple angles and distances street views to be 

accurately and reliably projected on corresponding buildings. 

4.4.1.4 Data projection 
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After the image correction process, the segmentation results become qualified for projection 

onto the 3D GIS model. Image correction ensures that distortions caused by the camera lens 

or environmental factors are minimized, leading to more accurate segmentation outputs. 

These corrected images are essential for reliable projections because distortions can 

significantly skew the data, leading to errors in the final geographic information system (GIS) 

model. By correcting the images first, we establish a solid foundation for the subsequent 

steps. 

The typical method to recover the actual coordinates from street views involves multi-image 

space intersection. This method relies on capturing multiple images of the same object from 

different angles to triangulate its position accurately. Each image contributes to a more 

precise calculation of the object's coordinates by intersecting the lines of sight from various 

viewpoints. This technique, widely used in photogrammetry, helps in creating detailed and 

accurate 3D reconstructions from 2D images. 

However, the original street view images often encounter issues such as overexposure and 

occlusion. Overexposure can wash out critical details, making it challenging to identify 

features accurately, while occlusion occurs when objects in the foreground block parts of the 

scene. These issues necessitate screening out most unqualified images to maintain the 

integrity and accuracy of the data used for reconstruction. Only high-quality images that 

provide clear and unobstructed views are used for further processing. 

This necessity for screening makes it difficult to ensure that there are sufficient consecutive 

photos for each filmed object to identify its location accurately. In practical scenarios, 

especially in dynamic urban environments, it is rare to capture perfectly consecutive and 

unshaded images of an object from all necessary angles. Consequently, the geographic 

coordinates of real-world points often need to be calculated using a single image situation, 

rather than relying on multiple images. 
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In this study, the Collinearity equation and 3D building models are utilized to achieve this 

objective. The Collinearity equation provides a mathematical relationship between the image 

coordinates and the corresponding real-world coordinates, making it possible to project points 

from a single image onto a 3D model. 3D building models, which contain detailed 

information about the geometry and position of structures, assist in this projection by offering 

a reference framework for calculating real-world coordinates. 

Before applying the Collinearity equation, the pixels in pixel coordinates must be 

transformed to image coordinates. This step involves converting the pixel positions, which 

are typically given in terms of row and column numbers, into spatial coordinates (x, y) in the 

displayed image. This transformation is crucial because the Collinearity equation operates 

within the image coordinate system, not the pixel grid. The relationship between pixel 

coordinates and image coordinates can be seen in Figure 4.8:  

O0

O1

x

y

u

v

(x0,y0)

 

Figure 4.8 The relationship between pixel coordinates and image coordinates. 

The image coordinate (x, y) of each pixel can be obtain by following equation: 

𝑥 = (𝑢 + 1) ∗ (
𝑑𝑢

𝑈
) − 𝑥0 ∗ (

𝑑𝑢

𝑈
)      (4-19) 

𝑦 = −(𝑣 + 1) ∗ (
𝑑𝑣

𝑉
) + 𝑦0 ∗ (

𝑑𝑣

𝑉
)      (4-20) 
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where u and v are the corresponding column and row of each pixel, respectively. (𝑥0, 𝑦0) 

represents the coordinates of the principal point, which is the point where the optical axis of 

the camera intersects the image plane. 𝑑𝑢 and 𝑑𝑣 denote the dimensions of a pixel in the 

image plane, while 𝑈 and 𝑉 are the total number of pixels in the horizontal and vertical 

directions, respectively. This transformation aligns the pixel grid with the spatial coordinate 

system used in the image, making it possible to apply geometric calculations accurately. 

Based on the calculated image coordinates, the Collinearity equation can be utilized to locate 

the potential position of the corresponding actual points. The Collinearity equation is a 

cornerstone in photogrammetry and remote sensing, describing the geometric relationship 

between the image point, the projection center (camera), and the real-world point. It is 

formulated as follows: 

𝑥 − 𝑥0 = −𝑓
𝑅11(𝑋−𝑋0)+𝑅21(𝑌−𝑌0)+𝑅31(𝑍−𝑍0)

𝑅13(𝑋−𝑋0)+𝑅23(𝑌−𝑌0)+𝑅33(𝑍−𝑍0)
     (4-21) 

𝑦 − 𝑦0 = −𝑓
𝑅12(𝑋−𝑋0)+𝑅22(𝑌−𝑌0)+𝑅32(𝑍−𝑍0)

𝑅13(𝑋−𝑋0)+𝑅23(𝑌−𝑌0)+𝑅33(𝑍−𝑍0)
     (4-22) 

where 𝑥, 𝑦 are the image coordinates of the image point which converted from the rows and 

columns of pixels, 𝑥0, 𝑦0, 𝑓 are the interior orientation parameters of the image, 𝑋, 𝑌, 𝑍 

are the geographical coordinates of the corresponding ground point, 𝑋0, 𝑌0, 𝑍0 are the 

geographical coordinates of the projection center. The elements 𝑅𝑖𝑖(𝑖=1,2,3) are components 

of a 3×3-matrix 𝑅 composed of three exterior orientation parameters, which describe the 

rotation of the camera relative to the ground coordinate system.  

This formula describes a straight line formed by the image point, the projection center, and 

the real-world point. Specifically, by connecting these three points (image point, projection 

center, and real-world point), the formula establishes 3D rays that extend from the viewpoint 

to infinity. This ray serves as a crucial element in providing a precise means of tracing back 
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from the image to the physical scene and indicating the potential location of the real-world 

points. 

 

Figure 4.9 Using the collinearity equation to determine the geographic relationship between 

the camera, street views, and buildings. 

As illustrated in Figure 4.9, this geometric concept can be visualized as a ray that extends 

from the camera’s lens, passes through the image point on the plane, and projects outward 

into the real world, eventually intersecting with an object in the scene. This ray effectively 

represents the line of sight from the camera to the object, indicating the path that light has 

traveled. Given the coordinates of the image point and the known position of the projection 

center, it is possible to calculate this ray with high precision, enabling the determination of 

the exact spatial relationship between the captured image and the real-world environment. 

This means that, given the image point and the projection center, we can obtain a ray pointing 

to the corresponding geographical point. By knowing the orientation and position of the 

camera (the projection center) and the position of a point in the image (the image point), we 
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can use geometric principles to trace this line into the three-dimensional space of the real 

world. The resulting ray serves as a precise indicator of the direction from the camera to the 

object, facilitating tasks such as 3D reconstruction and spatial analysis. 

Then, based on the occlusion relationship between the camera and the object, the first 

intersection point obtained by using the ray and buildings is the corresponding real-world 

point. This intersection point is where the ray, extending from the camera through the image 

point, first makes contact with a physical object in the environment, thus pinpointing the 

geographical location of the real-world point with accuracy. By understanding the occlusion 

relationships in the scene, we ensure that the calculated real-world point corresponds to the 

visible surface in the image rather than a hidden or obstructed part of the scene. This 

approach enhances the reliability and accuracy of the spatial data derived from images under 

the lack of sufficient consecutive photos for each filmed object to identify its location 

accurately, which is crucial for various applications such as urban planning, navigation, and 

augmented reality. 

4.4.1.5 Accuracy assessment of the projection 

Since it is challenging to validate the mapping between all pixels, 3D model points, and 

real-world points, this study selected feature points like building vertexes to evaluate the 

accuracy of the projection pipeline. The decision to focus on feature points is driven by the 

need for precise reference markers that can be easily identified and measured. Building 

vertexes, being distinct and prominent, serve as reliable reference points for assessing the 

accuracy of the spatial projection. These points are evenly distributed throughout the study 

area to avoid spatial bias and systematically evaluate projection accuracy across diverse 

building geometries. However, due to the obstruction of buildings, the position of the 

mapping system, and limitations on camera perspectives, in most circumstances, only the 

middle of the buildings are captured by the camera. This inherent limitation arises from the 

fact that the camera’s field of view is often restricted by adjacent structures and the specific 
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angles at which the images are taken. Consequently, the number of captured building 

vertexes is limited, reducing the sample size available for evaluation. 

Table 4.3 Projection accuracy evaluation. 

Metrics Value 

Total points 35 

Points projected onto the 

correct building 

28 

Average distance between the 

camera and objects 

89.19m 

RMSE 3.01m 

Mean error 2.11m 

Error per meter 0.07m 

As shown in Table 4.3, 35 feature points are selected to assess the accuracy. Among these, 28 

points are projected onto the correct buildings. This initial finding indicates a relatively high 

level of accuracy in the projection process, with the majority of the feature points correctly 

aligning with their corresponding real-world counterparts. The root mean square error 

(RMSE) of these 28 points is 3.01 meters, and the mean error is 2.11 meters. These metrics 

provide a quantitative measure of the projection accuracy, with the RMSE representing the 

square root of the average squared errors and the mean error representing the average 

absolute error.  

Considering that most feature points are captured on distant buildings with an average 

distance of 89.19 meters, which is further than most regular points on street views, the actual 

error of overall projection points should be considered much lower than this figure. The 

greater distance of the feature points introduces additional challenges in maintaining 

projection accuracy, as slight angular deviations can result in larger positional errors. 
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Therefore, the observed errors are likely inflated due to the increased distances, and the actual 

error for closer points would be substantially lower. Furthermore, since the segmentation 

results are building-level and the albedo assignments are based on the distribution of the 

entire building, a few mislocated pixels on the boundary of buildings have a limited impact 

on the building material identification. The segmentation process, which groups pixels based 

on the overall appearance and material properties of the building, ensures that minor 

inaccuracies at the edges do not significantly affect the overall material classification. The 

albedo assignments, which determine the reflective properties of the building surfaces, are 

similarly robust to minor boundary errors. 

Given the overall precision of the projection pipeline, the projection accuracy is deemed 

adequate for subsequent analyses. The root mean square error and mean error values, while 

indicative of some degree of deviation, are within acceptable limits for the purpose of albedo 

determination. In summary, the methodology employed in this study provides a reliable 

means of projecting feature points from images onto 3D models with an accuracy that 

effectively supports the subsequent solar potential estimation. 

4.4.1.6 Albedo determination 

This study employs three distinct façade albedo assignment methods to evaluate their effects 

on solar potential distribution in urban environments. The first method employs a constant 

albedo value to represent all types of architectural materials within the city, encompassing 

both façades and rooftops.  

According to research conducted by Salleh et al. (2014), as well as Yaghoobian et al. (2012), 

the albedos of common materials used in urban areas are listed in Table 4.4. For instance, 

light roofs typically have an albedo range of 0.35 to 0.5, while dark roofs exhibit much lower 

albedo values, ranging from 0.08 to 0.18. Asphalt ground surfaces show a wide range of 

albedos from 0.05 to 0.3, highlighting the variability even within a single material type. 
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Concrete façades, commonly used in urban construction, have albedos ranging from 0.17 to 

0.27. Brick façades, which are also prevalent in urban environments, have albedo values 

between 0.2 and 0.4, while Gypsum façades have relatively high albedo, which is assigned a 

value of 0.35. 

The table indicates that the average albedo for these materials generally falls between 0.2 and 

0.4. Zhu et al. (2020) noted that simulations yield optimal performance when the albedo is set 

to 0.4. Consequently, this study adopts 0.4 as an empirical parameter for the constant albedo 

scheme, which serves as the control group in the experiments. 

Table 4.4 Albedos of common materials in urban areas. 

No. Material Albedo 

1 Light roof 0.35-0.5 

2 Dark roof 0.08-0.18 

3 Asphalt ground 0.05-0.3 

4 Concrete façade 0.17-0.27 

5 Brick façade 0.2-0.4 

6 Gypsum façade 0.35 

The second scheme uses the results of segmentation to assign albedos. After combining the 

mosaic tile and ceramic, façades are divided into five categories: ceramic tile, glass, hybrid, 

metal, and paint. There are plenty of studies on the albedos of the five materials. As shown in 

Table 4.5, (Ilehag et al., 2019) presents an urban spectral library consisting of collected in 

situ material spectra with imaging spectroscopy techniques in the visible and near-infrared 

(VNIR) and short-wave infrared (SWIR) spectral range, with 181 façades materials. Similarly, 

LUMA (Kotthaus et al., 2014) and LBNL (Levinson et al., 2005) present 74 and 87 material 
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spectra, respectively. Specifically, for glass, the International Glazing Database (IGDB) 

(Versluis et al., 2012) provides more than 5000 optical data for different glasses, including 

color, reflectance, emissivity, thickness, and so on. Based on the prevalent façade styles in 

Hong Kong, this study selects several materials from aforementioned libraries to represent 

the five categories. The albedos of the five categories in this scheme (ceramic, metal, paint, 

hybrid, glass) are set as 0.14, 0.31, 0.17, 0.28, and 0.13, respectively. The 

segmentation-based scheme is the experimental group for evaluating the effect of façade 

albedos in different districts. 

Table 4.5  Material Albedo library. 

Library Size Including Materials 

KLUM 181 Asphalt, Brick (clay), Mortar, Ceramic, Concrete, Granite, Limestone, 

Metal, Plaster, Sandstone, Conglomerate, Wood 

LUMA 74 Quartzite, Stone, Granite, Asphalt, Cement/Concrete, Brick, Roofing 

shingle, Roofing tile, Metal, PVC  

IGDB 5000 Specular glazing 

LBNL 87 Conventional and cool pigmented coatings 

The third albedo assignment scheme also relies on segmentation results but further classifies 

façade materials to simulate the complex albedo environment present in urban areas. This 

detailed classification is essential to represent the diverse material properties found in 

cityscapes. For this purpose, the study selects 29 materials commonly seen in Hong Kong as 

subclasses. Each building material is matched to a subclass that exhibits the minimum 

Jensen–Shannon divergence within the initial segmentation category. The Jensen–Shannon 

divergence is a statistical method used to measure the similarity between probability 

distributions, ensuring that each material is classified as accurately as possible based on its 

spectral properties. Table 4.6 lists the albedos assigned to each subclass within the primary 

categories of ceramic, paint, metal, hybrid, and glass. 
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Table 4.6 Assigned albedo of each façade materials. 

Class Albedo Subclass Albedo Class Albedo Subclass Albedo 

Ceramic 0.14 C1 0.15 Paint 0.17 P1 0.26 

C2 0.14 P2 0.43 

C3 0.14 P3 0.51 

C4 0.35 P4 0.52 

C5 0.09 P5 0.37 

C6 0.34 P6 0.04 

C7 0.23 P7 0.18 

C8 0.14 P8 0.21 

Metal 0.31 M1 0.31 P9 0.33 

M2 0.2 P10 0.17 

M3 0.25 P11 0.12 

Hybrid 0.28 H1 0.16 Hybrid 0.28 H5 0.24 

H2 0.28 H6 0.37 

H3 0.23 H7 0.3 

H4 0.18 Glass 0.13   

For instance, within the ceramic category, eight subclasses (C1 to C8) are identified with 

albedo values ranging from 0.09 to 0.35. The paint category includes eleven subclasses (P1 to 
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P11) with albedos varying from 0.04 to 0.52. The metal category has three subclasses (M1 to 

M3) with albedos from 0.20 to 0.31. The hybrid category, consisting of seven subclasses (H1 

to H7), features albedos between 0.16 and 0.37. The glass category is represented with a 

single albedo value of 0.13. This detailed classification allows for a more nuanced simulation 

of the urban albedo environment, reflecting the real-world complexity of building materials. 

It provides a deeper understanding of how different materials and their reflective properties 

interact with sunlight in a densely built environment. 

In summary, these three façade albedo assignment methods exhibit different levels of 

complexity and accuracy in representing the urban environment. The constant albedo method 

offers a simplified, uniform approach that serves as a baseline for comparison. The 

segmentation-based scheme provides more accurate material albedo assignments by 

leveraging advanced image processing techniques to obtain detailed façade information, thus 

potentially enhancing the precision of solar potential estimation. Finally, the third scheme 

introduces an additional layer of granularity by further classifying façade materials into 

specific subclasses and using statistical methods to simulate the intricate albedo environments 

found in urban areas. Collectively, these three methods contribute to a comprehensive 

evaluation of the effects of façade albedo on solar potential distribution, providing deeper 

insights into the interaction between urban materials and solar energy. 

4.4.1.7 Solar irradiation estimation 

To accurately determine solar radiation at specific times and locations, this study utilized the 

Point Solar Radiation toolbox in ArcGIS Pro to calculate solar radiation on horizontal 

surfaces (ArcGIS, 2019; Fu et al., 1999). The Point Solar Radiation toolbox in ArcGIS Pro is 

a sophisticated tool designed to provide precise calculations of solar radiation by taking into 

account various factors such as the angle of the sun, the time of year, and the geographical 

location. This tool is particularly useful for studies that require high accuracy in solar 

radiation data, such as those related to solar energy potential, climate studies, and 
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environmental monitoring. Cloud cover is one of the most significant factors affecting 

radiation in this function. The inclusion of cloud cover data from the Hong Kong Observatory 

adds another layer of accuracy to the calculations, as cloud cover can significantly affect the 

amount of solar radiation that reaches the Earth's surface. The 2023 monthly cloud cover data 

collected by the Hong Kong Observatory (Observatory, 2024) is applied to calculate the 

diffuse proportion and transmissivity through the following formula (Huang et al., 2008): 

    𝐷𝑖𝑓𝑓𝑢𝑠𝑒 = 0.20𝑃𝑐𝑙𝑒𝑎𝑟 + 0.45𝑃𝑝𝑎𝑟𝑡𝑙𝑦𝑐𝑙𝑜𝑢𝑑 + 0.70𝑃𝑐𝑙𝑜𝑢𝑑𝑦   (4-23) 

   𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 = 0.70𝑃𝑐𝑙𝑒𝑎𝑟 + 0.50𝑃𝑝𝑎𝑟𝑡𝑙𝑦𝑐𝑙𝑜𝑢𝑑 + 0.30𝑃𝑐𝑙𝑜𝑢𝑑𝑦  (4-24) 

 where 𝑃𝑐𝑙𝑒𝑎𝑟, 𝑃𝑝𝑎𝑟𝑡𝑙𝑦𝑐𝑙𝑜𝑢𝑑, and 𝑃𝑐𝑙𝑜𝑢𝑑𝑦 represent the proportions of days in clear, partly 

cloudy, and cloudy conditions, respectively. In this study, 𝑃𝑐𝑙𝑒𝑎𝑟, 𝑃𝑝𝑎𝑟𝑡𝑙𝑦𝑐𝑙𝑜𝑢𝑑, and 𝑃𝑐𝑙𝑜𝑢𝑑𝑦 

represent the cloud conditions over entire Hong Kong. By accumulating the hourly solar 

radiation calculated by the Point Solar Radiation toolbox, the annual solar radiation can be 

determined. This experiment consistently set the spatial resolution to 1 meter, including 

building façades, rooftops, and the ground. This high spatial resolution required significant 

computational resources. Therefore, PostgreSQL was used for spatial data intersection, 

occlusion calculation, shadow computation, and multi-reflection simulation. PostgreSQL is a 

powerful database management system that is well-suited for handling large datasets and 

complex spatial queries, making it an ideal choice for this study. Specifically, assuming an 

albedo of 0.4 for multi-reflection, the remaining radiation after three reflections is less than 

7%. When the albedo was set to 0.2, the proportion dropped to 0.8%, and most radiation was 

emitted toward the sky after reflecting several times. Consequently, three iterations of 

reflection were simulated for each study area in the experiments. 

4.4.2 Experiments setups 

This study selects North Point as the research area due to its diverse range of building types 

and façade styles, including fully glazed office buildings, old residential buildings with 
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mosaic tile façades, and factories with painted exteriors. The selection of North Point for 

solar potential analysis balances architectural diversity and computational feasibility. At the 

same time, North Point contains representative building typologies (e.g., residential high-rises, 

outlying low-rise structures, and mixed-use commercial façades) and material variations 

comparable to other urban districts. Computational constraints further necessitated this 

localized focus: the analysis required about 3 months of processing on 16-core CPU clusters, 

with iterative ray-tracing simulations accounting for hourly solar angles, façade geometry, 

and shading effects. Scaling to Hong Kong’s entire urban area (~1,100 km²) would likely 

extend computation time to 12–18 months. This trade-off balances the granularity against 

infrastructural limitations.  

 

Figure 4.10 The selected districts and corresponding Land utilizations in the North Point. 

The first column on the left is the 3D models of selected districts. The second column is 
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sample street views. The third and fourth columns are the corresponding Land utilization 

statistics. 

Based on these building styles, the thesis specifically chose four distinct neighborhoods for 

experimental comparison, as illustrated in Figure 4.10. These neighborhoods were selected to 

provide a representative sample of different types of buildings and façade materials found in 

North Point, thereby ensuring that the study's findings would be broadly applicable. 

Area 1, depicted in Figure 4.10, which we refer to as 'outlying area' in this thesis, consists of 

isolated residential areas with buildings aligned in rows and no adjacent structures nearby. 

This region serves as a control group to investigate the impact of façade albedos on solar 

potential with minimal multi-reflection between buildings. The isolation of the buildings in 

Area 1 minimizes the effects of shadowing and reflection from neighboring structures, 

allowing for a clearer analysis of how different façade materials affect solar radiation 

absorption and reflection. The pie chart on the right of the first row in Figure 4.10 shows that, 

apart from the selected buildings, the majority of this area comprises woodland, open spaces, 

and grasslands. This composition of the surrounding environment further reduces the 

potential for complex interactions between buildings and their surroundings. Correspondingly, 

as shown in the 'outlying area' of Figure 4.11, the façades in this region are relatively 

homogeneous, predominantly consisting of ceramic tiles. This homogeneity simplifies the 

analysis and provides a baseline for comparing the effects of different façade materials in 

other areas. 
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Figure 4.11 The percentage of different building façade materials in each district. The inner 

circle represents the material percentages obtained by the MSCA network. The outer circle 

represents the material percentages after further classification. 

In contrast, Area 2 is more complex, which we refer to as 'complex area' in this thesis. 

Located in the northwest corner of North Point, this region includes various types of 

buildings with different functions and styles, such as private residences, government facilities, 

factories, and commercial buildings. The diversity of building types in Area 2 introduces a 

range of variables that can affect solar radiation, including differences in building height, 

orientation, and façade materials. As shown in Figure 4.11, the materials constituting the 

façades in this region are also more diverse, including a significant amount of metal (e.g., 

aluminum), coatings of various colors, and a substantial proportion of glass façades. This 

diversity in façade materials allows for a more comprehensive analysis of how different 

surfaces interact with solar radiation, including the effects of reflection, absorption, and 

transmission. 

Similarly, Area 3, which we refer to as ‘commercial area' in this thesis, has a material 

composition similar to Area 2, with several additional hybrid buildings (e.g., a combination 
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of glass curtain walls and ceramic tiles). The presence of hybrid buildings in Area 3 

introduces additional complexity to the analysis, as these structures often have varying albedo 

values and reflective properties. Compared to older residential areas, the buildings in Area 3 

appear more aesthetically pleasing and modern. Modern architecture in commercial areas 

often incorporates advanced materials and design features that can significantly influence 

solar radiation dynamics.  

Area 4, which we refer to as ‘residential area' in this thesis, predominantly consists of 

residential buildings, differing from Area 3, which is a mix of commercial and residential 

structures. The residential focus of Area 4 provides a contrast to the commercial emphasis of 

Area 3, allowing for a comparison of how different building uses affect solar radiation. 

Furthermore, due to the typical structure of buildings in Hong Kong, the lower floors of these 

residential buildings in Area 4 are often used for commercial purposes, such as shopping 

malls, which provide extra diversity in façade albedos. Overall, the selected regions 

encompass commercial, industrial, and residential buildings with façades made from more 

than twenty different reflective materials, providing a comprehensive basis for research and 

analysis. The wide range of materials and building types in the selected areas ensures that the 

study's findings will be applicable to a variety of urban environments. 

Additionally, due to the high computational cost associated with a spatial sampling interval of 

one meter, this experiment conducted temporal sampling at intervals of every 28 days from 

January 1st 2023 to December 31st 2023. 
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Chapter 5 Results and discussion 

5.1 Segmentation results of Urban Building Surface Materials  

5.1.1 Quantitative experimental results 

First, this study conducts a series of experiments using the proposed dataset to evaluate the 

performance of the developed model. As illustrated in Table 5.1, the results reveal that the 

overall performance of the proposed model is superior to other existing models, achieving a 

mean Intersection over Union (mIOU) of 72.58%. This notable performance underscores the 

efficacy of the proposed model in accurately segmenting architectural elements in diverse and 

complex visual datasets. 

A critical aspect of this study is the analysis of the Theoretical Receptive Field (TRF) of 

various models. The TRF represents the area of the input image, which is a given feature in 

the output layer that can theoretically receive information. Although a larger receptive field 

should inherently enhance a model's performance by capturing more contextual information, 

our findings indicate that there is no significant linear correlation between the size of the 

receptive field and the model's performance in this task. This observation suggests that 

merely increasing the receptive field size does not necessarily translate to better performance 

in façade material identification. The dataset used in this study encompasses a wide range of 

building sizes, varying from several hundred pixels to approximately two thousand pixels. 

This variability presents a substantial challenge, requiring the model to effectively adapt to 

different scales of architectural elements. Given the discrepancy between TRF and ERF, 

which is the actual area that significantly influences the model's predictions, the study found 

that Hierarchical MSA and MSCA, which have the TRF closer to the building size, obtained 

better results. That makes aligning the TRF with the actual sizes of buildings crucial. Thereby, 

the multi-scale structure could enhance the model's ability to understand different level 

details.  
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Table 5.1 Performance of MSCA versus Baselines based on the constructed dataset. Best 

results in each class are represented in bold. 

Method 
Backb

one 
TRF 

Cera

mic  
Glass Hybrid Metal Mosaic  Paint Tree mIOU 

DeepLa

bV3 

ResNet

-101 

3459 * 

3459 
54.5 71.13 5 4 . 5 9 68.96 69.41 85.52 80.58 64.25 

DeepLa

bV3+ 

ResNet

-101 

3583 * 

3583 
46.71 63.08 39.9 67.22 65.65 84.2 79.57 60.91 

OCR 
HRNet

-W48 

1087 * 

1087 
59.48 73.53 53.43 74.12 68.67 84.17 77.95 65.28 

Hierarc

hical 

MSA 

HRNet

-W48 

2302 * 

2302 
53.47 66.59 46.43 67.91 68.51 84.52 75.76 69.31 

MSCA 

(ours) 

HRNet

-W48 

2558 * 

2558 
55.4 76.46 58.44 64.48 70.09 86.88 75.95 72.58 

In evaluating the model's performance across different material classes, it is evident that the 

MSCA outperforms baseline models in most categories, with notable exceptions being 

ceramic tile and metal. Specifically, for the metal class, the model achieves a mIOU of only 

64.48%, which is the lowest among all material classes. This subpar performance is primarily 

due to the limited amount of training data available for metal façades. The scarcity of metal 

façade samples in the dataset hampers the model's ability to learn and generalize effectively 

for this category. However, it is worth noting that, as shown in Figure 5.1, most of the 
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misclassified metal pixels are labeled as background rather than being confused with other 

material classes. This suggests that, while the model struggles to identify metal façades 

specifically, it can still differentiate these regions from other material types, maintaining a 

reasonable level of accuracy at a broader classification level.  

 

Figure 5.1 The percentage of pixels that are classified into different classes. Rows represent 

the total pixels of this material (Ground truth). Columns represent all pixels classified into 

this material (Predicted class). 

Moreover, all models tested, including the proposed one, achieved their worst performance 

metrics in the hybrid and ceramic tile classes. For instance, the DeepLabV3+ model attains an 

IOU of 39.90% for hybrid and 46.71% for ceramic tile. In comparison, the proposed model 

performs better, achieving 58.44% and 50.40% for these classes, respectively. Despite these 

improvements, the performance remains suboptimal. However, the samples of hybrid and 
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ceramic tile are sufficient compared with metal. The poor performance can be attributed to 

the inherent ambiguity in the labeling of hybrid materials. The hybrid class, which typically 

includes a mixture of glass and ceramic materials, poses significant classification challenges 

due to its vague definition. The models seem challenging to classify a ceramic-like and 

glass-like object as the class hybrid. As depicted in Figure 5.1, the hybrid category is 

frequently misclassified as ceramic tile, further illustrating the difficulty in categorizing these 

mixed-material façades. This issue is compounded by the subjectivity involved in 

determining the proportion of materials in a hybrid façade. For instance, when the glass 

component constitutes 30% or 40% of the total material, rather than a clear-cut 50%, it 

becomes challenging to classify the façade accurately. This subjectivity leads to a significant 

proportion of glass façades being mislabeled as hybrids. 6.47% of glass façades fall into this 

misclassification, accounting for 43.02% of all misclassified glass pixels. Similarly, 21.32% 

of hybrid façades are incorrectly identified as ceramic tiles, representing 64.92% of the total 

misclassifications within the hybrid category. Consequently, the hybrid class exhibits the 

lowest precision, with a score of 0.67 as shown in Table 5.2. 

Table 5.2 Metrics of the proposed method on the Hong Kong street views dataset. 

Metrics Ceramic  Glass Hybrid Metal Mosaic  Paint Tree Mean 

Precision 0.75 0.85 0.67 0.7 0.81 0.934 0.86 0.8 

Recall 0.68 0.88 0.82 0.89 0.84 0.93 0.86 0.84 

F1-score 0.71 0.87 0.74 0.78 0.82 0.93 0.86 0.82 

The model's performance in the segmentation of mosaic tiles also highlights several 

challenges. As illustrated in Figure 5.2, factors such as erosion, fading, and the distance from 

which images are captured can obscure the distinctive grid patterns of mosaic tiles, making 
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them difficult to distinguish from metal, paint, and some ceramic tiles. The unique colors and 

patterns of mosaic tiles, which often serve as critical visual cues, can become less discernible 

due to these degradations. As a result, the network occasionally misclassifies mosaic tiles as 

painted façades. This misclassification is quantified in Figure 5.1, where 12.04% of mosaic 

tile pixels are incorrectly labeled as paint or ceramic, accounting for 62.16% of all 

misclassifications in the mosaic tile category. Similarly, 3.30% of painted façade pixels are 

confused with mosaic tiles, representing 44.35% of the misclassifications in the paint 

category. Despite these challenges, the model performs reasonably well in these categories, 

achieving F1-scores of 0.82 for mosaic tiles and 0.93 for painted façades, as detailed in Table 

5.2. 

The extensive training data available for painted façades plays a crucial role in the model's 

high performance in this category. Painted façades constitute the largest sample size within 

Figure 5.2 Two different materials have almost the same color and luster. The lower left 

material is metal, and the upper right is mosaic tile. The difference between the two materials 

in the picture is only reflected in the pixel-level details, i.e., mosaic tiles have grids. 
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the dataset and feature more colourful and varied appearances compared to other material 

classes. This abundance of diverse training examples enables the model to learn and 

generalize effectively, resulting in an mIOU of 86.88% for painted façades. The high 

recognition accuracy in this category underscores the importance of ample and diverse 

training data in developing robust segmentation models. 

The study also presents a detailed percentage matrix in Figure 5.1, showing how ground-truth 

pixels are predicted across different classes. The matrix reveals a tendency of the proposed 

model to misclassify pixels as background, especially in categories with significant 

occlusions. For example, aside from the metal class, 3% to 5% of pixels in other categories 

are incorrectly labeled as background. This issue primarily arises from the occlusions present 

in street view images, such as advertisements and other obstacles, which are included as part 

of the façades due to the building-level annotation principle. These occlusions can confuse 

the network, leading to errors in identifying and excluding non-relevant objects on the 

façades. 

The annotation principle itself also impacts the segmentation results, particularly for hybrid 

façades. As previously mentioned, hybrid façades are often composed of a mix of glass and 

other materials, typically ceramic, with an approximate 50-50 distribution. However, the 

actual proportion of materials can vary, and this variability can lead to subjective 

interpretations during the annotation process. For instance, a façade with 30% or 40% glass 

may not fit neatly into the hybrid category, leading to inconsistencies in the training data and 

subsequent misclassifications by the model. This subjectivity in labeling is reflected in the 

misclassification rates, where a significant portion of glass façades is incorrectly labeled as 

hybrid, and vice versa. 
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Table 5.3 Performance of MSCA versus Baselines based on FaçadeWHU. Best results in 

each class are represented in bold. 

Method Window Door Wall Balcony Roof Shop mIOU 

DeepLabV3 42.78 19.08 61.82 29.15 43.93 19.53 44.27 

DeepLabV3+ 45.4 17.39 59.04 29.39 41.42 16.98 43.24 

OCR 43.66 8.23 61.32 25.24 36.94 11.46 40.07 

Hierarchical MSA 43.22 20.17 60.68 33.84 42.5 19.67 44.82 

MSCA(ours) 44.68 21.7 61.26 36 45.41 24.34 46.69 

 

To verify the effectiveness of the proposed model, this study also conducts experiments on 

FaçadeWHU. As shown in Table 5.3, the proposed model achieves the highest overall 

performance, with a mIOU of 46.69%, and outperforms the baselines in different classes, 

except for Window and Wall. Even in Window and Wall, MSCA is only 0.72% and 0.56% 

lower than the best model. Furthermore, compared with Wall, Roof, and Window, all 

methods have poor performances in Balcony, Shop, and Door. The best IOUs are only 

36.00%, 24.34%, and 21.70%, respectively. As shown in Table 5.3, since Wall and Roof 

have the most expansive area, which makes them the most unlikely to be blocked by 

obstacles, the metrics of these categories are significantly higher than others. Window also 

has a relatively satisfactory performance due to its regular shape. The model performs worst 

in Shop and Door, with the lowest precision of 0.28. The potential reasons leading to the poor 

results could be the insufficient data volume and the indefinable object boundaries. The latter 
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requires a strong semantic comprehension ability of models. Nonetheless, the experimental 

results on two datasets show that MSCA can handle the façade segmentation in street-level 

images robustly and efficiently. 

Figure 5.3 Qualitative comparison between MSCA and strong baseline (Hierarchical MSA). 

From left to right: input, ground truth, our method, and baseline. 
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5.1.2 Qualitative experimental results 

According to Table 5.1, the Hierarchical MSA method outperforms other state-of-the-art 

approaches in façade segmentation. This demonstrates the efficacy of our proposed model. 

Furthermore, Figure 5.3 provides a visual comparison of the performance between our 

proposed method and the Hierarchical MSA. A significant distinction between the proposed 

model and the Hierarchical MSA is the adaptation of the attention module within the Object 

Contextual Representation (OCR) module. This adaptation facilitates the fusion of features 

across multiple scales, leading to improved segmentation performance. The qualitative results 

illustrate this advantage clearly. As shown in the first row of Figure 5.3, ignoring whether the 

pixels are correctly inferred as its categories, the proposed model successfully detects the 

commercial building with the ceramic façades (left in the figure, coloured in light blue) as a 

separated building. On the contrary, the baseline model only recognizes the upper part of the 

building and regards it as hybrid (colour in light blue), the same as MSCA. The lower part is 

reckoned as part of other residential buildings as the environment near the ground is more 

complex. The baseline's failure to accurately segment the lower part of the building, likely 

due to the complexity of the ground-level environment, underscores the superior contextual 

understanding of our model. 

Similarly, in the second row, the hybrid building behind the residential one (middle in the 

figure, coloured in light blue) only shows a limited part of the picture. Hierarchical MSA thus 

fails to distinguish the two buildings, while MSCA correctly classifies the material and 

maintains its integrity. 

Further, in the third row, the architectural style of buildings on the left side (coloured in 

orange) is similar to that on the right, presenting a challenging scenario for segmentation 

models. Despite the similarity, our proposed model successfully separates these buildings, 

whereas the baseline model fails to do so. This demonstrates the enhanced feature 

discrimination power of our model, particularly in complex urban scenes. Similarly, in the 
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fourth row, the proposed model accurately identifies a mosaic façade in the middle of the 

image (coloured in orange) as an independent structure. The baseline model, however, 

struggles with this task due to the intricate details and similar visual patterns shared by 

adjacent structures.  

These qualitative results collectively indicate that the hierarchical nature of the MSA allows 

the model to capture both global contextual information and fine-grained details. This 

multi-scale approach ensures that the model can effectively segment large, homogenous areas 

such as walls and roofs, as well as smaller, intricate details like windows and decorative 

elements. The ability to integrate information across different scales is particularly beneficial 

in urban environments, where buildings exhibit a wide range of architectural features. 

5.1.3 Ablation Study 

This section conducted a series of ablation studies to demonstrate the effectiveness of various 

modules integrated into our network architecture. Specifically, the study focused on four 

significant modifications to the basic HRNet+OCRNet structure: the incorporation of a 

multi-scale approach, the addition of a Multi-Head Attention module post-HRNet, the 

integration of attention within the OCRNet, and the implementation of a residual block at the 

network's end. These modifications were designed to enhance the model's performance in the 

specific task of façade segmentation. Among them, the effectiveness of the attention within 

OCRNet is proved by comparing it with Hierarchical MSA, which adopts the attention 

module after OCRNet. 

Table 5.4 presents the results of the ablation studies, beginning with the adoption of a 

single-scale pipeline without the MHA module. This initial configuration achieved a mean 

Intersection over Union (mIOU) of 70.43%, which is 2.15% lower than the proposed 

multi-scale structure. The subsequent introduction of a multi-scale network architecture 

provided a performance boost, raising the mIOU by 0.87% over the single-scale pipeline. 
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This increase underscores the importance of utilizing features across different scales to 

enhance the comprehension of contextual information. The introduction of a multi-scale 

network architecture resulted in a significant performance boost. Specifically, it provided an 

increase of 0.87% in mIOU over the single-scale baseline. This improvement highlights the 

value of incorporating features from multiple scales, which enriches the contextual 

understanding necessary for accurate segmentation. 

Table 5.4 Quantitative results of the ablation studies. 

Ablation Multi-Scale MHA Residual block mIOU 

Ⅰ 
  

√ 70.43 

Ⅱ √ 
 

√ 71.3 

Ⅲ 
 

√ √ 70.27 

Ⅳ √ √ 
 

71.61 

MSCA √ √ √ 72.58 

Furthermore, the impact of MHA, when applied in isolation, was found to be less beneficial. 

In setting 3, the model incorporating MHA yielded an mIOU of 70.27%, which represents a 

slight decrease of 0.16% compared to the single-scale baseline. Although this reduction is 

minor, it indicates that merely adding MHA does not significantly enhance performance. This 

finding suggests that the integration of MHA needs to be orchestrated with other network 

components to be effective. Further analysis of the ablation study IV revealed the impact of 

adding a residual block at the network's end. This modification resulted in a 0.97% increase 

in mIOU, suggesting that the residual block could be helpful in fine-tuning the preliminary 

output of the network. The residual block likely aids in refining the features, thereby 

enhancing the overall segmentation accuracy. 
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The cumulative results from these ablation studies indicate that each of the proposed 

modifications contributes to the network's improved performance. The multi-scale approach, 

attention within OCRNet, MHA, and the residual block each provide unique enhancements 

that, when combined, result in a robust and effective model for façade segmentation. 

Specifically, incorporating these modules into the network led to gains of 2.15%, 1.28%, 

2.31%, and 0.97% mIOU over the baseline settings, respectively. 

5.1.4 Discussion  

This study introduces a multi-scale contextual attention network designed to address the dual 

challenges faced in urban façade analysis: the need for detailed material classification based 

on spectral characteristics, and the necessity for comprehensive contextual understanding to 

maintain the integrity of larger structures, such as entire buildings. Hong Kong, with its dense 

urban environment and diverse architectural styles, was selected as the research site for this 

study. To effectively evaluate the performance of the proposed model, we developed a 

detailed street-level dataset tailored to the unique characteristics of Hong Kong’s urban 

landscape. 

The experimental results demonstrate that our model excels in accurately classifying building 

materials, outperforming other existing models. This achievement is particularly significant 

given the demand for precision in material classification within urban studies. A detailed 

understanding of materials’ spectral characteristics can provide crucial insights into various 

urban phenomena, such as energy efficiency, thermal regulation, and aesthetic qualities. Our 

model’s ability to balance intricate detail with broader contextual comprehension is 

facilitated by the innovative use of multi-scale contextual attention mechanisms. 

The implications of this study extend beyond the task of imagery analysis from street views. 

One of the most substantial contributions of this research is its potential to bridge domain 

gaps in façade information collection. Traditional methods often struggle with inconsistencies 
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and insufficiencies in data collection, leading to gaps that can hinder comprehensive urban 

analysis. By providing a reliable and extensive data source, our method could enhance the 

accuracy and comprehensiveness of urban albedo studies, which are critical for understanding 

and mitigating urban heat islands and optimizing energy consumption. 

The spatial information derived from our model can be seamlessly integrated into 

three-dimensional Geographic Information Systems (3D GIS). This integration significantly 

improves the accuracy of solar potential simulations, a critical component in the planning and 

deployment of solar energy systems. One of the persistent challenges in solar potential 

estimation is the accurate simulation of reflected light. Existing models often either ignore 

reflected solar radiation or use a uniform albedo to represent entire urban areas, which can 

lead to substantial inaccuracies. Our study offers a pathway to more precise and 

context-specific simulations by providing detailed albedo data for various urban surfaces, 

including rooftops, façades, and ground areas. 

This detailed albedo information can refine strategies for photovoltaic (PV) deployment. For 

example, using the model proposed by Zhu et al. (2022), our work can enhance 

understanding of the relationship between urban morphology and solar capacity by 

incorporating accurate albedo measurements into the simulation framework. This approach 

allows for more effective and targeted PV deployment strategies, optimizing solar energy 

capture and reducing energy consumption in urban areas. 

However, despite these advancements, several limitations must be acknowledged. The high 

cost of annotation necessitated certain compromises in this study. This study assumed that 

each building is composed of no more than two primary materials, simplifying the annotation 

process but introducing inconsistencies when dealing with buildings featuring complex or 

novel designs, such as theatres or museums. Moreover, the building-level annotation 

approach results in vague classifications, particularly for hybrid façades, which can lead to 

confusion during the classification process. 
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Another significant limitation relates to the complex reflection characteristics of materials. 

Our study was unable to classify façade materials strictly based on their reflectivity due to 

these complexities and the limitations of visual observation. This shortcoming could 

potentially limit the application of our work in solar potential estimation, as accurate albedo 

differentiation for each building is crucial.  

Future research should focus on achieving more fine-grained classifications to enhance the 

precision and applicability of the model for solar potential simulations. Additionally, 

integrating the proposed model with other urban data sources, such as thermal imaging and 

LiDAR, could provide a more comprehensive understanding of urban environments. This 

multidisciplinary approach would further enhance the precision and utility of urban 

simulations, supporting more effective and sustainable urban planning initiatives. Moreover, 

the integration of our model into broader urban analytics frameworks can facilitate more 

nuanced and dynamic urban planning processes. For instance, by combining the detailed 

façade material classifications with environmental and socio-economic data, city planners can 

develop more informed strategies for energy distribution, building retrofits, and sustainable 

urban development. This holistic approach can contribute to the creation of smarter, more 

resilient cities capable of adapting to the evolving challenges of urbanization and climate 

change. 

In conclusion, the proposed multi-scale contextual attention network effectively identifies 

material categories from street-level images in metropolitan settings like Hong Kong. This 

work not only provides a viable solution for the precise simulation of reflective radiation 

accumulation processes but also explores the potential for conducting detailed urban analyses 

through street-level imagery. The ability to accurately classify materials and understand their 

spatial distribution opens up new avenues for urban planning and energy efficiency studies, 

particularly in the context of solar energy deployment and the mitigation of urban heat island 

effects. 
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5.2  Effect of Façade Albedo on Solar Potential Distribution in Different 

Urban Districts 

5.2.1 Estimation based on different albedo schemes 

As shown in Figure 5.4, the distribution of annual solar potential across the four study areas 

under the segmentation-based albedo assignment strategy is illustrated. The figure reveals 

that, compared to the vertical surfaces of buildings, the points on horizontal surfaces exhibit 

higher solar potential across all study areas. This is attributed to the fact that horizontal 

surfaces can evenly receive sunlight from east to west throughout the day and experience 

fewer obstructions, thereby maximizing solar exposure. In contrast to the solar potential 

distribution at 3 PM on August 13, depicted in Figure 5.5 for Area 4, where noticeable solar 

potential concentration occurs due to reflected sunlight, such phenomena are less apparent in 

the annual solar potential distribution. This discrepancy arises because the distribution of 

reflected light varies and is uneven at any specific moment. No particular area is consistently 

illuminated by reflected solar radiation throughout the day. Even at the same time on 

different days, variations in the sun's azimuth angle and altitude cause the positions of 

reflected light from the buildings, which have fixed spatial relationships, to differ. 

Consequently, the indirect components are unevenly distributed across the study areas on an 

annual scale. Furthermore, since reflected components do not dominate the overall solar 

potential distribution, their impact becomes less noticeable in annual-scale visualizations. 

Figure 5.6 further demonstrates that, regardless of the study area or albedo allocation strategy, 

the proportion of solar potential contributed by direct sunlight consistently ranges between 77% 

and 90%, constituting majority of the total solar potential.   
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Figure 5.4 The distribution of annual solar potential across the four study areas under the 

segmentation-based albedo assignment strategy. 

However, it does not diminish the role of façade albedo in the total solar potential distribution. 

Even without considering multiple reflections between buildings, the retained irradiation is 

still determined by the building's albedo. Then, the redistribution of the reflected irradiation is 

significantly influenced by the interaction between buildings, which is dominated by their 

spatial relationship and albedos. As shown in Figure 5.6, in Area 1, the total solar potential 

under the simulation albedo scheme is 9.1% higher than that under the constant albedo 

scheme. In Area 2, the segmentation-based scheme results in an 8.0% higher total solar 

potential compared to the constant scheme. For Area 3, the simulation albedo scheme 

surpasses the constant scheme by 8.3%, and in Area 4, the segmentation-based scheme 

exceeds the constant scheme by 8.9%. If multiple reflections are not considered, the 

differences between various albedo assignment strategies would be even more pronounced. 

The maximum differences between the different strategies across the regions are 11.9%, 

15.6%, 17.8%, and 14.0%, respectively. This is because the albedo strategy, in conjunction 

with the spatial relationship between buildings and the sun, determines the initial distribution 

and subsequent redistribution of solar potential. 
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Figure 5.5 The distribution of solar energy potential in Area 4 at 3 p.m. on August 13th. The 

purple circles represent the concentration of solar potential caused by the reflection of 

sunlight. 

Specifically, the impact of different façade albedo on solar potential distribution is illustrated 

in Figure 5.7. This figure highlights the differences in annual solar potential distribution 

resulting from varying façade albedo strategies. Figure 5.7(a) compares the annual solar 

potential under the segmentation-based strategy to that under the constant strategy. The 

primary differences are observed in the façades, while the rooftops and ground surfaces 

maintain consistent albedo values. Apart from insignificant visual differences due to multiple 

reflections, the horizontal surfaces exhibit nearly zero discrepancy. This can be seen from the 

predominantly purple points on the horizontal surfaces in the image, which indicates 

negligible differences. Points closer to blue represent negative differences, while points 

approaching yellow indicate positive differences, with a shift toward yellow signifying more 

significant differences.   
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Figure 5.6 Comparison of the total annual solar potential of each study area under different 

albedo assignment strategies. ‘Direct’ refers to the part of solar irradiation that comes 

from direct sunlight. ‘Indirect’ represents the indirect components. 

Figure 5.7 shows that in Area 1, the ‘outlying area’, the differences in solar potential 

distribution across the three strategies are relatively evenly distributed. This is because Area 1 

consists of isolated buildings with minimal obstructions in the north-south direction, 

providing similar lighting conditions and consistent building materials for façades. As a result, 

the east-west distribution of buildings has little impact on solar potential. The favorable 

lighting conditions result in significant and uniform differences in solar potential from the 

upper to lower levels on the sun-facing sides of buildings. Compared with the distribution 

under the constant scheme, both the segmentation-based and the simulation schemes believe 

that based on the façade material of Area 1, in the actual distribution, the façade of this area 

should exhibit higher solar energy potential. This difference becomes more pronounced with 

more abundant sunlight. 
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Figure 5.7 Differences in façade albedo impact the distribution of annual solar potential 

across four study areas. (a) shows the annual solar potential under the segmentation-based 

strategy minus that under the constant strategy. (b) represents the solar potential under the 

segmentation-based strategy minus that under the simulation strategy. (c) illustrates the 

difference between the simulation and constant strategies. 

In addition to the patterns above, other factors also influence the distribution of solar 

potential in Area 2. As shown in the second, third, and fourth columns of Figure 5.7, the 

differences in solar potential tend to increase with building height. This is because, in the 

metropolitan environment, the complex spatial layout results in dynamic shading 

relationships among buildings at different moments. Higher floors are less likely to be shaded, 

allowing façade areas at these levels to receive better sunlight. As previously noted, better 

lighting conditions amplify the differences caused by varying albedo values. 

However, a different pattern emerges in the second column of Figure 5.7(b). In the residential 

building located at the lower right corner of Area 2, near an industrial-like structure, the solar 
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potential difference initially decreases and then increases from top to bottom on the side 

facing the factory. This trend is also evident in rows (a) and (c), where the façade shows a 

similar pattern of weakening and then strengthening differences. This anomaly is difficult to 

explain by considering only the direct component of irradiation. This variation in solar 

potential differences can be attributed to reflections from the factory roof and the different 

absorptivity of irradiation by the façade materials themselves. Due to these indirect 

components, the lower floors exhibit greater differences in solar potential.  

Similarly, the southwest façade of the industrial-like building displays a complex and uneven 

pattern of differences, with inconsistent trends observed in rows (a) and (b). This suggests 

that direct irradiation differences are not the dominant factor in this case. Instead, the 

complexity and heterogeneity of the sources of indirect components play a significant role. 

Additionally, discrepancies in recognition of the source buildings' materials, which the 

reflected solar radiations come from, among the three albedo strategies further contribute to 

the complexity and unevenness of the patterns. Consequently, the heterogeneous nature of the 

indirect components, combined with the weak direct components, results in the observed 

complexity and unevenness in the patterns. 

5.2.2 Solar potential distribution influenced by the district morphology 

The morphology and function of the study areas significantly influence the distribution of 

solar potential. The four study areas are categorized based on their primary use: outlying 

residential area, complex area, commercial area, and downtown residential area. Relevant 

indicators for these areas are listed in Table 5.5. Undoubtedly, building height, density, and 

façade orientation significantly affect the amount of accessible radiation. However, in this 

section, we mainly focus on the impact of albedo differences caused by morphology and 

function on the distribution of solar potential. 
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Table 5.5 Detail indicators of each area. 

 
Area 1 Area 2 Area 3 Area 4 

Open area (m2) 198131 16007  12522 9990 

Building footprint (m2) 20705  13974 10242 17126 

Open space ratio (%) 90.5 53.3 55.0 36.8 

Average height (m) 65.7   72.9 74.1 91.6 

Firstly, Areas 1 and 4 are primarily residential. These residences are in consistent building 

heights and styles within the selected regions. In high-density urban environments, similar 

heights mean rooftops are less likely to be shaded, while façades are more likely to be shaded. 

In such areas, the solar potential of the roof accounts for a more significant proportion of the 

total distribution. Consequently, as shown in Table 5.6, compared to Areas 2 and 3, which are 

also in the downtown area, Area 4 has the lowest R values (1.82, 1.58, and 1.81 under the 

three albedo allocation strategies) despite having the highest average building height of 91.6 

meters. In this study we defined the R as the solar potential ratio of façade to roof in different 

areas, which can be formula as follow: 

𝑅 =
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙façade 

𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙roof 
       (5-1) 

In contrast, the situation differs in suburban areas. Due to the lack of obstructions (after 

excluding a large podium area from Area 1 rooftop statistics), the extensive façade area 

results in a considerable R value. Under the segmentation-based, constant, and simulation 

albedo strategies, the R values reach 5.42, 5.08, and 6.39, respectively. Simultaneously, the 

impact of façade material albedo on solar potential distribution is greatest in Area 1, with the 

difference between Rsim and Rc reaching 1.31, compared to a maximum difference of 0.38 in 

other areas. As described in Table 5.6, in this context, Rmax-Rmin can serve as an indicator for 

observing the changes in solar distribution caused by changes in albedo. 
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Table 5.6 The solar potential ratio of façade to roof in different areas. Rseg, Rc, and Rsim 

represent the ratio under segmentation-based, constant, and simulation strategies, 

respectively. Rmax is the maximum value of Rseg, Rc, and Rsim in the study area. Rmax-Rmin 

serves as an indicator representing the changes in solar distribution caused by changes in 

albedo. 

 
Rseg Rc Rsim Rmax-Rmin 

Area 1 
1.91  1.79  2.25  0.46  

Area 1 w/o podium 
5.42 5.08 6.39 1.30 

Area 2 
2.31  1.93  2.31  0.38  

Area 3 
2.71  2.39  2.76  0.37  

Area 4 
1.82  1.58  1.82  0.25  

 

Area 2, in contrast, is more inclined to be multifunctional, with more architectural styles and 

larger differences in building heights. The situation is similar in the commercial area. 

Compared with the homogeneous residential building, it is difficult to ensure that the office 

buildings in a commercial area are built in the same period and maintain the same height, 

which results in significant portions of rooftop areas frequently being shaded. Thus, although 

the average heights of Areas 2 and 3 (72.9m and 74.1m, respectively) are lower than Area 4 

(91.6m), their R values are higher.  

Moreover, the diversity in building types and uses leads to heterogeneous façade albedos. 

This diversity allows us to observe more significant changes in the distribution of solar 

potential when the façade albedo shifts from the constant to the simulation strategy in Areas 2 

and 3, with changes of 0.38 and 0.37, respectively, both higher than the 0.25 observed in the 

urban residential area. 
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5.2.3 Albedo-caused effects under different temporal scales 

5.2.3.1 Intra-annual scale 

Throughout different seasons, even at the same time, the solar elevation angle and incident 

angles vary. The unequal daylight duration across seasons also results in a non-uniform 

annual distribution of solar potential. For example, in Area 4, as illustrated in Figure 5.8, 

solar potential in the first (January, February, and March) and fourth (October, November, 

and December) quarters is significantly lower than in the second and third quarters. 

 

Figure 5.8 Distribution of solar potential in different quarters of the year for Area 4 under 

segmentation-based scheme. 

Due to the study area standing near 22.28°N, the sun reaches its highest elevation angle 

during the summer. A higher solar elevation angle means that building façades are less likely 

to be shaded, exposing a larger surface area to sunlight. This is evident in Figure 5.8, where, 

during the second and third quarters, the red areas on the rightmost building, indicative of 

strong solar irradiation, extend to lower floors. However, factors beyond the elevation angle 
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also influence the illuminated area. In the first and fourth quarters, sunlight predominantly 

impacts the south-facing sides of buildings, while in summer and autumn, the north-facing 

sides receive more sunlight. This means the projection area of buildings in different azimuths 

also determines the illuminated surface area. Unlike the commercial area's rectangular 

buildings with high aspect ratios, the residential buildings have nearly circular cross-sections, 

ensuring a relatively consistent illuminated area throughout the year.  

Table 5.7 The solar potential ratio of façade to roof in Area 4 under different quarters. 

 
Rseg Rc Rsim Rmax-Rmin 

Quarter 1 
2.66  2.33  2.66  0.34  

Quarter 2 
1.31  1.11  1.30  0.20  

Quarter 3 
1.32  1.11  1.30  0.20  

Quarter 4 
2.83  2.47  2.83  0.36  

Despite minimal changes due to azimuth angles, the increased elevation angle still enhances 

the illuminated façade area. However, in Figure 5.8, the façade colors remain relatively 

consistent across all four quarters, with only the illuminated surface varying. This consistency 

occurs because the higher solar elevation angle reduces the angle of incidence on the façades, 

thereby decreasing the component of irradiation projected perpendicularly onto the façade. 

Consequently, the overall irradiation intensity on the façades does not significantly vary 

across the seasons. 

In contrast, the solar potential on horizontal surfaces shows significant seasonal variations. 

Both rooftops and ground surfaces receive irradiation primarily influenced by the solar 

elevation angle and daylight duration. In the second (April, May, and June) and third (July, 

August, and September) quarters, when the elevation angle is higher, horizontal surfaces 

exhibit markedly greater solar potential. Considering both the façade and horizontal surfaces, 
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the results in Table 5.7 can be derived. During fourth and first quarter, the R values in the 

study area are relatively high, reaching up to 2.66 and 2.83, respectively. In these seasons, 

differences in façade albedo significantly impact the overall solar potential distribution, with 

Rmax-Rmin values reaching 0.34 and 0.36. 

5.2.3.2 Hourly scale  

Compared to the distribution of solar potential over longer time scales, the hourly distribution 

within a single day is influenced by more factors and thus exhibits greater variability. The 

most significant influence is the weather. In Hong Kong, typhoons and heavy rains are 

common, especially in summer, leading to discrepancies when calculating diffuse proportions, 

transmissivity, and comparing sampled results. To mitigate the impact of these factors on the 

hourly solar distribution, data from morning, noon, and afternoon throughout the year were 

collected and analyzed. 

Table 5.8 The solar potential ratio of façade to roof in Area 3 under different hours. 

 
Rseg Rc Rsim Rmax-Rmin 

Morning 
3.95  3.54  4.06  0.51  

Noon 
1.93  1.68  1.96  0.27  

Afternoon 
5.28  4.63  5.37  0.74  
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Figure 5.9 The distribution of solar potential in Area 3 at different time periods throughout 

the day. The four columns of images represent views of the study area in different 

orientations. 

The experiment divided the daytime sunshine into three time periods: morning (before 11 

a.m.), noon (between 11 a.m. and 2 p.m.), and afternoon (after 2 p.m.). After minimizing the 

impact of weather, the solar potential distribution within the study area is primarily 

influenced by geometric factors such as building layout and spatial relationship with the sun. 

Similar to the results on the seasonal scale, the potential distribution in the study area shows a 

strong correlation with the solar elevation angle. As illustrated in Figure 5.9, taking Area 3 as 

an example, the elevation angle is the largest at noon, and the sunshine also reaches its peak. 

Consequently, the overall solar potential of the study area is increased, especially in the 

horizontal roof and ground areas. Figure5.9 reveals that in the morning and afternoon, the 

maximum solar potential on horizontal surfaces is comparable to that on façades. However, at 
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noon, there is a noticeable color difference between these surfaces (rooftops appear dark red, 

while façades are merely orange-red). This phenomenon is also observed in Table 5.8, where 

the Rsim value decreases from 4.06 in the morning to 1.96 at noon and rises back to 5.37 in the 

afternoon. This indicates that horizontal surfaces benefit more from the increased solar 

elevation. On the contrary, as the elevation angle decreases, the irradiance received by 

horizontal surfaces drops sharply. This means that the solar potential is more concentrated on 

the façades during morning and afternoon periods. This is further evidenced by the morning 

and afternoon Rmax-Rmin values, where 0.74 and 0.51 reflect that selecting different façade 

albedo strategies during these times will significantly impact the solar potential distribution. 

5.2.4 Discussion 

The experimental results provide insights into how albedo distribution strategies impact the 

solar potential within the selected study area of North Point, Hong Kong. The study revealed 

that variations in albedo across different urban surfaces could lead to significant changes in 

the overall solar potential, with observed effects ranging from 8.0% to 9.1%. Another 

observation of the study is that when multiple reflections effect within buildings are 

disregarded, the impact of albedo on solar potential increases markedly, ranging from 11.9% 

to 17.8%. This suggests that the internal reflections within an urban environment can mitigate 

some of the potential gains or losses caused by varying albedo levels. The amplification of 

the effect, when these reflections are ignored, emphasizes the importance of considering both 

direct and indirect solar radiation in urban energy models. This finding also highlights the 

need for more detailed and accurate modelling of solar potential estimation, which should 

account for complex interactions between surfaces, materials, and urban morphology. 

The study further delves into the differences observed across various morphological study 

areas, comparing regions with different building densities and uses. In areas with a high open 

space ratio, such as suburban isolated residential areas, the impact of façade materials on 

solar potential distribution is more pronounced. This can be attributed to the larger surface 
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areas of façades exposed to direct sunlight and the reduced shading effects from neighboring 

structures. In these environments, the choice of façade material and its albedo can 

significantly influence the overall solar energy that can be harnessed.  

In contrast, metropolitan downtown areas, characterized by mixed-use regions and 

commercial districts with diverse building styles and functions, exhibit a different pattern. In 

these areas, the influence of façade albedo on solar potential distribution is more complex due 

to the intricate interplay of shading, reflections, and varying building heights. The study 

found that in such densely built environments, the differences in façade albedo are more 

impactful compared to residential areas with more consistent architectural styles. This 

suggests that in mixed-use and commercial districts, careful consideration must be given to 

the selection of façade materials, as they can have a substantial effect on the distribution of 

solar potential across the area. 

The temporal analysis of solar potential distribution further extends the findings of the study. 

It was observed that during the first and fourth quarters of the year, horizontal surfaces such 

as rooftops and the ground receive weaker irradiation. This seasonal variation makes the 

differences in façade reflectance more influential on overall distribution changes. During 

these periods, when the elevation angle of the sun is lower in the sky, the angle of incidence 

of sunlight on façades becomes larger, thereby increasing the direct component of the 

incident irradiation and the impact of albedo variations. The study's focus on temporal 

dynamics could be valuable for the design of solar energy systems, as it suggests that albedo 

strategies may need to be adjusted seasonally to maximize solar potential. 

On shorter time scales, such as daily variations, the study noted that after mitigating 

incidental factors like weather conditions, the solar potential distribution in the morning and 

afternoon is more dependent on façade albedo values. This daily fluctuation can be linked to 

the changing angle of sunlight throughout the day, which alters the amount of solar radiation 

absorbed or reflected by different surfaces. In the morning and afternoon, when the sun's rays 
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strike façades at lower angles, the reflectivity of these surfaces becomes a more critical factor 

in determining solar potential. This finding underscores the importance of considering the 

diurnal cycle in the planning and implementation of urban solar energy strategies. 

Overall, the study highlights the significant role of albedo in shaping solar potential in urban 

environments. The findings underscore the importance of considering both spatial and 

temporal variations in albedo when designing and optimizing solar energy systems. By 

understanding the complex interactions between urban morphology, façade materials, and 

solar potential, we can develop more effective strategies to harness solar energy, contributing 

to more sustainable and energy-efficient cities. 
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Chapter 6 Conclusion and future work 

6.1 Conclusion 

This study proposes a comprehensive evaluation framework to quantitatively assess 

the impact of urban façade albedo on solar potential distribution. The framework 

incorporates several key components, including a deep learning network designed to 

efficiently acquire large-scale urban building façade information, a projection method 

for converting single, discontinuous 2D images into cohesive 3D models, three 

distinct albedo distribution strategies, and a methodology for quantitatively evaluating 

the influence of façade albedo on solar potential distribution. 

Acquiring detailed information on urban façade albedos has long been a significant 

challenge in the field of urban energy research. The process has traditionally been 

hindered by the vast workload involved, making manual data collection both 

time-consuming and costly. Complex urban environments, a wide variety of facade 

materials, and occlusions caused by billboards or trees, place high demands while 

trying to use algorithms to automatically identify façade materials. Thus, the 

simulation of reflected light continues to be one of the most challenging aspects of 

indirect solar radiation estimation. Conventional approaches, which often involve 

ignoring reflected solar radiation or applying a constant albedo value to represent an 

entire urban area, can lead to significant inaccuracies in solar potential simulations. 

This research seeks to address this gap by proposing a novel multi-scale contextual 

attention network (MSCA) that is specifically designed to efficiently identify façade 

materials at the city scale. The MSCA network is crafted to balance the need for high 

levels of detail, such as capturing the spectral characteristics of materials, with the 

requirement for contextual comprehension of larger objects, such as preserving the 

structural integrity of buildings within complex urban environments. 
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The research was conducted in the densely built metropolitan area of Hong Kong, 

which serves as an ideal testing ground for the proposed model due to its diverse 

architectural styles and challenging urban conditions. A street-level dataset was 

developed to evaluate the effectiveness of the proposed model. The experimental 

results demonstrate that the MSCA network is capable of accurately classifying 

façade materials and outperforming existing models in this domain. This finding is 

significant, as it addresses a critical gap in the collection of façade information, which 

has long been a bottleneck in urban albedo research. The ability to accurately classify 

façade materials enables the projection of this data onto 3D geographic information 

system (GIS) platforms, which can greatly enhance the precision of solar potential 

simulations by incorporating detailed and location-specific data. 

The significance of this study extends beyond the immediate task of image analysis 

and into the broader field of urban energy management. By providing a 

comprehensive evaluation framework that quantitatively analyzes and discusses how 

façade materials influence solar potential distribution, the research offers valuable 

insights into the relationship between urban morphology and solar capacity. 

Specifically, the incorporation of precise albedo values for urban envelopes, 

comprising rooftops, façades, and ground surfaces, into simulations allows for a more 

accurate assessment of solar potential. This nuanced approach not only improves the 

reliability of solar energy forecasts but also supports the development of more 

effective photovoltaic (PV) deployment strategies tailored to the unique 

characteristics of urban environments. 

One of the key contributions of this work lies in its ability to bridge the domain gaps 

that have plagued façade information collection. The reliable data obtained through 

the MSCA network provides a more nuanced understanding of urban albedos, which 

is particularly important in the context of solar energy simulations. Traditional 
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methods, which often neglect the complexities of reflected solar radiation or rely on 

constant albedo values, introduce significant errors in solar potential estimations. By 

contrast, the approach presented in this study, incorporating precise and 

context-specific albedo measurements, results in more accurate and reliable 

simulations of solar potential distribution. This advancement holds particular 

relevance for urban planners and energy policymakers, who require precise data to 

make informed decisions regarding the integration of renewable energy sources into 

the urban fabric. 

Moreover, this study is the first to quantitatively assess the impact of different façade 

albedos on solar potential distribution. The inclusion of precise albedo data in these 

simulations facilitates a more detailed analysis of how various urban forms and 

materials affect solar energy potential. This enhanced understanding of the complex 

interactions between surfaces, materials, and urban morphology is crucial for 

advancing the field of urban energy management. By elucidating the relationship 

between urban materials and solar capacity, the study provides a foundation for future 

research that seeks to optimize the design and placement of solar energy systems 

within the built environment. 

6.2 Limitations and recommendations for future research 

Despite the contributions of this work, the study acknowledges several limitations that 

must be addressed in future research. One such limitation is related to the high cost of 

data annotation, which led to the assumption that each building is composed of no 

more than two primary materials. While this assumption simplifies the data collection 

process, it may not accurately reflect the complexity of modern architectural designs, 

such as theatres, museums, and other buildings that feature a diverse array of 

materials and design elements. This simplification could lead to inaccuracies in the 
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classification process, particularly for buildings with hybrid façades that do not 

conform to the binary material assumption. 

Furthermore, the simplified classification of rooftop materials, based solely on 

satellite imagery color intensity, introduces uncertainties in albedo estimation 

compared to the detailed façade-level analysis. This approach overlooks material 

heterogeneity (e.g., variations in roofing tiles, solar panels, or weathering effects). 

Additionally, roof geometries (e.g., slopes, obstructions) not captured by street-view 

imagery may further bias reflectance calculations. Future work could integrate aerial 

LiDAR or multispectral data to refine rooftop material characterization and reduce 

reliance on assumptions. 

Additionally, the reliance on building-level annotations introduces a degree of 

ambiguity in the classification of hybrid façades. Hybrid façades, which incorporate 

multiple materials and design features, pose a challenge for the MSCA network, as 

the model may struggle to accurately categorize these complex surfaces. This 

ambiguity can lead to classification errors that reduce the overall accuracy of the 

model and limit its applicability in certain urban contexts. Addressing this limitation 

will require the development of more sophisticated annotation techniques and the 

incorporation of finer-grained classification methods that can accurately capture the 

diversity of materials present in contemporary urban architecture. 

Another limitation of the study is related to the complex reflective properties of 

materials. The MSCA network's reliance on visual methods for classification means 

that it does not fully account for the reflectivity of different façade materials. 

Reflectivity plays a crucial role in determining the solar potential of a surface, as 

highly reflective materials can reduce the amount of solar energy absorbed by a 

building. The study's failure to categorize materials strictly by their reflectivity could 

diminish the potential applicability of the model in solar potential estimation. Future 



Chapter 6 Conclusion and future work 

112 

 

research will need to focus on achieving a more fine-grained classification of 

materials based on their reflective properties to enhance the accuracy and usefulness 

of the model for solar energy simulations. 

Furthermore, due to computational limitations, the study only analysed four areas 

within Hong Kong's North Point district, which may limit the generalizability of the 

findings. The study concludes that while the proposed methods significantly advance 

the field, more extensive and precise research is needed to fully understand the 

complex relationship between urban morphology and solar capacity.  

To address these limitations, future research should aim to expand the scope of 

analysis to include a wider variety of urban areas, both within Hong Kong and in 

other cities with different architectural and environmental conditions. This expanded 

scope would provide a more comprehensive understanding of how urban morphology 

and material characteristics influence solar potential across diverse contexts. 

Additionally, further development of the MSCA network and related algorithms will 

be necessary to improve the accuracy and reliability of façade material classification. 

In conclusion, this study presents a robust and innovative framework for accurately 

simulating urban solar potential distribution by leveraging street view imagery to 

acquire detailed building façade information. Through a combination of deep learning 

techniques and projection methods, the research quantitatively assesses the impact of 

façade reflectance on solar potential, thereby enhancing our understanding of how 

urban materials influence solar capacity. Despite its limitations, the study makes 

significant contributions to the field of urban energy research, providing a strong 

foundation for future work aimed at optimizing photovoltaic deployment strategies 

and improving solar energy simulations. 
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