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Abstract

Hyperspectral images (HSIs) captured by hyperspectral sensors often suffer from

noise, blurring, and other degradations, which can significantly reduce their visual

quality and the accuracy of the subsequent tasks. Traditional HSI restoration meth-

ods typically process the spatial information of HSIs on a band-by-band basis, which

neglects the spectral information inherent. Also, those methods often use elemen-

twise sparsity measures to characterize sparse components, which fail to recognize

the linear structures within these components. This thesis aims to develop new ap-

proaches based on (nonlocal) low-rank tensor regularization and tensor group spar-

sity ℓ2,p norm (0 < p < 1), along with some spatial and spectral priors, to provide

a more comprehensive method that preserves the structure of HSIs. It includes two

optimization models and two algorithms for solving two important problems in HSI

processing.

Firstly, we present a class of orthogonal constrained minimization problems to

tackle HSI restoration problems, such as removing mixed noise like Gaussian noise,

stripes, and dead lines. The proposed class of models employs two types of regu-

larization terms. One is a tensor group sparsity regularization term for removing

structured noise. We use the tensor ℓ2,p norm, extended from the matrix ℓ2,p norm,

and provide a solution for the proximal operator of the tensor ℓ2,p norm. The other

term is a new sparsity-enhanced nonlocal low-rank tensor regularization for removing

Gaussian noise. This regularization term exploits the spatial nonlocal self-similarity
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and spectral correlation in HSIs to enhance restoration, ensuring that similar pat-

terns in distant regions are jointly considered for improved denoising. Specifically, we

propose a weighted tensor ℓ2,p norm to enhance sparsity in the core tensor, promoting

low-rankness in nonlocal similar matching blocks.

Secondly, we adopt a proximal block coordinate descent (P-BCD) algorithm to

solve the proposed nonconvex nonsmooth minimization with orthogonal constraints.

The solution to each subproblem in the P-BCD algorithm can be efficiently com-

puted. The first order optimality condition of the problem is defined by substa-

tionarity, symmetry, and feasibility. We prove that any accumulation point of the

generated sequence by the P-BCD algorithm is a first order stationary point.

Thirdly, we apply the proposed approach to HSI denoising and destriping, and

conduct numerical experiments to validate the superiority of our proposed approach.

We test it on simulated noisy HSIs generated from several datasets under various

mixed noise conditions, as well as on a real dataset. The results demonstrate that

our method outperforms others in metrics such as mean peak signal-to-noise ratio. In

terms of visual quality, our method effectively restores HSIs by preserving important

image details and removing noise, particularly highly structured noise like stripes

and dead lines.

Lastly, we combine the proposed model with a deep neural network to incorporate

an implicit proximal denoiser prior. Specifically, for detecting anomaly objections

in noisy HSIs, the tensor ℓ2,p norm in the original model is utilized to characterize

the anomalies, while the implicit proximal denoiser prior is employed to remove

Gaussian noise. The P-BCD method remains effective for solving the newly proposed

model, with certain steps updated using a proximal denoiser within a plug-and-

play (PnP) framework. We evaluate this PnP version of the P-BCD method (PnP-

PBCD) on anomaly detection in HSI contaminated with or without Gaussian noise.

The results demonstrate that the proposed method can effectively detect anomalous
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objects, whereas competing methods may mistakenly identify noise as anomalies or

incorrectly match the anomalous objects due to noise interference.

In summary, the orthogonal constrained minimization models with tensor group

sparsity regularization are well-suited for various image restoration problems. Ad-

ditionally, the P-BCD method and its PnP version are reliable with convergence

guarantees.
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Chapter 1

Introduction

Hyperspectral images (HSIs) are collected by hyperspectral sensors across the elec-

tromagnetic spectrum. For a three-dimensional (3-D) HSI, the first two dimensions

represent spatial information, and the third dimension represents the spectral infor-

mation of a scene. An illustration of an HSI is shown in Figure 1.1. HSIs are widely

used for various applications [64, 71, 65, 108] such as object detection [98], material

identification [10, 27], etc.

Figure 1.1: An illustrative figure of an HSI.

HSIs are often contaminated by various types of noise during acquisition, which

can severely degrade the quality and reliability of the extracted spectral informa-

tion. Common noise types include Gaussian noise, impulse noise, and stripe noise,

which may result from atmospheric interference, sensor limitations, or operational

conditions. Such mixed noise presents a challenge in retaining the spatial and spec-
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tral integrity of HSI data, necessitating advanced denoising techniques to effectively

recover the underlying true signal.

In addition to denoising, anomaly detection is another critical task in HSIs, partic-

ularly for identifying objects or materials that deviate from the typical background.

Anomalies might represent rare minerals in geological surveys, contaminants in agri-

cultural products, or specific targets in defense applications. Detecting these anoma-

lies is complicated by the high-dimensional nature of HSI data and the potential for

similar anomalies to be masked by noise. Effective anomaly detection thus requires

methods capable of isolating distinctive spectral signatures without being misled by

noise or common background features.

Both denoising and anomaly detection share overlapping challenges, as they aim

to preserve essential spectral-spatial structures while suppressing noise and distin-

guishing subtle anomalies. This duality necessitates robust algorithms that leverage

spatial and spectral redundancies in HSI data. The development of models that can

simultaneously address both noise and anomaly detection issues is key to advanc-

ing the field of hyperspectral imaging and maximizing its applicability in real-world

scenarios.

1.1 HSI Denoising and Destriping

HSI denoising and destriping have become an essential step for tasks in HSI pro-

cessing. Many methods have been proposed to remove Gaussian noise in HSIs.

Conventional 2-D methods [15, 21], processing HSIs band by band, do not fully

utilize the strong correlation between adjacent bands. 3-D methods such as block-

matching 4-D filtering (BM4D) [55], spectral-spatial adaptive hyperspectral total

variation (SSAHTV) model [99], and sparse representation methods [107, 92] incor-

porate both spatial and spectral information and outperform conventional methods.
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However, those methods may fail to remove non-Gaussian noise.

In real-world scenarios, HSIs are often contaminated by more than one type of

noise due to atmospheric effects and instrument noise. Various methods have been

proposed to remove the mixed noise, including low-rank matrix based methods, low-

rank tensor based methods, and deep learning based methods. Low-rank matrix

based methods [29, 102] reshape an HSI into a matrix and impose low-rankness

on the reshaped HSI. Zhang et al. [103] formulated the HSI denoising problem as

a low-rank matrix factorization problem and solved it by the “Go Decomposition”

algorithm; Zhang et al. [102] proposed a double low-rank matrix decomposition which

utilizes the ℓ1 norm for the impulse noise and the matrix nuclear norm for stripes, and

adopted augmented Lagrangian method (ALM) to solve the model; Yang et al. [97]

also used double low-rankness, but added spatial-spectral total variation (SSTV) to

the model and performed the decomposition on full band blocks (FBBs) rather than

the entire HSI.

Low-rank tensor based methods [47, 18, 61, 26, 108] view HSIs as tensors and

perform tensor low-rank decompositions while preserving the spatial-spectral corre-

lations. Wang et al. [83] used Tucker tensor decomposition and an anisotropic SSTV

regularization to characterize the piece-wise smooth structures of the HSI; Chen et

al. [14] proposed a low-rank tensor decomposition (LRTD) method, which utilized

the higher-order singular value decomposition (HOSVD) for low-rankness and the

ℓ2,1 norm for characterizing the stripes, and adopted ALM for solving the optimiza-

tion model; Cao et al. [9] proposed a subspace-based nonlocal low-rank and sparse

factorization (SNLRSF) method for removing mixed noise in HSI, which conducted

nonlocal low-rank factorization via successive singular value decomposition (SVD);

Xiong et al. [93] proposed the LRTFL0 method using low-rank block term decompo-

sition and spectral-spatial ℓ0 gradient regularization to achieve gradient smoothness.

Recently, some deep neural networks [7, 100, 86] have been proposed to denoise
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HSIs. Quasi-recurrent neural networks (QRNN) [7] combine recurrent neural net-

works (RNN) with convolutional neural networks (CNN); the 3-D version of QRNN

(QRNN3D) [86] can effectively embed the correlation of HSIs; CNN can also be used

as a denoiser in a plug-and-play (PnP) fashion for HSI denoising [74].

1.2 Hyperspectral Anomaly Detection

Hyperspectral anomaly detection aims to identify pixels or regions in HSIs that sig-

nificantly differ from the surrounding background without prior knowledge of the

target spectral information. These pixels, often referred to as anomalies, could rep-

resent objects or materials such as aircraft, ships, vehicles, or other structures that

deviate from the natural background. Detecting such anomalies is crucial due to

their significance in various applications. For example, in environmental monitor-

ing, anomalies may indicate areas affected by pollution or disease in vegetation [63];

in the food industry, anomalies may be detected for quality control by identifying

physical defects and inconsistencies in products [88]. By leveraging the rich spectral

information provided by HSIs, the accuracy and reliability of anomaly detection can

be enhanced, thereby improving decision-making processes in fields such as security,

agriculture, and resource management.

In hyperspectral anomaly detection, the Reed-Xiaoli (RX) method, introduced

by Reed and Xiaoli in 1990 [67], is a foundational method known for its simplic-

ity and widespread adoption. The RX method assumes that background spectral

features follow a multivariate Gaussian distribution and identifies anomalies by cal-

culating the Mahalanobis distance from the background. Over time, RX has in-

spired several variants to address its limitations in real-world applications. For ex-

ample, the local RX method [58] enhances localized anomaly detection using sliding

windows for background estimation; the kernel RX method [45] maps data into
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high-dimensional feature spaces to better adapt to nonlinear distributions; and the

weighted RX method [30] introduces pixel-level weighting for improving robustness

against noise. While RX and its variants are computationally efficient and serve as

benchmarks in the field, they often rely on Gaussian assumptions and are sensitive

to noise and outliers, limiting their performance in complex scenes.

In contrast to statistical approaches like RX, representation-based methods focus

on explicitly modeling the structure of HSIs without assuming a predefined distri-

bution. Li et al. [48] proposed the background joint sparse representation detection

(BJSRD) method, which reconstructs each background pixel using a sparse set of

coefficients from a dictionary. Xu et al. [94] introduced the low-rank and sparse

representation (LRASR) method, which models the background as a low-rank com-

ponent while representing anomalies as sparse components. Feng et al. [24] de-

veloped the local spatial constraint and total variation (LSC-TV) method, which

combines low-rank modeling with superpixel segmentation and total variation (TV)

regularization to effectively separate anomalies in complex scenes. To preserve the

intrinsic 3D structure of HSIs, the low-rank component is characterized using tenor

low-rank representation. For example, the tensor low-rank and sparse representa-

tion (TLRSR) method [81] utilizes the tensor singular value decomposition (t-SVD),

while the method proposed in [23] employs the tensor ring decomposition.

Deep learning methods have significantly improved hyperspectral anomaly de-

tection by extracting hierarchical features from high-dimensional data using deep

neural networks. Among these, the Auto-AD method [82], a fully convolutional

autoencoder, autonomously reconstructs the background and highlights anomalies

through reconstruction errors, eliminating the need for manual parameter tuning or

preprocessing. Other neural network models, such as stacked denoising autoencoders

(SDAs) [106] and spectral-constrained adversarial autoencoders (SC-AAE) [91], use

manifold learning and adversarial strategies to enhance anomaly detection capabil-
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ities. These approaches are highly effective in nonlinear and complex environments

but often require large datasets and significant computational resources, which can

pose challenges for real-time applications.

1.3 Preliminaries

1.3.1 Tucker Decomposition

We first present some necessary notations for tensors and preliminaries on tensor

operations, then we introduce the Tucker decomposition.

For a third order tensor X ∈ RI1×I2×I3 , we let xi1i2i3 denote its (i1, i3, i3)-th entry,

let xi1...ik−1:ik+1...i3 denote its (i1, . . . , ik−1, ik+1, . . . , i3)-th mode-k fiber and let X::i3 de-

note its i3-th frontal slice. The mode-k unfolding of a third order tensor X is denoted

as X(k) = unfold(k)(X ), which is the process to linearize all indexes except index k.

The dimensions of X(k) are Ik ×
∏3

j=1,j ̸=k Ij. An element xi1i2i3 of X corresponds to

the position of (ik, j) in matrix X(k), where j = 1 +
∑3

l=1,l ̸=k(il − 1)
∏l−1

m=1,m ̸=k Im.

Note that the mode-k unfolding is also called the mode-k matricization. And the in-

verse process of the mode-k unfolding of a tensor X is denoted by X = fold(k)(X(k)).

The mode-k product of X and a matrix Y ∈ RJ×Ik , denoted by X ×k Y , is a new

tensor Z ∈ RI1×···×Ik−1×J×Ik+1···×I3 where

zi1...ik−1jik+1...i3 =

Ik∑
ik=1

xi1...ik−1ikik+1...i3yjik .

Tucker decomposition was introduced by Ledyard R. Tucker [77] in 1966. It

generalizes SVD to tensors by decomposing a tensor into a smaller core tensor and

a set of factor matrices. The Tucker decomposition of a third order tensor X can be

written as

X = G ×1 U1 ×2 U2 ×3 U3,
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where G ∈ RR1×R2×R3 is the core tensor, Uk ∈ RIk×Rk are the factor matrices, and

×k denotes the mode-k product. As Tucker decomposition is not unique, several

variants have been proposed. For example, nonnegative Tucker decomposition [43]

imposes the nonnegativity on the core tensor and the factor matrices and HOSVD [17]

imposes the orthogonality on the factor matrices.

1.3.2 Block Coordinate Descent Algorithms

We first provide some preliminaries on optimization including the definitions for

(limiting) subdifferentials and proximal operators, and then review some existing

works on block coordinate descent (BCD) algorithms.

First, let f : Rd → (−∞,+∞] be a proper and lower semicontinuous function

with a finite lower bound. The (limiting) subdifferential of f at x ∈ dom f := {x ∈

Rd : f(x) <∞}, denoted by ∂f(x), is defined as

∂f(x) := {u ∈ Rd :∃xk → x, f(xk)→ f(x) and uk → u with uk ∈ ∂̂f(xk) as k →∞},

where ∂̂f(x) denotes the Fréchet subdifferential of f at x ∈ dom f , which is the set

of all u ∈ Rd satisfying

lim inf
y ̸=x,y→x

f(y)− f(x)− ⟨u, y − x⟩
∥y − x∥

≥ 0. (1.1)

One can also observe that {u ∈ Rd : ∃xk → x, f(xk) → f(x) and uk → u with uk ∈

∂f(xk) as k → ∞} ⊆ ∂f(x). The function f is µ-strongly convex if f − µ
2
∥ · ∥2

is convex with µ ≥ 0; f is ρ-weakly convex if f + ρ
2
∥ · ∥2 is convex with ρ ≥ 0.

The proximal operator of f with parameter λ > 0 evaluated at x ∈ Rd, denoted as

proxλf (x), is defined as

proxλf (x) := argmin
u∈Rd

[
f(u) +

1

2λ
∥u− x∥2

]
.
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Note that proxλf is a set-valued map, when the minimizer is not unique, for example,

for some nonconvex functions. And proxλf reduces to a single-valued map, when the

minimizer is unique, for example, for convex functions.

Second, we review some existing BCD algorithms for solving the following mini-

mization problem with an objective function f(x1, x2, . . . , xm) that can be expressed

as g(x1, x2, . . . , xm) plus a sum of m block functions:

min
x1,x2,...,xm

f(x1, x2, . . . , xm) := g(x1, x2, . . . , xm) +
m∑
i=1

hi(xi),

where g : Rd1 × Rd2 × · · · × Rdm → (−∞,+∞] and hi : Rdi → (−∞,+∞], i =

1, 2, . . . ,m.

The origins of BCD methods date back to the 1950s, primarily in the context

of solving decomposition problems and dynamic programming. Early works focused

on convex functions, assuming strong convexity or pseudoconvexity to ensure global

convergence. Hildreth [32] and Warga [85] formalized the idea of cyclic optimization

over block variables, laying the foundation for BCD methods. Around 2000, the work

by Tseng [76] marked a significant advancement by extending BCD to nonconvex

and nonsmooth optimization problems under conditions such as pseudoconvexity or

unique minimizers in block updates. For example, the BCD algorithm operates by

iteratively optimizing the objective function with respect to one block of variables

while fixing the others. At each iteration, a variable block i is selected, typically

using cyclic or randomized strategies. The update rule of the BCD algorithm with

a cyclic strategy is as follows

xk+1
i ∈ argmin

xi

f(xk+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
m).

Recently, a variant of the BCD algorithm called the block prox-linear (BPL)

method was proposed in [95]. Then function g is assumed to be continuously differ-
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entiable and its gradient with respect to the block xi is represented as ∇xig, and the

update rule is given via the proximal operator as follows

xk+1
i ∈ proxαhi

(
xki − α∇xig(xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , x

k
m)
)
.

The convergence of the BPL method is guaranteed under certain conditions. For

example, the subsequence convergence can be achieved by assuming the block-wise

Lipschitz continuity of the gradient of g, well-defined proximal operators for hi, and

boundedness of the level sets of f . By further imposing the Kurdyka- Lojasiewicz

(KL) property on the objective function, the whole sequence convergence can also

be obtained.

1.3.3 Optimization over the Stiefel Manifold

We first provide some preliminaries on the Stiefel Manifold, and then review some

existing algorithms for solving optimization problems over the Stiefel Manifold.

First, the Stiefel manifold is defined as Sm,n := {X ∈ Rm×n : X⊤X = In} with

m ≥ n, and its tangent space at a point X ∈ Rm×n is given by TXSm,n := {Y ∈

Rm×n : Y ⊤X + X⊤Y = 0}. A Riemannian metric on the Stiefel manifold can be

defined using the metric induced from the Euclidean inner product.

Consider the following optimization problem constrained on the Stiefel manifold

min
X∈Rm×n

f(X) s.t. X⊤X = In,

where f : Rm×n → R with m ≥ n. The Riemannian gradient of a smooth function

f at X is given by grad f(X) := ProjTXSm,n(∇f(X)), where ProjTXSm,n(Y ) := (Im −

XX⊤)Y + 1
2
X(X⊤Y − Y ⊤X) projects a matrix Y onto the tangent space TXSm,n.

The optimality conditions for the problem can be summarized as
(Im −XX⊤)∇f(X) = 0,

X⊤∇f(X) = ∇f(X)⊤X,
X⊤X = In.
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Second, we review some algorithms for optimization over the Stiefel manifold.

Optimization problems over the Stiefel manifold Sm,n, the set of matrices with or-

thonormal columns, can be viewed as eigenvalue problems and matrix factorization

problems. For example, computational techniques, such as QR decomposition, played

a critical role in ensuring orthogonality [68], forming the foundation of constrained

optimization algorithms. However, the nonconvexity of the feasible region poses

significant challenges in finding global minimizers. Ensuring orthogonality during

iterations, particularly for large-scale problems, further introduces computational

overhead. Traditional methods like explicit reorthogonalization via QR decomposi-

tion are often computationally expensive and struggle to scale efficiently.

To overcome these challenges, innovative approaches have been developed, includ-

ing retraction-based methods [68] and projection-based algorithms [60]. Retraction-

based methods map tangent vectors back to the manifold using approximations such

as Cayley transformations or QR decompositions, while projection-based methods

solve subproblems in the tangent space before projecting back to the manifold. Re-

cent advancements, such as exact penalty function methods, simplify the problem

by reformulating it to preserve the global minimizers of the original problem.

Algorithmic frameworks like gradient projection and columnwise block coordinate

descent have demonstrated improved computational efficiency while maintaining fea-

sibility. Parallelization techniques, such as penalty-based methods like PLAM [75]

and PenCF [90], mitigate the need for costly reorthogonalization by leveraging dis-

tributed computing, making them particularly effective for large-scale problems, such

as those encountered in electronic structure calculations.

Various optimization methods designed for matrix manifold problems have also

been applied to this problem, including gradient-based methods [56, 59, 2], conjugate

gradient methods [20, 1], trust region methods [96], and (Quasi-)Newton methods [20,

37]. These methods aim to find a feasible point with a lower function value than the
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current iterate, addressing challenges in global convergence [46, 87].

1.4 Summary of Contributions of the Thesis

In this thesis, we develop new approaches based on (nonlocal) low-rank tensor regu-

larization and tensor group sparsity ℓ2,p norm (0 < p < 1), along with some spatial

and spectral priors, to provide a more comprehensive method that preserves the

structure of HSIs. It includes two optimization models and two iterative algorithms

with convergence guarantees for solving two important problems in hyperspectral

image processing. Our main contributions are summarized as follows.

• We propose a class of orthogonal constrained minimization problems to tackle

HSI restoration problems, such as removing mixed noise like Gaussian noise,

stripes, and dead lines. The proposed class of models employs two types of

regularization terms, which are a new sparsity-enhanced low-rank regulariza-

tion and a generalized tensor group sparsity measure. The sparsity-enhanced

low-rank regularization exploits the spatial nonlocal self-similarity and spec-

tral correlation in HSIs to enhance restoration, ensuring that similar patterns

in distant regions are jointly considered for improved denoising. The general-

ized tensor group sparsity measure, with a specific example being the tensor

ℓ2,p norm with p ∈ (0, 1), measures the group sparsity in HSIs for characterizing

the linear patterns in HSIs.

• We propose a proximal block coordinate descent (P-BCD) algorithm for solving

the models. Each subproblem of the P-BCD algorithm has an exact solution,

which either has a closed-form solution or is easy to compute. To show the

convergence of the P-BCD algorithm, we define the stationary point of the

proposed model using three equalities of substationarity, symmetry, and feasi-

bility for orthogonal constraints. We prove that any accumulation point of the
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sequence generated by the proposed algorithm is a stationary point.

• We show the proposed nonlocal low-rank tensor regularized ℓ2,p (NLTL2p) ap-

proach for HSI denoising and destriping can outperform other state-of-the-art

methods even a deep learning based method on the numerical experiments

tested on both simulated and real HSI datasets, in metrics such as mean peak

signal-to-noise ratio. In terms of visual quality, our method effectively restores

HSIs by preserving important image details and removing noise, particularly

highly structured noise like stripes and dead lines.

• We combine the proposed model with a deep neural network to incorporate

an implicit proximal denoiser prior for hyperspectral anomaly detection and

propose a PnP version of the P-BCD method (PnP-PBCD), in which certain

steps are updated using a proximal denoiser. The tensor ℓ2,p norm in the

model is utilized to characterize the anomalies, while the implicit proximal de-

noiser prior is employed to remove Gaussian noise. The results, tested on HSIs

contaminated with or without Gaussian noise, demonstrate that the proposed

method can effectively detect anomalous objects, whereas competing methods

may mistakenly identify noise as anomalies or incorrectly match the anomalous

objects due to noise interference.

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 1 introduces the background of HSI

restoration and anomaly detection, and presents some preliminaries used in this the-

sis. Chapter 2 develops a class of orthogonal constrained minimization models with

tensor group sparsity regularization. Chapter 3 presents the P-BCD algorithm for

solving the resulting nonconvex and nonsmooth optimization problem, along with a

detailed convergence analysis. In Chapter 4, the proposed model is applied to HSI de-
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noising and destriping, demonstrating its effectiveness through extensive experiments

on simulated and real datasets. Chapter 5 extends the methodology to anomaly de-

tection in noisy HSIs, integrating the low-rank tensor regularization with a proximal

denoiser within a PnP framework to enhance anomaly detection performance under

various noise conditions. Finally, Chapter 6 concludes the thesis by summarizing the

key contributions and discussing potential future research directions.
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Chapter 2

Orthogonal Constrained

Minimization with Tensor Group

Sparsity Regularization

2.1 Problem Statement for HSI Restoration

In HSI restoration, an observed HSI D ∈ RI1×I2×I3 can be decomposed into three

components: a low-rank tensor L, a sparse tensor S, and a noise tensor N , repre-

sented as follows [9]

D = L+ S +N ,

in which I1× I2 are the spatial dimensions (height and width), and I3 is the number

of spectral bands.

In the context of HSI denoising and destriping, L represents the clean, low-rank

HSI, encapsulating the primary spectral-spatial structure of the scene. The sparse

component S corresponds to structured noise, such as stripe noise or dead lines, which

is typically sparse and spatially localized. Meanwhile, N represents Gaussian noise

affecting all spectral bands. The objective is to recover an accurate L, enhancing

the clarity and fidelity of the spectral information. To evaluate the effectiveness of

denoising algorithms, metrics such as the peak signal-to-noise ratio (PSNR) [34] are

employed to measure the quality of L.
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For anomaly detection, L denotes the low-rank background, representing consis-

tent spectral features across the scene. The sparse component S represents anomalies

with distinctive spectral features that deviate from the background, such as rare ma-

terials or targets, which are spatially sparse. And N accounts for Gaussian noise

that affects the quality of detection. The primary focus of anomaly detection is the

accuracy of S, with evaluation metrics such as the area under the curve (AUC) [36]

used to assess detection performance, emphasizing the identification of anomalies

over background quality.

By exploiting the low-rank nature of hyperspectral backgrounds and the sparsity

of noise or anomalies, a unified model can be developed for addressing fundamental

tasks in HSI processing such as mixed noise removal and anomaly detection.

2.2 Model Formulation

To tackle the problems in HSI restoration such as mixed noise removal, we propose

an optimization model utilizing low-rank tensor regularization and a group sparsity

measure. The proposed model is formulated as follows

min
S,[X1],[X2],
[X3],[G],L

δ

2
∥R(L+ S − D)∥2F + γ∥

√
WR ⊙ S∥2,ψ + ∥[G]∥1,w

+
1

2
∥R(L)− [G]×1 [X1]×2 [X2]×3 [X3]∥2F

s.t. [Xi]
⊤[Xi] = [Ini ], i = 1, 2, 3,

(2.1)

where

• S,L,D ∈ RI1×I2×I3 , [Xi] ∈ Rmi×ni×N , i = 1, 2, 3, and [G] ∈ Rn1×n2×n3×N ;

• R : RI1×I2×I3 → Rm1×m2×m3×N denotes the similar blocks extraction operator,

and R⊤ : Rm1×m2×m3×N → RI1×I2×I3 denotes the transpose of R satisfying

⟨R(L), [Y ]⟩ = ⟨L,R⊤([Y ])⟩ for any L ∈ RI1×I2×I3 , [Y ] ∈ Rm1×m2×m3×N ;
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• WR ∈ RI1×I2×I3
++ is a weight tenor such that the component-wise multiplication

with WR being an equivalent operation of R⊤R, that is, WR ⊙ Id = R⊤R, ⊙

denotes the component-wise multiplication, Id denotes the identity mapping

on RI1×I2×I3 , and
√
WR denotes the component-wise square root of WR, that

is, the (i1, i2, i3)-th entry of
√
WR is equal to

√
(WR)i1i2i3 ;

• ∥S∥2,ψ denotes the generalized tensor group sparsity measure of a third order

tensor S defined by

∥S∥2,ψ =

I2∑
i2=1

I3∑
i3=1

ψ (∥s:i2i3∥2) (2.2)

with ψ : R→ [0,+∞) being a continuous sparsity-promoting function [69] and

∥s:i2i3∥2 =
(∑I1

i1=1 s
2
i1i2i3

) 1
2
;

• [G] ×1 [X1] ×2 [X2] ×3 [X3] denotes an independent 3-D HOSVD with [G] ∈

Rn1×n2×n3×N , and [Xi] ∈ Rmi×ni×N , i = 1, 2, 3, such that [Xi] is independently

orthogonal, i.e., [Xi]
⊤[Xi] = [Ini ], with Ini representing the identity matrix of

size ni × ni;

• ∥[G]∥1,w denotes the weighted tensor (component-wise) ℓ1 norm for a fourth

order tensor [G] defined by

∥[G]∥1,w =
N∑
j=1

wj∥[G](j)∥1 (2.3)

with a weight vector w ∈ N+.

The resulting model is a nonconvex nonsmooth minimization problem with orthogo-

nal constraints. In particular, the first term of the model (2.1) is a data fidelity term

to remove Gaussian noise, the second term is a group sparsity measure to remove
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sparse noise with linear structures, and the last two terms are the sparsity-enhanced

nonlocal low-rank tensor regularization terms.

In the following subsections, we will provide more details on the generalized

tensor group sparsity regularization term and the sparsity-enhanced nonlocal low-

rank tensor regularization used in model (2.1).

2.3 Generalized Tensor Group Sparsity Regular-

ization

As shown in (2.2), the generalized group sparsity measure groups the sparse com-

ponent S along a specific direction, for example, mode-1, measures the magni-

tude of s:i2i3 using the ℓ2 norm, and then characterizes the group sparsity using

a sparsity-promoting function [69] for ψ. We give some examples of continuous

sparsity-promoting functions for ψ:

(i) ℓ1 norm: ψ(t) = |t|;

(ii) ℓp norm: ψ(t) = |t|p, p ∈ (0, 1);

(iii) Relaxed ℓp norm: ψ(t) = (|t|+ ε)p − εp, p ∈ (0, 1), ε > 0;

(iv) Minimax concave penalty (MCP) [101]: for θ > λ,

ψλ,θ(t) =

{
λ|t| − t2

2θ
, |t| ≤ θλ,

θλ2

2
, otherwise;

(v) Smoothly clipped absolute deviation (SCAD) [22]: for λ > 0 and θ > 2,

ψλ,θ(t) =


λ|t|, |t| ≤ λ,
−t2+2θλ|t|−λ2

2(θ−1)
, λ < |t| ≤ θλ,

(θ+1)λ2

2
, otherwise.
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Note that (i) is convex, (iii) is pεp−1-weakly convex, (iv) is 1
θ
-weakly convex, and (v)

is 1
θ−1

-weakly convex, according to [5].

Since ∥ · ∥2,ψ is separable, the proximal operator of µ∥ · ∥2,ψ at S̃ as follows

S ∈ proxµ∥·∥2,ψ(S̃)

can be computed via the proximal operator of µψ ◦ ∥ · ∥2 at the (i2, i3)-th mode-1

fiber s̃:i2i3 , i.e.,

s:i2i3 ∈ proxµψ◦∥·∥2(s̃:i2i3),

where s:i2i3 is the (i2, i3)-th mode-1 fiber of S. According to Theorem 4.1 in [98], we

have

proxµψ◦∥·∥2(s̃) =

{
proxµψ(∥s̃∥2) s̃

∥s̃∥2 , ∥s̃∥2 ̸= 0,

0, ∥s̃∥2 = 0.

Depending on the choice of ψ, the proximal operator of proxµψ◦∥·∥ is computed dif-

ferently.

2.3.1 Tenosr ℓ2,p Norm

To measure the linear structural sparsity of the sparse noise tensor S, we extend the

matrix ℓ2,p norm for group sparsity to its tensor form. As the stripes and dead lines

often align the first dimension, we define the tensor ℓ2,p (0 < p < 1) norm of a third

order tensor S as follows

∥S∥2,p =

(
I2∑
i2=1

I3∑
i3=1

∥s:i2i3∥
p
2

) 1
p

=

 I3∑
i3=1

I2∑
i2=1

(
I1∑
i1=1

s2i1i2i3

) p
2


1
p

. (2.4)

The tensor ℓ2,p norm is exactly equal to the matrix ℓ2,p norm of the unfolding ma-

trix of S along the first dimension, that is, ∥S∥2,p = ∥S(1)∥2,p. The matrix ℓ2,p

norm is a nonconvex and nonsmooth function. And it has been applied to image
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processing [50], machine learning [54, 19], feature selection [49, 79], multi-view clas-

sification [84], etc.

The generalized tensor group sparsity measure given in (2.2) reduces to ∥S∥p2,p, the

tensor ℓ2,p norm with a power of p, if we choose ψ as the ℓp norm with p ∈ (0, 1), i.e.,

ψ(t) = |t|p, p ∈ (0, 1). In the following, we summarize some results for minimizing

the tensor group sparsity measure ∥S∥p2,p as follows

min
S
µ∥S∥p2,p +

1

2
∥S − S̃∥2F , (2.5)

where S̃ ∈ RI1×I2×I3 is a given tensor and parameter µ > 0. Since ∥ · ∥p2,p and ∥ · ∥2F
are both group-separable, solving problem (2.5) for S is equivalent to solving the

following subproblem for each (i2, i3)-th vector of S along the first dimension

min
s
µ∥s∥p2 +

1

2
∥s− s̃∥22, (2.6)

where s ∈ RI1 and s̃ ∈ RI1 , for simplicity, represent s:i2i3 and s̃:i2i3 , respectively, and

∥s∥p2 = (s21 +s22 + · · ·+s2I1)
p
2 . It follows from the triangle inequality that the objective

function of (2.6) satisfies the following inequality for any s ∈ RI1

µ∥s∥p2 +
1

2
∥s− s̃∥22 ≥ µ∥s∥p2 +

1

2
(∥s∥2 − ∥s̃∥2)2. (2.7)

And the equality holds if and only if s = ts̃ for some t ≥ 0 or s̃ = 0. Observe that

the right-hand side of the inequality is only related to ∥s∥2 and ∥s̃∥2. If s̃ = 0, the

solution of problem (2.6) is s = 0. If s̃ ̸= 0, we can view s as s = t∥s̃∥2v with t ≥ 0

being a scalar and v ∈ RI1 being a unit vector. When we restrict the minimization

problem (2.6) by ∥s∥2 = t∥s̃∥2 with a fixed t, according to (2.7), the solution of the

restricted problem of (2.6) is obtained only when v = s̃
∥s̃∥2 . Hence, if s̃ ̸= 0, the

solution of (2.6) is s = ts̃, where t is a minimizer of the following problem

min
t∈[0,∞)

νtp +
1

2
(t− 1)2, (2.8)
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with ν = µ∥s̃∥p−2
2 . That is, it only requires solving a one-dimensional problem (2.8)

for computing the solutions of problem (2.6).

Next, we show a lemma and a solver for computing solutions of problem (2.6).

Let g(t) = ν|t|p + 1
2
(t − 1)2. Note that g(t) > g(|t|) for ∀t < 0 and g(t) > g(1)

for ∀t > 1. Then problem (2.8) can be relaxed to an unconstrained problem with

g being the objective function, which can be solved using Theorem 1 in [57]. Also,

problem (2.8) can be reduced to a box constrained problem with constraint t ∈ [0, 1],

which can be solved using Lemma 4.1 in [51]. We summarize the results for (2.8) in

the following lemma.

Lemma 2.1. Let p ∈ (0, 1) and ν > 0. Let

ν0 :=
(2(1− p))1−p

(2− p)2−p
and τ(ν) := (2ν(1− p))

1
2−p .

Then the set of optimal solutions of problem (2.8), denoted as Ω∗(ν), is given by

Ω∗(ν) =


{0}, if ν > ν0,

{0, τ(ν0)}, if ν = ν0,

{t∗}, if 0 < ν < ν0,

where t∗ ∈ (τ(ν), 1) is the unique solution of the equation

νptp−1 + t− 1 = 0 (2.9)

with t ∈ (τ(ν),∞).

Proof. Let g : [0,∞) → R be defined as the objective function of problem (2.8).

When t = 0, g(0) = 1
2
. When t > 0, we define u : (0,∞)→ R as u(t) = νtp−1 + t

2
− 1

and then we have

g(t) = tu(t) +
1

2
. (2.10)
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We compute the first and second order derivatives of u(t) as follows

u′(t) = ν(p− 1)tp−2 +
1

2

u′′(t) = ν(p− 1)(p− 2)tp−3.

For 0 < p < 1, we have u′(τ(ν)) = 0 and u′′(t) > 0. Then by the second derivative

test, u(t) obtains a global minimum at t = τ(ν) and the minimum value is

u(τ(ν)) = ν(2ν(1− p))
p−1
2−p +

1

2
(2ν(1− p))

1
2−p − 1

= ν
1

2−p (2(1− p))
p−1
2−p (2− p)− 1

=

(
ν

ν0

) 1
2−p

− 1.

(i) 0 ∈ Ω∗(ν) if and only if g(t) − g(0) = tu(t) ≥ 0, ∀ t ∈ (0,∞), if and only if

u(t) ≥ 0, ∀ t ∈ (0,∞), if and only if ν ≥ ν0. In fact, g(t)− g(0) > 0, for ∀t ∈ (0,∞),

if and only if ν > ν0. Hence, Ω∗(ν) = {0} if ν > ν0.

(ii) t∗ ∈ Ω∗(ν) ̸= ∅ with t∗ ∈ (0,∞) if and only if t∗ is a solution of (2.9),

according to Fermat’s rule, i.e., g′(t∗) = 0. We compute the first and second order

derivatives of g(t) on (0,∞) as follows

g′(t) = νptp−1 + t− 1

g′′(t) = νp(p− 1)tp−2 + 1.

Let t0 = (νp(1 − p))
1

2−p . It can be verified that g′′(t0) = 0, g′′(t) < 0 on (0, t0) and

g′′(t) > 0 on (t0,∞). Then g′(t) is strictly decreasing on (0, t0) and strictly increasing

on (t0,∞). Since τ(ν) > t0, we have g′(t) is strictly increasing on (τ(ν),∞). Also,

it follows from (2.10) that g′(τ(ν)) = u(τ(ν)) + tu′(τ(ν)) = ( ν
ν0

)
1

2−p − 1. And we

have g′(1) = νp > 0. Hence, t∗ ∈ Ω∗(ν), where t∗ ∈ (τ(ν), 1) is the unique solution

of (2.9), if and only if g′(τ(ν)) ≤ 0, i.e., ν ≤ ν0. In particular, if ν < ν0, we have
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g′(τ(ν)) < 0 and then Ω∗(ν) = {t∗} where t∗ ∈ (τ(ν), 1) is the unique solution of

(2.9).

(iii) If ν = ν0, by (i), we have 0 ∈ Ω∗(ν0) and, by (ii), we have t∗ = τ(ν0) ∈ Ω∗(ν0),

where t∗ is the unique solution of (2.9). Hence, Ω∗(ν0) = {0, τ(ν0)}.

According to Lemma 2.1, when ν = ν0, there are two minimizers for problem (2.8).

For simplicity, we will choose 0 in this case. When ν ∈ (0, ν0), the minimizer of

problem (2.8) is unique and can obtained by solving (2.9). If p is chosen as, for

example, p = 1/2, (2.9) has a closed-form root. Otherwise, we estimate the unique

root t∗ by Newton’s method with an initial value of t0 = (τ(ν) + 1)/2. Altogether,

we summarize a proximal operator of the tensor ℓ2,p norm in the following theorem.

Theorem 2.1. Let p ∈ (0, 1) and µ > 0. Define the operator Γµ : R→ R by

Γµ(β) :=

{
0, if β ≤ β0(2−p)

2(1−p) ,

t∗, otherwise,

where β0 = (2µ(1− p))
1

2−p , and t∗ ∈ [β0β, 1) is the unique solution of

µβp−2ptp−1 + t− 1 = 0, t ∈ [β0β,∞) .

Then a solution of the proximal operator of the tensor ℓ2,p norm at S̃ ∈ RI1×I2×I3

can be computed by

Γµ(∥s̃:i2i3∥2)s̃:i2i3 ∈ proxµ∥·∥p2(s̃:i2i3) =
(

proxµ∥·∥p2,p(S̃)
)
:i2i3

,

for i2 = 1, 2, . . . , I2, i3 = 1, 2, . . . , I3.

2.4 Nonlocal Low-rank Tensor Regularization

Nonlocal low-rank tensor regularization is a technique used in image processing to

enhance image restoration by exploiting the inherent structures and redundancies
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present in the images. For HSIs, it follows from the spectral correlation and the

spatial nonlocal self-similarity that, for an image block, we can find enough nonlocal

similar blocks across the image or within a local window [8]. Stacking and reforming

similar tensors into a higher-order tensor via the similar blocks extraction operator R,

a clean HSI can be approximated by nonlocal low-rank tensors [55, 52]. In particular,

we propose a nonlocal low-rank tensor regularization using the independent 3-D

HOSVD with sparsity enhancements on the independent core tensors.

2.4.1 Independent 3-D HOSVD

Independent 3-D HOSVD is a tensor decomposition method that extends the concept

of matrix SVD to higher dimensions.

We first introduce the definition of a 3-D HOSVD and then define an independent

3-D HOSVD using the notation of [ · ]. For a third order tensor Y ∈ Rm1×m2×m3 , the

(truncated) 3-D HOSVD of Y is to approximate Y in the following form

Y ≈ G ×1 X1 ×2 X2 ×3 X3, (2.11)

where G ∈ Rn1×n2×n3 is the core tensor, and Xi ∈ Rmi×ni is the i-th factor matrix

such that X⊤
i Xi = Ini . Note that mi ≥ ni and Xi belongs to a Stiefel manifold, that

is, Xi ∈ Smi,ni . By imposing orthogonality on the factor matrices, the decomposition

in (2.11) can inherit many nice properties from the matrix SVD. For example, the

core can have the all-orthogonality and the ordering property [11].

When a fourth order tensor has little correlation across the last mode, we view the

fourth order tensor as a stack of independent third order tensors. Using the notation

of [ · ], we denote such a fourth order tensor as [Y ] ∈ Rm1×m2×m3×N and its j-th third

order tensor as [Y ](j) ∈ Rm1×m2×m3 , j = 1, 2, . . . , N . Also, a stack of independent

matrices is denoted as [X] ∈ Rm×n×N . And we call [X] is independently orthogonal if

[X]⊤[X] = [In], meaning ([X](j))⊤[X](j) = In, or equivalently [X] ∈ [Sm,n], meaning
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[X](j) ∈ Sm,n. Then we define an independent 3-D HOSVD of [Y ] as

[Y ] ≈ [G]×1 [X1]×2 [X2]×3 [X3],

where [G] ∈ Rn1×n2×n3×N , [Xi] ∈ Rmi×ni×N , and [Y ](j) ≈ [G](j)×1 [X1]
(j)×2 [X2]

(j)×3

[X3]
(j) with ([Xi]

(j))⊤[Xi]
(j) = Ini , i = 1, 2, 3, j = 1, 2, . . . , N . Similarly, we extend

the notation of [ · ] to other operations acting on independent tensors. That is,

performing an operation on an independent tensor means performing the operation

on each lower order tensor independently. For example, performing [X][(n)] means

independently performing [X]
(j)
(n) for each j.

2.4.2 Nonlocal Low-rank Tensor Regularization with Spar-
sity Enhancements

The nonlocal low-rank tensor regularization consists of the extraction of nonlocal

similar tensors that may have similar features and the characterization of the low-

rankness of the tensor.

First, we apply block matching to find similar blocks and then stack them into a

fourth order nonlocal similar tensor. Given an HSI L, we divide it into a total number

of N overlapping blocks. For the j-th block, we search within a local window for a

total of m2 blocks that are similar to the reference block based on Euclidean distance.

Then the j-th nonlocal similar sub-tensor of L, denoted as Rj(L), can be formed by

unfolding all the nonlocal similar blocks in the j-th group and then stacking them

together. As the nonlocal similar block sub-tensors are independent of each other,

we can further stack them together into a fourth order nonlocal similar group tensor,

denoted as R(L), and [R(L)](j) = Rj(L).

Second, we impose the tensor low-rankness on the nonlocal similar tensor. In

the nonlocal sub-tensor Rj(L) that we construct, the first dimension indicates the

spatial information, the second dimension reveals the nonlocal self-similarity, and
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the third dimension reflects the spectral correlation. We adopt the independent 3-D

HOSVD to obtain a low-rank approximation of R(L), that is,

R(L) ≈ [G]×1 [X1]×2 [X2]×3 [X3],

where [G] ∈ Rn1×n2×n3×N denotes independent core tensors, and [Xi] ∈ Rmi×ni×N

denotes the i-th factor matrices such that [Xi]
⊤[Xi] = [Ini ].

To further boost the low-rankness of R(L), we propose a sparsity-enhanced non-

local low-rank tensor regularization term as follows

1

2
∥[G]×1 [X1]×2 [X2]×3 [X3]−R(L)∥2F + ∥[G]∥1,w, (2.12)

where ∥[G]∥1,w is given in (2.3) with w ∈ N+. In particular, the first term of (2.12)

measures the closeness between R(L) and the approximated low-rank tensor, and

the second term measures the sparsity of the independent core tensors [G].
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Chapter 3

The Proximal Block Coordinate
Descent Algorithm and its

Convergence Analysis

In the following, we present the P-BCD algorithm for solving the proposed nonlocal

low-rank tensor model (2.1), which is a nonconvex and nonsmooth optimization

problem over Stiefel manifolds. We will give the details of each update in the P-BCD

algorithm and conduct a convergence analysis for the proposed P-BCD algorithm in

this chapter.

Let F denote the objective function of model (2.1), that is,

F (S, [X1], [X2], [X3], [G],L) :=
δ

2
∥R(L+ S − D)∥2F + γ

∥∥∥√WR ⊙ S
∥∥∥
2,ψ

+ Φ([G])

+H([X1], [X2], [X3], [G],L),

where Φ([G]) = ∥[G]∥1,w and

H([X1], [X2], [X3], [G],L) :=
1

2
∥R(L)− [G]×1 [X1]×2 [X2]×3 [X3]∥2F . (3.1)
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3.1 The Proximal Block Coordinate Descent Al-

gorithm

For solving model (2.1), the P-BCD algorithm is summarized as follows

Sk+1 ∈ argmin
S

F (S, [Xk
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk) +

αS

2
∥
√
WR ⊙ (S − Sk)∥2F ,

[Xk+1
1 ] ∈ argmin

[X1]∈[Sm1,n1 ]

F (Sk+1, [X1], [X
k
2 ], [Xk

3 ], [Gk],Lk) +
αX
2
∥[X1]− [Xk

1 ]∥2F ,

[Xk+1
2 ] ∈ argmin

[X2]∈[Sm2,n2 ]

F (Sk+1, [Xk+1
1 ], [X2], [X

k
3 ], [Gk],Lk) +

αX
2
∥[X2]− [Xk

2 ]∥2F ,

[Xk+1
3 ] ∈ argmin

[X3]∈[Sm3,n3 ]

F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [X3], [Gk],Lk) +
αX
2
∥[X3]− [Xk

3 ]∥2F ,

[Gk+1] = argmin
[G]

F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [Xk+1
3 ], [G],Lk) +

αG

2
∥[G]− [Gk]∥2F ,

Lk+1 = argmin
L

F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [Xk+1
3 ], [Gk+1],L),

where αS , αX , αG > 0.

In the following, we present the details for computing each update.

3.1.1 The Update of S

Recall that

∥R(L)∥2F = ⟨L,R⊤R(L)⟩F = ⟨L,WR ⊙ L⟩F = ∥
√
WR ⊙ L∥2F .

Then we have

F (S, [Xk
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk) +

αS

2
∥
√
WR ⊙ (S − Sk)∥2F

=
δ

2
∥R(Lk + S − D)∥2F + γ

∥∥∥√WR ⊙ S
∥∥∥
2,ψ

+
αS

2
∥
√
WR ⊙ (S − Sk)∥2F

=
δ

2
∥
√
WR ⊙ (S + Lk −D)∥2F + γ

∥∥∥√WR ⊙ S
∥∥∥
2,ψ

+
αS

2
∥
√
WR ⊙ (S − Sk)∥2F .
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Hence, Sk+1 is computed by

Sk+1 ∈ argmin
S

γ̃
∥∥∥√WR ⊙ S

∥∥∥
2,ψ

+
1

2

∥∥∥√WR ⊙
(
S − (Sk − α̃S

(
Sk + Lk −D)

))∥∥∥2
F
,

where γ̃ = γ
δ+αS

and α̃S = δ
δ+αS

. Rescaling S using
√
WR⊙, Sk+1 can be written in

terms of the proximal operator of ∥ · ∥2,ψ as follows

Sk+1 ∈
(√
WR

)−1

⊙ proxγ̃∥·∥2,ψ

(√
WR ⊙

(
Sk − α̃S

(
Sk + Lk −D

)))
, (3.2)

where the (i1, i2, i3)-th entry of
(√
WR

)−1
is equal to 1/

√
(WR)i1i2i3 .

3.1.2 The Update of [Xi]

Before we solve the optimization subproblem in terms of [Xi] over independent Stiefel

manifolds, we can rewrite its objective function using the following useful fact for

unfolding of tensors

Y = G ×i X if and only if Y(i) = XG(i).

Then by applying X ∈ Sm,n, the Frobenious norm of tensors can be rewritten into

the Frobenious norm of matrices

∥G ×i X − L∥2F =∥XG(i) − L(i)∥2F

=∥G(i)∥2F − 2⟨XG(i), L(i)⟩+ ∥L(i)∥2F , (3.3)

where G(i) and L(i) denote the mode-i unfolding of G and L, respectively. Since

⟨XG(i), L(i)⟩ = ⟨X,L(i)G
⊤
(i)⟩ and ∥X∥2F = n, minimizing ∥G ×i X − L∥2F over X

on the Stiefel manifold is equivalent to minimizing ∥X − L(i)G
⊤
(i)∥2F over the Stiefel

manifold.
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Taking [X1] as an example, we have

F (Sk+1, [X1], [X
k
2 ], [Xk

3 ], [Gk],Lk) +
αX
2
∥[X1]− [Xk

1 ]∥2F

=
1

2
∥R(Lk)− [Gk]×1 [X1]×2 [Xk

2 ]×3 [Xk
3 ]∥2F +

αX
2
∥[X1]− [Xk

1 ]∥2F

=
1

2
∥(R(Lk))[(1)] − [X1]([Gk]×2 [Xk

2 ]×3 [Xk
3 ])[(1)]∥2F +

αX
2
∥[X1]− [Xk

1 ]∥2F .

Then [Xk+1
1 ] can be computed via the projection of unfolding matrices onto the

Stiefel manifolds independently as follows

[Xk+1
1 ] ∈ argmin

[X1]∈[Sm1,n1 ]

1

2
∥[X1]− [P k

1 ][Qk
1]⊤∥2F +

αX
2
∥[X1]− [Xk

1 ]∥2F

= argmin
[X1]∈[Sm1,n1 ]

1

2
∥[X1]− ([Xk

1 ]− α̃X([Xk
1 ]− [P k

1 ][Qk
1]⊤))∥2F

= Proj[Sm1,n1 ]

(
[Xk

1 ]− α̃X
(
[Xk

1 ]− [P k
1 ][Qk

1]⊤
))
,

where [P k
1 ] = (R(Lk))[(1)], [Qk

1] =
(
[Gk]×2 [Xk

2 ]×3 [Xk
3 ]
)
[(1)]

, and parameter α̃X =

1
1+αX

.

Similarly, we have

[Xk+1
2 ] ∈ argmin

[X2]∈[Sm2,n2 ]

F (Sk+1, [Xk+1
1 ], [X2], [X

k
3 ], [Gk],Lk) +

αX
2
∥[X2]− [Xk

2 ]∥2F

= Proj[Sm2,n2 ]

(
[Xk

2 ]− α̃X
(
[Xk

2 ]− [P k
2 ][Qk

2]⊤
))
,

and

[Xk+1
3 ] ∈ argmin

[X3]∈[Sm3,n3 ]

F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [X3], [Gk],Lk) +
αX
2
∥[X3]− [Xk

3 ]∥2F

= Proj[Sm3,n3 ]

(
[Xk

3 ]− α̃X
(
[Xk

3 ]− [P k
3 ][Qk

3]⊤
))
,

where [P k
2 ] = (R(Lk))[(2)], [P k

3 ] = (R(Lk))[(3)], [Qk
2] =

(
[Gk] ×1 [Xk+1

1 ] ×3[X
k
3 ]
)
[(2)]

,

[Qk
3] =

(
[Gk]×1 [Xk+1

1 ]×2 [Xk+1
2 ]

)
[(3)]

, and parameter α̃X = 1
1+αX

.
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In summary, [Xk+1
i ] can be computed by

[Xk+1
i ] ∈ Proj[Smi,ni ]

(
[Xk

i ]− α̃X
(
[Xk

i ]− [P k
i ][Qk

i ]
⊤)) , (3.4)

where [P k
i ] = (R(Lk))[(i)], [Qk

i ] =
(
[Gk] ×1 [Xk+1

1 ] · · · ×i−1 [Xk+1
i−1 ] ×i+1 [Xk

i+1] · · · ×3

[Xk
3 ]
)
[(i)]

, and parameter α̃X = 1
1+αX

.

In the following, we present a lemma for finding the projection onto a Stiefel

manifold, which is given in Theorem 4.1 in [31] and proved in [3].

Lemma 3.1. [31, 3] Given A ∈ Rm×n, m ≥ n, consider the following Stiefel manifold

projection problem

min
X∈Rm×n

∥X − A∥2F

s.t. X⊤X = In.

(3.5)

Then the set of optimal solutions of problem (3.5), denoted as Ω∗(A), is given by

Ω∗(A) = {UV ⊤|A = UΣV ⊤, U ∈ Rm×n,Σ ∈ Rn×n, V ∈ Rn×n

such that U⊤U = V ⊤V = In and Σ = Diag(σ(A))},

where UΣV ⊤ is a reduced SVD of A and σ(A) ∈ Rn is a vector of all the singular

values of A. In particular, if A is of full column rank n, then Ω∗(A) is a singleton.

According to Lemma 3.1, problem (3.5) has a closed form solution, even though

it may have multiple solutions when the given matrix does not have full column

rank. Hence, if [U ][Σ][V ]⊤ is an independent reduced SVD of [A] ∈ Rm×n×N , then

[U ][V ]⊤ ∈ Proj[Sm,n]([A]).
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3.1.3 The Update of [G]

The subproblem for updating [G] can be reformulated by using the following property

for any X ∈ Sm,n, m ≥ n,

∥G ×i X − L∥2F

=∥G(i) −X⊤L(i)∥2F − ∥X⊤L(i)∥2F + ∥L(i)∥2F

=∥G − L ×i X⊤∥2F − ∥L ×i X⊤∥2F + ∥L∥2F ,

which is derived from (3.3) and the constraint that X⊤X = In.

Since we have

F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [Xk+1
3 ], [G],Lk) +

αG

2
∥[G]− [Gk]∥2F

=
1

2
∥R(Lk)− [G]×1 [Xk+1

1 ]×2 [Xk+1
2 ]×3 [Xk+1

3 ]∥2F + Φ([G]) +
αG

2
∥[G]− [Gk]∥2F ,

[Gk+1] can be computed by

[Gk+1] = argmin
[G]

1

2
∥[G]−R(Lk)×1 [Xk+1

1 ]⊤ ×2 [Xk+1
2 ]⊤ ×3 [Xk+1

3 ]⊤∥2F + Φ([G])

+
αG

2
∥[G]− [Gk]∥2F

= argmin
[G]

1

2
∥[G]− ([Gk]− α̃G([Gk]− [Ok]))∥2F + α̃GΦ([G])

= proxα̃GΦ

(
[Gk]− α̃G([Gk]− [Ok])

)
, (3.6)

where [Ok] = R(Lk)×1 [Xk+1
1 ]⊤ ×2 [Xk+1

2 ]⊤ ×3 [Xk+1
3 ]⊤, and α̃G = 1

1+αG
.

3.1.4 The Update of L

After computing [Xk+1
i ] and [Gk+1], we can obtain the approximated low-rank group

tensor, denoted as [Yk+1], as follows

[Yk+1] = [Gk+1]×1 [Xk+1
1 ]×2 [Xk+1

2 ]×3 [Xk+1
3 ]. (3.7)
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Since we have

F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [Xk+1
3 ], [Gk+1],L)

=
δ

2
∥R(L+ Sk+1 −D)∥2F +

1

2
H([Xk+1

1 ], [Xk+1
2 ], [Xk+1

3 ], [Gk+1],L)

=
δ

2
∥R(L+ Sk+1 −D)∥2F +

1

2
∥R(L)− [Yk+1]∥2F ,

Lk+1 can be computed in a unique closed form as follows

Lk+1 = argmin
L

δ

2
∥
√
WR ⊙ (L+ Sk+1 −D)∥2F

+
1

2
∥
√
WR ⊙ L− (

√
WR)−1 ⊙R⊤([Yk+1])∥2F

= δ̃W−1
R R⊤([Yk+1]) + (1− δ̃)(D − Sk+1), (3.8)

where δ̃ = 1
1+δ

and W−1
R denotes the component-wise inverse of WR, that is, the

(i1, i2, i3)-th entry of W−1
R is equal to the reciprocal of (WR)i1i2i3 .

3.1.5 Summary of the P-BCD Algorithm

The proposed P-BCD algorithm for model (2.1) is summarized in Algorithm 1.

Algorithm 1 Proximal BCD (P-BCD) algorithm for model (2.1)

1: Initialize (S0, [X0
1 ], [X0

2 ], [X0
3 ], [G0],L0) with [X0

i ] ∈ [Smi,ni ].
2: Set the tensor extraction operator R.
3: Set parameters αS , αX , αG > 0.
4: Set k = 0.
5: repeat
6: Compute Sk+1 by (3.2).
7: Compute [Xk+1

i ] by (3.4), i = 1, 2, 3.
8: Compute [Gk+1] by (3.6).
9: Compute Lk+1 by (3.8).
10: k ← k + 1.
11: until the stopping criterion is met.
Output: (Sk, [Xk

1 ], [Xk
2 ], [Xk

3 ], [Gk],Lk).
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The proposed P-BCD algorithm aims to solve a particular optimization problem

of the form as in (2.1) and an optimal solution for each subproblem is obtained in

our algorithm as shown in the previous subsections. The P-BCD algorithm can be

viewed as a special variant of the proximal alternating linearization minimization

(PALM) [6] extended for multiple blocks or the block coordinate update with prox-

linear approximation [95], called the block prox-linear method. In the next section,

we present the convergence results of the P-BCD algorithm.

3.2 Convergence Analysis of the P-BCD Algorithm

In this section, we first define the first order optimality condition of problem (2.1),

then prove that any accumulation point is a first order stationary point.

3.2.1 The First Order Optimality Condition

Let Z := (S, [X1], [X2], [X3], [G],L). We define the first order optimality condi-

tion of the orthogonal constrained optimization problem (2.1). The point Z̄ :=

(S̄, [X̄1], [X̄2], [X̄3], [Ḡ], L̄) is a first order stationary point of problem (2.1) if 0 ∈

∂F (Z̄), that is,

0 ∈ δ(L̄+ S̄ − D) + γ∂∥ · ∥2,ψ(S̄),

0 = grad[Xi]
H([X̄1], [X̄2], [X̄3], [Ḡ], L̄), [X̄i]

⊤[X̄i] = [Ini ], i = 1, 2, 3, (3.9)

0 ∈ ∇[G]H([X̄1], [X̄2], [X̄3], [Ḡ], L̄) + ∂Φ([Ḡ]),

0 = δ(L̄+ S̄ − D) +∇LH([X̄1], [X̄2], [X̄3], [Ḡ], L̄),

where grad[Xi]
H([X̄1], [X̄2], [X̄3], [Ḡ], L̄) denotes the Riemannian gradient of H with

respect to [Xi] evaluated at ([X̄1], [X̄2], [X̄3], [Ḡ], L̄), i = 1, 2, 3, and ∂∥ · ∥2,ψ and

∂Φ denote the subdifferentials of ∥ · ∥2,ψ and Φ, respectively. Then we compute

the gradients of H explicitly and replace the optimality condition for orthogonal

constraints as in (3.9) using an equivalent condition introduced in [25]. Hence, we
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call Z̄ is a first order stationary point of problem (2.1) if

0 ∈ δ(L̄+ S̄ − D) + γ
(√
WR

)−1

⊙ ∂∥ · ∥2,ψ(
√
WR ⊙ S̄), (3.10a)

0 = ([Imi ]− [X̄i][X̄i]
⊤)[H̄i], (3.10b)

0 = [H̄i]
⊤[X̄i]− [X̄i]

⊤[H̄i], (3.10c)

[X̄i]
⊤[X̄i] = [Ini ], (3.10d)

0 ∈ [Ḡ]− [Ō] + ∂Φ([Ḡ]), (3.10e)

0 = δ(L̄+ S̄ − D) + L̄ −W−1
R ⊙R⊤([Ȳ ]), (3.10f)

where i = 1, 2, 3, and

[P̄i] =(R(L̄))[(i)],

[Q̄1] =([Ḡ]×2 [X̄2]×3 [X̄3])[(1)],

[Q̄2] =([Ḡ]×1 [X̄1]×3 [X̄3])[(2)],

[Q̄3] =([Ḡ]×1 [X̄1]×2 [X̄2])[(3)],

[H̄i] =([X̄i][Q̄i]− [P̄i])[Q̄i]
⊤,

[Ō] =R(L̄)×1 [X̄1]
⊤ ×2 [X̄2]

⊤ ×3 [X̄3]
⊤,

[Ȳ ] =[Ḡ]×1 [X̄1]×2 [X̄2]×3 [X̄3].

3.2.2 Non-increasing Monotonicity

Next, we prove the non-increasing monotonicity of the objective sequence {F (Zk)}

and the boundedness of the sequence {Zk} generated by Algorithm 1.

Theorem 3.1. Let {Zk} be the sequence generated by Algorithm 1. Then the fol-

lowing statements hold.

(i) The sequence {F (Zk)} of function values at the iteration points decreases
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monotonically, and

F (Zk)− F (Zk+1)

≥α
2
∥Sk+1 − Sk∥2F +

α

2

3∑
i=1

∥[Xk+1
i ]− [Xk

i ]∥2F +
α

2
∥[Gk+1]− [Gk]∥2F .

(3.11)

(ii) The sequence {Zk} is bounded.

(iii) lim
k→∞
∥Sk+1−Sk∥F = 0, lim

k→∞
∥[Xk+1

i ]− [Xk
i ]∥F = 0, and lim

k→∞
∥[Gk+1]− [Gk]∥F =

0, for any i = 1, 2, 3.

Proof. (i) According to the update of S, we have

F (Zk)− F (Sk+1, [Xk
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk)

=F (Sk, [Xk
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk)− F (Sk+1, [Xk

1 ], [Xk
2 ], [Xk

3 ], [Gk],Lk)

≥αS

2
∥
√
WR ⊙ (Sk+1 − Sk)∥2F

≥c
2
1αS

2
∥Sk+1 − Sk∥2F ,

where c1 = min (
√
WR)i1i2i3 .

Next, it follows from the update of [Xi] and Lemma 3.1 that

F (Sk+1, [Xk
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk)− F (Sk+1, [Xk+1

1 ], [Xk+1
2 ], [Xk+1

3 ], [Gk],Lk)

=F (Sk+1, [Xk
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk)− F (Sk+1, [Xk+1

1 ], [Xk
2 ], [Xk

3 ], [Gk],Lk)

+ F (Sk+1, [Xk+1
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk)− F (Sk+1, [Xk+1

1 ], [Xk+1
2 ], [Xk

3 ], [Gk],Lk)

+ F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [Xk
3 ], [Gk],Lk)− F (Sk+1, [Xk+1

1 ], [Xk+1
2 ], [Xk+1

3 ], [Gk],Lk)

≥αX
2

3∑
i=1

∥[Xk+1
i ]− [Xk

i ]∥2F .

Then by the updates of [G] and L, we have

F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [Xk+1
3 ], [Gk],Lk)

− F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [Xk+1
3 ], [Gk+1],Lk) ≥ αG

2
∥[Gk+1]− [Gk]∥2F
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and

F (Sk+1, [Xk+1
1 ], [Xk+1

2 ], [Xk+1
3 ], [Gk+1],Lk)− F (Zk+1) ≥ 0.

Combining the inequalities above, we obtain (3.11) with α = min{c21αS , αG, αX}.

(ii) Since [Xk
i ]⊤[Xk

i ] = [Ini ] for each i = 1, 2, 3, we have the sequence {[Xk
i ]}

is bounded. By (i), we have F (Zk) ≤ F (Z0). Also, we observe that F (Zk) ≥

γcp1∥Sk∥2,ψ + Φ([Gk]) ≥ 0. Since

lim
∥S∥F→∞

∥S∥2,ψ =∞ and lim
∥[G]∥F→∞

Φ([G]) =∞,

we must have the sequences {Sk} and {[Gk]} are bounded. As shown in (3.8) that

Lk is uniquely determined by Sk, [Xk
1 ], [Xk

2 ], [Xk
3 ] and [Gk], the sequence {Lk} is also

bounded.

(iii) Let K be an arbitrary integer. Summing (3.11) from k = 1 to K − 1, we

have

K−1∑
k=0

∥Sk+1 − Sk∥2F +
K−1∑
k=0

3∑
i=1

∥[Xk+1
i ]− [Xk

i ]∥2F +
K−1∑
k=0

∥[Gk+1]− [Gk]∥2F

≤ 2

α

(
F (Z0)− F (ZK)

)
≤ 2

α
F (Z0).

Taking the limits of both sides of the inequality as K →∞, we have
∑∞

k=0 ∥Sk+1 −

Sk∥2F < ∞,
∑∞

k=0 ∥[X
k+1
i ] − [Xk

i ]∥2F < ∞ and
∑∞

k=0 ∥[Gk+1] − [Gk]∥2F < ∞. Then

assertion (iii) immediately holds.

In addition to the assertions presented in Theorem 3.1, more assertions can be

derived in the following corollary.

Corollary 3.1. Let {Zk} be the sequence generated by Algorithm 1. Then lim
k→∞
∥[Yk+1]−

[Yk]∥F = 0 and lim
k→∞
∥Lk+1 − Lk∥F = 0.
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Proof. Since ∥[Gk+1]×i [Xi]− [Gk]×i [Xi]∥F = ∥[Gk+1]− [Gk]∥F for any [Xi] ∈ [Smi,ni ]

and ∥[G]×i [Xk+1
i ]− [G]×i [Xk

i ]∥F ≤ ∥[G]∥F∥[Xk+1
i ]− [Xk

i ]∥F , we have

∥[Yk+1]− [Yk]∥F ≤∥[Gk+1]− [Gk]∥F + c2∥[Xk+1
1 ]− [Xk

1 ]∥F

+ c2∥[Xk+1
2 ]− [Xk

2 ]∥F + c2∥[Xk+1
3 ]− [Xk

3 ]∥F ,

where c2 = maxk ∥[Gk]∥F < ∞ according to assertion (ii) in Theorem 3.1. Then it

immediately follows from assertion (iii) in Theorem 3.1, limk→∞ ∥[Yk+1]−[Yk]∥F = 0.

Also, we have

∥Lk+1 − Lk∥F ≤δ̃c21c3∥[Yk+1]− [Yk]∥F + (1− δ̃)∥Sk+1 − Sk∥F ,

where c3 = max(
√
WR)i1i2i3 . Then by assertion (iii) in Theorem 3.1, we have

limk→∞ ∥Lk+1 − Lk∥F = 0.

3.2.3 Substationarity, Symmetry, and Feasibility for [Xi]

We apply the results in [25] to the updates of [Xi] in our proposed algorithm. Those

results are useful for proving three equalities of substationarity, symmetry, and fea-

sibility for [Xi]. According to Lemma 3.3 in [25], we can have the following lemma

and then we prove the decrease of the function value H after each update of [Xi].

Lemma 3.2. [25] Let h : Rm×n → R be defined by h(X) = 1
2
∥X − PQ⊤∥2F , where

Q ∈ Rn×m, P ∈ Rm×m and m ≥ n. If X ∈ Sm,n and

X̄ = ProjSm,n(X − τ(X − PQ⊤)), (3.12)

where τ ∈ (0, 1), then we have X̄ ∈ Sm,n and

h(X)− h(X̄) ≥ τ−1 − 1

2(τ−1 + 1 + θ)2
∥(Im −XX⊤)∇h(X)∥2F , (3.13)

where θ = ∥PQ⊤∥2.
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Proposition 3.1. Let H be defined as in (3.1). Let {Zk} be the sequence generated

by Algorithm 1 and [Xk+1
i ] be computed by (3.4). Then [Xk+1

i ] ∈ [Smi,ni ] and the

following inequality holds:

H([Xk
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk)−H([Xk+1

1 ], [Xk+1
2 ], [Xk+1

3 ], [Gk],Lk)

≥c4
3∑
i=1

∥∥∥([Imi ]− [Xk
i ][Xk

i ]
⊤

)[Hk
i ]
∥∥∥2
F

(3.14)

and ∥∥∥[Hk
i ]⊤[Xk

i ]− [Xk
i ]

⊤
[Hk

i ]
∥∥∥
F
≤ c5∥[Xk

i+1]− [Xk
i ]∥F , (3.15)

where c4 = αX
2(αX+2+θmax)2

, θmax = maxijk ∥[P k
i ](j)([Qk

i ]
(j))⊤∥, c5 = 2(αX

√
nmax+θmax),

nmax = max{n1, n2, n3}, and

[Hk
1 ] = ∇[X1]H([Xk

1 ], [Xk
2 ], [Xk

3 ], [Gk],Lk),

[Hk
2 ] = ∇[X2]H([Xk+1

1 ], [Xk
2 ], [Xk

3 ], [Gk],Lk),

[Hk
3 ] = ∇[X3]H([Xk+1

1 ], [Xk+1
2 ], [Xk

3 ], [Gk],Lk),

which give

[Hk
i ] = ([Xk

i ][Qk
i ]− [P k

i ])[Qk
i ]

⊤, i = 1, 2, 3.

Proof. It follows from Lemma 3.2 that [Xk+1
i ] ∈ Smi,ni .

To show the first inequality holds, the update of [Xk+1
i ] in (3.4) can be viewed as

the iteration in (3.12) with h([X]) = 1
2
∥[X]− [P k

i ][Qk
i ]

⊤∥2F , [X] = [Xk
i ], [X̄] = [Xk+1

i ]
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and τ = α̃X = 1
1+αX

. Then for i = 1 we have

H([Xk
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk)−H([Xk+1

1 ], [Xk
2 ], [Xk

3 ], [Gk],Lk)

=
1

2
∥[Xk+1

i ][Qk
i ]− [P k

i ]∥2F −
1

2
∥[Xk

i ][Qk
i ]− [P k

i ]∥2F

=
1

2
∥[Xk+1

i ]− [P k
i ][Qk

i ]
⊤∥2F −

1

2
∥[Xk

i ]− [P k
i ][Qk

i ]
⊤∥2F

≥ckij
∥∥∥([Imi ]− [Xk

i ][Xk
i ]

⊤
) (

[Xk
i ]− [P k

i ][Qk
i ]

⊤)∥∥∥2
F
,

where ckij =
α̃−1
X −1

2(α̃−1
X +1+∥[Pki ](j)([Qki ](j))⊤∥)2 ≥ c4 and θmax is bounded, since the sequence

{Zk} is bounded. Using [Xk
i ] ∈ [Smi,ni ] and [Xk+1

i ] ∈ [Smi,ni ], we can obtain the

fourth line above and rewrite part of the last line as follows(
[Imi ]− [Xk

i ][Xk
i ]

⊤
) (

[Xk
i ]− [P k

i ][Qk
i ]

⊤)
=
(

[Imi ]− [Xk
i ][Xk

i ]
⊤
) (

[Xk
i ][Qk

i ]− [P k
i ]
)

[Qk
i ]

⊤

=
(

[Imi ]− [Xk
i ][Xk

i ]
⊤
)

[Hk
i ].

That is, we have

H([Xk
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk)−H([Xk+1

1 ], [Xk
2 ], [Xk

3 ], [Gk],Lk)

≥c4
∥∥∥([Im1 ]− [Xk

1 ][Xk
1 ]

⊤
)

[Hk
1 ]
∥∥∥2
F
.

Similarly, we have

H([Xk+1
1 ], [Xk

2 ], [Xk
3 ], [Gk],Lk)−H([Xk+1

1 ], [Xk+1
2 ], [Xk

3 ], [Gk],Lk)

≥c4
∥∥∥([Im2 ]− [Xk

2 ][Xk
2 ]

⊤
)

[Hk
2 ]
∥∥∥2
F

and

H([Xk+1
1 ], [Xk+1

2 ], [Xk
3 ], [Gk],Lk)−H([Xk+1

1 ], [Xk+1
2 ], [Xk+1

3 ], [Gk],Lk)

≥c4
∥∥∥([Im3 ]− [Xk

3 ][Xk
3 ]

⊤
)

[Hk
3 ]
∥∥∥2
F
.
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Summing the inequalities above, (3.14) immediately holds.

Next, we show the second inequality holds. According to the update of [Xk+1
i ] in

(3.4), if we let

[Uk][Σk][V k]⊤ = [Xk
i ]− α̃X

(
[Xk

i ]− [P k
i ][Qk

i ]
⊤) =

1

αX + 1

(
αX [Xk

i ] + [P k
i ][Qk

i ]
⊤) ,

then the update [Xk+1
i ] = [Uk][V k]⊤. Hence, we have

[Xk+1
i ]⊤

(
αX [Xk

i ] + [P k
i ][Qk

i ]
⊤) =

(
αX [Xk

i ] + [P k
i ][Qk

i ]
⊤)⊤ [Xk+1

i ] (3.16)

= (αX + 1)[V ]k[Σk][V k]⊤.

Then using [Xk
i ] ∈ [Smi,ni ] and [Xk+1

i ] ∈ [Smi,ni ], we can rewrite

[Hk
i ]⊤[Xk

i ]− [Xk
i ]

⊤
[Hk

i ]

=
(
αX [Xk

i ] + [P k
i ][Qk

i ]
⊤)⊤ [Xk

i ]− [Xk
i ]⊤
(
αX [Xk

i ] + [P k
i ][Qk

i ]
⊤)

=
(
[Xk+1

i ]− [Xk
i ]
)⊤ (

αX [Xk
i ] + [P k

i ][Qk
i ]

⊤)
−
(
αX [Xk

i ] + [P k
i ][Qk

i ]
⊤)⊤ ([Xk+1

i ]− [Xk
i ]
)
,

where the last equation is obtained by (3.16). Taking the Frobenius norm of both

sides, we obtain

∥[Hk
i ]⊤[Xk

i ]− [Xk
i ]

⊤
[Hk

i ]∥F

=∥
(
[Xk+1

i ]− [Xk
i ]
)⊤ (

αX [Xk
i ] + [P k

i ][Qk
i ]

⊤)
−
(
αX [Xk

i ] + [P k
i ][Qk

i ]
⊤)⊤ ([Xk+1

i ]− [Xk
i ]
)
∥F

≤2∥αX [Xk
i ](j) + [P k

i ](j)([Qk
i ]

(j))⊤∥F∥[Xk+1
i ]− [Xk

i ]∥F

≤c5∥[Xk+1
i ]− [Xk

i ]∥F ,

where 2∥αX [Xk
i ](j) + [P k

i ](j)([Qk
i ]

(j))⊤∥F ≤ c5. Then (3.15) holds.
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3.2.4 Subsequence Convergence

Lastly, we show that every convergent subsequence converges to a first order station-

ary point of problem (2.1).

Theorem 3.2. Let {Zk} be the sequence generated by Algorithm 1. Then every

accumulation point of {Zk} is a first order stationary point of problem (2.1).

Proof. Suppose that {Zk}k∈K is a convergent subsequence of {Zk} and converges to

Z̄ as k ∈ K approaches ∞. By the updates of Sk, [Gk] and Lk, we have for any

k = 0, 1, . . .

αS(Sk−1 − Sk) + δ(Lk − Lk−1)

∈ δ(Lk + Sk −D) + γ
(√
WR

)−1

⊙ ∂∥ · ∥2,ψ(
√
WR ⊙ Sk),

αG([Gk−1]− [Gk]) + ([Ok]− [Õk])

∈ [Gk]− [Õk] + ∂Φ([Gk]),

and

0 = δ(Lk + Sk −D) + Lk − (WR)−1R⊤([Yk]),

where [Õk] = R(Lk)×1 [Xk
1 ]⊤ ×2 [Xk

2 ]⊤ ×3 [Xk
3 ]⊤. Since we have

∥[Ok]− [Õk]∥F ≤ c3∥[Xk
1 ]∥F∥[Xk

2 ]∥F∥[Xk
3 ]∥F∥Lk − Lk−1∥F

≤ c3
√
n1n2n3N3∥Lk − Lk−1∥F ,

it immediately follows from Corollary 3.1 that limk→∞ ∥[Ok]− [Õk]∥F = 0.

According to the definition of limiting subdifferential and the fact that ∥·∥2,ψ and

Φ are continuous functions, we can take the limits of the relations above as k ∈ K

approaches∞. Note that Zk → Z̄, [Õk]→ [Ō] and [Yk]→ [Ȳ ], as k ∈ K approaches

∞. Together using Theorem 3.1 (iii) and Corollary 3.1, we have (3.10a), (3.10e) and

(3.10f) hold.
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Next, we show (3.10b)-(3.10d) hold. Using (3.14) and the inequalities in the proof

for assertion (i) of Theorem 3.1, we have

F (Zk)− F (Zk+1) ≥ c4

3∑
i=1

∥∥∥([Imi ]− [Xk
i ][Xk

i ]
⊤

)[Hk
i ]
∥∥∥2
F

and further obtain

∞∑
k=0

3∑
i=1

∥∥∥([Imi ]− [Xk
i ][Xk

i ]
⊤

)[Hk
i ]
∥∥∥2
F
≤ 1

c4
F (Z0).

This implies

lim
k→∞
∥([Imi ]− [Xk

i ][Xk
i ]

⊤
)[Hk

i ]∥F = 0. (3.17)

And by taking the limit of both sides of (3.15) and using Theorem 3.1 (iii), we have

lim
k→∞

∥∥∥[Hk
i ]⊤[Xk

i ]− [Xk
i ]

⊤
[Hk

i ]
∥∥∥
F

= 0. (3.18)

Since Zk → Z̄ as k ∈ K approaches ∞, we have [P k
i ] → [P̄i], [Qk

1] → [Q̄1], as

k ∈ K approaches ∞. Also, we have

∥[Qk
2]− [Q̄2]∥F ≤ ∥[Qk

2]− [Q̃k
2]∥F + ∥[Q̃k

2]− [Q̄2]∥F

≤ c2∥[Xk+1
1 ]− [Xk

1 ]∥F + ∥[Q̃k
2]− [Q̄2]∥F

and

∥[Qk
3]− [Q̄3]∥F ≤ ∥[Qk

3]− [Q̃k
3]∥F + ∥[Q̃k

3]− [Q̄3]∥F

≤ c2∥[Xk+1
1 ]− [Xk

1 ]∥F + c2∥[Xk+1
2 ]− [Xk

2 ]∥F + ∥[Q̃k
3]− [Q̄3]∥F ,

where [Q̃k
2] =

(
[Gk]×1 [Xk

1 ]×3 [Xk
3 ]
)
[(2)]

and [Q̃k
3] =

(
[Gk]×1 [Xk

1 ]×2 [Xk
2 ]
)
[(3)]

. Since

[Q̃k
i ] → [Q̄i], i = 2, 3, by Theorem 3.1 (iii), we have [Qk

i ] → [Q̄i], i = 2, 3, as k ∈ K

approaches ∞. Hence, [Hk
i ] → [H̄i], i = 1, 2, 3, as k ∈ K approaches ∞. By (3.17)

and (3.18), we have (3.10b) and (3.10c) hold. Since the Stiefel manifold is a compact

set, we also have (3.10d) holds.
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Chapter 4

Application to HSI Denoising and

Destriping

4.1 Problem Statement

Mixed noise often appears in HSIs due to instrumental defects and environmental

factors. The mixed noise typically includes stripe noise, dead line noise, Gaussian

noise, salt-and-pepper noise and so on [103, 66]. In the following, we present the

features of each type of noise.

Stripe noise has a special linear structure and directionality. The primary causes

of stripe noise in HSIs are the working principles of imaging spectrometers, imaging

instruments, and various external imaging environment factors. The core component

of remote sensing imaging instruments is the charge-coupled device (CCD) detector

element. In this array of elements, there are many linearly arranged detector ele-

ments. Due to the limitations of the imaging instrument’s own performance or the

influence of the external imaging environment, different detector units often show

inconsistent responses to the same radiation energy during the scanning of ground

objects, resulting in stripe noise pollution in the collected images. Figure 4.1a shows

a specific band of stripe noise in an HSI obtained by the Hyperion hyperspectral

sensor.
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Dead line noise refers to a type of noise in imaging systems that occurs when there

is a failure or malfunction in the detector elements or reading circuitry. This type of

noise results in the formation of dead pixels or entire dead lines (either horizontal or

vertical) in an image, where no data or incorrect data is recorded. Dead line noise

typically appears as fully dark or fully bright lines, as shown in Figure 4.1b, where

information is either missing or corrupted.

Gaussian noise generally refers to noise that follows a Gaussian distribution. Dur-

ing hyperspectral imaging, the CCD converts the captured electromagnetic energy

into image information, which brings various forms of noise, including dark noise and

readout noise. Since these types of noise frequently occur during hyperspectral imag-

ing and usually satisfy a Gaussian distribution, researchers have defined this type

of noise as Gaussian noise, assuming consistent noise levels across different bands.

Figure 4.1c shows a specific band in an HSI obtained by the AVIRIS hyperspectral

sensor degraded by Gaussian noise.

Salt-and-pepper noise, also known as impulse noise, refers to black noise points

with minimum pixel values and white noise points with maximum pixel values in

the image. During hyperspectral imaging, when there is significant electromagnetic

interference causing abrupt signal changes or incorrect exposure of the photosensitive

sheet, impulse noise appears in the obtained image. Figure 4.1d shows a specific band

of mixed noise in an HSI obtained by the HYDICE hyperspectral sensor.

4.2 Model Formulation

In this section, we present an application of the proposed model (2.1) to HSI denoising

and destriping and utilize the proposed P-BCD method given in Algorithm 1 for

solving the model. In the following, we first introduce the nonlocal self-similarity

of HSIs, that is, the choice of R, present the sparsity-enhanced nonlocal low-rank
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(a) Stripe noise (b) Dead line noise

(c) Gaussian noise (d) Salt-and-pepper noise

Figure 4.1: Four types of mixed noise in HSIs

tensor regularization for removing Gaussian noise, that is, the choice of Φ; and we

mention the tensor ℓ2,p norm for removing sparse noise with linear structures, that

is, the choice of ψ for ∥ · ∥2,ψ.

4.2.1 Nonlocal Self-similarity of HSIs

According to the image nonlocal self-similarity, image blocks share similar patterns.

This prior is particularly evident in HSI, where multiple bands can be considered as

multiple observations of the same scene under different wavelengths. The similarity

across these observations provides powerful tools for denoising.
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By utilizing the spectral correlation and the spatial nonlocal self-similarity of

HSIs, a clean HSI can be approximated by nonlocal low-rank tensors [55, 52]. To

denoise the HSI via the nonlocal low-rank tensor regularization, the first step is to

extract nonlocal similar tensors that may have low-rank features and the second step

is to characterize the low-rankness of the tensor naturally.

We first apply block matching to find similar blocks and then stack them into a

fourth order nonlocal similar tensor. Given an HSI L ∈ RI1×I2×I3 , we divide it into a

total number of N overlapping FBBs of size r× r× I3. For the j-th FBB, we search

within a local window for a total of m2 FBBs that are mostly similar to the reference

block based on Euclidean distance. Then the j-th nonlocal similar sub-tensor of

order 3 of L, denoted as Rj(L), can be formed by unfolding all the nonlocal similar

FBBs in the j-th group and then stacking them together. An illustrative figure on

nonlocal low-rank tensor extraction is shown in Figure 4.2. As the nonlocal similar

FBB sub-tensors are independent of each other, we can further stack them together

into a fourth order nonlocal similar group tensor, denoted as R(L).

Figure 4.2: The procedure of block matching.

To be precise, we present the formulations for the j-th nonlocal similar sub-tensor

extraction operator Rj and then for the nonlocal similar tensor extraction operator

R. We define U
(l)
i ∈ Rr×Ii as a binary matrix such that L×1U

(l)
1 ×2U

(l)
2 is exactly the

l-th FBB of L. And we define Bl as the Casorati matrix (a matrix whose columns

48



are vectorized bands of the HSI) of the l-th FBB as follows

Bl := reshape(L ×1 U
(l)
1 ×2 U

(l)
2 ,m1,m3),

where m1 = r2 and m3 = I3. Then the extraction operator of the j-th nonlocal

similar sub-tensor Rj : RI1×I2×I3 → Rm1×m2×m3 can be defined by

Rj(L) := reshape((B⊤
lj1
, B⊤

lj2
, . . . , B⊤

ljm2
)⊤,m1,m2,m3),

where the indices lj1, lj1, . . . , ljm2 refer to the indices of FBBs that belong to the

j-th nonlocal similar group and j = 1, 2, . . . , N . Then the extraction operator of

the nonlocal similar tensor R : RI1×I2×I3 → Rm1×m2×m3×N is a linear map such that

[R(L)](j) = Rj(L).

Since the Frobenius inner product is invariant to reshaping, we have that for

Y ∈ Rm1×m2×m3 ,

⟨Y ,Rj(L)⟩F =

m2∑
i=1

⟨Y:i:, Blji⟩F = ⟨R⊤
j (Y),L⟩F ,

where R⊤
j : Rm1×m2×m3 → RI1×I2×I3 is defined by

R⊤
j (Y) :=

m2∑
i=1

reshape(Y:i:, r, r, I2)×1 (U
(lji)
1 )⊤ ×2 (U

(lji)
2 )⊤. (4.1)

And we further have that

∥R(L)∥2F =
N∑
j=1

∥Rj(L)∥2F =
N∑
j=1

⟨L,R⊤
j Rj(L)⟩F = ∥

√
WR ⊙ L∥2F ,

where ⊙ represents the pointwise multiplication, and each entry of WR ∈ RI1×I2×I3

represents the number of nonlocal similar groups to which the corresponding pixel

belongs. Since we assume that each pixel belongs to at least one nonlocal similar

group, we have WR ∈ RI1×I2×I3
++ .
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4.2.2 Sparsity-enhanced Nonlocal Low-rank Tensor Regu-
larization

Nonlocal low-rank tensor regularization is based on prior knowledge of the nonlo-

cal similarity of HSIs. We impose the tensor low-rankness on the nonlocal similar

tensors R(L) using (2.12), which is a low-rank tensor regularization with a sparsity

enhancement ∥ · ∥1,w on the independent core tensors.

The update of [G] given in (3.6) can be efficiently computed via the proximal

operator of ∥·∥1,w. And the proximal operator of ∥·∥1,w can be computed component-

wisely using the proximal operator of the ℓ1 norm by the soft thresholding operator

as follows (
prox∥·∥1,w([G])

)(j)
i1i2i3

= proxwj |·|

(
[G]

(j)
i1i2i3

)
= sign

(
[G]

(j)
i1i2i3

)
max

(∣∣∣[G]
(j)
i1i2i3

∣∣∣− wj, 0) .
4.2.3 Tensor ℓ2,p Norm for Group Sparsity Regularization

The generalized group sparsity measure given in (2.2) can characterize the sparse

component along a specific direction. We choose the tensor ℓ2,p norm given in (2.4)

as the group sparsity measure for S. By applying Theorem 2.1, the update of S

given in (3.2) can be efficiently computed. In particular, we calculate the (i2, i3)-th

mode-1 fiber of Sk+1 by

sk+1
:i2i3

= Γµ
(∥∥√w:i2i3 ⊙ s̃k:i2i3

∥∥
2

)
s̃k:i2i3 ,

where Γµ(·) is given in Theorem 2.1, S̃k = Sk − α̃S
(
Sk + Lk −D

)
, and s̃k:i2i3 and

√
w:i2i3 are the (i2, i3)-th mode-1 fibers of S̃k and

√
WR, respectively.
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4.3 Numerical Experiments

In this section, we conduct numerical experiments for removing mixed noise in HSIs.

We compare the proposed methods with five methods, which are BM4D [55] for re-

moving Gaussian noise, and LRTD [14], SNLRSF [9], LRTFL0 [93] and QRNN3D [86]

for removing mixed noise. All numerical experiments are implemented in Matlab

R2018a and executed on a personal desktop (Intel Core i7 9750H at 2.60 GHz with

16 GB RAM).

4.3.1 Simulated Data Experiments

In this subsection, the proposed method and the competing methods are tested on

simulated data. The test images are subimages of size 128 × 128 × 128 randomly

obtained from the Washington DC Mall1 (1280 × 307 × 191) and the Xiong-An2

(256 × 256 × 256). As shown in Figure 4.3, the Washington DC Mall is obtained

from an urban area, where buildings are relatively dense; the Xiong-An is obtained

from a hilly area, with mountains and shrubs.

(a) Washington DC Mall (b) Xiong-An

Figure 4.3: Original HSIs of two datasets. (a) Part of Washington DC Mall dataset
(R:17, G:36, B:46); (b) Xiong-An dataset (R:71, G:110, B:120).

To simulate the noisy HSI data, Gaussian noise, stripes, or dead lines are added

1 https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html

2 http://www.hrs-cas.com/a/share/shujuchanpin/2019/0501/1049.html
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to the normalized clean HSI data under the following cases:

• Case 1: Gaussian noise with a mean of zero and a standard deviation of 0.1 is

added to all the bands. And then all the bands are selected and stripes with a

density of 30% and a standard deviation of 0.2 are added to each band.

• Case 2: Gaussian noise with a mean of zero and a standard deviation of 0.1

is added to all the bands. And then 11 − 40, 71 − 100, 121 − 128 bands are

selected and stripes with a density of 20% and a standard deviation of 0.2 are

added to each band.

• Case 3: Gaussian noise with a mean of zero and a standard deviation of 0.2 is

added to all the bands. And then 25% of the bands are randomly selected and

dead lines with a density of 5% are added to each band.

For comparing the quality of the restored images, four evaluation metrics are

employed, which are the mean peak signal-to-noise ratio (MPSNR), the mean struc-

tural similarity index (MSSIM), the mean feature similarity index (MFSIM), the

mean spectral angle mapping (MSAM), and the erreur relative globale adimension-

nelle de synthese (ERGAS). Let X ∗ denote the restored HSI and X̂ denote the clean

HSI. Then X∗
::i and X̂::i denote the i-th band of the restored HSI and clean HSI,

respectively. The MPSNR value is defined as [34]

MPSNR =
1

I3

I3∑
k=1

10 log10

(
max2(X∗

::k)

mse(X∗
::k, X̂::k)

)
,

which is the average PSNR value across the bands. Similarly, MSSIM and MFSIM

values are defined as

MSSIM =
1

I3

I3∑
k=1

SSIM(X∗
::k, X̂::k) and MFSIM =

1

I3

I3∑
k=1

FSIM(X∗
::k, X̂::k),
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where SSIM is given in [109] and FSIM is given in [105]. The MSAM and ERGAS

are defined as

MSAM =
1

I1I2

I1∑
i=1

I2∑
j=1

arccos(
x∗ij:

⊤ · x̂ij:
∥x∗ij:∥∥x̂ij:∥

)

and

ERGAS = 100

√√√√ 1

I3

I3∑
k=1

mse(X∗
::k, X̂::k)

mean(X∗
::k)

,

where MSAM is given in [44] and ERGAS is given in [78]. In addition, better

denoising results are indicated by larger MPSNR, MSSIM, and MFSIM values, as

well as smaller MSAM and ERGAS values.

Table 4.1: Numerical results tested on Washington DC Mall dataset
Case Index Noisy NLTL2p LRTFL0 SNLRSF LRTD BM4D QRNN3D

1

MPSNR 14.90 30.84 30.29 25.92 26.47 16.35 25.27
MSSIM 0.324 0.930 0.923 0.795 0.817 0.399 0.794
MFSIM 0.653 0.952 0.957 0.902 0.907 0.724 0.885
MSAM 0.474 0.083 0.083 0.138 0.132 0.407 0.150
ERGAS 518.02 88.21 92.45 151.04 138.47 438.24 159.34

2

MPSNR 16.72 31.75 30.46 31.45 27.82 22.72 26.97
MSSIM 0.428 0.955 0.920 0.912 0.854 0.639 0.844
MFSIM 0.703 0.969 0.933 0.950 0.921 0.817 0.916
MSAM 0.397 0.056 0.067 0.074 0.067 0.318 0.109
ERGAS 419.52 68.88 78.65 83.10 105.07 330.58 119.73

3

MPSNR 13.90 30.20 29.83 28.01 25.44 20.80 25.62
MSSIM 0.390 0.943 0.924 0.895 0.801 0.762 0.842
MFSIM 0.680 0.963 0.929 0.943 0.897 0.879 0.913
MSAM 0.606 0.098 0.099 0.153 0.503 0.467 0.164
ERGAS 610.91 95.59 93.19 141.32 148.89 449.91 147.69

The numerical results of simulated data experiments for case 1, case 2, and case 3

are presented in Tables 4.1 and 4.2 for Washington DC Mall and Xiong-An datasets,

respectively. Numerical results in bold font indicate the best performance of the

indicator in the current case. It can be observed from Tables 4.1 and 4.2 that the
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Table 4.2: Numerical results tested on Xiong-An dataset
Case Index Noisy NLTL2p LRTFL0 SNLRSF LRTD BM4D QRNN3D

1

MPSNR 14.49 32.94 31.73 26.26 30.02 15.88 26.53
MSSIM 0.102 0.862 0.810 0.562 0.710 0.151 0.633
MFSIM 0.482 0.923 0.915 0.829 0.883 0.575 0.852
MSAM 0.286 0.032 0.037 0.076 0.047 0.246 0.071
ERGAS 382.96 47.02 55.28 112.07 66.10 328.21 97.50

2

MPSNR 17.19 34.17 33.21 30.25 30.71 24.29 28.27
MSSIM 0.159 0.877 0.837 0.719 0.730 0.468 0.694
MFSIM 0.562 0.931 0.924 0.885 0.894 0.722 0.880
MSAM 0.230 0.028 0.033 0.056 0.042 0.176 0.061
ERGAS 306.56 40.98 48.82 80.07 60.80 234.71 82.38

3

MPSNR 13.90 31.68 30.89 28.39 27.96 21.30 26.13
MSSIM 0.238 0.920 0.858 0.828 0.765 0.692 0.755
MFSIM 0.634 0.959 0.897 0.924 0.881 0.831 0.900
MSAM 0.313 0.031 0.029 0.061 0.047 0.224 0.075
ERGAS 435.95 60.74 56.64 103.41 83.80 321.25 101.38

proposed NLTL2p method outperforms other methods almost in terms of all the

evaluation metrics. For example, in case 1 of Xiong-An dataset, the MPSNR value

of the HSI restored by the NLTL2p method is 1.84 dB larger than the MPSNR value

of the second best method, that is, the LRTFL0 method.

4.3.2 Real Data Experiments

(a) HYDICE Urban (b) EO-1 Hyperion

Figure 4.4: Real HSIs of two datasets. (a) HYDICE Urban dataset (R:61, G:98,
B:170); (b) EO-1 Hyperion dataset (R:101, G:114, B:160).
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In this subsection, we test the proposed method and the competing methods on

two real HSI datasets containing mixed noise. The test images are subimages of size

128 × 128 × 128 randomly obtained from the HYDICE Urban3 (307 × 307 × 210)

and EO-1 Hyperion4 (400 × 200 × 166), which are shown in Figure 4.4. A selected

band of the HSI restored by each method is presented in Figure 4.11 and Figure 4.13

for HYDICE Urban dataset and EO-1 Hyperion dataset, respectively. It can be

observed that the proposed NLTL2p method can remove the stripes while preserving

the image details. However, the LRTFL0, LRTD, BM4D and QRNN3D methods are

unable to eliminate the stripes when the band is contaminated by heavy mixed noise

as shown in Figure 4.11; and the SNLRSF, LRTD, BM4D and QRNN3D methods

remove not only the noise but also some structural details of the HSI as shown in

Figure 4.13.

3 http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/610433
/hypercube/

4 http://www.lmars.whu.edu.cn/prof web/zhanghongyan/resource/noise EOI.zip
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(a) Noisy image (b) Ground truth (c) NLTL2p (ours)

(d) LRTFL0 (e) SNLRSF (f) LRTD

(g) BM4D (h) QRNN3D

Figure 4.5: Comparison of HSIs (R:3, G:43, B:75) restored by different methods
from Washington DC Mall in case 1. The PSNR value for each restored HSI: (a)
Noisy image (14.90 dB); (c) NLTL2p (ours) (30.84 dB); (d) LRTFL0 (30.29 dB);
(e) SNLRSF (25.92 dB); (f) LRTD (26.47 dB); (g) BM4D (16.35 dB); (h) QRNN3D
(25.27 dB).
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(a) Noisy image (b) Ground truth (c) NLTL2p (ours)

(d) LRTFL0 (e) SNLRSF (f) LRTD

(g) BM4D (h) QRNN3D

Figure 4.6: Comparison of HSIs (R:23, G:63, B:94) restored by different methods
from Washington DC Mall in case 2. The PSNR value for each restored HSI: (a)
Noisy image (16.72 dB); (c) NLTL2p (ours) (31.75 dB); (d) LRTFL0 (30.46 dB);
(e) SNLRSF (31.45 dB); (f) LRTD (27.82 dB); (g) BM4D (22.72 dB); (h) QRNN3D
(26.97 dB).
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(a) Noisy image (b) Ground truth (c) NLTL2p (ours)

(d) LRTFL0 (e) SNLRSF (f) LRTD

(g) BM4D (h) QRNN3D

Figure 4.7: Comparison of HSIs (R:16, G:70, B:100) restored by different methods
from Washington DC Mall in case 3. The PSNR value for each restored HSI: (a)
Noisy image (13.90 dB); (c) NLTL2p (ours) (30.20 dB); (d) LRTFL0 (29.83 dB);
(e) SNLRSF (28.01 dB); (f) LRTD (25.44 dB); (g) BM4D (20.80 dB); (h) QRNN3D
(25.62 dB).
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(a) Noisy image (b) Ground truth (c) NLTL2p (ours)

(d) LRTFL0 (e) SNLRSF (f) LRTD

(g) BM4D (h) QRNN3D

Figure 4.8: Comparison of HSIs (R:30, G:55, B:115) restored by different methods
from Xiong-An in case 1. The PSNR value for each restored HSI: (a) Noisy image
(14.49 dB); (c) NLTL2p (ours) (32.94 dB); (d) LRTFL0 (31.73 dB); (e) SNLRSF
(26.26 dB); (f) LRTD (30.02 dB); (g) BM4D (15.88 dB); (h) QRNN3D (26.53 dB).
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(a) Noisy image (b) Ground truth (c) NLTL2p (ours)

(d) LRTFL0 (e) SNLRSF (f) LRTD

(g) BM4D (h) QRNN3D

Figure 4.9: Comparison of HSIs (R:20, G:45, B:71) restored by different methods
from Xiong-An in case 2. The PSNR value for each restored HSI: (a) Noisy image
(17.19 dB); (c) NLTL2p (ours) (34.17 dB); (d) LRTFL0 (33.21 dB); (e) SNLRSF
(30.25 dB); (f) LRTD (30.71 dB); (g) BM4D (24.29 dB); (h) QRNN3D (28.27 dB).
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(a) Noisy image (b) Ground truth (c) NLTL2p (ours)

(d) LRTFL0 (e) SNLRSF (f) LRTD

(g) BM4D (h) QRNN3D

Figure 4.10: Comparison of HSIs (R:38, G:67, B:90) restored by different methods
from Xiong-An in case 3. The PSNR value for each restored HSI: (a) Noisy image
(13.90 dB); (c) NLTL2p (ours) (31.68 dB); (d) LRTFL0 (30.89 dB); (e) SNLRSF
(28.39 dB); (f) LRTD (27.96 dB); (g) BM4D (21.30 dB); (h) QRNN3D (26.13 dB).
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(a) Noisy image (b) NLTL2p (ours) (c) LRTFL0

(d) SNLRSF (e) LRTD (f) BM4D

(g) QRNN3D

Figure 4.11: Comparison of the 25-th band of the HSI restored by different methods
from HYDICE Urban.
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(a) Noisy image (b) NLTL2p (ours) (c) LRTFL0

(d) SNLRSF (e) LRTD (f) BM4D

(g) QRNN3D

Figure 4.12: Comparison of the fake color image of the HSI restored by different
methods from HYDICE Urban.
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(a) Noisy image (b) NLTL2p (ours) (c) LRTFL0

(d) SNLRSF (e) LRTD (f) BM4D

(g) QRNN3D

Figure 4.13: Comparison of the 128-th band of the HSI restored by different methods
from EO-1 Hyperion.
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(a) Noisy image (b) NLTL2p (ours) (c) LRTFL0

(d) SNLRSF (e) LRTD (f) BM4D

(g) QRNN3D

Figure 4.14: Comparison of the fake color image of the HSI restored by different
methods from EO-1 Hyperion.
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Chapter 5

Application to Hyperspectral

Anomaly Detection

5.1 Problem Statement

Hyperspectral anomaly detection involves identifying pixels or regions within an im-

age that significantly differ from the background [73]. Unlike conventional imaging,

hyperspectral sensors capture detailed spectral data across hundreds of bands, allow-

ing for a fine-grained analysis of the material composition of each pixel. This spectral

richness makes HSIs particularly suitable for detecting small-scale anomalies such as

vehicles, aircraft, and ships. Hence, hyperspectral anomaly detection is critical in

applications such as environmental monitoring [72], agriculture[53], and defense[70].

Detecting these anomalies is challenging due to several factors. The high dimen-

sionality of HSI data means that each pixel is represented by a complex spectral vec-

tor, making it difficult to differentiate anomalous pixels from natural variability [73].

Anomalies often blend into the background due to subtle spectral differences, which

require well-designed algorithms to identify. Additionally, HSIs commonly contain

various types of noise, such as Gaussian noise, stripes, and dead lines, which can

mimic anomalies, complicating the detection process [80]. The sparsity of anoma-

lies further increases the difficulty, as these unusual features typically occupy only a
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small fraction of the image, standing out against a dominant background.

5.2 Model Formulation

According to the high spectral correlation of HSIs, a clean HSI L ∈ Rn1×n2×n3 can

be expressed in a low-rank tensor representation as follows

L = Z ×3 E, (5.1)

where E ∈ Rn3×r represents a basis of the spectral subspace and the tensor Z ∈

Rn1×n2×r denotes the representation coefficient of L with respect to E. In particular,

we choose E as an orthogonal basis, that is, E⊤E = Ir with Ir denoting the identity

matrix of size r. And each band of Z is called an eigenimage. Then a noisy HSI

O ∈ Rn1×n2×n3 can be formulated mathematically as

O = Z ×3 E + S +N ,

where S ∈ Rn1×n2×n3 represents the sparse components such as anomalous objects,

and N ∈ Rn1×n2×n3 represents Gaussian noise.

To remove Gaussian noise and detect anomalous objects simultaneously, we pro-

pose an optimization model as follows

min
Z,E,S

δ

2
∥Z ×3 E + S −O∥2F + τ∥S∥2,ψ + ΦΣ(Z)

s.t. E⊤E = Ir,

(5.2)

where ∥·∥2,ψ represents a generalized group sparsity measure for detecting anomalous

objects, ΦΣ(·) represents a proximal denoiser prior for removing Gaussian noise, and

E is a learnable orthogonal basis. The resulting model is a nonconvex nonsmooth

minimization problem with an orthogonal constraint. More details of this model will

be provided in the following subsections.
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5.2.1 Proximal Denoiser Prior in a PnP Framework

If the observed HSI O is degraded by Gaussian noise, the components of its tensor

decomposition will also contain some noise, i.e.,

O = Z̃ ×3 Ẽ, (5.3)

where Z̃ denotes the eigenimages degraded by noise, and Ẽ denotes the orthogonal

basis with bias. For illustration, in Figure 5.1 we present some selected eigenimages

of a noisy HSI with a noise level of 0.03 using the subspace obtained by the HySime

algorithm [4]. As shown in Figure 5.1, the first eigenimage is clean, while the noise

level of the other eigenimages increases as the band index increases. To remove the

noise in the HSI, we utilize a deep denoiser Dσ on each eigenimage with an adaptive

noise level σ.

(a) 1st eigenimage (b) 2nd eigenimage (c) 5th eigenimage (d) 10th eigenimage

Figure 5.1: Illustration of eigenimages obtained from a noisy HSI.

The deep denoiser Dσ that we will use is a proximal denoiser proposed by Hurault

et al. in [39], which has the form of a gradient descent step:

Dσ := Id−∇gσ, (5.4)

where gσ denotes a smooth parameterized neural network. In particular, gσ is defined

as follows

gσ(X) =
1

2
∥X −Nσ(X)∥2F , (5.5)
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with Nσ(X) being a C2 neural network, specifically DRUNet [104], pre-trained for

denoising grayscale or color images. And the denoiser is carefully trained to ensure

that gσ approximately has an Lgσ -Lipschitz gradient with Lgσ < 1. The overall

denoiser Dσ is called a proximal denoiser, because it behaves like a proximal operator

as shown in Proposition 5.1. More discussions on this proximal denoiser can also be

found in [35, 89, 33].

Proposition 5.1. (See [38, Prop. 1]) Let gσ : Rn1×n2 → R be a C2 function with

∇gσ being Lgσ-Lipschitz and Lgσ < 1. Then, for Dσ defined as in (5.4), there exists

a potential ϕσ : Rn1×n2 → [0,+∞) such that proxϕσ is one-to-one and

Dσ = proxϕσ ,

where

ϕσ(X) =

{
gσ(D−1

σ (X))− 1
2
∥D−1

σ (X)−X∥2F , if X ∈ Im(Dσ),

+∞, otherwise.
(5.6)

Moreover, ϕσ is Lgσ
Lgσ+1

-weakly convex and ϕσ(X) ≥ gσ(X) for any X ∈ Rn1×n2.

To better adapt the proximal denoiser Dσ to denoise each eigenimage Z::n, we

first consider a relaxed version of the proximal denoiser discussed in [38] as follows

Dγσ = γDσ + (1− γ) Id = Id−γ∇gσ

with parameter γ ∈ [0, 1]. Then by applying Proposition 5.1 with gγσ = γgσ, we

get that there exists a γLgσ
γLgσ+1

-weakly convex function ϕγσ such that Dγσ = proxϕγσ if

γLgσ < 1. This allows us to control the weak convexity of the regularization function

ϕγσ, leading to a wide range for the selection of step size in the algorithm that we will

propose in the next section.

Second, as eigenimages may not fall in [0, 1], we consider a shifted denoiser for

an eigenimage Z as follows

D̃γσ(Z) =
1

a
(Dγσ(aZ + b)− b) ,
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where a > 0 and b is a constant. Then

D̃γσ(Z) =
1

a

(
proxϕγσ(aZ + b)− b

)
= proxϕ̃γσ(Z),

where ϕ̃γσ(Z) = 1
a2
ϕγσ(aZ + b) and ϕ̃γσ is γLgσ

γLgσ+1
-weakly convex.

Lastly, we define the proximal denoiser prior ΦΣ(·) used in our proposed model (5.2)

for removing noise in eigenimages as follows

ΦΣ(Z) = λ

r∑
n=1

ϕ̃γσn(Z::n), (5.7)

where λ > 0 and Σ := diag(σ1, σ2, . . . , σn) with σn denoting the noise level of the

n-th eigenimage Z::n.

5.2.2 Learnable Orthogonal Basis

The orthogonal constrained set on E is the Stiefel manifold Sn3,r with n3 ≥ r. By

choosing an orthogonal basis E, the eigenimages Z::n are linearly independent to each

other. This allows us to apply the denoiser to each eigenimage Z::n independently

and the noise covariance matrix is a diagonal matrix.

In some existing works, some subspace methods consider a fixed basis for the

low-rank tensor decomposition. However, according to (5.3), this may result in false

labels. Hence, we consider the learnable basis E, which will be updated iteratively.

5.2.3 Tensor Relaxed ℓ2,p Norm for Group Sparsity Regular-
ization

The generalized group sparsity measure given in (2.2) can characterize the sparse

component along a specific direction. We choose ψ as the relaxed ℓp norm with

p ∈ (0, 1), i.e., ψ(t) = (|t|+ ε)p− εp, ε > 0 and measure the group sparsity along the

mode-3 direction. Then the corresponding generalized tensor group sparsity measure
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of a third order tensor S, denoted as ∥S∥p2,p,ε, is defined by

∥S∥p2,p,ε =

n1∑
i=1

n2∑
j=1

(∥sij:∥2 + ε)p =

I3∑
i3=1

I2∑
i2=1

(
I1∑
i1=1

s2i1i2i3

) p
2

. (5.8)

And the proximal operator of ∥ · ∥p2,p,ε can be efficiently computed.

5.3 The PnP-PBCD Algorithm

In this section, we propose a PnP-PBCD method for solving model (5.2), which

is a nonconvex and nonsmooth optimization problem over a Stiefel manifold. In

particular, in model (5.2), both ∥ · ∥2,ψ and ΦΣ are weakly convex functions.

Let F denote the objective function of the proposed model (5.2) and

H(Z, E,S) :=
δ

2
∥Z ×3 E + S −O∥2F . (5.9)

Then a PnP-PBCD algorithm for problem (5.2) is summarized as follows

Sk+1 ∈ argmin
S

H(Zk, Ek,S) + τ∥S∥2,ψ +
αS

2
∥S − Sk∥2F , (5.10)

Ek+1 ∈ argmin
E∈Sn3,r

H(Zk, E,Sk+1) +
αE
2
∥E − Ek∥2F , (5.11)

Zk+1 = argmin
Z

H(Z, Ek+1,Sk+1) + ΦΣ(Z) +
αZ

2
∥Z − Zk∥2F , (5.12)

where the step sizes αS , αZ ≥ 0 and αE > 0.

In the following, we present the details for computing each update. We will

conduct a convergence analysis for the proposed PnP-PBCD algorithm in the next

section.
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5.3.1 The Update of S

Combining the function H and the proximal term in (5.10), the update Sk+1 can be

written in terms of the proximal operator of ∥ · ∥2,ψ as follows

Sk+1 ∈ proxτ̃∥·∥2,ψ
(
Sk − α̃S

(
Sk + Zk ×3 E

k −O
))
, (5.13)

where τ̃ = τ
δ+αS

and α̃S = δ
δ+αS

. Since ∥ · ∥2,ψ is separable, the (i, j)-th mode-3 fiber

of Sk+1 can be computed via

sk+1
ij: ∈ proxτ̃ψ◦∥·∥2(ŝ

k
ij:),

where ŝkij: is the (i, j)-th mode-3 fiber of Ŝk = Sk − α̃S
(
Sk + Zk ×3 E

k −O
)
.

5.3.2 The Update of E

Before we compute the update of E given in (5.11), we first introduce a lemma for

the optimization problems over a Stiefel manifold as follows.

Lemma 5.1. Let X ∈ Rn×r, A ∈ Rr×m and B ∈ Rn×m. Then the solutions to the

following problems are the same:

min
X∈Sn,r

1

2
∥XA−B∥2F , (5.14a)

min
X∈Sn,r

−⟨X,BA⊤⟩, (5.14b)

and

min
X∈Sn,r

1

2
∥X −BA⊤∥2F . (5.14c)

Proof. If X ∈ Sn,r, i.e., X⊤X = Ir, we have

∥XA−B∥2F =∥A∥2F − 2⟨X,BA⊤⟩+ ∥B∥2F

=∥X −BA⊤∥2F − ∥BA⊤∥2F − r2 + ∥A∥2F + ∥B∥2F . (5.15)

Then the equivalence is immediately achieved.
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Recall that for unfolding of tensors

L = Z ×3 E if and only if L(3) = EZ(3). (5.16)

Then the function H can be rewritten as H(Z, E,S) = δ
2
∥EZ(3)+(S−O)(3)∥2F , which

has the same form as (5.14a). It follows from Lemma 5.1 that minimizing (5.14a)

is equivalent to minimizing more simple forms as (5.14b) and (5.14c). In particular,

we consider H̃(Z, E,S) = −δ⟨E, (O−S)(3)(Z(3))
⊤⟩ of the form as (5.14b). Then the

update of E can be computed as follows

Ek+1 ∈ argmin
E∈Sn3,r

H̃(Zk, E,Sk+1) +
αE
2
∥E − Ek∥2F , (5.17)

= ProjSn3,r
(
Ek + α̃E(Sk+1 −O)(3)(Zk(3))⊤

)
,

where α̃E = δ
αE

and ProjSn3,r denotes the projection onto the Stiefel manifold Sn3,r.

And it follows from Lemma 3.1 that the projection ProjSn3,r has a closed form and

Ek+1 can be computed as follows

Ek+1 = Uk+1(V k+1)⊤, with Uk+1Σ̂k+1(V k+1)⊤ = Êk, (5.18)

where Êk = Ek + α̃E(Sk+1 − O)(3)(Zk(3))⊤, Uk+1Σ̂k+1(V k+1)⊤ is a reduced SVD of

Êk, Uk+1 ∈ Rn3×r, V k+1 ∈ Rr×r, and Σ̂k+1 ∈ Rr×r.

5.3.3 The Update of Z

By applying E⊤E = Ir, we have

∥Z ×3 E − L∥2F = ∥Z − L ×3 E
⊤∥2F .

Then the subproblem for updating Z can be reformulated as

Zk+1 ∈ argmin
Z

ΦΣ(Z) +
δ

2
∥Z + (Sk+1 −O)×3 (Ek+1)⊤∥2F +

αZ

2
∥Z − Zk∥2F ,

= proxα̃ZΦΣ

(
Zk − α̃Z(Zk − (O − Sk+1)×3 (Ek+1)⊤

)
, (5.19)
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where α̃Z = δ
δ+αZ

. By choosing the parameter λ = 1
α̃Z

in ΦΣ defined in (5.7), we

have α̃ZΦΣ(Z) =
∑r

n=1 ϕ̃
γ
σn(Z::n). Then each eigenimage, i.e., Zk+1

::n can be computed

via the shifted and relaxed proximal denoiser as follows

Zk+1
::n = D̃γσn(Ẑk

::n), (5.20)

where Ẑk = Zk − α̃Z(Zk − (O − Sk+1)×3 (Ek+1)⊤).

All in all, the proposed PnP-PBCD algorithm for model (5.2) is summarized in

Algorithm 2.

Algorithm 2 The PnP-PBCD algorithm for model (5.2)

1: Initialize (Z0, E0,S0) with (E0)⊤E0 = Ir.
2: Set parameters αS , αZ ≥ 0 and αE > 0.
3: Set k = 0.
4: repeat
5: Compute Sk+1 by (5.13).
6: Compute Ek+1 by (5.18).
7: Compute Zk+1 by (5.19).
8: k ← k + 1.
9: until the stopping criterion is met.

Output: (Zk, Ek,Sk).

5.4 Convergence Analysis

In this section, we conduct a convergence analysis of the proposed PnP-PBCD

method. We first define the first order optimality condition of problem (5.2) and

then prove that any accumulation point of the sequence generated by the PnP-PBCD

method given in Algorithm 2 is a stationary point of problem (5.2).

5.4.1 The First Order Optimality Condition

We define the first order optimality condition of the orthogonal constrained opti-

mization problem as in (5.2). The point (Z̄, Ē, S̄) is a first order stationary point of
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problem (5.2) if 0 ∈ ∂F (Z̄, Ē, S̄), that is,

0 ∈ ∇SH(Z̄, Ē, S̄) + τ∂∥ · ∥2,ψ(S̄), (5.21a)

0 = gradE H(Z̄, Ē, S̄), Ē⊤Ē = Ir, (5.21b)

0 ∈ ∇ZH(Z̄, Ē, S̄) + ∂ΦΣ(Z̄), (5.21c)

where gradE H(Z̄, Ē, S̄) denotes the Riemannian gradient of H with respect to E

evaluated at (Z̄, Ē, S̄), and ∂∥ · ∥2,ψ and ∂ΦΣ denote the subdifferentials of ∥ · ∥2,ψ

and ΦΣ, respectively.

5.4.2 Subsequence Convergence

We present some assumptions for problem (5.2) as follows.

(A1) τ∥ · ∥2,ψ is ρ1-weakly convex.

(A2) ΦΣ is coercive and ρ2-weakly convex.

Note that the coercivity on ΦΣ required in Assumption (A2) can be achieved by the

coercivity of gσ, according to [38].

We first show two lemmas that we will use in the convergence analysis. The

first lemma is for analyzing the updates of Z and S, and the second lemma is for

understanding the update of E.

Lemma 5.2. Let f : Rd → (−∞,+∞] be a ρ-weakly convex function, and let h :

Rd → R be a differentiable and µ-strongly convex function. If we have

x̂ = argmin
x

f(x) + h(x) +
α

2
∥x− x0∥2, (5.22)

where µ− ρ+ α > 0, then

f(x0) + h(x0) ≥ f(x̂) + h(x̂) +
µ− ρ+ α

2
∥x0 − x̂∥2. (5.23)
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Proof. Since f(x) + ρ
2
∥x − x0∥2 and h(x) − µ

2
∥x − x0∥2 are convex, we have f(x) +

h(x) + α
2
∥x− x0∥2 is (µ− ρ+ α)-strongly convex. Then (5.22) is well defined and x̂

is uniquely obtained.

Next, for the ρ-weakly convex function f , it follows from Lemma 2.1 in [16] that

f(x0) ≥ f(x̂) + ⟨u, x0 − x̂⟩ −
ρ

2
∥x0 − x̂∥2,

for ∀u ∈ ∂f(x̂). And for the differentiable and µ-strongly convex function h, it

follows from [62] that

h(x0) ≥ h(x̂) + ⟨∇h(x̂), x0 − x̂⟩+
µ

2
∥x0 − x̂∥2.

Summing the inequalities above, we obtain

f(x0) + h(x0) ≥ f(x̂) + h(x̂) + ⟨u+∇h(x̂), x0 − x̂⟩+
µ− ρ

2
∥x0 − x̂∥2.

By the update of x̂ in (5.22), we have 0 ∈ ∂f(x̂) + ∇h(x̂) + α(x̂ − x0). That is,

−∇h(x̂) + α(x0 − x̂) ∈ ∂f(x̂). Substituting u = −∇h(x̂) + α(x0 − x̂) into the above

inequality, we obtain (5.23).

Proposition 5.2. Let X ∈ Rn×r, A ∈ Rr×m and B ∈ Rn×m. And let H1, H2, and

H3 denote the objective functions of (5.14a), (5.14b), and (5.14c), respectively. Then

we have

gradH1(X) = gradH2(X) = gradH3(X). (5.24)

Proof. We first compute the gradients of H1, H2, and H3 as follows

∇H1 = (XA−B)A⊤ = XAA⊤ +∇H2,

∇H2 = −BA⊤,

∇H3 = X −BA⊤ = X +∇H2.
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Then by projecting the gradients above onto the tangent space of the Stiefel manifold

at X, we can compute the Riemannian gradients of H1, H2, and H3. Since ProjTXSm,n

is linear, we have

gradH1(X) = ProjTXSm,n(XAA⊤) + gradH2(X)

and

gradH3(X) = ProjTXSm,n(X) + gradH3(X).

It is easy to verify that

ProjTXSm,n(XAA⊤) = XAA⊤ − 1

2
X(X⊤XAA⊤ + (XAA⊤)⊤X) = 0

and ProjTXSm,n(X) = X − 1
2
X(X⊤X +X⊤X) = 0. Therefore, we obtain (5.24).

Next, we prove the non-increasing monotonicity of the objective sequence

{F (Zk, Ek,Sk)} and the boundedness of the sequence {(Zk, Ek,Sk)} generated by

Algorithm 2.

Theorem 5.1. Assume that assumptions (A1) and (A2) are satisfied. Let {(Zk, Ek,Sk)}

be the sequence generated by Algorithm 2 with αS > ρ1 − δ and αZ > ρ2 − δ. Then

the following statements hold.

(i) The sequence {F (Zk, Ek,Sk)} of function values at the iteration points de-

creases monotonically, and

F (Zk−1, Ek−1,Sk−1)− F (Zk, Ek,Sk)

≥c1
2

(
∥Sk − Sk−1∥2F + ∥Ek − Ek−1∥2F + ∥Zk −Zk−1∥2F

)
,

(5.25)

for some c1 > 0.

(ii) The sequence {(Zk, Ek,Sk)} is bounded.
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(iii) lim
k→∞
∥Sk − Sk−1∥F = 0, lim

k→∞
∥Ek − Ek−1∥F = 0, and lim

k→∞
∥Zk − Zk−1∥F = 0,

for any i = 1, 2, 3.

Proof. (i) The updates of S and Z have the form of (5.22). Then Lemma 5.2 implies

that

F (Zk−1, Ek−1,Sk−1)− F (Zk−1, Ek−1,Sk) ≥ δ − ρ1 + αS

2
∥Sk − Sk−1∥2F

and

F (Zk−1, Ek,Sk)− F (Zk, Ek,Sk) ≥ δ − ρ2 + αZ

2
∥Zk −Zk−1∥2F .

Next, it follows from (5.15) and (5.17), we have

F (Zk−1, Ek−1,Sk)− F (Zk−1, Ek,Sk)

=H̃(Zk−1, Ek−1,Sk)− H̃(Zk−1, Ek,Sk)

≥αE
2
∥Ek − Ek−1∥2F .

Combining the inequalities above, we obtain (5.25) with c1 = min{δ−ρ1+αS , αE, δ−

ρ2 + αZ}.

(ii) Since (Ek)⊤Ek = Ir, we have the sequence {Ek} is bounded. By (i), we have

F (Zk, Ek,Sk) ≤ F (Z0, E0,S0). Also, we observe that F (Zk, Ek,Sk) ≥ τ∥Sk∥2,ψ +

ΦΣ(Zk) ≥ 0. Since both ∥ · ∥2,ψ and ΦΣ are coercive, that is,

lim
∥S∥F→∞

∥S∥2,ψ =∞ and lim
∥Z∥F→∞

ΦΣ(Z) =∞,

we have the sequences {Sk} and {Zk} are bounded.

(iii) Let K be an arbitrary integer. Summing (5.25) from k = 1 to K − 1, we
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have

K∑
k=1

(
∥Sk − Sk−1∥2F + ∥Ek − Ek−1∥2F + ∥Zk −Zk−1∥2F

)
≤ 2

c1

(
F (Z0, E0,S0)− F (ZK , EK ,SK)

)
≤ 2

c1
F (Z0, E0,S0).

Taking the limits of both sides of the inequality as K →∞, we have

∞∑
k=1

(
∥Sk − Sk−1∥2F + ∥Ek − Ek−1∥2F + ∥Zk −Zk−1∥2F

)
<∞.

Then assertion (iii) immediately holds.

Corollary 5.1. Assume that assumptions (A1) and (A2) are satisfied. Let {(Zk, Ek,Sk)}

be the sequence generated by Algorithm 2 with αS > ρ1 − δ and αZ > ρ2 − δ. Then

lim
k→∞
∥Zk ×3 E

k −Zk−1 ×3 E
k−1∥F = 0.

Proof. We have

∥Zk ×3 E
k −Zk−1 ×3 E

k−1∥F

≤∥(Zk −Zk−1)×3 E
k∥F + ∥Zk−1 ×3 (Ek − Ek−1)∥F

≤
√
r∥Zk −Zk−1∥F + c2∥Ek − Ek−1∥F , (5.26)

where c2 = maxk ∥Zk∥F < ∞ according to assertion (ii) in Theorem 5.1. Then by

assertion (iii) in Theorem 5.1, the result holds.

Lastly, we show that every convergent subsequence converges to the first order

stationary point of problem (5.2).

80



Theorem 5.2. Assume that assumptions (A1) and (A2) are satisfied. Let {(Zk, Ek,Sk)}

be the sequence generated by Algorithm 2 with αS > ρ1−δ and αZ > ρ2−δ. Then ev-

ery accumulation point of {(Zk, Ek,Sk)} is a first order stationary point of problem

(5.2).

Proof. By the updates of Sk, Ek and Zk given in (5.10), (5.11), and (5.12), respec-

tively, we have for any k = 1, 2, . . .

0 ∈ ∇SH(Zk−1, Ek−1,Sk) + τ∂∥ · ∥2,ψ(Sk) + αS(Sk − Sk−1),

0 = gradE H̃(Zk−1, Ek,Sk), (Ek)⊤Ek = Ir,

0 ∈ ∇ZH(Zk, Ek,Sk) + ∂ΦΣ(Zk) + αZ(Zk −Zk−1).

Then we have

AkS : = −αS(Sk − Sk−1) +∇SH(Zk, Ek,Sk)−∇SH(Zk−1, Ek−1,Sk) (5.27a)

∈ ∇SH(Zk, Ek,Sk) + τ∂∥ · ∥2,ψ(Sk),

AkE : = gradE H̃(Zk, Ek,Sk)− gradE H̃(Zk−1, Ek,Sk) (5.27b)

= gradE H(Zk, Ek,Sk),

and

AkZ : = −αZ(Zk −Zk−1) (5.27c)

∈ ∇ZH(Zk, Ek,Sk) + ∂ΦΣ(Zk).

Note that (5.27b) is obtained by Proposition 5.2. Furthermore, since∇SH(Z, E,S) =

δ(Z ×3 E + S −O), by (5.26) we have

∥AkS∥F ≤ αS∥Sk − Sk−1∥F + δ∥Zk ×3 E
k −Zk−1 ×3 E

k−1∥F

≤ αS∥Sk − Sk−1∥F + δ
√
r∥Zk −Zk−1∥F + c2δ∥Ek − Ek−1∥F . (5.28)
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Since gradE H̃(Z, E,S) = ProjTESn3,r
(
−δ(O − S)(3)(Z(3))

⊤), we have

∥AkE∥F ≤
∥∥∥ProjT

Ek
Sn3,r

(
−δ(O − Sk)(3)(Zk(3) −Zk−1

(3) )⊤
)∥∥∥

F

≤ (1 + r2)∥δ(O − Sk)(3)(Zk(3) −Zk−1
(3) )⊤∥F

≤ (1 + r2)δc3∥Zk −Zk−1∥F ,

where c3 = maxk ∥O − Sk∥F . Also, we have

∥AkZ∥F ≤ αZ∥Zk −Zk−1∥F .

Suppose that {(Zkl , Ekl ,Skl)} is a subsequence of {(Zk, Ek,Sk)} which converges

to (Z̄, Ē, S̄) as l →∞. It immediately follows from Theorem 5.2 (iii) that AklS → 0,

AklE → 0, and AklZ → 0, as l→∞. Also, due to the continuity of ∇SH, gradE H and

∇ZH, we have

∇SH(Zkl , Ekl ,Skl)→ ∇SH(Z̄, Ē, S̄),

gradE H(Zkl , Ekl ,Skl)→ gradE H(Z̄, Ē, S̄),

∇ZH(Zkl , Ekl ,Skl)→ ∇ZH(Z̄, Ē, S̄),

as l→∞. Then (Z̄, Ē, S̄) satisfies (5.21b) for the first order optimality condition of

problem (5.2).

Next, we show (Z̄, Ē, S̄) satisfies (5.21a) and (5.21c). Since ∥ · ∥2,ψ is lower

semicontinuous, we have

lim inf
l→∞

∥Skl∥2,ψ ≥ ∥S̄∥2,ψ.

Then according to (5.10), we have

H(Zkl−1, Ekl−1,Skl) + τ∥Skl∥2,ψ +
αS

2
∥Skl − Skl−1∥2F

≤H(Zkl−1, Ekl−1, S̄) + τ∥S̄∥2,ψ +
αS

2
∥S̄ − Skl−1∥2F .
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The continuity of H implies that liml→∞H(Zkl−1, Ekl−1, S̄)−H(Zkl−1, Ekl−1, S̄) = 0.

By rewriting the above inequality and taking the limit superior of both sides as

l→∞, we have

lim sup
l→∞

∥Skl∥2,ψ ≤ ∥S̄∥2,ψ.

Recall the definition of (limiting) subdifferential. Since we have Skl → S̄, ∥Skl∥2,ψ →

∥S̄∥2,ψ, AklS −∇SH(Zkl , Ekl ,Skl) ∈ τ∂∥ · ∥2,ψ(Skl) and AklS −∇SH(Zkl , Ekl ,Skl) →

∇SH(Z̄, Ē, S̄), as l→∞, we have (5.21a) is satisfied.

Similarly, we can show (5.21c) is satisfied.

Remark 5.1. The parameter αE can be chosen as 0, only if (O−S̄)(3)(Z̄(3))
⊤ is full-

rank. In this case, we can achieve lim
k→∞
∥Ek − Ek−1∥F = 0 using (5.18), lim

k→∞
∥Zk −

Zk−1∥F = 0, and lim
k→∞
∥Sk − Sk−1∥F = 0, without using αE > 0.

5.5 Numerical Experiments

In this section, we conduct numerical experiments for anomaly detection in noisy

HSIs. We compare the proposed method with RX [67], LRASR [94], LSCTV [24],

TLRSR [81], Auto-AD [82] methods. All the numerical experiments are executed on

a personal desktop with an Intel Core i7 9750H at 2.60 GHz with 16 GB RAM.

The proposed anomaly detection method and the competing methods are tested

on four HSIs from the classic “airport-beach-urban” dataset [40], where items such

as boats, cars, and airplanes are labeled as anomaly objects. The details of the test

HSIs are shown as follows.

• “Airport” was captured by the airborne visible/infrared imaging spectrometer

(AVIRIS) [28] sensor over Los Angeles, with a spatial resolution of 7.1 m. The

HSI size is 100× 100× 205.
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• “Beach” was captured by the ROSIS-03 sensor in Pavia, with a spatial resolu-

tion of 1.3 m. The HSI size is 150× 150× 102.

• “Urban 1” and “Urban 2” were also captured by the AVIRIS over Los Angeles,

with a spatial resolution of 7.1 m. The HSIs are of size 100× 100× 205.

We test all the methods for anomaly detection on the original HSIs and on simulated

noisy HSIs degraded by Gaussian noise with a noise level of 0.03.

To evaluate the accuracy of object detection, we plot the receiver operating char-

acteristic (ROC) curve [41] and calculate the area under the ROC curve (AUC) [42].

The ROC curve plots the probability of detection vs the false alarm rate for various

possible thresholds. The closer the ROC curve is to the upper-left corner and the

larger AUC score, the better the detection performance.

Table 5.1: Comparison of average AUC scores and average computational time ob-
tained by different methods.
Noise

Index RX LRASR LSCTV Auto-AD TLRSR
PnP-PBCD

level (ours)

0
Ave AUC 0.9550 0.8702 0.9137 0.9437 0.9500 0.9663
Ave Time 0.21 4.06 364.13 3.75 4.79 14.86

0.03
Ave AUC 0.8948 0.8831 0.9089 0.9478 0.7939 0.9607
Ave Time 0.21 5.02 382.90 4.47 5.15 13.62

Table 5.1 presents the average AUC scores and computational times of several

methods obtained from HSIs with no noise and with a noise level of 0.03. The results

demonstrate that PnP-PBCD consistently achieves superior anomaly detection per-

formance while maintaining reasonable computational efficiency. At a noise level of

0, PnP-PBCD achieves the highest average AUC score of 0.9663, outperforming all

other methods. RX and TLRSR also perform well, with scores of 0.9550 and 0.9500,

respectively. In terms of computational time, RX is the fastest, requiring only 0.21

seconds. While PnP-PBCD takes 14.86 seconds, it balances this computational cost
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with superior detection accuracy. At a noise level of 0.03, PnP-PBCD maintains

its leading position with an average AUC score of 0.9607, showcasing its robust-

ness to noise. Auto-AD follows closely with a score of 0.9478, while RX achieves

0.8948. Computational times remain consistent, with RX retaining the shortest time

of 0.21 seconds, and PnP-PBCD achieving a good balance between accuracy and

computational cost at 13.62 seconds.

Figure 5.2 and Figure 5.3 present the ROC curves obtained from HSIs with no

noise and with a noise level of 0.03, respectively. Each figure evaluates four scenes:

Airport, Beach, Urban 1, and Urban 2. The x-axis represents the false positive rate

(log scale), and the y-axis represents the true positive rate.

(a) Airport (b) Beach

(c) Urban 1 (d) Urban 2

Figure 5.2: Comparison of ROC curves obtained by different methods from HSIs
with no noise.
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(a) Airport (b) Beach

(c) Urban 1 (d) Urban 2

Figure 5.3: Comparison of ROC curves obtained by different methods from HSIs
with a noise level of 0.03.

In Figure 5.2, which corresponds to noise-free data, PnP-PBCD (red curve) con-

sistently outperforms all other methods, achieving higher true positive rates at lower

false positive rates across all scenes. The method shows a particularly clear advantage

in Urban 1 and Urban 2. While Auto-AD (pink curve) and RX (green curve) show

competitive performance in certain regions, they generally underperform compared

to PnP-PBCD.

In Figure 5.3, with a noise level of 0.03, PnP-PBCD maintains its strong per-

formance across all scenarios, highlighting its robustness. Its ROC curves remain

above those of competing methods in most cases, particularly at lower false positive

rates. Auto-AD performs well under noisy conditions, achieving competitive results
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in several scenes. However, methods such as TLRSR (yellow curve) and RX are more

sensitive to noise, showing reduced performance, particularly in Urban 1. LRASR

demonstrates strong performance in some scenes, such as Urban 1 and Urban 2, but

struggles in others, such as Airport and Beach.

Overall, these results highlight the robustness and reliability of the proposed

PnP-PBCD method. It not only delivers superior detection performance in noise-

free settings but also demonstrates resilience to noise, maintaining consistently high

AUC scores and favorable ROC curves across diverse test scenarios. While RX excels

in computational efficiency and Auto-AD performs well in noisy conditions, PnP-

PBCD stands out as a comprehensive solution that effectively balances accuracy,

robustness, and efficiency for anomaly detection in HSIs.

Lastly, Figures 5.4-5.9 illustrate the visual comparisons of anomaly detection

using different methods, showcasing various scenes under both noise-free and noisy

conditions. These comparisons highlight the performance of RX, LRASR, LSCTV,

Auto-AD, TLRSR, and the proposed PnP-PBCD method in terms of their ability

to accurately detect anomalies while avoiding noise interference.

In noise-free conditions, as shown in Figures 5.4, 5.6, and 5.5, the proposed

PnP-PBCD method consistently provides the most accurate and complete detection

results. In all scenes, PnP-PBCD achieves strong alignment with the ground truth,

detecting anomalies with well-defined boundaries and high density. Auto-AD also

performs effectively, capturing the anomalies with a slightly lower intensity compared

to PnP-PBCD, but without significant omissions. In contrast, RX, LRASR, and

LSCTV exhibit incomplete or scattered detections, often missing key anomalies or

introducing artifacts. TLRSR, while capturing many anomalies, tends to include

additional noise or false positives, reducing its overall precision in comparison to

PnP-PBCD and Auto-AD.

When noise is presented, as shown in Figures 5.7, 5.8, and 5.9, the robustness of

87



each method becomes more apparent. The proposed PnP-PBCD method maintains

its great performance, effectively distinguishing anomalies from noise and preserving

high detection density and accuracy. Auto-AD also remains reliable under noisy

conditions, producing comparable results to its noise-free performance. In contrast,

RX and TLRSR are significantly affected by the noise, frequently misclassifying

noise as anomalies, leading to high false positive rates. LRASR and LSCTV also

struggle in noisy environments, showing reduced detection accuracy and failing to

adapt effectively to the added noise.

All in all, the proposed PnP-PBCD method is an efficient method for anomaly

detection, outperforming the competing methods both numerically and visually, es-

pecially in noisy HSIs.
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(a) Observed HSI (b) Ground truth (c) PnP-PBCD (ours)

(d) RX (e) LRASR (f) LSCTV

(g) Auto-AD (h) TLRSR

Figure 5.4: Comparison of anomaly objects detected by different methods from “Air-
port” with no noise.
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(a) Observed HSI (b) Ground truth (c) PnP-PBCD (ours)

(d) RX (e) LRASR (f) LSCTV

(g) Auto-AD (h) TLRSR

Figure 5.5: Comparison of anomaly objects detected by different methods from
“Beach” with no noise.
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(a) Observed HSI (b) Ground truth (c) PnP-PBCD (ours)

(d) RX (e) LRASR (f) LSCTV

(g) Auto-AD (h) TLRSR

Figure 5.6: Comparison of anomaly objects detected by different methods from “Ur-
ban 1” with no noise.
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(a) Observed HSI (b) Ground truth (c) PnP-PBCD (ours)

(d) RX (e) LRASR (f) LSCTV

(g) Auto-AD (h) TLRSR

Figure 5.7: Comparison of anomaly objects detected by different methods from
“Beach” with a noise level of 0.03.
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(a) Observed HSI (b) Ground truth (c) PnP-PBCD (ours)

(d) RX (e) LRASR (f) LSCTV

(g) Auto-AD (h) TLRSR

Figure 5.8: Comparison of anomaly objects detected by different methods from “Ur-
ban 1” with a noise level of 0.03.
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(a) Observed HSI (b) Ground truth (c) PnP-PBCD (ours)

(d) RX (e) LRASR (f) LSCTV

(g) Auto-AD (h) TLRSR

Figure 5.9: Comparison of anomaly objects detected by different methods from “Ur-
ban 2” with a noise level of 0.03.
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Chapter 6

Conclusion and Future Work

This chapter concludes the thesis and points out some possible research directions

related to the work done in this thesis.

6.1 Conclusion

This thesis presented a comprehensive study on HSI restoration and anomaly detec-

tion, addressing key challenges associated with noise, and high-dimensional data. By

utilizing nonlocal low-rank tensor regularization and tensor group sparsity measure

∥·∥2,ψ, along with spatial and spectral priors of HSIs or deep learning based proximal

denoiser priors, we developed two optimization models and iterative algorithms with

convergence guarantees. These models effectively addressed tasks in HSI processing

such as mixed noise removal and hyperspectral anomaly detection.

6.2 Future Work

Some possible future research directions extended from this thesis are presented as

follows.

• The proposed P-BCD algorithm presented in Algorithm 1 updates the variables

associated with orthogonal constraints using a projection given in Lemma 3.1.
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However, conducting the SVD on a matrix with large sizes may be time-

consuming. We may propose new algorithms that conduct projections onto

the tangent space of the Stiefel manifold to avoid implementing SVD. For ex-

ample, we may extend the manifold proximal gradient algorithm [12] or the

alternating manifold proximal gradient algorithm [13] from solving objective

functions with one or two variables to solving objective functions with multiple

variables, specifically for our model (2.1).

• The proposed PnP-PBCD method presented in Algorithm 2 utilizes the proxi-

mal denoiser proposed in [39, 38]. However, the existing proximal-type denois-

ers are limited to the formulation proposed in [39, 38] and a specific pre-trained

neural network for denoising grayscale or color images, called DRUNet. Hence,

we may develop new proximal-type denoisers which can denoise HSIs directly

without using eignimages band by band.

• In addition to the subsequence convergence that we have proved for both the P-

BCD algorithm and the PnP-PBCD method, we may show the whole sequence

convergence of both methods by assuming the KL property on the objective

functions.
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