THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk




ORTHOGONAL CONSTRAINED MINIMIZATION WITH
TENSOR GROUP SPARSITY REGULARIZATION FOR
HYPERSPECTRAL IMAGE RESTORATION

SHIJIE YU

PhD

The Hong Kong Polytechnic University
2025



The Hong Kong Polytechnic University

Department of Applied Mathematics

Orthogonal Constrained Minimization with Tensor
Group Sparsity Regularization for Hyperspectral
Image Restoration

Shijie Yu

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

December 2024

i



Certificate of Originality

I hereby declare that this thesis is my own work and that, to the best of my knowledge
and belief, it reproduces no material previously published or written, nor material
that has been accepted for the award of any other degree or diploma, except where

due acknowledgement has been made in the text.

(Signed)

YU Shijie (Name of student)

il



Dedicated to my family.

v



Abstract

Hyperspectral images (HSIs) captured by hyperspectral sensors often suffer from
noise, blurring, and other degradations, which can significantly reduce their visual
quality and the accuracy of the subsequent tasks. Traditional HSI restoration meth-
ods typically process the spatial information of HSIs on a band-by-band basis, which
neglects the spectral information inherent. Also, those methods often use elemen-
twise sparsity measures to characterize sparse components, which fail to recognize
the linear structures within these components. This thesis aims to develop new ap-
proaches based on (nonlocal) low-rank tensor regularization and tensor group spar-
sity 5, norm (0 < p < 1), along with some spatial and spectral priors, to provide
a more comprehensive method that preserves the structure of HSIs. It includes two
optimization models and two algorithms for solving two important problems in HSI
processing.

Firstly, we present a class of orthogonal constrained minimization problems to
tackle HSI restoration problems, such as removing mixed noise like Gaussian noise,
stripes, and dead lines. The proposed class of models employs two types of regu-
larization terms. One is a tensor group sparsity regularization term for removing
structured noise. We use the tensor ¢, norm, extended from the matrix £, , norm,
and provide a solution for the proximal operator of the tensor {3, norm. The other
term is a new sparsity-enhanced nonlocal low-rank tensor regularization for removing

Gaussian noise. This regularization term exploits the spatial nonlocal self-similarity



and spectral correlation in HSIs to enhance restoration, ensuring that similar pat-
terns in distant regions are jointly considered for improved denoising. Specifically, we
propose a weighted tensor ¢, , norm to enhance sparsity in the core tensor, promoting
low-rankness in nonlocal similar matching blocks.

Secondly, we adopt a proximal block coordinate descent (P-BCD) algorithm to
solve the proposed nonconvex nonsmooth minimization with orthogonal constraints.
The solution to each subproblem in the P-BCD algorithm can be efficiently com-
puted. The first order optimality condition of the problem is defined by substa-
tionarity, symmetry, and feasibility. We prove that any accumulation point of the
generated sequence by the P-BCD algorithm is a first order stationary point.

Thirdly, we apply the proposed approach to HSI denoising and destriping, and
conduct numerical experiments to validate the superiority of our proposed approach.
We test it on simulated noisy HSIs generated from several datasets under various
mixed noise conditions, as well as on a real dataset. The results demonstrate that
our method outperforms others in metrics such as mean peak signal-to-noise ratio. In
terms of visual quality, our method effectively restores HSIs by preserving important
image details and removing noise, particularly highly structured noise like stripes
and dead lines.

Lastly, we combine the proposed model with a deep neural network to incorporate
an implicit proximal denoiser prior. Specifically, for detecting anomaly objections
in noisy HSIs, the tensor ¢;, norm in the original model is utilized to characterize
the anomalies, while the implicit proximal denoiser prior is employed to remove
Gaussian noise. The P-BCD method remains effective for solving the newly proposed
model, with certain steps updated using a proximal denoiser within a plug-and-
play (PnP) framework. We evaluate this PnP version of the P-BCD method (PnP-
PBCD) on anomaly detection in HSI contaminated with or without Gaussian noise.

The results demonstrate that the proposed method can effectively detect anomalous
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objects, whereas competing methods may mistakenly identify noise as anomalies or
incorrectly match the anomalous objects due to noise interference.

In summary, the orthogonal constrained minimization models with tensor group
sparsity regularization are well-suited for various image restoration problems. Ad-
ditionally, the P-BCD method and its PnP version are reliable with convergence

guarantees.
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Chapter 1

Introduction

Hyperspectral images (HSIs) are collected by hyperspectral sensors across the elec-
tromagnetic spectrum. For a three-dimensional (3-D) HSI, the first two dimensions
represent spatial information, and the third dimension represents the spectral infor-
mation of a scene. An illustration of an HSI is shown in Figure 1.1. HSIs are widely
used for various applications [64, 71, 65, 108] such as object detection [98], material

identification [10, 27], etc.

Spatial information Wavelength(um)

Figure 1.1: An illustrative figure of an HSI.

HSIs are often contaminated by various types of noise during acquisition, which
can severely degrade the quality and reliability of the extracted spectral informa-
tion. Common noise types include Gaussian noise, impulse noise, and stripe noise,
which may result from atmospheric interference, sensor limitations, or operational

conditions. Such mixed noise presents a challenge in retaining the spatial and spec-
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tral integrity of HSI data, necessitating advanced denoising techniques to effectively
recover the underlying true signal.

In addition to denoising, anomaly detection is another critical task in HSIs, partic-
ularly for identifying objects or materials that deviate from the typical background.
Anomalies might represent rare minerals in geological surveys, contaminants in agri-
cultural products, or specific targets in defense applications. Detecting these anoma-
lies is complicated by the high-dimensional nature of HSI data and the potential for
similar anomalies to be masked by noise. Effective anomaly detection thus requires
methods capable of isolating distinctive spectral signatures without being misled by
noise or common background features.

Both denoising and anomaly detection share overlapping challenges, as they aim
to preserve essential spectral-spatial structures while suppressing noise and distin-
guishing subtle anomalies. This duality necessitates robust algorithms that leverage
spatial and spectral redundancies in HSI data. The development of models that can
simultaneously address both noise and anomaly detection issues is key to advanc-
ing the field of hyperspectral imaging and maximizing its applicability in real-world

scenarios.

1.1 HSI Denoising and Destriping

HSI denoising and destriping have become an essential step for tasks in HSI pro-
cessing. Many methods have been proposed to remove Gaussian noise in HSIs.
Conventional 2-D methods [15, 21], processing HSIs band by band, do not fully
utilize the strong correlation between adjacent bands. 3-D methods such as block-
matching 4-D filtering (BM4D) [55], spectral-spatial adaptive hyperspectral total
variation (SSAHTV) model [99], and sparse representation methods [107, 92] incor-

porate both spatial and spectral information and outperform conventional methods.



However, those methods may fail to remove non-Gaussian noise.

In real-world scenarios, HSIs are often contaminated by more than one type of
noise due to atmospheric effects and instrument noise. Various methods have been
proposed to remove the mixed noise, including low-rank matrix based methods, low-
rank tensor based methods, and deep learning based methods. Low-rank matrix
based methods [29, 102] reshape an HSI into a matrix and impose low-rankness
on the reshaped HSI. Zhang et al. [103] formulated the HSI denoising problem as
a low-rank matrix factorization problem and solved it by the “Go Decomposition”
algorithm; Zhang et al. [102] proposed a double low-rank matrix decomposition which
utilizes the ¢; norm for the impulse noise and the matrix nuclear norm for stripes, and
adopted augmented Lagrangian method (ALM) to solve the model; Yang et al. [97]
also used double low-rankness, but added spatial-spectral total variation (SSTV) to
the model and performed the decomposition on full band blocks (FBBs) rather than
the entire HSI.

Low-rank tensor based methods [47, 18, 61, 26, 108] view HSIs as tensors and
perform tensor low-rank decompositions while preserving the spatial-spectral corre-
lations. Wang et al. [83] used Tucker tensor decomposition and an anisotropic SSTV
regularization to characterize the piece-wise smooth structures of the HSI; Chen et
al. [14] proposed a low-rank tensor decomposition (LRTD) method, which utilized
the higher-order singular value decomposition (HOSVD) for low-rankness and the
{51 norm for characterizing the stripes, and adopted ALM for solving the optimiza-
tion model; Cao et al. [9] proposed a subspace-based nonlocal low-rank and sparse
factorization (SNLRSF) method for removing mixed noise in HSI, which conducted
nonlocal low-rank factorization via successive singular value decomposition (SVD);
Xiong et al. [93] proposed the LRTFLO method using low-rank block term decompo-
sition and spectral-spatial ¢y gradient regularization to achieve gradient smoothness.

Recently, some deep neural networks [7, 100, 86] have been proposed to denoise
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HSIs. Quasi-recurrent neural networks (QRNN) [7] combine recurrent neural net-
works (RNN) with convolutional neural networks (CNN); the 3-D version of QRNN
(QRNN3D) [86] can effectively embed the correlation of HSIs; CNN can also be used

as a denoiser in a plug-and-play (PnP) fashion for HSI denoising [74].

1.2 Hyperspectral Anomaly Detection

Hyperspectral anomaly detection aims to identify pixels or regions in HSIs that sig-
nificantly differ from the surrounding background without prior knowledge of the
target spectral information. These pixels, often referred to as anomalies, could rep-
resent objects or materials such as aircraft, ships, vehicles, or other structures that
deviate from the natural background. Detecting such anomalies is crucial due to
their significance in various applications. For example, in environmental monitor-
ing, anomalies may indicate areas affected by pollution or disease in vegetation [63];
in the food industry, anomalies may be detected for quality control by identifying
physical defects and inconsistencies in products [88]. By leveraging the rich spectral
information provided by HSIs, the accuracy and reliability of anomaly detection can
be enhanced, thereby improving decision-making processes in fields such as security,
agriculture, and resource management.

In hyperspectral anomaly detection, the Reed-Xiaoli (RX) method, introduced
by Reed and Xiaoli in 1990 [67], is a foundational method known for its simplic-
ity and widespread adoption. The RX method assumes that background spectral
features follow a multivariate Gaussian distribution and identifies anomalies by cal-
culating the Mahalanobis distance from the background. Over time, RX has in-
spired several variants to address its limitations in real-world applications. For ex-
ample, the local RX method [58] enhances localized anomaly detection using sliding

windows for background estimation; the kernel RX method [45] maps data into



high-dimensional feature spaces to better adapt to nonlinear distributions; and the
weighted RX method [30] introduces pixel-level weighting for improving robustness
against noise. While RX and its variants are computationally efficient and serve as
benchmarks in the field, they often rely on Gaussian assumptions and are sensitive
to noise and outliers, limiting their performance in complex scenes.

In contrast to statistical approaches like RX, representation-based methods focus
on explicitly modeling the structure of HSIs without assuming a predefined distri-
bution. Li et al. [48] proposed the background joint sparse representation detection
(BJSRD) method, which reconstructs each background pixel using a sparse set of
coefficients from a dictionary. Xu et al. [94] introduced the low-rank and sparse
representation (LRASR) method, which models the background as a low-rank com-
ponent while representing anomalies as sparse components. Feng et al. [24] de-
veloped the local spatial constraint and total variation (LSC-TV) method, which
combines low-rank modeling with superpixel segmentation and total variation (TV)
regularization to effectively separate anomalies in complex scenes. To preserve the
intrinsic 3D structure of HSIs, the low-rank component is characterized using tenor
low-rank representation. For example, the tensor low-rank and sparse representa-
tion (TLRSR) method [81] utilizes the tensor singular value decomposition (t-SVD),
while the method proposed in [23] employs the tensor ring decomposition.

Deep learning methods have significantly improved hyperspectral anomaly de-
tection by extracting hierarchical features from high-dimensional data using deep
neural networks. Among these, the Auto-AD method [82], a fully convolutional
autoencoder, autonomously reconstructs the background and highlights anomalies
through reconstruction errors, eliminating the need for manual parameter tuning or
preprocessing. Other neural network models, such as stacked denoising autoencoders
(SDAs) [106] and spectral-constrained adversarial autoencoders (SC-AAE) [91], use

manifold learning and adversarial strategies to enhance anomaly detection capabil-
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ities. These approaches are highly effective in nonlinear and complex environments
but often require large datasets and significant computational resources, which can

pose challenges for real-time applications.

1.3 Preliminaries
1.3.1 Tucker Decomposition

We first present some necessary notations for tensors and preliminaries on tensor
operations, then we introduce the Tucker decomposition.

For a third order tensor X € R1"*2*% we let x;,:, denote its (i1, 43,3)-th entry,
let T4, iy yiigsr..i denoteits (4p, ..., 4—1, k41, - - -, 93)-th mode-k fiber and let X_;, de-
note its i3-th frontal slice. The mode-k unfolding of a third order tensor X" is denoted
as Xy = unfold)(&X'), which is the process to linearize all indexes except index k.
The dimensions of X are I, X H?=1, itk I;. An element x;,;,,, of X corresponds to
the position of (i, j) in matrix X{y), where j = 1 + Z?:l,l;ék(il - 1) Hi;ilm#k L.
Note that the mode-k unfolding is also called the mode-k matricization. And the in-
verse process of the mode-k unfolding of a tensor X is denoted by X = fold ) (X))
The mode-k product of X and a matrix Y € R7*/* denoted by X x, Y, is a new

tensor Z € R xIk—1xXIx k1 XT3 where

Iy,
Ri1.dg_1Jikg1-83 Z Liy.ip_1igigtr...isYjig -
ip=1
Tucker decomposition was introduced by Ledyard R. Tucker [77] in 1966. It
generalizes SVD to tensors by decomposing a tensor into a smaller core tensor and
a set of factor matrices. The Tucker decomposition of a third order tensor X can be

written as

X =G x1 Uy x9Uy x3Us,



where G € RFf1xF2xBs g the core tensor, U, € R**% are the factor matrices, and
X, denotes the mode-k product. As Tucker decomposition is not unique, several
variants have been proposed. For example, nonnegative Tucker decomposition [43]
imposes the nonnegativity on the core tensor and the factor matrices and HOSVD [17]

imposes the orthogonality on the factor matrices.

1.3.2 Block Coordinate Descent Algorithms

We first provide some preliminaries on optimization including the definitions for
(limiting) subdifferentials and proximal operators, and then review some existing
works on block coordinate descent (BCD) algorithms.

First, let f : R — (—o0,+0o0] be a proper and lower semicontinuous function
with a finite lower bound. The (limiting) subdifferential of f at x € dom f := {z €
R?: f(x) < oo}, denoted by df(z), is defined as

Of (x):={u e R": 32" — 2, f(z*) = f(z) and u* — u with u* € df (2¥) as k — oo},

where 0 f(z) denotes the Fréchet subdifferential of f at x € dom f, which is the set

of all u € RY satisfying

fW) = @)~y -z (1.1)

lim inf
vy ly — |
One can also observe that {u € R? : 2% — z, f(2*) — f(z) and v — v with u* €
Of (z¥) as k — oo} C f(xz). The function f is p-strongly convex if f — & - ||
is convex with p > 0; f is p-weakly convex if f + Z| - [|* is convex with p > 0.
The proximal operator of f with parameter A > 0 evaluated at z € R?, denoted as

prox, (), is defined as

1
prox; ;(z) = argmin | f(u) + —[lu — z||*
u€eRd 2



Note that prox,; is a set-valued map, when the minimizer is not unique, for example,
for some nonconvex functions. And prox, ; reduces to a single-valued map, when the
minimizer is unique, for example, for convex functions.

Second, we review some existing BCD algorithms for solving the following mini-
mization problem with an objective function f(zq, s, ..., 2, ) that can be expressed

as g(x1,Ta, ..., %,y) plus a sum of m block functions:

min  f(x1, %9, . .., Tm) = g(T1,Tay ..., Ty) + Zhi(%),

T1,22;-.3Tm

where g : R? x R%2 x .. x R¥" — (—o0,+o00] and h; : RY% — (—oo,+o00], i =
1,2,...,m.

The origins of BCD methods date back to the 1950s, primarily in the context
of solving decomposition problems and dynamic programming. Early works focused
on convex functions, assuming strong convexity or pseudoconvexity to ensure global
convergence. Hildreth [32] and Warga [85] formalized the idea of cyclic optimization
over block variables, laying the foundation for BCD methods. Around 2000, the work
by Tseng [76] marked a significant advancement by extending BCD to nonconvex
and nonsmooth optimization problems under conditions such as pseudoconvexity or
unique minimizers in block updates. For example, the BCD algorithm operates by
iteratively optimizing the objective function with respect to one block of variables
while fixing the others. At each iteration, a variable block i is selected, typically
using cyclic or randomized strategies. The update rule of the BCD algorithm with

a cyclic strategy is as follows

k+1 k+1 k+1 k k
Z; 1 )

€ argminf(x7", ..., 20 ], T Ty, -, Ty )

T

Recently, a variant of the BCD algorithm called the block prox-linear (BPL)

method was proposed in [95]. Then function g is assumed to be continuously differ-
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entiable and its gradient with respect to the block z; is represented as Vg, and the
update rule is given via the proximal operator as follows

xf—i—l k+1 .k k ))

k k1
€ prox,, (zf — oV, g(ai™, . aft 2l 2,

i yg—1 %

The convergence of the BPL method is guaranteed under certain conditions. For
example, the subsequence convergence can be achieved by assuming the block-wise
Lipschitz continuity of the gradient of g, well-defined proximal operators for h;, and
boundedness of the level sets of f. By further imposing the Kurdyka-Lojasiewicz
(KL) property on the objective function, the whole sequence convergence can also

be obtained.

1.3.3 Optimization over the Stiefel Manifold

We first provide some preliminaries on the Stiefel Manifold, and then review some
existing algorithms for solving optimization problems over the Stiefel Manifold.

First, the Stiefel manifold is defined as S,,, := {X € R™*" : XTX = I,} with
m > n, and its tangent space at a point X € R™ " is given by TxS,,, = {Y €
R™" . YTX + XY = 0}. A Riemannian metric on the Stiefel manifold can be
defined using the metric induced from the Euclidean inner product.

Consider the following optimization problem constrained on the Stiefel manifold

min f(X) st X'X =1,
XeRan

where f : R™*" — R with m > n. The Riemannian gradient of a smooth function
fat X is given by grad f(X) := Projrs,  (Vf(X)), where Projr s (V) := (L, —
XXT)Y + 3X(XTY — Y'X) projects a matrix Y onto the tangent space Tx S, n.

The optimality conditions for the problem can be summarized as

(I, = XXDVf(X) = 0,
XTVf(X) = VX)X,
XTX - L.



Second, we review some algorithms for optimization over the Stiefel manifold.
Optimization problems over the Stiefel manifold S,,,,, the set of matrices with or-
thonormal columns, can be viewed as eigenvalue problems and matrix factorization
problems. For example, computational techniques, such as QR decomposition, played
a critical role in ensuring orthogonality [68], forming the foundation of constrained
optimization algorithms. However, the nonconvexity of the feasible region poses
significant challenges in finding global minimizers. Ensuring orthogonality during
iterations, particularly for large-scale problems, further introduces computational
overhead. Traditional methods like explicit reorthogonalization via QR decomposi-
tion are often computationally expensive and struggle to scale efficiently.

To overcome these challenges, innovative approaches have been developed, includ-
ing retraction-based methods [68] and projection-based algorithms [60]. Retraction-
based methods map tangent vectors back to the manifold using approximations such
as Cayley transformations or QR decompositions, while projection-based methods
solve subproblems in the tangent space before projecting back to the manifold. Re-
cent advancements, such as exact penalty function methods, simplify the problem
by reformulating it to preserve the global minimizers of the original problem.

Algorithmic frameworks like gradient projection and columnwise block coordinate
descent have demonstrated improved computational efficiency while maintaining fea-
sibility. Parallelization techniques, such as penalty-based methods like PLAM [75]
and PenCF [90], mitigate the need for costly reorthogonalization by leveraging dis-
tributed computing, making them particularly effective for large-scale problems, such
as those encountered in electronic structure calculations.

Various optimization methods designed for matrix manifold problems have also
been applied to this problem, including gradient-based methods [56, 59, 2], conjugate
gradient methods [20, 1], trust region methods [96], and (Quasi-)Newton methods |20,

37]. These methods aim to find a feasible point with a lower function value than the

10



current iterate, addressing challenges in global convergence [46, 87].

1.4 Summary of Contributions of the Thesis

In this thesis, we develop new approaches based on (nonlocal) low-rank tensor regu-
larization and tensor group sparsity {5, norm (0 < p < 1), along with some spatial
and spectral priors, to provide a more comprehensive method that preserves the
structure of HSIs. It includes two optimization models and two iterative algorithms
with convergence guarantees for solving two important problems in hyperspectral

image processing. Our main contributions are summarized as follows.

e We propose a class of orthogonal constrained minimization problems to tackle
HSI restoration problems, such as removing mixed noise like Gaussian noise,
stripes, and dead lines. The proposed class of models employs two types of
regularization terms, which are a new sparsity-enhanced low-rank regulariza-
tion and a generalized tensor group sparsity measure. The sparsity-enhanced
low-rank regularization exploits the spatial nonlocal self-similarity and spec-
tral correlation in HSIs to enhance restoration, ensuring that similar patterns
in distant regions are jointly considered for improved denoising. The general-
ized tensor group sparsity measure, with a specific example being the tensor
{5, norm with p € (0, 1), measures the group sparsity in HSIs for characterizing

the linear patterns in HSIs.

e We propose a proximal block coordinate descent (P-BCD) algorithm for solving
the models. Each subproblem of the P-BCD algorithm has an exact solution,
which either has a closed-form solution or is easy to compute. To show the
convergence of the P-BCD algorithm, we define the stationary point of the
proposed model using three equalities of substationarity, symmetry, and feasi-
bility for orthogonal constraints. We prove that any accumulation point of the
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sequence generated by the proposed algorithm is a stationary point.

We show the proposed nonlocal low-rank tensor regularized ¢, (NLTL2p) ap-
proach for HSI denoising and destriping can outperform other state-of-the-art
methods even a deep learning based method on the numerical experiments
tested on both simulated and real HSI datasets, in metrics such as mean peak
signal-to-noise ratio. In terms of visual quality, our method effectively restores
HSIs by preserving important image details and removing noise, particularly

highly structured noise like stripes and dead lines.

We combine the proposed model with a deep neural network to incorporate
an implicit proximal denoiser prior for hyperspectral anomaly detection and
propose a PnP version of the P-BCD method (PnP-PBCD), in which certain
steps are updated using a proximal denoiser. The tensor {3, norm in the
model is utilized to characterize the anomalies, while the implicit proximal de-
noiser prior is employed to remove Gaussian noise. The results, tested on HSIs
contaminated with or without Gaussian noise, demonstrate that the proposed
method can effectively detect anomalous objects, whereas competing methods
may mistakenly identify noise as anomalies or incorrectly match the anomalous

objects due to noise interference.

1.5 Organization of the Thesis

This thesis is organized as follows. Chapter 1 introduces the background of HSI

restoration and anomaly detection, and presents some preliminaries used in this the-

sis. Chapter 2 develops a class of orthogonal constrained minimization models with

tensor group sparsity regularization. Chapter 3 presents the P-BCD algorithm for

solving the resulting nonconvex and nonsmooth optimization problem, along with a

detailed convergence analysis. In Chapter 4, the proposed model is applied to HSI de-
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noising and destriping, demonstrating its effectiveness through extensive experiments
on simulated and real datasets. Chapter 5 extends the methodology to anomaly de-
tection in noisy HSIs, integrating the low-rank tensor regularization with a proximal
denoiser within a PnP framework to enhance anomaly detection performance under
various noise conditions. Finally, Chapter 6 concludes the thesis by summarizing the

key contributions and discussing potential future research directions.
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Chapter 2

Orthogonal Constrained
Minimization with Tensor Group
Sparsity Regularization

2.1 Problem Statement for HSI Restoration

In HSI restoration, an observed HSI D € RI*%2%55 can be decomposed into three
components: a low-rank tensor £, a sparse tensor S, and a noise tensor A, repre-

sented as follows [9]

D=L+S+N,

in which I; x I, are the spatial dimensions (height and width), and I3 is the number
of spectral bands.

In the context of HSI denoising and destriping, £ represents the clean, low-rank
HSI, encapsulating the primary spectral-spatial structure of the scene. The sparse
component S corresponds to structured noise, such as stripe noise or dead lines, which
is typically sparse and spatially localized. Meanwhile, N represents Gaussian noise
affecting all spectral bands. The objective is to recover an accurate £, enhancing
the clarity and fidelity of the spectral information. To evaluate the effectiveness of
denoising algorithms, metrics such as the peak signal-to-noise ratio (PSNR) [34] are

employed to measure the quality of L.
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For anomaly detection, £ denotes the low-rank background, representing consis-
tent spectral features across the scene. The sparse component S represents anomalies
with distinctive spectral features that deviate from the background, such as rare ma-
terials or targets, which are spatially sparse. And N accounts for Gaussian noise
that affects the quality of detection. The primary focus of anomaly detection is the
accuracy of S, with evaluation metrics such as the area under the curve (AUC) [36]
used to assess detection performance, emphasizing the identification of anomalies
over background quality.

By exploiting the low-rank nature of hyperspectral backgrounds and the sparsity
of noise or anomalies, a unified model can be developed for addressing fundamental

tasks in HSI processing such as mixed noise removal and anomaly detection.

2.2 Model Formulation

To tackle the problems in HSI restoration such as mixed noise removal, we propose
an optimization model utilizing low-rank tensor regularization and a group sparsity

measure. The proposed model is formulated as follows

) )
o Lin SIIR(L+ S = D)7 +7IvVWr © Sllaw + 1G] 1,0
7[X1]7[X2}7 2
[X3]7[g]7£'
1 ) (2.1)
+ §HR(£) — [G] x1 [Xa] X2 [Xo] x3 [X5]||F
s.t. (X)X = [L..],i=1,2,3,

where
° S,,C,'D c RhXIzXIg’ [Xz] c RmixnixN7 1=1,2,3, and [g] c Ranngxnng;

o R : RIix2xIs _y RrmuxmexmsxN denotes the similar blocks extraction operator,
and RT : RmxmexmsxN_ RIxEXI denotes the transpose of R satisfying
(R(L),[YV]) = (L,RT([)])) for any £ € RI>I2xIs [Y] ¢ RrmaxmaxmsxN,
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e Wr € Rfﬁfhxh is a weight tenor such that the component-wise multiplication
with Wg being an equivalent operation of R'TR, that is, Wg ®Id = RTR, ®
denotes the component-wise multiplication, Id denotes the identity mapping

on RIx2xIs “and \/Wg denotes the component-wise square root of Wg, that

is, the (i1, is,13)-th entry of /Wr is equal to /R )i, izis;

e ||S||2,4 denotes the generalized tensor group sparsity measure of a third order

tensor S defined by

1SNz = D > ¥ (Isiizialle) (2:2)

io=1143=1

with ¢ : R — [0, +00) being a continuous sparsity-promoting function [69] and
1
I 2
Isiaialls = (S0 )

o [G] X1 [Xi] X2 [Xs] X3 [X3] denotes an independent 3-D HOSVD with [G] €
Rrxm2xnsxXN and [X;] € RmixnixN i =1 2 3, such that [X;] is independently
orthogonal, i.e., [X;]"[X;] = [L..], with I,,, representing the identity matrix of

size n; X ny;

¢ ||[G]]l1.w denotes the weighted tensor (component-wise) ¢; norm for a fourth

order tensor [G| defined by

G 1w = Z%IHQ](”Hl (2:3)

with a weight vector w € N,.

The resulting model is a nonconvex nonsmooth minimization problem with orthogo-
nal constraints. In particular, the first term of the model (2.1) is a data fidelity term

to remove Gaussian noise, the second term is a group sparsity measure to remove
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sparse noise with linear structures, and the last two terms are the sparsity-enhanced
nonlocal low-rank tensor regularization terms.

In the following subsections, we will provide more details on the generalized
tensor group sparsity regularization term and the sparsity-enhanced nonlocal low-

rank tensor regularization used in model (2.1).

2.3 Generalized Tensor Group Sparsity Regular-
ization

As shown in (2.2), the generalized group sparsity measure groups the sparse com-
ponent S along a specific direction, for example, mode-1, measures the magni-
tude of s.;,;, using the ¢, norm, and then characterizes the group sparsity using
a sparsity-promoting function [69] for ). We give some examples of continuous

sparsity-promoting functions for :
(i) € norm: ¥(t) = [t[;
(ii) ¢, norm: (t) = [t|P, p € (0, 1);
(iii) Relaxed ¢, norm: ¢ (t) = (|t| +¢)? — P, p € (0,1), € > 0;

(iv) Minimax concave penalty (MCP) [101]: for 6 > A,

Mt — L.t <o,
w)\ﬁ(t) — {&| 20 | |_

R otherwise;

(v) Smoothly clipped absolute deviation (SCAD) [22]: for A > 0 and 6 > 2,

Altl, [t < A,
42 _\2
Uao(t) = § i, A< ft <0,
2
(0+)X° otherwise.

2 )
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Note that (i) is convex, (iii) is pe?~'-weakly convex, (iv) is 3-weakly convex, and (v)

is si-weakly convex, according to [5].

Since || - |2, is separable, the proximal operator of p|| - ||o. at S as follows

S € proxy, ,(S)

can be computed via the proximal operator of p o || - || at the (ig,i3)-th mode-1
fiber 5.4, i.€.,

Seiziy € PIOX o)y (B:inia):
where s.;,;, is the (i2,43)-th mode-1 fiber of S. According to Theorem 4.1 in [98], we

have

~ proxuw(‘|§||2) H§§H2’ [5]l2 # 0,
TOX 011, (S) =

Depending on the choice of ¢, the proximal operator of prox,,, . is computed dif-

ferently.

2.3.1 Tenosr {3, Norm

To measure the linear structural sparsity of the sparse noise tensor S, we extend the
matrix /5, norm for group sparsity to its tensor form. As the stripes and dead lines
often align the first dimension, we define the tensor ¢, (0 < p < 1) norm of a third

order tensor S as follows

1
Iy Iy v Is I [/ L 2\ P
I 9 STNE IS 95 of D SRS 1) INCY
ig=11i3=1 is=1iz=1 \i1=1
The tensor {5, norm is exactly equal to the matrix ¢, norm of the unfolding ma-
trix of S along the first dimension, that is, ||S|l2p = [1S@)ll2p.- The matrix £y,

norm is a nonconvex and nonsmooth function. And it has been applied to image
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processing [50], machine learning [54, 19], feature selection [49, 79], multi-view clas-
sification [84], etc.

The generalized tensor group sparsity measure given in (2.2) reduces to ||S|l5,,, the
tensor (5, norm with a power of p, if we choose 1 as the £, norm with p € (0, 1), i.e.,
¥(t) = [t|P, p € (0,1). In the following, we summarize some results for minimizing

the tensor group sparsity measure [|S||5 , as follows
; p 1 Q|12
min lS3, + 218 — 81 (2.5

where S € RI*2%Js ig a given tensor and parameter ;> 0. Since || - 15, and || - [|%
are both group-separable, solving problem (2.5) for S is equivalent to solving the

following subproblem for each (is, i3)-th vector of S along the first dimension
. P 1 ~12
min plls[ls + 5lls = sll2, (2.6)

where s € R and § € R", for simplicity, represent s.;,;, and 3.,;,, respectively, and
s[5 = (s3-+s3+---+s%)%. It follows from the triangle inequality that the objective

function of (2.6) satisfies the following inequality for any s € Rt

1, 1 i
pllsls + 5lls = 315 = wllsl + 5 sl — [18112)" (2.7)

And the equality holds if and only if s = ¢S for some ¢ > 0 or § = 0. Observe that
the right-hand side of the inequality is only related to ||s||2 and ||5]|2. If § = 0, the
solution of problem (2.6) is s = 0. If § # 0, we can view s as s = ¢||§||ov with ¢t > 0
being a scalar and v € R’* being a unit vector. When we restrict the minimization
problem (2.6) by ||s||2 = ¢]|5||2 with a fixed ¢, according to (2.7), the solution of the

restricted problem of (2.6) is obtained only when v = =-. Hence, if § # 0, the

lI5ll2

solution of (2.6) is s = t§, where ¢ is a minimizer of the following problem

1
in vt + —(t —1)? 2.8
ter%glo)y +2( )% (2.8)
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with v = u|/3]|57%. That is, it only requires solving a one-dimensional problem (2.8)
for computing the solutions of problem (2.6).

Next, we show a lemma and a solver for computing solutions of problem (2.6).
Let g(t) = v|t|P + 1(t — 1)%. Note that g(t) > g(|¢|) for V¢ < 0 and g(t) > g(1)
for V¢t > 1. Then problem (2.8) can be relaxed to an unconstrained problem with
g being the objective function, which can be solved using Theorem 1 in [57]. Also,
problem (2.8) can be reduced to a box constrained problem with constraint ¢ € [0, 1],
which can be solved using Lemma 4.1 in [51]. We summarize the results for (2.8) in

the following lemma.

Lemma 2.1. Let p € (0,1) and v > 0. Let

O -p)

2= p)r and T(v):= (2v(l —p))27.

Then the set of optimal solutions of problem (2.8), denoted as Q*(v), is given by

{0}, if v > g,
O (v)=<1{0,7(r0)}, if v =y,
{t*}, sz <v <1,

where t* € (1(v),1) is the unique solution of the equation
vpt! 1t —1=0 (2.9)
with t € (1(v), 00).

Proof. Let g : [0,00) — R be defined as the objective function of problem (2.8).
When ¢ =0, g(0) = 3. When ¢ > 0, we define u : (0,00) - Ras u(t) =vtr ' +1 -1

and then we have

o) = tuft) + % (2.10)
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We compute the first and second order derivatives of u(t) as follows

1
U,(t) = I/(p — 1)tp_2 + 5

u"(t) =v(p—1)(p—2)t">.

For 0 < p < 1, we have «/(7(v)) = 0 and u”(t) > 0. Then by the second derivative

test, u(t) obtains a global minimum at ¢ = 7(v) and the minimum value is

u(r(v)) = v(2v(1 ~ )P + S (20(1 ~ p)7 1

(i) 0 € Q*(v) if and only if g(t) — ¢(0) = tu(t) > 0, V t € (0,00), if and only if
u(t) >0,V t e (0,00), if and only if v > 1. In fact, g(t) — g(0) > 0, for V¢ € (0, 00),
if and only if v > 1. Hence, Q*(v) = {0} if v > 1.

(i) t* € Q*(v) # @ with t* € (0,00) if and only if ¢* is a solution of (2.9),
according to Fermat’s rule, i.e., ¢’(t*) = 0. We compute the first and second order

derivatives of g(t) on (0, 00) as follows
gty =vptrt+t—1

g"(t) = vp(p — P2 + 1.

Let ty = (vp(1 — p))ﬁ It can be verified that ¢"(¢y) = 0, ¢"(t) < 0 on (0,?y) and
g"(t) > 0on (tg,00). Then ¢'(t) is strictly decreasing on (0, ¢y) and strictly increasing
on (tp,00). Since 7(v) > to, we have ¢/(t) is strictly increasing on (7(v),00). Also,
it follows from (2.10) that ¢'(7(v)) = u(r(v)) + tu'(7(v)) = (V—”O)flp — 1. And we
have ¢'(1) = vp > 0. Hence, t* € Q*(v), where t* € (7(v),1) is the unique solution

of (2.9), if and only if ¢'(7(v)) <0, i.e., v < 1. In particular, if v < vy, we have
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¢ (t7(v)) < 0 and then Q*(v) = {t*} where t* € (7(v),1) is the unique solution of
(2.9).
(iii) If v = v, by (i), we have 0 € Q*(1vp) and, by (ii), we have t* = 7(1) € Q*(1p),

where t* is the unique solution of (2.9). Hence, Q*(vy) = {0, 7(10)}. O

According to Lemma 2.1, when v = 1, there are two minimizers for problem (2.8).
For simplicity, we will choose 0 in this case. When v € (0,1p), the minimizer of
problem (2.8) is unique and can obtained by solving (2.9). If p is chosen as, for
example, p = 1/2, (2.9) has a closed-form root. Otherwise, we estimate the unique
root t* by Newton’s method with an initial value of tg = (7(v) + 1)/2. Altogether,

we summarize a proximal operator of the tensor ¢, norm in the following theorem.

Theorem 2.1. Let p € (0,1) and p > 0. Define the operator '), : R — R by

Fu(ﬂ) = {07 yo= ﬁzo(l —p)’

t*, otherwise,

where By = (2u(1 — p))ﬁ, and t* € [Bof3, 1) is the unique solution of
pBr2pt Tt 1t —1=0, t€[ByB,00).

Then a solution of the proximal operator of the tensor s, norm at S € RhixlxIs

can be computed by

L (18:i2s [|2) S:izis € Proxp o (Siisis) = (PYOXNH.”;I, (g)):mg ;
forio=1,2,...,1,i3=1,2,...,13.
2.4 Nonlocal Low-rank Tensor Regularization

Nonlocal low-rank tensor regularization is a technique used in image processing to
enhance image restoration by exploiting the inherent structures and redundancies
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present in the images. For HSIs, it follows from the spectral correlation and the
spatial nonlocal self-similarity that, for an image block, we can find enough nonlocal
similar blocks across the image or within a local window [8]. Stacking and reforming
similar tensors into a higher-order tensor via the similar blocks extraction operator R,
a clean HSI can be approximated by nonlocal low-rank tensors [55, 52]. In particular,
we propose a nonlocal low-rank tensor regularization using the independent 3-D

HOSVD with sparsity enhancements on the independent core tensors.

2.4.1 Independent 3-D HOSVD

Independent 3-D HOSVD is a tensor decomposition method that extends the concept
of matrix SVD to higher dimensions.

We first introduce the definition of a 3-D HOSVD and then define an independent
3-D HOSVD using the notation of [-]. For a third order tensor ) € R™*™2xms the

(truncated) 3-D HOSVD of Y is to approximate ) in the following form
Y=g x; X; xg Xy X3 X3, (2.11)

where G € R™*"2X"3 jg the core tensor, and X; € R™*" ig the i-th factor matrix
such that XiT X; =1,,. Note that m; > n; and X; belongs to a Stiefel manifold, that
is, X; € S;,, ;- By imposing orthogonality on the factor matrices, the decomposition
in (2.11) can inherit many nice properties from the matrix SVD. For example, the
core can have the all-orthogonality and the ordering property [11].

When a fourth order tensor has little correlation across the last mode, we view the
fourth order tensor as a stack of independent third order tensors. Using the notation
of [-], we denote such a fourth order tensor as [Y] € R™*m2xmsxN and its j-th third
order tensor as [Y]W) € Rmixmexms 5 — 1.2 . N. Also, a stack of independent
matrices is denoted as [X] € R™ N And we call [X] is independently orthogonal if

[X]T[X] = [I,,], meaning ([X]W)T[X]U) = 1,,, or equivalently [X] € [S,,,], meaning
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[X]Y) € S,,.n. Then we define an independent 3-D HOSVD of [))] as
V] & [G] x1 [Xi] x2 [Xo] x5 [X3],

where [G] € Rmxm2xnaxN X ] ¢ RmixnaxN and [V]0) = [G]D) x; [X1]0) x5 [X5]W) x5
[X53]0) with ([X,]O)T[X;)9) =1, i = 1,2,3, j = 1,2,..., N. Similarly, we extend
the notation of [-] to other operations acting on independent tensors. That is,
performing an operation on an independent tensor means performing the operation

on each lower order tensor independently. For example, performing [X]) means

independently performing [X ]E‘; )) for each j.

2.4.2 Nonlocal Low-rank Tensor Regularization with Spar-
sity Enhancements

The nonlocal low-rank tensor regularization consists of the extraction of nonlocal
similar tensors that may have similar features and the characterization of the low-
rankness of the tensor.

First, we apply block matching to find similar blocks and then stack them into a
fourth order nonlocal similar tensor. Given an HSI £, we divide it into a total number
of N overlapping blocks. For the j-th block, we search within a local window for a
total of my blocks that are similar to the reference block based on Euclidean distance.
Then the j-th nonlocal similar sub-tensor of £, denoted as R;(L), can be formed by
unfolding all the nonlocal similar blocks in the j-th group and then stacking them
together. As the nonlocal similar block sub-tensors are independent of each other,
we can further stack them together into a fourth order nonlocal similar group tensor,
denoted as R(L), and [R(L)]Y) = R;(L).

Second, we impose the tensor low-rankness on the nonlocal similar tensor. In
the nonlocal sub-tensor R;(£) that we construct, the first dimension indicates the

spatial information, the second dimension reveals the nonlocal self-similarity, and
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the third dimension reflects the spectral correlation. We adopt the independent 3-D

HOSVD to obtain a low-rank approximation of R(L), that is,
R(L) = [G] x1 [X1] X2 [Xa] x3 [X3],

where [G] € RM*n2xmsxN denotes independent core tensors, and [X;] € RmixnixN
denotes the i-th factor matrices such that [X;]"[X;] = [L,,].
To further boost the low-rankness of R(L), we propose a sparsity-enhanced non-

local low-rank tensor regularization term as follows

%IHQ] X1 [X1] %2 [Xa] x5 [X5] = R(L)I[5 + 1G]]0 (2.12)

where ||[G]||1,w is given in (2.3) with w € N;. In particular, the first term of (2.12)
measures the closeness between R(L) and the approximated low-rank tensor, and

the second term measures the sparsity of the independent core tensors [G].
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Chapter 3

The Proximal Block Coordinate
Descent Algorithm and its

Convergence Analysis

In the following, we present the P-BCD algorithm for solving the proposed nonlocal
low-rank tensor model (2.1), which is a nonconvex and nonsmooth optimization
problem over Stiefel manifolds. We will give the details of each update in the P-BCD
algorithm and conduct a convergence analysis for the proposed P-BCD algorithm in
this chapter.

Let F denote the objective function of model (2.1), that is,
F(S, X1, X0, X, 0], £) =S IRE + 8 — D)+ 5[ Vi 0 | +(16)
+H(X)).[X). [X3]. (6], 0)
where @([G]) = (6|1, and

H([X4], [Xo], [Xs], 1G], £) = %IIR(C) = [G] %1 [Xa] %2 [Xa] x5 [Xs]ll7 (3.1)
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3.1 The Proximal Block Coordinate Descent Al-
gorithm

For solving model (2.1), the P-BCD algorithm is summarized as follows

SF ¢ argmin F (S, [X]], [X5], [X ] [G"], ) —i——H\/ RO (S —8M|%,
S

‘ a
(X € [Xa]reg[gmm ]F(SkH, [X0], [X5], (X351, (6%, £F) + TXH[Xl] — (X717

. aX
[Xéﬁ—l] € [Xa]rg[énm F(5k+17 [X{H—IL [X2L [X§]7 [gk]7£k) + TH[XQ} - [Xg]”%'?
2|€ mo,ng

X5 € agmin F(S LX), X511 [0, £9) + 2 xa] — (X5

[X3]E[Sm3yn3]

6" = arg[glin F(S™ [XTH] [X57), [X577, 9], £7) + %H[Q] — [G"1IF

LA = argmin F(SH [XE, (X5, (X5, (65, L),

where ag, ax,ag > 0.

In the following, we present the details for computing each update.

3.1.1 The Update of S

Recall that

IR(L)IIF = (L, RR(L))r = (L, Wr © L)r = [V Wr © L]

Then we have

(S, [xF], (X5, [X5], [64), £9) + =2 S IVWe (8 =S
) a
=5IR(LE 8 ~DF 7|V W@ 8|, + T IV oS -8

5
=5 IV W © (S + £ = D)l +7 [V 0 8|, + T IV e (S —8HE
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Hence, S¥*! is computed by

2

ShHl ¢ arg;niniH\/W_R@SHZw + % H\/W_R(D (8- (S* —as (Sk—i-ﬁk —D)))H ,

F

where 4 = —1— and ag = % Rescaling S using vWr®, S¥! can be written in

d+as as’

terms of the proximal operator of || - |2, as follows

St e <\/W_R>_1 Oproxsyy,, (VIR (S8 —as (S5 +£5-D))).  (32)

where the (i1, iz, i3)-th entry of (\/VVR)_1 is equal to 1/\/(WR)iyiis-
3.1.2 The Update of [X|]

Before we solve the optimization subproblem in terms of [X;] over independent Stiefel
manifolds, we can rewrite its objective function using the following useful fact for

unfolding of tensors
Y=Gx; X ifandonlyif Y, =XG).

Then by applying X € S,,,, the Frobenious norm of tensors can be rewritten into

the Frobenious norm of matrices
1G x: X — LIz = XG — Ly Iz

=[Gz — 2(X Gy, L) + 1 Lo |17, (3.3)

where G(;) and L(; denote the mode-i unfolding of G and L, respectively. Since
(XGuy, L) = (X, L(i)Gg)) and ||X||% = n, minimizing |G x; X — L||3 over X
on the Stiefel manifold is equivalent to minimizing || X — L(i)Gg)H% over the Stiefel

manifold.
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Taking [X7] as an example, we have

F(SM [X0], [X5], (X5, (G, £F) + %XH[XJ — [(X71I%

=5 IR(CY) — [6¥] 1 [Xa] o [XE] s (XA + S0 — (X1

=S IRy — [I(GH 2 [XE] s (XAl + S50 — (X3

Then [X}™] can be computed via the projection of unfolding matrices onto the

Stiefel manifolds independently as follows

o1 @
(X e argmin o I[X] = [P F + = 1] - X315
[X1]€[Smq,nq]

- orgin }nm (0] — e (1] — PRI 2

= Projs,, .1 ([Xf] — ax ([Xﬂ - [Pf][Q,ﬂT)) )

where [Pf] = (R(LF))[qy, [QF] = ([gk] x5 [X5] X3 [Xé“])

L and parameter ax =

_1
14ax ”

Similarly, we have

. o}
(X4t € [Xa]rg[gmm }F(SkH, (X, [0, (X5, (G4, £°) + TXH[X?] — [X3]II%
2 6 mo,ngy

= Projg, . ([X5] — ax ([X5) — [PHQYT)) .

and

' o
(X2 € [Xa]rg[smm ]F(Skﬂ, [XTH, (X5, [Xa), (67, £F) + TXH[X?J — (X511
3 S m3,n3

= Projg,, .1 (1(X4] — ax ((X4] - [PQE]T))

where [P}] = (R(L"))2), [P5] = (R(LM))ap, (@8] = (1" %1 [XTT] x3[X3]) ()

[Q4] = (1G%] x1 [XTT] %o [Xé““])[(?))], and parameter ax = 17—
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In summary, [XF™] can be computed by

(X € Projg,, ([X]] = ax ([XF] = [PFQAT)), (34)

where [P] = (R(£"))y, [QF = ([6"] <1 [XTF -+ ximn [XH] < [XEL] - xa
[X:f])[(i)], and parameter Gx = 17—

In the following, we present a lemma for finding the projection onto a Stiefel

manifold, which is given in Theorem 4.1 in [31] and proved in [3].

Lemma 3.1. [31, 3] Given A € R™ "™ 'm > n, consider the following Stiefel manifold

projection problem

. 2
i |lX — Al

(3.5)
st. X'X=1,.

Then the set of optimal solutions of problem (3.5), denoted as Q*(A), is given by
Q(A) ={UVT|A=UxVT,U e R™" ¥ € RV € R™"

such that U'U = V'V =1, and ¥ = Diag(c(A))},

where ULV " is a reduced SVD of A and o(A) € R" is a vector of all the singular

values of A. In particular, if A is of full column rank n, then Q*(A) is a singleton.

According to Lemma 3.1, problem (3.5) has a closed form solution, even though
it may have multiple solutions when the given matrix does not have full column
rank. Hence, if [U][X][V]T is an independent reduced SVD of [A] € R™ ™V then
UIIV)T € Proj,,,([A).
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3.1.3 The Update of [G]

The subproblem for updating [G] can be reformulated by using the following property

for any X € S,,,, m > n,
IG x: X — LI
=G — X Lpllz = X T Lolle + 1L I
=[G — L x; X7 = [1£x: X T + | £]I7,

which is derived from (3.3) and the constraint that X "X =1,.

Since we have

F(SMH X7, (X7, (X571, 16) £8) + %H[G] — [G"1I%

= IIRCY) — [6] %1 [XE] s [X57] s [XE7 1+ 2(10]) + 2 16) - (G4

(G can be computed by

1) = argmin £1G]) — R(LH) sy [XEH]T sea X7 T s (X5 + (6]

ain 5
+Sig) - 1641117

= argmin %II[Q] — (19" = a6 ("] = [O*)F + ag@(19])
9

= proxs,e ([G"] — ag([G"] — [0)) . (3.6)

where [OF] = R(LF) x; [XFFT x, [XFT)T x5 [X2]T, and ag = ﬁ

3.1.4 The Update of L

After computing [X*™] and [GF*!], we can obtain the approximated low-rank group

tensor, denoted as [Y*!], as follows

V] = 1G5 0 [X] 2 [ X5 x5 [ X (3.7)
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Since we have

F(SM X X, (XS, 69, L)

) 1
:§HR<£ + 8k+1 - D)”%‘ + §H([Xf+1}> [Xngl]a [X§+1]7 [ngrl]a E)

0 1
=SIR(L + 851 = D)+ SIR(E) - )2,

LF+1 can be computed in a unique closed form as follows

)
L£F = argmin §H\/WR O (L+ S —D)|2
L

SV Wa © £~ (VAR) " o RT3
= WRRT() + (1 - H)(D — 8, (3.9

1

5 and Wﬁl denotes the component-wise inverse of Wg, that is, the

where § =

(i1,12,13)-th entry of Wg' is equal to the reciprocal of (WR )i, iyis-

3.1.5 Summary of the P-BCD Algorithm

The proposed P-BCD algorithm for model (2.1) is summarized in Algorithm 1.

Algorithm 1 Proximal BCD (P-BCD) algorithm for model (2.1)

1: Initialize (S°, [X7V], [X9], [X7],[G°], £°) with [X?] € [Sm, n:]-
2: Set the tensor extraction operator R.

3: Set parameters as, ax,ag > 0.

4: Set k= 0.

5. repeat

6:  Compute S*! by (3.2).

7. Compute [X™] by (3.4),i=1,2,3.

8:  Compute [GF!] by (3.6).

9:  Compute £F! by (3.8).

10: k< k+1

11: until the stopping criterion is met.
Output: (S*, [XT], [X5], [XF], [G*], £F).
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The proposed P-BCD algorithm aims to solve a particular optimization problem
of the form as in (2.1) and an optimal solution for each subproblem is obtained in
our algorithm as shown in the previous subsections. The P-BCD algorithm can be
viewed as a special variant of the proximal alternating linearization minimization
(PALM) [6] extended for multiple blocks or the block coordinate update with prox-
linear approximation [95], called the block prox-linear method. In the next section,

we present the convergence results of the P-BCD algorithm.

3.2 Convergence Analysis of the P-BCD Algorithm

In this section, we first define the first order optimality condition of problem (2.1),

then prove that any accumulation point is a first order stationary point.

3.2.1 The First Order Optimality Condition

Let Z = (S,[X1],[X2],[X3],[G], £). We define the first order optimality condi-
tion of the orthogonal constrained optimization problem (2.1). The point Z :=
(S, [X1], [Xa],[X3],[G], £) is a first order stationary point of problem (2.1) if 0 €
OF(Z), that is,

0€ 8(L+S D)+ 70| - [a0(S)

0 = grad[Xi] H([Xl], [XQ], [X3]7 [G], E), [X’L]T[ z] = [ImLZ = 1a 27 37 (39)
0e V[g]H([Xﬂ, [X2]7 [X?)], [g_]a E) + 8(1)([9_}),

=0(L+8=D)+ V. H([X1],[Xo], [X5], (9], £),

where gradpy; H([X1], [Xa], [X3], [G], £) denotes the Riemannian gradient of H with
respect to [X;] evaluated at ([Xi],[Xa],[X3],[G], £), i = 1,2,3, and 9| - |2, and
0P denote the subdifferentials of || - ||2,, and ®, respectively. Then we compute
the gradients of H explicitly and replace the optimality condition for orthogonal
constraints as in (3.9) using an equivalent condition introduced in [25]. Hence, we
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call Z is a first order stationary point of problem (2.1) if

0€5L+8-D)+7 (VW) @0l law(VWa ©8), (3.10a)
0= ([Ln] - [Xi][X:] )], (3.10b)
0=[H]"[X] - [Xi]" [H], (3.10c)
(Xi] T [Xi] = [L,], (3.104)
0 € [G] — [O] + 09([G]), (3.10e)
0=8L+S-D)+L-Wg'oR(]Y]), (3.10f)

3.2.2 Non-increasing Monotonicity

Next, we prove the non-increasing monotonicity of the objective sequence {F(Z*)}

and the boundedness of the sequence {Z*} generated by Algorithm 1.

Theorem 3.1. Let {Z*} be the sequence generated by Algorithm 1. Then the fol-

lowing statements hold.

(i) The sequence {F(ZF)} of function wvalues at the iteration points decreases
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monotonically, and
F(Zk) . F(Zk+1)
o (3.11)
> 185 = Ml + Z 1G] — XTI + ||[gk“] — [G"]I[%-

(ii) The sequence {Z*} is bounded.

(i) lim |8 =S¥ p =0, lim |[X7"] = [XF]|r = 0, and lim [[[G"'] —[G"][|r =
k—o0 k—o0 k—o0
0, for anyi=1,2,3.

Proof. (i) According to the update of S, we have
F(2F) — F(S", [x7], (X350, [X3], 16", £F)

=F(S*, [ X7, [X5], [X5], [6°], £%) = F(S*, [X{], [X3], [X5), [6°], £F)

«
>V Wa © (8 = SY)|%

>0 gkt g2,

where ¢; = min (v We )i iis-
Next, it follows from the update of [X;] and Lemma 3.1 that
F(S™1, (X, (X4 [X41, 104, €4) = PSS [XF), 1K), (X5 ), 164,29
=F(S™1L (X1, (X4 (X1, 104].€4) = F(S™1 [XF). (%3], x4, 4. £)
+ (S X XL XS (6. £9) = P8 [XF), 165, (4], [0 £)

+ F(SL XL IXE L X164, 4) — F(S™HL IXEL X (X, (64, £)

Then by the updates of [G] and £, we have
F(S™ XL G (X3, 67, £4)

ag

F(Sk—H7 [A)(—{c—i-l]7 [X§+1], [X§+1] [gk—i-l] Ek) 5

IG" ] = 1G"11%
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and

F(SkJrl7 [X{CJFI], [Xngl], [XéﬁLl]’ [ngrl], Ek) . F(Zk+1> > ().

Combining the inequalities above, we obtain (3.11) with o = min{cias, ag, ax}.

(ii) Since [XF]T[XF] = [I,,] for each i = 1,2,3, we have the sequence {[XF]}
is bounded. By (i), we have F(Z*) < F(2%). Also, we observe that F(ZF¥) >
Ve [18* 2. + ®([G¥]) = 0. Since

lim ||S =00 and lim ®(|G]) = oo,
st 1Sz e 21G)

we must have the sequences {S*} and {[G*]} are bounded. As shown in (3.8) that
L* is uniquely determined by S*, [XT], [X5], [X5] and [G*], the sequence {£*} is also
bounded.

(iii) Let K be an arbitrary integer. Summing (3.11) from & = 1 to K — 1, we

have
K-1 K-1 3 K-1
SIS = SHE 4+ Y NXFT = (XFE A+ )G - 16011
k=0 k=0 i—1 =
2 0 K
E(F(Z) F(z"))
2 0
EF(Z ).

Taking the limits of both sides of the inequality as K — oo, we have Y 2 [|S¥ —
SHIE < oo, 2oz X = [XHIE < oo and Y32, [[[G%] — [6M][17 < co. Then

assertion (iii) immediately holds. O

In addition to the assertions presented in Theorem 3.1, more assertions can be

derived in the following corollary.

Corollary 3.1. Let {Z*} be the sequence generated by Algorithm 1. Then khm |[V*H—
—00
V¥l =0 and lim ||LF — £F||p =
k—o0
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Proof. Since [[[G"*1] x; [Xi] = [G"] x; [Xil | r = [[[G"+"] = [G"]|| for any [Xi] € [Si,n.]
and [|[G] x; (X7 = [G] i [XFllp < (G| plI[X7] = [XF]]| P, we have
I = ¥l <N[G™] = [G*]llr + eall[(XT] = [X7] Il
+eall[X2™] = [(X2llp + el (X357 — [X5]ll,
where ¢, = maxy ||[G¥]||r < 0o according to assertion (ii) in Theorem 3.1. Then it

immediately follows from assertion (iii) in Theorem 3.1, limy_,q [[[V*™]—[V*]||F = 0.

Also, we have

14 = L8]l p <0cies|[VH] = VMIlr + (1= 8)IIS* — S*p,

where ¢; = max(v/WWR)iyinis- Then by assertion (iii) in Theorem 3.1, we have
limy, o [|[L¥FE — LF|| 7 = 0. O

3.2.3 Substationarity, Symmetry, and Feasibility for [X|]

We apply the results in [25] to the updates of [X;] in our proposed algorithm. Those
results are useful for proving three equalities of substationarity, symmetry, and fea-
sibility for [X;]. According to Lemma 3.3 in [25], we can have the following lemma

and then we prove the decrease of the function value H after each update of [X;].

Lemma 3.2. [25] Let h : R™" — R be defined by h(X) = || X — PQT||%, where
QeR™ PeR™™ andm>n. If X €8S,,,, and

X = Projg, (X —7(X — PQM)), (3.12)

where T € (0,1), then we have X € S,,,, and

WX) - h(X)> T 1

> s e - XXDVAOIE, (313

where § = [|PQ"||2.
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Proposition 3.1. Let H be defined as in (3.1). Let {Z*} be the sequence generated
by Algorithm 1 and [XF™] be computed by (3.4). Then [XF™] € [Sp,.n,] and the
following inequality holds:

H([XT], [X5], (X5, (67, £%) = H(IXTH], (X (X, (6%, L)

, (3.14)
>C4ZH m) = XA
and
| - x| < esllXEa] = Xl (3.15)

where €4 = m’ emax = InaXijg “[Pik](j)([Qﬂ(j))THf Cs = 2(CVX\/ nmax"{'emax)}

Nmax = Max{ny,na,n3}, and
[H{] = Vix, H([XT], [X5], [X5],[GY, £),
[Hy) = Vix, H([X{H, (X5, [X5), 6%, £9),

[Hy] = Ve H([X7H], (X3, (X5, (G, £5),

which give

(1] = ((X7]lQi] — [P, i=1.23.

Proof. Tt follows from Lemma 3.2 that [XF™] € S,,. ..
To show the first inequality holds, the update of [X '] in (3.4) can be viewed as

the iteration in (3.12) with h([X]) = 3[|[X] — [PF[QF] "I, [X] = [X[], [X] = [X}*]
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and 7 = Gy = 1+LX‘ Then for : = 1 we have

H(IXY], [X3], [X5], 16%), £%) — H([Xy], [X5], (X5, (6], £F)

1 k+117k k1112 1 k11 Hk k1112
=5 I Qi] = [P llF — SR — [P

1 1
=§H[Xf“] — [P - §H[Xf] — [PMIQIN 1%
T 2
> || (] = XA (10 - [PAIIQIT)|
where F a1 5 > ¢4 and O, is bounded, since the sequence

T 2(a PO (QAT)TI)
{Z*} is bounded. Using [XF] € [Sm..n,] and [XF™] € [Sy,n], We can obtain the

fourth line above and rewrite part of the last line as follows

(1Ln) = XA (15 = [PA1QIT)

(1Ln] = PXRIXET) (IXA11QE) = [P) (@47

(ITn] = XFI0XE ) (2.

That is, we have
H([XT], [X3], (X5, (6%, £°) — H((XT, [X3), [X5], (6%, £F)

2

ey | (L) = (XHxE ) (23]

Similarly, we have
H([X7, [X5], [X5], 6%, £%) — H((X7, (X577, (X351, (6], £7)

2

e | (L) = [X4)(X5)") (1]

F

and
H(XTH, (X5, [X3], (G5, £8) — H (X (X, (X5, (67, £)

(1] = PXEI0XETT) 1221

F

>Cy
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Summing the inequalities above, (3.14) immediately holds.
Next, we show the second inequality holds. According to the update of [X ] in
(3.4), if we let

1
Oé)(—f-]_

UMV = [XF] = ax ((XF] = [PIQ1]T) =

(ox [X7] + [P][@517) .

then the update [X**!] = [U*][V*]T. Hence, we have
XET (ax X2 + [PRIQNT) = (ax (XN + [PHIQNT) T [XEY (3.16)
= (ax + D[VIFSVYT.
Then using [X¥] € [Sp, n,] and [XFT] €[Sy, n,], We can rewrite
[HT X - XA [
= (o[ X} + [PHIQYT) " (X0 — (XA (ax[X[] + [PA[QT)
= (IXF = X)) (ax (X + [PHIQAT)
— (o [XF + [PRIQIT) " (1XF) - (X)),

where the last equation is obtained by (3.16). Taking the Frobenius norm of both

sides, we obtain
\HETIXE) - [ [
= (X8 = [XF) " (ax[XF] + [PAIQIT)
— (ax [+ [PRIQIT) T (1XEY = [XE) Il
<2)ax[XAD + [PD(QI) |l plI[XE — [XE]

<es||[XF] = (XTI,

where 2||ax[XF]0) 4+ [PF]9D([QF]9) || < ¢s. Then (3.15) holds. O
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3.2.4 Subsequence Convergence

Lastly, we show that every convergent subsequence converges to a first order station-

ary point of problem (2.1).

Theorem 3.2. Let {Z*} be the sequence generated by Algorithm 1. Then every

accumulation point of {Z*} is a first order stationary point of problem (2.1).

Proof. Suppose that {Z*}ex is a convergent subsequence of { Z¥} and converges to

Z as k € K approaches co. By the updates of S*, [G*] and L*, we have for any

k=0,1,...
as(SF1 - &%)+ o(Lk — £+
€ 5(L5 +8* D) +7 (VIVR) @0l - lon(v/We @ 5Y)
ag(6"] - [6Y) + (10 ~ [0%)
€ [G"] - [0*] + 02 (g%),
and

0=06(LF + 8" — D)+ L£F — Wr)T'RT (D)),

where [OF] = R(L*) x1 [XF]T x5 [X5]T x5 [X%]. Since we have

I[O¥] — [OM|lk < esl|[XF el XS Rl (X3 Rl £F = £ p
< c3v n1n2n3N3||/jk — Ck_1||F7

it immediately follows from Corollary 3.1 that limy_, [|[O¥] — [O¥]||F = 0.

According to the definition of limiting subdifferential and the fact that || -[|2,4 and
® are continuous functions, we can take the limits of the relations above as k € K
approaches co. Note that Z¥ — Z, [O*] — [O] and [V¥] — [V], as k € K approaches
oo. Together using Theorem 3.1 (iii) and Corollary 3.1, we have (3.10a), (3.10e) and
(3.10f) hold.
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Next, we show (3.10b)-(3.10d) hold. Using (3.14) and the inequalities in the proof

for assertion (i) of Theorem 3.1, we have

F(Z%) - F(2"1) > ¢ ZH ] = XEE) |

‘ F

and further obtain
>3 |l - A D, < <P,
k=0 i=1
This implies
Jim [|([Ln ] = (XX EAE = 0. (3.17)

And by taking the limit of both sides of (3.15) and using Theorem 3.1 (iii), we have

lim || F4]7[XE] — [0

k—o0

=0. (3.18)

‘ F

Since Z¥ — Z as k € K approaches oo, we have [PF] — [P], [Q}] — [Q1], as

)

k € K approaches co. Also, we have
11Q5] = [@a]llr < 1[Q5] — [Q5]11 7 + 11[Q5] — [@a)l <

< ol (X7 = (X e + Q3] — [@alll

and

Q5] = 1Qs]llr < 1[Q5] — (@3]l + 1[@5] — [@s]llr

< oo (X = Xl e + eall[X5 ] = (X3 e + 111Q5] — [@slll e

where [O8] = (1041 1 [XE] x [X4]) o and [@4] = (1] x [X4] xa [X4]) - Since
[Q¥] = [Q4], i = 2,3, by Theorem 3.1 (iii), we have [Q¥] — [Qi], i = 2,3, as k € K
approaches oo. Hence, [HF] — [H,], i = 1,2,3, as k € K approaches oo. By (3.17)
and (3.18), we have (3.10b) and (3.10c) hold. Since the Stiefel manifold is a compact

set, we also have (3.10d) holds. O
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Chapter 4

Application to HSI Denoising and
Destriping

4.1 Problem Statement

Mixed noise often appears in HSIs due to instrumental defects and environmental
factors. The mixed noise typically includes stripe noise, dead line noise, Gaussian
noise, salt-and-pepper noise and so on [103, 66]. In the following, we present the
features of each type of noise.

Stripe noise has a special linear structure and directionality. The primary causes
of stripe noise in HSIs are the working principles of imaging spectrometers, imaging
instruments, and various external imaging environment factors. The core component
of remote sensing imaging instruments is the charge-coupled device (CCD) detector
element. In this array of elements, there are many linearly arranged detector ele-
ments. Due to the limitations of the imaging instrument’s own performance or the
influence of the external imaging environment, different detector units often show
inconsistent responses to the same radiation energy during the scanning of ground
objects, resulting in stripe noise pollution in the collected images. Figure 4.1a shows
a specific band of stripe noise in an HSI obtained by the Hyperion hyperspectral

Sensor.
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Dead line noise refers to a type of noise in imaging systems that occurs when there
is a failure or malfunction in the detector elements or reading circuitry. This type of
noise results in the formation of dead pixels or entire dead lines (either horizontal or
vertical) in an image, where no data or incorrect data is recorded. Dead line noise
typically appears as fully dark or fully bright lines, as shown in Figure 4.1b, where
information is either missing or corrupted.

Gaussian noise generally refers to noise that follows a Gaussian distribution. Dur-
ing hyperspectral imaging, the CCD converts the captured electromagnetic energy
into image information, which brings various forms of noise, including dark noise and
readout noise. Since these types of noise frequently occur during hyperspectral imag-
ing and usually satisfy a Gaussian distribution, researchers have defined this type
of noise as Gaussian noise, assuming consistent noise levels across different bands.
Figure 4.1c shows a specific band in an HSI obtained by the AVIRIS hyperspectral
sensor degraded by Gaussian noise.

Salt-and-pepper noise, also known as impulse noise, refers to black noise points
with minimum pixel values and white noise points with maximum pixel values in
the image. During hyperspectral imaging, when there is significant electromagnetic
interference causing abrupt signal changes or incorrect exposure of the photosensitive
sheet, impulse noise appears in the obtained image. Figure 4.1d shows a specific band

of mixed noise in an HSI obtained by the HYDICE hyperspectral sensor.

4.2 Model Formulation

In this section, we present an application of the proposed model (2.1) to HSI denoising
and destriping and utilize the proposed P-BCD method given in Algorithm 1 for
solving the model. In the following, we first introduce the nonlocal self-similarity

of HSIs, that is, the choice of R, present the sparsity-enhanced nonlocal low-rank
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(a) Stripe noise

(c¢) Gaussian noise (d) Salt-and-pepper noise

Figure 4.1: Four types of mixed noise in HSIs

tensor regularization for removing Gaussian noise, that is, the choice of ®; and we
mention the tensor ¢, norm for removing sparse noise with linear structures, that

is, the choice of ¢ for || - [|2,4-

4.2.1 Nonlocal Self-similarity of HSIs

According to the image nonlocal self-similarity, image blocks share similar patterns.
This prior is particularly evident in HSI, where multiple bands can be considered as
multiple observations of the same scene under different wavelengths. The similarity

across these observations provides powerful tools for denoising.
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By utilizing the spectral correlation and the spatial nonlocal self-similarity of
HSIs, a clean HSI can be approximated by nonlocal low-rank tensors [55, 52]. To
denoise the HSI via the nonlocal low-rank tensor regularization, the first step is to
extract nonlocal similar tensors that may have low-rank features and the second step
is to characterize the low-rankness of the tensor naturally.

We first apply block matching to find similar blocks and then stack them into a
fourth order nonlocal similar tensor. Given an HSI £ € R *2xI3 we divide it into a
total number of N overlapping FBBs of size r x r x I3. For the j-th FBB, we search
within a local window for a total of ms FBBs that are mostly similar to the reference
block based on Euclidean distance. Then the j-th nonlocal similar sub-tensor of
order 3 of L, denoted as R;(£), can be formed by unfolding all the nonlocal similar
FBBs in the j-th group and then stacking them together. An illustrative figure on
nonlocal low-rank tensor extraction is shown in Figure 4.2. As the nonlocal similar
FBB sub-tensors are independent of each other, we can further stack them together

into a fourth order nonlocal similar group tensor, denoted as R(L).

Nonlocal
similar sub-tensor

R;(D)

Figure 4.2: The procedure of block matching.

To be precise, we present the formulations for the j-th nonlocal similar sub-tensor

extraction operator R; and then for the nonlocal similar tensor extraction operator

R. We define Ui(l) € R™*% as a binary matrix such that £ x; Ul(l) X9 Uz(l) is exactly the

l-th FBB of £. And we define B; as the Casorati matrix (a matrix whose columns
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are vectorized bands of the HSI) of the I-th FBB as follows
By := reshape(L x; Ul(l) X9 Ug(l), mi, ms),

where m; = r? and ms = I5. Then the extraction operator of the j-th nonlocal

similar sub-tensor R : RI1*/2x/s — Rmixm2xms can he defined by

R;(L) := reshape((B;,

T T \T
117BJ27"'7Bljm2> 7m17m27m3)7

where the indices [j1,l;1,. .., 1, refer to the indices of FBBs that belong to the
j-th nonlocal similar group and j = 1,2,..., N. Then the extraction operator of
the nonlocal similar tensor R : RI1* 2>l RrmuxmaxmsxN g g linear map such that
RO = Ry(L).

Since the Frobenius inner product is invariant to reshaping, we have that for

miXmaXm
yeRl 2 37

m2

VR (L)r = (Ya, By )r = (R} (¥), L),

=1
where R} : Rmxm2xms — RIxRxIs ig defined by

ma
R]T(y) = Zreshape(Y;i;,r, r, I5) X1 (Ul(lj"))T Xo (Uélji))—r. (4.1)
i=1

And we further have that

N

T
IR(L ”F_ZHR Wi = (LR/R(L)r = |V Wr© L3,
7j=1
where ® represents the pointwise multiplication, and each entry of Wy € RIt*/2x1s
represents the number of nonlocal similar groups to which the corresponding pixel
belongs. Since we assume that each pixel belongs to at least one nonlocal similar

group, we have Wg € R 2715,
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4.2.2 Sparsity-enhanced Nonlocal Low-rank Tensor Regu-
larization

Nonlocal low-rank tensor regularization is based on prior knowledge of the nonlo-
cal similarity of HSIs. We impose the tensor low-rankness on the nonlocal similar
tensors R(L£) using (2.12), which is a low-rank tensor regularization with a sparsity
enhancement || - |1, on the independent core tensors.

The update of [G] given in (3.6) can be efficiently computed via the proximal
operator of ||-||1,,. And the proximal operator of |1, can be computed component-
wisely using the proximal operator of the £; norm by the soft thresholding operator

as follows

(prosy.y, . (19)

©) ,
= ProXy,|.| ([G]Efim,)

119213

= sign (1917,.,) mavx (|11,

— Wy, 0) .
4.2.3 Tensor ¢, Norm for Group Sparsity Regularization

The generalized group sparsity measure given in (2.2) can characterize the sparse
component along a specific direction. We choose the tensor £, norm given in (2.4)
as the group sparsity measure for §. By applying Theorem 2.1, the update of §
given in (3.2) can be efficiently computed. In particular, we calculate the (iy,i3)-th

mode-1 fiber of S¥*! by

k+1 _ ~k ~k
S:igig - FN (|| V w:i2i3 @ Sii2i3 ||2) S:i2i37

where T',(-) is given in Theorem 2.1, S* = S* — ag (8" + ¥ —D), and §* , and

11913

W.,q, are the (ig,i3)-th mode-1 fibers of S* and Vv Wr, respectively.
213
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4.3 Numerical Experiments

In this section, we conduct numerical experiments for removing mixed noise in HSIs.
We compare the proposed methods with five methods, which are BM4D [55] for re-
moving Gaussian noise, and LRTD [14], SNLRSF [9], LRTFLO [93] and QRNN3D [86]
for removing mixed noise. All numerical experiments are implemented in Matlab
R2018a and executed on a personal desktop (Intel Core i7 9750H at 2.60 GHz with
16 GB RAM).

4.3.1 Simulated Data Experiments

In this subsection, the proposed method and the competing methods are tested on
simulated data. The test images are subimages of size 128 x 128 x 128 randomly
obtained from the Washington DC Mall' (1280 x 307 x 191) and the Xiong-An?
(256 x 256 x 256). As shown in Figure 4.3, the Washington DC Mall is obtained
from an urban area, where buildings are relatively dense; the Xiong-An is obtained

from a hilly area, with mountains and shrubs.

(a) Washington DC Mall (b) Xiong-An

Figure 4.3: Original HSIs of two datasets. (a) Part of Washington DC Mall dataset
(R:17, G:36, B:46); (b) Xiong-An dataset (R:71, G:110, B:120).

To simulate the noisy HSI data, Gaussian noise, stripes, or dead lines are added

! https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
2 http:/ /www.hrs-cas.com/a/share/shujuchanpin/2019/0501/1049.html
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to the normalized clean HSI data under the following cases:

o (uase 1: Gaussian noise with a mean of zero and a standard deviation of 0.1 is
added to all the bands. And then all the bands are selected and stripes with a

density of 30% and a standard deviation of 0.2 are added to each band.

e (lase 2: Gaussian noise with a mean of zero and a standard deviation of 0.1
is added to all the bands. And then 11 — 40, 71 — 100, 121 — 128 bands are
selected and stripes with a density of 20% and a standard deviation of 0.2 are

added to each band.

o (ase 3: Gaussian noise with a mean of zero and a standard deviation of 0.2 is
added to all the bands. And then 25% of the bands are randomly selected and

dead lines with a density of 5% are added to each band.

For comparing the quality of the restored images, four evaluation metrics are
employed, which are the mean peak signal-to-noise ratio (MPSNR), the mean struc-
tural similarity index (MSSIM), the mean feature similarity index (MFSIM), the
mean spectral angle mapping (MSAM), and the erreur relative globale adimension-
nelle de synthese (ERGAS). Let X* denote the restored HSI and X denote the clean
HSI. Then X7, and X.; denote the i-th band of the restored HSI and clean HSI,
respectively. The MPSNR value is defined as [34]

I3 2 *
1 X
MPSNR = — > 101ogy, [ — (X))
I3 P mse( X%, X.x)

which is the average PSNR value across the bands. Similarly, MSSIM and MFSIM

values are defined as

I3 13
1 N 1 N
MSSIM = — 3 SSIM(X?, Xo)  and MFSIM = — 3 FSIM(X7, X,
I3 k=1 i I3 k=1 .
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where SSIM is given in [109] and FSIM is given in [105]. The MSAM and ERGAS

are defined as

T
ZL‘U

MSAM = arccos(
[1[2 Z Z HCL' )

202 AT

and

I3 .
1 mse( X, X.x)
ERGAS =100, | — k)
13; mean(X¥,)

where MSAM is given in [44] and ERGAS is given in [78]. In addition, better
denoising results are indicated by larger MPSNR, MSSIM, and MFSIM values, as
well as smaller MSAM and ERGAS values.

Table 4.1: Numerical results tested on Washington DC Mall dataset
Case | Index | Noisy NLTL2p LRTFLO SNLRSF LRTD BM4D QRNN3D
MPSNR | 14.90 30.84 30.29 25.92  26.47 16.35 25.27
MSSIM | 0.324  0.930 0.923 0.795  0.817 0.399 0.794
1 | MFSIM | 0.653  0.952 0.957 0.902  0.907 0.724 0.885
MSAM | 0.474  0.083 0.083 0.138  0.132 0.407 0.150
ERGAS | 518.02 88.21 92.45 151.04 138.47 438.24 159.34
MPSNR | 16.72  31.75 30.46 31.45  27.82 22.72 26.97
MSSIM | 0.428  0.955 0.920 0912 0.854 0.639 0.844
2 | MFSIM | 0.703  0.969 0.933 0.950 0.921 0.817 0.916
MSAM | 0.397 0.056 0.067 0.074  0.067 0.318 0.109
ERGAS [419.52 68.88 78.65 83.10 105.07 330.58 119.73
MPSNR | 13.90  30.20 29.83 28.01  25.44 20.80 25.62
MSSIM | 0.390 0.943 0.924 0.895 0.801 0.762 0.842
3 | MFSIM | 0.680 0.963 0.929 0.943  0.897 0.879 0.913
MSAM | 0.606  0.098 0.099 0.153  0.503 0.467 0.164
ERGAS [ 610.91  95.59 93.19  141.32 148.89 449.91 147.69

The numerical results of simulated data experiments for case 1, case 2, and case 3
are presented in Tables 4.1 and 4.2 for Washington DC Mall and Xiong-An datasets,
respectively. Numerical results in bold font indicate the best performance of the

indicator in the current case. It can be observed from Tables 4.1 and 4.2 that the
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Table 4.2: Numerical results tested on Xiong-An dataset
Case | Index |Noisy NLTL2p LRTFLO SNLRSF LRTD BM4D QRNN3D
MPSNR | 14.49 32.94 31.73 26.26  30.02 15.88 26.53
MSSIM | 0.102 0.862 0.810 0.562  0.710 0.151 0.633
1 | MFSIM | 0.482 0.923 0.915 0.829 0.883 0.575 0.852
MSAM | 0.286  0.032 0.037 0.076  0.047 0.246 0.071
ERGAS | 382.96 47.02 55.28 112.07  66.10 328.21  97.50
MPSNR | 17.19  34.17 33.21 30.25  30.71 24.29 28.27
MSSIM | 0.159  0.877 0.837 0.719  0.730  0.468 0.694
2 | MFSIM | 0.562 0.931 0.924 0.885 0.894 0.722 0.880
MSAM | 0.230 0.028 0.033 0.056  0.042 0.176 0.061
ERGAS | 306.56 40.98 48.82 80.07  60.80 234.71  82.38
MPSNR | 13.90 31.68 30.89 28.39  27.96 21.30 26.13
MSSIM | 0.238  0.920 0.858 0.828  0.765 0.692 0.755
3 | MFSIM | 0.634 0.959 0.897 0.924 0.881 0.831 0.900
MSAM | 0.313  0.031 0.029 0.061  0.047 0.224 0.075
ERGAS [ 435.95  60.74 56.64 103.41 83.80 321.25 101.38

proposed NLTL2p method outperforms other methods almost in terms of all the
evaluation metrics. For example, in case 1 of Xiong-An dataset, the MPSNR value
of the HSI restored by the NLTL2p method is 1.84 dB larger than the MPSNR value
of the second best method, that is, the LRTFLO method.

4.3.2 Real Data Experiments
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(a) HYDICE Urban (b) EO-1 Hyperion

Figure 4.4: Real HSIs of two datasets. (a) HYDICE Urban dataset (R:61, G:98,
B:170); (b) EO-1 Hyperion dataset (R:101, G:114, B:160).
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In this subsection, we test the proposed method and the competing methods on
two real HSI datasets containing mixed noise. The test images are subimages of size
128 x 128 x 128 randomly obtained from the HYDICE Urban® (307 x 307 x 210)
and EO-1 Hyperion? (400 x 200 x 166), which are shown in Figure 4.4. A selected
band of the HSI restored by each method is presented in Figure 4.11 and Figure 4.13
for HYDICE Urban dataset and EO-1 Hyperion dataset, respectively. It can be
observed that the proposed NLTL2p method can remove the stripes while preserving
the image details. However, the LRTFLO, LRTD, BM4D and QRNN3D methods are
unable to eliminate the stripes when the band is contaminated by heavy mixed noise
as shown in Figure 4.11; and the SNLRSF, LRTD, BM4D and QRNN3D methods
remove not only the noise but also some structural details of the HSI as shown in

Figure 4.13.

3 http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/610433
/hypercube/

4 http://www.Imars.whu.edu.cn/prof_web/zhanghongyan /resource /noise_EOI.zip
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(a) Noisy image (b) Ground truth (c) NLTL2p (ours)

(d) LRTFLO (e) SNLRSF (f) LRTD

(h) QRNN3D

Figure 4.5: Comparison of HSIs (R:3, G:43, B:75) restored by different methods
from Washington DC Mall in case 1. The PSNR value for each restored HSI: (a)
Noisy image (14.90 dB); (c) NLTL2p (ours) (30.84 dB); (d) LRTFLO (30.29 dB);

(e) SNLRSF (25.92 dB); (f) LRTD (26.47 dB); (g) BM4D (16.35 dB); (h) QRNN3D
(25.27 dB).
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a) Noisy image ) Ground truth ¢) NLTL2p (ours)

) LRTFLO ) SNLRSF ) LRTD

) BM4D h) QRNN3D

Figure 4.6: Comparison of HSIs (R:23, G:63, B:94) restored by different methods
from Washington DC Mall in case 2. The PSNR value for each restored HSI: (a)
Noisy image (16.72 dB); (c¢) NLTL2p (ours) (31.75 dB); (d) LRTFLO (30.46 dB);

(e) SNLRSF (31.45 dB); (f) LRTD (27.82 dB); (g) BM4D (22.72 dB); (h) QRNN3D
(26.97 dB).
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a) Noisy image ) Ground truth (c) NLTL2p (ours)

) LRTFLO ) SNLRSF

(g) BM4D h) QRNN3D

Figure 4.7: Comparison of HSIs (R:16, G:70, B:100) restored by different methods
from Washington DC Mall in case 3. The PSNR value for each restored HSI: (a)
Noisy image (13.90 dB); (¢) NLTL2p (ours) (30.20 dB); (d) LRTFLO (29.83 dB);

(e) SNLRSF (28.01 dB); (f) LRTD (25.44 dB); (g) BM4D (20.80 dB); (h) QRNN3D
(25.62 dB).
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(a) Noisy image (b) Ground truth (c) NLTL2p (ours)

=

(d) LRTFLO () SNLRSF (f) LRTD

(g) BM4D (h) QRNN3D

Figure 4.8: Comparison of HSIs (R:30, G:55, B:115) restored by different methods
from Xiong-An in case 1. The PSNR value for each restored HSI: (a) Noisy image
(14.49 dB); (¢) NLTL2p (ours) (32.94 dB); (d) LRTFLO (31.73 dB); (e) SNLRSF
(26.26 dB); (f) LRTD (30.02 dB); (g) BM4D (15.88 dB); (h) QRNN3D (26.53 dB).
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a) Noisy image ) Ground truth c) NLTL2p (ours)

) LRTFLO ) SNLRSF (f) LRTD

(g) BM4D (h) QRNN3D

Figure 4.9: Comparison of HSIs (R:20, G:45, B:71) restored by different methods
from Xiong-An in case 2. The PSNR value for each restored HSI: (a) Noisy image
(17.19 dB); (¢) NLTL2p (ours) (34.17 dB); (d) LRTFLO (33.21 dB); (e) SNLRSF
(30.25 dB); (f) LRTD (30.71 dB); (g) BM4D (24.29 dB); (h) QRNN3D (28.27 dB).
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(g) BM4D

Figure 4.10: Comparison of HSIs (R:38, G:67, B:90) restored by different methods
from Xiong-An in case 3. The PSNR value for each restored HSI: (a) Noisy image
(13.90 dB); (¢) NLTL2p (ours) (31.68 dB); (d) LRTFLO (30.89 dB); (e) SNLRSF
(28.39 dB); (f) LRTD (27.96 dB); (g) BM4D (21.30 dB); (h) QRNN3D (26.13 dB).
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(a) Noisy image (b) NLTL2p (ours) (c) LRTFLO

(d) SNLRSF (e) LRTD (f) BM4D

(g) QRNN3D

Figure 4.11: Comparison of the 25-th band of the HSI restored by different methods
from HYDICE Urban.
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(g) QRNN3D

Figure 4.12: Comparison of the fake color image of the HSI restored by different
methods from HYDICE Urban.
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(b) NLTL2p (ours) (¢) LRTFLO

(d) SNLRSF (e) LRTD (f) BM4D

(g) QRNN3D

Figure 4.13: Comparison of the 128-th band of the HSI restored by different methods
from EO-1 Hyperion.
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(g) QRNN3D

Figure 4.14: Comparison of the fake color image of the HSI restored by different
methods from EO-1 Hyperion.
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Chapter 5

Application to Hyperspectral
Anomaly Detection

5.1 Problem Statement

Hyperspectral anomaly detecti