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Abstract

In the world’s fast-growing mega-cities, ground deformation is one of the crucial

issues threatening many cities in both societal and economic aspects. Traditional

field procedures (e.g., leveling and global navigation satellite system (GNSS)) have

been utilized for deformation monitoring. Notwithstanding these methods’ high re-

liability, their main drawbacks are low spatial resolution in large-scale projects, rel-

atively high cost, and lack of manpower. In contrast, remote sensing techniques,

particularly, differential InSAR (DInSAR) provide high-resolution deformation maps

in large-spatial coverage at high levels of accuracy. Recently, synthetic aperture

radar (SAR) data are available from diverse bands including C-band (e.g., SIR-C,

European remote-sensing satellite (ERS), ENVISAT, RADARSAT-1/2, and Sentinel-

1), X-band (e.g., TerraSAR-X and COSMO-SkyMed), L-band (e.g., JERS, ALOS-

1/2, TerraSAR-L, and DESDynl), and P-band (e.g., BIOMASS). A key challenge of

integrating multi-band SAR datasets is that they have diverse maximum detection

gradients, degrees of decorrelation, noise rejection capability, etc. The integration

of multiple operational bands, polarimetric channels, and orbit orientations is antici-

pated to enrich the gained information thus enabling depth interpretation of the sur-

face deformation. In this research, the problem of integrating multi-satellite SAR data

is addressed based on two aspects (1) adaptation of the traditional small baseline sub-

set (SBAS) time series and (2) utilization of machine learning machine learning (ML)

to perform integration. The proposed methodology exploits complementary informa-

tion from different SAR data to generate integrated long-term ground displacement
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time series.

Part I of this thesis focuses on the integration of multi-satellite SAR data by adapta-

tion of traditional SBAS. The proposed method is employed to generate the vertical

displacement maps of Almokattam City in Egypt from 2000 to 2020. The experiments

have shown promising results based on ERS, ENVISAT, and Sentinel-1A interfero-

grams. Significantertical deformation has been recorded along the west of the city

with a mean value of - 2.32 mm/year and a standard deviation of 0.21 mm/year.

Moreover, the research findings are in line with those from previous studies in the

area. Accordingly, the proposed integration approach has great potential in retrieving

long-term vertical displacement based on multi-satellite SAR data.

In part II of the thesis, machine learning is used to integrate multi-satellite SAR data.

At least a pair of SAR images from complementary tracks is the input of the proposed

method. The line-of-sight (LOS) displacements are computed based on DInSAR at

a series of high-coherence points. The vertical components of displacement are then

computed from the recovered LOS displacement. After that, the vertical displace-

ment maps are geocoded to the ground coordinate system. Finally, the support vector

regression (SVR) is used to integrate the displacement on a pixel-by-pixel basis. The

proposed method does not employ simultaneous processing of huge DInSAR interfer-

ogram sequences, which is a key advantage compared to other methods. The SVR

integration is tested using COSMO-SkyMed (CSK),TerraSAR-X (TSX) images, and

a small monitoring cycle Sentinel-1 (S1) images to monitor the deformation of the re-

claimed territories near Hong Kong Kowloon City. The results show that the average

annual displacement (AAD) ranges from -12.86 to 11.63 mm/year from 2008 to 2020

with a Standard Deviation (STD) of 0.69 mm/year. Moreover, the root mean square

error (RMSE), MAE, correlation coefficient, and R-squared are computed. Accord-

ingly, a potential performance of the proposed method in multi-satellite SAR data

integration has been recorded.
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Chapter 1

INTRODUCTION

This chapter lays the groundwork for the proposed research by first establishing the

relevant background and context. Following this, a clear and concise statement of the

research problem and the existing gaps in knowledge will be presented. The chapter

then outlines the specific research objectives that this dissertation aims to achieve.

Finally, to provide a roadmap for the reader, the overall structure of the dissertation

will be presented.
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1.1 Background

ne of the most pressing threats to life and property in rapidly expanding megacities

is ground deformation. Human activities related to urbanization—such as land recla-

mation, groundwater extraction, and underground construction [4]—can significantly

contribute to ground deformation. So, it is important to monitor and study the

long-term earth surface deformation to make an early warning and to prevent disas-

ters related to this displacement. Traditional methods for observing and monitoring

ground deformation include ground leveling and global positioning system (GPS)

measurements. Ground leveling, when combined with advanced GPS technology and

precise control point coordinates, allows for an accurate assessment of ground mo-

tion. However, these traditional methods face challenges in expanding urban areas,

including limited manpower, high costs of additional measurements, and difficulties

in covering extensive areas over time and space [2]. To address these challenges and

consistently map ground deformation over large areas, advanced remote sensing tech-

niques were developed as Synthetic aperture radar SAR interferometry, also termed

interferometric synthetic aperture radar (InSAR) [5].

InSAR, is an active remote sensing technique for observing the Earth’s surface. It

can measure the digital elevation model (DEM) of Earth or ground deformation by

exploring the phase difference of two SAR images (Differential InSARDInSAR) (i.e.,

the interferometric phase, the measurement of InSAR) in the same area. acDInSAR

has become one of the most useful geodetic techniques for ground deformation mea-

surement due to its all-weather and day-and-night imaging capability, wide-coverage

(over hundreds of kilometers), high spatial resolution (meter-level), and high measure-

ment accuracy [6, 7, 8, 9]. Due to the extensive availability of SAR images, DInSAR

technology has proven highly effective in mapping surface changes and monitoring

active deformation areas associated with earthquakes [10, 11], volcanic eruptions [12],

glacial movements [13], landslides [14], underground mining [15], land reclamation
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[16], and subsidence [17].

In a traditional DInSAR technique, the phase difference between two SAR acquisi-

tions includes contributions from topography, atmospheric delay and decorrelation

noise, as well as information from the elevation reference surface. After removing

the phase components related to the elevation reference surface and topography, the

phase difference attributed to the deformation signal can be isolated. However, this

approach often struggles to eliminate other phases, such as atmospheric artifacts,

decorrelation noise, and topographic errors, which can obscure small displacements

[18, 19, 20, 21]. These unexpected phase components are referred to as error sources,

and effectively correcting them is crucial for accurate deformation retrieval in DInSAR

processing. Also, DInSAR is limited in observing long-term time-series deformation of

the earth’s surface [22]. Consequently, several multi-temporal InSAR multi-temporal

InSAR (MT-InSAR) techniques have been developed to examine the temporal evo-

lution of land deformation and map ground deformation, thus mitigating space-time

decorrelation issues inherent in traditional DInSAR techniques [23].

The MT-InSAR techniques are classified into three main categories: persistent scat-

terer interferometry (PSI) [24, 25, 26, 27, 28, 29], SBAS [30, 31, 32, 17, 33, 34], and

the fusion of PSI and SBAS [35, 36, 37, 38]. The PSI approach extracts phase infor-

mation from point-like persistent scattererss (PSs), which are typically stable features

like large rock outcrops or man-made structures. This method generates N −1 single

master (SM) interferograms from N single-look SAR images and selects isolated PSs

to derive displacement time series. However,PSI is most effective in urban or semi-

urban areas due to the scarcity PSs in rural regions [39, 40]. On the other hand, SBAS

uses distributed scattererss (DSs) in interferograms with small spatial and temporal

baselines, which often show moderate correlations. By employing spatial multilooking

to enhance the signal-to-noise ratio of these targets, it SBAS performs well in rural

areas with many DSs due to the use of short baselines and multilooked pixels [41].

The third technique integrates PSI and SBAS combines phase information from both
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PSs and DSs. Recent advancements in MT-InSAR improving phase quality by using

a full combination of interferograms and collaborative processing with PSs within

the SM interferogram framework [35, 42]. These approaches improve the accuracy of

deformation retrieval while minimizing the impact of the error source through spatial

and temporal modeling.

With the progress of InSAR and MT-InSAR techniques, a growing number of SAR

satellites have been launched, including C-band (SIR-C, ERS, ENVISAT, RADARSAT-

1/2, and Sentinel-1), X-band (TerraSAR-X and COSMO-SkyMed), L-band (JERS,

ALOS-1/2, TerraSAR-L, and DESDynI), and P-band (BIOMASS) [43], as shown in

Figure 1.1. These multi-band SAR datasets, with varying imaging parameters such

as azimuth and incidence angle, spatial and temporal resolution, orbit direction, and

wavelength, enable in-depth comparison and analysis of surface deformation. They

offer different characteristics in terms of maximum detection gradient, degree of decor-

relation, and noise rejection capability [44].

With the increasing availability of SAR images, new methodologies are being devel-

oped to optimize the processing and analysis of the vast amounts of data gathered by

constellations of next-generation SAR sensors. These advancements aim to extract

new insights from the combined use of multiple operational bands, polarimetric chan-

nels, and orbit orientations [45]. Previous research by Pepe et al. [46] has explored this

by applying a time-dependent geotechnical model of observed deformation to solve a

non-linear optimization problem using the Levenberg-Marquardt method. Addition-

ally, the computation of three-dimensional (3D) components of ground deformation

velocity has been a focus in multi-sensor DInSAR studies [47, 48, 49, 50, 51]. Recent

approaches for integrating multi-satellite and multi-angle SAR data have enabled the

development of long-term 3D time-series of ground deformation, including vertical,

east-west, and north-south components [51, 46, 52, 53]. Notable techniques include

minimal acceleration (MinA) [54], which combines radar line-of-sight (LOS)-projected

time-series of deformation from various SAR platforms by ensuring that 3D displace-
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Figure 1.1: SAR satellites.

ment components have minimal accelerations independently. Another approach, the

modified quantile-quantile adjustment (MQQA) method [55], links time-overlapped

multi-satellite DInSAR deformation time-series, analyzing nearly 12 years of SAR

data to produce long-term displacement time-series for the ocean-reclaimed lands of

Shanghai. The Multidimensional Time Series (MasTer) toolbox [56], a fully auto-

matic, unsupervised processing chain based on the multidimensional small baseline

subset (MSBAS) method [57, 58, 52, 59], is another example of recent advancements.

From the literature, while numerous research studies have explored the integration of

multi-satellite InSAR data, several challenges remain. First, processing large archives

of SAR images and interferograms simultaneously is computationally intensive and

requires high-performance computing resources. Second, integrating time-gapped

data presents difficulties, as previous studies have addressed this issue using time-

dependent deformation models, which can lead to boundary non-convergence prob-
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lems. Additionally, these time gaps contribute to the emergence of low-coherence

areas in displacement results. Third, cross-sensor biases arise due to differences in

satellite sensors, imaging geometries, viewing angles, atmospheric conditions at dif-

ferent acquisition times, and variations in orbital parameters. These biases are chal-

lenging to estimate and correct, complicating the generation of accurate long-term

displacement measurements.

1.2 Motivation and Research Questions

This thesis research is motivated by two key factors. First, the increasing availabil-

ity of SAR data from multiple radar satellites operating in the same region but at

different wavelengths, viewing angles, and acquisition modes presents a challenge in

effectively integrating these diverse datasets. Efficiently combining the information

from various SAR satellites is essential to maximize their collective advantages. Sec-

ond, there is a growing interest in leveraging machine learning ML techniques to

extract valuable insights from InSAR data and its associated products. ML-based

SAR algorithms have been developed for a range of applications, including object

detection, terrain classification, surface displacement analysis, parameter inversion,

and despeckling. These advancements enable better interpretation of SAR data, ad-

dressing both societal and economic needs [60, 61]. Over the past decade, significant

research has focused on surface displacement and terrain classification, particularly

in distinguishing SAR signal characteristics based on spatial patterns and statistical

properties. The anticipated deployment of next-generation SAR sensors, potentially

capable of daily revisits through geosynchronous SAR systems, is expected to fur-

ther enhance the role of ML in integrating multi-satellite SAR data, benefiting both

disaster prevention and post-emergency response efforts.

The specific research questions that guide this research are the following:

• How to obtain reliable vertical displacement results from integrating time-gaped
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SAR data without an external time-dependent displacement model?

• Which strategy can overcome the statistical and systematic temporal biases in

displacement values obtained from multimodal SAR datasets?

• How to overcome the challenges related to data volume and integration com-

plexity “simultaneous processing of vast amounts of images/interferograms”?

• How to overcome low coherence areas resulted from the temporal gap between

different SAR satellites?

• What is the role of machine learning techniques in mapping earth displacement

from different SAR satellites and overcoming integration challenges of different

SAR datasets?

1.3 Objectives and Contributions

The main aim of this research can be summarized as follows:

• Monitoring long-term vertical displacement in regions affected primarily by sub-

sidence by integrating a large dataset of multi-satellite SAR images while ad-

dressing or mitigating the challenges associated with this integration.

• Assessing the effectiveness of ML algorithms in integrating multi-satellite SAR

data to generate accurate long-term vertical displacement maps.

To address these aims, the research contributions are:

• Develop a post-processing framework to integrate multi-satellite DInSAR data,

addressing statistical and systematic temporal biases while eliminating the need

for simultaneous processing of hundreds of differential SAR interferograms.
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• Apply temporal alignment of SAR data using techniques such as interferomet-

ric time series analysis (e.g., Modified Multi-satellite SBAS (MMSBAS)) or

by integrating velocities instead of displacement values, as done in ML-based

integration methods, to seamlessly merge time-gapped SAR datasets without

relying on an external time-dependent displacement model.

• Retrieve the integrated vertical displacement at high-coherence common points

selected based on Permanent Scatterers PS and Distributed Scatterers DS mea-

surements, minimizing low-coherence areas caused by temporal gaps between

different SAR data acquisitions.

• Developing a ML-based method to integrate multi-band SAR data.

This machine learning (ML)-based integration method offers several key advan-

tages, enabling automated and efficient multi-satellite SAR data fusion. This

approach enhances scalability while reducing manual effort and accelerating the

generation of displacement results. The benefits of this method can be outlined

as follows:

1. Automation and Efficiency – ML-driven integration automates the fu-

sion of multi-satellite SAR data, minimizing manual intervention and sig-

nificantly improving processing speed. This allows for the rapid generation

of displacement maps, making large-scale applications more feasible.

2. Mitigation of Inconsistencies – Variations in orbital geometries, spa-

tial resolutions, and atmospheric conditions across different satellites in-

troduce discrepancies in displacement measurements. The ML-based ap-

proach helps standardize and correct these inconsistencies, leading to more

precise and reliable displacement results.

3. Adaptive Weighting for Improved Accuracy – By assigning dynamic

weights to displacement data based on reliability factors such as tempo-

ral baseline, coherence, and signal quality, ML enhances the accuracy of
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integration. This ensures that more reliable data points contribute more

significantly to the final displacement maps.

4. Scalability for Large Datasets – The vast volume of SAR data gen-

erated by multiple satellites requires efficient processing techniques. ML

models are capable of handling large-scale, high-dimensional datasets, en-

suring seamless integration and analysis without excessive computational

overhead.

5. Identification of Complex Patterns – Unlike traditional algorithms,

ML techniques can detect intricate patterns and relationships in SAR data

that may not be immediately apparent. This capability enhances the un-

derstanding of ground deformation dynamics and improves the accuracy of

displacement estimations. By leveraging ML, this approach optimizes the

integration of multi-band SAR data, ensuring greater precision, efficiency,

and reliability in generating long-term ground displacement time series

1.4 Thesis Structure

There are five chapters in this thesis, the outline of which are arranged as follows:

Chapter 1 is an introductory chapter that outlines the motivation, research questions,

objectives, and research contributions.

Chapter 2 reviews the principles of SAR, InSAR, and DInSAR. We introduce the Lim-

itations of conventional DInSAR. The concept and types of Multi-temporal InSAR

are underlined. Moreover, the literature review of Multi-Track/Multi-Satellite InSAR

Methodologies. The shortcomings of the existing methods are also highlighted.

Chapter 3 proposes the Modified Multi-Satellite SBAS method. This framework

enabled us to generate long-term deformation time series from extended sequences

of time-overlapped and time-gapped multi-satellite SAR data. The adopted method

is implemented at Almokattam city, located at the upper plateau of Almokattam
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mountain in Cairo, using three SAR datasets.

Chapter 4 introduces a method for multi-sensor SAR data integration to retrieve long-

term ground deformation maps. The proposed method exploits the ML algorithm

namely multi-variable SVR. The proposed method was tested in the Kowloon district

in Hong Kong using TSX, CSK, and S1 SAR images.

Chapter 5 represents a conclusion and a summary of the contributions leading to

providing insight on suggestions for future research.
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Chapter 2

SAR, InSAR, and MTInSAR:A

Literature Review

This chapter delves into the foundational aspects of deformation mapping using

DInSAR. It offers a comprehensive overview of the constraints and latest advanceslti-

temporal Interferometric Synthetic Aperture Radar is dedicated to elucidating the

general definition and essential characteristics of MT-InSAR. It covers the basics

of deformation monitoring and modeling by integrating multi-satellite SAR images.

Furthermore, Section 2.5 presents a detailed review of the current state of multi-track

and multi-satellite InSAR methodologies for ground deformation mapping, highlight-

ing the latest innovations and methodologies in this field.
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2.1 Synthetic Aperture Radar (SAR)

SAR is a radar imaging technique that uses microwave signals to create high-resolution

images of the surface of the Earth with a spatial resolution of a few meters which was

discovered approximately 50 years ago [62]. SAR employs a frequency-modulated

waveform and pulse compression to aggregate several echoes, unlike conventional

radar. Based on this concept, SAR can create a synthetic aperture that is much

longer than the real one, allowing targets that are illuminated by the same beam

to be distinguished and recorded. By employing SAR, it is possible to increase the

spatial resolution in the azimuth and range directions to meters-level accuracy. The

spatial resolution of the recently launched TerraSAR-X and COSMO-skyMED can

even reach 1 meter in azimuth, greatly increasing the amount of observational detail.

SAR is therefore capable of differentiating small-scale ground characteristics [63].

The SAR image geometry is shown in Figure 2.1 when a short pulse from the RAdio

Detecting And Ranging (RADAR) returns to the antenna with a recording of the

back-scattered earth from a location on the earth’s surface. The azimuth direction is

the direction perpendicular to the motion of the satellite, while the range direction is

the direction of illumination. The swath refers to the portion of the Earth’s surface

that was photographed. The look angle and slant range are represented by the angles

θ and range r, respectively. H stands for the satellite’s altitude. The nominal slant

range resolution, ∆ r, can be written as the following equation, where tau is the pulse

length and C is the light speed.

∆r =
Cτ

2
(2.1)

The slant range resolution and the ground range resolution are mathematically con-

nected as follows:

Rr =
Cτ

2 sin θ
(2.2)
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Figure 2.1: SAR imaging geometry.

The look angle is connected to the range resolution, independent of the height of the

SAR satellite. The range of resolution is limitless if the look angle is zero. The look

angle of the SAR satellite now ranges from 15° to 65°. While reducing pulse length

can enhance range resolution, this improvement is constrained by the satellite and

ground station data transmission speed. In the case of real aperture radar (RAR),

the azimuth resolution is determined by the ratio of the RADAR wavelength λ to the

antenna length L, and is expressed as:

R′
a = r tan θ =

rλ

L
=

λH

L cos θ
, (2.3)

where r is the nominal slant range. The azimuth resolution can be greatly enhanced

by assembling the synthetic aperture with a length equal to the along-track beam

width of length of 2Ra, and it can be written as:

Ra =
λr

2Ra

=
L

2
(2.4)

The potential resolution of the most popular SAR mode, stripmap mode, is repre-

sented by the Ra.Additionally, it is unaffected by the SAR satellite’s height. Re-
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ducing the antenna length can increase azimuth resolution, but this improvement is

constrained by the satellite’s motion velocity and pulse repetition frequency (PRF).

The single look complex (SLC) image that makes up the raw SAR image contains data

on the brightness (ie., amplitude) and phase of the scatterers on the ground. Airborne

and space-borne SAR systems are now used to collect SAR images. Spaceborne SAR

systems have the advantages of extensive ground coverage, frequent coverage of the

same area, and a large number of multi-temporal SAR images for interferometric

processing and surface deformation research. As a result, the primary data source for

InSAR deformation monitoring globally has been space-borne SAR images[64, 65].

2.2 Interferometry (InSAR)

InSAR is a radar-based technique widely employed in geodesy and remote sensing.

This method leverages two or more SAR images to generate maps of surface deforma-

tion or digital elevation, relying on differences in the returning wave phases captured

by the satellite [7] or airborne platforms. InSAR enables the detection of deformation

changes at the millimeter scale over periods ranging from days to years. It has appli-

cations in structural engineering, particularly for monitoring subsidence and ensuring

structural stability, as well as in geophysical studies, such as tracking natural hazards

like earthquakes, volcanic activity, and landslides.

Satellites equipped with SAR sensors can repeatedly observe the same region from

slightly varying perspectives. This can be achieved either simultaneously, using two

radars on the same platform, or at different times by exploiting the satellite’s re-

peated orbital paths. The interferogram, a key product of InSAR, is created by

cross-multiplying the first SAR image with the complex conjugate of the second im-

age on a pixel-by-pixel basis. The interferometric phase, derived from the difference

in phase between the two images, is represented in the interferogram, while its ampli-

tude is the product of the amplitudes of the two images [66]. A typical configuration

of the repeat-pass InSAR system is illustrated in Figure 2.1.
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Figure 2.2: Geometry of a satellite InSAR system.

Once a ground reference point is established, the variation in the travel path differ-

ence, r, when moving from the reference resolution cell to another can be approxi-

mated using a simple expression. This approximation is valid for short baselines and

when the resolution cells are relatively close to each other, and it is determined based

on a few geometric parameters. This expression is shown in Figure 2.3.

∆r = −2
Bnqs
R

, (2.5)

where Bn represents the perpendicular baseline, R is the radar-to-target distance,

and qs represents the displacement between the resolution cells perpendicular to the

radar LOS. Thus, the change in the interferometric phase ∆ϕ is determined based

on the radar wavelength λ and ∆r as follows:

∆ϕ =
2π∆r

λ
=

4πBnqs
λR

(2.6)

Several factors, including orbital contribution ∆ϕorb , topographic phase ∆ϕtopo, dis-
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Figure 2.3: Geometric configuration of a satellite-based interferometric SAR system.

placement ∆ϕdef , atmospheric effect ∆ϕatm, and phase due to noise ∆ϕnoise, con-

tribute to the interferometric phase ∆ϕ, Which is:

∆ϕ = ∆ϕorb + ∆ϕtopo + ∆ϕdef + ∆ϕatm + ∆ϕnoise (2.7)

2.2.1 InSAR for topographic mapping

To gather topography data within the overlapped area of two images, traditional

photogrammetry employs stereo mapping. In terms of the InSAR technique, it is

necessary to have the phase information from two SAR images that overlap one

another to determine the Earth’s surface elevation. It is possible to estimate the

geometrical and physical relationship between the two-phase observations needed to

determine the topographic height using the interferometric arrangement shown in

Figure 2.4.
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Figure 2.4: InSAR geometric configuration for topographic mapping.

Figure 2.4 illustrates the two SAR satellites S1 and S2, with a spatial baseline B. The

angle between the baseline vector and the horizontal plane is denoted by α, and the

satellite’s look angle is represented by θ. The baseline components are split into the

parallel baseline B|| and the perpendicular baseline B⊥. The figure also indicates the

height difference H from a surface reference datum and the target height h relative to

that datum. Additionally, the slant range from S1 to the target point P is given by

R, while the slant range from S2 to P is R+ r. From this configuration, the following

relationships can be derived:

h = H −R cos θ (2.8)

Cosine Law in ∆S1S1P allows us to obtain

(R + r)2 = R2 + B2 − 2RB cos (
π

2
− θ + α) = R2 + B2 − 2RB sin (θ − α) (2.9)
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On the left side of equation 2.9 after expansion, we obtain

R2 + r2 + 2Rr = R2 + B2 − 2RB sin (θ − α), (2.10)

such that R2 is removed from both sides of equation 2.10, and we derive:

R =
B2 − r2

2r + 2B sin (θ − α)
, (2.11)

where r can be defined as:

r = −λϕ

4π
, (2.12)

so, using equations 2.8, 2.11 and 2.12, the functional relationship between h and

interferometric phase can be written as follows:

h = H −
B2(λϕ

4π
)2

2B sin (θ − α) − λϕ
2π

cos θ (2.13)

Equation 2.13 shows how the interferometric phase can be used to invert the elevation

of the Earth’s surface, which allows us to construct the digital elevation model (DEM)

of the overlapped region by combining the interferometric phase and the satellite

motion parameters for the region. On the contrary, the InSAR technique in practice

requires a series of steps to mitigate or remove the contributions and ultimately derive

the local DEM. These steps include taking into account the phase contribution by the

reference datum, topographic fluctuation, deformation, atmospheric delay, and noise.

Generalized summaries of the essential phases in topographic mapping with InSAR

include: choosing the suitable SAR images, focusing the SAR images to create SLC

images, co-registering SLC images, interferometric processing, applying noise filtering

to interferograms, and interferometric processing. Interferograms are processed by

deducting the reference and topographic phases, unwrapping the phase, geocoding,

and translating the phase to height. Figure 2.5 illustrates the process of InSAR

topographic mapping.

2.2.2 InSAR for surface deformation mapping

When a location is observed by a satellite twice or more, and the ground is dis-

placed during that time, the information about the ground displacement is included
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Figure 2.5: Workflow of InSAR topographic mapping.

in the interferogram that is created from these two images in addition to informa-

tion about the topography. The interference fringe resulting from ground elevation

is associated with the baseline distance in the interferogram, incorporating both to-

pographic and ground displacement information. In contrast, the interference fringe

caused by ground changes is independent of the baseline distance. In the interim,

topographically related interference fringes can be eliminated using differential SAR

interferometry. The DInSAR technology can achieve millimeter-level surface defor-

mation precision when combined with other observational methods.

To detect ground surface displacement in the LOS direction, DInSAR uses phase

information from multiple repeated LOS observations. Surface deformation mapping

by InSAR is shown in Figure 2.6 in its configured state. It is expected that P is a

ground target and P ′ is the same ground target after displacement. The slant range

difference in the LOS direction is denoted by r.

The phase component resulting from deformation can be defined using equation 2.7

as follows:

ϕdef = ϕ− ϕorb − ϕtopo − ϕatm − ϕnoise, (2.14)
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Figure 2.6: Configuration of surface deformation mapping using InSAR.

when combined with equation 2.6, the deformation measurement can be written as

follows when displacement is in the LOS direction:

∆r = −λ(ϕ− ϕorb − ϕtopo − ϕatm − ϕnoise)

4π
(2.15)

DInSAR has been extensively applied in the field of landslide monitoring, seismic

geological catastrophes, urban land subsidence, and other areas depending on the

various types of surface deformation. The hypocentral location, focal mechanism,

distribution of seismic slip, and other information can be proposed by performing

interferometric processing with SAR complex images of pre-earthquake and post-

earthquake obtained by satellite, providing trustworthy and valuable information for

seismic research. After removing the atmospheric phase delay provided by GPS and

MERIS, SAR interference images can obtain more precise surface deformation data,

with an accuracy of up to a millimeter. It is possible to get urban ground deforma-

tion information with high temporal and high spatial resolution by combining the

deformation result of DInSAR with standard settlement observation methods (e.g.,

GPS, leveling). This information can also be used to supply the necessary functions
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of government departments as a reference. To this end, numerous methods have been

devised by various researchers. As a result, several DInSAR techniques have been de-

veloped, including the two-pass method [10], three-pass method [5, 11], and four-pass

method.

All of the methods mentioned above require external data sources (e.g., DEM or an

additional set of interferometric measurements) to effectively remove the topographic

component from Equation2.15. One exception exists in the case of zero or near-zero

spatial baseline [66].

2.3 Diffrential Interferometry (DInSAR)

DInSAR aims to separate the topographic and the displacement terms in an inter-

ferogram. The topographic phase must be eliminated to determine the displacement

component. When a DEM is present, two-pass differential interferometry is used;

otherwise, three- or four-pass differential interferometry is used. The methods for

obtaining a differential interferogram vary depending on whether or not a DEM is

available as well as whether or not a phase unwrapping procedure is necessary. The

differential phase must be eliminated if the goal is to instead determine the topo-

graphic component. An effective baseline that is greater than the original baselines

can be obtained by combining complex interferograms with scaling to eliminate phase

noise.

2.3.1 Approaches of differential interferometry

2.3.1.1 Two-pass DInSAR

In the case of two-pass DInSAR, an interferogram is formed using a pair of SAR

images that are mutually coherent. These images could be combined with a DEM.

In addition, the interferometric image pairs can be acquired using the same sensor

at different times or with another sensor with similar properties. Two types are
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involved. First, two-pass DInSAR without an external DEM to detect deformation or

displacement signals in the interferogram. This approach assumes zero perpendicular

baselines to significantly eliminate the topographic component of the interferometric

phase [66]. Second, two-pass DInSAR with a DEM which is used to remove the

topographic phase [10]. Zero baselines are unrealistic, therefore the second type

is more commonly employed [66]. A DEM can be produced from Light Detection

and Ranging (LiDAR), aerial photogrammetry, and online resources such as shuttle

radar topography mission (SRTM). In DInSAR research, Massonnet et al. [10] were

pioneers in using this technique to generate DInSAR for the Landers earthquake on

28th June 1992. They have removed the topographic phase using a 15′ DEM from

the U.S. Geological Survey. Zebker et al. [11] summarized the shortcomings of this

technique which include the global DEM coverage, accuracy concerns including errors

and distortions in third-party or existing DEMs, challenges in SAR image to DEM

registration, and difficulties in determining the phase relationship between random

points in the scene. However, with the release of near-global coverage SRTM in

various resolutions in 2000, most of these challenges have been mitigated, as DEM

coverage has become more accessible for most sites on the Earth.

2.3.1.2 Three-pass DInSAR

The three-pass setup does not utilize an external DEM. Instead, three SAR images

are employed in a mutually coherent manner. One image serves as the common mas-

ter for the other two images [11]. One interferometric pair shouldn’t be affected by

ground deformation (i.e., deformation-free) among this triplet. Such a pair is then

utilized to generate a DEM for topographic phase removal from the other pair (defor-

mation pair). It is important to consider the perpendicular and temporal baselines of

both pairs to maintain accurate results. For example, the typical temporal baseline

of ERS SAR is one day while the perpendicular baseline ranges from 100 m to 300 m

[66]. This approach was first introduced in Zebker et al. [11] where they produced a

pair of interferograms based on ERS-1 data. They scaled down the second interfer-
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ogram while one interferogram was used to eliminate the topographic phase to keep

only the deformation phase. In comparison with the two-pass DInSAR, the DEM

registration to the master image is simpler. The reason is that all SAR images are

transformed into the coordinate frame of the master image. Moreover, third-party

DEM is not required therefore it eliminates the requirement for azimuth-slant range

SAR coordinate transformation of the DEM.

2.3.1.3 Four-pass DInSAR

The four-pass DInSAR and three-pass DInSAR are comparable. The two methods

differ in both the number of SAR images employed and the selection of the master

SAR images used in the two InSAR pairs. This technique makes use of up to four

coherent SAR images. The topographic phase is calculated from two of the four

images and then deduced from the interferogram created from the other pairs. A

tandem pair, which is made up of two SAR images of the same area taken by the

ERS-1/2 SAR systems one day apart, or images with a very short temporal baseline

can be used to create a topographic pair. This approach is less flexible than the three-

pass DInSAR because the external master SAR image required for co-registration

differs from the master SAR image of the differential pair.

2.3.2 Limitations of conventional DInSAR

The accuracy of typical differential InSAR measurements is compromised by several

uncertain elements, such as ocean tide loads (OTL), decorrelation, satellite orbital

error, DEM inaccuracy, and decorrelation (in the coastal zone). The precision of inter-

ferometric deformation measurements will decrease due to these uncertainties, which

will also cause phase noise and phase decorrelation. In rare cases, the phase unwrap-

ping procedure may even fail. Phase decorrelation typically comprises six components

[9, 19]: Doppler decorrelation caused by a variation in the Doppler centroid frequency;

Temporal decorrelation caused by a change in scatterer characteristics on the ground

surface; Spatial decorrelation caused by a difference in side-looking angle; Radar sys-
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tematic noise causes thermal decorrelation, ground objects, particularly for ground

coverage, produce scatterer decorrelation, and algorithm flaws cause decorrelation in

the data process.

2.3.2.1 Spatial decorrelation

The length of the perpendicular baseline is connected to the interferometric quality

since the fundamental idea behind InSAR is that the same scene is captured by in-

terferometry from two different incidental angles. The correlation between the radar

signal echoes of two images is high when the perpendicular baseline is minimal. De-

spite the long perpendicular baseline, there is little association between the echoes of

the two images. The correlation of radar signal echoes and the phase signal to noise

ratio (SNR) will both be extremely poor if the baseline length reaches a threshold

value, which will prevent interferometry information from being extracted [19].

2.3.2.2 Temporal decorrelation

Once the interferometric image acquisition time difference exceeds a threshold point,

temporal decorrelation typically happens. The backscattering mechanism on the ter-

rain surface by different acquisition times will change randomly due to a variety of

quantitative and non-quantitative factors, such as vegetation growth, farmland cul-

tivation, and other anthropogenic events because the phase information records not

only the slant range but also the characteristic and structure of the ground resolu-

tion cell. Loss of coherence and SNR are the outcomes of the phase contribution

from these unforeseen events, which might even mask the true signal. In this case,

phase unwrapping will be challenging since the interferometry’s fringes will be con-

fusing and discontinuous. Temporal decorrelation typically occurs in locations with

dense vegetation, but in sparsely vegetated or desert regions, this negative effect will

be less pronounced, especially in urban areas with a high density of hard targets.

According to several research [9, 19], long wavelength interferometric systems can

maintain temporal correlation more successfully than shorter wavelength systems. L-
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band satellite picture (23.5 cm wavelength) shows a greater temporal correlation than

C-band satellite image (5.6 cm wavelength).

2.3.2.3 Atmospheric effect

One of the most important errors in InSAR measurements is the atmospheric effect,

which frequently appears as a heterogeneous radar signal delay. Temperature, humid-

ity, pressure, and water vapor are only a few of the variables that affect atmospheric

delay. Whether in the time or spatial realms, these elements are distributed unevenly.

Since the photographs were taken at various times, the air conditions were probably

not the same. Additionally, the atmospheric conditions may vary even within the

same region. RADAR transmissions from the satellite experience unexpected signal

delays because of the non-identical and heterogenic air conditions that bend their

routes. The signal delay introduces additional phase fringes into the interferogram

and results in undesirable phase variation [18]. The accuracy of deformation measure-

ments will be impacted by this phase distortion, which will also reduce the precision

of the final results. In the case of a spatial baseline spanning from 100 to 400 meters,

[18] found that a relative humility variation of 20 % results in deformation errors of 10

to 14 cm and topographic errors of 8 to 290 meters. According to [67], an extreme at-

mospheric delay in a coastal zone can cause an error in deformation of around 10 cm,

severely restricting the use of the technology there. [68] presented an approach based

on stacking several interferograms and smoothing the atmospheric effects to reduce

the negative impact caused by atmospheric artifacts. However, this approach does

not eliminate the artifacts; rather, it simply averages them into each interferogram.

2.3.2.4 Orbital error

In InSAR measurements, orbital error is frequently present since it is impossible to

determine the sensor state vector with exact precision. There are three ways that

orbital inaccuracy can negatively impact InSAR measurements: First, when the flat

earth and topographic phase components from the interferometric phase are sub-
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tracted, inaccurate orbital data will lead to incorrect determination of the spatial

baseline. Second, the reliability and precision of this method will be impacted by

orbital data inaccuracies. Third, the application of geocoding will be negatively im-

pacted by inaccurate orbital satellite ephemerides, which will result in mistakes in

the transfer of radar coordinates into geographic coordinates. In small region pro-

cesses, the error resulting from an erroneous sensor state vector is typically tolerable.

However, the inaccuracy must be considered while working with a broad area. To

estimate the phase residual owing to orbital error and rectify the phase information,

ground control points can be used to derive topographic information. When extract-

ing short wavelength deformation, the inaccuracy can be eliminated by a low-order

polynomial concerning creating deformation maps. However, it is almost hard to

distinguish between orbital error and long-wavelength deformation data.

2.4 Multi-temporal Interferometric Synthetic Aper-

ture Radar (MT-InSAR)

The use of DInSAR for movement detection and monitoring is constrained by several

issues (see, for example, [69]. The main restrictions rely on atmospheric disturbances

and incoherent changes in target backscattering (coherence loss). These issues are

reduced by identifying radar targets that generate a backscattered phase signal that

can be measured over time and processing large temporal series of SAR data (about

15 radar pictures), known as multi-temporal interferometry (MTI) techniques.

Since 2000, numerous techniques for highly accurate long-term ground surface de-

formation signal detection have been created and successfully used to investigate a

variety of geophysical phenomena [70, 71]. LOS displacement time series, mean LOS

velocity (or equivalent LOS displacement), and improved elevation estimates are the

results of MTI processing for each coherent target. These techniques use a long se-

quence of radar images that have been processed using various techniques that are
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mainly divided into two broad categories to solve the primary drawbacks of DInSAR

(temporal/geometrical decorrelation, atmospheric artifacts):

1. PSI and related techniques [72, 73, 27, 69, 29, 74] rely on phase data from

solitary, isolated objects that exhibit strong temporal phase stability. These

methods typically involve computing differential interferograms for all acquisi-

tions relative to a single reference image (master image) and then performing

advanced phase analysis on the pixels that demonstrate a stable SAR response

across the entire stack of images [75].

2. SBAS and related techniques leverage differential interferograms generated from

image pairs with optimal spatial baseline values (i.e., below a specific threshold)

to extract geographically distributed information. These methods obtain con-

nected time series of phase values indicative of deformation by applying spatial

filtering and employing various techniques, such as least mean squares (LMS)

and singular value decomposition (SVD) [30, 31, 76].

2.4.1 Permanent Scatterer Interferometry

PSI, was introduced in 2000 by [77]. In contrast to the conventional DInSAR method,

the new method concentrates on the permanent scatterer, which is more stable over

time than the interferogram’s other pixels. Additionally, the method has advanced

significantly, enabling it to now not only track linear deformation but also nonlinear

deformation. The monitoring area is also increased from the initial 5 square kilometers

to that without any limitations. According to [77, 26], the PS approach can produce

DEM data at the decimeter level on permanent scatterers and increase the monitoring

accuracy of the deformation rate to the millimeter level. Since then, a lot of progress

has been made in the application of the PS method to track surface deformation. A

coherence coefficient-based technique for Permanent scatterer point recognition was

proposed in 2001 by [78].
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The seasonal ground deformation of San Jose in America was examined using PSI in

2003. According to the findings, the region’s settlement time runs from April to Au-

gust each year, and its elevating period runs from September to the following March.

The variation range difference is roughly 2 cm [79]. German Space Agency (DLR)

researchers employed the PSI approach in 2004 to track ground subsidence in Berlin,

Germany [80]. Using the PSI method, it was possible to determine the surface defor-

mation in Campania, southern Italy, between 1992 and 2001 in 2008. Recently, the

SAR images used in the PSI approach have evolved from low-resolution images with

low-resolution image processing to high-resolution images with X-band. Numerous

academics have successively examined the X-band SAR data. For instance, 30 Terra

SAR images were analyzed to track the Venetian coast’s centuries-level deterioration

[81]. Through the comparison analysis of Dossena in Italy, other researchers noted

that PS points with high density generated from high-resolution images are more

suitable for deformation monitoring in non-urban locations [82].

There are four steps to the PSI method: First, N differential interferograms are cre-

ated for a chosen master image using a stack of N +1 co-registered and calibrated

SAR images. To account for the topographic phase, a reference DEM is used. The

master picture is chosen to minimize the baseline spread of the interferograms and

maximize coherence (the master image often resides in the middle of the time se-

ries). The pixel’s unwrapped phase in the Kth differential interferogram. Because

the estimation is carried out in the complex domain in PSI, wrapped differential in-

terferograms are utilized. Second, pixels with a single PS, or those with minimum

phase dispersion for time, are chosen. There are two methods to accomplish this: The

normalized amplitude dispersion index, which is derived by [26], is a useful indicator

of the phase standard deviation at high SNR.

Da =
σa

µa

= σϕ, (2.16)

where σa and µa represent the temporal mean and sample standard deviation of the

amplitude time series a, respectively. Pixels are chosen as initial PS candidates if
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their normalized amplitude dispersion index is less than a certain threshold (about

0.25) Analyzing the signal-to-cluster ratio (SCR) of the pixels in the temporal mean

image is another way to find PSs. If the clutter in the adjacent cells is assumed to be

similar to those surrounding the dominant scatterer within a pixel, a spatial window

is used to compute the clutter based on the pixel neighborhood. Adam et al. [83]

provides the phase standard deviation of the PS as follows:

σϕ =
1√

2 + SCR
(2.17)

Pixels that have an SCR greater than a specific threshold (about 2) are chosen as PSs.

Third, to eliminate the atmospheric phase components from the interferograms, an

initial estimation is carried out on the preliminary set of PS candidates. A reference

network is created by connecting nearby PSs with arcs, and the network is given a

reference point. Usually, only sites that are closer together than a predetermined

distance are connected. Since the arcs are normally confined to 2-3 km, the effects

of air propagation and orbital inaccuracies are not substantial enough to cause issues

with phase unwrapping. Instead, phase differences between locations connected by

the arcs are calculated directly [8]. In the Kth differential interferogram, the phase

difference ∆ΦK
diffmodel

between two generic pixels connected by an arc in the reference

network is represented by the following model:

∆ΦK
diffmodel

= ∆ΦK
def + ∆ΦK

topo =
4π

λ
Bt

K∆v +
4π

λ

BK
⊥

R1 sin θ
∆h, (2.18)

such that K = 1, . . . , N represents the index of the differential interferograms, while

∆v and ∆h denote the differential displacement velocity in the LOS and the differen-

tial DEM error between the two locations, respectively. To estimate the differential

DEM error and differential velocity, the coherence function of the model is maximized

as follows:

ξ(∆v,∆h) =
1

N
|

N∑
k=1

ej(∆ΦK
diffobs

− ∆ΦK
diffmodel

)| (2.19)

For any pair of pixels, their phase difference is ∆ΦK
diffobs

in Kth differential interfero-

gram. The differential velocity and differential DEM error influence the periodogram,
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which is a two-dimensional (2D) function. The available temporal baselines BK
T and

the available spatial baselines BK
⊥ define an uneven grid over which its values are

known. The peak of this periodogram is utilized to calculate the differential velocity

and differential DEM error:

(∆v̂,∆ĥ) = argmax(ξ) (2.20)

It is worth noting that the term ”temporal coherence,” as used in some literature

to describe the periodogram’s maximum, is misleading. This term does not pertain

to the temporal decorrelation phenomenon discussed earlier. Instead, it represents

the degree to which the observed interferometric phase corresponds to the modeled

interferometric phase. The reference pixel serves as a basis for estimating the veloci-

ties and DEM errors for each PS through a weighted least squares (LS) integration.

Notably, a temporal coherence threshold is used to exclude the arcs with values less

than the threshold. Also, other arcs are weighted based on these values. The chosen

PS interferograms are then stripped of low-pass deformation and DEM error phase

components. Atmospheric phase components are estimated for the initial PS candi-

dates using low-pass spatial filtering followed by high-pass temporal filtering, given

their high spatial but low temporal correlation. Atmospheric phase screen (APS) is

created for each interferogram, and the initial data is removed from the APS. The

remaining PS candidates are then selected, and residual DEM and deformation ve-

locities are computed relative to the nearest PS in the reference network, similar to

single arc estimation.

A temporal coherence threshold of approximately 0.75 is used, below which points

are disregarded. After geocoding the PS locations, the deformation information is

provided to end users. The effectiveness of the PS analysis depends on both the

number of available images and the density of PS points, with an optimal density

of approximately 5-10 PS/km² and a minimum requirement of around 25 images

[79]. Before deformation estimation, a deformation model must be defined. While
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linear models are commonly used, non-linear models, such as seasonal models, are

also applicable [77, 79].

Traditional PSI methods struggle to resolve multiple dominant scatterers within a

single-resolution cell. However, recent PSI algorithms have proposed techniques to

distinguish between double scatterers or multiple dominant scatterers at different ele-

vations within the same cell [84]. PSI offers millimeter-level precision in deformation

mapping. For example, Bamler et al. [85] investigated the rates of linear deformation

projected for the Las Vegas area in the US, derived from 45 ERS-1/2 acquisitions be-

tween 1992 and 2000. This analysis utilized the DLR operational PSI module of the

PSI-GENESIS generic system for InSAR [84, 86, 29], which also includes DInSAR pro-

cessing. The processor’s co-registration module employs a geometry-based approach

using precise orbits and an SRTM DEM. Due to its lack of systematic errors, the

PSI-GENESIS processing system is considered the standard for product validation

by several PSI operational service providers [87].

2.4.2 Small Baseline Subset

A post-processing technique called the SBAS algorithm is employed to extract defor-

mation parameters and DEM error from a series of multi-master short spatial baseline

differential interferograms. This method is easier to implement compared to the PSI

technique. However, one of the main sources of error in this approach is phase un-

wrapping errors, as the unwrapped phases serve as the initial input for the SBAS

process. In this section, we will outline the core principles of the SBAS algorithm.

The key steps in SBAS processing are as follows:

1. Image Acquisition: A set of N +1 co-registered SLC SAR images is obtained

at times tn, where n = 0, ..., N . It’s assumed that each image can be successfully

generated.

2. Interferogram Selection: A total of M interferograms are selected with low
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spatial and temporal baselines, along with modest Doppler centroid differences,

to minimize the decorrelation phenomenon. It’s worth mentioning that the

SAR data used to generate the interferograms may be divided into several

small baseline subsets, which need to be accurately combined to reconstruct

the deformation time series.

3. Interferometric Signal Representation: For a coherent pixel at coordinates

(x, r), the interferometric signal in a generic interferogram K, created from SAR

images recorded at times tB and tA, can be described as follows:

δΦK = Φ(tB, x, r) − Φ(tA, x, r) =
4π

λ

[d(tB, x, r) − d(tA, x, r)] + ∆ΦtopoK(x, r)+

∆QΦatmK(tB, tA, x, r) + ∆nj(x, r),

(2.21)

Such that K = 1, ...,M represents the index of the interferograms, and d(tB, x, r)

and d(tA, x, r) are the cumulative deformations along the LOS at times tB and tA,

respectively, concerning the first scene at time t0. The phases obtained at times tB

and tA are denoted as (tB, x, r) and (tA, x, r). In DInSAR interferograms, the residual

topographic phase is represented by ∆ΦtopoK(x, r). The phase differences caused by

atmospheric dispersion at times tB and tA are denoted by ∆QΦatmK(tB, tA, x, r).

The term ∆nj(x, r) represents the phase component contributed by additional noise

sources and potential decorrelation effects.

After the phase unwrapping stage, the low-pass deformation signal component and

topographic error are computed for each coherent pixel using the LS solution. The

low-pass deformation, often referred to as low pass (LP) deformation, can be modeled

using a cubic model.

d(tB, x, r) =v ∗ (ti − t0) +
1

2
a ∗ (ti − t0)

2+

1

6
∆a ∗ (ti − t0)

3,
(2.22)
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where v, a, and ∆a are unknowable. Equation 2.21can be stated as a result as:

δΦK = MKP + δNK , (2.23)

where P is the parameter vector as stated in Equation 2.24 as follows:

PT = [v, a,∆a,∆z] (2.24)

The design vector M , in Equation 2.23, contains the coefficients corresponding to

the unknown parameters. Such parameters include the mean velocity, mean accel-

eration, variation in mean acceleration, and topographical error. These coefficients

are used to model the relationship between the observed interferometric phase and

the underlying physical quantities that we aim to estimate. By incorporating these

coefficients into the design vector, we can solve for the unknown parameters using LS

estimation, providing insights into the deformation and topographic characteristics

of the observed area.

The non-modeled displacement, atmospheric signals, and other noise all add phase

components to ∆Nj(x, r). The system of observations for a general coherent point

can be expressed as follows when M interferograms are taken into account:

δΦ = M × P + δN, (2.25)

where δΦ is the unwrapped and ramp-removed phase vector, M is an M × 4 design

matrix corresponding to the parameters in P , and δN is the non-modeled phase

vector. Assuming δΦ behaves randomly in temporal space, Equation 2.25 can be

solved under the framework of LS.

It is worth noting that the LP displacement model, whether represented by a cubic

pattern or a linear model, is used exclusively in the SBAS approach for estimating

the DEM error. This calculated LP displacement component is not considered in the

subsequent displacement time series analysis. To simplify the phase unwrapping pro-

cess, both the topographic error and the estimated LP phase component are removed

33



from the wrapped input interferograms. By doing so, the fringe rate is significantly

reduced, allowing the remaining phase to be more easily unwrapped. The unwrapped

phase is then combined with the LP phase component to form the phase observations,

which can be expressed as:

ΦK =
M∑
k=1

4π

λ
(tK − tK−1)vK + δN ′

K

vK =
ΦK − ΦK−1

tK − tK−1

,

(2.26)

where vK denotes the average velocity of motion between time-adjacent acquisitions

and delta N ′
K denotes the phase affected by ambient noise and artifacts. In light

of this, a set of M equations with N unknowns can be arranged as Φ = BV +

δN ′, where the unknown vector V is represented by an MtimesN matrix called

B. Once more, LSs can be used to resolve the parameters corresponding to the

velocities. Since matrix B indicates the total time between each interferometric pair

and depends on the combination of SLC pictures for interferograms, it, unfortunately,

runs the risk of being rank deficient at this point. The pseudo-inverse of B, which

may be determined using SVD, is utilized to solve this issue [30]. According to

the speeds and time intervals, one can immediately achieve the displacement time

series. It is important to emphasize that the assumption of atmospheric artifacts

and decorrelation noise following a Gaussian distribution in the temporal domain is

not always accurate in practice. Consequently, additional processing is often required

to account for these discrepancies, as the estimated displacement time series may

contain potential atmospheric inaccuracies.

The SBAS technique focuses on scattered scatterers (without dominant elements

within the resolution cell), which are more susceptible to both temporal and vol-

ume decorrelation than PSI, which is optimized for resolution cells dominated by a

single scatterer. Due to these characteristics, significant variations in the quantity

and spatial distribution of measurable targets can occur, depending on the scattering

properties of the ground [88].
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Additionally, new enhanced processing techniques have recently been introduced to

effectively merge PSI and SBAS methodologies, allowing for the study of both iso-

lated and distributed targets [35, 41]. In practice, reducing the distance between

nearby targets decreases the likelihood of phase aliasing, thus improving processing

robustness [75]. The development of MTI is ongoing, and several methods have been

proposed to enhance processing reliability through revised three-dimensional (3D)

phase unwrapping algorithms [89, 71, 90].

2.5 Multi-Track/Multi-Satellite InSARMethodolo-

gies

Large archives of SAR data are increasingly becoming available, collected by nu-

merous RADAR sensors on space-borne platforms operating at various wavelengths,

unique angle geometries, and possibly through different acquisition modes. This

raises the challenge of how to successfully merge the complementary information

embedded in these various SAR datasets. Integrating multi-platform (multi-sensor)

LOS displacement time series is particularly valuable, as it enhances the ability to re-

trieve the 3D components of measured surface displacement, namely east-west (E-W),

north-south (N-S), and up-down (U-D). This approach addresses the primary limi-

tation of DInSAR, which is its ability to measure only the satellite LOS projection

of the displacement. Several approaches have been developed to combine multiple-

orbit/multiple-angle DInSAR-based measurements and integrate DInSAR data prod-

ucts with other external information [50, 47, 48, 91, 92, 93, 49, 94, 95, 96].

Let’s examine the combination of InSAR data from two satellites, one on an ascend-

ing orbit and the other on a descending orbit, with side-looking angles of θ1 and θ2,

respectively as shown in Figure 2.7. For simplicity, the N-S deformation components

have been minimized. This is because the limited diversity in viewing geometries

makes it challenging to accurately detect N-S displacements, as nearly all contempo-
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rary space-based satellites operate in nearly polar orbits, with the azimuthal direction

of the satellite being approximately parallel to the N-S axis.

Figure 2.7: Multi-angle InSAR observations.

According to Pepe [97], the following equations can be used to relate the LOS compo-

nents of the deformation d to the E-W, namely dH , and U-D, namely dV , components:

dLOS1 = d.̂iLOS1 = dH sin θ1 + dV cos θ1 (2.27)

dLOS2 = d.̂iLOS2 = −dH sin θ2 + dV cos θ2 (2.28)

Matrix formalism allows for the following expression of the system of Equations 2.27, 2.27: sin θ1 cos θ1

− sin θ2 cos θ2

 ·

dH

dV

 =

dLOS1

dLOS2

 (2.29)

In this streamlined scenario, the following is a formal way to reach a straight solution:
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dH

dV

 =

 sin θ1 cos θ1

− sin θ2 cos θ2

−1

·

dLOS1

dLOS2

 =

dLOS1 cos θ2 − dLOS2 cos θ1

dLOS1 sin θ2 + dLOS2 sin θ1

 / sin (θ1 + θ2)

(2.30)

The effects of the combination specifically manifest as follows in the more straight-

forward scenario where ascending and descending SAR data are obtained from the

satellite with the same side-looking angle:dH

dV

 =

dLOS1 cos θ2 − dLOS2 cos θ1

dLOS1 sin θ2 + dLOS2 sin θ1

 / sin (2θ) =

dLOS1
−dLOS2

2 sin θ

dLOS1
+dLOS2

2 cos θ

 (2.31)

The E-W deformation component can be derived from the difference between mea-

surements taken from ascending and descending orbits, while the vertical displace-

ment is obtained by summing these LOS deformation readings. This technique is

useful for combining deformation rates from both orbit types, offering a more com-

plete view of surface movement. However, integrating deformation time series poses

challenges because ascending and descending orbits seldom cover the same area at

the same time. To address this, one approach involves interpolating LOS time series

from both orbit types across the entire period. Despite its potential, this interpolation

method often suffers from lower accuracy due to various sources of errors including

atmospheric, orbital, thermal, and interpolation noise.

The challenge of integrating multi-track InSAR data has been tackled in several ways

in the literature. Wright [50] was among the first to address this problem on a

global scale, focusing on how to recover 3D displacements from a mix of ascend-

ing/descending and right/left-looking SAR acquisitions. For instance, Wright’s study

combined five RADARSAT-1 interferograms from four right-looking ascending and

descending passes to recover the U-D and E-W deformation fields caused by the Octo-

ber 23, 2002, Nenana Mountain earthquake in Alaska. The study deliberately omitted

the N-S deformation, considering it to be relatively minor. However, accurately cap-
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turing the N-S components is essential, as spacecraft typically follow N-S-oriented

orbits.

To estimate the full 3D motions of the Henrietta Nesmith Glacier, Gray [47] combined

LOS displacements from the extra-low and extra-high beams of the RADARSAT-

2 sensor. This approach addressed the challenge of capturing N-S displacements.

Similarly, [48, 91] combined LOS displacements with GPS measurements to infer

complete 3D deformation components.

Pixel offset (PO) tracking methods have also been employed to overcome the limited

sensitivity of LOS measurements to N-S displacements. For example, [92, 93] used

a combination of ascending and descending interferograms along with azimuth pixel

offset (AZPO) observations to determine 3D co-seismic displacements for the 1999

Hector Mine and 2001 Bam earthquakes. This technique can achieve precision better

than 10 cm [98, 99], with azimuth offsets predicted to a fraction of the pixel spacing

(e.g., 1/30th).

While PO methods have largely been used for analyzing individual deformation

events, efforts are to extend these techniques to develop 3D displacement time se-

ries. One notable example is the pixel-offset SBAS (PO-SBAS) approach [99]. This

method examines the amplitudes of the selected image pairs to determine relative

across-track and along-track phase offsets. Then it applies SVD to invert these values

and retrieve the displacement time series. The PO-SBAS technique has successfully

analyzed the temporal evolution of significant or rapidly changing surface deforma-

tion phenomena, achieving accuracy on the order of 10–12 cm, as demonstrated in

experiments with ENVISAT images over Sierra Negra Caldera.

The central concept of Casu and Manconi [100] is to integrate the PO-SBAS time

series, which directly measures the deformation in the azimuth direction (approx-

imately parallel to N-S) and the LOS direction, taking into account orbital flight

characteristics. The integration is conducted by treating ascending and descending
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acquisitions as if they were obtained simultaneously, assuming they are as close in

time as possible, to address the challenge of non-coeval orbits. Methods to address

this restriction can be found in [97, 101, 52, 54]. For example, the PO-SBAS, GPS,

and InSAR-based data have been combined using the MinA technique within a single

framework. The method described in Ozawa and Ueda [101] produces high spa-

tiotemporal resolution maps of the combined LOS displacement field by integrating

overlapping segments of SAR images recorded at adjacent tracks. Similar techniques

have integrated multi-track interferograms from different SAR sensors and orbital

positions [52, 54], resulting in time series of the U-D and E-W displacements. These

methods assume minimal N-S deformation such that they maintain the temporally

variable components of deformation.

For instance, the MSBAS technique described in [52] involves simultaneously gener-

ating multiple-satellite DInSAR interferograms and analyzing them. These interfer-

ograms are jointly inverted to extract 2D (U-D and E-W) surface deformation time

series across a geocoded grid shared by all accessible SAR data tracks. This method

links the 2D deformation components to the LOS displacements applicable to all

available unwrapped interferograms and is inverted using the LS approach, seeking

a minimum-norm velocity solution with Tikhonov regularization [54]. The MQQA

approach was used by [55] to integrate time-overlapped multi-satellite DInSAR de-

formation time series over the Eastern coast of Shanghai, analyzing nearly 12 years of

SAR data to produce long-term displacement time series for the ocean-reclaimed lands

of the Shanghai megacity. Additionally, the Multidimensional Time Series (MasTer)

toolbox [56], which is an automatic, unsupervised processing chain based on MSBAS,

was proposed by[57, 52, 58].

2.6 Machine Learning and InSAR

The increasing availability of SAR data from various satellites has expanded InSAR’s

applications but also introduced challenges such as phase noise, atmospheric distur-
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bances, and data integration complexities [102]. Machine learning ML has emerged as

a powerful tool to address these challenges, improving the efficiency and accuracy of

InSAR data processing. For example, [103] applied unsupervised learning techniques

to mine InSAR displacement time series, enabling efficient analysis of large data

sets. Similarly, [104] used convolutional neural networks convolutional neural net-

works (CNNs) to classify volcanic deformation in routinely generated InSAR data,

improving the detection of volcanic disturbance. Deep learning models have also

been developed to detect change points in InSAR time series, facilitating the timely

identification of ground deformation events [105]. Other studies have focused on ML-

based integration of multi-temporal InSAR data for landslide susceptibility mapping

[106] and deep learning-accelerated pixel selection for time-series SAR interferometry

[107]. Advanced ML algorithms, such as vision transformers, have been explored for

detecting volcanic unrest in synthetic InSAR datasets [108]. Furthermore, ML-based

approaches have been employed to forecast reservoir pressure variations in carbon

storage sites using InSAR displacement data [109]. These advancements highlight

ML’s potential in automating complex InSAR analyses, improving noise reduction,

phase unwrapping, and predictive modeling, thereby providing deeper insights into

Earth’s dynamic processes [15]. As next-generation SAR sensors with increased tem-

poral resolution, such as geosynchronous SAR systems, become available, ML is ex-

pected to play an even greater role in integrating multi-satellite SAR data for disaster

prevention and post-emergency response [102].

In this chapter, the fundamental concepts of SAR, InSAR, DInSAR, MT-InSAR, the

application of ML in InSAR field and previous studies that have combined SAR data

from different radar sensors were reviewed. The limitations of current methods for

mapping deformation using multisatellite SAR data can be summarized as follows:

1. Differences in Radar Wavelengths and Frequencies: Various SAR satel-

lites operate at different frequencies (e.g., X-band, C-band, L-band), leading to

different sensitivities to surface deformation, penetration depths, and coherence
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levels. Integrating displacement results from different wavelengths can be chal-

lenging due to the varying phase responses of different radar signals [19, 110].

2. Temporal and Spatial Decorrelation: The time gaps between SAR acqui-

sitions from different satellites can cause decorrelation, especially in vegetated

and dynamic urban areas. Temporal decorrelation reduces the coherence of

interferograms, making it difficult to track long-term displacement accurately

[8, 66].

3. Differences in Imaging Geometry and Viewing Angles: SAR satellites

have different orbital parameters and imaging geometries, leading to variations

in the line-of-sight LOS displacement measurements. The integration process

requires careful geolocation corrections and LOS-to-vertical displacement trans-

formations [27, 111].

4. Atmospheric and Orbital Errors:Atmospheric disturbances, such as tropo-

spheric delays, can vary across SAR acquisitions from different satellites. Ad-

ditionally, orbital inaccuracies introduce biases in displacement measurements,

which require sophisticated correction techniques [20, 112].

5. Time-Gap Between Different SAR Acquisitions:Multi-satellite SAR data

often have non-overlapping acquisition periods, making it difficult to construct

continuous deformation time series. Time-dependent deformation models are

often required, but they may introduce boundary non-convergence issues and

inaccuracies [113].

6. Cross-Sensor Biases:Differences in radar sensor characteristics, including noise

levels, incidence angles, and calibration procedures, introduce biases when in-

tegrating displacement measurements. These biases must be estimated and

compensated for in the integration process [114, 115].

7. Computational Complexity and Data Volume:processing large archives
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of SAR images and interferograms from multiple satellites requires significant

computational resources and storage. High-performance computing and cloud-

based solutions are often necessary for efficient processing [89, 29].

8. Inconsistencies in Phase Unwrapping:Phase unwrapping errors can propa-

gate when integrating multiple SAR datasets, particularly when combining data

from different sensors with varying noise levels and coherence. These inconsis-

tencies can lead to inaccuracies in displacement measurements [116, 117].

9. Weighting and Fusion Strategies: determining the optimal weighting of

displacement data from different satellites based on reliability factors, such as

coherence, temporal baselines, and noise levels, remains a challenge. Various

fusion strategies have been proposed, including machine learning approaches,

but there is no universally accepted method [106, 118].

By addressing these challenges, this research aims to develop robust methods for

integrating multi-satellite SAR data, improving the accuracy and reliability of long-

term earth surface displacement monitoring. The following chapters aim to address

these challenges.
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Chapter 3

Research Strategy

This chapter outlines the comprehensive research workflow employed in the two case

studies of this research. The core objective is to integrate multi-satellite, time-gapped,

and time-overlapped SAR images to generate long-term vertical displacement maps

in areas primarily affected by vertical movement.

In the first case study, the Modified Multi-Satellite SBAS MMSBAS algorithm was

introduced as an adaptation of the traditional SBAS method by [30] for the integra-

tion of multimodal InSAR data sets.ta sets. The algorithm selects only high-coherence

image pairs based on perpendicular and temporal baseline thresholds, applies the DIn-

SAR technique, and performs inversion at high-coherence points identified through

both Permanent Scatterers PS and Distributed scatterers DS measurements.

In the second case study, a Machine-Learning fusion approach was employed to gener-

ate combined vertical displacement maps by integrating vertical displacements from

multiple SAR datasets. This method enables the monitoring of land subsidence for

more than two decades. This method follows a similar workflow, prioritizing high-

coherence image pairs before applying DInSAR and performing the integration on

high-coherence points.
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3.1 General Framework

Figure 3.1 presents the comprehensive research workflow, which consists of three main

components:

1. Multi-Baseline DInSAR Processing : High-coherence (M) image pairs are

selected based on specific spatial and temporal baseline thresholds. The tra-

ditional DInSAR is then applied to each pair, generating M line-of-sight LOS

displacement maps, which are subsequently converted into vertical displacement

maps.

2. Selection of High-Coherence Common Points: Integration is performed

at selected high-coherence points, identified based on both Permanent Scatterers

(PS) and Distributed Scatterers (DS) measurements.

3. Integration Techniques: Two approaches are used for integration:

• Modified SBAS Method: An adaptation of the traditional SBAS approach

for multimodal SAR datasets, producing vertical time-series velocity maps

and a long-term mean vertical displacement velocity map of the study area.

• Machine Learning-Based Integration: A Support Vector Regression (SVR)

method that combines multiple independent variables, generating M inte-

grated vertical velocity maps and a long-term mean vertical displacement

velocity map.

3.1.1 Surface Displacement Using Multi-baseline DInSAR

The multi-baseline DInSAR technique has utilized the selected SAR image pairs based

on short temporal and spatial baselines. Accordingly, temporal and spatial phase

decorrelation has been minimized, and the phase quality of the processing pixels has

been improved. The multi-baseline DInSAR processing chain has included several

steps for each selected high-coherence image pair as follow:
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Figure 3.1: Research Flowchart.

1. Co-Registration: Co-registration is the process of aligning multiple SAR im-

ages to ensure pixel-to-pixel correspondence. Since SAR images are acquired

at different times and under varying conditions, precise alignment is necessary

to ensure accurate phase comparison. Misregistration errors can lead to phase

inconsistencies and degraded interferometric results [110].

2. Interferogram Generation: An interferogram is generated by computing the

phase difference between two co-registered SAR images. This phase difference

contains contributions from:

• Topography (terrain elevation).

• Surface displacement (ground movement between the two acquisition times).

• Atmospheric effects (signal delay due to variations in water vapor and

ionospheric disturbances).

• Orbital errors (differences in satellite positions).

The raw interferogram consists of fringes that indicate phase variations, and

these need further processing to extract meaningful displacement information
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[9].

3. Topographic Phase Removal: To isolate surface displacement, the topo-

graphic phase contribution is removed using a Digital Elevation Model DEM,

such as SRTM (Shuttle Radar Topography Mission) or TanDEM-X (TanDEM-X)

DEM. If the DEM is not highly accurate, residual phase errors may remain,

affecting displacement accuracy [19].

4. Multi-Looking (Speckle Reduction and Noise Mitigation): Multi-looking

is applied to reduce speckle noise and improve phase estimation by averaging

neighboring pixels in the interferogram. This step enhances signal coherence

but reduces spatial resolution [66].

5. Phase Unwrapping: Since SAR phase measurements are recorded within a

−π to +π radians, discontinuities arise when deformation causes phase shifts

beyond this range. Phase unwrapping is applied to recover the true, continuous

phase values corresponding to absolute displacement measurements. Common

unwrapping methods include:

• Branch-cut algorithms.

• Minimum-cost flow algorithms.

• Least-squares techniques [119].

Errors in this step can lead to incorrect displacement estimations, particularly

in areas with low coherence or rapid deformation [28].

6. Atmospheric and Noise Mitigation: SAR signals are affected by atmo-

spheric conditions such as water vapor content, which introduces delays in signal

propagation. These atmospheric phase artifacts can be corrected using:

• Spatial filtering techniques (e.g., high-pass filtering to remove large-scale

atmospheric distortions).
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• Temporal filtering techniques (e.g., stacking multiple interferograms to re-

duce random noise).

• External meteorological data assimilation to estimate atmospheric contri-

butions [20].

In addition, temporal and spatial decorrelation—which occurs due to changes

in land cover, vegetation, or sensor geometries—can reduce coherence, making

phase interpretation more challenging [8].

7. Ground Displacement Calculation: Once unwanted phase components are

minimized, the remaining phase values correspond to surface displacement along

the Line-of-Sight LOS direction. Displacement maps are generated by convert-

ing these phase differences into metric units (millimeters or centimeters). De-

pending on the satellite’s incidence angle, LOS measurements may need to be

decomposed into vertical and horizontal displacement components [111].

8. Geocoding: The displacement maps generated from SAR imagery are initially

in radar coordinates. Geocoding converts these results into geographic coordi-

nates (latitude, longitude, and elevation) using orbital parameters and DEMs.

This step is essential for integrating DInSAR results with Geographic Informa-

tion System (GIS) applications and other remote sensing datasets [113].

3.1.2 Selection of high Coherent Points

To integrate multi-satellite displacement, it was crucial to retrieve a significant num-

ber of high-coherence points. To this target, both PS and DS measurements were

fundamentally utilized [120]. In the case of PS, temporal amplitude stability approx-

imated the phase stability based on the Amplitude Dispersion Index DA = σA

µA
where

the σA and µA were the mean and standard deviation of the amplitudes for a specific

pixel, respectively. Initial consideration for PS candidates was given to pixels with

DA < 0.4. Unlike PS, DS preserved a moderate level of coherence during one or more
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SAR acquisition periods. The value of complex coherence at a specific pixel in an

interferometric pair was calculated as follows:

τm,n =

∑L
t=1 s

m(t)sn(t)√∑L
t=1|sm(t)|2

∑L
t=1|sn(t)|2

= γm,neiϕ
m,n

, (3.1)

where L represents the number of statistically homogeneous pixels (SHPs) around

the central pixel, sm(t) and sn(t) denote the complex phase values of the SAR image

pair, γm,n indicates the degree of coherence, and ϕm,n denotes the spatially averaged

interferometric phase.

To determine the SHPs for the central pixel, statistical similarity tests based on time

series amplitudes, such as the Kolmogorov-Smirnov (KS) and Anderson-Darlington

(AD) tests, are employed. Initially, DS candidates are selected from points with an

average temporal coherence greater than 0.5 and more than 20 SHP. The spatially

averaged phases then replace the original phases of a subset of DS locations. DS

points coinciding with PS points are excluded to preserve the phases of individual

PSs. It is important to note that PS coherence is always one in every interferogram.

The selected PSs and DSs are then integrated for joint processing in the subsequent

analysis. The unwrapped phase dϕ is converted into displacements dlos at the chosen

coherence points, given the wavelength λ, using the following well-known equation:

dlos =
λ.dϕ

4π
(3.2)

At each selected high-coherence point, the vertical component of displacement du was

determined using Equation (3.3), based on the incidence angle θ as follows:

du =
dlos
cosθ

(3.3)

The vertical displacement values from the interferograms were geocoded to create a

common grid of high-coherence points, on which the multi-satellite SBAS integration

step was applied.
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3.1.3 Multi-Satellite SAR Data Integration

The multi-satellite SAR data integration was conducted using two approaches: an

adapted SBAS method MMSBAS and a machine learning-based integration using

multiple independent variables SVR.

3.1.3.1 Modified multi-satellite SBAS integration MMSBAS

To adapt traditional SBAS for multi-satellite SAR data integration, let M be the

number of interferograms formed by N + 1 multi-satellite SAR images spanning the

period from to to tN , where to is the reference starting date. Consequently, the vertical

displacement time series was reconstructed according to [30] as follows:

AV u = du, (3.4)

where AM×N is an incidence matrix constructed using the time intervals between

successive SAR images, while du
M×1 is the vector of vertical displacements. Addi-

tionally, Vu
N×1 represents the unknown vertical velocity time series.

Since this system of equations was under-determined and did not yield a unique

solution, it exemplifies a linear discrete ill-posed problem. To address this, replacing

the ”original” linear system with a nearby system—less sensitive to perturbations of

the right-hand side—can provide a meaningful solution [121]. This process, known as

regularization, is achieved using TSVD [122], as outlined in Equation (3.5), where A

is decomposed into three matrices U , S, and V .

A = U S V T , (3.5)

where U and V are orthogonal, and S was a diagonal matrix formed using Equa-

tion (3.6) where r was the rank of A.

S = diag(σ1, σ2, . . . , σn), σ1 > σ2 > . . . > σr > σr+1 = σr+2 = ... = σn = 0 (3.6)

The main principle of truncated singular value decomposition (TSVD) and standard

form regularization is to convert an ill-posed problem into a well-posed one. In the
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case of TSVD, this involves approximating the matrix A with a lower-rank matrix

AK of rank k, while disregarding components of the right-hand side that correspond

to the omitted components of A. The matrix AK used in TSVD is the rank-k matrix.

AK = U SK V T , SK = diag(σ1, . . . , σk, . . . , 0, 0), (3.7)

where, k < r and Sk equal S with the smallest n−k singular values replaced by zeros.

The solution of Equation (3.4) based on TSVD is defined by:

Vu = A+
k du, (3.8)

The matrix A+
k is the pseudoinverse of AK :

A+
K = V S+

K UT , (3.9)

According to the TSVD, we obtain Vu = [V 1
u , V 2

u , . . . , V N
u ] with respect to t0. The

TSVD method estimates the unknown parameters Vu for each pixel, and numerical

integration reconstructs the displacement time series from the computed displacement

velocities. Through this approach, we derived a combined multi-satellite surface dis-

placement time series, aligned with the initial acquisition date.

3.1.3.2 Multi-satellite SAR-ML based merging algorithm

SVR performed effectively in estimating real functions with great generalization and

high predictive accuracy [123]. Consequently, SVR has been adapted for multi-band

vertical displacement integration.

SVR is a machine learning algorithm that is an extension of support vector ma-

chine (SVM) for regression analysis. When given an input value, SVR searches for

a function that can predict the continuous output value most accurately. SVR ar-

chitecture is similar to artificial neural networks as shown in Figure 3.2. Input and

output layers are connected by a hidden layer that is self-computed using the input

data. SVR maps the feature vectors of sample data into high-dimensional space, and

the regression is employed based on the kernel function as depicted in Figure 3.3.
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Figure 3.2: SVR structure.

Let f(x) = ω × x + b be a SVR function that is defined by a coefficient ω, the input

feature vector x; and the bias constant b therefore, The optimal regression function

is determined by minimizing the following function [124]:

min
1

2
ωTω + c

1

N

N∑
i=1

L(f(xi), yi) (3.10)

L(y) =

0, if |f(xi) − yi| < ϵ

|f(xi) − yi| − ϵ, if |f(xi) − yi| > ϵ,

(3.11)

where c is the penalty factor, N is the sample’s number, f(xi) is the predicted value

of the ith feature vector, yi is the true value of ith feature vector, L is the linear

insensitive loss function, and ϵ is the maximum deviation. The Lagrange equation

and the Karush-Kuhu-Tucker condition are employed to derive the dual mode of the

SVR model and calculate the partial derivatives of the parameters [125]. The final

decision function is:
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Figure 3.3: Schematic diagram of the kernel trick.

f(x) =
l∑

i=1

(α∗
i − αi)K(xi, x) + b, (3.12)

such that l represents the number of SVR machines; αi is the optimum solution; K

represents the kernel function in the nonlinear regression, K(xi, x) = Φ(xi) ∗ Φ(xj).

To effectively manage the issue of dimensional explosion in high-dimensional spaces,

a suitable kernel function is selected, and computations are performed in a lower-

dimensional space. The radial basis function (RBF) kernel was utilized due to its

excellent performance in nonlinear regression tasks. The RBF kernel is highly flexible

and is based on the kernel function coefficientγ:

k(xi, xj) = exp(−γ|xi − xj|2), γ > 0 (3.13)

This chapter utilized multiple independent variables SVR which is an adaptation

of those implemented in Scikit-learn python library[126] to integrate three sets of

time-overlapped TSX, CSK, and S1 DInSAR vertical displacement over common

high-coherent points. The response parameter y = d1u, d
2
u, ..., d

m
u is the geocoded ver-

tical ground displacement determined regarding a specific point from high-coherent

points. The training set x = (C1, T 1), (C2, T 2), ..., (Cm, Tm) is the combined vector
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of all the two input process parameters (coherence value at each point in each inter-

ferogram (C), and period (T ) of each interferogram (in days)). SVR employs m sets

of input-output pairings and the training procedure was carried out to obtain the

ideal parameters. A combined multi-band displacement is then obtained using these

parameters.
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Chapter 4

Application of the Methodology:

Case Studies, Results and Analysis

This chapter presents the case studies used to apply and validate the proposed

methodology for integrating multi-satellite SAR datasets in long-term ground dis-

placement monitoring. These case studies demonstrate the effectiveness of the ap-

proach in real-world scenarios and provide insights into its accuracy and limitations.
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4.1 Improved Multi-Satellite SBAS For Retrieving

Long-term Ground Displacement Time Series

This method has been applied to study long-term ground deformation in Almokattam

City, Cairo, Egypt. Using SAR data from different sensors ERS, ENVISAT ASAR,

and S1A, displacement time series from 2000 to 2020 were generated. The analysis

revealed significant vertical deformation in the western area of Almokattam City, with

a mean deformation velocity of -2.32 mm/year. Cross-validation results showed that

the RMSE did not exceed 2.8 mm/year. These results are consistent with previous

studies in the area. Thus, the proposed integration method shows great promise for

generating displacement time series from multi-satellite SAR data, though it requires

further validation with field measurements.

4.1.1 Materials

4.1.1.1 Study Area

Almokattam City, situated in the Arab Republic of Egypt, serves as the study area

for this research, as depicted in Figure 4.1a. The city is located on the upper plateau

of the Almokattam mountain in eastern Cairo. This plateau-like area covers an ap-

proximate surface area of 14 km2. Elevations range from 60 m above mean sea level

to approximately 140 m to the east. The city’s layers are convex near the immediate

vicinity, with heights rising to around 240 m near the castle and then decreasing

northwards, ending at the Mountain of Al Amir near Abbasiyah. Over the past

decade, Almokattam City has experienced significant urbanization, as shown in Fig-

ure 4.1b–d. Despite frequent collapses in areas such as Zbaleen, the southwestern

scarp of the high plateau, and Manshiat Nasser, the city has continued to grow in

population. As a result, the rocks in Almokattam City exhibit instability and are

continually at risk of potential collapses [127, 128, 129].
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Figure 4.1: Study area. (a) Location of the Almokattam city in Egypt map. (b) The spatial

coverage of the datasets over the study area, (c), (d) and (e): Urban area growth from 2000

to 2017.

4.1.1.2 Dataset

This research has introduced a method to integrate multi-satellite SAR data from

three independent datasets to derive ground displacement. Set I includes ENVISAT

ASAR data from 2008 to 2012. Set II consists of ERS SAR images acquired between

2000 and 2010. Lastly, Set III comprises European Union S1 images collected from

2014 to 2020. Table 4.1 outlines the characteristics of each dataset and Figure 4.2

represent its time-span. Additionally, Figure 4.1b illustrates the spatial coverage of

the datasets over the study area.
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Table 4.1: SAR Dataset used in this study.

Parameter
ENVISAT ERS Sentinel-1

Ascending Descending Ascending Descending Ascending Descending

Period
21 March 2008 13 May 2004 09 February 2009 20 January 2000 9 October 2014 30 September 2016

– 16 March 2009 – 06 March 2012 – 27 September 2010 – 17 February 2005 – 15 July 2020 – 29 June 2020

No. of images 3 22 4 23 21 17

Figure 4.2: Case study 1 SAR Datasets Time-Span.

4.1.2 Results and Analysis

The experimental design utilized three sets of SAR data, as detailed in Section 4.1.1.2.

Cross-validation was employed to evaluate the effectiveness of the proposed method-

ology. Notably, this approach is one of the first to integrate 20 years of multi-satellite

SAR datasets over Almokattam city. To generate the long-term displacement time

series, LOS displacements were computed for all interferograms within each dataset.

These calculations were performed at high-coherence points identified using a specific

threshold. Subsequently, all interferograms were geocoded to the WGS84 geographic

coordinate system. The combined vertical displacement time series for the ENVISAT,

ERS, and S1 datasets were then derived using TSVD inversion, with alignment to the
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earliest acquisition date of the ERS dataset, which corresponds to 20 January 2000.

4.1.2.1 Multi-baseline DInSAR displacement

SAR image pairs were selected according to rigorous criteria: for ENVISAT and ERS

data, the perpendicular baseline was kept below 500 meters, while for S1 data, it was

kept below 180 meters. Additionally, all image pairs were required to have a temporal

baseline of less than 365 days. Figure 4.3 illustrates the distribution of SAR images

within the temporal/perpendicular baseline plane, with connecting lines indicating

the data acquisition points.

Figure 4.3: Distribution of SAR data in the temporal/ perpendicular baseline domain. (a)

ERS. (b) ENVISAT. (c) sentinel-1.

Building on step 1, the DInSAR technique was applied to the co-registered SAR
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image pairs, utilizing a high-resolution 1 arc-second SRTM3 DEM for topographic

phase removal. Each interferogram was multi-looked, with looks applied as 1 × 5

for ENVISAT, 10 × 2 for ERS, and in the range × azimuth direction for S1. The

noise was then filtered from the individual interferograms using the Goldstein filter

[119], and the unwrapped phase was extracted using the statistically cost network

flow algorithm [130].

To address baseline residual errors and long-wavelength atmospheric artifacts, a two-

dimensional quadratic model was employed. The LOS displacement was subsequently

extracted for high-coherence pixels in each interferogram, using a coherence thresh-

old of 0.50. The geocoded LOS displacements from all interferograms were then

referenced to the WGS84 system for further analysis. Figure 4.4a displays the mean

vertical displacement velocity from 20 January 2000 to 15 July 2020, calculated by

stacking the vertical displacements derived from all interferograms. Subsidence areas

(negative velocity) are highlighted in red shades, particularly in the western part of

the city, with a maximum subsidence rate of −5.26mm/year.

4.1.2.2 Modified Multi-Satellite SBAS displacement

Using the proposed methodology, we successfully integrated temporally overlapping

and gapped DInSAR-derived displacement values from ENVISAT, ERS, and S1.

This integration produced a long-term displacement time series that spanned ap-

proximately two decades (2000–2020). Figure 4.4b illustrates the mean displacement

velocity map generated from the combined ERS, ENVISAT, and S1 data. This map,

derived using a set of high-coherence points common to all three datasets, reveals a

maximum subsidence velocity of −2.32 mm/year in the western part of the city. As

shown in Figure 4.4, the consistent spatial patterns of displacement rates observed

before and after integration demonstrate the effectiveness of the proposed method.
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Figure 4.4: Mean displacement velocity (mm/year) of Almokattam city. (a) Pre-integration

(b) Post integration.

4.1.2.3 Displacement from individual datasets

Mean vertical displacement velocity maps were generated using the SBAS method

for the ERS, ENVISAT, and S1 datasets, as depicted in Figures 4.5. The displace-

ment velocities derived from each dataset were subsequently compared with their

corresponding temporal counterparts obtained through the integration.
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Figure 4.5: Mean displacement velocity map. ERS (20 January 2000 to 17 February 2005),

ENVISAT (13 May 2004 to 6 March 2012), and Sentinel-1 (9 October 2014 to 15 July 2020)

pre integration.

The results from the ERS data (2000–2010) show a broader displacement range (from

−59.57 to 19.19 mm/year) compared to both the ENVISAT data (2004–2012; −13.39

to 7.66 mm/year) and the S1 data (2014–2020; −15.53 to 17.21 mm/year). Despite

these variations, a consistent overall displacement pattern is observed across all three

datasets, as illustrated in Figures 4.5. However, it is important to note that differences

in the time intervals and image acquisition geometries, such as resolution, azimuth,

and incidence angle, contribute to some discrepancies observed in the displacement

rate maps.

After generating the integrated vertical displacement time series from the three datasets,

the mean displacement velocity for each dataset’s respective period was individually

extracted from the combined time series. These extracted velocities are displayed in
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Figure 4.6: Mean displacement velocity map. ERS (20 January 2000 to 17 February 2005),

ENVISAT (13 May 2004 to 6 March 2012), and Sentinel-1 (9 October 2014 to 15 July 2020).

post integration.

Figures 4.6. A comparison between these velocities and those calculated using the

SBAS method reveals minimal variation in the spatial distribution of displacement

before and after integration. This consistency demonstrates the effectiveness of the

Multi-Satellite SBAS-based method in achieving successful integration.

4.1.3 Evaluation

Due to the absence of field measurements, cross-validation was used to assess the pre-

cision of integration results. Two consistency evaluations were employed [131, 132].

First, the mean vertical displacement velocity map obtained from stacking the dis-

placement values of all interferograms (selected image pairs) involved in the integra-
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tion process was compared with the mean vertical displacement velocity map from

the integration itself at a selected common high coherent points. A reasonable agree-

ment between these two velocities would confirm consistency between the maps. The

second assessment involved comparing the mean vertical displacement velocity from

applying SBAS to each dataset with their corresponding values from the integration.

This criterion examined whether the two maps showed similar behavior, with stan-

dard deviations of the differences being computed. The numerical and visual analysis

is provided in the following subsections.

4.1.3.1 Displacement based on all interferograms

The mean vertical displacement velocity map, created by stacking the displacement

values of all selected high-coherence image pairs before integration, was compared to

the mean vertical displacement velocity map obtained after integration at selected

high-coherence common points. The analysis revealed a mean absolute difference

of 2.87 ± 0.21 mm/year, a root mean square error RMSE of 2.88 mm/year, and a

correlation coefficient of 0.97 between the two maps. The scatter plot illustrating

these results is shown in Figure 4.7a, reflecting a consistent deformation pattern and

a high level of agreement between the two maps. Additionally, a histogram of these

differences is presented in Figure 4.7b. The statistical analysis shows the effectiveness

of the integration approach.

4.1.3.2 Displacement from individual datasets

Mean displacement velocities obtained from Environmental Satellite (ENVISAT),

ERS, and S1 data using the SBAS method were compared with those derived from

the proposed method. Absolute differences are summarized in Table 4.2, showing a

mean absolute difference of 1.87 mm for ERS, 1.5 mm for ENVISAT, and 1.04 mm

for S1. These results highlight the effectiveness of the proposed method in retrieving

long-term multi-satellite vertical displacement time series. A histogram of these dif-

ferences is presented in Figures 4.8a–c, with medians of 1.85 mm/year for ERS, 1.49
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Figure 4.7: Scatterplot and comparison of mean displacement velocity at high-coherence

points pre- and post-integration. (a) Correlation between mean displacement velocity pre-

and post-integration. (b) Histogram of differences between mean displacement velocity pre-

and post-integration.

mm/year for ENVISAT, and 1.08 mm/year for S1, indicating that the S1 dataset

provided the best cross-validation results. This is attributed to the larger number of

images and smaller temporal resolution of S1 satellite data.

The scatter plots between the two maps resulted from each satellite dataset, pre-

and post-integration, are shown in Figure Figure 4.9. The correlation coefficients

were 0.92 for ERS, 0.97 for ENVISAT, and 0.99 for S1, demonstrating a high level of

consistency in the deformation patterns across the datasets. The root mean square

errors (RMSE) were 1.92 mm/year for ERS, 1.66 mm/year for ENVISAT, and 1.19

mm/year for S1. These findings confirm that the Multi-satellite SBAS approach is

efficient, with the S1 dataset showing superior performance compared to the ERS and

ENVISAT datasets.

Figure 4.8: Histograms of the displacement differences. (a) ERS. (b) ENVISAT. (c) S1.
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Table 4.2: Absolute differences between the mean displacement velocity values of each

dataset before and after integration (mm/year).

Satellite ERS ENVISAT Sentinel1

Min. Difference 0.97 0.002 0.0003

Max. Difference 3.11 3.02 2.5

Mean. Difference 1.87 1.5 1.04

RMSE 1.92 1.66 1.19

STD 0.42 0.72 0.57

Figure 4.9: Scatterplots of the mean displacement velocities using the SBAS method at

high-coherence points.

4.1.4 Discussion

The research methodology proposed Multi-Satellite SBAS to retrieve long-term ground

displacement. In this section, several key aspects have been investigated to measure

the potential of the proposed method. These aspects encompass the geological char-

acteristics of the study area, Multi-Satellite SBAS, and comparison with previous

methods.

4.1.4.1 Displacement in Almokattam city, causes and implications

The geological composition of Almokattam Mountain has been thoroughly examined

in the literature. It has been reported that the Upper Eocene rocks, known as the

Maadi Formation, consist of brown-colored cracked limestone, marl, and claystone. In

contrast, the Middle Eocene rocks, or Almokattam Formation, are composed of white
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to gray limestone with lesser amounts of clay and marl. This geological structure has

been identified as a significant factor contributing to the steep slopes in the region

[133] as shown in Figure 4.10. Consequently, the Almokattam Formation is noted for

its greater solidity and durability compared to the Maadi Formation [127].

Small-scale folds, which slope downward in a southeast or east direction, have been

observed. These folds are associated with block faulting [134] and typically have

spacings ranging from 5 to 8 meters. They are predominantly steep and characterized

by slabs varying from less than 20 meters to 110 meters in length, with deep corners

and angles between 60 and 70 degrees [135].

Figure 4.10: Geological map of Almokattam mountain.
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The experimental results revealed a severe subsidence between 2000 and 2005 (ERS

time period), with a rate reaching -59.5 mm/year and a rate of -13.39 mm/year from

2004 to 2012 (ENVISAT time period). This significant difference in vertical displace-

ment velocity magnitude between ERS with ENVISAT and S1 is due to the actual

events, as the most severe deformation occurred in 1993, 2000, 2002, and 2004. The

primary factors contributing to the deformation of Almokattam city include: (1) the

rough topography, with elevations ranging from 11 to 220 meters; (2) the poten-

tial presence of active faults; (3) the heterogeneous composition of the mountain’s

rocks; (4) environmental issues such as sewage leakage; (5) the slope angle’s impact

on rock failure risk—steeper slopes, like those reaching 70 degrees in Almokattam

city, significantly affect slope stability; (6) the natural susceptibility of the Almokat-

tam mountain to erosion and instability, exacerbated by human activities, with the

situation worsening due to population growth (as shown in Figure 4.1b,c,d, which

increased water infiltration and unregulated construction; and (7) the removal and

replacement of vegetation in developed areas.

In the other hand, uplift pattern was observed in many points across Almokattam City

especially in the east part of the city. This uplift pattern can be attributed to geologi-

cal, geotechnical, and anthropogenic factors. Tectonic activity, fault movements, and

subsurface stress redistribution may contribute to localized uplift. Additionally, the

presence of gypsum- and clay-rich layers can cause ground expansion when exposed

to water, while fluctuations in the groundwater table due to extraction or leakage

may also induce uplift. Urban development, including construction and excavation,

alters subsurface stress, leading to differential ground movement. Furthermore, karst

activity in the limestone bedrock and post-seismic or isostatic adjustments could play

a role.

Figure 4.4b illustrates irregular deformation across various locations, with the western

part of Almokattam city being particularly prone to landslides, where the displace-

ment rate reached −2.32 mm/year. This is consistent with the ongoing subsidence
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observed in the western part of the Almokattam Plateau during the study period.

Validation results indicate that the proposed method effectively provided valuable

subsidence information.

4.1.4.2 Modified Multi-Satellite SBAS for SAR Data Integration

InSAR has emerged as one of the most robust techniques for monitoring ground

subsidence. However, when utilizing a single sensor and single platform, InSAR anal-

ysis encounters specific challenges, especially within urban environments. To over-

come these obstacles, the growing availability of SAR satellites with varying temporal

and spatial resolutions has been harnessed to develop a multi-platform InSAR time

series. This integration is expected to alleviate the limitations of single-sensor or

single-platform data. This motivation led to the development of our post-processing

integration method. Notably, the proposed method offers several advantages com-

pared to existing literature: (1) it does not require an external deformation model to

bridge time gaps between datasets; (2) LOS ground displacement is generated with-

out the need for a predefined displacement model; (3) a relatively small number of

SAR scenes are used; and (4) it exploits the strengths of both PS and DS techniques

to enhance the density of high-coherence points.

4.1.4.3 Comparison with previous studies

Due to the unavailability of field measurements, cross-validation was employed for

evaluation. The key findings of this research were compared to previous studies in

the area, specifically two significant works that utilized InSAR data during the study

period. Poscolieri et al. [136] identified ground deformation in the Greater Cairo

Metropolitan Region from 2003 to 2009 using ASAR SLC VV-polarization scenes in

descending mode, applying Interferometric Stacking and PSs Interferometry to derive

displacement. They reported subsidence rates of −2 to −5 mm/year in the west and

−5 to −7 mm/year in the west-south areas of the city, and mapped numerous NW-

SE-oriented normal faults. Their findings included a sinking phenomenon between
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these faults, particularly at point targets on the down-thrown sides. Additionally,

Aly et al. [137] used a PS interferometric technique to measure subsidence in Greater

Cairo, analyzing 34 InSAR images from the ERS-1 and ERS-2 from 1993 to 2000. The

greatest subsidence was observed on the west side of Almokattam Hill, with rates of

−4 to −7 mm/year, decreasing towards the middle of the hill to −1 to −3 mm/year,

with some uplifts recorded in the east. They noted minor differences in vertical

displacement when compared to earlier studies, attributing these discrepancies to

different methodologies, SAR datasets, and time intervals.

In comparison, our proposed methodology has demonstrated sub-millimeter accuracy

in estimating the subsidence and its trends. The Sentinel-1 data outperformed the

results from ENVISAT and ERS, exhibiting a high degree of consistency, particularly

due to the larger number of images and smaller temporal resolution used in the inte-

gration process. This consistency supports our hypothesis that vertical displacement

accounts for the majority of the observed displacement. Our study underscores the

importance of integrating multi-sensor and multi-track SAR data for long-term dis-

placement monitoring, optimizing the potential of these datasets for comprehensive

deformation monitoring.

4.2 A Machine Learning-Based Method for Multi-

Satellite SAR Data Integration

Our study utilizes high-resolution CSK and TSX images, along with short-cycle S1

images, focusing on reclaimed areas near Hong Kong’s Kowloon City. The AAD

measured from 2008 to 2019 ranges from -12.86 to 11.63 mm/year. Evaluation metrics

such as RMSE, MAE, correlation coefficient, and R-squared are used to assess the

effectiveness of SVR in integrating SAR datasets. The results demonstrate that SVR

excels in performance, accuracy, and generalization, highlighting the potential of this

method for multi-satellite SAR data integration.
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4.2.1 Materials

4.2.1.1 Study Area

Kowloon peninsula is the study area of this research. It is the most populous district

of Hong Kong, China [2]. Because the land in Hong Kong is scarce and valuable, the

government has been reclaiming land from the sea to construct skyscrapers, ports,

airports, etc., Monitoring the subsidence of reclaimed lands for a long time and with

precision can help to avoid geological hazards and financial loss. Figure 4.11 shows

the location of the Kowloon district on the Hong Kong map.

The Kowloon Peninsula is the study area of this research, located in Hong Kong,

China, and is one of the most densely populated districts in Hong Kong [2]. Due to the

limited and highly valuable land in Hong Kong, the government has pursued extensive

land reclamation from the sea to support the construction of skyscrapers, ports, and

airports. Monitoring the long-term subsidence of these reclaimed lands with precision

is crucial to preventing geological hazards and financial losses. Figure 4.11 illustrates

the location of the Kowloon district within the map of Hong Kong.

Figure 4.11: Location of Kowloon area framed by the red color.
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Multiple phases of land reclamation have led to the significant expansion of the

Kowloon Peninsula, as depicted in Figure 4.12. The majority of the southern and

western reclamations were completed before 1904, with subsequent reclamation along

the main Tsim Sha Tsui shoreline occurring by 1982. Reclamation efforts in Hung

Hom Bay began in 1994 and were fully completed by 2019. The West Kowloon Recla-

mation, initiated by the Airport Core Programme, was largely finished by 1995. Re-

claimed lands are prone to prolonged subsidence, which can endanger building struc-

tures and subterranean infrastructure, such as water and sewage systems. Ground

deformation has been a persistent issue in Hong Kong, particularly on land reclaimed

from the sea [138].

Figure 4.12: Geological map and reclamation land within the study area [1].

4.2.1.2 Dataset

Multi-satellite SAR datasets were gathered over the Kowloon area, as detailed in

Table 4.3 and its time span illustrared in Figure 4.13. To comprehensively analyze

the deformation mechanisms across the Kowloon Peninsula, three distinct sets of

SAR data, each operating at different frequency bands, were selected. The coverage

of these datasets is depicted in Figure 4.14. It is worth noting that these three SAR
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data sets are time-overlapping, allowing for a robust temporal analysis of the region’s

deformation patterns.

Table 4.3: Characteristics of the selected SAR data.

Satellite TerraSAR-X (TSX) COSMO-SkyMed (CSK)
Sentinel-1 (Path 11)

Frame 67 Frame 68 Frame 69

Orbital Ascending Descending Ascending Ascending Ascending

Period 20081025−20170125 20160829−20190204 20151212−20160504 20160516−20170228 20150709−20151013

No. of image 130 16 8 18 9

Polarization VV HH VV VV VV

Incidence angle 37◦ 38◦ 37.5◦ 37.5◦ 37.5◦

Band X X C C C

Wavelength (cm) 3.1 3.6 5.6 5.6 5.6

Figure 4.13: Case Study 2 SAR Datasets Time-Span.

4.2.2 Results

4.2.2.1 Interferogram generation

DInSAR technique was employed to C- and X-band SAR images, particularly, selected

image pairs based on the perpendicular and temporal baseline threshold as shown in

Table 4.4. Consequently, 1180, 98, and 181 interferograms were created from the
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Figure 4.14: SAR data coverage for the study area.

TSX, CSK, and S1 datasets, respectively. Figure 4.15 and Figure 4.16 shows the

configuration of the baseline of interferometric networks for individual datasets.

Table 4.4: Perpendicular and temporal baselines threshold of the three SAR datasets

Satellite TerraSAR-X (TSX) COSMO-SkyMed (CSK)
Sentinel-1 (Path 11)

Frame 67 Frame 68 Frame 69

Perpendicular baseline 150 1200 95 95 95

Temporal baseline 365 900 150 150 120

Across the monitoring period, the small baselines describing the accessible scenes

exhibited good density and redundancy, and all scenes were used for DInSAR analysis.

The image pairs were co-registered, and the phase difference was computed to generate

DInSAR data. A DEM from SRTM was then used for topographic phase removal. A

complex multi-look operation was performed independently to mitigate the effects of

decorrelation noise: 5 looks in both azimuth and range directions for TSX, 5 looks in

azimuth and 4 looks in range direction for CSK, and 10 looks in azimuth and 2 looks
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Figure 4.15: Baseline configuration of (a) TSX, and (b) CSK, datasets.

Figure 4.16: Baseline configuration of (a) S1 (fram 65), (b) S1 (fram 68) , and S1 (fram 69)

datasets.

in range for S1. Additionally, noise filtering was applied to single interferograms.
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Phase unwrapping was carried out using the extended minimum cost flow algorithm.

Incoherent and sea areas were automatically masked off, ensuring that only the set

of coherent pixels common to all interferograms was used for phase unwrapping.

The unwrapped phase was calibrated to a unique ground reference point considered

stable. Finally, the unwrapped phase was converted into LOS displacements, and a

map of the average LOS deformation velocity was generated from each SAR dataset.

The LOS-projected deformation datasets were transformed into a vertical (up-down)

direction before integration using Equation 3.3.

4.2.2.2 Vertical Displacement

The vertical displacement velocities were displayed on a grid of highly coherent pix-

els that were common across the three datasets, specifically those with a temporal

coherence greater than 0.8, to ensure accurate results. The number of selected coher-

ent points varied across datasets because the maximum observable range is directly

proportional to the radar wavelength. Consequently, a larger number of points were

identified for S1 data. The C-band radar wave, which has a longer wavelength than

the X-band, has a higher probability of detecting large-gradient deformation. Fig-

ure 4.17 illustrates that from 2008 to 2020, the AAD varied between -12.38 and 11.12

mm/year. Figure 4.18a, b, and c, respectively, show the AAD in the vertical direc-

tion for the X-band TSX, X-band CSK, and C-band S1 datasets before integration.

The selected high-coherence points transition from blue to red, indicating an increase

in subsidence values. The three datasets were resampled to the same resolution to

ensure they were comparable and consistent for subsequent processing.

According to TSX data from 2008 to 2017, the ground displacement across Kowloon

ranges from -9.72 to 6.25 mm/year. Additionally, a maximum subsidence rate of -

8.49 mm/year is depicted on the CSK displacement map from 2016 to 2019, as shown

in Figure 4.18b. The AAD ranges from -9.19 to 9.82 mm/year from 2015 to 2020,

as illustrated by the S1 displacement map in Figure 4.18c. Ground displacement
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Figure 4.17: AAD of Kowloon from 2008 to 2020 by stacking all multi-baseline interfero-

grams of TSX, CSK, and S1 datasets.

is primarily observed along the top and western borders of Kowloon in all three

displacement maps. Since a portion of the Kowloon Peninsula has been reclaimed

from the sea, the non-reclamation region is used as the reference area (black rectangle

in Figure 4.18) for all datasets that is assumed to be stable. This area serves as

the baseline for measuring displacement across the dataset. The reference point is

identified at the point that has the highest coherence, is most accessible, and has

minimal or no displacement over the observation period.

4.2.2.3 Fusion Results of TSX, CSK, and S1 datasets

The integration results compensate for the shortcomings of individual datasets, as the

map reflects both the high resolution of TSX and CSK data, as well as the enhanced

observing capability of Sentinel-1. Positive values (green) represent ground uplift,
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Figure 4.18: AAD maps of Kowloon. (a) TSX. (b) CSK. (c) Sentinel-1A.

while negative values (red) indicate ground subsidence. Figure 4.19) illustrates the

integration results of the TSX, CSK, and S1 data. The average annual velocity ranged

from -12.86 to 11.63 mm/year. The displacement behavior and magnitudes computed

from the integration of the three datasets closely match previous research in this area

[4].

4.2.3 Evaluation

Since field measurements were unavailable, four evaluations were conducted to assess

the internal precision of the proposed methodology; the first one is an assessment of

the SVR model performance in multi-band displacement integration by computing the
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Figure 4.19: Combined AAD map resulted from SVM-based integration of TSX, CSK, and

S1 datasets.

RMSE =
√

1
n

∑n
i=1(y

P
i − yOi )2, Mean Absolute Error MAE = 1

n

∑n
i=1 |yPi −yOi |2, Cor-

relation Coefficient r =
∑

(yOi −yO)−(yPi −yP )√∑
(yOi −yO)2−(yPi −yP )2

, R-squared R2 of the difference between

the mean vertical displacement velocity map obtained by stacking the displacement

values of all participating image pairs before integration and the mean displacement

velocity map derived from the integration process at a set of high-coherence common

points, where n is the total number of observations yO or predictions yP in the test-

ing period. Also, yO and yP are the averages of the observed and integrated values,

respectively. The other three evaluations are cross-validations:

• Comparing the relationship between results before and after integration for

datasets with the same flight direction, geometry, and time span.

• Comparing the results of each dataset separately before and after integration.
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• Comparing the relationship between results before and after integration for

different frames of the same satellite.

4.2.3.1 SVR validation results

The SVR integration results were validated according to the scheme described in

Section 4.2.3. RMSE, MAE, correlation coefficient, and R-squared of the differences

between Figure 4.17 and Figure 4.19 are computed at a set of selected high coherent

points as summarized in Table 4.5. Figure 4.20 elucidates the scatter map between

AAD from stacking all interferograms of TSX, CSK, and S1 and the SVR-based

integration model. The results indicate that the two datasets exhibit a consistent

deformation pattern.

Table 4.5: Performance of the SVR Integration model.

Evaluation Index (mm/year) value

RMSE 1.12

MAE 0.88

Correlation coefficient (r) 0.97

R-squared 0.95

Standard deviation (STD) 0.69

According to the statistical evaluation parameters, the results demonstrated that the

SVR soft computing model is superior in terms of integration performance, accuracy,

and generalization capability. SVR thus shows significant potential in multi-satellite

SAR data integration and related fields.

4.2.3.2 Cross Validation Results

First, TSX and S1 SAR datasets were used for cross-validation as described by [4].

These datasets were obtained in ascending directions and have the same geometry.

The displacement velocity maps of the two datasets over the Kowloon area from
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Figure 4.20: Scatter map of AAD pre and post SVM-based integration.

the same period (2015-2017) were extracted before applying the proposed integra-

tion method. To validate the derived displacement, the absolute differences between

the two datasets (∆dTSX−S1) were calculated, as illustrated in Table 4.6, where the

vertical displacement velocity maps are resampled onto a common grid.

Table 4.6: Absolute difference between AAD obtained from TSX and S1.

Evaluation index (mm/year)
∆dtsx−s1

Pre Post

Mean 7.15 5.44

Median 6.05 4.87

STD 4.99 3.78

RMSE 8.72 6.62

The normality of the distribution of the difference between the two dataset’s results

is examined using a quantile-quantile (q-q) plot and histogram for AAD resulting

from both datasets for the period 2015 to 2017, as shown in Figure 4.21 a and b,

respectively.

On the right side and center of Figure 4.21a, there is an almost-perfect normal dis-

tribution. The tails, particularly those on the left, show large departures from the
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Figure 4.21: Quantile-quantile (q-q) plot and histogram of ∆dTSX−S1 from 2015 to 2017.

normal distribution; the histogram, Figure 4.21 b, shows that the distribution on

the left is right-skewed. These departures could be related to the uncertainty in the

SAR dataset, as well as atmospheric delay and acquisition time. The (∆dTSX−S1)

before and after integration were compared and described by box plots as shown in

Figure 4.22. Figure 4.22 demonstrates that the distribution is biased toward lower

values and the mean is more positive than the median, as shown by the boxplot graph,

which will automatically identify the min/max range, 75 percent quantile range, mean

value, and outliers. The RMSE values are 8.72 and 6.62, and the standard deviations

are 4.99 and 3.78 mm/year before and after integration, respectively. After using the

ML-based integration method, the results have shown a greater improvement.

Second, a quantitative study of the absolute differences between the displacement

velocities obtained before and after SVR-based integration, as shown in Table 4.7,

was applied to validate integration-derived displacement for each dataset (i.e., TSX,

CSK, and S1) separately. Figure 4.23 represents a comparison of the differences in

measured displacement velocities of the three datasets’ boxplots.

Mean, median, RMSE, and standard deviation of the displacement velocity differ-

ences were listed in Table 4.7. TSX provides a lower mean difference than the S1 and

CSK, with values of 0.97, 1.19, and 3.61 mm/year, respectively. In addition, when

compared to CSK and S1, TSX has the best standard deviation and RMSE values.
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Figure 4.22: Box-plots of (∆dTSX−S1) before and after applying the SVM-based integration

method.

Table 4.7: Cross-validation for each dataset before and after SVM-based integration

Evaluation index (mm/year)/ Satellites TSX CSK S1

Mean 0.97 1.19 3.61

STD 0.71 1.1 3.28

Median 0.93 0.78 2.31

RMSE 1.53 1.42 4.28

These RMSE values elucidate that the TSX results were better than the CSK and

S1 results. This could be attributed to the larger number of TSX interferograms

involved in the integration process than the number of interferograms involved with

CSK and S1.

Third, the results from different S1 datasets generated from different frames were
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Figure 4.23: Box plots of the difference between AAD from TSX, CSK, and S1 before and

after the SVM-based integration.

cross-validated as [139, 140] to study the effect of the SVM-based integration on

the relation between different frames of S1 datasets as in Table 4.8. The standard

deviations and RMSE of the differences between the three frame datasets before and

after integration are determined.

The RMSE values are 5.60, 9.02, 10.35, and 1.43, 2.29, 2.05, and the standard devi-

ations are 3.30, 5.91, 6.58, and 0.75, 1.54, 1.60 mm/year before and after integration,

respectively, demonstrating excellent improvements among the results after apply-

ing the ML-based integration method. Figure 4.24 represents a comparison of the

differences in measured displacement velocities of the Frame datasets’ boxplots.
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Table 4.8: standard deviations and RMSE of the differences between the three frame

datasets before and after integration

Evaluation index (mm/year)/ Frames
67-68 68-69 69-70

Pre Post Pre Post Pre Post

Mean 4.52 1.21 6.80 1.70 7.99 1.29

Median 3.98 1.14 5.12 1.44 6.60 0.76

STD 3.30 0.75 5.91 1.54 6.58 1.60

RMSE 5.60 1.43 9.02 2.29 10.35 2.05

Figure 4.24: : Box plots of the difference between AAD from S1 Different Frames before

and after the SVM-based integration.

4.2.4 Discussion

4.2.4.1 SVM for Multi-Sensor SAR Data Integration

The proposed framework primarily relies on SVR to integrate multi-satellite SAR

data. SVR is rooted in statistical learning theory and offers several key advantages:
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(1) It employs a learning method derived from the structural risk minimization prin-

ciple, which balances regression accuracy with the complexity of the regression hyper-

plane; (2) It transforms real-world problems into a high-dimensional feature space,

enabling nonlinear relationships to be represented using linear operators; (3) The

model is solvable through convex quadratic programming, which theoretically guar-

antees a global optimal solution; (4) The regression function is determined by a few

support vectors rather than the entire sample set, effectively overcoming the curse of

dimensionality [141].

Our method operates as a post-processing step, meaning it does not require simulta-

neous handling of hundreds of differential SAR interferograms. Instead, it leverages

recent advancements in generating LOS displacements. Integrating multi-satellite

deformation components is highly dependent on the quality of LOS displacement in-

formation and the identification of highly coherent targets common to all datasets.

Any disturbances in the LOS displacement can be estimated and filtered out be-

fore integration, preventing error propagation during the process. Our experimental

results indicate that the ML-based approach performs effectively, with integrated dis-

placements determined to sub-millimeter-level precision, comparable to those derived

from individual LOS displacements. Therefore, the proposed method is expected

to be particularly useful in investigating geological and geophysical processes where

precise deformation discrimination is crucial.

4.2.4.2 Land Subsidence Based on Multi-sensor SAR Data

The number of satellite data vendors has been increasing, offering access to the latest

C, X, and L-band SAR imagery from sensors like RADARSAT-2, S1A, ALOS-2,

TSX, Tandem-X, and the CSK constellation, as well as from earlier SAR sensors

such as ENVISAT and ERS. This expansion makes it possible to monitor surface

displacements on scales ranging from regional levels to small structures. In this

chapter, three distinct SAR datasets—TSX, CSK, and S1—were employed to study
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long-term ground subsidence.

From a frequency perspective, the C-band excels in displacement monitoring, while

shorter wavelength and lower frequency bands like the X-band provide broader cov-

erage of natural regions and reduce temporal decorrelation. These satellites have

captured data over extended periods, enabling the tracking of long-term deformation.

However, the uneven number of images and varying imaging characteristics present

challenges in performance assessment. Despite this, the short revisit periods of TSX

and S1 allowed for the observation of short-term land deformations, often due to

human activities. Additionally, the overlap among the three datasets supports the

integration of multi-sensor InSAR results.

Moreover, the cross-heading tracks of TSX and CSK images detected deformation on

both sides, demonstrating that these tracks enhance displacement determination in

the study area. In conclusion, the integration of multi-sensor SAR data demonstrates

the feasibility of continuous deformation surveillance, providing a comprehensive ap-

proach to monitoring ground subsidence.

4.2.4.3 Local reclamation settlement, possible causes, and implications

The natural consolidation of reclamation fill is driven by three main mechanisms: (a)

primary consolidation, which occurs within three years after reclamation; (b) long-

term secondary compression of the alluvial clay deposits beneath the reclamation;

and (c) creep within the reclamation fill, which can continue for over 40 years after

reclamation. According to Ma et al. [142], variability in the fill material can affect

the uniformity of consolidation, leading to uneven settlement. Ground deformation in

these areas is influenced by the interaction between geological formations and human

activities, which often reinforce each other.

The study area is comprised of granite, alluvium/colluvium, and reclaimed land.

Granite, an intrusive igneous rock, is relatively stable, while the surrounding re-

claimed land is less stable. Previous research has identified ground displacement
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in reclaimed areas of Hong Kong [16]. Human activities, such as the extensive un-

derground train system in the western corridor, also contribute to ground displace-

ment. Instances of sinking and building cracks have been documented by Qin and

Perissin [2]. Therefore, the interaction between geological structures and subterranean

projects likely contributes to the concentrated ground displacement observed in this

region.

Long-term, large-scale subsidence poses significant risks, including increased flooding

and saltwater intrusion due to rising sea levels [143]. Additionally, small-scale subsi-

dence is a growing threat to buildings and infrastructure. This type of subsidence is

more hazardous because it often occurs in densely populated areas, spreads widely, is

difficult to detect, happens rapidly, and has complex causes [142]. Local governments

are increasingly concerned about the substantial impacts of small-scale subsidence.

Validation of the developed approach demonstrated sub-millimeter-level accuracy in

integrating multi-satellite SAR datasets. This approach enables the sequential in-

tegration of interferograms from different sensors and viewing orientations as they

become available, resulting in 1-D displacements at each SAR interferogram time. A

key advantage of this method is its ability to achieve significantly higher observation

resolution by combining measurements from various radar sensors.

Therefore, the multi-satellite SAR-ML-based integration method shows promise in

analyzing geological and geophysical processes. However, further in-depth evaluations

are necessary to fully understand and assess the potential of the proposed method.

This includes testing the approach with a similar number of images from each SAR

satellite and applying it in various situations. Additionally, utilizing multi-platform

SAR data to retrieve a multi-dimensional deformation map could be effective for

monitoring deformation anomalies.

Moreover, the developed methodology maintains the high resolution of TSX and CSK

while leveraging S1’s superior monitoring capability and reducing the monitoring
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cycle. Given that Hong Kong’s Kowloon district is one of the city’s most densely

populated areas, the results obtained through this approach are a valuable resource

for disaster prevention, urban planning, and land reclamation efforts in the region.

4.2.4.4 Comparison with Previous Studies

In the absence of field measurements, the key findings of this research were compared

with previous studies in the area, particularly two significant works that utilized

InSAR data during the study period.

First, Qin et al. [2] analyzed ground displacement in the Hong Kong urban area

using the PSI technique. Their study utilized 73 TSX and TDX images spanning

October 2008 to September 2012. The PSI processing produced a line-of-sight LOS

displacement velocity map, revealing an overall velocity close to zero in most regions,

with localized variations ranging from −10 mm/year to 5 mm/year.

Notably, several locations within the western corridor (Figure 4.25) exhibited dis-

placement trends exceeding −5 mm/year, primarily in areas situated on reclaimed

land and near ongoing underground/ground construction sites. These displacement

patterns suggest that both geological factors and human activities contributed to

ground movement in these areas.

To assess the accuracy of the PSI technique, a corner reflector validation test was

conducted. Manually adjusted reflectors were used to compare actual displacement

values with PSI-derived results. A linear regression analysis between surveyed and

PSI-derived values demonstrated a high correlation, with an RMSE of 1.20 mm,

confirming that the PSI technique can achieve millimeter-level accuracy.

To compare this study with our results, a mean vertical displacement velocity map

in Figure 4.26 was generated by extracting the vertical displacement values for the

period from 2008 to 2012 from the results generated after applying the ML-based

integration process.
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Figure 4.25: The annual velocity of the displacement map for PS points located in the Hong

Kong urban area [2].

This map shows an overall velocity close to zero in most of the regions with partial

regions varying from −11 mm/year to 6 mm/year. In particular, a number of spots

inside the west corridor shown in Figure 7 show some displacement trends that exceed

−6 mm/year; From the comparison, it is noted that the displacement behavior and

magnitudes computed from our results closely match previous research in this area.

Seconed, Songbo et al.[3] investigate deformation caused by the underground con-

struction of the To Kwa Wan (TKW) station in Hong Kong using an improved MT-

InSAR method.

Multi-platform SAR datasets from TerraSAR-X, COSMO-SkyMed, and Sentinel-1A

are utilized to retrieve comprehensive ground and building deformation for stabil-

ity assessment. The results are validated through cross-comparison between SAR

datasets, revealing both spatial and temporal variations in ground deformation. Fig-

ure 4.27 presents the deformation rate maps for individual SAR datasets. Figure 4.27

a shows ground deformation along the coastal areas of the Kowloon Peninsula, as
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Figure 4.26: The mean vertical displacement velocity map from 2008 to 2012.

detected by TerraSAR-X (TSX) data from 2008 to 2017, with an annual deformation

rate ranging from -10 to 10 mm/yr. Figure 4.27b, derived from COSMO-SkyMed

(CSK) data, highlights significant deformation in the Kowloon Peninsula, with a

maximum deformation rate of -15 to 15 mm/yr. Figure 4.27c, based on Sentinel-

1A data, indicates relatively mild ground deformation across the peninsula. Among

these datasets, deformation is primarily concentrated along the western corridor of

the Kowloon Peninsula.

For comparison with the study by Songbo et al.[3], the mean displacement velocity

maps for the TSX, CSK, and S1 SAR datasets were extracted from the integration

results, as shown in Figure 4.28.

The TSX SAR data (2008–2017) reveal ground deformation along the western corridor

of the Kowloon Peninsula, with a mean displacement velocity ranging from −10

90



Figure 4.27: LOS deformation rate maps of the Kowloon Peninsula from (a) TSX

(20081025-20170125), (b) CSK (20110731-20160728), and (c) Sentinel-1A (20150615-

20210214) datasets. (Background image: Google Maps satellite image) [3].

to 10 mm/yr (Figure 4.28a). The CSK dataset shows a deformation rate ranging

from −5 to 10 mm/yr (Figure 4.28b), while the S1 dataset indicates relatively mild

deformation across the Kowloon Peninsula, with localized rates ranging from −15 to

10 mm/yr (Figure 4.28c). Across all three datasets, ground deformation is primarily
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Figure 4.28: The mean displacement velocity maps for the TSX, CSK, and S1 SAR datasets

after applying the integration.

concentrated along the western corridor of the Kowloon Peninsula.

From the comparison, it is observed that the displacement patterns and magnitudes

are derived from TSX and S1 closely align with previous research in the area. How-

ever, the results from the CSK dataset show discrepancies, likely due to differences

in the study period between the two studies.

4.3 Comparision between the two case studies

The effectiveness of the integration method for multi-satellite SAR data varies be-

tween Almokattam, Egypt, and Kowloon, Hong Kong, due to differences in geological

stability, environmental conditions, and displacement characteristics. Almokattam
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is characterized by unstable limestone formations prone to landslides and human-

induced excavations, leading to abrupt and localized vertical displacement. These

sudden changes can cause phase decorrelation and inconsistencies when integrating

SAR datasets from different sensors and periods. Additionally, the arid climate re-

sults in fewer seasonal variations, which, while reducing temporal decorrelation, lim-

its the availability of natural coherence points over time. In contrast, Kowloon’s

displacement is more gradual and widespread, primarily due to land reclamation

and underground infrastructure development. The steady nature of this deformation

improves temporal coherence, making the integration process smoother. However,

Kowloon’s humid subtropical climate, with seasonal rainfall and typhoon-induced

soil compaction, introduces short-term fluctuations that must be accounted for during

SAR data fusion. The presence of well-maintained urban infrastructure in Kowloon

also enhances the reliability of multi-sensor integration by providing consistent high-

coherence scatterers. Overall, while both sites pose distinct challenges, the integration

method is more effective in Kowloon due to its stable displacement trends and higher

coherence, whereas Almokattam’s abrupt ground failures make multi-temporal SAR

integration more complex and less predictable. To explain this, a detailed compari-

sion of the geological and environmental difference between the two case studies were

made with thier impact on the vertical displacement patterns and the integration

method’s effectiveness as follows:

4.3.1 The Geological and Environmental Differences

• Geological Characteristics:

– Almokattam, Egypt: Composed mainly of limestone and marl, making

it prone to landslides and rockfalls due to fractures and weathering. High

susceptibility to subsidence due to human activities like excavation and

groundwater extraction.

– Kowloon, Hong Kong: Composed mainly of granite and volcanic rocks,
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providing greater stability. However, weathering processes and the pres-

ence of clay-rich soils contribute to slope instability and landslide suscep-

tibility.

• Topography:

– Almokattam, Egypt: Elevated plateau overlooking Cairo, with steep

cliffs that increase the risk of rockfalls.

– Kowloon, Hong Kong: Densely populated urban area with hilly terrain,

featuring artificial land reclamation in coastal areas.

• Seismic Activity:

– Almokattam, Egypt: Located in a relatively low to moderate seismic

activity zone, though local faults and subsurface conditions can amplify

ground movement effects.

– Kowloon, Hong Kong: Subject to moderate seismic activity due to re-

gional tectonic influences, including the active South China Sea subduction

zones.

• Climate and Weather Conditions:

– Almokattam, Egypt: Arid desert climate with minimal rainfall, reduc-

ing water-induced ground deformation but increasing the risk of soil shrink-

age and subsidence.

– Kowloon, Hong Kong: Humid subtropical climate with heavy seasonal

rainfall, contributing to soil erosion, landslides, and water infiltration-

induced ground deformation.

• Human Impact:

– Almokattam, Egypt: Urban expansion, excavation, and groundwater

extraction contribute significantly to land subsidence and instability.
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– Kowloon, Hong Kong: Rapid urbanization, infrastructure development,

and underground construction projects (e.g., tunnels and metro systems)

contribute to land movement and deformation.

• Main Deformation Causes:

– Almokattam, Egypt: Subsidence due to excavation, underground con-

struction, and water table fluctuations. Landslides triggered by weak rock

formations.

– Kowloon, Hong Kong: Subsidence due to artificial land reclamation

from the sea and Human activities, such as the extensive underground

train system.

4.3.2 How Geological and Environmental Differences Affect

Vertical Displacement Measurements Between Almokat-

tam and Kowloon

• Geological composition and stability:

Almokattam is expected to show more localized and abrupt vertical displace-

ment due to rockfalls and excavation, whereas Kowloon exhibits more uniform

subsidence due to artificial ground settlement.

• Climate and Weather Conditions:

Vertical displacement in Kowloon may fluctuate seasonally due to rainfall-

induced soil compaction, while in Almokattam, it remains more gradual but

linked to human activities.

• Human Activities and Urbanization:

Kowloon experiences a slow, widespread subsidence due to land reclamation,

while Almokattam is prone to localized, abrupt displacement from excavation

and slope failure.
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These differences help explain why Almokattam exhibits more sudden vertical shifts,

while Kowloon experiences a more uniform, weather-dependent displacement pattern.

Understanding these variations is crucial when interpreting InSAR-derived displace-

ment maps and integrating multi-satellite SAR data.

4.3.3 Influence of Geological and Environmental Differences

on the Effectiveness of the Integration Method

• Impact of Geological Differences:

The localized and abrupt deformations in Almokattam pose challenges in main-

taining data coherence across different sensors, whereas the gradual subsidence

in Kowloon enhances integration consistency.

• Impact of Climate and Environmental Conditions:

Almokattam benefits from stable seasonal conditions, while Kowloon experi-

ences weather-related decorrelation, requiring additional corrections in integra-

tion.

• Impact of Human Activities:

The erratic, abrupt displacement in Almokattam reduces integration effective-

ness, while Kowloon’s gradual deformation aligns better with long-term moni-

toring and integration models.

In conclusion, Kowloon’s gradual, widespread subsidence enhances the effectiveness of

the integration method, while Almokattam’s abrupt, localized deformations introduce

challenges, requiring advanced temporal filtering and adaptive weighting to improve

integration accuracy.
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Chapter 5

CONCLUSIONS AND OUTLOOK

This chapter summarizes the thesis, highlighting the key findings and research contri-

butions. It begins by summarizing the main conclusions obtained from the research.

Finally, the potential avenues for future research are identified, offering recommenda-

tions for further investigation and development based on the research outcomes.
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5.1 Summary

This thesis introduced innovative solutions for integrating multi-satellite SAR data to

retrieve time series displacement maps. The thesis started with presenting the main

terms related to DInSAR technique as discussed in Chapter 2. After that, the multi-

satellite SAR data integration was proposed based on two approaches: adaptation of

traditional SBAS and utilization of machine learning, particularly, SVR.

In part I, the SAR data integration was performed by adaptation of the traditional

multi-satellite SBAS based on TSVD. The proposed approach consists of three stages

to integrate both temporally overlapping and temporally gapped multi-satellite SAR

data. First, SAR data tracks have been processed individually. Then, the unwrapped

phases have been geocoded and resampled at the high coherence points. Finally,

the proposed multi-satellite SBAS has been employed to retrieve the vertical time

series displacement maps using TSVD and least squares. The experimental design

has involved 20 years of ERS, ENVISAT ASAR, and S1A data of Almokattam City

in the Arab Republic of Egypt. The cross-validation results showed that the proposed

approach enables a comprehensive interpretation of the deformation behavior within

the study area. The main research findings include:

• The temporally overlapped and gapped DInSAR-derived vertical displacement

values from ENVISAT, ERS, and S1 have been integrated based on MMSBAS.

• The proposed approach is the first to integrate 20 years of multisatellite SAR

data sets in the city of Almokattam.

• The western part of Almokattam city is specifically prone to subsidence, where

its rate reached -2.32 mm/year. This is consistent with the real ongoing subsi-

dence observed during the study period.

• The results revealed a severe subsidence between 2000 and 2005, with rate reach

to -59.5 mm/year and with a rate of -13.39 mm/year from 2004 to 2012. These
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findings align with the documented historical subsidence incidents in 1993, 2000,

2002, 2004, and 2008.

• It is noted that there is an uplift in many places in Almokattam city especially

in the eastern part with a displacement rate reach to 3.33 mm/year.

• Cross-validation results from S1 outperformed those from ENVISAT and ERS,

with correlation coefficients of 0.92 for ERS, 0.97 for ENVISAT, and 0.99 for

S1. Similarly, the root mean square errors (RMSE) were 1.92 mm for ERS,

1.66 mm for ENVISAT, and 1.19 mm for S1. This improved performance is

primarily due to the larger number of images and the finer temporal resolution

of the S1 satellite data.

• In general The validation results showed a consistency overall displacement ve-

locity pattern before and after the integration, which indicates that the MMS-

BAS approach performs effectively.

• In comparison to previous studies applied in the study area [136, 137], the

proposed methodology has demonstrated sub-millimeter accuracy in estimating

subsidence and its trend.

• Integrating multi-satellite InSAR has optimized their complementary nature

which enables comprehensive coverage. Thus, improving the displacement re-

sults.

Part II explores SVR for integrating multi-sensor DInSAR data. The proposed frame-

work addresses the challenge of processing large datasets by efficiently handling mas-

sive data volumes. As a post-processing approach, it streamlines the analysis of differ-

ential SAR interferograms, eliminating the need to simultaneously process hundreds

of these complex structures. Furthermore, the framework facilitates the seamless inte-

gration of multi-satellite SAR data, reducing the need for extensive hyper-parameter

adjustments, thus significantly improving the overall analysis efficiency and flexibility.
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This approach employs SVR with multiple independent variables to integrate vertical

displacement data from various sensors over common high-coherence points. Vertical

displacements are computed from individual datasets and then integrated using the

SVR algorithm. Experiments included high-resolution CSK and TSX images, along

with a smaller monitoring cycle using S1 data over Kowloon City in Hong Kong. This

research concluded that:

• The experimental results indicated that there is land subsidence in the west

corridor of the Kowloon district, which corridor exceeded -12 mm/year.

• The subsidence of the land is mainly due to land reclamation and ongoing

underground and ground construction projects.

• Human activities, such as the extensive underground train system in the western

corridor, also contribute to ground displacement.

• C-band data offer superior capabilities for monitoring displacements, while

shorter wavelengths and lower frequencies (e.g., X-band) provide more com-

prehensive coverage of natural areas and benefit from lower temporal correla-

tion, allowing these satellites to capture data over longer periods for tracking

long-term deformation.

• The short revisit times of TSX and S1 enabled observation of short-term land

deformations due to human activities.

• The temporal overlap of the datasets supported effective multi-sensor InSAR

integration.

• The cross-track geometries of the TSX and CSK images facilitated the identifi-

cation of deformation on both sides of the features of interest, highlighting the

importance of integration.
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• TSX results outperformed those of CSK and S1, with standard deviation (STD)

values of 0.71 mm/year for TSX, 1.1 mm / year for CSK and 3.26 mm / year for

S1. Similarly, the root mean square error (RMSE) values were 1.53 mm/year

for TSX, 1.42 mm/year for CSK, and 4.28 mm/year for S1. This improved

performance is likely attributed to the larger number of TSX interferograms

incorporated into the integration process compared to those used for CSK and

S1.

• The displacement behavior and magnitudes computed from the proposed inte-

gration method closely match previous research in this area [2, 4], indicating

the effectivity of the ML-based integration method.

5.2 Conclusions

• This thesis introduced solutions for integrating multi-satellite SAR data to re-

trieve long-term vertical displacement rate maps by benefiting from the advan-

tages of each satellite individually.

• The multi-satellite SAR data integration was based on two approaches: adap-

tation of traditional SBAS MMSBAS and utilization of machine learning, par-

ticularly multiple independent variables SVR (ML-based integration).

• The focus on vertical displacement in this research is motivated by several key

factors related to the nature of the deformation process, the characteristics of

InSAR measurements, and the challenges of multi-sensor data integration.

– Relevance to the Study Area and Deformation Type: In many

regions, including the two study areas considered in this work, deformation

is predominantly vertical, often due to processes such as land subsidence,

or land reclamation from the sea. Horizontal displacements, while present,

are typically less significant or more challenging to isolate with InSAR,

making vertical motion the primary concern.
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– Data Constraints and Computational Efficiency: Estimating both

horizontal and vertical components requires additional processing steps,

such as incorporating GNSS data or using multiple acquisition geometries,

which may not always be available. By restricting the study to vertical

displacement, the research optimizes data usage while maintaining com-

putational efficiency.

– Suitability for Multi-Sensor Integration: Integrating SAR data from

multiple satellites introduces challenges due to differences in sensor wave-

lengths, orbital geometries, and acquisition times. Vertical displacement

is generally more consistent across different sensors, reducing cross-sensor

biases and making the integration process more reliable. This choice en-

hances the accuracy and robustness of the final displacement maps.

• Our frameworks operate as a post-processing step, meaning that:

– It does not require simultaneous handling of hundreds of differential SAR

interferograms.

– Any disturbances in the LOS displacement can be estimated and filtered

out before integration, preventing error propagation during the process.

– It reduces the need for extensive hyper parameter adjustments, thus sig-

nificantly improving the overall analysis efficiency and flexibility.

• The proposed methods offer several general advantages compared to existing

literature:

– It does not require an external displacement model to bridge time gaps

between datasets;

– A relatively small number of SAR scenes are used;

– It exploits the strengths of both PS and DS techniques to enhance the

density of high-coherence points.
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• Our integration approaches ensure a robust and temporally continuous defor-

mation history, even in the presence of missing SAR acquisitions.

– The MMSBAS method mitigates the impact of time gaps between SAR

images by constructing a network of interferograms and applying temporal

interpolation through the TSVD inversion process.

– In the ML-based approach, ground displacement velocity is integrated in-

stead of direct displacement values. By utilizing velocity rather than dis-

placement, measurements are standardized across different datasets, facil-

itating the seamless merging of time-gapped data from multiple satellites.

• The Machine Learning role in integrating multi-satellite SAR datasets:

– Assigning weights to displacement data in the integration process.

– Reducing the remaining cross-sensor biases.

– Automating the integration process.

– Handling of large and complex datasets.

– Improving accuracy of integrated displacement maps.

5.3 Outlook

The future work of this thesis research can be summarized in the following points:

• Conduct a thorough evaluation of the proposed methodology by incorporating

field measurements, such as GPS and leveling, to validate and enhance the

accuracy of the results.

• Extend the multi-satellite SBAS to combine DInSAR-driven 3D displacement

time series. However, the success of this extension hinges on the validity of

additional ground deformation signals from field measurments, such as GPS
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or leveling, and the availability of both ascending and descending SAR flight

paths.

• Expanding the dataset with more recent SAR acquisitions from multiple SAR

satellites to enhance the temporal and spatial coverage and providing a more

comprehensive understanding of ground displacement trends.

• Employ ensemble learning algorithms to monitor the long-term earth surface

displacement. These ML algorithms involve training multiple machine learning

models and combining their predictions to improve accuracy and robustness.

• It would be promising to employ deep learning techniques in multi-satellite SAR

data integration. Deep learning algorithms have various advantages, including:

– They provide a more automated integration process.

– They can integrate SAR images from preprocessing to integrated displace-

ment estimation in a single pipeline.

– They effectively integrate data from multiple satellites with different reso-

lutions, wavelengths (C-band, L-band, X-band), and temporal baselines.

– They can predict future displacement trends and potential hazards (e.g.,

landslides, subsidence) using past DInSAR data.

– They can capture long-term temporal dependences in ground displacement

data.

– They can process large-scale, high-dimensional DInSAR datasets efficiently

using GPUs and cloud computing.

– They can denoise and correct phase unwrapping errors directly from data

and reduce atmospheric artifacts and noise.

In order to utilize deep learning (DL) algorithms to generate the 3D displace-

ment maps, there were some challenges to apply such techniques:
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– They require a large data annotation, which is not straightforward for

displacement data.

– They often require GPUs or TPUs for training large networks, therefore

requiring a high computational cost.

Consequently, in this thesis, machine learning techniques particularly SVR, is

employed in InSAR data integration. Compared to DL algorithms, machine

learning techniques do not require data annotation, and they have relatively

low computational cost which make them faster and simpler.
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