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ABSTRACT 

Forward problems in the structural dynamics typically involve simulating structural 

responses under specified conditions through constructed structural models, which are 

fundamental problems from the design of new structures and assessment of existing structures. 

Conversely, inverse problems in structural engineering often serve as dual counterparts to many 

forward problems, with their models typically evolving from various forward problem models. 

In existing structures, modern sensing technologies can effectively acquire structural 

information, enabling the inference of valuable structural insights based on measured data and 

inverse problem models. Generally, valuable structural information refers to structural 

parameters, external forces acting on the structures, and responses at unmeasured locations of 

structures. 

The first part of the thesis introduces a nonparametric Bayesian multi-task learning 

framework for time-domain force reconstruction. Traditional methods often struggle with 

ill-posed deconvolution problems and uncertainties. By assigning the Gaussian process (GP) 

priors to force functions within a Bayesian context, the proposed method effectively mitigates 

these issues. This approach leverages the relationship between loads and responses through the 

convolution operator, resulting in responses that also follow a GP. A joint Gaussian distribution 

across multiple tasks enables closed-form posterior distributions of the forces based on 

measured responses. The framework is validated through simulations on a truss bridge and 

experiments on a frame structure subjected to impact loads, demonstrating high accuracy and 

efficient uncertainty quantification. 

Building on this framework, the thesis extends its application to reconstruct transient 

aerodynamic loads on high-speed maglev vehicles using onboard acceleration measurements. 

Traditional estimation methods are often time-consuming and costly. The novel framework 
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utilizes an inverse mathematical model derived from a calibrated maglev vehicle model and 

integrates the multi-task GP algorithm to reconstruct aerodynamic loads efficiently. The 

method treats the reconstructed loads as multiple GP, allowing for closed-form posterior 

calculations. Validation with data from maglev trains passing through double-track tunnels 

confirms the framework's effectiveness. 

To enhance state estimation capabilities, the thesis presents two complementary approaches. 

The first is a Bayesian-based multi-fidelity GP method that employs a time-delayed GP model 

to capture the statistical correlations between sensor observations from preceding time steps 

and the current structural states. Training data for this model is generated using a simulated 

finite element model subjected to synthetic excitations. To further enhance the accuracy, the 

proposed multi-fidelity GP model integrates data from both simulations and actual 

measurements. This integration effectively combines the low-fidelity information from 

simulations with high-fidelity direct measurements to provide posterior estimations with 

quantified uncertainties. Validation examples confirm the effectiveness of multi-fidelity GP in 

providing precise state estimations, thereby expectedly boosting the prediction reliability 

across various applications in structural dynamics. 

The second approach explores a recurrent neural network (RNN) method enhanced with 

transfer learning. While GP offer probabilistic estimations, the RNN provides high-accuracy 

point estimations by learning correlations in multi-output problems. The RNN is trained using 

extensive response data from a calibrated finite element model under synthetic excitations. 

Transfer learning adapts the RNN to real-structure predictions using actual measurement data. 

A fine-tuning strategy adjusts parameters in the RNN initial layers while keeping output layers 

fixed, ensuring effective convergence. Numerical and experimental validations show that the 

RNN models significantly outperform traditional methods, especially in complex, multi-output 

state predictions.  



V 
 

 

LIST OF PUBLICATIONS 

Journal articles: 

S. Hao, S.M. Wang, Y.Q. Ni, Z.W. Chen, M.O. Adeagbo, Multi-task Gaussian Processes based 

transient aerodynamic load reconstruction for maglev vehicle using acceleration response. 

Journal of Sound and Vibration, 596 (2025) 118754. https://doi.org/10.1016/j.jsv.2024.118754.  

S. Hao, H.W. Li, Y.Q. Ni, W. Zhang, L. Yuan, State estimation in structural dynamics through 

RNN transfer learning. Mechanical Systems and Signal Processing, 233 (2025) 112767. 

https://doi.org/10.1016/j.ymssp.2025.112767.  

W. Zhang, S.M. Wang, Y.Q. Ni, X. Yuan, Y. Feng, L. Yuan, S. Hao, Physics-enhanced multi-

fidelity neural ordinary differential equation for forecasting long-term creep behavior of steel 

cables. Thin-Walled Structures, 208 (2025) 112846. https://doi.org/10.1016/j.tws.2024.112846.  

H.W. Li, S. Hao, Y.Q. Ni, Y.W. Wang, Z.D. Xu, Hybrid structural analysis integrating physical 

model and continuous-time state-space neural network model. Computer-Aided Civil and 

Infrastructure Engineering, 40 (2024) 166-180. https://doi.org/10.1111/mice.13282.  

H.W. Li, J. Zhou, S. Hao, Y.Q. Ni, Z.D. Xu, Dynamic modeling and substructuring analysis 

leveraging long short-term memory neural network. Structures, 70 (2024) 107602. 

https://doi.org/10.1016/j.istruc.2024.107602.  

E.Z. Rui, G.Z. Zeng, Y.Q. Ni, Z.W. Chen, S. Hao, Time-averaged flow field reconstruction 

based on a multifidelity model using physics-informed neural network (PINN) and nonlinear 

information fusion. International Journal of Numerical Methods for Heat & Fluid Flow, 34 

(2024) 131-149. https://doi.org/10.1108/hff-05-2023-0239.  

S. Hao, Y.Q. Ni, S.M. Wang, Probabilistic identification of multi-DOF structures subjected to 

ground motion using manifold-constrained Gaussian processes. Frontiers in Built Environment, 

8 (2022) 932765. https://doi.org/10.3389/fbuil.2022.932765.  



VI 
 

L. Yuan, Y.Q. Ni, X. Deng, S. Hao, A-PINN: Auxiliary physics informed neural networks for 

forward and inverse problems of nonlinear integro-differential equations. Journal of 

Computational Physics, 462 (2022) 111260. https://doi.org/10.1016/j.jcp.2022.111260.  

S.M. Wang, G.F. Jiang, Y.Q. Ni, Y. Lu, G.B. Lin, H.L. Pan, J.Q. Xu, S. Hao, Multiple damage 

detection of maglev rail joints using time-frequency spectrogram and convolutional neural 

network. Smart Structures and Systems, 29 (2022) 625-640. 

https://doi.org/10.12989/sss.2022.29.4.625.  

Conference papers: 

S. Hao, S.M. Wang, Z.W. Chen, W. Zhang, Y.Q. Ni, Inverse reconstruction of unsteady 

aerodynamic loads acting on railway vehicles. In 14th International Workshop on Structural 

Health Monitoring, San Francisco, 2023. 

L. Yuan, Y.Q. Ni, S. Hao, W. Zhang, From initial to final state: Single step prediction of 

structural dynamic response. In 14th International Workshop on Structural Health Monitoring, 

San Francisco, 2023. 

W. Zhang, Y.Q. Ni, L. Yuan, S. Hao, S.M. Wang, Structural parameter identification with a 

physics-informed neural networks-based framework. In 14th International Workshop on 

Structural Health Monitoring, San Francisco, 2023. 

S. Hao, S.M. Wang, Y.Q. Ni, Kernel ridge regression-based force identification in the time 

domain. In Engineering Mechanics Institute Conference, Atlanta, 2023.  

S. Hao, S.M. Wang, Y.Q. Ni, Gaussian Process-based non-uniform Fourier transform. In 8th 

World Conference on Structural Control and Monitoring, Orlando, 2022.  

  



VII 
 

 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my heartfelt gratitude to my advisor, 

Prof.  Yi-Qing Ni, who has served as a guiding light throughout my more than four years of 

PhD studies. When I first joined the research group, he taught me to focus on fundamental key 

technologies in scientific research and to grasp their underlying philosophies. He also 

consistently encouraged me to stay informed about cutting-edge science and technology, and 

to consider the potential benefits of applying them to our field. Through over four years of his 

patient and insightful mentorship, I have gained immensely from Prof. Ni's guidance. As I 

approach graduation, I sincerely thank Prof. Yi-Qing Ni; his spirit and visions as a researcher 

would consistently motivate me on my future way of life. 

I am also grateful to Dr. Su-Mei Wang for taking over the role as my co-supervisor. I deeply 

appreciate having her supervision that not only cares for my well-being but also fosters my 

self-discipline, enabling me to achieve this final accomplishment. 

I want to thank the financial supports from The Hong Kong Polytechnic University. I would 

like to express my special thanks to Dr. Xiangyun Deng. Without his initial encouragement 

and guidance, I would not have had the opportunity to pursue my fulfilling studies at The Hong 

Kong Polytechnic University. To me, Dr. Deng is like a respected elder brother, and I deeply 

admire his noble demeanor and approach to life and work. 

I would like to extend my sincere appreciation to my colleagues at the National Rail Transit 

and Electrification and Automation Engineering Technology Center (Hong Kong Branch). I 

am particularly thankful to Mr. Wing-Hong Kwan, Mr. Tai-Tung Wai, Mr. Guang Zhou, Mr. 

Yang Lu, Mr. Xiang-Xiong Li, and Mr. Qi-Fan Zhou for their unreserved support in conducting 

numerous experiments. My sincere thanks also go to Dr. Hong-Wei Li, Dr. Zheng-Wei Chen, 

and Dr. Mujib Adeagbo for their invaluable guidance and insightful suggestions for my PhD 



VIII 
 

studies. Dr. Hong-Wei Li instructed me with vibrational time series modeling using deep 

learning, Dr. Zheng-Wei Chen provided precious suggestions on aerodynamic effects of 

vehicle systems, Dr. Mujib Adeagbo helped on modal analysis and Bayesian model updating. 

I am grateful to my dear friends, Dr. Lu Zhou, Dr. You-Wu Wang, Dr. Siqi Ding, Dr. Si-Xin 

Chen, Dr. Bei-Yang Zhang, Dr. Yunke Luo, Dr. Si-Yi Chen, Dr. Xin Ye, Dr. Yue Dong, Dr. 

Duo Zhang, Mr. Zhen Lin, Mr. Zhengyang Li, Mr. Xiang-Tao Sun, Mr. Zijian Hu, Ms. Mingxi 

Li, Ms. Qi Zhu, Mr. Yan-Ke Tan, Mr. Da-Zhi Dang, Mr. Yu-Ling Wang, Mr. You-Liang Zheng, 

Mr. Weijia Zhang, Mr. Lei Yuan, Mr. En-Ze Rui, Mr. Gao-Feng Jiang, Mr. Shengyuan Liu, 

Mr. Yingnan Hu, Ms. Yuanheng Zhang, Mr. Binyu Yang, Ms. Yinghong Lin, whose friendship 

and encouragement have been a source of strength and joy throughout my doctoral journey. 

Their understanding, laughter, and support provided me with the motivation and resilience 

needed to overcome challenges and stay focused on my goals. Thank you all for being an 

integral part of this journey. 

Lastly, I would like to thank my wife, Mrs. You Li, for her unwavering love and support. I 

am also deeply grateful to my mother, Mrs. Yan-Hua Shi; my father, Mr. Zhi-Huan Hao; and 

my brother, Mr. Ze Hao, for their constant encouragement and belief in me. The steadfast 

support of my family has been instrumental in the completion of this thesis. 

 

 

 

 

  



IX 
 

 

TABLE OF CONTENTS 

CERTIFICATE OF ORIGINALITY ..................................................................................... I 

ABSTRACT ............................................................................................................................ III 

LIST OF PUBLICATIONS ................................................................................................... V 

ACKNOWLOEDGEMENTS ............................................................................................. VII 

LIST OF FIGURES ............................................................................................................ XIV 

LIST OF TABLES .............................................................................................................. XXI 

LIST OF ABBREVIATIONS ...........................................................................................XXII 

Chapter 1. Introduction .......................................................................................................... 1 

1.1.  Research background ......................................................................................................... 1 

1.2. Research objectives ............................................................................................................. 4 

1.3. Main contributions .............................................................................................................. 6 

1.3. Thesis outline ...................................................................................................................... 9 

Chapter 2. Literature review ................................................................................................ 12 

2.1. Inverse problems in structural dynamics .......................................................................... 12 

2.1.1. Definition and scope ................................................................................................. 12 

2.1.2. Advancements of force reconstruction problems and challenges ............................. 15 

2.1.3. Advancements of state estimation problems and challenges  ................................... 21 

2.2. Probabilistic machine learning .......................................................................................... 27 

2.2.1. Nonparametric Bayesian machine learning .............................................................. 27 

2.2.2. Nonparametric Bayesian machine learning applications in structural engineering .. 33 



X 
 

2.2.3. Advantages and limitations of nonparametric Bayesian machine learning .............. 39 

2.3. Deep learning .................................................................................................................... 40 

2.3.1. Deep learning ............................................................................................................ 40 

2.3.2. Deep learning applications in structural engineering  ............................................... 45 

2.3.3. Advantages and limitations of deep learning ............................................................ 50 

2.4. Summary ........................................................................................................................... 52 

Chapter 3. Nonparametric Bayesian multi-task learning for time-domain force 

reconstruction ......................................................................................................................... 54 

3.1. Introduction ....................................................................................................................... 54 

3.2. Problem description of time-domain force reconstruction ............................................... 55 

3.3. Multi-task learning with nonparametric Bayesian approach for force reconstruction ..... 58 

3.4. Numerical example: a truss bridge ................................................................................... 61 

3.4.1 Model description ....................................................................................................... 61 

3.4.2. Force reconstruction for truss structure ..................................................................... 66 

3.5. Experimental example: a frame structure ......................................................................... 72 

3.5.1. Measurement setup .................................................................................................... 72 

3.5.2. FE model construction and calibration ..................................................................... 73 

3.5.3. Force reconstruction in the presence of epistemic noise ........................................... 76 

3.6. Summary ........................................................................................................................... 82 

Chapter 4. Transient aerodynamic load reconstruction for maglev vehicles using onboard 

acceleration measurements ................................................................................................... 83 

4.1. Introduction ....................................................................................................................... 83 



XI 
 

4.2. Problem description of aerodynamic load reconstruction for maglev vehicles ................ 84 

4.2.1. Transient vibration of maglev vehicles ..................................................................... 84 

4.2.2. Aerodynamic load reconstruction: an inverse problem ............................................ 85 

4.3. Maglev vehicle system modelling .................................................................................... 87 

4.4. Model calibration based on operational data .................................................................... 94 

4.5. Transient aerodynamic load reconstruction using MTGP ................................................ 96 

4.6. Results ............................................................................................................................... 97 

4.7. Summary ......................................................................................................................... 103 

Chapter 5. Time-delayed multi-fidelity Gaussian processes for state estimation of 

structural dynamic systems ................................................................................................. 105 

5.1. Introduction ..................................................................................................................... 105 

5.2. Problem description of state estimation .......................................................................... 106 

5.3. Time-delayed GP for real-time state estimation ............................................................. 107 

5.4. Enhancing state estimation through MFGP .................................................................... 109 

5.5. Numerical example 1: a mass-spring-damper dynamic system ...................................... 114 

5.5.1. State estimation for mass-spring-damper dynamic system ..................................... 114 

5.5.2. Enhanced state estimation for nonlinear mass-spring-damper dynamic system ..... 121 

5.6. Numerical example 2: a 45-story tall building ............................................................... 125 

5.6.1. Building structure and health monitoring system description ................................. 125 

5.6.2. Building structure subjected to wind excitations .................................................... 129 

5.6.3. State estimation of the building structure solely based on high-fidelity data ......... 132 



XII 
 

5.6.4. Enhanced state estimation of the building structure using low-fidelity and multi-

fidelity data ........................................................................................................................ 136 

5.7. Discussion ....................................................................................................................... 150 

5.8. Summary ......................................................................................................................... 151 

Chapter 6. Transfer learning of recurrent neural networks for enhanced state estimation 

in structural dynamics ......................................................................................................... 153 

6.1. Introduction ..................................................................................................................... 153 

6.2. RNN for structural state estimation ................................................................................ 154 

6.3. TL-RNN for enhanced state estimation .......................................................................... 157 

6.3.1. Apply transfer learning to enhance pre-trained RNN ............................................. 157 

6.3.2. State estimation procedures using TL-RNN ........................................................... 161 

6.4. Numerical example: a base-isolated building structure .................................................. 163 

6.4.1. Base-isolated building structure and simplified model ........................................... 163 

6.4.2. System identification and model updating from ambient vibration ........................ 166 

6.4.3. Pre-training of RNN based on the calibrated shear-type structure model............... 170 

6.4.4. TL-RNN for state estimation of base-isolated building under seismic excitation .. 175 

6.5. Experimental example: a two-span continuous beam ..................................................... 181 

6.5.1. Measurement setup .................................................................................................. 181 

6.5.2. Model calibration .................................................................................................... 182 

6.5.3. Pre-training of RNN based on the calibrated beam model ..................................... 186 

6.5.4. Using transfer learning to enhance the model performance .................................... 190 

6.6. Discussion ....................................................................................................................... 193 



XIII 
 

6.7. Summary ......................................................................................................................... 197 

Chapter 7. Conclusions and future work ........................................................................... 199 

7.1. General summary ............................................................................................................ 199 

7.2. Suggestions for future research ....................................................................................... 200 

7.2.1. Bayesian-based force reconstruction with uncertain system parameters ................ 200 

7.2.2. Mathematical rationale behind the success of time-delayed GP for state estimation

 ........................................................................................................................................... 200 

7.2.3. Transfer learning of more sophisticated RNN models for state estimation ............ 202 

References ............................................................................................................................. 203 

  



XIV 
 

 

LIST OF FIGURES 

Figure 2.1. Demonstration of forward problem and inverse force reconstruction .................. 16 

Figure 2.2. Demonstration of forward problem and inverse state estimation ......................... 22 

Figure 2.3. Realizations of GP with specified mean functions and hyperparameters for the 

squared exponential kernel ...................................................................................................... 31 

Figure 2.4. GPR predicted posterior with randomly initialized hyperparameters and optimized 

hyperparameters ....................................................................................................................... 32 

Figure 2.5. Neural network architectures for different applications ....................................... 42 

Figure 3.1. The working mechanism of MTGP for force reconstruction and comparison with 

GPR .......................................................................................................................................... 59 

Figure 3.2. General view of Pratt truss bridge ........................................................................ 63 

Figure 3.3. (a) The applied force over node 31 along y axis; (b) The acceleration response on 

node 41 along y axis with added noise .................................................................................... 65 

Figure 3.4. Negative log marginal likelihood function with respect to parameters of the squared 

exponential kernel, where the star indicates the optimal solution ........................................... 67 

Figure 3.5. Posteriors of forces obtained using the proposed method from noisy acceleration 

response at node 41 along the y axis ........................................................................................ 68 

Figure 3.6. Samples of the calculated structure responses using the reconstructed force with 

the ground truth ........................................................................................................................ 69 

Figure 3.7. Force reconstruction accuracy comparison between the proposed method and 

Tikhonov regularization under various SNR ........................................................................... 70 

Figure 3.8. Force reconstruction accuracy and time consuming versus the volume of 

acceleration data used as input ................................................................................................. 71 



XV 
 

Figure 3.9. (a) Experimental setup for force reconstruction on a frame structure; (b) Idealized 

model of the frame structure with detailed configurations of accelerometers and forces ....... 72 

Figure 3.10. Measured and FE model (before and after updating) output FRF ...................... 75 

Figure 3.11. Measured and calculated natural frequencies before and after model updating . 76 

Figure 3.12. (a) Applied Impact force on F2; (b) Collected acceleration data from A3 ......... 77 

Figure 3.13. Comparison between the measured accelerations with the calculated acceleration 

responses based on the calibrated FE model............................................................................ 77 

Figure 3.14. Workflow for force reconstruction in the presence of epistemic noise .............. 78 

Figure 3.15. Measured forces and reconstructed forces based on the proposed nonparametric 

Bayesian multi-task learning approach .................................................................................... 79 

Figure 4.1. (a) Maglev operational velocity recorded via GPS; (b) Lateral accelerations in an 

open environment; (c) Lateral acceleration upon entering the tunnel; (d) Lateral acceleration 

upon exiting the tunnel............................................................................................................. 85 

Figure 4.2. Technical flowchart for transient aerodynamic load reconstruction using 

acceleration data....................................................................................................................... 87 

Figure 4.3. Constructed maglev vehicle model for transient aerodynamic load reconstruction      

.................................................................................................................................................. 90 

Figure 4.4. Flowchart of computing natural frequencies and designated mode shapes using 

FDD.......................................................................................................................................... 95 

Figure 4.5. On-board monitoring system layout. F: Front, R: Rear, L: Left, R: Right, Acc: 

Accelerometer, Disp: Laser Displacement Sensor................................................................... 99 

Figure 4.6. Measured acceleration data for operational modal analysis ................................. 99 

Figure 4.7. PSD from the measured operational data ............................................................. 99 

Figure 4.8. (a) Evolution of parameters at each iteration. (b) Natural frequency discrepancy 

obtained at each iteration ....................................................................................................... 101 



XVI 
 

Figure 4.9. Bar chart for comparison of the updated model’s natural frequencies and that from 

the operational data ................................................................................................................ 101 

Figure 4.10. Utilized acceleration data for aerodynamic load reconstruction ...................... 101 

Figure 4.11. Predicted posteriors concerning lateral force, vertical force, pitching moment, 

rolling moment, and yawing moment by the proposed MTGP ............................................. 102 

Figure 4.12. Corroboration of aerodynamic load reconstruction .......................................... 103 

Figure 4.13. Comparison of predicted and measured accelerations ...................................... 103 

Figure 5.1. Comparison of forward process (observation) based on structural dynamic system 

and inverse process (state estimation) using time-delayed GP .............................................. 109 

Figure 5.2. Overview of enhancing state estimation accuracy through MFGP .................... 111 

Figure 5.3. A linear 5-DOF mass-spring-damper dynamic system ....................................... 115 

Figure 5.4. (a) Time-domain representation of the random excitation f(t); (b) PSD of the 

random excitation................................................................................................................... 116 

Figure 5.5. Mass-spring-damper dynamic system response subject to the random excitation: 

(a). acceleration of 𝑚ଵ, (b) displacement of 𝑚ସ, and (c) velocity of 𝑚ଷ............................... 117 

Figure 5.6. (a) Displacement-acceleration variation during the random excitation process. (b) 

Velocity-acceleration variation during the random excitation process .................................. 117 

Figure 5.7. Comparison of time-delayed GP model predictions with reference: (a) 

displacement of 𝑚ସ, (b) velocity of 𝑚ଷ ................................................................................. 118 

Figure 5.8. NRMSE and PLL for prediction: (a) displacement of 𝑚ସ, (b) velocity of 𝑚ଷ ... 120 

Figure 5.9. A nonlinear 5-DOF mass-spring-damper dynamic system ................................. 121 

Figure 5.10. Prediction of displacement of 𝑚෥ସ and velocity of 𝑚෥ଷ using low-fidelity, high-

fidelity and multi-fidelity data trained time-delayed GP models........................................... 123 

Figure 5.11. Quantitative comparison of state estimations by LFGP, HFGP, and MFGP models    

................................................................................................................................................ 124 



XVII 
 

Figure 5.12. Vertical sections of the 45-story building framing ........................................... 126 

Figure 5.13. Plan views of the 45-story building framing .................................................... 127 

Figure 5.14. SHM system for the 45-story building structure .............................................. 128 

Figure 5.15. (a) Building time-delayed GP via different sources of data; (b) Validation of 

different time-delayed GP models ......................................................................................... 128 

Figure 5.16. Distributions of the normalized wind loads applied to the building structure .. 132 

Figure 5.17. Processed high-fidelity acceleration and displacement data for demonstration of 

state estimation....................................................................................................................... 133 

Figure 5.18. Predictive results of time-delayed GP models on test dataset .......................... 134 

Figure 5.19. Processed acceleration data when building undergoes a strong wind disturbance    

................................................................................................................................................ 135 

Figure 5.20. Displacement prediction using high-fidelity data trained time-delayed GP model 

when building undergoes a strong wind disturbance ............................................................. 135 

Figure 5.21. The high-fidelity FE model and reduced model of the investigated building 

structure.................................................................................................................................. 138 

Figure 5.22. Positive displacement in different directions: (a) x direction; (b) z direction; (c) 

rotation along x axis; (d) rotation along z axis; (e) rotation along y axis ............................... 139 

Figure 5.23. Comparison of the mode shapes between high-fidelity FE model and reduced 

model...................................................................................................................................... 141 

Figure 5.24. PSD for x- and z-axis loads ............................................................................... 144 

Figure 5.25. Processed low-fidelity acceleration and displacement data for demonstration of 

state estimation....................................................................................................................... 145 

Figure 5.26. Predicted results of low-fidelity time-delayed GP models on test dataset ....... 146 

Figure 5.27. Displacement prediction using low-fidelity data trained time-delayed GP model 

when building undergoes a strong wind disturbance ............................................................. 147 



XVIII 
 

Figure 5.28. z-axis displacement prediction using MFGP models ........................................ 149 

Figure 5.29. Quantitative comparison of state estimations by LFGP and MFGP models using 

NRMSE .................................................................................................................................. 149 

Figure 5.30. Three different distributions of high-fidelity and low-fidelity data .................. 150 

Figure 6.1. The general architecture of RNN and BiRNN for state estimation .................... 155 

Figure 6.2. Apply transfer learning for RNN ........................................................................ 161 

Figure 6.3. Workflow of the TL-RNN for state estimation .................................................. 163 

Figure 6.4. A base-isolated building structure and simplified shear-type structure.............. 166 

Figure 6.5. Comparison of elastic force and hysteretic force from the bearing under ambient 

vibration ................................................................................................................................. 167 

Figure 6.6. Singular values of cross-spectral matrices .......................................................... 168 

Figure 6.7. Optimal stiffness parameter values and comparison of model results with the 

measurements ......................................................................................................................... 170 

Figure 6.8. A sample of synthesized ground acceleration, window function, and continuous 

wavelet transformation of the ground acceleration ................................................................ 171 

Figure 6.9. Loss curves from the pre-training of RNN and BiRNN for state estimation of the 

shear-type structure ................................................................................................................ 172 

Figure 6.10. Comparison of state prediction samples from RNN, BiRNN, DKF, and AKF 

models; these predictions are based on acceleration inputs from a shear-type structural model 

and are benchmarked against the reference output of the same model .................................. 174 

Figure 6.11. Averaged NRMSE of RNN, BiRNN, DKF, and AKF models against the shear-

type structural model for displacement and velocity predictions .......................................... 175 

Figure 6.12. Ground motion records from Kobe, Kern County, El Álamo, and Taiwan 

earthquakes ............................................................................................................................ 176 



XIX 
 

Figure 6.13. Velocity estimation results of the 11th floor of the base-isolated structure subject 

to the Kern County earthquake .............................................................................................. 177 

Figure 6.14. Loss curves from the RNN and BiRNN transfer learning under the Kobe 

earthquake .............................................................................................................................. 177 

Figure 6.15. Displacement estimation results of the 11th floor of the base-isolated structure 

subject to the Kern County earthquake .................................................................................. 179 

Figure 6.16. Averaged NRMSE of TL-BiRNN, TL-RNN, and Integrated AKF for 

displacement prediction under the four earthquakes ............................................................. 181 

Figure 6.17. Overview of the experimental setup where key components are highlighted and 

numbered: ○1  FBG, ○2  bearings with bolted connections, ○3  load cell, ○4  accelerometers, ○5  

shaker, and ○6  laser distance sensor ...................................................................................... 182 

Figure 6.18. Idealized model for the beam with instruments positioning ............................. 183 

Figure 6.19. Measured acceleration and force data in experimental modal testing .............. 184 

Figure 6.20. Measured and calibrated model output single-sided FRF ................................ 185 

Figure 6.21. Training procedures of RNN and BiRNN for the beam ................................... 187 

Figure 6.22. Loss curve from the training of RNN and BiRNN for the beam ...................... 187 

Figure 6.23. Predicted displacement and velocity field over the beam in 0.4 s .................... 188 

Figure 6.24. Prediction results of deflection at 0.76 m and rotational speed 0.52 m of the beam   

................................................................................................................................................ 189 

Figure 6.25. Measured acceleration data from A1 to A3 ...................................................... 189 

Figure 6.26. Detailed procedures for RNN transfer learning to enhance the performance of 

beam state estimation ............................................................................................................. 192 

Figure 6.27. NRMSE values of RNN, BiRNN, TL-RNN, and TL-BiRNN models for the beam 

deflection prediction .............................................................................................................. 193 



XX 
 

Figure 6.28. Comparison of measured and predicted beam deflections using TL-RNN and TL-

BiRNN models ....................................................................................................................... 193 

Figure 6.29. Three approaches on using information for state estimation in structural dynamics

................................................................................................................................................ 194 

  



XXI 
 

 

LIST OF TABLES 

Table 3.1. Geometrical and material parameters of the truss bridge FE model ...................... 64 

Table 3.2. Force reconstruction accuracy comparison via different number and position of 

accelerometers.......................................................................................................................... 81 

Table 3.3. Performance comparison of nonparametric Bayesian multi-task learning using 

different kernels ....................................................................................................................... 81 

Table 4.1. Nominal values of main parameters of the maglev vehicle model ........................ 93 

Table 4.2. Natural frequencies from operational modal analysis and maglev vehicle model

................................................................................................................................................ 100 

Table 5.1. Parameters for the mass-spring-damper dynamic system .................................... 115 

Table 5.2. Parameters for the nonlinear mass-spring-damper dynamic system .................... 121 

Table 5.3. Natural frequency comparison between high-fidelity model and reduced model 142 

Table 6.1. Parameters for defining the base-isolated building structure ............................... 165 

Table 6.2. Nominal values and scaling factors for parameters in the beam model ............... 184 

  



XXII 
 

 

LIST OF ABBREVIATIONS 

The abbreviations used in this thesis apply to both the singular and plural forms of the terms 

listed. 

AKF Augmented Kalman filter 

BiRNN Bidirectional recurrent neural network 

CNN Convolutional neural network 

CSD Cross spectral density 

DKF Dual Kalman filter 

DOF Degree of freedom 

FBG Fiber Bragg grating 

FDD Frequency domain decomposition 

FE Finite element 

FRF Frequency response function 

GP Gaussian process 

GPR Gaussian process regression 

HFGP High-fidelity Gaussian process 

LFGP Low-fidelity Gaussian process 

LSTM Long short-term memory 

MFGP Multi-fidelity Gaussian processes 

MLP Multi-layer perceptron 

MTGP Multi-task Gaussian processes 

NRMSE Normalized root mean square error 

PLL Predictive log likelihood 

PSD Power spectral density 

RNN Recurrent neural network 

RKHS Reproducing kernel Hilbert space 

SHM Structural health monitoring 

SNR Signal-to-noise ratio 

SVD Singular value decomposition 

TL-(Bi)RNN 
Transfer learning of (bidirectional) recurrent 
neural network 



1 
 

Chapter 1. 

Introduction 

1.1. Research background 

Inverse problems in structural dynamics, particularly force reconstruction and state 

estimation, are crucial for understanding and predicting the behavior of complex 

engineering structural systems. These problems primarily deal with deducing unseen 

causes, such as external forces or unmeasured internal states, based on observable 

measurements (e.g., accelerations, strains, and displacements). Successfully solving 

these inverse problems is essential, as they underpin various practical applications 

including design validation, structural control, structural health monitoring (SHM), and 

the deployment of proactive maintenance strategies (Gallet et al., 2022). 

Force reconstruction allows engineers to determine the dynamic loads a structure 

experiences during various events, such as earthquakes (Taher et al., 2021), wind gusts 

(Pham et al., 2024), and operational vibrations (Firus et al., 2022). The reconstructed 

force information is critical for validating computational models and optimizing 

structural designs. Conversely, state estimation involves determining internal states 

including displacements and velocities based on measurable responses. Effective state 

estimation could allow for continuous structural control and health monitoring (Ou et 

al., 2015; Panda et al., 2021; Galaz-Palma et al., 2022; Kamariotis et al., 2023), 

facilitating the mitigation of undesirable vibrations and the early detection of damage, 
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degradation, or potential failures. The proactive approach not only enhances the safety 

and resilience of infrastructure but also extends the service life of structures by enabling 

timely interventions. 

Despite their importance, inverse problems in structural dynamics are inherently 

challenging due to several factors (Stuart, 2010; Turco, 2015), including challenges in 

adapting inverse models to specific applications, the ill-posed nature of solutions, 

system uncertainties, and high computational requirements. Traditional methods for 

solving inverse problems, such as various regularization techniques (Engl et al., 1996) 

and Kalman filtering (Iglesias et al., 2013), have been extensively employed with 

varying degrees of success. However, these approaches often struggle to improve 

solution accuracies, efficiently handle uncertainties, and integrate information from 

multiple sources, thereby limiting their scalability and applicability to many real-world 

scenarios. 

In recent years, machine learning has emerged as a transformative tool in 

engineering (Bishop, 2006; Murphy, 2012, Goodfellow, 2016), offering innovative 

solutions to the persistent challenges of inverse problems in structural dynamics (Thai 

2022; Cunha et al., 2023). Advanced machine learning approaches, including 

probabilistic machine learning and various deep learning methods, have demonstrated 

significant potential in enhancing both force reconstruction and state estimation 

processes.  

Probabilistic machine learning methods, such as nonparametric Bayesian 

approaches, provide an efficient framework for uncertainty quantification (Rasmussen 

and Williams, 2006; Ghahramani, 2015). These methods enable more reliable and 

interpretable inferences from noisy and incomplete data by explicitly modeling the 
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uncertainties inherent in both the measurements and the inverse problems. This 

probabilistic perspective facilitates robust decision-making and risk assessment in 

structural engineering applications, ensuring that the reconstructed forces and 

estimated states are not only accurate but also trustworthy under varying conditions. 

Deep learning techniques excel at capturing high-dimensional, complex, nonlinear 

relationships inherent in excitations and structural responses (Ye et al., 2019; Cha et 

al., 2024). Deep learning architectures can learn intricate patterns from large datasets, 

thereby improving the accuracy and robustness of state estimations and force 

reconstructions. Additionally, advancements in deep learning have enabled the 

development of models that can adapt to diverse structural dynamic conditions, 

enhancing their applicability across various engineering contexts. 

Multi-fidelity modeling and transfer learning further extend the capabilities of 

machine learning approaches for inverse problems in structural dynamics (Weiss et al., 

2016; Brevault et al., 2020; Cunha et al., 2023). These methods leverage data from 

various sources with differing levels of fidelity and computational and measurement 

costs, effectively balancing the trade-off between data quality and resource utilization. 

By integrating information from multiple fidelities, these techniques enhance the 

prediction accuracy of machine learning models for force reconstruction and state 

estimation, making them more versatile and efficient. 

The integration of advanced machine learning approaches into force reconstruction 

and state estimation offers several advantages over traditional methods, including 

enhanced accuracy and robustness, efficient uncertainty quantification, and 

adaptability to multi-source and multi-fidelity data. This thesis aims to advance the 

resolution of these critical inverse problems in structural dynamics through the 
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application and development of state-of-the-art machine learning methodologies. By 

leveraging probabilistic machine learning, deep learning, multi-fidelity modeling, and 

transfer learning, the research seeks to contribute more accurate, reliable, and efficient 

solutions for a wide array of practical applications in the field of inverse problems in 

structural dynamics. 

1.2. Research objectives 

The thesis aims to advance the field of typical inverse problems in structural 

dynamics through the development and application of sophisticated machine learning 

methodologies. The following objectives delineate the scope and direction of this study. 

First, to construct a framework for efficient uncertainty quantification of forces 

given the noisy measurements of structures. Existing research in force reconstruction 

has utilized Bayes’ theorem to derive posterior distributions of forces based on 

structural measurements. However, these approaches often encounter significant 

computational challenges due to the high-dimensional nature of force representations, 

making the posterior calculations exceedingly resource-intensive. To address this 

limitation, there is a need to develop an efficient method for uncertainty quantification 

of forces that circumvents the drawbacks of high-dimensional vector representations. 

Instead, forces should be modeled as random processes, which inherently capture their 

stochastic nature while reducing dimensional complexity. By adopting this 

probabilistic framework, the posterior calculation process becomes more tractable and 

computationally efficient, enabling accurate and reliable uncertainty quantification 

even in the presence of noisy measurements. This advancement will enhance the 
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feasibility of implementing Bayesian-based force reconstruction methods in practical 

structural dynamics applications. 

Second, enhancing the accuracy of force reconstruction through advanced prior 

modeling of forces. The precision of force reconstruction is heavily dependent on the 

effectiveness of prior models used in Bayesian inference. Traditional prior models 

often fail to capture the intricate distributions and functional behaviors of real-world 

forces, leading to less accurate posterior estimates. This objective focuses on enhancing 

the accuracy of force reconstruction by developing advanced prior models that treat 

reconstructed forces as continuous functions rather than discrete vectors. Utilizing 

nonparametric Bayesian techniques, such as Gaussian process (GP), allows for the 

incorporation of prior knowledge about the smoothness and continuity of forces. These 

advanced priors can better represent the temporal correlations inherent in structural 

forces, resulting in more accurate and reliable force estimations. 

Third, constructing effective inverse models of state estimation using machine 

learning-based techniques. Although rigorous in mathematical formulations, traditional 

methods for state estimation can be limited by their reliance on some specific 

assumptions and predefined system models, which may not adequately capture the 

complexities of real-world structures. This research objective aims to construct robust 

inverse models for state estimation using advanced machine learning-based techniques, 

including Gaussian process regression (GPR) and recurrent neural networks (RNN). 

By training these models on extensive datasets derived from both simulated and 

experimental structural responses, the inverse models can learn to accurately infer 

internal states under various loading and boundary conditions. Machine learning 

approaches offer the flexibility to handle nonlinearities and adapt to diverse structural 
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configurations, thereby enhancing the precision and applicability of state estimation 

processes. 

Fourth, improving the accuracy of state estimation via multi-fidelity modeling and 

transfer learning. Multi-fidelity data are frequently encountered in various structural 

engineering practices, originating either from model simulations or multi-source 

measurements of structures. These multi-fidelity data differ in both size and quality, 

with each fidelity level offering distinct advantages and drawbacks. This objective aims 

to enhance the accuracy of state estimation by effectively utilizing the different levels 

of data through multi-fidelity modeling and transfer learning techniques. Specifically, 

the proposed multi-fidelity Gaussian processes (MFGP) approach will advance GPR 

models by integrating data of varying fidelities, thereby leveraging the strengths of 

each fidelity level to improve estimation precision. Additionally, RNN models will be 

adapted to handle multi-fidelity data through transfer learning, allowing the models to 

transfer knowledge from low-fidelity datasets to enhance performance on high-fidelity 

ones. By utilizing multi-fidelity modeling and transfer learning, this research seeks to 

significantly boost the robustness and scalability of state estimation methods. The 

enhanced methods are expected to be more versatile and effective across a wide range 

of applications in structural dynamics, enabling more reliable and efficient monitoring 

of complex structural systems. 

1.3. Main contributions 

To achieve the research objectives described above, several advanced machine 

learning approaches adaptable tailored to the goals have been developed. The primary 

contributions of the thesis are listed below. 
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An innovative force reconstruction method based on Bayesian nonparametric multi-

task learning has been developed. This approach assigns GP priors to the force 

functions to address inverse problems and uncertainty quantification. By exploiting the 

convolution operator between the force and the structural response, the method 

demonstrates that the responses also follow a GP, with covariance functions derived 

from the forces’ covariances. This correlation enables the formation of a joint Gaussian 

distribution over multiple variables (from multiple GP), incorporating both measurable 

structural responses and forces. Consequently, the closed-form posterior distribution of 

the forces given the measurements is obtained. Compared to existing Bayesian 

approaches for force reconstruction, this method offers a more efficient quantification 

of uncertainty propagation from measurements to forces. 

A structured framework for aerodynamic load reconstruction in vehicular systems 

has been constructed. Specifically, the time-domain force reconstruction is applied to 

transient aerodynamic load reconstruction for maglev vehicles using onboard 

acceleration data. An inverse mathematical model, linking measured accelerations to 

external aerodynamic forces, is derived from a precisely calibrated maglev vehicle 

model. To tackle the inherent challenges in solving this inverse problem, the proposed 

nonparametric Bayesian multi-task learning approach is adopted. Validation using 

transient vibration data from a maglev train operating through a double-track tunnel 

indicates that the framework is both cost-effective and efficient for deriving 

aerodynamic loads, thereby proving its utility in high-speed maglev technology field 

tests. 
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The applicability of a time-delayed probabilistic modeling approach using GPR has 

been investigated for precise state estimation. This method leverages measured data 

from preceding time steps as inputs to estimate the current state, framing the 

development as a machine learning problem. Both training and test datasets are 

generated using a FE model subjected to synthetic excitations. By learning the mapping 

from time-delayed inputs to system states, the GPR model, with only a few parameters 

to optimize, effectively addresses the state estimation challenge while also quantifying 

the associated uncertainties in its predictions. 

A novel GP-based approach that integrates multi-fidelity data has been developed 

to enhance the accuracy of state estimations. This method combines high-fidelity data 

(from precise physics-based models or actual measurements) with abundant low-

fidelity data from simplified models. The resulting multi-fidelity GP (MFGP) models 

consistently outperform single-fidelity models, particularly in settings where both the 

availability and fidelity of data vary spatially and quantitatively. 

A transfer learning framework for RNN has been proposed to achieve effective 

physics-data fusion for multi-output state estimation. Using training and test datasets 

generated from FE models with synthetic excitations, the RNN are initially trained and 

validated for state estimation accuracy. To improve predictions for real-world 

structures, the framework integrates data from both physics-based FE models and 

actual structural measurements. The dual-purpose strategy, where a portion of the 

collected sensor data is used as RNN input while the entire dataset supports transfer 

learning, enables the RNN models to adapt efficiently for real-structure state prediction 

tasks. 
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1.4. Thesis outline 

Following the Introduction, this thesis is organized into six chapters; each part is 

briefly outlined below: 

Chapter 2 presents a comprehensive review of the two investigated inverse problems, 

namely force reconstruction and state estimation, along with the fundamental machine 

learning approaches utilized in this study. This chapter examines the development of 

methods addressing these inverse problems and summarizes the challenges associated 

with their practical applications. To mitigate these challenges, the thesis adopts 

probabilistic machine learning techniques and deep learning. Consequently, the 

subsequent sections of Chapter 2 delve into the fundamental rationale behind these two 

methodological frameworks, summarizing their advantages and disadvantages and 

providing a foundation for the selection of corresponding methods in the subsequent 

chapters. 

Chapter 3 explores a nonparametric Bayesian multi-task learning approach designed 

to address time-domain force reconstruction problems, which are characterized as ill-

posed deconvolution challenges. This method incorporates GP priors for the 

reconstructed forces, effectively framing the deconvolution problem within a Bayesian 

framework. Within this framework, the posterior distributions of the forces, given the 

response measurements, become analytically tractable. The integration of GP into force 

reconstruction successfully manages the propagation of uncertainties from 

measurements to the reconstructed forces. To demonstrate the effectiveness of the 

proposed method, the chapter presents a numerical example involving a truss structure 

and an experimental example using a frame structure. The results highlight the high 
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accuracy and efficient uncertainty quantification achieved by the nonparametric 

Bayesian multi-task learning approach. 

Chapter 4 builds upon the methodology introduced in Chapter 3 by presenting a 

systematic framework for transient aerodynamic load reconstruction on maglev 

vehicles using onboard acceleration measurements. This framework encompasses 

multiple procedures, including maglev vehicle system modeling and calibration, 

construction of an inverse force reconstruction model, application of nonparametric 

Bayesian multi-task learning, and evaluation of force reconstruction results. The 

proposed framework is applied to a scenario where a maglev train passes through a 

double-track tunnel, utilizing field-collected data. The results validate the framework's 

effectiveness and underscore its practical applicability for future aerodynamic field 

testing of maglev vehicles. 

Chapter 5 introduces the time-delayed MFGP approach for state estimation in 

structural dynamic systems. The time-delayed model for state estimation is 

conceptualized as a machine learning problem, where GPR is employed to learn the 

mapping. GPR facilitates probabilistic state estimation based on data generated from a 

physics-based FE model. To enhance state estimation by integrating additional 

measurements, the MFGP is proposed, allowing the GP model to leverage both low-

fidelity and high-fidelity data for more accurate estimations of the structural system 

state. Two numerical examples are provided: a generic mass-spring-damper system and 

a 45-floor building subjected to wind excitations. Comparisons between the estimated 

states and reference data demonstrate that MFGP effectively maps high-dimensional, 

multi-fidelity, time-delayed data to the system state. 
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Chapter 6 complements the Bayesian-based time-delayed MFGP method within a 

deep learning framework. It introduces an RNN model for state estimation that excels 

in learning and exploiting correlations inherent in multi-output problems. To address 

the challenge of multi-fidelity data in practical state estimation, transfer learning is 

applied to a pre-trained RNN model based on multi-sensor measurements in SHM 

systems. In this study, the full dataset serves dual purposes: a portion of the data acts 

as input for the RNN model, while the complete dataset facilitates the transfer learning 

process. A novel method is proposed to ensure the convergence of the transfer learning 

process by fine-tuning parameters within the RNN cells at the network’s front end 

while keeping those near the output layers frozen. This approach deviates from 

conventional transfer learning methods typically used for other neural network 

architectures and proves particularly beneficial for RNN models tailored for state 

estimation. Numerical and experimental studies validate that the proposed transfer 

learning of RNN (TL-RNN) approach seamlessly integrates both model-generated and 

actual measurement data. Under identical data acquisition conditions, TL-RNN models 

achieve significantly higher accuracy compared to state estimation models that rely 

solely on FE models. 

Chapter 7 provides a summary of the current research work and offers 

recommendations for future investigations. 
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Chapter 2. 

Literature review 

This chapter presents a comprehensive review of the force reconstruction and state 

estimation problems, alongside the advanced machine learning techniques foundational 

to the research. It begins by exploring inverse problems within the domains of structural 

dynamics, with a particular emphasis on the inverse models employed for force 

reconstruction and state estimation. Building upon this foundational understanding, the 

chapter delves into probabilistic machine learning methods, highlighting their 

applications in efficient probabilistic modeling and multi-output estimation. 

Subsequently, the discussion advances to deep learning-based approaches, detailing 

sophisticated neural network architectures and the advantages of transfer learning in 

addressing practical engineering problems. 

2.1. Inverse problems in structural dynamics 

2.1.1. Definition and scope 

Throughout the past several centuries of scientific and technological advancement, 

the formulation of first principles has enabled researchers and engineers to develop 

effective mathematical equations tailored to specific problems within their respective 

fields. These equations delineate the relationships between known and unknown 

variables. When combined with modern computational methods, they facilitate the 
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determination of physical quantities of interest in complex systems, thereby enabling 

the prediction, estimation, or inference of phenomena. In structural engineering, a set 

of motion equations that characterize the behavior of structural systems could be 

formulated using the first principles. Forward problems are typically defined as the 

determination of structural responses given known geometric and material parameters, 

boundary conditions, and external excitations by solving these structural motion 

equations. Conversely, inverse problems are formulated in relation to forward problems, 

where the objective is to determine other quantities within the structural motion 

equations based on partially known structural responses (Gallet et al., 2022; Xu et al., 

2023). The unknowns may include physical quantities preset in the forward problem or 

unmeasured responses (Lam et al., 2015; Mayes et al., 2020; Hou and Xia, 2021). 

Inverse problems are inherently more complex than forward problems due to several 

factors (Lesnic, 2022). Firstly, the input for inverse problems consists of real-world 

measurements, which are often sparse in both space and time. Secondly, the acquired 

data are typically contaminated with noise, introducing uncertainty into the problem. 

Thirdly, the motion equations used to model the structure are approximations of the 

true behavior, thereby enhancing the uncertainty associated with the solutions. The 

sparsity of measurements results in low-rank issues when directly applying the 

structural motion equations to inverse problems. Additionally, noise in the data can 

render inverse problems ill-posed, where even minimal noise can significantly distort 

the results. Lastly, the inherent approximations in the motion equations contribute to 

further uncertainty, thereby impacting the accuracy and reliability of the inverse 

problem solutions. 
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In this thesis, addressing the key technical requirements within the fields of 

structural dynamics, two primary types of inverse problems are of concern: 1) force 

reconstruction and 2) state estimation of structural dynamic systems. In some existing 

research, force reconstruction is commonly referred to as load/force identification (Wu 

and Law, 2010; Yang et al., 2023), input estimation (Nayek and Narasimhan, 2020) as 

well, while state estimation is also termed as dynamic displacement/velocity estimation 

(Bhowmick et al., 2020; Gulgec et al., 2020). For the sake of clarity and consistency, 

the thesis will uniformly refer to them as force reconstruction and state estimation 

throughout this thesis. 

Both force reconstruction and state estimation are pivotal inverse problems within 

the domains of structural dynamics. The foremost consideration in addressing these 

inverse problems is the determination of the appropriate input information to be utilized. 

As previously discussed, for inverse problems commonly encountered in the field of 

structural engineering, the inputs typically refer to structural data that can be directly 

measured using sensors or instrumentation devices. This characteristic inherently 

diversifies inverse problems relative to the forward problems, as the modeling of 

inverse problems varies depending on the type of measured data used to estimate the 

physical quantities of interest. Consequently, the methodologies employed to solve 

these models also differ accordingly. It is essential to delineate that the scope of force 

reconstruction and state estimation investigated in this thesis is situated within a 

vibration-based SHM framework (Avci et al., 2021; Kamariotis et al., 2022). Within 

this context, the primary inputs for these inverse problems consist predominantly of 

acceleration data. Although, in numerous instances, other vibration-related information, 

such as dynamic displacements and velocities of the structure (Narazaki et al., 2021; 
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Shao et al., 2021), strains of structural components (Torres et al., 2011; Karatas et al., 

2020), or relative displacements between nodes (Li and Hao, 2016), etc., can also be 

measured through strategies proposed in various studies, the current state of 

technological advancement renders acceleration measurement techniques the most 

mature and reliable (Abdulkarem et al., 2020; Hassani and Dackermann, 2023). 

Moreover, many existing SHM systems have deployed a substantial number of 

accelerometers throughout the structure (Ni et al., 2009; Tcherniak and Mølgaard, 

2017). The algorithms proposed in this thesis for force reconstruction and state 

estimation are designed to be directly implemented within these established systems.  

Additionally, the emphasis on acceleration data as the majority input stems from the 

fact that some of the algorithms developed in this thesis also incorporate multi-sensor 

data fusion techniques to enhance the accuracy of inverse problem solutions (Wu and 

Jahanshahi 2020; Hassani et al., 2024). Therefore, in certain algorithms, a limited 

amount of additional measurement data beyond acceleration is also considered in some 

chapters. This approach leverages the strengths of multiple data sources to mitigate the 

inherent challenges associated with inverse problem-solving, such as measurement 

noise and deviation between structural FE model and real-world structure, thereby 

improving the precision and reliability of the estimations. 

2.1.2. Advancements of force reconstruction problems and challenges 

Structures are subjected to a variety of forces throughout their service life. The force 

information during specific conditions is essential for dynamic analysis and SHM (Uhl, 

2007; Zhang et al., 2022). However, directly measuring these critical dynamic forces 

often faces numerous limitations (Ronasi and Nielsen, 2013; Niu et al., 2015). 

Consequently, load reconstruction is formulated as an inverse problem, which 
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leverages other structural measurements, e.g., accelerations, to compute the force 

history that generates these measured responses, thereby estimating the critical force 

histories. 

 

Figure 2.1. Demonstration of forward problem and inverse force reconstruction. 

In the forward counterpart of this inverse problem, the FE model plays a pivotal role. 

As illustrated in Figure 2.1, the development of a physics-based FE model enables the 

computation of structural responses given specific forces. To perform force 

reconstruction, it is necessary to integrate the relationship between forces and partially 

measurable responses as represented in the FE model. This integration leads to the 

construction of an inverse problem model derived from the FE model, facilitating the 

backward calculation required for accurate force estimation. 

Many studies have focused on the development of inverse problem models derived 

from FE models. These inverse problem models can be primarily categorized into 

frequency domain-based and time domain-based load reconstruction models, 

depending on the specific representations of the external forces required.  

Within the frequency domain-based force reconstruction framework, the 

relationship between the frequency representations of structural responses and forces 

is typically established using frequency response functions (FRF). These FRF are 

derived from the FE model and serve as operators for computations at specified 
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frequencies (Liu and Shepard, 2005; Law et al., 2011). Many frequency domain-based 

force reconstruction models consider the sparsity character of forces represented in 

frequency domain. To name a few, Rezayat et al. (2016) introduced a group-sparsity 

approach that effectively localizes and reconstructs dynamic forces in the presence of 

measurement noise by employing a structured penalty function and iterative algorithms. 

Qiao et al. (2016) proposed a general sparse regularization model using dictionary for 

force reconstructions, where the sparse reconstruction by separable approximation with 

different dictionaries is developed to solve the sparse regularization problem. 

The time-domain force reconstruction models are normally constructed with two 

distinct approaches. The first approach is based on recursive computing, in which 

forces and measurements are treated as states at each time step. By recursively inputting 

the measurements into the force reconstruction models, the corresponding forces are 

calculated at each time step (Lourens et al., 2012; Naets et al., 2015). The second 

approach leverages the convolutional relationship between system responses and forces, 

deriving a convolutional operator based on the impulse responses of the FE model and 

ultimately abstracting force reconstruction to a deconvolution process (Jacquelin et al., 

2003; Li and Lu, 2018).  

The selection of inverse problem models for force reconstruction may largely 

depend on the force characteristics involved in the problem. Frequency domain-based 

force reconstruction models are particularly advantageous for stationary random forces, 

where the primary concern is not the exact force amplitude but rather the statistical 

properties of energy distribution with respect to frequencies (Xie et al., 2013). The 

recursive computing-based time-domain method is suitable for both stationary and non-

stationary cases. Some recursive models even allow for online reconstruction, making 
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them highly effective for real-time applications (Wang et al., 2021). The convolution-

based inverse problem model for force reconstruction offers the best accuracy for non-

stationary and transient forces, as reported by Ronasi et al. (2011), leading to the 

widespread development of convolution models in various transient load identification 

systems. Exhaustively evaluating all potential models incurs substantial computational 

costs, necessitating the judicious selection of inverse problem models based on 

practical requirements. Given that many critical applications demand the identification 

of non-constant transient dynamic loads in the field of structural dynamics (Choi et al., 

2007; Ronasi et al., 2013; De Simone et al., 2019; Qiao and Rahmatalla, 2020), this 

study concentrates on convolution-based inverse problem models to better support the 

practical implementation of load reconstruction methodologies. 

The deconvolution problems associated with force reconstruction are notorious for 

their ill-posed property, which is characterized by the lack of uniqueness or stability in 

the solutions (Kabanikhin, 2008). Directly inverting the transfer matrix for discretized 

deconvolution to calculate forces can result in numerically intractable issues or 

solutions that are highly sensitive to the system noise. To mitigate these challenges, 

one common strategy is the use of regularization methods. These methods impose 

additional constraints on the objective function to ensure that the solution resides within 

a specified vector space, thereby enhancing both stability and uniqueness. For example, 

Tikhonov regularization has been applied in several studies (Choi et al., 2007; Li et al., 

2022), in which the l2-norm is incorporated as a penalty term in the objective function, 

making the reconstruction less sensitive to measurement noise. Other fundamental 

penalty terms are also widely used according to the characteristics of the forces. For 

instance, the l1-norm is more effective for sparse representations of forces (Zhang et al., 
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2022), and the fractional lq-norm can incorporate adaptivity to the force profile, striking 

a balance between the l2-norm and l1-norm (Li and Lu, 2018). More complex 

regularization techniques, such as multiplicative regularizations (Aucejo and De Smet, 

2017) and higher-order regularizations (Qiao and Rahmatalla, 2020), have proven to 

be more robust for force reconstruction, though they involve more parameters, 

complicating the analysis. Other methods such as truncated singular value 

decompositions (SVD) (Liu et al., 2014), iterative optimizations (Aucejo and De Smet, 

2019), and recent advances in deep learning-based approaches (Wang et al., 2020a) 

also serve as effective forms of regularization for force reconstruction. These methods 

introduce constraints or additional information that stabilize the calculated result, 

offering promising solutions for addressing the ill-posedness of force reconstruction 

problems. 

Recent research on force reconstruction has emphasized understanding the impact 

of multi-source uncertainties, which are broadly categorized into epistemic (resulting 

from incomplete knowledge, such as modeling errors) and aleatory (arising from 

inherent variability, such as measurement noise). These uncertainties critically 

influence the reliability of reconstructed forces, necessitating methods to rigorously 

quantify their propagation. Such quantification ensures the accuracy of downstream 

analyses and decisions dependent on these forces. 

Many approaches have been developed, with Bayesian frameworks gaining 

prominence due to their ability to address both uncertainty types (Zhang et al., 2012). 

First, Bayesian methods allow epistemic uncertainties (e.g., imperfect model 

assumptions) to be encoded via prior probability distributions, offering intrinsic 

regularization. Second, aleatory uncertainties (e.g., sensor noise) are naturally 
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embedded within the likelihood function, enabling a unified probabilistic treatment of 

multi-source errors. To enhance adaptability, recent contributions have tailored force 

priors to specific applications (Li and Lu, 2018; Aucejo and De Smet, 2019; Feng et 

al., 2021). However, inferring high-dimensional posterior force distributions often 

demands computationally intensive sampling techniques, such as Hamiltonian Monte 

Carlo, due to complex statistical dependencies. 

Beyond probabilistic frameworks, set-theoretic methods provide an alternative 

paradigm by modeling uncertainties—particularly epistemic ones, as unknown-but-

bounded parameters (Yang, 2024; Liu et al., 2023). These methods propagate 

uncertainty intervals through system models, avoiding distributional assumptions. The 

computational simplicity and interpretability of interval-based analysis make it 

appealing for scenarios where probabilistic data is scarce or assumptions are untenable 

(Wang et al., 2023). 

To effectively address the requirements of practical engineering applications, force 

reconstruction methods must undergo further enhancements in two critical areas, 

building upon the advancements previously discussed. First, there is a need to achieve 

higher reconstruction accuracy. This involves refining existing algorithms and 

developing more sophisticated techniques to ensure that the forces being measured and 

reconstructed closely aligned with the actual forces present in the system. Accurate 

force reconstruction ensures that engineers can make informed decisions, predict 

system behaviors reliably, and maintain the safety and integrity of structures and 

machinery. 

Second, it is essential to reduce the computational cost associated with uncertainty 

quantification. Uncertainty quantification is a vital process that assesses the reliability 
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and confidence in the reconstructed force measurements by accounting for various 

sources of error and variability inherent in engineering systems. However, current 

methods for uncertainty quantification can be computationally intensive, requiring 

significant processing power and time, which may not be feasible for real-time or large-

scale applications. By developing more efficient algorithms and leveraging 

advancements in computational technologies, it is possible to lower the computational 

burden. This reduction enables quicker assessments of uncertainty, facilitating faster 

decision-making and allowing force reconstruction methods to be more widely applied 

in dynamic and resource-constrained engineering environments. 

2.1.3. Advancements of state estimation problems and challenges 

The accurate state information of structural systems is crucial for various structural 

control and health monitoring applications, such as digital twin construction (Torzoni 

et al., 2024), virtual sensing technology (Song et al., 2022; Teymouri et al., 2022), 

active vibration control of structures (Moradi et al., 2021), and structural damage 

detection (Papadimitriou et al., 2011). Similar to the force reconstruction problems, 

direct measuring comprehensive measurements of state for real-world structures often 

presents significant challenges. Deploying a large number of transducers across 

numerous degrees of freedom (DOF) can be impractical due to high costs, extensive 

space requirements, and increased risk of damage. As a result, the problem of state 

estimation, inferring a structure’s complete state from limited measurements based on 

the inverse problem model, has attracted considerable interest in the field of structural 

dynamics.  
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Figure 2.2. Demonstration of forward problem and inverse state estimation. 

A simple and indirect approach for state estimation is based on load reconstruction 

models. As shown in Figure 2.1, the reconstructed forces from measured responses can 

serve as inputs to the FE model that simulates the dynamics of structures. This method 

is employed in various applications. For example, Liu and Li (2018) proposed a 

reconstruction strategy that utilizes a subspace identification algorithm and a fast 

iterative shrinkage-thresholding algorithm to reconstruct impact forces. The 

reconstructed forces are then input into a linear operator to compute the responses at 

unmeasured locations. This theory was applied to a simplified artillery testbed to verify 

the reconstruction strategy under three scenarios: single-source, two-source, and 

consecutive impact cases. Similarly, Li et al. (2021a) combined SVD with a pseudo-

inverse operator to estimate the dynamic loads experienced by a continuous beam 

structure. These dynamic forces were subsequently input into an FE model to compute 

the global response of the continuous beam under these loads. The two-stage approach 

to state estimation allows for the direct and efficient utilization of existing FE models 

and force reconstruction models. However, error analysis becomes challenging due to 

the accumulation of measurement errors when calculating the complete state through 

multiple models. 
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In contrast, many studies focus on directly constructing inverse problem models for 

state estimation, with the model construction methods and application patterns 

illustrated in Figure 2.2. Due to the relationship between external loads and the state, 

many methods support the simultaneous calculation of forces and state based on 

measurements. In this thesis, to simplify the problem, we separate these two functions 

and focus on studying them individually. Regarding the state estimation problem, most 

prior studies on state estimation have primarily utilized various models derived from 

the principle of Kalman filtering. By incorporating the equations of motion of the FE 

model and embedding priors on external unknown forces and measurements, the 

constructed Kalman filter model can recursively output the complete system state using 

noisy measurements of system response. Early work focused on simplified linear 

structural systems. Papadimitriou et al. (2011) employed the standard Kalman filter, 

which uses accelerations from sparsely distributed accelerometers to estimate the full 

state of the system, enabling the estimation of strain at locations where no 

measurements were taken. Lourens et al. (2012) developed the augmented Kalman 

filter (AKF) for joint input-state estimation, where unknown forces are incorporated 

into the state vector. This approach allows for more effective prior assumptions 

regarding stochastic loads, measurement, and modeling errors compared to the standard 

Kalman filter solution. Consequently, the AKF can estimate the augmented vector, 

including both forces and states. Furthermore, Eftekhar Azam et al. (2015) introduced 

a dual implementation of the Kalman filter algorithm, known as the dual Kalman filter 

(DKF), for full-state estimation. The DKF employs a sequential structure of two 

Kalman filters, which circumvents the numerical issues related to unobservability and 

rank deficiency encountered in the AKF. As a result, the DKF yields more precise state 
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estimation results. Recent efforts have focused on developing state estimation 

algorithms for nonlinear structures, such as the extended Kalman filter, unscented 

Kalman filter, and ensemble Kalman filter approaches, as well as various variants of 

these filters dedicated to the corresponding nonlinear structures (Erazo and Hernandez, 

2015; Roohi et al., 2021; Paul et al., 2022; Impraimakis and Smyth, 2022). 

In recent years, machine learning models have been increasingly explored and 

applied to state estimation problems, complementing the mainstream use of Kalman 

filters. Both machine learning models and Kalman filter-based models share the 

similarity of predicting the state at a specific time point based on the information 

collected over a surrounding time window (Cunha et al., 2023). For some online state 

estimation models, the information used only includes data collected at the current time 

point as well as data from a preceding time window for prediction. The primary 

difference lies in their development approaches: while Kalman filter-based models 

derive their governing equations from FE models, machine learning models are 

developed through the training and optimization of parameters. The training and test 

datasets for machine learning models are generated from the responses of an FE model 

subjected to numerous, and if necessary, synthetic excitations. 

Advancements in machine learning technology have resulted in a greater variety of 

available models compared to Kalman filter models, offering more flexibility in their 

construction. This flexibility is particularly evident when the FE model cannot be 

explicitly formulated (Lv et al., 2007) or when the FE model includes hybrid 

components functioning as black boxes (Li et al., 2024a; Li et al., 2024b). In such cases, 

Kalman filter methods become inapplicable unless modifications are made to the FE 

model, whereas machine learning models remain valid. Furthermore, the success of 
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constructing machine learning models depends on the loss values of the training and 

test datasets. When the training process converges to a relatively low test loss, the 

predictive performance of the machine learning-based model is considered sufficient 

for subsequent state estimation tasks. Consequently, with properly prepared training 

and test datasets, machine learning-based state estimation frameworks can handle both 

linear and nonlinear structural systems with comparable complexity. In contrast, state 

estimation for nonlinear structures using Kalman filter methods requires more complex 

designs, and many existing Kalman filter-based models cannot be directly applied to 

nonlinear structural systems. 

Predicting the state of structures using data collected over a surrounding time 

window is effectively abstracted as a high-dimensional mapping problem. Numerous 

machine learning models have been employed to learn this high-dimensional mapping. 

To date, the vast majority of these models adopt neural network architectures within 

deep learning frameworks, taking into account the potential curse of dimensionality 

inherent in high-dimensional mappings. With advancements in technology, many 

studies have continuously innovated across various neural network architectures. For 

example, Yang and Lee (1997) demonstrated the effectiveness of a multi-layer 

perceptron (MLP), where a four-step delay MLP with a single hidden layer yielded 

accurate estimates of composite beam tip displacement and velocity within a 5% error 

margin. Wu and Jahanshahi (2018) presented a deep convolutional neural network 

(CNN) approach for state estimation of a linear single-DOF system, a nonlinear single-

DOF system, and a full-scale three-story multi-DOF steel frame. The results, compared 

with those of a MLP, indicated that the proposed CNN approach is more robust against 

noise-contaminated data. Kumar et al. (2022) utilized an autoencoder coupled with 
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long short-term memory (LSTM) neural networks to construct an inverse problem 

model for state estimation. The introduction of the autoencoder effectively learned the 

nonlinear manifold, while the LSTM neural networks leveraged the temporal 

dependencies inherent in the state data. Zhou et al. (2024) developed an LSTM model 

to estimate the dynamic displacement of a 420-meter-high building during super 

typhoon Mangkhut. The estimated displacements exhibited a high level of agreement 

with those measured by GPS, highlighting the reliability and accuracy of the developed 

LSTM model. 

It is crucial to recognize that, despite the continuous advancements in machine 

learning technologies and the introduction of numerous sophisticated neural network 

architectures, the improvement in accuracy for state identification problems achieved 

by merely adopting more advanced neural networks is exceedingly limited. In many 

instances, the training of complex machine learning models becomes increasingly 

intricate, and the computational demands of forward propagation escalate, rendering 

many of these advanced algorithms impractical for real-world applications. To better 

address the needs of practical engineering, this thesis primarily focuses on the 

following two issues as entry points. First, the reliability of computational results 

derived from machine learning-based state estimation models needs to be quantified. 

Machine learning models are trained on datasets, often high-dimensional, and data 

collected from real structures are processed as inputs to these models. If the input data 

distribution deviates from that of the original training set, the model's predictions 

should inherently reflect higher uncertainty. This quantification of uncertainty provides 

a foundation for subsequent evaluation and decision-making processes, ensuring that 

the state estimation remains robust even when faced with unforeseen data variations. 
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Second, and most importantly, existing research typically operates under the 

assumption that the FE model established based on physical principles and its 

surrounding environment differs minimally from actual conditions. As illustrated in 

Figure 2.2, inverse problem models are derived from FE models. Whether these models 

are Kalman filter-based or machine learning-based, inaccuracies inherent in the FE 

model itself will lead to imprecise state estimations. This discrepancy frequently arises 

in real-world applications, where actual structural systems are often highly complex. 

Environmental influences and interactions can result in significant differences between 

the idealized FE model and the real structure. Even with advancements in simulation 

techniques and model updating approaches, acquiring an FE model that closely 

matches the real structure incurs substantial costs. Therefore, there is a pressing need 

for a methodology that ensures accurate state estimation even when the FE model is 

not sufficiently precise. 

2.2. Probabilistic machine learning 

2.2.1. Nonparametric Bayesian machine learning 

Nonparametric Bayesian machine learning is a widely recognized approach in 

probabilistic machine learning and is frequently employed to address various 

uncertainty quantification challenges within the field of structural engineering (Wan et 

al., 2014; Teimouri et al., 2017; Tognan et al., 2022). To optimize the uncertainty 

quantification problems associated with force reconstruction and state estimation 

discussed earlier, several methods grounded in existing nonparametric Bayesian 

frameworks are proposed in this thesis. Consequently, this section primarily introduces 

the fundamental theories and applications of nonparametric Bayesian methods and 
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evaluates the advantages and limitations of this approach in solving inverse problems 

in structural engineering. 

Nonparametric Bayesian machine learning is a counterpart to parametric Bayesian 

machine learning. As widely recognized, Bayes' theorem provides a mathematical 

framework for inverting conditional probabilities, thereby enabling the determination 

of the probability of a cause given its observed effect. In machine learning models, 

predictions are governed by parameters; different parameter sets yield varying model 

predictions. Consequently, the model’s prediction can be viewed as the effect generated 

by the underlying parameters within the machine learning model. In parametric 

Bayesian machine learning models, the distributions of these parameters are quantified 

given the observations, allowing for probabilistic interpretations and uncertainty 

quantification of the model parameters. 

In contrast, nonparametric Bayesian machine learning does not assume a fixed 

number of parameters. Instead, it allows for an infinite-dimensional parameter space, 

providing greater flexibility in modeling complex data structures. This flexibility is 

particularly advantageous in inverse problems, where the relationship between 

observations and underlying states may be highly intricate and not well-captured by a 

finite set of parameters. 

In this thesis, the GPR is used as a foundational tool in nonparametric Bayesian 

machine learning (Rasmussen and Williams, 2006). In probability theory, a GP is a 

stochastic process (a collection of random variables indexed by time or space), for 

which any finite subsets follow a multivariate Gaussian distribution. In essence, GP is 

a generalization of multivariate Gaussian distributions to infinite-dimensional spaces. 
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The distribution of a GP is the joint distribution of all the random variables, and thus 

the GP is a distribution over functions with a continuous domain.  

A GP can be fully characterized by two functions: the mean function and the 

covariance function, analogous to a multivariate Gaussian distribution that is specified 

by a mean vector and a covariance matrix. The mean function provides the expected 

value of the GP at any given spatial or temporal indices. The covariance function, 

which defines the correlation between any two variables drawn from the GP, is 

typically represented by a positive definite kernel function whose inputs are two indices 

within the domain. The reason for adopting kernel functions is that they offer a flexible 

and mathematically robust framework for specifying the covariance structure of the GP. 

Kernel functions ensure that the resulting covariance matrix is positive definite, which 

is essential for the validity and stability of the GP. Moreover, kernel functions allow 

for the incorporation of prior knowledge about the properties of the underlying function, 

such as smoothness, periodicity, or linearity. This flexibility enables the modeling of 

complex relationships and dependencies within the data, facilitating more accurate and 

meaningful predictions. 

A GP 𝑓  over a domain 𝜒  is denoted as 𝑓(𝑥) ∼ 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) , where 𝑥 ∈ 𝜒 , 

𝑚: 𝜒 → ℝ  is the mean function, and 𝑘: 𝜒 × 𝜒 → ℝ   is the covariance function. By 

modifying these two functions, the properties of the GP change accordingly. For 

example, let 𝑚(𝑥) be defined either as the zero function or as a polynomial function 

m(x)=4x2-2x+1, and let the kernel function be the commonly used squared exponential 

kernel: 

 𝑘(𝑥, 𝑥ᇱ) = 𝜎௙
ଶ exp ൬−

1

2ℓଶ
(𝑥 − 𝑥ᇱ)ଶ൰, (2.1) 
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where 𝜎௙
ଶ and ℓ are hyperparameters of the covariance function, known as the output 

variance and length scale, respectively. As shown in Figure 2.3, realizations of GP with 

varying mean functions and hyperparameters for the squared exponential kernel exhibit 

distinct patterns. In this context, realizations refer to samples drawn from the specified 

GP, with each red solid line in the figure representing an individual sample.  The two 

upper subfigures demonstrate that the length scale parameter ℓ influences the distance 

over which the sampled function values are strongly correlated. The two left subfigures 

illustrate that the output covariance 𝜎௙
ଶ determines the range of variation in the samples. 

Additionally, the two diagonal subfigures show that the mean function m(x) affects the 

overall trend of the sampled functions. 

The demonstration illustrates that by selecting appropriate mean and covariance 

functions, a GP can effectively characterize functions in a probabilistic manner. 

Consequently, GP are employed as Bayesian priors over functions. According to Bayes' 

theorem, the posterior distribution of function values can be computed given 

observations of the functions, thereby enabling the learning of functions from data—

this framework is known as GPR. Throughout this process, there is no need to define a 

parametrized model; instead, only the mean and covariance functions for the target are 

specified. This characteristic is why GPR is referred to as a nonparametric Bayesian 

method. 

In many practices of GPR, determining the mean function m(x) is of less concern 

compared to the covariance function 𝑘(𝑥, 𝑥′) . Specifically, a zero-mean function is 

often employed for convenience without loss of generality. This is because any non-

zero mean can be incorporated into the GP framework by appropriately adjusting the 

covariance function or by pre-processing the data to center it around zero. 
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Consequently, the GP can focus on modeling the deviations from the mean, simplifying 

the analysis without compromising the flexibility or expressiveness of the model. 

 

Figure 2.3. Realizations of GP with specified mean functions and hyperparameters for the squared 

exponential kernel. 

To illustrate how GPR operates, consider a training dataset 𝒟 = {(𝑥௜, 𝑦௜)}௜ୀଵ
௡  where 

𝑦௜ = 𝑓(𝑥௜) + 𝜖௜. Here, 𝑓(𝑥௜) denotes the noise-free observation over the function 𝑓 at 

the input point 𝑥௜, and 𝜖௜ represents independent Gaussian noise with variance 𝜎ଵ
ଶ. The 

bold character 𝒚  is used to denote the vector containing all 𝑦௜ . By assuming the 

function 𝑓(𝑥) is a GP, GPR enables the computation of the conditional probability of 
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any function value 𝑓∗ = 𝑓(𝑥∗) at any new input point 𝑥∗ ∈ 𝜒, leveraging the property 

that any finite set of function values follows a multivariate Gaussian distribution. The 

mean vector and covariance matrix of this distribution are derived from the GP's mean 

and covariance functions. Consequently, the posterior probability 𝑝(𝑓∗|𝒚) is obtained 

via Bayes' theorem and is expressed as: 

 𝑝(𝑓∗|𝒚) =
𝑝(𝒚|𝑓∗)𝑝(𝑓∗)

𝑝(𝒚)
, (2.2) 

which ultimately allows GPR to update beliefs about the function 𝑓 in light of observed 

data, providing a principled approach to regression that quantifies uncertainty in the 

predictions. 

 

Figure 2.4. GPR predicted posterior with randomly initialized hyperparameters and optimized 

hyperparameters. 

Figure 2.4 illustrates two scenarios in which the aforementioned procedures are 

employed to predict the function 𝑓(𝑥) = sin(2𝜋𝑥 + 2 sin(3𝜋𝑥)) given 50 label pairs 

contaminated with noise. Under identical dataset conditions, the posterior distributions 

of the function predictions in these two cases are indeed different. This discrepancy 
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arises from the differing priors selected for Bayesian inference as outlined in Eq. (2.2). 

In both scenarios, the GP utilizes a zero-mean function; however, the hyperparameters 

of the covariance function and those estimating the noise measurement vary between 

the two cases. Consequently, the prediction in Figure 2.4(b) outperforms that in 

Figure 2.4(a) significantly. This outcome underscores the critical importance of 

selecting an appropriate GP prior for the successful application of GPR. 

Several methods are available for estimating optimal GP priors for effective GPR 

(Karvonen and Oates, 2023), including maximum likelihood estimation, maximum a 

posteriori, cross-validation, Bayesian inference, and kernel flows. Among these, 

maximum likelihood estimation is the most widely adopted, mostly because of the 

straightforward analytical formulation of the optimization problem, max 𝑝(𝒚) . 

Currently, most GPR software, including Rasmussen and Nickisch (2010), GPy (since 

2012), Matthews et al. (2017), and Gardner et al. (2018), default to maximum 

likelihood estimation for optimizing GP priors. The methods proposed in this thesis 

would also primarily utilize maximum likelihood estimation for optimizing GP priors. 

2.2.2. Nonparametric Bayesian machine learning applications in structural 

engineering 

GPR for probabilistic modeling 

The GPR grounded in Bayes’ theorem enables systematic probabilistic modeling 

based on labeled data pairs. The posterior distributions generated by these probabilistic 

models provide high-quality information assurance for subsequent analysis and 

decision-making processes. In structural engineering, many applications demand 

models that deliver probabilistic analysis results, making nonparametric Bayesian 

machine learning particularly prevalent. For instance, Fricker et al. (2011) developed a 
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GP-based emulator for computationally intensive FE models. This emulator not only 

facilitates rapid predictions of FE model outputs but also accounts for the additional 

uncertainty arising from limited model evaluations. Their study demonstrated that a 

multivariate GP emulator outperforms independent univariate GP emulators in 

quantifying uncertainty across multiple outputs by leveraging dependencies between 

outputs, thereby significantly reducing uncertainty propagated through subsequent 

analyses.  

Wan and Ren (2015) introduced a residual-based GP framework for updating FE 

models. This framework characterizes the relationship between residuals, the 

discrepancies between model predictions and experimental measurements, and selected 

model parameters. By implementing variance-based global sensitivity analysis within 

this framework, they quantitatively assessed and selected influential parameters, 

enhancing the efficiency of the parameter selection process. Additionally, the analytical 

derivation of gradients and Hessians from the residual-based GP accelerated the 

optimization process, enabling rapid convergence to optimal parameter values.  

Aye and Heyns (2017) applied GPR to predict the remaining useful life of slow-

speed bearings using a novel degradation assessment index derived from acoustic 

emission signals. They meticulously designed the mean and covariance functions by 

integrating multiple individual mean and covariance functions, resulting in an 

integrated GPR model. Their approach allowed for the simultaneous estimation of a 

composite mean function and a composite covariance function, leading to more flexible 

and accurate predictions of bearing lifespan.  

Chakraborty and Adhikari (2021) explored the probabilistic modeling of the time 

evolution of structural system parameters using GPR and an advanced “mixture experts 
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of GP” approach. This method effectively handled temporal multi-scale data, and their 

results demonstrated the ability to accurately predict the probability distributions of 

mass and stiffness parameters in future time steps.  

Wang et al. (2022) employed heteroscedastic GP for probabilistic modeling of 

strains in a large-scale suspension bridge during typhoons. Their study successfully 

estimated the noise level changes induced by typhoons, providing a foundational basis 

for assessing the structural health of large-scale bridges under extreme weather 

conditions.  

Most recently, Xian and Wang (2024) utilized GPR to enhance surrogate modeling 

for high-dimensional rare event simulations. They adopted a heteroscedastic GP to 

model the error correction between low-fidelity physics-based surrogates and original 

high-fidelity models, effectively capturing input-dependent uncertainties. Furthermore, 

they integrated uncertainty estimates within an active learning framework to iteratively 

refine the training dataset, ensuring that the surrogate model maintained high 

correlation and low bias in critical regions relevant to rare events. 

Multi-output GP-based modeling 

In addition to directly performing probabilistic regression using the GPR framework, 

numerous studies leverage the inherent properties of GP and Bayes’ theorem to explore 

the interrelationships among multiple GP, thereby enabling more sophisticated 

functionalities. These models are collectively referred to as multi-output GP.  

Multi-output GP have been widely adopted in multi-fidelity modeling, where the 

framework enables probabilistic estimation by leveraging datasets of varying fidelities. 

In many studies, target functions at different fidelity levels are modeled as GP, and by 

assuming functional relationships between these GP, they can be effectively correlated 
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(Le Gratiet and Garnier, 2014; Perdikaris et al., 2017; Cutajar et al., 2019). Based on 

the multi-output GP framework, information from low-fidelity data can inform and 

enhance the predictions of high-fidelity models, thereby improving overall accuracy 

and reducing computational costs. In multiple applications of structural engineering, 

variations in fidelity arise from different measurement techniques applied to real 

structures. Consequently, GP-based multi-fidelity modeling has seen extensive 

application in these areas. For instance, Jin et al. (2021) addressed the trade-off between 

accuracy and spatial resolution in strain measurements by combining point strain 

sensors, which measure accurate strains (high accuracy) at discrete positions (low 

spatial resolution), with distributed strain sensors that provide quasi-continuous 

distributed measurements (high spatial resolution) but with less accurate strains (low 

accuracy). An autoregressive dual-fidelity GP was employed in the study to achieve 

accurate strain distribution, effectively combining high accuracy with high spatial 

resolution. The experiments demonstrated the feasibility of multi-fidelity data fusion, 

and the approach has the potential to monitor strain across entire structural systems 

within limited budgets. 

Guo et al. (2021) proposed an MFGP approach to identify flame frequency 

responses. Currently, two methods are commonly used in the community: harmonic 

excitation, which provides accurate FFR estimates even in the presence of significant 

noise but only at discrete frequencies, and broadband excitation, which offers complete 

flame frequency responses over the frequency range of interest but may introduce 

higher levels of uncertainty in the results. The proposed multi-fidelity method leverages 

the strengths of both approaches by merging flame frequency responses identification 

results from short-time broadband excitation (low-fidelity) with harmonic excitations 
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at selected frequencies (high-fidelity). This integration avoids the weaknesses of each 

individual method, enhancing the overall accuracy and reliability of flame frequency 

responses identification. 

Additionally, due to differences in precision between FE models and real structures, 

as well as discrepancies in the volume of data generated from FE models compared to 

experimental measurements, many studies have introduced multi-fidelity modeling to 

address these challenges. Li and Jia (2020a) proposed an MFGP approach to integrate 

high-fidelity experimental data with low-fidelity analytical and numerical modeling 

data. This approach was successfully applied to predict the deformation capacity of 

reinforced concrete, demonstrating the effectiveness of MFGP models in enhancing 

prediction accuracy while managing computational resources efficiently. 

GP have been also employed to solve various linear and nonlinear ordinary and 

partial differential equations (Särkkä, 2011; Raissi et al., 2017; Raissi et al., 2018; Chen 

et al., 2021a). Essentially, differential equations define relationships that implicitly 

embed correlations between multiple functions. By defining the involved functions as 

GP a priori, the correlations among these GP can be derived from the differential 

equations and subsequently reflected in the mean and covariance functions of all GP. 

When solving a specific differential equation, some GP are fully observed through 

specified initial and boundary conditions, while others have no direct data. The solution 

process is framed within a Bayesian formulation analogous to Eq. (2.2), where the 

estimation of GP without measurements is informed by the GP with complete 

observations. The posterior distributions obtained through this process effectively 

represent the solution to the differential equation. This approach allows for a coherent 

integration of prior knowledge and observed data, ensuring that the correlations and 
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uncertainties inherent in the system are accurately captured and propagated through the 

solution. Tondo et al. (2023) applied a similar approach to beam deflection prediction 

problems by leveraging the Timoshenko beam theory. The theory facilitates the 

formulation of differential equations governing deflections, rotations, strains, bending 

moments, shear forces, and applied loads. Using GP framework, unobserved responses 

to applied loads are successfully predicted. 

In addition to the aforementioned representative applications of multi-output GP, 

any scenario that allows for an analytically expressible functional relationship can 

leverage GP and Bayes’ theorem for probabilistic analysis. In many studies, the 

physical quantities being analyzed do not exhibit clear physical correlations but do 

show statistical dependencies. By constructing parameterized functional relationships, 

the reliability of predictions can be enhanced, as the parameters within these functions 

can be directly integrated into maximum likelihood estimation to find optimal values. 

For example, Wan and Ni (2018) employed this approach to perform multi-output 

modeling of temperature and acceleration data in super-tall building structures. Their 

constructed model utilized partial sensor information to calculate measurements at 

other locations, thereby enabling data reconstruction for damaged sensors. This method 

effectively enhances the robustness and reliability of SHM by compensating for sensor 

failures. Similar methodologies have also been applied in dam SHM systems, where 

statistical correlations between different measured quantities are exploited to maintain 

accurate and reliable monitoring despite potential sensor damages or data gaps (Li et 

al., 2021b). 
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2.2.3. Advantages and limitations of nonparametric Bayesian machine learning 

Nonparametric Bayesian machine learning offers significant advantages for 

addressing inverse problems in structural engineering, yet it also presents certain 

limitations that must be carefully considered. A foremost benefit of GPR is its intrinsic 

ability to quantify uncertainty, delivering not only point estimates but also confidence 

intervals for predictions. This probabilistic nature is essential for decision-making 

processes related to structural safety and maintenance, as it allows engineers to 

comprehensively assess the reliability of reconstructed forces or estimated states. 

Additionally, GPR exhibits remarkable flexibility in modeling complex, nonlinear 

relationships without presupposing a fixed functional form. This adaptability is 

especially valuable in structural dynamics, where the interactions between structural 

responses and underlying forces or states are often intricate and nonlinear. Furthermore, 

nonparametric Bayesian methods adeptly incorporate prior knowledge through the 

specification of mean and covariance functions. By integrating established physical 

principles or empirical observations, GPR enhances the accuracy and reliability of 

inverse problem solutions. The smoothness and continuity imposed by commonly used 

covariance functions, such as the squared exponential kernel, ensure that the estimated 

quantities exhibit physically plausible behavior, which is crucial for accurately 

capturing the dynamic responses of structures under varying loads and conditions. 

Moreover, multi-output GP approaches facilitate the integration of data from diverse 

sources with varying accuracies and resolutions, thereby improving overall model 

performance while efficiently managing computational resources. 

However, a primary limitation of GPR is its computational complexity, particularly 

as the number of data points increases. The inversion of large covariance matrices 
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scales cubically with dataset size, rendering it computationally prohibitive for large-

scale structural monitoring systems equipped with extensive sensor networks. 

Although sparse approximations and inducing point methods can alleviate some 

computational burdens, they often introduce additional approximations that may 

compromise model accuracy. Additionally, nonparametric Bayesian methods can 

struggle with high-dimensional input and output spaces, a common scenario in complex 

structural systems with numerous degrees of freedom and multiple sensor inputs. While 

multi-output GP can handle correlated outputs, the increasing dimensionality 

exacerbates the "curse of dimensionality", hindering the effective modeling of 

dependencies and correlations and potentially degrading performance in state 

estimation and force reconstruction.  

2.3. Deep learning 

2.3.1. Deep learning 

Building upon the challenges of the inverse problem discussed in Section 2.1, some 

investigations in the thesis employ deep learning techniques to address the state 

estimation problem. Therefore, this subsection provides a brief review of deep learning. 

Over the past decade, deep learning research has experienced explosive growth, 

underpinned by profound theoretical advancements and a wide range of applications. 

This subsection adopts a relatively broad perspective, presenting an overview of some 

theories and applications of deep learning in the fields of structural engineering from a 

practitioner’s standpoint. The aim is to demonstrate the necessity of deep learning for 

the problems investigated in this thesis through this review. 
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Deep learning is a specialized branch of machine learning that focuses on algorithms 

inspired by the architecture and function of the human brain, commonly implemented 

through deep neural networks (Goodfellow et al., 2016). Mathematically, a 

fundamental deep neural network consists of multiple layers of interconnected nodes 

or neurons, where each connection is associated with a weight parameter. These 

networks are typically organized into an input layer, several hidden layers, and an 

output layer. Each neuron in a layer performs a linear transformation of its inputs, 

followed by a nonlinear activation function, which introduces the necessary 

nonlinearity to model complex relationships. Formally, for ith given layer, the 

transformation can be expressed as: 

 𝒙(௜) = 𝜎൫𝐖(௜)𝒙(௜ିଵ) + 𝒃(௜)൯, (2.3) 

where 𝒙(௜ିଵ) is the activation from the previous layer; 𝐖(௜) and 𝒃(௜) are weight matrix 

and bias vectors for the ith layer, respectively, containing the parameters to be 

optimized; 𝜎(⋅)  is the activation function, e.g., ReLU, tanh, or sigmoid. With the 

forward propagation from layers to layers, the mappings from input domain to the 

output domain are implemented consequently. With multiple label pairs to compose 

the training, validation and test dataset, the training of deep neural networks could be 

conducted, which involves optimizing the weights and biases to minimize a loss 

function, typically using the gradient-based optimizers, e.g., stochastic gradient descent, 

Adam, etc. 

Figure 2.5(a) illustrates the fundamental deep neural network, commonly known as 

the MLP. In the early stages of deep learning research, this basic MLP was frequently 

employed as a universal approximator to model a wide variety of functions, given 

sufficient depth and complexity (Hornik et al., 1989). In recent years, numerous studies 
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on physics-informed neural networks have leveraged this characteristic of MLP to 

solve partial differential equations (Raissi et al., 2019). By incorporating multiple loss 

functions derived from governing equations, boundary conditions, and measurement 

data, the MLP is continuously optimized to accurately estimate the solutions of these 

partial differential equations. 

 

Figure 2.5. Neural network architectures for different applications. 

Furthermore, the widespread application of deep learning is largely attributable to 

various specialized neural network architectures that have evolved from the MLP, as 
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depicted in Figures 2.5(b)-(f). These include CNN, graph neural networks, RNN, 

autoencoders, and generative adversarial networks. Each of these architectures is 

tailored to address specific problems that traditional machine learning methods have 

been unable to solve effectively. For example: CNN are extensively used in 

applications requiring image and signal recognition, such as human face recognition 

(Mehdipour Ghazi and Kemal Ekenel, 2016) and autonomous driving (Li et al., 2019). 

Graph neural network are suitable for tasks involving spatial or temporal topological 

relationships, such as predicting properties based on protein structures (Jiang et al., 

2021). RNN excel in handling sequence-based problems (Van Houdt et al., 2020), 

including language translation and time-series forecasting. Autoencoders are effective 

for non-linear compression of high-dimensional data into lower-dimensional 

representations (Tschannen et al., 2018). Generative adversarial networks are 

employed in tasks related to image and signal generation, enabling the creation of 

realistic synthetic data (Creswell et al., 2018). In many contemporary artificial 

intelligence applications, the strengths of these advanced neural network architectures 

are often integrated to collaboratively achieve sophisticated intelligent objectives. This 

integration allows for more robust and versatile solutions, harnessing the unique 

capabilities of each network type to address complex, multifaceted problems across 

various domains. 

It is important to note that, compared to traditional machine learning models, the 

advanced neural network architectures offer significant advantages in addressing high-

dimensional, multi-input, and multi-output problems. Traditional approaches often 

encounter challenges such as the curse of dimensionality, which can hinder their 

performance and scalability when dealing with complex datasets. In contrast, deep 



44 
 

learning architectures, with their multiple layers and vast number of parameters, are 

inherently designed to capture and model intricate patterns and relationships within 

high-dimensional data. Moreover, deep learning models excel in handling scenarios 

with multiple inputs and outputs, enabling simultaneous processing and prediction of 

diverse variables. This capability is particularly beneficial for the problems 

investigated in this thesis, where the complex structure systems typically involve 

numerous interacting components and a multitude of measurements. By leveraging the 

strengths of deep learning, the inverse problems could be abstracted to a 

multidimensional problem that is beyond the reach of traditional machine learning 

techniques. 

Another pivotal framework within deep learning is transfer learning, which enables 

the leveraging of pre-trained models to enhance performance on new, related tasks. 

Transfer learning capitalizes on the knowledge acquired from large-scale datasets and 

complex models trained in extensive computational resources, allowing this expertise 

to be applied to different but related problems with limited data (Weiss et al., 2016; 

Zhuang et al., 2020). This approach is particularly advantageous in scenarios where 

acquiring labeled data is challenging or expensive, as it reduces the need for extensive 

training from scratch. By fine-tuning pre-trained networks, transfer learning not only 

accelerates the training process but also often results in superior performance compared 

to models trained solely on the target dataset. In the context of structural engineering, 

transfer learning can facilitate the adaptation of models trained on generic structural 

data to specific applications. This adaptability underscores the versatility and efficiency 

of deep learning frameworks, making transfer learning an invaluable tool for advancing 

research and practical implementations in complex, high-dimensional environments. 
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2.3.2. Deep learning applications in structural engineering 

The integration of deep learning techniques into structural engineering has 

revolutionized the way engineers approach complex problems related to structural 

analysis, health monitoring, and predictive maintenance. By leveraging the powerful 

pattern recognition and data-driven capabilities of deep neural networks, structural 

engineers can achieve higher accuracy, efficiency, and reliability in various 

applications. In the initial stages, applications primarily relied on MLP.  

Berke et al. (1992) applied MLP to capture structural design expertise, 

demonstrating the potential of neural networks as expert designers in aerospace 

structures. In this investigation, an advanced structural optimization code alongside the 

neural network code NETS are utilized to generate optimal designs for various 

aerospace components, including a trussed ring and two types of aircraft wings, under 

both static and dynamic constraints. By processing the optimum design data into input-

output pairs, they trained the MLP to learn the complex relationships between design 

parameters and optimal configurations. The trained network successfully predicted 

optimal designs for new scenarios with minimal computational effort, highlighting the 

efficiency of neural networks compared to traditional optimization methods.  

Ni et al. (2006) presented an experimental investigation of seismic damage detection 

of a 38-story tall building using MLP. In this study, the principal component analysis-

compressed FRF data were used as inputs to MLP for damage identification, including 

the damage evaluation and damage location identification. It was shown that the 

identification results by means of the FRF projections on a few principal components 

are much better than those directly using the measured FRF data for inputs of MLP, 

and the identification results agreed well with the visual inspection in the experiment. 
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Zhou et al. (2010) developed an MLP-based modal information prediction of large 

infrastructures using temperature sensing data. The temperature data at multiple 

locations were processed through principal component analysis, and the results at each 

sampling step will be used for input of the MLP. 770-hour modal frequency and 

temperature data were utilized to train, validate, and test several pre-designed MLP 

models with different hidden nodes. The results revealed strong alignment of 

predictions with respect to the natural frequencies from measurement.    

Continuing the exploration of deep learning applications in structural engineering, 

subsequent advancements moved beyond the foundational MLP to incorporate more 

specialized neural network architectures. Atha and Jahanshahi (2018) adopted a CNN 

architecture for corrosion detection of structural metallic surfaces. The effect of 

different color spaces, sliding window sizes, and CNN architectures were discussed. 

To this end, the proposed CNN architecture was evaluated, and it was shown that CNN 

outperform state-of-the-art vision-based corrosion detection approaches that were 

developed based on texture and color analysis using a simple MLP. 

Yu et al. (2019) proposed a bidirectional recurrent neural network (BiRNN) based 

autoencoder scheme to estimate the remaining useful life. A BiRNN based autoencoder 

was trained in the investigation to convert the multi-sensor readings collected from 

historical run-to-failure instances to low-dimensional embeddings, which were adopted 

as matrices to reflect various health degradation patterns of the instances. The BiRNN 

was demonstrated to successfully enrich the input information to enhance the 

effectiveness of predictions.  

Zhou et al. (2019) developed a deep RNN specifically designed for impact load 

identification in nonlinear structural systems. The architecture of the deep RNN 
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comprised two LSTM layers, one bidirectional LSTM layer, and an MLP. Utilizing a 

comprehensive dataset of dynamic response and impact load pairs, the deep RNN was 

trained to learn the intricate inverse mapping between the structural responses and the 

corresponding impact loads. To validate the effectiveness of their model, three distinct 

nonlinear structural systems were presented in the investigation: a damped Duffing 

oscillator, a nonlinear three-degree-of-freedom system, and a nonlinear composite plate. 

The results demonstrated that the deep RNN exhibited a strong capacity for accurately 

identifying impact loads, even in scenarios where the exact impact location remained 

unknown. 

Qin et al. (2021) presented a hybrid deep neural network aimed at accurately 

predicting cutterhead torque in shield tunneling machines by utilizing operational and 

status parameters of the equipment. This hybrid model seamlessly integrates a 1D CNN, 

LSTM networks, and a MLP to extract both implicit and sequential features from the 

input data. By combining these architectures, the model effectively harnesses deep 

information, enabling precise torque prediction. Furthermore, to enhance prediction 

performance and address the vanishing gradient problem typically encountered in deep-

layer network training, the authors incorporated a residual network module into the 

proposed neural network architecture. The effectiveness and superiority of the 

proposed method were validated using fifteen distinct datasets derived from actual 

project data, demonstrating its robust performance and practical applicability in real-

world scenarios. 

From the aforementioned application examples, it is evident that a diverse array of 

neural networks and their combinations can be employed to address practical problems 

in structural engineering. While these combinations often result in highly complex 
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architectures that are challenging to theoretically justify, the paramount concern for 

practitioners is possessing a model that effectively resolves real-world problems. 

Although it may be difficult to conduct a detailed theoretical evaluation of these models, 

their performance on test datasets provides clear evidence of their applicability and 

effectiveness in practical scenarios. In simple terms, this philosophy can be 

encapsulated as: deep learning models are valuable because they work. 

Additionally, transfer learning has become widely adopted in structural engineering. 

The primary motivation for utilizing transfer learning is the insufficient volume of data 

required to train complex neural networks for specific tasks. As a result, many studies 

endeavor to adapt pretrained neural networks to address these specialized applications. 

From a neuroscience perspective, this approach leverages existing extensive 

knowledge to learn a particular and specific task. The broad knowledge base can be 

considered to be low fidelity, characterized by abundant data, whereas the data for 

specific tasks are high-fidelity but often limited in quantity. Many applications in 

structural engineering encounter this data imbalance issue. According to research 

findings, numerous studies have effectively implemented transfer learning to 

successfully accomplish specific tasks within the field. 

Chen et al. (2021b) introduced a deep transfer learning framework designed to 

progressively assess the structural integrity of rail systems by leveraging acoustic 

emission monitoring data combined with knowledge transferred from an acoustic 

database. Specifically, the approach utilizes the lower-level layers of a CNN that has 

been pre-trained on extensive audio datasets for effective feature extraction within the 

predictive model for rail systems. In contrast to traditional transfer learning methods, 
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which typically incorporate knowledge from models pre-trained on standard image data, 

this novel approach is better suited for handling acoustic emission spectrograms. 

Bao and Mahadevan (2022) adopted a CNN and transfer learning approach for 

effective structural internal damage detection, e.g., voids and cracks. Addressing the 

persistent challenge of insufficient training data, particularly prevalent in many SHM 

applications, the study utilized FE computer simulations to generate a substantial 

volume of training data encompassing various damage shapes and locations. These 

simulated datasets were integrated with pre-trained convolutional cores from an 

advanced computer vision-based deep CNN, thereby facilitating effective transfer 

learning. This hybrid approach enabled the CNN to automatically extract and learn 

relevant features for damage diagnosis, eliminating the need for manual feature 

engineering typically required in traditional image processing techniques. 

In this study, transfer learning plays a crucial role due to the data-intensive nature 

of certain problems. A key detail to note is that different neural networks require 

distinct transfer learning strategies tailored to their specific tasks, and the chosen 

strategy is pivotal for the successful transfer of knowledge. Within the domain of 

structural engineering, the majority of existing research has focused on CNN-based 

transfer learning. These CNN-based approaches have been validated through numerous 

studies, demonstrating their efficacy as a versatile method. Conversely, transfer 

learning strategies for other types of neural networks cannot simply replicate the CNN 

methodology. Instead, they must be specifically designed to align with the unique 

architectures of the respective neural networks, ensuring effective knowledge transfer 

in structural engineering applications. 
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2.3.3. Advantages and limitations of deep learning 

Deep learning has emerged as a transformative technology in structural engineering, 

offering numerous advantages that significantly enhance the ability to analyze and 

manage complex engineering problems. One of the most prominent strengths of deep 

learning lies in its capacity to handle and learn from multi-dimensional data. Structural 

engineering often involves intricate interactions between various parameters such as 

stress, strain, vibration, and material properties, all of which are inherently multi-

dimensional. Deep neural networks, with their multiple layers and non-linear activation 

functions, can effectively model these complex relationships, capturing subtle patterns 

and dependencies that traditional analytical methods might overlook.  

Additionally, deep learning frameworks offer a wide array of neural network 

architectures, including CNN, RNN, autoencoders, and transformer models. This 

diversity allows engineers to select and tailor specific architectures that best suit the 

nature of the problem at hand. For instance, CNN are highly effective for image-based 

tasks such as crack detection on concrete surfaces, while RNN and their variants like 

LSTM networks are suitable for analyzing time-series data from vibration sensors. 

Moreover, the ability to combine different architectures in hybrid models enhances the 

flexibility and adaptability of deep learning solutions, enabling the development of 

customized models that address unique structural engineering challenges. The 

transferability of deep learning models further amplifies their utility in this field. 

Existing research has demonstrated effective transfer learning strategies, where 

knowledge from models trained on related tasks or larger datasets is leveraged to 

improve performance on specialized structural engineering applications.  
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The advancements in deep learning infrastructure and computational power have 

also played a crucial role in its adoption within structural engineering. open-source 

libraries like PyTorch, TensorFlow, and JAX are continuously being developed, 

providing robust platforms that ease the development, training, and application of 

neural networks (Dixit et al., 2018). These tools abstract complex algorithms into user-

friendly interfaces, making the deep learning implementation more accessible to 

researchers and engineers in structural engineering. Concurrently, hardware 

improvements, particularly GPU and TPU technology, are enhancing computational 

power for training deep neural networks (Wang et al., 2019). The progress not only 

accelerates the training process but also democratizes access to these advanced 

facilities. As a result, building and training neural networks, as well as fine-tuning them 

using the transfer learning, are becoming more convenient and effective. 

Despite its powerful capabilities, deep learning also presents certain limitations that 

must be carefully considered. One major drawback is the substantial requirement for 

large volumes of data, making it most effective in scenarios where extensive datasets 

are available. This high data demand can be a barrier in applications where data 

collection is costly or impractical. Additionally, deep learning models typically involve 

a vast number of parameters, resulting in prolonged training times compared to 

traditional machine learning methods. Unlike the traditional machine learning 

approaches which have fewer parameters and can be trained relatively quickly, deep 

neural networks require significant computational resources and extended training 

periods to converge to optimal solutions. This complexity can be a drawback in 

scenarios where computational power is limited or rapid model development is 
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required. Moreover, extensive training time may impede the iterative process of model 

refinement and deployment in dynamic engineering environments. 

Another significant limitation is the necessity for experienced practitioners to 

effectively train deep learning models. Achieving high performance with deep learning 

requires a deep understanding of various neural network architectures, optimization 

algorithms, and regularization techniques (Glorot and Bengio, 2010; Srivastava et al., 

2014; Abdulkadirov et al., 2023). Practitioners must adeptly tune hyperparameters and 

navigate common pitfalls such as overfitting and underfitting. The process of selecting 

appropriate architectures, adjusting learning rates, and configuring network layers is 

often empirical and relies heavily on the practitioner’s intuition and experience. This 

requirement can be a substantial barrier for organizations lacking skilled personnel, 

limiting the widespread adoption of deep learning technologies in structural 

engineering fields. Additionally, the opaqueness of deep learning models, often 

referred to as the “black box” problem (Castelvecchi, 2016), can hinder their 

interpretability and trustworthiness in critical engineering applications where 

understanding the decision-making process is essential. 

2.4. Summary 

This chapter provides a comprehensive review of the fundamental concepts and 

methodologies that underpin the contributions of this thesis. It begins with an overview 

of general inverse problems, establishing the foundational framework for a detailed 

exploration of two specific inverse problems: force reconstruction and state estimation 

in structural dynamical systems. The discussion of these problems focuses on defining 

each one, summarizing the approaches and solutions documented in existing literature, 
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and identifying the current challenges that remain unresolved. Subsequently, the 

chapter delves into two key methodologies utilized in this research: probabilistic 

machine learning and deep learning. For each methodology, the basic theoretical 

principles, historical development, and diverse applications are thoroughly examined. 

Additionally, the advantages and disadvantages of probabilistic machine learning and 

deep learning are critically analyzed to provide a balanced understanding of their 

respective strengths and limitations.  

Building upon the challenges identified in the literature review, this thesis will 

address key issues in force reconstruction and state estimation using probabilistic 

machine learning and deep learning techniques. Specifically, an accurate and efficient 

probabilistic force reconstruction framework is developed by leveraging multi-task 

nonparametric Bayesian learning. This framework enables the estimation of forces 

from structural measurements while providing confidence intervals for force values at 

any time step. The theoretical foundation of this proposed method is detailed in Chapter 

3, with its practical application to maglev dynamic system illustrated in Chapter 4. For 

the state estimation problem, this thesis contributes two distinct yet complementary 

approaches to overcome existing limitations: a Bayesian-based MFGP method and an 

RNN approach enhanced by transfer learning. The theoretical underpinnings of these 

methods are presented in Chapter 5, followed by their practical applications in 

Chapter 6. Together, these contributions demonstrate the effective integration of 

probabilistic machine learning and deep learning techniques to advance force 

reconstruction and state estimation in structural dynamical systems. 
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Chapter 3. 

Nonparametric Bayesian multi-task learning for 

time-domain force reconstruction 

3.1. Introduction 

This chapter introduces the theory of time-domain force reconstruction for structural 

dynamic systems based on the proposed nonparametric Bayesian multi-task learning 

method. Generally, the reconstruction of dynamic forces is modelled via convolution 

between force and response (Sanchez and Benaroya, 2014). However, the 

deconvolution to compute the force often encounters ill-posed problems and multi-

source uncertainties. To tackle these challenges, the proposed method assigns GP priors 

to the force functions using a nonparametric Bayesian approach. By exploiting the 

convolution operator between force and response, it is shown that the responses are 

also GP, of which covariance functions can be derived from those of the forces. To 

handle the correlated GP, the concept of multi-task learning is applied. This enables 

the construction of a joint Gaussian distribution among variables from multiple GP. 

Consequently, the measured responses and forces are jointly characterized by a 

multivariate Gaussian distribution, and the posterior distribution of the force given the 

measurement is derived in closed form. The performance of the proposed method is 

demonstrated through simulations on a truss bridge and experiments on a frame 

structure subjected to impact loads. The results demonstrate the high accuracy and 
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efficient uncertainty quantification achieved by the nonparametric Bayesian multi-task 

learning method. 

3.2. Problem description of time-domain force reconstruction 

The equation of motion of an 𝑛  DOF structural system subject to external 

excitations can be expressed as: 

 𝐌𝒙̈(𝑡) + 𝐂𝒙̇(𝑡) + 𝐊𝒙(𝑡) = 𝐋𝒇(𝑡), (3.1) 

where 𝐌 , 𝐂  and 𝐊  ∈ ℝ௡×௡  represent the mass, damping, and stiffness matrices, 

respectively; 𝒙̈(𝑡), 𝒙̇(𝑡) and 𝒙(𝑡) ∈ ℝ௡ are the acceleration, velocity and displacement 

vectors at timestamp 𝑡. 𝐋 ∈ ℝ௡×௡೑ is the excitation matrix that maps the input force 

vector 𝒇(𝑡) ∈ ℝ௡೑   at time 𝑡  to the 𝑛  dimensional force vector. 𝑛௙  is the number of 

forces acting on the structure. 

By defining a state vector 𝒙෥(𝑡) = [𝒙(𝑡); 𝒙̇(𝑡)] , Eq. (3.1) can be converted to 

continuous-time state space representation: 

 𝒙෥̇(𝑡) = 𝐀ୡ𝒙෥(𝑡) + 𝐁ୡ𝒇(𝑡), (3.2) 

with 

 𝐀ୡ = ቂ
𝟎 𝐈

−𝐌ିଵ𝐊 −𝐌ିଵ𝐂
ቃ, and 𝐁𝐜 = ቂ

𝟎
𝐌ିଵ𝐋

ቃ, (3.3) 

where 𝐈 ∈ ℝ௡×௡ denotes the identity matrix. Given the assumption that accelerations 

are measured at 𝑛௦ number of DOF of the structure, the 𝑛௦ dimensional observation 

vector 𝒚(𝑡) at time 𝑡 is defined as: 

 𝒚(𝑡) = 𝐉𝒙̈(𝑡), (3.4) 

where 𝐉 ∈ ℝ௡ೞ×௡ is a binary matrix associated with the sensor locations. Each row of 𝐉 

exactly contains one non-zero element (set to 1), whose index corresponds to the DOF 
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where an accelerometer is installed, with all other elements being 0. With the 

substitution of Eq. (3.4) to the continuous-time state space representation, the 

observation vector can be obtained: 

 𝒚(𝑡) = 𝐂ୡ𝒙෥(𝑡) + 𝐃ୡ𝒇(𝑡), (3.5) 

where 

 𝐂ୡ = [−𝐉𝐌ିଵ𝐊 −𝐉𝐌ିଵ𝐂], and 𝐃ୡ = 𝐉𝐌ିଵ𝐋. (3.6) 

The observation equation articulates the functional relationship among the 

observations, system states, and forces. This relationship hinges on precise knowledge 

of the system matrices of the structural system, as well as the specific locations of 

applied forces and accelerometers. However, it is not applicable to directly using 

information from 𝒚(𝑡)  to compute representations of 𝒇(𝑡) , because the system state 

functions 𝒙෥(𝑡)  cannot be isolated based on the above-mentioned equations. To 

eliminate the system state in the formulation, assume the input signal remains constant 

in each sampling period of length Δ𝑡 (zero-order hold assumption), and 𝑛௧ time steps 

are involved. This allows expressing the system states, forces, and observations as: 

 𝒙෥(𝑡) = 𝒙෥(𝑘Δ𝑡) = 𝒙෥௞, 𝒇(𝑡) = 𝒇(𝑘Δ𝑡) = 𝒇௞ , 𝒚(𝑡) = 𝒚(𝑘Δ𝑡) = 𝒚௞; 
∀𝑡 ∈ [𝑘Δ𝑡, (𝑘 + 1)Δ𝑡), 𝑘 = 0, 1, 2, … 𝑛௧ − 1, 

(3.7) 

Then, the state space representation and observation equation can be transformed from 

continuous to discretized form: 

 𝒙෥௞ାଵ = 𝐀ௗ𝒙෥௞ + 𝐁ௗ𝒇௞ , (3.8) 

 𝒚௞ = 𝐂ௗ𝒙௞ + 𝐃ௗ𝒇௞, (3.9) 

where the matrices 𝐀ௗ, 𝐁ௗ, 𝐂ௗ and 𝐃ௗ are calculated by: 

 𝐀ௗ = exp(𝐀ୡΔ𝑡), 𝐁ௗ = (𝐀 − 𝐈)𝐀ୡ
ିଵ𝐁ୡ, 𝐂ௗ = 𝐂ୡ, and 𝐃ௗ = 𝐃ୡ. (3.10) 
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For zero initial conditions in a structural dynamic system, the observation at step k 

can be obtained via iterative substitutions of Eq. (3.8) to Eq. (3.9): 

 
𝒚௞ = ෍ 𝐂ௗ𝐀ௗ

௜ିଵ𝐁ௗ𝒇௞ି௜

௞ିଵ

௜ୀ଴

+ 𝐃ௗ𝒇௞. (3.11) 

Consequently, the relationship between full measured acceleration data and external 

forces could be formulated based on a discrete convolutional operator: 

 

൦

𝒚଴

𝒚ଵ

⋮
𝒚௡೟ିଵ

൪ = ൦

𝐇଴ 𝟎 ⋯ 𝟎
𝐇ଵ 𝐇଴ ⋱ ⋮
⋮ ⋮ ⋱ 𝟎

𝐇௡೟ିଵ 𝐇௡೟ିଶ ⋯ 𝐇଴

൪ ൦

𝒇଴

𝒇ଵ

⋮
𝒇௡೟ିଵ

൪, 
(3.12) 

where on the left-hand side is the series of observed acceleration data, represented as 

𝒚 ∈ (ℝ௡ೞ)௡೟, and on right-hand side is the convolutional operator 𝐇 ∈ ℝ௡ೞ௡೟×௡೑௡೟  in 

Toeplitz matrix form, and the force vector 𝒇 ∈ (ℝ௡೑)௡೟ that contains values of forces 

from time step 0 to 𝑛௧ − 1 . Here, 𝐇௜ ∈ ℝ௡ೞ×௡೑  represents the ith block of the 

convolutional operator, it is given by: 

 𝐇଴ = 𝐃ௗ, and 𝐇௜ = 𝐂ௗ𝐀ௗ
௜ିଵ𝐁ௗ;  𝑖 = 1, 2, 3, … 𝑛௧ − 1. (3.13) 

Note that all 𝐇௜  are intrinsically derived from system matrices, therefore, with the 

specification of the structural dynamical system, and indices of DOF correspond to 

input and output, the convolutional operator 𝐇 is determined. 

The time-domain force reconstruction is a typical deconvolution problem that 

necessitates the use of discretized measurements 𝒚 to inversely compute results of 𝒇. 

The convolutional operator 𝐇 is notoriously ill-conditioned, making direct inversion 

impossible to be directly inverted (Kabanikhin, 2008). Traditionally, this inverse 

problem has been addressed using various regularization techniques, such as SVD and 

Tikhonov regularization (Liu et al., 2022). Nevertheless, the reconstruction of accuracy 
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and stability remains a concern, and further improvements are needed. Furthermore, 

real-world measurements are inevitably uncertain, and it is essential to effectively 

propagate these uncertainties to the estimated forces (Zhang et al., 2012). Therefore, a 

method that not only solves the deconvolution problem but also provides uncertainty 

quantification is of great interest in this chapter. 

3.3. Multi-task learning with nonparametric Bayesian approach for 

force reconstruction 

Nonparametric Bayesian multi-task learning leverages GP with shared information 

to model the covariance structure across different but related tasks. This shared 

covariance structure allows the model to utilize strength from all available data, thereby 

enhancing prediction performance for each task through pooled information (Wan and 

Ni, 2018; Wan and Ni, 2019). In the specific application of force reconstruction, where 

direct force data may not be measurable, nonparametric Bayesian multi-task learning 

adapts the principles of GPR to address complex problems involving multiple related 

tasks simultaneously. 

For a structural dynamic system subjected to external excitations, the applied force 

and response histories in the time domain are interdependent tasks. The relationships 

among tasks can be expressed based on the equations of motion of the FE model and 

eventually encapsulated in a convolutional mapping, as shown in Eq. (3.12). Figure 3.1 

demonstrates the mechanism of nonparametric Bayesian multi-task learning, referred 

to here as multi-task Gaussian processes (MTGP), and compares it with traditional 

GPR. In a typical GPR setting, each task is modeled independently with a single GP, 

yielding a task-specific predictive posterior distribution. In contrast, the MTGP 
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framework can handle tasks lacking direct measurements. By leveraging the 

convolutional relationships derived from the FE model, the posterior distributions of 

such tasks can be inferred by conditioning on data from related tasks. 

To enable the multi-task learning of forces, the 𝑛௙ forces are initially modeled as 

independent GP. Each force 𝑓௜(𝑡)  is represented as 𝑓௜(𝑡)~𝒢𝒫(0, 𝑘௜(𝑡, 𝑡′))  for 𝑖 =

1,2, … , 𝑛௙. In this framework, any force value at a specific time is a Gaussian variable, 

and any finite set of force values follows a multivariate Gaussian distribution. 

According to Eq. (3.12), derived from the governing equations of the FE model, the 

relationship 𝒚 = 𝐇𝒇 holds, where 𝒚 represents the acceleration response data as linear 

combinations of these Gaussian variables. Consequently, any finite set of data drawn 

from the acceleration responses will also adhere to a multivariate Gaussian distribution. 

This indicates that the acceleration responses can also be modeled as GP, with 

covariance functions dependent on those of the forces. 

 

Figure 3.1. The working mechanism of MTGP for force reconstruction and comparison with GPR. 

The primary goal of multi-task learning for force reconstruction is to leverage 

information from tasks with measurements (accelerations) to infer tasks lacking direct 
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data (forces), that is, computing the posterior distribution 𝑝(𝒇|𝒚ෝ), where 𝒚ෝ represents 

the measured accelerations. When all tasks are GP with interdependent kernels, a 

multivariate Gaussian distribution involving any function values from force and 

acceleration histories can be constructed, as follows: 

 
൤
𝒇

𝒚ෝ
൨ ~𝒩 ൬𝟎, ൤

𝐊௙௙ 𝐊௙௬

𝐊௬௙ 𝐊௬௬
൨൰, (3.14) 

The mean vector of the multivariate distribution is 𝟎 because the mean functions for 

the forces are zero functions, and it is assumed that measured acceleration data in 

𝒚ෝ differs from the function values 𝒚 by additive Gaussian noise 𝒘, thus the mean vector 

of 𝒚ෝ is: 

 𝔼{𝒚ෝ} = 𝔼{𝐇𝒇 + 𝒘} = 𝐇𝔼{𝒇} + 𝔼{𝒘} = 𝟎. (3.15) 

As a critical feature of GP regression, the posterior distribution 𝑝(𝒇|𝒚ෝ) is also Gaussian 

and could be analytically formulated from the covariance matrices and 𝒚ෝ. Since the 

forces are modeled as GP, 𝐊௙௙ could be directly obtained from the covariance kernel 

functions. The other covariance matrices could be derived from 𝐊௙௙  using the FE 

model that correlates different tasks: 

 𝐊௙௬ = 𝐊௬௙
୘ = 𝔼{𝒇𝒚ෝ୘ } = 𝔼{𝒇𝒇୘𝐇୘ + 𝒇𝒘} = 𝐊௙௙𝐇୘, (3.16) 

 𝐊௬௬ = 𝔼{𝐇𝒇𝒇୘𝐇୘ + 𝒘𝒘୘ + 𝐇𝒇𝒘୘ + 𝒘𝒇୘𝐇୘} = 𝐇𝐊௙௙𝐇୘ + 𝚿, (3.17) 

where 𝚿  is an identical matrix representing the variance of noise, i.e., 𝔼{𝒘𝒘୘} . 

Assuming that the noise contaminating the acceleration data from each sensor has the 

same variance, the noise covariance matrix 𝚿  can be written as 

diag([𝜎ଵ
ଶ𝐈, 𝜎ଶ

ଶ𝐈, … , 𝜎௡ೞ
ଶ 𝐈]), where 𝜎ଵ

ଶ, 𝜎ଶ
ଶ, … , 𝜎௡ೞ

ଶ  are the noise variances for each sensor, 

and 𝐈 is the identity matrix. Consequently, the mean and covariance of the posterior 

𝑝(𝒇|𝒚ෝ) can be analytically derived as: 
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 𝒇ത = 𝐊௙௬𝐊௬௬
ିଵ𝒚ෝ = 𝐊௙௙𝐇୘൫𝐇𝐊௙௙𝐇୘ + 𝚿൯

ିଵ
𝒚ෝ, (3.18) 

 cov(𝒇) = 𝐊௙௙ − 𝐊௙௬𝐊௬௬
ିଵ𝐊௬௙

= 𝐊௙௙ − 𝐊௙௙𝐇୘൫𝐇𝐊௙௙𝐇୘ + 𝚿൯
ିଵ

𝐇𝐊௙௙ 
(3.19) 

Note that the posterior distribution is governed by the 𝐊௙௙  and 𝚿 , where 𝐊௙௙  is 

determined by the hyperparameters in the covariance kernel functions characterizing 

the GP for forces, 𝚿  is controlled by noise-related hyperparameters. The optimal 

hyperparameter could be determined by minimizing the negative log marginal 

likelihood, with the objective function and its partial derivatives formulated as: 

 
ℒ(𝜽) =

1

2
𝒚ෝ୘𝐊௬௬

ିଵ𝒚ෝ +
1

2
logห𝐊௬௬ห +

𝑛௧൫𝑛௦ + 𝑛௙൯

2
log 2𝜋, (3.20) 

 𝜕ℒ(𝜽)

𝜕𝜃௜
=

1

2
tr ൭൫𝐊௬௬

ିଵ − 𝛂𝛂୘൯
𝜕𝐊௬௬

𝜕𝜃௜
൱, (3.21) 

with  

 𝛂 = 𝐊௬௬
ିଵ𝒚ෝ. (3.22) 

3.4. Numerical example: a truss bridge 

3.4.1. Model description 

Figure 3.2 depicts a 3-dimensional truss bridge, a typical example of the Pratt style 

bridge widely used in railway infrastructure. The structure consists of multiple 

components, including lower and upper chord, end raker, vertical and diagonal, portal 

girder, stringer, cross girder, and chord bracing, all labeled in Figure 3.2. Each 

component is prefixed with a serial number indicating its cross-sectional index. This 

truss bridge, which is subject to external impacts, is analyzed in this section using the 
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proposed nonparametric Bayesian multi-task learning approach for force 

reconstruction. 

The FE model of the truss bridge is constructed based on the Euler-Bernoulli beam 

theory. It treats all components as 3-dimensional, 2-node beam elements, where each 

node possesses 6 DOF: displacements and rotations with respect to three axes. In 

accordance with practical engineering constraints for truss bridges, nodes at positions 

0, 8, 27, and 35 are constrained. The vertical DOF and rotational DOF along the x and 

z axes are all constrained for these nodes. Furthermore, the displacement DOF along 

the x and y axes are specifically constrained at node 0, along the y axis at node 8, and 

along the x axis at node 27. The bridge encompasses 50 nodes and 120 elements, 

resulting in a total of 284 DOF upon applying boundary constraints. The parameters 

for the FE models are detailed in Table 3.1, employing letters “A” to “F” to represent 

six different cross-section configurations for the structural components depicted in 

Figure 3.2. Note that the densities of the stringers and cross girders are modeled three 

times greater than those of other components to account for possible additional non-

structural mass typically present in truss bridges. Based on the configuration of the FE 

model and the specified parameter values, the global mass and stiffness matrices are 

constructed. Subsequently, a primary modal analysis is conducted to validate the 

effectiveness of the FE model. The analysis confirms that the natural frequencies and 

mode shapes closely align with the existing literature (Dai et al., 2016). The first five 

natural frequencies for the constructed model are 3.13, 6.07, 7.86, 10.57 and 11.60 Hz, 

respectively. To model the energy dissipation mechanism, Rayleigh damping is utilized, 

which is expressed as a linear combination of the mass and stiffness matrices: C =

𝛼M + 𝛽K .  The coefficients 𝛼 and 𝛽 can be derived using the formula: 
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𝜁௜ =

𝛼

2𝜔௜
+

𝛽𝜔௜

2
, (3.23) 

where 𝜁௜ and 𝜔௜ are the modal damping ratio and radius natural frequency of the ith 

mode, respectively. For this study, a damping ratio of 2% is assigned to both the first 

and second modes ( 𝜁ଵ = 𝜁ଶ = 2% ). Consequently, the values for 𝛼  and 𝛽  are 

determined to be 5.19×10-1and 6.92×10-4, respectively. 

 

Figure 3.2. General view of Pratt truss bridge. 

After defining the motion equations for the Pratt truss bridge, structural responses 

are analyzed subject to the external impact loads. This simulation not only serves to 

validate the proposed algorithm but also closely resembles real-world scenarios where 

impacts are caused by external vehicles or ships. If the impact load can be successfully 

calculated using the proposed algorithm after a collision incident, it would greatly assist 

in the subsequent decision-making process. In this study, the impact load is simulated 

as a point load applied to node 31 of the truss bridge, with its time-varying profile 

defined by the following equation: 

 𝑓(𝑡) = 𝐹଴(𝑡 − 𝑡଴)ଶ𝑒ିఒబ(௧ି௧బ). (3.24) 
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In this equation, 𝐹଴, 𝑡଴, and 𝜆଴ represent three control parameters associated with the 

impact force 𝑓(𝑡) . 𝐹଴  governs the peak value of the impact force, 𝜆଴  regulates the 

frequency band of the excitation, and t଴ determines the time at which the impact force 

reaches its maximum amplitude. As shown in Figure 3.3(a), the impact force history is 

obtained by configuring 𝐹଴ , 𝑡଴ , and 𝜆଴  as 1 × 10଼ , 0.3, and 12, respectively. 

Subsequently, a transient dynamic analysis is conducted with the 4th order Runge Kutta 

method, yielding the complete responses of the structure when subjected to the impact 

force.  

Table 3.1. (a) Geometrical and material parameters of the truss bridge FE model. 

Parameter Symbol Value Unit Parameter Symbol Value Unit 

Width w 7.00 m Elastic modulus 𝐸 2.10×1011 N/m
2
 

Height ℎ 5.00 m Shear modulus G 8.10×1010 N/m
2
 

Spacing 𝑠 5.00 m 
Density (excluding stringer 

and cross girder) 
𝜌ଵ 7.85×103 kg/m

3
 

Density (stringer 
and cross girder) 

𝜌ଶ 3.14×104 kg/m
3
     

 

Table 3.1. (b) Geometrical and material parameters of the truss bridge FE model. 

Parameter 
Symb

ol 
Unit 

Value 

A B C D E F 

Cross section areas 𝐴஺~ி  m
2
 4.56×10-2 2.01×10-2 1.04×10-2 3.94×10-2 2.68×10-2 2.94×10-3 

Polar moment of 
inertias 

𝐽஺~ி m
4
 2.35×10-3 5.52×10-4 9.36×10-5 8.88×10-6 6.75×10-6 6.52×10-6 

Moment of inertias 
(horizontal local axis) 

𝐼௬஺~ி m
4
 1.10×10-3 4.60×10-4 6.04×10-5 3.20×10-4 2.14×10-4 4.18×10-6 

Moment of inertias 
(vertical local axis) 

𝐼௭஺~ி m
4
 2.48×10-3 2.93×10-4 6.04×10-5 2.22×10-3 9.57×10-4 4.18×10-6 
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Figure 3.3. (a) The applied force over node 31 along y axis; (b) The acceleration response on node 41 

along y axis with added noise. 

Since the practical measured acceleration data are prone to noise contamination, 

different levels of white Gaussian noise are added to the simulated acceleration data 𝒚෥ 

from each individual channel to obtain the simulated measurements 𝒚ෝ. The mean of the 

added noise is zero, while the variance 𝜎௡
ଶ  is determined based on the following 

equation: 

 𝜎௡
ଶ =

𝔼(𝒚෥ ⊙ 𝒚෥)

 SNR
, (3.25) 

where 𝔼(𝒚෥ ⊙ 𝒚෥) represents the expected value of the element-wise product of 𝒚෥ itself, 

and SNR denotes the signal-to-noise ratio. Eventually, the simulated measurements 𝒚ෝ 

could be obtained by adding the randomly sampled noise with the simulated 

acceleration data 𝒚෥ . Figure 3.3(b) demonstrates the simulated acceleration 

measurement of an SNR of 30. It is important to note that the vibration data is 

segmented into domains dominated by impact force and free vibration. To minimize 

computational burden and avoid the use of superfluous data, only the data from the 

time intervals dominated by impact force are utilized for subsequent force 

reconstruction (De Simone et al., 2019).  
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3.4.2. Force reconstruction for truss structure 

Based on the constructed FE model of the truss bridge, the 𝐇 matrix, as described 

in Eq. (3.12), can be formulated. This matrix is subsequently utilized as prior 

knowledge embedded to the MTGP. The force history in the MTGP model is modelled 

as a GP with a squared exponential kernel function, defined as: 

 𝑘(𝑥, 𝑥ᇱ; 𝜽) = 𝜎௙
ଶ exp ൬−

1

2ℓଶ
(𝑥 − 𝑥ᇱ)ଶ൰. (3.26) 

The kernel function includes two hyperparameters: the lengthscale ℓ and the output 

covariance 𝜎௙
ଶ. Additionally, it is assumed that the measured data consists of the ground 

truth combined with Gaussian noise, where the noise variance is denoted as 𝜎ଵ
ଶ. These 

three hyperparameters, ℓ , 𝜎௙
ଶ , and 𝜎ଵ

ଶ , are used to parameterize the negative log 

marginal likelihood shown in Eq. (3.32). Substituting the simulated measurements 𝒚ෝ 

with a sampling frequency of 2,000 Hz over 1.5 s into this formula, optimization is 

performed using the gradient-based L-BFGS-B algorithm. The results of the 

optimization are displayed in Figure 3.4, which illustrates that the negative log 

marginal likelihood values exhibit local convexity over the examined range. A star 

marks the location of the optimal hyperparameters for the task of force reconstruction. 

To verify the effectiveness of the nonparametric Bayesian multi-task learning under 

varying noise conditions, simulated acceleration measurements are generated at three 

different SNRs: 20, 30, and 40. It is anticipated that the posterior distributions of the 

forces derived from these measurements will vary; specifically, the confidence interval 

for the force calculated at an SNR of 40 is expected to be narrower than that from an 

SNR of 20. This difference arises because measurements with a lower SNR of 20 

contain more uncertainties and errors compared to those with higher SNR. 
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Consequently, using data with higher uncertainty for inference leads to larger 

confidence intervals in the posterior distributions. By substituting the optimal 

hyperparameters obtained from the minimizing the negative log marginal likelihood 

(as detailed in Eqs. (3.18) and (3.19)), the posterior distributions of forces under three 

noise conditions are derived. Figure 3.5 illustrates the calculated posteriors, showing 

that the confidence intervals of the posteriors widen as the SNR decreases, indicating 

an increase in noise dominance. The result demonstrates the capability of the proposed 

nonparametric Bayesian multi-task learning approach to effectively capture and 

quantify the uncertainties present in the original data. The probabilistic nature of this 

approach in force identification offers valuable insights into the reliability of the 

measured acceleration data for conducting time-domain force identification.  

 

 

Figure 3.4. Negative log marginal likelihood function with respect to parameters of the squared 

exponential kernel, where the star indicates the optimal solution. 
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Figure 3.5. Posteriors of forces obtained using the proposed method from noisy acceleration response 

at node 41 along the y axis. 

The force posterior derived from limited accelerometer data can be instrumental in 

reconstructing the full system response. In this case, the mean function of the identified 

force, calculated at an SNR of 30, serves as the input for the FE model. The estimated 

impact force is assumed to activate within a 1.5 s interval, with force values set to zero 

beyond this period. As a result, full system responses are generated, and acceleration 

data from four samples are compared with reference data from the initial impact 

simulation. Figure 3.6 shows this comparison, demonstrating that the identified force 

provides a valuable basis for computations of the full system response. Notably, 

through the constructed FE model and the proposed nonparametric Bayesian multi-task 
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learning method, the original acceleration data from node 41 along the y axis can be 

mapped to responses of the whole structure. 

 

Figure 3.6. Samples of the calculated structure responses using the reconstructed force with the ground 

truth. 

The accuracy of the proposed approach is compared with the conventional Tikhonov 

regularization method using three matrices, normalized root mean squared error 

(NRMSE), mean squared error (MSE), and mean absolute error (MAE). These matrices 

comprehensively quantify the deviation between the predicted results (from the MTGP) 

and the Tikhonov-regularized solution w.r.t. the reference force vector 𝒇୰ୣ୤ . Their 

definitions are as follows: 

 NRMSE൫𝒇୰ୣ୤, 𝒇ത୮୰ୣୢ൯ =
ฮ𝒇୰ୣ୤ − 𝒇ത୮୰ୣୢฮ

ଶ

‖𝒇୰ୣ୤ −  mean(𝒇୰ୣ୤)‖ଶ
, (3.27) 

 MSE൫𝒇୰ୣ୤, 𝒇ത୮୰ୣୢ൯ =
ฮ𝒇୰ୣ୤ −  𝒇ത୮୰ୣୢฮ

ଶ

ଶ

𝑁
 (3.28) 

 MAE൫𝒇୰ୣ୤, 𝒇ത୮୰ୣୢ൯ =
ฮ𝒇୰ୣ୤ −  𝒇ത୮୰ୣୢฮ

ଵ

𝑁
 (3.29) 
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where 𝒇୰ୣ୤ is the reference force vector, 𝒇ത୮୰ୣୢ denotes the predictive results, ‖⋅‖ଵ and 

‖⋅‖ଶ respectively represents the l1-norm and l2-norm, and 𝑁 is the dimension of 𝒇୰ୣ୤. 

Lower values of NRMSE, MSE, and MAE indicate higher prediction accuracy, as they 

reflect smaller deviations from the reference. The performance of the two methods is 

evaluated across six SNR ranging from 15 to 45, corresponding to decreasing noise 

levels in the measured data. Measurement and force configurations are consistent with 

those illustrated in Figure 3.3, with 1,000 acceleration data points collected over a 1.5 

s period. For each force reconstruction test, Tikhonov regularization parameters are 

optimized using the L-curve method. Figure 3.7 presents the results, demonstrating that 

under each SNR setting, the proposed nonparametric Bayesian multi-task learning 

method, which incorporates a GP prior for the force function, consistently outperforms 

Tikhonov regularization. The advantage of the proposed method becomes more 

pronounced at higher SNR values. 

 

Figure 3.7. Force reconstruction accuracy comparison between the proposed method and Tikhonov 

regularization under various SNR. 

In addition to noise, the number of data points (sampled within a 1.5-second window) 

used for reconstruction significantly influences the accuracy of results. To evaluate this 

effect, multiple experiments were conducted using y-axis acceleration data from Node 

7 (SNR = 40) to identify the force on Node 31. The number of data points varied from 
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200 to 700 across trials, with computational time recorded for each case. For every data 

point quantity, 10 trials were performed, and the posterior mean forces were calculated 

alongside their corresponding NRMSE, MSE, and MAE. Figure 3.8 illustrates the 

mean and one standard deviation of the computational time, NRMSE, MSE, and MAE 

across the ten trials. When fewer than 550 data points are used, the three metrices 

exhibits a decreasing trend, suggesting improved predictive performance of the MTGP 

algorithm. Beyond 500 data points, the NRMSE stabilizes at consistently low values, 

indicating convergence. Conversely, computational time increases substantially as the 

number of data points grows from 200 to 700. Specifically, while the number of data 

points increases by a factor of 3.5, the average computational time rises by a factor of 

14.3, highlighting a nonlinear scaling relationship. 

 
Figure 3.8. Force reconstruction accuracy and time consuming versus the volume of acceleration data 

used as input. 
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3.5. Experimental example: a frame structure 

3.5.1. Measurement setup 

A force reconstruction experiment is performed based on a frame structure. As 

depicted in Figure 3.9(a), the experimental setup consists of six aluminum beams 

connected by angle brackets and bolts to form the complete frame. A hammer is used 

to strike predetermined points on the structure, and the resulting accelerations are 

measured by four instrumented accelerometers, labeled A1 through A4. 

Simultaneously, the impact load is captured by a load cell integrated into the hammer. 

The data from these five channels are subsequently stored on a laptop for analysis at a 

sampling frequency of 20,000 Hz. A detailed illustration of the structural configuration, 

including accelerometer and impact locations and geometry of the frame, is provided 

in Figure 3.9(b). In this experiment, the recorded acceleration data serves as inputs to 

a nonparametric Bayesian multi-task learning model, and the computed posteriors of 

force histories will be compared with the measured impact load to validate the 

effectiveness of the proposed approach. 

 
Figure 3.9. (a) Experimental setup for force reconstruction on a frame structure; (b) Idealized model of 

the frame structure with detailed configurations of accelerometers and forces. 
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3.6.2. FE model construction and calibration 

An FE model is constructed for the frame structure using 2-dimensional, 2-node 

Euler-Bernoulli beam elements. Each node has 3 DOF: two translational DOF along 

the x and z axes, and one rotational DOF about the y axis. The beam elements have a 

length of 2.5 cm, leading to a total of 120 nodes and 120 elements in the FE model. 

Two nodes connected to the ground are fully constrained in all DOF. Additionally, for 

nodes located at each angle bracket (as shown in Figure 3.9(b)), all their rotational DOF 

are coupled. This results in unsymmetrical system mass and stiffness matrices, 𝐌 and 

𝐊. After implementing all constraints and couplings, the FE model has 342 DOF. To 

achieve a refined damping modelling for the FE model, the modal damping for each 

mode is assumed to constitute the system damping matrix 𝐂: 

 𝐂 = 𝚽௟
୘𝚭𝚽௟

୘𝐌, (3.30) 

where 𝚭 is the modal damping matrix, a diagonal matrix with each term calculated by 

the damping ratio of the 𝑖 th mode multiplied by its corresponding radial natural 

frequency; 𝚽௟  is the left eigenvector matrix obtained through eigen analysis of  

𝐌୘ିଵ
𝐊୘.  

An experimental modal analysis is conducted to measure modal information of the 

frame structure. Four accelerometers are evenly instrumented on each beam, batch by 

batch, and the hammer is utilized to generate a single peak excitation for each test case 

over a specific location, 10 cm vertically below the right upper corner of the frame. A 

total of six batches of measurements are obtained, each containing one channel for the 

measured force history and four channels for accelerations. For each batch of 

measurement, four FRF are calculated, resulting in a total of 24 FRF for the frame 
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structure, denoted as ℎ෠௜(𝑓) , where 𝑖 = 1,2, … , 24 . Using these FRF, the first 10 

damping ratios are evaluated based on the 3dB method. The damping ratios for higher 

order modes are assumed to be the same as the 10th damping ratio. Consequently, the 

modal damping matrix 𝚭 is determined based on these measurements. 

Beyond the directly measurable parameters for the FE model, the system matrices 

are governed by three parameters: the elastic modulus 𝐸 , and densities 𝜌  of the 

idealized beam, and the equivalent added mass 𝑚  for each accelerometer. 

Incorporating the equivalent added mass for the accelerometers in the FE model is 

crucial because initial calculations indicate that the total mass of the frame structure is 

approximately 800 g, while the total mass of the accelerometers (including magnetic 

bases) weighting on a scale exceeds 100 g. Neglecting this added mass could 

significantly impact the fidelity of the FE model. Note that for each batch of 

measurements, the locations of the accelerometers differ, necessitating adjustments to 

the added mass to compose the system mass matrix 𝐌. To calibrate the FE model, a 

model updating is conducted based on the calculated FRF. The evaluated frequency 

band is constrained from 10 to 250 Hz, with a grid length of 1 Hz. The optimization 

problem is defined as: 

 
min ෍ ෍ ቈlogଵ଴

หℎ෠௜(𝑗)ห

|ℎ௜(𝑗; 𝐸, 𝜌, 𝑚)|
቉

ଶହ଴

௝ୀଵ଴

ଶସ

௜ୀଵ

, (3.31) 

where |⋅| denotes the magnitude operator; ℎ௜(𝑗; 𝐸, 𝜌, 𝑚) is the 𝑖th FRF at frequency 𝑗 

predicted from the FE model given the parameters 𝐸, 𝜌, and 𝑚, respectively. The L-

BFGS-B algorithm is adopted for optimization, with the initial guessed values for 

elastic modulus, densities and equivalent added mass being 6.5×1010 N/m2, 

3×103 kg/m3, and 3.5×10-2 kg, respectively. Upon convergence of the optimization, the 
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scaling factors for the three parameters are 0.894, 0.831, and 0.518, respectively. Figure 

3.10 shows the comparison between four FRF from the measurement and the FE model 

before and after updating. Figure 3.11 shows the measured natural frequencies versus 

the FE model computed natural frequencies before and after model updating. Both 

results indicate that the calibration process has improved the accuracy of FE model to 

the reality. The predictive performance of the FE model is better in lower frequency 

than in higher frequency, as the high-frequency vibration of the frame structure is more 

sensitive to the fidelity of the FE model. With the optimal parameters determined for 

the FE model, force reconstruction can be implemented in the following subsection. 

 

Figure 3.10. Measured and FE model (before and after updating) output FRF. 
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Figure 3.11. Measured and calculated natural frequencies before and after model updating. 

3.5.3. Force reconstruction in the presence of epistemic noise 

In contrast to the simulation case, force reconstruction for the real-world structure 

must always consider the deviation between the calibrated FE model and the actual 

structure. Figures 3.10 and 3.11 highlight this discrepancy, which can be challenging 

and costly to mitigate. However, this difference can also be viewed as the epistemic 

noise (error, uncertainty) inherent in the structural dynamical system. The propagation 

of this epistemic uncertainty can be quantified using the proposed nonparametric 

Bayesian multi-task learning model. The posteriors over the forces can reveal the extent 

of uncertainty at a specific time step, taking into account both the FE model's imperfect 

simulation of the real-world structure and the measurement noise. 

To enhance the clarity of epistemic uncertainty, consider the data from impact tests 

as outlined in the experimental setup depicted in Figure 3.12 illustrates a pair of time 

histories for force (applied at F2) and acceleration (measured at A3). One could first 

assume that the force measurement is perfectly accurate and serves as a benchmark. 

When this measured force is input into the FE model to calculate responses at locations 
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A1 to A4, deviations are observed between the calculated responses and the actual 

measurements. As depicted in Figure 3.13, the measured acceleration time histories are 

represented by blue solid lines, while the red dotted lines represent the calculated 

structural responses. Notably, the measured accelerations tend to exhibit greater energy 

at higher frequencies compared to the computed responses. These discrepancies can be 

attributed to epistemic errors between the real-world tested frame structure and the 

calibrated FE model. Under such conditions, measurement noise, also known as 

aleatory noise, appears to play a secondary role in influencing the accuracy of force 

reconstruction. 

 
Figure 3.12. (a) Applied Impact force on F2; (b) Collected acceleration data from A3. 

 

Figure 3.13. Comparison between the measured accelerations with the calculated acceleration 

responses based on the calibrated FE model. 
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If the analysis only considers measurement noise and neglects epistemic uncertainty, 

the results from our proposed nonparametric Bayesian multi-task learning approach 

can lead to two scenarios in multiple tests: one where the optimization process fails due 

to an ill-conditioned problem setting, and another where there is a high level of 

confidence in the posterior estimates of forces that may not be accurate. To address this 

issue, it is crucial to incorporate epistemic noise into the calculation of force posteriors. 

To effectively manage this, a prior assumption is applied on the epistemic noise, 

quantified using an SNR index. Specifically, the SNR index is used to gauge the 

deviations between measured and computed values. For example, if setting the SNR at 

10 for the time histories depicted in Figure 3.13, the variance can be calculated using 

Eq. (3.19). The gray solid line in Figure 3.13 illustrates the bounds of two standard 

deviations, indicating that by adding Gaussian noise to the measurements, epistemic 

noise can be accurately included. Consequently, the propagation of this uncertainty to 

the calculated forces can be quantified using the approach proposed in this chapter. 

 

Figure 3.14. Workflow for force reconstruction in the presence of epistemic noise. 

Figure 3.14 outlines the workflow for addressing epistemic uncertainty in real-world 

scenarios. This workflow enables effective quantification of the posteriors of external 

forces. To validate this approach, four dedicated impact loading tests are conducted. 



79 
 

The first two tests apply impact forces on F1, while the last two target F2. Each test 

involved impacts that exceeded a single peak force. By embedding knowledge from 

the FE model and incorporating perturbed accelerations from all four channels into the 

MTGP, the posteriors of impact histories are computed for each test, as depicted in 

Figure 3.15. The results demonstrate that the proposed approach can effectively capture 

the characteristic peaks of the impacts. Additionally, the 95% confidence interval 

provides insight into the force uncertainties, given the measurements and the calibrated 

FE model. 

 

Figure 3.15. Measured forces and reconstructed forces based on the proposed nonparametric Bayesian 

multi-task learning approach. 

This study evaluates the influence of accelerometer configurations on time-domain 

force reconstruction, with a focus on identifiability—the ability to uniquely determine 

forces from sensor data—when reducing sensor counts. Identifiability is critical in 

underdetermined systems, where insufficient sensors may fail to resolve unique force 

solutions. Fifteen accelerometer configurations (Table 3.2), varying in sensor numbers 

(1–4) and positions (A1–A4), were tested using five impact trials at force locations F1 
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and F2. Force histories were reconstructed from measured accelerations, with accuracy 

quantified via NRMSE, MSE, and MAE relative to ground-truth hammer 

measurements. 

Key findings demonstrate that sensor placement and redundancy directly govern 

identifiability. Configurations with fewer than three accelerometers (e.g., A1 alone, 

Table 3.2, Index 1) exhibit high NRMSE (0.320–0.716 for F1, 0.340–0.716 for F2), 

indicating poor identifiability due to insufficient spatial resolution. Conversely, 

configurations including A1, positioned to capture dominant structural modes, 

consistently yield lower errors (e.g., A1+A4, Index 7: NRMSE = 0.265 for F1, 0.369 

for F2). This underscores A1’s critical role in resolving identifiability by providing 

essential modal information. While increasing sensors improves accuracy (e.g., four-

sensor configurations reduce F2 MAE to 0.454, Index 15), diminishing returns emerge 

beyond four sensors, as redundancy compensates for identifiability limitations rather 

than introducing new information.  

Kernel selection in the GP-based Bayesian framework further interacts with 

identifiability constraints. The white kernel (Table 3.3a–b), which assumes force 

independence, performs poorly (e.g., A2;F1: NRMSE = 0.793, MSE = 1.317, MAE = 

0.930), as it fails to model temporal correlations, exacerbating identifiability issues in 

sparse configurations. In contrast, the squared exponential kernel enforces smoothness, 

implicitly regularizing underdetermined systems (e.g., A1,A4;F1: NRMSE = 0.261, 

MSE = 0.154). Matérn kernels, with tunable flexibility, improve identifiability as 

sensor counts increase (e.g., Matérn 5/2 for A1,A3,A4;F2: NRMSE = 0.351, MAE = 

0.538), leveraging spatial correlations to resolve forces. These results emphasize that 
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kernel design must align with identifiability constraints imposed by sensor 

configurations. 

Table 3.2. Force reconstruction accuracy comparison via different number and position of accelerometers. 

Index Acc. config. NRMSE (F1) MSE (F1) MAE (F1) NRMSE (F2) MSE (F2) MAE (F2) 

1 A1 0.320 0.211 0.357 0.408 0.770 0.629 

2 A2 0.487 0.495 0.538 0.560 1.416 0.868 

3 A3 0.716 1.193 0.771 0.340 0.602 0.572 

4 A4 0.696 1.121 0.768 0.522 1.665 0.860 

5 A1, A2 0.245 0.126 0.277 0.412 0.788 0.646 

6 A1, A3 0.333 0.219 0.360 0.262 0.315 0.410 

7 A1, A4 0.265 0.147 0.296 0.369 0.646 0.558 

8 A2, A3 0.424 0.356 0.453 0.386 0.663 0.604 

9 A2, A4 0.475 0.466 0.515 0.450 0.920 0.678 

10 A3, A4 0.558 0.674 0.610 0.418 0.929 0.683 

11 A1, A2, A3 0.266 0.147 0.291 0.286 0.393 0.450 

12 A1, A2, A4 0.244 0.147 0.278 0.336 0.576 0.528 

13 A1, A3, A4 0.268 0.154 0.297 0.315 0.448 0.470 

14 A2, A3, A4 0.470 0.473 0.520 0.341 0.535 0.530 

15 A1, A2, A3, A4 0.251 0.147 0.280 0.307 0.439 0.454 

Table 3.3 (a). Performance comparison of nonparametric Bayesian multi-task learning using different kernels. 

Kernel Kernel function expressions 
NRMSE 

A2; 
F1 

A1; 
F2 

A1, 
A4; F1 

A1, A3, 
A4; F2 

Squared 
exponential 

𝑘(𝑥, 𝑥ᇱ) = 𝜎௙
ଶ exp ቆ−

𝑟ଶ

2𝜎௟
ଶቇ 0.488 0.411 0.261 0.341 

White 𝑘(𝑥, 𝑥ᇱ) = 𝜎௙
ଶ𝛿(𝑥, 𝑥′) 0.793 0.601 0.587 0.493 

Exponential 𝑘(𝑥, 𝑥ᇱ) = 𝜎௙
ଶ exp ൬−

𝑟

𝜎௟
൰ 0.627 0.521 0.350 0.387 

Rational 
quadratic 𝑘(𝑥, 𝑥ᇱ) = 𝜎௙

ଶ ቆ1 +
𝑟ଶ

2𝛼𝜎௟
ଶቇ

ିఈ

 0.432 0.416 0.258 0.464 

Matérn 3/2 𝑘(𝑥, 𝑥ᇱ) = 𝜎௙
ଶ ቆ1 +

√3𝑟

𝜎௟
ቇ exp ቆ−

√3𝑟

𝜎௟
ቇ 0.600 0.475 0.294 0.389 

Matérn 5/2 𝑘(𝑥, 𝑥ᇱ) = 𝜎௙
ଶ ቆ1 +

√5𝑟

𝜎௟

+
5𝑟ଶ

3𝜎௟
ଶቇ exp ቆ−

√5𝑟

𝜎௟
ቇ 0.464 0.456 0.246 0.351 
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Table 3.3 (b). Performance comparison of nonparametric Bayesian multi-task learning using different kernels. 

Kernel 

MSE MAE 

A2; F1 A1; F2 
A1, 

A4; F1 
A1, A3, 
A4; F2 

A2; F1 A1; F2 
A1, A4; 

F1 
A1, A3, 
A4; F2 

Squared 
exponential 

0.498 0.782 0.154 0.604 0.538 0.630 0.297 0.537 

White 1.317 1.618 0.740 1.141 0.930 0.911 0.708 0.776 

Exponential 0.881 1.435 0.257 0.723 0.709 0.836 0.379 0.620 

Rational 
quadratic 

0.386 0.860 0.132 0.957 0.478 0.666 0.280 0.704 

Matérn 3/2 0.801 0.863 0.182 0.739 0.660 0.704 0.329 0.598 

Matérn 5/2 0.464 1.003 0.124 0.595 0.512 0.725 0.270 0.538 

3.6. Summary 

In this chapter, a nonparametric Bayesian-based framework for time-domain force 

reconstruction is proposed, leveraging the concept of multi-task learning. By 

incorporating GP priors for forces and embedding knowledge from FE models, the 

method enables the analytical calculation of force posterior distributions given 

measured acceleration data. Compared to previously developed Bayesian-based force 

reconstruction methods, the proposed nonparametric Bayesian multi-task learning 

approach is highly efficient in quantifying the propagation of uncertainties from 

measurements and the constructed FE model to time-domain forces. Additionally, 

compared to conventional regularization methods, the proposed method reconstructs 

forces more accurately by embedding the priors that correlate different force function 

values. The effectiveness of the proposed approach in uncertainty quantification and 

prediction accuracy improvement is demonstrated through two examples: a spatial truss 

numerical example and a frame structure experimental example. The results from both 

examples show that the force reconstruction problem can be successfully addressed 

using the proposed method. Furthermore, the ill-posed nature of the inverse problem is 

effectively managed.  
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Chapter 4. 

Transient aerodynamic load reconstruction for 

maglev vehicles using onboard acceleration 

measurements 

4.1. Introduction 

This chapter presents the application of time-domain force reconstruction to the 

maglev vehicles subject to transient aerodynamic loads. Accurate estimation of 

aerodynamic loads is crucial for developing high-speed maglev trains. Traditionally, 

this estimation has been achieved through computational aerodynamic simulation or 

direct pressure measurement, both of which can be time-consuming and expensive. A 

novel framework is developed for reconstructing transient aerodynamic loads on 

maglev vehicles using on-board acceleration measurements. In this framework, an 

inverse mathematical model correlating the measured acceleration with external 

aerodynamic loads is derived from a well-calibrated maglev vehicle model. To address 

the ill-posedness inherent in solving the inverse mathematical model, the MTGP 

algorithm proposed in Chapter 3 is adopted. This approach treats all reconstructed 

transient aerodynamic loads as GP, enabling the calculation of closed-form posterior 

distributions of these aerodynamic loads. To validate the proposed framework, 

transient vibration data collected from an operational maglev train passing through a 
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double-track tunnel are utilized for load reconstruction. The results demonstrate that 

the framework offers a cost-effective and efficient means to obtain aerodynamic loads, 

highlighting its practical relevance for aerodynamic field testing in the context of 

evolving high-speed maglev technologies. 

4.2. Problem description of aerodynamic load reconstruction for 

maglev vehicles 

4.2.1. Transient vibration of maglev vehicles 

Transient vibrations of maglev vehicles refer to temporary, non-steady-state 

vibrations occurring in the vehicle system due to sudden changes or disturbances 

(Jönsson and Johansson, 2005). These vibrations are typically caused by two vehicles 

passing each other, a single vehicle moving through a double-track tunnel, or a single 

vehicle encountering crosswinds (Rocchi et al., 2018; Li et al., 2020b; Chen et al., 

2019). The occurrence of transient vibrations may significantly influence the 

performance, comfort, and safety of the maglev system under extreme circumstances. 

In-situ testing reveals sudden changes in vehicle acceleration when the vehicle enters 

and exits a double-track tunnel. This is attributed to an abrupt change in the 

aerodynamic field around the vehicle as it transitions from a confined environment to 

an open environment. Figure 4.1 displays GPS velocity data alongside three sets of 

acceleration data collected from the front right of the maglev vehicle during three 

distinct intervals. As depicted in Figure 4.1(a), the intervals correspond to the following 

phases: the train moving in a straight line, entering a double-track tunnel, and exiting 

the tunnel. When the maglev vehicle passes through a double-track tunnel, the GPS 

signal may weaken or disappear completely. Almost simultaneously, significant 



85 
 

unsteady vibrations are observed, as shown in Figure 4.1(c) and (d). Compared to the 

vibrations under normal operational conditions illustrated in Figure 4.1(b), the 

vibrations in Figure 4.1(c) and (d) predominantly occur at low frequencies. These are 

primarily caused by the rigid motion of the maglev vehicle assembly, rather than by 

the elasticity of the vehicle structures. This phenomenon suggests that transient 

variations in the pressure field surrounding the vehicle, characterized by aerodynamic 

loads, could be responsible for the abrupt changes in acceleration observed. Based on 

this observation, the objective is to use onboard measured acceleration data to inversely 

reconstruct the aerodynamic loads affecting the vehicle.  

 

Figure 4.1. (a) Maglev operational velocity recorded via GPS; (b) Lateral accelerations in an open 

environment; (c) Lateral acceleration upon entering the tunnel; (d) Lateral acceleration upon exiting 

the tunnel. 

4.2.2. Aerodynamic load reconstruction: an inverse problem  

Generally, forward computation refers to calculating the full system response 

(output) under the action of aerodynamic loads (input) using an accurately calibrated 

multi-DOF model. The model can be calibrated using acceleration data collected from 

the operational maglev vehicle. However, reconstructing aerodynamic loads constitutes 
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an inverse problem, i.e., determining the input functions from part of the system's 

output. Despite having an accurate model elucidating the relationship between input 

and output, reconstructing the aerodynamic load requires formulating an explicit 

mapping between the load functions and recorded accelerations with a limited number 

of DOF measured. Moreover, managing the ill-posed nature of the inverse problem is 

a significant challenge to ensure the algorithm yields stable solutions for aerodynamic 

loads by using noisy acceleration data. Without appropriate strategies to address the ill-

posedness, minor data variations could lead to significant discrepancies in the 

reconstructed loads. Additionally, the noise present in the acceleration data can 

potentially affect the results. Therefore, understanding the mechanism of uncertainty 

propagation from noise to the reconstructed loads is a crucial area of study. 

Figure 4.2 displays the technical flowchart for the proposed framework to 

reconstruct the transient aerodynamic load when a maglev vehicle enters or exits a 

double-track tunnel. Firstly, a model describing the motion of a maglev train is 

established. Despite numerous simplifications in the modeling process, the objective is 

to achieve a balance between model complexity and effective implementation of 

aerodynamic load reconstruction. Then, certain parameters within this model are 

calibrated using stationary random vibration data collected from a monitoring system 

installed on the vehicle. To calibrate the model, operational modal analysis is 

conducted to obtain the mode shapes and natural frequencies of the vehicle. The 

specific patterns of the mode shapes serve as a benchmark to assess the model’s results, 

and associated natural frequencies are used for model validation. Based on the 

calibrated model, inverse analysis is conducted to establish a time-domain 

mathematical model correlating aerodynamic loads and measured acceleration data. To 
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carefully handle issues of ill-posedness and error propagation from measurements in 

the established model, the proposed MTGP algorithm is used to derive the closed-form 

posterior distribution of the reconstructed aerodynamic loads using the noisy transient 

vibration data collected when the vehicle enters or exits the double-track tunnel. 

 

Figure 4.2. Technical flowchart for transient aerodynamic load reconstruction using acceleration data. 

4.3. Maglev vehicle system modelling 

The maglev vehicle considered in this chapter comprises a car body and five 

levitation suspension bogies. The car body is considered rigid and has five DOF: 

movements along the y and z axes, as well as roll, pitch, and yaw motions. The car 

body is elastically attached to the levitation bodies with a pair of secondary suspensions, 

providing lateral, longitudinal, and vertical stiffness and damping. Each pair of 

levitation bogies consists of two levitation modules connected on two sides via anti-

rolling bars, decoupling the dynamics of each side bogie and limiting the rolling 
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rotation of the bogies. Hence, each levitation module is assumed to be a 5-DOF rigid 

body. Moreover, four electromagnets are rigidly connected to individual levitation 

modules and interact with the guideway to realize levitation functions. Thus, the 

maglev vehicle-guideway system model involves: 

i. One vehicle body, modeled as a rigid body with 5 DOF including vertical and 

lateral displacements (i.e., 𝑦௖ and 𝑧௖, respectively), and pitching, yawing and 

rolling rotations (i.e., 𝜙௖, 𝜃௖, and  𝜓௖ respectively); 

ii. Ten levitation modules, each modeled as a rigid body with 5 DOF, i.e., 𝑦௕௜, 𝑧௕௜, 

𝜙௕௜, 𝜃௕௜ , and 𝜓௕௜, respectively for 𝑖 = 1, … , 10; 

iii. Twenty secondary suspensions, each modeled as spring-dashpot elements with 

stiffness 𝑘௦௫, 𝑘௦௬ and 𝑘௦௭; and damping 𝑐௦௬, 𝑐௦௬ and 𝑐௦௭; 

iv. Forty primary electromagnetic forces modeled as linear spring-dashpot 

elements with stiffness 𝑘௣௭ and 𝑘௣௬; and damping 𝑐௣௭ and 𝑐௣௬; 

v. Ten anti-rolling bars modelled as linear spring pair elements with stiffness 𝑘௥ 

each. 

Hence, the total number of DOF involved in the multi-rigid-body dynamics sums up to 

55. 

As depicted in Figure 4.3, the maglev vehicle model simplifies essential dynamic 

calculations for understanding key aspects of vibrations when subjected to 

aerodynamic loads. This is accomplished by focusing on eliminating complex 

deformation interactions, which are considered less critical according to previous 

research (Dou et al., 2017; Liu et al., 2017). Importantly, transient aerodynamic loads, 

treated as external excitations, predominantly manifest energy content below 5 Hz (Liu 

et al., 2017; Zeng et al., 2021). This frequency range significantly overlaps with the 
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frequency band of rigid body motions of the maglev vehicles being studied but does 

not overlap with the frequency bands associated with elastic vibrations caused by 

material elasticity. In other words, the aerodynamic loads primarily induce rigid body 

motion rather than causing structural deformations. Furthermore, the natural 

frequencies of the vehicle's elastic vibrations generally exceed those of rigid body 

motion. This characteristic allows for the practical separation of these two types of 

motion in the collected signals using filtering techniques. By employing filters, rigid 

body motions can be isolated from higher frequency elastic vibrations, enabling more 

targeted analyses. Consequently, analysis is focused within this specific frequency 

threshold, offering a focused and practical approach to examining the dynamic 

responses of the maglev vehicle under operational conditions, with an emphasis on the 

effects on rigid body dynamics while effectively filtering out elastic vibrations. 

With these assumptions, the equation of motion for the maglev vehicle model is 

derived based on the Euler-Lagrange equation. The Lagrangian identity is defined as: 

 𝐿 = 𝑇 − 𝑉, (4.1) 

here 𝑇 represents kinetic energy and 𝑉 stands for potential energy. Both are functionals 

with respect to velocity or displacement.  The total kinetic energy of the system is the 

summation of vehicle body’s kinetic energy 𝑇௖  and each bogie’s kinetic energy 𝑇௕௜ , 

which is given by: 

 𝑇 = 𝑇௖ + ෍ 𝑇௕௜

ଵ଴

௜ୀଵ

 , (4.2) 

with: 

 𝑇௖ = 0.5൫𝑚௖𝑦̇௖
ଶ + 𝑚௖𝑧̇௖

ଶ + 𝐽௖௫𝜙̇௖
ଶ + 𝐽௖௬𝜃̇௖

ଶ + 𝐽௖௭𝜓̇௖
ଶ൯, (4.3) 
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 𝑇௕௜ = 0.5൫𝑚௕𝑦̇௕௜
ଶ + 𝑚௕𝑧̇௕௜

ଶ + 𝐽௕௫𝜙̇௕௜
ଶ + 𝐽௕௬𝜃̇௕௜

ଶ + 𝐽௕௭𝜓̇௕௜
ଶ ൯. (4.4) 

 

Figure 4.3. Constructed maglev vehicle model for transient aerodynamic load reconstruction. 

The system's potential energy is composed of six components, corresponding to the 

variations in secondary suspensions in three directions (𝑉௦௫, 𝑉௦௬, and 𝑉௦௭), the primary 

electromagnetic forces in two directions (𝑉௣௬ and 𝑉௣௭), and the anti-rolling bars (𝑉௥). 

Therefore, the potential energy is given by: 

 𝑉 = 𝑉௦௫ + 𝑉௦௬ + 𝑉௦௭ + 𝑉௠௬ + 𝑉௠௭ + 𝑉௥, (4.5) 

with each component of the system potential energy expressed as: 

𝑉௦௫ = 0.5𝑘௦௫ ෍ ෍[(𝜃௖ℎଶ + 𝜃௕௜ℎଷ + (−1)௜ିଵ𝜓௖(𝑏ଶ + 𝑏ଷ + 𝑏ସ) + (−1)௜𝜓௕௜𝑏ଶ)ଶ]

ଶ

௝ୀଵ

ଵ଴

௜ୀଵ

, (4.6) 

𝑉௦௬ = 0.5𝑘௦௬ ෍ ෍ ቂ൫𝑦௖ + 𝜙௖ℎଶ + 𝜓௖𝑝(ଶ௜ା௝ିଶ) − 𝑦௕௜ + 𝜙௕௜ℎଷ + (−1)௝ିଵ𝜓௕௜𝑙ଶ൯
ଶ

ቃ

ଶ

௝ୀଵ

ଵ଴

௜ୀଵ

, 
(4.7) 

𝑉௦௭ = 0.5𝑘௦௭ ෍ ෍ ቂ൫𝑧௖ + (−1)௜ିଵ𝜙௖(𝑏ଶ + 𝑏ଷ + 𝑏ସ) − 𝜃௖𝑝(ଶ௜ା௝ିଶ) − 𝑧௕௜ + (−1)௝𝜃௕௜𝑙ଶ

ଶ

௝ୀଵ

ଵ଴

௜ୀଵ

+ (−1)௜𝜙௕௜𝑏ଶ൯
ଶ
ቃ, 

(4.8) 
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𝑉௠௬ = 0.5𝑘௠௬ ෍ ෍[(𝑦௕௜ + 𝜙௕௜ℎଵ + (𝑗 − 2.5)𝜓௕௜𝑙ଵ)ଶ]

ସ

௝ୀଵ

ଵ଴

௜ୀଵ

, 
(4.9) 

𝑉௠௭ = 0.5𝑘௠௭ ෍ ෍[(𝑧௕௜ + (−1)௜𝜙௕௜𝑏ଵ + (𝑗 − 2.5)𝜃௕௜𝑙ଵ)ଶ]

ସ

௝ୀଵ

ଵ଴

௜ୀଵ

, 
(4.10) 

𝑉௥ = 0.5𝑘௥ ෍ ෍ ቂ൫𝑧௕(ଶ௜ିଵ) − 𝑧௕(ଶ௜) + 𝜙௕(ଶ௜ିଵ)𝑏ଷ − 𝜙௕(ଶ௜)(𝑏ଷ + 2𝑏ସ)

ଶ

௝ୀଵ

ହ

௜ୀଵ

+ (−1)௝ିଵ𝜃௕(ଶ௜ିଵ)𝑙ଶ + (−1)௝𝜃௕(ଶ௜)𝑙ଶ൯
ଶ

+൫𝑧௕(ଶ௜ିଵ) − 𝑧௕(ଶ௜)

+ 𝜙௕(ଶ௜ିଵ)(𝑏ଷ + 2𝑏ସ) − 𝜙௕(ଶ௜)𝑏ଷ + (−1)௝ିଵ𝜃௕(ଶ௜ିଵ)𝑙ଶ

+ (−1)௝𝜃௕(ଶ௜)𝑙ଶ൯
ଶ

ቃ, 

(4.11) 

where 𝑝௞ in Eqs. (4.7) and (4.8) is of the form: 

 𝑝௞ = 𝑣ଵ௞𝑙ଶ + 𝑣ଶ௞𝑙ଷ, 𝑘 = 1, 2, … , 20 , (4.12) 

with: 

 𝑣ଵ௞ = {5,3,5,3,3,1,3,1,1, −1,1, −1, −1, −3, −1, −3, −3, −5, −3, −5}, (4.13) 

 𝜐ଶ௞ = {2,2,2,2,1,1,1,1,0,0,0,0, −1, −1, −1, −1, −2, −2, −2, −2}. (4.14) 

The Python symbolic mathematics toolbox SymPy is utilized to construct the 

expressions for 𝑇  and 𝑉 . The Lagrangian identity and its variations with respect to 

displacement and velocity follow the equation: 

 
𝜕𝐿

𝜕𝑞௜
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇௜
= 0, 𝑖 = 1,2, … , 55 , (4.15) 

where 𝑞௜ and 𝑞̇௜ represent the displacement and velocity of the 𝑖th DOF, respectively. 

The stiffness and mass matrices 𝐊 and 𝐌 are subsequently obtained. For the damping 

matrix 𝚼 , deriving reliable estimates for each component's damping coefficient is 

challenging. Therefore, it is constructed from the stiffness and mass matrices by 

incorporating modal damping factors identified from operational data, specifically 
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using Rayleigh damping. This approach simplifies the damping model and balances the 

realism of the maglev vehicle model with the practical feasibility of model calibration. 

The original spring-damper model offers greater descriptive power, enabling the 

capture of non-proportional damping effects within the structure. However, the 

complexity of calibrating such models renders them less practical for operational use. 

Analysis of mode shapes from actual acceleration measurements suggests that the 

structure's damping behavior is predominantly proportional. Consequently, Rayleigh 

damping is adopted in the model, aligning well with these findings and simplifying the 

analysis without sacrificing significant accuracy.  

Table 4.1 presents the nominal values of the main parameters, with those having 

corresponding scaling factors identified as more critical parameters requiring further 

validation. By specifying the parameters of the established maglev vehicle model, the 

vehicle's modal properties are determined. The natural frequencies and mode shapes 

can be determined by solving the eigenvalue and eigenvector problem, given by: 

 (𝐌ିଵ𝐊)𝝓௜ = 𝜔௜
ଶ𝝓௜ , (4.16) 

In this equation, 𝜔௜ is the 𝑖th angular natural frequency and 𝝓௜ ∈ ℝ௡ represents the 𝑖th 

mode shape. However, accelerometers are not exactly installed at the mass center of 

the rigid bodies, resulting in identified mode shapes from field-measured data deviating 

from the output 𝝓௜ . To formulate the deviation, a linear transformation matrix 𝚿  is 

constructed based on the relative positions between the accelerometers and the center 

of the vehicle body. This matrix allows mapping the theoretical mode shapes 𝝓௜ to 

designated mode shapes 𝝓෡ ௜ ∈ ℝ௡ೞ , with 𝑛௦ represents the number of accelerometers. 

This is expressed as: 
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 𝝓෡ ௜ = 𝚿𝝓௜ . (4.17) 

The matrix 𝚿 is a sparse matrix comprising various geometric parameters related to 

the positions of accelerometers. For instance, mapping the theoretical mode shapes 𝝓௜ 

to the vertical component of a sensor installed on the front of the car body in designated 

mode shapes 𝝓෡ ௜ can be expressed by: 

 𝑧̂௖ = 𝑧௖ − 𝜃௖𝑙ହ + 𝜙௖𝑙଺. (4.18) 

Here, 𝑙ହ and 𝑙଺ are the distances of accelerometer positions to the mass center of car 

body .  The other mappings can be formulated similarly, allowing 𝚿  to be fully 

determined. 

Table 4.1. Nominal values of main parameters of the maglev vehicle model. 

Parameter Notation Scaling factor Nominal value Unit 

Vehicle body mass 𝑚௖ - 2.83×10ସ kg 

Bogie mass 𝑚௕ - 9.60×10ଶ kg 

Magnetic support stiffness along y-axis 𝑘௠೤
 𝜃௞೘೤

 3.00×10଺ N/m 

Magnetic support stiffness along z-axis 𝑘௠೥
 𝜃௞೘೥

 2.00×10ହ N/m 

Rotation stiffness 𝑘௥  𝜃௞ೝ
 2.00×10଺ N/m 

Suspension support stiffness along x-axis 𝑘௦ೣ
 𝜃௞ೞೣ

 3.00×10଺ N/m 

Suspension support stiffness along y-axis 𝑘௦೤
 𝜃௞ೞ೤

 7.00×10ସ N/m 

Suspension support stiffness along z-axis 𝑘௦೥
 𝜃௞ೞ೥

 3.00×10ସ N/m 
Vehicle body’s moment of inertia about 

x-axis 
𝐽௖௫ - 3.26×10ସ kg⋅m 

Vehicle body’s moment of inertia about 
y-axis 

𝐽௖௬ - 6.22×10ହ kg⋅m 

Vehicle body’s moment of inertia about 
z-axis 

𝐽௖௭ - 6.32×10ହ kg⋅m 

Bogie’s moment of inertia about x-axis 𝐽௕௫ - 4.00×10ଵ kg⋅m 

Bogie’s moment of inertia about y-axis 𝐽௕௬ - 5.55×10ଶ kg⋅m 

Bogie’s moment of inertia about z-axis 𝐽௕௭ - 5.57×10ଶ kg⋅m 

 

Beyond its modal properties, the maglev vehicle model can also be directly 

employed to predict responses given external excitations, such as aerodynamic loads 

(Wang et al., 2020b). The equation of motion is adopted for the inverse analysis of the 
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relationship between external loads and responses at specified locations. This analysis 

is undertaken in the following subsections. 

4.4. Model calibration based on operational data 

To calibrate the established maglev model, operational modal analysis is first 

performed using acceleration data collected during normal train operation. Specifically, 

the frequency domain decomposition (FDD) method is adopted due to its 

straightforward implementation and computational efficiency in handling large 

datasets (Brincker et al., 2001). This method extracts information concerning the 

vehicle's natural frequencies and mode shapes. 

Based on the FDD method, the acceleration functions 𝒚(𝑡) ∈ ℝ௡ೞ  are expressed in 

the modal expansion: 

 𝒚(𝑡) = 𝚽෡ 𝒑(𝑡), (4.19) 

where 𝚽෡  is the modal matrix derived from the designated mode shapes, and 𝒑(𝑡) is the 

modal coordinate vector. The correlation of the response 𝒚(𝑡) is given by: 

 𝐑௬௬(𝜏) = 𝔼[𝒚(𝑡)𝒚୘(𝑡 + 𝜏)] = 𝚽෡ 𝐑௣௣(𝜏)𝚽෡ ୘, (4.20) 

where 𝐑௣௣ denotes the correlation matrix of the modal coordinate vector. Then, cross 

spectral density (CSD) matrix 𝐆௒௒ can be obtained by applying the Fourier transform 

to both sides of the above equation, that is: 

 𝐆௒௒(𝜔) = 𝚽෡ ቈන 𝐑௣௣(𝜏)
ାஶ

ିஶ

eି୧ఠఛd𝜏቉ 𝚽෡ ୘ = 𝚽෡ 𝐆௉௉(𝜔)𝚽෡ ୘. (4.21) 

Since the modal coordinates are commonly considered uncorrelated, the off-diagonal 

elements 𝐆௉௉(𝜔) are set to zeros, making 𝐆௉௉(𝜔) a diagonal positive definite matrix. 

Additionally, as mode shapes can contain complex numbers, the transpose notation ୘ 
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in the above equation is replaced by the Hermitian transpose notation  ற. Finally, the 

equation is rewritten as 

 𝐆௒௒(𝜔) = 𝚽෡ [𝑔௡
ଶ(𝜔)]𝚽෡ ற, (4.22) 

where 𝑔௡
ଶ(𝜔) is the nth diagonal element of 𝐆௉௉(𝜔) that represents the PSD of modal 

coordinates at frequency 𝜔. The CSD matrix 𝐆௒௒(𝜔) can be constructed by computing 

the CSD function between any two random vibration signals using Welch’s method. 

SVD is then applied to the calculated 𝐆௒௒(𝜔), resulting in: 

 𝐆௒௒(𝜔) = 𝚽෡ ′[𝑠௡
ଶ(𝜔)]𝚽෡ ᇱ୘, (4.23) 

where the singular values 𝑠௡
ଶ in the diagonal positions are the power spectral densities 

(PSD) of modal coordinates, and the singular vectors in 𝚽෡ ′ are interpreted as the mode 

shapes. Figure 4.4 illustrates the flowchart for computing natural frequencies and mode 

shapes using the FDD method. It is important to determine the rough frequency interval 

based on the peaks in the spectrums, ensuring that each interval includes only one 

natural frequency. Thus, the 𝜔⋆  producing the largest singular value within each 

interval is identified as the natural frequency, and the corresponding mode shape is 

obtained accordingly.  

 

Figure 4.4. Flowchart of computing natural frequencies and designated mode shapes using FDD. 

Multiple redundant peaks in the spectrums, primarily caused by elastic vibrations of 

different parts of the maglev vehicles not included in the constructed maglev vehicle 
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model, may mislead mode identification. To address this, a meticulous analysis of the 

mode shapes is necessary to identify each detectable mode. Subsequent identification 

of the mode shapes enables discernment of the associated modal characteristics. Only 

modes with well-defined characteristics are selected to calibrate the maglev vehicle 

model. Using the well-identified natural frequencies, the parameters of the maglev 

vehicle model that are critical are adjusted to minimize the difference between the 

measured natural frequencies and the model-predicted natural frequencies. This 

optimization is expressed as: 

 min ෍
1

𝛼௜
ቀ𝜆̅௜ − 𝜆௜(𝜽)ቁ

ଶ
௡

௜ୀଵ

, (4.24) 

where 𝜆̅௜  denotes the measured natural frequency of mode 𝑖 , 𝜆௜(𝜽)  is the model-

predicted natural frequency of mode 𝑖, 𝛼௜ is a constant for normalization purposes, and 

𝜽  represents the scaling factor vector containing the updating parameters 

𝜃௞೘೤
𝜃௞೘೥

, 𝜃௞ೝ
, 𝜃௞ೞೣ

, 𝜃௞ೞ೤
, 𝜃௞ೞ೥

 . These parameters are updated until the objective 

function is minimized. The small error confirmed through this calibration process 

attests to the model's capability to accurately replicate the dynamic behavior of the 

vehicle, thereby providing a solid foundation for subsequent investigations on 

accurately reconstructing transient aerodynamic loads. 

4.5. Transient aerodynamic load reconstruction using MTGP 

A well-calibrated maglev vehicle model enables the forward computation of vehicle 

responses to any given load history. Transient aerodynamic load reconstruction 

constitutes an inverse time-domain force reconstruction problem, where the 

aerodynamic loads on the vehicle are derived from direct pressure measurements and 
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translated into forces acting on multiple rigid bodies. It is assumed that no aerodynamic 

loads are present on the bogies. Consequently, the problem is defined as follows: given 

specific acceleration measurements at certain locations of the maglev system during 

the vehicle's entry and exit from a double-track tunnel, the objective is to derive five 

aerodynamic load histories acting on the vehicle body. These five load histories 

correspond to the five DOF of the vehicle body.  

Let the measured acceleration data at the ith time step represented by 𝒚௜ ∈ ℝ௡ೞ , for 

𝑖 = 0,1, … , (𝑛௧ − 1). The concatenation of all 𝒚௜ is denoted as 𝒚 ∈ (ℝ௡ೞ)௡೟. Based on 

the time-domain force reconstruction theory illustrated in Chapter 3, the convolutional 

operator 𝐇  is derived from calibrated system matrices. Consequently, the force 

histories represented by a concatenated vector 𝒇 ∈ (ℝହ)௡೟, can be related to 𝒚 through 

the convolutional operator 𝐇, such that: 

 𝒚 = 𝐇𝒇. (4.25) 

To quantify the force histories based on the measured acceleration data, the MTGP 

algorithm is employed. This approach effectively calculates the posterior distributions 

of the five forces, providing insights into the uncertainties associated with the estimated 

forces. 

4.6. Results 

Field-measured acceleration data from a maglev line are used to validate the 

proposed framework. As shown in Figure 4.5, an on-board monitoring system with 25 

uniaxial accelerometers is installed on the maglev vehicle to continually assess its 

dynamic performance. The measured locations include vertical and lateral vibrations 
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of the vehicle body, the vertical vibrations of bogies 1–4, 6, 8, and 10, as well as lateral 

vibrations of bogies 3 and 4. For the field operational data, piezoelectric accelerometers 

with sensitivities of approximately 500 mV/g and measurement ranges of ±1g 

(accelerometers in the vehicle body) and ±10g (accelerometers in bogies) are used over 

a period of 180 seconds at a sampling frequency of 100 Hz. A sample of the stationary 

time-domain data for vehicle body and bogies' vertical vibrations is presented in Figure 

4.6.   

The operational data are analyzed using the FDD method. Figure 4.7 presents the 

computed PSD with frequencies ranging from 1/180 Hz to 50 Hz with an increment of 

1/180 Hz. Numerous frequency intervals are determined for FDD based on the detected 

peaks in the PSD. Subsequently, the mode shapes and natural frequencies of different 

modal orders are calculated. The mode shapes are analyzed to exclude modes caused 

by the elasticity of the maglev vehicle. Table 4.2 lists nine successfully identified 

modes with well-defined characteristics. The natural frequencies of modes related to 

the motions of vehicle bodies range from 0.68 to 1.42 Hz, and those related to bogies 

range from 4.35 to 34.55 Hz. The damping ratio for each mode is estimated using the -

3 dB points method, with the first two modes being approximately 3%. The damping 

matrix 𝚼 could be calculated from the linear combination of calibrated stiffness and 

mass matrices. 
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Figure 4.5. On-board monitoring system layout. F: Front, R: Rear, L: Left, R: Right, Acc: 

Accelerometer, Disp: Laser Displacement Sensor. 

 
Figure 4.6. Measured acceleration data for operational modal analysis. 

 

Figure 4.7. PSD from the measured operational data. 
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Table 4.2. Natural frequencies from operational modal analysis and maglev vehicle model. 

Mode number Natural frequency Mode key feature description 

1 0.68 Lateral movement of vehicle body 

2 0.75 Vertical motion of vehicle body 

3 1.39 Roll of vehicle body 

4 1.42 Pitch of vehicle body 

5 4.36 Vertical movement of bogie 

6 5.41 Lateral movement of bogie 

7 16.05 Roll of vehicle body 

8 17.35 Pitch of bogie 

9 34.55 Yaw of bogie 

 

By applying the L-BFGS-B optimization algorithm to solve Eq. (4.24), the 

discrepancy between the model-predicted natural frequencies and the measured natural 

frequencies is minimized, as shown in Table 4.2. Figure 4.8(a) illustrates the evaluated 

parameters at each iteration. It is observed that 12 iteration steps are carried out, with 

convergence occurring at step 6. Five parameters, including 𝜃௞ೞ೥
, 𝜃௞ೞೣ

, 𝜃௞೘೥
, 𝜃௞೘೤

, and 

𝜃௞ೞೝ
  are found to be underestimated in the initial setup, while the parameter 𝜃௞ೞ೤

  is 

overestimated. The trajectory of the objective function's value is presented in Figure 

4.8(b), which gradually converges to 0.06 within 6 steps, indicating that the 

discrepancy between the model-predicted natural frequencies and measured natural 

frequencies begins to level off. To further verify this, the natural frequencies obtained 

from the model and those derived via operational modal analysis are compared in 

Figure 4.9. The natural frequencies obtained from the measured acceleration data 

closely match those obtained by the calibrated model, confirming the accuracy of the 

calibration process. 
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Figure 4.8. (a) Evolution of parameters at each iteration. (b) Natural frequency discrepancy obtained at 

each iteration. 

 

Figure 4.9. Bar chart for comparison of the updated model’s natural frequencies and that from the 

operational data. 

 

Figure 4.10. Utilized acceleration data for aerodynamic load reconstruction. 
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Figure 4.11. Predicted posteriors concerning lateral force, vertical force, pitching moment, rolling 

moment, and yawing moment by the proposed MTGP. 

To corroborate the accuracy of aerodynamic load reconstructions, the technique 

flowchart shown in Figure 4.12 is proposed. Since the time-domain mathematical 

model, together with the MTGP algorithm, outputs the posterior of transient 

aerodynamic loads as multivariate Gaussians, samples of aerodynamic loads are drawn 

from the posterior distribution. The red lines in Figure 4.11 depict samples from the 

predicted posterior. These samples are then input into the calibrated maglev model to 

calculate the full system responses, from which acceleration responses at various 

accelerometer-installed positions are derived. Four measured accelerations are utilized 

to test the accuracy of aerodynamic load reconstruction. The concordance between 

model predictions and empirical measurements, as evidenced in Figure 4.13, provides 

strong validation for the reconstructed loads, affirming their reliability for practical 

applications. 
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Figure 4.12. Corroboration of aerodynamic load reconstruction. 

 

Figure 4.13. Comparison of predicted and measured accelerations. 

4.7. Summary 

This chapter introduces a novel framework designed to reconstruct transient 

aerodynamic loads on maglev vehicles using observed acceleration responses. The 



104 
 

investigation leverages data from a maglev test line. Specifically, stationary random 

vibration data captured during maglev operation are utilized to calibrate the model. 

Subsequently, acceleration data recorded as the maglev enters and exits a double-track 

tunnel are analyzed. The proposed algorithms calculate the posterior distributions of 

these transient aerodynamic loads, providing robust validation. Remarkably, the results 

indicate that transient aerodynamic loads can be quantified through the vehicle's 

response to external excitation. This method represents a significant shift from 

traditional approaches, which rely heavily on direct measurements from pressure 

sensors or on simulation techniques. These findings suggest promising applications in 

field experiments, particularly in advancing high-speed train systems. Moreover, the 

MTGP method introduced in Chapter 3 not only estimates the posterior distribution of 

the reconstructed loads but also imparts confidence in the solutions derived from 

acceleration data. This method surpasses previous methodologies by providing 

analytical uncertainty propagation formulas, thereby eliminating the need for sampling-

based techniques traditionally employed to determine the posterior and streamlining 

the load reconstruction process. However, for real-world applications involving force 

reconstruction, the elimination of sampling-based techniques introduces inherent costs 

and limitations that warrant careful consideration. The analytical formulation of the 

posterior distribution of forces relies on assumptions that may oversimplify scenarios 

where the underlying system dynamics or force characteristics deviate from idealized 

conditions. For instance, when random forces to be reconstructed are not suitable to be 

described by a GP, analytical framework may fail to capture the true uncertainty 

structure. This can lead to biased reconstructions or artificially narrow confidence 

intervals.  
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Chapter 5. 

Time-delayed multi-fidelity Gaussian processes for 

state estimation of structural dynamic systems 

5.1. Introduction 

Predicting the structural state, including displacement and velocity at any given 

location, using limited sensor measurements is a critical inverse problem in many 

structural control and health monitoring systems (Papadimitriou et al., 2011; Song et 

al., 2022; Teymouri et al., 2022). This chapter introduces the theory of state estimation 

for structural dynamic systems employing a time-delayed GP approach. Additionally, 

it explores methods to enhance estimation accuracy by leveraging multi-fidelity data, 

which could be derived from both physics-based models and direct measurements. First, 

an effective GPR model is developed to incorporate sensor data from preceding time 

steps to estimate the current state. The training and test datasets are all generated from 

the FE model. Then, the adaptation of MFGP for mapping multi-fidelity time-delayed 

time series data to the structural system state is explored. To validate the proposed 

methodology, two examples of dynamic systems of structures are presented, including 

a generic mass-spring-damper dynamic system subject to stochastic excitations, and a 

45-story tall building subject to wind excitations. The results indicate that the time-
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delayed MFGP method successfully manages the high-dimensional mapping of multi-

fidelity time-delayed data to accurately estimate the system state. 

5.2. Problem description of state estimation 

Consider an n-DOF structural dynamic system formulated through spatial and 

temporal discretization of the governing differential equations: 

 𝑔ଵ(𝒙௞, 𝒇௞ , 𝒙௞ାଵ; 𝜽) = 𝟎, (5.1) 

in which 𝒙௞ ∈ ℝଶ௡ is the state vector at time instant k, containing the displacement and 

velocity of each DOF of the structure; 𝒇௞ ∈ ℝ௡೑   represents the external excitation 

vector; 𝜽 ∈ ℝ௡೛  denotes the parameters that completely define the system; 𝑛௙ and 𝑛௣ 

are the numbers of forces and parameters, respectively; 𝑔ଵ: ℝଶ௡ × ℝ௡೑ × ℝଶ௡ → 𝟎 ∈

ℝଶ௡  is the function that governs the dynamical evolution of the state vector. The 

observation process of this n-DOF structure subjected to external excitation is of the 

form: 

 𝑔ଶ(𝒙௞, 𝒇௞ , 𝒚௞) = 𝟎, (5.2) 

where 𝒚௞ ∈ ℝ௡ೞ   is the observation vector involves measurements of limited DOF, 

obtained from the sensor array installed on the structure; 𝑛௦  denotes the number of 

sensors; 𝑔ଶ: ℝଶ௡ × ℝ௡೑ × ℝ௡ೞ → 𝟎 ∈ ℝ௡ೞ  represents the observation function. 

In general, state estimation in structural dynamic systems typically involves 

developing a model that provides accurate estimates of state vectors 𝒙௞, denoted as 𝒙෥௞, 

throughout a specified time interval [0, 𝑇]. This estimation is based on a dataset 𝒟 =

{(𝑡௞, 𝒚ෝ௞)}௞ୀଵ
ே  , where 𝑡௞ ∈ [0, 𝑇]  is the timestamp corresponds to the measurement 

𝒚ෝ௞ ∈ ℝ௡ೞ  over structure, and 𝑇 is the total duration of the estimation period. Generally, 

the measurement 𝒚ෝ௞ corresponds to the observation vector 𝒚௞ described in Eq. (5.2) 



107 
 

and may include various physical quantities measurable in actual structures, such as 

accelerations, displacements, strains at specified DOF. In this chapter, the 

measurements are assumed to be accelerations, as their measurement techniques are 

the most mature and convenient to deploy. 

5.3. Time-delayed GP for real-time state estimation 

The time-delayed GP developed in this chapter utilize the measured data from 

preceding time steps as input to estimate the state of the current step. The methodology 

is formalized within the framework of reproducing kernel Hilbert spaces (RKHS), 

providing a rigorous mathematical foundation. Essentially, the time-delayed GP model 

is formulated within an RKHS ℋ, which is associated with a positive definite kernel 

function 𝑘: ℝ൫௡೤ାଵ൯௡ೞ × ℝ൫௡೤ାଵ൯௡ೞ → ℝ . Here, 𝑛௬  denotes the number of preceding 

steps considered. The RKHS framework facilitates the modeling of complex temporal 

dependencies and correlations in the measurement data. For each ith component state 

vector 𝒙௞. The time-delayed GP model is defined as: 

 𝑥෤௞
௜ (𝒚)~𝒢𝒫(0, 𝑘(𝒚, 𝒚′)) , (5.3) 

where 𝑥෤௞
௜ (𝒚)  is the estimated ith component of the state vector at time step k; 𝒚 =

ቀ𝒚ෝ௞, 𝒚ෝ௞ିଵ, … , 𝒚ෝ௞ି௡೤
ቁ ∈ ℝ൫௡೤ାଵ൯௡ೞ   is the concatenated measurement vector from the 

preceding 𝑛௬ time steps and the current time step; 𝑘(𝒚, 𝒚′) defines the inner product in 

the RKHS ℋ , capturing the similarity between different measurement vectors. The 

RKHS ℋ leverages the reproducing property, which ensures that any function 𝑓 ∈ ℋ 

satifies: 
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 𝑓(𝒚) = 〈𝑓, 𝑘(𝒚,⋅)〉ℋ  , (5.4) 

where 〈⋅〉ℋ denotes the inner product in the RHKS. This property is instrumental in 

efficiently mapping the high-dimensional measurement data into a feature space where 

linear relationships can be exploited for state estimation. 

The training of time-delayed GP involves the optimization of covariance structure 

𝑘(𝒚, 𝒚′) from a dataset ℬ, which is defined as: 

 
ℬ = ቄቀ𝑡௞, 𝒚ෝ௞, 𝒚ෝ௞ିଵ, … , 𝒚ෝ௞ି௡೤

, 𝒙௞
௜ ቁቅ

௞ୀ௡೤ାଵ

ே

 . 
(5.5) 

During the training, the hyperparameters 𝜽 of the kernel function 𝑘 are optimized by 

maximizing the marginal likelihood of the observed data, i.e., 

 𝜽⋆ = arg max
𝜽

log 𝑝(ℬ|𝜽) . (5.6) 

This optimization ensures that the GP model accurately captures the relationship 

between historical measurements and the corresponding system states. In this chapter, 

the gradient based optimizer L-BFGS optimizer is adopted. Once trained, the time-

delayed GP model could perform state estimation by conditioning on the input 

measurements from the preceding 𝑛௬ time steps and dataset ℬ to predict the current 

state 𝒙෥௜. The prediction not only provides an estimate of the ith state vector component, 

but also quantifies the uncertainty associated with each estimate. This probabilistic 

output, inherent to GP, is crucial for assessing the reliability and confidence of the state 

estimates, thereby enhancing the robustness and dependability of SHM and control 

systems. 
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5.4. Enhancing state estimation through MFGP 

Figure 5.1 illustrates the comparison of the observation process 𝑔ଶ of the structural 

dynamic system and time-delayed GP state estimation. In this context, state estimation 

can be regarded as an inverse of the observation process. However, two primary 

differences between the forward (observation) and inverse (state estimation) processes 

present significant challenges: First, there is no available external excitation data for 

state estimation. In many cases, the model often assumes that excitations are stationary 

Gaussian white noise, a simplification that may not accurately reflect real-world 

excitation patterns. This lack of direct excitation data complicates the accurate 

reconstruction of the system state from measurements alone. Second, the given 

structural dynamic system is mostly rooted in first principle, while the state estimation 

model originates from data. This necessitates the creation of comprehensive training 

and test datasets to optimize the GP model's parameters effectively. Moreover, the 

inverse problem must reconcile the deterministic nature of the forward model with the 

probabilistic framework of the GP model. Any modeling errors in the forward process 

can propagate and adversely affect the accuracy of the state estimation. 

 

Figure 5.1. Comparison of forward process (observation) based on structural dynamic system and 

inverse process (state estimation) using time-delayed GP. 
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To address these challenges, the concept of multi-fidelity modeling is integrated into 

the time-delayed GP framework. Multi-fidelity modeling combines data from multiple 

sources of varying fidelity to enhance state estimation accuracy (Parussini et al., 2017). 

Figure 5.2 depicts the schematic of using MFGP to improve state estimation. This 

section considers two levels of fidelity: (a). High-fidelity structural dynamic systems: 

These include well-refined models or actual structures that closely represent the 

physical system. High-fidelity data can effectively overcome the aforementioned 

limitations by providing accurate training and test datasets. However, high-fidelity data 

is often limited due to the high costs associated with modeling and measurement. (b). 

Low-fidelity structural dynamic systems: These models are constructed based on 

certain simplifications, which may make the data less consistent with real-world 

structures but are more readily available and less expensive to obtain. Low-fidelity data 

can supplement high-fidelity data by providing a larger dataset for training the time-

delayed GP model, thereby enhancing its generalization capabilities. For the sake of 

brevity, the time-delayed GP trained solely on low-fidelity data and high-fidelity data 

are respectively denoted as low-fidelity Gaussian process (LFGP) model and high-

fidelity Gaussian process (HFGP) model, respectively, and the models trained from 

more than two levels of fidelities are called MFGP model. 

The MFGP approach extends the single-fidelity GP framework by incorporating 

multiple data sources with varying degrees of fidelity (Gratiet and Garnier, 2014; 

Perdikaris et al., 2017; Cutajar et al., 2019). This integration allows the model to 

leverage both high-fidelity and low-fidelity data to enhance state estimation accuracy. 

Formally, let ℬு  and ℬ௅  represent the high-fidelity and low-fidelity datasets, 

respectively. The MFGP aims to learn the mapping from measurement inputs to state 
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outputs by leveraging both datasets ℬு and ℬ௅. To achieve this, a two-step generative 

model for the multi-fidelity outputs is assumed: First, sample from a GP: 

 𝑢(𝒚) ∼ 𝒢𝒫൫0, 𝑘௨(𝒚, 𝒚ᇱ)൯, (5.7) 

where 𝑢(𝒚)  is an underlying latent function capturing the shared structure between 

fidelities, and 𝑘௨(𝒚, 𝒚ᇱ) is the covariance function. Second, obtain the high-fidelity and 

low-fidelity outputs through linear transformation of sampled 𝑢ଵ(𝒚): 

 𝑥෤௞ு
௜ (𝒚) = 𝑎ுଵ

௜ 𝑢ଵ(𝒚), (5.8) 

 𝑥෤௞௅
௜ (𝒚) = 𝑎௅ଵ

௜ 𝑢ଵ(𝒚). (5.9) 

where 𝑥෤௞ு
௜ (𝒚)  and 𝑥෤௞௅

௜ (𝒚)  represent the sampled high-fidelity state and low-fidelity 

state functions respectively; 𝑎ுଵ
௜   and 𝑎௅ଵ

௜   are scalar coefficients that scale the latent 

function 𝑢ଵ(𝒚)  for the high-fidelity and low-fidelity outputs. Therefore, as long as 

𝑢(𝒚) is a GP, both the high-fidelity state estimation function 𝑥෤௞ு
௜ (𝒚) and low-fidelity 

state estimation function 𝑥෤௞௅
௜ (𝒚)  would be GP as well. A multivariate Gaussian 

distribution among any function values of 𝑥෤௞ு
௜ (𝒚) and 𝑥෤௞௅

௜ (𝒚) can be constructed, and 

the mean vector and covariance matrix could be derived based on the relationship 

defined in Eqs. (5.7)-(5.9). 

 

Figure 5.2. Overview of enhancing state estimation accuracy through MFGP. 
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To formalize the relationship between high-fidelity and low-fidelity data, the 

intrinsic coregionalization model with the GP framework is introduced in this chapter. 

Coregionalization allows the modeling of multiple outputs by capturing the 

interdependencies between different fidelity levels through a shared covariance 

structure. The combined MFGP kernel 𝑘୑୊ୋ୔ is constructed as the product of shared 

input kernel 𝑘௨(𝒚, 𝒚ᇱ) and a coregionalization kernel 𝑘௖(𝑓, 𝑓′): 

 𝑘୑୊ୋ୔൫(𝒚, 𝑓), (𝒚ᇱ, 𝑓ᇱ)൯ = 𝑘௨(𝒚, 𝒚ᇱ)𝑘௖(𝑓, 𝑓′), (5.10) 

where 𝒚, 𝒚ᇱ ∈ ℝ൫௡೤ାଵ൯௡ೞ are the measurement input vectors; 𝑓, 𝑓ᇱ ∈ {𝐻, 𝐿} denote the 

fidelity levels; 𝑘௖(𝑓, 𝑓′) captures the covariance between different fidelity levels. In 

this chapter, for a two-fidelity scenario, the coregionalization kernel 𝑘௖(𝑓, 𝑓′) can be 

derived based on the definition of covariance between any two function values from  

𝑥෤௞ு
௜ (𝒚) and 𝑥෤௞௅

௜ (𝒚), which is given by: 

 

𝑘௖(𝑓, 𝑓ᇱ) = ൞

𝑎ுଵ
௜ ଶ

         if 𝑓 = 𝑓ᇱ = 𝐻

𝑎ுଵ
௜ 𝑎௅ଵ

௜ if 𝑓 ≠ 𝑓ᇱ

𝑎௅ଵ
௜ ଶ

         if 𝑓 = 𝑓ᇱ = 𝐿

. 
(5.11) 

To further enhance the performance of the MFGP state estimation model, the 

sampling step can be iterated multiple times. In this chapter, while only two fidelity 

levels are considered, the GP 𝑢(𝒚)  are sampled twice to obtain independent latent 

functions 𝑢ଵ(𝒚)  and 𝑢ଶ(𝒚) . The high-fidelity and low-fidelity outputs are then 

generated through linear transformations of these latent functions as follows: 

 𝑥෤௞ு
௜ (𝒚) = 𝑎ுଵ

௜ 𝑢ଵ(𝒚) + 𝑎ுଶ
௜ 𝑢ଶ(𝒚), (5.12) 

 𝑥෤௞௅
௜ (𝒚) = 𝑎௅ଵ

௜ 𝑢ଵ(𝒚) + 𝑎௅ଶ
௜ 𝑢ଶ(𝒚). (5.13) 

where 𝑎ுଵ
௜  , 𝑎ுଶ

௜  , 𝑎௅ଵ
௜  ,and 𝑎௅ଶ

௜   are the scalar coefficients for latent functions. By 

introducing multiple latent functions 𝑢ଵ(𝒚) and 𝑢ଶ(𝒚), the MFGP model can capture 
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more complex and nuanced relationships between the high-fidelity and low-fidelity 

data sources. This multi-sample approach allows the model to account for non-linear 

dependencies and variability that a single latent function might miss, thereby improving 

the fidelity and accuracy of state estimations.  

Under these conditions, the MFGP kernel 𝑘୑୊ୋ୔  would follow the form as 

illustrated in Eq. (5.10), while the coregionalization kernel 𝑘௖(𝑓, 𝑓′) is reformulated to 

accommodate the more intricate relationships between state estimation functions and 

latent functions. Specifically, for a two-fidelity scenario, the coregionalization kernel 

𝑘௖(𝑓, 𝑓′) is defined as: 

 

𝑘௖(𝑓, 𝑓ᇱ) = ൞

𝑎ுଵ
௜ ଶ

+ 𝑎ுଶ
௜ ଶ

         if 𝑓 = 𝑓ᇱ = 𝐻

𝑎ுଵ
௜ 𝑎௅ଵ

௜ + 𝑎ுଶ
௜ 𝑎௅ଶ

௜ if 𝑓 ≠ 𝑓ᇱ

𝑎௅ଵ
௜ ଶ

+ 𝑎௅ଶ
௜ ଶ

         if 𝑓 = 𝑓ᇱ = 𝐿

. 
(5.14) 

Based on the number of samplings the generative model, the initial model defined 

by Eqs. (5.8) and (5.9) is referred to as the level-one model, while the extended model 

defined by Eqs. (5.12) and (5.13) is termed the level-two model. For both models, the 

corresponding multi-fidelity kernel structure 𝑘୑୊ୋ୔ is composed of the same shared 

kernel 𝑘௨(𝒚, 𝒚ᇱ) and the coregionalization kernel 𝑘௖(𝑓, 𝑓′). In the following examples, 

all shared kernel 𝑘௨(𝒚, 𝒚ᇱ) in the following examples are determined to be the squared 

exponential kernel for the sake of broad applicability and simplicity. While this choice 

ensures generality, it may not always be optimal for every application. More 

sophisticated methods, such as kernel flows, could be employed to tailor the kernel for 

specific cases, but such optimization falls outside the scope of this work. . Further 

discussion on kernel selection is therefore omitted. Regarding the coregionalization 

kernel 𝑘௖(𝑓, 𝑓′), there are two hyperparameters 𝑎ுଵ
௜  and 𝑎௅ଵ

௜  for level-one model, and 
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four hyperparameters 𝑎ுଵ
௜  , 𝑎ுଶ

௜  , 𝑎௅ଵ
௜  ,and 𝑎௅ଶ

௜   for level-two model. Although utilizing 

multiple latent functions with coregionalization allows the MFGP model to scale to 

more complex systems without a proportional increase in computational complexity, 

the level-two model does not necessarily perform better than the level-one model in 

practice, because the practical performance of the two different MFGP depends on how 

closely their idealized assumptions match the actual system. It remains necessary to 

determine which model to use based on cross validation and Bayesian model evidence 

comparison. 

The training of the MFGP model involves optimizing hyperparameters of both 

shared kernel and coregionalization kernel. This optimization is still based on 

maximizing the joint marginal likelihood of the combined high-fidelity and low-fidelity 

datasets ℬு and ℬ௅: 

 𝜽⋆ = arg max
𝜽

log 𝑝(ℬு, ℬ௅|𝜽) . (5.15) 

where 𝜽 encompasses all hyperparameters in 𝑘୑୊ୋ୔. Ultimately, a well-trained MFGP 

model can leverage the advantages of both high-fidelity and low-fidelity data to provide 

enhanced state estimations based on the input measurements. 

5.5. Numerical example 1: a mass-spring-damper dynamic system 

5.5.1. State estimation for mass-spring-damper dynamic system 

In this section, a linear 5-DOF mass-spring-damper dynamic system is firstly used 

to demonstrate the effectiveness of the proposed time-delayed GP on state estimation. 

As depicted in Figure 5.3, the system comprises five masses interconnected by linear 

springs and viscous dampers. The specific parameters of this system, including mass 

values, spring constants, and damping coefficients, are presented in Table 5.1. The 
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system exhibits five natural frequencies at 0.64, 1.88, 2.86, 4.14, and 4.81 Hz, with 

corresponding damping ratios of 0.54%, 1.63%, 2.68%, 2.86%, and 3.61%, 

respectively.  

A random excitation 𝑓(𝑡)  is applied on 𝑚ଵ , and its time-domain representation 

along with PSD is shown in Figure 5.4. The PSD reveals that the excitation energy is 

predominantly concentrated between 0.1 and 10 Hz, encompassing the five natural 

frequencies of the mass-spring-damper system. Consequently, the complete dynamic 

responses, including displacements, velocities, and accelerations, of each DOF are 

obtained by numerically solving the equations of motion using an implicit Runge-Kutta 

method. 

 

Figure 5.3. A linear 5-DOF mass-spring-damper dynamic system. 

Table 5.1. Parameters for the mass-spring-damper dynamic system. 

Symbol Value Unit Symbol Value Unit Symbol Value Unit 

𝑚ଵ 12 kg 𝑐ଵ 6 Ns/m 𝑘ଵ 2×103 N/m 

𝑚ଶ 14 kg 𝑐ଶ 6 Ns/m 𝑘ଶ 3×103 N/m 

𝑚ଷ 8 kg 𝑐ଷ 6 Ns/m 𝑘ଷ 2×103 N/m 

𝑚ସ 12 kg 𝑐ସ 6 Ns/m 𝑘ସ 3×103 N/m 

𝑚ହ 10 kg 𝑐ହ 6 Ns/m 𝑘ହ 2×103 N/m 
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Figure 5.4. (a) Time-domain representation of the random excitation 𝑓(𝑡); (b) PSD of the random 

excitation. 

In this example, it is assumed that only the acceleration of mass 𝑚ଵ is measured. 

This acceleration data serves as the primary input for training and validating the 

proposed time-delayed GP model for state estimation. By utilizing the measured 

acceleration from the preceding 𝑛௬ time steps, the time-delayed GP model estimates 

the current state vector, which includes the displacement and velocity of each mass in 

the system. 

Figure 5.5 shows the partial responses of the mass-spring-damper dynamic system 

subject to the random excitation 𝑓(𝑡). For demonstration purposes, the first 24 s of the 

colored data are used to train the time-delayed GP model, while the remaining 76 s are 

reserved for testing. Before delving into the specifics of the time-delayed model, Figure 

5.6, based on the data from Figure 5.5,  depicts the relationships among the measured 

acceleration, displacement, and velocity. The plot reveals that there is almost a 

negligible correlation between the current acceleration measurement and the system 

state (displacement and velocity) at the same time step. This finding emphasizes the 

importance of incorporating information from preceding measurements when 

predicting the state at the current step. 
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Figure 5.5. Mass-spring-damper dynamic system response subject to the random excitation: (a). 

acceleration of 𝑚ଵ, (b) displacement of 𝑚ସ, and (c) velocity of 𝑚ଷ. 

 

Figure 5.6. (a) Displacement-acceleration variation during the random excitation process. (b) 

Velocity-acceleration variation during the random excitation process. 
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Using the data presented in Figure 5.5, time-delayed GP models for the displacement 

and velocity prediction are developed. The delay step is initially set to 30, and the 

training and test datasets are correspondingly generated according to Eq.   (5.5). The 

GP models are trained by maximizing the marginal likelihood as described in Eq. (5.6), 

with the hyperparameters of the squared exponential kernel optimized to best fit the 

training dataset. The training process takes 4.36 s and 5.59 s for the displacement and 

velocity models, respectively. 

 

Figure 5.7. Comparison of time-delayed GP model predictions with reference: (a) displacement of 𝑚ସ, 

(b) velocity of 𝑚ଷ. 

The well-trained GP models are validated using the test dataset. Figure 5.7 compares 

the predictions from the time-delayed GP model with reference data for displacement 

and velocity over the time interval from 20 s to 44 s, as shown in Figure 5.5. The results 

demonstrate that GP can efficiently and effectively learn the high-dimensional mapping 
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from the time-delayed data series to the system state. Furthermore, the time-delayed 

model successfully performs accurate state estimation.  

To investigate the performance of the proposed time-delayed GP approach across 

various delay step settings, two matrices are employed: NRMSE and predictive log 

likelihood (PLL). These matrices are defined as follows: 

 NRMSE =
ට∑ ൫𝑥௞

௜ − 𝜇௞൯
ଶே

௞ୀ௡೤ାଵ

ට∑ ൫𝑥௞
௜ − 𝑥̅௜൯

ଶே
௞ୀ௡೤ାଵ

, (5.16) 

 PLL = ෍ ൭−
1

2
log(2𝜋𝜎௞

ଶ) −
൫𝑥௞

௜ − 𝜇௞൯
ଶ

2𝜎௞
ଶ ൱

ே

௞ୀ௡೤ାଵ

. (5.17) 

in which 𝑥௞
௜  is the reference value of the 𝑖th component of the state vector at time step 

𝑘; 𝜇௞ is predicted mean of state at time step 𝑘 from the GP model; 𝑥̅௜ is the mean of 

𝑖 th component of the state vector from time steps 𝑛௬ + 1  to 𝑁 ; 𝜎௞  is the predicted 

standard deviation of  state at time step 𝑘 from the GP model. Overall, the NRMSE 

metric assesses the accuracy of the predicted mean values. It is calculated by taking the 

square root of the sum of squared differences between the reference values and the 

predicted means, normalized by the square root of the sum of squared differences 

between the reference values and their mean. Mathematically, a lower NRMSE 

indicates higher prediction accuracy. The PLL metric quantifies how well the GP 

model’s posterior distributions explain the reference data. It is defined as the sum of 

the log probabilities of each individual reference value under their corresponding 

predictive posterior distributions. A higher PLL value signifies a better prediction of 

the posterior distribution by the time-delayed GP model. 
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By setting the delay step from 1 to 40, the performance of the proposed time-delayed 

GP is systematically evaluated using the NRMSE and PLL. For each delay step 𝑑 

within the range, the models incorporate 𝑑  previous time steps of acceleration to 

predict the current displacement and velocity. The training the testing processes are 

repeated for each  𝑑  , enabling a comparative analysis of how different delay steps 

influence prediction accuracy and probabilistic forecasting. 

The results, depicted in Figure 5.8, illustrate the variation of NRMSE and PLL 

across different delay steps when predicting the displacement of 𝑚ସ and velocity of 

𝑚ଷ . It is observed that the delay step increases from 1 to an optimal value (25 for 

displacement and 20 for velocity), the NRMSE decreases, indicating improved 

prediction accuracy. This improvement can be attributed to the model's enhanced 

ability to capture temporal dependencies and incorporate relevant historical 

information, thereby enriching the feature set used for making predictions. 

Concurrently, the PLL increases, signifying that the model's predictive distributions are 

better aligned with the observed data, offering more reliable uncertainty quantification. 

 

Figure 5.8. NRMSE and PLL for prediction: (a) displacement of 𝑚ସ, (b) velocity of 𝑚ଷ. 
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However, beyond the optimal delay overlap, further increases in 𝑑 lead to a slight 

gradual decrease in NRMSE and slight increase in PLL, indicating a convergence trend. 

This suggests that measurements sampled significantly earlier than the optimal delay 

contribute marginally to the prediction accuracy and uncertainty quantification. 

Conversely, very small delay steps fail to provide sufficient historical context, limiting 

the model's ability to capture underlying patterns and dependencies. This insufficiency 

leads to higher NRMSE values and lower PLL scores, underscoring the importance of 

selecting an appropriate delay step to balance the capture of essential temporal 

dynamics while avoiding the incorporation of superfluous data. 

5.5.2. Enhanced state estimation for nonlinear mass-spring-damper dynamic system 

To validate the effectiveness of time-delayed MFGP model in enhancing state 

estimation accuracy, a nonlinear 5-DOF mass-spring-damper system, depicted in 

Figure 5.9, is considered. This system represents the high-fidelity model, while the 

simplified model presented in Figure 5.1 serves as its low-fidelity approximation.  

 

Figure 5.9. A nonlinear 5-DOF mass-spring-damper dynamic system. 

Table 5.2. Parameters for the nonlinear mass-spring-damper dynamic system. 

Symbol Value Unit Symbol Value Unit Symbol Value Unit 

𝑚෥ଵ 13.19 kg 𝑐̃ଵ 5.44 Ns/m 𝑘෨ଵ 1.91×103 N/m 

𝑚෥ଶ 13.60 kg 𝑐̃ଶ 5.44 Ns/m 𝑘෨ଶ 3.95×103 N/m 

𝑚෥ଷ 9.04 kg 𝑐̃ଷ 6.29 Ns/m 𝑘෨ଷ 2.31×103 N/m 

𝑚෥ସ 15.66 kg 𝑐̃ସ 3.70 Ns/m 𝑘෨ସ 2.72×103 N/m 

𝑚෥ହ 9.53 kg 𝑐̃ହ 3.93 Ns/m 𝑘෨ହ 2.22×103 N/m 

𝛾ଵ 2×105 N/m2 𝛾ଷ 2×105 N/m2 𝛾ହ 2×105 N/m2 
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The nonlinear 5-DOF mass-spring-damper system comprises five masses 

interconnected by springs and dampers, with nonlinear characteristics introduced 

through spring nonlinearities. Specifically, the elastic force for each spring is modeled 

using a second-order polynomial function characterized by parameters 𝑘෨௜  and 𝛾௜  for 

linear and quadratic term respectively, with 𝑖 = 1,3,5 . Additionally, the system 

parameters for the nonlinear high-fidelity model are detailed in Table 5.2. Beyond the 

distinctions in spring properties, differences in damping coefficients and mass values 

also exist between the high-fidelity and low-fidelity models. 

A random excitation with similar statistical properties in the frequency domain, as 

described in the previous subsection, is applied to 𝑚෥ଵ. The measured acceleration data 

from 𝑚෥ଵ is utilized for the state estimation of the nonlinear system. Initially, the time-

delayed GP models trained using the low-fidelity dataset ℬ௅  are employed to estimate 

the state of the high-fidelity system. Using the measured acceleration data from 𝑚෥ଵ as 

input, the displacement of 𝑚෥ସ and velocity of 𝑚෥ଷ are predicted. The prediction results 

over a 10 s interval are presented in Figure 5.10(a) and (b). These results demonstrate 

that the performance of the LFGP models is significantly inferior when applied to the 

nonlinear high-fidelity dynamic system, highlighting the limitations of relying solely 

on low-fidelity data for accurate state estimation in complex dynamics. 

Subsequently, a high-fidelity dataset ℬு, comprising 20% of the data volume of the 

low-fidelity dataset ℬ௅, is generated. Time-delayed GP models are trained exclusively 

on ℬு, and the corresponding prediction outcomes over the test dataset are illustrated 

in Figure 5.10(c) and (d). It is observed that HFGP models exhibit improved prediction 

performance compared to LFGP models, despite the smaller training data volume. 
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Specifically, for displacement estimation, the HFGP models achieve NRMSE of 0.46 

and a PLL of 4619, compared to the LFGP models' NRMSE of 0.66 and PLL of -1123. 

Similarly, for velocity estimation, the HFGP models attain an NRMSE of 0.42 and a 

PLL of 256, outperforming the LFGP models' NRMSE of 0.62 and PLL of -8388. 

Additionally, uncertainty quantification is notably enhanced in the HFGP models, 

providing more reliable uncertainty estimations. 

 
Figure 5.10. Prediction of displacement of 𝑚෥ସ and velocity of 𝑚෥ ଷ using low-fidelity, high-fidelity and 

multi-fidelity data trained time-delayed GP models. 

To capitalize on the strengths of both low-fidelity and high-fidelity datasets, a time-

delayed MFGP model is employed, integrating the extensive Low-fidelity data with the 

limited but more precise high-fidelity data. In this study, all multi-fidelity results are 

derived from a level 2 multi-fidelity model. The prediction results using the MFGP 
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model are presented in Figure 5.10(e) and (f). These results exhibit superior prediction 

accuracy compared to both the low-fidelity-only and high-fidelity-only models. 

Specifically, the MFGP model achieves an NRMSE of 0.24 for displacement and 0.39 

for velocity, outperforming the high-fidelity models' NRMSE of 0.46 and 0.42, 

respectively. In terms of PLL, the MFGP model attains values of 5839 for displacement 

and 343 for velocity, surpassing the high-fidelity models' PLL of 4619 and 256, and 

significantly outperforming the low-fidelity models' PLL of -1123 and -8388. The 

posterior distributions generated by the MFGP model more accurately align with the 

reference data compared to the low-fidelity-only model, and the confidence intervals 

are narrower compared to the high-fidelity-only model, rendering the predictions more 

informative and reliable. 

 

Figure 5.11. Quantitative comparison of state estimations by LFGP, HFGP, and MFGP models. 
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Quantitative evaluation results of the three models' performance are concluded and 

presented in Figure 5.11. In this example, the MFGP model not only enhances 

prediction accuracy but also provides robust uncertainty quantification. The MFGP 

model effectively leverages the comprehensive coverage of the low-fidelity dataset and 

the precision of the high-fidelity dataset, resulting in state estimations that are both 

accurate and trustworthy. This comprehensive performance improvement underscores 

the efficacy of the multi-fidelity approach in overcoming the limitations inherent in 

single-fidelity models, particularly in complex nonlinear dynamic systems. 

5.6. Numerical example 2: a 45-story tall building 

5.6.1. Building structure and health monitoring system description 

The building structure selected for this example is a steel-framed tower comprising 

45 stories, representing a typical high-rise construction in urban environments. The 

detailed vertical sections of the building's framing are depicted in Figure 5.12. The 

tower’s structural steel framing system consists of moment-resisting frames in the east-

west direction and a combination of eccentrically braced frames and moment resisting 

frames in the north south direction. The eccentrically braced frames are traditional 

moment-resisting frames with diagonal bracing in the inner two bays, and therefore 

could enhance the stiffness of the building in the north-south direction. There are four 

plane views of the tower as shown in Figure 5.13, each representing a different level 

from the base to the top. Figure 5.13(a) displays the ground floor layout, illustrating 

the foundational steel grid that supports the entire structure. As moving upward through 

Figure 5.13(b), (c), and (d), each subsequent plan view details the progressive 
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arrangement and reinforcement of steel beams and columns, reflecting the building's 

scalability and adaptability to various load conditions. 

A detailed FE model is constructed for the 45-story steel-framed tower using 

ANSYS APDL, comprising a total of 2,360 nodes and 4,552 elements. This 

comprehensive FE model enables accurate simulation of the building’s structural 

behavior under various loading conditions, serving as the foundation for subsequent 

dynamic analysis and state estimation studies. In this numerical example, the FE model 

effectively represents the “real-world” structure, and the measurements derived from 

this model are utilized to validate the proposed approaches discussed in this chapter. 

 

Figure 5.12. Vertical sections of the 45-story building framing. 

To obtain measurements across the building structure, an embedded SHM system is 

required. Figure 5.14 illustrates the details of the SHM system, which includes the 

installation of eight accelerometers and radar displacement measurements conducted 

at four different levels to capture dynamic displacements. Measured accelerations are 
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used as inputs for the time-delayed GP model, while the measured displacements serve 

as references to validate the model’s predictions. Additionally, the coordinates shown 

in Figure 5.14 are used for all illustrations of this example. 

 

Figure 5.13. Plan views of the 45-story building framing. 

The subsequent subsections address a practical challenge: estimating the building's 

dynamic displacement using measured acceleration data. As detailed in Section 5.3, 

both measured acceleration and displacement data series typically contribute to the 

displacement estimation process. However, external excitations are often limited to 

relatively low levels, which can constrain the accuracy of state estimations under more 

severe loading conditions. In this study, radar measurements are conducted exclusively 

during slight wind disturbances. The corresponding measured acceleration and 

displacement data obtained under these minimal excitations are then utilized to predict 

structural behavior under stronger wind disturbances. Notably, direct data from the 

“real-world” structure are considered as high-fidelity data, providing reliable and 

accurate inputs for the estimation process. 
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Figure 5.14. SHM system for the 45-story building structure. 

 

Figure 5.15. (a) Building time-delayed GP via different sources of data; (b) Validation of different 

time-delayed GP models. 

The central question explored in the ensuing subsections is whether these high-

fidelity measurements can accurately predict structural responses under significantly 
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different excitation conditions. Addressing this question, the proposed approach 

demonstrates an effective method for performing dynamic displacement estimation, as 

illustrated in Figure 5.15. This investigation is crucial for validating the efficacy of the 

proposed methodologies within this chapter, ensuring that accurate state estimations 

can be achieved even when the measurement conditions differ from those under which 

the data are originally collected. 

5.6.2. Building structure subjected to wind excitations 

The von Kármán spectrum is adopted to generate wind excitations for the building 

structure (Solari and Piccardo, 2001). Specifically, the wind speeds in both the along-

wind and cross-wind directions are characterized by PSD that follow the von Kármán 

turbulence model. This model accurately represents the statistical distribution of wind 

speed fluctuations across various frequencies and spatial scales, making it particularly 

suitable for dynamic structural analyses of high-rise buildings. The PSD are 

mathematically defined as follows: 

 
𝑛𝑆௨(𝑧, 𝑛)

𝑢∗
ଶ

=
4𝛽 ൬

𝑛𝐿௨(𝑧)
𝑈(𝑧) ൰

ቈ1 + 70.8 ൬
𝑛𝐿௨(𝑧)

𝑈(𝑧)
൰

ଶ

቉

ହ
଺

 , 
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where 𝑆௨  and 𝑆௩  denotes the PSD in the along-wind and cross-wind directions, 

respectively; 𝑛 represents the frequency in Hz; 𝑧 is the spatial height in meters; 𝑢∗ is 

the friction velocity, set at 1.26 m/s; 𝛽 is a factor related to roughness length 𝑧଴; 𝐿௘(𝑧) 
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is the integral length scale of the turbulence component in the 𝑒 direction, where 𝑒 ∈

{𝑢, 𝑣}; 𝑈(𝑧) is the mean wind profile, defined by an exponential form: 

 
𝑈(𝑧) = 𝑈௚ ቆ

𝑧

𝐻௚
ቇ

ఈ

. 
(5.20) 

Here, 𝑈௚, 𝐻௚, and 𝛼 are control parameters set to 30 m/s, 100 m, and 0.22, respectively.  

Here, the integral scale length scale 𝐿௨(𝑧) is represented as: 

 𝐿௨(𝑧) = 𝐶𝑧௠, (5.21) 

where 𝐶  and 𝑚  can be determined based on the roughness length 𝑧଴,  which is 

dependent on the surface type. In this example, 𝑧଴ is selected as 0.03 m, corresponding 

to areas with low vegetation and isolated obstacles. Consequently, the 𝐶 and 𝑚 are set 

to be 100 and 0.2, respectively. According to Simiu and Yeo, (2021), for the cross-

wind length scale  𝐿௩(𝑧), it is set to 0.33𝐿௨(𝑧); the roughness length also influences 

the factor  𝛽, which is determined to be 6.0.  

Using these parameters, the von Kármán spectrum effectively models the wind 

speed at each height across the structure. To capture the spatial correlations between 

wind speeds at different heights, the cross-spectral density 𝑆௘భ௘మ
(𝑧ଵ, 𝑧ଶ, 𝑛), 𝑒 ∈ {𝑢, 𝑣} 

is formulated with: 

 𝑆௘భ௘మ
(𝑧ଵ, 𝑧ଶ, 𝑛) = ඥ𝑆௘(𝑧ଵ, 𝑛)𝑆௘(𝑧ଶ, 𝑛) exp(−𝑓መ), (5.22) 

where  

 
𝑓መ =

2𝑛ൣ൫𝐶௭
ଶ + 𝐶௬

ଶ൯(𝑧ଵ
ଶ − 𝑧ଶ

ଶ)൧
ଶ

[𝑈(𝑧ଵ) + 𝑈(𝑧ଶ)]
. 

(5.23) 

In these equations, 𝑆௘(𝑧ଵ, 𝑛), 𝑆௘(𝑧ଵ, 𝑛) represent the PSD in the along-wind or cross-

wind direction at heights 𝑧ଵ and 𝑧ଶ, respectively; 𝑓መ quantifies the decay of correlation 

between wind speeds as the height difference increases, incorporating the integral 
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length scales and mean wind profiles at each height. In this example, 𝐶௭ and 𝐶௬ are 

control parameters for 𝑓መ, set to 1×10-2 and 2×10-3, respectively.  

Given the set involves heights of 45 floors of the investigated, at each frequency, a 

CSD matrix is calculated by randomly determining the phase of the wind histories. The 

inverse Fourier transformation is then applied to the series of CSD matrices. 

Consequently, the wind speed histories in both along-wind and cross-wind direction at 

the specified heights are generated.  

Once the wind speed histories have been generated, they are transformed into wind 

load histories based on the principle that wind pressure is proportional to the square of 

wind speed. Specifically, let 𝑠(𝑧௜, 𝑡), 𝑖 ∈ {1,2, … ,45}, 𝑡 ∈ ℝ  denotes the calculated 

wind speed time history, the wind load at each floor is calculated using the relationship: 

 𝑓(𝑧௜, 𝑡) = 𝜂𝑘(𝑧௜)sgn(𝑠(𝑧௜, 𝑡))𝑠(𝑧௜ , 𝑡)ଶ. (5.24) 

where 𝜂 is a variational coefficient to adjust the amplitude of wind excitations, 𝑘(𝑧௜) 

is a coefficient dependent on the exposed area and specific characteristics of ith floor 

facing the wind load direction. sgn(⋅)  is the sign function that incorporates the 

directionality of wind excitation, which ensures that the wind loads are correctly 

oriented based on the prevailing wind speed relative to the building's orientation.  

Figure 5.16 depicts the distributions of the normalized wind loads applied to the 

building structure. In this example, the parameter 𝜂 is adjusted to scale the wind load , 

simulating conditions of both slight and strong wind disturbances. Consequently, the 

aerodynamic loads applied to each floor are proportional to the wind speed histories, 

accurately reflecting the dynamic forces acting on the building. The resulting wind load 

histories are integrated into the FE model to simulate the building’s dynamic response 
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under realistic wind conditions. These simulated responses are then collected and 

utilized for further state estimation tasks using various time-delayed GP models. 

 

Figure 5.16. Distributions of the normalized wind loads applied to the building structure. 

5.6.3. State estimation of the building structure solely based on high-fidelity data 

Following the layout of the SHM system, the recorded accelerations and 

displacements at the corresponding DOF are meticulously extracted from the 

comprehensive response data obtained from the FE model subjected to slight wind 
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disturbances. The sampling frequency for all sensors is set to 4 Hz. To enhance signal 

quality and reduce noise, acceleration data collected from sensors located on the same 

floor and oriented in the same directional axis are averaged. This averaging process 

ensures that displacement measurements are consistent and reflective of the overall 

structural behavior, mitigating the influence of localized anomalies or sensor-specific 

noise. Furthermore, the calculated displacement data are filtered to eliminate quasi-

static displacements caused by wind, thereby isolating the dynamic component of the 

displacement. Figure 5.17 presents a subset of processed data, spanning from 0 to 500 

s, which is utilized to demonstrate the state estimation process. As observed in the 

figure, the acceleration and displacement in the z-direction are significantly greater than 

those in the x-direction. Additionally, the vibrations along the x-axis appear more 

stationary compared to the dynamic behavior observed in the z-axis vibrations. 

 

Figure 5.17. Processed high-fidelity acceleration and displacement data for demonstration of state 

estimation. 

The time-delayed GP models are trained using these high-fidelity data. Specifically, 

acceleration data from accelerometers Acc3-4 are used to predict displacements from 
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reference point R3, while acceleration data from accelerometers Acc5-6 are utilized to 

predict displacements from reference point R4. For the 500 s dataset, the first half is 

allocated for training the models, and the remaining half is reserved for testing the 

validity of the time-delayed GP models. 

 

Figure 5.18. Predictive results of time-delayed GP models on test dataset. 

After optimizing the hyperparameters of the GP models, the well-trained time-

delayed GP models are evaluated using the test dataset. Figure 5.18 illustrates the 

prediction results alongside the reference displacement data. The results indicate that 

the prediction quality for x-axis displacements is superior to that of z-axis 

displacements. Specifically, the posterior distributions for z-axis displacements exhibit 

wider confidence intervals, and the predictive mean shows less accuracy compared to 

the predictions for x-axis displacements. Nonetheless, the posterior predictions from 

both time-delayed GP models effectively align with the reference data, demonstrating 

the models' capability to capture the underlying displacement dynamics. 

z axis 

x axis 
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Figure 5.19. Processed acceleration data when building undergoes a strong wind disturbance. 

 
Figure 5.20. Displacement prediction using high-fidelity data trained time-delayed GP model when 

building undergoes a strong wind disturbance. 

Figure 5.19 displays acceleration data recorded during a strong wind disturbance, 

where the amplitude of acceleration significantly exceeds the data used for training the 

time-delayed GP models. By inputting these higher-valued accelerations into the well-

trained GP models, the resulting displacement predictions are shown in Figure 5.20. 

The results reveal that for z-axis displacement predictions, the model's performance is 

suboptimal, indicating that the time-delayed GP model is effective only under 

z axis 

x axis 
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conditions of relatively small displacements. In contrast, for x-axis displacement 

predictions, although there is a decrease in prediction accuracy compared to the test 

dataset, the performance remains within acceptable ranges for practical applications. 

5.6.4. Enhanced state estimation of the building structure using low-fidelity and 

multi-fidelity data 

A reduced model of the building structure is developed to generate low-fidelity data 

for state estimation. As illustrated in Figure 5.21, the entire tall building is divided into 

45 segments, each modeled as a 3D beam-like element. Consequently, the reduced 

model is represented as a cantilever beam with 46 nodes and 45 elements. Each node 

possesses five DOF: two horizontal translational DOF and three rotational DOF. 

Therefore, each element has 10 DOF, and the entire model comprises 225 DOF in total, 

with all DOF of node 1 constrained. 

The element mass and stiffness matrices are initialized based on the high-fidelity FE 

model. Half of the mass of each segment between two adjacent nodes is assigned to the 

upper node and the remaining half to the lower node. Similarly, the equivalent 

rotational inertia of each segment relative to the node is calculated, with half allocated 

to the upper node and half to the lower node (Xia et al., 2008). 

Element stiffness matrices are derived using the displacement method through the 

following steps: 

i. Each beam element is aligned with a corresponding segment from the high-

fidelity FE model. Each segment consists of two horizontal sections (planes), 

with multiple nodes located within each plane. In each plane, a central node 

is generated. All nodes within a plane are rigidly connected to their 

respective central node using rigid beam connections. These rigid beams are 
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assigned materials with significantly higher elastic moduli and sections with 

much larger cross-sections to ensure that the connections behave as rigid 

links. 

ii. To compute the stiffness coefficients of the jth DOF, a displacement of 1×10-

2 m or rad is applied to the jth DOF of one central node, while restricting all 

other potential displacements of this central node and another central node. 

This displacement is deliberately kept small to avoid nonlinear geometric 

effects. The index j ranges from 1 to 10, where j=1 to 5 correspond to lateral 

translational displacements in the x and z directions and rotations about the 

x, z, and y axes at the lower node, respectively. Similarly, j=6 to 10 represent 

the corresponding displacements at the upper node. Figure 5.22(a) to (e) 

depicts the cases for j=1 to 5, with Figure 5.22(e) specifically showing the 

rigid beam connection to the defined node. 

iii. The resulting generalized force at the ith DOF of the central node due to the 

applied displacement at the jth DOF is calculated. The forces are multiplied 

by 1×102 and recorded as the ith row and jth column of the element stiffness 

matrix. For each specified displacement, ten resisting forces are obtained, 

requiring ten iterations per element to fully determine the stiffness matrix. 

iv. The procedures from i to iii are repeated for each element, resulting in all 

element stiffness matrices. These matrices are then assembled into the global 

stiffness matrix. By applying the constraints on all DOF of node 1, the 

stiffness matrix of the reduced model is fully constructed. 
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Figure 5.21. The high-fidelity FE model and reduced model of the investigated building structure. 

The initialization of the reduced model lays the foundation for the subsequent model 

updating process, which aims to enhance the accuracy of state estimation. It is crucial 

to emphasize that the calibration of this reduced model adheres to actual engineering 

procedures. Although the reduced model operates at a low fidelity, it is essential to 

align it with the characteristics of the actual structure to ensure practical applicability. 
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Figure 5.22. Positive displacement in different directions: (a) x direction; (b) z direction; (c) rotation 

along x axis; (d) rotation along z axis; (e) rotation along y axis. 

Initial calculations reveal that the dynamic properties of the reduced model differ 

from those of the high-fidelity FE model due to the large simplifications.  To reduce 

the error, the residual vectors for the first six modes, denoted as 𝒓௡௙ ∈ ℝ଺ and 𝒓௠௦ ∈

ℝ଺  are defined. Here, 𝒓௡௙  represents discrepancies in natural frequencies, and 𝒓௠௦ 

quantifies the mode shape similarities. The ith components of these two vectors are 

calculated as follows: 
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𝑟௡௙
௜ = ቆ

𝑓መ௜ − 𝑓௜(𝜿)

𝑓መ௜
ቇ

ଶ

, (5.25) 

 

𝑟௠௦
௜ = 1 −

𝝓෡ ௜
୘𝝓௜(𝜿)

൫𝝓෡ ௜
୘𝝓෡ ௜൯(𝝓௜

୘(𝜿)𝝓௜(𝜿))
. (5.26) 

where 𝑓መ௜ and 𝝓෡ ௜ denotes the ith natural frequency and mode shape of the high-fidelity 

FE model, respectively. Conversely, 𝑓௜(𝜿) and 𝝓௜(𝜿) is the ith natural frequency and 

mode shape of the reduced model, given an updating parameter set 𝜿. The parameter 

set 𝜿  comprises two parameters, 𝜅ா  and 𝜅ீ , for each element stiffness matrix. 

Specifically, 𝜅ா represents the modulus variation coefficient affecting all components 

of the element stiffness matrix, and 𝜅ீ  is associated only with bending and rotational 

DOF.  

Therefore, for the element stiffness matrix 𝐊௜ of ith element, the updated matrix can 

be expressed as: 

 𝐊௨
௜ = 𝜅ா𝐊௜ ⊙ ቂ

𝛘ீ 𝛘ீ

𝛘ீ 𝛘ீ
ቃ, (5.27) 

with 

 

𝛘ீ =

⎣
⎢
⎢
⎢
⎡

1 1 𝜅ீ 𝜅ீ 𝜅ீ

1 1 𝜅ீ 𝜅ீ 𝜅ீ

𝜅ீ 𝜅ீ 𝜅ீ 𝜅ீ 𝜅ீ

𝜅ீ 𝜅ீ 𝜅ீ 𝜅ீ 𝜅ீ

𝜅ீ 𝜅ீ 𝜅ீ 𝜅ீ 𝜅ீ⎦
⎥
⎥
⎥
⎤

, (5.28) 

where “⊙” denotes the element-wise product.  



141 
 

 

Figure 5.23. Comparison of the mode shapes between high-fidelity FE model and reduced model. 
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Table 5.3. Natural frequency comparison between high-fidelity model and reduced model. 

Mode 
Natural frequency (Hz) 

High-fidelity model Reduced model Difference (%) 

1 0.231 0.230 0.4 

2 0.245 0.245 0.0 

3 0.306 0.305 0.3 

4 0.711 0.700 1.5 

5 0.765 0.777 1.6 

6 0.888 0.888 0.0 

 

The model updating is conducted by minimizing loss function 𝐽(𝜿) defined in Eq. 

(5.29), utilizing the L-BFGS-B optimizer for the optimization process. By effectively 

adjusting stiffness matrices 𝐊௨
௜  based on the parameter set 𝜿, the reduced model could 

more accurately represent the dynamic behavior of the actual high-fidelity FE model. 

Consequently, the calibrated reduced model serves as a robust foundation for efficient 

and precise state estimation in subsequent analyses. 

 
𝐽(𝜿) = ෍ 𝑟௡௙

௜ +

଺

௜ୀଵ

𝑟௠௦
௜ . (5.29) 

To validate the model updating process, a comparison between the high-fidelity FE 

model and the reduced model was conducted. As presented in Table 5.3, the natural 

frequencies of the two models are in close agreement, with the maximum discrepancy 

being 1.6% among the first six modes. Figure 5.23 illustrates the mode shapes, 

encompassing various orders of bending and torsion. The results confirm that the 

reduced model effectively represents the high-fidelity FE model, although some 

distinctions between the models persist. 

The reduced model is developed to estimate the state of tall buildings subject to 

strong wind disturbances. As discussed in Subsection 5.6.3, high-fidelity data is 
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unavailable for constructing a time-delayed GP model to predict the state under such 

extreme wind conditions. However, the calibrated reduced model can generate a 

substantial dataset that encompasses these scenarios. Additionally, the measured 

acceleration data presented in Figure 5.19 are utilized in this analysis as input for time-

delayed GP models. In this section, the contribution of combining low-fidelity data 

generated by the reduced model with the available high-fidelity data is demonstrated 

to achieve accurate state prediction. 

To generate low-fidelity data, it is essential to design dynamic loads for the reduced 

model. Wind loads on tall buildings predominantly contain energy at lower frequencies. 

Therefore, a parametrized roll-off PSD function is employed, defined by: 

 
𝑆(𝜔) =

𝛼𝒗𝜔௖
ଶ

(𝜔ଶ + 𝜔௥
ଶ)(𝜔ଶ + 𝜔௖

ଶ)
, 

(5.30) 

where 𝛼𝒗, 𝜔௥, and 𝜔௖ are parameters, 𝜔 is the angular frequency in rad/s. By tuning 

these parameters and applying inverse Fourier transformations, corresponding load 

histories can be generated.  

Assuming that all nodes in the same directional axis are subjected to identical 

dynamic loads. That is, two PSD functions, one for x-axis loads and another for z-axis 

loads, must be determined. The measured acceleration data presented in Figure 5.19 

are utilized to roughly calibrate the PSD parameters. Specifically, these parameters are 

adjusted to generate dynamic loads that produce acceleration outputs from the reduced 

model with comparable dispersions to the measured data. Ultimately, the three 

parameters are selected as 2×109, 2, and 4 for x-axis loads; and 4×1010, 3, and 12 for z-

axis loads. These two PSD are illustrated in Figure 5.24.  
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Given the input to the reduced model, the complete responses are computed. The 

low-fidelity data for training of time-delayed GP model is generated based on the SHM 

system configuration shown in Figure 5.14. For demonstration purposes, Figure 5.25 

illustrates the processed low-fidelity acceleration and displacement data, where the 

accelerations obtained from accelerometers of the same floor and direction are 

averaged. As can be seen, the amplitudes of the acceleration and displacement in the 

low-fidelity data are much higher than those observed in high-fidelity data depicted in 

Figure 5.17. Additionally, the range of acceleration data in low-fidelity data closely 

matches that of the data depicted in Figure 5.19. This alignment enables the time-

delayed GP model trained with low-fidelity data to perform competitively in state 

estimation under strong wind disturbances when compared to the GP model trained 

with high-fidelity data.  

 

 
Figure 5.24. PSD for x- and z-axis loads. 
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Figure 5.25. Processed low-fidelity acceleration and displacement data for demonstration of state 

estimation. 

Subsequently, the time-delayed GP models are developed using the generated low-

fidelity data. In particular, acceleration measurements from accelerometers Acc3-4 are 

employed to forecast displacements at reference point R3, whereas data from 

accelerometers Acc5-6 are utilized to predict displacements at reference point R4. For 

the 500 s dataset, the initial 250 s are designated for training the GP models, while the 

final 250 s are used to evaluate their performance and validate their predictive 

capabilities. 

 After optimizing the hyperparameters, the well-trained time-delayed LFGP models 

were evaluated using the test dataset. Figure 5.26 presents the predicted posterior 

distributions of displacements at reference points R3 (z-axis) and R4 (x-axis). The 

alignment between the predicted displacements and the reference data confirms the 

successful training and accurate predictive performance of the time-delayed LFGP 

models. 
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Figure 5.26. Predicted results of low-fidelity time-delayed GP models on test dataset. 

As previously discussed, the objective of constructing LFGP models is to enable 

accurate state estimation of the high-fidelity FE model. By inputting the measured 

acceleration data from the high-fidelity FE model, as depicted in Figure 5.19, into the 

well-trained time-delayed LFGP models, the dynamic displacements at reference 

points R3 and R4 are calculated. The results, shown in Figure 5.27, demonstrate that 

the predicted posterior distributions from the LFGP models outperform those from the 

HFGP models. Specifically, for the x-axis displacement prediction illustrated in Figure 

5.27(b), the LFGP model effectively captures the reference displacement, despite the 

confidence interval exhibiting greater uncertainty compared to predictions based solely 

on high-fidelity data. In contrast, for the z-axis displacement prediction, the LFGP 

model provides effective results, although the accuracy is somewhat reduced compared 

to the x-axis prediction. This decreased accuracy may be influenced by the 

nonstationary excitation in the z-axis direction. Furthermore, the HFGP model fails to 

accurately predict displacements in the z-axis, highlighting its limitations under certain 

conditions. Therefore, the LFGP model proves to be a superior choice for state 

z axis 

x axis 
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estimation of the high-fidelity FE model, particularly in scenarios involving strong 

wind disturbances. 

GP models trained based on low-fidelity data can be further enhanced by 

incorporating high-fidelity data. Although, as previously mentioned, the performance 

of high-fidelity data alone is quite poor, it is directly obtained from the high-fidelity FE 

model. Therefore, the MFGP model is constructed using the proposed multi-fidelity 

modeling approach. Based on testing results, the displacement prediction accuracy in 

the x-axis direction is already excellent when using either high-fidelity or low-fidelity 

data. Consequently, the focus is solely on predicting displacements in the z-axis 

direction at four reference points, R1 to R4. Using acceleration data collected from 

adjacent floors as inputs, four MFGP models are developed. Additionally, both level 1 

and level 2 multi-fidelity models were tested based on high-fidelity data, with level 2 

demonstrating better adaptability for this application. 

 

Figure 5.27. Displacement prediction using low-fidelity data trained time-delayed GP model when 

building undergoes a strong wind disturbance. 

z axis 

x axis 
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After optimizing the hyperparameters of the MFGP models, the processed 

acceleration data are input into the models, and the predicted displacements at points 

R1 to R4 are presented in Figure 5.28(a) to (d). To quantify the prediction accuracy, 

the previously defined NRMSE metric is employed to compare the predicted means 

with reference data. As shown in Figure 5.29, the prediction accuracy of the multi-

fidelity models has improved compared to the low-fidelity model after integrating high-

fidelity data. Although the accuracy improvement depicted in the figure is limited, with 

the most notable being a 3.2% reduction in NRMSE for the z-axis displacement 

prediction on the 45th floor, this case study aims to illustrate the benefits of multi-

fidelity modeling for prediction. In practical applications, state estimation typically 

utilizes LFGP models. However, to further enhance the accuracy of state estimation, 

introducing high-fidelity data and employing a multi-fidelity modeling approach 

proves to be a favorable option. 

Additionally, it is noteworthy that in the displacement prediction results shown in 

Figure 5.28, the posterior confidence intervals are noticeably smaller and do not align 

as well with reference data compared to the LFGP model. This may be due to the 

incorporation of high-fidelity data leading to an overly idealized prediction model. 

Therefore, regarding prediction uncertainty in this case, the LFGP model is actually 

more precise. This conclusion appears to differ from that observed in the first case 

study, and this discrepancy will be further explored in the next subsection. 
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Figure 5.28. z-axis displacement prediction using MFGP models. 

 

Figure 5.29. Quantitative comparison of state estimations by LFGP and MFGP models using NRMSE. 
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5.7. Discussion 

In this chapter, two numerical case studies are presented to validate that time-

delayed GP models can perform state estimation efficiently and accurately. 

Additionally, the adoption of a multi-fidelity modeling approach further enhances the 

precision of state estimation. Based on the results from these case studies, we focus on 

discussing the applicability and feasibility of MFGP models in practical applications. 

Figure 5.30 visually represents the distribution of high-fidelity and low-fidelity data 

within a two-dimensional space. The area enclosed by the black boundary delineates 

the regions where different types of data are available. Blue square markers indicate 

the presence of low-fidelity data points, while red circles denote high-fidelity data 

points. The datasets X₁ and X₂ correspond to high-fidelity and low-fidelity datasets, 

respectively. In scenario Figure 5.30(a), high-fidelity data do not exhibit a disadvantage 

in terms of quantity compared to low-fidelity data, and their spatial coverage is also 

comparable. Under these conditions, it is evident that relying solely on high-fidelity 

data for constructing time-delayed state estimation models is the most effective 

approach. In this context, multi-fidelity modeling does not offer additional advantages. 

 
Figure 5.30. Three different distributions of high-fidelity and low-fidelity data. 

Figure 5.30(b) corresponds to the first case study discussed in this chapter, where 

the volume of high-fidelity data is limited, yet its spatial coverage matches that of low-
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fidelity data. The results from this case study, as illustrated in Figures 5.10 and 5.11, 

demonstrate that integrating both high-fidelity and low-fidelity data through the multi-

fidelity approach significantly enhances prediction accuracy and the posterior 

distributions of the GP model compared to models that utilize only low-fidelity or high-

fidelity data individually. Therefore, in this scenario, multi-fidelity modeling is 

essential for achieving improved state estimation accuracy. 

Conversely, Figure 5.30(c) illustrates the situation addressed in the second case 

study, which is also commonly encountered in practical applications. Here, the quantity 

of high-fidelity data is not substantially lower than that of low-fidelity data; however, 

the spatial coverage of high-fidelity data is considerably smaller. The findings from 

this case study reveal that using solely high-fidelity data for state estimation in regions 

with limited high-fidelity data leads to model inadequacies. While models relying 

exclusively on low-fidelity data outperform those using only high-fidelity data in this 

scenario, the fusion of both data types within an MFGP model results in enhanced 

prediction accuracy compared to an LFGP model alone. Nevertheless, regarding the 

effectiveness of posterior predictions, the results indicate that the LFGP model exhibits 

higher posterior accuracy than the MFGP model. This discrepancy likely stems from 

the significant variation in spatial coverage between datasets X₁ and X₂. Addressing this 

issue may require more advanced multi-fidelity modeling techniques to improve the 

posterior prediction capabilities of MFGP models. 

5.8. Summary 

In this chapter, a comprehensive framework for real-time state estimation of 

structural dynamic systems using time-delayed GP has been developed and validated. 
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The proposed methodology leverages both high-fidelity and Low-fidelity data through 

a multi-fidelity modeling approach, significantly enhancing the accuracy and reliability 

of state estimations. The chapter first introduces the theoretical underpinnings of time-

delayed GP models within the RKHS framework, emphasizing their capability to 

capture complex temporal dependencies and correlations in structural measurements. 

The integration of multi-fidelity data is meticulously detailed, showcasing how 

combining high-fidelity data, derived from precise physics-based models, with 

abundant low-fidelity data, obtained from simplified models, can overcome the 

inherent limitations of single-fidelity approaches. Two numerical case studies are 

presented to validate the effectiveness of the proposed MFGP models, including a 

mass-spring-damper dynamic system, and a 45-story tall building subject to wind 

excitations. Throughout these case studies, key performance metrics such as NRMSE 

and PLL were employed to quantitatively assess the models' accuracy and uncertainty 

estimation capabilities. The results consistently highlight that MFGP models offer 

notable improvements over single-fidelity models, particularly in environments where 

data availability and fidelity vary spatially and quantitatively. To sum up, the adoption 

of time-delayed MFGP presents a robust and effective approach for real-time state 

estimation in structural dynamic systems. By intelligently combining diverse data 

sources, MFGP models enhance both the precision and reliability of state predictions, 

making them highly suitable for complex engineering applications. 
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Chapter 6. 

Transfer learning of recurrent neural networks for 

enhanced state estimation in structural dynamics  

6.1. Introduction 

This chapter presents a method for precise state identification by leveraging transfer 

learning within a deep learning framework, specifically utilizing RNN. While the 

Bayesian-based time-delayed MFGP model introduced in Chapter 5 demonstrated 

exceptional prediction accuracy and robust uncertainty quantification capabilities in 

state prediction, it typically models each DOF state individually. This approach 

necessitates that the output of the corresponding high-dimensional mapping process 

remains singular. Consequently, for complex scenarios requiring joint predictions 

across multiple DOF, the time-delayed MFGP demands multiple separate modeling, 

which can adversely affect task completion efficiency. To address these limitations, 

this chapter introduces a complementary approach based on deep learning. An efficient 

point estimation framework is adopted, which excels in learning and exploiting 

correlations inherent in multi-output problems. Given the simplicity and effectiveness 

of RNN in time series modeling, this neural network architecture is employed for the 

state estimation tasks discussed herein. Additionally, the chapter tackles the challenge 

of multi-fidelity data often encountered in practical state estimation scenarios by 
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incorporating the concept of transfer learning to enhance the predictive accuracy of 

RNN models. Initially, a calibrated FE model is utilized to generate extensive response 

data under synthetic excitations. This data is subsequently processed and integrated to 

train an RNN model specifically designed for state estimation. Recognizing the 

presence of multiple sensors in real-world structural monitoring, this study 

innovatively employs the collected data for dual purposes. A portion of the data serves 

as input for the RNN model, while the complete dataset facilitates the transfer learning 

process for the RNN model. This dual-purpose strategy enables the RNN model to 

adapt effectively to real-structure state prediction tasks. To ensure effective 

convergence during transfer learning, a novel method is proposed in which parameters 

within the RNN cells at the network’s front end are fine-tuned, whereas those near the 

output layers are frozen. This approach deviates from conventional transfer learning 

methods typically used for other neural network architectures and proves particularly 

beneficial for RNN models tailored for state estimation. Numerical and experimental 

studies validate that the proposed TL-RNN approach can seamlessly integrate both 

model-generated and actual measurement data. Under identical data acquisition 

conditions, the TL-RNN models achieve significantly higher accuracy compared to 

state estimation models that rely solely on FE models. 

6.2. RNN for structural state estimation 

RNN constitute a class of artificial neural networks where connections between 

nodes form a directed graph along a temporal sequence. This architecture allows the 

RNN to exhibit temporal dynamic behavior and enables the network to act as a form of 

memory. As a result, RNN could be exceptionally well-suited for applications in state 
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estimation, where the states of a structural dynamic system are in a state of flux, 

continuously influenced by their historical states and external excitation. By 

assimilating the data from practical measurements over a structure, a well-trained RNN 

is expected to output the states of the system accurately. 

In the present study, two general architectures of RNN for state estimation are 

investigated, i.e., the vanilla RNN and BiRNN. Although there have been 

advancements in RNN design, such as the LSTM and the gated recurrent unit, the 

simulation results indicate that the simplest form of RNN achieves outstanding 

performance in structural state estimation. Therefore, these more complex RNN 

structures are not adopted in this paper. Figure 6.1 displays the general architectures of 

RNN and BiRNN. It is pertinent to note that the RNN facilitates real-time state 

computation using measurement data. In contrast, computations of BiRNN are offline 

but often yield higher prediction accuracy than RNN by leveraging additional 

information from future measurements in the data sequence. 

 

Figure 6.1. The general architecture of RNN and BiRNN for state estimation. 

In Figure 6.1, the RNN cell in the ith layer processes the measurements from the 

structure, denoted as 𝒚ෝ௞, and the previous hidden state, 𝒉௞ିଵ
௜ , to produce the current 

hidden state, 𝒉௞
௜ . The computation at each time step follows the equation: 
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𝒉௞

௜ = tanh൫𝐖ଵ
௜𝒚ෝ௞ + 𝐖ଶ

௜𝒉௞ିଵ
௜ + 𝒃௜൯. (6.1) 

Here, 𝑘 ranges from 1 to N, where N is the total number of time steps in the state 

estimation process. The matrices 𝐖ଵ
௜  and 𝐖ଶ

௜  represent the weights respectively for 

measurements and hidden states, while the vector 𝒃௜ includes the corresponding biases. 

In an RNN, the hidden state output from the RNN cell at each step is the direct input 

to a MLP cell. In contrast, for a BiRNN, the hidden states from forward and backward 

RNN cells are concatenated before being input into the MLP cell. The MLP cell, 

composed of densely connected neurons with nonlinear activation functions, ultimately 

provides the estimated state at each timestamp. 

It is suggested to set all bias vectors in both RNN and MLP cells to zero when 

performing state estimation tasks. This ensures that the RNN model outputs are 

primarily influenced by the inputs and hidden states, aligning with the expectation of 

zero dynamic states when measurements are zero. 

As a data-driven approach, the training and test datasets for the RNN model are 

constructed from the vibration responses of an idealized FE model. Both the input 

features and target outputs for the RNN model correspond to the response variables 

obtained from the simulations. To create label pairs for the RNN model, it is necessary 

to apply synthesized external excitations to the idealized FE model, thereby generating 

the requisite input-output data pairs alien to the RNN architecture. The optimization of 

parameters is carried out by minimizing the loss function across all time steps, as 

demonstrated in Eq. (6.2), where ℒଵ denotes the loss function for the first training of 

RNN. The test loss generated from the test dataset reflects the expected performance 

of the trained RNN model on the state estimation task. 
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min ෍ ℒଵ(𝒙෥௞, 𝒙௞)

௡

௞ୀଵ

. (6.2) 

It is also important to note that the artificial specification of excitation for the FE 

model implies a prior embedding in the context of state reconstruction. Traditional 

Kalman filter-based approaches for state estimation are typically formulated under the 

prior assumption that external loads are stationary white noise. However, RNN-based 

methodologies exhibit increased adaptability in their prior assumptions. The datasets 

for training and testing can be derived from not only stationary white noise but also 

non-stationary excitation endowed with particular statistical properties. Such versatility 

allows the RNN model to provide improved predictive performance in state estimation 

when the prior assumptions are more closely aligned with reality. 

6.3. TL-RNN for enhanced state estimation 

6.3.1. Apply transfer learning to enhance pre-trained RNN 

All models in structural dynamics are simplifications of actual structures they 

attempt to represent. These approximations, by their nature, cannot capture every 

nuance of their real-world counterparts. The inaccuracies can be particularly stark when 

structures are subjected to extreme operational conditions. The divergence between the 

model predictions and actual behavior is often due to a range of factors, including but 

not limited to, oversimplified assumptions, parameter uncertainties, ignored physical 

mechanisms, and the constraints of computational techniques (Liu and Quek, 2013). 

Even though the calibration of the FE model through sensitivity analysis, uncertainty 

quantification, and model updating techniques improve its reliability (Moaveni et. al., 

2009), discrepancies with the actual structure could not be thoroughly eliminated. 
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Moreover, the accuracy of state estimation in real-world structures relies heavily on the 

fidelity of the FE models. Since the mathematical model for state estimation is typically 

derived from the equations of motion or trained using datasets created from the FE 

model, any discrepancies in the simplified model can significantly impact the precision 

of state estimations. In situations where the structure experiences extreme conditions 

which are not accounted for in the idealized FE model, the errors in state estimation are 

likely to be amplified. Consequently, the reliability of the state estimation is inherently 

linked to the representativeness of the idealized FE model: an imprecise idealized FE 

model can lead to poor state estimation outcomes. 

Acknowledging the impracticality of creating an exhaustive model for complex 

structures due to computational and modeling constraints, this chapter advances the 

field by proposing an approach referred to as TL-RNN that harnesses transfer learning 

in conjunction with RNN models for state estimation. Transfer learning leverages the 

power of pre-trained models by applying knowledge acquired from previous tasks to 

new, similar tasks (Pan and Yang 2009). This approach significantly reduces the need 

for extensive data typically required to achieve high performance in new learning tasks, 

addressing the data-hungry problem ubiquitous in deep learning. 

In the context of this study, the pre-trained RNN is initially trained using data from 

an FE model. The subsequent transfer learning task involves improving this model 

using data from the actual structure. In practice, generating full input-output label pairs 

for the RNN based on the actual structure is challenging, as it is usually infeasible to 

observe all states of the structure. Moreover, the volume of observation data available 

from the actual structure is substantially less than what can be simulated using the 

idealized FE model, thereby providing an insufficient basis for training an accurate 
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RNN model for state estimation. A practical strategy is that beyond observing the first 

portion of data (e.g., accelerations) that would be used as input to RNN, measurements 

from other transducers on the structure together with the acceleration data would be 

useful to fine-tune the pre-trained RNN model. For example, in multi-story buildings, 

various techniques can be implemented to effectively measure inter-story 

displacements and velocities (Chang and Huang, 2020). Similarly, for certain structural 

elements, strain measurements are readily available. These measurements are compiled 

into a vector, denoted as 𝒛ො௞ ∈ ℝ௡೐  at step k, where 𝑛௘  denotes the number of extra 

transducers rather than those used for 𝒚ෝ௞. The measurement vector 𝒛ො௞ is intrinsically 

linked to the structural states predicted by the RNN. It can be derived from the state 

vector through a specific linear transformation, represented here by the matrix 𝐁 ∈

ℝ௡೐×ଶ௡  . As a result, a novel loss function can be introduced, minimizing the 

discrepancies between 𝐁𝒙෥௞ and 𝒛ො௞, as depicted Eq. (6.3): 

 

min ෍ ℒଶ(𝐁𝒙෥௞ , 𝒛ො௞)

௡

௞ୀଵ

, (6.3) 

where ℒଶ(⋅) represents the specified loss specified loss function for transfer learning. 

The minimization process aligns the pre-trained RNN model, derived from the 

idealized model, with the high-fidelity data of the actual structure, thus effectively fine-

tuning the model to improve state estimation accuracy. 

To preserve the knowledge learned from the idealized model, as shown in Figure 

6.2, the parameters in the MLP layers are kept constant, i.e., the MLP layers are 

“frozen”. The re-training process is focused exclusively on the parameters in the RNN 

cells, utilizing the new loss function as described in Eq. (6.3). This selective training 

approach contrasts with that commonly employed in transfer learning for CNN, where 
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it is standard practice to re-train the final few layers while the initial layers, which 

capture more generic features, remain unchanged. By maintaining the frozen MLP 

layers, the model retains its foundational understanding of system constraints and 

universal structural behavior derived from the idealized FE model. Meanwhile, 

retraining the RNN cells enables targeted refinement of temporal dynamics specific to 

the actual structure, ensuring the model adapts to field-measured data without 

overwriting pre-learned patterns. This dual mechanism mitigates catastrophic 

interference, a risk in conventional retraining, by incrementally adjusting only the time-

sensitive components of the network. This distinction highlights a tailored transfer 

learning strategy for RNN in the context of state estimation in structure dynamics. By 

re-training only the RNN cells, the model is fine-tuned to capture the temporal 

dynamics characteristic of the actual structure, while the knowledge embedded in the 

MLP layers, likely representing more universal aspects of structural behavior, is 

retained without modification. This allows the TL-RNN to adapt to the specificities of 

the field-measured data from the actual structure without needing to re-learn 

fundamental patterns and relationships already established during the initial training 

phase on the idealized FE model. The frozen MLP layers act as a stabilizing anchor, 

preserving domain-general knowledge, while the retuned RNN cells focus on domain-

specific temporal dependencies, ensuring both stability and adaptability. Moreover, 

from the practice of optimization based on Eq. (6.3), the execution of freezing MLP 

layers and re-training RNN cells leads to the convergence of the algorithm. This 

proposed strategy strikes a balance between retaining prior knowledge and 

accommodating new structural conditions, which is critical for reliable state estimation 

in real-world applications. 
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Figure 6.2. Apply transfer learning for RNN. 

6.3.2. State estimation procedures using TL-RNN 

The workflow of the proposed TL-RNN is shown in Figure 6.3. For the sake of 

convenience, the full monitoring data are divided into accelerations and additional 

measurements, with accelerations serving as the primary information for state 

estimation. The major steps are summarized as follows: 

i. Idealized model construction. Construct an idealized, simplified parametric FE 

model to approximate the dynamic of the actual structure. Incorporate existing 

information to preliminarily determine the model parameters as accurately as 

possible. 

ii. System identification and model updating. Calculate the vibrational 

characteristics of the actual structure through field-monitoring data. Refine the 

parameters of the idealized FE model to align the model results with the 

measurement, thereby further reducing the discrepancies between the model 

and the actual structure. 

iii. Data preparation. Delineate a multitude of external excitation time histories as 

input for the calibrated FE model. Compute the resultant responses to these 

excitations. For each timestamp, the acceleration responses of designated DOF 
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are extracted from the global responses. These selected acceleration responses 

are utilized as input to the RNN, while the system's state vector is designated as 

the output. These corresponding pairs of input and output are methodically 

compiled to constitute the training and test datasets. 

iv. RNN construction, training, and validation. Build the RNN or BiRNN model 

based on the general architecture shown in Figure 6.1. Begin by selecting 

suitable hyperparameters, which should include, but are not limited to, the 

learning rate, number of training epochs, type of loss function and optimizer, 

regularization techniques and associated parameters, dimension of hidden state 

in the RNN cell, and the configuration of the MLP cell. Then, train the RNN 

with various hyperparameter combinations to minimize the training loss. 

Concurrently, monitor the RNN performance on the test dataset to guard against 

overfitting. The aim is to identify the set of hyperparameters that results in the 

minimum loss on the test dataset after training has converged. This optimal 

hyperparameter set should be considered as the one that enhances the model's 

generalization ability on unseen state estimation tasks. 

v. RNN Transfer learning. Divide the multi-sensor measurements into two sets at 

each time step. For example, if there are four strain gauges on the structure, one 

set (the training dataset) includes the measurements from three of these gauges, 

while the second set (the test dataset) contains data from the remaining gauge. 

The corresponding acceleration data, which acts as the input to the RNN, is 

prepared in alignment with the strain measurements of both datasets. Then, a 

loss function is formulated for both datasets according to Eq. (6.3). The pre-

trained RNN is fine-tuned on the training dataset following the regulation as 
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shown in Figure 6.2, during which the hyper-parameters are adjusted. The RNN 

model that achieves the best performance on the test dataset is chosen as the 

fine-tuned model. This model is expected to fit well to measured data while 

retaining the essential knowledge from the pre-training phase and is then 

deployed for state estimation on the actual structure. The fine-tuned model 

should now be capable of making accurate predictions of the structural states 

based on the input acceleration data, informed by the multi-sensor 

measurements. 

 

Figure 6.3. Workflow of the TL-RNN for state estimation. 

6.4. Numerical example: a base-isolated building structure 

6.4.1. Base-isolated building structure and simplified model 

A 13-story base-isolated shear-type building shown in Figure 6.4(a) is utilized to 

represent the high-fidelity real-world structure, where the superstructure is simulated 

as a linear shear-type structure, and New Zealand (N-Z) bearings are adopted between 

the foundation and superstructure (Matsagar and Jangid, 2003). As shown in Figure 

6.4(b), the dominant feature of the N-Z bearing is the parallel action of a linear spring, 

damper, and hysterics. Therefore, the Bouc-Wen model is well-suited to characterize 

the force-deformation relationship (Matsagar and Jangid, 2004). The restoring force 𝐹௕ 

provided by the N-Z bearing is given by: 
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𝐹௕ = 𝛼𝑘ଵ𝑢ଵ + 𝑐ଵ𝑢̇ଵ + (1 − 𝛼)𝐹௬𝜈, (6.4) 

where 𝐹௬ is the yield strength of the bearing; 𝑢ଵ and 𝑢̇ଵ are displacement and velocity 

of the base floor, respectively; 𝛼 denotes the ratio of post- to pre-yielding stiffness; 𝑘ଵ 

and 𝑐ଵ represent the stiffness and viscous damping factor of the base story, respectively; 

𝜈 is the dimensionless hysteric displacement component that satisfies the following 

nonlinear first order differential equation: 

 
𝑞𝜈 = 𝐴𝑢̇ଵ + 𝛽|𝑢̇ଵ||𝜈|௡ିଵ𝜈 − 𝛾𝑢̇ଵ|𝜈|௡, (6.5) 

where 𝑞 denotes the yield displacement; 𝐴, 𝛽, 𝛾, and 𝑛 are dimensionless quantities, 

among which 𝑛 must be a positive integer to control the smoothness of transition from 

elastic to plastic response. 

The equations of motion for the 13-story base-isolated structure subjected to 

external excitation are given by: 

 𝐌௦𝒖̈௦ + 𝐂௦𝒖̇௦ + 𝐊௦𝒖௦ = −𝐌௦𝒓𝑢̈ଵ + 𝒇௦ , (6.6) 

 
𝑚ଵ𝑢̈ଵ + 𝐹௕ − 𝑐ଶ𝑢̇ଶ − 𝑘ଶ𝑢ଶ = 𝑓௕ , (6.7) 

where 𝐌௦ , 𝐂௦ , and 𝐊௦ ∈ ℝଵଶ×ଵଶ  are mass, damping, and stiffness matrices of the 

superstructure, respectively; 𝒖௦ , 𝒖̇௦ , and 𝒖̈௦ ∈ ℝଵଶ  are relative floor displacement, 

velocity, and acceleration vectors with respect to the base story, respectively; 𝒓 ∈ ℝଵଶ 

is a vector with all elements equal to 1; 𝒇௦ ∈ ℝଵଶ is the external excitation vector, and 

𝑓௕ ∈ ℝ denotes the external load applied to the base story. The complete parameters 

that define the base-isolated structural dynamic system are listed in Table 6.1 by 

referring to Matsagar and Jangid, (2003) and Yi and Song, (2021). The governing 

equations in Eqs. (6.6) and (6.7) could be explicitly formulated with the determination 



165 
 

of these parameters. Upon defining the time-varying external forces acting on the base-

isolated building, the responses of the whole system are numerically calculated step by 

step based on the Newmark-𝛽 method (𝛽୒ୣ୵୫ୟ୰୩ = 1/6, 𝛾୒ୣ୵୫ୟ୰୩ = 1/12). 

The linear shear-type structure depicted in Figure 6.4(c) serves as a simplified model 

to approximate the vibration of the base-isolated building shown in Figure 6.5(a). Each 

floor of the simplified model is assigned a mass equivalent to its base-isolated building 

counterpart. However, replication of the base-isolated building's stiffness and damping 

characteristics necessitates a process of system identification and subsequent model 

refinement. Despite these efforts to calibrate the parameters of the simplified model, 

discrepancies between the model and the base-isolated building are inevitable. 

Consequently, reliance on the simplified model for state estimation is likely to 

introduce a measure of inaccuracy. 

Table 6.1. Parameters for defining the base-isolated building structure. 

Parameter Symbol Value Unit 

Mass of 1st ~13th story 𝑚ଵ~𝑚ଵଷ 1.25×105 kg 

Stiffness of 1st story 𝑘ଵ 1.56×105 kN/m 

Stiffness of 2nd~4th story 𝑘ଶ~𝑘ସ 1.44×105 kN/m 

Stiffness of 5th~9th story 𝑘ହ~𝑘ଽ 9.60×104 kN/m 

Stiffness of 10th~13th story 𝑘ଵ଴~𝑘ଵଷ 6.00×104 kN/m 

Damping factor of 1st ~4th story 𝑐ଵ~𝑐ସ 3.60×102 kNs/m 

Damping factor of 5th ~9th story 𝑐ହ~𝑐ଽ 2.88×102 kNs/m 

Damping factor of 10th ~13th story 𝑐ଵ଴~𝑐ଵଷ 1.80×102 kNs/m 

Yield displacement 𝑞 0.01 m 

Yield strength 𝐹௬ 1.20×103 kN 

Ratio of post- to pre-yield stiffness 𝛼 0.70 - 

Bearing dimensionless quantity 𝛽 0.50 - 

Bearing dimensionless quantity 𝛾 0.50 - 

Bearing dimensionless quantity 𝑛 2 - 

Bearing dimensionless quantity 𝐴 1.00 - 
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Figure 6.4. A base-isolated building structure and simplified shear-type structure. 

6.4.2. System identification and model updating from ambient vibration 

Stationary white Gaussian noise processes as external excitation are applied to each 

story of the base-isolated building to simulate the ambient vibration. These processes 

are synthesized by first establishing one-sided, flat PSD with a constant value of 

1.44×104 N2/Hz ranging from 0 to 10 Hz, then the time histories are generated by 

applying the inverse Fourier transform on the spectral components derived from the 

flat PSD function. The sampling frequency and total duration of the white Gaussian 

noise process are 20 Hz and 1,000 s, respectively. The system responses of the base-

isolated building are computed accordingly with the excitation input to the governing 

equation in Eqs. (6.6) and (6.7). It is worth noting that although simulated ambient 

excitation could only result in a relatively low amplitude of structure vibration, e.g., 

the peak acceleration at the top story during the whole loading process is merely 0.065 

m/s2, the hysteresis from the bearing still occupies a certain role in contributing the 

base shear force. Figure 6.5 presents a comparison between the elastic force and 

hysteretic force in the first 100 s, indicating that the hysteretic force is not negligible 
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even under the ambient vibration condition. Thus, there could be certain deviations 

between the calibrated shear-type structure and the base-isolated building. 

 
Figure 6.5. Comparison of elastic force and hysteretic force from the bearing under ambient vibration. 

The output-only system identification is virtually performed on the base-isolated 

building. This process involves equipping each story with an accelerometer to capture 

the lateral acceleration. As a result, ambient vibration data for 1,000 s from every floor 

is collected. The collected data undergoes frequency domain decomposition (Pasca et 

al., 2022) to extract the building's modal properties including modal frequency, mode 

shape, and damping ratio for each vibration mode. Figure 6.6 presents the various 

orders of singular values, where the black line denotes the predominant singular value 

at every frequency. Modal frequencies and damping ratios are estimated by fitting the 

single DOF spectral bell over the black line. Mode shapes are obtained from singular 

vectors corresponding to the peaks in the bells. The identified first five modal 

frequencies and mode shapes are presented in Figure 6.7(b) and (c), and the 

corresponding damping ratios are respectively 2.14 %, 2.25 %, 3.05 %, 4.51 %, and 

4.41 %. 
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Figure 6.6. Singular values of cross-spectral matrices. 

The linear shear-type structure's stiffness parameters are refined by aligning them 

with the modal frequencies and mode shapes obtained from measurements. To achieve 

the closest possible correlation between the simplified shear-type structure and the 

base-isolated building, a goodness-of-fit function 𝐽(𝝉) is minimized (Lam et al., 2015), 

which is given by: 

 
𝐽(𝝉) = ෍ ൥ቆ

𝑓መ௜ − 𝑓௜(𝝉)

𝑓መ௜
ቇ

ଶ

+ ቆ1 −
ห𝝓෡ ௜

୘𝝓௜(𝝉)ห

൫𝝓෡ ௜
୘𝝓෡ ௜൯(𝝓௜

୘(𝝉)𝝓௜(𝝉))
ቇ൩

௥

௜ୀଵ

, (6.8) 

where 𝑟 = 5 is the total order of modal information used for model updating; 𝑓መ௜ and 𝝓෡ ௜ 

are the measured ith modal frequency and mode shape, respectively; 𝑓௜(𝝉) and 𝝓௜(𝝉) 

are the corresponding model prediction results under the stiffness parameter set 𝝉. The 

optimization process employs the standardized L-BFGS-B algorithm. Initial values of 

stiffness parameters for the optimization are based on the parameters k1 to k13 listed in 

Table 6.1. 

The optimal stiffness parameters are displayed in Figure 6.7(a). Although at the 

model level, the shear-type structure and the base-isolated structure differ only in the 

bearings at the base, this distinction is manifested in the global stiffness parameters 
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identified during the parameter identification process. The updated parameters are 

observed to be slightly lower than the true parameters. This discrepancy can be 

attributed to the presence of hysteretic behavior in the bearings of the base-isolated 

structure, which absorbs a portion of the total energy. Consequently, the amount of 

elastic energy is reduced, leading to a decrease in the stiffness of the base-isolated 

structure when subjected to dynamic loads. Figure 6.7(b) and (c) illustrate the 

comparisons of modal frequencies and mode shapes. The red patterns represent those 

calculated from the updated linear shear-type structure model, while the blue patterns 

are obtained from the measured acceleration data on the base-isolated building. The 

differences between the predicted and measured modal frequencies are all smaller than 

3 %, and the correlation between the predicted and measured mode shapes are all higher 

than 99.98 %. Therefore, the updated simplified model demonstrates a high degree of 

accuracy in replicating the dynamic behavior of the base-isolated structure. 

For the damping characteristics of the simplified model, the Rayleigh damping 

approach is used. In this method, the damping matrix for the shear-type structural 

system is derived from a linear combination of the mass matrix and the updated 

stiffness matrix. The Rayleigh damping coefficients, 𝛼𝐌 for mass and 𝛽𝐊 for stiffness, 

are determined using the equations below: 

 𝛼𝐌 = 4𝜋𝑓ଵ𝑓ଶ

𝜁ଵ𝑓ଶ − 𝜁ଶ𝑓ଵ

𝑓ଶ
ଶ − 𝑓ଵ

ଶ , (6.9) 

 
𝛽𝐊 =

𝜁ଶ𝑓ଶ − 𝜁ଵ𝑓ଵ

𝜋(𝑓ଶ
ଶ − 𝑓ଵ

ଶ)
, (6.10) 

where 𝜁ଵ and 𝜁ଶ are the damping ratios for the first two modes of vibration, while 𝑓ଵ 

and 𝑓ଶ are the corresponding measured modal frequencies in Hz. 
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Figure 6.7. Optimal stiffness parameter values and comparison of model results with the 

measurements. 

6.4.3. Pre-training of RNN based on the calibrated shear-type structure model 

Training and test datasets for the RNN and BiRNN are created based on the calibrated 

shear-type structure model. To begin with, 100 robust ground acceleration time 

histories are synthesized to act as external excitations for the shear-type structure. 

Earthquake-induced ground acceleration is inherently a non-stationary process. This 

research synthesizes the time histories by combining stationary white Gaussian noise 

processes with a time-varying envelope function. These stationary processes stem from 

a one-sided flat PSD from 0 to 10 Hz with random phases, set to a constant value of 

0.003 g2/Hz where g is equivalent to 9.8 m/s2. This setting ensures that the generated 
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random excitations have a standard deviation of approximately 0.17 g, aligning with 

the procedure in Kalman filter-based methods where a prior assumption about the 

external excitations must be determined. Each stationary process is sampled at a 

frequency of 20 Hz and spans a total duration of 40 s. The envelope function 𝐼(𝑡) that 

imparts non-stationarity is given by the following equation: 

 

𝐼(𝑡) = ቐ

𝑡/(𝑏ଵ𝑡୫ୟ୶) 𝑡/𝑡୫ୟ୶  ≤ 𝑏ଵ 
1 𝑏ଵ < 𝑡/𝑡୫ୟ୶  ≤ 𝑏ଶ

exp[−𝜅(𝑡/𝑡୫ୟ୶ − 𝑏ଶ)] 𝑡/𝑡୫ୟ୶ > 𝑏ଶ

, (6.11) 

Where 𝑏ଵ , 𝑏ଶ , and 𝜅  are parameters drawn from uniform distributions with 𝑏ଵ ∈

[0.1, 0.2], 𝑏ଶ ∈ [0.4, 0.6], and𝜅 ∈ [3, 5]. The variable 𝑡୫ୟ୶represents the total duration 

of each time history, i.e., 40 s. Figure 6.8(a) illustrates a representative synthesized 

ground acceleration alongside the corresponding window function. Figure 6.8(b) 

displays the continuous wavelet transform results of a sample, confirming the non-

stationary nature of the synthesized time history. 

 
Figure 6.8. A sample of synthesized ground acceleration, window function, and continuous wavelet 

transformation of the ground acceleration. 

The acceleration, velocity, and displacement responses of the idealized model 

subjected to 100 synthesized ground motions are calculated and retained. Assuming 
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that accelerometers are mounted on stories 1-5, acceleration responses from these 

stories are extracted from the overall response. These selected acceleration responses 

serve as input data for RNN and BiRNN, with the state vector defined as the output 

target. These input-output pairs are compiled to create the training and test datasets. 

Specifically, the training dataset is composed of 90 batches of sequences, while the test 

dataset includes the remaining 10 batches. 

 
Figure 6.9. Loss curves from the pre-training of RNN and BiRNN for state estimation of the shear-

type structure. 

RNN and BiRNN models are established according to the architecture shown in 

Figure 6.1. Multiple training iterations are performed for each model to determine the 

optimal hyper-parameters that yield the best test dataset performance. The mean square 

error function is employed as the loss function for both models, with the Adam 

optimizer used for optimization. The hidden state dimension for both models is set to 

30. Within the MLP cell, there are 4 layers, each hidden layer being equipped with 26 

neurons, and the Tanh activation function is utilized. The RNN and BiRNN models 

contain 3,858 and 5,688 trainable parameters, respectively. For optimal performance, 

the training process involves 80,000 epochs for the RNN and 60,000 epochs for the 
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BiRNN. Additionally, their training configurations differ in the learning rates: the RNN 

is set at 1×10-5 and the BiRNN at 8×10-6. The training of RNN and BiRNN is based on 

a personal computing system with an AMD Ryzen 3700X 8-Core Processor, a NVIDIA 

GeForce GTX 1660 Super graphical card, and 32 GB of RAM. On the software front, 

the models are implemented using Python 3.10.14 with Pytorch 2.3.0 serving as the 

deep learning framework. The training durations are recorded to be 364.0 s for the RNN 

and 334.1 s for the BiRNN. Figure 6.9 shows the loss curve from the training of both 

the RNN and the BiRNN, illustrating that by the end of the training, the BiRNN's 

performance is better than that of the RNN. 

The performance of the trained RNN and BiRNN models can be assessed by 

visualizing their state estimation outputs on the test dataset and comparing these 

outputs with references. For comparison purposes, two established methods, AKF 

(Lourens et al., 2012) and DKF (Eftekhar Azam et al., 2015), are employed to address 

the same state estimation problem. The hyperparameters in the DKF and AKF 

algorithms, which include parameters for process noise, measuring noise, and forces 

modeled as zero-mean GP, are tuned using the training dataset to ensure optimal 

performance. When fed with identical acceleration data from the test dataset, both DKF 

and AKF are tasked with performing state estimations comparable to those of the RNN 

models. The outcomes of this comparative analysis are depicted in Figure 6.10, 

highlighting the estimated displacement at the 9th story and velocity at the 13th story. 

The preliminary visualization of the state estimation data indicates that the four 

approaches, RNN, BiRNN, DKF, and AKF, deliver acceptable results when applied 

using the calibrated idealized model. 
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The NRMSE is utilized to quantitatively compare the prediction accuracy to the 

actual reference values. Eq. (6.12) illustrates the NRMSE formula, where 𝒙෥௜ represents 

the predicted state sequence (displacement or velocity) at the ith story and 𝒙௜   is the 

reference sequence. The notation ‖⋅‖ଶ  signifies the 2-norm, or Euclidean norm. A 

lower NRMSE value indicates a higher prediction accuracy. 

 
NRMSE(𝒙௜, 𝒙෥௜) =

‖𝒙௜ − 𝒙෥௜‖ଶ

‖𝒙௜ − mean(𝒙௜)‖ଶ
. (6.12) 

 

 

 
Figure 6.10. Comparison of state prediction samples from RNN, BiRNN, DKF, and AKF models; 

these predictions are based on acceleration inputs from a shear-type structural model and are 

benchmarked against the reference output of the same model. 
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Figure 6.11. Averaged NRMSE of RNN, BiRNN, DKF, and AKF models against the shear-type 

structural model for displacement and velocity predictions. 

Within the test dataset, there are 10 sequence batches, with each containing 13 

displacement and 13 velocity sequences. An NRMSE score is computed for each 

sequence. The average NRMSE scores for displacement and velocity predictions are 

calculated separately. The results, presented in Figure 6.11, indicate that the average 

NRMSEs for both the RNN and BiRNN models are lower than those for two Kalman 

filter-based methods. Furthermore, the BiRNN model exhibits a marginally better 

performance compared to the RNN model. Notably, for both RNN-based models, the 

predictions for velocity are more accurate than those for displacement, which contrasts 

with the results from the Kalman filter-based methods. 

6.4.4. TL-RNN for state estimation of base-isolated building under seismic excitation 

The calibrated shear-type structure-based RNN and BiRNN models are employed 

for state estimation of the base-isolated building under seismic excitation. To begin, 

ground motion histories from four distinct regions are collected and normalized using 

specific scaling factors, as illustrated in Figure 6.12. These ground motions are much 

stronger than the synthesized ambient excitations, and in such cases, they can excite a 

higher portion of nonlinear dynamic responses of the base-isolated building which 
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might not be reflected in the linear shear-type structure. Moreover, the records display 

variations from synthesized ground acceleration in peak values, duration, and PSD. 

Nevertheless, the bulk of the energy is concentrated below 10 Hz, which is similar to 

that of the synthesized acceleration for training of RNN. Subsequently, the responses 

of the base-isolated building to these real-world strong ground motions are computed. 

Accelerations from the 1st to the 5th floors are extracted from the responses to serve as 

input to the pre-trained RNN and BiRNN. The states from these calculated responses 

provide a benchmark for assessing the performance of the neural networks. 

Concurrently, the DKF and AKF given in the previous subsection are applied as well, 

utilizing the same acceleration data to conduct state estimation for the building. 

 
Figure 6.12. Ground motion records from Kobe, Kern County, El Álamo, and Taiwan earthquakes. 

A sample of the velocity estimation results is depicted in Figure 6.13, illustrating 

that all four methods yield satisfactory performance. For displacement estimation, a 

sample of results from the four methods is presented in Figure 6.15, revealing that each 

method exhibits varying degrees of deviation in displacement prediction. The BiRNN 

demonstrates the least deviation, while the RNN shows the most. This discrepancy in 

prediction is attributed to the inherent differences between the simplified shear-type 
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structure and the base-isolated building structure, even though the simplified structure 

has been calibrated with the monitoring data. The RNN and BiRNN are trained and 

tested using data derived from the simplified structure, while the DKF and AKF are 

directly deduced from the motion equations of the simplified structure. Therefore, the 

introduction of the TL-RNN framework is essential to enhance the precision of state 

estimation. 

 
Figure 6.13. Velocity estimation results of the 11th floor of the base-isolated structure subject to the 

Kern County earthquake. 

 
Figure 6.14. Loss curves from the RNN and BiRNN transfer learning under the Kobe earthquake. 

In this study, inter-story displacements (Chang and Huang, 2020) between adjacent 

floors from the 1st to 5th floors/DOF are assumed to be monitored during the 

earthquake. Therefore, there are extra measurements regarding 4 inter-story 
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displacements beyond the acceleration measurements. The extra measurements are 

divided into two sets at each time step, one set (the training dataset) contains 

information on 1-2, 2-3, and 3-4 inter-story displacements, while the second set (the 

test dataset) contains the 4-5 inter-story displacement. The RNN and BiRNN are fine-

tuned based on the training and test datasets. The parameters in the MLP cells are kept 

constant, and only those on the RNN cells are optimized based on Eq. (6.3). In total, 

there are 1050 parameters for RNN and 2100 parameters for BiRNN to be re-trained. 

The learning rate is set as 1×10-5. The training and test loss curves corresponding to the 

ground motion in the case of Kobe earthquake are shown in Figure 6.14, where the test 

loss from BiRNN is lower than that of RNN by the end of transfer earning. In 

comparison with the training of RNN and BiRNN, the fine-tuning process takes much 

fewer epochs to converge. Under the same computing environment, for the RNN model, 

the time cost for transfer learning is 43.9 s, 105.0 s, 68.1 s, and 70.1 s for the four 

ground motion cases, respectively; for the BiRNN model, the time cost is 61.6 s, 160.2 

s, 88.67 s, and 56.47 s, respectively. 

For comparison purposes, the extra measurements are combined with acceleration 

measurements to serve as input to the DKF and AKF for state estimation, resulting in 

the methods termed Integrated DKF and AKF. The procedures for implementing 

integrated DKF and AKF are similar to those of the traditional DKF and AKF. It is 

important to note that TR-RNN and integrated prediction methods fundamentally differ: 

the TL-RNN modifies the pre-trained state estimation RNN model by using the extra 

measurements, whereas the integrated prediction methods provide the pre-trained state 

estimation model with additional reference data for forecasting. 
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Figure 6.15. Displacement estimation results of the 11th floor of the base-isolated structure subject to 

the Kern County earthquake. 

The displacement prediction samples for the base-isolated building using the extra 

measurements are shown Figure 6.15. Due to the inherent limitation of the DKF 

algorithm, the inclusion of extra information does not alter the DKF predictions, 

whereas the other three methods experience varying degrees of precision enhancement. 

The transfer learning of bidirectional recurrent neural network (TL-BiRNN) 

outperforms the other methods, followed by the TL-RNN, and then the Integrated AKF. 

Even though the extra measurements have enhanced the predictive capability of the 

AKF, this enhancement is often evident in corrections to the overall trend. During 



180 
 

strong seismic events, its state predictions still exhibit significant discrepancies when 

compared with reference data. In contrast, the TL-RNN and TL-BiRNN maintain a 

certain level of predictive accuracy throughout the entire seismic event. This may be 

due to the pronounced nonlinearity exhibited by the base-isolated building under 

earthquake conditions, particularly in the interval between 10 s and 30 s, as observed 

in the Kern County earthquake. Such nonlinearity cannot be represented by the 

calibrated shear-type structure. Therefore, the refinement of the state prediction model 

itself (i.e., the transfer learning) based on additional measurement data is necessary to 

achieve better predictive accuracy. In summary, when the structural model does not 

align with the actual conditions, the accuracy of state estimation can be significantly 

improved by fine-tuning the RNN model using real-world measurements. This method 

of refinement yields better results than simply incorporating extra measurements into 

the existing model as additional inputs for prediction. 

Quantitative evaluations of model performance with the inclusion of extra 

measurements are carried out using the NRMSE metric. In this context, the assessment 

of the integrated DKF predictive results is omitted, as additional measurements do not 

impact its predictions. For each of the four strong ground motion cases, NRMSE for 

all predicted displacement sequences against their corresponding references are 

calculated. These NRMSE values are then averaged for each case, and the results are 

presented in Figure 6.16. In cases where the simplified model diverges from the actual 

structure, the proposed TL-RNN framework has proven to be effective in ensuring the 

accuracy of state estimation. Following the application of transfer learning, the 

performance of the BiRNN is outstanding across all four cases, while the TL-RNN also 

demonstrates a commendable level of accuracy. On the other hand, simply supplying 
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the AKF with additional input information falls short of enhancing state estimation 

accuracy, yielding much greater NRMSE values than those from the TL-RNN and TL-

BiRNN models. 

 
Figure 6.16. Averaged NRMSE of TL-BiRNN, TL-RNN, and Integrated AKF for displacement 

prediction under the four earthquakes. 

6.5. Experimental example: A two-span continuous beam 

6.5.1. Measurement setup 

In the experiment, the investigation focuses on a 1.26 m two-span aluminum beam that 

is continuously supported. Figure 6.17 presents an overview of the experimental setup. 

The primary components of this setup are numbered from ○1  to ○6 , including fiber 

Bragg gratings (FBG), bearings with bolted connections, a load cell, accelerometers, a 

shaker, and a laser distance sensor. From left to right, the three FBGs and three 

accelerometers are abbreviated as FBG1-FBG3 and A1-A3. Specifically, FBG1-FBG3 

have wavelengths of 1563 nm, 1555 nm, and 1527 nm, respectively, with a grating 

length of 5 mm, a bandwidth of less than 0.4 nm, a side-mode suppression ratio greater 

than 12 dB, and a reflectivity of over 75 %. The accelerometers (A1-A3), load cell, and 

laser distance sensor are all piezoelectric types that convert collected voltage signals 

into data. The shaker, connected to a power amplifier and a waveform generator, is 



182 
 

controlled by digitally-generated voltage signals from a computer to deliver continuous 

stochastic excitations at a specific location on the beam. Concurrently, the sensor array 

is designed to continuously record original data at their respective locations with a 5000 

Hz sampling frequency. As a result, at each time step, the system captures 

measurements from the three FBG and three accelerometers, along with load 

measurement from the load cell and deflection measurement from the laser distance 

sensor. This array of sensors ensures comprehensive monitoring and accurate state 

estimation of the beam. 

 
Figure 6.17. Overview of the experimental setup where key components are highlighted and 

numbered: ○1  FBG, ○2  bearings with bolted connections, ○3  load cell, ○4  accelerometers, ○5  shaker, 

and ○6  laser distance sensor. 

6.5.2. Model calibration 

In this experiment, the bolts at both ends of the beam are securely tightened, while 

those in the middle are deliberately left somewhat looser. This arrangement introduces 

controlled imperfections in the boundary conditions of the beam. Figure 6.18 illustrates 

the idealized model of the continuous beam, detailing the structure and instrument 

configurations. As shown in Figure 6.18, the two ends of the beam are transversely 

fixed, while the rotations of the three supports are constrained by rotational springs 
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with stiffness values𝑘ఏଵ, 𝑘ఏଶ, and𝑘ఏଷ. Additionally, a linear transversal spring is added 

to the middle support, denoted by its stiffness 𝑘௪. In this setup, the Euler-Bernoulli 

beam element is utilized for the FE model, incorporating two DOF at each node, i.e., 

the transversal deflection and rotation. Each element is 2 cm long, resulting in a total 

of 63 elements, 64 nodes, and 126 DOF for the FE model. To fully define the FE model, 

except for the geometric parameters, the elastic modulus 𝐸, density 𝜌, rotational spring 

parameters𝑘ఏଵto 𝑘ఏଷ, and transversal spring parameter 𝑘௪ must be determined based 

on the monitoring data from the beam. Moreover, the damping model employed is 

Rayleigh damping, with the assumption that the first and second modes share the same 

damping ratio. Hence, the single parameter damping ratio 𝜁 for these two modes needs 

to be calibrated as well. 

 

Figure 6.18. Idealized model for the beam with instruments positioning. 

An experimental modal test is conducted on a beam. A digital voltage waveform, 

set to a 2 V peak-to-peak amplitude, is generated by a computer and input into a 

waveform generator. The resultant output is a band-limited white noise signal, confined 

to a frequency range of 10 Hz to 100 Hz. The duration of this signal is fixed at 25 

seconds. The power amplifier settings are adjusted so that the standard deviation of the 

output force is approximated to around 1 N. Concurrently, accelerations at points A1 

to A3 on the beam are recorded. Figure 6.19 displays the measured acceleration and 

force data over a 1 s interval. 
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Figure 6.19. Measured acceleration and force data in experimental modal testing. 

Table 6.2. Nominal values and scaling factors for parameters in the beam model. 

Parameter Symbol 
Nominal 

value 
Scaling factor Unit 

Elastic modulus 𝐸 6.85×1010 0.957 N/m2 

Density 𝜌 2.70×103 1.278 Kg/m3 

Rotational stiffness of left support 𝑘ఏଵ 1.00×104 1.487 N/rad 
Rotational stiffness of middle 

support 
𝑘ఏଶ 1.00×101 0.313 N/rad 

Rotational stiffness of right 
support 

𝑘ఏଷ 1.00×104 0.902 N/rad 

Transversal stiffness of middle 
support 

𝑘௪ 1.00×105 2.951 N/m 

Damping ratio of 1st and 2nd 
mode 

𝜁 8.00×10-3 1.415 - 

 

With all the collected data over the 25 s, averaged Fourier transforms of excitation 

and acceleration signals are computed using a sliding window of 5 s per block. 

Subsequently, the FRF, denoted as 𝐻෡௜(𝑓) where 𝑖 = 1,2,3 and 𝑓 = 0.2𝑘 (with 𝑘 ∈ ℕ଴ 

and 𝑘 < 1.25 × 10ସ), are evaluated via the ratio of the Fourier transform results of 

acceleration to excitation. Only the FRF data ranging from 10 Hz to 100 Hz is utilized 

for updating the parameters of the FE model (Imregun et al., 1995). The optimization 

problem is formulated as follows: 
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. (6.13) 

Here, 𝜼 = {𝐸, 𝜌, 𝑘ఏଵ, 𝑘ఏଶ, 𝑘ఏଷ, 𝑘௪, 𝜁} represents the set of parameters to be updated; |⋅| 

and ∠ denote the magnitude and phase operators, respectively; 𝐻௜(0.2𝑘; 𝜼) is the ith 

FRF predicted from the FE model given 𝜼. The L-BFGS-B algorithm is employed for 

optimization, and it converges with the function values in Eq. (6.13) being 0.148. The 

nominal values and optimal scaling factors for each element in 𝜼 are presented in Table 

6.2. Visualizations comparing the single-sided FRF from the updated model and 

measurements are shown in Figure 6.20. The results indicate that the principal trends 

between the model and measurements are almost identical, although some 

discrepancies exist, e.g., the first modal frequency being higher than measured, and the 

second being lower. Nevertheless, the calibrated model closely approximates the real 

structure, and it will be used for further state estimation tasks in the following 

subsections. 

 
Figure 6.20. Measured and calibrated model output single-sided FRF. 
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6.5.3. Pre-training of RNN based on the calibrated beam model 

The training of the RNN and BiRNN follows the procedure outlined in Figure 6.21. 

Initially, a stochastic force generator is programmed to produce white noise force 

histories within the frequency range of 10 Hz to 410 Hz, based on a flat PSD. In this 

process, only two force histories are used: one for the training dataset and one for the 

test dataset, both with a standard deviation of 0.5 N. These force histories are then fed 

into the calibrated FE model, which computes the system response, including 

acceleration, velocity, and displacement at each DOF. The duration for each batch of 

response is 4 s, with a sampling frequency of 5000 Hz. That is, there are 20,000×3 

acceleration data fed into the RNN model, and the model will output 20,000×252 data 

of structural state. To enhance the convergence of RNN training, all response data are 

normalized. The normalized displacement and velocity data are treated as labeled states 

at each node. Noise is subsequently added to the acceleration data at locations A1 to 

A3, which is similar to priors embedded in noise as in Kalman filter-based methods. In 

this case study, the noise-to-signal ratio is presumed to be 10 %. The noisy, normalized 

acceleration data are used as input to the RNN models, enabling the RNN to predict 

states at each node of the FE model. Accordingly, the mean square error loss function 

is formulated based on the predicted state and the labeled state, and the Adam optimizer 

is utilized to efficiently tune parameters in both RNN and BiRNN models. 
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Figure 6.21. Training procedures of RNN and BiRNN for the beam. 

 

Figure 6.22. Loss curve from the training of RNN and BiRNN for the beam. 

The hidden state dimension is uniformly set at 36 for both the RNN and BiRNN 

models. Each model includes an MLP component with three layers. The RNN 

configuration features 36 neurons in each of the first two layers and 126 neurons in the 

third layer. In contrast, the BiRNN is equipped with 72 neurons in each of the first two 

layers and 126 neurons in the third layer. Biases in the propagation paths of both the 

RNN and BiRNN have been removed. In total, there are 8,532 parameters in RNN and 

22,248 parameters in BiRNN to be trained. Both RNN and BiRNN models are trained 

over 50,000 epochs using a consistent learning rate of 3×10-5. The training and test loss 

curves, presented in Figure 6.22, demonstrate that the RNN model's test loss converges 



188 
 

at 1.33×10-3, while the BiRNN model's test loss converges at 2.12×10-4. These results 

indicate that, with the simple test dataset generated from the calibrated model, the 

BiRNN significantly outperforms the RNN in terms of state estimation accuracy. 

 
Figure 6.23. Predicted displacement and velocity field over the beam in 0.4 s. 

To visualize the models' performance, the predicted displacement and velocity fields 

over 0.4 s are displayed for the test dataset in Figure 6.23. The horizontal axis 

represents time, while the vertical axis corresponds to the spatial coordinates of the 

beam, illustrating the full range of states. Both models yield satisfactory state 

estimations. Figure 6.24 further illustrates the predicted deflection at 0.76 m and 

rotational speed at 0.52 m during the initial 2 s of the test period. While the RNN model 

shows slight deviations in amplitude from the reference data, the BiRNN model 

displays superior accuracy and closer adherence to the expected outcomes. 
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Figure 6.24. Prediction results of deflection at 0.76 m and rotational speed 0.52 m of the beam. 

 

Figure 6.25. Measured acceleration data from A1 to A3. 

The acceleration data measured from sensors A1 to A3, as displayed in Figure 6.25, 

are fed into the well-trained RNN and BiRNN models. It is important to note that the 

acceleration data presented are not as ideal as those in the training and test datasets; the 

noise, in this case, can be categorized into two distinct types: noise originating from 

the voltage signal and noise resulting from the discrepancy between the model and the 

actual structure. Furthermore, Figure 6.25 demonstrates that there could be some 

outliers distorting the signal (Gul and Catbas, 2009). These imperfections present a 

significant challenge to accurate prediction of the beam's system state by the RNN and 
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BiRNN models. To quantitatively assess the performance, the deflection measured by 

a laser distance sensor at a distance of 92 cm is used for comparison with the results 

from the RNN and BiRNN models. A preliminary laboratory test revealed that this 

laser distance sensor could only measure vibrations up to approximately 35-40 Hz. 

Consequently, a second-order low-pass Butterworth filter with a cutoff frequency of 

38 Hz has been implemented to filter the outputs from the RNN and BiRNN. 

Performance is evaluated using NRMSE, detailed in Eq. (6.12). The NRMSE for the 

RNN is 0.545, while for the BiRNN, it is 0.221, showing that the BiRNN model 

achieves superior prediction accuracy over the RNN model. Such differences have been 

reflected during the training of RNN and BiRNN models using the training set. When 

the input acceleration data is subject to noise interference, the bidirectional propagation 

of information and computation of the state can effectively reduce such interference. 

In contrast, the unidirectional approach appears to be less effective. However, the 

unidirectional propagation allows the RNN model to perform online state estimation, 

which is not achievable with the BiRNN. 

6.5.4. Using transfer learning to enhance model performance 

The sensor array, as illustrated in Figure 6.17, captures comprehensive data during 

the vibration process. This includes not only acceleration and deflection measurements 

but also strain data from three specific locations on the beam. The strain information, 

in conjunction with the measured acceleration data, is valuable for the transfer learning 

process discussed in this subsection. 

Let 𝝐ො௞ ∈ ℝଶ  denote the measured strain from FBG1-FBG2, and 𝒙෥௞ ∈ ℝଶହଶ 

represent predicted state by the pre-trained RNN, where 𝑘 = 1,2, … , 𝑁, and 𝑁 is the 

total number of timestamps. The predicted state vector 𝒙෥௞ can be linearly transformed 
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into the predicted strain vector 𝝐෤௞ using the linear operator 𝐁ఢ ∈ ℝଶ×ଶହଶ. The operator, 

which is derived from the second derivatives of the four shape functions associated 

with the Euler-Bernoulli beam element, relates solely to the geometry of the beam and 

the location of FBGs. The loss function for transfer learning can be formulated as: 

 

min ෍ ℒ(𝐁ఢ𝒙෥௞, 𝝐ො௞)

ே

௞ୀଵ

. (6.14) 

During the training process, the parameters of the pre-trained RNN are fine-tuned. The 

training dataset incorporates measured strain data from FBG1 and FBG2, while strain 

data from FBG3 is reserved for the test dataset to prevent overfitting in the transfer 

learning process. Figure 6.26 illustrates the procedures for implementing RNN transfer 

learning to enhance the performance of RNN prediction. 

As detailed in subsection 6.3.2, during the transfer learning process, all parameters 

except those within the RNN cells are kept constant. Consequently, there are 1,404 

parameters in the RNN and 2,808 in the BiRNN that require retraining using the 

measured strain data. This represents 16.46 % of the parameters in the RNN and 12.62 % 

in the BiRNN will undergo transfer learning. The learning rate is set at a very low 1×10-

6 because the success of transfer learning in this scenario is highly sensitive to the 

learning rate. In this problem, it is found that stability in the optimization process can 

only be achieved when the learning rate is significantly lower than that used in the 

initial training phase of the RNN and BiRNN. The transfer learning for RNN and 

BiRNN converge after 1,420 epochs and 2,420 epochs of training, respectively. 

NRMSE from the TL-RNN and TL-BiRNN predicted deflection at 92 cm of the beam 

are calculated as well, and comparisons are made with those from the RNN and BiRNN 

in the previous subsection, as presented in Figure 6.27. The results indicate that through 
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the use of two FBGs' information, the transfer learning-based RNN and BiRNN models 

significantly outperform the vanilla RNN and BiRNN. For the RNN, the NRMSE 

decreased from 0.545 to 0.273, a reduction of 49.9 %. In contrast, the BiRNN started 

with higher initial accuracy, with an NRMSE of 0.221. After the transfer learning, the 

NRMSE is reduced to 0.168, providing a decrease of 24.0 %. Although the accuracy 

of the TL-RNN does not surpass that of the FE model-based training of BiRNN, it 

likely constitutes the achievable upper boundary for models designed to conduct online 

state estimation using only three accelerometer inputs. Finally, having demonstrated 

that the TL-RNN method proposed in this chapter indeed enhances the performance of 

RNN models, the deflection results at 92 cm for both TL-RNN and TL-BiRNN are 

presented in Figure 6.28. Comparison with the measured values shows superior 

accuracy of TL-BiRNN in state estimation problems. At the same time, the results 

confirm that the performance of TL-RNN is acceptable and can be applied to online 

monitoring and digital twin systems, despite minor discrepancies between predicted 

and actual values at some time steps. 

 

Figure 6.26. Detailed procedures for RNN transfer learning to enhance the performance of beam state 

estimation. 
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Figure 6.27. NRMSE values of RNN, BiRNN, TL-RNN, and TL-BiRNN models for the beam 

deflection prediction. 

 
Figure 6.28. Comparison of measured and predicted beam deflections using TL-RNN and TL-BiRNN 

models. 

6.6. Discussion 

The research presented in this chapter demonstrates the efficacy of RNN transfer 

learning for state estimation in structural dynamics, providing a commendable 

alternative to conventional methods. The improved state estimation performance of 

TL-RNN can be intuitively understood by analyzing how it leverages information 

compared to traditional methods. Figure 6.29 illustrates three approaches for state 

estimation by using different types of information and their combinations, where Type 

A represents commonly used acceleration data, Type B encompasses additional 
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measurement data from the structure, and Type C pertains to the estimated state 

information. Models ℳଵ to ℳଷ , despite their differences, output identical results—

Type C. Traditionally, the approach depicted in Figure 6.29(a) is most prevalent, with 

extensive research focusing on effectively constructing the ℳଵ  model to ensure 

accurate state prediction. Some methods originate directly from the equations of motion 

formulated by the FE model, while others derive from the data generated by the FE 

model. 

 

Figure 6.29. Three approaches on using information for state estimation in structural dynamics. 

The interest of this study lies in optimizing the use of increased monitoring data 

available through sensor arrays in monitoring systems, a scenario that aligns with real-

world applications where multiple sensors often collaborate in monitoring tasks. In the 

numerical example illustrated above, both approaches depicted in Figure 6.29(b) and 

(c) are investigated. Either a larger model is constructed with diverse inputs for 

predicting the structural state or the model is refined using both Types A and B data. 

The present work indicates that employing all available information as per the approach 

in Figure 6.29(c) substantially outperforms that in Figure 6.29 (b). This is primarily 

because models ℳଶ and ℳଷ initially require calibration using an FE model, which, 

even when calibrated, still differs from the actual structure. Such discrepancies can be 
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exacerbated under specific conditions, leading to inaccuracies in the initial outputs of  

ℳଶ  or ℳଷ . This is evidenced in the numerical example where a multi-story linear 

model is calibrated using ambient vibration data from the base-isolated building. 

During an earthquake, the sliding mechanism at the base of the building causes its 

response to become predominantly nonlinear, rendering the initial prediction of ℳଶ 

and ℳଷ inaccurate. Despite additional data from Type B, the results displayed in Figure 

6.15 still show low prediction accuracy. Contrarily, using the mode depicted in Figure 

6.29(c), where the input remains simply Type A but is fine-tuned using both Types A 

and B data, results in accurate prediction of Type C. This suggests that incorporating 

additional information into model adjustments, rather than directly into model 

predictions, might yield more precise results. In the experimental validation, the 

approach shown in Figure 6.29(c) is replicated. The FE model of the continuous beam 

is calibrated using FRF data obtained from experimental modal analysis. The training 

and test datasets are generated based on the random vibration of the calibrated FE 

model; and both RNN and BiRNN models for state estimation are trained with those 

generated structural random vibration data, establishing the information flow from 

Types A to C as shown in both Figure 6.29(a) and (c). Subsequently, the strain at three 

locations is calculated based on the measured wavelength changes in FBG1 to FBG3, 

constituting Type B data, and RNN and BiRNN models are fine-tuned accordingly. 

This results in model ℳଷ, which, despite having the same input information as ℳଵ, 

demonstrates superior performance, thereby confirming the practical efficacy of ℳଷ 

over ℳଵ in future state prediction tasks. 

While the advantages of the TL-RNN model are evident, it remains essential to 

evaluate its appropriateness for specific problems in comparison with traditional 
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methods. Without introducing additional measurements, a comparison between 

traditional Kalman filter-based approaches and RNNs highlights the greater flexibility 

of RNNs. This flexibility offers both benefits and drawbacks. In particular, training 

RNN models involves many more parameters and requires careful tuning of numerous 

hyperparameters compared to the Kalman filter-based models commonly used for state 

estimation. Consequently, developing an effective state estimation model becomes 

considerably more time-consuming and labor-intensive. However, for practitioners 

with extensive experience in deep learning, a well-constructed RNN model can surpass 

the benchmarks set by the Kalman filter-based models. This superiority arises from the 

empirical nature of deep learning: its value lies in its efficacy. Moreover, a state 

estimation model based on the proposed TL-RNN framework may be better suited to 

complex structures where FE models, based on existing physical laws, fail to capture 

the dynamics accurately. In scenarios where model assumptions align closely with 

actual conditions, TL-RNN may not necessarily outperform existing methods. 

Conversely, in cases where there is a significant mismatch between model assumptions 

and real-world conditions, a common occurrence given the complexity of real-world 

structures, TL-RNN can be a highly effective choice, potentially leading to substantial 

improvements in prediction accuracy. 

Looking ahead, open-source libraries like PyTorch, TensorFlow, and JAX are 

continuously evolving, providing robust platforms that ease the development, training, 

and application of neural networks. These tools abstract complex algorithms into user-

friendly interfaces, making RNN implementation more accessible to researchers and 

engineers in structural engineering. Concurrently, hardware improvements, 

particularly GPU technology, are enhancing computational power for training deep 
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neural networks. This progression not only accelerates the training process but also 

democratizes access to these advanced facilities. As a result, building and training RNN 

models, as well as fine-tuning them using the transfer learning approach proposed in 

this article, are becoming more convenient and effective for state estimation in 

structural dynamics. This integration of advanced computational tools and 

methodologies significantly contributes to the precision and efficiency of dynamic state 

estimation, aligning with the latest trends in data-centric engineering research. 

6.7. Summary 

This chapter proposes an RNN transfer learning approach for accurate estimation of 

structural state. There are two original innovations introduced. First, when multiple 

types of monitoring information are available, a new paradigm for information 

integration and utilization in constructing state estimation model is illustrated, which 

truly achieves the physics-data fusion. Second, contrary to the traditional approach of 

freezing the latter several layers of the model, the fine-tuning of the RNN model in 

state estimation requires locking the parameters in earlier RNN cells. The innovations 

presented, along with acknowledgment that discrepancies between FE models and 

actual structure are inevitable, suggest that integrating the constructed physics-based 

model (low-fidelity) with measured data (high-fidelity) is the optimal approach for 

solution. The concept is exemplified by the TL-RNN and TL-BiRNN models 

developed herein. The effectiveness of the innovations in improving prediction 

accuracy is demonstrated through two state estimation examples: a numerical example 

using a linearized shear-type structure as an approximation of a base-isolated building, 

and an experimental example employing a simplified beam model to represent the 
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laboratory structure. Despite the inherent discrepancies between the FE model and the 

actual structure, the state estimation results from both numerical and experimental case 

studies, based on the TL-RNN framework, prove the efficacy of the proposed 

innovations in enhancing prediction accuracy. Additionally, as a complement to the 

time-delayed MFGP approach discussed in Chapter 5, the TL-RNN within the deep 

learning framework effectively captures correlations in multi-output data. This 

capability underscores the flexibility and robustness of the transfer learning RNN 

method for enhanced state estimation. 
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Chapter 7. 

Conclusions and future work 

7.1. General summary 

This thesis introduces a series of advanced machine learning methods aimed at 

addressing two critical inverse problems in the field of structural dynamics: 1) force 

reconstruction and 2) state estimation. By reviewing existing approaches to these 

challenges and considering the specific requirements of load reconstruction and state 

identification in the industrial sector, this study delves into several key issues within 

these inverse problems. These include the reliability assessment of conclusions derived 

from measurement data and the inaccuracies in predictions caused by discrepancies 

between FE models and actual structures, etc. With the continuous advancement of 

machine learning technologies, this work leverages nonparametric Bayesian methods 

and deep learning techniques, integrating physics-driven FE models with multi-source 

real-world measurement data to propose comprehensive solutions. The proposed 

methods not only enhance the precision of force reconstruction and state estimation but 

also improve the model's generalization capabilities and the reliability of its practical 

applications. Through extensive experiments and case studies, the proposed methods 

demonstrate superior performance across various application scenarios, providing 
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robust support for the advancement of SHM technologies. The primary contributions 

of the thesis are summarized as follows: 

7.2. Suggestions for future research 

7.2.1 Bayesian-based force reconstruction with uncertain system parameters 

This study advances time-domain force reconstruction by integrating GP priors for 

forces, thereby establishing a probabilistic inverse model that links force and structural 

response. Structural systems often exhibit inherent uncertainties, characterized by 

multiple uncertain parameters. To achieve more realistic force characterizations, this 

approach comprehensively accounts for multi-source uncertainties originating from 

both the structural dynamic system and the measurement processes. By doing so, the 

reconstructed forces better reflect real-world conditions. Furthermore, the uncertainty 

associated with unknown system parameters can be incorporated into the Bayesian 

framework. However, deriving analytical expressions for the posterior distributions of 

forces in the presence of these uncertainties was not attainable within the scope of this 

thesis. Consequently, the posterior force distributions remain intractable analytically. 

Future research will focus on developing efficient algorithms to accurately derive force 

posteriors while accounting for uncertain system parameters. The advancements will 

enhance the robustness and applicability of Bayesian-based force reconstruction 

methods in complex structural systems. 

7.2.2 Mathematical rationale behind the success of time-delayed GP for state 

estimation 

The time-delayed modeling approach for state estimation is fundamentally 

straightforward, involving the preparation of labeled pairs for training and test datasets, 
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which enables the model to function effectively as a state estimator. However, as the 

number of delay steps increases, the problem transitions into a high-dimensional 

learning challenge. Traditionally, GPR is more commonly applied in lower-

dimensional spaces due to the curse of dimensionality, which generally hampers its 

performance in high-dimensional settings. Despite this conventional limitation, this 

study demonstrates that GPR can successfully capture the necessary mappings based 

on the data, even in high-dimensional scenarios. This success is particularly noteworthy 

given that the kernels employed in the proposed examples are simple squared 

exponential kernels supplemented by a noise hyperparameter, resulting in a GPR model 

with only three parameters. Remarkably, this streamlined GPR model is capable of 

effectively learning complex high-dimensional mappings without succumbing to the 

typical performance degradation associated with increased dimensionality. This 

phenomenon suggests that, particularly for structural dynamic systems, especially 

those exhibiting linear behavior, there may be underlying mathematical principles that 

facilitate the success of GPR within the context of time-delayed state estimation. The 

linearity of the system could create inherent structures or symmetries in the data that 

GPR can exploit, allowing it to maintain high performance despite the high 

dimensionality introduced by multiple delay steps. Future research should explore the 

geometry of the time-delayed series to further investigate and elucidate the factors 

contributing to the effectiveness of GPR in this setting. Understanding these geometric 

properties could provide deeper insights into why GPR performs well despite the high-

dimensional nature of the problem and could lead to the development of more refined 

models or kernel functions tailored to exploit these underlying mathematical rationales. 



202 
 

7.2.3 Transfer learning of more sophisticated RNN models for state estimation 

This thesis employed a fundamental RNN model to demonstrate its capability in 

performing state estimation and its transferability to measured data. With the rapid 

advancements in deep learning techniques, a diverse array of RNN models has been 

developed, offering enhanced sophistication in time series modeling. Advanced RNN 

architectures, such as multiple LSTM networks and gated recurrent units, are 

particularly adept at capturing long-term dependencies and handling complex temporal 

dynamics. In scenarios where structural dynamics are highly complex, these advanced 

RNN models can provide more accurate and reliable state estimations compared to their 

fundamental counterparts. Their ability to model intricate patterns and dependencies 

within the data enables them to better understand and predict the state of complex 

structural systems. However, the transfer learning of these advanced RNN models 

presents challenges not encountered with fundamental RNNs. Specifically, 

determining which parameters in the RNN model should be frozen during the transfer 

process requires empirical validation and practical experimentation. To address these 

challenges, future work will focus on developing and validating transfer learning 

strategies tailored for sophisticated RNN models.  
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