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Abstract

Background: Functional lung avoidance radiotherapy (FLART) is an innovative

approach aimed at preserving lung function during treatment planning. It achieves

this by minimizing radiation exposure to the high functional volume (HFV) of the

lung. To create an accurate treatment plan, FLART combines functional lung images

(ventilation/perfusion images). However, the current standard clinical techniques for

lung ventilation imaging rely on radioactive gases or aerosols, such as Single Photon

Emission Computed Tomography (SPECT) with Tc-99m or Positron Emission To-

mography (PET) with Ga-68. While effective in assessing pre-treatment pulmonary

function, these methods require additional imaging scans and the injection of ra-

dioactive material, resulting in extra costs and radiation dose.

Purpose: To propose an anatomy-wise lung ventilation imaging method (CTVIAW)

that integrates information from lung parenchyma and tumor-blocked pulmonary

segments based on planning computed tomography (CT) images for FLART.

Methods and materials: Our study involves the development and application of

the CTVIAW method in radiotherapy treatment planning. In the first part, CTVIAW

was developed by considering the underlying causes of impaired pulmonary venti-

lation, specifically pulmonary parenchymal injury and airway blockages. First, an

Atlas-based method was developed to divide the lung volume into 18 pulmonary seg-

ments. Then, each segment was visually inspected to determine if the connected

airway branch was blocked. The blocked segments were considered functionally
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lost (assigned a value of 0). For unblocked segments, we used a super-voxel-based

method to assess functional ability of the pulmonary parenchymal to generate the

final CTVIAW. To evaluate the accuracy of our Atlas-based pulmonary segments

segmentation, we utilized CT images from 150 patients as a patient library to gener-

ate pulmonary segmentations using a bronchial tree-based method. Additionally, we

manually segmented pulmonary segments in 14 patients and used them as a reference

for comparison (using the Dice similarity coefficient index, DSC). For CTVIAW eval-

uation, we analyzed 66 patients who had 4DCT and SPECT/PET as lung references

ventilation images (RefVI). The Spearman’s correlation coefficient was calculated to

assess the similarities between CTVIAW and the RefVI. Out of the sixty-six patients,

eleven exhibited airway blockages caused by tumors. These tumor-blocked segments

were then compared to the low functional volume (LFV) obtained from the RefVI

for these specific eleven patients. In the second part, the CTVIAW was employed

to guide treatment planning. The lung was further divided into HFV, recoverable

LFV (rLFV, tumor-blocked segments with potential high functional value by analyz-

ing with super-voxel-based method), and unrecoverable LFV (uLFV, the remaining

LFV) instead of the traditional HFV and LFV volumes. The rLFV requires pro-

tection as the HFV during the planning. Five patients underwent weekly 4DCT

and found with tumor shrinkage were selected to create three intensity-modulated

photon plans to evaluate the efficiency of our plan strategy: an anatomical-based

plan (aPlan), a functional-guided plan (fPlan) that considered only HFV, and a

functional-guided plan (rfPlan) that protected both HFV and rLFV.

Results: For the pulmonary segments segmentation, the Atlas-based method achieved
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a mean DSC value of 0.70 ± 0.11 for left lung and 0.72 ± 0.11 for the right lung

when compared to manual segmentations. The LFV in the RefVI and the tumor-

blocked segments had a high overlap similarity coefficient value of 0.90 ± 0.07. The

novel CTVIAW method demonstrated a mean Spearman’s correlation coefficient of

0.59 (range: 0.31 to 0.82) with the RefVI. For the 11 patients with tumor-blocked

segments, the mean Spearman correlation between CTVIAW and RefVI was 0.72 ±

0.05. This correlation was higher than the correlation between the super-voxel-based

method (CTVIsvd, without considering the airway blockage) and RefVI (0.51± 0.14).

For the comparison of the five patients’ treatment plans, the V5, V20 and mean

dose of the HFV in fPlan were 10.6% ± 25.3%, 14.3% ± 9.5%, and 10.0% ± 9.3%

lower, respectively, than those in aPlan. The overall HFV dose in the recoverable

functional-guided plan (rfPlan) was similar to that in fPlan. By incorporating dose

constraints for rLFV, the dose of rLFV in rfPlan was lower than in both fPlan and

aPlan. Specifically, the V5, V20, and mean dose of rLFV in rfPlan were lower than

in aPlan by 0.3% ± 0.5%, 12.1% ± 8.4%, and 13.0% ± 6.4%, respectively. Notably,

these parameters in rfPlan were substantially lower than in fPlan by 1.0% ± 2.1%,

14.9% ± 9.8%, and 15.9% ± 6.5%, respectively. Regarding other evaluation param-

eters, all three plans showed comparable results and remained within tolerance.

Conclusions: In this study, we developed a novel anatomy-wise lung ventilation

imaging method to generate surrogate ventilation images directly from CT images

for precise functional lung avoidance radiotherapy planning. Unlike traditional meth-

ods, CTVIAW considers both air transport and lung parenchymal features, providing

a comprehensive understanding of impaired lung ventilation. Importantly, during
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treatment planning, CTVIAW can be used to identify and reduce radiation dose to

the potential recoverable region. This region may regain high function if the tumor

shrinks post-treatment. This is the first time that recoverable regions have been

incorporated into the treatment planning process, potentially preserving more lung

function for patients. The findings contribute to the development of personalized

and precise treatment planning methods.
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1 Introduction

1.1 Radiotherapy for lung cancer

Lung cancer, with an estimated 2.5 million new cases and 1.8 million deaths in 2022,

is the most commonly diagnosed malignant disease in both men and women [1]. Ra-

diotherapy (RT) is an important treatment modality for lung cancer patients, with

evidence-based indications for 77% of patients with lung cancer [2, 3]. RT can be

used for curative or palliative treatment in all stages of the disease. For early-stage

(stage I-II) non-small cell lung cancer (NSCLC), RT can be used as one of the pri-

mary modes of treatment, particularly for those who are unsuitable or unwilling to

undergo surgery, according to the National Comprehensive Cancer Network (NCCN)

guidelines [4]. Although stereotactic ablative RT (SABR) is not equivalent to lobec-

tomy, some prospective series have demonstrated similar overall and cancer-specific

survival [5–7]. A combination of radiation and chemotherapy is often employed for

stage III or higher. Treatment options for advanced or metastatic disease may include

targeted therapy or immunotherapy based on the identification of specific biomark-

ers. However, these targeted therapy or immunotherapy may result in significant

adverse effects, owing to the heightened sensitivity of both the tumor and healthy

organs to radiation in conjunction with other treatments. Consequently, the imple-

mentation of precise radiation therapy is imperative to ensure optimal protection of

vital organs, such as the lungs.

The administration of RT for the management of lung cancer poses several chal-

lenges, particularly concerning ensuring efficacious tumor control while safeguarding

vital organs. Radiation-induced lung injury is a significant concern in cancer treat-
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ment, leading to treatment-related morbidity. After lung radiation therapy, up to

15-40% of patients experience clinically significant radiation pneumonitis (RP) [8].

Unfortunately, these side effects adversely impact patient survival rates. The de-

velopment of RP was associated with reduced survival, decreasing from 29 months

to 8 months [9]. Additionally, the damaged lung tissue cannot be repaired, further

diminishing the patient’s quality of life [10, 11]. The Radiation Therapy Oncology

Group (RTOG) 0617 clinical trial has demonstrated that increasing dosage to target

areas may not necessarily translate into improved overall survival (OS) rates [12].

Such an approach may increase the risk of patient mortality due to severe side effects.

Thus, it is imperative to accurately identify and selectively administer an augmented

dosage to high-risk target areas. Furthermore, the uneven distribution of pulmonary

function in patients induced by underlying conditions necessitates the identification

of normal lung areas for protection, thereby minimizing the risk of post-treatment

lung function impairment and enhance the quality of care delivered to patients.

The functional lung volume that can be irradiated in such patients is limited, as

irradiation of functioning tissue can lead to RP and respiratory failure. Currently,

the percentage of the lung volume receiving at least 20 Gy (V 20) and the mean lung

dose (MLD) are used to predict the risk of pulmonary injury [13] or the maximum

acceptable dose to deliver to a lesion [14]. However, these parameters are evaluated

across the whole lung volume and do not account for functional differences between

lung regions. Recently, regional lung functionality assessment has been shown to

enable highly functional lung areas to be spared from irradiation and thus can be

used to design treatment plans that reduce the risk of injury [15–18].
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1.2 Functional image in radiotherapy for lung cancer

The functional ventilation/perfusion images have been utilized for evaluating the

function lost caused by the RT. Studies found a linear relationship between reductions

in ventilation and perfusion and the dose [19, 20]. Boersma et al. [19] found that

the estimated mean relative reduction of local perfusion or ventilation can predict

the change in overall lung function within 10% of the actual values in 63% to 73% of

breast patients. In 2000, Seppenwoolde et al. [21] applied the dose-effect relations

on lung cancer. They found that well-perfused lung regions showed the same effects

as breast cancer, while poorly perfused regions showed less damage than predicted.

This could be the reason for the reperfusion effect in hypoperfused regions caused

by the tumor obstruction subsequent to radiation therapy. In 2018, Owen et al. [22]

modeled a patient-specific dose function response for lung cancer. They also found

that voxels with initially higher functioning are damaged at a higher rate than lower

functioning ones. These studies reveal that voxels with higher doses can experience

a significant reduction in function.

Since function reduction can be caused by RT, functional (ventilation/perfusion)

images have been utilized for functional lung avoidance RT (FLART). In 1992, Marks

et al. [23] were the first to propose using perfusion imaging for treatment planning

to optimize beam angle selection and reduce dose to high functional regions. In

2002, Seppenwoolde et al. [23] used lung perfusion imaging directly for plan opti-

mization to reduce function-weighted V20 (fV 20) and function-weighted mean lung

dose (fMLD). They discovered that patients with large defect regions could benefit

most from applying perfusion imaging. However, the method they used, which in-

volved using the functional map of the entire lung as an input into the optimization
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process to give different weights to each voxel, was not supported by the current

commercial clinic used treatment planning system (TPS). As a result, researchers

had to develop their planning optimization module to realize it, which could hinder

the application of functional imaging in clinical planning. In 2005, Christian et al.

[24] proposed another method to implement functional information into planning

by defining a high functional volume (HFV) with an individual threshold value for

each patient and using the HFV for optimization to reduce the V 20 of the HFV,

instead of the whole lung. This method could be implemented in the treatment

planning system. After that, several studies [25–30] used different threshold values

to divide the lung into well-function and poorly-functioning regions and reduced the

dose to the well-functioning region. However, the disadvantage of this approach is

that there is no standardized threshold value. Iqbal et al. [31] compared the voxel-

based method with the HFV-based method for treatment planning for 19 patients

with four-dimensional computed tomography (4DCT) derived ventilation images and

concluded that the voxel-based method outperformed the HFV-based method. How-

ever, these results might be affected by different factors, such as target size, location

of the functional/defect region, and the relation between the tumor and the defect

regions.

1.3 Functional lung images

Lung ventilation images can provide regional functional information. Clinical-standard

lung ventilation imaging techniques require radioactive gases or aerosols. For exam-

ple, single photon emission computed tomography (SPECT) uses Technetium-99m

(Tc-99m) [32] and positron emission tomography (PET) uses Gallium-68 (Ga-68)
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[33]. However, not all hospitals can perform PET or SPECT scans, and the ra-

diopharmaceuticals used for imaging expose patients to additional radiation doses.

There are some flaws in these images [34, 35]. First, the images may show ante-

rior–posterior gradient increase, which is likely gravity induced. Second, clumping

hotspots could exist in some patients’ images. The clinical interpretation of aerosol

clumping will depend on the physical properties of the aerosol itself, the presence of

lung disease, as well as the respiratory effort of the patient. This could be also caused

by the chronic obstructive pulmonary disease (COPD) or the tumor blockage. Al-

though the clumping hotspots show high signal, the around area could be functional

defect. These require carefully interpreting the images before apply to the treatment

planning design. Hyperpolarized noble gas magnetic resonance imaging (MRI) ven-

tilation [36–39] is another non-invasive imaging technique used to generate ionizing

radiation-free ventilation images for lung function assessment. However, MRI ventila-

tion requires a tracer gas and specialized equipment, which may limit the availability

of this modality in clinical practice. Computed tomography (CT)-derived ventilation

imaging (CTVI) is another method of generating ventilation images. Moreover, as

CT scans of patients undergoing RT are routinely performed, CTVI methods could

potentially help patients avoid unnecessary radiation doses and medical costs.

1.4 CTVI imaging methods

Current CTVI methods are mainly based on volume changes (Jacobian-based, CTVIJac

or density changes CTVIHU and use four-dimensional CT (4DCT) and deformable

image registration (DIR) [40]. However, because these methods are performed at

the voxel level, their results are substantially affected by image artifacts and DIR
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accuracy. Therefore, sub-regional level analysis methods have been developed to im-

prove the accuracy and robustness of CTVI [41, 42]. These methods have yielded

some improvements, but they also are DIR-based, which means that their accuracy

depends on DIR algorithms; thus, they are affected by the parameters of DIR algo-

rithms and the sensitivity of DIR to 4DCT image artifacts. Other CTVI methods

that do not use DIR have been devised. For example, Kipritidis et al. developed

a modified Hounsfield unit (HU)-based method [43] that generates robust ventila-

tion images without DIR. However, this method may overestimate areas with edges

between solid tissue and normal parenchyma within the lung, such as the peritu-

moral lung and the pleural space. Some deep learning-based methods can generate

highly accurate functional lung images [44–47], but these results lack anatomical

explanations.

1.5 Temporary recovery of lung function during/after radiotherapy

Yuan et al. [48], Meng et al. [49], and Kipritidis et al. [50] reported that the func-

tion of the lung could vary during the treatment. In addition to designing treatment

plans based on functional images before treatment, some studies also obtained func-

tional images during treatment courses for evaluation or adaptive planning. Yuan et

al. [48] and Meng et al. [49] published their observations that some patients with

centrally located tumors temporarily blocked the airway and caused function lost of

the corresponding pulmonary segments. The regions with normal lung parenchyma

in the blocked pulmonary segments could re-function after the tumor shrank during

the treatment as shown in Figure 1. They suggested that reacquiring the patient’s

functional image during the treatment can help to alter the treatment planning to
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achieve better effectiveness. Their studies indicated insufficient functional planning

based on the functional image acquired prior to treatment. Yamamoto et al. [51]

acquired two CT scans at two time points (16-20 Gy and 30-34 Gy) during the treat-

ment for adaptive planning. The results showed that functional planning significantly

reduced the functional mean lung dose by 5.0% compared to anatomic planning in

the adapted scenario. The adaptive re-planning due to the variety in lung function

could help patients to preserve more function after the treatment. However, the re-

planning process requires additional PET/SPECT, which could aggravate resource

scarcity and increase the patient’s dose and monetary costs.

As suggested by Yuan’s study, the functional lung regions could be divided into

four different sections excluding the tumor regions [48]. Region A denotes a com-

plete function impairment caused by COPD or other irreversible diseases. Region B

represents reduced pulmonary function induced by unrecoverable diseases. Region C

consists of temporarily dysfunctional regions induced by tumor compression or other

potentially recoverable diseases. Region D is the normally functioning region. The

optimization of the RT plan for these regions could adhere to the following prin-

ciples: the type A regions, with unrecoverable nonfunctioning “bad” regions, can

be given high-dose without causing changes in global pulmonary function; type B

regions, with unrecoverable low-functioning regions, may receive high doses (in the

absence of a healthier lung region) without causing remarkable changes in global

pulmonary function; type C regions should be spared whenever possible and may be

given high-dose if they remains nonfunctioning during treatment; the dose to type D

regions should be minimized to decrease the occurrence of functionally or clinically

significant complications [48].
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Figure 1: The perfusion (Q) and ventilation (V) functional images change during the radiotherapy
treatment course [48]. A is the functional defect region corresponding to the tumor location, B1 is
the complete function defect region, B2 is the function reduction induced by some disease, B3 is
the temporarily dysfunctional lung induced by tumor or other potentially recoverable diseases, C
is the normal lung region. Reproduced with the permission of Ref [48]. copyright © 2012 Elsevier.
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1.6 Auto-segmentation of the pulmonary segments

As mentioned above, the tumor obstructs airway could cause the corresponding pul-

monary segments function loss[48]. Identification of the blocked segments can help for

CTVI generation and further used for treatment planning. The pulmonary segment is

considered the fundamental anatomical unit of the lung, possessing its own bronchus,

pulmonary arterial and venous systems, and lymphatic systems [52]. The left and

right lung can be divided into 18 pulmonary segments. Current auto-segmentation

of pulmonary segments rely on airway and vessel segmentation [53–55]. However, for

the patients with tumor blockage, the segmentation for airway and vessel could be

incomplete due to the tumor blockage, which would compromise the segmentation

of the pulmonary segments[55].

1.7 Research gap

Current CTVI methods were based on the mechanism motion of the lung or the

features of parenchyma without considering the tumor blockage causing function

loss, which could lead to suboptimal results. To identify the blocked regions, a new

method that can auto-segment the pulmonary segments without airway and vessel

segmentation is needed. In addition, a new method that considers both the features

of parenchyma and tumor blockage to generate CTVI is needed.

As mentioned previously that temporary hypo-ventilation regions may occur in

certain patients, necessitating careful protection of these regions during treatment

planning. Current CTVI-based FLART studies primarily rely on CTVI data acquired

before treatment and often employ a simple division of the lung into well-functional

and low-functional regions for treatment planning. However, none of them can iden-
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tify the temporary hypo-ventilation regions before the treatment to guide the treat-

ment planning, which may result in insufficient protection of these regions. While

ART may offer an opportunity to address temporary hypo-ventilation regions in the

later stage of the treatment course, potential damage to these regions might have

already occurred during the initial stages of treatment. Additionally, implementing

ART could exacerbate resource scarcity, increase patient radiation exposure, and in-

cur higher monetary costs. Further research is required to explore methodologies for

identifying the four different regions as suggested by Yuan et al.[48], especially the

temporarily dysfunctional regions, prior to treatment.

1.8 Research aim and objectives

This study aims to develop an anatomy-wise CTVI method for precise functional lung

avoidance treatment planning, utilizing information derived from the lung parenchyma’s

characteristics and airway transport. Specifically, the study aims to achieve the fol-

lowing three objectives:

1) To develop a new method for auto-segmenting the eighteen pulmonary segments

in the lung without airway or vessel segmentation of the lung.

2) To develop an anatomy-wise CTVI method based on the features of lung parenchyma

and airway transport.

3) To develop a new strategy for functional avoidance treatment planning based

on the features of lung parenchyma and airway transport.

10



2 Literature Review

2.1 The lung pulmonary segments

2.1.1 The applications of the pulmonary segment

The lungs consist of three lobes in the right lung (upper, middle, and lower) and

two lobes in the left lung (upper and lower), which are physically demarcated by fis-

sures. Each lobe is further divided into several pulmonary segments. The right lobes

encompass ten segments, while the left lobes encompass eight segments as shown in

Figure (2). The pulmonary segment is considered the fundamental anatomical unit

of the lung, possessing its own bronchus, pulmonary arterial and venous systems,

and lymphatic systems. As a result, individual segments can be surgically excised

while preserving the function of neighboring segments [52]. Each of the eighteen lung

segments—ten in the right lung and eight in the left is supplied by its own segmental

bronchus and a corresponding branch of the pulmonary artery, which ensures both

airflow and blood flow to the region. The blood flow basins, or perfusion zones, are

closely aligned with these segments, as the pulmonary arteries branch in a pattern

that mirrors the bronchial tree.In healthy lungs, blood flow is distributed in a way

that matches ventilation, ensuring efficient gas exchange. However, in pathological

conditions such as tumor obstruction, this relationship can be disrupted. For ex-

ample, a tumor compressing a segmental bronchus may impair ventilation in that

segment, while the corresponding blood flow basin may remain initially unaffected,

leading to a mismatch of ventilation and perfusion.

CT currently serves as the most suitable imaging modality for early detection

examinations of lung cancer due to its exceptional spatial resolution and contrast
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resolution that enable the precise visualization of the chest’s anatomical structures.

Radiologists, pulmonologists, and surgeons use pulmonary segments as a reference to

determine the location of lung lesions. The accurate identification and visualization

of these segmental structures enhance the reliability and precision of individualized

treatment plans (e.g., resection by lobectomy or segmentectomy). Several studies

have shown that segmentectomy helps to maintain lung parenchyma and preserves

2–3.5% higher lung function in patients with early stage lung cancer while achieving

a similar overall survival rate to that of lobectomy [56, 57].

Additionally, segmentation of pulmonary segments has the potential to be useful

in radiation therapy. The segmentation of pulmonary segments could also help in

FLART. Research indicates that certain regions may regain function after radiother-

apy in patients with central tumors [48]. This phenomenon occurs when the tumor

obstructs the airway prior to treatment, subsequently shrinking post-treatment and

allowing for the re-ventilation of the corresponding region. The identification of seg-

ments on a patient’s diagnostic high-resolution CT can help to identify temporarily

hypo-ventilated regions.
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Figure 2: The topographic anatomy of the bronchopulmonary segments for both left and right lung.
Reproduced with the permission of Ref [52], copyright © 2007 Elsevier.

13



2.1.2 The auto-segmentation methods of the pulmonary segments

Despite the extensive clinical benefits related to the segmentation of pulmonary seg-

ments, its practical application is limited by the time-intensive process of delineating

segment boundaries within three-dimensional computed tomography (3DCT) images.

Typically, no distinct physical boundaries separate these segments. The complexity

of segmenting these segments further compounds this issue. Van Rikxoort et al. [58]

developed a fully automatic method that subdivides each lobe into segments using

voxel classification. This approach considers voxel features based on their relative

positions within the lobe and their spatial relationship to detected lobar fissures,

and had 77% accuracy in identifying tumor locations, albeit without validating the

segment boundaries. Kuang et al. [59] developed the ImPulSe deep-learning model

for the segmentation of pulmonary segments, which had an overall segmentation dice

similarity coefficient (DSC) of 0.846. However, in certain cases, the existing models

used for the segmentation of pulmonary segments may not be suitable. For example,

the upper part of the left upper lobe can be divided into three segments (apical,

anterior and posterior) rather than the common two segments (apico-posterior and

anterior) [60, 61]. In other instances, it may be necessary to further divide a segment

into two to three sub-segments to achieve a more precise analysis. In these situa-

tions, the standard models for segment segmentation may not adequately capture the

anatomical variability or provide the level of detail required. Consequently, manual

revision on a slice-by-slice basis may be necessary.

Some anatomical-based methods have been developed to address the limitations

of existing models [53–55]. These methods take into account the specific anatomical

characteristics of the lung, such as the distribution of the bronchial tree (BT) or
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pulmonary arteries (PAs). Kuhnigk et al. [53] proposed a BT-based method to

extract pulmonary segments from 3DCT data. After lobe segmentation, the method

approximated lung segments by assigning each lung voxel to the nearest point of

the segmented BT within the same lobe. Validation studies reported an accuracy

DSC of 0.8 on two in-vitro left lungs. Stoecker et al. [54] introduced a PA-based

segment segmentation approach, achieving a mean surface distance (MSD) of 2–3

mm compared to the ground truth. However, the manual generation of PAs in

Stoecker et al.’s study took 4–6 hours, which poses a barrier to the widespread

adoption of this method in clinical settings.

2.2 The methods of generating ventilation images from CT image

Since the surrogate of lung ventilation maps generated using CT images emerged,

CT-based ventilation research has rapidly developed. As many lung cancer patients

undergo 4DCT simulation as part of the standard treatment planning process, gener-

ating CT-ventilation images provides functional information without burdening the

patient with an extra imaging procedure. There are three main methods for generat-

ing ventilation images from CT, (A) DIR-based method, (B) feature-based method,

and (C) Deep learning-based method.

2.2.1 DIR-based method

For DIR-based methods, the peak-inhale phase CT (CTin) and peak-exhale phase

CT (CTex) are selected from 4DCT data to represent the largest regional volume

differences and changes in HU values. The rationale underlying density change-based

methods is that each lung CT voxel represents a combination of water-like and air-
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like tissues [62], so the density of the lung voxel in the CTin decreases when air is

inhaled. The density change in each voxel then can be calculated by applying DIR

to map the voxels between CT images of inhalation and exhalation. The Jacobian-

based methods use the volume change in a given lung voxel due to inhaled air. The

volume change can be calculated as the Jacobian of the generated DIR [63].

The two main conventional DIR-based methods are HU-based and Jacobian-

based. Both methods require DIR between the CTin and CTex. In the HU-based

method, a voxel at spatial position p of the CTex is mapped toward a voxel at spatial

position p′ of the CTin by DIR. The ventilation value at position p can be directly

calculated using Equation (1) [34].

V ent(p) =
−1000× (HUex(p)−HUin(p

′))

HUex(p)× (HUin(p′) + 1000)
(1)

In CTVIJac, the volume change of a voxel at position p is calculated using the de-

terminant of the Jacobian of the deformation field at position p. This process is

performed using Equation (2).

V ent(p) =

∣∣∣∣∣∣∣∣∣∣
1 + ∂ux(p)

∂x
∂ux(p)

∂y
∂ux(p)

∂z

∂uy(p)

∂x
1 + ∂uy(p)

∂y

∂uy(p)

∂z

∂uz(p)
∂x

∂uz(p)
∂y

1 + ∂uz(p)
∂z

∣∣∣∣∣∣∣∣∣∣
− 1 (2)

However, these methods are calculated at the voxel level, and the image artifacts

and the DIR accuracy will seriously affect their results. To improve the robustness

of the CTVI, alternative methods focusing on sub-regional analysis have been de-

veloped [41, 42, 64–66]. To reduce the uncertainty caused by the DIR, sub-regional
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based methods were implemented to calculate the volume/density changes as Figure

(3) shown. For instance, Castillo et al. introduced the Integrated Jacobian For-

mulation (IJF) and Mass Conserving Volume Change (MCVC) numerical methods,

which represent two distinct classes of ventilation methods: transformation-based

and intensity-based (HU-based) methods, respectively [65, 66]. The IJF and MCVC

methods utilize sub-regional volume change measurements that satisfy a certain un-

certainty tolerance.
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Figure 3: The result of the sub-volume clustering from the CT image. Figure (A) shows the CT
image. Figure (B) shows the sub-volume segmentation results in the lung region.

18



Similarly, Szmul et al. applied the super-voxel concept to the CTVI generation

[41]. The super-voxel segmentation was performed with the Simple Linear Iterative

Clustering (SLIC) algorithm [67]. These methods rely on sub-regional estimates of

volume change that possess quantitatively characterized and controllable levels of

uncertainty. Consequently, they exhibit robustness against minor variations in DIR

methods, thereby enhancing the overall reproducibility of the resulting ventilation

images. However, it is important to note that these methods still rely on DIR and

are thus subject to its inherent limitations. DIR accuracy can be compromised by

4DCT image artifacts and the specific parameters employed, thus limiting the overall

accuracy of the obtained results.

2.2.2 feature-based method

There have been other methods proposed in the literature without using DIR. For

example, Kipritidis et al. devised a modified HU-based method [43] that generates

robust ventilation images without DIR. The generation of the CTVI was based on

the following Equations (3) and (4).

V entHU(p) =
N∑

ϕ=1

Vϕ(p)/N (3)
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Vϕ(p) =


fAir
ϕ (p)× fT issue

ϕ (p), p ∈ L(ϕ)

0, p /∈ L(ϕ)

=


HUϕ(p)

−1000
× HUϕ(p) + 1000

1000
, p ∈ L(ϕ)

0, p /∈ L(ϕ)

(4)

Here,HUϕ(p) is the HU value at voxel location (p) and 4DCT phase bin ϕ=1,. . . ,N.

The terms for HU values in the range [−1000, 0] represent each voxel’s air and tissue

fraction, respectively.

fAir
ϕ (p) =

HUϕ(p)

−1000
(5)

fT issue
ϕ (p) = 1− fAir

ϕ (p) =
HUϕ(p) + 1000

1000
(6)
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Figure 4: Figure (A) is the comparison of the air and tissue fractions fAir
ϕ (p) and fTissue

ϕ (p) at
each voxel location p as a function of HU values in the 4DCT phase ϕ. The solid curve shows the
model for regional aeration, Vϕ(p) = fAir

ϕ (p) × fTissue
ϕ (p). Figure (B) is an example density plot

comparing normalized Galligas PET and 4D-averaged HU values for corresponding lung voxels in a
single scan. Reproduced with the permission of Ref [43], copyright © 2016 American Association
of Physicists in Medicine.
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The justification of this method is based on the understanding that physiological

ventilation, which involves blood-gas exchange, operates through diffusion. By uti-

lizing the HU values at each voxel location to represent fractional air/tissue content,

we can create a straightforward HU-based model for physiological ventilation. This

model computes the voxel-wise product of air and tissue densities, serving as an

estimate for the rate of blood-gas exchange in that voxel. Figure 4 (A) shows the

ventilation model, Vϕ(p) as a function of HU values in the range [−1000, 0], and Fig-

ure 4 (B) shows the comparison between Vϕ(p) and the actual normalized ventilation

value of one patient.

The regional product of fAir and fT issue is distinct from the breathing-induced air

volume changes estimated by DIR-based methods, which can be interpreted as re-

flecting the “dynamic” or breathing-induced ventilation averaged over many breaths.

An advantage of this approach was the ability to minimize the impact of phase-

specific 4DCT image artifacts by averaging the air–tissue product over multiple phase

bins for the each voxel. However, it’s worth noting that this method may tend to

overestimate areas with edges between solid tissue and normal parenchyma, such as

the peritumoral lung and the pleural space. Instead of using the 10 phases of the

4DCT, Yuan et al. [68] utilized the average CT to generate the ventilation image,

obtaining similar results as Kipritidis’s method [43].
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Figure 5: The workflow of the radiomic-based method. Reproduced with the permission of Ref [69],
copyright © 2022 American Association of Physicists in Medicine.
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Another method is the radiomics-based method. In Lafata’s study [70], thirty-nine

radiomic features were extracted from the lungs of 64 patients to explore their poten-

tial as imaging biomarkers for pulmonary function. These features collectively cap-

tured the lung’s morphology, intensity variations, fine-texture, and coarse-texture of

the pulmonary tissue. Comparing the extracted lung radiomics data to conventional

pulmonary function tests, they found that patients with larger lungs of homogeneous,

low attenuating pulmonary tissue (as measured via radiomics) were associated with

poor spirometry performance and a lower diffusing capacity for carbon monoxide.

In a different study by Yang, radiomic feature maps such as Gray-level run length

matrix (GLRLM)-based Run-Length Non-Uniformity and Gray-level co-occurrence

matrix (GLCOM)-based Sum Average were used to generate the ventilation image

[69]. Figure 5 illustrates the workflow of the radiomic feature-based method, where

the feature maps are extracted from the lung CT image and then reconstructed to the

CTVI after radiomic filtering. The achieved p (median [range]) for the two features

were 0.46 [0.05, 0.67] and 0.45 [0.21, 0.65] across 46 patients, respectively. Huang et al.

employed a sparse-to-fine radiomics framework, identifying eight function-correlated

features to generate a ventilation image that exhibited moderate-to-strong voxel-wise

correlations with the reference [71].

2.2.3 Deep learning-based method

With the rapid development of deep learning, it has been successfully applied to gen-

erate functional images from CT scans, showing high correlation with SPECT/PET

images [44–47]. Deep learning-based approaches can be broadly categorized into

two main methods. The first method involves using a deep learning model to learn
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the volume or density changes of corresponding voxels between two phases of CT

images to generate the functional image. In the studies of Zhong and Liu [46, 47],

the input data consist of CTin and CTex images. Both models demonstrated a high

correlation between the predicted images and the RefVI, where RefVI represents

the SPECT/PET images considered as the ground truth. The second method hy-

pothesizes that texture features of the local region can reflect the function, similar

to the radiomics feature-based method. Ren’s studies [44, 45] employed input data

containing a single CT image acquired at the same posture as the SPECT image.

These methods are based on the fact that the HU value is influenced by the air/tissue

ratio, which in turn determines the attenuation coefficient in a specific location. In

the lung parenchyma, the fractional air/tissue can act as a surrogate for the blood-

gas exchange rate. Consequently, pulmonary diseases involving abnormal blood-gas

exchange often exhibit textural alterations in the lung parenchyma.

While deep learning methods have shown promising results, they do have certain

limitations. One such limitation is their requirement for a large amount of training

data. Data from other sources may not generalize well and could lack interpretability.

Additionally, the complexity of deep learning models can make it challenging to

understand the reasoning behind their predictions.

2.3 The application of functional images to treatment plan design

2.3.1 Parameters in functional image-guided radiotherapy

In traditional lung cancer RT, theMLD, V 20, and V 5 (V xmeans the relative volume

of the lung received at least x Gy) are commonly used parameters to predict the

occurrence of RP. However, with the emergence of FLART, functional images such as
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perfusion and ventilation have been incorporated into the radiotherapy of lung cancer

to identify more powerful biomarkers for accurately predicting radiation-induced lung

injuries (RILI), including RP, radiation fibrosis (RF), and the global pulmonary

function [15, 19–22, 72–75]. Consequently, combining the functional images has led

to the proposal of new parameters like fV x, fMLD, sV x, and sMLD. These

parameters offer improved predictive capability for incidents of RILI compared to

traditional parameters, enabling a more precise and personalized approach to lung

cancer radiation therapy. The definition of fV x is expressed as Equation (7).

fV x =

∑
i∈Rx

fi∑
i∈R fi

(7)

Let R represents the set of voxels in the entire lung, Rx denote the set of the

voxels in the entire lung that receive at least x Gy dose, fi is the functional value of

the voxel i ∈ R. The fMLD can be represented as Equation (8), where Di is the

dose of the voxel i ∈ R.

fMLD =

∑
i∈R fi ×Di∑

i∈R fi
(8)

sV x and sMLD can be calculated as Equations (9) and (10).

sV x =

∑
i∈Rx∩Rf

vi∑
i∈Rf

vi
(9)

sMLD =

∑
i∈Rf

vi ×Di∑
i∈Rf

vi
(10)

vi is the volume of the voxel i ∈ R, Rf is the set of voxels with a higher functional

value than f in the entire lung. The f can be interpreted as the threshold value that

used to separate the whole lung into the FHV and low functional volume (LFV) and
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the Rf represents the HFV. Figure (6) shows the functional weight value of each

voxel used to calculate the traditional and functional weighted parameters.
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Figure 6: Represents the functional weight value strategy used for calculating the traditional and
the functional weighted parameters. FV means the functional value scale to 0-1. Figure (A). means
the functional weight value of all the voxels inside the lung is the same. All of them are equal to
1. Figure (B). shows the lung is separated into two parts based on the threshold value f. Only the
voxel with high functional value can contribute to the calculation for sDV H and sMLD. Figure
(C). represents that each voxel’s weighted value equals the relative FV for the fDV H and fMLD
calculation.
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2.3.2 The methods of functional image-guided treatment plan design

Functional images have shown potential not only in predicting RILI, but also in

treatment plan optimization for lung cancer radiotherapy. The use of perfusion im-

ages for treatment planning optimization was first proposed by Marks in 1992 [76],

where beam angle selection was optimized to reduce the dose to high functional re-

gions. Subsequently, Seppenwoolde et al. in 2002 [23] directly utilized lung perfusion

images for plan optimization, leading to reductions in fV 20 and fMLD. They ob-

served that patients with large defect regions could benefit the most from applying

the perfusion image. However, this method required using the functional image of

the whole lung as input into the optimization process, which was not supported by

the current commercial clinical TPS. Researchers had to develop their planning op-

timization modules to implement this approach, which could hinder its widespread

clinical application.

To address this limitation, Christian et al. proposed an alternative method in

2005 [24]. They defined a HFV with an individual threshold value for each patient

and used the HFV for optimization to reduce sV 20 instead of considering the weight

of each voxel in the lung. This HFV-based approach could be implemented in the

TPS. Following this, many studies [25–30, 77–90] employed various threshold values

to divide the lung into HFV and LFV and subsequently reduced the dose to the

HFV.

One disadvantage of the HFV-based approach is the lack of a standardized thresh-

old value, which can introduce variability in the optimization process. Researchers

have attempted to compare the voxel-based method with the HFV-based method.

For instance, Iqbal et al. [31] conducted a study comparing both methods for treat-
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ment planning in 19 patients and concluded that the voxel-based method outper-

formed the HFV-based method. However, the results may be influenced by various

factors, including target size, location of the functional/defect region, and the rela-

tionship between the tumor and the defect regions.

In summary, functional images have demonstrated potential in improving treat-

ment planning optimization by considering high functional regions and reducing ra-

diation doses to these regions. However, challenges such as the lack of standardized

threshold values and compatibility with commercial TPS need to be addressed to

facilitate their broader clinical application. Ongoing research and advancements in

technology will likely further enhance the integration of functional images into the

optimization process for lung cancer radiotherapy.

2.3.3 The impact of the treatment techniques

The current treatment techniques include three-dimensional conformal radiotherapy

(3DCRT), intensity modulated radiation therapy (IMRT), volumetric modulated arc

therapy (VMAT), and intensity modulated proton therapy (IMPT). The treatment

modality could also affect the plan’s effectiveness. For the comparison between the

IMRT and VMAT, Mounessi et al. [91] and Yamamoto et al. [80] concluded that

IMRT and VMAT could achieve comparable results. Compared to the photon beam,

the proton beam has the physical properties of Bragg peak, which has no dose in the

distal area. As for the patients, the defect regions usually won’t show simultaneously

at the entrance and the distal area in the beam direction. For the proton beam

selection, as long as the entrance of the beam is located at the defect region, the

region behind the tumor can be well protected in the IMPT plan compared to the
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photon beam plan [82, 92, 93].

2.3.4 Functional images for adaptive radiotherapy

Studies found that the function of the lung could vary during the treatment [48–50,

94]. Yuan et al. [48] and Meng et al. [49] published their observations that some pa-

tients with centrally located tumors might have temporary defect regions caused by

tumor compression. These regions could re-function after the tumor shrank during

the treatment. They suggested that reacquiring the patient’s functional image during

the treatment can help to alter the treatment planning to achieve better effectiveness.

Their studies indicated insufficient functional planning based on the functional image

acquired prior to treatment. Yamamoto et al. [51] acquired 2 CT scans at 2 time

points (16-20 Gy and 30-34 Gy) during the treatment for adaptive planning. The re-

sults showed that functional planning significantly reduced the functional mean lung

dose by 5.0% compared to anatomic planning in the adapted scenario. The adaptive

re-planning due to the variety in lung function could help patients to preserve more

function after the treatment. However, the time points for rescanning functional

images need to be investigated in the future to avoid unnecessary dose and monetary

costs. Even with the adaptive re-planning strategy, the recoverable regions would

receive high dose before they regain the function since these regions were considered

as low functional region during the initial treatment planning. For better protection

of the recoverable regions, these regions need to be identified before the treatment

to reduce the dose.
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2.3.5 The clinical trials of functional image-guided radiotherapy

Several clinical trials have successfully integrated functional images into treatment

planning for patient treatment, leading to promising results [17, 89, 95–97]. For

example, Vinogradskiy et al. conducted a multi-institutional phase 2 clinical trial

based on the functional image of the CTVI [17]. The trial demonstrated that the rate

of RP 2+ was 14.9%, meeting the expected phase 2 criteria, which was lower than the

threshold of 16.4%. In another clinical trial reported by Yamamoto [97], a single-arm

prospective study was conducted using the CTVI ventilation image for FLART. In

this clinical trial, 24 patients received conventionally fractionated radiation therapy

(CFRT), while 9 patients underwent stereotactic body radiation therapy (SBRT).

The results showed that for CFRT, the rate of RP 3+ was 4.2%, while none of

the patients in the SBRT group experienced RP 3+. These clinical trials provide

valuable evidence supporting the integration of functional images into treatment

planning for lung cancer patients. The use of functional imaging allows for better

understanding and consideration of the individual patient’s lung function, leading

to more personalized and optimized radiation treatment plans. As technology and

research continue to advance, functional images are expected to play an increasingly

important role in improving treatment outcomes and reducing the risk of RILI in

lung cancer patients.
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3 Atlas-based auto-segmentation of the pulmonary segments

3.1 Introduction

The primary function of the airway in the lung is to facilitate the transportation of air,

making it a crucial component with a significant impact on the corresponding down-

stream lung parenchyma area. The pulmonary segments have been recognized as

the functional anatomic unit of the lung, with each segment possessing its bronchus,

pulmonary arterial, venous, and lymphatic systems [52]. Yuan’s study [48] provides

evidence that the function of some pulmonary segments in the lung can recover after

RT, particularly as tumors shrink, and the associated airway branches become ven-

tilated again. Building upon these findings, we developed a hypothesis that suggests

tumors may obstruct the ”upstream” airway, leading to the loss of function in the

”downstream” parenchyma (corresponding to the pulmonary segments). However,

as the tumor diminishes or disappears following treatment, the previously blocked

airway reventilates, allowing the corresponding pulmonary segments to regain its

ventilation capacity.

To explore the above-mentioned hypothesis, our study involved segmenting the pa-

tient’s lung into eighteen pulmonary segments, which represent the smallest anatomi-

cal functional regions within the lung. Subsequently, we examined whether the tumor

blocking any segments and compared the blocked segments with the low functional

regions identified from SPECT/PET functional images. Since no distinct physical

boundaries separate these segments, the current anatomical-based methods for auto-

segmenting the pulmonary segments rely on the segmentation of the airway or vessel

of the lung. However, for the patients with tumor blocking the airway or vessels,
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the segmentation of the airway or vessel would be insufficient due to the exist of

the tumor which could compromise the pulmonary segments segmentation [55]. The

deep-learning method usually lacks of robust when deal with data different from the

training data [98]. The performance of the deep-learning method on patients with

tumor blockage may need to be further evaluated. To achieve the segmentation of the

pulmonary segments accurately, we employed an Atlas-based method to contour the

segments on the patient’s CT image. This approach leverages an atlas of predefined

segmentations to guide the segmentation process, ensuring consistent and reliable

results.

3.2 Methods and Materials

3.2.1 Scheme overview of Atlas-based auto-segmentation of the pulmonary segments
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Figure 7: The workflow of the atlas-based auto-segmentation of the pulmonary segment. A is the
reference patient search. Firstly, a bronchial tree-based method is used to perform the pulmonary
segments’ segmentation for N patients to build the library. Then, for a new patient, the lung and
lobe segmentations are performed. The lobe mask of the new patient is compared to the lobe
mask of the patients in the library to select the most similar patient as the reference patient. B
is the atlas-based segmentation scheme. After the selection of the reference patient, a deformable
registration is conducted between the lobe mask of the new patient and the reference patient to
obtain a deformable vector field. The deformable vector field was then applied to deform the
pulmonary segment mask of the reference patient to the new patient.
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The proposed bronchopulmonary segments segmentation method on the 4DCT

images contains two parts, as illustrated in Figure (7). The first part is a modified

bronchial tree-based method [99] for pulmonary segments segmentation for libraries

building as Figure (8). This method was performed on 150 breath-hold high resolu-

tion CT (HRCT) images to build two patient libraries (left lung and right lung). The

second part is an Atlas-based method for segment segmentation on 4DCT images.

Fourteen manual segmentation of the pulmonary segments were used to verify the ac-

curacy of the Atlas-based method. Ultimately, the Atlas-based method was applied

to generate the bronchopulmonary segments segmentation on input 4DCT images

with tumor blocking the main airways connected to the segments. These patients’

low functional regions acquired from the ventilation images were compared with the

identified blocked segments to determine our hypothesis that the areas blocked should

present with low function. These steps are elaborated in the following sections.
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Figure 8: The workflow of generating the bronchopulmonary segments with a bronchial tree-based
method.
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Table 1: The information on the patients used in this study includes the sources, disease type,
image types, labels, numbers, and the corresponding tasks.

Source Disease Image type and label Number Task

Randomly selected
from the LUNA16

dataset

Pulmonary
nodule

Low-dose CT and
manually labeled lung

lobe masks
51

V-net model building for lobe
segmentation

ATM’22 dataset
Various

pulmonary
disease

Breath-hold HRCT 150
Patient library building for
bronchopulmonary segments

VIA/I-ELCAP
Pulmonary
nodule

Breath-hold HRCT 14
Assessing the accuracy of the

Atlas-based segmentation of the
pulmonary segments

TCIA Lung cancer Galligas PET and 4DCT 20 Evaluating the match between
the low function regions caused
by the airway block with the

corresponding segments

VAMPIRE
challenge

Lung cancer
DTPA-SPECT and

4DCT
21

Lung cancer
Galligas 4DPET/CT and

4DCT
25

Total – 281 –
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3.2.2 Patient Data

Two hundred and eighty-one patients were included in this study, and all the patient’s

personal information was removed. Table 1 shows the information of the patients

in this study. Among them, fifty-one patients were collected from a publicly available

dataset (https://github.com/deep-voxel/automatic pulmonary lobe segmentation using deep learning)

to build our V-net model for the lobe segmentation. These patients were randomly

chosen from the LUNA16 dataset with manually labeled lung lobe masks, and a

detailed description of these cases was presented in [100]. One hundred and fifty pa-

tients CT images from Airway Tree Modeling Challenge 2022 (ATM22) were collected

to build the patient library as shown in Figure 8[101–105]. Each chest CT image

was scanned with a slice thickness between 0.450 mm and 1.000 mm. The axial size

of each slice is 512 × 512 pixels with a spatial resolution of 0.500–0.919 mm. Four-

teen low-dose documented whole-lung HRCT scans from VIA/I-ELCAP Public Ac-

cess Research Database (https://veet.via.cornell.edu/cgi-bin/datac/signon.cgi) were

used collected and the pulmonary segments were manual segmented by a physician

and used to valuate the accuracy of the Atlas-based segmentation of the pulmonary

segments. The CT scans were obtained in a single breath hold with a 1.25 mm

slice thickness. Therefore, there was no noticeable motion artifact shown on the CT

images. Sixty-six patients with ventilation images (SPECT/PET) from two sources

were included for the low functional region evaluation with the patients’ functional

images. The ventilation images (SPECT/PET) will be used as RefVI in the whole

thesis. A dataset with 20 patients from The Cancer Imaging Archive (TCIA) public

access (https://doi.org/10.7937/3ppx-7s22) [106], for these 20 patients, each patient

had a 4DCT scan, two inhale/exhale breath-hold CT scans, a Galligas PET scan and
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an attenuation correlation CT scan (missing for CT-PET-VI-07). Since there were

no time-averaged 4DCT images in the dataset, the CTex images were used for the

bronchopulmonary segments’ segmentation. The second dataset contains 46 patients

from the VAMPIRE challenge [34]. Among them, twenty-one lung cancer patients

have 4DCT images, time-averaged 4DCT images, DTPA-SPECT ventilation, and

corresponding lung masks [107]. For these 21 patients, the time-averaged 4DCT

images were used for the bronchopulmonary segments segmentation. The other 25

lung cancer patients from Peter MacCallum Cancer Centre have images with Galli-

gas 4DPET/CT, 4DCT [108–110]. For these 25 patients, the CTex scans were used

for the bronchopulmonary segments segmentation since there were no time-averaged

4DCT images in this dataset.

3.2.3 Lung segmentation and lung lobe segmentation

Due to the diversity of the patient CT images, the modality, and the disease-

associated lung pattern, the traditional threshold-based method cannot contour the

lung mask accurately [111]. The lung mask segmentation in this study was performed

using a well-trained U-net (R231) model (https://github.com/JoHof/lungmask) to

segment the lung mask [31] automatically. After segmenting the lung mask, we de-

veloped a V-net deep learning model [112] to contour the lung lobe. The details

about the model’s design and optimization settings was shown in Figure 9. It illus-

trates the network architecture of the 3D V-Net model used in this study, which was

designed based on the original V-Net model. The network consists of a compression

path on the left and a decompression path on the right. Each compression path is

divided into five stages, each containing one to four convolutional layers. In each
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stage, the input dimensions of 112 × 112 × 144 are processed by the convolutional

layers, and their outputs are added to the output of the last convolutional layer in

that stage. This approach enables the network to learn a residual function. On the

right side of the network, four stages operate at different resolutions to facilitate the

decompression process. The ultimate output of the model is the segmentation of the

five lobes. During training, the model used the Adam optimizer and the dice loss

function. The training was performed over 300 epochs, with an initial learning rate

of 1e-3, which was reduced to 1e-4 after 150 epochs. The training and validation

data were acquired from a public access database [25], which contains 51 CT images

randomly chosen from the LUNA16 dataset with manually labeled lung lobe masks.

Among them, 41 CT images were randomly selected for training, and 10 were for

validation. Three metrics (DSC, robust Hausdorff distance (HD95), and MSD)

[111] were calculated to evaluate the accuracy of the V-net model on the validation

dataset. The DSC measures the overlap between two volumes: A (V-net lobe mask)

and B (manual lobe mask). The Hausdorff distance is the maximum distance among

the surface distances of all the points in surface A. The surface distance of a point in

surface A to surface B means the distance from the point to its closest corresponding

point in surface B. The HD95 represents the 95th percentile of the surface distances

of all the surface points in surface A. The MSD is the average surface distance of

all points in surface A.
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Figure 9: The architecture design of the V-Net model for the segmentation of the lobes.
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3.2.4 Atlas-based auto-segmentation of the bronchopulmonary segments on 4DCT

images

As Figure 7 (A) shows, for a new patient with a 4DCT image, the trained V-net

model will be applied to the 4DCT image to generate the lobe mask. The lobe mask

of the new patient will be compared with the lobe mask of every patient in the library

to search for the most matched patient as the reference patient. For the lobe mask

comparison process between the new patient and the patient in the library, the lobe

masks will be aligned based on the center, and the DSC values will be calculated for

the mask of the lobes (three for the right lung, two for the left lung). The patient

with the maximum average DSC will be selected as the reference. As Figure 7 (B)

shows, a deformable registration will be performed between the lobe masks of the

new patient and the reference patient to obtain the deformable vector field (DVF).

Then the bronchopulmonary segments mask of the reference patient will be deformed

to the new patient based on the DVF.

3.2.5 Assessing the accuracy of the Atlas-based pulmonary segments segmentation

Among the 150 patients from ATM22 dataset, seven patients shown insufficient air-

way segmentation due to the airway blocked by the tumor or diseases other than

cancer. Only 143 patients were used to build the patient library. The 14 patients

from VIA/I-ELCAP Public Access Research Database with their manual segmenta-

tion of the pulmonary segments were used as test dataset to evaluate the accuracy of

the Atlas-based segmentation method. Each time one of the patients (patient i) in

the test dataset was selected as the new patient, then followed the above-mentioned

Atlas-based method to generate the new bronchopulmonary segments for patient i.

43



The new bronchopulmonary segments were compared with the original ones, and

each segment’s DSC values were calculated to evaluate the accuracy.

To evaluate if the patient number in the library could affect the accuracy of the

Atlas-based method, different number of patients were made up as the library to

performed the Atlas-based segmentation. First of all, the order of the patients was

randomly shuffled. Then, we selected 10, 20, 30, ..., 130, 143 patients as the patient

library to conduct the experiments, respectively.

3.2.6 Evaluation with ventilation functional images

Among the 66 patients, eleven patients showing some bronchial airways blocked by

the tumor were selected for this study. These patients were selected based on visual

inspection of tumor position and the airway distribution on the CT images. The

bronchopulmonary segments of these patients were acquired based on the Atlas-based

method. The low functional regions were identified by defining a patient-specific

threshold value from Faught’s approach [88], calculated as Equation (11).

VT = (
1

N
)× (

100− 15

100
)

N∑
i=1

Vave,i(N = 6) (11)

The ventilation images were divided into 6 parts as shown in Figure 10. The left

and right lungs were divided into 3 equal parts along the z-axis, respectively. Vave,i is

the mean ventilation value of part i, VT is the threshold value. We used the overlap

similarity coefficient (OSC) to evaluate the match of the blocked bronchopulmonary
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segments with the low functional regions, calculated as Equation (12).

OSC =
|A ∩B|
|B|

(12)

Where A is the low functional region in the ventilation image, B is the corre-

sponding blocked bronchopulmonary segments. The reason we used OSC instead of

DSC is that the low functional region in the lung may also cause by diseases other

than cancer. If these regions exist, the DSC value will underestimate the sensitivity

of the calculation for tumor-specific airway blockage.
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Figure 10: Schematic diagram of lung divided into six parts.
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Figure 11: The coronal view of three patients with the CT images (A), lung masks (B), and lobe
masks (C). The first column is a patient from ATM’22 dataset, the second column is a patient from
the TCIA dataset, and the third column is a patient from the VAMPIRE dataset.
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3.3 Results

3.3.1 Lungs and lobes segmentation

In this study, a well-trained lung segmentation model was employed, which had been

trained on multiple datasets covering various lung diseases. This model demonstrated

high accuracy, achieving a mean DSC value of 0.98 ± 0.03 [111]. Figure 11 (A) and

(B) display the coronal view of the CT images and the lung masks generated by the

model for three patients.

For the lobe segmentation, the V-net model yielded mean DSC, HD95, and

MSD scores of 0.94 ± 0.07, 4.59 mm ± 4.65 mm, and 0.93 mm ± 0.90 mm on the

validation dataset. For the left lung, the mean DSC value for the lobe segmentation

was 0.97, indicating robust segmentation accuracy. However, for the right lung, the

mean DSC value was slightly lower at 0.92. Among the right lung lobes, the middle

lobe had the lowest DSC of 0.86. The HD95 of the right lung’s middle lobe and

the upper lobe were 6.51 mm and 7.41 mm, respectively, while the other lobes were

smaller than 3.01 mm. A similar trend was also shown for the MSD evaluation.

The MSD of the middle lobe and the upper lobe of the right lung was 1.18 mm

and 1.70 mm, higher than the other lobes, with MSD values smaller than 0.58 mm.

The results suggests that right middle lobe’s segmentation may be more challenging

due to the presence of variations in some patients’ images, particularly in identifying

the fissure between the right lung’s upper lobe and middle lobe. The model was

used to generate the lobe masks of the 150 low-dose HRCT images from the ATM’22

dataset, 20 CTex images from the TCIA dataset, 21 average CT images, and 25 CTex

images from the VAMPIRE dataset. Figure 11 (C) shows examples of the lobe mask
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generated by the model for the same patients of lung mask generation.

3.3.2 Assessing the accuracy of the Atlas-based pulmonary segments segmentation

In Figure 12, the Atlas-based method’s typical results are presented for one selected

right lung and one selected left lung on sagittal slices. Table 2 shows the mean

DSC of each bronchopulmonary segment. For the left lung, the mean DSC value

for segment segmentation compared to the reference was 0.70 ± 0.11, while this was

0.72 ± 0.11 for the right lung. The superior segment of the lingual part had a DSC

value lower than 0.6 in the left upper lobe. In contrast, the portions corresponding

to the right lung middle lobe position had a DSC value higher than 0.70. The reason

could be that the middle and upper lobes of the right lung are divided by a fissure

that the lobe segmentation has been identified. Regarding the lower lobes, the DSC

value of superior segments were close to 0.8 for both the left and right lungs. The

low-accuracy parts were mainly located at the basal pulmonary segments of the right

lower lobe with a DSC value lower than 0.7. Specifically, the right lung’s medial,

anterior, and posterior pulmonary segments were the regions with relatively lower

accuracy. For the left lower lobe, the anterior and posterior pulmonary segments

were the regions with relatively lower accuracy.

Figure 13 illustrates the impact of the patient library size on Atlas-based segmen-

tation. Overall, the mean DSC value for both the left and right lungs increased

as the number of patients in the library grew. However, it’s noteworthy that for

certain increments in patient numbers, the mean DSC value exhibited a decrease.

This suggests that patients with similar lobe shapes may exhibit varying pulmonary

segments distributions within the same lobe.
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Figure 12: The sagittal view of two patients with the CT images (A), pulmonary segments mask
with CT image (B).
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Table 2: The result of the Atlas-based pulmonary segments segmentation. The left columns are the
result of the left lung, and the right columns are the result of the right lung. The segment columns
are the abbreviation of the segment. LUL: left upper lobe, LLL: left lower lobe, RUL: right upper
llobe, RML: right middle lobe, RLL: right lower lobe, apic: apicoposterior, ante: anterior, sup:
superior, inf: inferior, lat: lateral, post: posterior, med: medial. The code name column means the
code name of each segment, L for the left lung, R for the right lung, and the number represents the
serial number of the segments. DSC columns are the mean DSC values of each segment.

Left Lung Right Lung

Code
name

Segment DSC
Code
name

Segment DSC

L1 LUL apic 0.78 ± 0.08 R1 RUL apic 0.79 ± 0.04
L2 LUL ante 0.71 ± 0.06 R2 RUL ante 0.74 ± 0.12
L3 LUL lingual sup 0.56 ± 0.12 R3 RUL post 0.80 ± 0.07
L4 LUL lingual inf 0.72 ± 0.12 R4 RML lat 0.72 ± 0.07
L5 LLL sup 0.77 ± 0.06 R5 RML med 0.73 ± 0.07
L6 LLL ante 0.69 ± 0.09 R6 RLL sup 0.80 ± 0.04
L7 LLL lat 0.74 ± 0.07 R7 RLL med 0.68 ± 0.08
L8 LLL post 0.58 ± 0.09 R8 RLL ante 0.60 ± 0.11

R9 RLL lat 0.72 ± 0.06
R10 RLL post 0.60 ± 0.13

Average – 0.70 ± 0.11 – – 0.72 ± 0.11
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Figure 13: The correlation between the mean DSC value with the number of the patient in the
library. The upper figure is for the left lung, the lower figure is for the right lung.
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3.3.3 The comparison between the blocked pulmonary segments with the low func-

tional regions

Among the 66 patients, 11 were selected because their tumors were observed to

obstruct some airways, resulting in blockage of specific pulmonary segments. Table

3 provides an overview of the blocked pulmonary segments and their corresponding

overlap ratio with the low functional regions in these 11 patients. The mean OSC

for all 11 patients was found to be 0.90 ± 0.07. Among the selected patients, nine

had tumors located in the right lung, while two had tumors in the left lung. For the

lower lobe, the tumor tends to block the entire lobe, and in almost all cases, the OSC

achieved values above 0.91, indicating a high level of overlap between the blocked

segments and low functional regions. Only one case exhibited a slightly lower OSC

value of 0.81, suggesting a relatively lower degree of overlap in this specific case. For

the upper lobe, the tumor were observed to block 1-3 segments. Figure 14 shows an

example of the tumor blockage in the L1 segment, providing a visual representation

of the impact of tumor presence on the functional lung regions.
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Figure 14: The sagittal and coronal views of an example of the tumor blocked the L1 segment
and the comparison between the blocked corresponding bronchopulmonary segments and the low
functional region. The red arrows in Figures (A1) and (B1) indicate the tumor’s location. Figure
(A1) is the sagittal view of the overlap of the CT image with the ventilation image. Figure (A2)
shows the sagittal view of the low functional regions (red mask) on the CT image. Figure (A3) shows
the sagittal view of the bronchopulmonary segments in the CT image, and the blocked segment is
shown in blue. The red arrows in Figures (A3) and (B3) indicate the blocked segment. Figures
(B1) – (B3) are the corresponding images in the coronal view.
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Table 3: The results of comparing the patients’ functional images with the segment segmentations.
The blocked regions mean the blocked segments caused by the tumor, R represents the tumor
located in the right lung, L means the tumor was located in the left lung. The numbers behind the
underline mean the code name of the segment referred to Table 2.

Patient ID
Blocked
segments

OSC

P1 L 1 0.95
P2 R 123 0.82
P3 R 678910 0.81
P4 R 123 0.88
P5 L 5678 0.91
P6 R 1 0.76
P7 R 123 0.99
P8 R 1 0.93
P9 R 123 0.94
P10 R 678910 0.94
P11 R 678910 0.94

Average – 0.90 ± 0.07
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3.4 Summary and discussion

In this study, an Atlas-based auto-segmentation of pulmonary segments was pro-

posed to identify tumor-blocked regions. For the performance of the Atlas-based

auto-segmentation of pulmonary segments, the mean DSC value of the segment seg-

mentation compared to the reference was 0.70 ± 0.11 for the left lung, while this was

0.72 ± 0.11 for the right lung. Our results also showed that the identified blocked

segments matched well with the low functional regions in the functional images, with

a high mean OSC value of 0.90 ± 0.07, which could support our hypothesis that

the blocked segments should be low functional regions. To the best of our knowl-

edge, it is the first time applying the automatic pulmonary segments segmentation

for identifying the low functional regions caused by the tumor blockage.

This study showed that the identified blocked segments matched well with the low

functional regions in the functional images. However, the segment mask generated

based on the Atlas-based method did not show high DSC for every segment. The

patients’ low functional regions could match well with the segments because the

tumor tended to block the whole lobe instead of a single segment among 8 patients,

and the accuracy of these patients was dependent on the segmentation of the lobe

segmentation. For the patient P3 in Table 3, the OSC value was 0.805, much lower

than the other cases. This could be attributed to the fact that the accuracy of the

segmentation of the lobe may not be accurate enough in cases where tumors affect

the lobe’s contouring as in patient P3 with large tumor.

In general, the mean DSC value for both the left and right lungs increased as the

number of patients in the library grew. This suggests that with an increasing number

of patients, new patients have a higher probability of being matched to a reference
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patient with a similar lobe shape. Additionally, the reference patient may exhibit a

similar distribution of pulmonary segments within the lobe. However, as Figure 13

demonstrates, the mean DSC value exhibited a decrease for certain increments in

patient numbers. The underlying reason could be that while the lobe’s shape and the

pulmonary segments inside it are correlated to some extent, the lobe’s shape alone

cannot fully represents the intricate distribution of pulmonary segments. Conversely,

pulmonary segments segmentation is highly correlated with the bronchial airway

distribution. To enhance the accuracy of Atlas-based segmentation, other novel lobe

features should be added to represent the distribution of pulmonary segments within

the lobe.

The study’s evaluation of tumor obstructive segments was conducted using a rel-

atively small cohort of only 11 patients, which may limit the generalizability and ro-

bustness of the findings. Additionally, the study did not account for other pulmonary

conditions that the patients might have had, which could significantly influence the

outcomes and interpretation of the results. To enhance the reliability, validity, and

clinical relevance of the findings, future research should aim to include a larger pa-

tient population and incorporate detailed information on comorbid lung diseases.

This approach would provide a more comprehensive understanding of how tumor

obstructive segments interact with other respiratory pathologies, thereby strength-

ening the generalizability and statistical significance of the results.

Although the lung segments obstructed by tumors were identified using atlas-

based segmentation methods, this approach may lack the precision to detect partial

or minor blockages, potentially leading to an inaccurate assessment of ventilation

function. To overcome this limitation, future studies could explore topology-based
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segmentation methods, which utilize the anatomical distribution of airways and blood

vessels to more accurately define lung structures. By analyzing the branching pat-

terns of the bronchial tree and pulmonary vasculature, topology-based methods can

improve the detection of subtle obstructions and provide a more reliable evaluation of

lung function. This approach not only refines the identification of affected segments

but also enhances the understanding of ventilation-perfusion relationships, offering

valuable insights for clinical decision-making and treatment strategies.

Despite these limitations, one advantage for our proposed Atlas-based method is

that it can be performed on planning CT with thicker slice thickness without the

need for complete airway and vessel segmentations for lung cancer patients, which

can also be directly used for treatment planning. Furthermore, the sub-segments

segmentation can be achieved by using this method if a library with a sub-segments

segmentation has been built.
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4 Anatomy-wise lung ventilation imaging

4.1 Introduction

The process of lung ventilation involves the flow of air between the atmosphere and

the lungs, encompassing air transport through the airway and the exchange of air

in the pulmonary alveoli. The pulmonary segments have been recognized as the

functional anatomic unit of the lung, with each segment possessing its bronchus,

pulmonary arterial, venous, and lymphatic systems [52]. Based on the anatomical

information regarding the pulmonary segments and the findings of previous studies

[48, 113–115], it is possible that the presence of tumor blockages in a bronchus

may correlate with low functional regions in the connected pulmonary segment(s)

or sub-segments. Yuan’s study [48] highlighted that a tumor-blocked airway can

result in the loss of function in connected pulmonary segments. The current CTVI

methods could be categorized into DIR-based, texture analysis-based, and Deep

learning-based approaches. However, current CTVI methods discussed above have

not specifically examined the effects of airway blockage on lung ventilation and its

relationship with CTVI. Thus, further research is needed to investigate this aspect

and its implications in CTVI analysis.

To effectively apply air transport to ventilation imaging, it is essential to accu-

rately identify the specific areas of the lung that are connected to the corresponding

airway branches. For the tumor blocking the airway, the corresponding segments will

be considered to have lost the function. For the non-blocked segments, a feature-

based analysis method will be applied to analyze their air exchange ability. The

super-pixel concept was first proposed and developed as an image segmentation tech-
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nology in 2003 [116]. It uses pixel blocks that form specific patterns with adjacent

pixels with similar texture, color, and other features. A few super-pixels can rep-

resent images, significantly reducing image post-processing complexity. A similar

concept, the super-voxel, is used for three-dimensional image analysis. An air ex-

change unit is evaluated using a volume of approximately 2 cm3 [107] that contains

a cluster of CT voxels with a resolution of approximately 1 mm × 1 mm × 3 mm.

The CT image of a patient with lung cancer can be pre-processed by segmenting into

a small number of super-voxels, where each super-voxel contains a cluster of voxels

with similar features and forms perceptually meaningful anatomic features. Drawing

on this principle, the current study devised a super-voxel-based method for analyzing

the function ability of the segments from the feature of super-voxels and combining

the airway transport aspect into the ventilation image generation. The ventilation

images generated are based on CT image in the absence of DIR. The results are

robust and expected to be directly interpretable and meaningful for predicting the

outcomes of patients with lung cancer.
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Figure 15: The overall workflow of the anatomy-wise lung ventilation image generation. The
planning CT images are used to check if any bronchial airway is blocked. If tumor blocks the
airway, then perform pulmonary segments’ segmentation and identify the blocked segments. The
blocked segments are applied to the generation of CTVIAW (the anatomy-wise ventilation image)
by assigning the functional value in the blocked segments of the CTVISVD (super-voxel-based lung
ventilation image) to zero.
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4.2 Methods and materials

4.2.1 The workflow of the study

In this study, we propose a novel approach for anatomy-wise lung ventilation imaging

that takes into account both the air transport in the airway and the air exchange

ability in the pulmonary alveoli. To assess the air exchange ability, we employ

a super-voxel feature-based method to evaluate the function of each super-voxel

and generate the initial CTVI (CTVISVD). For air transport, we used the Atlas-

based method that automatically segments pulmonary segments, which allows us to

identify tumor-blocked segments. In CTVISVD, the functional value of the tumor-

blocked segments is assigned as 0, generating the final anatomy-wise ventilation

image CTVIAW. The overall flow chart of the CTVIAW generation is shown in Figure

15. Other CTVI methods will be generated and compared with our results. The

CTex and CTin were used to calculate the DIR-based ventilation images (CTVIHU

and CTVIJac). A clustering method was used to generate super-voxels, and the

feature of the super-voxel was used to calculate the ventilation images CTVISVD

without considering the tumor blockage. The results of CTVISVD and the DIR-

based CTVIs were compared with RefVI for the patients without tumor blockage.

For the patients shown tumor blocking the airway, the CTVISVD and CTVIAW will

be compared with the RefVI. The details are presented in the following sections.

4.2.2 Patient data

Sixty-six patients with ventilation images (SPECT/PET) from two sources were in-

cluded for the evaluation of CTVISVD and CTVIAW. The first dataset includes 20 pa-

tients from The Cancer Imaging Archive (TCIA) public access (https://doi.org/10.7937/3ppx-
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7s22) [106], for this cohort of 20 patients, each individual underwent a comprehensive

imaging protocol, including the following scans: a 4DCT scan, two inhale/exhale

breath-hold CT (BHCT) scans, a Galligas PET scan and an attenuation correlation

CT scan. All imaging acquisitions took place at the Royal North Shore Hospital be-

tween 2013 and 2015 using a Siemens Biograph mCT.S/64 PET/CT scanner located

in Knoxville, USA. The 4DCT scans were performed using a helical acquisition tech-

nique with tube settings at 120 kVp and 80-200 mA. Two separate BHCT scans were

conducted—one during inhalation and another during exhalation. The BHCT set-

tings included 120 kVp, 120 mAs, and a breath-hold time of 10 seconds. The Galligas

PET scans along with the corresponding attenuation correction CT, was acquired un-

der free-breathing conditions. The field of view for the CT images was approximately

50 cm from the pharynx to the stomach. Since there were no time-averaged 4DCT

images in the dataset, the CTex images were used for the bronchopulmonary seg-

ments’ segmentation. The second dataset contains 46 patients from the VAMPIRE

challenge [34]. Among them, 21 patients underwent 4DCT and diethylenetriamine

pentaacetate (DTPA)-SPECT scans at Stanford University, USA [107]. All patients

provided written informed consent to participate in a clinical trial of 4DCT ventila-

tion imaging approved by the institutional review board for a study by Yamamoto

[107]. Ten breathing phase CT images and a time-average CT with a slice thickness of

2.0, 2.5, or 3.0 mm were available for each patient. The average time between 4DCT

and the following DTPA-SPECT scans, which include low-dose attenuation correc-

tion CT was 4 (± 5) days. Rigid registration was performed between each SPECT

image and the time-average CT image using Mattes mutual information rigid regis-

tration in Plastimatch. The DTPA-SPECT scans were linearly interpolated to match
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the dimensions of the time-average CT image [34]. For these 21 patients, the time-

averaged 4DCT images were used for the bronchopulmonary segments segmentation.

The other 25 lung cancer patients from Peter MacCallum Cancer Centre have images

with Galligas 4DPET/CT, 4DCT [108–110]. The 4DCT scan was performed using

a low-dose cine-mode chest protocol, and the resulting scans were reconstructed into

five respiratory phase bins. The in-plane resolution was 1.07 mm × 1.07 mm, and

the slice thickness was 5 mm. The 4DPET scans had an in-plane resolution of 2.86

mm × 2.86 mm and a slice thickness of 3.3 mm. These scans were inherently coreg-

istered to the 4DCT phase images. For these 25 patients, the CTex scans were used

for the bronchopulmonary segments segmentation since there were no time-averaged

4DCT images in this dataset. The CT values were converted to density values using

Equation (13), as follows:

Density = (
HU + 1000

1000
) (13)

Among these 66 patients, 11 patients shown with tumor blocking one or several seg-

ments, other 55 patients without tumor blocking the airway. For the 55 patients with-

out tumor blocking the airway, the CTVISVD were the same as the CTVIAW. These

patients were used to evaluate the CTVISVD, which were similar to the feature-based

methods. Fot the 11 patients shown the segment(s) with tumor blockage, CTVIAW

were different from the CTVISVD, the ventilation value of the blocked segments were

0 in the CTVIAW which should be closed to the RefVI while the CTVISVD had other

values.
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4.2.3 DIR-based CTVI methods

The two main conventional DIR-based methods are CTVIHU and CTVIJac. Both

methods require DIR between the CTin and CTex. In CTVIHU, a voxel at spatial

position p of the CTex is mapped toward a voxel at spatial position p’ of the CTin by

DIR. The ventilation value at position x can be directly calculated using Equation

(1) [34]. In CTVIJac, the volume change of a voxel at position p is calculated using

the determinant of the Jacobian of the deformation field at position p. This process is

performed using Equation (2). Both CTVIHU and CTVIJac images were calculated in

this study and used for comparison. DIR between the CTin and CTex was performed

using MIMvista 6.3.4 (MIM Software Inc., Cleveland, OH, USA) with a default

spacing resolution of 3mm.

4.2.4 Super-voxel clustering method

SLIC [67] is applied to lung CT 3D images to generate super-voxels with low com-

putational power requirements. The SLIC algorithm first initializes the Kinit seeds

by resampling pixels on a regular grid. Then, it assigns each voxel to the closest

seed point to generate Kinit clusters based on the distance (Dist), as described by

Equation (14):

Dist =

√
dist2c + (

dists
S

)2 ×m2 (14)

where distc is the HU value difference, dists is the Euclidean distance, S is the initial

sampling interval S =
√

N
Kinit

, N is the total voxel number in the lung volume, and

m is a weighting value used to control the compactness of the super-voxel. Next, the

positions of the centers are moved to the point with the smallest gradient to prevent

65



placement on the edges of an image or at a noisy voxel. The above steps are repeated

until the result converges. Only the super-voxels in the lung mask were used in this

study. An in-house tool based on Matlab (MathWorks Inc, Natick, MA, USA) was

used, and Kinit was set as 1,500 for all patients (refer to the Discussion section for

commentary). The number of super-voxels generated varied between the patients

according to their lung anatomy. All of the CT and RefVI images were interpolated

into images of the same size and with a pixel size of 2 mm × 2 mm × 2 mm, and a

3D median filter with dimensions of 5 voxels × 5 voxels × 5 voxels was applied to

the images to reduce noise.

4.2.5 Feature selection of the super-voxel

As shown in Figure 16, a super-voxel map was generated on CTex images. To select

the most correlated feature of the super-voxel to represent the ventilation function

of the super-voxel, sixteen intensity-based statistical features [117, 118] and one

modified mean feature (Mean representing the product of the air and tissue of the

super-voxel) were calculated and analyzed the correlation with the mean ventilation

value (V entmean) using the 55 patients without tumor blockage. The selected features

were listed in Table 4. The reason of choosing Mean as one of the features is that the

lung diseases could causing the lung density change. Some diseases may cause the

density increase such as the consolidation of the tumor and abnormal tissues, which

have a high density but should have a low ventilation value, the other may cause

the increase of density like emphysema. The Mean was calculated as Equation 15

which was proposed by Kipritidis [43]. The Mean is the mean fraction of the tissue

in the super-voxel, while (1 - Mean) is the mean fraction of the air. The V entmean
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was calculated using RefVI image data by mapping the super-voxel segmentation

results on the RefVI images, as both the RefVI and time-average CT data were

registered, and the time-average CT and CTex images shared the same position.

The correlation between the feature and V entmean of the super-voxels was determined

using Spearman’s correlation analysis. The most correlated feature was selected as

the surrogate of the ventilation function of the super-voxel.

Mean = Mean× (1−Mean) (15)

4.2.6 Super-voxel based ventilation generation

The D
Mean

of the super-voxel has the highest correlation with V entmean, which was

used as the surrogate of the ventilation function of the super-voxel.
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Figure 16: The generations workflow of the CTVISVD and VISV.
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Figure 16 shows the workflow for generating the CTVISVD images and the ven-

tilation images based on SPECT VISV. CTVISVD image generation requires only a

CTex image, while VISV images require both CTex and SPECT images. To demon-

strate the feasibility of generating a reasonable ventilation image using hundreds of

super-voxels, we generated the VISV image and compared it with a RefVI image.

The details of CTVISVD are presented as follows. To perform CTVISVD, we used the

geometric center of a super-voxel to represent the position of the super-voxel and

the D
Mean

value as the ventilation value of the super-voxel center positions. The

ventilation values of all of the voxels in a lung were then calculated via interpolation

with the D
Mean

of the super-voxels, as follows (Equations (16) and (17)):

V = W × Vsup (16)

wij = e−(
rij

rmean
)2 (17)

where V is the vector of the ventilation value of all voxels in the lungs; Vsup is

the vector calculated only using the D
Mean

of the super-voxel; W is the interpolation

weight matrix; wij is the element of the W matrix, which is calculated based on

the distance between voxel i and the center position of super-voxel j, as shown in

Equation (17); rmean is the mean distance between the super-voxels; and rij is the

distance between voxel i and super-voxel j. The lung volume was divided into the

left and right lungs. The ventilation value was interpolated for each voxel using only

the super-voxels from the ipsilateral lung. To smooth the final CTVIs, we applied a

3D Gaussian filter with a kernel size of three voxels to each lung voxel. The same
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post-processing steps were applied to all CTVIs. The V entmean of the super-voxels

from RefVI was used to generate the VISV according to the above-stated interpolation

method and the correlation between VISV and RefVI was evaluated. Two more super-

voxels-based ventilation images were also generated for comparison. The V entmean

of the super-voxels from CTVIHU and CTVIJac was used to generate the CTVISVHU

and CTVISVJac with a similar method as VISV, respectively. Their correlations with

RefVI were also evaluated.

4.2.7 The evaluation of the CTVISVD and also for the CTVIHU, CTVIJac, CTVISVHU,

and CTVISVJac

The CTVISVD images generated in this study were evaluated with the corresponding

RefVI images using voxel-wise Spearman correlation analysis. Spearman correlation

analysis was also used to compare RefVI images with CTVIHU, CTVIJac, CTVISVHU,

and CTVISVJac images. The comparison between the CTex and RefVI was used to

show the advantages of analysis at the super-voxel level compared to the voxel level.

To assess the concordance of high-functioning regions between CTVI and RefVI,

RefVI and CTVISVD images from each patient were divided into two volumes by the

66th percentile ventilation value in the lung, which is used to distinguish high- and

low-functioning lung regions. This value has been used by other studies [45, 80].

The DSC was used to assess the accuracy of CTVISVD in segmenting the high- and

low- functioning lung regions. The DSC was also used to compare the high- and

low-functioning lung regions segmented by RefVI with those segmented by CTVIHU,

CTVIJac, CTVISVHU, and CTVISVJac. Only the intersection between the CT and

RefVI lung masks was analyzed in this study.
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4.2.8 Impact of the super-voxel number on CTVISVD experiments

The size of the super-voxels may influence the results of CTVISVD. On the one hand,

super-voxels that are too large may not be able to identify small defects. On the other

hand, super-voxels that are too small may lose their structure-oriented properties.

A particular clustering may influence the results of CTVISVD. For example, by

increasing the number of super-voxels, the size of clusters is reduced. To investigate

how the size of the super-voxels influences the results, we measured the correlation

of D
Mean

with V entmean for different numbers of super-voxels. Performance was

evaluated at various values of Kinit (300, 500, 800, 1,000, 1,500, 2,000, 2,500, 3,000,

4,000, 8,000, 12,000, and 15,000) to cover an extensive range. A large value of

Kinit increases the calculation time and depletes the memory needed to calculate

the interpolation matrix W, as described in section 2.5. The computer used for this

analysis was equipped with an Intel® CoreTM i9-11900K 3.50-GHz processor and

64.0 GB of RAM.

4.2.9 The evaluation of the CTVIAW

As mentioned above, for the 55 patients without tumor blocking the airway, their

CTVIAW are the same as CTVISVD. The evaluation of these patients has been

described in previous parts. For the 11 patients with tumor blocking the airway,

the ventilation value in the blocked segments were different. Both the CTVISVD and

CTVIAW were compared with the RefVI using Spearman correlation analysis.
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4.3 Results

4.3.1 Super-voxel segmentation

The SLIC method was used to divide the lung volumes of the 21 patients into 345–825

super-voxels at a Kinit of 1,500. Figure 3 shows an example of super-voxel segmenta-

tion of the lung volume. Different colors indicate different super-voxel regions. The

mean correlation between VISV and SPECT was 0.89 (range: 0.69 to 0.98). Figure

17 (B) and (C) show a comparison between RefVI and VISV images. The two images

have a similar function distribution. The strong correlation between VISV and RefVI

suggests that a reasonable CTVI image of the whole lung volume can be generated

by analyzing hundreds of super-voxels.

4.3.2 Feature selection of the super-voxel

The correlation analysis of the 17 features with the V entmean of the super-voxel is

shown in Table 4. Nine features (Mean, Mean, Variance, Median, Minimum, 10th

percentile, Energy, Entropy, and Root mean square) show a absolute correlation

value great than 0.40. The most correlated feature was the Mean value of the super-

voxel with a correlation value of 0.50 ± 0.15, which was selected as the surrogate of

the ventilation function value to generate the CTVISVD.
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Table 4: The results of the feature selection as the surrogate of the ventilation function.

Feature name Correlation value

Mean 0.46 ± 0.17
Variance 0.40 ± 0.21
Kurtosis -0.12 ± 0.26
Median 0.41 ± 0.19
Minimum 0.42 ± 0.21
10th percentile 0.42 ± 0.20
90th percentile 0.39 ± 0.21
Maximum 0.37 ± 0.23
Interquartile range 0.27 ± 0.15
Range 0.27 ± 0.15
Mean absolute deviation 0.21 ± 0.15
Median absolute deviation 0.35 ± 0.17
Coefficient of variation -0.12 ± 0.22
Energy -0.42 ± 0.18
Entropy 0.41 ± 0.17
Root mean square 0.40 ± 0.21

Mean 0.50 ± 0.15
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Figure 17: Comparison of RefVI image and CTVISVD images for a representative case without tu-
mor blocking the airway. Figure (A) is CT; Figure (B) is the RefVI of the lung region superimposed
onto the CT; Figure (C) is the VISV of the lung region superimposed onto the CT; Figure (D) is
the CTVISVD of the lung region superimposed onto the CT; Figure (E) is the CTVIJac of the lung
region superimposed onto the CT; Figure (F) is the CTVIHU of the lung region superimposed onto
the CT. For all the figures, their 99th percentile and higher values were scaled to 100 (to reduce
the artifact effect caused by the tracer deposited at airways in RefVI for visual inspection), and the
minimum value was scaled to 0.
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4.3.3 Comparison of CTVISVD, CTVIHU, CTVIJac, CTVISVHU, and CTVISVJac with

RefVI

The correlation between the D
Mean

from CT and the V entmean for the super-voxel

volume from RefVI was 0.50 ± 0.15, indicating that super-voxels with a lower/higher

mean density tend to have a lower function value. This moderate-to-strong correla-

tion means that the D
Mean

of a super-voxel can be used as a surrogate for V entmean

when generating CTVISVD. Figure 17 presents a comparison of RefVI with CTVISVD.

The low-functioning lung region, indicated by the red arrow in the CT image and

by the blue and black-blue area in the ventilation image (Figure 17 (B)), can be

identified using CTVISVD (dark blue area in Figure 17 (D)). The mean correlation

coefficient between CTVISVD and RefVI was 0.59 (range: 0.31 to 0.82). The mean

correlation coefficients of RefVI with CTVIHU, CTVIJac, CTVISVHU, and CTVISVJac

were 0.34 ± 0.18, 0.20 ± 0.18, 0.38 ± 0.20, and 0.25 ± 0.24 respectively. These results

indicate that CTVISVD is closer to RefVI than conventional DIR-based methods. The

super-voxel based method can improve the correlations of the DIR-based CTVIs by

0.04 and 0.05 for CTVIHU and CTVIJac, respectively. A similar improvement was

also reported in Szmul’s study [41].

The mean DSC values of the high-functioning (DSCh) and low-functioning re-

gions (DSCl) on CTVISVD images were 0.64 ± 0.09 and 0.77 ± 0.13, respectively.

Because the criterion for dividing the lung is the 66th, the low-functioning region is

larger than the high-functioning region, and DSCl is higher than DSCh. As shown

in Figure 17, the locations of the low-functioning regions on the CTVISVD images

matched those on the SPECT images, but the highest-functioning regions (dark red

area) just exhibited a certain amount of overlap. The mean DSCh values of CTVIHU,
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CTVIJac, CTVISVHU, and CTVISVJac were 0.46 ± 0.13 and 0.43 ± 0.13, 0.49 ± 0.11,

and 0.47 ± 0.16, respectively, and the corresponding mean DSCl values were 0.72 ±

0.12, 0.70 ± 0.15, 0.73 ± 0.12, and 0.72 ± 0.13, respectively.

For some patients, CTVISVD yielded low correlation with SPECT. However, this

could be improved. As indicated by the red arrow in Figure 18 (A), a defective lung

region with a high density at the top of the left lung caused a falsely high ventilation

value, as shown in Figure 18 (C). Such errors can be corrected by manually contouring

the defect regions via assignment to a low ventilation value. In this case, the final

correlation coefficient increased to 0.52, as shown in Figure 18 (D).
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Figure 18: Comparison of RefVI and CTVISVD images for a representative case. (A) is CT; (B)
is the RefVI of the lung region superimposed onto the CT; (C) is the origin CTVISVD of the lung
region superimposed onto the CT; (D) is the corrected CTVISVD of the lung region superimposed
onto the CT;. For all the figures, their 99th percentile and higher values were scaled to 100, and
the minimum value was scaled to 0.
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4.3.4 Evaluation of the impact of the super-voxel number on CTVISVD

Figure 19 shows super-voxel segmentation using two values of Kinit. As the number

of super-voxels increased, the size of the super-voxels decreased. The generated

CTVISVD images show high similarity in highly ventilated regions. As shown in

the bottom left row of Figure 19, as the volume of the super-voxel decreased, it

became more difficult to contain the whole texture of the sub-region; this presents

an obstacle to analysis of the V entmean with other features of such a super-voxel.

Table 5 shows the experimental results obtained with different numbers of super-

voxels. On average, approximately 201, 297, 405, 463, 597, 708, 823, 923, 1,148,

1,921, 2,664, and 3,197 super-voxels were extracted from the lung volumes of the 21

patients when Kinit was set as 300, 500, 800, 1,000, 1,500, 2,000, 2,500, 3,000, 4,000,

8,000, 12,000, and 15,000, respectively. The correlation of D
Mean

with V entmean was

strongest when approximately 597 super-voxels were extracted from the lung volume

and decreased as the number of super-voxels continued to increase. A paired-samples

t-test to compare the D
Mean

and V entmean obtained at a Kinit of 1,500 with those

obtained at other Kinit values revealed that a Kinit of 1,500 generated the most

reasonable number of super-voxels inside the lungs. The D
Mean

exhibited a stronger

correlation with V entmean at aKinit of 1,500 than atKinit values lower than 1,500 and

higher than 3,000. Thus, Kinit was set as 1,500 to retain as many structure-oriented

properties as possible for each super-voxel.
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Figure 19: Two different super-voxel segmentations with different Kinit and the corresponding
CTVISVD. The Kinit of the top row is 500, and the bottom row is 120000.
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Table 5: The influence of the different numbers of the super-voxel. Kinit means the initial setting
of the super-voxel number for the CT image, and Kfinal means the final extracted super-voxel
number in the lung volume. The mean correlation value is the mean Spearman correlation value of
all the patients. D

Mean
is the mean product of the tissue and air of the super-voxel, and V entmean

is the mean ventilation value of the super-voxel. The p-values are obtained from the paired-samples
T-test of the Kinit of other value with the Kinit of 1500.

Kinit Kfinal

Mean correlation value
D

Mean
vs

V entmean
p-value

300 201 0.44 ± 0.15 < 0.0001
500 297 0.44 ± 0.16 < 0.0001
800 405 0.47 ± 0.14 0.0016
1000 463 0.49 ± 0.14 0.0079
1500 597 0.50 ± 0.15 –
2000 708 0.50 ± 0.14 0.2908
2500 823 0.50 ± 0.14 0.2715
3000 923 0.50 ± 0.14 0.3697
4000 1148 0.49 ± 0.14 0.2497
8000 1921 0.46 ± 0.14 0.0100
12000 2664 0.46 ± 0.14 0.0064
15000 3197 0.45 ± 0.15 0.0031
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4.3.5 The evaluation of the CTVIAW for the patient with blocked pulmonary segments

For the 11 selected patients, Table 6 shows the blocked pulmonary segments and

their Spearman correlation between the CTVISVD and CTVIAW with the RefVI. The

mean Spearman correlation between CTVIAW with RefVI was 0.72 ± 0.05 for all 11

patients. This indicates a relatively strong positive correlation between the CTVIAW,

which represents the ventilation image considering tumor-blocked segments, and the

actual ventilation distribution observed in the RefVI. Comparatively, the Spearman

correlation for the CTVISVD was lower at 0.51 ± 0.14. The CTVISVD represents

the ventilation image, which does not account for the tumor blockage. Figure 20

provides a visual comparison between the CTVISVD, CTVIAW, and the RefVI for a

patient with a blocked pulmonary segment. The results indicate that considering the

segment lost function due to the tumor blockage (represented by CTVIAW) leads to

a higher correlation with the actual ventilation distribution.
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Figure 20: The sagittal view of an example of the tumor blocking the left lung apico-posterior
segment. A is the overlap of the CT image with CTVISVD (super-voxel-based lung ventilation
image), B is the overlap of the CT image with CTVIAW (anatomy-wise lung ventilation image),
and C is the sagittal view of the overlap of the CT image with the RefVI (reference ventilation
image). All the ventilation images are scaled to 0-100 for demonstration. The voxels with functional
value of zero in the ventilation images means the voxels have lowest functional ability, while the
voxels with functional value of 100 means the voxels have highest functional ability.
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Table 6: The results of comparing the patients’ functional images with the segment blocked. The
blocked regions mean the blocked segments caused by the tumor, R represents the tumor located in
the right lung, L means the tumor was located in the left lung. The numbers behind the underline
mean the code name of the segment referred to Table 2. The last two columns show the Spearman
correlation results between the patients’ RefVI with the CTVISVD and CTVIAW, respectively.

Patient ID
Blocked
segments

CTVISVD CTVIAW

P1 L 1 0.71 0.78
P2 R 123 0.64 0.74
P3 R 678910 0.50 0.67
P4 R 123 0.47 0.72
P5 L 5678 0.33 0.65
P6 R 1 0.59 0.68
P7 R 123 0.43 0.79
P8 R 1 0.58 0.67
P9 R 123 0.69 0.74
P10 R 678910 0.39 0.78
P11 R 678910 0.30 0.72

Average – 0.51 ± 0.14 0.72 ± 0.05
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4.4 Summary and discussion

In this study, an anatomy-wise lung ventilation imaging method by considering the

both air transport and the feature of lung parenchyma was developed to generate

surrogate ventilation images directly from CT images. For the analysis of the lung

parenchyma feature, the SLIC method was employed to generate super-voxels inside

the lung volume, and the D
Mean

of the super-voxels was used as a surrogate for the

mean ventilation value. This novel CTVIAW method achieved a mean Spearman’s

correlation coefficient of 0.59 (range: 0.31 to 0.82) with the RefVI, which was signifi-

cantly higher than the correlation coefficients of RefVI with the DIR-based methods

CTVIHU (0.34 ± 0.18, p <0.05), CTVIJac (0.20 ± 0.18, p <0.05), CTVISVHU (0.38

± 0.20, p <0.05), and CTVISVJac (0.25 ± 0.24, p <0.05) for the 55 patients without

tumor blockage. By using this novel method, the complexity of a ventilation imaging

problem can be reduced from calculating millions of ventilation values for all voxels

to only calculating hundreds of V entmean values for super-voxels. The V entmean of

a super-voxel can be directly derived from super-voxel features. For the 11 patients

with tumor blocking the airway, the mean Spearman correlation between CTVIAW

with RefVI was 0.72 ± 0.05 which was higher than the mean Spearman correlation

between CTVISVD and RefVI with value of 0.51 ± 0.14. Thus, by considering the

segment lost function due to the tumor blockage (represented by CTVIAW) leads to

a higher correlation with the actual ventilation distribution.

This study shows that the D
Mean

of a super-voxel is strongly correlated with the

V entmean of a super-voxel, which means that a lower or higher super-voxel density is

usually associated with less functional ventilation than a higher super-voxel density.

Similar results have been shown in other studies [69, 70]. As shown in Figure 17, the
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region with low ventilation function (indicated by arrows) is darker than the region

with normal function. The low-functioning region may correspond to a defective lung

region caused by emphysema, where healthy pulmonary tissue has been replaced

increasingly by air due to alveolar damage and weakening and rupture of the inner

walls of the air sacs. This was a preliminary study of the use of the mean density

of super-voxels to generate ventilation images. Other super-voxel features can be

analyzed and combined with D
Mean

to build a more accurate and robust model for

future CTVI studies involving more patient data.

This study has some limitations. Pulmonary ventilation refers to the air exchange

between the atmosphere and the lungs. It involves the inflow of air through the airway

to the alveoli, where the air exchange occurs, followed by outflow through the airway.

Our results show that lung regions with lower density values exhibit lower ventilation

values than those with higher density values. As previously mentioned, the damaged

alveoli in a patient with emphysema lost their ability to expel air, leading to decreased

intensity. However, in some cases, abnormal lung regions associated with pulmonary

diseases can exhibit increased density, known as opacities, and fall into four patterns:

consolidation, interstitial, nodules or masses, and atelectasis [119]. These diseases

can also obstruct the airway or damage to the parenchyma, leading to a loss of air

exchange capability. Consequently, some pulmonary diseases may affect the CTVI

results in this study. However, the clinical presentation of pulmonary diseases on

CT images can vary. Raju et al. categorized the signs of the lung disease into

22 groups [120]. These signs can increase the difficulty of automatically recognizing

defect regions. In this study, the super-voxel was the smallest unit of analysis and its

features can be used directly to classify it as a defect or normal region. In future work,
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we will create a super-voxel-based model to automatically identify defect regions and

correct the ventilation value to increase the accuracy of our method.
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5 Anatomy-wise lung ventilation image for functional lung

avoidance planning

5.1 Introducion

Studies have revealed that lung function can change during or after RT treatment

[48, 51, 94, 113, 121]. According to Yuan’s study [48], low ventilation in certain lung

regions may arise due to tumor-induced pressure on the airway and blood vessels.

However, these regions may experience recovery after RT, particularly in lung cancer

patients with centrally located tumors. These lung regions must be carefully pro-

tected during the treatment with minimum dose deposition since the lung function

may recover after tumor shrinkage [113, 114]. However, to the best of our knowl-

edge, no study has been conducted to consider the recoverable low functional volume

(rLFV) during the planning design before the treatment.

To further analyze the blocked regions and ascertain whether they are normal or

dysfunctional due to lung disease, one approach could be to utilize CTVI methods to

evaluate blocked regions on CT images. For the DIR-based method, blocked regions

would be classified as dysfunctional since the lack of airflow into these areas causes

density/volume changes. The current deep learning methods may also classify all

blocked regions as dysfunctional if the model has been trained on patterns observed

in RefVI. In this study, we employed a super-voxel-based method in previous chapter,

which specifically considers lung parenchymal features without airway circulation

[122]. This approach aids in identifying whether the lung regions are normal or

dysfunctional due to lung parenchymal variation.
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5.2 Methods and materials

5.2.1 The overview of the study

In this study, we propose a novel approach for anatomy-wise lung ventilation imaging

that takes into account both the air transport in the airway and the air exchange

ability in the pulmonary alveoli. To assess the air exchange ability, we employ a

super-voxel feature-based method to evaluate the function of each super-voxel and

generate the initial CTVISVD. For air transport, we used the Atlas-based method

to automatically segment pulmonary segments, which allows us to identify tumor-

blocked segments. In CTVISVD, the functional value of the tumor-blocked segments

is assigned as 0, generating the final anatomy-wise ventilation image CTVIAW. Sub-

sequently, the overlap between the tumor-blocked segments with the high function

regions identified by super-voxel feature-based method was considered as the rLFV.

Lastly, we explore the integration of rLFV into treatment planning to evaluate its

effectiveness in preserving lung function. We compared this approach to conventional

treatment planning and the current FLART approach, which does not consider rLFV.

5.2.2 Patient data

The data collection for this study comprises images obtained from 20 patients with

locally-advanced, non-small cell lung cancer who underwent chemoradiotherapy [123,

124]. The images consist of 4D fan beam CTs (4D-FBCT) and 4D cone beam CTs

(4D-CBCT). The 4D-FBCT images were acquired using a 16-slice helical CT scan-

ner (Brilliance Big Bore, Philips Medical Systems, Andover, MA) as respiration-

correlated CTs, capturing 10 breathing phases (0 to 90%, phase-based binning) with

a slice thickness of 3 mm. These 4D-FBCT images were obtained during the initial
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simulation before therapy and were used for treatment planning. Additionally, in

13 of the 20 subjects, 4D-FBCT images were acquired weekly on the same scanner

during the course of therapy. The target structures were delineated by a physician

on the weekly 4D-FBCTs images. However, due to the extensive size of the dataset,

contouring of organs at risk (OARs) was performed only on a subset of images. From

this subset, five patients with central tumors exhibited positive responses (the tu-

mor size reduced at least 30%) to treatment. As shown in Figure 21, two selected

patients demonstrated tumors that blocked the airway bronchial connecting to the

corresponding lung segment initially. However, after undergoing treatment, the tu-

mors shrank, and the airway obstruction was relieved. This observation is in line

with the hypothesis that tumor-induced airway blockages may impact downstream

lung function, and radiotherapy can lead to tumor regression and subsequent lung

ventilation improvement. For these five patients, the rLFV was first identified and

then used for treatment planning, while the treatment plans of the other 15 patients

were performed without rLFV. For treatment planning, the ten phases of 4DCT

were utilized to generate an average-CT, which was used as the basis for treatment

planning. The prescription dose was 66 Gy using daily 2 Gy fractions.
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Figure 21: The comparisons of the tumor before and after the treatment. The upper row figures
are for the first patient. Figure (A) is before the treatment, and Figure (B) is after the treatment.
The lower row figures are for the first patient. Figure (C) is before the treatment, and figure (D)
is after the treatment.
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5.2.3 Ventilation image generation and classification

In our study, the ventilation images (CTVISVD and CTVIAW) were generated using

the method described in abovementioned parts. As Figure 22 shown, to distinguish

between HFV and LFV regions for each patient, the 66th percentile ventilation value

in the lung will be used as the threshold value. Based on this threshold, the CTVIAW,

which represents the ventilation image considering tumor blockages, will be divided

into HFV and LFV regions. Furthermore, for the five patients with temporarily

blocked segment regions, the overlap between the tumor-blocked segments with the

high function regions identified by super-voxel feature-based method was considered

as the rLFV. These rLFV contours represent regions with temporary airway blockages

that could potentially recover and become high function after treatment. The rest

of the LFV regions were formed to be the uLFV, representing the regions that won’t

recover to become high function after treatment. The overlap regions between the

planning target volume (PTV) and the high ventilation regions (HFV and rLFV) will

be excluded from the high ventilation regions. These contours, including HFV, rLFV,

and uLFV, will play a crucial role in functional lung avoidance treatment planning.

This approach is designed to minimize radiation exposure to high-functional regions

of the lung, aiming to better preserve lung function and reduce the risk of RILI.
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Figure 22: The overall workflow of the identification of the tumor-blocked regions and apply to
the treatment planning. The rLFV regions is the lung regions with normal parenchyma feature in
the blocked segments. Abbreviations: LFV, low functional volume; HFV, high functional volume;
rLFV, recoverable LFV; uLFV, unrecoverable LFV.
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5.2.4 Planning technique

In this study, three IMRT plans, namely aPlan, fPlan, and rfPlan, were created for

the five patients with tumors that shrank after treatment. The first plan, aPlan, was

optimized solely for anatomical lungs. Subsequent IMRT plans, fPlan, and rfPlan,

were optimized for HFV or HFV + rLFV lung functional volumes, respectively. For

rfPlan, HFV has higher priority than rLFV. For the other 15 patients, only aPlan

and fPlan were created since no rLFV was found in these patients. The goal of these

subsequent plans was to minimize the dose to functional volumes while attempting

to meet dose constraints based on RTOG 0617 guidelines, including MLD <20 Gy

and V20 <37%. To evaluate the dose to the functional volumes, functional dose

metrics such as sV 5, sV 20, and sMLD were calculated.

The IMRT planning was carried out using the Eclipse TPS version 11 (Varian

Medical Systems, Palo Alto, California, USA). The dose calculation was performed

using an analytic anisotropic algorithm (AAA V.11.0.21) with a calculation grid of

2.5 mm. The prescription dose was 66 Gy, aiming to cover 95% of the PTV using

5-8 coplanar 6MV X-ray beams. The same beam number were employed in all three-

treatment plans for each patient. For aPlan, beam arrangements were defined based

on the tumor volume’s position to limit beam paths through the contralateral lung,

without considering the functional lung geometry. Beam arrangements for fPlan

were designed based on the tumor’s position to limit beam paths through the HFV,

while for rfPlan, the beams directions were also assigned to avoid the rLFV. The

optimization of OARs dose included the spinal cord, esophagus, heart, and lungs

relevant to each plan using RTOG 0617 guidelines [125] listed in Table 7.
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Table 7: The dose constrain for organ at risk from RTOG 0617 guidelines [125]. Abbreviation:
OAR, Organ at risk

OAR name Constrain value

Lungs
V 20 <37%

Mean dose <20 Gy

Spinal cord Max dose <47 Gy

Esophagus
Max dose <70 Gy
Mean dose <34 Gy

Heart
Max dose <70 Gy

V 45 <66%
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5.3 Results

5.3.1 Dose evaluation for functional lung avoidance treatment plans without rLFV

The dose comparison of the aPlan and fPlan for the 15 patients was presented in

Table 8. Both plans had similar dose coverage for the targets. By implementing the

functional information into treatment planning led to dose reduction for the HFV.

The V 5, V 20 and mean dose of the HFV in fPlan were 6.5% ± 22.1%, 15.5% ±

23.0%, and 8.2% ± 13.7% lower, respectively, than those in aPlan. The V 5, V 20,

and mean dose of lungs in fPlan were higher than in aPlan by 3.4% ± 8.0%, 5.9%

± 14.0%, and 2.6% ± 15.4%, respectively. Regarding other evaluation parameters,

all three plans showed comparable results and remained within tolerance as shown

in Table 8.
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Table 8: The comparison of the dose value of organ at risk between aPlan abd fPlan. Abbreviation:
OAR, Organ at risk; HFV, high functional volume.

OAR name Parameter aPlan fPlan

HFV
Mean dose 8.1 ± 5.5 Gy 7.6 ± 5.3 Gy

V 5 26.3 ± 18.5% 24.8 ± 16.4%
V 20 15.4 ± 10.9% 14.2 ± 10.9%

Lungs
Mean dose 8.6 ± 2.9 Gy 8.9 ± 3.1 Gy

V 20 17.0 ± 5.8% 18.0 ± 7.0%

Spinal cord Max dose 39.5 ± 6.4 Gy 38.3 ± 10.2 Gy

Esophagus
Max dose 53.2 ± 20.8 Gy 51.7 ± 22.7 Gy
Mean dose 9.1 ± 5.7 Gy 9.5 ± 6.2 Gy

Heart
Max dose 48.2 ± 29.4 Gy 48.1 ± 29.7 Gy

V 45 2.4 ± 3.4% 2.4 ± 3.7%
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5.3.2 Identify the temporary hypo-ventilation regions for the classification of the

functional lung regions

Figure 23 illustrates the segmentation of the functional lung volume for two patients

with tumors that blocked a segment before the treatment and subsequently shrank

after the treatment. To enhance the preservation of lung function for these patients,

the lung volume was divided into three distinct parts, each representing different

functional regions. Figure 23 (A) and (D) demonstrate the contours of the HFV

obtained from the CTVIAW, which represents the final version of the ventilation image

considering both the parenchyma and the airway. Figure 23 (B) and (E) display the

high functional ability volume in the temporarily blocked segment, referred to rLFV.

By dividing the lung volume into these three parts, the treatment plan can better

take into account the functional lung regions, particularly in cases where tumor-

induced blockage affected specific segments initially but improved after treatment.

This approach aims to preserve lung function more effectively during the treatment

process.
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Figure 23: The two patients with the tumor blocked the segment before and shrank after the
treatment. Figures (A)-(B) and Figures (D)-(E) are the CTVIAW and the CTVISVD of the patient
1 and patient 2, respectively. In Figures (A) and (D), the blue contours represent the PTV, while
the red contours represent the HFV. In Figures (B) and (E), the blue contours represent the PTV,
while the red contours represent the rLFV in the tumor temporarily blocked segments. Figures (C)
and (F) show the 3D view of the PTV and rLFV.
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5.3.3 Dose evaluation for functional lung avoidance treatment plans with rLFV

The comparison of the dose distribution and the dose volume histogram (DVH)

between aPlan, fPlan, and rfPlan for one typical patient is presented in Figure 24.

During the treatment planning design of fPlan, doses were delivered to the tumor

through the posterior segment in the right upper lobe to protect the HFV region as

shown in Figure 24 (B). As a result, the fPlan and rfPlan demonstrated improvements

in various parameters for HFV compared to aPlan as shown in Table 9. For the

comparison of the five patients treatment plans, the V 5, V 20 and mean dose of

the HFV in fPlan were 10.6% ± 25.3%, 14.3% ± 9.5%, and 10.0% ± 9.3% lower,

respectively, than those in aPlan. By incorporating dose constraints to rLFV, the

dose of rLFV in rfPlan was lower compared to fPlan and aPlan. As Figure 24

illustrates, the dose in the rLFV of fPlan was significantly higher than aPlan and

rfPlan, with rfPlan showing the lowest dose. The V 5, V 20, and mean dose of rLFV

in rfPlan were lower than in aPlan by 0.3% ± 0.5%, 12.1% ± 8.4%, and 13.0% ±

6.4%, respectively. These parameters in rfPlan were substantially lower than in fPlan

by 1.0% ± 2.1%, 14.9% ± 9.8%, and 15.9% ± 6.5%, respectively. The dose to the

HFV in rfPlan was similar to that in aPlan. Regarding other evaluation parameters,

all three plans showed comparable results and remained within tolerance as shown

in Table 9.
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Figure 24: The comparison of the dose distribution between aPlan (A), fPlan (B), and rfPlan
(C). D is the DVH comparison. Abbreviations, PTV: planning target volume, HFV: high func-
tional volume, rLFV: recoverable low functional volume, aPlan: an anatomical-based plan, fPlan:
a functional-guided plan that only considered HFV, and rfPlan: a functional-guided plan that pro-
tected both HFV and rLFV.
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Table 9: The comparison of the dose value of organ at risk between aPlan, fPlan, and rfPlan.
Abbreviation: OAR, Organ at risk; HFV, high functional volume; rLFV, recoverable low functional
volume.

OAR name Parameter aPlan fPlan rfPlan

HFV
Mean dose 9.1 ± 1.6 Gy 8.2 ± 1.7 Gy 8.3 ± 1.7 Gy

V 5 46.1 ± 15.7% 38.4 ± 10.7% 38.7 ± 11.4%
V 20 13.0 ± 3.2% 11.1 ± 3.1% 11.3 ± 3.0%

rLFV
Mean dose 43.0 ± 11.5 Gy 44.2 ± 10.5 Gy 37.7 ± 12.2 Gy

V 5 99.1 ± 1.9% 100.0 ± 0.3% 98.8 ± 2.4%
V 20 88.8 ± 13.4% 91.3 ± 9.3% 78.3 ± 15.4%

Lungs
Mean dose 14.1 ± 3.4 Gy 14.1 ± 3.3 Gy 13.9 ± 3.4 Gy

V 20 23.8 ± 6.0% 23.9 ± 5.9% 23.3 ± 6.1%

Spinal cord Max dose 42.2 ± 3.5 Gy 42.7 ± 2.3 Gy 43.2 ± 2.1 Gy

Esophagus
Max dose 62.4 ± 6.2 Gy 63.5 ± 4.7 Gy 64.2 ± 4.7 Gy
Mean dose 15.7 ± 7.9 Gy 16.2 ± 8.2 Gy 15.8 ± 8.0 Gy

Heart
Max dose 65.2 ± 3.8 Gy 65.9 ± 2.9 Gy 65.8 ± 3.2 Gy

V 45 10.0 ± 12.0% 10.0 ± 10.8% 9.9 ± 10.1%
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5.4 Summary and discussion

In this study, we proposed a novel functional lung avoidance treatment planning

strategy based on anatomy-wise lung ventilation imaging. By using the Atlas-based

pulmonary segments segmentation method, we can identify the blocked segments.

After analyzing these blocked segments, the potential recoverable regions with high

functional ability can be identified for careful protection during the treatment plan

design, which can help patient preserve lung function after the radiation therapy. For

the comparisons between aPlan, fPlan, and rfPlan of the five patients with rLFV,

the V20 and mean dose of rLFV in rfPlan were lower than those in rfPlan by 12.1%

and 13.0%, respectively, 14.9% and 15.9% lower than fPlan, respectively. This is the

first study that takes into account the potentially recoverable lung defects in lung

functional image guided planning.

For the five patients selected for treatment plan design in this study, the blocked

segments were attached to the tumor. During the design of the treatment plan with

multiple beams, the beams were selected to pass through the blocked segments since

it can go through less lung volume compared to other beams for aPlan. For the fPlan,

the blocked segments would be considered as a low function area and lots of dose

would be deposited in these regions. In that case, even if the tumor disappears after

the treatment, these regions may be damaged and cannot be able to regain function.

By identifying this blocked region with our method before the treatment planning,

the patient’s lung function has the potential to increase after the treatment.

By classifying the high function region in the blocked segments, we can determine

if the blocked segments needed protection before the treatment. It is important to

note that this study is retrospective, so the tumor shrinkage (response to treatment)
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information is acquired from the CT image obtained after the treatment. Except

the lung parenchyma is normal, another reason that the blocked region can regain

the function is the tumor shrink and no longer block the airway. Future research

should develop models that can predict tumor response to identify if and how the

blocked segments will be affected after treatment [126–130]. Furthermore, it is crucial

to consider the type of tumor compression when interpreting model predictions,

as the mechanisms and outcomes differ significantly between tumor invasion and

external physical compression. In cases of tumor invasion, the malignant cells may

infiltrate and damage the structural integrity of the airway, potentially leading to

persistent obstruction even if the tumor size is reduced. This contrasts with external

compression, where alleviating the physical pressure might more directly restore

airway patency. Therefore, future studies should explicitly differentiate between

these types of compression in the analyses, as this distinction is critical for accurately

predicting treatment outcomes and understanding the underlying pathophysiology

of airway obstruction. Incorporating this factor would improve the precision and

clinical applicability of predictive models.

In this study, we assumed that the loss of the function in the lung was caused by

airway blockage or lung parenchyma damage. The healthy lung parenchyma regions

in temporarily blocked segments were identified as recoverable regions. The lung

parenchyma of these recoverable regions was assumed to have similar features as the

regions outside the blocked segments. The super-voxel-based method that was used

to analyze the lung parenchyma damage that caused lung function loss was validated

in 55 patients without an airway blockage and had a mean Spearman correlation of

0.60 ± 0.10. However, our direct use of this super-voxel-based method to classify
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lung regions with healthy parenchyma in blocked segments as recoverable area needs

to be verified using serial ventilation images. The validation could be challenge, since

the some regions in the blocked segments have been irradiated and the characteristic

of these regions could be change. The verification experiment need to collect the

patients that shown tumor blocked before the treatment and tumor response and

shown no tumor blocked after the treatment. The comparison may focus on the low

dose regions and show no clear feature change in the blocked segments.

There were five patients among thirteen who met the treatment planning selec-

tion criteria in this study. Further validation is needed to determine if our treatment

planning strategy can benefit a larger number of patients, particularly those with

central-type lung cancer. However, individual treatment planning should consider

various factors to achieve the most suitable plan for each patient. Another limi-

tation of our study is the reliance on visual inspection for identifying the blocked

segments, which can introduce inter-observer bias. Further research is needed to

develop automated methods for recognizing the blocked segments.
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6 Conclusions

In this study, we develop a novel anatomy-wise lung ventilation imaging method

to generate surrogate ventilation images directly from CT images for functional

lung avoidance radiotherapy planning. The anatomy-wise lung ventilation imag-

ing method is based on the causes of the lung ventilation defect by considering the

both air transport and the feature of lung parenchyma. For the anatomy-wise lung

ventilation imaging method, it involves several key steps to generate and analyze

the lung ventilation images. First, we develop an Atlas-based method to divide the

lung into eighteen segments, which can help to identify the blocked segments. The

blocked segments are defected regions caused by the airway blocked. Second, we

develop a super-voxel-based method to analyze the feature of the lung parenchyma

of the non-blocked segments and combine with the first step to generate the surro-

gate of the ventilation image. This method can yield moderate-to-high voxel-wise

approximations of lung ventilation image. For the application of the anatomy-wise

lung ventilation image into the treatment planning design, we analyze the feature

of the blocked segments to identify and reduce the dose to the potential recoverable

region which could become high function after the treatment if the tumor shrink.

This is the first time that considering the recoverable regions into the treatment

planning process, which has the potential to preserve more lung function for the pa-

tients. Our study can enhance the understanding of lung ventilation defect base on

the CT images. The findings will contribute to the development of more precise and

personalized treatment planning methods, ultimately leading to improved outcomes

for lung cancer patients undergoing radiation therapy.
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