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Abstract

Optimizing knowledge transfer is a key challenge in machine learning, especially in

dynamic environments where tasks and data continually evolve. Conventional ma-

chine learning methods, generally rely on the premise that the feature space and data

distribution remain consistent between the training and testing phases. In reality,

this condition is rarely met, as real-world data often exhibits substantial variability.

This limitation reduces the usability and effectiveness of models, particularly when

training data is insufficient, tasks have diverse distributions, or environments change,

necessitating model retraining. In such settings, models must handle multiple tasks

simultaneously while managing diverse and potentially conflicting objectives. More-

over, it is essential for models to learn new tasks while retaining existing knowledge

and to swiftly adjust to new situations or tasks with minimal retraining effort. This

paper examines strategies for optimizing knowledge transfer in continual learning

(CL) and multi-task learning (MTL) to improve their performance in practical appli-

cations.

Continual learning (CL) enables models to learn from a series of tasks while retaining

knowledge from earlier tasks, thus avoiding catastrophic forgetting, where new learn-

ing negatively impacts previously acquired knowledge. We propose a novel approach

that guides models to converge to flat local minima during initial training, requiring

minimal adjustments when adapting to new tasks. This strategy reduces the likeli-

hood of forgetting and enhances model robustness in dynamic environments, making
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it particularly effective for applications requiring continual adaptation to new data

and tasks.

In multi-task learning (MTL), the challenge is to transfer knowledge across different

tasks without causing negative transfer, where learning one task adversely affects per-

formance on others. Negative transfer often arises from conflicting gradients during

model updates, where the update direction is dominated by tasks with larger gradient

magnitudes, hindering effective learning of other tasks. To mitigate this, we introduce

a method that identifies layers with severe gradient conflicts and switches them from

shared to task-specific configurations. This approach prevents gradient conflicts in

shared layers, ensuring balanced learning and improving overall model performance

and generalization across tasks.

Additionally, considering the increasing size of pretrained base models and the rising

costs associated with knowledge transfer, we introduce a parameter-efficient fine-

tuning (PEFT) algorithm. This algorithm aims to optimize the adaptability of large

language models (LLMs) by selectively fine-tuning only the most critical layers. By

learning binary masks for each low-rank weight matrix used in LoRA—determining

whether a layer needs a LoRA adapter, where a mask value of 0 indicates that no

LoRA adapter is required and thus no change to the model parameters—our approach

significantly reduces memory overhead and computational costs while avoiding overfit-

ting. This makes transfer learning more efficient and feasible in resource-constrained

environments.

In summary, this thesis explores a set of complementary methods aimed at improv-

ing knowledge transfer in machine learning under practical constraints. By address-

ing critical challenges such as continual adaptation, task interference, and compu-

tational efficiency, the proposed approaches contribute to enhancing the robustness

and practicality of transfer learning in real-world settings. These methods—focused

on reducing forgetting in continual learning, mitigating gradient conflicts in multi-

task learning, and improving parameter efficiency in fine-tuning large models—offer
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targeted solutions to common limitations in dynamic and resource-constrained envi-

ronments. Experimental results support their effectiveness, showing improvements in

model stability, generalization, and adaptability. Overall, this work offers both prac-

tical insights and methodological contributions that can inform future research and

applications in scalable, efficient machine learning. The results have been published

or submitted in various top AI conferences.
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Chapter 1

Introduction

Illustration of Knowledge Transfer. Knowledge transfer [301, 183] enhances

model performance by leveraging knowledge from a source domain to improve learn-

ing in a related target domain, particularly when the target domain suffers from data

scarcity or distributional differences. This concept is inspired in part by theories of

transfer and generalization in educational psychology, where experience from one con-

text is applied to another. For example, someone familiar with playing the piano may

learn to play the electronic keyboard more easily due to shared foundational skills.

However, if the source and target domains differ substantially, negative transfer [255]

may occur, where the transferred knowledge adversely affects performance. A typi-

cal case is learning Spanish and French—despite being related Romance languages,

interference between similar grammatical or lexical structures can lead to confusion.

Importance of Knowledge Transfer. Knowledge transfer plays a pivotal role

in bridging the gap between traditional machine learning methods and real-world

applications. Conventional machine learning assumes that training and test data

share the same distribution, an assumption that rarely holds in practice. Labeled

data collection is often time-consuming and costly, and data distributions may shift

over time, between devices, or across environments. Such changes can significantly
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degrade model performance. In these cases, transferring previously acquired knowl-

edge becomes essential, allowing models to adapt more quickly and effectively to new

settings.

Applications of Knowledge Transfer. Knowledge transfer has demonstrated re-

markable utility across various domains. In natural language processing (NLP), pre-

trained language models such as BERT [47] significantly improve performance in tasks

like sentiment analysis [12] and text generation [293, 132, 212]. Large language mod-

els (LLMs), including GPT-4 [1] and Llama 3 [53], trained on vast corpora, achieve

state-of-the-art results across a wide range of tasks. These capabilities can be further

enhanced via fine-tuning and alignment [238, 118, 106], enabling applications such

as code generation [252, 175, 254]. In computer vision, transfer learning is common

practice, where CNNs pretrained on large datasets like ImageNet [44] are adapted

for tasks such as medical image analysis [139, 219, 235]. Similarly, diffusion mod-

els [207, 177, 176, 88], trained on extensive image datasets, can be adapted through

knowledge transfer to generate images in domain-specific styles. In summary, knowl-

edge transfer provides a practical and effective approach to overcome limitations in

data availability and distributional shifts, with broad applicability in NLP [211], com-

puter vision [300, 283], intelligent transportation [33], and biomedicine [187].

Challenges in Knowledge Transfer. Despite its advantages, knowledge transfer

faces three major challenges: (1) Model Rigidity. Traditional transfer methods

often fail to adapt in dynamic environments where tasks and data evolve over time.

In real-world applications, models are frequently exposed to novel tasks or sequential

data updates. Continual Learning (CL) [165, 37] addresses this by enabling models

to learn from new data while preserving previously acquired knowledge. (2) Data

Heterogeneity. Tasks often exhibit diverse and non-overlapping data distributions,

increasing the risk of negative transfer, where learning one task impairs performance

on another. This challenge arises because traditional transfer techniques struggle to

reconcile cross-task discrepancies. Multi-task Learning (MTL) [21] mitigates this is-
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sue by promoting the sharing of beneficial information across related tasks, thereby

reducing interference and enhancing generalization. (3) Resource Intensiveness.

Fine-tuning large-scale models, such as Llama 3 or GPT-4, demands substantial com-

putational resources and data. This resource burden can hinder the practical deploy-

ment of transfer learning. Parameter-efficient fine-tuning (PEFT) offers a solution

by modifying only a small subset of parameters or introducing lightweight trainable

components, making the transfer process more efficient and scalable.

Motivation and Thesis Scope. While knowledge transfer has achieved impres-

sive results across diverse domains, its practical deployment remains hindered by

challenges related to adaptability, data heterogeneity, and computational ef-

ficiency. These limitations highlight the need for more flexible, robust, and scalable

approaches that can accommodate evolving data landscapes and resource constraints.

This thesis aims to address these challenges by exploring novel methodologies that

enhance the effectiveness and efficiency of knowledge transfer, particularly in dynamic

and low-resource environments. Through a comprehensive investigation of continual

learning, multi-task learning, and parameter-efficient fine-tuning, we seek to advance

the theoretical understanding and practical utility of knowledge transfer, ultimately

contributing to the development of more generalizable and adaptable AI systems.

1.1 Continual Learning

Continual learning (CL) represents a pivotal advancement in enhancing

transfer learning (TL) methodologies, particularly when addressing the inher-

ent limitations of adapting models to dynamic environments. Traditional transfer

learning is adept at utilizing knowledge from one task to facilitate learning in an-

other; however, it typically assumes static conditions for both the source and target

tasks. This assumption rarely holds true in practical scenarios where both conditions

and data are subject to continuous change [237]. To overcome these challenges, CL
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intervenes to enable models to learn adaptively from new data while retaining previ-

ously acquired knowledge, transforming transfer learning models to operate robustly

across a range of evolving tasks. This integration significantly elevates their practical

utility and effectiveness.

One of the core challenges within continual learning is the phenomenon known

as catastrophic forgetting [69, 116, 165], which occurs when training on new tasks leads

to a substantial deterioration in the model’s ability to perform previously learned

tasks. This issue primarily arises due to the inability to access data from older tasks

while optimizing for new ones, leading models to stray from optimal performance

on earlier tasks as more tasks are introduced. Traditional approaches to mitigating

this effect include maintaining a subset of data from old tasks [202, 91, 22], applying

stringent regularization [164, 116, 286] to restrict model adaptability, or merely fine-

tuning parts of the model [81]. These methods, however, often impose restrictions

that could hinder model flexibility and adaptation.

In contrast to these existing strategies, our thesis proposes an innovative approach fo-

cused on preemptively addressing the problem of forgetting during the initial training

phase of the base model. Specifically, we advocate for guiding the model towards con-

verging on a flat local minimum during the learning of existing tasks. This strategy

posits that subsequent learning of new tasks should involve only minimal deviations

within this flat local minimum area, thereby preserving the model’s ability to recall

older tasks effectively. This approach not only promises to enhance the robustness

of transfer learning models in dynamic settings but also offers a scalable solution to

the challenge of learning new tasks with limited data, a common scenario in practical

applications known as few-shot continual learning.

This section delineates the significance of integrating continual learning techniques

into transfer learning frameworks, focusing on overcoming traditional limitations

while innovating to reduce the impacts of catastrophic forgetting. By shifting to-

wards strategies that anticipate and mitigate forgetting at earlier stages of model
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training, We create a basis for developing more durable and versatile machine learn-

ing applications that can manage the challenges of real-world data environments.

1.2 Multi-task Learning

Multi-task learning (MTL) benefits in transfer learning. Multi-task Learning

(MTL) significantly extends the scope and effectiveness of Transfer Learning (TL) by

allowing models to concurrently learn from multiple related tasks. This synergistic

learning strategy leverages shared common features and representations, which not

only improves the model’s ability to generalize across tasks but also enhances the over-

all efficiency of the learning process. Within the transfer learning framework, MTL

provides a robust base model that demonstrates inherent versatility and superior per-

formance across diverse tasks. This integrated approach optimizes adaptability and

resource utilization, making MTL a pivotal component in advancing the capabilities

of transfer learning systems.

A prominent challenge in MTL, similar to transfer learning, is negative trans-

fer [209]. Negative transfer occurs when the learning process for one task inadvertently

hampers the performance of another task, despite their relatedness. The root cause

of this phenomenon is the presence of conflicting gradients [279, 140]. Conflicting gra-

dients arise when tasks being learned simultaneously influence the model’s updates

in incompatible ways. Specifically, if tasks have significantly different gradient direc-

tions, the task with the larger gradient magnitude can dominate the update process,

causing a decline in performance on other tasks. Conflicting gradients are character-

ized by large angular differences between the gradient vectors of different tasks during

the update phase. This misalignment can severely disrupt the learning process, as the

dominant task’s gradients skew the model’s learning trajectory, potentially degrading

the outcomes of less dominant tasks.
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Previous methodologies to mitigate these challenges have included modifying the

loss weights allocated to each task—effectively altering the learning rate for different

tasks [35, 114, 146, 142]. Another approach has involved modifying the direction of

gradient updates to accommodate multiple tasks more equitably [217, 279, 140, 104].

These methods strive to balance the influence of each task on the model’s updates,

ensuring that no single task’s requirements overshadow the others.

In this thesis, we introduce a novel strategy aimed at fundamentally eliminating con-

flicting gradients from the onset. Our approach involves identifying the layers within

the model where conflicting gradients are most severe—typically layers where the

gradient angles are particularly large. We then transform these layers from shared to

task-specific configurations, whereby each task is allocated its own independent pa-

rameters for these critical layers. This restructuring ensures that the remaining shared

layers are free from gradient conflicts, thus preserving the integrity and effectiveness of

the multi-task learning process. This targeted adjustment not only addresses the root

cause of negative transfer but also enhances the overall performance and adaptability

of the model across varied tasks.

This section highlights the transformative impact of integrating Multi-task Learning

(MTL) into Transfer Learning (TL) frameworks, emphasizing the resolution of inher-

ent challenges such as negative transfer. By adopting innovative strategies that pre-

emptively address conflicting gradients, our approach reshapes the landscape of multi-

task learning. Specifically, by modifying critical model layers to become task-specific,

we significantly reduce inter-task interference, enhancing the model’s ability to per-

form optimally across diverse tasks. This targeted intervention not only mitigates

the risks associated with negative transfer but also bolsters the overall performance

and adaptability of transfer learning systems. Consequently, we establish a robust

foundation for developing more versatile and effective machine learning applications,

tailored to thrive in the complexities of varied and dynamic data environments.
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1.3 Parameter Efficient Fine-Tuning

The rapid advancement of large language models (LLMs) has underscored the signif-

icance of Parameter Efficient Fine-Tuning (PEFT) in the realm of Transfer Learning

(TL). As these models continue to dominate various AI applications, the traditional

approach of extensively fine-tuning entire models becomes increasingly untenable due

to the prohibitive costs in computational resources and time. PEFT addresses these

challenges by enabling targeted adjustments through methods such as prompt en-

gineering [126] and other parameter-efficient techniques [291, 281]. These strategies

allow for significant behavioral modifications of the model with minimal adjustments

to the underlying parameters, conserving resources while also expediting the adap-

tation of LLMs to diverse tasks. This enhancement in adaptability across different

domains is achieved without the need for extensive retraining, thereby making trans-

fer learning more accessible and sustainable, and paving the way for rapid deployment

and innovation in AI-driven applications.

Currently, the most prominent PEFT algorithms are adapter-based methods [], among

which the Low-rank Adaptation (LoRA) [94] stands out. LoRA enhances model

flexibility by introducing adapters—composed of two low-rank matrices—at each layer

of the model. This setup predicts the change in model parameters, enabling fine-

tuning of a minimal number of parameters while maintaining performance on par

with full fine-tuning. However, a gap in existing methodologies is the lack of research

on determining which specific layers require adapters. Identifying layers that are most

relevant to the task could allow for fine-tuning of only those essential layers or adding

adapters selectively, which not only reduces the memory overhead during tuning but

also helps avoid overfitting, thus potentially enhancing model performance.

To address this gap, we propose a novel algorithm that involves learning a binary

mask for each incremental weight matrix used in the LoRA algorithm. This mask

serves as an indicator of the significance of each layer relative to specific tasks. If
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the mask value is 0, it implies that the layer does not require a LoRA adapter; if the

value is 1, it indicates that the layer is crucial and should be fine-tuned. This selective

approach not only optimizes the fine-tuning process by focusing on key layers but also

ensures that each adaptation precisely targets the task’s requirements.

In summary, this section elucidates the critical role of PEFT in enhancing the practi-

cality and efficacy of transfer learning, especially in the context of deploying LLMs. By

focusing on adapter-based methods like LoRA and introducing a targeted approach

to identify and adapt task-relevant layers, we substantially boost the efficiency and

effectiveness of models in handling various tasks. This refined methodology not only

mitigates the resource-intensive demands of traditional fine-tuning but also aligns

with the evolving needs of AI applications, ensuring that large-scale models remain

both versatile and effective in real-world scenarios.

1.4 Contributions

This thesis makes significant contributions to the field of transfer learning by address-

ing key challenges that limit its practical application and effectiveness across diverse

tasks and domains.

Contribution 1: Mitigating Negative Transfer and Enhancing Generaliza-

tion through Multi-task Learning (MTL). Negative transfer is a major obstacle

in transfer learning, where knowledge transfer between tasks can inadvertently de-

grade performance. We tackle this issue by introducing a novel MTL strategy that

reduces negative transfer and enhances the model’s generalization ability. By identi-

fying and resolving conflicting gradients during optimization, our approach helps in

training a more robust base model capable of handling multiple tasks simultaneously.

This improvement not only enhances the overall effectiveness of transfer learning but

also ensures that models are better prepared for subsequent transfer tasks.
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Contribution 2: Enabling Transfer Learning in Dynamic Environments

through Continual Learning (CL). Traditional transfer learning often struggles

in dynamic environments where tasks and data evolve over time. To address this, we

propose a continual learning methodology that enhances the adaptability of transfer

learning models. By guiding the model to converge on a flat local minimum during the

initial training, our approach minimizes catastrophic forgetting, allowing the model to

retain previously learned knowledge while adapting to new tasks. This contribution

significantly improves the practical applicability of transfer learning in real-world,

dynamic settings.

Contribution 3: Improving Fine-Tuning Efficiency in Large Models with

Parameter Efficient Fine-Tuning (PEFT). As models grow in size, the resource

demands for fine-tuning in transfer learning become increasingly prohibitive. We

address this by introducing an optimized PEFT approach that uses a binary mask

within the LoRA algorithm to selectively fine-tune only the most critical layers of

the model. This targeted fine-tuning reduces computational overhead and avoids

overfitting, thereby enhancing the efficiency of transfer learning even when dealing

with large-scale models like LLMs.

These contributions collectively advance the field of transfer learning by improving

model generalization, enabling effective adaptation in dynamic environments, and

optimizing fine-tuning processes for large models. These innovations make transfer

learning more robust, scalable, and applicable across a wider range of tasks and

scenarios.

Thesis organization. In Chapter 2, we provide a comprehensive overview of the

foundational concepts relevant to this thesis, including transfer learning, multi-task

learning, continual learning, and parameter-efficient fine-tuning. Chapter 3 introduces

our method for mitigating negative transfer in multi-task learning by addressing con-

flicting gradients at the root, thereby tackling the first challenge in transfer learning.

In Chapter 4, we address the second challenge by implementing a few-shot continual
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learning approach that prevents catastrophic forgetting during the training of the

base model. Chapter 5 addresses the third challenge by optimizing transfer learning

efficiency through selective fine-tuning of key layers in large language models (LLMs).

Finally, in chapter 6, we conclude this thesis and explore several potential directions

for future research.
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Chapter 2

Background and Related Works

In this chapter, we begin by introducing the concept of knowledge transfer in machine

learning, followed by an overview of transfer learning. We then delve into the context

of multi-task learning, providing a review of related work and its evolution. Next, we

explore the scenario of continual learning, providing a comprehensive overview and

pointing out the importance of continual learning. Finally, we discuss the background

of parameter-efficient fine-tuning (PEFT). Through a review of relevant studies, we

demonstrate how PEFT significantly enhances the efficiency of knowledge transfer

while reducing resource consumption.

2.1 Knowledge Transfer

Knowledge transfer in machine learning involves the process of applying the knowl-

edge, patterns, and representations that a model has acquired from one or more

tasks—often situated in different domains or contexts—to improve the performance

of a new, but related, task. To formally describe transfer learning, we first need to

define the concepts of Domain and Task.
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Definition 2.1 (Domian). A domain D is defined by two components:

D = {X , P (X)}, (2.1)

where:

• X is the feature space, representing the set of all possible input instances (e.g.,

vectors, images, text).

• P (X) represents the probability distribution over the feature space X , and symbol

X denotes an instance set, i.e., X = {xi ∈ X}n
i=1. A domain characterizes the

environment or source from which data is drawn.

Definition 2.2 (Task). A task T is defined by two components:

T = {Y , P (X|Y ), f(·)}, (2.2)

where:

• Y denotes the label space, which is the set of all possible outcomes or target

values. For classification tasks, Y represents the set of possible classes, while

for regression tasks, it represents the range of possible output values.

• P (X|Y ) is the conditional distribution mapping inputs to outputs.

• f : X −→ Y is an objective predictive function (also called the decision function

or hypothesis) that maps any input data point x ∈ X to a corresponding label

y ∈ Y. This function is typically learned from a set of labeled data

points {(xi, yi)}n
i=1.

In summary, a domain D outlines the type of data (defined by X ) and its statistical

properties (defined by P (X) relevant to a particular machine learning problem. A

task T describes the target to be predicted (through Y) and the method for making
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predictions (through f(·)) based on the associated domain D. The task is not merely

a set—it aims to learn f(·).

After establishing the concepts of Domain D and Task T , we can proceed to formally

introduce the concept of knowledge transfer. Knowledge transfer is a fundamental

technique aimed at improving a model’s performance on a target task by drawing on

insights learned from a related source task. The formal definition is as follows:

Definition 2.3 (Knowledge Transfer [257]). Given a source domain DS with its cor-

responding task TS = {YS, fS(·)} and a target domain DT with its corresponding task

TT = {YT , fT (·)}, knowledge transfer aims to improve the learning of the predictive

function fT (·) in the target task TT by utilizing the knowledge derived from the source

domain DS and task TS.

Formally, knowledge transfer can be defined as the process of optimizing the function

fT (·) by leveraging:

K = {DS, TS, fS(·)}, (2.3)

where K represents the knowledge acquired from the source domain and task. The

goal is to minimize the prediction error in the target domain DT under the task TT :

min
fT

E(xT ,yT )∼PT (XT ,YT ) [L (fT (xT ), yT )] , (2.4)

where L denotes the loss function associated with the task TT , and PT (XT , YT ) repre-

sents the joint distribution of the input-output pairs in the target domain.

This definition formalizes the concept of knowledge transfer, highlighting how infor-

mation from a source domain and task can be leveraged to improve performance on

a related target task. The central objective is to reduce the prediction error in the

target domain by leveraging insights drawn from the source domain.
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2.2 Continual Learning

Continual learning [165, 37] focuses on enabling models to learn from new data while

retaining previously acquired knowledge, effectively mitigating the issue of catas-

trophic forgetting [69, 116, 165] and the need for adaptability in dynamic environ-

ments. The formal definition is given below:

Definition 2.4 (Continual Learning). Let T = {T1, T2, . . . , TN} denote a sequence

of N tasks, where each task Tt = (Dtrain
t ,Dtest

t ) is associated with a training set Dtrain
t

and a test set Dtest
t sampled from a data distribution Pt(X, Y ). A continual learning

algorithm aims to learn a single model fθ parameterized by θ, by processing each task

Tt sequentially, without revisiting the full data from previous tasks.

The objective of continual learning is to minimize the average risk across all tasks:

min
θ

1
N

N∑
t=1

E(x,y)∼Pt [ℓ(fθ(x), y)]

under the constraint that each task Tt is observed only once, and the model must retain

knowledge from previous tasks while acquiring new knowledge from the current task.

A continual learning algorithm must therefore address the stability-plasticity trade-

off, mitigating catastrophic forgetting of previous tasks while maintaining plasticity to

learn new tasks effectively.

To address these challenges, a wide range of methods have been proposed, each em-

ploying different mechanisms. These methods can be broadly classified into four cate-

gories: regularization-based, optimization-based, representation-based, and architecture-

based approaches. Furthermore, applying continual learning to large language models

(LLMs) introduces additional complexities and unique challenges. In the following

section, we provide an overview of these strategies and discuss their respective con-

tributions to the field.

Regularization-Based Approaches: These methods aim to mitigate catastrophic
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forgetting by imposing strong regularization on network parameters [147, 124, 123,

116]. The core idea is to restrict the extent or range of parameter updates so

that the model does not deviate significantly from the low-loss regions of previous

tasks [205, 216, 286, 3, 26]. A well-known example is Elastic Weight Consolidation

(EWC) [116], which utilizes the Fisher information matrix to estimate the importance

of each parameter to previous tasks and penalizes changes to these parameters dur-

ing new task learning. Additionally, there are function regularization approaches that

leverage knowledge distillation (KD) [70] to continue reinforcing previously acquired

knowledge [133, 20]. These methods often require retaining a subset of exemplars

from old tasks, which may include both previously seen [23, 50, 91, 202] and unseen

samples [48, 100, 120, 244]. However, the limited number of exemplars can lead to a

distribution that diverges from the true data distribution.

Optimization-Based Approaches: Unlike regularization methods that impose

constraints on the model through penalties, optimization-based approaches directly

modify the gradient updates when learning new tasks [155, 285, 105]. Some tech-

niques [155, 27, 236, 204] store exemplars of old tasks and ensure that the gradient

update direction for new tasks remains closely aligned with that of the old tasks,

thus preventing forgetting. Other methods do not store any exemplars; for example,

OWM [285] and AOP [78] record the input space of old tasks, while OGD [58] pre-

serves the gradient directions of old tasks and ensures that parameter updates are

orthogonal to either the input space or the previous gradient directions. Several other

methods follow similar principles [214, 136, 112, 141], aiming to limit the direction of

gradient updates to avoid conflicts with updates from prior tasks. Additionally, there

are meta-learning-based approaches [13, 105, 198, 99] that train the model to learn

how to learn, rather than learning task-specific knowledge directly, thereby reducing

the risk of forgetting.

Representation-Based Approaches: These approaches primarily focus on two

strategies. The first strategy uses self-supervised learning to prevent catastrophic
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forgetting [65, 160, 189], as representations learned through self-supervised training

tend to be more robust against forgetting. For instance, LUMP [160] improves self-

supervised continual learning by interpolating between instances of new and old tasks.

The second strategy involves using pre-training to obtain a strong base model [166,

221, 261], which can then be fine-tuned for downstream tasks. Models pre-trained on

large datasets not only enhance learning of new tasks in a continual learning setting

but also effectively reduce catastrophic forgetting [181, 199, 166]. When models are

sufficiently large and trained on ample data, they tend to retain old knowledge more

effectively.

Architecture-Based Approaches: Sharing the same network parameters across

all tasks in continual learning—i.e., optimizing a single set of model parameters—is a

fundamental cause of catastrophic forgetting. Therefore, many studies suggest that

continual learning should involve learning separate parameters for different tasks [].

Fixed architecture methods [162, 218, 111, 267], for instance, activate different neu-

rons for different tasks to prevent interference between tasks and avoid forgetting.

However, fixed network structures can limit scalability, prompting the development

of dynamic network architectures [276, 98, 180, 192]. Another approach is to ex-

tract task-relevant components from the model [56, 154, 222, 99], resulting in a set

of shared parameters and task-specific parameters, similar to multi-task learning ar-

chitectures. These task-specific parameters are expandable and updated whenever a

new task is encountered. Some methods [213, 2, 200, 253], instead of defining explicit

task-specific parameters, adopt an incremental approach by adding submodules to

the network.

Continual Learning for LLMs: Currently, there are three primary directions in

continual learning for large language models (LLMs). The first is continual pre-

training, which is considered the most critical. This approach aims to continually

update the model with the latest information [103, 102] or adapt it to specific subdo-

mains [79, 268]. The second is continual instruction tuning, which essentially involves
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transferring LLMs to downstream tasks in a continual manner, similar to the tradi-

tional paradigm of pretrained models followed by continual learning. These down-

stream tasks may include various tasks [119, 260], domains [38, 251], and tools [193, 8].

The third direction is continual alignment, which addresses the evolving nature of

societal values and the diverse preferences of different demographic groups, ensur-

ing that the model continually learns different alignment preferences based on these

changes [271, 195].

2.3 Multi-Task Learning

The goal of Multi-task learning (MTL) [21] is to utilize shared knowledge across tasks

to improve performance on all tasks simultaneously. The formal definition given as

follows:

Definition 2.5 (Multi-Task Learning). Let T = {T1, T2, . . . , TN} denote a set of N

learning tasks. Each task Ti is associated with its own dataset Di = {(x(j)
i , y

(j)
i )}ni

j=1,

where x
(j)
i ∈ Xi is the input and y

(j)
i ∈ Yi is the corresponding label. Multi-task

learning aims to jointly learn a set of functions {fθi
}N

i=1, typically sharing parameters

θshared, such that performance across all tasks is optimized:

min
θsh,{θi}N

i=1

N∑
i=1

E(x,y)∼Di
[Li(fθsh,θi

(x), y)],

where Li is the loss function specific to task Ti. The goal is to leverage commonalities

across tasks to improve generalization performance on each individual task.

A significant challenge in MTL is avoiding negative transfer, where learning multi-

ple tasks together leads to poorer performance than learning them independently.

To address this, various methods have been proposed, focusing on network archi-

tectures, optimization strategies, and task grouping techniques. In this section, we

review related works in these areas, highlighting their contributions and effectiveness

in mitigating negative transfer and enhancing multi-task learning.
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MTL Architectures: To prevent negative transfer between different tasks, sev-

eral task-specific network architectures have been proposed for multi-task learning,

including those in the fields of computer vision [146, 170, 159] and natural lan-

guage processing (NLP)[4, 7, 14, 24, 25]. These networks can generally be cate-

gorized based on the parameter-sharing strategy. One common approach is hard

parameter sharing, where the network uses a shared feature extractor with separate

decoders[114, 240, 174, 217, 146] or encoders [264, 247] for each task. Another ap-

proach is soft parameter sharing, where each task maintains its own task-specific

parameters [170, 210, 66], which make up the majority of the model, and interactions

between tasks occur through feature fusion and exchange. Additionally, there is a

category known as task routing [229], where different tasks learn distinct model com-

bination paths, or the network learns how to branch dynamically for each task [18].

Optimization Strategies: Optimization-based methods in MTL primarily fall into

two categories. The first category involves directly modifying the weights of the loss

function based on the signals extracted from each task [35, 114, 76, 142, 146]. The

second category focuses on directly adjusting the size and direction of the model’s

gradient updates to avoid conflicting gradients [217]. For instance, methods like

PCGrad [279], CAGrad [140], RotoGrad [104], and FairGrad [161] modify gradients

to reduce the impact of conflicting gradients. PCGrad employs gradient projection,

CAGrad formulates the problem as an optimization task and solves for the optimal

solution, RotoGrad rotates the shared feature space, and FairGrad transforms multi-

task optimization into an optimization problem under different fairness constraints.

Unlike these methods, which directly modify the magnitude and direction of gradients,

GradDrop compares the sign of each gradient component across tasks, and if there is a

conflict (one positive and one negative), it drops the conflicting gradient component.

Task Grouping: Unlike network architecture modification and optimization, task

grouping [191, 225, 228, 62] aims to find an optimal set of task groups, where the

tasks within each group do not overlap and are trained together to mutually benefit
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from one another, thus minimizing negative transfer. This strategy seeks to maximize

the average performance of each task. Taskonomy [283] provides a detailed grouping

of tasks related to segmentation in computer vision, revealing which tasks should be

trained together and which should not. TAG [62] uses gradient conflicts to guide

efficient task grouping, ensuring that tasks grouped together enhance each other’s

learning without detrimental interference.

These various approaches highlight the diverse strategies available in multi-task learn-

ing to improve model performance while minimizing the risks of negative transfer.

2.4 Parameter Efficient Fine-Tuning For LLMs

Adapter-based Fine-tuning. This approach involves inserting additional adapters

either within or alongside the main model layers. An adapter typically comprises three

components: a down-projection matrix, an activation function, and an up-projection

matrix. The initial designs of adapters were sequential [92, 188], which could hinder

the model’s inference speed. To address this issue, parallel adapters were subsequently

introduced [125, 57]. In addition to parallel adapters, CoDA [125] selects the top-K

most important tokens to pass through both the backbone network and the adapters,

while the less important tokens are processed solely by the adapters. This strategy

further enhances inference efficiency. Additionally, several adapter variants have been

proposed to leverage multi-task learning [41, 84], making them more suitable for

multi-task scenarios.

Prompt-based Fine-tuning. This method fine-tunes the model by directly mod-

ifying its embeddings through the addition of new prompt embeddings. Prefix-

tuning [131] and related methods [148, 126] fine-tune models by adding learnable

parameters to the key and value embeddings within transformers or initial word em-

bedding. Prompt-based fine-tuning has been widely applied to downstream tasks [259,
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230], though the training process can often be unstable. PTP [31] thoroughly inves-

tigates this issue, revealing that minor changes in input can significantly impact the

loss function. To mitigate this, it introduces regularizers designed to smooth the

training process, ensuring that the loss function remains as stable as possible.

Selective Fine-tuning. This category of methods aims to improve fine-tuning ef-

ficiency by selectively tuning only the most critical model parameters. For instance,

BitFit [282] achieves strong performance by fine-tuning only the bias parameters.

PaFi [134] focuses on tuning model parameters with smaller absolute magnitudes.

Child-tuning [266] introduces an algorithm that fine-tunes a subset of network pa-

rameters in each training iteration, dynamically selecting which parameters to update.

Reparameterized Fine-tuning. LoRA [94] represents the primary method in this

category, utilizing two low-rank matrices to represent the change in model parameters

and adding this change to each linear layer of the network. During fine-tuning, only

these changes are learned, significantly reducing the computational cost. Following

LoRA, methods such as DyLoRA [245] and AdaLoRA [291] have been proposed,

which dynamically adjust the rank of the LoRA modules for each layer rather than

using a uniform rank across all layers. MOELORA [143] considers multi-task learning

scenarios and employs a Mixture-of-Experts (MOE) approach to train LoRA modules.

LoRA Dropout [138] introduces random noise during the learning of LoRA modules

to prevent overfitting.
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Chapter 3

Overcoming Catastrophic

Forgetting in Few-Shot Continual

Learning

3.1 Introduction

Why study few-shot continual learning? Continual learning enables a model to

continually learn new concepts from new data without forgetting previously learned

knowledge. Rooted from real-world applications, this topic has attracted a significant

amount of interest in recent years [26, 121, 133, 202, 113]. Continual learning assumes

sufficient training data is provided for new classes, which is impractical in many

application scenarios, especially when the new classes are rare categories which are

costly or difficult to collect. This motivates the study of few-shot continual learning,

a more difficult paradigm that aims to continually learn new tasks with only a few

examples.

Challenges. The major challenge for continual learning is catastrophic forgetting [69,

116, 165], which refers to the drastic performance drop on previous tasks after learning

21



Chapter 3. Overcoming Catastrophic Forgetting in Few-Shot Continual Learning

new tasks. This phenomenon is caused by the inaccessibility to previous data while

learning on new data. Catastrophic forgetting presents a bigger challenge for few-shot

continual learning. Due to the small amount of training data in new tasks, the model

tends to severely overfit on new classes while quickly forgetting old classes, resulting

in catastrophic performance.

Current research. The study of few-shot continual learning has just started [237,

203, 296, 39, 30, 164, 289]. Current works mainly borrow ideas from research in

continual learning to overcome the forgetting problem, by enforcing strong constraints

on model parameters to penalize the changes of parameters [164, 116, 286], or by

saving a small amount of exemplars from old classes and adding constraints on the

exemplars to avoid forgetting [202, 91, 22]. However, in our empirical study, we

find that an intransigent model that only trains on base classes and does not tune

on new tasks consistently outperforms state-of-the-art methods, including a joint-

training method [237] that uses all encountered data for training and hence suffers

from severe data imbalance. This observation motivates us to address this harsh

problem from a different angle.

Our solution. Unlike existing solutions that try to overcome the catastrophic forget-

ting problem during the process of learning new tasks, we adopt a different approach

by considering this issue during the training of base classes. Specifically, we propose

to search for flat local minima of the base training objective function. For any param-

eter vector in the flat region around the minima, the loss is small, and the base classes

are supposed to be well separated. The flat local minima can be found by adding ran-

dom noise to the model parameters for multiple times and jointly optimizing multiple

loss functions. During the following few-shot continual learning stage, we fine-tune

the model parameters within the flat region, which can be achieved by clamping the

parameters after updating them on few-shot tasks. In this way, the model can ef-

ficiently learn new classes while preserving the old ones. Our key contributions are

summarized as follows:
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• We conduct a comprehensive empirical study on existing few-shot continual

learning methods and discover that a simple baseline model that only trains

on base classes outperforms state-of-the-art methods, which demonstrates the

severity of catastrophic forgetting.

• We propose a novel approach for few-shot continual learning by addressing the

catastrophic forgetting problem in the primitive stage. Through finding the flat

minima region during training on base classes and fine-tuning within the region

while learning on new tasks, our model can overcome catastrophic forgetting

and avoid overfitting.

• Comprehensive experimental results on CIFAR-100, miniImageNet, and CUB-

200-2011 show that our approach outperforms all state-of-the-art methods and

achieves performance that is very close to the approximate upper bound.

3.2 Related Work

Few-shot learning aims to learn to generalize to new categories with a few labeled

samples in each class. Current few-shot methods mainly include optimization-based

methods [63, 101, 149, 201, 232, 231, 280] and metric-based methods [68, 90, 224,

249, 274, 287, 288, 273]. Optimization-based methods can achieve fast adaptation

to new tasks with limited samples by learning a specific optimization algorithm.

Metric-based approaches exploit different distance metrics such as L2 distance [224],

cosine similarity [249], and DeepEMD [287] in the learned metric/embedding space to

measure the similarity between samples. Recently, Tian et al. [242] find that standard

supervised training can learn a good metric space for unseen classes, which echoes

with our observation on the proposed baseline model in Sec. 3.3.

Continual learning focuses on the challenging problem of continually learning to

recognize new classes in new coming data without forgetting old classes [27, 29, 49,
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272]. Previous research mainly includes multi-class continual learning [22, 198, 96,

150, 278, 272] and multi-task continual learning [95, 133, 204]. To overcome the

catastrophic forgetting problem, some attempts propose to impose strong constraints

on model parameters by penalizing the changes of parameters [116, 3]. Other attempts

try to enforce constraints on the exemplars of old classes by restricting the output

logits [202] or penalizing the changes of embedding angles [91]. In this work, our

empirical study shows that imposing strong constraints on the arriving new classes

may not be a promising way to tackle few-shot continual learning, due to the scarcity

of training data for new classes.

Few-shot Continual learning [237, 203, 296, 39, 30] aims to incrementally learn

from very few samples. TOPCI [237] proposes a neural gas network to learn and

preserve the topology of the feature manifold formed by different classes. FSLL [164]

only selects few model parameters for continual learning and ensures the parameters

are close to the optimal ones. To overcome catastrophic forgetting, IDLVQC [30]

imposes constraints on the saved exemplars of each class by restricting the embedding

drift, and Zhang et al. [289] propose to fix the embedding network for continual

learning. Similar to the finding of Zhang et al., we also discover that an intransigent

model that simply does not adapt to new tasks can outperform prior state-of-the-art

methods.

Robust optimization. It has been found that flat local minima leads to better

generalization capabilities than sharp minima in the sense that a flat minimizer is

more robust when the test loss is shifted due to random perturbations [89, 87, 109].

A substantial body of methods [11, 190, 55, 82] have been proposed to optimize neural

networks towards flat local minima. In this paper, we show that for incremental few-

shot learning, finding flat minima in the base session and tuning the model within

the flat region on new tasks can significantly mitigate catastrophic forgetting.
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3.3 Pilot Study: Severity of Catastrophic Forget-

ting

3.3.1 Problem Statement

Few-shot Continual learning (FCL) aims to continually learn to recognize new classes

with only few examples. Similar to continual learning (CL), an FCL model is trained

by a sequence of training sessions {T 1, · · · , T t}, where T t = {zi = (xt
i, y

t
i)}i is the

training data of session t and xt
i is an example of class yt

i ∈ Ct (the class set of

session t). In FCL, the base session T 1 usually contains a large number of classes

with sufficient training data for each class, while the following sessions (t ≥ 2) only

have a small number of classes with few training samples per class, e.g., T t is often

presented as an N -way K-shot task with small N and K. The key difference between

CL and FCL is, for CL, sufficient training data is provided in each session. Similar to

CL, in each training session t of FCL, the model has only access to the training data

T t and possibly a small amount of saved exemplars from previous sessions. When

the training of session t is completed, the model is evaluated on test samples from all

encountered classes C = ⋃t
i=1 Ci, where it is assumed that there is no overlap between

the classes of different sessions, i.e., ∀i, j and i ̸= j, Ci ⋂ Cj = ∅.

Catastrophic forgetting. FCL is undoubtedly a more challenging problem than

CL due to the data scarcity setting. CL suffers from catastrophic forgetting, a well-

known phenomenon and long-standing issue, which refers to the drastic drop in test

performance on previous (old) classes, caused by the inaccessibility of old data in

the current training session. Unfortunately, catastrophic forgetting is an even bigger

issue for FCL, because data scarcity makes it difficult to adapt well to new tasks and

learn new concepts, while the adaptation process could easily lead to the forgetting of

base classes. In the following, we illustrate this point by evaluating a simple baseline

model for FCL.
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3.3.2 A Simple Baseline Model for FCL

We consider an intransigent model that simply does not adapt to new tasks.

Particularly, the model only needs to be trained in the base session T 1 and is directly

used for inference in all sessions.

Training (t = 1). We train a feature extractor f parameterized by ϕ with a fully-

connected layer as classifier by minimizing the standard cross-entropy loss using the

training examples of T 1. The feature extractor f is fixed for the following sessions

(t ≥ 2) without any fine-tuning on new classes.

Inference (test). In each session, the inference is conducted by a simple nearest

class mean (NCM) classification algorithm [168]. Specifically, all the training and test

samples are mapped to the embedding space of the feature extractor f , and Euclidean

distance d(·, ·) is used to measure the similarity between them. The classifier is given

by

c⋆
k = arg min

c∈C
d(f(x;ϕ), pc), where pc = 1

Nc

∑
i

1(yi = c)f(xi;ϕ), (3.1)

where C denotes all the encountered classes, pc refers to the prototype of class c (the

mean vector of all the training samples of class c in the embedding space), and Nc

denotes the number of the training images of class c. Note that we save the

prototypes of all classes in Ct for later evaluation.

The baseline model outperforms state-of-the-art FCL and CL methods.

We compare the above baseline model against state-of-the-art FCL methods includ-

ing FSLL [164], IDLVQC [30] and TOPIC [237], CL methods including Rebalance [91]

and iCarl [202], and a joint-training method that uses all previously seen data includ-

ing the base and the following few-shot tasks for training, for FCL. The performance

is evaluated on miniImageNet, CIFAR-100, and CUB-200. We tune the methods re-

implemented by us to the best performance. For the other methods, we use the results

reported in the original papers. The experimental details are provided in Sec. 3.5.
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Figure 3.1: Comparison of the proposed baseline model with state-of-the-art FCL

and CL methods and the joint-training method.The baseline model outperforms all

the other methods.

As shown in Fig. 3.1, the baseline model consistently outperforms all the compared

methods including the joint-training method (which suffers from severe data imbal-

ance) on every dataset1. Our proposed simple baseline introduces a fixed, pretrained

extractor and computes class prototypes as the mean embeddings of training samples.

This simple yet effective approach demonstrates strong performance, particularly

in few-shot scenarios, because freezing the extractor avoid catastrophic for-

getting. The fact that an intransigent model performs best suggests that

• For FCL, preserving the old (base classes) may be more critical than adapting

to the new. Due to data scarcity, the performance gain on new classes is limited

and cannot make up for the significant performance drop on base classes.

• Prior works [237, 30, 164, 91, 202] that enforce strong constraints on model

parameters or exemplars during fine-tuning on new classes cannot effectively

prevent catastrophic forgetting in FCL, indicating that actions may need to be

taken in the base training stage.

1We notice that a similar observation is made in a newly released paper [289].
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3.4 Methodology

The goal of FCL is to preserve the old while adapting to the new efficiently. The

results and analysis in Sec. 3.3 suggest that it might be “a bit late” to try to prevent

catastrophic forgetting in the few-shot learning sessions (t ≥ 2), which motivates us

to consider this problem in the base training session.

Overview of our approach. To overcome catastrophic forgetting in FCL, we pro-

pose to find a b-flat (b > 0) local minima θ⋆ of the base training objective function

and then fine-tune the model within the flat region in later few-shot learning sessions.

Specifically, for any parameter vector θ in the flat region, i.e., θ⋆ − b ⪯ θ ⪯ θ⋆ + b,

the risk (loss) of the base classes is minimized such that the classes are well separated

in the embedding space of fθ. In the later few-shot continual learning sessions (t ≥ 2),

we fine-tune the model parameters within this region to learn new classes, i.e., to find

θ′ = arg min
θ

∑
z∈T t

L(z;θ), s.t. θ⋆ − b ⪯ θ ⪯ θ⋆ + b.

As such, the fine-tuned model θ′ can adapt to new classes while preserving the old

ones. Also, due to the nature of few-shot learning, to avoid excessive training and

overfitting, it suffices to tune the model in a relatively small region. A graphical

illustration of our approach and prior arts, as well as the notions of sharp minima

and flat minima, are presented in Fig. 3.2.

3.4.1 Searching for Flat Local Minima in the Base Training

Stage

A formal definition of b-flat local minima is given as follows.

Definition 3.1 (b-flat local minima). Let θ ∈ Rd be a parameter vector and L :

Rd → R denote a loss function. We say θ is a b-flat local minimum if there exists
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a positive vector b ∈ Rd
+, constants ϵ ≥ 0, γin ≥ 0, and γout > γin, such that the

following conditions hold:

1. Flatness within the b-neighborhood: For all θ′ ∈ Rd satisfying θ − b ⪯

θ′ ⪯ θ + b,

|L(θ′)− L(θ)| ≤ ϵ (small loss variation), (3.2)

∥∇L(θ′)∥2 ≤ γin (weak local gradients). (3.3)

2. Condition 2 (Strict Increase Beyond Neighborhood): There exist c1 ≺

θ⋆ − b and c2 ≻ θ⋆ + b such that:

L(z;θ) > L(z;θ⋆) for all θ ∈ (c1,θ
⋆ − b) ∪ (θ⋆ + b, c2) .

Interpretation:

• The hyperrectangle [θ− b,θ + b] defines a flat region where the loss varies by

at most ϵ, and gradients are bounded by γin.

• Outside the flat local region, the loss increases, which ensures that the flat region

corresponds to a local minima.

Hence, our goal is to find an approximately flat local minima of the base training

objective function. To this end, we propose to add some small random noise to the

model parameters. The noise can be added for multiple times to obtain similar but

different loss functions, which will be optimized together to locate the flat minima

region. The intuition is clear – the parameter vectors around the flat local minima

also have small function values.

To formally state the idea, we assume that the model is parameterized by θ = {ϕ, ψ},

where ϕ denotes the parameters of the embedding network and ψ denotes the param-

eters of the classifier. z denotes a labelled training sample. Denote the loss function
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Figure 3.2: Illustration of our approach and existing solutions. → indicates the

continual learning steps on new classes. R1 and R2 respectively denote the loss of

base classes before and after minimizing the loss of new classes. (a) SGD finds sharp

minima in the base training. Directly tuning the model on new classes will result

in a severe performance drop on base classes. (b) Enforcing strong constraints on

parameters by penalizing parameter changes [3, 116, 164] may still lead to a significant

performance drop on base classes. (c) Finding flat local minima of base classes and

clamping the parameters after training on new classes to make them fall within the

flat region can effectively mitigate catastrophic forgetting.

by L: Rdz → R. Our target is to minimize the expected loss function R: Rd → R

w.r.t. the joint distribution of data z and noise ϵ, i.e.,

R(θ) =
∫
Rdϵ

∫
Rdz
L(z;ϕ+ ϵ, ψ) dP (z)dP (ϵ) = E[L(z;ϕ+ ϵ, ψ)], (3.4)

where P (z) is the data distribution and P (ϵ) is the noise distribution, and z and ϵ

are independent. Since it is impossible to minimize the expected loss, we minimize

its estimation, the empirical loss, which is given by

L(θ) = 1
M

M∑
j=1
Lbase(z;ϕ+ ϵj, ψ), where (3.5)

Lbase(z;ϕ+ ϵj, ψ) = 1
|T 1|

∑
z∈T 1

Lce(z;ϕ+ ϵj, ψ) + λ
1
|C1|

∑
c∈C1

∥pc − p∗
c∥2

2, (3.6)

where ϵj is a noise vector sampled from P (ϵ), M is the sampling times, Lce(z;ϕ+ϵj, ψ)

refers to the cross-entropy loss of a training sample z, and pc and p∗
c are the class
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prototypes before and after injecting noise respectively. The first term of Lbase is

designed to find the flat region where the parameters ϕ of the embedding network

can well separate the base classes. The second term enforces the class prototypes fixed

within such region, which is designed to solve the prototype drift problem [278, 30]

(the class prototypes change after updating the network) in later continual learning

sessions such that the saved base class prototypes can be directly used for evaluation

in later sessions.

3.4.2 Few-shot Continual Learning within the Flat Region

In the few-shot continual learning sessions (t ≥ 2), we fine-tune the parameters ϕ

of the embedding network within the flat region to learn new classes. It is worth

noting that while the flat region might be relatively small, it is enough for few-shot

continual learning. Because only a few training samples are provided for each new

class, to prevent overfitting in few-shot learning, excessive training should be avoided

and only a small number of update iterations should be applied.

We employ a metric-based classification algorithm with Euclidean distance to fine-

tune the parameters. The loss function is defined as

Lm(z;ϕ) = −
∑
z∈T

∑
c∈C

1(y = c) log( e−d(pc,f(x;ϕ))∑
ck∈C e

−d(pck
,f(x;ϕ)) ), z (3.7)

where d(·, ·) denotes Euclidean distance, pc is the prototype of class c, C = ⋃t
i=1 Ci

refers to all encountered classes, and T = T t ⋃P denotes the union of the current

training data T t and the exemplar set P = {P2, ..., Pt−1}, where Pte(2 ≤ te < t) is

the set of saved exemplars in session te. Note that the prototypes of new classes are

computed by Eq. 3.1, and those of base classes are saved in the base session. After

updating the embedding network parameters, we clamp them to ensure that they

fall within the flat region, i.e. ϕ⋆ − b ⪯ ϕ ⪯ ϕ⋆ + b, where ϕ⋆ denotes the optimal

parameter vector learned in the base session. After fine-tuning, we evaluate the model

using the nearest class mean classifier as in Eq. 3.1, with previously saved prototypes
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and newly computed ones. The whole training process is described in Algorithm 1.

Note that to calibrate the estimates of the classifier, we normalize all prototypes to

make those of base classes and those of new classes have the same norm.

3.4.3 Convergence Analysis

Our aim is to find a flat region within which all parameter vectors work well. We

then minimize the expected loss w.r.t. the joint distribution of noise ϵ and data z.

To approximate this expected loss, we sample from P (ϵ) for multiple times in each

iteration and optimize the objective function using stochastic gradient descent (SGD).

Here, we provide theoretical guarantees for our method. Given the non-convex loss

function in Eq. 3.5, we prove the convergence of our proposed method. The proof

idea is inspired by the convergence analysis of SGD [15, 115].

Formally, in each batch k, let zk denote the batch data, {ϵj}M
j=1 be the sampled noises,

and αk be the step size. In the base training session, we update the model parameters

as follows:

θk+1 = θk −
αk

M

M∑
j=1
∇Lbase(zk;ϕk + ϵj, ψk) = θk −

αk

M

M∑
j=1

g(zk;ϕk + ϵj, ψk), (3.8)

where g(zk;ϕk + ϵj, ψk) = ∇Lbase(zk;ϕk + ϵj, ψk) is the gradient. To formally analyze

the convergence of our algorithm, we define the following assumptions.

Assumption 3.1 (L-smooth risk function). The expected loss function R : Rd → R

(Eq. 3.4) is continuously differentiable and L-smooth with constant L > 0 such that

∥∇R(θ)−∇R(θ′)∥2 ≤ L∥θ− θ′|. (3.9)

This assumption is significant for the convergence analysis of gradient-based opti-

mization algorithms, since it limits how fast the gradient of the loss function can

change w.r.t. the parameter vector.
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Algorithm 1: F2M
Input: the flat region bound b, randomly initialized θ = {ϕ, ψ}, the step sizes α

and β.

// Training over base classes t = 1

for epoch k = 1,2,... do

for j = 1,2,..., M do

Sample a noise vector ϵj ∼ P (ϵ), s.t. −b ⪯ ϵj ⪯ b;

Add the noise to the parameters of the embedding network, i.e.,

θ = {ϕ+ ϵj, ψ};

Compute the base loss Lbase with Eq. 3.6;

Reset the parameters, i.e., θ = {ϕ, ψ};

end

Update θ = θ− α∇L(θ) with the loss L defined in Eq. 3.5.
end

Normalize and save the prototype of each base class;

// Incremental learning t ≥ 2

Combine the training data Dt and the exemplars saved in previous few-shot

sessions 2 ≤ te < t;

for epoch k = 1,2,... do

Compute the metric-based classification loss Lm by Eq. 3.7;

Update ϕ = ϕ− β∇Lm(z;ϕ);

Clamp the parameters ϕ to ensure they fall in the flat minima region;

end

Randomly select and save a few exemplars from the training data Dt;

Normalize and save the prototype of each new class;

Output: Model parameters θ = {ϕ, ψ}.
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Assumption 3.2. The expected loss function satisfies the following conditions:

• Condition 1: R is bounded below by a scalar R⋆, given the sequence of parameters

{θk}.

• Condition 2: For all k ∈ N and j ∈ [1,M ],

Ezk,ϵj
[g(zk;ϕk + ϵj, ψk)] = ∇R(θk). (3.10)

• Condition 3: There exist scalars m1 ≥ 0 and m2 ≥ 0, for all k ∈ N and

j ∈ [1,M ],

Vzk,ϵj
[g(zk;ϕk + ϵj, ψk)] ≤ m1 +m2∥∇R(θk)∥2

2. (3.11)

Ezk,ϵj
[·] denotes the expectation w.r.t. the joint distribution of random variables zk

and ϵj, and Vzk,ϵj
[·] denotes the variance. Condition 1 ensures that the expected

loss R is bounded by a minimum value R⋆ during the updates, which is a natural

and practical assumption. Condition 2 assumes that the gradient g(zk;ϕk + ϵj, ψk)

is an unbiased estimate of ∇R(θk). This is a strict assumption made to simplify

the proof, but it can be easily relaxed to a general and easily-met condition that

there exist µ1 ≥ µ2 > 0 satisfying ∥Ezk,ϵj
[g(zk;ϕk + ϵj, ψk)]∥2 ≤ µ1∥∇R(θk)∥2 and

∇R(θk)TEzk,ϵj
[g(zk;ϕk + ϵj, ψk)] ≥ µ2∥∇R(θk)∥2

2. Condition 3 assumes the variance

of the gradient g(zk;ϕk + ϵj, ψk) cannot be arbitrarily large, which is also reasonable

in practice. It is worth noting that Bottou et al. also adopts the same assumption

in their work proving the convergence of SGD, as it facilitates obtaining the desired

bound more easily. The steps in the proofs where assumptions are used have been

bolded to improve readability.

To facilitate later analysis, similar to [206], we restrict the step sizes as follows.

Assumption 3.3. The learning rates satisfy:
∞∑

k=1
αk =∞,

∞∑
k=1

α2
k <∞. (3.12)
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This assumption can be easily met, since in practice the learning rate αk is usually

far less than 1 and decreases w.r.t. k. Based on the above assumptions, we can derive

the following theorem.

Theorem 3.1. Under assumptions 3.1, 3.2 and 3.3, we further assume that the risk

function R is twice differentiable, and that ∥∇R(θ)∥2
2 is L2-smooth with constant

L2 > 0, then we have

lim
k→∞

E[∥∇R(θk)∥2
2] = 0. (3.13)

This theorem establishes the convergence of our algorithm. The proof is presented as

follows:

Lemma 3.1. By Assumption 3.1 and 3.2, we have

Ezk,ϵj
[R(θk+1)]−R(θk) ≤ −αk

2M − αkL(m2 +M)
2M ∥∇R(θk)∥2

2 + α2
kLm1

2M . (3.14)

Proof. By Assumption 3.1, an important consequence is that for all {θ, θ′} ⊂ Rd,

it satisfies that

R(θ) ≤ R(θ′) +∇R(θ′)T (θ − θ′) + 1
2L∥θ − θ

′∥2
2. (3.15)

Taken together, the above inequality and the parameter update equation (Eq. 3.8),

it yields

R(θk+1)−R(θk) ≤ ∇R(θk)T (θk+1−θk)+ 1
2L∥θk+1−θk∥2

2 ≤ −αk∇R(θk)Tg+ α2
kL

2 ∥g∥
2
2,

(3.16)

where g = 1
M

∑M
j=1 g(zk;ϕk + ϵj, ψk). Taking expectation on both sides of Eq. 3.16, it

yields

Ezk,ϵj
[R(θk+1)]−R(θk) ≤ −αk∇R(θk)TEzk,ϵj

[g] + α2
kL

2 Ezk,ϵj
[∥g∥2

2]. (3.17)

Ezk,ϵj
[·] denotes the expectation w.r.t. the joint distribution of random variables zk

and ϵj given θk. Note that θk+1 (not θk) depends on zk and ϵj. Under Condition 2
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of Assumption 3.2, the expectation of g satisfies that

Ezk,ϵj
[g] = 1

M

M∑
j=1

Ezk,ϵj
[g(zk;ϕk + ϵj, ψk)] = ∇R(θk). (3.18)

Assume that we sample the noise vector ϵj from P (ϵ) without replacement. Under

Condition 3 of Assumption 3.2, we have

Vzk,ϵj
[g] ≤

Vzk,ϵj
[g(zk;ϕk + ϵj, ψk)]

M
≤ m1

M
+ m2

M
∥∇R(θk)∥2

2. (3.19)

Taken together, Eq. 3.18 and Eq. 3.19, one obtains

Ezk,ϵj
[∥g∥2

2] = Vzk,ϵj
[g] + ∥Ezk,ϵj

[g]∥2
2 ≤

m1

M
+ m2 +M

M
∥∇R(θk)∥2

2. (3.20)

Therefore, by Eq. 3.17, 3.18 and 3.20, it yields

Ezk,ϵj
[R(θk+1)]−R(θk) ≤ −αk

2M − αkL(m2 +M)
2M ∥∇R(θk)∥2

2 + α2
kLm1

2M . (3.21)

Lemma 3.2. By Assumption 3.1, 3.2 and 3.3, we have

lim inf
k→∞

E[∥∇R(θk)∥2
2] = 0. (3.22)

Proof. The first condition in Assumption 3.3 ensures that limk→∞ αk = 0. Without

loss of generality, we assume that for any k ∈ N, αkL(m2 + M) ≤ M . Denote by

E[·] the total expectation w.r.t. all involved random variables. For example, θk is de-

termined by the set of random variables {z0, z1, ..., zk−1, ϵ0, ϵ1, ..., ϵk−1}, and therefore

the total expectation of R(θk) is given by

E[R(θk)] = Ez0,ϵ0Ez1,ϵ1 ...Ezk−1,ϵk−1 [R(θk)]. (3.23)

Taking total expectation on both sides of Eq.3.14, we have

E[R(θk + 1)]− E[R(θk)] ≤ −αk

2 E[∥∇R(θk)∥2
2] + α2

kLm1

2M . (3.24)
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For k = 0, 1, 2, ..., K, summing both sides of this inequality yields

R⋆ − E[R(θ1)] ≤ E[R(θK+1)]− E[R(θ0)] ≤ −
1
2

K∑
k=0

αkE[∥∇R(θk)∥2
2] + Lm1

2M

K∑
k=0

α2
k,

(3.25)

where R⋆ is the lower bound in Condition 1 of Assumption 3.2. Rearranging

the term gives

K∑
k=0

αkE[∥∇R(θk)∥2
2] ≤ 2(E[R(θ1)]−R⋆) + Lm1

M

K∑
k=0

α2
k. (3.26)

By the second condition of Assumption 3.3, we have

lim
K→∞

E[
K∑

k=0
αk∥∇R(θk)∥2

2] ≤ 2(E[R(θ0)]−R⋆) + lim
K→∞

Lm1

M

K∑
k=0

α2
k <∞. (3.27)

Dividing both sides of Eq. 3.27 by ∑K
k=1 αk and by the first condition of Assump-

tion 3.3, we have

lim
K→∞

E[
∑K

k=1 αk∥∇R(θk)∥2
2∑K

k=1 αk

] = 0. (3.28)

The left-hand term of this equation is the weighed average of ∥∇R(θk)∥2
2, and {αk}

are the weights. Hence, a direct consequence of this equation is that ∥∇R(θk)∥2
2

cannot asymptotically stay far from zero, i.e.

lim inf
k→∞

E[∥∇R(θk)∥2
2] = 0. (3.29)

We now prove Theorem 3.1, which is a stronger consequence than Lemma 3.2.

Theorem 4.1. Under assumptions 3.1, 3.2 and 3.3, we further assume that the risk

function R is twice differentiable, and that ∥∇R(θ)∥2
2 is L2-smooth with constant

L2 > 0, then we have

lim
k→∞

E[∥∇R(θk)∥2
2] = 0. (3.30)
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Proof. Define F (θ) := ∥R(θ)∥2
2, then we have

Ezk,ϵj
[F (θk+1)]− F (θk) ≤ ∇F (θk)TEzk,ϵj

[(θk+1 − θk)] + 1
2L2Ezk,ϵj

[∥θk+1 − θk∥2
2]

≤ −αk∇F (θk)TEzk,ϵj
[g] + α2

kL2

2 Ezk,ϵj
[∥g∥2

2]

≤ −2αk∇R(θk)T∇2R(θk)TEzk,ϵj
[g] + α2

kL2

2 Ezk,ϵj
[∥g∥2

2]

≤ 2αk∥∇R(θk)∥2
2∥∇2R(θk)∥2∥Ezk,ϵj

[g]∥2 + α2
kL2

2 Ezk,ϵj
[∥g∥2

2]

≤ 2αkL∥∇R(θk)∥2
2 + α2

kL2

2 (m1

M
+ m2 +M

M
∥∇R(θk)∥2

2).

(3.31)

Taking total expectation of both sides of Eq. 3.31 yields

E[F (θk+1)]− E[F (θk)] ≤ 2αkLE[∥∇R(θk)∥2
2] + α2

kL2

2 (m1

M
+ m2 +M

M
E[∥∇R(θk)∥2

2]).

(3.32)

Eq. 3.27 implies that 2αkLE[∥∇R(θk)∥2
2] is the term of a convergent sum. Besides,

α2
kL2
2 (m1

M
+ m2+M

M
E[∥∇R(θk)∥2

2]) is also the term of a convergent sum, because ∑∞
k=1 α

2
k

converges. Hence, the bound (Eq. 3.32) is also the term of a convergent sum. Now,

let us define

A+
K =

K−1∑
k=0

max(0,E[F (θk+1)]− E[F (θk)]), (3.33)

and A−
K =

K−1∑
k=0

max(0,E[F (θk)]− E[F (θk+1)]). (3.34)

Because the bound of E[F (θk+1)]−E[F (θk)] is positive and is the term a of convergent

sum, and the sequence A+
K is upper bounded by the sum of the bound of E[F (θk+1)]−

E[F (θk)], A+
K converges. Similarly, A−

K also converges. Since for any K ∈ N, F (θK) =

F (θ0) + A+
K − A−

K , we can obtain that F (θk) converges. By Lemma 3.2 and the fact

that F (θk) converges, we have

lim
k→∞

E[∥R(θk)∥2
2] = 0. (3.35)
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3.5 Experiments

In this section, we comprehensively evaluate our proposed method for few-shot con-

tinual learning and demonstrate its effectiveness through detailed comparisons with

state-of-the-art methods.

3.5.1 Experimental Setup

Table 3.1: Classification accuracy on CIFAR-100 for 5-way 5-shot incremental learn-

ing. ∗ indicates our re-implementation.

Method
sessions The gap

with cRT
1 2 3 4 5 6 7 8 9

cRT [110]∗ 65.18 63.89 60.20 57.23 53.71 50.39 48.77 47.29 45.28 -
Joint-training∗ 65.18 61.45 57.36 53.68 50.84 47.33 44.79 42.62 40.08 -5.20
Baseline 65.18 61.67 58.61 55.11 51.86 49.43 47.60 45.64 43.83 -1.45

iCaRL [202]∗ 66.52 57.26 54.27 50.62 47.33 44.99 43.14 41.16 39.49 -5.79
Rebalance [91]∗ 66.66 61.42 57.29 53.02 48.85 45.68 43.06 40.56 38.35 -6.93
FSLL [164]∗ 65.18 56.24 54.55 51.61 49.11 47.27 45.35 43.95 42.22 -3.08
iCaRL [202] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 -31.55
Rebalance [91] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 -31.74
TOPIC [237] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 -15.91
FSLL [164] 64.10 55.85 51.71 48.59 45.34 43.25 41.52 39.81 38.16 -7.12
FSLL+SS [164] 66.76 55.52 52.20 49.17 46.23 44.64 43.07 41.20 39.57 -5.71

F2M 64.71 62.05 59.01 55.58 52.55 49.96 48.08 46.28 44.67 -0.61

Datasets. We utilize CIFAR-100, miniImageNet, and CUB-200-2011 for our eval-

uations. For CIFAR-100 and miniImageNet, we randomly select 60 classes as base

and the remaining 40 as new classes. Each class in CIFAR-100 comprises 500 train-

ing images and 100 test images, sized 32×32. In miniImageNet, each class includes

500 training images and 100 test images, each sized 84×84. For the CUB-200-2011

dataset, which contains 5994 training and 5794 test images, we resize and crop each

image to 224×224. This dataset is split into 100 base and 100 new classes, where we

test 10-way 5-shot tasks.
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Table 3.2: Classification accuracy on miniImageNet for 5-way 5-shot incremental

learning. ∗ indicates our re-implementation.

Method
sessions The gap

with cRT
1 2 3 4 5 6 7 8 9

cRT [110]∗ 67.30 64.15 60.59 57.32 54.22 51.43 48.92 46.78 44.85 -
Joint-training∗ 67.30 62.34 57.79 54.08 50.93 47.65 44.64 42.61 40.29 -4.56
Baseline 67.30 63.18 59.62 56.33 53.28 50.50 47.96 45.85 43.88 -0.97

iCaRL [202]∗ 67.35 59.91 55.64 52.60 49.43 46.73 44.13 42.17 40.29 -4.56
Rebalance [91]∗ 67.91 63.11 58.75 54.83 50.68 47.11 43.88 41.19 38.72 -6.13
FSLL [164]∗ 67.30 59.81 57.26 54.57 52.05 49.42 46.95 44.94 42.87 -1.11
iCaRL [202] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 -27.64
Rebalance [91] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 -30.68
TOPIC [237] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 -20.43
FSLL [164] 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28 -2.57
FSLL+SS [164] 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92 -0.93
IDLVQ-C [30] 64.77 59.87 55.93 52.62 49.88 47.55 44.83 43.14 41.84 -3.01

F2M 67.28 63.80 60.38 57.06 54.08 51.39 48.82 46.58 44.65 -0.20

Baselines. We compare our method F2M with 8 methods: the Baseline proposed

in Sec. 3.3, a joint-training method that uses all previously seen data including the

base and the following few-shot tasks for training, the classifier re-training method

(cRT) [110] for long-tailed classification trained with all encountered data, iCaRL [202],

Rebalance [91], TOPIC [237], FSLL [164], and IDLVQ-C [30]. For a fair compari-

son, we re-implement cRT [110], iCaRL [202], Rebalance [91], FSLL [164], and the

joint-training method and tune them to their best performance. We also provide the

results reported in the original papers for comparison. The results of TOPIC [237]

and IDLVQ-C [30] are copied from the original papers. Note that for CL, joint-

training is naturally the upper bound of continual learning algorithms, however, for

FCL, joint-training is not a good approximation of the upper bound because data

imbalance makes the model perform significantly poorer on new classes (long-tailed

classes). To address the data imbalance issue, we re-implement the cRT method as

the approximate upper bound.
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Table 3.3: Classification accuracy on CUB-200-2011 for 10-way 5-shot incremental

learning.∗ indicates our re-implementation.

Method
sessions The gap

with cRT
1 2 3 4 5 6 7 8 9 10 11

cRT [110]∗ 80.83 78.51 76.12 73.93 71.46 68.96 67.73 66.75 64.22 62.53 61.08 -
Joint-training∗ 80.83 77.57 74.11 70.75 68.52 65.97 64.58 62.22 60.18 58.49 56.78 -4.30
Baseline 80.87 77.15 74.46 72.26 69.47 67.18 65.62 63.68 61.30 59.72 58.12 -2.96

iCaRL [202]∗ 79.58 67.63 64.17 61.80 58.10 55.51 53.34 50.89 48.62 47.34 45.60 -15.48
Rebalance [91]∗ 80.94 70.32 62.96 57.19 51.06 46.70 44.03 40.15 36.75 34.88 32.09 -28.99
FSLL [164]∗ 80.83 77.38 72.37 71.84 67.51 65.30 63.75 61.16 59.05 58.03 55.82 -5.26
iCaRL [202] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 -39.92
Rebalance [91] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 -41.21
TOPIC [237] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 -34.80
FSLL [164] 72.77 69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 55.39 54.21 -6.87
FSLL+SS [164] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82 -5.26
IDLVQ-C [30] 77.37 74.72 70.28 67.13 65.34 63.52 62.10 61.54 59.04 58.68 57.81 -3.27

F2M 81.07 78.16 75.57 72.89 70.86 68.17 67.01 65.26 63.36 61.76 60.26 -0.82

Experimental details. The experiments are conducted with NVIDIA GPU RTX3090

on CUDA 11.0. We randomly split each dataset into multiple tasks (sessions). For

each dataset (with a fixed split), we run each algorithm for 10 times and report the

mean accuracy. We adopt ResNet18 [83] as the backbone network. For data augmen-

tation, we use standard random crop and horizontal flip. In the base training stage,

we select the last 4 or 8 convolution layers to inject noise, because these layers output

higher-level feature representations. The flat region bound b is set as 0.01. We set

the number of times for noise sampling as M = 2 ∼ 4, since a larger M will increase

the training time. In each few-shot continual learning session, the total number of

training epochs is 6, and the learning rate is 0.02.

Exemplar Management. Since there lacks a unified standard in storing/saving

exemplars for few-shot continual learning, we choose the setting that we consider

most reasonable and practical. In real-world applications, normally there exists a

large number of base classes with sufficient training data (e.g., the base dataset is

ImageNet-1K [44]), whereas the number of unseen novel classes that lack training
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Table 3.4: Our re-implementation results of FSLL are very close to those reported

in [3] on CIFAR-100 for 5-way 5-shot incremental learning. ∗ indicates our re-

implementation. The results are obtained without saving any exemplars.

Method
sessions

1 2 3 4 5 6 7 8 9

FSLL [3]∗ 65.18 56.37 52.59 48.39 47.46 43.44 41.37 40.17 38.56

FSLL [3] 64.10 55.85 51.71 48.59 45.34 43.25 41.52 39.81 38.16

data is relatively small. Therefore, for computational efficiency and efficient use of

storage, it is desirable NOT saving any exemplars for base classes but store some

exemplars for new classes. In our experiments, we do not store any exemplar for base

classes, but save 5 exemplars for each new class. This will hardly cost any storage

space or slow down computation considerably due to the small number of new classes.

To ensure a fair comparison, for ICaRL [202] and Rebalance [91], we store 2 exemplars

per class (for both base classes and new classes). As a result, in each session, they

store more examplars than our method. For our re-implementation of FSLL [164],

we store the same number of exemplars for each new class as in our method. For

other approaches, since the code is not available or the method is too complex to re-

implement, we directly use the results reported in their paper, which are substantially

lower than the Baseline.

Correctness of our implementation. To verify the correctness of our implemen-

tation of ICaRL∗ [202] and Rebalance∗ [91], we conduct experiments on CIFAR-100

for incremental learning. We adopt 32-layer ResNet as backbone and store 20 exem-

plars per class as in Rebalance [91]. The comparative results are presented in Fig 3.3.

It can be seen that our re-implementation results of ICaRL and Rebalance are very

close to those reported in [91].

To verify the correctness of our implementation of FSLL [164], we compare the results
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of our implementation and those reported in [164] in Table 3.4. It can be seen that

our implementation achieves similar and slightly higher results than those reported in

the original paper [164]. Here, the experiments are conducted following the settings

in [164] without saving any exemplars for new classes.

3.5.2 Comparison with the State-of-the-Art

F2M outperforms the state-of-the-art methods. The main results on CIFAR-

100, miniImageNet and CUB-200-2011 are presented in Table 3.1, Table 3.2 and

Table 3.3 respectively. Based on the experiment results, we have the following ob-

servations: 1) The Baseline introduced in Sec. 3.3 outperforms the state-of-the-art

approaches on all continual sessions. 2) As expected, cRT consistently outperforms

the Baseline up to 1% to 3% by considering the data imbalance problem and ap-

plying proper techniques to tackle the long-tailed classification problem to improve

performance. Hence, it is reasonable to use cRT as the approximate upper bound of

FCL. 3) Our F2M outperforms the state-of-the-art methods and the Baseline. More-

over, the performance of F2M is very close to the approximate upper bound, i.e., the

gap with cRT is only 0.2% in the last session on miniImageNet. The results show

that even with strong constraints [91, 202, 164] and saved examplars of base classes

[91, 202, 30], current methods cannot effectively address the catastrophic forgetting

problem. In contrast, finding flat minima seems a promising approach to overcome

this harsh problem.

3.5.3 Ablation Study and Analysis

Analysis on the flatness of local minima. Here, we verify that our method can

find a more flat local minima than the Baseline. For a found local minima θ⋆, we

measure its flatness as follows. We sample the noise for 1000 times. For each time, we

inject the sampled noise to θ⋆ and calculate the loss Li. Then, we adopt the indicator
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Table 3.5: Comparison of the flatness of the local minima found by the Baseline and

our F2M.

Method
Indicator I Variance σ2

Training Set Testing Set Training Set Testing Set

Baseline 0.2993 0.4582 0.1451 0.2395

F2M 0.0506 0.0800 0.0296 0.0334

I = 1
1000

∑1000
i=1 (Li−L∗)2 and variance σ2 = 1

1000
∑1000

i=1 (Li−L)2 to measure the flatness.

L∗ denotes the loss of θ⋆, and L denotes the average loss of {Li}1000
i=1 . The values of

the indicator and variance of F2M and the Baseline are presented in Table 3.5, which

clearly demonstrate that our method can find a more flat local minima.

Table 3.6: Ablation study of our F2M on CIFAR-100. PD refers to the performance

dropping rate.

FM PF PC PN
sessions

PD ↓
1 2 3 4 5 6 7 8 9

65.18 60.83 53.13 43.57 23.75 10.76 08.26 07.24 06.45 58.73
✓ 65.18 59.48 56.77 52.99 50.09 47.80 45.92 44.20 42.55 22.63

✓ ✓ ✓ 64.71 59.54 53.03 45.09 41.68 39.04 38.64 37.19 36.01 28.70
✓ ✓ ✓ 64.55 61.27 58.33 54.82 51.60 49.22 47.48 45.78 44.08 20.47
✓ ✓ ✓ 64.71 61.75 58.80 55.33 52.27 49.75 47.72 46.01 44.43 20.28

✓ ✓ ✓ ✓ 64.71 61.99 58.99 55.58 52.55 49.96 48.08 46.28 44.67 20.04

Ablation study on the designs of our method. Here, we study the effectiveness

of each design of our method, including adding noise to the model parameters for

finding b-flat local minima (FM) during the base training session, the prototype fixing

term (PF) used in the base training objective (Eq. 3.6), parameter clamping (PC)

during continual learning, and prototype normalization (PN). We conduct an ablation

study by removing each component in turn and report the experimental results in

Table 3.6.
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Finding b-flat local minima. Standard supervised training with SGD as the optimizer

tends to converge to a sharp local minima. It leads to a significant drop in performance

because the loss changes quickly in the neighborhood of the sharp local minima. As

shown in Table 3.6, even with parameter clamping during continual learning, the

performance still drops significantly. In contrast, restricting the parameters in a

small flat region can mitigate the forgetting problem.

Prototype fixing. Without fixing the prototypes after injecting noise to selected layers

during the process of finding local minima, i.e. removing the second term of Eq. 3.6,

it is still possible to tune the model within the flat region to well separate base

classes. However, the saved prototypes of base classes will become less accurate

because the embeddings of the base samples suffer from semantic drift [278]. As

shown in Table 3.6, it results in a performance drop of nearly 0.6%.

Parameter clamping. Parameter clamping restricts the model parameters to the b-flat

region after few-shot continual learning. Outside the b-flat region, the performance

drops quickly. It can be seen from Table 3.6 that removing parameter clamping leads

to a significant drop in performance.

Prototype normalization. In our experiments, we observe that after training on base

classes with balanced data, the norms of the class prototypes of base classes tend

to be similar. However, after fine-tuning with very few data on unseen new classes,

the norms of the new class prototypes are noticeably smaller than those of the base

classes. In Table 3.7, we show the average norms of the prototypes of base classes and

new classes after few-shot continual learning on CIFAR-100, where we randomly select

60 classes as base classes and the remaining 40 classes as new classes. To calibrate

the estimates of the classifier, we normalize the class prototypes to calibrate the

estimates of the class mean classifier. The results in Table 3.6 show the effectiveness

of normalization, which helps to further improve the performance.
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Figure 3.3: Our re-implementation re-

sults of Rebalance and ICaRL are very

close to those reported in [202]. ∗ indi-

cates our re-implementation.

Table 3.7: The average norm of the

class prototypes of new classes is signif-

icantly smaller than that of old classes.

The experiment is conducted on CIFAR-

100 with 60 base classes and 40 new

classes.

Mean Standard Deviation

Base classes 7.97 0.63

New classes 7.48 0.71

Study of the flat region bound b. We study the effect of the flat region bound

b for 5-way 5-shot continual learning on CIFAR-100. We report the test accuracy in

session 1 (base session) and session 9 (last session) w.r.t. different b in Table 3.8. It

can be seen that the best results are achieved for b ∈ [0.005, 0.02]. A larger b (e.g.,

0.04 or 0.08) leads to a significant performance drop on base classes, even for those

in session 1, indicating that there may not exist a large flat region around a good

local minima. Meanwhile, a smaller b (e.g., 0.0025) results in a performance decline

on new classes, due to the overly small capacity of the flat region. This illustrates

the trade-off effect of b.

F2M exhibits minimal performance degradation on base classes. As shown

in Table 3.8, even after 9 sessions of incremental learning and across different values

of b, the accuracy on base classes remains close to 60%. This indicates that the

performance on base classes is largely preserved. Considering that the classification

task expands from 60 classes to 100 classes, a slight drop in accuracy is expected due

to increased difficulty. This further demonstrates the effectiveness of our proposed

approach in identifying flat local minima. Specifically, it confirms that we indeed
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Table 3.8: Study of the flat region bound b for 5-way 5-shot incremental learning on

CIFAR-100. The top 3 results in each row are in boldface.

Session
The hyperparameter b

0.0025 0.005 0.01 0.02 0.04 0.08

Session 1 (60 bases classes) 64.85 64.67 64.81 64.71 63.30 62.25
Session 9 (All 100 classes) 44.16 44.54 44.58 44.67 43.75 43.04
Session 9 (60 base classes) 59.58 59.69 59.73 59.44 58.38 57.21
Session 9 (40 new classes) 21.03 21.81 21.86 22.52 21.80 21.77

locate flat minima, and fine-tuning within such regions can preserve the performance

on base classes with minimal degradation.

Results with the same class splits as in TOPIC [237]. The experimental results

of our F2M and some other methods (our re-implementations) presented in Table 3.1,

Table 3.2, and Table 3.3 are on random class splits with random seed 1997. Here, we

conduct experiments using the same class split as in TOPIC [237]. The experimental

results on CIFAR-100, miniImageNet, and CUB-200-2011 are presented in Table 3.9,

Table 3.10, and Table 3.11 respectively. The results show that the Baseline and our

F2M still consistently outperform other methods. Note that on CUB-200-2011, joint-

training outperforms the Baseline and our F2M. The reasons may include: 1) The data

imbalance issue is not very significant since the average number of images per class

of this dataset is relatively small (about 30); and 2) During the base training stage,

we use a smaller learning rate (e.g., 0.001) for the embedding network (pretrained on

ImageNet) and a higher learning rate (e.g., 0.01) for the classifier.

3.6 Chapter Review

We propose an innovative approach to address the challenge of catastrophic forget-

ting in few-shot continual learning. Specifically, during the training phase of the
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Table 3.9: Classification accuracy on CIFAR-100 for 5-way 5-shot incremental learn-

ing with the same class split as in TOPIC [6]. ∗ indicates our re-implementation.

Method
sessions The gap

with cRT
1 2 3 4 5 6 7 8 9

cRT [8]∗ 72.28 69.58 65.16 61.41 58.83 55.87 53.28 51.38 49.51 -

Joint-training∗ 72.28 68.40 63.31 59.16 55.73 52.81 49.01 46.74 44.34 -5.17

Baseline 72.28 68.01 64.18 60.56 57.44 54.69 52.98 50.80 48.70 -0.81

iCaRL [4]∗ 72.05 65.35 61.55 57.83 54.61 51.74 49.71 47.49 45.03 -4.48

Rebalance [2]∗ 74.45 67.74 62.72 57.14 52.78 48.62 45.56 42.43 39.22 -10.29

FSLL [3]∗ 72.28 63.84 59.64 55.49 53.21 51.77 50.93 48.94 46.96 -2.55

iCaRL [4] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73 -35.78

Rebalance [2] 64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 -35.97

TOPIC [6] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 -20.14

FSLL [3] 64.10 55.85 51.71 48.59 45.34 43.25 41.52 39.81 38.16 -11.35

FSLL+SS [3] 66.76 55.52 52.20 49.17 46.23 44.64 43.07 41.20 39.57 -9.94

F2M 71.45 68.10 64.43 60.80 57.76 55.26 53.53 51.57 49.35 -0.16

Table 3.10: Classification accuracy on miniImageNet for 5-way 5-shot incremental

learning with the same class split as in TOPIC [6]. ∗ indicates our re-implementation.

Method
sessions The gap

with cRT
1 2 3 4 5 6 7 8 9

cRT [8]∗ 72.08 68.15 63.06 61.12 56.57 54.47 51.81 49.86 48.31 -
Joint-training∗ 72.08 67.31 62.04 58.51 54.41 51.53 48.70 45.49 43.88 -4.43
Baseline 72.08 66.29 61.99 58.71 55.73 53.04 50.40 48.59 47.31 -1.0

iCaRL [4]∗ 71.77 61.85 58.12 54.60 51.49 48.47 45.90 44.19 42.71 -5.6
Rebalance [2]∗ 72.30 66.37 61.00 56.93 53.31 49.93 46.47 44.13 42.19 -6.12
FSLL [3]∗ 72.08 59.04 53.75 51.17 49.11 47.21 45.35 44.06 43.65 -4.66
iCaRL [4] 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21 -31.10
Rebalance [2] 61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 -34.14
TOPIC [6] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 -23.89
FSLL [3] 66.48 61.75 58.16 54.16 51.10 48.53 46.54 44.20 42.28 -6.03
FSLL+SS [3] 68.85 63.14 59.24 55.23 52.24 49.65 47.74 45.23 43.92 -4.39

F2M 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 -0.43
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Table 3.11: Classification accuracy on CUB-200-2011 for 10-way 5-shot incremental

learning with the same class split as in TOPIC [6]. ∗ indicates our re-implementation.

Method
sessions The gap

with cRT
1 2 3 4 5 6 7 8 9 10 11

cRT [8]∗ 77.16 74.41 71.31 68.08 65.57 63.08 62.44 61.29 60.12 59.85 59.30 -
Joint-training∗ 77.16 74.39 69.83 67.17 64.72 62.25 59.77 59.05 57.99 57.81 56.82 -2.48
Baseline 77.16 74.00 70.21 66.07 63.90 61.35 60.01 58.66 56.33 56.12 55.07 -4.23

iCaRL [4]∗ 75.95 60.90 57.65 54.51 50.83 48.21 46.95 45.74 43.21 43.01 41.27 -18.03
Rebalance [2]∗ 77.44 58.10 50.15 44.80 39.12 34.44 31.73 29.75 27.56 26.93 25.30 -34.00
FSLL [3]∗ 77.16 71.85 66.53 59.95 58.01 57.00 56.06 54.78 52.24 52.01 51.47 -7.83
iCaRL [4] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 -39.92
Rebalance [2] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 -41.21
TOPIC [6] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 -34.80
FSLL [3] 72.77 69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 55.39 54.21 -6.87
FSLL+SS [3] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82 -5.26

F2M 77.13 73.92 70.27 66.37 64.34 61.69 60.52 59.38 57.15 56.94 55.89 -3.41

base model, we identify flat local minima of the objective function. When new tasks

are introduced, we fine-tune the model within these flat regions to mitigate catas-

trophic forgetting. In Section 3.4.3, we provide a theoretical proof that our algorithm

converges to a flat local minimum. We further demonstrate the effectiveness of our

method through extensive experiments on various datasets. However, F2M has the

following limitations.

Limitations in scenarios with a large number of new samples. Our algo-

rithm may struggle when tasks introduce a large number of new samples. This is

because the flat region identified during base model training may be relatively nar-

row, limiting the model’s capacity to accommodate substantial updates. Nevertheless,

the core idea of F2M provides valuable insights for the continual learning community.

Future work may explore identifying broader—albeit less flat—local minima during

initial training, enabling more flexible adaptation during incremental learning. Addi-

tionally, regularization techniques such as Elastic Weight Consolidation (EWC) could
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be integrated to constrain parameter updates in this wider region.

Need for improved methods to search for flat local minima. F2M ensures

flatness by adding random noise to the model parameters and requiring the perturbed

models to maintain comparable performance to the original parameters θ. While

this strategy can identify flat regions, it imposes a strong constraint—demanding an

excessively flat landscape around the solution—which may hinder convergence to a

good local optimum. Consequently, the base model trained under this constraint

may experience slight performance degradation compared to standard training. In

contrast, optimization-based methods like Sharpness-Aware Minimization (SAM) [64]

offer a more flexible approach to locating flat local minima and can mitigate such

issues more effectively, making them a promising alternative.
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Chapter 4

Reducing Conflicting Gradient For

Multi-Task Learning

4.1 Introduction

Multi-task learning (MTL) is a learning paradigm in which multiple different but

correlated tasks are jointly trained with a shared model [21], in the hope of achiev-

ing better performance with an overall smaller model size than learning each task

independently. By discovering shared structures across tasks and leveraging domain-

specific training signals of related tasks, MTL can achieve efficiency and effectiveness.

Indeed, MTL has been successfully applied in many domains including natural lan-

guage processing [80], reinforcement learning [186, 45] and computer vision [248].

A major challenge for multi-task learning is negative transfer [209], which refers

to the performance drop on a task caused by the learning of other tasks, resulting

in worse overall performance than learning them separately. This is caused by task

conflicts, i.e., tasks compete with each other and unrelated information of individual

tasks may impede the learning of common structures. From the optimization point

of view, a cause of negative transfer is conflicting gradients [279], which refers to two
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task gradients pointing away from each other and the update of one task will have

a negative effect on the other. Conflicting gradients make it difficult to optimize the

multi-task objective, since task gradients with larger magnitude may dominate the

update vector, making the optimizer prioritize some tasks over others and struggle

to converge to a desirable solution.

Prior works address task/gradient conflicts mainly by balancing the tasks via task

reweighting or gradient manipulation. Task reweighting methods adaptively re-weight

the loss functions by homoscedastic uncertainty [114], balancing the pace at which

tasks are learned [35, 146], or learning a loss weight parameter [142]. Gradient ma-

nipulation methods reduce the influence of conflicting gradients by directly altering

the gradients based on different criteria [217, 279, 36, 140] or rotating the shared

features [104]. While these methods have demonstrated effectiveness in different sce-

narios, in our empirical study, we find that they cannot reduce the occurrence of

conflicting gradients (see Sec. 4.3.3 for more discussion).

We propose a different approach to reduce conflicting gradients for MTL. Specifi-

cally, we investigate layer-wise conflicting gradients, i.e., the task gradients w.r.t. each

shared network layer. We first train the network with a regular MTL algorithm (e.g.,

joint-training) for a number of iterations, compute the conflict scores for all shared

layers, and select those with highest conflict scores (indicating severe conflicts). We

then set the selected shared layers task-specific and train the modified network from

scratch. As demonstrated by comprehensive experiments and analysis, our simple

approach Recon has the following key advantages: (1) Recon can greatly reduce con-

flicting gradients with only a slight increase in model parameters (less than 1% in

some cases) and lead to significantly better performance. (2) Recon can be easily

applied to improve various gradient manipulation methods and branched architecture

search methods. Given a network architecture, it only needs to search for the conflict

layers once, and the network can be modified to be used with different methods and

even on different datasets to gain performance improvement. (3) Recon can achieve
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better performance than branched architecture search methods with a much smaller

model.

4.2 Related Works

In this section, we briefly review related works in multi-task learning in four categories:

tasks clustering, architecture design, architecture search, and task balancing. For a

comprehensive review, please refer to [295, 248]. Tasks clustering methods mainly

focus on identifying which tasks should be learned together [241, 283, 227, 220, 61].

Architecture design methods include hard parameter sharing methods [117, 153, 16],

which learn a common feature extractor and task-specific decoders, and soft parame-

ters sharing methods [170, 210, 66, 67], in which each task has a portion of parame-

ters to do cross-task talk through some sharing mechanism. Differently, MTAN [146]

adopts task-specific attention to extract shared information for each task. Compared

with soft parameters sharing methods, our approach Recon has much better scalabil-

ity when dealing with a large number of tasks.

Instead of designing a fixed network structure, some methods [208, 169, 270] propose

to dynamically self-organize the network for different tasks. Among them, branched

architecture search [77, 18] methods are more related to our work. They proposes

an automated architecture search algorithm to build a tree-structured network by

learning the branch position of the network. In contrast, our method Recon decides

which layers to share across tasks by considering the severity of layer-wise conflicting

gradients, which leads to a better and more compact architecture with lower time

cost.

Another line of works is task balancing methods. To address task/gradient conflicts,

some methods attempt to re-weight the multi-task loss function using homoscedastic

uncertainty [114], task prioritization [76], or similar learning pace [146, 142]. Grad-
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Norm [35] learns a weight parameter to ensure the similar learning paces across tasks.

MGDA [217] adopts Frank-Wolfe algorithm to find the weights such that the weighted

sum of task gradients has a minimum norm. To reduce the influence of conflicting gra-

dients, PCGrad [279] projects each gradient onto the normal plane of another gradient

and uses the average projected gradient as the update vector. Graddrop [36] ran-

domly drops the elements of gradients based on element-wise conflict. CAGrad [140]

ensures convergence to a minimum of the average loss by gradient manipulation.

RotoGrad [104] reduces the influence of conflicting gradients by rotating the shared

feature space. Instead of manipulating gradients, our method Recon leverages gra-

dient information to modify network structure to mitigate task conflicts from the

root.

4.3 Pilot Study: Task Conflicts in Multi-Task Learn-

ing

4.3.1 Multi-task Learning: Problem Definition

Multi-task learning aims to jointly learn a set of functions {fθi
}N

i=1, typically sharing

parameters θshared

Multi-task learning (MTL) aims to learn a set of correlated tasks {Ti}T
i=1 simultane-

ously. Each task Ti is associated with its own dataset Di = {(x(j)
i , y

(j)
i )}ni

j=1, where

x
(j)
i ∈ Xi is the input and y

(j)
i ∈ Yi is the corresponding label. For each task Ti,

the empirical loss function is defined as Li(fθsh,θi
(xi), yi), where θsh denotes the pa-

rameters shared across all tasks, and θi represents the task-specific parameters. For

simplicity, we denote the loss function as Li(θsh,θi). The goal is to find optimal

parameters θ = {θsh,θ1,θ2, · · · ,θT} to achieve high performance across all tasks.
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Formally, it aims to minimize a multi-task objective:

θ∗ = arg min
θ

T∑
i

wiLi(θsh,θi), (4.1)

where wi are pre-defined or dynamically computed weights for different tasks. A

popular choice is to use the average loss (i.e., equal weights). However, optimizing

the multi-task objective is difficult, and a known cause is conflicting gradients.

4.3.2 Conflicting Gradients

Let gi = ∇θshLi(θsh,θi) denote the gradient of task Ti w.r.t. the shared parameters

θsh (i.e., a vector of the partial derivatives of Li w.r.t. θsh) and gts
i = ∇θi

Li(θsh,θi)

denote the gradient w.r.t. the task-specific parameters θi. A small change of θsh in

the direction of negative gi is θsh ← θsh − αgi, with a sufficiently small step size α.

The effect of this change on the performance of another task Tj is measured by:

∆Lj = Lj(θsh − αgi,θj)− Lj(θsh,θj) = −αgi · gj + o(α), (4.2)

where the second equality is obtained by first order Taylor approximation. Likewise,

the effect of a small update of θsh in the direction of the negative gradient of task

Tj (i.e., −gj) on the performance of task Ti is ∆Li = −αgi · gj + o(α). Notably,

the model update for task Ti is considered to have a negative effect on task Tj when

gi · gj < 0, since it increases the loss of task Tj, and vice versa. A formal definition

of conflicting gradients is given as follows [279].

Definition 4.1 (Conflicting Gradients). The gradients gi and gj(i ̸= j) are said to

be conflicting with each other if cosϕij < 0, where ϕij is the angle between gi and gj.

As shown in [279], conflicts in gradient pose serious challenges for optimizing the

multi-task objective (Eq. 4.1). Using the average gradient (i.e., 1
T

∑T
i=1 gi) for gradient

decent may hurt the performance of individual tasks, especially when there is a large

difference in gradient magnitudes, which will make the optimizer struggle to converge

to a desirable solution.
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Figure 4.1: The distributions of gradient conflicts (in terms of cosϕij) of the

joint-training baseline and state-of-the-art gradient manipulation methods on Multi-

Fashion+MNIST benchmark.
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Figure 4.2: The distributions of gradient conflicts (in terms of cosϕij) of the joint-

training baseline and state-of-the-art gradient manipulation methods on CityScapes

dataset.
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Figure 4.3: The distributions of gradient conflicts (in terms of cosϕij) of the joint-

training baseline and state-of-the-art gradient manipulation methods on NYUv2

dataset.
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Figure 4.4: The distributions of gradient conflicts (in terms of cosϕij) of the joint-

training baseline and state-of-the-art gradient manipulation methods on PASCAL-

Context dataset.

4.3.3 Gradient Surgery Cannot Effectively Reduce Conflict-

ing Gradients

To mitigate the influence of conflicting gradients, several methods [279, 36, 140] have

been proposed to perform “gradient surgery”. Instead of following the average gradient

direction, they alter conflicting gradients based on some criteria and use the modified

gradients for model update. We conduct a pilot study to investigate whether gradient

manipulation can effectively reduce the occurrence of conflicting gradients. For each

training iteration, we first calculate the task gradients of all tasks w.r.t. the shared

parameters (i.e., gi for any task i) and compute the conflict angle between any two

task gradients gi and gj in terms of cosϕij. We then count and draw the distribution of

cosϕij in all training iterations. We provide the statistics of the joint-training baseline

(i.e., training all tasks jointly with equal loss weights and all parameters shared)

and several state-of-the-art gradient manipulation methods including GradDrop [36],

PCGrad [279], CAGrad [140], and MGDA [217] on Multi-Fashion+MNIST [137],

CityScapes, NYUv2, and PASCAL-Context datasets. The results are provided in

Fig. 4.1, Fig. 4.2, Fig. 4.3, Fig. 4.4, Table 4.11, and Tables 4.12-4.14. It can be

seen that gradient manipulation methods can only slightly reduce the occurrence of

conflicting gradients (compared to joint-training) in some cases, and in some other

cases they even increase it.
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Why can’t gradient surgery effectively reduce conflicting gradients? Gra-

dient manipulation methods aim to solve an optimization problem by ensuring that

gradient updates are not biased toward a specific task, thereby promoting balanced

learning across all tasks. However, a fundamental issue remains: due to the inherent

conflicts among tasks, such methods cannot completely eliminate gradient conflicts.

Even if they manage to reduce the negative impact of such conflicts, they fail to pre-

vent them entirely. As a result, the angles between task gradients may still remain

large, which hinders effective learning for each individual task.

4.4 Methodology

Our pilot study shows that adjusting gradients for model update cannot effectively

prevent the occurrence of conflicting gradients in MTL, which suggests that the root

causes of this phenomenon may be closely related to the nature of different tasks and

the way how model parameters are shared among them. Therefore, to mitigate task

conflicts for MTL, in this paper, we take a different approach to reduce the occurrence

of conflicting gradients from the root.

4.4.1 Recon: Removing Layer-wise Conflicting Gradients

Our approach is extremely simple and intuitive. We first identify the shared network

layers where conflicts occur most frequently and then turn them into task-specific

parameters, as shown in Fig. 4.5. Suppose the shared model parameters θsh are

composed of n layers, i.e., θsh = {θ(k)
sh }n

k=1, where θ
(k)
sh is the kth shared layer. Let g(k)

i

denote the gradient of task Ti w.r.t. the kth shared layer θ
(k)
sh , i.e., g(k)

i is a vector of

the partial derivatives of Li w.r.t. the parameters of θ(k)
sh . Let ϕ(k)

ij denote the angle

between g(k)
i and g(k)

j . We define layer-wise conflicting gradients and S-conflict score

as follows.
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Task2

(d) Recon

Figure 4.5: Illustration of the differences between joint-training, gradient manipu-

lation, and our approach. (a) In joint-training, the update vector (in green) is the

average gradient 1
2(gi + gj). Due to the conflict between gi and gj, the update vector

is dominated by gi (in red). (b) PCGrad [279] projects each gradient onto the normal

plane of the other one and uses the average of the projected gradients (indicated by

dashed grey arrows) as the update vector (in green). As such, the update vector

is less dominated by gi. (c) Our approach Recon finds the parameters contributing

most (e.g., θ3) to gradient conflicts and turns them into task specific ones. In effect, it

performs an orthographic/coordinate projection of conflicting gradients to the space

of the rest parameters (e.g., θ1 and θ2) such that the projected gradients gfix
i and gfix

j

are better aligned. (d) Illustration of Recon turning a shared layer with high conflict

score to task-specific layers.

Definition 4.2 (Layer-wise Conflicting Gradients). The gradients g(k)
i and g(k)

j (i ̸=

j) are said to be conflicting with each other if cosϕ(k)
ij < 0.

Definition 4.3 (S-Conflict Score). For any −1 < S ≤ 0, the S-conflict score for the

kth shared layer is the number of different pairs (i, j)(i ̸= j) s.t. cosϕ(k)
ij < S, denoted

as s(k).

S represents the severity level of gradient conflicts; a smaller S value indicates a

focus on more severe conflict cases. The S-conflict score s(k) quantifies how often

conflicting gradients occur at severity level S for the kth shared layer. If s(k) =
(

T
2

)
,

this implies that every pair of tasks exhibits a conflict in their gradients with respect

59



Chapter 4. Reducing Conflicting Gradient For Multi-Task Learning

Algorithm 2: Recon: Removing Layer-wise Conflicting Gradients
Input: Model parameters θ, learning rate α, a set of tasks {Ti}T

i=1, number of
iterations I for computing conflict scores, conflict severity level S,
number of selected layers K.

// Train the network and compute conflict scores for all layers

for iteration i = 1, 2, . . . , I do
for i = 1 , 2, . . . , T do

Compute the gradients of task Ti w.r.t. all shared layers, i.e., {g(k)
i }n

k=1 ;
end
Calculate the S-conflict scores for all shared layers in the current iteration,
i.e., {s(k)

i }n
k=1;

Update θ with joint-training or any gradient manipulation method ;
end

// Set layers with top conflict scores task-specific

For each layer k, calculate the sum of S-conflict scores in all iterations, i.e.,
s(k) = ∑I

i=1 s
(k)
i ;

Select the top K layers with highest s(k) and set them task-specific;

// Train the modified network from scratch

for iteration i = 1, 2, . . . do
Update θ with joint-training or any gradient manipulation method;

end
Output: Model parameters θ.

to the kth layer. By computing S-conflict scores, we can identify the shared layers

where conflicts are most frequent.

We present our method, Recon, in Algorithm 2. We begin by training the network for

I iterations and compute the S-conflict score s(k)
i for each shared layer θ(k) at every

iteration i. The overall conflict score for each layer is then obtained by summing

across all iterations: s(k) = ∑I
i=1 s

(k)
i . We identify the layers with the highest s(k)

values and designate them as task-specific. The modified network is then retrained

from scratch.
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Why count the number of conflicting task pairs instead of directly using

ϕ
(k)
ij as the conflict score? Using the sum of ϕ(k)

ij to quantify conflict severity

often leads to unstable rankings of conflicting layers across different random seeds.

In contrast, our approach focuses on the frequency of conflict occurrences, resulting

in more consistent and robust layer rankings. This design also aligns with intuition:

detecting the presence of a conflict is simpler and more stable than measuring its

exact severity, which can be sensitive to randomness during training.

We validate the effectiveness of Recon through both theoretical analysis (Section 4.4.2)

and extensive experiments (Section 4.5). Results show that Recon significantly re-

duces gradient conflicts in the remaining shared layers and achieves substantial im-

provements over state-of-the-art methods.

4.4.2 Theoretical Analysis

Here, we provide a theoretical analysis of Recon. Let θsh = {θfix
sh ,θ

cf
sh}, where

θfix
sh are the remaining shared parameters, and θcf

sh are those that will be turned

to task-specific parameters θcf
1 ,θ

cf
2 , · · · ,θcf

T . Notice that θcf
1 ,θ

cf
2 , · · · ,θcf

T will all be

initialized with θcf
sh. Therefore, after applying Recon, the model parameters are

θr = {θfix
sh ,θ

cf
1 , . . . ,θ

cf
T ,θ

ts
1 , . . . ,θ

ts
T }. An one-step gradient update of θr is:

θ̂fix
sh = θfix

sh − α
T∑

i=1
wigfix

i , θ̂cf
i = θcf

i − αgcf
i , θ̂ts

i = θts
i − αgts

i , i = 1, . . . , T, (4.3)

where wi are weight parameters, gts
i = ∇θts

i
Li, gcf

i = ∇θcf
sh
Li and gfix

i = ∇θfix
sh
Li.

Notice that different methods such as joint-training, MGDA [217], PCGrad [279],

and CAGrad [140] choose different wi dynamically.

Without applying Recon, the model parameters are θ = {θfix
sh ,θ

cf
sh,θ

ts
1 , . . . ,θ

ts
T }. An

one-step gradient update of θ is given by

θ̂fix
sh = θfix

sh − α
T∑

i=1
wigfix

i , θ̂cf
sh = θcf

sh − α
T∑

i=1
wigcf

i , θ̂ts
i = θts

i − αgts
i , i = 1, . . . , T.

(4.4)
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After the one-step updates, the loss functions with the updated parameters θ̂r and

θ̂ respectively are:

L(θ̂r) =
T∑

i=1
Li

(
θ̂fix

sh , θ̂
cf
i , θ̂

ts
i

)
, and, L(θ̂) =

T∑
i=1
Li

(
θ̂fix

sh , θ̂
cf
sh, θ̂

ts
i

)
, (4.5)

where Li is the loss function of task Ti. Denote the set of indices of the layers turned

task-specific by P, then θcf
sh = {θ(k)

sh }, k ∈ P. Assume that ∑T
i=1 wi = 1, then we have

the following theorem.

Theorem 4.1. Assume that L is differentiable and for any two different tasks Ti and

Tj, it satisfies

cosϕ(k)
ij ∥g

(k)
i ∥ < ∥g

(k)
j ∥, ∀k ∈ P (4.6)

then for any sufficiently small learning rate α > 0,

L(θ̂r) < L(θ̂). (4.7)

The theorem indicates that a single gradient update on the model parameters of

Recon achieves lower loss than that on the original model parameters. The proof is

provided as follows:

Proof. We consider the first order Taylor approximation of Li. For normal update,

we have

Li

(
θ̂fix

sh , θ̂
cf
sh, θ̂

ts
i

)
=Li

(
θfix

sh ,θ
cf
sh,θ

ts
i

)
+ (θ̂fix

sh − θfix
sh )⊤gfix

i (4.8)

+ (θ̂cf
sh − θcf

sh)⊤gcf
i + (θ̂ts

i − θts
i )⊤gts

i + o(α). (4.9)

For Recon update, we have

Li

(
θ̂fix

sh , θ̂
cf
i , θ̂

ts
i

)
=Li

(
θfix

sh ,θ
cf
sh,θ

ts
i

)
+ (θ̂fix

sh − θfix
sh )⊤gts

i (4.10)

+ (θ̂cf
i − θcf

sh)⊤gcf
i + (θ̂ts

i − θts
i )⊤gts

i + o(α). (4.11)

62



4.5. Experiments

The difference between the two loss functions after the update is

Li

(
θ̂fix

sh , θ̂
cf
i , θ̂

ts
i

)
− Li

(
θ̂fix

sh , θ̂
cf
sh, θ̂

ts
i

)
=(θ̂cf

i − θ̂cf
sh)⊤gcf

i + o(α) (4.12)

=− α
gcf

i −
T∑

j=1
wjgcf

j

⊤

gcf
i + o(α) (4.13)

=− α
T∑

j=1
wj

(
gcf

i − gcf
j

)⊤
gcf

i + o(α) (4.14)

=− α
T∑

j=1
wj

(
∥gcf

i ∥2 − gcf
j

⊤gcf
i

)
+ o(α). (4.15)

Assume, without loss of generality, that ∥gcf
i ∥ ≠ 0, then∥∥∥gcf

i

∥∥∥2
− gcf

j
⊤gcf

i =
∑
k∈P

(∥∥∥g(k)
i

∥∥∥2
− g(k)

i
⊤g(k)

j

)
(4.16)

=
∑
k∈P

∥∥∥g(k)
i

∥∥∥ (∥∥∥g(k)
i

∥∥∥− cosϕ(k)
ij

∥∥∥g(k)
j

∥∥∥)
(4.17)

> 0. (4.18)

Hence, the above difference is negative, if α is sufficiently small. As such, the difference

between the multi-task loss functions is also negative, if α is sufficiently small.

L(θ̂r)− L(θ̂) =
T∑

i=1
Li

(
θ̂fix

sh , θ̂
cf
i , θ̂

ts
i

)
−

T∑
i=1
Li

(
θ̂fix

sh , θ̂
cf
sh, θ̂

ts
i

)
< 0 (4.19)

4.5 Experiments

In this section, we conduct extensive experiments to evaluate our approach Recon for

multi-task learning and demonstrate its effectiveness, efficiency and generality.

4.5.1 Experimental Setup

Datasets. We evaluate Recon on 4 multi-task datasets, namely Multi-Fashion

plus MNIST [137], CityScapes [42], NYUv2 [43], PASCAL-Context [171], and
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CelebA [152]. The tasks of each dataset are described as follows. 1) Multi-Fashion

plus MNIST contains two image classification tasks. Each image consists of an item

from FashionMNIST and an item from MNIST. 2) CityScapes contains 2 vision tasks:

7-class semantic segmentation and depth estimation. 3) NYUv2 contains 3 tasks: 13-

class semantic segmentation, depth estimation and normal prediction. 4) PASCAL-

Context consists of 5 tasks: semantic segmentation, human parts segmentation and

saliency estimation, surface normal estimation, and edge detection. 5) CelebA con-

tains 40 binary classification tasks.

Baselines. The baselines include 1) single-task learning (single-task): training all

tasks independently; 2) joint-training (joint-train): training all tasks together with

equal loss weights and all parameters shared; 3) gradient manipulation methods:

MGDA [217], PCGrad [279], GradDrop [36], CAGrad [140], RotoGrad [104]; 4)

branched architecture search methods: BMTAS [18]; 5) Architecture design meth-

ods: Cross-Stitch [170], MMoE [158]. Following [140], we implement Cross-Stitch

based on SegNet [9]. For a fair comparison, all methods use same configurations and

random seeds. We run all experiments 3 times with different random seeds.

Table 4.1: Multi-task learning results on Multi-Fashion+MNIST dataset. All exper-

iments are repeated over 3 random seeds and the mean values are reported. ∆m%

denotes the average relative improvement of all tasks. #P denotes model size (MB).

The grey cell color indicates that Recon improves the result of the base model. The

best average result is marked in bold.

Method Single-task RotoGrad BMTAS Joint-train w/ Recon MGDA w/ Recon PCGrad w/ Recon GradDrop w/ Recon CAGrad w/ Recon MMoE w/ Recon

T1 Acc↑ 98.37 98.10 98.20 97.42 98.13 95.19 98.33 97.37 98.30 97.38 98.25 97.47 98.28 98.27 98.25

T2 Acc↑ 89.63 88.25 89.71 88.82 89.26 89.46 89.28 88.68 89.77 88.57 89.51 88.85 89.65 89.51 89.67

∆m%↑ - -0.91 -0.04 -0.94 -0.33 -1.71 -0.22 -1.04 0.04 -1.10 -0.13 -0.90 -0.04 -0.12 -0.04

#P. 85.62 42.81 85.61 42.81 43.43 42.81 43.43 42.81 43.43 42.81 43.43 42.81 43.43 85.62 105.70

Relative task improvement. Following [163], we compute the relative task im-

provement with respect to the single-task baseline for each task. Given a task Tj, the
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Table 4.2: Multi-task learning results on CelebA dataset. All experiments are re-

peated over 3 random seeds and the mean values are reported. ∆m% denotes the

average relative improvement of all tasks. #P denotes model size (MB). The grey cell

color indicates that Recon improves the result of the base model. The best average

result is marked in bold.

Method Single-task Joint-train w/ Recon CAGrad w/ Recon Graddrop w/ Recon PCGrad w/ Recon

Average Error 8.38 8.33 8.22 8.31 8.23 8.33 8.20 8.64 8.36

∆m% ↑ - 0.55 1.92 0.79 1.74 0.23 2.13 -3.14 0.24

#P. 1706.03 43.26 68.03 43.26 68.03 43.26 68.03 43.26 68.03

relative task improvement is ∆mTj
= 1

K

∑K
i=1(−1)li(Mi − Si)/Si, where Mi, Si refer

to metrics for the ith criterion obtained by objective model and single-task model

respectively, li = 1 if a lower value for the criterion is better and 0 otherwise. The

average relative task improvement is ∆m = 1
T

∑T
j=1 ∆mTj

.

4.5.2 Comparison with the State-of-the-Art

Recon improves the performance of all base models. The main results on

Multi-Fashion+MNIST, and CelebA, CityScapes, PASCAL-Context, and NYUv2,

are presented in Table 4.1, Table 4.2, Table 4.3, Table 4.4, and Table 4.5 respectively.

(1) Compared to gradient manipulation methods, Recon consistently improves their

performance in most evaluation metrics, and achieve comparable performance on the

rest of evaluation metrics. (2) Compared with branched architecture search meth-

ods and architecture design methods, Recon can further improve the performance

of BMTAS and MMoE. Besides, Recon combined with other gradient manipulation

methods with small model size can achieve better results than branched architecture

search methods with much bigger models.

Small increases in model parameters can lead to good performance gains.
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Table 4.3: Multi-task learning results on

CityScapes dataset. All experiments are re-

peated over 3 random seeds and the mean val-

ues are reported. ∆m% denotes the average

relative improvement of all tasks. #P denotes

the model size (MB). The grey cell color in-

dicates that Recon improves the result of the

base model. The best average result is marked

in bold.

Segmentation Depth

(Higher Better) (Lower Better)Method
mIoU Pix Acc Abs Err Rel Err

∆m% ↑ #P.

Single-task 74.36 93.22 0.0128 29.98 190.59
Cross-Stitch 74.05 93.17 0.0162 116.66 -79.04 190.59
RotoGrad 73.38 92.97 0.0147 82.31 -47.81 103.43

Joint-train 74.13 93.13 0.0166 116.00 -79.32 95.43
w/ Recon 74.17 93.21 0.0136 43.18 -12.63 108.44

MGDA 70.74 92.19 0.0130 47.09 -16.22 95.43
w/ Recon 71.01 92.17 0.0129 33.41 -4.46 108.44

Graddrop 74.08 93.08 0.0173 115.79 -80.48 95.43
w/ Recon 74.17 93.11 0.0134 41.37 -10.69 108.44

PCGrad 73.98 93.08 0.02 114.50 -78.39 95.43
w/ Recon 74.18 93.14 0.0136 46.02 -14.92 108.44

CAGrad 73.81 93.02 0.0153 88.29 -53.81 95.43
w/ Recon 74.22 93.10 0.0130 38.27 -7.38 108.44
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Figure 4.6: The performance of

CAGrad combined with Recon

on the Multi-Fashion+MNIST

benchmark with (a) different

number of selected layers K (b)

different severity value S for

computing conflict scores.

Note that Recon only changes a small portion of shared parameters to task-specific.

As shown in Table 4.1-4.5, Recon increases the model size by 0.52% to 57.25%. Re-

con turns 1.42%, 1.46%, 12.77%, 0.26%, 9.80% shared parameters to task-specific on

Multi-Fashion+MNIST, CelebA, CityScapes, NYUv2 and PASCAL-Context respec-

tively. The results suggest that the gradient conflicts in a small portion (less than

13%) of shared parameters impede the training of the model for multi-task learning.

Recon is compatible with various neural network architectures. We use

ResNet18 on Multi-Fashion+MNIST, SegNet [9] on CityScapes, MTAN [146] on
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Table 4.4: Multi-task learning results on PASCAL-Context dataset with 4-task set-

ting. All experiments are repeated over 3 random seeds and the mean values are

reported. ∆m% denotes the average relative improvement of all tasks. #P denotes

the model size (MB). The grey cell color indicates Recon improves the result of the

base model. The best average result is marked in bold.

SemSeg PartSeg saliency Surface Normal

(Higher Better) (Lower Better) (Higher Better)
Angle Distance
(Lower Better)

Within t◦

(Higher Better)Method
mIoU Pix Acc mIoU Pix Acc mIoU Mean Median 11.25 22.5

∆m% ↑ #P.

Single-task 65.00 90.53 59.59 92.61 65.61 14.55 12.36 46.51 81.29 30.09

Joint-train 64.06 90.45 57.91 92.17 62.71 16.40 14.23 39.38 75.93 -4.82 8.04
w/ Recon 64.73 90.50 59.00 92.44 66.17 14.99 12.68 44.82 80.11 -0.66 10.20

MGDA 46.05 86.62 54.82 91.39 64.76 15.77 13.54 41.98 77.82 -7.67 8.04
w/ Recon 55.82 87.73 56.31 91.67 64.91 15.12 12.88 44.36 79.81 -4.14 10.20

PCGrad 63.91 90.45 58.01 92.19 63.09 16.34 14.19 39.62 76.06 -4.59 8.04
w/ Recon 65.02 90.45 59.22 92.46 66.14 14.95 12.73 44.96 80.22 -0.55 10.20

Graddrop 64.14 90.34 57.62 92.12 62.64 16.46 14.28 39.29 75.71 -5.00 8.04
w/ Recon 64.48 90.45 59.08 92.46 66.23 14.94 12.72 45.03 80.25 -0.63 10.20

CAGrad 63.37 90.17 57.49 92.07 64.16 16.30 14.12 39.80 76.23 -4.37 8.04
w/ Recon 64.60 90.40 59.27 92.47 65.67 14.92 12.71 45.10 80.33 -0.76 10.20

BMTAS 64.89 90.44 58.87 92.36 63.42 15.66 13.44 42.29 78.14 -2.89 15.18
w/ Recon 64.78 90.46 59.96 92.58 65.96 14.74 12.57 45.62 80.84 -0.19 16.83

NYUv2, and MobileNetV2 [215] on PASCAL-Context. Recon improves the perfor-

mance of baselines with different neural network architectures, including the archi-

tecture search method BMTAS [18] which finds a tree-like structure for multi-task

learning.

Only one search of conflict layers is needed for the same network architec-

ture. An interesting observation from our experiments is that network architecture

seems to be the deciding factor for the conflict layers found by Recon. With the same

network architecture (e.g., ResNet18), the found conflict layers are quite consistent

w.r.t. (1) different training stages (e.g., the first 25% iterations, or the middle or last
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Table 4.5: Multi-task learning results on NYUv2 dataset with MTAN as backbone.

All experiments are repeated over 3 random seeds and the mean values are reported.

∆m% denotes the average relative improvement of all tasks. #P denotes the model

size (MB). The grey cell color indicates that Recon improves the result of the base

model. The best average result is marked in bold.

Segmentation Depth Surface Normal

(Higher Better) (Lower Better)
Angle Distance
(Lower Better)

Within t◦

(Higher Better)Method
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

∆m% ↑ #P.

Single-task 38.67 64.27 0.6881 0.2788 24.87 18.99 30.43 57.81 69.70 285.88
Cross-Stitch 40.45 66.15 0.5051 0.2134 27.58 23.00 24.69 49.47 62.36 4.16 285.88

Joint-train 39.48 65.23 0.5491 0.2235 27.87 23.76 22.68 47.91 61.58 0.75 168.72
w/ Recon 39.54 65.20 0.5312 0.2234 26.55 21.40 26.53 52.60 65.31 4.14 169.59

MGDA 29.28 60.30 0.6027 0.2515 24.89 19.32 29.85 57.18 69.38 -2.26 168.72
w/ Recon 32.82 61.26 0.5884 0.2295 25.17 19.72 28.18 56.49 68.96 0.53 169.59

Graddrop 38.70 64.97 0.5565 0.2333 27.41 23.00 23.79 49.45 62.87 0.49 168.72
w/ Recon 40.14 66.08 0.5265 0.2241 26.51 21.45 26.51 52.48 65.26 4.67 169.59

PCGrad 38.55 65.07 0.54 0.23 26.90 22.05 24.98 51.36 64.41 2.02 168.72
w/ Recon 38.61 65.48 0.5350 0.2271 26.31 21.11 26.90 53.21 65.95 3.87 169.59

CAGrad 39.89 66.47 0.5496 0.2281 26.36 21.47 25.50 52.68 65.90 3.74 168.72
w/ Recon 39.92 66.07 0.5320 0.2200 25.80 20.59 27.60 54.31 67.05 5.80 169.59

ones) (see Table 4.6 and Table 4.7. (2) different MTL methods (e.g., joint-training

or gradient manipulation methods) (see Table 4.8), and (3) different datasets (see

Table 4.9 and Table 4.10). Hence, in our experiments, we only search for the conflict

layers once with the joint-training baseline in the first 25% training iterations and

modify the network to improve various methods on the same dataset. We also find

that the conflict layers found on one dataset can be used to modify the network to

be directly applied on another dataset to gain performance improvement.

Recon finds similar layers in different training stages. Recon ranks the net-

work layers according to the computed S-conflict scores. The ranking result can be
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Table 4.6: The distance between the layer permutations (rankings) obtained in dif-

ferent training stages on Multi-Fashion+MNIST dataset. “Iter.” denotes iterations.

Training Stage 1st 25% Iter. 2nd 25% Iter. 3rd 25% Iter. 4th 25% Iter. All Iter.
1st 25% Iter. 0 - - - -
2nd 25% Iter. 2.39 0 - - -
3rd 25% Iter. 1.85 2.14 0 - -
4th 25% Iter. 1.95 2.24 0.68 0 -

All Iter. 1.36 1.95 0.82 0.97 0

represented as a layer permutation, denoted as π, and π(l) is the position of layer l.

The similarity between two rankings πi and πj can be measured as:

d(πi, πj) = 1
|L|

∑
l∈L
|πi(l)− πj(l)|, (4.20)

where L denotes the set of neural network layers. In Table 4.6, we measure the

differences in rankings obtained in different training stages (e.g., in the first 25%

iterations or the second 25% iterations) on Multi-Fashion+MNIST by Eq. 4.20. The

small distances (less than 2.4) indicate that the layers found in different training stages

are quite similar. In Table 4.7, we compare the performance of the networks modified

by Recon with conflict layers found in different training stages on CityScapes. It

can be seen that the results of the last three rows are the same, which is because

the layers found in the 3rd 25% iterations, 4th 25% iterations, and all iterations are

exactly the same (the rankings may be slightly different though). The layers found

in the later stages lead to slightly better performance than those found in the early

stages (i.e., 1st 25% iterations and 2nd 25% iterations), indicating the conflict scores

in early iterations might be a little noisy. However, since the performance gaps are

acceptably small, to save time, we use the initial 25% training iterations to find

conflict layers.

Recon finds similar layers with different MTL methods. In Table 4.8, we
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Table 4.7: Performance of the networks modified by Recon with conflict layers found

in different training stages of joint-training on CityScapes dataset. ∆m% denotes the

average relative improvement of all tasks. #P denotes the model size (MB). The best

result is marked in bold.

Model
Segmentation Depth

∆m% #P.(Higher Better) (Lower Better)
mIoU Pix Acc Abs Err Rel Err

Single-task 74.36 93.22 0.0128 29.98 190.59
1st 25% Iterations 74.17 93.21 0.0136 43.18 -12.63 108.439
2nd 25% Iterations 74.20 93.19 0.0135 42.45 -11.83 108.440
3rd 25% Iterations 74.80 93.19 0.0136 41.34 -10.90 109.567
4th 25% Iterations 74.80 93.19 0.0136 41.34 -10.90 109.567

All Iterations 74.80 93.19 0.0136 41.34 -10.90 109.567

Table 4.8: The distance between the layer permutations (rankings) obtained by Recon

with different methods on Multi-Fashion+MNIST dataset.

Method Joint-train CAGrad PCGrad Gradrop MGDA
Joint-train 0 - - - -
CAGrad 1.07 0 - - -
PCGrad 0.78 1.17 0 - -
Gradrop 0.59 0.83 0.68 0 -
MGDA 1.71 1.32 1.90 1.56 0

measure the differences in layer permutations (rankings) obtained by Recon with

different methods (e.g., CAGrad and PCGrad) on Multi-Fashion+MNIST by Eq. 4.20.

The small distances (less than 1.9) indicate that the layers found by Recon with

different methods are quite similar. Therefore, in our experiments, we only use joint-

training to search for the conflict layers once, and directly apply the modified network

to improve different gradient manipulation methods as shown in Tables 4.1-4.5.
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Table 4.9: Multi-task learning results on NYUv2 dataset with SegNet as backbone.

Recon∗ denotes setting the layers found on CityScapes to task-specific. ∆m% denotes

the average relative improvement of all tasks. #P denotes the model size (MB). The

grey cell color indicates that Recon or Recon∗ improves the result of the base model.

Segmentation Depth Surface Normal

(Higher Better) (Lower Better)
Angle Distance
(Lower Better)

Within t◦

(Higher Better)Method
mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

∆m% ↑ #P.

Single-task 38.67 64.27 0.6881 0.2788 24.8683 18.9919 30.43 57.81 69.7 285.88

Joint-train 38.62 65.36 0.5378 0.2273 29.92 25.82 20.79 44.29 57.36 -1.62 95.58
w/ Recon 40.68 66.12 0.5786 0.2558 26.72 21.41 26.58 52.58 65.20 2.15 139.59
w/ Recon∗ 38.81 63.69 0.5637 0.2413 26.75 21.73 26.16 51.80 64.64 1.59 121.59

MGDA 25.71 57.72 0.6033 0.2358 24.53 18.65 31.22 58.46 70.21 -2.15 95.58
w/ Recon 36.64 62.36 0.5613 0.2255 24.66 18.66 31.30 58.47 70.16 5.37 139.59
w/ Recon∗ 36.85 63.51 0.5760 0.2362 24.89 18.96 30.53 57.94 69.82 4.34 121.59

Graddrop 39.01 66.13 0.5462 0.2296 29.72 25.51 19.87 44.68 58.12 -1.52 95.58
w/ Recon 39.78 65.63 0.5460 0.2280 26.42 21.16 26.89 53.16 65.84 4.45 139.59
w/ Recon∗ 39.97 65.71 0.5544 0.2261 26.52 21.37 26.65 52.65 65.46 4.21 121.59

PCGrad 40.01 65.77 0.5349 0.2227 28.53 24.08 22.33 47.42 60.69 1.43 95.58
w/ Recon 40.03 65.92 0.5523 0.2384 26.24 20.89 27.30 53.66 66.25 4.19 139.59
w/ Recon∗ 39.93 65.46 0.5494 0.2315 26.82 21.70 26.34 52.04 64.74 3.53 121.59

CAGrad 38.87 66.54 0.5331 0.2289 25.85 20.60 27.50 54.41 67.10 5.60 95.58
w/ Recon 40.68 66.12 0.5372 0.2266 25.44 19.87 28.96 56.00 68.28 6.99 139.59
w/ Recon∗ 39.97 65.92 0.5298 0.2273 25.56 20.11 28.69 55.37 67.75 6.47 121.59

The conflict layers found by Recon with the same architecture are trans-

ferable between different datasets. We conduct experiments with three different

architectures: ResNet18, SegNet, and MTAN. (1) For Resnet18, we find that the lay-

ers found by Recon on CelebA and those found on Multi-Fashion+MNIST are exactly

the same. (2) For SegNet, we find that 95% layers (38 out of 40) found on NYUv2

are identical to those found on CityScapes. On NYUv2, we compare the performance

of using conflict layers found on NYUv2 (baselines w/ Recon) to that of using conflict
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Table 4.10: Multi-task learning results on CityScapes dataset with MTAN as back-

bone. Recon∗ denotes setting the layers found on NYUv2 to task-specific. ∆m%

denotes the average relative improvement of all tasks. #P denotes the model size

(MB). The grey cell color indicates that Recon or Recon∗ improves the result of the

base model.

Segmentation Depth

(Higher Better) (Lower Better)Method
mIoU Pix Acc Abs Err Rel Err

∆m% ↑ #P.

Single-task 73.74 93.05 0.0129 27.71 190.58

Joint-train 75.35 93.55 0.0169 45.64 -23.26 157.19
w/ Recon 75.72 93.74 0.0130 40.90 -11.36 196.32
w/ Recon∗ 76.32 93.76 0.0132 46.40 -16.44 159.19

MGDA 70.46 91.75 0.0224 34.33 -26.02 157.19
w/ Recon 72.23 92.60 0.0122 26.93 1.37 196.32
w/ Recon∗ 70.83 92.14 0.0125 25.69 1.31 159.19

Graddrop 75.19 93.53 0.0168 46.35 -23.90 157.19
w/ Recon 75.60 93.72 0.0127 38.55 -8.71 196.32
w/ Recon∗ 76.49 93.82 0.0129 47.54 -16.81 159.19

PCGrad 75.64 93.54 0.02 43.53 -23.60 157.19
w/ Recon 75.89 93.71 0.0129 40.05 -10.35 196.32
w/ Recon∗ 76.24 93.69 0.0128 45.24 -14.66 159.19

CAGrad 75.26 93.50 0.0176 44.23 -23.40 157.19
w/ Recon 75.65 93.71 0.0125 36.23 -6.15 196.32
w/ Recon∗ 76.25 93.74 0.0123 40.05 -8.99 159.19

layers found on CityScapes (i.e., baselines w/ Recon∗), as shown in Table 4.9. (3)

For MTAN (SegNet with attention), we find that 68% layers (17 out of 25) found

on CityScapes are identical to those found on NYUv2. On CityScapes, we compare

the performance of using conflict layers found on CityScapes (baselines w/ Recon) to

that of using conflict layers found on NYUv2 (i.e., baselines w/ Recon∗), as shown

in Table 4.10. The results show that the conflict layers found on one dataset can be

used to modify the network to be directly used on another dataset to consistently

improve the performance of various baselines, while searching for the conflict layers

again on the new dataset may lead to better performance.
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Table 4.11: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the shared

parameters on Multi-Fashion+MNIST dataset. “Reduction” means the percentage of

conflicting gradients in the interval of (−0.01,−1.0] reduced by the model compared

with joint-training. The grey cell color indicates Recon greatly reduces the conflicting

gradients (more than 50%). In contrast, gradient manipulation methods only slightly

decrease their occurrence, and some method even increases it.

cosϕij Joint-train w/ RSL w/ RSP w/ Recon MGDA w/ Recon Graddrop w/ Recon PCGrad w/ Recon CAGrad w/ Recon

[1.0, 0) 56.56 53.44 58.15 58.53 56.06 56.50 57.26 57.61 56.72 57.75 56.18 59.06
(0, -0.01] 31.25 27.35 34.33 37.67 32.36 40.93 31.06 38.28 31.19 38.76 31.25 37.84

(-0.01, -0.02] 9.26 13.45 6.38 3.04 8.87 2.12 8.93 3.32 9.09 2.87 9.37 2.44
(-0.02, -0.03] 2.05 4.18 0.8 0.5 1.71 0.26 1.72 0.54 1.90 0.42 2.00 0.41
(-0.03, -1.0] 1.25 1.58 0.34 0.25 1.0 0.18 1.03 0.26 1.10 0.2 1.20 0.25

Reduction (%) - -52.94 40.13 69.82 7.80 79.62 7.01 67.20 3.74 72.21 -0.08 75.32

4.5.3 Ablation Study and Analysis

Recon greatly reduces the occurrence of conflicting gradients. In Fig. 4.7

and Table 4.11, we compare the distribution of cosϕij before and after applying Recon

on Multi-Fashion+MNIST. It can be seen that Recon greatly reduces the numbers of

gradient pairs with severe conflicts (cosϕij ∈ (−0.01,−1]) by at least 67% and up to

79% when compared with joint-training, while gradient manipulation methods only

slightly reduce the percentage and some even increases it. Similar observations can

be made from Fig. 4.8-Fig. 4.10 and Tables 4.12-4.14.
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Figure 4.7: The distribution of gradient conflicts (in terms of cosϕij) of baselines and

baselines with Recon on Multi-Fashion+MNIST dataset.
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Figure 4.8: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the shared

parameters on CityScapes. RSL: randomly selecting same number of layers as Recon

and set them task-specific. RSP: randomly selecting similar amount of parameters as

Recon and set them task-specific.
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Figure 4.9: The distribution of gradient conflicts (in terms of cosϕij) of baselines and

baselines with Recon on NYUv2. RSL: randomly selecting same number of layers

as Recon and set them task-specific. RSP: randomly selecting similar amount of

parameters as Recon and set them task-specific.
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Figure 4.10: The distribution of gradient conflicts (in terms of cosϕij) of baselines and

baselines with Recon on PASCAL-Context. RSL: randomly selecting same number of

layers as Recon and set them task-specific. RSP: randomly selecting similar amount

of parameters as Recon and set them task-specific.
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Table 4.12: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the shared

parameters on CityScapes dataset. “Reduction” means the percentage of conflicting

gradients in the interval of (−0.02,−1.0] reduced by the model compared with joint-

training. The grey cell color indicates Recon greatly reduces the conflicting gradients

(more than 50%). In contrast, gradient manipulation methods only moderately de-

crease their occurrence (MGDA deceases it by 22%), and some methods even increase

it.

cosϕij Joint-train w/ RSL w/ RSP w/ Recon MGDA w/ Recon Graddrop w/ Recon PCGrad w/ Recon CAGrad w/ Recon

[1.0, 0) 59.55 53.16 58.29 73.62 63.9 78.27 59.56 73.82 59.85 74.52 60.79 74.54

(0, -0.02] 10.14 9.01 10.77 20.13 12.51 12.54 9.61 19.75 9.58 19.43 11.13 19.77

(-0.02, -0.04] 8.52 7.34 8.72 5.13 8.59 5.54 8.19 5.17 7.94 4.89 8.83 4.62

(-0.04, -0.06] 6.45 5.69 6.48 0.94 5.39 2.23 6.49 1.05 6.24 0.96 6.05 0.89

(-0.06, -0.08] 4.79 4.53 4.61 0.14 3.29 0.85 4.76 0.16 4.41 0.15 4.06 0.13

(-0.08, -1.0] 10.54 20.26 11.13 0.03 6.33 0.56 11.38 0.05 11.98 0.06 9.13 0.04

Reduction (%) - -24.82 -2.11 79.41 22.11 69.70 -1.72 78.78 -0.89 80.03 7.36 81.22

Table 4.13: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the shared

parameters on NYUv2 dataset. “Reduction” means the percentage of conflicting

gradients in the interval of (−0.04,−1.0] reduced by the model compared with joint-

training. The grey cell color indicates Recon greatly reduces the conflicting gradients

(more than 50%). In contrast, gradient manipulation methods only slightly decrease

their occurrence, and some methods even increase it.

cosϕij Joint-train w/ RSL w/ RSP w/ Recon MGDA w/ Recon Graddrop w/ Recon PCGrad w/ Recon CAGrad w/ Recon

[1.0, 0) 61.96 52.61 59.70 73.99 61.28 74.08 62.93 75.35 63.25 75.54 61.95 74.49

(0, -0.02] 3.85 3.75 3.47 14.17 2.97 13.38 3.83 13.50 3.61 12.66 3.53 14.20

(-0.02, -0.04] 3.63 3.60 3.41 7.07 2.77 7.21 3.70 6.71 3.62 6.66 3.39 6.96

(-0.04, -0.06] 3.39 3.43 3.11 2.89 2.81 3.19 3.45 2.71 3.26 2.98 3.21 2.71

(-0.06, -0.08] 3.11 3.30 2.94 1.13 2.64 1.28 3.16 1.03 3.06 1.25 3.05 1.01

(-0.08, -1.0] 24.05 33.31 27.37 0.76 27.53 0.87 22.92 0.70 23.20 0.90 24.88 0.63

Reduction (%) - -31.06 -9.39 84.35 -7.95 82.52 3.34 85.47 3.37 83.21 -1.93 85.76
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Table 4.14: The distribution of gradient conflicts (in terms of cosϕij) w.r.t. the

shared parameters on PASCAL-Context dataset. “Reduction” means the percentage

of conflicting gradients in the interval of (−0.02,−1.0] reduced by the model compared

with joint-training. The grey cell color indicates Recon greatly reduces the conflicting

gradients (more than 50%). In contrast, gradient manipulation methods only slightly

decrease their occurrence, and some methods even increase it.

cosϕij Joint-train w/ RSL w/ RSP w/ Recon MGDA w/ Recon Graddrop w/ Recon PCGrad w/ Recon CAGrad w/ Recon

[1.0, 0) 61.26 59.20 60.47 63.99 60.40 63.61 61.18 63.76 61.35 63.83 60.99 63.78

(0, -0.02] 9.66 21.01 18.25 23.57 8.51 33.53 9.66 23.41 9.83 23.61 9.95 24.04

(-0.02, -0.04] 7.90 9.91 9.10 7.65 7.27 2.04 7.89 7.83 7.90 7.65 8.03 7.53

(-0.04, -0.06] 5.85 3.05 3.88 2.59 5.68 0.45 5.80 2.71 5.82 2.66 5.91 2.51

(-0.06, -0.08] 4.16 1.32 1.79 1.07 4.35 0.17 4.21 1.12 4.13 1.10 4.23 1.04

(-0.08, -1.0] 11.16 1.30 2.29 1.13 13.80 0.20 11.24 1.16 10.97 1.16 10.88 1.08

Reduction (%) - 46.41 41.31 57.21 -6.98 90.16 -0.24 55.90 0.86 56.76 0.07 58.20

Randomly selecting conflict layers does not work. To show that the perfor-

mance gain of Recon comes from selecting the layers with most severe conflicts instead

of merely increasing model parameters, we further compare Recon with the following

two baselines. RSL: randomly selecting same number of layers as Recon and set them

task-specific. RSP: randomly selecting similar amount of parameters as Recon and

set them task-specific. The results in Table 4.15 show that both RSL and RSP lead to

significant performance drops, which verifies the effectiveness of the selection strategy

of Recon.

Selecting the first K layers and the last K Layers as conflict layers does

not work. To further support the conclusion that the selection of parameters with

higher probability of conflicting gradients contributes most to the performance gain

rather than the increase in model capacity. We compare Recon with two baselines:

(1) Select the first K neural network layers and turn them into task-specific layers. (2)

Select the last K neural network layers and turn them into task-specific layers. The

multi-task learning results on the Multi-Fashion+MNIST benchmark are presented

76



4.5. Experiments

Table 4.15: Comparison of Recon with RSL and RSP. PD: performance drop com-

pared to Recon.

Seed w/ RSL w/ RSP w/ Recon
CAGrad PCGrad

Task 1 Task2
#P.

Task 1 Task2
#P.

Acc↑ PD Acc↑ PD Acc↑ PD Acc↑ PD
0 ✓ 97.60 0.68 64.39 25.26 73.02 97.43 0.87 65.57 24.21 73.02
1 ✓ 97.11 1.18 87.61 2.04 83.63 94.92 3.39 87.31 2.46 83.63
2 ✓ 94.62 3.66 87.68 1.96 76.33 92.90 5.40 87.41 2.36 76.33
0 ✓ 97.11 1.18 85.57 4.07 52.25 96.93 1.38 88.16 1.62 52.25
1 ✓ 97.81 0.47 88.28 1.36 51.96 97.63 0.68 88.55 1.22 51.96
2 ✓ 81.18 17.10 76.56 13.09 47.50 88.71 9.59 84.51 5.27 47.50
- - - ✓ 98.28 0 89.65 0 43.42 98.30 0 89.77 0 43.42

Table 4.16: Multi-task learning results on Multi-Fashion+MNIST dataset. LSK refers

to turning the fist K layers into task-specific layers. FSK refers to turning the last

K layers into task-specific layers. PD denotes the performance drop compared with

Recon.

LSK FSK w/ Recon
CAGrad PCGrad

Task 1 Task2
#P.

Task 1 Task2
#P.

Acc↑ PD Acc↑ PD Acc↑ PD Acc↑ PD
✓ 97.63 0.66 89.14 0.50 84.17 97.63 0.65 88.98 0.66 84.17

✓ 98.21 0.07 89.15 0.50 48.90 98.19 0.09 89.51 0.13 48.90
- ✓ 98.28 0 89.65 0 43.42 98.30 0 89.77 0 43.42

in Table 4.16. The results show that if we directly turn the top or the bottom of

the neural network into task-specific parameters, it still will lead to performance

degradation compared to Recon.

Ablation study on hyperparameters. We study the influence of the conflict

severity S and the number of selected layers K on the performance of CAGrad w/

Recon on Multi-Fashion+MNIST. As shown in Fig. 4.6, a small K leads to a sig-

nificant performance drop, which indicates that there are still some shared network
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Figure 4.11: Comparison of running time (one iteration, excludes data fetching) on

CelebA dataset.

layers suffering from severe gradient conflicts, while a large K will not lead to further

performance improvement since severe conflicts have been resolved. For the conflict

severity S, we find that a high value of S (e.g., 0.0) leads to performance drops since

it includes too many gradient pairs with small conflicts, while some of them are help-

ful for learning common structures and should not be removed. In the meantime, a

too small S (e.g., −0.15) also leads to performance degradation because it ignores

too many gradient pairs with large conflicts, which may be detrimental to learning.

While K and S are sensitive, we may only need to tune them once for a given network

architecture, as discussed in Sec. 4.5.2.

Analysis of running time. We evaluate how Recon scales with the number of tasks

on CelebA dataset, by comparing the running time of one iteration used by Recon in

computing gradient conflict scores (the most time-consuming part of Recon) to that

of the baselines. The results in Fig. 4.11 show that Recon is as fast as other gradient
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manipulation methods such as CAGrad [140] and Graddrop [36], but much slower

than joint-training especially when the number of tasks is large, which is natural

since Recon needs to compute pariwise cosine similarity of task gradients. However,

since Recon only needs to search for the conflict layers once for a given network

architecture, as discussed above, the running time is not a problem.

4.6 Chapter Review

We propose an innovative method to address the issue of conflicting gradients in

multi-task learning, thereby preventing negative transfer. Specifically, we analyze

the angles between gradients corresponding to different tasks at each layer of the

network during training. By identifying layers where gradient conflicts are severe (i.e.,

large angles), we convert these layers from shared to task-specific. This means that

instead of sharing parameters, each task has its own parameters for these layers, which

helps eliminate gradient conflicts in the remaining shared layers. In section 4.4.2, we

provide theoretical proof that our algorithm can lead to smaller losses. We validate

the effectiveness of our approach across various datasets and network architectures.

However, our method is not highly efficient because it requires two training phases:

one to identify the conflicting layers and another to obtain the final model. This

could make the implementation cumbersome. Despite this, our core idea provides

valuable insights: rather than merely adjusting the direction of gradient updates to

mitigate conflicts, it is more effective to eliminate the occurrence of gradient conflicts

altogether. This fundamental approach can lead to significant improvements in overall

performance.
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Chapter 5

Understanding Layer Significance

For LLM Alignment

5.1 Introduction

Aligning large language models (LLMs) with specific requirements is essential for

enhancing their utility across diverse applications [156, 277, 157, 130, 145, 144, 60].

Fine-tuning LLMs during the alignment process can significantly improve the models’

capabilities to meet targeted needs [19]. Typically, alignment involves fine-tuning the

model on diverse datasets, which may include both human-curated [197] and LLM-

generated [238] data, using approaches like instruction tuning [256] and preference

learning [10, 196]. Given the significant cost associated with full parameter fine-

tuning, parameter-efficient fine-tuning (PEFT) [94, 28, 182] methods have emerged as

a popular alternative, offering a balance between performance and resource efficiency.

Understanding what LLMs actually learn during the alignment process is crucial.

Zhou et al. [299] posits that the majority of knowledge and capabilities are developed

during the pre-training phase, with alignment primarily serving to refine the model’s

conversational style and formatting. Using a well-selected set of 1,000 training ex-
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amples for supervised fine-tuning (SFT), they successfully produced a high-quality

aligned model. Similarly, Lin et al. [135] investigated the token distribution of LLMs

before and after alignment and found that most changes were related to “stylistic to-

kens”, such as discourse markers and transition words, while the knowledge-intensive

content largely remained untouched, coming from the base pre-trained model. These

findings imply that the alignment process mainly adjusts the model’s presentation

style rather than modifying its foundational knowledge.

Alpaca-GPT4 LIMA No Robots

Llama 2-7B Llama 2-7B Llama 2-7B

Mistral-7B Mistral-7B Mistral-7B

Figure 5.1: Layer importance rankings by our ILA algorithm for Llama 2-7B and

Mistral-7B-v0.1 across Alpaca-GPT4, LIMA, and No Robots datasets. Top 75%

layers by score (si) are considered important. X-axis: transformer block in-

dex; y-axis: linear layer names. The figure highlights two findings: (1) High over-

lap (90%) in important layers across datasets (Table5.2) suggests shared alignment

needs, regardless of substantial differences in dataset content; (2) Important layers

differ by architecture, reflecting model-specific dynamics.

To gain a deeper understanding of LLM alignment, we analyze this process at the level

of model parameters. We conducted a pilot study to investigate the impact of differ-

ent model components on alignment performance, by fine-tuning only specific layers

and evaluating the resulting performance, as presented in Table 5.1 in Section 5.3.

The results clearly indicate that fine-tuning different components of the LLM leads to

considerable performance differences. For instance, fine-tuning the feed-forward net-
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work (FFN) layers achieves performance similar to fine-tuning all linear layers (i.e.,

with LoRA), whereas focusing solely on the attention layers causes a notable drop in

performance. This observation shows the complexity of layer-specific contributions

to LLM alignment, highlighting the need for detailed analysis.

To address this, we propose identifying the layers that are most critical to

alignment performance during the SFT process. We develop a novel ap-

proach, ILA, for identifying the important layers for LLM alignment. Specifically, we

learn a binary mask for the parameter changes in each layer during the fine-tuning

process, which serves as an indicator of layer significance. A binary mask value of

zero indicates that the corresponding layer has negligible influence during the pro-

cess, while a value of one denotes that the layer is crucial. We use gradient descent to

learn the binary mask effectively and offer a theoretical analysis of the optimization

process. The main findings and significance of this work include:

• Consistent layer importance ranking across different alignment datasets.

We observe similar rankings of important layers during alignment for the same

pre-trained model (see Fig. 5.1), even though the alignment datasets vary sig-

nificantly in both content and size. This suggests that the alignment process

endows the model with similar capabilities, corroborating previous research find-

ings and offers new insights into LLM alignment.

• Enhancing performance by freezing unimportant layers. We show that

freezing about 25% of unimportant layers can improve performance and that a

single search for layer importance ranking is sufficient for different alignment

tasks using the same architecture.

• Improving alignment efficiency through selective fine-tuning. Our find-

ings show that fine-tuning only 10-30% key layers achieves performance com-

parable to fine-tuning all linear layers. Additionally, integrating this approach

with QLoRA allows tuning only 30-75% of key layers to maintain or enhance

82



5.2. Related Works

performance while cutting resource costs.

• Broader implications beyond LLM alignment. Although our primary

focus is on LLM alignment, the approaches and insights from this study have

broader applicability. Our preliminary experiments on LLM reasoning reveal

findings similar to those in alignment, showcasing the significant potential of

our methods to enhance the reasoning capabilities of LLMs, particularly in

achieving test-time scaling [179, 258, 223, 173].

5.2 Related Works

LLM Alignment. Pretrained language models encode general-purpose represen-

tations, enabling transfer across diverse tasks [194, 108, 178]. Alignment methods

like instruction tuning [292, 233, 172] and preference learning [85, 72, 196, 226, 128]

adapt these models to specific objectives. Recent studies have explored alignment

mechanisms. LIMA [299] showed that fine-tuning on small datasets (e.g., 1,000 ex-

amples) shapes behavior without adding new knowledge, a finding echoed by oth-

ers [32, 122, 73]. Duan et al. connected instruction tuning to in-context learning via

hidden state analysis, while URIAL [135] revealed that alignment mainly modifies

stylistic tokens, preserving knowledge-centric ones. These insights suggest alignment

imparts narrow, targeted adjustments. Our work builds on this by identifying the

specific layers most critical for alignment, offering a more fine-grained understanding

of how adaptation occurs.

Parameter Efficient Fine-Tuning (PEFT). Fine-tuning large language mod-

els with billions or trillions of parameters is computationally expensive [17, 59].

Parameter-efficient fine-tuning (PEFT) methods address this by updating specific

components [281, 297, 5, 75] or using soft prompts [127, 131, 6]. Techniques such as

BitFit [281], Adapters [93], LoRA [94], and their variants [291, 167] reduce cost while
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maintaining transferability. Recent work [129, 97, 182, 265, 184] shows that selectively

fine-tuning certain regions yields strong results, though random masking often lacks

consistency. However, most PEFT approaches overlook parameter importance and

lack prioritization. Our method addresses this by ranking layer importance, enabling

targeted fine-tuning to improve performance with minimal cost.

Layer Analysis in Model Compression. Efforts in model compression lever-

age structured pruning [262, 151, 246] and layer analysis to improve efficiency. Ap-

proaches like Sheared LLaMA [263] and LLM-Streamline [34] demonstrate that se-

lectively pruning layers, heads, and dimensions significantly reduces model size with

minimal performance degradation. Studies on layer importance [294, 71] show the

feasibility of removing less critical components, facilitating scalable LLMs.

While model compression studies have examined the importance of components like

layers and heads for pruning, they aim to reduce model size rather than address the

parameter changes needed for task-specific alignment. Our work, however, focuses

on alignment fine-tuning. By emphasizing efficiency and prioritizing parameter up-

dates through skill localization [185, 250], we enhance both the understanding and

robustness of the alignment process.

5.3 Pilot Study

In this section, we conduct a pilot study to address the question: How does fine-tuning

different regions of an LLM affect the alignment performance?

We use the LoRA algorithm [94] for fine-tuning and compare the following strategies:

(1) FFN: fine-tuning all feed-forward networks (Wup, Wdown, Wgate); (2) ATT: fine-

tuning all attention layers including query/key/value projection layers (Wq, Wk, Wv)

and the output projection layer (Wo); (3) ATT2: only fine-tuning the query/key/value

projection layers (Wq, Wk, Wv); (4) ALL: fine-tuning all linear layers, including all
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Table 5.1: Impact of fine-tuning different components of Llama 2-7B on alignment

performance using the LIMA dataset. Evaluated on MMLU (5-shot) and GPT-4o

scores for Vicuna and MT-Bench prompts. Tuned components include attention

projections (Wq, Wk, Wv, Wo) and feed-forward layers (Wup, Wdown, Wgate).

ATT

(Wq, Wk, Wv, Wo)

ATT2

(Wq, Wk, Wv)

FFN

(Wup, Wdown, Wgate)

ALL

(LoRA)

MMLU ↑ 42.03 42.65 43.06 43.18

Vicuna ↑ 5.21 5.13 5.40 5.43

MT-Bench ↑ 3.31 3.35 3.41 3.45

feed-forward networks and attention layers, which is equivalent to the LoRA algo-

rithm itself; (5) AdaLoRA [291]: adaptively allocating parameter budget to the

LoRA incremental weight matrices.

The results in Table 5.1 show that selecting layers based solely on type is suboptimal.

Fine-tuning all linear layers yields the best performance, consistent with QLoRA’s

hyperparameter tuning [46]. Notably, fine-tuning FFN layers achieves similar results,

while tuning only attention layers significantly degrades performance. These findings

underscore the challenges of manual layer selection and motivate our approach to

automatically identifying “important” layers for more effective alignment through

targeted fine-tuning.

5.4 Layer Significance in LLM Alignment

To understand layer significance in LLM alignment, we propose ILA, a method to

identify important layers by learning a binary mask that indicates each layer’s signif-

icance.

Consider a pre-trained LLM model with parameters θ0 composed of N layers, i.e.,

θ0 = {θi
0}N

i=1. The model is fine-tuned on an alignment dataset D = {zi}n
i=1 with
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a loss function L(θ). After t training iterations, the model parameters are updated

to θt = θ0 + ∆θt, where ∆θt represents the change in parameters till iteration t.

Define a binary mask γt = {γi
t|γi

t ∈ {0, 1}}N
i=1 that encodes layer-wise importance

information. We apply γt to ∆θt and define

θmask
t = θ0 + γt ⊙∆θt, (5.1)

where ⊙ is component-wise multiplication. The binary mask is applied to retain

the changes in crucial layers while eliminating the rest. Below we provide a formal

definition of the conditions under which training attains stability after an adequate

number of iterations.

Definition 5.1 (ϵ-stable). ∀ϵ > 0, the model is said to be ϵ-stable at iteration T if,

for any t > T , the loss function satisfies the condition

|Ez[L(z;θt+1)]− Ez[L(z;θt)]| < ϵ, (5.2)

where Ez[·] denotes the expectation with respect to the alignment dataset D.

Once training stabilizes, we can identify the layers that are crucial for the alignment

task.

Definition 5.2 (Layer Importance). The binary mask γt is defined as the solution

to the following optimization problem:

γt = arg min
γt

Ez[L(z;θmask
t )], s.t. ∥γt∥ < H, (5.3)

where H is a hyper-parameter that serves as a constraint to limit the number of

important layers.

Efficiently Identifying the Importance Layers (Alg. 3). Due to the high cost

of fine-tuning large models, to address the optimization problem in Eq. (5.3), we

employ the LoRA [94] algorithm, which utilizes low-rank decomposition matrices to
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Algorithm 3: Identify the Important Layers for Alignment (ILA)
Input: Pre-trained model parameters θ0, learning rate α, the initial importance

score vector s0 = {si
0}N

i=1, the number of insignificant layers K, the

low-rank matrices A0, B0 for the LoRA algorithm. (FFT is a special case

of LoRA with full rank)

for iteration i = 1, 2, . . . do

Update At = At−1 − α∇At−1L(θt), Bt = Bt−1 − α∇Bt−1L(θt) (LoRA);

Or Update θt = θt−1 − α∇θt−1L(θt−1) (FFT);

if Training has become stable then
Solve the optimization problem in Eq. (5.7) by gradient descent to find

st = {si
t}N

i=1;

Stop training;

end

end

represent the change in model parameters till iteration t (∆θt). Specifically, LoRA

utilizes two trainable low-rank matrices, Bi
t ∈ Rdi×ri and Ai

t ∈ Rri×ki , to estimate

the change of the ith layer:

∆θi
t = β ·Bi

tA
i
t, (5.4)

where β is the scalar hyperparameter of LoRA. With the binary mask γt, the ith layer

is updated by

θi
t = θi

0 + β · γi
t ·Bi

tA
i
t. (5.5)

To ease the optimization of γt, we re-parametrize each of its each components γi
t as

the output of a Sigmoid function, i.e., γi
t = σ(si

t). Then, the update of the ith layer

becomes

θi
t = θi

0 + β · σ(si
t) ·Bi

tA
i
t. (5.6)

Let st = {si
t}N

i=1, θM
t = {θi

t}N
i=1. The optimization problem in Eq. (5.3) becomes

st = arg min
st

Ez[L(z;θM
t )]. (5.7)
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We use gradient descent to optimize st, yielding si
t as the importance score of the ith

layer. A larger value of si
t indicates γi

t is closer to one, signifying higher importance

of the ith layer.

Assumption 5.1 (Lipschitz-continuous). The loss function L(θ) : Rd → R is con-

tinuously differentiable and L-smooth with constant L1 > 0 such that

∥L(θ)− L(θ′)∥2 ≤ L1∥θ− θ′∥. (5.8)

In addition, L(θ) has an L-Lipschitz continuous gradient with constant L2 > 0 such

that

∥∇L(θ)−∇L(θ′)∥2 ≤ L2∥θ− θ′∥. (5.9)

Assumption 5.2. For any t > T , θt is ϵ-stable. We assume there is a constant R

such that

∥θt − θt+1∥2 ≤ Rϵ, (5.10)

and there is a constant Q such that ∥θt∥2 ≤ Q for any t > T .

Theorem 5.1. For a sufficiently small ϵ, θT is ϵ-stable, thus Assumption 5.1 and

Assumption 5.2 are satisfied. For any t > T , we assume that ∀i, γi
t ∈ [0, 1]. Let γ ′

t

denote the result of γt after one step of gradient descent, i.e., γ ′
t = γt−β∇γtL(θmask

t ).

Then we have

∥γ ′
t − γ ′

t+1∥2 ≤ β(QL2 + L1)Rϵ. (5.11)

This theorem demonstrates that when θT is ϵ-stable, solving the optimization problem

in Eq. (5.3) for any t > T yields similar results. This is because, after one step of

gradient descent, the difference between γt and γt+1 is smaller than a sufficiently small

number. The proof is given below:

Proof. Let γ̂ be the initial values of γt and γt+1. Then we have

γ ′
t = γ̂ − β∇γtL(θmask

t ), (5.12)
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γ ′
t+1 = γ̂ − β∇γt+1L(θmask

t+1 ). (5.13)

The difference of γ ′
t and γ ′

t+1 is

∥γ ′
t − γ ′

t+1∥2 = ∥(γ̂ − β∇γtL(θmask
t ))

− (γ̂ − β∇γt+1L(θmask
t+1 ))∥2

= β∥∇γtL(θmask
t )−∇γt+1L(θmask

t+1 )∥2

= β∥θt ⊙∇θmask
t
L(θmask

t )

− θt+1 ⊙∇θmask
t+1
L(θmask

t+1 )∥2

≤ β∥θt ⊙ (∇θmask
t
L(θmask

t )−∇θmask
t+1
L(θmask

t+1 ))∥2

+ β∥(θt − θt+1)⊙∇θmask
t+1
L(θmask

t+1 )∥2. (5.14)

Because L(θ) has an L-Lipschitz continuous gradient with constant L2 > 0, and

∥θt∥ ≤ Q,

∥θt ⊙∇θmask
t
L(θmask

t )− θt+1 ⊙∇θmask
t+1
L(θmask

t+1 )∥2

≤ QL2∥θmask
t − θmask

t+1 ∥2

= QL2∥∆θt+1 −∆θt∥2

= QL2∥θt+1 − θt∥2. (5.15)

Because L(θ) is L-smooth with constant L1,

∥(θt − θt+1)⊙∇θmask
t+1
L(θmask

t+1 )∥2 ≤L1∥θt − θt+1∥. (5.16)

Therefore,

∥γ ′
t − γ ′

t+1∥2 ≤ β(QL2 + L1)∥θt − θt+1∥2. (5.17)
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According to the Assumption 5.2, we have ∥θt − θt+1∥2 ≤ Rϵ, hence,

∥γ ′
t − γ ′

t+1∥2 ≤ β(QL2 + L1)Rϵ. (5.18)

Leveraging Layer Importance Rankings. The identified rankings of layer im-

portance can be leveraged to enhanc both the performance and efficiency of LLM

alignment. To maximize performance, prioritize fine-tuning the significant layers

while freezing those deemed less important. For efficiency, focus on the layers most

critical to model success. Detailed experiments and analyses are presented in Sec. 5.5.

5.5 Experiments and Findings

5.5.1 Experimental Setup

Datasets. (1) Alpaca-GPT4 contains 52K instruction-following data generated by

GPT-4, utilizing prompts from Alpaca [238]. (2) LIMA contains only 1K carefully

curated prompts and responses. (3) No Robots contains 10K instructions and demon-

strations created by skilled human annotators.

Models and Baselines. We use four different models as the base for our exper-

iments: Llama 2-7B [243], Llama 2-13B, Llama 3.1-8B [54], and Mistral-7B-

v0.1 [107]. Our baselines are as follows: (1) LoRA[94]: Trainable rank decomposition

matrices are added in parallel to existing weight matrices, including query/key/value

projection (Wq, Wk, Wv), output projection (Wo) in self-attention, feed-forward net-

works (Wup, Wdown, Wgate), and the output layer (Whead). (2) AdaLoRA[290]: It

dynamically adjusts the rank of incremental matrices to control the parameter bud-

get, with AdaLoRA modules added to all linear layers, similar to LoRA. (3) Full
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Fine-tune: All model parameters, initialized from pre-trained weights and biases,

undergo gradient updates during fine-tuning.

Evaluation and Training Setup. We assess language model alignment across

two key dimensions: (1) Language Understanding Ability: Evaluated using

MMLU [86] for specialized knowledge and Hellaswag [284] for commonsense reason-

ing. (2) Conversational Ability: Measured using MT-Bench [298] (multi-turn)

and Vicuna [40] (single-turn), with responses graded by GPT-4o. All evaluations

are performed three times, and the average scores are reported. We conduct hy-

perparameter searches for LoRA and full fine-tuning to establish strong

baselines.

Targeted Performance. (1) Language Understanding Ability: Recent re-

search [51, 234, 54] suggests that the learning of language understanding tasks essen-

tially occurs during the pre-training phase of the base model. Therefore, significant

performance improvements in language understanding tasks (i.e., MMLU, Hellaswag)

after alignment are not expected. However, it is crucial to ensure the model retains the

learned knowledge during alignment. (2) Conversational Ability: Without align-

ment, the pre-train model’s conversational ability is poor. For example, Llama 2-7B

often produces incorrect or irrelevant responses on the Vicuna dataset. However, its

conversational ability can be significantly improved through the alignment process.

For all experiments, we follow fine-tuning hyperparameters: we use AdamW with β1

= 0.9, β2 = 0.99 and weight decay of 0.1. The scheduler employed is a cosine scheduler

with a warmup ratio of 0.01. For LoRA baselines, we set the hyperparameter rank r

as 32.

5.5.2 Layer Importance Rankings in LLM Alignment

In this subsection, we applied ILA to rank important layers during alignment across

three datasets—No Robots, LIMA, and Alpaca-GPT4 (Fig.5.1). We also analyzed
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25% training milestones 50% training milestones

75% training milestones 100% training milestones

1% training milestones

Figure 5.2: Layer importance rankings of Llama 2-7B during fine-tuning on LIMA

at 1%, 25%, 50%, 75%, and 100% milestones. X-axis: transformer block index; y-

axis: linear layer names. Jaccard similarities are provided in Table 5.4.

Table 5.2: Jaccard similarities of the top 75% highest-scoring layers identified as

important during fine-tuning of Llama 2-7B and Mistral-7B on various datasets.

Datasets
Llama 2-7B Mistral-7B

LIMA No Robots Alpaca-GPT4 LIMA No Robots Alpaca-GPT4

LIMA - - - - - -

No Robots 0.91 - - 0.90 - -

Alpaca-GPT4 0.90 0.90 - 0.89 0.93 -

layer importance rankings at different training milestones (Fig.5.2). To quantify sim-

ilarity between sets of important layers, we used the Jaccard similarity coefficient,

defining the top 75% highest-scoring layers as the important set S. The similarity

between two sets, S1 and S2, is given by: J(S1,S2) = |S1∩S2|
|S1∪S2| . where J = 1 indicates

identical sets, and J = 0 indicates no overlap.

Consistency in Layer Importance Rankings Across Different Datasets. Our

findings show strong consistency in layer importance rankings: (1) highly similar

important layers are identified across different alignment datasets, (Fig.5.1, Table5.2);
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Table 5.3: Jaccard similarities

of the top 75% important lay-

ers in Llama 2-7B fine-tuned

on the LIMA dataset using

different random seeds.

Random Seed seed1 seed2 seed3

seed1 - - -
seed2 0.92 - -
seed3 0.91 0.91 -

Table 5.4: Jaccard similarities of the top 75%

important layers identified at different stages of

Llama 2-7B fine-tuning on the LIMA dataset.

Training
Milestones

1% 25% 50% 75% 100%

1% - - - - -
25% 0.69 - - - -
50% 0.70 0.91 - - -
75% 0.69 0.90 0.92 - -
100% 0.69 0.91 0.92 0.93 -

(2) the rankings remain stable across different random seeds for γ (Table 5.3); and

(3) similar layers can be identified even at the beginning stages of training, such as

completion of 25% (Fig.5.2, Table5.4).

These results confirm the robustness of ILA, which consistently identifies stable and

overlapping layers across datasets. This aligns with recent findings that alignment

largely involves stylistic token shifts [135]. In essence, alignment seeks similar ca-

pabilities, as evidenced by our observation that important layers remain stable across

different datasets. This underscores the relevance of our algorithm to the fundamental

objectives of alignment.

5.5.3 Enhancing Alignment Performance through Freezing

Unimportant Layers

To leverage layer importance rankings, we excluded less important layers that could

negatively impact fine-tuning, removing approximately of unimportant layers. The

main results on No Robots are in Table 5.5, with additional results for Llama 2-

13B (see Table 5.8) and main results on Alpaca-GPT4 (see Table 5.6), and LIMA

(see Table 5.7) datasets. Key observations include: (1) Freezing unimportant
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layers can enhance performance. ILA consistently outperformed LoRA and full

fine-tuning on most metrics, with freezing 25% of unimportant layers yielding better

results than tuning all layers. (2) A single search for layer importance ranking

suffices for a given architecture. Rankings were stable across alignment tasks,

allowing us to compute it on the No Robots dataset and apply it to others.

These results show that ILA improves fine-tuning efficiency by focusing on significant

layers. Compared to AdaLoRA, even though we explored a narrow range of the hy-

perparameter tr (target average rank of incremental matrices), our method performed

better, suggesting that adjusting LoRA’s matrix rank alone doesn’t guarantee supe-

rior results, as also noted in [46].

Additionally, as discussed in Sec. 5.5.2, the stability of the layer importance ranking

across datasets means a single search is often sufficient. In our experiments, we

computed the layer importance ranking using full training iterations on the No Robots

dataset, and then directly applied this ranking to other datasets. Though dataset-

specific rankings can further improve results (Table 5.14 in Sec. 5.9), the strong

cross-dataset performance with one ranking demonstrates our approach’s robustness

and generalizability.

5.5.4 Enhancing Alignment Efficiency by Fine-tuning Only

the Most Critical Layers

To investigate this issue, we fine-tune the top 10%, 20%, and 30% of the important

layers of Mistral-7B-v0.1, as identified by ILA, on the No Robots dataset, and compare

the results with those of the LoRA algorithm. The results demonstrate clear benefits

in focusing on a subset of important layers:

(1) Fine-tuning a small subset of the most important layers achieves com-

petitive performance and enhances efficiency. Fine-tuning the top 10%, 20%,
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Table 5.5: Comparison of Llama 2-7B, Mistral-7B-v0.1, and Llama 3.1-8B fine-tuned

on the No Robots dataset, evaluated on MMLU (5-shot), Hellaswag (0-shot), and

GPT-4o scores for Vicuna and MT-Bench prompts. Vicuna and MT-Bench

results are averaged over three runs. Grey cells indicate improvements over the

base model; best scores are in bold.

Models Methods
Language Understanding Conversational Ability

MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

Llama 2-7B

AdaLoRA 45.23 57.30 5.81 4.01

Full Fine-tune 45.72 57.69 6.12 4.18

Full Fine-tune w/ ILA 45.98 57.87 6.35 4.37

LoRA 44.58 59.46 5.78 4.02

LoRA w/ ILA 45.78 59.65 5.90 4.33

Mistral-7B-v0.1

AdaLoRA 62.13 61.68 6.21 4.69

Full Fine-tune 61.05 64.26 6.32 4.55

Full Fine-tune w/ ILA 61.75 64.21 6.51 4.78

LoRA 61.95 62.90 6.25 4.68

LoRA w/ ILA 62.14 62.98 6.42 4.87

Llama 3.1-8B

AdaLoRA 64.85 62.85 6.51 5.08

Full Fine-tune 64.44 63.65 6.50 5.11

Full Fine-tune w/ ILA 65.00 63.69 6.61 5.23

LoRA 64.95 60.77 6.33 4.58

LoRA w/ ILA 65.43 60.95 6.45 4.69

or 30% of layers results in only a slight performance drop compared to full fine-tuning.

Fine-tuning 30% of layers nearly matches full fine-tuning (Table 5.9), demonstrating

that focusing on the most important layers ensures efficient fine-tuning with minimal

performance loss.

(2) Our method can be applied to enhance QLoRA, further reducing costs.

When combined with QLoRA, our method fine-tunes only 30% or 75% of the most

important layers while maintaining or improving performance (Table 5.10), highlight-
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Table 5.6: Comparative evaluation of Llama 2-7B, Mistral-7B-v0.1, and Llama 3.1-

8B models fine-tuned on the Alpaca-GPT4 Dataset. Evaluated using MMLU (5-shot),

Hellaswag (0-shot), GPT-4o scores on Vicuna prompts, and MT-Bench prompts.

The evaluations are performed three times, and the average scores are

reported. Cells highlighted in grey indicate that ILA has enhanced the performance

of the base model. The best result is marked in bold.

Models Methods
Language Understanding Conversational Ability

MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

llama-7B

AdaLoRA 46.13 57.85 6.89 3.78

Full Fine-tune 45.91 57.73 6.78 3.72

Full Fine-tune w/ ILA 46.23 57.67 6.99 3.85

LoRA 43.66 58.49 6.96 3.80

LoRA w/ ILA 44.69 58.22 7.17 3.99

Mistral-7B-v0.1

AdaLoRA 62.48 62.08 7.25 4.77

Full Fine-tune 60.56 62.80 7.19 4.78

Full Fine-tune w/ ILA 60.88 62.91 7.35 4.91

LoRA 61.82 62.70 7.23 4.89

LoRA w/ ILA 62.14 62.80 7.33 5.02

Llama 3.1-8B

AdaLoRA 65.82 61.02 7.48 5.39

Full Fine-tune 63.58 61.58 7.33 5.32

Full Fine-tune w/ ILA 64.61 61.74 7.57 5.42

LoRA 65.40 61.72 7.65 5.43

LoRA w/ ILA 65.76 61.81 7.79 5.55

ing the efficiency of our approach in achieving comparable or better results with fewer

layers.

These findings highlight the effectiveness of our layer selection strategy, optimizing re-

source use with minimal performance trade-offs. Our integration with QLoRA shows

that fine-tuning a targeted subset of important layers improves both performance and

memory efficiency during fine-tuning.

For a clearer understanding of GPU memory savings, we measured memory consump-

tion for QLoRA, LoRA, Full Fine-Tuning, and versions fine-tuning only the key layers
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Table 5.7: Comparative evaluation of Llama 2-7B, Mistral-7B-v0.1, and Llama 3.1-

8B models fine-tuned on the LIMA Dataset. Evaluated using MMLU (5-shot), Hel-

laswag (0-shot), GPT-4o scores on Vicuna prompts, and MT-Bench prompts. The

evaluations are performed three times, and the average scores are reported.

Cells highlighted in grey indicate that ILA has enhanced the performance of the base

model. The best result is marked in bold.

Models Methods
Language Understanding Conversational Ability

MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

Llama 2-7B

AdaLoRA 44.21 59.85 5.22 3.51

Full Fine-tune 46.36 62.06 5.83 3.71

Full Fine-tune w/ ILA 46.32 62.18 5.98 3.85

LoRA 43.18 54.52 5.43 3.45

LoRA w/ ILA 44.13 54.55 5.62 3.72

Mistral-7B-v0.1

AdaLoRA 62.40 61.52 6.64 4.49

Full Fine-tune 60.11 63.76 6.88 4.63

Full Fine-tune w/ ILA 61.01 64.01 6.95 4.77

LoRA 60.83 65.42 6.70 4.58

LoRA w/ ILA 61.52 65.51 6.98 4.69

Llama 3.1-8B

AdaLoRA 63.55 62.65 6.50 4.73

Full Fine-tune 64.31 65.64 7.09 5.12

Full Fine-tune w/ ILA 64.73 65.98 7.17 5.23

LoRA 62.33 62.92 6.57 4.79

LoRA w/ ILA 63.31 63.01 6.61 4.93

identified by ILA. As shown in Table 5.11, it demonstrates that the GPU memory

usage and average training time per iteration for various fine-tuning approaches, in-

cluding LoRA, QLoRA, full fine-tune, and their modified versions where only 30% of

the important layers identified by ILA are fine-tuned. Both LoRA and QLoRA show

substantial reductions in memory usage when restricted to tuning only 30% of impor-

tant layers, compared to the full-layer fine-tuning approaches. These results indicate

that selectively fine-tuning a small set of critical layers is highly effective in reducing

GPU memory consumption, particularly for efficient methods like QLoRA. This sug-
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Table 5.8: Fine-tuning results of Llama 2-13B on the LIMA and No Robots datasets.

Evaluated using MMLU (5-shot), Hellaswag (0-shot), GPT-4o scores on Vicuna

prompts, and MT-Bench prompts. Cells highlighted in grey indicate that ILA has

improved the performance of the base model.

Datasets Methods
Language Understanding Conversational Ability

MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LIMA
LoRA 53.85 63.08 6.16 3.79

LoRA w/ ILA 54.33 62.04 6.25 3.91

No Robots
LoRA 54.08 61.73 5.72 4.24

LoRA w/ ILA 54.45 61.13 5.88 4.37

Table 5.9: Fine-tuning results of Mistral-7B-v0.1 on the No Robots dataset, evaluated

on MMLU (5-shot), Hellaswag (0-shot), and GPT-4o scores for Vicuna and MT-Bench

prompts (averaged over three runs). Percentages in parentheses denote the fraction

of fine-tuned linear layers. Best results are in bold.

Models Methods
Language Understanding Conversational Ability

MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

Mistral-7B-v0.1

LoRA 61.95 62.90 6.25 4.68

LoRA w/ ILA (10%) 62.09 61.94 5.99 4.39
LoRA w/ ILA (20%) 61.83 62.16 6.12 4.53
LoRA w/ ILA (30%) 61.89 62.79 6.27 4.75

gests that targeted fine-tuning can enhance computational efficiency while preserving

model performance, which is especially beneficial when scaling large language models

with limited hardware resources.

5.5.5 Ablation Study

Observation 1: Our layer importance ranking algorithm is effective. We

evaluated our algorithm by comparing it to a baseline that fine-tunes all layers and

three alternatives: (1) RL 1 and RL 2, which randomly freeze top-K layers; (2)
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Table 5.10: Comparison of QLoRA fine-tuning on Llama 2-7B vs. selectively fine-

tuning important layers identified by ILA. Evaluated on MMLU (5-shot), Hellaswag

(0-shot), and GPT-4o scores for Vicuna and MT-Bench prompts (averaged over three

runs). Grey cells indicate improvements over the base model by ILA.

Datasets Methods
Language Understanding Conversational Ability

MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LIMA
QLoRA 43.06 55.47 5.31 2.98
QLoRA w/ ILA (75%) 43.48 55.95 5.56 3.19
QLoRA w/ ILA (30%) 44.01 55.82 5.17 3.01

Table 5.11: GPU memory usage for LoRA, QLoRA, Full Fine-tune and

LoRA/QLoRA/Full Fine-tune with only 30% of important layers fine-tuned. Batch

size is set to 2, and the maximum token length is 1024. Percentages in parentheses

indicate the proportion of linear layers fine-tuned.

GPU

Memory Usage (MiB)
Training time (ms)

Full Fine-tune (100%) 81276 396

Full Fine-tune w/ ILA (30%) 33458 304

LoRA (100%) 32752 403

LoRA w/ ILA (30%) 28586 359

QLoRA (100%) 26238 523

QLoRA w/ ILA (30%) 17912 423

FL, freezing the first K layers; and (3) LL, freezing the last K layers. As shown in

Table 5.12, these naive strategies underperform. In contrast, our method effectively

identifies and freezes the least critical layers, yielding notable gains in both efficiency

and performance.

Observation 2: The important scores calculated using LoRA are similar

to those obtained through full fine-tuning. To assess whether LoRA-based

approximations differ from full fine-tuning (FFT), we compared parameter updates

99



Chapter 5. Understanding Layer Significance For LLM Alignment

Table 5.12: Performance comparison of ILA, random, and position-based layer se-

lection for fine-tuning Llama 2-7B on the No Robots dataset. RL1/RL2 freeze K

randomly selected layers (different seeds); FL and LL freeze the first and last K

layers, respectively. Blue highlights indicate lower performance than ILA.

Methods
Language Understanding Conversational Ability

MMLU ↑ Hellaswag ↑ Vicuna ↑ MT-Bench ↑

LoRA 44.58 59.46 5.78 3.98
LoRA w/ RL 1 44.23 59.71 5.72 3.96
LoRA w/ RL 2 43.98 59.11 5.62 3.89
LoRA w/ FL 44.02 59.32 5.58 3.71
LoRA w/ LL 44.61 59.21 5.65 3.99
LoRA w/ ILA 45.78 59.65 5.90 4.15

Table 5.13: Jaccard Similarity between important layers selected using Full Fine-

Tuning and LoRA for Llama 2-7B. Top 75% highest-scoring layers are determined as

important layers.

Datasets LIMA (FFT) No Robots (FFT) Alpaca-GPT4 (FFT)
LIMA (LoRA) 0.84 0.76 0.83

No Robots (LoRA) 0.78 0.80 0.81
Alpaca-GPT4 (LoRA) 0.82 0.83 0.86

from LoRA (i.e., Eq. (5.4)) and FFT (i.e., ∆θt = θt − θ0). For both methods, we

derived layer importance scores and selected the top 75% of layers, then calculated the

Jaccard similarity between the layers. As shown in Table 5.13, LoRA achieves nearly

83% overlap with the important layers identified by FFT, reducing computational

overhead while effectively ranking layer importance. The results show that LoRA

provides a strong approximation of ∆θt compared to θt − θ0.

Observation 3: Cross-dataset evaluation of layer importance enhances per-

formance. Different datasets highlight subtle differences in important layers (Ta-

ble 5.2). By intersecting the top-K least important layers from LIMA, No Robots,

and Alpaca-GPT4 and freezing them during fine-tuning (Table 5.14), we found that
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Table 5.14: Results of fine-tuning Mistral-7B on the LIMA dataset using ILA to

identify important layers from various datasets. Dataset (Imp. Layers) indicates

the datasets utilized to search for the important layers. Intersection represents

freezing the layers that are the intersection of the top-K least important layers found

from the LIMA, No Robots, and Alpaca GPT4 datasets.

Dataset

(Imp. Layers)

Dataset

(Finetune)
MMLU ↑ Hellaswag ↑ Winogrande ↑ Vicuna ↑ MT-Bench ↑

LIMA LIMA 61.82 65.48 72.01 6.99 5.38

No Robots LIMA 61.52 65.51 71.66 6.92 5.34

Alpaca-GPT4 LIMA 61.23 65.20 71.59 7.03 5.21

Intersection LIMA 61.49 65.62 72.20 7.10 5.49

cross-dataset evaluation yields better results than dataset-specific fine-tuning. As

shown in Table 5.2, different datasets reveal subtle variations in the layers identi-

fied as important. This suggests that layers consistently deemed unimportant across

multiple datasets are likely genuinely non-essential. To validate this, we intersect

the top-K least important layers identified from three datasets (LIMA, No Robots,

and Alpaca-GPT4) to derive a set of universally non-critical layers. The results are

presented in Table 5.14.

Our analysis reveals that a holistic consideration of layer importance across mul-

tiple datasets yields superior results compared to dataset-specific approaches. For

instance, identifying important layers within the LIMA dataset and fine-tuning on

the No Robots dataset is less effective than an integrated approach. Similarly, finding

important layers and fine-tuning exclusively on the No Robots dataset do not perform

as well as the comprehensive method. This suggests that a cross-dataset evaluation

of layer importance can lead to more robust and effective fine-tuning strategies.

Observation 4: Cross-model transfer of layer importance rankings is feasi-

ble but less effective than cross-dataset transfer. Models sharing architecture

but trained on different datasets show strong agreement in important layers (Jaccard
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Table 5.15: Jaccard similarities of the top 75% important layers across different

models.

Llama 2-7B

(LIMA)

Llama 2-7B

(NoRobots)

Llama 2-7B

(Alpaca-GPT4)

Mistral-7B-v0.1

(LIMA)
0.67 - -

Mistral-7B-v0.1

(NoRobots)
0.70 0.71 -

Mistral-7B-v0.1

(Alpaca-GPT4)
0.71 0.66 0.75

Table 5.16: Experimental results for Mistral-7B-v0.1 on the No Robots dataset, using

layer importance rankings derived from Llama 2-7B.

Methods MMLU Hellaswag Vicuna MT-Bench

LoRA 61.95 62.90 6.25 4.68

LoRA w/ ILA (75%) (cross-model transfer) 62.10 63.21 6.29 4.72

LoRA w/ ILA (75%) 62.14 62.80 6.42 4.87

LoRA w/ ILA (30%) (cross-model transfer) 61.77 63.16 6.11 4.60

LoRA w/ ILA (30%) 61.89 62.79 6.27 4.75

similarity of 0.90 for the top 75%, Table 5.2). This drops to 0.70 across architec-

tures (Table 5.15), indicating reduced transferability. Nonetheless, significant overlap

suggests cross-architecture transfer remains viable. Fine-tuning Mistral-7B-v0.1 us-

ing rankings from Llama 2-7B on No Robots (Table 5.16) confirms that cross-model

transfer can still perform well.

These findings suggest that cross-model transfer of layer importance rankings is possi-

ble, though less effective than using rankings from the same architecture. Fine-tuning

the top 75% of layers based on cross-model transfer shows some improvement, while

fine-tuning only the top 30% achieves comparable performance.

Observation 5: ILA is robust to the initialization of layer importance

scores. We evaluated the effect of different initial layer importance scores on the con-
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Table 5.17: The Jaccard similarities of top 75% important layers identified during

fine-tuning of Llama 2-7B on the LIMA dataset with varying initial scores.

Initial Scores 4.0 2.0 1.0

4.0 - - -

2.0 0.83 - -

1.0 0.78 0.88 -

sistency of identified important layers. The scores were initialized to s0 = 4.0, 2.0, 1.0.

The consistency was measured using the Jaccard similarity of the top 75% important

layers identified during fine-tuning of LLama 2-7B on the LIMA dataset. As demon-

strated in Table 5.17, our algorithm ILA is resilient to varying initial importance

scores (s0 = 4.0, 2.0, 1.0), with minimal impact on final rankings. The stable Jaccard

similarities for the top 75% of layers during Llama 2-7B fine-tuning on LIMA confirm

reliable convergence regardless of initialization.

Observation 6: The computation cost of ILA is low. ILA runs in two stages:

Stage 1 trains the model with LoRA until ϵ-stability, and Stage 2 tunes importance

weights (γt) with the backbone and LoRA frozen. For both Llama 2-7B and Mistral-

7B-v0.1 (225 linear layers), Stage 1 takes 6671 ms per iteration, and Stage 2 takes

5343 ms. Stage 2 finishes in 11 minutes (128 batches). Most cost lies in Stage 1, but

Table 5.4 shows only 25–50% of training milestones are needed for strong performance.

5.5.6 Beyond LLM Alignment: LLM Reasoning

Our findings indicate that the alignment process of LLM imparts similar capabil-

ities despite data variations. This complements prior research by revealing layer-

specific roles and improving efficiency through strategic tuning and freezing of layers.

Nonetheless, the approaches and insights derived from this study extend beyond LLM
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LIMO s1.1
Qwen2.5-7B-Instruct Qwen2.5-7B-Instruct

Figure 5.3: Layer-wise importance

rankings for Qwen2.5-7B-Instruct fine-

tuned using the LIMO and s1.1

datasets, respectively.

Table 5.18: Performance of Qwen2.5-7B-

Instruct on mathematical reasoning bench-

marks after fine-tuning with the LIMO

dataset.

Methods MATH500 AIME

FFT 77.00 13.33

FFT w/ ILA 79.00 16.67

alignment.

LLM Reasoning and Test-time Scaling. Advanced models like o1 [179], Deepseek

R1 [74], and Kimi 1.5 [239] have exhibited strong reasoning capabilities. Similar to

alignment, reasoning seeks to further activate the knowledge acquired during pre-

training. While alignment ensures that outputs align with human values, reasoning

drives the model toward deeper inference for enhanced accuracy. Rather than scaling

model size or training data, recent studies such as LIMO [275] and s1 [173] investi-

gate test-time scaling—boosting performance by increasing the number of input to-

kens used for reasoning. Their findings show that even limited high-quality training

data with chain-of-thought (CoT) examples can effectively enhance LLMs’ reasoning

capabilities.

To evaluate the effectiveness of ILA on reasoning tasks, we conduct experiments using

the following setup.

Datasets. (1) LIMO [275]: This dataset comprises 817 carefully selected problems

drawn from an initial pool of tens of millions. The final selection meets strict quality

standards and covers a broad range of mathematical reasoning tasks. High-quality

solutions are provided by both human experts and AI systems like DeepSeek R1 [74].

(2) s1.1 [173]: This dataset includes 1,000 questions paired with reasoning traces,

curated based on three rigorously validated criteria: difficulty, diversity, and quality.

104



5.6. Chapter Review

The chain-of-thought solutions are generated by DeepSeek R1 [74].

Evaluation. (1) AIME24: This set contains 30 problems from the 2024 Ameri-

can Invitational Mathematics Examination (AIME), administered on January 31 and

February 1, 2024. (2) MATH500 [86]: A benchmark consisting of competition-level

math problems spanning a range of difficulties.

Consistency in Layer Importance Across Datasets. We applied our proposed

ILA algorithm to identify layer importance rankings on both the LIMO and s1.1

datasets using the Qwen2.5-7B-Instruct model [269]. The resulting rankings showed

strong consistency, with a Jaccard similarity of 0.86 (see Fig.5.3), suggesting that

LLMs tend to acquire similar reasoning-related knowledge across datasets. We hy-

pothesize that much of this knowledge is already learned during pretraining—as

also suggested by LIMO [275]—and that fine-tuning primarily serves to activate the

model’s latent reasoning abilities.

Based on the identified importance rankings, we further conducted experiments on

LIMO by freezing approximately 25% of the least important layers. As shown in Ta-

ble 5.18, fine-tuning only the top 75% most important layers led to a slight improve-

ment in performance, indicating that selective tuning can help enhance the model’s

reasoning capabilities.

5.6 Chapter Review

To better understand LLM alignment, we introduce ILA, a method that identifies

critical layers in the alignment process by learning binary masks over weight matri-

ces. ILA consistently highlights important layers across diverse datasets, suggesting

that alignment imparts similar capabilities regardless of variations in training data.

This finding complements prior research by shedding light on the layer-specific roles

involved in alignment.
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Beyond alignment, we observe that ILA reveals a similar pattern of important layers

across datasets for LLM reasoning tasks as well. Notably, freezing less important

layers not only reduces computational overhead but also improves performance in

both alignment and reasoning scenarios.

Overall, ILA provides a unified and efficient approach to understanding and opti-

mizing LLMs by revealing transferable layer importance across tasks and datasets,

contributing both theoretical insights and practical efficiency gains.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

This thesis addresses several challenges in applying knowledge transfer to real-world

scenarios, such as enabling models to adapt to dynamic environments while retaining

previously learned knowledge, learning new tasks without forgetting old ones, han-

dling multiple tasks simultaneously to overcome potential negative transfer between

tasks, and improving the efficiency of knowledge transfer. Our research primarily

focuses on the contexts of Continual Learning and Multi-Task Learning, proposing

algorithms to tackle their core difficulties. We also explore methods for effectively

aligning Large Language Models (LLMs), which serves as an example of a Multi-

Task Learning challenge. These algorithms aim to make knowledge transfer more

applicable to practical scenarios.

Firstly, in Chapter 3, we explore knowledge transfer in the context of Continual

Learning. We propose that instead of addressing the issue of catastrophic forget-

ting when learning new tasks, it is more effective to consider it during the training

of the base model. By ensuring the model converges to a flat local minimum, any

fine-tuning within this region is unlikely to forget the knowledge acquired during the
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initial training phase. This approach allows the model to learn new knowledge with-

out forgetting previous knowledge, thereby enhancing the effectiveness of knowledge

transfer in dynamically changing real-world environments.

In Chapter 4, we examine knowledge transfer in the context of Multi-Task Learn-

ing. The current trend emphasizes the ability of models to handle multiple tasks

simultaneously, as seen with LLMs. Learning multiple tasks not only addresses the

issue of insufficient training data for single tasks but also leverages the correlations

between tasks to mutually enhance performance. This chapter focuses on mitigating

the problem of negative transfer between tasks. By converting shared layers that

often result in conflicting gradients into task-specific layers, we eliminate the oc-

currence of conflicting gradients, ensuring that tasks do not negatively impact each

other. This method effectively resolves conflicts between tasks, enabling better model

performance whether training a pre-trained base model or fine-tuning a model for a

multi-task downstream application.

Finally, in Chapter 5, we investigate the alignment of LLMs, which is a crucial step

in applying pre-trained LLMs to downstream tasks. Due to the high parameter

count of large models, fine-tuning can be resource-intensive. In this chapter, we

identify key layers that are crucial during the alignment process. By fine-tuning only

these specific layers, we achieve a more efficient use of resources while still enhancing

model performance. This approach significantly reduces the computational resources

required for knowledge transfer in large-scale models and helps to mitigate overfitting

to some extent.

Overall, the significance of this thesis lies in its contribution to making knowledge

transfer more effective, scalable, and applicable in complex, real-world settings. By

addressing key limitations in Continual Learning and Multi-Task Learning—such as

catastrophic forgetting, negative transfer, and resource inefficiency—we help bridge

the gap between theoretical advancements and practical deployment. Our work en-

ables models to adapt continuously to evolving environments without retraining from
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scratch, to leverage task interdependencies while avoiding harmful interference, and

to harness the power of large-scale models with reduced computational overhead.

These advancements not only improve model robustness and generalization but also

expand the feasibility of deploying intelligent systems in dynamic, multi-task, and

resource-constrained scenarios. In doing so, this thesis lays important groundwork

for the future of adaptive, lifelong, and efficient machine learning systems.

6.2 Future works

Building on the foundational work presented in this thesis, future research will focus

more deeply on the unique challenges and opportunities presented by Large Language

Models (LLMs). As LLMs become increasingly central to modern AI systems, their

scale, versatility, and potential for multi-task capabilities make them a natural ex-

tension of the knowledge transfer methods discussed here. However, their size and

complexity introduce new demands in terms of alignment, efficiency, and adaptabil-

ity. Future work will explore how to extend and refine knowledge transfer strategies

to better suit LLMs—ensuring they can continuously learn, generalize across diverse

tasks, and be efficiently fine-tuned or aligned for specific applications while minimiz-

ing resource overhead.

6.2.1 Continual Learning for Large Language Models

One promising research direction is the development of continual learning (CL) tech-

niques specifically tailored to LLMs. While current LLMs are pretrained on large

static datasets and then fine-tuned for individual tasks, real-world deployment often

requires models to learn from streaming data that evolves over time. Retraining from

scratch each time new data appears is both impractical and resource-intensive.

Future work will explore scalable CL strategies for LLMs, such as applying flat minima
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optimization during pretraining and integrating knowledge preservation mechanisms

to mitigate catastrophic forgetting. A particularly promising idea is to maintain a

curated subset of high-quality, representative samples from past tasks—essentially a

dynamic memory buffer—that can be combined with new data for continual training.

This hybrid dataset approach could enable LLMs to retain past knowledge while

acquiring new information more efficiently.

6.2.2 Multi-Task Learning for Large Language Models

Another critical area is improving multi-task learning (MTL) for LLMs. These mod-

els are frequently used in settings where they must perform well across a variety of

tasks—often with imbalanced data, varying task complexity, and conflicting objec-

tives. Traditional MTL approaches may falter under these conditions due to chal-

lenges like long-tail distributions and gradient interference.

To address this, future research will focus on advanced task-balancing techniques,

conflict mitigation strategies, and adaptive learning frameworks. One promising so-

lution involves leveraging the Mixture-of-Experts (MoE) architecture. MoE models

dynamically route input (e.g., tokens or tasks) to specialized ”experts”—subnetworks

trained to handle particular tasks or types of data. This design is well-suited for

handling gradient conflicts in MTL, as discussed in this thesis.

By integrating gradient conflict analysis into expert routing decisions, future MoE-

based LLMs could allocate conflicting or dissimilar tasks to separate experts. This

would reduce negative transfer and improve model stability. Dynamic expert activa-

tion based on input features or task metadata may further enhance performance and

allow more efficient use of model capacity.
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6.2.3 Optimizing Training and Inference for LLMs

Despite recent advances in parameter-efficient fine-tuning (PEFT), LLMs still de-

mand significant computational resources for both training and inference. These

resource constraints limit their deployment in edge environments, mobile devices, or

low-latency applications.

Future work will investigate strategies to further improve the efficiency and scalability

of LLMs. This includes developing better model compression techniques (e.g., prun-

ing, quantization), smarter adapter selection mechanisms, and sparsity-aware fine-

tuning algorithms. Reducing memory usage and compute costs is especially crucial

for enabling real-time applications such as conversational agents and code generation

systems.

An especially promising direction is leveraging larger, high-capacity LLMs to generate

high-quality, information-rich synthetic data for training smaller models—including

MoE-based architectures. This teacher-student paradigm could be one of the most ef-

fective ways to accelerate training and inference without compromising performance.

By combining synthetic data generation with modular architectures and PEFT tech-

niques, it may be possible to create lightweight LLMs that are fast, accurate, and

easy to deploy.
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