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Abstract

Optimizing knowledge transfer is a key challenge in machine learning, especially in
dynamic environments where tasks and data continually evolve. Conventional ma-
chine learning methods, generally rely on the premise that the feature space and data
distribution remain consistent between the training and testing phases. In reality,
this condition is rarely met, as real-world data often exhibits substantial variability.
This limitation reduces the usability and effectiveness of models, particularly when
training data is insufficient, tasks have diverse distributions, or environments change,
necessitating model retraining. In such settings, models must handle multiple tasks
simultaneously while managing diverse and potentially conflicting objectives. More-
over, it is essential for models to learn new tasks while retaining existing knowledge
and to swiftly adjust to new situations or tasks with minimal retraining effort. This
paper examines strategies for optimizing knowledge transfer in continual learning
(CL) and multi-task learning (MTL) to improve their performance in practical appli-

cations.

Continual learning (CL) enables models to learn from a series of tasks while retaining
knowledge from earlier tasks, thus avoiding catastrophic forgetting, where new learn-
ing negatively impacts previously acquired knowledge. We propose a novel approach
that guides models to converge to flat local minima during initial training, requiring
minimal adjustments when adapting to new tasks. This strategy reduces the likeli-

hood of forgetting and enhances model robustness in dynamic environments, making



it particularly effective for applications requiring continual adaptation to new data

and tasks.

In multi-task learning (MTL), the challenge is to transfer knowledge across different
tasks without causing negative transfer, where learning one task adversely affects per-
formance on others. Negative transfer often arises from conflicting gradients during
model updates, where the update direction is dominated by tasks with larger gradient
magnitudes, hindering effective learning of other tasks. To mitigate this, we introduce
a method that identifies layers with severe gradient conflicts and switches them from
shared to task-specific configurations. This approach prevents gradient conflicts in
shared layers, ensuring balanced learning and improving overall model performance

and generalization across tasks.

Additionally, considering the increasing size of pretrained base models and the rising
costs associated with knowledge transfer, we introduce a parameter-efficient fine-
tuning (PEFT) algorithm. This algorithm aims to optimize the adaptability of large
language models (LLMs) by selectively fine-tuning only the most critical layers. By
learning binary masks for each low-rank weight matrix used in LoRA—determining
whether a layer needs a LoRA adapter, where a mask value of 0 indicates that no
LoRA adapter is required and thus no change to the model parameters—our approach
significantly reduces memory overhead and computational costs while avoiding overfit-
ting. This makes transfer learning more efficient and feasible in resource-constrained

environments.

In summary, this thesis explores a set of complementary methods aimed at improv-
ing knowledge transfer in machine learning under practical constraints. By address-
ing critical challenges such as continual adaptation, task interference, and compu-
tational efficiency, the proposed approaches contribute to enhancing the robustness
and practicality of transfer learning in real-world settings. These methods—focused
on reducing forgetting in continual learning, mitigating gradient conflicts in multi-

task learning, and improving parameter efficiency in fine-tuning large models—offer

i



targeted solutions to common limitations in dynamic and resource-constrained envi-
ronments. Experimental results support their effectiveness, showing improvements in
model stability, generalization, and adaptability. Overall, this work offers both prac-
tical insights and methodological contributions that can inform future research and
applications in scalable, efficient machine learning. The results have been published

or submitted in various top Al conferences.
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Chapter 1

Introduction

IMustration of Knowledge Transfer. Knowledge transfer [301) [I83] enhances
model performance by leveraging knowledge from a source domain to improve learn-
ing in a related target domain, particularly when the target domain suffers from data
scarcity or distributional differences. This concept is inspired in part by theories of
transfer and generalization in educational psychology, where experience from one con-
text is applied to another. For example, someone familiar with playing the piano may
learn to play the electronic keyboard more easily due to shared foundational skills.
However, if the source and target domains differ substantially, negative transfer [255]
may occur, where the transferred knowledge adversely affects performance. A typi-
cal case is learning Spanish and French—despite being related Romance languages,

interference between similar grammatical or lexical structures can lead to confusion.

Importance of Knowledge Transfer. Knowledge transfer plays a pivotal role
in bridging the gap between traditional machine learning methods and real-world
applications. Conventional machine learning assumes that training and test data
share the same distribution, an assumption that rarely holds in practice. Labeled
data collection is often time-consuming and costly, and data distributions may shift

over time, between devices, or across environments. Such changes can significantly
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degrade model performance. In these cases, transferring previously acquired knowl-
edge becomes essential, allowing models to adapt more quickly and effectively to new

settings.

Applications of Knowledge Transfer. Knowledge transfer has demonstrated re-
markable utility across various domains. In natural language processing (NLP), pre-
trained language models such as BERT [47] significantly improve performance in tasks
like sentiment analysis [12] and text generation [293] [132], 212]. Large language mod-
els (LLMs), including GPT-4 [I] and Llama 3 [53], trained on vast corpora, achieve
state-of-the-art results across a wide range of tasks. These capabilities can be further
enhanced via fine-tuning and alignment [238] 118, [106], enabling applications such
as code generation [252] [I75, 254]. In computer vision, transfer learning is common
practice, where CNNs pretrained on large datasets like ImageNet [44] are adapted
for tasks such as medical image analysis [139, 219, 235]. Similarly, diffusion mod-
els [207, 177, 1706], B8], trained on extensive image datasets, can be adapted through
knowledge transfer to generate images in domain-specific styles. In summary, knowl-
edge transfer provides a practical and effective approach to overcome limitations in
data availability and distributional shifts, with broad applicability in NLP [211], com-

puter vision [300} 283], intelligent transportation [33], and biomedicine [187].

Challenges in Knowledge Transfer. Despite its advantages, knowledge transfer
faces three major challenges: (1) Model Rigidity. Traditional transfer methods
often fail to adapt in dynamic environments where tasks and data evolve over time.
In real-world applications, models are frequently exposed to novel tasks or sequential
data updates. Continual Learning (CL) [165, B7] addresses this by enabling models
to learn from new data while preserving previously acquired knowledge. (2) Data
Heterogeneity. Tasks often exhibit diverse and non-overlapping data distributions,
increasing the risk of negative transfer, where learning one task impairs performance
on another. This challenge arises because traditional transfer techniques struggle to

reconcile cross-task discrepancies. Multi-task Learning (MTL) [21] mitigates this is-
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sue by promoting the sharing of beneficial information across related tasks, thereby
reducing interference and enhancing generalization. (3) Resource Intensiveness.
Fine-tuning large-scale models, such as Llama 3 or GPT-4, demands substantial com-
putational resources and data. This resource burden can hinder the practical deploy-
ment of transfer learning. Parameter-efficient fine-tuning (PEFT) offers a solution
by modifying only a small subset of parameters or introducing lightweight trainable

components, making the transfer process more efficient and scalable.

Motivation and Thesis Scope. While knowledge transfer has achieved impres-
sive results across diverse domains, its practical deployment remains hindered by
challenges related to adaptability, data heterogeneity, and computational ef-
ficiency. These limitations highlight the need for more flexible, robust, and scalable
approaches that can accommodate evolving data landscapes and resource constraints.
This thesis aims to address these challenges by exploring novel methodologies that
enhance the effectiveness and efficiency of knowledge transfer, particularly in dynamic
and low-resource environments. Through a comprehensive investigation of continual
learning, multi-task learning, and parameter-efficient fine-tuning, we seek to advance
the theoretical understanding and practical utility of knowledge transfer, ultimately

contributing to the development of more generalizable and adaptable Al systems.

1.1 Continual Learning

Continual learning (CL) represents a pivotal advancement in enhancing
transfer learning (TL) methodologies, particularly when addressing the inher-
ent limitations of adapting models to dynamic environments. Traditional transfer
learning is adept at utilizing knowledge from one task to facilitate learning in an-
other; however, it typically assumes static conditions for both the source and target
tasks. This assumption rarely holds true in practical scenarios where both conditions

and data are subject to continuous change [237]. To overcome these challenges, CL
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intervenes to enable models to learn adaptively from new data while retaining previ-
ously acquired knowledge, transforming transfer learning models to operate robustly
across a range of evolving tasks. This integration significantly elevates their practical

utility and effectiveness.

One of the core challenges within continual learning is the phenomenon known
as catastrophic forgetting [69} 116}, [165], which occurs when training on new tasks leads
to a substantial deterioration in the model’s ability to perform previously learned
tasks. This issue primarily arises due to the inability to access data from older tasks
while optimizing for new ones, leading models to stray from optimal performance
on earlier tasks as more tasks are introduced. Traditional approaches to mitigating
this effect include maintaining a subset of data from old tasks [202), O], 22], applying
stringent regularization [164] 116, 286] to restrict model adaptability, or merely fine-
tuning parts of the model [8I]. These methods, however, often impose restrictions

that could hinder model flexibility and adaptation.

In contrast to these existing strategies, our thesis proposes an innovative approach fo-
cused on preemptively addressing the problem of forgetting during the initial training
phase of the base model. Specifically, we advocate for guiding the model towards con-
verging on a flat local minimum during the learning of existing tasks. This strategy
posits that subsequent learning of new tasks should involve only minimal deviations
within this flat local minimum area, thereby preserving the model’s ability to recall
older tasks effectively. This approach not only promises to enhance the robustness
of transfer learning models in dynamic settings but also offers a scalable solution to
the challenge of learning new tasks with limited data, a common scenario in practical

applications known as few-shot continual learning.

This section delineates the significance of integrating continual learning techniques
into transfer learning frameworks, focusing on overcoming traditional limitations
while innovating to reduce the impacts of catastrophic forgetting. By shifting to-

wards strategies that anticipate and mitigate forgetting at earlier stages of model
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training, We create a basis for developing more durable and versatile machine learn-

ing applications that can manage the challenges of real-world data environments.

1.2 Multi-task Learning

Multi-task learning (MTL) benefits in transfer learning. Multi-task Learning
(MTL) significantly extends the scope and effectiveness of Transfer Learning (TL) by
allowing models to concurrently learn from multiple related tasks. This synergistic
learning strategy leverages shared common features and representations, which not
only improves the model’s ability to generalize across tasks but also enhances the over-
all efficiency of the learning process. Within the transfer learning framework, MTL
provides a robust base model that demonstrates inherent versatility and superior per-
formance across diverse tasks. This integrated approach optimizes adaptability and
resource utilization, making MTL a pivotal component in advancing the capabilities

of transfer learning systems.

A prominent challenge in MTL, similar to transfer learning, is negative trans-
fer [209]. Negative transfer occurs when the learning process for one task inadvertently
hampers the performance of another task, despite their relatedness. The root cause
of this phenomenon is the presence of conflicting gradients [279, [140]. Conflicting gra-
dients arise when tasks being learned simultaneously influence the model’s updates
in incompatible ways. Specifically, if tasks have significantly different gradient direc-
tions, the task with the larger gradient magnitude can dominate the update process,
causing a decline in performance on other tasks. Conflicting gradients are character-
ized by large angular differences between the gradient vectors of different tasks during
the update phase. This misalignment can severely disrupt the learning process, as the
dominant task’s gradients skew the model’s learning trajectory, potentially degrading

the outcomes of less dominant tasks.
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Previous methodologies to mitigate these challenges have included modifying the
loss weights allocated to each task—effectively altering the learning rate for different
tasks [35] [114) 146, 142]. Another approach has involved modifying the direction of
gradient updates to accommodate multiple tasks more equitably [217], 279, 140, 104].
These methods strive to balance the influence of each task on the model’s updates,

ensuring that no single task’s requirements overshadow the others.

In this thesis, we introduce a novel strategy aimed at fundamentally eliminating con-
flicting gradients from the onset. Our approach involves identifying the layers within
the model where conflicting gradients are most severe—typically layers where the
gradient angles are particularly large. We then transform these layers from shared to
task-specific configurations, whereby each task is allocated its own independent pa-
rameters for these critical layers. This restructuring ensures that the remaining shared
layers are free from gradient conflicts, thus preserving the integrity and effectiveness of
the multi-task learning process. This targeted adjustment not only addresses the root
cause of negative transfer but also enhances the overall performance and adaptability

of the model across varied tasks.

This section highlights the transformative impact of integrating Multi-task Learning
(MTL) into Transfer Learning (TL) frameworks, emphasizing the resolution of inher-
ent challenges such as negative transfer. By adopting innovative strategies that pre-
emptively address conflicting gradients, our approach reshapes the landscape of multi-
task learning. Specifically, by modifying critical model layers to become task-specific,
we significantly reduce inter-task interference, enhancing the model’s ability to per-
form optimally across diverse tasks. This targeted intervention not only mitigates
the risks associated with negative transfer but also bolsters the overall performance
and adaptability of transfer learning systems. Consequently, we establish a robust
foundation for developing more versatile and effective machine learning applications,

tailored to thrive in the complexities of varied and dynamic data environments.
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1.3 Parameter Efficient Fine-Tuning

The rapid advancement of large language models (LLMs) has underscored the signif-
icance of Parameter Efficient Fine-Tuning (PEFT) in the realm of Transfer Learning
(TL). As these models continue to dominate various Al applications, the traditional
approach of extensively fine-tuning entire models becomes increasingly untenable due
to the prohibitive costs in computational resources and time. PEFT addresses these
challenges by enabling targeted adjustments through methods such as prompt en-
gineering [126] and other parameter-efficient techniques [291) 281]. These strategies
allow for significant behavioral modifications of the model with minimal adjustments
to the underlying parameters, conserving resources while also expediting the adap-
tation of LLMs to diverse tasks. This enhancement in adaptability across different
domains is achieved without the need for extensive retraining, thereby making trans-
fer learning more accessible and sustainable, and paving the way for rapid deployment

and innovation in Al-driven applications.

Currently, the most prominent PEFT algorithms are adapter-based methods [], among
which the Low-rank Adaptation (LoRA) [94] stands out. LoRA enhances model
flexibility by introducing adapters—composed of two low-rank matrices—at each layer
of the model. This setup predicts the change in model parameters, enabling fine-
tuning of a minimal number of parameters while maintaining performance on par
with full fine-tuning. However, a gap in existing methodologies is the lack of research
on determining which specific layers require adapters. Identifying layers that are most
relevant to the task could allow for fine-tuning of only those essential layers or adding
adapters selectively, which not only reduces the memory overhead during tuning but

also helps avoid overfitting, thus potentially enhancing model performance.

To address this gap, we propose a novel algorithm that involves learning a binary
mask for each incremental weight matrix used in the LoRA algorithm. This mask

serves as an indicator of the significance of each layer relative to specific tasks. If
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the mask value is 0, it implies that the layer does not require a LoRA adapter; if the
value is 1, it indicates that the layer is crucial and should be fine-tuned. This selective
approach not only optimizes the fine-tuning process by focusing on key layers but also

ensures that each adaptation precisely targets the task’s requirements.

In summary, this section elucidates the critical role of PEFT in enhancing the practi-
cality and efficacy of transfer learning, especially in the context of deploying LLMs. By
focusing on adapter-based methods like LoRA and introducing a targeted approach
to identify and adapt task-relevant layers, we substantially boost the efficiency and
effectiveness of models in handling various tasks. This refined methodology not only
mitigates the resource-intensive demands of traditional fine-tuning but also aligns
with the evolving needs of Al applications, ensuring that large-scale models remain

both versatile and effective in real-world scenarios.

1.4 Contributions

This thesis makes significant contributions to the field of transfer learning by address-
ing key challenges that limit its practical application and effectiveness across diverse

tasks and domains.

Contribution 1: Mitigating Negative Transfer and Enhancing Generaliza-
tion through Multi-task Learning (MTL). Negative transfer is a major obstacle
in transfer learning, where knowledge transfer between tasks can inadvertently de-
grade performance. We tackle this issue by introducing a novel MTL strategy that
reduces negative transfer and enhances the model’s generalization ability. By identi-
fying and resolving conflicting gradients during optimization, our approach helps in
training a more robust base model capable of handling multiple tasks simultaneously.
This improvement not only enhances the overall effectiveness of transfer learning but

also ensures that models are better prepared for subsequent transfer tasks.
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Contribution 2: Enabling Transfer Learning in Dynamic Environments
through Continual Learning (CL). Traditional transfer learning often struggles
in dynamic environments where tasks and data evolve over time. To address this, we
propose a continual learning methodology that enhances the adaptability of transfer
learning models. By guiding the model to converge on a flat local minimum during the
initial training, our approach minimizes catastrophic forgetting, allowing the model to
retain previously learned knowledge while adapting to new tasks. This contribution
significantly improves the practical applicability of transfer learning in real-world,

dynamic settings.

Contribution 3: Improving Fine-Tuning Efficiency in Large Models with
Parameter Efficient Fine-Tuning (PEFT). As models grow in size, the resource
demands for fine-tuning in transfer learning become increasingly prohibitive. We
address this by introducing an optimized PEFT approach that uses a binary mask
within the LoRA algorithm to selectively fine-tune only the most critical layers of
the model. This targeted fine-tuning reduces computational overhead and avoids
overfitting, thereby enhancing the efficiency of transfer learning even when dealing

with large-scale models like LLMs.

These contributions collectively advance the field of transfer learning by improving
model generalization, enabling effective adaptation in dynamic environments, and
optimizing fine-tuning processes for large models. These innovations make transfer
learning more robust, scalable, and applicable across a wider range of tasks and

scenarios.

Thesis organization. In Chapter [2, we provide a comprehensive overview of the
foundational concepts relevant to this thesis, including transfer learning, multi-task
learning, continual learning, and parameter-efficient fine-tuning. Chapter [3]introduces
our method for mitigating negative transfer in multi-task learning by addressing con-
flicting gradients at the root, thereby tackling the first challenge in transfer learning.

In Chapter [4, we address the second challenge by implementing a few-shot continual
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learning approach that prevents catastrophic forgetting during the training of the
base model. Chapter [5| addresses the third challenge by optimizing transfer learning
efficiency through selective fine-tuning of key layers in large language models (LLMs).
Finally, in chapter [6], we conclude this thesis and explore several potential directions

for future research.

10



Chapter 2

Background and Related Works

In this chapter, we begin by introducing the concept of knowledge transfer in machine
learning, followed by an overview of transfer learning. We then delve into the context
of multi-task learning, providing a review of related work and its evolution. Next, we
explore the scenario of continual learning, providing a comprehensive overview and
pointing out the importance of continual learning. Finally, we discuss the background
of parameter-efficient fine-tuning (PEFT). Through a review of relevant studies, we
demonstrate how PEFT significantly enhances the efficiency of knowledge transfer

while reducing resource consumption.

2.1 Knowledge Transfer

Knowledge transfer in machine learning involves the process of applying the knowl-
edge, patterns, and representations that a model has acquired from one or more
tasks—often situated in different domains or contexts—to improve the performance
of a new, but related, task. To formally describe transfer learning, we first need to

define the concepts of Domain and Task.

11
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Definition 2.1 (Domian). A domain D is defined by two components:
D = {x, P(X)}, (2.1)

where:

o X is the feature space, representing the set of all possible input instances (e.g.,

vectors, images, text).

o P(X) represents the probability distribution over the feature space X, and symbol
X denotes an instance set, i.e., X = {x; € X},. A domain characterizes the

environment or source from which data is drawn.
Definition 2.2 (Task). A task T is defined by two components:
T =AY, P(X|Y), f(1)}, (2.2)

where:

o Y denotes the label space, which is the set of all possible outcomes or target
values. For classification tasks, ) represents the set of possible classes, while

for regression tasks, it represents the range of possible output values.
o P(X|Y) is the conditional distribution mapping inputs to outputs.

o [:X — ) is an objective predictive function (also called the decision function
or hypothesis) that maps any input data point x € X to a corresponding label

y € Y. This function is typically learned from a set of labeled data

points {(x;,y;)}",.

In summary, a domain D outlines the type of data (defined by X') and its statistical
properties (defined by P(X) relevant to a particular machine learning problem. A
task 7 describes the target to be predicted (through ) and the method for making

12



2.1. Knowledge Transfer

predictions (through f(-)) based on the associated domain D. The task is not merely

a set—it aims to learn f(-).

After establishing the concepts of Domain D and Task 7, we can proceed to formally
introduce the concept of knowledge transfer. Knowledge transfer is a fundamental
technique aimed at improving a model’s performance on a target task by drawing on

insights learned from a related source task. The formal definition is as follows:

Definition 2.3 (Knowledge Transfer [257]). Given a source domain Dg with its cor-
responding task Ts = {Vs, fs(-)} and a target domain Dr with its corresponding task
Tr = {Vr, fr(-)}, knowledge transfer aims to improve the learning of the predictive
function fr(-) in the target task Tr by utilizing the knowledge derived from the source
domain Ds and task Tg.

Formally, knowledge transfer can be defined as the process of optimizing the function

fr(+) by leveraging:

K ={Ds,Ts, fs(-)}, (2.3)

where IC represents the knowledge acquired from the source domain and task. The

goal is to minimize the prediction error in the target domain Dr under the task Tr:

Ir};n E(IT7yT)NPT(XT,YT) [‘C’ (fT(xT)’ yT)] ) (2'4)

where L denotes the loss function associated with the task Tr, and Pr(Xp,Yr) repre-

sents the joint distribution of the input-output pairs in the target domain.

This definition formalizes the concept of knowledge transfer, highlighting how infor-
mation from a source domain and task can be leveraged to improve performance on
a related target task. The central objective is to reduce the prediction error in the

target domain by leveraging insights drawn from the source domain.

13
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2.2 Continual Learning

Continual learning [165], [37] focuses on enabling models to learn from new data while
retaining previously acquired knowledge, effectively mitigating the issue of catas-
trophic forgetting [69] 116} [165] and the need for adaptability in dynamic environ-

ments. The formal definition is given below:

Definition 2.4 (Continual Learning). Let T = {71,7s,...,Tn} denote a sequence
of N tasks, where each task T; = (D{™™ D) is associated with a training set D™
and a test set DI sampled from a data distribution Py(X,Y). A continual learning
algorithm aims to learn a single model fo parameterized by ©, by processing each task

T: sequentially, without revisiting the full data from previous tasks.

The objective of continual learning is to minimize the average risk across all tasks:

rnein ]17 ; E(zy)~p, [((fo(7), )]

under the constraint that each task T; is observed only once, and the model must retain

knowledge from previous tasks while acquiring new knowledge from the current task.

A continual learning algorithm must therefore address the stability-plasticity trade-
off, mitigating catastrophic forgetting of previous tasks while maintaining plasticity to

learn new tasks effectively.

To address these challenges, a wide range of methods have been proposed, each em-
ploying different mechanisms. These methods can be broadly classified into four cate-
gories: regularization-based, optimization-based, representation-based, and architecture-
based approaches. Furthermore, applying continual learning to large language models
(LLMSs) introduces additional complexities and unique challenges. In the following
section, we provide an overview of these strategies and discuss their respective con-

tributions to the field.

Regularization-Based Approaches: These methods aim to mitigate catastrophic

14
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forgetting by imposing strong regularization on network parameters [147], 124], 123,
116]. The core idea is to restrict the extent or range of parameter updates so
that the model does not deviate significantly from the low-loss regions of previous
tasks [205, 216, 286, 3, 26]. A well-known example is Elastic Weight Consolidation
(EWC) [116], which utilizes the Fisher information matrix to estimate the importance
of each parameter to previous tasks and penalizes changes to these parameters dur-
ing new task learning. Additionally, there are function regularization approaches that
leverage knowledge distillation (KD) [70] to continue reinforcing previously acquired
knowledge [I33], 20]. These methods often require retaining a subset of exemplars
from old tasks, which may include both previously seen [23, 50, 91], 202] and unseen
samples [48] [100] 120, 244]. However, the limited number of exemplars can lead to a

distribution that diverges from the true data distribution.

Optimization-Based Approaches: Unlike regularization methods that impose
constraints on the model through penalties, optimization-based approaches directly
modify the gradient updates when learning new tasks [155, 285 105]. Some tech-
niques [155] 27, 236], 204] store exemplars of old tasks and ensure that the gradient
update direction for new tasks remains closely aligned with that of the old tasks,
thus preventing forgetting. Other methods do not store any exemplars; for example,
OWM [285] and AOP [7§] record the input space of old tasks, while OGD [58] pre-
serves the gradient directions of old tasks and ensures that parameter updates are
orthogonal to either the input space or the previous gradient directions. Several other
methods follow similar principles [214] 136, 112, 141], aiming to limit the direction of
gradient updates to avoid conflicts with updates from prior tasks. Additionally, there
are meta-learning-based approaches [13], [105], [198] [99] that train the model to learn
how to learn, rather than learning task-specific knowledge directly, thereby reducing

the risk of forgetting.

Representation-Based Approaches: These approaches primarily focus on two

strategies. The first strategy uses self-supervised learning to prevent catastrophic
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forgetting [65] 160} [189], as representations learned through self-supervised training
tend to be more robust against forgetting. For instance, LUMP [160] improves self-
supervised continual learning by interpolating between instances of new and old tasks.
The second strategy involves using pre-training to obtain a strong base model [166,
2211, 261], which can then be fine-tuned for downstream tasks. Models pre-trained on
large datasets not only enhance learning of new tasks in a continual learning setting
but also effectively reduce catastrophic forgetting [I81], [199) [166]. When models are
sufficiently large and trained on ample data, they tend to retain old knowledge more

effectively.

Architecture-Based Approaches: Sharing the same network parameters across
all tasks in continual learning—i.e., optimizing a single set of model parameters—is a
fundamental cause of catastrophic forgetting. Therefore, many studies suggest that
continual learning should involve learning separate parameters for different tasks [J.
Fixed architecture methods [162, 218, 1111, 267], for instance, activate different neu-
rons for different tasks to prevent interference between tasks and avoid forgetting.
However, fixed network structures can limit scalability, prompting the development
of dynamic network architectures [276, 98], 180, 192]. Another approach is to ex-
tract task-relevant components from the model [56, 154, 222] [09], resulting in a set
of shared parameters and task-specific parameters, similar to multi-task learning ar-
chitectures. These task-specific parameters are expandable and updated whenever a
new task is encountered. Some methods [213], 2], 200} 253], instead of defining explicit
task-specific parameters, adopt an incremental approach by adding submodules to

the network.

Continual Learning for LLMs: Currently, there are three primary directions in
continual learning for large language models (LLMs). The first is continual pre-
training, which is considered the most critical. This approach aims to continually
update the model with the latest information [103, [102] or adapt it to specific subdo-

mains [79, 268]. The second is continual instruction tuning, which essentially involves
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transferring LLMs to downstream tasks in a continual manner, similar to the tradi-
tional paradigm of pretrained models followed by continual learning. These down-
stream tasks may include various tasks [119} 260], domains [38,251], and tools [193, [§].
The third direction is continual alignment, which addresses the evolving nature of
societal values and the diverse preferences of different demographic groups, ensur-
ing that the model continually learns different alignment preferences based on these

changes [271], [195].

2.3 Multi-Task Learning

The goal of Multi-task learning (MTL) [21] is to utilize shared knowledge across tasks
to improve performance on all tasks simultaneously. The formal definition given as

follows:

Definition 2.5 (Multi-Task Learning). Let T = {71, 72,..., Ty} denote a set of N

€ X, is the input and ygj) € ), is the corresponding label. Multi-task

learning tasks. Fach task T; is associated with its own dataset D; = {(
()

)

where x

N

learning aims to jointly learn a set of functions { fe.};L,, typically sharing parameters

O shared, such that performance across all tasks is optimized:

N
min Y Eyen,[Lil fo,.0.(2), )],

esha{ei}zj-vzl i=1

where L; is the loss function specific to task T;. The goal is to leverage commonalities

across tasks to improve generalization performance on each individual task.

A significant challenge in MTL is avoiding negative transfer, where learning multi-
ple tasks together leads to poorer performance than learning them independently.
To address this, various methods have been proposed, focusing on network archi-
tectures, optimization strategies, and task grouping techniques. In this section, we
review related works in these areas, highlighting their contributions and effectiveness

in mitigating negative transfer and enhancing multi-task learning.
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MTL Architectures: To prevent negative transfer between different tasks, sev-
eral task-specific network architectures have been proposed for multi-task learning,
including those in the fields of computer vision [146], 170, 159] and natural lan-
guage processing (NLP)[4, [7, 14, 24, 25]. These networks can generally be cate-
gorized based on the parameter-sharing strategy. One common approach is hard
parameter sharing, where the network uses a shared feature extractor with separate
decoders[114], 240} [174), 217, [146] or encoders [264], 247] for each task. Another ap-
proach is soft parameter sharing, where each task maintains its own task-specific
parameters [170], 210} [66], which make up the majority of the model, and interactions
between tasks occur through feature fusion and exchange. Additionally, there is a
category known as task routing [229], where different tasks learn distinct model com-

bination paths, or the network learns how to branch dynamically for each task [I§].

Optimization Strategies: Optimization-based methods in MTL primarily fall into
two categories. The first category involves directly modifying the weights of the loss
function based on the signals extracted from each task [35] 114 [76, 142} 146]. The
second category focuses on directly adjusting the size and direction of the model’s
gradient updates to avoid conflicting gradients [217]. For instance, methods like
PCGrad [279], CAGrad [140], RotoGrad [104], and FairGrad [161] modify gradients
to reduce the impact of conflicting gradients. PCGrad employs gradient projection,
CAGrad formulates the problem as an optimization task and solves for the optimal
solution, RotoGrad rotates the shared feature space, and FairGrad transforms multi-
task optimization into an optimization problem under different fairness constraints.
Unlike these methods, which directly modify the magnitude and direction of gradients,
GradDrop compares the sign of each gradient component across tasks, and if there is a

conflict (one positive and one negative), it drops the conflicting gradient component.

Task Grouping: Unlike network architecture modification and optimization, task
grouping [191], 225 228, [62] aims to find an optimal set of task groups, where the

tasks within each group do not overlap and are trained together to mutually benefit
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from one another, thus minimizing negative transfer. This strategy seeks to maximize
the average performance of each task. Taskonomy [283] provides a detailed grouping
of tasks related to segmentation in computer vision, revealing which tasks should be
trained together and which should not. TAG [62] uses gradient conflicts to guide
efficient task grouping, ensuring that tasks grouped together enhance each other’s

learning without detrimental interference.

These various approaches highlight the diverse strategies available in multi-task learn-

ing to improve model performance while minimizing the risks of negative transfer.

2.4 Parameter Efficient Fine-Tuning For LLMs

Adapter-based Fine-tuning. This approach involves inserting additional adapters
either within or alongside the main model layers. An adapter typically comprises three
components: a down-projection matrix, an activation function, and an up-projection
matrix. The initial designs of adapters were sequential [92] [188], which could hinder
the model’s inference speed. To address this issue, parallel adapters were subsequently
introduced [125] 57]. In addition to parallel adapters, CoDA [125] selects the top-K
most important tokens to pass through both the backbone network and the adapters,
while the less important tokens are processed solely by the adapters. This strategy
further enhances inference efficiency. Additionally, several adapter variants have been
proposed to leverage multi-task learning [41), 84], making them more suitable for

multi-task scenarios.

Prompt-based Fine-tuning. This method fine-tunes the model by directly mod-
ifying its embeddings through the addition of new prompt embeddings. Prefix-
tuning [131] and related methods [I48] [126] fine-tune models by adding learnable
parameters to the key and value embeddings within transformers or initial word em-

bedding. Prompt-based fine-tuning has been widely applied to downstream tasks [259]
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230], though the training process can often be unstable. PTP [31] thoroughly inves-
tigates this issue, revealing that minor changes in input can significantly impact the
loss function. To mitigate this, it introduces regularizers designed to smooth the

training process, ensuring that the loss function remains as stable as possible.

Selective Fine-tuning. This category of methods aims to improve fine-tuning ef-
ficiency by selectively tuning only the most critical model parameters. For instance,
BitFit [282] achieves strong performance by fine-tuning only the bias parameters.
PaFi [134] focuses on tuning model parameters with smaller absolute magnitudes.
Child-tuning [266] introduces an algorithm that fine-tunes a subset of network pa-

rameters in each training iteration, dynamically selecting which parameters to update.

Reparameterized Fine-tuning. LoRA [94] represents the primary method in this
category, utilizing two low-rank matrices to represent the change in model parameters
and adding this change to each linear layer of the network. During fine-tuning, only
these changes are learned, significantly reducing the computational cost. Following
LoRA, methods such as DyLoRA [245] and AdaLoRA [291] have been proposed,
which dynamically adjust the rank of the LoRA modules for each layer rather than
using a uniform rank across all layers. MOELORA [143] considers multi-task learning
scenarios and employs a Mixture-of-Experts (MOE) approach to train LoRA modules.
LoRA Dropout [I138] introduces random noise during the learning of LoRA modules

to prevent overfitting.
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Chapter 3

Overcoming Catastrophic
Forgetting in Few-Shot Continual

Learning

3.1 Introduction

Why study few-shot continual learning? Continual learning enables a model to
continually learn new concepts from new data without forgetting previously learned
knowledge. Rooted from real-world applications, this topic has attracted a significant
amount of interest in recent years [26] 121, 133} 202, T13]. Continual learning assumes
sufficient training data is provided for new classes, which is impractical in many
application scenarios, especially when the new classes are rare categories which are
costly or difficult to collect. This motivates the study of few-shot continual learning,
a more difficult paradigm that aims to continually learn new tasks with only a few

examples.

Challenges. The major challenge for continual learning is catastrophic forgetting [69,

116, 165], which refers to the drastic performance drop on previous tasks after learning
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new tasks. This phenomenon is caused by the inaccessibility to previous data while
learning on new data. Catastrophic forgetting presents a bigger challenge for few-shot
continual learning. Due to the small amount of training data in new tasks, the model
tends to severely overfit on new classes while quickly forgetting old classes, resulting

in catastrophic performance.

Current research. The study of few-shot continual learning has just started [237,
203, 296l 39, B30, 164, 289]. Current works mainly borrow ideas from research in
continual learning to overcome the forgetting problem, by enforcing strong constraints
on model parameters to penalize the changes of parameters [164, 116] 286], or by
saving a small amount of exemplars from old classes and adding constraints on the
exemplars to avoid forgetting [202, O1, 22]. However, in our empirical study, we
find that an intransigent model that only trains on base classes and does not tune
on new tasks consistently outperforms state-of-the-art methods, including a joint-
training method [237] that uses all encountered data for training and hence suffers
from severe data imbalance. This observation motivates us to address this harsh

problem from a different angle.

Our solution. Unlike existing solutions that try to overcome the catastrophic forget-
ting problem during the process of learning new tasks, we adopt a different approach
by considering this issue during the training of base classes. Specifically, we propose
to search for flat local minima of the base training objective function. For any param-
eter vector in the flat region around the minima, the loss is small, and the base classes
are supposed to be well separated. The flat local minima can be found by adding ran-
dom noise to the model parameters for multiple times and jointly optimizing multiple
loss functions. During the following few-shot continual learning stage, we fine-tune
the model parameters within the flat region, which can be achieved by clamping the
parameters after updating them on few-shot tasks. In this way, the model can ef-
ficiently learn new classes while preserving the old ones. Our key contributions are

summarized as follows:
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o We conduct a comprehensive empirical study on existing few-shot continual
learning methods and discover that a simple baseline model that only trains
on base classes outperforms state-of-the-art methods, which demonstrates the

severity of catastrophic forgetting.

o We propose a novel approach for few-shot continual learning by addressing the
catastrophic forgetting problem in the primitive stage. Through finding the flat
minima region during training on base classes and fine-tuning within the region
while learning on new tasks, our model can overcome catastrophic forgetting

and avoid overfitting.

o Comprehensive experimental results on CIFAR-100, minilmageNet, and CUB-
200-2011 show that our approach outperforms all state-of-the-art methods and

achieves performance that is very close to the approximate upper bound.

3.2 Related Work

Few-shot learning aims to learn to generalize to new categories with a few labeled
samples in each class. Current few-shot methods mainly include optimization-based
methods [63, 10T} 149, 201, 232, 231), 280] and metric-based methods [68, 00, 224]
249, 274, 287, 288, 273]. Optimization-based methods can achieve fast adaptation
to new tasks with limited samples by learning a specific optimization algorithm.
Metric-based approaches exploit different distance metrics such as L2 distance [224],
cosine similarity [249], and DeepEMD [287] in the learned metric/embedding space to
measure the similarity between samples. Recently, Tian et al. [242] find that standard
supervised training can learn a good metric space for unseen classes, which echoes

with our observation on the proposed baseline model in Sec. [3.3

Continual learning focuses on the challenging problem of continually learning to

recognize new classes in new coming data without forgetting old classes [27, 29, [49]
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272). Previous research mainly includes multi-class continual learning [22, [198, 06,
150, 278, 272] and multi-task continual learning [95, 133, 204]. To overcome the
catastrophic forgetting problem, some attempts propose to impose strong constraints
on model parameters by penalizing the changes of parameters [116,[3]. Other attempts
try to enforce constraints on the exemplars of old classes by restricting the output
logits [202] or penalizing the changes of embedding angles [91]. In this work, our
empirical study shows that imposing strong constraints on the arriving new classes
may not be a promising way to tackle few-shot continual learning, due to the scarcity

of training data for new classes.

Few-shot Continual learning [237, 203 296, 39, 30] aims to incrementally learn
from very few samples. TOPCI [237] proposes a neural gas network to learn and
preserve the topology of the feature manifold formed by different classes. FSLL [164]
only selects few model parameters for continual learning and ensures the parameters
are close to the optimal ones. To overcome catastrophic forgetting, IDLVQC [30]
imposes constraints on the saved exemplars of each class by restricting the embedding
drift, and Zhang et al. [289] propose to fix the embedding network for continual
learning. Similar to the finding of Zhang et al., we also discover that an intransigent
model that simply does not adapt to new tasks can outperform prior state-of-the-art

methods.

Robust optimization. It has been found that flat local minima leads to better
generalization capabilities than sharp minima in the sense that a flat minimizer is
more robust when the test loss is shifted due to random perturbations [89] 87, [109].
A substantial body of methods [1T], 190, [55], [82] have been proposed to optimize neural
networks towards flat local minima. In this paper, we show that for incremental few-
shot learning, finding flat minima in the base session and tuning the model within

the flat region on new tasks can significantly mitigate catastrophic forgetting.
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3.3 Pilot Study: Severity of Catastrophic Forget-

ting

3.3.1 Problem Statement

Few-shot Continual learning (FCL) aims to continually learn to recognize new classes
with only few examples. Similar to continual learning (CL), an FCL model is trained
by a sequence of training sessions {77, .-+, 7'}, where T' = {2z, = (2},y!)}; is the
training data of session t and z! is an example of class y! € C' (the class set of
session t). In FCL, the base session 7' usually contains a large number of classes
with sufficient training data for each class, while the following sessions (¢t > 2) only
have a small number of classes with few training samples per class, e.g., 7' is often
presented as an N-way K-shot task with small N and K. The key difference between
CL and FCL is, for CL, sufficient training data is provided in each session. Similar to
CL, in each training session t of FCL, the model has only access to the training data
7' and possibly a small amount of saved exemplars from previous sessions. When
the training of session t is completed, the model is evaluated on test samples from all
encountered classes C = J!_, C?, where it is assumed that there is no overlap between

the classes of different sessions, i.e., Vi, j and i # j, CCNC? = 0.

Catastrophic forgetting. FCL is undoubtedly a more challenging problem than
CL due to the data scarcity setting. CL suffers from catastrophic forgetting, a well-
known phenomenon and long-standing issue, which refers to the drastic drop in test
performance on previous (old) classes, caused by the inaccessibility of old data in
the current training session. Unfortunately, catastrophic forgetting is an even bigger
issue for FCL, because data scarcity makes it difficult to adapt well to new tasks and
learn new concepts, while the adaptation process could easily lead to the forgetting of
base classes. In the following, we illustrate this point by evaluating a simple baseline

model for FCL.
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3.3.2 A Simple Baseline Model for FCL

We consider an intransigent model that simply does not adapt to new tasks.
Particularly, the model only needs to be trained in the base session 7' and is directly

used for inference in all sessions.

Training (¢ = 1). We train a feature extractor f parameterized by ¢ with a fully-
connected layer as classifier by minimizing the standard cross-entropy loss using the
training examples of 7'. The feature extractor f is fized for the following sessions

(t > 2) without any fine-tuning on new classes.

Inference (test). In each session, the inference is conducted by a simple nearest
class mean (NCM) classification algorithm [168]. Specifically, all the training and test
samples are mapped to the embedding space of the feature extractor f, and Euclidean

distance d(+, ) is used to measure the similarity between them. The classifier is given

by

¢t — argmind(f(z: 0), p.), where p, — Jé Y=o f @), (3.

ceC

where C denotes all the encountered classes, p. refers to the prototype of class ¢ (the
mean vector of all the training samples of class ¢ in the embedding space), and N.
denotes the number of the training images of class ¢. Note that we save the

prototypes of all classes in C! for later evaluation.

The baseline model outperforms state-of-the-art FCL and CL methods.
We compare the above baseline model against state-of-the-art FCL methods includ-
ing FSLL [164], IDLVQC [30] and TOPIC [237], CL methods including Rebalance [91]
and iCarl [202], and a joint-training method that uses all previously seen data includ-
ing the base and the following few-shot tasks for training, for FCL. The performance
is evaluated on minilmageNet, CIFAR-100, and CUB-200. We tune the methods re-
implemented by us to the best performance. For the other methods, we use the results

reported in the original papers. The experimental details are provided in Sec. [3.5
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Figure 3.1: Comparison of the proposed baseline model with state-of-the-art FCL

and CL methods and the joint-training method.The baseline model outperforms all
the other methods.

As shown in Fig. B.I] the baseline model consistently outperforms all the compared
methods including the joint-training method (which suffers from severe data imbal-
ance) on every datasetﬂ Our proposed simple baseline introduces a fixed, pretrained
extractor and computes class prototypes as the mean embeddings of training samples.
This simple yet effective approach demonstrates strong performance, particularly
in few-shot scenarios, because freezing the extractor avoid catastrophic for-

getting. The fact that an intransigent model performs best suggests that

« For FCL, preserving the old (base classes) may be more critical than adapting
to the new. Due to data scarcity, the performance gain on new classes is limited

and cannot make up for the significant performance drop on base classes.

« Prior works [237, B0, 164, 9T, 202] that enforce strong constraints on model
parameters or exemplars during fine-tuning on new classes cannot effectively

prevent catastrophic forgetting in FCL, indicating that actions may need to be

taken in the base training stage.

'We notice that a similar observation is made in a newly released paper [289].
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3.4 Methodology

The goal of FCL is to preserve the old while adapting to the new efficiently. The
results and analysis in Sec. suggest that it might be “a bit late” to try to prevent
catastrophic forgetting in the few-shot learning sessions (¢ > 2), which motivates us

to consider this problem in the base training session.

Overview of our approach. To overcome catastrophic forgetting in FCL, we pro-
pose to find a b-flat (b > 0) local minima ©* of the base training objective function
and then fine-tune the model within the flat region in later few-shot learning sessions.
Specifically, for any parameter vector © in the flat region, i.e., 0 —0 <0 <X 0* + b,
the risk (loss) of the base classes is minimized such that the classes are well separated
in the embedding space of fg. In the later few-shot continual learning sessions (t > 2),

we fine-tune the model parameters within this region to learn new classes, i.e., to find

0 = argmein Z L(2;0), st. 06©—b=<06=< 0°+0.
z€Tt

As such, the fine-tuned model 0’ can adapt to new classes while preserving the old
ones. Also, due to the nature of few-shot learning, to avoid excessive training and
overfitting, it suffices to tune the model in a relatively small region. A graphical
illustration of our approach and prior arts, as well as the notions of sharp minima

and flat minima, are presented in Fig. [3.2]

3.4.1 Searching for Flat Local Minima in the Base Training
Stage

A formal definition of b-flat local minima is given as follows.

Definition 3.1 (b-flat local minima). Let © € R? be a parameter vector and L :

R? — R denote a loss function. We say © is a b-flat local minimum if there exists
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a positive vector b € Ri, constants € > 0, vy > 0, and Your > Vin, Such that the

following conditions hold:

1. Flatness within the b-neighborhood: For all ' € R? satisfying © — b =<
0 <0+b,

|L£(0") — L(O)| < e (small loss variation), (3.2)
IVLO) 2 < 7in  (weak local gradients). (3.3)

2. Condition 2 (Strict Increase Beyond Neighborhood): There exist c¢; <
0* — b and c; = 0* + b such that:

L(2;0) > L(2;,0%) forall © € (c1,0"—b)U(0*+b,cy).

Interpretation:

o The hyperrectangle [0 — b, 0 + b| defines a flat region where the loss varies by

at most €, and gradients are bounded by .

o Qutside the flat local region, the loss increases, which ensures that the flat region

corresponds to a local minima.

Hence, our goal is to find an approximately flat local minima of the base training
objective function. To this end, we propose to add some small random noise to the
model parameters. The noise can be added for multiple times to obtain similar but
different loss functions, which will be optimized together to locate the flat minima
region. The intuition is clear — the parameter vectors around the flat local minima

also have small function values.

To formally state the idea, we assume that the model is parameterized by © = {¢, ¥},
where ¢ denotes the parameters of the embedding network and ¢ denotes the param-

eters of the classifier. z denotes a labelled training sample. Denote the loss function
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Figure 3.2: Ilustration of our approach and existing solutions. — indicates the
continual learning steps on new classes. R; and R, respectively denote the loss of
base classes before and after minimizing the loss of new classes. (a) SGD finds sharp
minima in the base training. Directly tuning the model on new classes will result
in a severe performance drop on base classes. (b) Enforcing strong constraints on
parameters by penalizing parameter changes [3, 116} [164] may still lead to a significant
performance drop on base classes. (c¢) Finding flat local minima of base classes and
clamping the parameters after training on new classes to make them fall within the

flat region can effectively mitigate catastrophic forgetting.

by £: R% — R. Our target is to minimize the expected loss function R: R? — R

w.r.t. the joint distribution of data z and noise ¢, i.e.,

— /Rde /Rdz L(z;¢+€,1)dP(2)dP(e) = E[L(z; 0 + €,7)], (3.4)

where P(z) is the data distribution and P(e€) is the noise distribution, and z and e
are independent. Since it is impossible to minimize the expected loss, we minimize

its estimation, the empirical loss, which is given by

1 M
- M Z *Cbase(z; Qb + €5, ¢)7 where (35)
=1

Ebase( ¢+€g,¢ |7-1‘ Z 'Cce ¢+€j,¢ +>‘W Z Hpc pZHg’ (36)

2€T1 ceCl

where €; is a noise vector sampled from P(e), M is the sampling times, L..(z; ¢+¢€;, 1)

refers to the cross-entropy loss of a training sample z, and p. and p} are the class
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prototypes before and after injecting noise respectively. The first term of Ly, is
designed to find the flat region where the parameters ¢ of the embedding network
can well separate the base classes. The second term enforces the class prototypes fixed
within such region, which is designed to solve the prototype drift problem [278] [30]
(the class prototypes change after updating the network) in later continual learning
sessions such that the saved base class prototypes can be directly used for evaluation

in later sessions.

3.4.2 Few-shot Continual Learning within the Flat Region

In the few-shot continual learning sessions (¢ > 2), we fine-tune the parameters ¢
of the embedding network within the flat region to learn new classes. It is worth
noting that while the flat region might be relatively small, it is enough for few-shot
continual learning. Because only a few training samples are provided for each new
class, to prevent overfitting in few-shot learning, excessive training should be avoided

and only a small number of update iterations should be applied.

We employ a metric-based classification algorithm with Euclidean distance to fine-

tune the parameters. The loss function is defined as

e~ Upe,f(59))
Ln(20) == > 1y = c)log(

2€T ceC Serec e~ (pey, . f(:9))

), z (3.7)

where d(-,-) denotes Euclidean distance, p. is the prototype of class ¢, C = Ul_, C!
refers to all encountered classes, and 7 = T*|JP denotes the union of the current
training data 7' and the exemplar set P = {P,, ..., P, 1}, where P, (2 < t, < t) is
the set of saved exemplars in session t.. Note that the prototypes of new classes are
computed by Eq. and those of base classes are saved in the base session. After
updating the embedding network parameters, we clamp them to ensure that they
fall within the flat region, i.e. ¢* —b X ¢ = ¢* + b, where ¢* denotes the optimal
parameter vector learned in the base session. After fine-tuning, we evaluate the model

using the nearest class mean classifier as in Eq. 3.1 with previously saved prototypes
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and newly computed ones. The whole training process is described in Algorithm [I}
Note that to calibrate the estimates of the classifier, we normalize all prototypes to

make those of base classes and those of new classes have the same norm.

3.4.3 Convergence Analysis

Our aim is to find a flat region within which all parameter vectors work well. We
then minimize the expected loss w.r.t. the joint distribution of noise ¢ and data z.
To approximate this expected loss, we sample from P(e) for multiple times in each
iteration and optimize the objective function using stochastic gradient descent (SGD).
Here, we provide theoretical guarantees for our method. Given the non-convex loss
function in Eq. we prove the convergence of our proposed method. The proof
idea is inspired by the convergence analysis of SGD [15] [1T5].

Formally, in each batch k, let z; denote the batch data, {e; }]]\il be the sampled noises,
and ay, be the step size. In the base training session, we update the model parameters

as follows:

(0%

M o M
Ort1=0p — Mk > VLase(zi; O + €5, 0) = 0 — Mk > 9z de +€5,0),  (3.8)
=1 i=1

where g(2zx; ¢ + €5, Vr) = V Liase(2k; &1 + €5, ¢ is the gradient. To formally analyze

the convergence of our algorithm, we define the following assumptions.

Assumption 3.1 (L-smooth risk function). The expected loss function R : R? — R
(Eq. is continuously differentiable and L-smooth with constant L > 0 such that

IVR(®) — VR(®')> < L||® — 0. (3.9)

This assumption is significant for the convergence analysis of gradient-based opti-
mization algorithms, since it limits how fast the gradient of the loss function can

change w.r.t. the parameter vector.
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Algorithm 1: F2M
Input: the flat region bound b, randomly initialized © = {¢, 1}, the step sizes a

and 3.

// Training over base classes t=1

for epoch £k =1,2,... do

for j =1.2,...., M do

Sample a noise vector €; ~ P(e), s.t. —b < ¢; < b;

Add the noise to the parameters of the embedding network, i.e.,
0 ={¢+¢, v}

Compute the base loss Lp.se with Eq. ;

Reset the parameters, i.e., 0 = {¢, ¥ };

end
Update © = 0 — aV.L(0) with the loss £ defined in Eq. 3.5
end

Normalize and save the prototype of each base class;

// Incremental learning ¢ > 2
Combine the training data D' and the exemplars saved in previous few-shot
sessions 2 < t, < t;

for epoch k£ =1,2,... do

Compute the metric-based classification loss £,, by Eq.

Update ¢ = ¢ — BV L, (2; 6);

Clamp the parameters ¢ to ensure they fall in the flat minima region;
end
Randomly select and save a few exemplars from the training data D;
Normalize and save the prototype of each new class;

Output: Model parameters 0 = {¢, 9 }.
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Assumption 3.2. The expected loss function satisfies the following conditions:

o Condition 1: R is bounded below by a scalar R*, given the sequence of parameters

{61}

« Condition 2: For all k € N and j € [1, M],

]Ezlmfj [g(zk; ¢k + €5, %)] = VR(ek)- (3.10)

o Condition 3: There exist scalars m; > 0 and mo > 0, for all k € N and
J €1, M],
Vs (925 O + €5, 00)] < my 4+ mal[VR(8)]]3- (3.11)

K. [-] denotes the expectation w.r.t. the joint distribution of random variables zj
and ¢;, and V,, . [-] denotes the variance. Condition 1 ensures that the expected
loss R is bounded by a minimum value R* during the updates, which is a natural
and practical assumption. Condition 2 assumes that the gradient g(z; ¢r + €5, V%)
is an unbiased estimate of VR(0y). This is a strict assumption made to simplify
the proof, but it can be easily relaxed to a general and easily-met condition that
there exist py > pp > 0 satisfying [|E., ¢ [g(zk; & + €5, ¥r)]ll2 < pa|[VR(8y)]]2 and
VR(0:)E., ,[9(zk; O + €5, %)] = p2|| VR(05)]]3. Condition 3 assumes the variance
of the gradient g(zx; ¢ + €;,¢x) cannot be arbitrarily large, which is also reasonable
in practice. It is worth noting that Bottou et al. also adopts the same assumption
in their work proving the convergence of SGD, as it facilitates obtaining the desired
bound more easily. The steps in the proofs where assumptions are used have been

bolded to improve readability.

To facilitate later analysis, similar to [206], we restrict the step sizes as follows.

Assumption 3.3. The learning rates satisfy:

Y ap =00, Y aj < oo. (3.12)
k=1 k=1
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This assumption can be easily met, since in practice the learning rate «ay is usually
far less than 1 and decreases w.r.t. k. Based on the above assumptions, we can derive

the following theorem.

Theorem 3.1. Under assumptions|[3.1] and[3.3, we further assume that the risk
function R is twice differentiable, and that ||[VR(0)||3 is La-smooth with constant
Ly > 0, then we have

Jim E{|VA(0,)[3) = 0. 313

This theorem establishes the convergence of our algorithm. The proof is presented as

follows:

Lemma 3.1. By Assumption and[53.3, we have

2M — apL(mg + M)
2M

aiLm;

(3.14)

B [R(Oki1)] — R(O) < —au IVR(O)I3 +

Proof. By Assumption an important consequence is that for all {#,60'} C R,
it satisfies that

R(0) < R(®') + VR(O')'(0 - 0') + ;LHQ — 0|2 (3.15)

Taken together, the above inequality and the parameter update equation (Eq. |3.8)),

it yields

1 2L
R(Op41) — R(0r) < VR(Qk)T(QkH—Qk)+§L||9k+1—9kH3 < —OékVR(Qk)TﬁJr%H?Hga
(3.16)

where g = ﬁ Zj]‘il 9(zk; ¢ + €5, 1y). Taking expectation on both sides of Eq. , it
yields

2
aiL 2

Es\q; [R(Or41)] — R(0k) < —axVR(01) Bz, (9] + 5 Eae; [lI9112]- (3.17)

K., c; [-] denotes the expectation w.r.t. the joint distribution of random variables zj

and ¢; given 0. Note that 6,4, (not ;) depends on z; and ¢;. Under Condition 2
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of Assumption the expectation of g satisfies that

M
Ezk eJ Z Ezk e] Zkv ¢k + €5, 77ij)] = VR(ek) (318)
j:l

Assume that we sample the noise vector ¢; from P(e) without replacement. Under

Condition 3 of Assumption [3.2] we have

Vzk,ej [g(zka Cbk + €5, wk)] my

Voo 7] < - <L TRIORE)E (319)

Taken together, Eq. and Eq. [3.19 one obtains

_ - . my me + M
Epe; 1T13] = Vo, [0] + 1Bep s [0 < 7 + —— VRO 3. (3.20)
M M
Therefore, by Eq. |3.17, and [3.20] it yields
2M — apL(mg + M) aiLmy

By o [R(041)] — RO < —a 220 VR3S (3.21)
O]

Lemma 3.2. By Assumption and (3.3, we have

lim inf E[||VR(0;)|3] = 0. (3.22)

Proof. The first condition in Assumption ensures that limy_,., o, = 0. Without
loss of generality, we assume that for any & € N, ayL(ms + M) < M. Denote by
E[-] the total expectation w.r.t. all involved random variables. For example, 6y is de-
termined by the set of random variables {zo, 21, ..., 2k_1, €0, €1, ..., €41}, and therefore

the total expectation of R(0y) is given by
E[R(ek)] = E20,€0E21,61"'Equ,ekﬂ[R(0k>]' (323)

Taking total expectation on both sides of Eq/3.14] we have

ailmy
2M

E[R(0) + 1) - E[R(6)] <~ E[|VR(B)[3] + (3.24)
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For £k =0,1,2,..., K, summing both sides of this inequality yields

B~ EIR(0))] < EIR(Pxcn)) ~ BIR() < ~5 3 B VRO + 57 > o

1\3 \

where R* is the lower bound in Condition 1 of Assumption [3.2] Rearranging

the term gives

5 oyl VR(6:)IF) < 2AEIRO)] - )+ s >t (3.26)

By the second condition of Assumption |3.3, we have

2 <oo.  (3.27)

K—o0

Jim B[ [ VR(6,)[3) < 2(B[R(00)] - ) + 1

Dividing both sides of Eq. by % | a; and by the first condition of Assump-

tion [3.3] we have
i A VRGO

] =0. (3.28)

The left-hand term of this equation is the weighed average of ||V R(6;)]3, and {ay}
are the weights. Hence, a direct consequence of this equation is that |[VR(6)|3

cannot asymptotically stay far from zero, i.e.
lim inf E[||[VR(0:)|5] = 0. (3.29)
—00

]

We now prove Theorem [3.1] which is a stronger consequence than Lemma [3.2]

Theorem 4.1. Under assumptions|[3.1] and[3.3, we further assume that the risk
function R is twice differentiable, and that |[VR(0)||3 is La-smooth with constant

Lo > 0, then we have

Jlim E[[[VR(6;)]3] = 0. (3.30)
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Proof. Define F(0) = ||R(0)]3, then we have

1
B [F(Or1)] = F(6) < VE(0k) Bay ) [(Or1 = 1)) + 5 LoBey ¢, [[| 0411 — O3]

Q%LQ

< _akVF(ek)TEzk,Gj [?] + 9 Ezkyej[“gl‘%]
T2 T 1, ails 12
< _2akVR<9k) \4 R(ek) Ezk,ej [g] + ?Ezkyfj[HgHQ]
2112 — ajLy 112
< 204 [V R(Ok) 2V R(Ok) |2 Eape; 9|2 + =5 Eap e [[9112]
aily m;  mg+ M
<20, LIVAEIE + L2 (4 "M g R ).
(3.31)
Taking total expectation of both sides of Eq. yields
aily my  me+ M
ELF(0hi)] — EIF(0,)] < 200 LE(IVRO3) + 222(20 + ™2 Mgy g, ).

(3.32)

Eq. implies that 2a; LE[||VR(6})|/3] is the term of a convergent sum. Besides,
Q%LQ
2

converges. Hence, the bound (Eq. [3.32) is also the term of a convergent sum. Now,

(2 4 22 ME[|V R(6y)||3]) is also the term of a convergent sum, because 332, o2

let us define

Ak = Kijl max (0, E[F(0r41)] — E[F(6))]), (3.33)

&
and Ay = 1;) max(0, E[F(0;)] — E[F(011)])- (3.34)
Because the bound of E[F(0)41)] —E[F(6)] is positive and is the term a of convergent
sum, and the sequence A} is upper bounded by the sum of the bound of E[F (0, 1)] —
E[F(6},)], Aj converges. Similarly, Ay also converges. Since for any K € N, F(0x) =
F(6y) + A — Ay, we can obtain that F(6},) converges. By Lemma [3.2] and the fact

that F'(0x) converges, we have
. 21
i E[|[R(9)]3] = 0. (3.35)

]
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3.5 Experiments

In this section, we comprehensively evaluate our proposed method for few-shot con-
tinual learning and demonstrate its effectiveness through detailed comparisons with

state-of-the-art methods.

3.5.1 Experimental Setup

Table 3.1: Classification accuracy on CIFAR-100 for 5-way 5-shot incremental learn-

ing. * indicates our re-implementation.

sessions The gap

Method with cRT
1 2 3 4 5 6 7 8 9

¢RT [11I0)* 65.18 63.89 60.20 57.23 53.71 50.39 48.77 47.29 45.28 -
Joint-training*  65.18 61.45 57.36 53.68 50.84 47.33 44.79 42.62 40.08 -5.20
Baseline 65.18 61.67 58.61 55.11 51.86 49.43 47.60 45.64 43.83 -1.45
iCaRL [202]* 66.52 57.26 54.27 50.62 47.33 44.99 43.14 41.16 39.49 -5.79
Rebalance [9I]* 66.66 61.42 57.29 53.02 48.85 45.68 43.06 40.56 38.35 -6.93
FSLL [164]* 65.18 56.24 54.55 51.61 49.11 47.27 4535 43.95 42.22 -3.08
iCaRL [202] 64.10 53.28 41.69 34.13 27.93 25.06 20.41 1548 13.73 -31.55

Rebalance [91)  64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 -31.74
TOPIC [237) 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 -15.91

FSLL [164] 64.10 55.85 51.71 4859 4534 43.25 4152 39.81 38.16 -7.12
FSLL+SS [164] 66.76 55.52 52.20 49.17 46.23 44.64 43.07 41.20 39.57 -5.71
F2M 64.71 62.05 59.01 55.58 52.55 49.96 48.08 46.28 44.67 -0.61

Datasets. We utilize CIFAR-100, minilmageNet, and CUB-200-2011 for our eval-
uations. For CIFAR-100 and minilmageNet, we randomly select 60 classes as base
and the remaining 40 as new classes. Each class in CIFAR-100 comprises 500 train-
ing images and 100 test images, sized 32x32. In minilmageNet, each class includes
500 training images and 100 test images, each sized 84x84. For the CUB-200-2011
dataset, which contains 5994 training and 5794 test images, we resize and crop each
image to 224x224. This dataset is split into 100 base and 100 new classes, where we
test 10-way 5-shot tasks.
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Table 3.2: Classification accuracy on minilmageNet for 5-way 5-shot incremental

learning. * indicates our re-implementation.

sessions The gap

Method with cRT
1 2 3 4 5 6 7 8 9

¢RT [I1I0)* 67.30 64.15 60.59 57.32 54.22 5143 4892 46.78 44.85 -
Joint-training®  67.30 62.34 57.79 54.08 50.93 47.65 44.64 42.61 40.29 -4.56
Baseline 67.30 63.18 59.62 56.33 53.28 50.50 47.96 45.85 43.88 -0.97
iCaRL [202]* 67.35 59.91 55.64 52.60 49.43 46.73 44.13 42.17 40.29 -4.56
Rebalance [91]* 67.91 63.11 58.75 54.83 50.68 47.11 43.88 41.19 38.72 -6.13
FSLL [164)* 67.30 59.81 57.26 54.57 52.05 49.42 46.95 44.94 4287 -1.11
iCaRL [202] 61.31 46.32 4294 37.63 3049 24.00 20.89 18.80 17.21 -27.64

Rebalance [9I]  61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 -30.68
TOPIC [237] 61.31 50.09 45.17 41.16 3748 3552 3219 2946 24.42 -20.43

FSLL [164] 66.48 61.75 58.16 54.16 51.10 48.53 46.54 4420 42.28 -2.57
FSLL+SS [164] 68.85 63.14 59.24 5523 5224 49.65 47.74 4523 43.92 -0.93
IDLVQ-C [30] 64.77 59.87 55.93 52.62 49.88 4755 44.83 43.14 41.84 -3.01
F2M 67.28 63.80 60.38 57.06 54.08 51.39 48.82 46.58 44.65 -0.20

Baselines. We compare our method F2M with 8 methods: the Baseline proposed
in Sec. [3.3] a joint-training method that uses all previously seen data including the
base and the following few-shot tasks for training, the classifier re-training method
(cRT) [110] for long-tailed classification trained with all encountered data, iCaRL [202],
Rebalance [91], TOPIC [237], FSLL [164], and IDLVQ-C [30]. For a fair compari-
son, we re-implement ¢cRT [110], iCaRL [202], Rebalance [91], FSLL [164], and the
joint-training method and tune them to their best performance. We also provide the
results reported in the original papers for comparison. The results of TOPIC [237]
and IDLVQ-C [30] are copied from the original papers. Note that for CL, joint-
training is naturally the upper bound of continual learning algorithms, however, for
FCL, joint-training is not a good approximation of the upper bound because data
imbalance makes the model perform significantly poorer on new classes (long-tailed
classes). To address the data imbalance issue, we re-implement the cRT method as

the approximate upper bound.
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Table 3.3: Classification accuracy on CUB-200-2011 for 10-way 5-shot incremental

learning.* indicates our re-implementation.

sessions The gap
Method with cRT
1 2 3 4 5 6 7 8 9 10 11
cRT [110]* 80.83 7851 76.12 7393 7146 68.96 67.73 66.75 64.22 62.53 61.08 -
Joint-training®  80.83  77.57 74.11 70.75 68.52 65.97 64.58 62.22 60.18 58.49 56.78 -4.30
Baseline 80.87 77.15 7446 7226 69.47 67.18 65.62 63.68 61.30 59.72 58.12 -2.96

iCaRL [202]* 79.58 67.63 64.17 61.80 58.10 55.51 53.34 50.89 48.62 47.34 45.60 -15.48
Rebalance [91]* 80.94 70.32 6296 57.19 51.06 46.70 44.03 40.15 36.75 34.88 32.09 -28.99
FSLL [164]* 80.83 77.38 7237 7184 6751 6530 63.75 61.16 59.05 58.03 55.82 -5.26
iCaRL [202] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 -39.92
Rebalance [0I]  68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 -41.21
TOPIC [237) 68.68 6249 54.81 4999 4525 4140 3835 3536 3222 2831 26.28 -34.80

FSLL [164] 7277 69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 5539 54.21 -6.87
FSLL+SS [164] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 5870 56.45 56.41 55.82 -5.26
IDLVQ-C [30] 7037 7472 70.28 67.13 6534 63.52 62.10 61.54 59.04 58.68 57.81 -3.27
F2M 81.07 78.16 75.57 72.89 70.86 68.17 67.01 65.26 63.36 61.76 60.26 -0.82

Experimental details. The experiments are conducted with NVIDIA GPU RTX3090
on CUDA 11.0. We randomly split each dataset into multiple tasks (sessions). For
each dataset (with a fixed split), we run each algorithm for 10 times and report the
mean accuracy. We adopt ResNet18 [83] as the backbone network. For data augmen-
tation, we use standard random crop and horizontal flip. In the base training stage,
we select the last 4 or 8 convolution layers to inject noise, because these layers output
higher-level feature representations. The flat region bound b is set as 0.01. We set
the number of times for noise sampling as M = 2 ~ 4, since a larger M will increase
the training time. In each few-shot continual learning session, the total number of

training epochs is 6, and the learning rate is 0.02.

Exemplar Management. Since there lacks a unified standard in storing/saving
exemplars for few-shot continual learning, we choose the setting that we consider
most reasonable and practical. In real-world applications, normally there exists a
large number of base classes with sufficient training data (e.g., the base dataset is

ImageNet-1K [44]), whereas the number of unseen novel classes that lack training
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Table 3.4: Our re-implementation results of FSLL are very close to those reported

*

in [3] on CIFAR-100 for 5-way 5-shot incremental learning. indicates our re-

implementation. The results are obtained without saving any exemplars.

sessions
Method

1 2 3 4 bl 6 7 8 9

FSLL [3]* 65.18 56.37 52.59 48.39 47.46 43.44 41.37 40.17 38.56
FSLL [3] 64.10 55.85 51.71 48.59 45.34 43.25 41.52 39.81 38.16

data is relatively small. Therefore, for computational efficiency and efficient use of
storage, it is desirable NOT saving any exemplars for base classes but store some
exemplars for new classes. In our experiments, we do not store any exemplar for base
classes, but save 5 exemplars for each new class. This will hardly cost any storage

space or slow down computation considerably due to the small number of new classes.

To ensure a fair comparison, for ICaRL [202] and Rebalance [91], we store 2 exemplars
per class (for both base classes and new classes). As a result, in each session, they
store more examplars than our method. For our re-implementation of FSLL [164],
we store the same number of exemplars for each new class as in our method. For
other approaches, since the code is not available or the method is too complex to re-
implement, we directly use the results reported in their paper, which are substantially

lower than the Baseline.

Correctness of our implementation. To verify the correctness of our implemen-
tation of ICaRL* [202] and Rebalance* [91], we conduct experiments on CIFAR-100
for incremental learning. We adopt 32-layer ResNet as backbone and store 20 exem-
plars per class as in Rebalance [91]. The comparative results are presented in Fig .
It can be seen that our re-implementation results of ICaRL and Rebalance are very

close to those reported in [91].

To verify the correctness of our implementation of FSLL [164], we compare the results
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of our implementation and those reported in [164] in Table [3.4] It can be seen that
our implementation achieves similar and slightly higher results than those reported in
the original paper [164]. Here, the experiments are conducted following the settings

in [164] without saving any exemplars for new classes.

3.5.2 Comparison with the State-of-the-Art

F2M outperforms the state-of-the-art methods. The main results on CIFAR-
100, minilmageNet and CUB-200-2011 are presented in Table [3.1, Table |3.2[ and
Table respectively. Based on the experiment results, we have the following ob-
servations: 1) The Baseline introduced in Sec. outperforms the state-of-the-art
approaches on all continual sessions. 2) As expected, cRT consistently outperforms
the Baseline up to 1% to 3% by considering the data imbalance problem and ap-
plying proper techniques to tackle the long-tailed classification problem to improve
performance. Hence, it is reasonable to use cRT as the approximate upper bound of
FCL. 3) Our F2M outperforms the state-of-the-art methods and the Baseline. More-
over, the performance of F2M is very close to the approximate upper bound, i.e., the
gap with ¢RT is only 0.2% in the last session on minilmageNet. The results show
that even with strong constraints [91, 202], [164] and saved examplars of base classes
[9T1, 202), 0], current methods cannot effectively address the catastrophic forgetting
problem. In contrast, finding flat minima seems a promising approach to overcome

this harsh problem.

3.5.3 Ablation Study and Analysis

Analysis on the flatness of local minima. Here, we verify that our method can
find a more flat local minima than the Baseline. For a found local minima ©0*, we
measure its flatness as follows. We sample the noise for 1000 times. For each time, we

inject the sampled noise to 0* and calculate the loss £;. Then, we adopt the indicator
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Table 3.5: Comparison of the flatness of the local minima found by the Baseline and

our F2M.

Indicator 1 Variance o2
Method
Training Set Testing Set Training Set Testing Set
Baseline 0.2993 0.4582 0.1451 0.2395
F2M 0.0506 0.0800 0.0296 0.0334
I = w555 221 (£, — £7)? and variance 02 = 555 3121 (£;— £)? to measure the flatness.

L* denotes the loss of 0*, and £ denotes the average loss of {£;}1%°. The values of
the indicator and variance of F2M and the Baseline are presented in Table 3.5 which

clearly demonstrate that our method can find a more flat local minima.

Table 3.6: Ablation study of our F2M on CIFAR-100. PD refers to the performance

dropping rate.

sessions

FM PF PC PN PD |
1 2 3 4 5 6 7 8 9

65.18 60.83 53.13 43.57 23.75 10.76 08.26 07.24 06.45 58.73

v 65.18 59.48 56.77 52.99 50.09 47.80 45.92 44.20 4255 22.63
v v v 6471 59.54 53.03 45.09 41.68 39.04 38.64 37.19 36.01 28.70
v v v’ 6455 61.27 5833 54.82 51.60 49.22 4748 4578 44.08 2047
v v 64.71 61.75 5880 55.33 52.27 49.75 47.72 46.01 4443 20.28
v v v v 6471 61.99 58.99 55.58 52.55 49.96 48.08 46.28 44.67 20.04

Ablation study on the designs of our method. Here, we study the effectiveness
of each design of our method, including adding noise to the model parameters for
finding b-flat local minima (FM) during the base training session, the prototype fixing
term (PF) used in the base training objective (Eq. [3.6]), parameter clamping (PC)
during continual learning, and prototype normalization (PN). We conduct an ablation

study by removing each component in turn and report the experimental results in

Table 3.6l
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Finding b-flat local minima. Standard supervised training with SGD as the optimizer
tends to converge to a sharp local minima. It leads to a significant drop in performance
because the loss changes quickly in the neighborhood of the sharp local minima. As
shown in Table [3.6, even with parameter clamping during continual learning, the
performance still drops significantly. In contrast, restricting the parameters in a

small flat region can mitigate the forgetting problem.

Prototype fixing. Without fixing the prototypes after injecting noise to selected layers
during the process of finding local minima, i.e. removing the second term of Eq. [3.6]
it is still possible to tune the model within the flat region to well separate base
classes. However, the saved prototypes of base classes will become less accurate
because the embeddings of the base samples suffer from semantic drift [278]. As

shown in Table [3.6] it results in a performance drop of nearly 0.6%.

Parameter clamping. Parameter clamping restricts the model parameters to the b-flat
region after few-shot continual learning. Outside the b-flat region, the performance
drops quickly. It can be seen from Table that removing parameter clamping leads

to a significant drop in performance.

Prototype normalization. In our experiments, we observe that after training on base
classes with balanced data, the norms of the class prototypes of base classes tend
to be similar. However, after fine-tuning with very few data on unseen new classes,
the norms of the new class prototypes are noticeably smaller than those of the base
classes. In Table we show the average norms of the prototypes of base classes and
new classes after few-shot continual learning on CIFAR-100, where we randomly select
60 classes as base classes and the remaining 40 classes as new classes. To calibrate
the estimates of the classifier, we normalize the class prototypes to calibrate the
estimates of the class mean classifier. The results in Table [3.6] show the effectiveness

of normalization, which helps to further improve the performance.
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CIFAR-100 (5 phases)

T
—@- Rebalance

ol oy Table 3.7: The average norm of the
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class prototypes of new classes is signif-
R

icantly smaller than that of old classes.

Accuracy(%)
D
(e

50 7 The experiment is conducted on CIFAR-
40 100 with 60 base classes and 40 new
50 60 70 80 90 100 1
Number of classes classes.
Figure 3.3: Our re-implementation re- Mean Standard Deviation
sults of Rebalance and ICaRL are very Base classes  7.97 0.63
close to those reported in [202]. * indi- New classes  7.48 0.71

cates our re-implementation.

Study of the flat region bound b. We study the effect of the flat region bound
b for 5-way 5-shot continual learning on CIFAR-100. We report the test accuracy in
session 1 (base session) and session 9 (last session) w.r.t. different b in Table It
can be seen that the best results are achieved for b € [0.005,0.02]. A larger b (e.g.,
0.04 or 0.08) leads to a significant performance drop on base classes, even for those
in session 1, indicating that there may not exist a large flat region around a good
local minima. Meanwhile, a smaller b (e.g., 0.0025) results in a performance decline
on new classes, due to the overly small capacity of the flat region. This illustrates

the trade-off effect of b.

F2M exhibits minimal performance degradation on base classes. As shown
in Table [3.8] even after 9 sessions of incremental learning and across different values
of b, the accuracy on base classes remains close to 60%. This indicates that the
performance on base classes is largely preserved. Considering that the classification
task expands from 60 classes to 100 classes, a slight drop in accuracy is expected due
to increased difficulty. This further demonstrates the effectiveness of our proposed

approach in identifying flat local minima. Specifically, it confirms that we indeed
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Table 3.8: Study of the flat region bound b for 5-way 5-shot incremental learning on
CIFAR-100. The top 3 results in each row are in boldface.

The hyperparameter b
Session

0.0025 0.005  0.01 0.02 0.04 0.08

Session 1 (60 bases classes) 64.85 64.67 64.81 64.71 63.30 62.25
Session 9 (All 100 classes)  44.16 44.54 44.58 44.67 43.75 43.04
Session 9 (60 base classes) 59.58 59.69 59.73 59.44 58.38 57.21
(

Session 9 (40 new classes) 21.03 21.81 21.86 22.52 21.80 21.77

locate flat minima, and fine-tuning within such regions can preserve the performance

on base classes with minimal degradation.

Results with the same class splits as in TOPIC [237]. The experimental results
of our F2M and some other methods (our re-implementations) presented in Table ,
Table|3.2, and Table|3.3|are on random class splits with random seed 1997. Here, we
conduct experiments using the same class split as in TOPIC [237]. The experimental
results on CIFAR-100, minilmageNet, and CUB-200-2011 are presented in Table [3.9]
Table [3.10, and Table respectively. The results show that the Baseline and our
F2M still consistently outperform other methods. Note that on CUB-200-2011, joint-
training outperforms the Baseline and our F2M. The reasons may include: 1) The data
imbalance issue is not very significant since the average number of images per class
of this dataset is relatively small (about 30); and 2) During the base training stage,
we use a smaller learning rate (e.g., 0.001) for the embedding network (pretrained on

ImageNet) and a higher learning rate (e.g., 0.01) for the classifier.

3.6 Chapter Review

We propose an innovative approach to address the challenge of catastrophic forget-

ting in few-shot continual learning. Specifically, during the training phase of the
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Table 3.9: Classification accuracy on CIFAR-100 for 5-way 5-shot incremental learn-

ing with the same class split as in TOPIC [6]. * indicates our re-implementation.

sessions The gap

Method with cRT
1 2 3 4 5 6 7 8 9

cRT [8]* 7228 69.58 65.16 61.41 5883 55.87 53.28 51.38 49.51 -
Joint-training* 72.28 68.40 63.31 59.16 55.73 52.81 49.01 46.74 44.34 -5.17
Baseline 7228 68.01 64.18 60.56 57.44 54.69 5298 50.80 48.70 -0.81
iCaRL [4]* 72.05 65.35 61.55 57.83 54.61 51.74 49.71 4749 45.03 -4.48
Rebalance [2]* 74.45 67.74 62.72 57.14 5278 4862 4556 4243 39.22 -10.29
FSLL [3]* 7228 63.84 59.64 5549 53.21 51.77 5093 48.94 46.96 -2.55
iCaRL [4] 64.10 5328 41.69 34.13 2793 25.06 20.41 1548 13.73 -35.78
Rebalance [2]  64.10 53.05 43.96 36.97 31.61 26.73 21.23 16.78 13.54 -35.97
TOPIC [6] 64.10 55.88 47.07 45.16 40.11 36.38 33.96 31.55 29.37 -20.14
FSLL [3] 64.10 55.85 51.71 48.59 45.34 43.25 41.52 39.81 38.16 -11.35
FSLL+SS [3] 66.76  55.52 52.20 49.17 46.23 44.64 43.07 41.20 39.57 -9.94
F2M 7145 68.10 64.43 60.80 57.76 55.26 53.53 51.57 49.35 -0.16

Table 3.10: Classification accuracy on minilmageNet for 5-way 5-shot incremental

learning with the same class split as in TOPIC [6]. * indicates our re-implementation.

sessions The gap

Method with cRT
1 2 3 4 5 6 7 8 9

cRT [8]* 72.08 68.15 63.06 61.12 56.57 54.47 51.81 49.86 48.31 -
Joint-training*  72.08 67.31 62.04 5851 54.41 51.53 48.70 4549 43.88 -4.43
Baseline 72.08 66.29 61.99 58.71 55.73 53.04 50.40 4859 47.31 -1.0
iCaRL [4]* 7177 61.85 58.12 54.60 51.49 4847 4590 44.19 42.71 -5.6
Rebalance [2]* 72.30 66.37 61.00 56.93 53.31 49.93 4647 44.13 42.19 -6.12
FSLL [3]* 72.08 59.04 53.75 51.17 49.11 4721 4535 44.06 43.65 -4.66
iCaRL [4] 61.31 46.32 4294 37.63 3049 24.00 20.89 18.80 17.21 -31.10
Rebalance [2]  61.31 47.80 39.31 31.91 25.68 21.35 18.67 17.24 14.17 -34.14
TOPIC [6] 61.31 50.09 45.17 41.16 3748 35.52 3219 29.46 24.42 -23.89
FSLL [3] 66.48 61.75 58.16 54.16 51.10 48.53 46.54 4420 42.28 -6.03
FSLL+SS [3] 68.85 63.14 59.24 55.23 5224 49.65 47.74 4523 43.92 -4.39
F2M 72.05 67.47 63.16 59.70 56.71 53.77 51.11 49.21 47.84 -0.43
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Table 3.11: Classification accuracy on CUB-200-2011 for 10-way 5-shot incremental

learning with the same class split as in TOPIC [6]. * indicates our re-implementation.

sessions The gap

Method with cRT
1 2 3 4 5 6 7 8 9 10 11

cRT (8] 7716 7441 7131 68.08 65.57 63.08 6244 61.29 60.12 59.85 59.30 -
Joint-training®  77.16  74.39 69.83 67.17 64.72 6225 59.77 59.05 57.99 57.81 56.82 -2.48
Baseline 77.16 74.00 70.21 66.07 6390 61.35 60.01 58.66 56.33 56.12 55.07 -4.23
iCaRL [4]* 75.95 60.90 57.65 54.51 50.83 4821 46.95 4574 43.21 43.01 41.27 -18.03
Rebalance [2]* 77.44 5810 50.15 44.80 39.12 3444 31.73 29.75 27.56 26.93 25.30 -34.00
FSLL [3]* 7716 71.85 66.53 59.95 58.01 57.00 56.06 54.78 52.24 52.01 51.47 -7.83
iCaRL [4] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 -39.92
Rebalance [2] 68.68 57.12 4421 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 -41.21
TOPIC [6] 68.68 6249 54.81 4999 4525 41.40 3835 3536 3222 2831 26.28 -34.80
FSLL [3] 72.77  69.33 65.51 62.66 61.10 58.65 57.78 57.26 55.59 55.39 54.21 -6.87
FSLL+SS [3] 75.63 71.81 68.16 64.32 62.61 60.10 58.82 58.70 56.45 56.41 55.82 -5.26
F2M 77.13 7392 70.27 66.37 64.34 61.69 60.52 59.38 57.15 56.94 55.89 -3.41

base model, we identify flat local minima of the objective function. When new tasks
are introduced, we fine-tune the model within these flat regions to mitigate catas-
trophic forgetting. In Section (3.4.3] we provide a theoretical proof that our algorithm
converges to a flat local minimum. We further demonstrate the effectiveness of our
method through extensive experiments on various datasets. However, F2M has the

following limitations.

Limitations in scenarios with a large number of new samples. Our algo-
rithm may struggle when tasks introduce a large number of new samples. This is
because the flat region identified during base model training may be relatively nar-
row, limiting the model’s capacity to accommodate substantial updates. Nevertheless,
the core idea of F2M provides valuable insights for the continual learning community.
Future work may explore identifying broader—albeit less flat—local minima during
initial training, enabling more flexible adaptation during incremental learning. Addi-

tionally, regularization techniques such as Elastic Weight Consolidation (EWC) could
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be integrated to constrain parameter updates in this wider region.

Need for improved methods to search for flat local minima. F2M ensures
flatness by adding random noise to the model parameters and requiring the perturbed
models to maintain comparable performance to the original parameters 0. While
this strategy can identify flat regions, it imposes a strong constraint—demanding an
excessively flat landscape around the solution—which may hinder convergence to a
good local optimum. Consequently, the base model trained under this constraint
may experience slight performance degradation compared to standard training. In
contrast, optimization-based methods like Sharpness-Aware Minimization (SAM) [64]
offer a more flexible approach to locating flat local minima and can mitigate such

issues more effectively, making them a promising alternative.
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Chapter 4

Reducing Conflicting Gradient For
Multi-Task Learning

4.1 Introduction

Multi-task learning (MTL) is a learning paradigm in which multiple different but
correlated tasks are jointly trained with a shared model [21], in the hope of achiev-
ing better performance with an overall smaller model size than learning each task
independently. By discovering shared structures across tasks and leveraging domain-
specific training signals of related tasks, MTL can achieve efficiency and effectiveness.
Indeed, MTL has been successfully applied in many domains including natural lan-

guage processing [80], reinforcement learning [186, [45] and computer vision [248].

A major challenge for multi-task learning is negative transfer [209], which refers
to the performance drop on a task caused by the learning of other tasks, resulting
in worse overall performance than learning them separately. This is caused by task
conflicts, i.e., tasks compete with each other and unrelated information of individual
tasks may impede the learning of common structures. From the optimization point

of view, a cause of negative transfer is conflicting gradients [279], which refers to two
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Chapter 4. Reducing Conflicting Gradient For Multi-Task Learning

task gradients pointing away from each other and the update of one task will have
a negative effect on the other. Conflicting gradients make it difficult to optimize the
multi-task objective, since task gradients with larger magnitude may dominate the
update vector, making the optimizer prioritize some tasks over others and struggle

to converge to a desirable solution.

Prior works address task/gradient conflicts mainly by balancing the tasks via task
reweighting or gradient manipulation. Task reweighting methods adaptively re-weight
the loss functions by homoscedastic uncertainty [114], balancing the pace at which
tasks are learned [35, [146], or learning a loss weight parameter [142]. Gradient ma-
nipulation methods reduce the influence of conflicting gradients by directly altering
the gradients based on different criteria [217, 279, 36, 140] or rotating the shared
features [104]. While these methods have demonstrated effectiveness in different sce-

narios, in our empirical study, we find that they cannot reduce the occurrence of

conflicting gradients (see Sec. for more discussion).

We propose a different approach to reduce conflicting gradients for MTL. Specifi-
cally, we investigate layer-wise conflicting gradients, i.e., the task gradients w.r.t. each
shared network layer. We first train the network with a regular MTL algorithm (e.g.,
joint-training) for a number of iterations, compute the conflict scores for all shared
layers, and select those with highest conflict scores (indicating severe conflicts). We
then set the selected shared layers task-specific and train the modified network from
scratch. As demonstrated by comprehensive experiments and analysis, our simple
approach Recon has the following key advantages: (1) Recon can greatly reduce con-
flicting gradients with only a slight increase in model parameters (less than 1% in
some cases) and lead to significantly better performance. (2) Recon can be easily
applied to improve various gradient manipulation methods and branched architecture
search methods. Given a network architecture, it only needs to search for the conflict
layers once, and the network can be modified to be used with different methods and

even on different datasets to gain performance improvement. (3) Recon can achieve
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better performance than branched architecture search methods with a much smaller

model.

4.2 Related Works

In this section, we briefly review related works in multi-task learning in four categories:
tasks clustering, architecture design, architecture search, and task balancing. For a
comprehensive review, please refer to [295, 248]. Tasks clustering methods mainly

focus on identifying which tasks should be learned together [241, 283, 227, 220, [61].

Architecture design methods include hard parameter sharing methods [117, 153, [16],
which learn a common feature extractor and task-specific decoders, and soft parame-
ters sharing methods [170], 210, [66], 67], in which each task has a portion of parame-
ters to do cross-task talk through some sharing mechanism. Differently, MTAN [140]
adopts task-specific attention to extract shared information for each task. Compared
with soft parameters sharing methods, our approach Recon has much better scalabil-

ity when dealing with a large number of tasks.

Instead of designing a fixed network structure, some methods [208, [169, 270] propose
to dynamically self-organize the network for different tasks. Among them, branched
architecture search [77, [I8] methods are more related to our work. They proposes
an automated architecture search algorithm to build a tree-structured network by
learning the branch position of the network. In contrast, our method Recon decides
which layers to share across tasks by considering the severity of layer-wise conflicting
gradients, which leads to a better and more compact architecture with lower time

cost.

Another line of works is task balancing methods. To address task/gradient conflicts,
some methods attempt to re-weight the multi-task loss function using homoscedastic

uncertainty [114], task prioritization [76], or similar learning pace [146, 142]. Grad-
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Norm [35] learns a weight parameter to ensure the similar learning paces across tasks.
MGDA [217] adopts Frank-Wolfe algorithm to find the weights such that the weighted
sum of task gradients has a minimum norm. To reduce the influence of conflicting gra-
dients, PCGrad [279] projects each gradient onto the normal plane of another gradient
and uses the average projected gradient as the update vector. Graddrop [36] ran-
domly drops the elements of gradients based on element-wise conflict. CAGrad [140]
ensures convergence to a minimum of the average loss by gradient manipulation.
RotoGrad [104] reduces the influence of conflicting gradients by rotating the shared
feature space. Instead of manipulating gradients, our method Recon leverages gra-
dient information to modify network structure to mitigate task conflicts from the

root.

4.3 Pilot Study: Task Conflicts in Multi-Task Learn-

ing
4.3.1 Multi-task Learning: Problem Definition

Multi-task learning aims to jointly learn a set of functions { f, }¥,, typically sharing

parameters Ogpared

Multi-task learning (MTL) aims to learn a set of correlated tasks {7;}7_; simultane-

ously. Each task 7; is associated with its own dataset D; = {(x(j), ygj)) i

()

x;

where
€ AX; is the input and ygj ) € Y, is the corresponding label. For each task 7;,
the empirical loss function is defined as £;(fe, 0,(%:), ¥:), where Oy, denotes the pa-
rameters shared across all tasks, and ©; represents the task-specific parameters. For
simplicity, we denote the loss function as £;(0g,,0;). The goal is to find optimal

parameters © = {0y, 01,0, -+ ,07} to achieve high performance across all tasks.
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Formally, it aims to minimize a multi-task objective:
T

* ' L. , 4.
0 arg min zl: w; L;(Ogn, 6;), (4.1)
where w; are pre-defined or dynamically computed weights for different tasks. A
popular choice is to use the average loss (i.e., equal weights). However, optimizing

the multi-task objective is difficult, and a known cause is conflicting gradients.

4.3.2 Conflicting Gradients

Let g; = Ve, Li(0an, 0;) denote the gradient of task 7; w.r.t. the shared parameters
Oqn (i.e., a vector of the partial derivatives of £; w.r.t. 84,) and g/° = Vg,L;(0g, 0;)
denote the gradient w.r.t. the task-specific parameters 0;. A small change of O, in
the direction of negative g; is 04, < 04, — ag;, with a sufficiently small step size «.

The effect of this change on the performance of another task 7; is measured by:
ALj = L0 — agi, 0;) — Lj(0a,05) = —ag; - g; + o(a), (4.2)

where the second equality is obtained by first order Taylor approximation. Likewise,
the effect of a small update of Oy, in the direction of the negative gradient of task
T; (ie., —g;) on the performance of task 7; is AL; = —ag; - g; + o(a). Notably,
the model update for task 7; is considered to have a negative effect on task 7; when
gi - g; < 0, since it increases the loss of task 7;, and vice versa. A formal definition

of conflicting gradients is given as follows [279).

Definition 4.1 (Conflicting Gradients). The gradients g; and g;(i # j) are said to

be conflicting with each other if cos ¢;; < 0, where ¢;; is the angle between g; and g;.

As shown in [279], conflicts in gradient pose serious challenges for optimizing the
multi-task objective (Eq. . Using the average gradient (i.e., 4 3./, g;) for gradient
decent may hurt the performance of individual tasks, especially when there is a large
difference in gradient magnitudes, which will make the optimizer struggle to converge

to a desirable solution.
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Figure 4.1: The distributions of gradient conflicts (in terms of cos¢;;) of the
joint-training baseline and state-of-the-art gradient manipulation methods on Multi-

Fashion+MNIST benchmark.
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Figure 4.2: The distributions of gradient conflicts (in terms of cos ¢;;) of the joint-

training baseline and state-of-the-art gradient manipulation methods on CityScapes

dataset.
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Figure 4.3: The distributions of gradient conflicts (in terms of cos ¢;;) of the joint-

training baseline and state-of-the-art gradient manipulation methods on NYUv2

dataset.
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Figure 4.4: The distributions of gradient conflicts (in terms of cos ¢;;) of the joint-
training baseline and state-of-the-art gradient manipulation methods on PASCAL-

Context dataset.

4.3.3 Gradient Surgery Cannot Effectively Reduce Conflict-

ing Gradients

To mitigate the influence of conflicting gradients, several methods [279] [36] have
been proposed to perform “gradient surgery”. Instead of following the average gradient
direction, they alter conflicting gradients based on some criteria and use the modified
gradients for model update. We conduct a pilot study to investigate whether gradient
manipulation can effectively reduce the occurrence of conflicting gradients. For each
training iteration, we first calculate the task gradients of all tasks w.r.t. the shared
parameters (i.e., g; for any task i) and compute the conflict angle between any two
task gradients g; and g; in terms of cosg;;. We then count and draw the distribution of
cos@;; in all training iterations. We provide the statistics of the joint-training baseline
(i.e., training all tasks jointly with equal loss weights and all parameters shared)
and several state-of-the-art gradient manipulation methods including GradDrop [36],
PCGrad [279], CAGrad [140], and MGDA [217] on Multi-Fashion+MNIST [137],
CityScapes, NYUv2, and PASCAL-Context datasets. The results are provided in
Fig. [4.1] Fig. {.2] Fig. 1.3 Fig. Table and Tables [{.12H4.14] Tt can be
seen that gradient manipulation methods can only slightly reduce the occurrence of
conflicting gradients (compared to joint-training) in some cases, and in some other

cases they even increase it.

57



Chapter 4. Reducing Conflicting Gradient For Multi-Task Learning

Why can’t gradient surgery effectively reduce conflicting gradients? Gra-
dient manipulation methods aim to solve an optimization problem by ensuring that
gradient updates are not biased toward a specific task, thereby promoting balanced
learning across all tasks. However, a fundamental issue remains: due to the inherent
conflicts among tasks, such methods cannot completely eliminate gradient conflicts.
Even if they manage to reduce the negative impact of such conflicts, they fail to pre-
vent them entirely. As a result, the angles between task gradients may still remain

large, which hinders effective learning for each individual task.

4.4 Methodology

Our pilot study shows that adjusting gradients for model update cannot effectively
prevent the occurrence of conflicting gradients in MTL, which suggests that the root
causes of this phenomenon may be closely related to the nature of different tasks and
the way how model parameters are shared among them. Therefore, to mitigate task
conflicts for MTL, in this paper, we take a different approach to reduce the occurrence

of conflicting gradients from the root.

4.4.1 Recon: Removing Layer-wise Conflicting Gradients

Our approach is extremely simple and intuitive. We first identify the shared network
layers where conflicts occur most frequently and then turn them into task-specific
parameters, as shown in Fig. [£.5] Suppose the shared model parameters 0y, are
(k)

i

composed of n layers, i.e., Oy, = {Géﬁ)}zzl, where Ggﬁ) is the k' shared layer. Let g
denote the gradient of task 7; w.r.t. the k*® shared layer Ggﬁ), ie., ggk) is a vector of
the partial derivatives of £; w.r.t. the parameters of Ggﬁ). Let gzﬁgf) denote the angle
between gz(k) and gﬁk). We define layer-wise conflicting gradients and S-conflict score

as follows.
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rned task-specific

(a) Joint-train (b) PCGrad (c¢) Recon (d) Recon

Figure 4.5: TIllustration of the differences between joint-training, gradient manipu-
lation, and our approach. (a) In joint-training, the update vector (in green) is the
average gradient %(gz +g;). Due to the conflict between g; and g;, the update vector
is dominated by g; (in red). (b) PCGrad [279] projects each gradient onto the normal
plane of the other one and uses the average of the projected gradients (indicated by
dashed grey arrows) as the update vector (in green). As such, the update vector
is less dominated by g;. (¢) Our approach Recon finds the parameters contributing
most (e.g., 03) to gradient conflicts and turns them into task specific ones. In effect, it
performs an orthographic/coordinate projection of conflicting gradients to the space
of the rest parameters (e.g., 6 and 6,) such that the projected gradients gi* and g?x
are better aligned. (d) Illustration of Recon turning a shared layer with high conflict

score to task-specific layers.

Definition 4.2 (Layer-wise Conflicting Gradients). The gradients ggk) and gg-k) (i #
Jj) are said to be conflicting with each other if cos ngEf) < 0.

Definition 4.3 (S-Conflict Score). For any —1 < S <0, the S-conflict score for the
k™ shared layer is the number of different pairs (i,5)(i # j) s.t. cos <b£f) < S, denoted

as s,

S represents the severity level of gradient conflicts; a smaller S value indicates a
focus on more severe conflict cases. The S-conflict score s quantifies how often
conflicting gradients occur at severity level S for the k*" shared layer. If s*) = (g),

this implies that every pair of tasks exhibits a conflict in their gradients with respect
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Algorithm 2: Recon: Removing Layer-wise Conflicting Gradients

Input: Model parameters 6, learning rate a, a set of tasks {7;}2_,, number of
iterations [ for computing conflict scores, conflict severity level S,
number of selected layers K.

// Train the network and compute conflict scores for all layers

for iteration 7 =1,2,..., 1 do

fori=1,2,...,Tdo

‘ Compute the gradients of task 7; w.r.t. all shared layers, i.e., {ggk)}};:l :
end

Calculate the S-conflict scores for all shared layers in the current iteration,

Le., {Sz(k)}zzh

Update # with joint-training or any gradient manipulation method ;

end

// Set layers with top conflict scores task-specific
For each layer k, calculate the sum of S-conflict scores in all iterations, i.e.,

k) — I (k).

(
S i=15i

Select the top K layers with highest s*) and set them task-specific;

// Train the modified network from scratch
for iteration i =1, 2, ... do

Update # with joint-training or any gradient manipulation method;
end

Output: Model parameters 6.

to the k' layer. By computing S-conflict scores, we can identify the shared layers

where conflicts are most frequent.

We present our method, Recon, in Algorithm [2, We begin by training the network for
I iterations and compute the S-conflict score sgk) for each shared layer 0% at every
iteration 7. The overall conflict score for each layer is then obtained by summing
across all iterations: s = Y21 sgk). We identify the layers with the highest s*)

values and designate them as task-specific. The modified network is then retrained

from scratch.
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Why count the number of conflicting task pairs instead of directly using
¢§?) as the conflict score? Using the sum of ¢§f) to quantify conflict severity
often leads to unstable rankings of conflicting layers across different random seeds.
In contrast, our approach focuses on the frequency of conflict occurrences, resulting
in more consistent and robust layer rankings. This design also aligns with intuition:

detecting the presence of a conflict is simpler and more stable than measuring its

exact severity, which can be sensitive to randomness during training.

We validate the effectiveness of Recon through both theoretical analysis (Section4.4.2)
and extensive experiments (Section [4.5)). Results show that Recon significantly re-
duces gradient conflicts in the remaining shared layers and achieves substantial im-

provements over state-of-the-art methods.

4.4.2 Theoretical Analysis

Here, we provide a theoretical analysis of Recon. Let 04, = {05 0%} where
0% are the remaining shared parameters, and 0 are those that will be turned
to task-specific parameters 0§, 05!, .-, 0. Notice that 0%, 0S,- .- 05 will all be
initialized with ©%. Therefore, after applying Recon, the model parameters are

0, = {0fx o ... o et ... 0%} An one-step gradient update of 0, is:
T
O =05 —ad wel, 6 =0 —ag!, 0F=0F—agt i=1...,T, (43)
i=1

where w; are weight parameters, gi® = Vo Li, gfl = Veclf L; and gi* = Veﬁhx[,i.
Notice that different methods such as joint-training, MGDA [217], PCGrad [279],
and CAGrad [140] choose different w; dynamically.

Without applying Recon, the model parameters are 8 = {0fx 04 ot ... 0%}. An
one-step gradient update of 0 is given by

T T
Afix _ ofix 2 : fix Acf _ cf 2 : cf Ats _ Ats ts .
esh —esh_a wlgz 3 esh—esh—a wlgz 9 ez —91 —O{gi, /L—l,...,T.
=1 =1
(4.4)
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A

After the one-step updates, the loss functions with the updated parameters 0, and
0 respectively are:
T T
£(0,) => £ (05,6,0%), and, £(6) =Y £; (657,05, 61),  (45)
i=1 1=1
where L; is the loss function of task 7;. Denote the set of indices of the layers turned
task-specific by P, then 0% = {Oéﬁ)}, k € P. Assume that 3.7, w; = 1, then we have

the following theorem.

Theorem 4.1. Assume that L is differentiable and for any two different tasks T; and
T;, it satisfies

cos ol g™ | < ), VkeP (4.6)

then for any sufficiently small learning rate o > 0,

L(8,) < L(6). (4.7)

The theorem indicates that a single gradient update on the model parameters of
Recon achieves lower loss than that on the original model parameters. The proof is

provided as follows:

Proof. We consider the first order Taylor approximation of £;. For normal update,

we have

C; (68,65, 61°) =L (05, 05, 0%) + (85 — o) gl (4.8)
+ (05, — 05) g’ + (0 — 01) "gl® + o(a). (4.9)

For Recon update, we have

£; (65,6, 0%) =L (0f, 05, 01°) + (6 — 05) gl (4.10)

+ (65" — 05 Tgf" + (07 — 07°) Tg* + o(a). (4.11)
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The difference between the two loss functions after the update is

£; (685, 6¢,6) — £; (65,04, 6°) =(8¢" — 03) g + o(a) (4.12)
T T
=—afgl =D wel| g'+ola) (413)
j=1
= f £\ T cf
=—-a Z w; (g —g') gf+ola)  (414)

:—azw] (llesI? — &5 Tes") + o(a). (4.15)

Assume, without loss of generality, that Hgff | # 0, then

e[ gjnglfIZ(\gfk)H —g" gﬁ-k)) (4.16)
kelP

8" ("] - cos e’ ")) (417

> 0. (4.18)

Hence, the above difference is negative, if « is sufficiently small. As such, the difference

between the multi-task loss functions is also negative, if « is sufficiently small.
T T
£(6,) — £(6) =3 £ (0f, 65", 01°) — D= £: (6%, 05, 67) <0 (4.19)
i=1 i=1

]

4.5 Experiments

In this section, we conduct extensive experiments to evaluate our approach Recon for

multi-task learning and demonstrate its effectiveness, efficiency and generality.

4.5.1 Experimental Setup

Datasets. We evaluate Recon on 4 multi-task datasets, namely Multi-Fashion

plus MINIST [137], CityScapes [42], NYUv2 [43], PASCAL-Context [I71], and
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CelebA [I52]. The tasks of each dataset are described as follows. 1) Multi-Fashion
plus MNIST contains two image classification tasks. Each image consists of an item
from FashionMNIST and an item from MNIST. 2) CityScapes contains 2 vision tasks:
7-class semantic segmentation and depth estimation. 3) NYUv2 contains 3 tasks: 13-
class semantic segmentation, depth estimation and normal prediction. 4) PASCAL-
Context consists of 5 tasks: semantic segmentation, human parts segmentation and
saliency estimation, surface normal estimation, and edge detection. 5) CelebA con-

tains 40 binary classification tasks.

Baselines. The baselines include 1) single-task learning (single-task): training all
tasks independently; 2) joint-training (joint-train): training all tasks together with
equal loss weights and all parameters shared; 3) gradient manipulation methods:
MGDA [217], PCGrad [279], GradDrop [36], CAGrad [140], RotoGrad [104]; 4)
branched architecture search methods: BMTAS [I8]; 5) Architecture design meth-
ods: Cross-Stitch [I70], MMoE [I58]. Following [140], we implement Cross-Stitch
based on SegNet [9]. For a fair comparison, all methods use same configurations and

random seeds. We run all experiments 3 times with different random seeds.

Table 4.1: Multi-task learning results on Multi-Fashion+MNIST dataset. All exper-
iments are repeated over 3 random seeds and the mean values are reported. Am%
denotes the average relative improvement of all tasks. #P denotes model size (MB).
The grey cell color indicates that Recon improves the result of the base model. The

best average result is marked in bold.

Method | Single-task RotoGrad BMTAS | Joint-train w/ Recon | MGDA w/ Recon | PCGrad w/ Recon | GradDrop w/ Recon | CAGrad w/ Recon | MMoE w/ Recon

T1 Acct 98.37 98.10 98.20 97.42 98.13 95.19 98.33 97.37 98.30 97.38 98.25 97.47 98.28 98.27 98.25
T2 Acct 89.63 88.25 89.71 88.82 89.26 89.46 89.28 88.68 89.77 88.57 89.51 88.85 89.65 89.51 89.67
Am%t - -0.91 -0.04 -0.94 -0.33 -1.71 -0.22 -1.04 0.04 -1.10 -0.13 -0.90 -0.04 -0.12 -0.04

#P. 85.62 42.81 85.61 42.81 43.43 42.81 43.43 42.81 43.43 42.81 43.43 42.81 43.43 85.62 105.70

Relative task improvement. Following [163], we compute the relative task im-

provement with respect to the single-task baseline for each task. Given a task 7;, the
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Table 4.2: Multi-task learning results on CelebA dataset. All experiments are re-
peated over 3 random seeds and the mean values are reported. Am% denotes the
average relative improvement of all tasks. #P denotes model size (MB). The grey cell
color indicates that Recon improves the result of the base model. The best average

result is marked in bold.

Method Single-task | Joint-train w/ Recon | CAGrad w/ Recon | Graddrop w/ Recon | PCGrad w/ Recon
Average Error 8.38 8.33 8.22 8.31 8.23 8.33 8.20 8.64 8.36
Am% 1t - 0.55 1.92 0.79 1.74 0.23 2.13 -3.14 0.24
#P. 1706.03 43.26 68.03 43.26 68.03 43.26 68.03 43.26 68.03

relative task improvement is Amy, = & S5, (—=1)4(M; — S;)/S;, where M;, S; refer
to metrics for the i*" criterion obtained by objective model and single-task model
respectively, [; = 1 if a lower value for the criterion is better and 0 otherwise. The

. . . _ 1 T
average relative task improvement is Am = 732 Amr,.

4.5.2 Comparison with the State-of-the-Art

Recon improves the performance of all base models. The main results on
Multi-Fashion+MNIST, and CelebA, CityScapes, PASCAL-Context, and NYUv2,
are presented in Table .1, Table [4.2] Table [4.3] Table [.4] and Table [£.5 respectively.
(1) Compared to gradient manipulation methods, Recon consistently improves their
performance in most evaluation metrics, and achieve comparable performance on the
rest of evaluation metrics. (2) Compared with branched architecture search meth-
ods and architecture design methods, Recon can further improve the performance
of BMTAS and MMokE. Besides, Recon combined with other gradient manipulation
methods with small model size can achieve better results than branched architecture

search methods with much bigger models.

Small increases in model parameters can lead to good performance gains.
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Table 4.3:

CityScapes dataset.

peated over 3 random seeds and the mean val-
ues are reported. Am% denotes the average
relative improvement of all tasks. #P denotes
the model size (MB). The grey cell color in-
dicates that Recon improves the result of the

base model. The best average result is marked

All experiments are re-

Multi-task learning results on

in bold.
Segmentation Depth
Method (Higher Better) (Lower Better)  Am% 1  #P.
mloU Pix Acc Abs Err  Rel Err
Single-task ~ 74.36  93.22 0.0128 29.98 190.59
Cross-Stitch  74.05  93.17 0.0162  116.66  -79.04  190.59
RotoGrad 73.38 92.97 0.0147 82.31 -47.81  103.43
Joint-train 74.13 93.13 0.0166 116.00  -79.32 95.43
w/ Recon 7417  93.21 0.0136 43.18 -12.63 108.44
MGDA 70.74 92.19 0.0130 47.09 -16.22 95.43
w/ Recon 71.01 92.17 0.0129 33.41 -4.46 108.44
Graddrop 74.08  93.08 0.0173 11579  -80.48  95.43
w/ Recon 7417  93.11 0.0134 41.37  -10.69 108.44
PCGrad 73.98  93.08 0.02 114.50  -78.39 9543
w/ Recon 74.18 93.14 0.0136 46.02 -14.92  108.44
CAGrad 73.81  93.02 0.0153 88.29 -53.81  95.43
w/ Recon 74.22  93.10 0.0130 38.27 -7.38  108.44
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Figure 4.6: The performance of
CAGrad combined with Recon
on the Multi-Fashion+MNIST
benchmark with (a) different
number of selected layers K (b)
different severity value S for

computing conflict scores.

Note that Recon only changes a small portion of shared parameters to task-specific.
As shown in Table [4.1}4.5] Recon increases the model size by 0.52% to 57.25%. Re-
con turns 1.42%, 1.46%, 12.77%, 0.26%, 9.80% shared parameters to task-specific on
Multi-Fashion+MNIST, CelebA, CityScapes, NYUv2 and PASCAL-Context respec-

tively. The results suggest that the gradient conflicts in a small portion (less than

13%) of shared parameters impede the training of the model for multi-task learning.

Recon is compatible with various neural network architectures.

We use

ResNet18 on Multi-Fashion+MNIST, SegNet [9] on CityScapes, MTAN [I46] on
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Table 4.4: Multi-task learning results on PASCAL-Context dataset with 4-task set-
ting. All experiments are repeated over 3 random seeds and the mean values are
reported. Am% denotes the average relative improvement of all tasks. #P denotes
the model size (MB). The grey cell color indicates Recon improves the result of the

base model. The best average result is marked in bold.

SemSeg PartSeg saliency Surface Normal

) . Angle Distance Within ¢°
(Higher Better)  (Lower Better) (Higher Better)

Method (Lower Better) (Higher Better) Am% 1  #P.
mloU Pix Acc  mloU Pix Acc mloU Mean Median 11.25 22.5

Single-task  65.00 90.53 59.59 92.61 65.61 14.55  12.36  46.51  81.29 30.09
Joint-train ~ 64.06 90.45 57.91 92.17 62.71 16.40  14.23 39.38  75.93 -4.82 8.04
w/ Recon | 64.73 90.50 59.00 92.44 66.17 14.99 12.68 44.82 80.11 -0.66  10.20
MGDA 46.05 86.62 54.82 91.39 64.76 15.77  13.54 4198 77.82 -7.67 8.04
w/ Recon | 55.82 87.73 56.31 91.67 64.91 15.12  12.88 4436  79.81 -4.14  10.20
PCGrad 63.91 90.45 58.01 92.19 63.09 16.34  14.19  39.62  76.06 -4.59 8.04
w/ Recon |65.02 90.45 59.22 92.46 66.14 1495 12.73 4496 80.22 -0.55  10.20
Graddrop — 64.14 90.34 57.62 92.12 62.64 16.46  14.28 39.29  75.71 -5.00 8.04
w/ Recon | 64.48 90.45 59.08  92.46 66.23 1494  12.72  45.03 80.25 -0.63  10.20
CAGrad 63.37  90.17 5749 92.07 64.16 16.30  14.12  39.80 76.23 -4.37 8.04
w/ Recon | 64.60 90.40 59.27  92.47 65.67 1492 12.71  45.10 80.33 -0.76  10.20
BMTAS 64.89 90.44 58.87  92.36 63.42 15.66  13.44 4229 78.14 -2.89  15.18
w/ Recon  64.78 90.46 59.96 92.58 65.96 14.74 12.57 45.62 80.84 -0.19 16.83

NYUv2, and MobileNetV2 [215] on PASCAL-Context. Recon improves the perfor-
mance of baselines with different neural network architectures, including the archi-
tecture search method BMTAS [I8] which finds a tree-like structure for multi-task

learning.

Only one search of conflict layers is needed for the same network architec-
ture. An interesting observation from our experiments is that network architecture
seems to be the deciding factor for the conflict layers found by Recon. With the same
network architecture (e.g., ResNet18), the found conflict layers are quite consistent

w.r.t. (1) different training stages (e.g., the first 25% iterations, or the middle or last
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Table 4.5: Multi-task learning results on NYUv2 dataset with MTAN as backbone.
All experiments are repeated over 3 random seeds and the mean values are reported.
Am% denotes the average relative improvement of all tasks. #P denotes the model
size (MB). The grey cell color indicates that Recon improves the result of the base

model. The best average result is marked in bold.

Segmentation Depth Surface Normal

. Angle Distance Within ¢°
(Higher Better) (Lower Better)
Method (Lower Better) (Higher Better) Am% 1 #P.

mloU Pix Acc Abs Err  Rel Err Mean Median 11.25 225 30

Single-task ~ 38.67  64.27 0.6881 0.2788 2487 18.99 3043 5781 69.70 285.88
Cross-Stitch  40.45  66.15 0.5051 0.2134 2758 23.00 24.69 49.47 62.36 4.16 285.88

Joint-train 39.48  65.23 0.5491  0.2235 2787  23.76  22.68 47.91 61.58 0.75 168.72
w/ Recon 39.54  65.20 0.5312  0.2234  26.55 2140  26.53 52.60 65.31 4.14 169.59

MGDA 29.28  60.30 0.6027  0.2515 24.89 19.32 29.85 57.18 69.38 -2.26 168.72
w/ Recon 32.82 61.26 0.5884  0.2295 25.17  19.72 2818 56.49 68.96 0.53 169.59

Graddrop 38.70  64.97 0.5565  0.2333 2741  23.00 23.79 4945 62.87 0.49 168.72
w/ Recon 40.14  66.08 0.5265  0.2241  26.51  21.45  26.51 5248 65.26 4.67  169.59

PCGrad 38.55  65.07 0.54 0.23 26.90  22.05 2498 51.36 64.41 2.02 168.72
w/ Recon 38.61  65.48 0.5350  0.2271 2631  21.11  26.90 53.21 65.95 3.87  169.59

CAGrad 39.89  66.47  0.5496  0.2281  26.36  21.47  25.50 52.68 65.90 3.74 168.72
w/ Recon 39.92 66.07 0.5320  0.2200  25.80  20.59  27.60 54.31 67.05 5.80 169.59

ones) (see Table [4.6| and Table (2) different MTL methods (e.g., joint-training
or gradient manipulation methods) (see Table [4.8)), and (3) different datasets (see
Table and Table . Hence, in our experiments, we only search for the conflict
layers once with the joint-training baseline in the first 25% training iterations and
modify the network to improve various methods on the same dataset. We also find
that the conflict layers found on one dataset can be used to modify the network to

be directly applied on another dataset to gain performance improvement.

Recon finds similar layers in different training stages. Recon ranks the net-

work layers according to the computed S-conflict scores. The ranking result can be
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Table 4.6: The distance between the layer permutations (rankings) obtained in dif-

ferent training stages on Multi-Fashion+MNIST dataset. “Iter.” denotes iterations.

Training Stage 1st 25% Iter. 2nd 25% Iter. 3rd 25% Iter. 4th 25% Iter. All Tter.

1st 25% Iter. 0 - - - -
2nd 25% Iter. 2.39 0 - - -
3rd 25% Iter. 1.85 2.14 0 - -
4th 25% Iter. 1.95 2.24 0.68 0 -

All Iter. 1.36 1.95 0.82 0.97 0

represented as a layer permutation, denoted as 7, and 7(() is the position of layer [.
The similarity between two rankings m; and m; can be measured as:

dlr ) = 17 2 Imll) = 0, (4.20)

leL

where L denotes the set of neural network layers. In Table [4.6] we measure the
differences in rankings obtained in different training stages (e.g., in the first 25%
iterations or the second 25% iterations) on Multi-Fashion+MNIST by Eq. .20l The
small distances (less than 2.4) indicate that the layers found in different training stages
are quite similar. In Table we compare the performance of the networks modified
by Recon with conflict layers found in different training stages on CityScapes. It
can be seen that the results of the last three rows are the same, which is because
the layers found in the 3rd 25% iterations, 4th 25% iterations, and all iterations are
exactly the same (the rankings may be slightly different though). The layers found
in the later stages lead to slightly better performance than those found in the early
stages (i.e., 1st 25% iterations and 2nd 25% iterations), indicating the conflict scores
in early iterations might be a little noisy. However, since the performance gaps are
acceptably small, to save time, we use the initial 25% training iterations to find

conflict layers.

Recon finds similar layers with different MTL methods. In Table [4.8 we
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Table 4.7: Performance of the networks modified by Recon with conflict layers found
in different training stages of joint-training on CityScapes dataset. Am% denotes the
average relative improvement of all tasks. #P denotes the model size (MB). The best

result is marked in bold.

Segmentation Depth
Model (Higher Better)  (Lower Better) Am%  #P.
mloU Pix Acc Abs Err  Rel Err
Single-task 74.36  93.22 0.0128 29.98 190.59

1st 26% Iterations 74.17  93.21 0.0136 43.18 -12.63 108.439
2nd 25% Tterations 74.20  93.19 0.0135 42.45 -11.83 108.440
3rd 25% Iterations 74.80 93.19  0.0136 41.34 -10.90 109.567
4th 25% Tterations 74.80 93.19  0.0136 41.34 -10.90 109.567

All Tterations 74.80 93.19 0.0136 41.34 -10.90 109.567

Table 4.8: The distance between the layer permutations (rankings) obtained by Recon
with different methods on Multi-Fashion+MNIST dataset.

Method Joint-train CAGrad PCGrad Gradrop MGDA

Joint-train 0 - - - -
CAGrad 1.07 0 - - -
PCGrad 0.78 1.17 0 - -
Gradrop 0.59 0.83 0.68 0 -
MGDA 1.71 1.32 1.90 1.56 0

measure the differences in layer permutations (rankings) obtained by Recon with
different methods (e.g., CAGrad and PCGrad) on Multi-Fashion+MNIST by Eq. [4.20]
The small distances (less than 1.9) indicate that the layers found by Recon with
different methods are quite similar. Therefore, in our experiments, we only use joint-
training to search for the conflict layers once, and directly apply the modified network

to improve different gradient manipulation methods as shown in Tables 4.5]
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Table 4.9: Multi-task learning results on NYUv2 dataset with SegNet as backbone.
Recon* denotes setting the layers found on CityScapes to task-specific. Am% denotes
the average relative improvement of all tasks. #P denotes the model size (MB). The

grey cell color indicates that Recon or Recon* improves the result of the base model.

Segmentation Depth Surface Normal

. Angle Distance Within ¢°
(Higher Better)  (Lower Better)
Method (Lower Better) (Higher Better) Am% 1t #P.

mloU Pix Acc Abs Err  Rel Err Mean  Median 11.25 22.5 30

Single-task 38.67  64.27 0.6881  0.2788 24.8683 18.9919 30.43 57.81 69.7 285.88

Joint-train  38.62  65.36 0.5378  0.2273  29.92 25.82  20.79 4429 57.36  -1.62 95.58
w/ Recon = 40.68  66.12 0.5786  0.2558 | 26.72 21.41  26.58 52.58 65.20  2.15 139.59
w/ Recon* = 38.81  63.69 0.5637  0.2413 = 26.75 21.73  26.16 51.80 64.64 1.59 121.59

MGDA 25.71  57.72 0.6033  0.2358  24.53 18.65 31.22 5846 70.21 -2.15 95.58
w/ Recon | 36.64  62.36 0.5613  0.2255  24.66 18.66 | 31.30 58.47 70.16  5.37 139.59
w/ Recon*  36.85  63.51 0.5760  0.2362  24.89 1896  30.53 5794 69.82 4.34 121.59

Graddrop  39.01  66.13 0.5462  0.2296  29.72 25.51  19.87 44.68 58.12  -1.52 95.58
w/ Recon  39.78  65.63 0.5460  0.2280  26.42 21.16  26.89 53.16 65.84  4.45 139.59
w/ Recon*  39.97  65.71 0.5544  0.2261  26.52 21.37  26.65 52.65 65.46  4.21 121.59

PCGrad  40.01 65.77 0.5349  0.2227  28.53 24.08 22.33 4742 60.69 1.43 95.58
w/ Recon | 40.03  65.92 0.5523  0.2384 = 26.24 20.89 27.30 53.66 66.25  4.19 139.59
w/ Recon* 39.93  65.46 0.5494  0.2315 = 26.82 21.70  26.34 52.04 64.74  3.53 121.59

CAGrad  38.87  66.54 0.5331  0.2289  25.85 20.60  27.50 54.41 67.10  5.60 95.58
w/ Recon = 40.68  66.12 0.5372  0.2266 = 25.44 19.87 2896 56.00 68.28  6.99 139.59
w/ Recon* ' 39.97  65.92 0.5298  0.2273 = 25.56 20.11  28.69 55.37 67.75  6.47  121.59

The conflict layers found by Recon with the same architecture are trans-
ferable between different datasets. We conduct experiments with three different
architectures: ResNet18, SegNet, and MTAN. (1) For Resnet18, we find that the lay-
ers found by Recon on CelebA and those found on Multi-Fashion+MNIST are exactly
the same. (2) For SegNet, we find that 95% layers (38 out of 40) found on NYUv2
are identical to those found on CityScapes. On NYUv2, we compare the performance

of using conflict layers found on NYUv2 (baselines w/ Recon) to that of using conflict
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Table 4.10: Multi-task learning results on CityScapes dataset with MTAN as back-
bone. Recon* denotes setting the layers found on NYUv2 to task-specific. ~ Am%
denotes the average relative improvement of all tasks. #P denotes the model size
(MB). The grey cell color indicates that Recon or Recon* improves the result of the

base model.

Segmentation Depth

Method  (Higher Better)  (Lower Better) Am% 1  #P.
mloU Pix Acc Abs Err  Rel Err

Single-task  73.74  93.05 0.0129 27.71 190.58

Joint-train  75.35  93.55 0.0169 45.64 -23.26 157.19
w/ Recon | 75.72  93.74 0.0130 40.90 -11.36  196.32
w/ Recon* = 76.32  93.76 0.0132 46.40 -16.44  159.19

MGDA 7046  91.75 0.0224 34.33 -26.02  157.19
w/ Recon © 72.23  92.60 0.0122  26.93 1.37 196.32
w/ Recon* = 70.83  92.14 0.0125  25.69 1.31 159.19

Graddrop  75.19  93.53 0.0168 46.35 -23.90  157.19
w/ Recon = 75.60  93.72 0.0127 38.55 -8.71  196.32
w/ Recon*  76.49 93.82  0.0129 47.54 -16.81  159.19

PCGrad  75.64  93.54 0.02 43.53 -23.60  157.19
w/ Recon = 75.89  93.71 0.0129 40.05 -10.35  196.32
w/ Recon* = 76.24  93.69 0.0128 45.24 -14.66  159.19

CAGrad  75.26  93.50 0.0176 44.23 -23.40  157.19
w/ Recon = 75.65  93.71 0.0125 36.23 -6.15  196.32
w/ Recon* = 76.25  93.74 0.0123 40.05 -8.99  159.19

layers found on CityScapes (i.e., baselines w/ Recon*), as shown in Table [£.9] (3)
For MTAN (SegNet with attention), we find that 68% layers (17 out of 25) found
on CityScapes are identical to those found on NYUv2. On CityScapes, we compare
the performance of using conflict layers found on CityScapes (baselines w/ Recon) to
that of using conflict layers found on NYUv2 (i.e., baselines w/ Recon*), as shown
in Table f.10] The results show that the conflict layers found on one dataset can be
used to modify the network to be directly used on another dataset to consistently
improve the performance of various baselines, while searching for the conflict layers

again on the new dataset may lead to better performance.
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Table 4.11: The distribution of gradient conflicts (in terms of cos ¢;;) w.r.t. the shared
parameters on Multi-Fashion+MNIST dataset. “Reduction” means the percentage of
conflicting gradients in the interval of (—0.01, —1.0] reduced by the model compared
with joint-training. The grey cell color indicates Recon greatly reduces the conflicting
gradients (more than 50%). In contrast, gradient manipulation methods only slightly

decrease their occurrence, and some method even increases it.

€OS Py Joint-train  w/ RSL  w/ RSP w/ Recon MGDA w/ Recon Graddrop w/ Recon PCGrad w/ Recon CAGrad w/ Recon
[1.0,0) 56.56 53.44 58.15 58.53 56.06 56.50 57.26 57.61 56.72 57.75 56.18 59.06
(0,-0.01] 31.25 27.35 34.33 37.67 32.36 40.93 31.06 38.28 31.19 38.76 31.25 37.84
(-0.01, -0.02] 9.26 13.45 6.38 3.04 8.87 2.12 8.93 3.32 9.09 2.87 9.37 2.44
(-0.02, -0.03] 2.05 4.18 0.8 0.5 171 0.26 1.72 0.54 1.90 0.42 2.00 0.41
(-0.03, -1.0] 1.25 1.58 0.34 0.25 1.0 0.18 1.03 0.26 1.10 0.2 1.20 0.25
Reduction (%) - -52.94 40.13 69.82 7.80 79.62 7.01 67.20 3.74 72.21 -0.08 75.32

4.5.3 Ablation Study and Analysis

Recon greatly reduces the occurrence of conflicting gradients. In Fig.
and Table , we compare the distribution of cos ¢;; before and after applying Recon
on Multi-Fashion+MNIST. It can be seen that Recon greatly reduces the numbers of
gradient pairs with severe conflicts (cos ¢;; € (—0.01, —1]) by at least 67% and up to
79% when compared with joint-training, while gradient manipulation methods only

slightly reduce the percentage and some even increases it. Similar observations can

be made from Fig. 4.8 Fig. and Tables 4.14
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Figure 4.7: The distribution of gradient conflicts (in terms of cos ¢;;) of baselines and

baselines with Recon on Multi-Fashion+MNIST dataset.
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Figure 4.8: The distribution of gradient conflicts (in terms of cos ¢;;) w.r.t. the shared
parameters on CityScapes. RSL: randomly selecting same number of layers as Recon
and set them task-specific. RSP: randomly selecting similar amount of parameters as

Recon and set them task-specific.
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Figure 4.9: The distribution of gradient conflicts (in terms of cos ¢;;) of baselines and
baselines with Recon on NYUv2. RSL: randomly selecting same number of layers
as Recon and set them task-specific. RSP: randomly selecting similar amount of

parameters as Recon and set them task-specific.
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Figure 4.10: The distribution of gradient conflicts (in terms of cos ¢;;) of baselines and
baselines with Recon on PASCAL-Context. RSL: randomly selecting same number of
layers as Recon and set them task-specific. RSP: randomly selecting similar amount

of parameters as Recon and set them task-specific.
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Table 4.12: The distribution of gradient conflicts (in terms of cos ¢;;) w.r.t. the shared
parameters on CityScapes dataset. “Reduction” means the percentage of conflicting
gradients in the interval of (—0.02, —1.0] reduced by the model compared with joint-
training. The grey cell color indicates Recon greatly reduces the conflicting gradients
(more than 50%). In contrast, gradient manipulation methods only moderately de-

crease their occurrence (MGDA deceases it by 22%), and some methods even increase

it.
€08 Oy Joint-train - w/ RSL  w/ RSP w/ Recon | MGDA  w/ Recon | Graddrop w/ Recon | PCGrad w/ Recon | CAGrad w/ Recon

[1.0,0) 59.55 53.16 58.29 73.62 63.9 78.27 59.56 73.82 59.85 74.52 60.79 74.54

(0, -0.02] 10.14 9.01 10.77 20.13 12.51 12.54 9.61 19.75 9.58 19.43 11.13 19.77
(-0.02, -0.04] 8.52 7.34 8.72 5.13 8.59 5.54 8.19 5.17 7.94 4.89 8.83 4.62
(-0.04, -0.06] 6.45 5.69 6.48 0.94 5.39 2.23 6.49 1.05 6.24 0.96 6.05 0.89
(-0.06, -0.08] 4.79 453 4.61 0.14 3.29 0.85 4.76 0.16 4.41 0.15 4.06 0.13
(-0.08, -1.0] 10.54 20.26 11.13 0.03 6.33 0.56 11.38 0.05 11.98 0.06 9.13 0.04
Reduction (%) - -24.82 -2.11 79.41 22.11 69.70 -1.72 78.78 -0.89 80.03 7.36 81.22

Table 4.13: The distribution of gradient conflicts (in terms of cos ¢;;) w.r.t. the shared
parameters on NYUv2 dataset. “Reduction” means the percentage of conflicting
gradients in the interval of (—0.04, —1.0] reduced by the model compared with joint-
training. The grey cell color indicates Recon greatly reduces the conflicting gradients
(more than 50%). In contrast, gradient manipulation methods only slightly decrease

their occurrence, and some methods even increase it.

COS ¢ Joint-train  w/ RSL  w/ RSP w/ Recon | MGDA w/ Recon | Graddrop w/ Recon | PCGrad w/ Recon | CAGrad w/ Recon

[1.0, 0) 61.96 52.61 59.70 73.99 61.28 74.08 62.93 75.35 63.25 75.54 61.95 74.49

(0, -0.02] 3.85 3.75 3.47 14.17 2.97 13.38 3.83 13.50 3.61 12.66 3.53 14.20
(-0.02, -0.04] 3.63 3.60 3.41 7.07 2.77 7.21 3.70 6.71 3.62 6.66 3.39 6.96
(-0.04, -0.06] 3.39 343 3.11 2.89 2.81 3.19 3.45 2.71 3.26 2.98 3.21 2.71
(-0.06, -0.08] 3.11 3.30 2.94 1.13 2.64 1.28 3.16 1.03 3.06 1.25 3.05 1.01
(-0.08, -1.0] 24.05 33.31 27.37 0.76 27.53 0.87 22.92 0.70 23.20 0.90 24.88 0.63
Reduction (%) - -31.06 -9.39 84.35 -7.95 82.52 3.34 85.47 3.37 83.21 -1.93 85.76

5



Chapter 4. Reducing Conflicting Gradient For Multi-Task Learning

Table 4.14: The distribution of gradient conflicts (in terms of cos¢;;) w.r.t. the
shared parameters on PASCAL-Context dataset. “Reduction” means the percentage
of conflicting gradients in the interval of (—0.02, —1.0] reduced by the model compared
with joint-training. The grey cell color indicates Recon greatly reduces the conflicting
gradients (more than 50%). In contrast, gradient manipulation methods only slightly

decrease their occurrence, and some methods even increase it.

€OS Joint-train - w/ RS w/ RSP w/ Recon | MGDA  w/ Recon | Graddrop w/ Recon | PCGrad w/ Recon K CAGrad w/ Recon

[1.0,0) 61.26 59.20 60.47 63.99 60.40 63.61 61.18 63.76 61.35 63.83 60.99 63.78
(0,-0.02] 9.66 21.01 18.25 23.57 8.51 33.53 9.66 23.41 9.83 23.61 9.95 24.04
(-0.02, -0.04] 7.90 9.91 9.10 7.65 7.27 2.04 7.89 7.83 7.90 7.65 8.03 7.53
(-0.04, -0.06] 5.85 3.05 3.88 2.59 5.68 0.45 5.80 2.711 5.82 2.66 591 2.51
(-0.06, -0.08] 4.16 1.32 1.79 1.07 4.35 0.17 4.21 112 4.13 1.10 4.23 1.04
(-0.08, -1.0] 11.16 1.30 2.29 1.13 13.80 0.20 11.24 1.16 10.97 1.16 10.88 1.08
Reduction (%) - 46.41 41.31 57.21 -6.98 90.16 -0.24 55.90 0.86 56.76 0.07 58.20

Randomly selecting conflict layers does not work. To show that the perfor-
mance gain of Recon comes from selecting the layers with most severe conflicts instead
of merely increasing model parameters, we further compare Recon with the following
two baselines. RSL: randomly selecting same number of layers as Recon and set them
task-specific. RSP: randomly selecting similar amount of parameters as Recon and
set them task-specific. The results in Table[4.15|show that both RSL and RSP lead to
significant performance drops, which verifies the effectiveness of the selection strategy

of Recon.

Selecting the first K layers and the last K Layers as conflict layers does
not work. To further support the conclusion that the selection of parameters with
higher probability of conflicting gradients contributes most to the performance gain
rather than the increase in model capacity. We compare Recon with two baselines:
(1) Select the first K neural network layers and turn them into task-specific layers. (2)
Select the last K neural network layers and turn them into task-specific layers. The

multi-task learning results on the Multi-Fashion+MNIST benchmark are presented
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Table 4.15: Comparison of Recon with RSL and RSP. PD: performance drop com-

pared to Recon.

CAGrad PCGrad
Seed w/ RSL w/ RSP w/ Recon Task 1 Task? Task 1 Task?
#P. #P.
Acect PD  Acet  PD Acet PD  Acet  PD
v 97.60 0.68 64.39 25.26 73.02 9743 0.87 65.57 24.21 73.02
v 97.11 1.18 87.61 2.04 83.63 9492 3.39 87.31 2.46 83.63

94.62 3.66 87.68 1.96 76.33 9290 5.40 8741 2.36 76.33
97.11 1.18 85.57 4.07 5225 9693 1.38 88.16 1.62 52.25
97.81 0.47 8828 1.36 5196 97.63 0.68 8855 1.22 51.96
81.18 17.10 76.56 13.09 47.50 88.71 9.59 84.51 5.27 47.50
- - - v 98.28 0 89.65 0 4342 9830 0  89.77 0 43.42

S =)
AN

NN SN

Table 4.16: Multi-task learning results on Multi-Fashion+MNIST dataset. LSK refers
to turning the fist K layers into task-specific layers. FSK refers to turning the last

K layers into task-specific layers. PD denotes the performance drop compared with

Recon.
CAGrad PCGrad
LSK FSK w/ Recon Task 1 Task2 4. Task 1 Task2 4P,
Acet PD  Acct PD Acet PD  Acet PD
v 97.63 0.66 89.14 0.50 84.17 97.63 0.65 88.98 0.66 84.17
v 98.21 0.07 89.15 0.50 4890 98.19 0.09 89.51 0.13 48.90
- v 9828 0 8965 0 4342 9830 0 89.77 0  43.42

in Table [4.16| The results show that if we directly turn the top or the bottom of
the neural network into task-specific parameters, it still will lead to performance

degradation compared to Recon.

Ablation study on hyperparameters. We study the influence of the conflict
severity S and the number of selected layers K on the performance of CAGrad w/
Recon on Multi-Fashion+MNIST. As shown in Fig. [4.6] a small K leads to a sig-

nificant performance drop, which indicates that there are still some shared network
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Figure 4.11: Comparison of running time (one iteration, excludes data fetching) on

CelebA dataset.

layers suffering from severe gradient conflicts, while a large K will not lead to further
performance improvement since severe conflicts have been resolved. For the conflict
severity S, we find that a high value of S (e.g., 0.0) leads to performance drops since
it includes too many gradient pairs with small conflicts, while some of them are help-
ful for learning common structures and should not be removed. In the meantime, a
too small S (e.g., —0.15) also leads to performance degradation because it ignores
too many gradient pairs with large conflicts, which may be detrimental to learning.
While K and S are sensitive, we may only need to tune them once for a given network

architecture, as discussed in Sec. |4.5.2]

Analysis of running time. We evaluate how Recon scales with the number of tasks
on CelebA dataset, by comparing the running time of one iteration used by Recon in
computing gradient conflict scores (the most time-consuming part of Recon) to that

of the baselines. The results in Fig. show that Recon is as fast as other gradient
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manipulation methods such as CAGrad [140] and Graddrop [36], but much slower
than joint-training especially when the number of tasks is large, which is natural
since Recon needs to compute pariwise cosine similarity of task gradients. However,
since Recon only needs to search for the conflict layers once for a given network

architecture, as discussed above, the running time is not a problem.

4.6 Chapter Review

We propose an innovative method to address the issue of conflicting gradients in
multi-task learning, thereby preventing negative transfer. Specifically, we analyze
the angles between gradients corresponding to different tasks at each layer of the
network during training. By identifying layers where gradient conflicts are severe (i.e.,
large angles), we convert these layers from shared to task-specific. This means that
instead of sharing parameters, each task has its own parameters for these layers, which
helps eliminate gradient conflicts in the remaining shared layers. In section we
provide theoretical proof that our algorithm can lead to smaller losses. We validate

the effectiveness of our approach across various datasets and network architectures.

However, our method is not highly efficient because it requires two training phases:
one to identify the conflicting layers and another to obtain the final model. This
could make the implementation cumbersome. Despite this, our core idea provides
valuable insights: rather than merely adjusting the direction of gradient updates to
mitigate conflicts, it is more effective to eliminate the occurrence of gradient conflicts
altogether. This fundamental approach can lead to significant improvements in overall

performance.
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Chapter 5

Understanding Layer Significance

For LLM Alignment

5.1 Introduction

Aligning large language models (LLMs) with specific requirements is essential for
enhancing their utility across diverse applications [156], 277, 157, [130] [145] 144, 60].
Fine-tuning LLMs during the alignment process can significantly improve the models’
capabilities to meet targeted needs [19]. Typically, alignment involves fine-tuning the
model on diverse datasets, which may include both human-curated [197] and LLM-
generated [238] data, using approaches like instruction tuning [256] and preference
learning [10, 196]. Given the significant cost associated with full parameter fine-
tuning, parameter-efficient fine-tuning (PEFT) [94, 28|, [182] methods have emerged as

a popular alternative, offering a balance between performance and resource efficiency.

Understanding what LLMs actually learn during the alignment process is crucial.
Zhou et al. [299] posits that the majority of knowledge and capabilities are developed
during the pre-training phase, with alignment primarily serving to refine the model’s

conversational style and formatting. Using a well-selected set of 1,000 training ex-
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amples for supervised fine-tuning (SF'T), they successfully produced a high-quality
aligned model. Similarly, Lin et al. [135] investigated the token distribution of LLMs
before and after alignment and found that most changes were related to “stylistic to-
kens”, such as discourse markers and transition words, while the knowledge-intensive
content largely remained untouched, coming from the base pre-trained model. These
findings imply that the alignment process mainly adjusts the model’s presentation

style rather than modifying its foundational knowledge.

Alpaca-GPT4 LIMA No Robots
v_proj|Llama 2-78 [ v_proj| Llama 278 v_proj Llama 2-78 11 1
q_proj q_proj q_proj
k_proj k_proj k_proj
0_proj 0_proj o_proj
down_proj | " down_proj down_proj
up_proj up_proj up_proj
gate_proj . gate_proj . gate_proj
2 4 6 8 10121416 18 20 22 24 26 28 30 32 2 4 6 8 10121416 18 20 22 24 26 28 30 32
v_proj Mistral-7B v_proj v_proj

Mistral-78 I
q_proj

k_proj
o_proj
" down_proj

up_proj

q_proj
k_proj
o_proj
down_proj
up_proj
gate_proj

q_proj
k_proj

o_proj

' down_proj
up_proj
gate_proj

gate_proj
24 6 810121416 1820222426283032 246 8101214161820222426283032

246 8101214161820222426283032

Figure 5.1: Layer importance rankings by our ILA algorithm for LLAMA 2-7B and
Mistral-7B-v0.1 across Alpaca-GPT4, LIMA, and No Robots datasets. Top 75%
layers by score (s;) are considered important. X-axis: transformer block in-
dex; y-axis: linear layer names. The figure highlights two findings: (1) High over-
lap (90%) in important layers across datasets (Tabl suggests shared alignment
needs, regardless of substantial differences in dataset content; (2) Important layers

differ by architecture, reflecting model-specific dynamics.

To gain a deeper understanding of LLM alignment, we analyze this process at the level
of model parameters. We conducted a pilot study to investigate the impact of differ-
ent model components on alignment performance, by fine-tuning only specific layers
and evaluating the resulting performance, as presented in Table [5.1] in Section [5.3]
The results clearly indicate that fine-tuning different components of the LLM leads to

considerable performance differences. For instance, fine-tuning the feed-forward net-
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work (FFN) layers achieves performance similar to fine-tuning all linear layers (i.e.,
with LoRA), whereas focusing solely on the attention layers causes a notable drop in
performance. This observation shows the complexity of layer-specific contributions

to LLM alignment, highlighting the need for detailed analysis.

To address this, we propose identifying the layers that are most critical to
alignment performance during the SFT process. We develop a novel ap-
proach, ILA, for identifying the important layers for LLM alignment. Specifically, we
learn a binary mask for the parameter changes in each layer during the fine-tuning
process, which serves as an indicator of layer significance. A binary mask value of
zero indicates that the corresponding layer has negligible influence during the pro-
cess, while a value of one denotes that the layer is crucial. We use gradient descent to
learn the binary mask effectively and offer a theoretical analysis of the optimization

process. The main findings and significance of this work include:

o Consistent layer importance ranking across different alignment datasets.
We observe similar rankings of important layers during alignment for the same
pre-trained model (see Fig. , even though the alignment datasets vary sig-
nificantly in both content and size. This suggests that the alignment process
endows the model with similar capabilities, corroborating previous research find-

ings and offers new insights into LLM alignment.

o Enhancing performance by freezing unimportant layers. We show that
freezing about 25% of unimportant layers can improve performance and that a
single search for layer importance ranking is sufficient for different alignment

tasks using the same architecture.

o Improving alignment efficiency through selective fine-tuning. Our find-
ings show that fine-tuning only 10-30% key layers achieves performance com-
parable to fine-tuning all linear layers. Additionally, integrating this approach
with QLoRA allows tuning only 30-75% of key layers to maintain or enhance
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performance while cutting resource costs.

o Broader implications beyond LLM alignment. Although our primary
focus is on LLM alignment, the approaches and insights from this study have
broader applicability. Our preliminary experiments on LLM reasoning reveal
findings similar to those in alignment, showcasing the significant potential of
our methods to enhance the reasoning capabilities of LLMs, particularly in

achieving test-time scaling [179, 258 223], 173].

5.2 Related Works

LLM Alignment. Pretrained language models encode general-purpose represen-
tations, enabling transfer across diverse tasks [194, [TI08] 178]. Alignment methods
like instruction tuning [292) 233, [172] and preference learning [85], [72, [196] 226, 128]
adapt these models to specific objectives. Recent studies have explored alignment
mechanisms. LIMA [299] showed that fine-tuning on small datasets (e.g., 1,000 ex-
amples) shapes behavior without adding new knowledge, a finding echoed by oth-
ers [32], 122, [73]. Duan et al|connected instruction tuning to in-context learning via
hidden state analysis, while URIAL [I35] revealed that alignment mainly modifies
stylistic tokens, preserving knowledge-centric ones. These insights suggest alignment
imparts narrow, targeted adjustments. Our work builds on this by identifying the
specific layers most critical for alignment, offering a more fine-grained understanding

of how adaptation occurs.

Parameter Efficient Fine-Tuning (PEFT). Fine-tuning large language mod-
els with billions or trillions of parameters is computationally expensive [17, 59].
Parameter-efficient fine-tuning (PEFT) methods address this by updating specific
components [281) 297, 5, [75] or using soft prompts [127, 131, 6]. Techniques such as
BitFit [281], Adapters [93], LoRA [94], and their variants [291], 167] reduce cost while
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maintaining transferability. Recent work [129, 07, [182], 265] [184] shows that selectively
fine-tuning certain regions yields strong results, though random masking often lacks
consistency. However, most PEFT approaches overlook parameter importance and
lack prioritization. Our method addresses this by ranking layer importance, enabling

targeted fine-tuning to improve performance with minimal cost.

Layer Analysis in Model Compression. Efforts in model compression lever-
age structured pruning [262, 151, 246] and layer analysis to improve efficiency. Ap-
proaches like Sheared LLaMA [263] and LLM-Streamline [34] demonstrate that se-
lectively pruning layers, heads, and dimensions significantly reduces model size with
minimal performance degradation. Studies on layer importance [294] [71] show the

feasibility of removing less critical components, facilitating scalable LLMs.

While model compression studies have examined the importance of components like
layers and heads for pruning, they aim to reduce model size rather than address the
parameter changes needed for task-specific alignment. Our work, however, focuses
on alignment fine-tuning. By emphasizing efficiency and prioritizing parameter up-
dates through skill localization [I85], 250], we enhance both the understanding and

robustness of the alignment process.

5.3 Pilot Study

In this section, we conduct a pilot study to address the question: How does fine-tuning

different regions of an LLM affect the alignment performance?

We use the LoRA algorithm [94] for fine-tuning and compare the following strategies:
(1) FFN: fine-tuning all feed-forward networks (Wyp, Waown, Waate); (2) ATT: fine-
tuning all attention layers including query/key/value projection layers (W,, W, W)
and the output projection layer (W,); (3) ATT2: only fine-tuning the query /key /value
projection layers (W,, Wy, W,); (4) ALL: fine-tuning all linear layers, including all
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Table 5.1: Impact of fine-tuning different components of Llama 2-7B on alignment
performance using the LIMA dataset. Evaluated on MMLU (5-shot) and GPT-40
scores for Vicuna and MT-Bench prompts. Tuned components include attention

projections (W, Wy, W,, W,) and feed-forward layers (Wyp, Waown, Waate)-

ATT ATT?2 FFN ALL
(Wyy Wiy Wy, Wo)  (Wy, Wiy W) (Waps Waown, Weate) (LORA)

MMLU 1t 42.03 42.65 43.06 43.18
Vicuna 71 5.21 5.13 5.40 5.43
MT-Bench 1 3.31 3.35 341 3.45

feed-forward networks and attention layers, which is equivalent to the LoRA algo-
rithm itself; (5) AdaLoRA [291]: adaptively allocating parameter budget to the

LoRA incremental weight matrices.

The results in Table show that selecting layers based solely on type is suboptimal.
Fine-tuning all linear layers yields the best performance, consistent with QLoRA’s
hyperparameter tuning [46]. Notably, fine-tuning FFN layers achieves similar results,
while tuning only attention layers significantly degrades performance. These findings
underscore the challenges of manual layer selection and motivate our approach to
automatically identifying “important” layers for more effective alignment through

targeted fine-tuning.

5.4 Layer Significance in LLM Alignment

To understand layer significance in LLM alignment, we propose ILA, a method to
identify important layers by learning a binary mask that indicates each layer’s signif-

icance.

Consider a pre-trained LLM model with parameters 0, composed of N layers, i.e.,

0o = {0j}Y .. The model is fine-tuned on an alignment dataset D = {z;}, with

85



Chapter 5. Understanding Layer Significance For LLM Alignment

a loss function £(0). After ¢ training iterations, the model parameters are updated
to 8; = 09 + AO,;, where AO, represents the change in parameters till iteration t¢.
Define a binary mask ~; = {vi|yi € {0,1}}¥, that encodes layer-wise importance

information. We apply v, to A8, and define
0K = 0y + v © AB,, (5.1)

where ® is component-wise multiplication. The binary mask is applied to retain
the changes in crucial layers while eliminating the rest. Below we provide a formal
definition of the conditions under which training attains stability after an adequate

number of iterations.

Definition 5.1 (e-stable). Ve > 0, the model is said to be e-stable at iteration T if,

for any t > T, the loss function satisfies the condition
E.[L(z; 0041)] — E.[L(2;0,)]| <, (5.2)

where E,[-] denotes the expectation with respect to the alignment dataset D.

Once training stabilizes, we can identify the layers that are crucial for the alignment

task.

Definition 5.2 (Layer Importance). The binary mask v, is defined as the solution

to the following optimization problem:
v, = argmin E.[L(z; 079, s.t. ||v|| < H, (5.3)
Tt

where H is a hyper-parameter that serves as a constraint to limit the number of

important layers.

Efficiently Identifying the Importance Layers (Alg. . Due to the high cost
of fine-tuning large models, to address the optimization problem in Eq. (5.3)), we

employ the LoRA [94] algorithm, which utilizes low-rank decomposition matrices to
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Algorithm 3: Identify the Important Layers for Alignment (ILA)
Input: Pre-trained model parameters 0, learning rate «, the initial importance

score vector 8o = {si}& the number of insignificant layers K, the
low-rank matrices Ay, By for the LoRA algorithm. (FFT is a special case
of LoRA with full rank)

for iteration 7 =1, 2, ... do
Update Ay = A;_1 — aVa, L(0;), By = B;_1 —aVpg, ,L(0;) (LoRA);
Or Update 6, = 0;_1 — aVy, ,L£(0;—1) (FFT);

if Training has become stable then
Solve the optimization problem in Eq. (5.7)) by gradient descent to find

st = {5t}
Stop training;

end

end

represent the change in model parameters till iteration ¢ (A6;). Specifically, LoRA
utilizes two trainable low-rank matrices, B! € R%*" and A! € R"*ki to estimate
the change of the i*® layer:

AO! =p3-BiA., (5.4)
where 3 is the scalar hyperparameter of LoRA. With the binary mask =, the i** layer
is updated by

0f =0y + ;- BiAj. (5.5)
To ease the optimization of 7, we re-parametrize each of its each components 7/ as
the output of a Sigmoid function, i.e., v = o(s¢). Then, the update of the i'! layer
becomes
0! =0, + 3 0(sl) BiA. (5.6)
Let sy = {si}¥,, @M = {0/} . The optimization problem in Eq. becomes

s; = argminE.[L(z; 0)1)]. (5.7)

St
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We use gradient descent to optimize s;, yielding s as the importance score of the i'h
layer. A larger value of s! indicates 7! is closer to one, signifying higher importance

of the i'" layer.

Assumption 5.1 (Lipschitz-continuous). The loss function £(0) : R? — R is con-

tinuously differentiable and L-smooth with constant L1 > 0 such that
1£(0) — L(6)[]2 < L1[|© — 0. (5.8)

In addition, £(0) has an L-Lipschitz continuous gradient with constant Lo > 0 such
that
IVL(O) — VL(O)[]2 < Lo[|0 — 07| (5.9)

Assumption 5.2. For any t > T, ©; is e-stable. We assume there is a constant R
such that
100 = B41]l2 < Re, (5.10)

and there is a constant Q) such that ||0]|2 < Q for anyt > T.

Theorem 5.1. For a sufficiently small €, O7 is e-stable, thus Assumption [5.1 and
Assumption are satisfied. For any t > T, we assume that ¥i,~! € [0,1]. Let ~,
denote the result of v, after one step of gradient descent, i.e., v; = ~;— BV, L(OPK).

Then we have

17 = Yisalle < B(QLa + Li) Re. (5.11)

This theorem demonstrates that when O is e-stable, solving the optimization problem
in Eq. (5.3) for any ¢ > T yields similar results. This is because, after one step of
gradient descent, the difference between ~, and 7, is smaller than a sufficiently small

number. The proof is given below:

Proof. Let 4 be the initial values of «; and ~;41. Then we have

'72 = 'AY - ﬁv’vt‘c(e?aSk>7 (5'12)
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Vi1 = A = BV LOFY). (5.13)

The difference of v; and ~;,, is

”72 - '7£+1H2 = H('AY - 5v7t£(ef€na8k))
— (4 = BV LOFT)) 2

= BV L(07) = Vi LIOFT) 2
= []18; © Vipas L(07F)
=041 0 Velgffkﬁ(eﬂalsk)“?
< plle:® (Ve;"askﬁ(e?%k) - Ve;‘rfkﬁ(eﬁafk))’\z
+BI1(8: = Brr1) © Vgmase L(O7F) 2. (5.14)
Because £(0) has an L-Lipschitz continuous gradient with constant L, > 0, and
18:] < @,
10: © Ve;ﬂaskﬁ(e?%k) =01 O Ve?ffkﬁ(efﬁk)ﬂg
< QLol|07 — 073,
= QL3[[AB 41 — AB|5
= QL||0111 — 6|2 (5.15)

Because £(0) is L-smooth with constant L,

180 = 0r41) © Vigmas L(O75) |2 <L1|€; — O], (5.16)

Therefore,

17 = Yesalle < BQLy + L1)|[6; — 8141 (5.17)
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According to the Assumption [5.2 we have ||0; — ©441]]2 < Re, hence,

I = Yiialla < B(QLy + Ly)Re. (5.18)

O

Leveraging Layer Importance Rankings. The identified rankings of layer im-
portance can be leveraged to enhanc both the performance and efficiency of LLM
alignment. To maximize performance, prioritize fine-tuning the significant layers
while freezing those deemed less important. For efficiency, focus on the layers most

critical to model success. Detailed experiments and analyses are presented in Sec. [5.5]

5.5 Experiments and Findings

5.5.1 Experimental Setup

Datasets. (1) Alpaca-GPT4 contains 52K instruction-following data generated by
GPT-4, utilizing prompts from Alpaca [23§]. (2) LIMA contains only 1K carefully
curated prompts and responses. (3) No Robots contains 10K instructions and demon-

strations created by skilled human annotators.

Models and Baselines. We use four different models as the base for our exper-
iments: LLAMA 2-7B [243], LLAMA 2-13B, LLAaMA 3.1-8B [54], and Mistral-7B-
v0.1 [I07]. Our baselines are as follows: (1) LoRA[94]: Trainable rank decomposition
matrices are added in parallel to existing weight matrices, including query /key/value
projection (W,, Wy, W,), output projection (W,) in self-attention, feed-forward net-
works (Wup, Waown, Weate), and the output layer (Whead). (2) AdaLoRA[290]: It
dynamically adjusts the rank of incremental matrices to control the parameter bud-

get, with AdaLoRA modules added to all linear layers, similar to LoRA. (3) Full
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Fine-tune: All model parameters, initialized from pre-trained weights and biases,

undergo gradient updates during fine-tuning.

Evaluation and Training Setup. We assess language model alignment across
two key dimensions: (1) Language Understanding Ability: Evaluated using
MMULU [86] for specialized knowledge and Hellaswag [284] for commonsense reason-
ing. (2) Conversational Ability: Measured using MT-Bench [298] (multi-turn)
and Vicuna [40] (single-turn), with responses graded by GPT-40. All evaluations
are performed three times, and the average scores are reported. We conduct hy-
perparameter searches for LoRA and full fine-tuning to establish strong

baselines.

Targeted Performance. (1) Language Understanding Ability: Recent re-
search [51], 234 [54] suggests that the learning of language understanding tasks essen-
tially occurs during the pre-training phase of the base model. Therefore, significant
performance improvements in language understanding tasks (i.e., MMLU, Hellaswag)
after alignment are not expected. However, it is crucial to ensure the model retains the
learned knowledge during alignment. (2) Conversational Ability: Without align-
ment, the pre-train model’s conversational ability is poor. For example, LLAMA 2-7B
often produces incorrect or irrelevant responses on the Vicuna dataset. However, its

conversational ability can be significantly improved through the alignment process.

For all experiments, we follow fine-tuning hyperparameters: we use AdamW with /;
= 0.9, B2 = 0.99 and weight decay of 0.1. The scheduler employed is a cosine scheduler
with a warmup ratio of 0.01. For LoRA baselines, we set the hyperparameter rank r

as 32.

5.5.2 Layer Importance Rankings in LLM Alignment

In this subsection, we applied ILA to rank important layers during alignment across

three datasets—No Robots, LIMA, and Alpaca-GPT4 (Fig[.1). We also analyzed
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Figure 5.2: Layer importance rankings of LLAMA 2-7B during fine-tuning on LIMA
at 1%, 25%, 50%, 75%, and 100% milestones. X-axis: transformer block index; y-

axis: linear layer names. Jaccard similarities are provided in Table

Table 5.2: Jaccard similarities of the top 75% highest-scoring layers identified as

important during fine-tuning of LLAMA 2-7B and Mistral-7B on various datasets.

LramA 2-7B Mistral-7B
Datasets
LIMA No Robots Alpaca-GPT4 LIMA No Robots Alpaca-GPT4
LIMA - - - - - -
No Robots 0.91 - - 0.90 - -
Alpaca-GPT4  0.90 0.90 - 0.89 0.93 -

layer importance rankings at different training milestones (Figl5.2)). To quantify sim-
ilarity between sets of important layers, we used the Jaccard similarity coefficient,
defining the top 75% highest-scoring layers as the important set S. The similarity

between two sets, S7 and S, is given by: J(Si,Ss) = }giagj where J = 1 indicates

identical sets, and J = 0 indicates no overlap.

Consistency in Layer Importance Rankings Across Different Datasets. Our
findings show strong consistency in layer importance rankings: (1) highly similar

important layers are identified across different alignment datasets, (Fig Tabl;
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Table 5.3: Jaccard similarities Table 5.4: Jaccard similarities of the top 75%
of the top 75% important lay-  important layers identified at different stages of

ers in LLAMA 2-7B fine-tuned  [,;amA 2-7B fine-tuning on the LIMA dataset.
on the LIMA dataset using

Trainin,
different random seeds. I\,mesmnis 1% 25% 50% 75% 100%
1% - - -
Random Seed seedl seed2 seed3 25% 069 - i
seed1 - - - 50% 070 091 -
seed2 0.92 - - 5% 0.69 0.90 0.92
seed3 0.91 0.91 - 100% 0.69 091 092 0.93

(2) the rankings remain stable across different random seeds for v (Table [5.3)); and

(3) similar layers can be identified even at the beginning stages of training, such as
completion of 25% (Figl5.2] Tabldb.4)).

These results confirm the robustness of ILA, which consistently identifies stable and
overlapping layers across datasets. This aligns with recent findings that alignment
largely involves stylistic token shifts [I35]. In essence, alignment seeks similar ca-
pabilities, as evidenced by our observation that important layers remain stable across
different datasets. This underscores the relevance of our algorithm to the fundamental

objectives of alignment.

5.5.3 Enhancing Alignment Performance through Freezing

Unimportant Layers

To leverage layer importance rankings, we excluded less important layers that could
negatively impact fine-tuning, removing approximately of unimportant layers. The
main results on No Robots are in Table [5.5, with additional results for LLAMA 2-
13B (see Table and main results on Alpaca-GPT4 (see Table [5.6), and LIMA
(see Table datasets. Key observations include: (1) Freezing unimportant
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layers can enhance performance. ILA consistently outperformed LoRA and full
fine-tuning on most metrics, with freezing 25% of unimportant layers yielding better
results than tuning all layers. (2) A single search for layer importance ranking
suffices for a given architecture. Rankings were stable across alignment tasks,

allowing us to compute it on the No Robots dataset and apply it to others.

These results show that ILA improves fine-tuning efficiency by focusing on significant
layers. Compared to Adal.oRA, even though we explored a narrow range of the hy-
perparameter ¢, (target average rank of incremental matrices), our method performed
better, suggesting that adjusting LoRA’s matrix rank alone doesn’t guarantee supe-

rior results, as also noted in [46].

Additionally, as discussed in Sec. [5.5.2] the stability of the layer importance ranking
across datasets means a single search is often sufficient. In our experiments, we
computed the layer importance ranking using full training iterations on the No Robots
dataset, and then directly applied this ranking to other datasets. Though dataset-
specific rankings can further improve results (Table in Sec. 5.9), the strong
cross-dataset performance with one ranking demonstrates our approach’s robustness

and generalizability.

5.5.4 Enhancing Alignment Efficiency by Fine-tuning Only
the Most Critical Layers

To investigate this issue, we fine-tune the top 10%, 20%, and 30% of the important
layers of Mistral-7B-v0.1, as identified by ILA, on the No Robots dataset, and compare
the results with those of the LoRA algorithm. The results demonstrate clear benefits

in focusing on a subset of important layers:

(1) Fine-tuning a small subset of the most important layers achieves com-

petitive performance and enhances efficiency. Fine-tuning the top 10%, 20%,
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Table 5.5: Comparison of LLAMA 2-7TB, Mistral-7B-v0.1, and Llama 3.1-8B fine-tuned
on the No Robots dataset, evaluated on MMLU (5-shot), Hellaswag (0-shot), and
GPT-40 scores for Vicuna and MT-Bench prompts. Vicuna and MT-Bench
results are averaged over three runs. Grey cells indicate improvements over the

base model; best scores are in bold.

Language Understanding Conversational Ability

Models Methods
MMLU 1 Hellaswag 1 Vicuna T MT-Bench 1
AdaLoRA 45.23 57.30 5.81 4.01
Full Fine-tune 45.72 57.69 6.12 4.18
Llama 2-7B gl Fine-tune w/ ILA | 45.98 57.87 6.35 4.37
LoRA 44.58 59.46 5.78 4.02
LoRA w/ ILA 45.78 59.65 5.90 4.33
AdaLoRA 62.13 61.68 6.21 4.69
Full Fine-tune 61.05 64.26 6.32 4.55
Mistral-7B-v0.1 - g1 Fipe-tune w/ ILA | 61.75 64.21 6.51 478
LoRA 61.95 62.90 6.25 4.68
LoRA w/ ILA 62.14 62.98 6.42 4.87
AdaLoRA 64.85 62.85 6.51 5.08
Full Fine-tune 64.44 63.65 6.50 5.11
Llama 3.1-8B Full Fine-tune w/ ILA 65.00 63.69 6.61 5.23
LoRA 64.95 60.77 6.33 4.58
LoRA w/ ILA 65.43 60.95 6.45 4.69

or 30% of layers results in only a slight performance drop compared to full fine-tuning.
Fine-tuning 30% of layers nearly matches full fine-tuning (Table [5.9)), demonstrating
that focusing on the most important layers ensures efficient fine-tuning with minimal

performance loss.

(2) Our method can be applied to enhance QLoRA, further reducing costs.
When combined with QLoRA, our method fine-tunes only 30% or 75% of the most
important layers while maintaining or improving performance (Table [5.10]), highlight-
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Table 5.6: Comparative evaluation of LLAMA 2-7TB, Mistral-7B-v0.1, and Llama 3.1-
8B models fine-tuned on the Alpaca-GPT4 Dataset. Evaluated using MMLU (5-shot),
Hellaswag (0-shot), GPT-40 scores on Vicuna prompts, and MT-Bench prompts.
The evaluations are performed three times, and the average scores are
reported. Cells highlighted in grey indicate that ILA has enhanced the performance
of the base model. The best result is marked in bold.

Language Understanding Conversational Ability

Models Methods
MMLU 1 Hellaswag 1 Vicuna + MT-Bench 1
AdaLoRA 46.13 57.85 6.89 3.78
Full Fine-tune 45.91 57.73 6.78 3.72
lama-7B Full Fine-tune w/ ILA | 46.23 57.67 6.99 3.85
LoRA 43.66 58.49 6.96 3.80
LoRA w/ ILA 44.69 58.22 717 3.99
AdaLoRA 62.48 62.08 7.25 4.77
Full Fine-tune 60.56 62.80 7.19 4.78
Mistral-TB-v0-1 g Fine-tune w/ ILA |~ 60.88 62.91 7.35 491
LoRA 61.82 62.70 7.23 4.89
LoRA w/ ILA 62.14 62.80 7.33 5.02
AdaLoRA 65.82 61.02 7.48 5.39
Full Fine-tune 63.58 61.58 7.33 5.32
Llama 3.1-8B Full Fine-tune w/ ILA 64.61 61.74 7.57 5.42
LoRA 65.40 61.72 7.65 5.43
LoRA w/ ILA 65.76 61.81 7.79 5.55

ing the efficiency of our approach in achieving comparable or better results with fewer

layers.

These findings highlight the effectiveness of our layer selection strategy, optimizing re-
source use with minimal performance trade-offs. Our integration with QLoRA shows
that fine-tuning a targeted subset of important layers improves both performance and

memory efficiency during fine-tuning.

For a clearer understanding of GPU memory savings, we measured memory consump-

tion for QLoRA, LoRA, Full Fine-Tuning, and versions fine-tuning only the key layers
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Table 5.7: Comparative evaluation of LLAMA 2-7TB, Mistral-7B-v0.1, and Llama 3.1-
8B models fine-tuned on the LIMA Dataset. Evaluated using MMLU (5-shot), Hel-
laswag (0-shot), GPT-40 scores on Vicuna prompts, and MT-Bench prompts. The
evaluations are performed three times, and the average scores are reported.
Cells highlighted in grey indicate that ILA has enhanced the performance of the base
model. The best result is marked in bold.

Language Understanding Conversational Ability

Models Methods
MMLU 1 Hellaswag 1 Vicuna + MT-Bench 1
AdaLoRA 44.21 59.85 5.22 3.51
Full Fine-tune 46.36 62.06 5.83 3.71
Llama 2-7B g Fine-tune w/ ILA ~ 46.32 62.18 5.98 3.85
LoRA 43.18 54.52 5.43 3.45
LoRA w/ ILA 44.13 54.55 5.62 3.72
AdaLoRA 62.40 61.52 6.64 4.49
Full Fine-tune 60.11 63.76 6.88 4.63
Mistral-7TB-v0-1 ) Pine-tune w/ LA | 61.01 64.01 6.95 477
LoRA 60.83 65.42 6.70 4.58
LoRA w/ ILA 61.52 65.51 6.98 4.69
AdaLoRA 63.55 62.65 6.50 4.73
Full Fine-tune 64.31 65.64 7.09 5.12
Llama 3.1-8B Full Fine-tune w/ ILA 64.73 65.98 7.17 5.23
LoRA 62.33 62.92 6.57 4.79
LoRA w/ ILA 63.31 63.01 6.61 4.93

identified by ILA. As shown in Table [5.11] it demonstrates that the GPU memory
usage and average training time per iteration for various fine-tuning approaches, in-
cluding LoRA, QLoRA, full fine-tune, and their modified versions where only 30% of
the important layers identified by ILA are fine-tuned. Both LoRA and QLoRA show
substantial reductions in memory usage when restricted to tuning only 30% of impor-
tant layers, compared to the full-layer fine-tuning approaches. These results indicate
that selectively fine-tuning a small set of critical layers is highly effective in reducing

GPU memory consumption, particularly for efficient methods like QLoRA. This sug-
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Table 5.8: Fine-tuning results of Llama 2-13B on the LIMA and No Robots datasets.
Evaluated using MMLU (5-shot), Hellaswag (0-shot), GPT-40 scores on Vicuna
prompts, and MT-Bench prompts. Cells highlighted in grey indicate that ILA has

improved the performance of the base model.

Language Understanding Conversational Ability

Datasets Methods
MMLU 1 Hellaswag T Vicuna 1 MT-Bench 1

LoRA 53.85 63.08 6.16 3.79
LIMA

LoRA w/ ILA 54.33 62.04 6.25 3.91

LoRA 54.08 61.73 5.72 4.24
No Robots

LoRA w/ ILA 54.45 61.13 5.88 4.37

Table 5.9: Fine-tuning results of Mistral-7B-v0.1 on the No Robots dataset, evaluated
on MMLU (5-shot), Hellaswag (0-shot), and GPT-40 scores for Vicuna and MT-Bench
prompts (averaged over three runs). Percentages in parentheses denote the fraction

of fine-tuned linear layers. Best results are in bold.

Language Understanding Conversational Ability

Models Methods
MMLU 1 Hellaswag 1 Vicuna ¥ MT-Bench 1
LoRA 61.95 62.90 6.25 4.68
Mistral-7B-v0.1 LoRA w/ ILA (10%) 62.09 61.94 5.99 4.39
LoRA w/ ILA (20%) 61.83 62.16 6.12 4.53
LoRA w/ ILA (30%) 61.89 62.79 6.27 4.75

gests that targeted fine-tuning can enhance computational efficiency while preserving
model performance, which is especially beneficial when scaling large language models

with limited hardware resources.

5.5.5 Ablation Study

Observation 1: Our layer importance ranking algorithm is effective. We
evaluated our algorithm by comparing it to a baseline that fine-tunes all layers and

three alternatives: (1) RL 1 and RL 2, which randomly freeze top-K layers; (2)
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Table 5.10: Comparison of QLoRA fine-tuning on Llama 2-7B vs. selectively fine-
tuning important layers identified by ILA. Evaluated on MMLU (5-shot), Hellaswag
(0-shot), and GPT-4o scores for Vicuna and MT-Bench prompts (averaged over three

runs). Grey cells indicate improvements over the base model by ILA.

Language Understanding Conversational Ability
Datasets Methods

MMLU 1 Hellaswag 1 Vicuna 1 MT-Bench 1

QLORA 43.06 55.47 5.31 2.98
LIMA QLORA w/ ILA (75%) | 43.48 55.95 5.56 3.19
QLORA w/ ILA (30%) = 44.01 55.82 5.17 3.01

Table 5.11: GPU memory usage for LoRA, QLoRA, Full Fine-tune and
LoRA/QLoRA /Full Fine-tune with only 30% of important layers fine-tuned. Batch
size is set to 2, and the maximum token length is 1024. Percentages in parentheses

indicate the proportion of linear layers fine-tuned.

GPU
Training time (ms)
Memory Usage (MiB)

Full Fine-tune (100%) 81276 396
Full Fine-tune w/ ILA (30%) 33458 304
LoRA (100%) 32752 403
LoRA w/ ILA (30%) 28586 359
QLoRA (100%) 26238 523
QLoRA w/ ILA (30%) 17912 423

FL, freezing the first K layers; and (3) LL, freezing the last K layers. As shown in
Table these naive strategies underperform. In contrast, our method effectively
identifies and freezes the least critical layers, yielding notable gains in both efficiency

and performance.

Observation 2: The important scores calculated using LoRA are similar
to those obtained through full fine-tuning. To assess whether LoRA-based

approximations differ from full fine-tuning (FFT), we compared parameter updates
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Table 5.12: Performance comparison of ILA, random, and position-based layer se-
lection for fine-tuning Llama 2-7B on the No Robots dataset. RL1/RL2 freeze K
randomly selected layers (different seeds); FL and LL freeze the first and last K

layers, respectively. Blue highlights indicate lower performance than ILA.

Language Understanding Conversational Ability

Methods
MMLU 1 Hellaswag 1 Vicuna ¥ MT-Bench 1

LoRA 44.58 59.46 5.78 3.98
LoRA w/ RL 1 44.23 59.71 5.72 3.96
LoRA w/ RL 2 43.98 59.11 5.62 3.89
LoRA w/ FL 44.02 59.32 5.58 3.71
LoRA w/ LL 44.61 59.21 5.65 3.99
LoRA w/ ILA 45.78 59.65 5.90 4.15

Table 5.13: Jaccard Similarity between important layers selected using Full Fine-
Tuning and LoRA for Llama 2-7B. Top 75% highest-scoring layers are determined as

important layers.

Datasets LIMA (FFT) No Robots (FFT) Alpaca-GPT4 (FFT)
LIMA (LoRA) 0.84 0.76 0.83
No Robots (LoRA) 0.78 0.80 0.81
Alpaca-GPT4 (LoRA) 0.82 0.83 0.86

from LoRA (i.e., Eq. (5.4)) and FFT (i.e., A®; = 0, — ;). For both methods, we
derived layer importance scores and selected the top 75% of layers, then calculated the
Jaccard similarity between the layers. As shown in Table[5.13] LoRA achieves nearly
83% overlap with the important layers identified by FFT, reducing computational
overhead while effectively ranking layer importance. The results show that LoRA

provides a strong approximation of A©; compared to 8; — 0.

Observation 3: Cross-dataset evaluation of layer importance enhances per-
formance. Different datasets highlight subtle differences in important layers (Ta-
ble . By intersecting the top-K least important layers from LIMA, No Robots,
and Alpaca-GPT4 and freezing them during fine-tuning (Table , we found that
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Table 5.14: Results of fine-tuning Mistral-7B on the LIMA dataset using ILA to
identify important layers from various datasets. Dataset (Imp. Layers) indicates
the datasets utilized to search for the important layers. Intersection represents

freezing the layers that are the intersection of the top-K least important layers found

from the LIMA, No Robots, and Alpaca GPT4 datasets.

Dataset Dataset
MMLU 1 Hellaswag 1 Winogrande ¥ Vicuna T MT-Bench 1

(Imp. Layers) (Finetune)

LIMA LIMA 61.82 65.48 72.01 6.99 5.38

No Robots LIMA 61.52 65.51 71.66 6.92 5.34
Alpaca-GPT4 LIMA 61.23 65.20 71.59 7.03 5.21
Intersection LIMA 61.49 65.62 72.20 7.10 5.49

cross-dataset evaluation yields better results than dataset-specific fine-tuning. As
shown in Table [5.2] different datasets reveal subtle variations in the layers identi-
fied as important. This suggests that layers consistently deemed unimportant across
multiple datasets are likely genuinely non-essential. To validate this, we intersect
the top-K least important layers identified from three datasets (LIMA, No Robots,

and Alpaca-GPT4) to derive a set of universally non-critical layers. The results are

presented in Table

Our analysis reveals that a holistic consideration of layer importance across mul-
tiple datasets yields superior results compared to dataset-specific approaches. For
instance, identifying important layers within the LIMA dataset and fine-tuning on
the No Robots dataset is less effective than an integrated approach. Similarly, finding
important layers and fine-tuning exclusively on the No Robots dataset do not perform
as well as the comprehensive method. This suggests that a cross-dataset evaluation

of layer importance can lead to more robust and effective fine-tuning strategies.

Observation 4: Cross-model transfer of layer importance rankings is feasi-
ble but less effective than cross-dataset transfer. Models sharing architecture

but trained on different datasets show strong agreement in important layers (Jaccard
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Table 5.15: Jaccard similarities of the top 75% important layers across different

models.

Llama 2-7B Llama 2-7B Llama 2-7B
(LIMA) (NoRobots) (Alpaca-GPT4)

Mistral-7B-v0.1

0.67
(LIMA)
Mistral-7B-v0.1
0.70 0.71
(NoRobots)
Mistral-7B-v0.1
0.71 0.66 0.75

(Alpaca-GPT4)

Table 5.16: Experimental results for Mistral-7B-v0.1 on the No Robots dataset, using

layer importance rankings derived from Llama 2-7B.

Methods MMLU Hellaswag Vicuna MT-Bench
LoRA 61.95 62.90 6.25 4.68
LoRA w/ ILA (75%) (cross-model transfer)  62.10 63.21 6.29 4.72
LoRA w/ ILA (75%) 62.14 62.80 6.42 4.87
LoRA w/ ILA (30%) (cross-model transfer)  61.77 63.16 6.11 4.60
LoRA w/ ILA (30%) 61.89 62.79 6.27 4.75

similarity of 0.90 for the top 75%, Table . This drops to 0.70 across architec-
tures (Table , indicating reduced transferability. Nonetheless, significant overlap
suggests cross-architecture transfer remains viable. Fine-tuning Mistral-7B-v0.1 us-
ing rankings from Llama 2-7B on No Robots (Table confirms that cross-model

transfer can still perform well.

These findings suggest that cross-model transfer of layer importance rankings is possi-
ble, though less effective than using rankings from the same architecture. Fine-tuning
the top 75% of layers based on cross-model transfer shows some improvement, while

fine-tuning only the top 30% achieves comparable performance.

Observation 5: ILA is robust to the initialization of layer importance

scores. We evaluated the effect of different initial layer importance scores on the con-
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Table 5.17: The Jaccard similarities of top 75% important layers identified during
fine-tuning of Llama 2-7B on the LIMA dataset with varying initial scores.

Initial Scores 4.0 2.0 1.0

4.0 - - -
2.0 083 - -
1.0 0.78 0.88 -

sistency of identified important layers. The scores were initialized to sq = 4.0, 2.0, 1.0.
The consistency was measured using the Jaccard similarity of the top 75% important
layers identified during fine-tuning of LLama 2-7B on the LIMA dataset. As demon-
strated in Table [5.17, our algorithm ILA is resilient to varying initial importance
scores (g = 4.0,2.0,1.0), with minimal impact on final rankings. The stable Jaccard
similarities for the top 75% of layers during Llama 2-7B fine-tuning on LIMA confirm

reliable convergence regardless of initialization.

Observation 6: The computation cost of ILA is low. ILA runs in two stages:
Stage 1 trains the model with LoRA until e-stability, and Stage 2 tunes importance
weights (v;) with the backbone and LoRA frozen. For both LLAMA 2-7B and Mistral-
7B-v0.1 (225 linear layers), Stage 1 takes 6671 ms per iteration, and Stage 2 takes
5343 ms. Stage 2 finishes in 11 minutes (128 batches). Most cost lies in Stage 1, but

Table[5.4]shows only 25-50% of training milestones are needed for strong performance.

5.5.6 Beyond LLM Alignment: LLM Reasoning

Our findings indicate that the alignment process of LLM imparts similar capabil-
ities despite data variations. This complements prior research by revealing layer-
specific roles and improving efficiency through strategic tuning and freezing of layers.

Nonetheless, the approaches and insights derived from this study extend beyond LLM
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Table 5.18: Performance of Qwen2.5-7B-

LIMO sl.1l
v_proj| Qwen2.5-7B-Instruct l v proj| Qwen2.5-7B-Instruct

Instruct on mathematical reasoning bench-

marks after fine-tuning with the LIMO

dataset.

Figure 5.3: Layer-wise importance

. Meth MATH AIME
rankings for Qwen2.5-7B-Instruct fine- ethods 500
tuned wusing the LIMO and sl.1 FFT 77.00 13.33
FFT w/ ILA 79.00 16.67

datasets, respectively.

alignment.

LLM Reasoning and Test-time Scaling. Advanced models like o1 [I79], Deepseek
R1 [74], and Kimi 1.5 [239] have exhibited strong reasoning capabilities. Similar to
alignment, reasoning seeks to further activate the knowledge acquired during pre-
training. While alignment ensures that outputs align with human values, reasoning
drives the model toward deeper inference for enhanced accuracy. Rather than scaling
model size or training data, recent studies such as LIMO [275] and s1 [I73] investi-
gate test-time scaling—boosting performance by increasing the number of input to-
kens used for reasoning. Their findings show that even limited high-quality training
data with chain-of-thought (CoT) examples can effectively enhance LLMs’ reasoning

capabilities.

To evaluate the effectiveness of ILA on reasoning tasks, we conduct experiments using

the following setup.

Datasets. (1) LIMO [275]: This dataset comprises 817 carefully selected problems
drawn from an initial pool of tens of millions. The final selection meets strict quality
standards and covers a broad range of mathematical reasoning tasks. High-quality
solutions are provided by both human experts and Al systems like DeepSeek R1 [74].
(2) s1.1 [173]: This dataset includes 1,000 questions paired with reasoning traces,

curated based on three rigorously validated criteria: difficulty, diversity, and quality.
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The chain-of-thought solutions are generated by DeepSeek R1 [74].

Evaluation. (1) AIME24: This set contains 30 problems from the 2024 Ameri-
can Invitational Mathematics Examination (AIME), administered on January 31 and
February 1, 2024. (2) MATHS500 [86]: A benchmark consisting of competition-level

math problems spanning a range of difficulties.

Consistency in Layer Importance Across Datasets. We applied our proposed
ILA algorithm to identify layer importance rankings on both the LIMO and sl.1
datasets using the Qwen2.5-7B-Instruct model [269]. The resulting rankings showed
strong consistency, with a Jaccard similarity of 0.86 (see Fig., suggesting that
LLMs tend to acquire similar reasoning-related knowledge across datasets. We hy-
pothesize that much of this knowledge is already learned during pretraining—as
also suggested by LIMO [275]—and that fine-tuning primarily serves to activate the

model’s latent reasoning abilities.

Based on the identified importance rankings, we further conducted experiments on
LIMO by freezing approximately 25% of the least important layers. As shown in Ta-
ble [5.18, fine-tuning only the top 75% most important layers led to a slight improve-
ment in performance, indicating that selective tuning can help enhance the model’s

reasoning capabilities.

5.6 Chapter Review

To better understand LLM alignment, we introduce ILA, a method that identifies
critical layers in the alignment process by learning binary masks over weight matri-
ces. ILA consistently highlights important layers across diverse datasets, suggesting
that alignment imparts similar capabilities regardless of variations in training data.
This finding complements prior research by shedding light on the layer-specific roles

involved in alignment.
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Beyond alignment, we observe that ILA reveals a similar pattern of important layers
across datasets for LLM reasoning tasks as well. Notably, freezing less important
layers not only reduces computational overhead but also improves performance in

both alignment and reasoning scenarios.

Overall, ILA provides a unified and efficient approach to understanding and opti-
mizing LLMs by revealing transferable layer importance across tasks and datasets,

contributing both theoretical insights and practical efficiency gains.

106



Chapter 6

Conclusion and Future Works

6.1 Conclusion

This thesis addresses several challenges in applying knowledge transfer to real-world
scenarios, such as enabling models to adapt to dynamic environments while retaining
previously learned knowledge, learning new tasks without forgetting old ones, han-
dling multiple tasks simultaneously to overcome potential negative transfer between
tasks, and improving the efficiency of knowledge transfer. Our research primarily
focuses on the contexts of Continual Learning and Multi-Task Learning, proposing
algorithms to tackle their core difficulties. We also explore methods for effectively
aligning Large Language Models (LLMs), which serves as an example of a Multi-
Task Learning challenge. These algorithms aim to make knowledge transfer more

applicable to practical scenarios.

Firstly, in Chapter [3] we explore knowledge transfer in the context of Continual
Learning. We propose that instead of addressing the issue of catastrophic forget-
ting when learning new tasks, it is more effective to consider it during the training
of the base model. By ensuring the model converges to a flat local minimum, any

fine-tuning within this region is unlikely to forget the knowledge acquired during the
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initial training phase. This approach allows the model to learn new knowledge with-
out forgetting previous knowledge, thereby enhancing the effectiveness of knowledge

transfer in dynamically changing real-world environments.

In Chapter [4, we examine knowledge transfer in the context of Multi-Task Learn-
ing. The current trend emphasizes the ability of models to handle multiple tasks
simultaneously, as seen with LLMs. Learning multiple tasks not only addresses the
issue of insufficient training data for single tasks but also leverages the correlations
between tasks to mutually enhance performance. This chapter focuses on mitigating
the problem of negative transfer between tasks. By converting shared layers that
often result in conflicting gradients into task-specific layers, we eliminate the oc-
currence of conflicting gradients, ensuring that tasks do not negatively impact each
other. This method effectively resolves conflicts between tasks, enabling better model
performance whether training a pre-trained base model or fine-tuning a model for a

multi-task downstream application.

Finally, in Chapter [5] we investigate the alignment of LLMs, which is a crucial step
in applying pre-trained LLMs to downstream tasks. Due to the high parameter
count of large models, fine-tuning can be resource-intensive. In this chapter, we
identify key layers that are crucial during the alignment process. By fine-tuning only
these specific layers, we achieve a more efficient use of resources while still enhancing
model performance. This approach significantly reduces the computational resources
required for knowledge transfer in large-scale models and helps to mitigate overfitting

to some extent.

Overall, the significance of this thesis lies in its contribution to making knowledge
transfer more effective, scalable, and applicable in complex, real-world settings. By
addressing key limitations in Continual Learning and Multi-Task Learning—such as
catastrophic forgetting, negative transfer, and resource inefficiency—we help bridge
the gap between theoretical advancements and practical deployment. Our work en-

ables models to adapt continuously to evolving environments without retraining from
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scratch, to leverage task interdependencies while avoiding harmful interference, and
to harness the power of large-scale models with reduced computational overhead.
These advancements not only improve model robustness and generalization but also
expand the feasibility of deploying intelligent systems in dynamic, multi-task, and
resource-constrained scenarios. In doing so, this thesis lays important groundwork

for the future of adaptive, lifelong, and efficient machine learning systems.

6.2 Future works

Building on the foundational work presented in this thesis, future research will focus
more deeply on the unique challenges and opportunities presented by Large Language
Models (LLMs). As LLMs become increasingly central to modern Al systems, their
scale, versatility, and potential for multi-task capabilities make them a natural ex-
tension of the knowledge transfer methods discussed here. However, their size and
complexity introduce new demands in terms of alignment, efficiency, and adaptabil-
ity. Future work will explore how to extend and refine knowledge transfer strategies
to better suit LLMs—ensuring they can continuously learn, generalize across diverse
tasks, and be efficiently fine-tuned or aligned for specific applications while minimiz-

ing resource overhead.

6.2.1 Continual Learning for Large Language Models

One promising research direction is the development of continual learning (CL) tech-
niques specifically tailored to LLMs. While current LLMs are pretrained on large
static datasets and then fine-tuned for individual tasks, real-world deployment often
requires models to learn from streaming data that evolves over time. Retraining from

scratch each time new data appears is both impractical and resource-intensive.

Future work will explore scalable CL strategies for LLLMs, such as applying flat minima
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optimization during pretraining and integrating knowledge preservation mechanisms
to mitigate catastrophic forgetting. A particularly promising idea is to maintain a
curated subset of high-quality, representative samples from past tasks—essentially a
dynamic memory buffer—that can be combined with new data for continual training.
This hybrid dataset approach could enable LLMs to retain past knowledge while

acquiring new information more efficiently.

6.2.2 Multi-Task Learning for Large Language Models

Another critical area is improving multi-task learning (MTL) for LLMs. These mod-
els are frequently used in settings where they must perform well across a variety of
tasks—often with imbalanced data, varying task complexity, and conflicting objec-
tives. Traditional MTL approaches may falter under these conditions due to chal-

lenges like long-tail distributions and gradient interference.

To address this, future research will focus on advanced task-balancing techniques,
conflict mitigation strategies, and adaptive learning frameworks. One promising so-
lution involves leveraging the Mixture-of-Experts (MoE) architecture. MoE models
dynamically route input (e.g., tokens or tasks) to specialized ”experts”—subnetworks
trained to handle particular tasks or types of data. This design is well-suited for

handling gradient conflicts in MTL, as discussed in this thesis.

By integrating gradient conflict analysis into expert routing decisions, future MoE-
based LLMs could allocate conflicting or dissimilar tasks to separate experts. This
would reduce negative transfer and improve model stability. Dynamic expert activa-
tion based on input features or task metadata may further enhance performance and

allow more efficient use of model capacity.
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6.2.3 Optimizing Training and Inference for LLMs

Despite recent advances in parameter-efficient fine-tuning (PEFT), LLMs still de-
mand significant computational resources for both training and inference. These
resource constraints limit their deployment in edge environments, mobile devices, or

low-latency applications.

Future work will investigate strategies to further improve the efficiency and scalability
of LLMs. This includes developing better model compression techniques (e.g., prun-
ing, quantization), smarter adapter selection mechanisms, and sparsity-aware fine-
tuning algorithms. Reducing memory usage and compute costs is especially crucial
for enabling real-time applications such as conversational agents and code generation

systems.

An especially promising direction is leveraging larger, high-capacity LLMs to generate
high-quality, information-rich synthetic data for training smaller models—including
MoE-based architectures. This teacher-student paradigm could be one of the most ef-
fective ways to accelerate training and inference without compromising performance.
By combining synthetic data generation with modular architectures and PEFT tech-
niques, it may be possible to create lightweight LLMs that are fast, accurate, and

easy to deploy.
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