

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

UNVEILING THE SHADOWS: INVESTIGATING

PRIVACY RISKS OF GRADIENT LEAKAGE IN

FEDERATED LEARNING

ZHANG RUI

PhD

The Hong Kong Polytechnic University

2025

The Hong Kong Polytechnic University

Department of Computing

Unveiling the Shadows: Investigating Privacy Risks of

Gradient Leakage in Federated Learning

ZHANG Rui

A thesis submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy

August 2024

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any

other degree or diploma, except where due acknowledgment has been

made in the text.

Signature:

Name of Student: ZHANG Rui

Abstract

Driven by growing concerns about data privacy and the need for powerful machine

learning models trained on diverse datasets, Federated Learning (FL) has emerged

as a promising solution. This decentralized approach enables the training of global

models without compromising individual user privacy. In FL, participating clients

collaboratively train a shared model by uploading gradients calculated on their local

private data. Hence, the raw data remains confined to the clients’ devices. However,

this seemingly secure systems are not impervious to attack. Adversaries can exploit

the shared gradients through Gradient Inversion Attacks (GIAs) to disclose sensitive

information about the training data, thereby threatening the privacy of FL clients.

Traditional GIAs employ an optimization-based approach to recover private training

data used in FL. The process begins by creating synthetic data points generated by

sampling from a Gaussian distribution for both input features and the corresponding

labels. The attackers feed this synthetic data into the FL shared model and calculates

the gradients of the model’s output with respect to these artificial inputs. Through it-

erative optimization, the synthetic data is continuously refined. The distance between

the gradients produced by the synthetic data and the actual gradients obtained from

FL clients is a measure of accuracy. This distance guides adjustments to the synthetic

data, aiming to minimize the difference. When the synthetic and the actual gradients

become nearly indistinguishable, the reconstructed synthetic data approximates the

private training data used in FL collaboration.

i

Building upon existing research on GIAs, this thesis delves into the limitations of cur-

rent methods from an adversarial perspective. We identify three critical challenges

hindering the development of effective and efficient data reconstruction mechanisms.

(1) Label Information Leakage: Access to accurate labels is essential for recon-

structing training samples. Existing methods either assume adversaries possess this

knowledge or rely on some restrictions (e.g., non-negative activations) to circumvent

this issue. (2) Layer-wise Gradient Exploitation: While some studies utilize gra-

dients from fully connected layers for direct input recovery, the broader potential of

exploiting layer-wise gradient relationships remains largely unexplored. Deeper explo-

ration in this area is crucial for advancing attack effectiveness. (3) Targeted Data

Reconstruction: Most GIAs focus on reconstructing comprehensive data from deep

networks and large batches. However, the threat escalates when an adversary can

selectively reconstruct specific data samples from gradients. This precision allows for

more accurate privacy leakage and increases potential misuse.

In this thesis, we aim to advance the field of FL security and privacy by developing

novel gradient-induced attacks that address the aforementioned challenges. Our main

contributions are threefold, detailed in the following three parts.

In the first part, we establish the fundamental connection between training labels and

gradients. Building upon this discovery, we introduce a versatile framework for label

recovery applicable to diverse classification tasks. Our framework leverages the pos-

terior probabilities – generated by functions like Sigmoid or Softmax – to infer labels

in binary, multi-class, and even imbalanced scenarios. In particular, exploiting the

globally shared model in FL, an adversary can estimate these posterior probabilities

for training samples by using some auxiliary data. By incorporating these estimates

into the relationship derived between labels and gradients, we can effectively recover

the batch training labels from shard gradients.

In the second part, we propose the Gradient Bridge (GDBR) attack to expose privacy

leakage through correlated layer-wise gradients in specific gradient-sharing scenarios.

ii

GDBR begins by deriving theoretical relationships between gradients across different

layer types: input-output and weight-output for fully connected and convolutional

layers, respectively, and output with respect to activation functions. By meticulously

tracking gradient flow across these layers, we formulate a recursive procedure that re-

constructs the gradient of the model’s output logits. By associating the reconstructed

logit gradients with observable variables (e.g., hidden features, Softmax probabilities),

GDBR can recover label information from training samples even when only a single

layer’s gradients at the bottom of the model are shared.

In the third part, we focus on reconstructing training data from sensitive or specified

classes by devising a targeted attack called Gradient Filtering (GradFilt). GradFilt

operates under the assumption of a malicious adversary capable of manipulating both

the parameters and structure of the white-box FL model. This attack commences

by strategically modifying the weights and biases of the final fully connected layer,

effectively zeroing out gradients corresponding to non-target data while preserving

those associated with the target class. This grants GradFilt control over the model’s

output probabilities, enabling it to recover labels for the entire batch and determine

the number of instances in the target category. Finally, GradFilt reconstructs the

target data by applying an optimization-based or analytical approach, depending on

the number of target samples included in the training batch.

In summary, this thesis illuminates the inherent vulnerabilities within the mecha-

nisms of gradient sharing, underscoring the critical need for ongoing vigilance in

protecting client privacy within FL systems. We firmly believe that our findings will

significantly contribute to the development of more robust and trustworthy FL solu-

tions, ultimately unlocking the full potential of collaborative machine learning across

a diverse range of applications.

iii

Publications Arising from the

Thesis

• Rui Zhang, Ka-Ho Chow, and Ping Li. Building Gradient Bridges: Label

Leakage from Restricted Gradient Sharing in Federated Learning. Prepared to

the 30th European Symposium on Research in Computer Security (ESORICS),

2025.

• Rui Zhang, Song Guo, and Ping Li. GradFilt: Class-wise Targeted Data Re-

construction from Gradients in Federated Learning. In Companion Proceedings

of the 33rd ACM on Web Conference (WWW), 2024.

• Rui Zhang, Song Guo, and Ping Li. Posterior Probability-based Label Re-

covery Attack in Federated Learning. In Workshop on Privacy Regulation and

Protection in Machine Learning in Conjunction with ICLR 2024 (PML-ICLR-

24), 2024.

• Rui Zhang, and Song Guo. Privacy Inference for Data Auditing. In Proceed-

ings of the International Symposium on AI, Data and Digitalization (SAIDD),

2023.

• Rui Zhang, Song Guo, Junxiao Wang, Xin Xie, and Dacheng Tao. A Survey on

Gradient Inversion: Attacks, Defenses and Future Directions. In Proceedings

of the 31st International Joint Conference on Artificial Intelligence (IJCAI),

iv

2022.

• Xuan Liu, Siqi Cai, Lin Li, Rui Zhang, and Song Guo. MGIA: Mutual Gra-

dient Inversion Attack in MultiModal Federated Learning (Student Abstract).

In Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI),

2023.

• Zicong Hong, Song Guo, Rui Zhang, Peng Li, Yunfeng Zhan, and Wuhui

Chen. Cycle: Sustainable Off-Chain Payment Channel Network with Asyn-

chronous Rebalancing. In Proceedings of the 52nd Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Networks (DSN), 2022.

v

Acknowledgments

Completing the thesis has been a challenging yet rewarding journey, made possible by

the unwavering support and encouragement of many. I extend my heartfelt gratitude

to all who have played a role in my Ph.D. pursuit.

First and foremost, I am deeply grateful to my chief supervisor, Prof. Ping Li, for his

invaluable guidance, encouragement, and support throughout my Ph.D. study at The

Hong Kong Polytechnic University. He has fostered my intellectual independence by

granting me significant freedom in exploring research directions. When facing chal-

lenges, his generous support and insightful advice have inspired me to move forward.

I am grateful for his mentorship and the opportunities he has provided for my growth

as an independent researcher.

Then, I extend my sincere gratitude to my co-supervisor, Prof. Song Guo, for intro-

ducing me to the fascinating field of edge computing. His expertise in these areas has

been instrumental in shaping my research interests. I am particularly grateful for his

perceptive suggestions and constructive feedback, which consistently challenged me

to think critically and creatively, pushing the boundaries of my research. Moreover,

Prof. Guo has imparted to me the importance of collaboration and interdisciplinary

thinking in advancing scientific inquiry.

Next, I would like to express my deepest gratitude to all research collaborators and

colleagues, who enriched my Ph.D. study with their invaluable insights, constructive

feedback, and powerful support. I cherish the opportunities we shared collaborating

vi

on diverse projects. In particular, thanks to Prof. Wenchao Xu, Dr. Junxiao Wang,

Dr. Xin Xie, Dr. HaozhaoWang, Dr. Jie Zhang, Mr. Leijie Wu, and Mr. Zicong Hong

from the Hong Kong Polytechnic University; Dr. Ka-Ho Chow from The University

of Hong Kong; and Prof. Dacheng Tao from The University of Sydney.

My doctoral journey would not have been as rewarding without my fantastic group

mates and friends. I would like to thank Wenchao Xu, Jingcai Guo, Xin Xie, Junxiao

Wang, Haozhao Wang, Jie Zhang, Kang Wei, Jinwen Liang, Qihua Zhou, Leijie Wu,

Zicong Hong, Yang Deng, Yi Liu, Ziming Liu, Tao Guo, Xueyang Tang, Jiewei Zhang,

Feijie Wu, Enyuan Zhou, Peiran Dong, Junbao Pan, Bingjie Wang, Ruibin Li, Fushuo

Huo, Yunfeng Fan, Jinyu Chen, Chuan he, Yingchun Wang, Yue Zeng, Cheng Wang,

Quan Chen, Yan Hong, and Jing Li at The Hong Kong Polytechnic University; and

Dimitar I. Dimitrov at ETH Zürich. Their support and encouragement are precious,

and I treasure their friendship and the memories we have created together.

Last but not least, I extend my heartfelt thanks to my parents and my wife, Ms. Jiwei

Ma, for their unconditional love, unwavering support, and constant encouragement.

Their steadfast belief in me has been an endless source of strength and motivation

throughout this journey. I am profoundly grateful for their sacrifices and unshakeable

faith in my abilities. This accomplishment would not have been possible without their

love and support, which have been the bedrock of my academic pursuit.

vii

To my beloved family,

for their love, support, and encouragement.

viii

Table of Contents

Abstract i

Publications Arising from the Thesis iv

Acknowledgments vi

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Thesis Motivation . 1

1.2 Thesis Contributions . 5

1.3 Thesis Organization . 7

2 Background and Literature Review 8

2.1 Background of Gradient Leakage . 8

2.2 Gradient Inversion Attacks . 9

2.2.1 Iteration-based Data Recovery 10

ix

2.2.2 Recursion-based Data Recovery 17

2.3 Gradient Inversion Defenses . 19

2.3.1 Obscuration of Original Data 19

2.3.2 Improvement of Training Model 21

2.3.3 Protection from Gradient Sharing 21

2.4 Challenges and Opportunities . 22

2.5 Chapter Summary . 25

3 Posterior Probability-Based Label Recovery from Gradients 26

3.1 Introduction . 26

3.2 Related Work . 28

3.2.1 Federated Learning . 28

3.2.2 Gradient Inversion Attacks . 28

3.2.3 Analytical Label Recovery Attacks 29

3.3 Preliminaries . 30

3.3.1 Focal Loss in Multi-class Classification 30

3.3.2 Definition of Class-wise Probabilities 31

3.3.3 Problem Formulation . 33

3.4 Essence of Label Leakage . 33

3.4.1 Generalized Expression of Gradients 34

3.4.2 Explanation from Exponential Family 36

3.4.3 Further Explanation of Label Leakage 39

x

3.5 Label Recovery Attack . 40

3.5.1 Our Key Observation . 41

3.5.2 Analytical Label Recovery . 43

3.6 Experiments . 45

3.6.1 Experimental Settings . 45

3.6.2 Comparison with Baselines . 46

3.6.3 Comparison of Various FL Settings 47

3.6.4 Ablation Studies . 49

3.7 Chapter Summary . 52

4 GDBR: Label Leakage from Restricted Gradient Sharing 54

4.1 Introduction . 54

4.2 Related Work . 57

4.2.1 Gradient Inversion Attacks . 57

4.2.2 Analytical Label Recovery . 58

4.2.3 Lightweight Defense Strategies 58

4.3 Preliminary . 59

4.3.1 Inference of Single One-Hot Label 59

4.3.2 Gradients in Typical Layers 60

4.3.3 Threat Model . 62

4.4 Gradient Bridge (GDBR) . 62

4.4.1 Overview . 63

xi

4.4.2 Correlation Between Layer-wise Gradients 63

4.4.3 Derivation of Batch-Averaged Gradients 70

4.4.4 Label Recovery from Inferred Gradients 71

4.5 Experiments . 72

4.5.1 Experimental Setups . 73

4.5.2 Verification of Assumptions 75

4.5.3 Comparison with Baselines . 75

4.5.4 Analysis of Different Factors 79

4.5.5 Performance against Defense Mechanisms 83

4.6 Chapter Summary . 84

5 GradFilt: Class-wise Targeted Data Reconstruction from Gradients 86

5.1 Introduction . 86

5.2 Related Work and Motivation . 88

5.3 Preliminaries . 89

5.3.1 Classification Tasks in FL . 90

5.3.2 Gradients of the Final FC Layer 90

5.3.3 Batch-averaged Gradients . 91

5.3.4 Threat Model . 92

5.4 Methodology of GradFilt . 93

5.4.1 Overview of GradFilt . 94

5.4.2 Gradient Separation . 96

xii

5.4.3 Label Restoration . 98

5.4.4 Gradient Calibration . 99

5.4.5 Data Reconstruction . 101

5.5 Experiments . 103

5.5.1 Experimental Setup . 103

5.5.2 Label Restoration . 105

5.5.3 Gradient Calibration . 106

5.5.4 Optimization-based Data Reconstruction 107

5.5.5 Analytical Data Reconstruction 111

5.6 Chapter Summary . 115

6 Conclusion and Future Work 116

6.1 Conclusion . 116

6.2 Limitation . 117

6.3 Future Work . 118

xiii

List of Figures

1.1 Illustration of representative Federated Learning (FL) workflows. . . . 2

1.2 The roadmap of this thesis. 5

2.1 Reconstruction workflow of iteration-based GIAs. 10

2.2 Reconstruction workflow of recursion-based GIAs. 17

3.1 Workflow of our proposed Label Recovery Attack in FL. 32

3.2 Posterior probability distribution of positive and negative samples in

different iterations of model training. 41

3.3 Posterior probability distribution of different classes. 42

3.4 Comparison of label recovery performance against baselines across var-

ious FL settings. 48

3.5 Instance accuracy with different scales of auxiliary data. 51

4.1 Illustration of our Gradient Bridge (GDBR) attack. 56

4.2 The distributions of input features and output probabilities of the FC

layer in ResNet18. 76

4.3 Comparison of GDBR with baselines on InsAcc across different datasets

and batch sizes. 77

xiv

4.4 Comparison of GDBR with baselines on ClsAcc across different datasets

and batch sizes. 78

4.5 Comparison of utilized gradients from different layers in a 6-layer MLP

model, trained on MNIST and CIFAR-10. 80

4.6 Comparison of gradient simulation modes for baselines and model ini-

tialization modes. 83

4.7 Comparison of gradient pruning and noise perturbation across various

groups of datasets and models. 84

5.1 Illustration of our proposed GradFilt attack. 93

5.2 Illustration of controlling gradient ∇a′ in the final FC layer. 96

5.3 Layer-wise errors between the calibrated gradients and true target gra-

dients on the CIFAR-10 dataset using the ConvNet model. 106

5.4 Illustration of data reconstruction process of the target data using

GradFilt. 110

5.5 Illustration of the analytical data reconstruction performance of Grad-

Filt on airplane targets from CIFAR-10 dataset. 113

5.6 Illustration of the analytical data reconstruction performance of Grad-

Filt on targets like white shark from ImageNet dataset. 114

xv

List of Tables

2.1 Summary and classification of existing GIAs. 12

2.2 Summary and classification of existing defenses against GIAs. 20

3.1 Relationships between different loss function and its gradient ∇z. . . 36

3.2 Comparison of our attack with the baselines on diverse scenarios. . . 47

3.3 Comparison of our attack with classification variants. 49

3.4 Label recovery accuracies on focal loss (γ = 2, ϵ = 0). 50

3.5 Distribution shift between training dataset and auxiliary dataset. . . 52

4.1 Comparison of different class distributions within the batch training

data across various datasets and models. 81

4.2 Comparison of label recovery using auxiliary data vs. dummy data

across various datasets and models. 82

5.1 Label restoration performance of GradFilt across various batch sizes

(B = {2, 8, 32, 128, 512}), different datasets, and diverse model archi-

tectures. 105

5.2 Comparison of data reconstruction quality between GradFilt and the

baselines (IG and DLG) on CIFAR-10 dataset using ConvNet model. 108

xvi

5.3 Ablation study of data reconstruction quality using GradFilt on various

datasets and model architectures. 109

5.4 Analytical data reconstruction performance of GradFilt on settings

with |xt| = 50 and |xt| = 100 target samples across various datasets

and models. 112

xvii

Chapter 1

Introduction

1.1 Thesis Motivation

In today’s data-driven world, the demand for powerful machine learning models has

surged across diverse fields, from healthcare and finance to scientific research. These

sophisticated models require massive datasets for optimal accuracy and robustness,

often necessitating the aggregation of information from multiple sources. However,

this extensive data collection raises critical privacy concerns, particularly when han-

dling sensitive information residing on edge devices or dispersed across numerous data

silos. Growing regulatory constraints and the risk of data breaches have made users

and organizations increasingly hesitant to share raw data [73].

Fueled by mounting concerns over data privacy and the persistent demand for high-

performing machine learning models trained on diverse datasets, Federated Learning

(FL) [44, 6] has emerged as a promising solution. FL empowers collaborative model

training without requiring data centralization. Participants can retain their raw data

locally while contributing to a shared global model by exchanging only model up-

dates rather than the data itself. This innovative approach strikes a balance between

harnessing collective knowledge and safeguarding individual data confidentiality.

1

Chapter 1. Introduction

①

②

③

④

①

②

③
①

③

① ② ③ ④
Download the
Global Model

Local Model
Update

Upload Updated
Model

Model
Aggregation

FL Server
Global/Local Model

Local Data

Mobile Device

②

Figure 1.1: Illustration of representative Federated Learning (FL) workflows. ① Each

participating client downloads the global model from the server. ② The clients train

the model with their local data and compute gradients. ③ Gradients are uploaded to

the server for aggregation. ④ The server updates the global model and redistributes

it to clients. The collaboration process iterates until the global model converges.

In each communication round of FL, clients download the current global model from

the server, train the model on their local datasets, and calculate the gradients of the

model parameters. These gradients are then transmitted to the server, which aggre-

gates them from the clients. Based on this aggregated information, the server updates

the global model and redistributes it back to the clients for the next round. This iter-

ative process continues until the model achieves a satisfactory level of accuracy. The

representative workflow of an FL system is illustrated in Fig. 1.1.

However, this ostensibly secure system is not impervious to malicious exploitation.

Sophisticated adversaries can leverage the shared gradients through techniques known

as Gradient Inversion Attacks (GIAs) to recover or infer sensitive information about

2

1.1. Thesis Motivation

the client’s private training data [88, 18, 78] or target labels [84, 64, 42].

Traditional GIAs [88, 18] employ an optimization-based approach to recover training

data used in FL. The process begins by creating synthetic data points, generated by

sampling from a Gaussian distribution for both input features and the corresponding

labels. The adversary feeds this synthetic data into the FL model and calculates the

gradients of the model’s output with respect to these artificial inputs. Through iter-

ative optimization, the synthetic data is continuously refined. The distance between

the gradients produced by the synthetic data and the actual gradients obtained from

the FL clients serves as a measure of accuracy. This distance guides adjustments to

the synthetic data, aiming to minimize the difference. When the synthetic and actual

gradients become nearly indistinguishable, the reconstructed data provides a close

approximation of the private training data used in FL collaboration.

By comprehensively surveying and summarizing the existing literature on GIAs and

their corresponding defenses, we aim to pinpoint the limitations of current methods

and explore advanced attack strategies in FL from an adversarial perspective. This

deep understanding of attack vectors is crucial for developing robust and trustworthy

FL systems. Based on our analysis, we identify three critical challenges that hinder

the development of effective and efficient data reconstruction mechanisms.

1. Label Information Leakage: Access to accurate labels is essential for recon-

structing training samples in GIAs. This crucial information allows adversaries

to more precisely infer the characteristics of the original data. Existing methods

addressing this challenge generally fall into two categories. The first assumes

that adversaries already possess the knowledge of labels [18, 78, 21], which may

be unrealistic in many real-world scenarios. The second approach attempts to

tackle this issue by relying on model structure restrictions [78, 64], such as uti-

lizing non-negative activation functions (ReLU or Sigmoid) or assuming unique

labels in each class [84, 78, 9]. However, these constraints either sacrifice model

3

Chapter 1. Introduction

flexibility or prove infeasible in practical FL scenarios.

2. Layer-wise Gradient Exploitation: While several studies have successfully

leveraged gradients from fully connected layers for direct input recovery [55],

or recursively reconstructed training samples by solving linear equations from a

convolutional neural network (CNN) [87, 7], the broader potential of exploiting

layer-wise gradient relationships remains largely unexplored. This undeveloped

area presents a significant opportunity for enhancing attack effectiveness and

understanding the vulnerabilities of FL. Deeper exploration in this domain could

reveal intricate connections between gradients across different layers, potentially

leading to more sophisticated and powerful attack strategies. Moreover, inves-

tigating the correlations between convolutional, fully connected, and activation

layers could provide valuable insights into data reconstruction.

3. Targeted Data Reconstruction: Traditional optimization-based GIAs such

as [18, 78, 21] focus on reconstructing complex training data from deeper neu-

ral networks and larger batch sizes. However, few studies have explored the

potential of selectively reconstructing specific data samples from gradients. If

the above methods are adopted to extract target data, the entire batch must be

reconstructed and then filtered to obtain the desired samples. This process is

inefficient and computationally expensive, and only 28% of training data can be

recovered from a ResNet50 model trained on a batch size of 48 [17]. Therefore,

developing targeted data reconstruction mechanisms can not only enhance the

efficiency of GIAs but also enable adversaries to extract high-value, sensitive in-

formation with greater accuracy. This selective reconstruction capability poses

a more severe threat to individual privacy and data security in FL.

After our summary and analysis, we find that the above challenges or problems are

necessary for understanding the vulnerabilities in FL and designing more secure and

trustworthy FL systems. Therefore, in Section 1.2, we will introduce the main contri-

4

1.2. Thesis Contributions

Unveiling the Shadows: Investigating Privacy Risks
of Gradient Leakage in Federated Learning

Main Challenges

Label Information
Restoration

Gradient Correlation
Exploitation

Desired Data
Reconstruction

Chatpter 3:
Probability-Based

Label Recovery

Chapter 4:
Gradient Bridges for

Label Leakage

Chapter 5:
Class-wise Targeted

Data Recovery

Lable Leakage Data Leakage

Figure 1.2: The roadmap of this thesis.

butions of this thesis, which address these key challenges. The roadmap of this thesis

is shown in Fig. 1.2, outlining the structure and contributions of the thesis.

1.2 Thesis Contributions

The main contributions of this thesis are as follows:

1. We establish a fundamental connection between training labels and gradients.

Building upon this discovery, we introduce a versatile framework for label re-

covery applicable to diverse classification tasks. Our framework leverages the

5

Chapter 1. Introduction

posterior probabilities that generated by functions like Sigmoid or Softmax, to

assist label inference in binary, multi-class, and even imbalanced scenarios. In

particular, exploiting the globally shared model in FL, an adversary can esti-

mate these posterior probabilities for training samples by using some auxiliary

dataset. By incorporating these estimates into the relationship derived between

labels and gradients, we can effectively recover training labels in a mini-batch

from shard gradients in FL collaboration.

2. We propose Gradient Bridge (GDBR), a novel attack that exposes privacy leak-

age by exploiting correlations between layer-wise gradients in specific gradient-

sharing scenarios. GDBR leverages theoretical relationships derived between

gradients across different layer types – input-output and weight-output for fully

connected and convolutional layers, respectively, and output with respect to ac-

tivation functions. By meticulously tracking gradient flow through these layers,

we develop a recursive procedure that reconstructs the gradient of the model’s

output logits. Associating these reconstructed logit gradients with observable

variables like hidden features or Softmax probabilities allows GDBR to recover

label information from training samples even when only a single layer’s gradients

at the bottom of the model are shared.

3. We introduce Gradient Filtering (GradFilt), a targeted attack designed to re-

construct training data from sensitive or specified classes. GradFilt presumes

a malicious adversary with the ability to manipulate both the parameters and

structure of a white-box FL model. The attack proceeds by strategically mod-

ifying the weights and biases of the final fully connected layer, effectively sup-

pressing gradients associated with non-target data while preserving those linked

to the target class. This manipulation grants GradFilt control over the model’s

output probabilities, enabling it to recover labels for the entire batch and deter-

mine the number of instances belonging to the target class. Finally, GradFilt

restores the target samples using either an optimization-based or analytical ap-

6

1.3. Thesis Organization

proach depending on the quantity of target data present.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 (Background and Literature Review): In this chapter, we

provide a comprehensive review of the background and related works on GIAs

and their countermeasures in FL. We also discuss the limitations of existing

methods and identify the key challenges that motivate our research.

• Chapter 3 (Posterior Probability-Based Label Recovery Attack from

Gradients in Federated Learning): This chapter presents a novel method

that utilizes the posterior probabilities to infer the labels of the training data.

We demonstrate the effectiveness of this approach in various classification tasks.

• Chapter 4 (Building Gradient Bridges: Label Leakage from Restrict-

ed Gradient Sharing in Federated Learning): In this chapter, we propose

Gradient Bridge (GDBR) to build bridges between the layer-wise gradients and

infer the gradients with respect to the output logits. Taking the recovery of

label distribution as an example, we demonstrate the effectiveness of GDBR by

leveraging the correlations between gradients across different layers.

• Chapter 5 (GradFilt: Class-wise Targeted Data Reconstruction from

Gradients in Federated Learning): In this chapter, we propose GradFilt to

recover targeted training samples by manipulating the parameter of the global

model, and then reconstruct the target data from the filtered gradients.

• Chapter 6 (Conclusion and Future Work): This chapter concludes the

main contributions and limitations of the thesis and outline potential directions

that can be explored in future research.

7

Chapter 2

Background and Literature Review

2.1 Background of Gradient Leakage

Federated Learning (FL) [44, 6] has become a popular paradigm for achieving collab-

orative training and data privacy at the same time. In a centralized training process,

the parameter server initially sends a global model to each participant. After train-

ing with local data, the participants are only required to share gradients for model

updates. Then the server aggregates the gradients and transmits the updated model

back to each user. However, recent studies have shown that gradient sharing is not as

secure as it is supposed to be. We consider an honest-but-curious attacker, who can

be the centralized server or a neighbor in decentralized training. The attacker can

observe the gradients of a victim at any communication round, and it attempts to

recover the training data and labels from gradients. In general, such kinds of attacks

are named as Gradient Inversion Attacks (GIAs).

A majority of GIAs [88, 18, 78] purpose to minimize the distance between the gen-

erated gradients and ground-truth gradients. To generate dummy gradients, a pair

of random data and labels are fed to the global model. Taking the distance between

the gradients as an error and the dummy inputs as parameters, the recovery process

8

2.2. Gradient Inversion Attacks

can be formulated as an iterative optimization problem. When the optimization pro-

cedure converges, the private data is supposed to be fully reconstructed. Moreover,

some newly presented studies [13, 87, 7] can also reconstruct the original data in a

closed-form algorithm. The key insight is to exploit the implicit relationships among

the input data, model parameters and gradients of each layer, and find the optimal

solution with minimum error.

To prevent attackers from disclosing private information through gradient sharing,

some cryptography-based methods [5, 55], differential privacy-based approaches [61,

70, 48] and pixel-based perturbations [15, 25] have been introduced to enhance the

security and privacy levels of FL. In addition, such privacy leakage can be mitigated

by increasing the local iterations or batch sizes [69, 26] during model training.

In this chapter, we present a comprehensive review of GIAs and defenses against

GIAs in FL. We first introduce our proposed taxonomy of GIAs, which categorizes

the existing studies into two paradigms: Iteration-based and Recursion-based attacks.

Then, we delve into the iteration-based attacks and divide the main components into

Data Initialization, Model Training, and Gradient Matching. We also summarize the

emerging defense strategies against GIAs, which focus on three perspectives: Data

Obscuration, Model Improvement, and Gradient Protection.

2.2 Gradient Inversion Attacks

In this section, we provide a taxonomy of GIAs by characterizing the existing works

into two paradigms: iteration-based and recursion-based attacks. In particular, we

delve into iteration-based attacks and divide the main components into data initial-

ization, model training, and gradient matching. We first describe the workflow of each

category and formulate the optimization objectives. Then, we introduce the repre-

sentative studies. Additionally, we compare the differences with the former category

9

Chapter 2. Background and Literature Review

Iterative

Optimization

matching

Figure 2.1: Reconstruction workflow of iteration-based GIAs. The process includes

data, models, and gradients, which are represented in different colors. (Red: Recon-

structed data, labels or gradients of the dummy inputs. Gray: Global model shared

in distributed learning, whose parameters and structure are known. Blue: Ground-

truth gradients and generated gradients for data recovery.)

from non-initialization, model structure, and linear solving. A detailed comparison

of differences and similarities among recent GIAs is listed in Table 2.1.

2.2.1 Iteration-based Data Recovery

In the iteration-based workflow, the attacker first generates a pair of random data x′

and labels y′, which are regarded as optimization parameters for data recovery. After

forward and backward propagation, generated gradients of model weights ∇W′ can

be obtained. Here, the bias terms are ignored since they can be integrated into the

networks by adding a neuron with the input of 1. According to the distance between

generated gradients and ground-truth gradients of a victim, another backward prop-

10

2.2. Gradient Inversion Attacks

agation is performed to calculate the gradients of dummy inputs, i.e., ∇x′ and ∇y′.

From the perspective of reconstructed data, the reconstruction process includes once

forward propagation, twice backward propagation and the update of dummy inputs,

which is illustrated in Fig. 2.1.

The recovery of private data can be viewed as an iterative optimization process uti-

lizing gradient descent. When the optimization converges, that is, the distance (e.g.,

ℓ2 norm) between gradients is close, and the original data is supposed to be fully

recovered. The optimization problem is formulated in Eq. (2.1), where x′∗,y′∗ are the

optimized results.

x′∗,y′∗ = argmin
x′, y′

∥∇W′ −∇W∥2

= argmin
x′, y′

∥∥∥∥∂L (F (x′,W) ,y′)

∂W
−∇W

∥∥∥∥2 (2.1)

Initialization of Input Data and Labels

To produce dummy gradients and perform gradient matching, the attacker first needs

to generate random data and labels. Initialization involves the selection of distribu-

tion, the size of original data, and the asynchronous recovery of labels.

Distribution. Random Gaussian noise is most frequently used for data initializa-

tion in the majority of GIAs [88, 18, 78]. In addition, constant values [66] or random

noise sampled from Uniform distribution [29] are also presented for data initializa-

tion. However, some experiment results demonstrate that GIAs often fail to converge

due to bad initialization [18]. Hence, Wei et al. [69] prove that the convergence of a

reconstruction process can be guaranteed by Lipschitz continuity:

f(x′T)− f(x′∗) ≤ 2L ∥x′0 − x′∗∥2

T
(2.2)

11

Chapter 2. Background and Literature Review

Table 2.1: Summary and classification of existing GIAs.

Publication
Data Initialization Model Training Grad Matching

Distribution Resolution Network Batch size Loss-fn Optimizer

GIAs of Iteration-based Workflow

DLG [88] Gaussian 64×64 LeNet 8 ℓ2 dist L-BFGS

iDLG [84] UniformL 32×32 LeNet 1 ℓ2 dist L-BFGS

CPL [69] Geometric 128×128 LeNet 8 ℓ2 dist L-BFGS

InvGrad [18] GaussianL 224×224 ResNetT 8 (100) Cosine Adam

SAPAG [66] Constant 224×224 ResNet T 8 Gauss AdamW

GradInversion [78] GaussianL 224×224 ResNetT 48 ℓ2 dist Adam

GradDisagg [36] Gaussian 32×32 MLP 32 (128) ℓ2 dist L-BFGS

GradAttack [26] GaussianL 224×224 ResNetT 128 Cosine Adam

Bayesian [3] Gaussian 32×32 ConvNetT 1 (32) Cosine Adam

CAFE [29] Uniform 32×32 Loop-Net 100 ℓ2 dist SGD

GIAS [28] Latent 64×64 ResNetT 4 Cosine Adam

GIAs of Recursion-based Workflow

PPDL-AHE [55] N/A 20×20 MLP 1 Gradient division

PPDL-SPN [13] N/A 32×32 ConvNet 8 Linear solving

R-GAP [87] N/A 32×32 ConvNet 1 Inverse matrix

COPA [7] N/A 32×32 ConvNet 1 Least-squares

L: The labels can be directly identified or extracted from shared gradients.

T: The results of data recovery are compared in different model training states.

12

2.2. Gradient Inversion Attacks

where L is the Lipschitz constant, T denotes the condition of termination, and x′0,

x′T, x′∗ represent the initializing data, terminated results and optimal recovery, re-

spectively. Based on Eq. (2.2), Wei et al. [69] propose patterned randomization and

theoretical optimal initialization methods, which are more efficient and stable than

Gaussian or Uniform noise.

Image Resolution. Without loss of generality, we consider the scenarios of image

classification tasks. The resolution of raw images is an important factor that affects

both initialization and the difficulty of recovery. The more pixels an image has, the

more variables need to be optimized. Thus, it is more challenging to deploy attacks

on complex datasets, such as ImageNet [12]. In contrast, relatively good results can

be achieved on the low-resolution black-and-white images (e.g., MNIST [37], Fashion-

MNIST [74]), even under mini-batch training. Till now, 224×224 pixels is the largest

resolution for recovery.

Label Restoration. In a general procedure for iteration-based GIAs, dummy data

and labels are simultaneously updated. However, if the ground-truth labels can be

extracted in advance, data recovery will be accelerated and the computational com-

plexity will also be reduced. Zhao et al. [84] first find out that the ground-truth label

in a classification task can be directly revealed. For a mini-batch label restoration,

[61, 78] propose that labels of different classes can be identified from each other, which

assumes that there are non-repeating labels in the mini-batch training data. All of

the above approaches extract the labels from the fully connected layer of gradients.

Moreover, Wainakh et al. [64] exploit both the angle and magnitude of gradients to

identify the labels. The angle shows whether a label is contained in the batch, while

the magnitude indicates the number of duplicate labels. Dang et al. [9] present a more

powerful label leakage attack, which can be applied to both image classification and

speech recognition tasks. Beyond the FedSGD algorithm, this study also considers

13

Chapter 2. Background and Literature Review

recovering labels under multiple local iterations within the FedAvg algorithm.

Model Training for Gradient Generation

To obtain the generated gradients, the attacker needs to feed the initialized dummy

data and labels into the model. Based on the error between the model outputs and

the labels, the gradients of weights can be calculated through backward propagation.

In the setting of distributed learning, the global model can be viewed as a white box,

which means the model structure and weights are known. However, the depth of

training network structures and the batch size of training data can implicitly affect

the results of data recovery.

Network Model. Convolutional neural networks (CNN) or multilayer perceptron

(MLP) are generally adopted as training networks for computer vision. Intuitively, the

deeper the network is, the more parameters it contains. This raises two serious issues.

First, the computational complexity is greatly increased, which makes it difficult or

impossible for the optimization process to converge. Second, even if the procedure

converges, there may exist multiple locally optimal solutions, resulting in a significant

difference in the ground-truth value. So far, Geiping et al. [18] can recover the raw

data on ResNet152 [24], although only a few images can be recognized. Yin et al. [78]

achieve data recovery of high-resolution images on ResNet50, and display relatively

better results. [29, 3] also investigate the relationship between the convergence states

of model training and the errors of reconstruction.

Batch Training. For regular training, learning with mini-batch data can decrease

the number of iterations and reduce the fluctuation of accumulated errors. However,

this greatly increases the difficulty of GIAs. Given an observation of gradients, the

problem of recovering original data is equivalent to the decomposition of averaged

summation. Using the vanilla optimization approach in Eq. (2.1), Zhu et al. [88]

14

2.2. Gradient Inversion Attacks

can only perform data recovery for a maximum batch size of 8. With the assistance

of various regularization terms, Yin et al. [78], Huang et al. [26] all can recover the

original private data with a batch size of over 30.

Data Update through Gradient Matching

The process of gradient matching measures the difference between generated gradi-

ents and ground-truth gradients and then calculates the update of dummy inputs.

Essentially, the procedure for data recovery can be analogized to supervised learning,

which means the ground-truth gradients are similar to a high-dimensional “label”,

while the dummy data and labels are the parameters to be learned in the optimiza-

tion process. There are several important parts for gradient matching, the first is to

obtain the gradients of a victim, and the next is proposing an effective method to

minimize the distance.

Disaggregation. Considering the secure aggregation rules [5, 16], the adversaries

can only observe a summation of the gradients. To perform gradient matching, it

is necessary to decompose the individual gradients from the aggregation. Similar to

the decomposition problem of mini-batch recovery, this is also a challenging problem.

Lam et al. [36] first focus on this issue and formulate it as a matrix factorization

problem. By leveraging the participant information acquired from device analytics,

additional constraints contribute to the solution. If Gagg represents the aggregated

gradients, the factorization problem can be solved by finding the participant vector

pk for each client k:

Find pk s.t. Null(GT
agg) pk = 0

Ckpk − ck = 0

pk ∈ {0, 1}n

(2.3)

where Null(·) calculates the kernel of a matrix, and Ck specifies the participated

rounds of client k.

15

Chapter 2. Background and Literature Review

Loss Function. Generally, an attacker is assumed to have direct access to the gra-

dients of a victim. Thus, these studies focus on improving their algorithms to decrease

the difference between gradients and recover more realistic data. The enhancement

consists of optimization metrics and regularization terms. To measure the distance

between generated gradients and ground-truth gradients, Euclidean distance (i.e., ℓ2

norm) is a frequently used loss function [88, 69, 36]. However, Wang et al. [66] dis-

cover that gradients with large values dominate data recovery at the early stages.

They hence propose a weighted Gaussian kernel as the distance metric. Furthermore,

Geiping et al. [18] observe that the direction of gradients plays a more important role

than magnitude, and substitute the ℓ2 cost function with cosine similarity:

arg min
x′∈[0,1]n

1− ⟨∇W′,∇W⟩
∥∇W′∥ ∥∇W∥

, (2.4)

where ⟨·, ·⟩ denotes the inner product of two vectors and ∥·∥ represents the ℓ2 norm

of a vector. ∇W and ∇W′ are the ground-truth gradients and generated gradients

with respect to dummy data, respectively.

Regularization. To recover more realistic data from the batch, some auxiliary

regularization terms are inserted into the cost functions. These regularization terms

can be divided into two categories, one that constrains the fidelity of images, and

the other that revises the position of the main object. Fidelity regularization [18,

78] steers the reconstructed data from impractical images, including total variation

norm (TV), ℓ2 norm and batch normalization (BN) [50, 43]. Group consistency

regularization is presented by [78], which jointly considers multiple random seeds for

initialization, and calculates the averaged data E(x′
g∈G) as reference. Any candidate

whose recovery deviates from the “consensus” image of the group will be penalized. Rfidel(x
′) = αtvRTV(x

′) + αℓ2Rℓ2(x
′) + αbnRBN(x

′)

Rgroup(x
′,x′

g∈G) = αgroup

∥∥x′ − E(x′
g∈G)

∥∥2 (2.5)

Applying Rfidel and Rgroup regularization terms can indeed support reconstructing

16

2.2. Gradient Inversion Attacks

Recursive

Reconstruction

Figure 2.2: Reconstruction workflow of recursion-based GIAs. The process includes

data, models and gradients, which are represented in different colors. (Red: Recon-

structed data, labels or gradients of the dummy inputs. Gray: Global model shared

in distributed learning, whose parameters and structure are known. Blue: Ground-

truth gradients and generated gradients for data recovery.)

more realistic image data on complex datasets (e.g., ImageNet) under mini-batch

training. Additionally, the GIAs are not overly sensitive to initialization.

2.2.2 Recursion-based Data Recovery

In recursion-based data recovery, the attacker can recursively calculate the input of

each layer by finding the optimal solution with minimized error. Phong et al. [55] first

discover that the input of a perceptron can be directly recovered from xk = ∇Wk/∇b.

This conclusion is later generalized to fully connected (FC) layers or MLP, as long as

bias terms exist. Following this idea, Fan et al. [13] convert a convolutional layer into

an FC layer by stacking the filters, and then utilize the above relationship. However,

17

Chapter 2. Background and Literature Review

they neglect the feature of reused weights in the convolutional layers, which is different

from that of FC layers. To recover the image data of the first convolutional layer, Zhu

and Blaschko [87] combine the forward and backward propagation and formulate the

problem as solving a system of linear equations. The essence of such data leakage is

that: the feature map and the gradient of kernels in the first convolutional layer have

direct involvement with the original data. Extending to the i-th layer, it is possible

to recover the input vector xi by solving: Wi xi = Zi

∇Zi xi = ∇Wi

(2.6)

where Zi and ∇Zi represent the feature map and its gradients.

Denoting the neuron outputs and activation function of each layer as ai and σi(·),

then we have the relationships of Zi = σ−1
i (ai) and ∇Zi = ∇ai · σ′

i(ai). Hence, it

is possible to recover the original data by recursively starting from the FC layer to

the convolutional layer. Chen and Campbell [7] also propose a generic framework by

combining multiple optimization problems under different situations. The workflow

of the recursion-based framework is depicted in Fig. 2.2.

Compared to the iteration-based approaches, these recursion-based attacks have the

following characteristics.

Non-initialization. Different from iterative optimization, a recursion-based attack

can directly recover the original image without initialization or generating dummy in-

puts. Since the time of recovery is proportional to the square of the number of pixels,

the current image resolution that can be recovered does not exceed 32×32. Further-

more, the extraction of labels refers to the above-mentioned works in Section 2.2.1.

Model Structure. The networks for experiments include only convolutional and

fully connected layers. The pooling layers or shortcut connections in ResNet are not

18

2.3. Gradient Inversion Defenses

considered, which would cause an accumulation of errors layer by layer, and make

the reconstructed data extremely biased. However, these attacks can not deal with

mini-batch training, which is a major difference compared to iteration-based attacks.

Linear Solving. As formulated in Eq. (2.6), the original data can be recursively

solved by constructing linear equations. The feature maps and their gradients can be

derived from the model weights and corresponding gradients. It is worth mentioning

that such an attack depends on the integrity of gradients. Once the gradients are per-

turbed, the noisy solution will make the restored results completely unrecognizable.

2.3 Gradient Inversion Defenses

In this section, we summarize the emerging defense strategies from perspectives of

data obscuration, model improvement, and gradient protection. A client can either

obscure the private images from the data source, enhance the structure of network

models, or protect the gradients before sharing. The main contributions of these

defenses are described in Table 2.2.

2.3.1 Obscuration of Original Data

Since the target of GIAs is to recover the training data of a victim, an ideal defense

strategy is to directly protect the raw data before training. We expect that the private

input is difficult to reconstruct while the model utility does not degrade too much.

Zhang et al. [80] propose the method of MixUp for data augmentation, where virtual

training samples are generated by linearly combining a pair of data and labels. These

generated examples can not only improve the accuracy of the training model but

also “aggregate” the original data. Based on MixUp, Huang et al. [25] introduce the

idea of cryptography to protect the data using one-time private keys. In particular,

19

Chapter 2. Background and Literature Review

Table 2.2: Summary and classification of existing defenses against GIAs.

Surface Method Study Key Contribution

Data

MixUp [80] Data enhancement by linearly combining the inputs

InstaHide [25] Encrypt the MixUp data with one-time secret keys

Pixelization [14, 15] Perturb the raw data with pixelization-based method

Model

Dropout [86] Add an additional dropout layer before the classifier

Local iters [69] Share gradients after multiple local training iterations

Architecture [87] Reduce the number of convolutional kernels properly

Gradients

Aggregation
[79] Apply Homomorphic Encryption to protect gradients

[39] Utilize Secure Multi-Party Computation to aggregate

Perturbation
[61] Perturb data representation layer and maintain utility

[70] Add adaptive noise with differential privacy guarantee

Compression
[63] Compress the smaller values in gradients to zero

[30] Transmit the sign of gradients for model updates

a portion of images from both private and public datasets are randomly selected for

combination, and then the pixels are flipped according to the keys. This lightweight

approach prevents an attacker from recovering the training data and ensures the

usability of the data. Pang et al. [52] also mixup the input with other clean samples

to improve the adversarial robustness of training models. In addition, Fan [15] protect

the images with pixelization and Gaussian blur approaches, which can be used not

only for distributed training but also for data publication, such as crowd-sourcing.

20

2.3. Gradient Inversion Defenses

2.3.2 Improvement of Training Model

As for training models, in addition to increasing the depth of the neural network or

training with a mini-batch (Section 2.2.1), we introduce some newly presented but

effective approaches. In general GIAs, it is assumed that the gradients are sent after

one round of local training. Wei et al. [69] propose to schedule and control the number

of local training iterations before gradient sharing, which makes it more difficult to

reconstruct the private data. Experiments demonstrate that the success rates of

data recovery have dropped by more than 60% when performing 10 local iterations.

Modifications to the network structure can also defend against GIAs. Zheng [86]

propose to add a simple dropout layer between the encoder and the classifier to

solve the problem of overfitting. During the training process, there may be certain

neurons with larger activation values, indicating the features of training data are

overly memorized. If a proportion of neurons are randomly pruned, then it is possible

to mitigate the privacy inference attacks. Considering that different network models

may have different risks of privacy leakage, Zhu and Blaschko [87] present a rank-based

security analysis. Such a method indicates that the more filters in a convolutional

layer, the better the data recovery will be. Similarly, Geiping et al. [18] have also

mentioned that it is impossible to recover the original data from gradients if the

dimensionality of model parameters is lower than that of input data. This conclusion

inspires us to appropriately reduce the number of parameters while ensuring the

performance of the model.

2.3.3 Protection from Gradient Sharing

In distributed learning, since model updates are performed based on gradient ex-

changing, the straightforward privacy-preserving approach is to protect the gradients.

Summarizing the existing studies, we divide them into aggregation, perturbation and

compression-based defense strategies.

21

Chapter 2. Background and Literature Review

Cryptography-based methods can generally guarantee the security and privacy of in-

dividual gradients without compromising their utility. [5, 39] use secure Multi-Party

Computation (MPC) to compute the summation result of model updates. [55, 32, 79]

implement Homomorphic Encryption (HE) to carry out operations on the ciphertext

space for gradient aggregation. Even if an attacker steals the information through

man-in-the-middle (MITM) attacks, the adversary cannot decrypt it to obtain the

ground-truth gradients. However, these approaches not only require modifications to

the training architecture but also exponentially increase the computation time, band-

width and data storage, which are not suitable for large-scale distributed learning.

Gradient perturbation is another frequently used approach for privacy protection.

Studies like [62, 68, 76] propose to add Gaussian noise into the transmitted gradients

with the guarantee of Differential Privacy (DP). He et al. [22] essentially reveal how

iterative training impacts privacy, and establishes the relationship between general-

ization and privacy-preserving. Sun et al. [61] find the key to GIAs lies in the data

representation layer, and only perturb the gradient values in this critical layer. Wei

et al. [70] propose a method with dynamically adjustable noise that can achieve high

resilience against GIAs. Except for injecting noise, Zhu et al. [88] discover that some

compression methods, originally used to reduce communication overhead, can also be

used to prevent data recovery. Vogels et al. [63] propose to prune the smaller values

to zero by a certain percentage, and Karimireddy et al. [30] only transmit the sign

of gradients. These methods can resist attacks to a certain extent while maintaining

the performance of the training model.

2.4 Challenges and Opportunities

After reviewing the existing GIAs and their corresponding defenses, we have identified

some challenges and opportunities for improvement. Building a secure, trustworthy

and robust FL system requires a comprehensive understanding of potential threats

22

2.4. Challenges and Opportunities

and vulnerabilities. Only by fully investigating the attack surfaces can we effectively

design and implement robust defense strategies. Therefore, we point out the problems

or challenges of previous GIAs in the following aspects.

1. One significant challenge lies in recovering training labels. As discussed in Sec-

tion 2.2.1, label recovery is pivotal for reconstructing original training samples.

While methods like DLG [88] demonstrate limited success in simultaneously

recovering both data and labels in small-batch, few-category classification sce-

narios. However, in large-batch, multi-category classification tasks, no method

adopts such a strategy to optimize both variables at the same time. Existing

approaches predominantly assume known labels, concentrating solely on data

reconstruction, such as [18, 21]. Notably, related research [38] underscores the

critical importance of accurate labels, highlighting the significant degradation

in data recovery performance when labels are incorrect. Although methods like

[84, 78, 9, 64] aim to analytically recover labels from shared gradients, they still

face several limitations. For instance, [84] is restricted to restoring single data

points, which [78, 64] only function effectively with specific activation functions

(Sigmoid or ReLU). Moreover, [78, 9] require the unrealistic assumption that

all training labels are unique. These constraints demonstrate that existing label

recovery techniques struggle to generalize to more realistic FL scenarios.

2. The second challenge revolves around exploiting gradient relationships. As de-

tailed in Section 2.2.2, existing recursion-based GIAs primarily focus on mining

correlations between gradients themselves (gradient-to-gradient) and gradients

with respect to data (gradient-to-data). For instance, PPDL-AHE [55] leverages

gradients of the fully connected layer’s weight and bias to directly reconstruct

input features. Moreover, R-GAP [87] and COPA [7] utilize relationships within

both forward and backward propagation: input-weight-output connections dur-

ing forward propagation and input-weight gradient-output gradient connections

during backpropagation. These relationships are then exploited to construct a

23

Chapter 2. Background and Literature Review

system of linear equations for recursively recovering input samples. Although

primarily effective for batch size 1 scenarios, these studies underscore the cru-

cial role of gradient correlations in privacy leakage. However, we believe current

research in this domain remains inadequate. The ability to infer unknown or

unshared gradients from known ones based on established correlations could em-

power attackers to extract sensitive information and potentially breach privacy.

Therefore, we posit that effectively harnessing the power of gradient correlations

holds significant potential for uncovering novel and unexpected attack vectors.

3. The third challenge is to reconstruct data in a targeted manner. As summarized

in Table 2.1, while current optimization-based GIAs strive to recover increas-

ingly complex data (e.g., ImageNet [12]) trained on deeper neural networks and

larger batch sizes, few studies explore methods for efficiently retrieving specific

target data. If approaches like [18, 78, 21] are used to extract target data, the

entire batch must be recovered before filtering for desired data points based on

proximity to the targets. However, as presented by [17], GradInversion [78] can

only reconstruct 28% of training data when applied on a batch size of 48 for

a ResNet50 model, which is far from efficient and effective. Furthermore, from

an attacker’s standpoint, recovering specific target data maximizes his poten-

tial gain or impact. Applying such a targeted attack strategy within FL could

lead to system-wide abuse and pose a significantly greater privacy risk than

existing GIAs. Consequently, investigating targeted attacks capable of directly

recovering desired training data from gradients is crucial.

In summary, we identify three key aspects for exploration within current research on

GIAs: label information inference, gradient relationship exploitation, and targeted

data reconstruction. Addressing these challenges will not only enable the development

of more sophisticated attacks but also deepen our understanding of privacy threats

arising from gradient leakage in FL.

24

2.5. Chapter Summary

2.5 Chapter Summary

In this chapter, we provide a comprehensive review of recent advances in Gradient

Inversion Attacks (GIAs), including both offensive and defensive methodologies. To

the best of our knowledge, this is the first attempt to systematically categorize GIAs

using a novel taxonomy and elucidate the primary steps involved in deploying such

attacks within a Federated Learning system. We also reclassify representative defense

strategies employed to mitigate data recovery risks. Following a thorough examina-

tion of existing research on GIAs, we identify several unresolved challenges warranting

further investigation, including label information inference, gradient relationships ex-

ploitation, and targeted data reconstruction. We will delve into specific improvements

and contributions stemming from these challenges in subsequent chapters.

25

Chapter 3

Posterior Probability-Based Label

Recovery Attack from Gradients in

Federated Learning

3.1 Introduction

Federated Learning (FL) has become a popular paradigm for training machine learn-

ing models in privacy-sensitive applications [44, 77]. In FL, the clients compute

gradients on their local devices and then send the gradients to the server for aggre-

gation and global model update. Since the private data is preserved on the client

side, FL is supposed to offer more privacy protection than the centralized learning

paradigm. However, a category of attacks called Gradient Inversion has shown that

the shared gradients can be exploited to reconstruct the training data [88, 18, 78].

Moreover, some analytical attacks can recover the labels from gradients of a clas-

sification model by analyzing the relationship between the gradients and the labels

[84, 64, 42]. However, none of these works explain the nature of label recovery or ex-

hibit the applicability to other classification problems. We hence raise the following

26

3.1. Introduction

key questions: (i) What is the essence of label leakage from gradients? And (ii) How

to implement a generalized attack for label recovery?

In this chapter, we explore and answer these two questions from both theoretical and

practical perspectives. In particular, starting from the focal loss function, we first de-

rive an important relationship among the gradients, labels and posterior probabilities

in a concise form. This conclusion can be applied to a variety of loss functions, which

reveals the connection between the gradients and the labels in a classification model.

Then we explain the fundamental reason for our findings from the exponential family

of distributions. We show that the gradient with respect to logits is the expectation

of the target labels, which provides a convenient way to reduce computation costs

but opens a “backdoor” for label leakage. Finally, we propose a generalized attack

for label recovery by estimating the posterior probabilities of the target batch from

an auxiliary dataset. The key insight is based on our empirical observation that the

positive (negative) samples of a class have approximate probability distributions. By

fitting the auxiliary dataset into the global model, we can estimate the target poste-

rior probabilities, and then recover the labels of a specified class by substituting the

gradients and the posterior probabilities into the derived formula.

Our main contributions are summarized as follows:

• For the first time, we investigate the root cause of label leakage from gradients,

and find the gradient with respect to the logits is only related to the posterior

probabilities and the target labels in various loss functions, such as focal loss

and binary cross-entropy loss.

• We explain the intrinsic reason for our findings from the perspective of the

exponential family, and conclude that the combination of cross-entropy loss

and Softmax or Sigmoid activation function opens a “backdoor” for the label

restoration attacks.

• We evaluate our attack on a variety of FL settings and classification variants,

27

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

and demonstrate that it outperforms the prior attacks in terms of Class-level

Accuracy (ClsAcc) and Instance-level Accuracy (InsAcc).

3.2 Related Work

Here we first review some works most related to ours, including Federated Learning,

Gradient Inversion Attacks, and existing label recovery attacks.

3.2.1 Federated Learning

Federated Learning (FL) is a privacy-preserving machine learning paradigm that en-

ables multiple clients to collaboratively train a global shared model without collecting

their private data [44, 77]. In FL, the clients train the shared model locally and then

send the model update (i.e., the gradient of the model parameters) to the server.

The server aggregates the uploaded gradients from the selected clients and updates

the global model. The training procedure is repeated until the global model con-

verges. Since the private data is preserved on the client side, FL is widely used in

privacy-sensitive applications such as finance [41, 58] and healthcare [75, 51].

3.2.2 Gradient Inversion Attacks

Zhu et al. [88] initially propose Gradient Inversion Attacks (GIAs), which can recon-

struct the training data x and corresponding labels y from the shared gradients in

FL. An honest-but-curious attacker generates a batch-averaged dummy gradient by

fitting the global model with a batch of dummy data, and then iteratively updates the

dummy data to minimize the distance between the dummy gradient and the target

gradient. Geiping et al. [18] use cosine similarity as the error function and add total

variation as a regularization term to improve the quality of reconstruction. Yin et al.

28

3.2. Related Work

[78] present group consistency regularization to enhance the restoration of the object

locations in the images. Jeon et al. [28] leverage a generative model pre-trained on

the same data distribution to improve the quality of the recovered images. Moreover,

recent studies also propose inversion attacks in other tasks, such as natural language

processing [20, 2] and speech recognition [10]. The success of these attacks is based on

an underlying assumption that the gradient is an approximate bijection of the train-

ing data. Thus, decreasing the gap between gradients equals optimizing the dummy

data towards the ground-truth sensitive data.

3.2.3 Analytical Label Recovery Attacks

Zhao et al. [84] propose an analytical label attack named iDLG, which can directly

infer the label from ∇W of the classification layer. They derive that the gradients

with respect to the logits zj equal to σ(zj)−1 if j is the target index c of the one-hot

label, and σ(zj) if j ̸= c, where σ(·) denotes the Softmax function. When the model

uses a non-negative activation, such as ReLU or Sigmoid, ∇Wc consists of negative

values, while the other rows are positive. Thus, the attacker can extract the label

by simply comparing the signs of the gradient ∇W . However, iDLG only applies to

single-batch labels, and the activation of the model must be non-negative.

Wainakh et al. [64] exploit the direction and magnitude of ∇W to determine how

many instances of each class are in the target batch. They formulate the problem as∑M
i=1 ∇Wj = λjm+ sj, where λj is the number of batch labels of the j-th class, m is

the impact factor related to the input features, and sj is a class-specific offset caused

by misclassification. Using known data and labels, impact m and offset sj can be

estimated from multiple sets of gradients, and then λj can be calculated.

Ma et al. [42] transform the label recovery problem into solving a system of linear

equations. For each class j, they regard σ(zj)− 1 and σ(zj) as the coefficients of the

target label and the other labels, respectively. By constructing these coefficients into

29

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

a matrix A, they can solve the label vector y from the equation Ay = ∇b, where

∇b is the gradient with respect to the bias term of the last layer. However, none of

these works explain the essence of label leakage from gradients or address the issue

of whether the label attacks can apply to other classification variants.

3.3 Preliminaries

3.3.1 Focal Loss in Multi-class Classification

According to the definition of binary focal loss in [40], we extend it into multi-class

scenarios. In a multi-class classification task using cross-entropy (CE) Loss, the CE

loss can be written as follows:

LCE(p,y) = −
K∑
i=1

yi log(pi) = −
K∑
i=1

log(pyii) =



− log(p1) if y1 = 1

− log(p2) if y2 = 1
...

− log(pK) if yK = 1,

(3.1)

where y is the one-hot label vector, p is the predicted probability vector, and K is

the number of classes. For any class i, we use pt to represent the confidence degree

of the model’s prediction as the following:

pt =

 pi if yi = 1

1− pi otherwise,
(3.2)

where t = i. To be consistent with the original focal loss in [40], we use t to represent

the class index instead of i, and t is identical to i.

To solve class imbalance, focal loss assigns an auto-determined weight (1 − pt)
γ and

a pre-determined weight αt to each class t. Finally, we define the focal loss for multi-

class classification tasks as:

LFL(pt) = −
K∑
t=1

αt(1− pt)
γ log(pt). (3.3)

30

3.3. Preliminaries

The focal loss has two hyperparameters: αt and γ. The former is the weight of the

target class, and the latter is the focusing parameter that controls the degree of class

imbalance.

3.3.2 Definition of Class-wise Probabilities

In a multi-class classification problem, each instance in the dataset belongs to one of

several classes. We denote the total number of classes as K and a particular class as

k ∈ K. In this context, we can define positive and negative samples for class k.

• Positive Samples (x+
k): The positive samples of class k satisfy that: x+

k =

{x(i) : y
(i)
c = k}, where x(i) is the input of the i-th data, y

(i)
c is the true class

label of the corresponding data, and c is the class index.

• Negative Samples (x−
k): Similarly, the negative samples of class k satisfy

that: x−
k = {x(i) : y

(i)
c ̸= k}. In summary, the negative samples are associated

with all but one (K − 1) of the other classes.

According to the positive and negative samples, we can then get the positive and

negative probability for class k.

• Positive Probability (p+k): When a positive instance is fed into the model,

the predicted probability of class k is termed the positive probability. Since the

Softmax activation function is used in the output layer, the output posterior

probability p+ is a vector of length k. Therefore, the positive probability for

class k can be expressed as p+k .

• Negative Probability (p−k): Similarly, when a negative sample is input into

the model, the k-th element of the output probability vector represents the

negative probability, denoted as p−k . It is essential to note that any negative

sample associated with the other (K − 1) classes contributes to p−k .

31

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

When using an auxiliary dataset to estimate the probabilities of the target training

batch in FL, we denote the estimated positive and negative probabilities as p̂+k and

p̂−k , respectively.

In a batch size of B samples, we aim to recover the labels of each instance within the

batch, i.e., y = [
∑B

i=1 y
(i)
1 ,
∑B

i=1 y
(i)
2 , · · · ,

∑B
i=1 y

(i)
B]. Since this is a multi-class classifi-

cation problem, the ground-truth labels y can also be represented by the occurrences

of each class: y = [n1, n2, · · · , nK], where nk is the number of samples belonging to

class k and K is the number of total classes.

The number of class-wise labels at class k can be defined as: nk =
∑B

i=1 δ(y
(i)
c = k).

Here, nk is the number of samples belonging to class k, B is the batch size, y
(i)
c is

the true class label of the i-th instance in the batch, and δ(·) denotes the Kronecker

delta function, which equals 1 if the condition inside is true and 0 otherwise.

Class 2 ():

Class k ():

Target Batch Data

Auxiliary Dataset Posterior Probabilities

Obtained GradientsGlobal Model

FC Layer
Class 1

#cat: 2

1

Negative

Positive

Recovered Labels

Class 1 ():

① ②

③

③

2 k

Class k1 2

Class

Class 2

#dog: 4

···

Class k

#bird: 3

Class 1

Positive Negative

+

Class k

···

+

···

···

···
···

···

···

Figure 3.1: Workflow of our proposed label recovery attack. ① Acquire an auxiliary

dataset and divide it into positive and negative subsets for each class. ② Fit the data

into the global model for estimating the posterior probabilities of the target batch. ③

Recover the batch labels by substituting the gradients and the posterior probabilities

into the derived formula.

32

3.4. Essence of Label Leakage

3.3.3 Problem Formulation

For a K-class classification task in FL, the FedSGD [44] algorithm is used to train the

global model θg. At a given iteration, a victim client v trains the model with its local

batch data x and labels y, where (x,y) ∼ Dv. Here, Dv denotes the data distribution

of client v. Then, the client calculates the batch-averaged gradient ∇θg of the model

parameters and sends it to the server. As the honest-but-curious FL server, we aim

to recover the batch labels y from the shared gradient ∇θg. The knowledge we have

includes the global model θg, the shared gradient ∇θg, and an auxiliary dataset xa

with the same data distribution as Dv.

In our label attack, we mainly utilize the gradient with respect to the bias b in the

last fully connected layer, i.e., ∇b, to recover the target batch labels y. From the

auxiliary dataset xa, we randomly sample a portion of instances x̂a, ensuring that

the number of instances in each class equals a predefined threshold. Then we divide

x̂a into positive samples x̂+
j and negative samples x̂−

j for each class j. By fitting the

model θg with these samples, we can obtain the averaged posterior probabilities p̂+

and p̂− of the positive and negative samples, respectively. By substituting ∇b, p̂+

and p̂− into our derived formula in Section 3.4.1, we can recover the batch labels ŷ.

The workflow of our label attack for any victim client v is illustrated in Fig. 3.1.

3.4 Essence of Label Leakage

In this section, we investigate the root cause of label leakage from gradients in FL.

We first derive a generalized relationship between the gradient ∇z and the labels y,

which can be applied to various classification tasks. Then we explain the intrinsic

reason for these findings from the perspective of the exponential family. We conclude

that the combination of cross-entropy loss and Softmax is intended to reduce the

amount of computation, but opens a backdoor to potential attacks.

33

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

3.4.1 Generalized Expression of Gradients

Without loss of generality, we consider a multi-class classification task using focal loss

as the loss function and Softmax as the activation function. Focal loss is an extension

of the cross-entropy loss, which is proposed to solve the problem of class imbalance

[40]. The definition of focal loss in multi-class scenarios can be represented as:

LFL(pt) = −
K∑
t=1

αt(1− pt)
γ log pt, (3.4)

where pt is the categorical probability of target class t, αt is the weight of the target

class, γ is the focusing parameter that controls the degree of class imbalance, and K

is the number of classes.

For the t-th class, pt = pi if i = t, and pt = 1 − pi if i ̸= t. Here, pi is the Softmax

probability of the i-th class1, and yi is the corresponding label. If we set γ = 0 and

αt = 1, the focal loss is equivalent to the cross-entropy loss LCE(pi) = −
∑K

t=i yi log pi.

Under the same setting, if K = 2, y ∈ {0, 1} and the activation is Sigmoid2, the focal

loss is also equivalent to the binary cross-entropy loss LBCE(p) = −y log p − (1 −

y) log (1− p). Thus, starting from the analysis of focal loss allows us to derive a more

general conclusion that can be applied to the other classification variants.

Theorem 1 (Gradient of Focal Loss). For a K-class classification task using the

focal loss function and Softmax activation, we can derive that the gradient of logit

zj as follows:

∇zjLFL =
K∑
t=1

Φ(αt, pt, γ) · (pj − δtj), (3.5)

where Φ(αt, pt, γ) = αt(1− pt)
γ
(
1− γ pt log pt

1−pt

)
and ∀t ∈ K, we have Φ(αt, pt, γ) ≥ 0.

Besides, δtj is the Kronecker delta, which equals 1 if t = j and 0 otherwise.

Proof. According to Eq. (3.4), we substitute the last pt with its Softmax formula

1pi is an instance-wise probability, while pt is a class-wise probability corresponding to the label.
2A special case of Softmax with one neuron: ez1

ez1+ez2 = 1
1+e−(z1−z2) = 1

1+e−z , where z = z1 − z2.

34

3.4. Essence of Label Leakage

pt =
ezt∑K

k=1 e
zk
, and obtain the transformed focal loss function:

LFL = −
K∑
t=1

αt(1− pt)
γ log pt

= −
K∑
t=1

αt(1− pt)
γ log

ezt∑K
k=1 e

zk

=
K∑
t=1

αt(1− pt)
γ log

K∑
k=1

ezk −
K∑
t=1

αt(1− pt)
γzt.

Let ℏ = (1− pt)
γ, then we can deduce the gradient of logit zj as follows:

∇zjLFL =
K∑
t=1

αt
∂ℏ
∂zj

log
K∑
k=1

ezk +
K∑
t=1

αt(1− pt)
γpj −

K∑
t=1

αt
∂ℏ
∂zj

zt − αj(1− pj)
γ

=
K∑
t=1

αt
∂ℏ
∂zj

(
log

K∑
k=1

ezk − zt

)
+

K∑
t=1

αt(1− pt)
γ(pj − δtj)

=
K∑
t=1

αt(1− pt)
γ

(
1− γ

pt log pt
1− pt

)
(pj − δtj)

=
K∑
t=1

Φ(αt, pt, γ) · (pj − δtj).

From Theorem 1, we find that ∇zjLFL is a summation of K items, where each term

is a product of Φ(αt, pt, γ) and (pj − δtj). The item Φ(αt, pt, γ) can be regarded as

the weight of the t-th class, and (pj − δtj) indicates the distance between the Softmax

probability of the j-th class and the target categorical expectation at the t-th class.

In particular, an interesting observation can be made from the latter item is that

(pj − δtj) is only negative when t = j, and positive otherwise, which supports the

following conclusions of different loss functions.

From this generalized relationship, we can also derive the gradient of logits z, i.e.,

∇z, in other classification variants by setting different values for αt or γ, and choosing

different label embeddings or activation functions. We summarize the commonly used

35

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

loss functions, argument settings and the corresponding gradients in Table 3.1. We

can find that the gradient ∇z is only related to the posterior probabilities p and the

target labels y. This finding reveals the connection between the gradient ∇z and the

target labels y, which is the key to label recovery attacks. In the rest of this chapter,

we mainly focus on the multi-class classification task using the Softmax function and

cross-entropy loss, where the gradient is denoted as ∇z, the posterior probability is

denoted as p, and the target label is denoted as y.

Table 3.1: Relationships between different loss function and its gradient ∇z.

Loss function γ α Label Activation† Gradient ∇z

Focal Loss - - one-hot Softmax (τ) 1
τΦ(αc, pc, γ)(p− y)‡

Cross-entropy Loss 0 1 - Softmax (τ) 1
τ (p− y)

Binary Cross-entropy Loss 0 1 binary Sigmoid p− y

† τ denotes the temperature parameter in Softmax for softness control.

‡ c is the target index of the one-hot label y.

3.4.2 Explanation from Exponential Family

As seen from Table 3.1, item (p− y) exists in different combinations of target labels

and activation functions. In particular, if Φ(αc, pc, γ) in focal loss is treated as a

constant, then gradient ∇z of each loss function is dominated by (p− y). To unveil

the essential reason for this phenomenon, we explain it from the perspective of the

exponential family [1]. The exponential family is a class of probability distributions

that has the following representation:

fx(x|θ) = exp [η(θ) · T (x)− A(θ) +B(x)] , (3.6)

36

3.4. Essence of Label Leakage

where θ is the parameter, η(θ) is the canonical parameter, T (x) is the sufficient

statistic, A(θ) is the log-partition function, and B(x) is the base measure.

Multi-class Classification in Exponential Form

Take the multi-class classification task as an example, we can build the probability

p(x|θ) from the categorical distribution as follows:

p(x|θ) =
K∏
k=1

θxk
k = exp

[
log

(
K∏
k=1

θxk
k

)]
= exp

[
K∑
k=1

xk log θk

]
, (3.7)

where K is the number of categories, xk ∈ {0, 1} and xk = 1 if x belongs to the k-th

category, and θk denotes the probability when xk = 1.

Since
∑K

k=1 xk = 1, we can also derive that
∑K

k=1 θk = 1. Replacing xK with the first

(K − 1) items of x, we can further express the probability p(x|θ) as follows:

p(x|θ) = exp

[
K−1∑
k=1

xk log θk +

(
1−

K−1∑
k=1

xk

)
log θK

]

= exp

[
K−1∑
k=1

xk log θk −
K−1∑
k=1

xk log θK + log θK

]

= exp

[
K−1∑
k=1

xk log
θk
θK

+ log θK

]
.

(3.8)

If we set η(θ) = [log θ1
θK

, · · · , log θK−1

θK
], T (x) = [x1, · · · , xK−1], A(θ) = − log θK , and

B(x) = 0, we can rewrite the above equation as:

p(x|θ) = exp [η(θ) · T (x)− A(θ) +B(x)] . (3.9)

So we can conclude that the categorical distribution belongs to the exponential family.

Derivation of Softmax and Cross-entropy Loss

From Eq. (3.9), we obtain ηk = η(θk) = log θk
θK

, which can be transformed into:

θk = eηk · θK . Incorporating the characteristic of
∑K

k=1 θk = 1, we summarize the

37

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

K items on both sides of the equation and deduce: θK ·
∑K

k=1 e
ηk =

∑K
k=1 θk = 1.

Hence, θK can be represented as θK = 1∑K
k=1 e

ηk
. Substituting θK into the relationship

between θk and ηk, we finally derive the Softmax function as:

θk = eηk · θK =
eηk∑K
j=1 e

ηj
. (3.10)

Combining Eq. (3.7) and Eq. (3.10), we can derive the log-likelihood of the categorical

distribution as follows:

ℓ(θ;x) = log p(x|θ) =
K∑
k=1

xk log θk =
K∑
k=1

xk log

(
eηk∑K
j=1 e

ηj

)
. (3.11)

In the multi-class classification task, x is a one-hot vector (
∑K

k=1 xk = 1), and η is

the logit vector. Thus, we can derive the expression of the cross-entropy loss function

from the log-likelihood function as follows:

LCE(x,θ) = −ℓ(θ;x) = −
K∑
k=1

xk log

(
eηk∑K
j=1 e

ηj

)
. (3.12)

Therefore, we find that Softmax has a very strong connection with cross-entropy loss,

which can be derived from the categorical distribution in the exponential family. This

property interprets why the combination of Softmax and cross-entropy loss is widely

used in multi-class classification tasks.

Gradient of Canonical Parameter η

Given that A(θ) = − log θK and θK = 1∑K
j=1 e

ηj
, we then calculate the derivative of

A(θ) with respect to ηk, i.e., ∇ηkA(θ) = eηk∑K
j=1 e

ηj
= θk. We proceed to derive the

gradient of the log-likelihood ℓ(θ;x) with respect to the canonical parameter ηk as:

∇ηℓ(θ;x) = T (x)−∇ηA(θ) = T (x)− θ. (3.13)

This formula not only exhibits an important feature of the exponential family but also

discloses why the combination of Softmax and cross-entropy loss has the relationships

38

3.4. Essence of Label Leakage

in Table 3.1. For the exponential family, when parameter θ is determined, the change

of ℓ(θ;x) with respect to η is determined only by T (x) and independent of other

information about the samples. For a multi-class classification task, the sufficient

statistic T (x) is the target label y, the parameter θ denotes the posterior probabilities

p, and the canonical parameter η implies the logits z. Therefore, we can naturally

obtain that ∇z = p− y, which is consistent with the previous conclusion.

3.4.3 Further Explanation of Label Leakage

The standard form of exponential family is given by Eq. (3.6). We know that the

likelihood is the joint probability of all samples x1, . . . ,xN given the parameter θ:

L(θ;x) = f(x1, . . . ,xN |θ)

=
N∏
i=1

f(xi|θ)

=
N∏
i=1

exp [η(θ) · T (xi)− A(θ) +B(xi)]

= exp

[
η(θ) ·

N∑
i=1

T (xi)−NA(θ) +
N∑
i=1

B(xi)

]
.

(3.14)

If we take the logarithm of the likelihood function, we get the log-likelihood function:

ℓ(θ;x) = logL(θ;x)

= η(θ) ·
N∑
i=1

T (xi)−NA(θ) +
N∑
i=1

B(xi).
(3.15)

For the exponential family, parameter η and θ are reversible. Hence, the derivative

of canonical parameter η is denoted as:

∇ηℓ(θ;x) =
N∑
i=1

T (xi)−N∇ηA(θ). (3.16)

For the categorical distribution, we have ∇ηA(θ) = θ, T (x) = x and LCE(θ,x) =

39

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

−ℓ(θ;x). Consequently, we can derive the final expression as follows:

∇ηLCE(θ,x) = −∇ηℓ(θ;x)

= N∇ηA(θ)−
N∑
i=1

T (xi)

= Nθ −
N∑
i=1

xi.

(3.17)

From this formula, we can observe that the characteristic of the exponential family

gives an efficient way for CE loss to calculate the loss of canonical parameter η by

just doing a subtraction rather than complex calculations. In the multi-class scenario,

after substituting θ with Softmax probability p, η with logits z, and x with target

label y, we can derive ∇zLCE (when N = 1) as follows:

∇zLCE(p,y) = p− y. (3.18)

In summary, the combination of CE loss and Softmax is derived from the exponen-

tial family, which can reduce the amount of computation. However, it also opens a

“backdoor” for potential threats, such as label leakage from gradients.

3.5 Label Recovery Attack

In this section, we propose our label recovery attack. We first present an impor-

tant observation that the positive and negative samples of a class have approximate

probability distributions. Based on this insight, we exploit an auxiliary dataset for

estimating the posterior probabilities of the target batch. Finally, we propose an

analytical method that can directly recover the number of labels of each class by

substituting the probabilities and gradients into the derived formula.

40

3.5. Label Recovery Attack

0.090 0.095 0.100 0.105 0.110 0.115 0.120 0.125
Probability

Ite
ra

tio
n

MNIST on LeNet-5 (Tanh)

0

Positive
Negative

100

200

300

400

500

(a) LeNet (Tanh) on MNIST.

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Probability

Ite
ra

tio
n

CIFAR10 on ResNet-18 (ReLU)

0

Positive
Negative

100

200

300

400

500

(b) ResNet18 (ReLU) on CIFAR-10.

Figure 3.2: Posterior probability distribution of positive and negative samples in

different iterations of model training. The LeNet model is trained on MNIST, and

the ResNet18 model is trained on CIFAR-10. We randomly select class 4 in MNIST

and class 7 in CIFAR-10 for demonstration. The x-axis represents the probability

value, and the y-axis represents the density.

3.5.1 Our Key Observation

In a multi-class classification task using a neural network, the model first outputs the

logits z according to forward propagation, and then normalizes the logits into prob-

abilities p through the Softmax function. By analyzing these posterior probabilities,

we empirically observe that different positive and negative samples in the same class

have approximate probability distributions.

We carry out the experiments on MNIST and CIFAR-10 datasets, which are trained

on the LeNet [37] and ResNet18 [24] models, respectively. To eliminate the influence

of the activation function, we choose Tanh for LeNet and ReLU for ResNet18. For

each class, we treat the data belonging to this category as positive samples, and the

others as negative samples. Then we aggregate the positive and negative samples

from each class during the training procedure to show the correlations and variations

41

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

0 1 2 3 4 5 6 7 8 9
Class

0.090

0.095

0.100

0.105

0.110

0.115

Pr
ob

ab
ilit

y

MNIST on LeNet-5 (Tanh)
Positive
Negative

(a) LeNet (Tanh) on MNIST.

0 1 2 3 4 5 6 7 8 9
Class

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y

CIFAR10 on ResNet-18 (ReLU)
Positive
Negative

(b) ResNet18 (ReLU) on CIFAR-10.

Figure 3.3: Posterior probability distribution of different classes. We select the iter-

ations of 100 for MNIST and 200 for CIFAR-10, respectively. The x-axis represents

the class index, and the y-axis represents the probability value.

in their corresponding probabilities. For ease of demonstration, we only display the

results of the first 500 training iterations.

Fig. 3.2 shows the ridgeline plots of probability distributions from a randomly selected

class (class 4 in MNIST and class 7 in CIFAR-10) in different iterations. It can be

seen that in the initial stages, the positive and negative probabilities are extremely

close and have almost the same mean value. As the training progresses, the nega-

tive probabilities gradually decrease, while the positive probabilities slowly increase.

Although the variance of the probabilities starts to increase, the mean values of the

positive or negative probabilities remain within a small range.

We also exhibit the box plots of the probability distributions of all the classes in

Fig. 3.3, whose training iteration is 100 for MNIST and 200 for CIFAR-10, respec-

tively. It is shown that the positive or negative probabilities of each class are gathered

around a certain value, although the values are slightly different. For some easily dis-

tinguishable classes, the positive and negative probabilities are already separated,

such as class 1 in MNIST and class 4 in CIFAR-10.

42

3.5. Label Recovery Attack

We can interpret the above observations from the model’s representation capability.

For an untrained model, it cannot discriminate which class the instance belongs to,

other than random guesses. Thus, the posterior probabilities of the positive and

negative samples are almost the same, equal to 1
K
. As training proceeds, the model

gradually learns the data distribution and can distinguish the positive or negative

samples in each class. Although the degree of learning varies moderately for different

classes, a robust model can give similar confidence scores (i.e., posterior probabilities)

for the same class. This explains why the positive or negative samples per class have

similar probability distributions.

3.5.2 Analytical Label Recovery

Based on the observation in Section 3.5.1, we can estimate the posterior probabilities

of the target batch from an auxiliary dataset, whose data distribution is the same as

the training data. Hence, we denote the estimated positive and negative probabili-

ties of the j-th class as p̂+j and p̂−j , respectively. Combined with the conclusions in

Section 3.4.1, we can derive the following theorem for restoring the batch labels λj

for each class j.

Theorem 2 (Label Recovery Formula). Having an auxiliary dataset with the same

distribution of training data, we can recover the class-wise labels λj in the target batch

according to the averaged gradient ∇bj and the estimated posterior probabilities p̂+j and

p̂−j as follows:

λj = B ·
(p̂−j − y−j)−∇bj/φ̂j

(p̂−j − y−j)− (p̂+j − y+j)
, (3.19)

where y+j and y−j are the pre-set label embeddings of class j, φ̂j =
1
τ
Φ(αj, p̂

+
j , γ) is an

coefficient related to the j-th class, and B is the batch size.

Proof. Since z = Wx+b, we can deduce that ∇b = ∇z and ∇bj = ∇zj. We expand

the averaged gradient ∇zj as a summation of B terms and replace the posterior

43

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

probability p
(n)
j of each sample n with its estimated probabilities p̂+j and p̂−j . Because

Φ(αj, p
(n)
j , γ) is only related to the positive samples of the j-th class, we can replace

p
(n)
j with p̂+j . So we have:

φ̂j =
1

τ
Φ(αj, p̂

+
j , γ) =

1

τ
αj(1− p̂+j)

γ

(
1− γ

p̂+j log p̂+j
1− p̂+j

)
.

Assume that the first λj samples belong to the j-th class, and the rest (B − λj)

samples belong to other classes. Then from the first row of Table 3.1, we can derive

that:

∇bj =
1

B

B∑
n=1

∇b
(n)
j

=
1

B


λj∑
n=1

φ
(n)
j

(
p
(n)
j − y

(n)
j

)
+

B∑
n=λj+1

φ
(n)
j

(
p
(n)
j − y

(n)
j

)
≈ 1

B

{
λj φ̂j

(
p̂+j − y+j

)
+ (B − λj)φ̂j

(
p̂−j − y−j

)}
.

Therefore, we can finally derive that:

λj = B ·
φ̂j

(
p̂−j − y−j

)
−∇bj

φ̂j

(
p̂−j − y−j

)
− φ̂j

(
p̂+j − y+j

) = B ·
(p̂−j − y−j)−∇bj/φ̂j

(p̂−j − y−j)− (p̂+j − y+j)
.

Specifically, the label embeddings are pre-defined by the FL protocol, which could be

one-hot labels or smoothed labels. For one-hot labels, we have y+j = 1 and y−j = 0. For

smoothed labels, we have y+j = 1− ε and y−j = ε
K−1

, where ε is the smoothing factor.

Since Φ(αj, pj, γ) is determined by pj, we can use p̂+j for replacement and obtain φ̂j.

By substituting the gradient ∇bj, estimated coefficient φ̂j, positive probabilities p̂+j ,

p̂−j and label embeddings y+j , y
−
j into the above formula, we can directly recover the

number of labels λj for each class j.

44

3.6. Experiments

3.6 Experiments

In this section, we evaluate the performance of our label recovery attack. We first

introduce the experimental setup, evaluation metrics and baselines, and then show

the experimental results. Moreover, we conduct ablation studies to analyze the ef-

fectiveness of our attack under different settings, such as batch size, loss function,

auxiliary data size, and training iterations.

3.6.1 Experimental Settings

Datasets, Models and Activations

We evaluate our attack on three datasets, including MNIST [37], CIFAR-10 [34] and

CIFAR-100 [34]. These datasets are widely used in FL research and cover a variety

of classification tasks, such as handwritten digit recognition, object recognition and

image classification. We choose the LeNet [37], VGG16 [59] and ResNet50 [24] as the

training models for the above datasets, respectively. In addition, we select a bunch

of activation functions, including Sigmoid, Tanh, ReLU [47], ELU [8] and SELU [33],

to verify the universality of our attack.

Evaluation Metrics

To quantitatively evaluate the performance of label recovery, we use the following two

metrics: (1) Class-level Accuracy (ClsAcc): the accuracy measures the proportion of

correctly recovered classes; (2) Instance-level Accuracy (InsAcc): the accuracy mea-

sures the proportion of correctly recovered labels in the target batch. In particular,

both of these two metrics are realized through Jaccard similarity, which is defined as

follows:

J(ŷ,y) =
|ŷ ∩ y|
|ŷ ∪ y|

=
|ŷ ∩ y|

|ŷ|+ |y| − |ŷ ∩ y|
,

45

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

where ŷ and y denote the sets of recovered labels (or classes) and ground-truth labels

(or classes) of the training batch.

Evaluation Baselines

Since iDLG [84] only applies to single batch training and non-negative activation

functions, we exclude it from the comparison. We mainly compare our attack with

LLG [64] and iLRG [42], which do not restrict the batch size or activation function.

For LLG, we generate the dummy data with the same number as the target batch

size and average the results of 10 runs. Since LLG and iLRG are all designed for

untrained models, we mainly compare our attack with them in the untrained setting

to reach a fair comparison.

3.6.2 Comparison with Baselines

To exhibit the versatility of our attack, we compare it with the baselines in 3 different

groups of settings. We set the batch size to 32 for MNIST and CIFAR-10, and 256

for CIFAR-100. Without loss of generality, we assume that the training data of each

class is uniformly distributed, and the auxiliary dataset is randomly sampled from

the validation dataset with 100 samples per class. Furthermore, since the baselines

are designed for untrained models, we also use initialized models for comparison to

be fair. We run each experiment 20 times and report the average results in Table 3.2.

From the results, we can see that our attack performs better than the baselines and

even achieves 100% ClsAcc and 100% InsAcc in most of the scenarios. In addition, the

evaluation results also illustrate that compared with the dataset and model structure,

the activation function has a greater impact on the performance of all label recovery

attacks. This could be explained by the fact that some activation functions, like

SELU, produce high variance, which causes the probability distribution of positive

and negative samples from the same class to diverge significantly. Therefore, the

46

3.6. Experiments

Table 3.2: Comparison of our attack with the baselines on diverse scenarios.

Dataset Model Activation
LLG iLRG Ours

ClsAcc InsAcc ClsAcc InsAcc ClsAcc InsAcc

MNIST LeNet
Sigmoid 0.954 0.973 0.946 0.880 1.000 1.000

Tanh 0.506 0.163 1.000 1.000 1.000 1.000

CIFAR-10 VGG16
ReLU 0.995 0.997 1.000 1.000 1.000 1.000

ELU 0.965 0.979 1.000 1.000 1.000 1.000

CIFAR-100 ResNet50
ReLU 0.937 0.952 1.000 1.000 1.000 1.000

SELU 0.028 0.005 0.922 0.832 0.968 0.951

attack performance of SELU is worse than that of ReLU and ELU. Nevertheless, our

attack still shows good results, which demonstrates its effectiveness and universality.

3.6.3 Comparison of Various FL Settings

From Table 3.2, it is shown that the attack baselines have the best performance for

CIFAR-10 on VGG16 with ReLU activation. So we chose this scenario to analyze

the effects of batch size and class imbalance. The batch size varies from 64 to 1024,

which is closer to a realistic FL scenario. Class imbalance is a prevalent issue in

FL, typically brought on by the unequal distribution of data across various clients.

We compare the class proportions from 10% to 90% to simulate the class imbalance.

Before launching the attacks, we train the classification model for one epoch with a

learning rate of 0.001.

It is shown in Fig. 3.4 that our label recovery is robust to various batch sizes and

class imbalance ratios, which maintains over 90% accuracy in all of these settings.

As the batch size increases, the InsAcc of our attack gradually improves, which is

47

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

64 128 256 512 1024
Batch Size

0

10

20

30

40

50

60

70

80

90

100

In
st

an
ce

 A
cc

ur
ac

y
(%

)

90.5
93.4 95.2 95.9 96.9

85.5 87.9 89.4 89 88.9

35.8 33.8
31.2 31.1 31.3

Ours iLRG LLG

(a) Different batch sizes.

10% 30% 50% 70% 90%
Class Proportion

0

10

20

30

40

50

60

70

80

90

100

In
st

an
ce

 A
cc

ur
ac

y
(%

)

100 99.3
94.7 93.5 91.6

65.8

72.7

92 91.3 91.6

76.7

67.5

40.4

27.3

34.9

Ours iLRG LLG

(b) Different class imbalance ratios.

0 2 4 6 8 10 12 14 16 18 20
Training Epoch

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Class Accuracy
Instance Accuracy
Model Accuracy

(c) Different training iterations.

Figure 3.4: Comparison of label recovery performance against baselines across various

FL settings. The batch size varies from 64 to 1024, the class imbalance ratios range

from 10% to 90%, and we show the initial 20 iterations in the first training epoch.

48

3.6. Experiments

mainly because the larger the batch size, the more robust the estimation of the

averaged posterior probabilities. In addition, since we have the prior distribution

of the training data, we can constrain and regularize the estimated labels to improve

the success rate of label recovery.

3.6.4 Ablation Studies

Temperatures and Label Smoothing

We conduct ablation studies to analyze the effectiveness of our attack under different

classification variants and scales of auxiliary data. Table 3.3 shows the InsAcc of

our attack on an untrained model with the focal loss and cross-entropy loss under

different hyper-parameters. The results indicate that our attack is robust to these

variants, which can achieve 100% InsAcc in all of these settings.

Table 3.3: Comparison of our attack with classification variants.

Loss function
Temperature τ Label smoothing ε

0.8 1.2 0.1 0.25

Focal Loss 1.000 1.000 1.000 1.000

Cross-entropy Loss 1.000 1.000 1.000 1.000

Attack on Focal Loss

We present additional experiments conducted on focal loss. We mainly test the pa-

rameters of τ , γ and ε on an untrained model, and average the experiments over 10

trials. Focusing on temperature τ , we present several cases where the accuracy is

not 100%. In addition, by varying γ and ε on these settings, the accuracies are not

49

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

Table 3.4: Label recovery accuracies on focal loss (γ = 2, ϵ = 0).

τ
MNIST (LeNet) CIFAR-10 (ResNet18) CIFAR-100 (ResNet50)

Our ClsAcc Our InsAcc Our ClsAcc Our InsAcc Our ClsAcc Our InsAcc

0.5 0.980 0.906 0.990 0.960 1.000 1.000

0.75 0.980 0.945 1.000 0.994 1.000 1.000

0.9 0.990 0.954 1.000 1.000 1.000 1.000

1.25 0.990 0.983 1.000 1.000 1.000 1.000

1.5 1.000 0.998 1.000 1.000 1.000 1.000

affected. Table 3.4 shows the ClsAcc and InsAcc of our attack on the focal loss with

different temperatures τ (batch size=64, activation=ReLU).

We have observed that the temperature parameter, τ , significantly impacts smaller

datasets. When τ is smaller, the space of logits expands, complicating the estimation

of batch posterior probabilities. Consequently, as τ decreases, label accuracy deteri-

orates. For the large datasets with more classes, such as CIFAR-10, the logits space

is hardly influenced by changing different τ .

Scale of Auxiliary Data

Moreover, we also show the attack performance with different scales of auxiliary data

in Fig. 3.5. For an untrained model, the attack performance is not sensitive to the

scale of auxiliary data per class, which can achieve 100% InsAcc in all of these settings.

For the training models, our attack is slightly affected by the scale but still maintains

a reasonable accuracy. This manifests that estimating the posterior probabilities from

external data is a robust solution.

50

3.6. Experiments

1 5 10 50 100
Auxiliary Data (per class)

0

10

20

30

40

50

60

70

80

90

100

In
st

an
ce

 A
cc

ur
ac

y
(%

)

100 100 100 100 100

75.5

81.9 81.5
84.4

87.3

67.7 66.2 66.6
69.7 70.2

Epoch 0 Epoch 2 Epoch 5

Figure 3.5: Instance accuracy with different scales of auxiliary data.

Auxiliary Data with Distribution Shift

To address concerns about significant distribution shifts, we conducted supplementary

experiments, averaging results over 10 trials.

In the first set of experiments, we alternately used CIFAR-10 and CINIC-10 [11] as

the training and auxiliary datasets. CINIC-10 extends CIFAR-10 by incorporating

down-sampled ImageNet images. While there is some overlap in the distributions due

to similar object categories, there is a notable bias in the data features. We employed

an untrained VGG16 model with a batch size of 64.

Similarly, the second set of experiments involves alternating between MNIST and

Fashion-MNIST (F-MNIST) [74] as the training and auxiliary datasets. Despite both

datasets having 10 classes, the objects they represent are entirely different. MNIST

dataset contains a lot of handwritten digits, while F-MNIST represents the article of

clothing. Employing an untrained LeNet model with a batch size of 64, the results

are presented in the table below.

This phenomenon can be explained as follows: In the initial phase of model training,

51

Chapter 3. Posterior Probability-Based Label Recovery from Gradients

Table 3.5: Distribution shift between training dataset and auxiliary dataset.

Training Data Auxiliary Data Model Our ClsAcc Our InsAcc

CIFAR-10 CINIC-10 VGG16 1.000 1.000

CINIC-10 CIFAR-10 VGG16 1.000 1.000

MNIST F-MNIST LeNet 1.000 0.969

F-MNIST MNIST LeNet 1.000 0.948

the model cannot differentiate between samples from each class, assigning similar

output probabilities to all fitted samples (i.e., 1/K). For different training datasets

like F-MNIST and MNIST, the model projects input figures to similar output prob-

abilities with slight variations. This benefits our label recovery attack as it becomes

easier to estimate the posterior probabilities of the target batch.

Given that F-MNIST is more intricate than MNIST, utilizing MNIST as the auxil-

iary dataset poses challenges in accurately estimating the probability distribution of

batch training samples. This difficulty accounts for the marginal decrease in InsAcc.

However, since CIFAR-10 and CINIC-10 exhibit similarities, there is no difference in

InsAcc. The outcomes of these experiments illustrate that if an attacker initiates an

attack during the early training stages, having an auxiliary dataset with an identical

distribution to the training dataset may not be essential.

3.7 Chapter Summary

This study explores potential threats of Federated Learning from the perspective of

label recovery. We theoretically derive relationships between gradients and labels in

various classification tasks, identifying the root cause of label recovery from gradients

52

3.7. Chapter Summary

in FL. Building on our key observation that positive (or negative) samples within a

class have approximate probability distributions, we propose an analytical method

to recover batch labels from estimated posterior probabilities. Extensive experiments

on diverse datasets and models demonstrate the effectiveness and universality of this

attack. For future work, we consider designing a defense mechanism to mitigate label

leakage, inspired from our theoretical analysis.

53

Chapter 4

Building Gradient Bridges: Label

Leakage from Restricted Gradient

Sharing in Federated Learning

4.1 Introduction

Federated Learning (FL) is a privacy-preserving technology that enables multiple

clients to collaboratively train a machine learning model without sharing their pri-

vate data [44, 6]. In each communication round, the FL server sends the global model

to each client, who uses their private data to compute gradients w.r.t.1 the model

parameters and then transmits these gradients back to the server. The server aggre-

gates the contributions from all clients and updates the global model for the next

round of training. This collaborative process is repeated until the training loss of the

global model converges to a satisfactory state.

Despite its privacy-enhancing nature, recent studies [67, 69, 82] have shown that the

1w.r.t. stands for with respect to.

54

4.1. Introduction

shared gradients in FL provide a novel attack surface for privacy leakage. In partic-

ular, adversaries can reveal the label distribution of a client’s private training data

by inspecting the gradients [9, 19, 64, 83]. This label leakage can lead to more severe

privacy threats, such as data reconstruction attacks [88, 21] that recover the train-

ing data of the victim client, membership inference attacks [65] that reveal whether

a training instance belongs to the victim client’s dataset, and attribute inference

attacks [45] that infer the values of sensitive attributes or properties of the victim

client’s training data.

To mitigate the above label leakage, the majority of existing defenses focus on en-

crypting the gradients with Homomorphic Encryption [55, 79] or protecting the gra-

dients with Differential Privacy [26, 71]. However, these defenses either incur huge

computational overhead or degrade the performance of the training model. To bal-

ance the trade-off between privacy and utility, recent studies have proposed dedicated

lightweight defense strategies to protect critical gradients. These strategies include

homomorphically encrypting the gradients in the last fully connected (FC) layer [60],

removing the bias parameters from the FC layers [57], and locally updating the FC

layers during FL training process [46]. From the perspective of raw label information

contained in the gradients, these lightweight defenses aim to restrict gradient sharing,

especially within the final FC layer, which is the most vulnerable layer for leakage

of label distributions. Although these defense strategies appear to provide privacy

without compromising utility, we argue that they offer a false sense of security.

To this end, we propose a novel label restoration attack, named Gradient Bridge

(GDBR), to restore the label distribution from the limited gradient information in

FL. The key insight behind GDBR is to construct a bridge between the obtained

gradients and the training labels. By exploring the relationship between the layer-

wise gradients and the model parameters, we first trace the flow of gradients in the

bottom layers of the model. Specifically, the gradient w.r.t. the input features of

each layer can be recursively deduced from the starting layer at the bottom. Then, we

55

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

Restricted
Gradients

···
···

FL Clients

Label Distribution

Client 1

Gradients

R
at
io

1 2 K

···

···

Label Distribution

Victim

Gradients

R
at
io

1 2 K

···

···

Label Distribution

Client N

Gradients

R
at
io

1 2 K

···

···

FL Server

Inferred Gradient
w.r.t Logits

Gradient

Bridge

Recovery of Label Distribution

R
at
io

1 2 K

···

···

···

Figure 4.1: Illustration of our Gradient Bridge (GDBR) attack. The gray parts in

gradients denote the unshared information, while the colored parts depict the shared

gradients. GDBR first infers the gradient w.r.t. output logits (in sky blue) from the

obtained gradients and then recovers the label distribution of the victim client from

the derived equation (in orange).

derive the gradient w.r.t. the logits in a batch-averaged form, which contains the label

information. Finally, we present the formulation of label restoration by associating

the derived gradient with the observable variables. We conduct extensive experiments

on various image datasets and classification models to validate the effectiveness and

robustness of our GDBR attack. The experiment results show that more than 80%

of the labels in the batch training data can be accurately recovered, regardless of

the model architectures, dataset complexities, batch sizes, and class distributions.

Even if the shared gradients are pruned or perturbed, GDBR can still recover the

label distribution with acceptable degradation in performance. Fig. 4.1 illustrates

our proposed GDBR attack. Our main contributions are summarized as follows:

56

4.2. Related Work

• We propose a novel label recovery attack, called Gradient Bridge (GDBR), de-

signed to recover the label distribution from the restricted gradient information

in FL systems.

• We build a series of bridges between the shared gradients and the target labels

by tracing the flow of gradients in the bottom layers, and derive the equations

for label restoration.

• Extensive experiments show that GDBR is effective and robust in restoring the

label distribution of private training data. Moreover, GDBR can still recover a

certain amount of labels even when additional defenses are applied.

4.2 Related Work

In this section, we introduce the related works on gradient inversion attacks, analytical

label recovery attacks, and representative lightweight defense strategies in FL.

4.2.1 Gradient Inversion Attacks

Gradient inversion attacks [82] are designed to recover private training data by exploit-

ing the transmitted gradients in FL. Zhu et al. [88] propose the DLG attack, which

iteratively optimizes dummy data and labels to minimize the discrepancy between

the generated gradients and the ground-truth gradients. Geiping et al. [18] enhance

this attack by using cosine similarity as the loss function and introducing total vari-

ance regularization to improve the quality of the reconstructed images. Yin et al. [78]

devise group consistency regularization to better restore the locations of main objects

in images. Zhu and Blaschko [87] present a recursive-based attack that recovers the

input features of each layer by solving a system of linear equations. Furthermore,

recent studies have also investigated inverting the gradients in other collaboration

57

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

tasks, such as natural language processing [20, 2] and speech recognition [10].

4.2.2 Analytical Label Recovery

In addition to data leakage via solving optimization problems, label recovery attacks

are also proposed to effectively infer the label distribution, such as the percentages

of each class or the critical attributes of the training data.

Zhao et al. [84] introduce iDLG, which discovers the correlation between the gradient

of the last FC layer and the one-hot label. Yin et al. [78] propose GI to recover the

labels by selecting the rows with the minimum values in the gradient of the last FC

layer. Dang et al. [9] present RLG to distinguish the target class by separating the

columns of the gradient w.r.t. weights in the output layer. Geng et al. [19] propose

ZLG to estimate the posterior probabilities and extracted features of the last layer

from auxiliary data to restore class-wise labels. Wainakh et al. [64] design LLG by

utilizing both the direction and magnitude of the gradient w.r.t. weights in the FC

layer to determine the overall impact factor and class-wise offset, and then restore the

labels one by one. Ma et al. [42] devise iLRG to derive the embedding features and

Softmax probabilities of the output layer and solve linear equations for label recovery.

However, all these attacks rely on the gradients of the final FC layer. Specifically,

iDLG, GI and RLG can only recover non-repeating labels of the training data, while

iRLG requires the gradient w.r.t. the bias term for feature restoration.

4.2.3 Lightweight Defense Strategies

To preserve label privacy, several dedicated but lightweight defense strategies have

been proposed to mitigate the leakage of private labels from uploaded gradients in

FL. Sotthiwat et al. [60] propose Partially Encrypted Multi-Party Computation (PE-

MPC) to encrypt the gradients in the FC layer closest to the data source. This

58

4.3. Preliminary

ensures that the gradients in the output layer are neither accessible nor observable

to the adversary. For some attacks that exploit the bias gradient to restore data or

labels, such as [42, 55, 17], Scheliga et al. [57] present to remove the bias term from

all the FC layers to entirely avoid such kind of leakage. Additionally, Mei et al. [46]

propose the personalized FL training method FedVF, which allows each participant to

locally update the parameters of the classification layers. FedVF seeks to balance the

model performance and privacy protection by preventing the attacker from accessing

the critical gradients in these layers.

4.3 Preliminary

In this section, we introduce the preliminaries of this work, including the inference of

a single one-hot label, the gradients in typical layers, and our threat model in FL.

4.3.1 Inference of Single One-Hot Label

In a classification task with C classes, the cross-entropy loss function L is widely used

to measure the distance between the predicted Softmax probabilities p ∈ RC and the

target one-hot labels y ∈ RC . The cross-entropy loss is defined as:

L = −
C∑
i=1

yi log(pi) = − log
exp(zc)∑C
j=1 exp(zj)

,

where c is the index of the true class, zi is the i-th element of the output logits z, and

pi =
exp(zi)∑C

j=1 exp(zj)
.

In the backward propagation, the gradient of the loss function L w.r.t. the output

logits zi can be formulated as:

∂L
∂zi

= −∂ log exp(zc)

∂zi
+

∂ log
∑C

j=1 exp(zj)

∂zi

= −δic +
exp(zi)∑C
j=1 exp(zj)

,

59

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

where δic is the Kronecker delta function, which is equal to 1 if i = c and 0 otherwise.

It is obvious to observe that yi = δic, and δic just denotes the one-hot label. Therefore,

the gradient w.r.t. the output logits z can be rewritten as:

∇z =
∂L
∂z

= p− y. (4.1)

The attacker can infer the one-hot label y by exploiting the gradient ∇z and the

estimated probabilities p.

4.3.2 Gradients in Typical Layers

Here, we introduce the gradients in typical layers, including the fully connected (FC)

layer, the convolutional (Conv) layer, and the ReLU activation layer. For simplicity,

we will ignore the bias items in the following discussion.

FC Layer

The forward propagation of an FC layer can be expressed as z = Wx, where z ∈ RN

is the output, W ∈ RN×M is the weight matrix, and x ∈ RM is the input.

In the backward propagation, the gradient of the loss function L w.r.t. the weight

matrix W is calculated as:

∇W =
∂L
∂W

=
∂L
∂z

· ∂z

∂W
= ∇zx⊤, (4.2)

where ∇z is the gradient w.r.t. the layer output z.

Similarly, the gradient of the loss function L w.r.t. the input feature x can be derived

as follows:

∇x =
∂L
∂x

=
∂L
∂z

· ∂z
∂x

= W⊤∇z. (4.3)

60

4.3. Preliminary

Conv Layer

The weights in a Conv layer are also called kernels, which are shared across different

locations within the input. The kernel is generally a 4D tensor, denoted as W ∈

RCout×Cin×Hk×Wk , where Cin and Cout are the numbers of input and output channels,

and Hk and Wk are the height and width of the kernel, respectively.

The forward pass can be represented as Z = W ∗ X, where Z ∈ RCout×Hout×Wout is

the output, X ∈ RCin×Hin×Win is the input, and ∗ denotes the convolution operation.

Unfolding the process of convolutional operation, a specific element Zk,i,j in the output

Z is calculated as follows:

Zk,i,j =

Cin∑
c=1

Hk∑
h=1

Wk∑
w=1

Wk,c,h,w · Xc,i+h−1,j+w−1

=
∑
c,h,w

Wk,c,h,w · Xc,i+h−1,j+w−1,

where k is the index of the output channel, and i and j are the indices of the height

and width of the output, respectively. In addition, we use the Einstein summation

convention, such as
∑

c,h,w, to simplify the notation.

In the backward pass, the gradient w.r.t. element Wk,c,h,w in the kernel W can be

expressed as:

∇Wk,c,h,w =
Hout∑
i=1

Wout∑
j=1

∇Zk,i,j · Xc,i+h−1,j+w−1

=
∑
i,j

∇Zk,i,j · Xc,i+h−1,j+w−1.

(4.4)

ReLU Layer

ReLU is the most commonly used activation function in deep neural networks. ReLU

activation function is defined as a = ReLU(z) = max(0, z), where a is the output, z

is the input, and max(·) is the maximum operation.

61

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

The derivative of the output a w.r.t. the input z is given by:

σ′(z) =
da

dz
=

 1, if z > 0,

0, otherwise.

In the backward propagation, the gradient w.r.t. an element zk in the input z can be

deduced as:

∇zk =
∂L
∂ak

· σ′(zk) = ∇ak ·

 1, if zk > 0,

0, otherwise.
(4.5)

4.3.3 Threat Model

In this study, we assume an honest-but-curious attacker in FL, who follows the FL

protocol but attempts to extract private information from the shared gradients. We

mainly focus on the FedSGD [44], which is a typical FL algorithm in other inversion

attacks [88, 78, 19, 64]. The attacker aims to recover the private labels of the clients’

training data by analyzing the shared gradients. The attacker can launch GDBR in

a white-box setting, where the attacker has full knowledge of the model architecture

and parameters. Moreover, the attacker can also leverage some auxiliary information,

such as testing datasets, to enhance the attack performance. In our attack scenario,

the gradients of the final FC layer(s) in the model are not fully shared. The client

will only transmit the first layer’s gradients in the bottom layer stacking. Without

loss of generality, we assume that the attacker will launch the GDBR attack at the

early stage of the FL training process.

4.4 Gradient Bridge (GDBR)

In this section, we introduce the proposed Gradient Bridge (GDBR) attack against

FL. We first present the overview of the GDBR. Then, we provide the theoretical

foundation of GDBR, including the correlation between layer-wise gradients and the

62

4.4. Gradient Bridge (GDBR)

derived gradient w.r.t. output logits. Finally, we provide the formulation for label

recovery by utilizing the estimated features and Softmax probabilities.

4.4.1 Overview

Our GDBR aims to recover the labels of training data in a victim’s local dataset by

exploiting the gradient information shared in FL collaboration. Different from previ-

ous attacks, the adversary in GDBR cannot obtain the complete gradient information

from a client’s update. In particular, the gradient from the last FC layer is always

unavailable to the semi-honest server in FL. In GDBR, only one layer of gradient

information is required for label recovery, which could be:

• Gradients of middle layers in the MLP [56] model;

• Gradients of the first or second FC layer in the LeNet [37], AlexNet [35] or VGG

[59] model;

• Gradients the last Conv layer in the ResNet [24] model, where the average

pooling layer is assumed to be replaced by a Conv layer whose output size is

1× 1.

Based on the gradient obtained from any of the above layers, the GDBR attack first

builds the gradient bridge that connects the given layer to the output logits. Then,

GDBR reconstructs the batch-averaged gradient w.r.t. the output logits. Finally, the

attack infers the one-hot labels by associating the estimated probabilities with the

gradient w.r.t. the logits.

4.4.2 Correlation Between Layer-wise Gradients

In the following, we explore the correlations between the gradients in typical layers,

such as FC, Conv and ReLU layers, or the layer stacks. These correlations are essential

63

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

for GDBR to recover the labels from the gradients in FL.

Lemma 1. In an FC layer, let ∇x, ∇W, and ∇z represent the gradients w.r.t. the

input x, the weight W, and the output z, respectively. Then the following relationships

hold:

∇xx⊤ = W⊤∇W (4.6)

∇zz⊤ = ∇WW⊤ (4.7)

∇z⊙ z = diag(∇WW⊤), (4.8)

where ⊙ denotes the element-wise product, and diag(·) denotes the diagonal elements

of a matrix.

Proof. If we multiply x⊤ on both sides of Eq. (4.3), and then substitute Eq. (4.2) into

it, we can derive:

∇xx⊤ = W⊤∇zx⊤ = W⊤∇W.

Likewise, if we multiply W⊤ on both sides of Eq. (4.2), then we can obtain the

following equation:

∇WW⊤ = ∇zx⊤W⊤ = ∇zz⊤.

Since ∇zz⊤ is a symmetric matrix, the diagonal elements of it are equal to the

element-wise product of the output z and its gradient ∇z. So we also have:

∇z⊙ z = diag(∇zz⊤) = diag(∇WW⊤),

where ⊙ denotes the element-wise product.

Lemma 2. In an FC layer, given the weight matrix W and the input gradient ∇x,

the output gradient ∇z can be derived as follows:

∇z = (WW⊤)−1W∇x. (4.9)

64

4.4. Gradient Bridge (GDBR)

Proof. From the derived Eq. (4.6), we can individually denote the gradient ∇W by

multiplying the inverse of WW⊤ and W on both sides of the equation, that is:

∇W = (WW⊤)−1W∇xx⊤.

Combining with Eq. (4.2), we can transfer the role of x⊤ by multiplying x and the

inverse of x⊤x on both sides of the above equation, and deduce the gradient ∇z as:

∇z = (WW⊤)−1W∇xx⊤x(x⊤x)−1

= (WW⊤)−1W∇x.

Note: Lemma 1 and 2 present the relationships between the gradients w.r.t. the

input, output and weight in an FC layer. Gradient ∇z can be inferred by using:

(1) gradient ∇x, or (2) gradient ∇W and output z.

Lemma 3. In a Conv layer, let ∇Wk and ∇Zk represent the gradients w.r.t. the

k-th kernel Wk and the output Zk, respectively. Then the following relationship holds:

⟨∇Wk,Wk⟩F =


∇Zk ⊙ Zk, if Zk ∈ R,

⟨∇Zk,Zk⟩F, otherwise,

(4.10)

where ⊙ denotes the element-wise product, and ⟨·, ·⟩F denotes the Frobenius inner

product that calculates the sum of the element-wise product of two tensors or matrices.

Proof. If we multiply Wk,c,h,w on both sides of Eq. (4.4), and then sum over c, h, and

65

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

w, we can derive:∑
c,h,w

∇Wk,c,h,w ·Wk,c,h,w

=
∑
c,h,w

∑
i,j

∇Zk,i,j · Xc,h+i−1,w+j−1 ·Wk,c,h,w

=
∑
i,j

∇Zk,i,j ·

(∑
c,h,w

Wk,c,h,w · Xc,i+h−1,j+w−1

)

=
∑
i,j

∇Zk,i,j · Zk,i,j.

So we can simplify the above equation as ⟨∇Wk,Wk⟩F = ⟨∇Zk,Zk⟩F. When the

shape of the output Zk is 1 × 1, that is, Zk is a scalar, we can represent the result

using the element-wise product ⊙, so that ⟨∇Wk,Wk⟩F = ∇Zk ⊙ Zk.

Note: Lemma 3 provides the relationship between the gradients w.r.t. the kernel

and the output in a Conv layer. When the output size is 1 × 1, the Frobenius

inner product can be replaced by the element-wise product.

Lemma 4. In a ReLU layer, let ∇z and ∇a represent the gradients w.r.t. the input

z and output a, respectively. Then the following relationship holds:

∇z⊙ z = ∇a⊙ a, (4.11)

where ⊙ denotes the element-wise product, and ∇Z⊙ Z = ∇A⊙A holds for both Z

and A being matrices or tensors.

Proof. By multiplying zk on both sides of Eq. (4.5), for each element k, we can deduce

the following relationship:

∇zk · zk = ∇ak ·max(0, zk) = ∇ak · ak.

The relationship can be easily extended to the entire vector z, and we have ∇z⊙ z =

∇a ⊙ a for each element in this ReLU layer. It is the same for the matrix or tensor

case.

66

4.4. Gradient Bridge (GDBR)

Theorem 3. In a single stack of an FC layer followed by a ReLU activation (FC-

ReLU), the gradient ∇a can be inferred from the following relationships:

∇a =


(WW⊤)−1W∇x, if ∇x is given,

diag(∇WW⊤)⊘ a, if ∇W is given,

(4.12)

where ⊘ denotes the element-wise division, and all elements in a are assumed to be

non-zero in the second case.

Proof. Combining Lemma 2 and Lemma 4, we can establish the connection between

the activated output gradient ∇a and the input gradient ∇x in the FC-ReLU stack

as follows:

∇a = ∇z⊙ z⊘ a = (WW⊤)−1W∇x⊙ z⊘ a.

Since we have assumed that all elements in a are non-zero, it is obvious that a = z

holds from the definition of ReLU activation. In this case, z⊘ a can be simplified as

1, where all the elements in 1 are equal to 1. Therefore, we can simplify the above

equation, that is:

∇a = (WW⊤)−1W∇x.

Combining Eq. (4.8) and Eq. (4.11), there is another way to infer the gradient ∇a

when the gradient ∇W and the output a are given. The derivation of ∇a can be

expressed as:

∇a = diag(∇WW⊤)⊘ a,

where all elements in a are assumed to be non-zero.

Note: Theorem 3 illustrates two ways to derive the input gradient ∇a in a single

FC-ReLU stack. The gradient ∇a can be either deduced from (1) the gradient

∇x, or (2) the gradient ∇W and the activation a.

67

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

Theorem 4. In a single stack of a Conv layer followed by a ReLU activation (Conv-

ReLU), the output gradient ∇A ∈ RN can be inferred from the following equations:
∇Ak = ⟨∇Wk,Wk⟩F ⊘Ak,

∇A = [∇A1,∇A2, · · · ,∇AK]
⊤,

(4.13)

where ⊘ denotes the element-wise division, and each activated output Ak is assumed

to be non-zero.

Proof. According to Lemma 3 and Lemma 4, we have ∇Z ⊙ Z = ∇A ⊙ A and

∇Z ⊙ Z = ⟨∇W,W⟩F in this Conv-ReLU stack, where Z and A are the outputs of

the Conv layer and the ReLU layer, respectively. We mainly consider that the shape

of Ak is 1 × 1, that is, Ak ∈ R and ∇A ∈ RN , where N is the number of kernels in

the Conv layer. Thus, for the k-th kernel, we can derive the gradient ∇Ak as:

∇Ak = ⟨∇Wk,Wk⟩F ⊘Ak,

where Ak is assumed to be non-zero. Finally, we can deduce the gradient ∇A by

concatenating all the ∇Ak together.

Note: When A ∈ RN , Theorem 4 presents the gradient ∇A in a single Conv-

ReLU stack, which can be inferred by using the gradient ∇W and the activation

A (all elements are supposed to be non-zero).

In deep neural networks, the bottom layers of a classification model are usually com-

posed of Conv-ReLU-FC-ReLU stacks or FC-ReLU stacks. We consider a more gen-

eral structure that L layers of such stacks are cascaded in the bottom layers. The

first stack is an FC-ReLU or Conv-ReLU, and the last stack is an FC layer without

the ReLU activation. The other stacks are all FC-ReLU. We use superscripts [l] to

denote the layer index, where l ∈ {1, 2, · · · , L}. This structure is common in the

LeNet, AlexNet, VGG, and ResNet models. In summary, the layers that we analyze

include:

68

4.4. Gradient Bridge (GDBR)

• 1 FC-ReLU or Conv-ReLU stack (l = 1);

• (L− 2) FC-ReLU stacks (l ∈ {2, 3, · · · , L− 1});

• 1 FC output layer without ReLU activation (l = L).

Combining the previous Theorem 3 and Theorem 4, we can infer the gradient ∇A
[1]
k

in the first stack as follows:

∇a
[1]
k =


diag(∇W

[1]
k W

[1]⊤
k)⊘ a

[1]
k , if FC,

⟨∇W
[1]
k ,W

[1]
k ⟩F ⊘ a

[1]
k , if Conv,

(4.14)

where ∇W
[1]
k can be directly obtained from the shared gradients in FL. In the design

of GDBR, all we need is the gradient ∇W
[1]
k in the first stack of the bottom layers.

For the l-th layer, l ∈ {2, 3, · · · , L− 1}, we can recursively deduce the gradients ∇a[l]

and ∇x[l+1] from Theorem 3 as:

∇x[2] = ∇a[1] = [∇a
[1]
1 ,∇a

[1]
2 , · · · ,∇a

[1]
K]⊤

∇x[3] = ∇a[2] = (W[2]W[2]⊤)−1W[2]∇x[2]

...

∇x[l+1] = ∇a[l] = (W[l]W[l]⊤)−1W[l]∇x[l].

(4.15)

Finally, according to Lemma 2, we can derive the gradient ∇z[L] in the last FC layer

as the following equation:

∇z[L] = (W[L]W[L]⊤)−1W[L]∇x[L]. (4.16)

We name the above derivations as the Gradient Bridge that connects the gradient

w.r.t. the first FC or Conv layer to the gradient w.r.t. the output logits. In this

scenario, only the gradient ∇W[1] of the first stack in the bottom layers and the

global model θg are required for inferring the gradient ∇z[L] of the output logits. In

69

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

FL collaboration, the model weights W[l] in each layer are known to the server, and

the activated features a[1] can also be estimated by fitting some auxiliary data into

the model. Our finding of the gradient bridge breaks the limitation of the restricted

gradient sharing in FL, which is the foundation of the GDBR attack.

Note: Given the gradient ∇W[1] of the first FC or Conv in the bottom layers,

the Gradient Bridge can be built to infer the gradient ∇z[L] w.r.t. the output

logits of the global model.

4.4.3 Derivation of Batch-Averaged Gradients

Assumption 1. We assume that the activation features a[1] in the first stack of the

bottom layers exhibit similar Gaussian distributions across different dimensions for

various training samples. Specifically, the features a[1](n) for the n-th sample in a batch

of B can be approximated by some auxiliary data, denoted as ã[1]. Consequently, we

have:

ã[1] ≈ a[1](n), ∀n ∈ {1, 2, · · · , B}.

Combining Eq. (4.14) and Assumption 1, we can deduce the batch-averaged gradient

∇a
[1]

by utilizing ã[1] to approximate the features a[1](n). So the averaged gradient

∇a
[1]

is given by the following equations:

∇a
[1]

k =
1

B

B∑
n=1

∇a
[1](n)
k

≈


(

1
B

∑
n diag(∇W

[1](n)
k W

[1]⊤
k)

)
⊘ ã

[1]
k(

1
B

∑
n⟨∇W

[1](n)
k ,W

[1]
k ⟩F

)
⊘ ã

[1]
k

=


diag(∇W

[1]

k W
[1]⊤
k)⊘ ã

[1]
k , if FC,

⟨∇W
[1]

k ,W
[1]
k ⟩F ⊘ ã

[1]
k , if Conv.

For the l-th layer (l ∈ {2, 3, · · · , L − 1}), the batch-averaged gradient ∇a
[l]

can be

70

4.4. Gradient Bridge (GDBR)

obtained as follows:

∇a
[l]
=

1

B

B∑
n=1

∇a[l](n)

= (W[l]W[l]⊤)−1W[l]

(
1

B

B∑
n=1

∇x[l](n)

)
= (W[l]W[l]⊤)−1W[l]∇x

[l]
.

Similarly, the batch-averaged gradient w.r.t. the logits z[L] in the output layer can be

derived in the same way as above.

In summary, for the batch-averaged setting, the gradients for each stack of the bottom

layers can be recursively inferred using the following equations:

∇a
[1]

k ≈


diag(∇W

[1]

k W
[1]⊤
k)⊘ ã

[1]
k , if FC,

⟨∇W
[1]

k ,W
[1]
k ⟩F ⊘ ã

[1]
k , if Conv.

(4.17)



∇x
[2]

= ∇a
[1]

= [∇a
[1]

1 ,∇a
[1]

2 , · · · ,∇a
[1]

K]⊤

∇x
[3]

= ∇a
[2]

= (W[2]W[2]⊤)−1W[2]∇x
[2]

...

∇x
[l+1]

= ∇a
[l]

= (W[l]W[l]⊤)−1W[l]∇x
[l]
.

(4.18)

∇z
[L]

= (W[L]W[L]⊤)−1W[L]∇x
[L]
. (4.19)

4.4.4 Label Recovery from Inferred Gradients

Assumption 2. We assume that the Softmax probabilities p of the model output ex-

hibit similar Gaussian distributions across different classes for various training sam-

ples. Specifically, the probabilities p(n) for the n-th sample in a batch of size B can

71

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

be approximated by some auxiliary data, denoted as p̃. Consequently, we have:

p̃ ≈ p(n), ∀n ∈ {1, 2, · · · , B}.

Combining Eq. (4.1) in Preliminary, the batch-averaged gradient ∇z
[L]

can be repre-

sented as:

∇z
[L]

=
1

B

B∑
n=1

∇z[L](n) =
1

B

B∑
n=1

(
p(n) − y(n)

)
. (4.20)

In the batch-averaged setting, we use λ to denote the sum of the one-hot labels for

the batch of B samples. Each element in λ is an integer, which represents the number

of samples that have the corresponding class label in the batch. By substituting λ

into Eq. (4.20) and use p̃ in Assumption 2 to approximate the probabilities p(n), we

can derive λ as:

λ =
B∑
i=1

y(i) = B ·
(
p̃−∇z

[L]
)
. (4.21)

Finally, we can infer the number of samples for each class in the batch by solving λ

in Eq. (4.21). Gradient ∇z
[L]

is the output of the gradient bridge, which has been

provided in Eq. (4.19).

4.5 Experiments

In this section, we conduct extensive experiments on various datasets and models

to evaluate the effectiveness of GDBR in recovering labels. We first validate the

reasonability of the assumptions in Section 4.4. Then, we compare the performance

with prior baseline methods and analyze the influence of different factors on GDBR,

such as batch sizes, different layers, class distributions, etc. Finally, we present the

performance of GDBR against two defense mechanisms, which are gradient pruning

and noise perturbation.

72

4.5. Experiments

4.5.1 Experimental Setups

Datasets and Models

We evaluate the GDBR attack on five benchmark datasets and five popular neural

network models. Here are the details of the datasets and models.

• MNIST [37] contains 60k training and 10k testing gray-scale digit images of size

28×28 with 10 classes.

• SVHN [49] contains 73k training and 26k testing color digit images of size 32×32

with 10 classes.

• CIFAR-10/100 [34] contain 50k training and 10k testing color images of size

32×32 with 10/100 classes.

• ImageNet-1K [12] contains 1.28M training and 50k validation color images of

size 224×224 with 1,000 classes.

We employ five neural network models with different architectures, including MLP

(Multi-Layer Perceptron) [56], LeNet [37], AlexNet [35], VGG series [59], and ResNet

series [24]. In particular, the MLP model consists of 6 FC layers with [2048, 1024,

512, 256, 128, 64] hidden units. All the above models are implemented using the

PyTorch framework [54].

Implementation Details

We consider an FL system with N participants, where one of them is designated as

the victim. Each client trains the model using its private dataset with the FedSGD

algorithm [44]. During each training iteration, a client randomly selects B samples

from its dataset to create a mini-batch, with the default batch size set to 64.

73

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

For the ResNet series models, we replace the average pooling layer with a convo-

lutional layer. We use PyTorch’s default initialization for the layers preceding the

average pooling. For the bottom layers, we initialize the weights using a uniform

distribution between 0.01 and 0.2, and we ignore the bias terms for simplicity. By

default, we use the uniform distribution to initialize the weights of the bottom layers,

and we provide the gradient of the penultimate layer to GDBR.

To estimate the input features of the penultimate layer and the output probabilities

of the model, we utilize the validation or testing dataset as an auxiliary dataset. We

sample a total of 1,000 samples from the auxiliary data, distributing them evenly

across all the classes. To eliminate experimental randomness, we repeat each experi-

ment 20 times and report the average result.

All the experiments are conducted using PyTorch 2.0.0 and CUDA 12.2 on a work-

station equipped with an Intel i9-10900K CPU @ 3.70GHz, 64GB of RAM, and an

NVIDIA GeForce RTX 4090 (24GB) GPU.

Baselines and Evaluation Metrics

We compare our proposed GDBR with two state-of-the-art methods, ZLG [19] and

LLG [64]. ZLG leverages the relationship between the labels and the gradient ∇W[L]

in the final FC layer to recover labels, while LLG exploits the direction and magnitude

of ∇W[L] to restore the labels of the batch samples. However, gradient ∇W[L] is not

directly accessible in our attack scenario. For a fair comparison, we provide part of

the ground-truth gradient ∇W[L] to both ZLG and LLG for label recovery. Moreover,

we provide the same subset of auxiliary data to GDBR and the baselines to estimate

the features of the penultimate layer and the output probabilities of the model.

To quantify the performance of label restoration, we adopt two metrics: Instance-

level Accuracy (InsAcc) and Class-level Accuracy (ClsAcc) [83]. InsAcc evaluates

the accuracy of recovering the ground-truth labels of individual data samples, while

74

4.5. Experiments

ClsAcc assesses the accuracy of recovering the ground-truth classes to which the data

samples belong. All the results are reported as percentages (%).

4.5.2 Verification of Assumptions

We first verify the rationalization of Assumption 1 and 2 by conducting experiments

on the ResNet18 model trained on the CIFAR-100 dataset. We select five random

dimensions within input features and five 10-fold classes to visualize the distributions

of the features and the probabilities in the final FC layer.

The findings, shown in Fig. 4.2, indicate that at the early stage of training, the

extracted features and the output probabilities of different samples exhibit similar

distributions. This observation supports the use of auxiliary data to estimate the

hidden features and the output probabilities of the model, which are essential for

GDBR to build the gradient bridge.

4.5.3 Comparison with Baselines

Next, we compare GDBR with the baselines across various combinations of datasets

and models. The model-dataset pairs are as follows: LeNet on MNIST, AlexNet on

SVHN, VGG11 on CIFAR-10, and ResNet18 on CIFAR-100. We set the batch sizes

ranging from 2 to 512, with the batch data randomly sampled from a subset of all

classes in the training datasets. To provide the weight gradient in the last layer to

ZLG and LLG, we shuffle the column elements of the matrix.

The results, displayed in Fig. 4.3 and Fig. 4.4, show that GDBR outperforms ZLG

and LLG on both InsAcc and ClsAcc metrics in almost all cases. Even with access to

part of the ground-truth gradient, ZLG and LLG still struggle to recover the labels

of the target batch. In contrast, GDBR can effectively recover the labels with high

accuracy, demonstrating the effectiveness of our method.

75

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

(a) Input feature distributions of the FC layer in ResNet18 (B = 512). The shown di-

mensions are randomly selected, and the values in each dimension approximately follow a

Gaussian distribution whose mean can be estimated from similar training samples.

(b) Softmax probability distributions of ResNet18 model (B = 512). Five 10-fold classes

are chosen for illustration, and the probabilities of different classes exhibit similar Gaussian

distributions, with mean values close to 0.01, across various training samples.

Figure 4.2: The distributions of input features and output probabilities of the FC layer

in ResNet18, which is trained on the CIFAR-100 dataset. The x-axis represents the

values of features or probabilities, and the y-axis represents the number of samples.

76

4.5. Experiments

(a) InsAcc on MNIST. (b) InsAcc on SVHN.

(c) InsAcc on CIFAR-10. (d) InsAcc on CIFAR-100.

Figure 4.3: Comparison of GDBR with baselines on InsAcc across different datasets

and batch sizes. The experiments are performed on four model-dataset pairs: LeNet

on MNIST, AlexNet on SVHN, VGG11 on CIFAR-10, and ResNet18 on CIFAR-100,

with batch sizes ranging from 2 to 512. The batch data is randomly sampled from a

subset of training classes.

77

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

(a) ClsAcc on MNIST. (b) ClsAcc on SVHN.

(c) ClsAcc on CIFAR-10. (d) ClsAcc on CIFAR-100.

Figure 4.4: Comparison of GDBR with baselines on ClsAcc across different datasets

and batch sizes. The experiments are performed on four model-dataset pairs: LeNet

on MNIST, AlexNet on SVHN, VGG11 on CIFAR-10, and ResNet18 on CIFAR-100,

with batch sizes ranging from 2 to 512. The batch data is randomly sampled from a

subset of training classes.

78

4.5. Experiments

4.5.4 Analysis of Different Factors

In this subsection, we investigate the influence of various factors on the performance

of GDBR. These factors include the gradients from different layers, the class distri-

bution of the batch data, the use of auxiliary data or dummy data, and the gradient

simulation and model initialization modes.

Effect of Gradients from Different Layers

We investigate the influence of gradients from different layers provided to GDBR. The

experiments are conducted on a 6-layer MLP model using the SVHN and CIFAR-10

datasets, with the batch data randomly sampled from the training datasets. As shown

in Fig. 4.5, the gradient of the first layer (6th from bottom) has the worst results.

This is because the features of the first layer are more scattered and directly affected

by the training data, making it harder to estimate and build an accurate bridge

to the output logits. Additionally, due to the more complex nature of CIFAR-10

compared to SVHN, GDBR’s performance on CIFAR-10 is inferior to that on SVHN.

The gradients from other layers exhibit similar performance, indicating the robustness

of GDBR when applied to different layers.

Effect of Batch Class Distribution

We next examine the impact of different batch class distributions on the performance

of GDBR. We evaluate GDBR with five different batch class distributions: random,

uniform, single, subclassed, and imbalanced, and report the InsAcc. The experiments

are conducted on different datasets and models, and the results are shown in Ta-

ble 4.1. The findings indicate that GDBR performs well in all settings. Although the

performance is slightly affected by the data distribution, GDBR consistently achieves

high accuracy in recovering the labels of the target batch data. Notably, batch data

79

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

(a) InsAcc on 6-layer MLP. (b) ClsAcc on 6-layer MLP.

Figure 4.5: Comparison of utilized gradients from different layers in a 6-layer MLP

model, trained on MNIST and CIFAR-10.

containing only one class yields better results than mixed classes, likely because the

variables are more concentrated and easier to estimate. These analyses underscore

the robustness of GDBR against different data distributions.

Effect of Auxiliary Data vs. Dummy Data

We further compare the effect of using auxiliary data versus dummy data in the

GDBR. As mentioned in the Implementation Details, we use the validation or test-

ing dataset as auxiliary data, selecting 1,000 samples evenly distributed across all

classes. For dummy data, we generate the data from a standard Gaussian distribu-

tion. The evaluation results are shown in Table 4.2. For simple datasets like MNIST,

GDBR can achieve even higher InsAcc with dummy data. However, for the other

color image datasets, GDBR performs better with auxiliary data. The auxiliary data

provides more accurate information to estimate the extracted features and the output

probabilities, helping GDBR recover the labels more accurately. Nonetheless, when

auxiliary data is unavailable, GDBR can still achieve comparable performance by

exploiting dummy data. We also find that the initialized training model lacks feature

80

4.5. Experiments

Table 4.1: Comparison of different class distributions within the batch training data

across various datasets and models.

Dataset Model
InsAcc [%]

R U S SC IM

MNIST LeNet 80.7 83.0 86.3 85.0 93.5

SVHN AlexNet 85.6 81.6 81.7 85.2 90.1

CIFAR-10 VGG11 84.1 81.2 89.6 90.0 97.0

CIFAR-100 ResNet18 89.8 88.5 94.3 87.9 90.4

ImageNet ResNet50 95.2 97.0 98.8 90.0 91.0

*R: random, U: uniform, S: single, SC: subclassed, IM: imbalanced.

extraction capabilities, resulting in similar embeddings for different samples in the

feature space and making it easier to recover the labels.

Effect of Gradient Simulation and Model Initialization

Then, we investigate the impact of gradient simulation modes and model initialization

modes on the effectiveness of GDBR. The simulation methods are proposed to provide

a portion of the ground-truth gradient to ZLG and LLG. Specifically, we consider the

following simulation methods.

• Stats : Using the statistics of the ground-truth gradient to generate similar

distributions for simulation.

• Stats (col): Using the column-wise statistics of the gradient to generate similar

distributions for each column.

81

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

Table 4.2: Comparison of label recovery using auxiliary data vs. dummy data across

various datasets and models.

Dataset Model
InsAcc [%] ClsAcc [%]

Aux Dummy Aux Dummy

MNIST LeNet 81.± 5. 83.± 6. 98.± 4. 95.± 5.

SVHN AlexNet 86.± 5. 80.± 4. 99.± 3. 98.± 4.

CIFAR-10 VGG11 84.± 6. 85.± 7. 97.± 5. 99.± 2.

CIFAR-100 ResNet18 90.± 4. 85.± 3. 98.± 2. 97.± 2.

ImageNet ResNet50 95.± 2. 92.± 2. 99.± 1. 98.± 2.

*Aux: auxiliary data, Dummy: dummy data.

• Shuffle (col): Shuffling the column-wise elements of the ground-truth gradient

to simulate the observed gradient.

• Mask : Masking 50% of the gradient and replacing with mean values of the

masked elements for simulation.

As shown in Fig. 4.6a, although the simulation of Mask has slightly better perfor-

mance, GDBR outperforms the baselines with any of the gradient simulation methods.

We also compare the influence of different model initialization modes on GDBR. As

introduced in the Implementation Details, we use a uniform distribution between

0.01 and 0.2 to initialize the weights of the bottom layers. This modification ensures

that all the features for estimation are positive. The default initialization of PyTorch

adopts Kaiming uniform [23], which uses values between the negative and positive

bounds. In addition, we replace zero values in the features with the mean of the

non-zero elements. We use a 6-layer MLP model trained on SVHN to compare the

82

4.5. Experiments

(a) Gradient simulation modes. (b) Model initialization modes.

Figure 4.6: Comparison of gradient simulation modes for baselines and model initial-

ization modes. Results for gradient simulation modes are obtained using a VGG11

model trained on CIFAR-10. Model initialization mode experiments are conducted

with a 6-layer MLP trained on SVHN.

performance of GDBR with these two initialization modes, utilizing gradients from

different layers. The results, shown in Fig. 4.6b, indicate that GDBR achieves higher

accuracy with the positive initialization. However, the performance gap is acceptable,

suggesting that GDBR is robust to different initialization modes.

4.5.5 Performance against Defense Mechanisms

Finally, we evaluate the performance of GDBR against two typical defense mecha-

nisms: gradient pruning and noise perturbation. We compare the performance of

GDBR with different gradient pruning thresholds in the range of [0, 0.9] and noise

scales in the range of [0, 0.2]. The experiments are conducted on various datasets

and models, and the results are shown in Fig. 4.7.

The results demonstrate that the performance of GDBR deteriorates significantly

under a high pruning threshold (e.g., ≥0.9) or a high noise scale (e.g., ≥0.2). Notably,

the Resnet18 model trained on CIFAR-100 is more sensitive to noise than the other

83

Chapter 4. GDBR: Label Leakage from Restricted Gradient Sharing

(a) Gradient pruning ([0, 0.9]). (b) Noise perturbation ([0, 0.2]).

Figure 4.7: Comparison of gradient pruning and noise perturbation across various

groups of datasets and models. The threshold of gradient pruning ranges from 0 to

0.9, and the scale of noise perturbation ranges from 0 to 0.2.

models. This increased sensitivity is caused by the accumulation of noise in deducing

the gradient w.r.t. ak in the penultimate layer. According to ∇ak = ⟨∇Wk,Wk⟩F ⊘

ak, the noise in ∇Wk is amplified by the Frobenius inner product. Overall, GDBR

can still recover the labels with high accuracy under moderate defense mechanisms,

highlighting the necessity of developing more robust defense strategies.

4.6 Chapter Summary

In this study, we propose GDBR, a label recovery attack that reconstructs the label

distribution of the victim client’s private training data from the limited gradient

information shared in FL. By exploring the correlation between the gradients and

the model parameters, GDBR builds a bridge between the shared gradients and the

target labels and presents the formulation for label restoration. Extensive experiments

demonstrate that GDBR can accurately recover at least 80% of the class-wise batch

labels in different FL settings. However, GDBR mainly focuses on the early training

84

4.6. Chapter Summary

stage of FL collaboration. In the future, we plan to investigate the effectiveness of

GDBR in the trained models and explore effective defenses against GDBR.

85

Chapter 5

GradFilt: Class-wise Targeted

Data Reconstruction from

Gradients in Federated Learning

5.1 Introduction

Federated Learning (FL) is a distributed machine learning paradigm that allows mul-

tiple clients to collaboratively train a global model without sharing their data [44]. In

FL, clients train the shared model with its local data and then send the gradient of

the model parameters to the server for aggregation. In this way, FL enables the model

training without collecting private data, which has been applied in privacy-sensitive

applications such as finance and healthcare [77, 41, 75].

However, recent studies have proposed Gradient Inversion Attacks (GIAs) to restore

the training data and labels from the shared gradients [88, 26, 82]. Typically, the role

of the attacker is performed by the FL server who is curious about the client’s private

data. The attacker can recover the training data by optimizing the dummy data to

minimize the distance between the dummy and ground truth gradients [88, 18].

86

5.1. Introduction

From a data recovery perspective, existing GIAs can be broadly classified into two

categories. The first category focuses on passively reconstructing the entire training

data in the batch from gradients by adding regularization terms or using generative

models [18, 28]. However, the reconstruction performance is limited and often results

in blurry, distorted images. In contrast, the second category strives to restore high-

quality instances by proactively modifying the model parameters or structures [17, 4].

However, the recovery is stochastic, and the attacker cannot control which instances

can be recovered. From an attacker’s viewpoint, who aims to maximize the attack

benefits and efficiency, the preference lies in reconstructing only the sensitive data of

interested classes, as it holds greater value than other samples.

In this work, we propose Gradient Filtering (GradFilt), a targeted attack to recon-

struct the training data of sensitive or desired classes from gradients. Our insight is

to filter out the gradients of non-target data and retain the gradients of the target

data in the mini-batch. GradFilt includes four main phases: Gradient Separation,

Label Restoration, Gradient Calibration, and Data Reconstruction.

We first modify the parameters of the final fully connected (FC) layer to create a

filter that preserves only the gradients of the target classes. Then, we restore the sum

of one-hot labels of the target data from the batch-averaged gradients. After that, we

calibrate the gradients in the final FC layer and scale the gradients in the preceding

layers. Finally, according to the number of target data in the batch, we either solve

an optimization problem to reconstruct the target data or analytically recover the

data by inserting an FC layer in the first layer.

We evaluate GradFilt on various image datasets and classification models, covering

datasets of different complexities and models of varying depths. It is worth noting

that GradFilt can achieve 100% success rates in restoring the labels of the target

mini-batch. The experimental results demonstrate that GradFilt can effectively re-

construct the desired data with higher accuracies compared to the existing GIAs. Our

contributions are summarized as follows:

87

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

• We propose GradFilt to reconstruct the training data of the target classes from

shared gradients in FL. The key insight is to filter out the gradients of non-target

data and retain those of target data in the mini-batch.

• Specifically, GradFilt consists of four core functionalities: gradient separation,

label restoration, gradient calibration, and data reconstruction. By integrating

these functionalities, GradFilt can effectively reconstruct the target data.

• We evaluate GradFilt on various image datasets and classification models. The

results show that GradFilt can restore the batch labels with 100% success rates

and reconstruct the target data with higher accuracies than existing GIAs.

5.2 Related Work and Motivation

The majority of GIAs are designed for honest-but-curious FL scenarios, where the

server is curious about the client’s private data. In this context, the attacker strictly

follows the FL protocol and only exploit the shared gradients to recover the training

data. Current research in this area focuses on improving the quality of the recovered

data by using cosine similarity as the loss function[18], introducing total variation as

regularization[18, 78], leveraging a generative model pre-trained on the prior distribu-

tion [28, 2]. In addition, [87, 31] leverage the relationship between model parameters

and gradients to efficiently and analytically reconstruct the training data. However,

the performances of these attacks are limited when facing larger batch sizes or deeper

model architectures. Fowl et al. [17] point out that [78] can only reconstruct 28% of

training data when applied on a batch size of 48 for a ResNet50 model.

Moreover, recent studies have proposed GIAs for malicious adversaries in FL, where

the attacker can arbitrarily modify the model parameters or structures to effectively

recover the training data. Fowl et al. [17] propose a stochastic attack by exploiting the

relationship between the gradients and input features of FC layers, which randomly

88

5.3. Preliminaries

recover the training samples by adding an FC layer next to the input. Boenisch et al.

[4] devise trap weights in FC layers as half positive and negative, with slightly larger

negative magnitudes. Wen et al. [72] modify the parameters of FC layers to amplify

gradients associated with specific samples. Pasquini et al. [53] propose a method to

circumvent secure aggregation mechanisms by distributing deliberately crafted and

inconsistent model parameters to participants during a training round. Zhao et al.

[85] introduce Loki, an attack method capable of simultaneously targeting multiple

clients and leaking identifiable data directly related to them, even in the presence of

both FedAvg algorithm and secure aggregation protocols.

However, these data reconstruction attacks are inherently stochastic, meaning they

rely on random processes and probabilistic methods. As a result, they lack preci-

sion and control over the specific samples that can be successfully recovered. This

unpredictability poses a significant limitation, as attackers cannot selectively target

or guarantee the retrieval of particular data points, leading to data that yields low

utility or cannot be effectively used for further downstream attacks.

To address these limitations, we propose GradFilt to reconstruct the training data

of desired classes from gradients. Unlike existing stochastic methods, GradFilt offers

precise control over the reconstruction process, enabling attackers to selectively focus

on specific classes of interest. This targeted approach not only enhances the utility of

the recovered data but also increases its applicability for further downstream attacks,

thereby overcoming the unpredictability and inefficiency of previous techniques.

5.3 Preliminaries

In this section, we introduce the preliminaries of this work, including the classification

tasks in FL, the gradients with respect to the input features and output logits in the

last FC layer, the batch-averaged gradients, and our proposed threat model.

89

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

5.3.1 Classification Tasks in FL

In FL, we concentrate on image classification tasks. Clients collaboratively train a

shared machine learning model, denoted as θ. This global model consists of L layers:

the first L−1 layers extract features, and the final layer is a fully connected (FC) layer

that classifies the features. The raw output of the model is the logits z ∈ RC , where C

is the number of classes. These logits are then transformed into Softmax probabilities,

p = Softmax(z) ∈ RC . The category with the highest probability in these Softmax

probabilities determines the model’s prediction. We use the cross-entropy (CE) loss

function to measure the difference between the predicted probabilities p and the

ground truth one-hot label y ∈ RC , which is defined as:

LCE(p,y) = −
C∑
i=1

yi log pi = − log pc, (5.1)

where c is the index of the ground truth class.

5.3.2 Gradients of the Final FC Layer

According to the definition of the Softmax function, the probability of the c-th class

is given by pc =
ezc∑C
j=1 e

zj
. The CE loss can be rewritten as:

LCE(p,y) = − log
ezc∑C
j=1 e

zj

= −zc + log
C∑

j=1

ezj .

(5.2)

The gradient of the CE loss with respect to the i-th logits, i.e., zi, is given by:

∇zi =
∂LCE

∂zi
= −∂zc

∂zi
+

ezi∑C
j=1 e

zj

= −I(i = c) + pi

=

 −1 + pi, if i = c,

pi, otherwise,

(5.3)

90

5.3. Preliminaries

where I(·) denotes the indicator function that outputs 1 if the condition is true and

0 otherwise. Therefore, we can derive the gradient with respect to logits z as:

∇z = p− y. (5.4)

In the final FC layer, the forward propagation process can be represented as z =

Wa+ b, where W ∈ RC×M is the weight matrix, a ∈ RM is the input features, and

b ∈ RC is the bias vector. To calculate the gradient of features a and weights W , we

follow the chain rule and deduce the gradients as follows:

∇a =
∂LCE

∂a
=

∂LCE

∂z

∂z

∂a
= W⊤∇z. (5.5)

∇W =
∂LCE

∂W
=

∂LCE

∂z

∂z

∂W
= ∇za⊤. (5.6)

5.3.3 Batch-averaged Gradients

In this study, we focus on the FedSGD algorithm [44] in FL systems. Each client

u trains the global model θ on its local dataset during each communication round

r. After training, the client then sends its batch-averaged gradients, ∇θr,u, to the

server. The batch-averaged gradient is calculated as:

∇θr,u =
1

B

B∑
n=1

∇θ(n)
r,u , (5.7)

where B is the batch size, and ∇θ
(n)
r,u is the gradient computed on the n-th sample

in the mini-batch. The server then aggregates the gradients from all the clients to

update the global model for the next round r + 1. To safeguard against gradient

poisoning attacks, the server performs an inspection of each client’s updated gradient

before aggregation. For simplicity, we will omit the round index r and the client index

u in the following discussion, i.e., ∇θ = 1
B

∑B
n=1∇θ(n), as the attack can be launched

on any client at any communication round.

91

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

5.3.4 Threat Model

We assume a malicious FL server that seeks to recover sensitive information from the

participating clients. Specifically, we model the server’s objective as recovering private

training data belonging to a target class1, denoted by t, where t ∈ {1, 2, · · · , C}. We

refer to data points associated with this target class as target data and denote them

as xt. Conversely, the remaining classes constitute the non-target classes, represented

by o, where o = {1, 2, · · · , C}\t. Data samples corresponding to non-target classes

are referred to as non-target data and denoted as xo.

The malicious server possesses comprehensive knowledge about the FL system. It not

only understands the meaning behind each data category – for example, in CIFAR-10

dataset [34], it knows that class 1 represents “airplane” and class 2 corresponds to

“automobile” – but also has access to the shared model’s architecture and parameters.

This intimate understanding grants the adversary the power to directly modify the

model, a crucial capability for achieving its objective: manipulating gradient updates

to extract sensitive information. This modification selectively nullifies the gradients

associated with non-target data, denoted as ∇θ′(xo). The isolation of gradients with

respect to target data, ∇θ′(xt), enables their independent analysis. Therefore, the

batch-averaged gradient ∇θ′ is transformed into a pure representation of the target

data’s gradients, which can be represented using the following equation:

∇θ′ =
1

B

 |xt|∑
i=1

∇θ′(i) +

|xo|∑
j=1

∇θ′(j)

 =
1

B

|xt|∑
i=1

∇θ′(i), (5.8)

where |xt| and |xo| are the numbers of target and non-target data in the batch.

Then, the adversary can either invert the manipulated gradients ∇θ′ to reconstruct

the target data xt by solving an optimization problem, or analytically restore some

random samples by exploiting the characteristics of an FC layer.

1Without loss of generality, we consider the attack targets a single class (i.e., |t| = 1). It is easy

to extend this scenario to multiple target classes, where t ⊆ {1, 2, · · · , C}.

92

5.4. Methodology of GradFilt

Figure 5.1: Illustration of our proposed GradFilt attack. According to the purpose

of GradFilt, the adversary aims to recover the target data from its interested classes.

The adversary modifies the weights W and biases b of the final FC layer to embed

a filter within the model, which retains the gradients of the target class and nullifies

the gradients of non-target classes. Based on the preserved gradients associated with

the target data, the adversary then reconstructs the original data through gradient

inversion. In the final layer, the weights of non-target classes are set to zero, and the

biases of these classes are assigned large positive values. The weights and biases of

the target class are retained and scaled by a factor α.

5.4 Methodology of GradFilt

In this section, we introduce our GradFilt attack. We first present the overview of this

targeted attack, and then delve into the details of the several main phases: Gradient

Separation, Label Restoration, Gradient Calibration and Data Reconstruction. We

provide a comprehensive explanation of the attack’s workflow and the mechanism

of model manipulation. The workflow of GradFilt is illustrated in Fig. 5.1 and the

algorithm is summarized in Algorithm 1.

93

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

5.4.1 Overview of GradFilt

Building upon the threat model presented in Section 5.3.4, we introduce GradFilt, a

method designed to reconstruct the training data of the target class determined by

the adversary in FL. The attack leverages carefully manipulated model parameters,

denoted as θ′, which form a modified version of the original global model θ. GradFilt

operates in the following four main phases and is summarized in Algorithm 1.

1. Gradient Separation: The parameters of the final FC layer are strategically

modified to create a “filter” that retains the gradients associated with the target

class while effectively nullifying the gradients calculated from non-target classes.

This manipulation allows for the isolation of gradients with respect to the target

data within the batch-averaged gradients.

2. Label Restoration: Combining the batch-averaged bias gradients ∇b′ with

the manipulated probabilities p′, the adversary can restore the sum of one-hot

labels (denoted as λ) of the target data. These recovered labels can not only

be utilized to reveal the number of target data in the batch but also reveal the

distribution of the important data across the classes.

3. Gradient Calibration: The gradients in the final FC layer are mixed with

both target data and non-target data, and the gradients from previous layers

are averaged across the entire batch. This calibration process allows for the

extraction of the target gradients in the final layer and scales the gradients in

the preceding L− 1 layers accordingly.

4. Data Reconstruction: The filtered gradients, now enriched with information

solely from the target data, are then inverted either formulating an optimization

problem to reconstruct the original target data or analytically recovering the

data by inserting an FC layer in the first layer of the model.

94

5.4. Methodology of GradFilt

Algorithm 1 Algorithm of GradFilt attack.

Input: Global model θ, target classes t, non-target classes o, number of classes C,

scale α, threshold β

Output: Reconstructed target data x∗
t

Gradient Separation:

1: In the final fully connected (FC) layer, set all rows of W corresponding to classes

o to zero and assign large values Ω to the indices of o in b

2: Scale the row of W corresponding to class t by a factor α

3: Send the manipulated model θ′ to the participating client

Label Restoration:

4: Receive the batch-averaged gradients ∇θ′ from the client

5: Derive the manipulated probabilities p′ = [1
C−1

, · · · , 0, · · · , 1
C−1

]⊤

6: Restore the sum of one-hot labels λ from p′ and ∇b′ using Eq. (5.14)

Gradient Calibration:

7: Determine the number of target data in the batch: |xt| =
∑

i∈t λi

8: Extract the batch-averaged gradients ∇b′(xt) and ∇W ′(xt) for target data xt in

the final FC layer using Eq. (5.17) and Eq. (5.18)

9: Scale gradient ∇θ′(xt) in the previous L− 1 layers by B
|xt| using Eq. (5.22)

Data Reconstruction:

10: if |xt| ≤ β:

11: Solve the optimization problem in Eq. (5.23) to reconstruct x∗
t

12: else:

13: Insert an FC layer in the first layer to analytically recover x∗
t

14: return x∗
t

95

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

5.4.2 Gradient Separation

Control of Gradient ∇a[L]

To differentiate the gradient of target data xt from non-target data xo, we propose

to control the gradient with respect to the input features ∇a[L] in the last FC layer.

According to the chain rule and backpropagation, gradients for model parameters θ

are calculated progressively from the output layer to the input. Setting ∇a[L] to zero

can effectively halt gradient flow through previous layers, essentially vanishing their

gradients. Conversely, preserving ∇a[L] ensures that gradients propagate through all

layers of the model during backpropagation.

This insight forms the basis of our method, GradFilt: selectively nullifying gradients

for non-target data while preserving those of target data in batch-averaged gradients.

In essence, we aim to achieve ∇a[L](xo) = 0 for non-target data and retain ∇a[L](xt)

for target data. We achieve this by manipulating the parameters of the last FC layer,

i.e., the weight matrix W and the bias vector b.

(a) Gradient ∇a′ of non-target data. (b) Gradient ∇a′ of target data.

Figure 5.2: Illustration of controlling gradient ∇a′ in the final FC layer by manipulat-

ing the weight matrix W and bias vector b. The light-colored rectangles with dashed

lines represent zero values, while the dark-colored rectangles indicate normal non-zero

elements. The key insight is to make the zero rows within W ′ and p′ complementary

to each other, ensuring that only the gradients of the target class are preserved.

96

5.4. Methodology of GradFilt

Parameter Manipulation

Before explaining how to adjust the parameters of the global model, we first examine

the calculation of ∇a[L] in the last layer for a single data point. For simplicity, we

will omit the layer index L in the following discussion. By combining Eq. (5.4) and

Eq. (5.5), we can derive the gradient of the input features ∇a as:

∇a = W⊤∇z = W⊤(p− y). (5.9)

Despite the uncertainty in the one-hot label y within Eq. (5.9), we can strategically

control the gradient∇a by manipulating both the weight matrixW and bias vector b.

The manipulation of bias parameters directly influences the calculated probabilities p.

For example, a large positive value assigned to a specific bias bk will significantly in-

crease the corresponding probability, making it close to 1. Fig. 5.2 visually illustrates

this gradient manipulation for both non-target and target data. The light-colored

rectangles with dashed lines represent zero values, while the dark-colored rectangles

indicate normal non-zero elements.

Specifically, we set the rows of W ′ corresponding to non-target classes to zero: W ′
k =

0 (k /∈ t). Conversely, the values for the row pointing to the target class are retained.

Simultaneously, we influence the Softmax probabilities by assigning large bias values

b′k = Ω ≫ 0 to all non-target classes (k /∈ t), and force their probabilities to zero.

This complementary manipulation effectively zeros out the gradient ∇a except when

the one-hot label corresponds to the target class, at which point ∇θ′ is non-zero.

Additionally, an important benefit of this modification is that it maximizes the dis-

tance between the manipulated Softmax probabilities p′ and the one-hot label y for

target data. As illustrated in Fig. 5.2, the difference p′
t − yt reaches its maximum

value, i.e., −1, for the target samples, highlighting this divergence. To further amplify

the magnitude of the gradient∇a′, we introduce a scaling factor α (α ≥ 1) to the rows

of W ′ corresponding to the target class. This adjustable factor provides fine-grained

97

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

control over the gradient’s magnitude, ultimately influencing the effectiveness of data

reconstruction during the subsequent inversion process. Consequently, the manipu-

lated gradient ∇a′ can be expressed as:

∇a′ = −αW ′
t
⊤
, (5.10)

where W ′
t denotes the row of W ′ corresponding to the target class t. In the context

of batch-averaged settings, the averaged gradient ∇a′ can be calculated as:

∇a′ =
1

B

|xt|∑
i=1

∇a′(i) = −α|xt|
B

W ′
t
⊤
. (5.11)

where |xt| is the number of target data in the mini-batch.

Note: We leverage the manipulated gradient∇a to selectively filter out gradients

of non-target data xo and retain those of target data xt. Specifically, we set the

rows of the weight matrix W ′ corresponding to non-target classes to 0 and assign

large values Ω to indices of non-target classes in b′.

5.4.3 Label Restoration

From the forward propagation z = Wa + b, we observe that the probabilities of

non-target classes converge uniformly to 1
C−1

when bias values of these indices are set

to large positive numbers Ω. This allows us to have the deterministic manipulated

probabilities p′, which can be expressed as:

p′ = Softmax(z′) =

[
1

C − 1
, · · · , 0, · · · , 1

C − 1

]⊤
. (5.12)

Combining Eq. (5.4) with ∇b′ = ∇z′, we can reconstruct the original one-hot label y

from the manipulated probabilities p′ as follows: y = p′ −∇b′. In a batch-averaged

scenario, this relationship becomes:

∇b′ =
1

B

B∑
n=1

∇b′
(n)

=
1

B

B∑
n=1

(
p(n) − y(n)

)
= p′ − 1

B
λ, (5.13)

98

5.4. Methodology of GradFilt

where λ is the sum of one-hot labels for the batch of B samples. Each element in λ

is an integer, representing the number of samples that have the corresponding class

label in the batch. Then we can directly restore the one-hot labels of the mini-batch

training data from the following equation:

λ = B · (p′ −∇b′). (5.14)

From Eq. (5.14), we can determine the number of target data in the mini-batch, i.e.,

|xt| =
∑

i∈t λi. When there are multiple target classes, where |t| > 1, the probability

equals 1
C−|t| for non-target classes and 0 for target classes. The above label restoration

process is crucial for the subsequent gradient inversion step, ensuring that the target

data points are correctly identified for reconstruction.

Note: By modifying the parameters of the final FC layer, GradFilt can restore

the sum of one-hot labels λ for the mini-batch samples: λ = B · (p′ −∇b′). This

recovery process is crucial for subsequent gradient inversion.

5.4.4 Gradient Calibration

While we have successfully isolated the gradients of target data in the first L − 1

layers, the gradients of non-target data still contribute to the final FC. To obtain the

gradients of target data, we need to extract them from the batch-averaged gradients

∇W ′ and ∇b′ in this layer. To achieve this goal, we introduce a gradient calibration

process that selectively retrieves the target data gradients.

According to Eq. (5.6), we can derive the gradient of modified weight matrix W ′ for

a single training data point as:

∇W ′ = ∇z′a⊤ = (p′ − y)a⊤. (5.15)

For the t-th row of ∇W ′, denoted as ∇W ′
t , we can derive that ∇W ′

t = (p′
t − yt)a

⊤,

where p′
t becomes zero after our parameter manipulation. When i ∈ IndexSet(xt),

99

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

it is clear that ∇W ′
t
(i) = −a⊤(i). Conversely, when i /∈ IndexSet(xt), the gradient

∇W ′
t
(i) = 0. Leveraging this observation, we can recover the averaged input feature

embeddings of the target data a⊤, from the weight gradient ∇W ′
t as follows:

a⊤(xt) = − 1

|xt|

|xt|∑
i=1

∇W ′
t
(i)

= − B

|xt|
∇W ′

t . (5.16)

In Eq. (5.12), we have already obtained the manipulated probabilities p′ for all the

training data. Combining this with Eq. (5.4) and ∇b′ = ∇z′, we can derive the

averaged gradient of the bias vector for the target data ∇b′ as:

∇b′(xt) =
1

|xt|

|xt|∑
i=1

∇b′
(i)

=
1

|xt|

|xt|∑
i=1

(
p′(i) − y(i)

)
= p′ − I(j = t), (5.17)

where I(j = t) is an indicator function that equals 1 if j = t and 0 otherwise, and

j ∈ {1, 2, · · · , C} denotes the index of the class.

Finally, we can calibrate the obtained batch-averaged weight gradient ∇W ′ by asso-

ciating ∇b′(xt) in Eq. (5.17) with the derived feature embeddings a(xt) in Eq. (5.16),

which can be expressed as:

∇W ′(xt) = ∇b′(xt)a
⊤(xt) = − B

|xt|
∇b′(xt)∇W ′

t . (5.18)

In the scenario of multiple target classes (where |t| > 1), we represent the sum of all

rows corresponding to target classes as
∑

k∈t∇W ′
k. Consequently, the derived feature

embeddings a⊤, the averaged bias gradient ∇b′, and the calibrated weight gradient

∇W ′ of target data are calculated as follows:

a⊤(xt) = − 1

|xt|

|xt|∑
i=1

∑
k∈t

∇W ′
k
(i)

= − B

|xt|
∑
k∈t

∇W ′
k (5.19)

∇b′(xt) =
1

|xt|

|xt|∑
i=1

∑
k∈t

(
p′(i) − y(i)

)
= p′ − 1

|xt|
∑
k∈t

I(j = k) (5.20)

∇W ′(xt) = ∇b′(xt)a
⊤(xt) = − B

|xt|
∇b′(xt)

∑
k∈t

∇W ′
k. (5.21)

100

5.4. Methodology of GradFilt

Therefore, by applying gradient separation and calibration, we can determine the

batch-averaged gradients ∇θ′ corresponding to the target data xt. However, these

received gradients in the previous L− 1 layers represent an average across the entire

batch. Based on Equation (5.8), we scale them by a factor B
|xt| to obtain the gradients

of the target data for subsequent data reconstruction, which can be expressed as:

∇θ′(xt)
[l] = − B

|xt|
∇θ′[l], for l = 1, 2, · · · , L− 1. (5.22)

Note: We extract the batch-averaged gradients ∇b′(xt) and ∇W ′(xt) of target

data by calibrating the gradients of the final FC layer. This calibration process

leverages the manipulated probabilities p′ and the derived feature embeddings

a⊤(xt) to infer the gradients of the target data.

5.4.5 Data Reconstruction

Having successfully filtered out non-target data and retained target data gradients,

we move on to recovering the target data from the batch-averaged gradients ∇θ′(xt).

We employ two distinct strategies for this purpose.

1. Optimization-based Data Reconstruction. We formulate an optimization

problem that seeks to minimize the distance between the reconstructed data

and its original counterpart, thereby recovering the target data.

2. Analytical Data Reconstruction. We leverage the gradients in the FC layer

to analytically restore the target data by inserting an FC layer into the first layer

of the global shared model. This approach enables direct gradient inversion for

reconstructing the target data.

To determine the reconstruction method, we employ a pre-defined threshold β. Specif-

ically, if the number of the target samples |xt| is less than or equal to β, we opt for

optimization-based reconstruction; otherwise, we select analytical reconstruction.

101

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

Optimization-based Data Reconstruction

In the optimization-based approach, we aim to recover the original target data xt by

solving an optimization problem that minimizes the distance between the obtained

target gradients ∇θ′(xt) and the dummy gradients ∇θ′(xt) that calculated from the

dummy data x∗. The optimization problem can be formulated as:

arg min
x∗
t∈[0,1]n

1− ⟨∇θ′(x∗
t), ∇θ′(xt)⟩

∥∇θ′(x∗
t)∥ ∥∇θ′(xt)∥

, (5.23)

where ⟨·, ·⟩ denotes the inner product, and ∥ · ∥ represents the Euclidean norm. The

dummy data x∗
t is initialized with random Gaussian noise and optimized iteratively

to minimize the objective function in Eq. (5.23). The reconstructed target data x∗
t is

obtained when the optimization process converges.

Analytical Data Reconstruction

Building upon the work presented in [17], we can analytically restore the target data

by inserting an FC layer into the first layer of the model. In this FC layer, leveraging

Eq. (5.6) and ∇b = ∇z, a single input data point x can be directly recovered from

x = ∇W⊤
k ⊘∇bk based on the gradients of the k-th neuron. By carefully crafting the

weights and biases, data with different mean values (e.g., brightness in images) can ac-

tivate specific neurons in an ordering that corresponds to their numerical magnitude,

from top to bottom. This concept can be formalized as follows:

(∇W
⊤
l −∇W

⊤
l−1)⊘ (∇bl −∇bl−1) = xs +

q∑
m=1

xm −
q∑

m=1

xm = xs, (5.24)

where ⊘ denotes the element-wise division, xs is a specific data point that activates

the l-th neuron, and {xm}qm=1 that already activate the previous l− 1 neurons. This

analytical approach effectively reconstructs part of the target data x∗
t , proving more

efficient and computationally lighter than the optimization-based method, especially

for numerous target data points.

102

5.5. Experiments

5.5 Experiments

In this section, we evaluate the performance of GradFilt. We begin by introducing

our experimental setup, including the datasets and models, baselines, and evaluation

metrics. Then, we present the attack’s results for label restoration, gradient calibra-

tion, and data reconstruction. For data reconstruction, we provide a detailed analysis

of both optimization-based and analytical approaches. We conduct extensive exper-

iments across various FL settings and display visualization results to illustrate the

data reconstruction process and recovered images.

5.5.1 Experimental Setup

Datasets and Models

We evaluate GradFilt on four benchmark image datasets and corresponding neural

network models. Here are the details of the datasets in our experiments.

• Fashion-MNIST (F-MNIST) [74] contains 60k training and 10k testing gray-

scale clothing images of size 28×28 with 10 classes.

• SVHN [49] contains 73k training and 26k testing color digit images of size 32×32

with 10 classes.

• CIFAR-10/100 [34] contain 50k training and 10k testing color images of size

32×32 with 10/100 classes.

• ImageNet-1K [12] contains 1.28M training and 50k validation color images of

size 224×224 with 1,000 classes.

Our experiments utilize several neural network architectures: LeNet [37], ConvNet,

VGG11 [59], and models from ResNet series [24]. Specifically, ConvNet consists of 10

103

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

layers: eight 3× 3 convolutional layers with Batch Normalization (BN) [27], followed

by one max-pooling layer and one FC layer. We employ VGG11 for CIFAR-10,

ResNet18 for CIFAR-100, and ResNet50 for ImageNet datasets.

Implementation Details

We consider an FL system with N participants, one of which is targeted as the victim.

Each client trains the model on its own private data using the FedSGD algorithm [44].

In each training iteration, a client randomly selects B samples to form a mini-batch.

Because GradFilt can be applied to any communication round, we focus our attack on

the initial stages of training. The threshold β for selecting the reconstruction method

is set to 8. All experiments are conducted using PyTorch 2.4.0 [54] and CUDA 12.2

on a workstation equipped with an Intel i9-10900K CPU @ 3.70GHz, 64GB RAM,

and an NVIDIA GeForce RTX 4090 (24GB) GPU.

Baselines and Evaluation Metrics

We compare our proposed GradFilt with two baselines: Inverting Gradients (IG) [18]

and Deep Leakage from Gradients (DLG) [88]. IG employs cosine similarity as its

error function, Adam as the optimizer, and Total Variation (TV) as a regularization

term. It runs for a maximum of 12,000 iterations. DLG uses Euclidean distance as its

error function, L-BFGS as the optimizer, and runs for a maximum of 600 iterations.

We evaluate the quality of reconstructed images using three common metrics: Mean

Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Learned Perceptual

Image Patch Similarity (LPIPS) [81]. MSE measures pixel-wise differences between

the reconstructed and original images. PSNR assesses pixel-wise similarity, indicating

higher quality with larger values. LPIPS evaluates perceptual similarity, capturing

how visually alike the reconstructed and original images appear. Lower MSE and

LPIPS scores, along with a higher PSNR, signify better reconstruction quality. All

104

5.5. Experiments

Table 5.1: Label restoration performance of GradFilt across various batch sizes (B ∈

{2, 8, 32, 128, 512}), different datasets, and diverse models. GradFilt achieves perfect

accuracy (100% InsAcc and 100% ClsAcc) in all these FL settings.

Dataset Model
Batch Size B

2 8 32 128 512

F-MNIST LeNet 100% 100% 100% 100% 100%

SVHN ConvNet 100% 100% 100% 100% 100%

CIFAR-10 VGG11 100% 100% 100% 100% 100%

CIFAR-100 ResNet18 100% 100% 100% 100% 100%

ImageNet ResNet50 100% 100% 100% 100% 100%

results are presented as average values across the target data or mini-batch.

Furthermore, we evaluate label restoration performance using two metrics: Instance-

level Accuracy (InsAcc) and Class-level Accuracy (ClsAcc) [83]. InsAcc measures the

accuracy of correctly recovering the true labels for individual data samples. ClsAcc

assesses the accuracy of assigning data samples to their correct classes. All results

are reported as percentages (%).

5.5.2 Label Restoration

We evaluate GradFilt’s label restoration performance across five diverse datasets and

corresponding models: F-MNIST (LeNet), SVHN (ConvNet), CIFAR-10 (VGG11),

CIFAR-100 (ResNet18), and ImageNet (ResNet50). Experiments are conducted with

varying batch sizes (B ∈ {2, 8, 32, 128, 512}) to assess the robustness of GradFilt. As

shown in Table 5.1, GradFilt achieves perfect label restoration accuracy (100% InsAcc

105

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

1 2 3 4 5 6
Layer Index

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

Av
er

ag
e

G
ra

di
en

t V
al

ue

Ground-truth
Calibration

Figure 5.3: Layer-wise errors between the calibrated gradients and true target gradi-

ents on the CIFAR-10 dataset using the ConvNet model. The errors are quantified

by calculating the Euclidean distance between corresponding gradients in each layer,

and then averaged over the number of parameters within the layer.

and 100% ClsAcc) across all FL settings. This outcome, while remarkable, is expected

given the parameter manipulation results in identical Softmax probabilities for all

training data: target class probability p′t = 0 and non-target class probability p′k =

1
C−|t| . This deterministic output, both for manipulated probabilities p′ and potentially

other variables, highlights the vulnerability of FL systems to privacy breaches. Our

findings demonstrate GradFilt’s efficacy in restoring mini-batch labels regardless of

dataset, model architecture, or batch size.

5.5.3 Gradient Calibration

Before inverting the “filtered” gradients to reconstruct the target data, we evaluate

the gradient calibration process described in Section 5.4.4. To validate the accuracy of

106

5.5. Experiments

this calibration, we compute the layer-wise errors between the calibrated gradients and

the true target gradients. We conduct experiments on the CIFAR-10 dataset using

the ConvNet model, selecting the first six layers for demonstration. The results are

visualized in Figure 5.3. As evident from the figure, the layer-wise errors between the

calibrated and target gradients are exceedingly small. This finding strongly suggests

that the calibration process is highly effective in isolating the gradients specific to the

target data from the batch-averaged gradients. Our findings demonstrably showcase

the feasibility of GradFilt in extracting these precise gradients associated with the

target data, laying a solid foundation for subsequent data reconstruction.

5.5.4 Optimization-based Data Reconstruction

To evaluate the effectiveness of our proposed GradFilt method for data reconstruction,

we first focus on scenarios where the number of target data points is less than or equal

to the predefined threshold β. We compare the reconstruction quality of GradFilt

against IG and DLG, where the experiments are conducted on the CIFAR-10 dataset

using the ConvNet model. Four distinct FL settings are involved, each with a varying

number of target data points (|xt| ∈ {1, 2, 4, 8}) and corresponding batch sizes (B ∈

{2, 4, 8, 16}). The results are summarized in Table 5.2.

It is shown that GradFilt consistently achieves the lowest MSE, the highest PSNR,

and the lowest LPIPS scores across all experimental settings. Notably, the PSNR

scores of images reconstructed by GradFilt exceeds 18 under the first three settings.

This indicates a high degree of similarity between the reconstructed images and the

original images, suggesting that the reconstruction process preserves essential visual

details with only minor noise or color discrepancies. This clearly demonstrates the

superior reconstruction capabilities of GradFilt compared to the baseline methods.

Furthermore, it is observed that as the number of target data samples increases,

the overall reconstruction quality for both GradFilt and the baselines degrades. This

107

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

Table 5.2: Comparison of data reconstruction quality between GradFilt and the base-

lines (IG and DLG) on the CIFAR-10 dataset using the ConvNet model. The results

are reported with varying numbers of target data points (|xt| ∈ {1, 2, 4, 8}) and batch

sizes (B ∈ {2, 4, 8, 16}). The best performance are highlighted in bold.

Method Metric

Number of Target Data (Batch Size)

|xt| = 1 |xt| = 2 |xt| = 4 |xt| = 8

(B = 2) (B = 4) (B = 8) (B = 16)

GradFilt

MSE ↓ 0.0057 0.0113 0.0159 0.0347

PSNR ↑ 22.41 19.54 18.11 14.85

LPIPS ↓ 0.07 0.10 0.18 0.26

IG [18]

MSE ↓ 0.0174 0.0460 0.0369 0.0491

PSNR ↑ 18.30 14.60 14.99 13.54

LPIPS ↓ 0.10 0.19 0.19 0.31

DLG [88]

MSE ↓ 0.1423 0.1104 0.1093 0.1237

PSNR ↑ 8.47 9.61 9.71 9.26

LPIPS ↓ 0.46 0.41 0.37 0.42

decline in performance can be attributed to the increased complexity of reconstructing

multiple targets simultaneously.

To further demonstrate GradFilt’s versatility, we evaluate its performance on a variety

of datasets and model architectures. These experiments utilize the same settings as

those presented in Table 5.1, with the number of target data points set to 4 and 8,

within the batch sizes of 16 and 32. Importantly, the effectiveness of GradFilt is

largely independent of batch size. This highlights a key advantage: accurate target

data recovery can be achieved regardless of the batch size used during FL training.

As shown in Table 5.3, GradFilt consistently achieves lower MSE, higher PSNR, and

108

5.5. Experiments

Table 5.3: Ablation study of data reconstruction quality using GradFilt on various

datasets and model architectures. The results are reported with |xt| = 4 and |xt| = 8

target data points that included in the batch size B of 16 and 32.

Dataset Model
|xt| = 4 (B = 16) |xt| = 8 (B = 32)

MSE PSNR LPIPS MSE PSNR LPIPS

F-MNIST LeNet 0.0015 39.25 0.0008 0.0026 35.94 0.0019

SVHN ConvNet 0.0094 20.50 0.13 0.0153 18.94 0.17

CIFAR-10 VGG11 0.0416 14.09 0.19 0.0669 12.59 0.17

CIFAR-100 ResNet18 0.0168 18.49 0.22 0.0237 16.52 0.23

ImageNet ResNet50 0.0695 12.11 0.71 0.1000 10.26 0.76

lower LPIPS scores across these diverse settings. While GradFilt demonstrates strong

performance across different datasets and models, it is noteworthy that reconstruction

quality tends to decrease as dataset complexity increases and model capacity grows.

For instance, the F-MNIST dataset paired with the LeNet model yields the highest

reconstruction quality, producing images visually indistinguishable from the originals.

This can be attributed to the relative simplicity of both the dataset and the model,

which facilitates accurate target data recovery. Conversely, the ImageNet dataset

combined with the ResNet50 model exhibits the lowest reconstruction quality due to

its inherent complexity and the sophisticated nature of the ResNet50 architecture.

These factors pose greater challenges for the reconstruction process.

To provide a visual illustration of the data reconstruction process facilitated by Grad-

Filt, we selected two representative scenarios:

1. CIFAR-100 (ConvNet): One target data point from class 66 is chosen for

demonstrating data reconstruction.

109

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

(a) Data reconstruction process on CIFAR-100 dataset trained with ConvNet model.

One target sample from class 66 is selected for reconstruction.

(b) Data reconstruction process on F-MNIST dataset trained with LeNet model. Four

target samples from classes 1 to 4 are simultaneously reconstructed.

Figure 5.4: Illustration of data reconstruction process using GradFilt. The top two

rows showcase the original batch images (red label for targets), while the bottom two

rows present the corresponding reconstructed images obtained at each iteration.

110

5.5. Experiments

2. F-MNIST (LeNet): Four samples, each belonging to classes 1 to 4, are se-

lected for simultaneous reconstruction.

Figure 5.4 presents the visualization results of data reconstruction process over the

initial 200 iterations. In the case of F-MNIST, one artifact sample is displayed per

iteration, showcasing the iterative nature of the optimization-based method employed

by GradFilt. Our experimental results demonstrate that GradFilt effectively recovers

all target samples within a batch when data complexity and model depth are relatively

low. This highlights the GradFilt’s ability to accurately reconstruct individual data

points even within a multi-sample setting.

5.5.5 Analytical Data Reconstruction

To address scenarios with a larger number of target data points, we introduce an an-

alytical reconstruction method as a complement to the optimization-based approach.

This method is activated when the number of target samples |xt| exceeds the thresh-

old β. The analytical reconstruction technique involves inserting an FC layer into the

first layer of the model. Gradients within this FC layer are then utilized to reconstruct

the target data. We employ 128 bins for data recovery by default, corresponding to

128 hidden neurons in the inserted FC layer. The specific model architecture is less

crucial in this context, as our primary goal is to recover instances from the gradients

produced by this inserted FC layer. We evaluate the performance of this analytical

reconstruction approach on settings with |xt| = 50 and |xt| = 100 across four groups

of datasets and models. The results are summarized in Table 5.4.

In Table 5.4, we use the Hits score to represent the percentage of successfully recon-

structed target samples compared to the total number of ground-truth target data.

While the reconstruction process inherently exhibits a degree of randomness, GradFilt

consistently achieves high Hits scores across all evaluated datasets and models. This

demonstrates GradFilt’s effectiveness in extracting target data. Importantly, the ana-

111

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

Table 5.4: Analytical data reconstruction performance of GradFilt on settings with

|xt| = 50 and |xt| = 100 target samples across various datasets and models. The Hits

score represents the percentage of successfully reconstructed target data.

Dataset
|xt| = 50 |xt| = 100

Hits MSE PSNR LPIPS Hits MSE PSNR LPIPS

SVHN 0.82 0.0256 76.31 0.10 0.59 0.0342 39.16 0.22

CIFAR-10 0.74 0.0356 64.65 0.16 0.66 0.0355 51.50 0.21

CIFAR-100 0.84 0.0189 86.71 0.10 0.68 0.0556 52.98 0.21

ImageNet 0.78 0.0227 71.59 0.25 0.72 0.0298 60.27 0.29

lytical approach yields significantly superior image quality compared to optimization-

based reconstruction. The PSNR scores for all experiments exceed 39, indicating that

the recovered images are nearly indistinguishable from the original images. However,

as the number of target data points increases, both the Hits score and overall recon-

struction quality tend to decrease. This observation highlights the limitations of the

analytical approach when dealing with numerous targets and underscores the need

for adaptive strategies, such as the threshold β, to ensure optimal performance.

To further illustrate the efficacy of analytical reconstruction mechanism, we provide

visualizations of the results obtained from CIFAR-10 and ImageNet datasets when

|xt| = 50. For CIFAR-10, we select the first category (airplane) as the target class,

while for ImageNet, we choose the second class (white shark). The visualizations are

presented in Figure 5.5 and Figure 5.6, respectively. Observing these figures reveals

that GradFilt effectively reconstructs the target data with high fidelity. Reconstructed

images closely resemble their original counterparts, demonstrating the accuracy of the

analytical approach. Gray-scale images represent instances where reconstruction is

not entirely successful, and are filled with zeros.

112

5.5. Experiments

(a) Ground-truth images of the target class (airplane) from CIFAR-10 training batch

with |xt| = 50.

(b) Analytical reconstruction of airplane targets from CIFAR-10, where 37 images are

successfully reconstructed (|x∗
t | = 37).

Figure 5.5: Illustration of the analytical data reconstruction performance of GradFilt

on airplane targets from CIFAR-10 dataset. 37 out of 50 target images are success-

fully reconstructed, while the remaining 13 are represented in gray-scale to indicate

unsuccessful reconstruction attempts.

113

Chapter 5. GradFilt: Class-wise Targeted Data Reconstruction from Gradients

(a) Ground-truth images of the target class (white shark) from ImageNet training batch

with |xt| = 50.

(b) Analytical reconstruction of white shark targets from ImageNet, where 39 images

are successfully reconstructed (|x∗
t | = 39).

Figure 5.6: Illustration of the analytical data reconstruction performance of GradFilt

on targets like white shark from ImageNet dataset. 39 out of 50 target images are

successfully reconstructed, while the remaining 11 are represented in gray-scale to

indicate unsuccessful reconstruction attempts.

114

5.6. Chapter Summary

5.6 Chapter Summary

In this work, we propose GradFilt to reconstruct training samples of target classes

in FL collaboration by leveraging the carefully crafted gradients. GradFilt embeds a

“filter” inside the model to retain only the gradients of the target classes by modifying

the parameters of the final fully connected (FC) layer. By exploiting these gradients,

GradFilt can effectively reconstruct the target data with high fidelity. Our evaluation

demonstrates that GradFilt outperforms existing gradient leakage attacks in terms of

data reconstruction quality. Future work will focus on exploring defense mechanisms

against GradFilt to enhance the privacy and security of FL systems.

115

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we investigate the privacy leakage vulnerabilities arising from gradient-

based attacks in Federated Learning (FL). We first summarize three key challenges

often overlooked by existing attack methods: label information leakage, layer-wise

gradient exploitation, and targeted data recovery. To address these critical issues, we

propose three novel and advanced gradient-induced attacks.

To efficiently recover training labels, we introduce a generalized label recovery attack

by estimating the posterior probabilities from auxiliary data. We also reveal the

essence of label leakage from gradients and explain the reasons for such findings from

the perspective of the exponential family. Then, we further expose privacy breaches

through correlated layer-wise gradients with our Gradient Bridge (GDBR) attack.

GDBR reconstructs the gradient of the model’s output logits, enabling restoration of

the label distribution even under restricted gradient sharing. Finally, to reconstruct

the training data for specific classes, we design Gradient Filtering (GradFilt). This

method effectively recovers desired samples with higher accuracy by strategically

modifying parameters within the classification layer.

116

6.2. Limitation

These meticulously crafted attacks expose fundamental vulnerabilities in current FL

systems. By exploiting the lack of analysis regarding relationships between gradients

and data, attackers can infer critical gradients and deduce sensitive information about

training labels. Furthermore, the absence of robust anomaly detection mechanisms

for the globally shared model leaves FL susceptible to malicious manipulation by a

compromised server. By shedding light on these attack surfaces, we hope to inspire

the development of more secure and privacy-preserving FL systems in the future.

6.2 Limitation

Despite our research shedding light on several vulnerabilities within FL systems, it is

important to acknowledge the limitations inherent in our study.

Firstly, our investigation primarily focuses on the FedSGD algorithm, which is consid-

ered the most representative and potentially problematic algorithm in FL. However,

we did not extend our analysis to more advanced algorithms such as FedAvg. The

FedAvg algorithm may mitigate the effectiveness of certain attacks due to the re-

duced interaction between users and attackers. This aspect presents an opportunity

for future research to explore.

Secondly, our study is centered around classification tasks and models. While classifi-

cation tasks are predominant in machine learning, there are other types of tasks such

as regression and generative tasks that we did not cover. Our focus on classification

tasks aligns with the mainstream approach of most GIAs. Investigating other tasks

and models may uncover additional intriguing findings.

Furthermore, our attacks require auxiliary datasets to achieve optimal results. Al-

though common datasets can often be sourced from the internet or public repositories,

there may be niche categories with non-IID distributions for which auxiliary data is

not readily available. This limitation could impact the effectiveness of the attacks.

117

Chapter 6. Conclusion and Future Work

However, given the uncertainty surrounding the capabilities of potential attackers,

providing reasonable auxiliary datasets allows us to reveal the most severe scenarios

of information leakage and privacy breaches in FL systems.

6.3 Future Work

This thesis investigates the vulnerabilities of FL systems to gradient-induced privacy

leakage, demonstrating the potential for adversaries to extract sensitive information.

While our work makes significant strides in understanding these risks, numerous av-

enues remain open for future exploration in this rapidly evolving field. We outline

several promising directions for further investigation below.

To safeguard labels, incorporating noise injection techniques like noise labels or label

differential privacy during training presents a promising direction. This approach not

only obfuscates sensitive information within labels, preventing attackers from inferring

local data distributions or attributes, but also effectively mitigates the reconstruction

of original training samples from shared gradients.

Given the inherent correlations between gradients, sensitive gradients can be identi-

fied through careful analysis. Subsequently, these sensitive gradients can be preserved

at each layer using cryptography-based methods, such as Homomorphic Encryption.

This approach can achieve lightweight and efficient privacy protection without signif-

icantly impacting the performance of FL models.

To enhance the security of globally shared models in FL, participating clients can

implement anomaly detection mechanisms. On one hand, clients can collaborate to

verify the consistency of the global model. On the other hand, individual clients can

compute gradients using a subset of their local datasets and analyze these gradients

for anomalies in terms of both direction and magnitude. This multi-faceted approach

helps identify potential tampering or manipulation of the FL shared model.

118

6.3. Future Work

Furthermore, the risk of privacy leakage from gradients can be indirectly quantified

by analyzing the relationship between client training data and calculated gradients.

Any discernible correlation suggests a vulnerability to potential leakage. Metrics like

mutual information or sensitivity analysis provide a rigorous means of measuring this

relationship, revealing how gradient leakage risk is interconnected with factors like

model status and underlying data distribution.

119

References

[1] Erling Bernhard Andersen. Sufficiency and exponential families for discrete sam-

ple spaces. Journal of the American Statistical Association, 65(331):1248–1255,

1970.

[2] Mislav Balunovic, Dimitar Dimitrov, Nikola Jovanović, and Martin Vechev.

Lamp: Extracting text from gradients with language model priors. In Proceedings

of the 36th Conference on Neural Information Processing Systems (NeurIPS),

pages 7641–7654, 2022.

[3] Mislav Balunović, Dimitar Iliev Dimitrov, Robin Staab, and Martin Vechev.

Bayesian framework for gradient leakage. In Proceedings of the 10th International

Conference on Learning Representations (ICLR), pages 1–16, 2022.

[4] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia

Shumailov, and Nicolas Papernot. When the curious abandon honesty: Federated

learning is not private. In Proceedings of the 2023 IEEE 8th European Symposium

on Security and Privacy (EuroS&P), pages 175–199, 2023.

[5] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical

secure aggregation for privacy-preserving machine learning. In Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications Security

(CCS), pages 1175–1191, 2017.

120

References

[6] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,

Brendan McMahan, et al. Towards federated learning at scale: System design. In

Proceedings of the 2nd Machine Learning and Systems (MLSys), pages 374–388,

2019.

[7] Cangxiong Chen and Neill D. F. Campbell. Understanding training-data leak-

age from gradients in neural networks for image classifications. In Workshop

on Privacy in Machine Learning in Conjunction with NeurIPS 2021 (PriML-

NeurIPS-21), 2021.

[8] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and ac-

curate deep network learning by exponential linear units (elus). In Proceedings

of the 4th International Conference on Learning Representations (ICLR), pages

1–14, 2016.

[9] Trung Dang, Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews, Peter Chin,

and Françoise Beaufays. Revealing and protecting labels in distributed training.

In Proceedings of the 35th Conference on Neural Information Processing Systems

(NeurIPS), pages 1727–1738, 2021.

[10] Trung Dang, Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews, Peter Chin,

and Françoise Beaufays. A method to reveal speaker identity in distributed asr

training, and how to counter it. In Proceedings of the 2022 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4338–

4342, 2022.

[11] Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-

10 is not imagenet or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In Proceedings of the 2009 IEEE

121

References

Conference on Computer Vision and Pattern Recognition (CVPR), pages 248–

255, 2009.

[13] Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, Chang Liu, Chee Seng Chan,

and Qiang Yang. Rethinking privacy preserving deep learning: How to evaluate

and thwart privacy attacks. In Federated Learning: Privacy and Incentive, pages

32–50. Springer, 2020.

[14] Liyue Fan. Image pixelization with differential privacy. In Proceedings of the

2018 IFIP Annual Conference on Data and Applications Security and Privacy,

pages 148–162, 2018.

[15] Liyue Fan. Differential privacy for image publication. InWorkshop on the Theory

and Practice of Differential Privacy in Conjunction with CCS 2019 (TPDP-CCS-

19), pages 1–4, 2019.

[16] Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, He-

len Möllering, Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi, Thomas

Schneider, Hossein Yalame, et al. Safelearn: Secure aggregation for private feder-

ated learning. In Proceedings of the 2021 IEEE Security and Privacy Workshops

(SPW), pages 56–62, 2021.

[17] Liam H Fowl, Jonas Geiping, Wojciech Czaja, Micah Goldblum, and Tom Gold-

stein. Robbing the fed: Directly obtaining private data in federated learning

with modified models. In Proceedings of the 10th International Conference on

Learning Representations (ICLR), 2022.

[18] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller.

Inverting gradients - how easy is it to break privacy in federated learning? In

Proceedings of the 34th Conference on Neural Information Processing Systems

(NeurIPS), pages 16937–16947, 2020.

122

References

[19] Jiahui Geng, Yongli Mou, Feifei Li, Qing Li, Oya Beyan, Stefan Decker, and

Chunming Rong. Towards general deep leakage in federated learning. In Work-

shop on Trustable, Verifiable and Auditable Federated Learning in Conjunction

with AAAI 2022 (FL-AAAI-22), pages 1–8, 2022.

[20] Samyak Gupta, Yangsibo Huang, Zexuan Zhong, Tianyu Gao, Kai Li, and

Danqi Chen. Recovering private text in federated learning of language models.

Proceedings of the 36th Conference on Neural Information Processing Systems

(NeurIPS), pages 8130–8143, 2022.

[21] Ali Hatamizadeh, Hongxu Yin, Holger R Roth, Wenqi Li, Jan Kautz, Daguang

Xu, and Pavlo Molchanov. Gradvit: Gradient inversion of vision transformers. In

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 10021–10030, 2022.

[22] Fengxiang He, Bohan Wang, and Dacheng Tao. Tighter generalization bounds

for iterative differentially private learning algorithms. In Proceedings of the 37th

Conference on Uncertainty in Artificial Intelligence (UAI), pages 802–812, 2021.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the 2015 IEEE International Conference on Computer Vision

(ICCV), pages 1026–1034, 2015.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[25] Yangsibo Huang, Zhao Song, Kai Li, and Sanjeev Arora. Instahide: Instance-

hiding schemes for private distributed learning. In Proceedings of the 37th Inter-

national Conference on Machine Learning (ICML), pages 4507–4518, 2020.

123

References

[26] Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evalu-

ating gradient inversion attacks and defenses in federated learning. In Proceedings

of the 35th Conference on Neural Information Processing Systems (NeurIPS),

pages 7232–7241, 2021.

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the 32nd

International Conference on Machine Learning (ICML), pages 448–456, 2015.

[28] Jiwnoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion

with generative image prior. In Proceedings of the 35th Conference on Neural

Information Processing Systems (NeurIPS), pages 29898–29908, 2021.

[29] Xiao Jin, Pin-Yu Chen, Chia-Yi Hsu, Chia-Mu Yu, and Tianyi Chen. Cafe:

Catastrophic data leakage in vertical federated learning. In Proceedings of the

35th Conference on Neural Information Processing Systems (NeurIPS), pages

994–1006, 2021.

[30] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi.

Error feedback fixes signsgd and other gradient compression schemes. In Proceed-

ings of the 36th International Conference on Machine Learning (ICML), pages

3252–3261, 2019.

[31] Sanjay Kariyappa, Chuan Guo, Kiwan Maeng, Wenjie Xiong, G Edward Suh,

Moinuddin K Qureshi, and Hsien-Hsin S Lee. Cocktail party attack: Breaking

aggregation-based privacy in federated learning using independent component

analysis. In Proceedings of the 40th International Conference on Machine Learn-

ing (ICML), pages 15884–15899, 2023.

[32] Jinsu Kim, Dongyoung Koo, Yuna Kim, Hyunsoo Yoon, Junbum Shin, and Sung-

wook Kim. Efficient privacy-preserving matrix factorization for recommendation

124

References

via fully homomorphic encryption. ACM Transactions on Privacy and Security

(TOPS), 21(4):1–30, 2018.

[33] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.

Self-normalizing neural networks. Proceedings of the 31st Conference on Neural

Information Processing Systems (NeurIPS), pages 972–981, 2017.

[34] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features

from tiny images. Technical Report, University of Toronto, 2009.

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Proceedings of the 26th Conference on

Neural Information Processing Systems (NeurIPS), pages 1–9, 2012.

[36] Maximilian Lam, Gu-Yeon Wei, David Brooks, Vijay Janapa Reddi, and Michael

Mitzenmacher. Gradient disaggregation: Breaking privacy in federated learning

by reconstructing the user participant matrix. In Proceedings of the 38th Inter-

national Conference on Machine Learning (ICML), pages 5959–5968, 2021.

[37] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998.

[38] Zhaohua Li, Le Wang, Guangyao Chen, Muhammad Shafq, et al. A survey of

image gradient inversion against federated learning. Authorea Preprints, 2022.

[39] Dragos Lia and Mihai Togan. Privacy-preserving machine learning using feder-

ated learning and secure aggregation. In Proceedings of the 12th International

Conference on Electronics, Computers and Artificial Intelligence (ECAI), pages

1–6, 2020.

[40] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal

loss for dense object detection. In Proceedings of the 2017 IEEE International

Conference on Computer Vision (ICCV), pages 2980–2988, 2017.

125

References

[41] Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning

for open banking. In Federated Learning: Privacy and Incentive, pages 240–254.

Springer, 2020.

[42] Kailang Ma, Yu Sun, Jian Cui, Dawei Li, Zhenyu Guan, and Jianwei Liu.

Instance-wise batch label restoration via gradients in federated learning. In

Proceedings of the 11th International Conference on Learning Representations

(ICLR), pages 1–15, 2023.

[43] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image repre-

sentations by inverting them. In Proceedings of the 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 5188–5196, 2015.

[44] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the 20th International Conference on Ar-

tificial Intelligence and Statistics (AISTATS), pages 1273–1282, 2017.

[45] Shagufta Mehnaz, Sayanton V Dibbo, Roberta De Viti, Ehsanul Kabir, Björn B

Brandenburg, Stefan Mangard, Ninghui Li, Elisa Bertino, Michael Backes, Emil-

iano De Cristofaro, et al. Are your sensitive attributes private? novel model

inversion attribute inference attacks on classification models. In Proceedings of

the 31st USENIX Security Symposium (USENIX Security), pages 4579–4596,

2022.

[46] Yuan Mei, Binbin Guo, Danyang Xiao, and Weigang Wu. Fedvf: Personal-

ized federated learning based on layer-wise parameter updates with variable fre-

quency. In Proceedings of the 2021 IEEE International Performance, Computing,

and Communications Conference (IPCCC), pages 1–9, 2021.

[47] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted

126

References

boltzmann machines. In Proceedings of the 27th International Conference on

Machine Learning (ICML), pages 807–814, 2010.

[48] Milad Nasr, Shuang Songi, Abhradeep Thakurta, Nicolas Papemoti, and Nicholas

Carlin. Adversary instantiation: Lower bounds for differentially private machine

learning. In Proceedings of the 2021 IEEE Symposium on Security and Privacy

(SP), pages 866–882, 2021.

[49] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, An-

drew Y Ng, et al. Reading digits in natural images with unsupervised feature

learning. In Workshop on Deep Learning and Unsupervised Feature Learning in

Conjunction with NeurIPS 2011 (DLUFL-NeurIPS-11), pages 1–9, 2011.

[50] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are eas-

ily fooled: High confidence predictions for unrecognizable images. In Proceed-

ings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 427–436, 2015.

[51] Dinh C Nguyen, Quoc-Viet Pham, Pubudu N Pathirana, Ming Ding, Aruna

Seneviratne, Zihuai Lin, Octavia Dobre, andWon-Joo Hwang. Federated learning

for smart healthcare: A survey. ACM Computing Surveys (CSUR), 55(3):1–37,

2022.

[52] Tianyu Pang, Kun Xu, and Jun Zhu. Mixup inference: Better exploiting mixup

to defend adversarial attacks. In Proceedings of the 10th International Conference

on Learning Representations (ICLR), pages 1–14, 2020.

[53] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. Eluding secure aggre-

gation in federated learning via model inconsistency. In Proceedings of the 2022

ACM SIGSAC Conference on Computer and Communications Security (CCS),

pages 2429–2443, 2022.

127

References

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,

et al. Pytorch: An imperative style, high-performance deep learning library.

Proceedings of the 33rd Conference on Neural Information Processing Systems

(NeurIPS), pages 1–12, 2019.

[55] Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Mo-

riai. Privacy-preserving deep learning via additively homomorphic encryption.

IEEE Transactions on Information Forensics and Security (TIFS), 13(5):1333–

1345, 2018.

[56] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning in-

ternal representations by error propagation. In Parallel Distributed Processing:

Explorations in the Microstructure of Cognition: Foundations, pages 318–362.

MIT Press, 1987.

[57] Daniel Scheliga, Patrick Mäder, and Marco Seeland. Combining variational mod-

eling with partial gradient perturbation to prevent deep gradient leakage. arXiv

preprint arXiv:2208.04767, 2022.

[58] Geet Shingi. A federated learning based approach for loan defaults prediction.

In Proceedings of the 2020 International Conference on Data Mining Workshops

(ICDMW), pages 362–368, 2020.

[59] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[60] Ekanut Sotthiwat, Liangli Zhen, Zengxiang Li, and Chi Zhang. Partially en-

crypted multi-party computation for federated learning. In Proceedings of the

2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet

Computing (CCGrid), pages 828–835, 2021.

128

References

[61] Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen.

Soteria: Provable defense against privacy leakage in federated learning from

representation perspective. In Proceedings of the 2021 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 9311–9319, 2021.

[62] Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei.

Ldp-fed: Federated learning with local differential privacy. In Proceedings of the

3rd ACM International Workshop on Edge Systems, Analytics and Networking

(EdgeSys), pages 61–66, 2020.

[63] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical

low-rank gradient compression for distributed optimization. In Proceedings of the

33rd Conference on Neural Information Processing Systems (NeurIPS), pages

14269–14278, 2019.

[64] Aidmar Wainakh, Fabrizio Ventola, Till Müßig, Jens Keim, Carlos Garcia

Cordero, Ephraim Zimmer, Tim Grube, Kristian Kersting, and Max Mühlhäuser.

User-level label leakage from gradients in federated learning. In Proceedings of

the 22nd Privacy Enhancing Technologies Symposium (PETS), pages 227–244,

2022.

[65] Xiaodong Wang, Longfei Wu, and Zhitao Guan. Graddiff: Gradient-based mem-

bership inference attacks against federated distillation with differential compar-

ison. Information Sciences, 658:120068, 2024.

[66] Yijue Wang, Jieren Deng, Dan Guo, Chenghong Wang, Xianrui Meng, Hang

Liu, Caiwen Ding, and Sanguthevar Rajasekaran. Sapag: A self-adaptive privacy

attack from gradients. arXiv preprint arXiv:2009.06228, 2020.

[67] Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong

Qi. Beyond inferring class representatives: User-level privacy leakage from feder-

129

References

ated learning. In Proceedings of the 2019 IEEE Conference on Computer Com-

munications (INFOCOM), pages 2512–2520, 2019.

[68] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi

Jin, Tony QS Quek, and H Vincent Poor. Federated learning with differential pri-

vacy: Algorithms and performance analysis. IEEE Transactions on Information

Forensics and Security (TIFS), 15:3454–3469, 2020.

[69] Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy,

Stacey Truex, and Yanzhao Wu. A framework for evaluating gradient leakage

attacks in federated learning. In Proceedings of the 25th European Symposium

on Research in Computer Security (ESORICS), pages 545–566, 2020.

[70] Wenqi Wei, Ling Liu, Yanzhao Wut, Gong Su, and Arun Iyengar. Gradient-

leakage resilient federated learning. In Proceedings of the 2021 IEEE 41st Inter-

national Conference on Distributed Computing Systems (ICDCS), pages 797–807,

2021.

[71] Wenqi Wei, Ling Liu, Jingya Zhou, Ka-Ho Chow, and Yanzhao Wu. Securing

distributed sgd against gradient leakage threats. IEEE Transactions on Parallel

and Distributed Systems (TPDS), 34(7):2040–2054, 2023.

[72] Yuxin Wen, Jonas A Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein.

Fishing for user data in large-batch federated learning via gradient magnifica-

tion. In Proceedings of the 39th International Conference on Machine Learning

(ICML), pages 23668–23684, 2022.

[73] Spencer Wheatley, Thomas Maillart, and Didier Sornette. The extreme risk

of personal data breaches and the erosion of privacy. The European Physical

Journal B, 89:1–12, 2016.

[74] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-

130

References

age dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747, 2017.

[75] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei

Wang. Federated learning for healthcare informatics. Journal of Healthcare

Informatics Research, 5:1–19, 2021.

[76] He Yang. H-fl: A hierarchical communication-efficient and privacy-protected

architecture for federated learning. In Proceedings of the 30th International Joint

Conference on Artificial Intelligence (IJCAI), pages 479–485, 2021.

[77] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine

learning: Concept and applications. ACM Transactions on Intelligent Systems

and Technology (TIST), 10(2):1–19, 2019.

[78] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo

Molchanov. See through gradients: Image batch recovery via gradinversion. In

Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 16337–16346, 2021.

[79] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu.

Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning.

In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX

ATC), pages 493–506, 2020.

[80] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz.

mixup: Beyond empirical risk minimization. In Proceedings of the 6th Inter-

national Conference on Learning Representations (ICLR), pages 1–13, 2018.

[81] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.

The unreasonable effectiveness of deep features as a perceptual metric. In Pro-

ceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 586–595, 2018.

131

References

[82] Rui Zhang, Song Guo, Junxiao Wang, Xin Xie, and Dacheng Tao. A survey on

gradient inversion: Attacks, defenses and future directions. In Proceedings of

the 31st International Joint Conference on Artificial Intelligence (IJCAI), pages

5678–5685, 2023.

[83] Rui Zhang, Song Guo, and Ping Li. Posterior probability-based label recovery

attack in federated learning. In Workshop on Privacy Regulation and Protection

in Machine Learning in Conjunction with ICLR 2024 (PML-ICLR-24), 2024.

[84] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage

from gradients. arXiv preprint arXiv:2001.02610, 2020.

[85] Joshua C Zhao, Atul Sharma, Ahmed Roushdy Elkordy, Yahya H Ezzeldin,

Salman Avestimehr, and Saurabh Bagchi. Loki: Large-scale data reconstruction

attack against federated learning through model manipulation. In Proceedings

of the 2024 IEEE Symposium on Security and Privacy (SP), pages 1287–1305,

2024.

[86] Yanchong Zheng. Dropout against deep leakage from gradients. arXiv preprint

arXiv:2108.11106, 2021.

[87] Junyi Zhu and Matthew Blaschko. R-gap: Recursive gradient attack on privacy.

In Proceedings of the 9th International Conference on Learning Representations

(ICLR), pages 1–17, 2021.

[88] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In

Proceedings of the 33rd Conference on Neural Information Processing Systems

(NeurIPS), pages 14774–14784, 2019.

132

	Abstract
	Publications Arising from the Thesis
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Thesis Motivation
	Thesis Contributions
	Thesis Organization

	Background and Literature Review
	Background of Gradient Leakage
	Gradient Inversion Attacks
	Iteration-based Data Recovery
	Recursion-based Data Recovery

	Gradient Inversion Defenses
	Obscuration of Original Data
	Improvement of Training Model
	Protection from Gradient Sharing

	Challenges and Opportunities
	Chapter Summary

	Posterior Probability-Based Label Recovery from Gradients
	Introduction
	Related Work
	Federated Learning
	Gradient Inversion Attacks
	Analytical Label Recovery Attacks

	Preliminaries
	Focal Loss in Multi-class Classification
	Definition of Class-wise Probabilities
	Problem Formulation

	Essence of Label Leakage
	Generalized Expression of Gradients
	Explanation from Exponential Family
	Further Explanation of Label Leakage

	Label Recovery Attack
	Our Key Observation
	Analytical Label Recovery

	Experiments
	Experimental Settings
	Comparison with Baselines
	Comparison of Various FL Settings
	Ablation Studies

	Chapter Summary

	GDBR: Label Leakage from Restricted Gradient Sharing
	Introduction
	Related Work
	Gradient Inversion Attacks
	Analytical Label Recovery
	Lightweight Defense Strategies

	Preliminary
	Inference of Single One-Hot Label
	Gradients in Typical Layers
	Threat Model

	Gradient Bridge (GDBR)
	Overview
	Correlation Between Layer-wise Gradients
	Derivation of Batch-Averaged Gradients
	Label Recovery from Inferred Gradients

	Experiments
	Experimental Setups
	Verification of Assumptions
	Comparison with Baselines
	Analysis of Different Factors
	Performance against Defense Mechanisms

	Chapter Summary

	GradFilt: Class-wise Targeted Data Reconstruction from Gradients
	Introduction
	Related Work and Motivation
	Preliminaries
	Classification Tasks in FL
	Gradients of the Final FC Layer
	Batch-averaged Gradients
	Threat Model

	Methodology of GradFilt
	Overview of GradFilt
	Gradient Separation
	Label Restoration
	Gradient Calibration
	Data Reconstruction

	Experiments
	Experimental Setup
	Label Restoration
	Gradient Calibration
	Optimization-based Data Reconstruction
	Analytical Data Reconstruction

	Chapter Summary

	Conclusion and Future Work
	Conclusion
	Limitation
	Future Work

