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Abstract

Integrity stands as a paramount concern in civil aviation, ensuring the safety and reli-

ability of global positioning system (GPS) navigation. With the development of new

global navigation satellite system (GNSS) constellations and signals in the Aeronau-

tical Radio Navigation Service (ARNS) bands, efforts from governments, academics,

and the aviation industry are underway to promote a gradual transition from the

legacy receiver autonomous integrity monitoring (RAIM) to the more advanced ver-

sion, known as advanced RAIM (ARAIM). This evolution aims to facilitate a shift

from primarily ensuring integrity in horizontal positioning to encompassing vertical

guidance, addressing the increasingly stringent navigation requirements of modern

aviation. The ARAIM algorithm has undergone regular updates over the years to

incorporate new integrity analysis and performance enhancements. Nonetheless, a

fundamental assumption is made in ARAIM that the nominal error is bounded by a

conservative Gaussian distribution, which unnecessarily enlarges the protection level,

thereby reducing the system availability under stringent navigation requirements. To

release this assumption and improve the availability of integrity monitoring algo-

rithms, this thesis prototypes a receiver autonomous integrity monitoring framework

with non-Gaussian nominal errors covering GNSS error characterizing, overbounding

theory, fault detection, and integrity verification.

This thesis conducts a comprehensive analysis of signal-in-space range error (SISRE)

of GPS and Galileo constellations, which reveals its heavy-tailed properties. A sharp
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yet conservative non-Gaussian overbound, Principal Gaussian overbound (PGO), is

proposed to bound this kind of heavy-tailed error by leveraging the characteristics of

the Gaussian mixture model. The overbounding property of the PGO is proved to be

preserved through convolution, which makes it possible to derive measurement-level

requirements from the position domain integrity requirements. Experimental results

show that the PGO provides the most competitive bounding performance for SISRE

when compared to the Gaussian overbound and Gaussian-Pareto overbound, yielding

a sharp bound in both the core and tail parts of the error distribution. The proposed

PGO served as the non-Gaussian nominal error bound for the development of fault

detection and integrity monitoring algorithms in this thesis.

This thesis proposes a fault detection method, the jackknife detector, for linearized

pseudorange-based positioning systems with non-Gaussian nominal error. Specifi-

cally, a test statistic based on the jackknife technique is proposed, which is proved to

be the linear combination of measurement errors without any assumption about error

distribution. A hypothesis test with the Bonferroni correction is constructed to detect

potential faults in measurements under single-fault assumption. Then, the jackknife

detector is extended to simultaneous faults by combining multiple test statistics. The

reliability of the proposed method is examined in a worldwide simulation in both

single- and multiple-fault settings.

This thesis proposes a multiple-hypothesis-based integrity monitoring algorithm, the

jackknife ARAIM algorithm, by systematically exploiting the properties of the jack-

knife detector in the range domain, which is proven to be capable of handling either

Gaussian or non-Gaussian nominal error bounds. A tight bound of the integrity risk

is derived by quantifying the impacts of hypothetical fault vectors on the position

solution. The proposed method is evaluated in a worldwide simulation with both

single and dual constellations. Results reveal that the proposed method has higher

system availability than the baseline ARAIM method, making it possible to support

localizer performance with vertical guidance (LPV) with a decision height of 200 ft
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using the GPS-Galileo dual constellation.
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cδj Clock offset of the receiver j regarding the code IF combination

cδi Clock offset of the satellite i regarding the code IF combination

Tdij Tropospheric delay regarding the satellite i and the receiver j
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Nomenclature

Idij,f Ionospheric delay regarding the satellite i and the receiver j at fre-

quency f

Kϱ,j,f Code instrumental delay of the receiver j at frequency f

Ki
ϱ,f Code instrumental delay of the satellite i at frequency f

Kφ,j,f Carrier phase instrumental delay of the receiver j at frequency f

Ki
φ,f Carrier phase instrumental delay of the satellite i at frequency f

Kϱ,j,IF DCB of the receiver j regarding frequencies fA and fB

Ki
ϱ,IF DCB of the satellite i regarding frequencies fA and fB

ni
j,f Ambiguity term of the carrier phase measurement regarding the

satellite i and the receiver j at frequency f

Measurement Errors

εiϱ,j,f Residual errors of the pseudorange measurement regarding the satel-

lite i and the receiver j at frequency f

εiφ,j,f Residual errors of the carrier phase measurement regarding the satel-

lite i and the receiver j at frequency f

εiorb&clk Ephemeris and clock error of satellite i

εitropo,j Residual tropospheric error regarding the satellite i and the receiver

j

εiinono,j,f Residual ionospheric error regarding the satellite i and the receiver

j at frequency f

εiϱ,user,j,f Pseudorange multipath and code noises regarding the satellite i and

the receiver j at frequency f
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Nomenclature

εiφ,user,j,f Carrier phase multipath and code noises regarding the satellite i and

the receiver j at frequency f

εiϱ,j,IF Residual errors of the code IF combination measurement regarding

the satellite i and the receiver j

εiϱ,user,j,IF Multipath and code noises of the code IF combination regarding the

satellite i and the receiver j

Measurement Error Bounds

σi
orb&clk Standard deviation of the orbit and clock error bound regarding the

satellite i

σi
tropo,j Standard deviation of the residual tropospheric error bound regard-

ing the satellite i and the receiver j

σi
ϱ,user,j,IF Standard deviation of the multipath and code noise error bound

regarding the satellite i and the receiver j in the IF combination of

the code measurement model

σi
ϱ,j,IF Standard deviation of the Gaussian bound of εiϱ,j,IF

θij Elevation angle associated with the receiver j and the satellite i

f i
orb&clk(·) PDF of the range projection of clock and orbit error for satellite i

f i
tropo,j(·) PDF of the tropospheric error regarding satellite i and receiver j

f i
ϱ,user,j,IF (·) PDF of the multipath and code noise of code IF combination mea-

surement regarding satellite i and receiver j

f i
orb&clk,PGO(x) PDF of the PGO of the range projection of clock and orbit error for

satellite i

f i
tropo,j,ob(x) PDF of the Gaussian overbound of the tropospheric error

8



Nomenclature

f i
ϱ,user,j,IF,ob(x) PDF of the Gaussian overbound of the multipath and code noise

f i
ϱ,j,IF,Gaussian(·) PDF of the Gaussian overbound for code IF combination measure-

ment regarding satellite i and receiver j

f i
ϱ,j,IF,acc(·) PDF of the non-Gaussian overbound for code IF combination mea-

surement regarding satellite i and receiver j for accuracy evaluation

and fault detection purposes

Gi
ϱ,j,IF,acc(x) CDF of the non-Gaussian overbound for code IF combination mea-

surement regarding satellite i and receiver j for accuracy evaluation

and fault detection purposes

Gi
ϱ,j,IF,int(·) CDF of the non-Gaussian overbound for code IF combination mea-

surement regarding satellite i and receiver j for integrity purposes

Position, velocity, and timing

pi pi = [pix, p
i
y, p

i
z] is the position of the ith satellite in the ECEF frame

uj uj = [uj,x, uj,y, uj,z] is the position of the jth receiver in the ECEF

frame

xt Receiver true state vector

x0 Linearization point

x System state vector

Nconst Number of constellations

Estimation

n Number of measurements

m Size of the receiver state. m = 3 +Nconst
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Nomenclature

y Measurement vector

ε Measurement error vector

x̂ Full set solution

x̂(k) Solution for subset k, where k = 0 corresponds to the full set

x̂
(k)
t Estimation of the positioning state x

(k)
t associated with the kth sub-

set

G Geometry matrix for full set measurements

S Solution matrix for full set measurements

W Weight matrix for full set measurements

S(k) Solution matrix for subset k, where k = 0 corresponds to the full set

W(k) Weight matrix for subset k, where k = 0 corresponds to the full set

G(k,∗) Geometry matrix associated with the kth jackknife test statistic.

The dimension is (n− 1)×m

S(k,∗) Solution matrix associated with the kth jackknife test statistic. The

dimension is m× (n− 1)

P̃(k) Reconstructed Projection matrix related to the kth jackknife test

statistic

εi The ith element of ε

gk The kth row of G

Sv,i The (v, i)th element in S

p̃k The kth row of I− P̃
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Nomenclature

p̃k,j The jth element of p̃k

Integrity and continuity budgets

IREQ Integrity requirement of the system

IvREQ IREQ allocated to vth component. I3REQ is the allocated budget for

the vertical component, and I1REQ + I2REQ is the allocated budget for

the horizontal component

CREQ,FA Continuity budget allocated to false alarms

Cv
REQ,FA CREQ,FA allocated to vth component. C3

REQ,FA is the allocated budget

for the vertical component, and C1
REQ,FA + C2

REQ,FA is the allocated

budget for the horizontal component

General notations for estimation and inference

PHMI Integrity risk

Pcontinuity Continuity risk

Psat Prior probability of satellite fault per approach

Pconst Prior probability of constellation fault per approach

PTHRES Threshold for the integrity risk coming from unmonitored faults

PHk
Prior probability of fault mode k

Pnot monitored Prior probability of the unmonitored events

PFault-free Prior probability of no fault

kmax Maximum number of simultaneous faults that need to be monitored

Nfault modes The finally solved Nfault,max
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Nomenclature

e0 Estimation error on the parameter of interest

ℓ The specified alert limit

ℓv Alert limit of the vth positioning component

qk General test statistic that associated with the test H0 v.s. Hk

Rk Rejection region of qk

idxex
k Set of indices of faulty measurements in fault model k

PLv Protection level of the vth positioning component. PL3 is the VPL,

and
√
PL2

1 + PL2
2 is the HPL

ev A column vector with vth entry to be 1 and all others to be 0

Estimation and inference in baseline ARAIM

σi
URE 1-sigma orbit and clock error bound of the satellite i for accuracy

σi
URA 1-sigma orbit and clock error bound of the satellite i for integrity

binom Nominal bias for integrity regarding the satellite i

σi
acc,j 1-sigma accuracy error bound regarding the satellite i and the re-

ceiver j

σi
int,j 1-sigma integrity error bound regarding the satellite i and the re-

ceiver j

Cacc Covariance matrix for accuracy

Cint Covariance matrix for integrity

σ
(k)
ss,v 1-sigma bound of d

(k)
v

σ
(k)
v 1-sigma bound of the positioning solution x̂(k)
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Nomenclature

b
(k)
v The worst-case impact of the nominal biases of the integrity range

error bound on the position solution x̂(k)

d
(k)
v Test statistic regarding fault mode k in the solution separation method

Dk,v Threshold of the solution separation integrity monitor

Q−1(·) Quantile function of the standard normal distribution

Estimation and inference in Jackknife detector and ARAIM

y(k,∗) The y vector associated with fault mode k. The dimension is (n −

1)× 1

ŷ(k,∗) The predicted measurement vector based on subsolution x̂

ỹ(k) The reconstructed y vector associated for fault mode k. The dimen-

sion is n× 1

ŷk Predicted kth measurement based on subsolution x̂(k)

yk The kth element of y

ε(k,∗) The ε vector associated with fault mode k. The dimension is (n −

1)× 1

εk The kth element of εk

tk The Jackknife residual (detector) for the kth subset under single-

fault hypothesis

t̃k The Jackknife residual (detector) for the kth subset under multi-fault

hypothesis

t∗k The unified Jackknife residual (detector) for the kth subset

Tk Threshold for the Jackknife detector t∗k
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Nomenclature

τ Upper limit of the significance level for the multiple testing problem

b(k) The hypothetical fault vector in hypothesis Hk

b
(k)
j The jth element of b(k)

q(k) Coefficient vector for constructing the positioning error in hypothesis

Hk

f(x̂−x)v(·) The PDF of (x̂− x)v

fq(k)ε(·) The PDF of q(k)ε

Q−1
t∗k
(·) Quantile function of the distribution of t∗k

Q−1
(x̂−x)v

(·) The quantile functions of (x̂− x)v

Q−1
q(k)ε

(·) The quantile functions of q(k)

Satellite Ephemeris and Clock Errors

xi,k,BCE
CoM,ECEF The broadcast CoM position of satellite i at epoch k in the ECEF

coordinate system

xi,k,BCE
APC,ECEF The broadcast APC position of satellite i at epoch k in the ECEF

coordinate system

ai
BCE The APC offset vector of satellite i defined in the satellite BF frame

for the BCE. ai
BCE = [aix,BCE, a

i
y,BCE, a

i
z,BCE]

T

ai
PCE The APC offset vector of satellite i defined in the satellite BF frame

for the PCE. ai
PCE = [aix,PCE, a

i
y,PCE, a

i
z,PCE]

T

Ri,k,ECEF
BF The rotation matrix from the BF frame to the ECEF frame for satel-

lite i at epoch k

xi,k
sat to sun Satellite-sun vector regarding satellite i at epoch k

14



Nomenclature

xk
sun Sun position at epoch k in the ECEF coordinate system

pi,k Position of satellite i at epoch k in the ECEF coordinate system

cδi,kCoM,BCE CoM-referenced clock offset of satellite i at epoch k in the BCE

cδi,kAPC,BCE APC-referenced clock offset of satellite i at epoch k in the BCE

cδi,kCoM,PCE CoM-referenced clock offset of satellite i at epoch k in the PCE

cδi,kAPC,PCE APC-referenced clock offset of satellite i at epoch k in the PCE

ξi,korb,ECEF Orbit error vector of satellite i at time epoch k in the ECEF coordi-

nate system

ξi,kclk,ECEF The CoM-referenced clock error of satellite i at time epoch k

ξ̃i,kclk,ECEF The CoM-referenced clock error of satellite i at time epoch k with

constellation mean correction

ξi,korb,RAC Orbit error vector of satellite i at time epoch k in the RAM frame.

ξi,korb,RAC = [ξi,korb,R, ξ
i,k
orb,A, ξ

i,k
orb,C ]

Ri,k,RAC
ECEF The rotation matrix from the ECEF frame to the RAC frame for

satellite i at epoch k

vi,k Velocity of satellite i at epoch k in the ECEF frame

IUREi,k
j,orb Orbit component of the IURE regarding satellite i and receiver j at

epoch k

IUREi,k
j IURE regarding satellite i and receiver j at epoch k

UPEi,k UPE of satellite i at epoch k

SISREi
UPE SISRE of satellite i over a period
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Chapter 1

Introduction

1.1 Background and Motivation

Safety-of-life systems, such as satellite-based augmentation systems (SBAS), ground-

based augmentation systems (GBAS), and receiver autonomous integrity monitoring

(RAIM), are important in modern aviation to ensure the safety and reliability of

navigation systems [2, 3]. These systems are designed to provide integrity-assured

position solutions to GNSS users and typically require a low integrity risk. Among

these safety-of-life systems, RAIM has been a significant focus in the aviation industry

over the last thirty years.

The legacy RAIM was first introduced in the 1980s and was designed to detect

measurement faults and provide error bounds for lateral navigation with the global

positioning system (GPS) [4–10]. In the early exploration, the range-comparison

method [4], the least-squared-residuals method [8], and the parity method [9] have

been proposed, which establish the basis of autonomous integrity monitoring. The

equivalence relationship among the three methods was found in [3], which established

the baseline RAIM scheme. Later, Walter and Enge [2] proposed the weighted form

for RAIM algorithms, which improves the accuracy and integrity of the navigation
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1.1. Background and Motivation

solutions. However, these RAIM algorithms face limitations in precise vertical navi-

gation due to factors like uncertainties in the ionospheric model and high dilution of

precision (DOP).

The modernization of GPS [11–13] and the emerging GNSS constellations present the

chance to elevate legacy RAIM to advanced RAIM (ARAIM), which aims to support

more robust and precise aircraft guidance for en route, terminal, and approach oper-

ations in civil aviation [14]. Pervan et al. [15] developed the multiple hypothesis solu-

tion separation (MHSS) method to directly evaluate integrity risks under the unified

consideration of all single-element failure hypotheses and the no-failure hypothesis,

which lays the foundation for the current airborne ARAIM algorithm. Later, Blanch

et al. [16] expanded this work by optimally allocating the integrity and continuity

budget among the failure modes to obtain the minimum protection level. In parallel,

Joerger et al. developed the residual-based ARAIM [17] and revealed its equivelent re-

lationship with the solution separation-based ARAIM [18]. The detailed comparison

of the residual-based ARAIM and solution-separation ARAIM in [18] provides a prac-

tical guideline for choosing proper algorithms in different applications. These works

together contributed to the standardization of the baseline ARAIM algorithm [19]

and its subsequent refinement based on the latest safety analyses [20, 21].

The baseline ARAIM algorithm [20] provides a standard procedure to ensure the

safety and reliability of navigation systems, mainly consisting of range error model-

ing, fault detection, and protection level (PL) calculation. Specifically, the Gaussian

model is employed to bound nominal range errors, including the range projection

of clock and orbit errors, tropospheric error, and multipath and code noise errors.

Then, a set of test statistics, named solution separation, is constructed by comparing

the navigation solutions under the fault-free hypothesis with many other alternative

hypotheses. By leveraging the Gaussian properties of the nominal error bounds, the

threshold for each solution separation test statistic is derived to detect potential faulty

measurements in the system. Finally, the bound of the positioning solution error that
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Chapter 1. Introduction

satisfies integrity requirements, namely, the PL, is calculated. The whole algorithm is

built on the Gaussian overbounds for nominal range errors, which simplifies the deriva-

tion and reduces the computational effort. However, nominal range errors in the real

world usually have non-Gaussian and heavy-tailed properties [22–24]. For example,

as important components of range errors, orbit and clock errors show significantly

heavy-tailed properties [25, 26], making their Gaussian overbound over-conservative.

Such over-conservatism will be passed to the position domain and enlarge the PL

of the baseline ARAIM algorithm, eventually hindering the system’s availability in

real-world applications under stringent navigation requirements, such as the LPV-200

precision approach [27] and urban air mobility [28].

1.2 Contributions

To address the conservatism issue in the baseline ARAIM algorithm, this thesis sys-

tematically incorporates non-Gaussian modeling into the construction of the integrity

monitoring algorithm, which results in the following five contributions.

(1) Discover heavy-tailed properties of GPS/Galileo signal-in-space range

errors

This thesis characterizes the nominal performance of signal-in-space range error (SISRE)

for GPS and Galileo satellites using broadcast and precise ephemerides data from

2020–2022, which reveals the heavy-tailed properties of SISRE. Since the SISRE is

one of the most important parts of range errors, the results provide empirical justi-

fication for developing non-Gaussian overbounding methods and incorporating non-

Gaussian modeling into integrity monitoring methods. Results also show that the

Galileo SISRE has a smaller standard deviation but exhibits heavier tails than the

GPS SISRE, which plays an important role in explaining the performance change of

integrity monitoring algorithms in different constellation settings.
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1.2. Contributions

(2) Construct a sharp yet conservative overbound for heavy-tailed error

distributions

This thesis proposes the Principal Gaussian overbound (PGO) for heavy-tailed error

distributions by leveraging the characteristics of the Gaussian mixture model (GMM).

The overbounding property of the PGO is proved to be preserved through convolution,

which makes it possible to derive pseudorange-level requirements from the position

domain integrity requirements. The proposed PGO is then applied to tightly bound

the GPS/Galileo SISRE, based on which, the non-Gaussian nominal error bounds of

code ionosphere-free (IF) combination are constructed, providing nominal error mod-

els for constructing non-Gaussian fault detection and integrity monitoring algorithms.

(3) Develop a fault detection method with non-Gaussian nominal errors

This thesis develops the jackknife detector, which provides the theoretical founda-

tion for detecting single faults in linearized pseudorange-based positioning systems

under non-Gaussian nominal errors. The proposed fault detection method is fur-

ther extended to detect simultaneous faults by combining multiple test statistics. In

a worldwide simulation, the proposed fault detection method demonstrates superior

performance than the solution separation fault detection method under non-Gaussian

nominal errors. The proposed fault detection method provides foundations to improve

the availability of integrity monitoring algorithms under stringent navigation require-

ments.

(4) Prototype an integrity monitoring algorithm with high availability un-

der stringent navigation requirements

This thesis proposes the jackknife ARAIM, a multiple-hypothesis-based integrity

monitoring algorithm, capable of handling either Gaussian or non-Gaussian nomi-

nal error bounds. The proposed method systematically exploits the properties of the

jackknife detector in the range domain and derives a tight bound of the integrity risk.

The proposed method is evaluated in a worldwide simulation with both single and
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Chapter 1. Introduction

dual constellations. Results reveal that the proposed method shows higher system

availability than the baseline ARAIM method, making it possible to support localizer

performance with vertical guidance (LPV) with a decision height of 200 ft using the

GPS-Galileo dual constellation.

(5) Performance evaluation with real data in simulation

In the worldwide evaluation of fault detection and ARAIM algorithms, the range

projection of clock and orbit error of the code IF combination is simulated based on

authentic experimental data instead of relying on empirical models, thereby enhancing

the reliability of the experimental results. By adopting this methodology, this thesis

exposes the vulnerability of the baseline ARAIM model to support the LPV-200

precision approach under the GPS-Galileo dual-constellation setting. At the same

time, the capability of the proposed method to facilitate integrity applications under

stringent navigation requirements, particularly at the LPV-200 level, is also revealed.

1.3 Thesis Outline

The remaining part of this thesis is organized as follows: Chapter 2 first gives a brief

introduction to the fundamentals of global navigation satellite system (GNSS) po-

sitioning, to align notations throughout the thesis. Then the ARAIM architecture

and the baseline ARAIM algorithms are described, which provides an overview of

the standard procedure in integrity monitoring, including range error modeling, fault

detection, integrity risk evaluation, and protection level calculation. Chapter 3 de-

scribes the procedure for calculating the orbit and clock errors, as well as defining

satellite range error for integrity. Moreover, the nominal performance of SISRE for

GPS and Galileo satellites is characterized using historical data, which provides empir-

ical observations for the essence of developing non-Gaussian overbounding methods.

Consequently, a sharp yet conservative overbound for heavy-tailed error distributions
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is constructed in Chapter 4. The bounding performance of the proposed method on

the SISRE of GPS and Galileo satellites is analyzed in detail. Chapter 5 develops the

jackknife detector, which provides the theoretical foundation for detecting faulty mea-

surements in linearized pseudorange-based positioning systems under non-Gaussian

nominal errors. The detection performance of the proposed method is evaluated in a

worldwide simulation in both single and multiple fault settings. Chapter 6 develops

an integrity monitoring algorithm by leveraging the jackknife detector, which shows

significantly higher availability under stringent navigation requirements when com-

pared to the baseline ARAIM algorithm. Finally, Chapter 7 summarizes this thesis

and discusses the future work.
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Chapter 2

Fundamentals of Advanced

Receiver Autonomous Integrity

Monitoring

This chapter introduces the fundamentals of GNSS positioning, including the mea-

surement model, error source modeling, and least-squared-based positioning solution.

Specific focus has been put on the dual-frequency pseudorange measurements in the

dual-constellation system, which provides the basic notion used in the following chap-

ters. In addition, a brief description of the ARAIM architecture and the baseline

ARAIM algorithm is given in this chapter, which presents a standard procedure for

implementing integrity monitoring algorithms, laying the groundwork for the subse-

quent chapters of this thesis.

2.1 GNSS Positioning Fundamentals

GNSS satellites continuously broadcast navigation signals across L band frequen-

cies, enabling users to calculate signal travel time from the satellite to the receiver
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and satellite coordinates at any epoch [29]. These navigation signals usually com-

prise ranging codes, the carrier phase signal, and the navigation data. Since GNSS

satellites are equipped with precise onboard atomic clocks [30], the time of signal

transmission can be identified. By estimating the time taken between transmission

and reception, users can obtain pseudorange measurements from ranging codes and

carrier phase measurements from the carrier signal, both of which can be regarded

as a measure of the apparent distance between the satellite and the receiver. The

navigation data contains all the necessary information to allow users to perform the

positioning service, including satellite ephemeris, clock bias parameters, almanac and

satellite health status [31]. In the following sections, the GNSS measurement and its

error modeling are illustrated.

2.1.1 Measurement models

The GNSS signals contain ranging codes and the carrier phase signal, enabling users

to calculate the travel time. Regarding the ranging codes, the receiver determines the

travel time ∆T by correlating the received Coarse/Acquisition (C/A) code from the

satellite with a replica of this code generated in the receiver. This replica is adjusted

in time until the maximum correlation is achieved. The measurement ϱ = c∆T is

known as the pseudorange, where c is the speed of light. Note that the travel time

between transmission and reception is determined as the difference in time measured

on two distinct clocks. Due to the synchronization errors between satellite and receiver

clocks, the pseudorange measurement does not match the geometric distance between

the satellite and the receiver. Moreover, other error sources due to signal propagation

through the atmosphere (ionosphere and troposphere), instrumental delays (both in

satellite and receiver), multipath and receiver noise can also make the pseudorange

measurement deviate from the true geometric distance [32]. With considering all

these error terms, the pseudorange measurement ϱij,f regarding the satellite i and the
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receiver j at frequency f can be modeled as follows:

ϱij,f = rij + c(τj − τ i) + Tdij + Idij,f +Kϱ,j,f −Ki
ϱ,f + εiϱ,j,f , (2.1)

where rij is the geometry distance; τj and τ i are receiver and satellite clock offsets

from the GNSS time scale, respectively; Tdij is the tropospheric delay; Idij,f is the

frequency-dependent ionospheric delay; Kϱ,j,f and Ki
ϱ,f are the frequency-dependent

receiver and satellite code instrumental delays, respectively. The ionospheric delay,

tropospheric delay, and instrumental delay have consolidated models. Nevertheless,

these models still have unmodeled components that can be constrained within a

certain magnitude. These errors are represented by the residual error term εiϱ,j,f

in the above equation, mainly including ephemeris and clock error εiorb&clk, residual

tropospheric error εitropo,j, residual ionospheric error ε
i
iono,j,f , and multipath and code

noises εiρ,user,j,f , and can be written by

εiϱ,j,f = εiorb&clk + εitropo,j + εiiono,j,f + εiϱ,user,j,f , (2.2)

where the residual ionospheric error εiiono,j,f and the multipath and code noises εiρ,user,j,f

are frequency dependent. The impacts of the above error sources on the GNSS signal

propagation as well as the empirical models will be further illustrated in Section 2.1.2.

Besides the code, the carrier phase can also be utilized to derive a measure of the

distance between the satellite and the receiver. Carrier phase measurements are sig-

nificantly more accurate compared to code measurements. Nevertheless, the carrier

phase measurement is subject to ambiguity by an unknown integer number of wave-

lengths. This ambiguity changes arbitrarily each time the receiver loses the lock

on the signal, leading to abrupt jumps or range discontinuities. The carrier phase

measurement φi
j,f regarding the satellite i and the receiver j at frequency f can be

modelled as

φi
j,f = rij + c(τj − τ i) + Tdij − Idij,f +Kφ,j,f −Ki

φ,f + ni
j,f + εiφ,j,f , (2.3)

where Kφ,j,f and Ki
φ,f are instrumental delays related to the carrier phase measure-

ment, ni
j,f is the ambiguity term, and εiφ,j,f is the residual error remained in the carrier
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phase measurement

εiφ,j,f = εiorb&clk + εitropo,j + εiiono,j,f + εiφ,user,j,f . (2.4)

Note that the ionospheric term has opposite signs for the code and phase measure-

ments.

Given that the ionospheric delay is related to the carrier frequency f , ARAIM users

form the IF linear combination by using the multi-frequency GNSS setup. Before

applying the above equations to obtain the code IF combination measurements, a

new clock definition that refers to the code IF combination of fA and fB frequencies

is introduced as follows:

cδj = cτj +
f 2
AKϱ,j,fA − f 2

BKϱ,j,fB

f 2
A − f 2

B

(2.5a)

cδi = cτ i +
f 2
AK

i
ϱ,fA
− f 2

BK
i
ϱ,fB

f 2
A − f 2

B

. (2.5b)

Indeed, the satellite clocks (broadcast or precise) are referred to as the IF combination

of codes in Equation (2.5b). With this new clock definition, Equation (2.1) can be

re-written as

ϱij,f = rij + c(δj − δi) + Tdij + Idij,f + α̃f (Kϱ,j,IF −Ki
ϱ,IF ) + εiϱ,j,f , (2.6)

where

α̃f =
f 2
Af

2
B

f 2(f 2
A − f 2

B)
, (2.7)

and

Kϱ,j,IF = Kϱ,j,fA −Kϱ,j,fB (2.8a)

Ki
ϱ,IF = Ki

ϱ,fA
−Ki

ϱ,fB
(2.8b)

are so-called differential code biases (DCB) of the receiver and the satellite, respec-

tively. By defining

γ =
f 2
A

f 2
B

, (2.9)
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the IF combination of codes can be computed as

ϱij,IF =
γϱij,fA − ϱij,fB

γ − 1

= rij + c(δj − δi) + Tdij + εiϱ,j,IF

=

√
(pix − uj,x)

2 +
(
piy − uj,y

)2
+ (piz − uj,z)

2 + c(δj − δi) + Tdij + εiϱ,j,IF ,

(2.10)

where pi =
[
pix, p

i
y, p

i
z

]T
is the position of the ith satellite, uj = [uj,x, uj,y, uj,z]

T is

the position of the jth receiver in the Earth-centered Earth-fixed (ECEF) coordinate

system, and

εiϱ,j,IF = εiorb&clk + εitropo,j + εiϱ,user,j,IF (2.11a)

εiϱ,user,j,IF =
γεiϱ,user,j,fA − εiϱ,userj,fB

γ − 1
. (2.11b)

Note that the DCBs are canceled in the IF combination. In addition, the receiver

code instrumental delays Kϱ,j,fA and Kϱ,j,fB will be assimilated into the estimation of

the receiver clock. The residual error term εiϱ,j,IF in (2.10) is usually bounded by a

zero-mean Gaussian distribution as

εiϱ,j,IF ∼ N
(
0, (σi

ϱ,j,IF )
2
)
, (2.12)

where the standard deviation is formalized by

(σi
ϱ,j,IF )

2 = (σi
orb&clk)

2 + (σi
tropo,j)

2 + (σi
ϱ,user,j,IF )

2 . (2.13)

Section 2.1.2 elaborates the source of each term in Equation (2.13).

The formulation of the IF combination of phases are detailed in [29], which is omitted

for present in this thesis.

2.1.2 Error modeling of code IF combination measurements

As shown in Equation (2.10), the IF combination of code measurements contains

several additional time delays related to the signal propagation or the clocks. Since
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these errors inevitably translate into the position domain and significantly affect the

accuracy and integrity of positioning solutions [33], it is crucial to understand the

underlying mechanisms behind these errors and accurately characterize their profiles.

The remaining parts of this section briefly reviews the mechanisms and models of

the atmospheric delays, orbit and clock errors, and multipath and code noises, all of

which contribute to the range errors of the IF combination of code measurements.

(1) Atmospheric effects

In atmospheric conditions, the density of gases and plasma is known to be non-

uniform, leading to spatial and temporal fluctuations in the refractive index [34].

These variations cause electromagnetic rays to traverse extended geometric paths

compared to free space due to refractive index gradients. Consequently, electromag-

netic signals undergo changes in velocity, both in speed and direction, as they prop-

agate through the atmosphere. From a signal delay perspective, the atmosphere can

be segmented into two primary components: the ionosphere, where signal delays are

frequency-dependent; and the neutral atmosphere, predominantly the troposphere,

acting as a non-dispersive medium [32].

The ionosphere encompasses the atmospheric region extending from approximately 60

km to over 2000 km. The ionospheric refraction of GNSS signals can escalate to a few

meters depending on the elevations and solar activities [35]. It is worth noting that

the ionosphere is a dispersive medium, meaning that the refraction of GNSS signals

is frequency-dependent. This frequency dependence allows dual-frequency users to

mitigate the ionospheric effect by over 99.9%.

The troposphere is the atmospheric layer between Earth’s surface and an altitude

of approximately 60 km. The transmission delay caused by the troposphere is influ-

enced by factors such as the temperature, pressure, humidity as well as the locations

of the transmitter and receiver antennas. Unlike the ionosphere, the troposphere is

a non-dispersive medium for radio waves at GNSS frequencies. Therefore, it is im-
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possible to remove the tropospheric effects with the combination of dual-frequency

measurements. Various models have emerged to estimate tropospheric delays based

on observational data, emphasizing the characterization of both the dry and wet

atmospheric components. While the dry atmosphere can be modeled using ideal

gas laws from surface pressure and temperature data, the wet component presents

greater challenges due to its unpredictability [36]. In Radio Technical Commission

for Aeronautics (RTCA) GPS/Wide Area Augmentation System (WAAS) Minimum

Operational Performance Standard (MOPS), a simple tropospheric correction model

based on a unified mapping function for both dry and wet components is adopted.

The residual tropospheric error bound used by RTCA-MOPS-229D [37] is common

to all frequencies and signals and is given by

σi
tropo,j = 0.12[m]

1.001√
0.002001 + sin2 (θij[rad])

, (2.14)

where θij is the elevation angle.

(2) Orbit and clock errors

The orbit error and clock error both reflect the difference between the contents of the

navigation message and reality [38]. Specifically, the Master Control Station (MCS)

determines and transmits ephemeris parameters and clock correction parameters to

the satellites for rebroadcast in the navigation message. Since these parameters are

computed using a curve-fit to estimate the actual satellite position and clock offset,

some residual error remains. The residual orbit error can affect ranging errors on the

order of 0.8m, while the residual clock error results in ranging errors that typically

vary from 0.3 ∼ 4 m [32]. Typically, the primary factors affecting constellation

performance are the residual orbit and clock errors. In ARAIM, these errors are

bounded by a zero-mean Gaussian distribution with the 1-sigma bound of σi
orb&clk.

Chapters 3 and 4 revisit this problem and demonstrate the benefits of using a non-

Gaussian model to bound these errors for integrity applications.

(3) Multipath and code noises
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The multipath occurs when a GNSS signal reaches the receiver antenna through dif-

ferent paths, stemming from reflections of surroundings [39]. The reflected signals

traverse longer paths compared to the direct signals, which produces delayed and

weakened copies that can distort the correlation function in the receiver, eventually

leading to errors in position, velocity, and time estimations. Multipath errors vary in

magnitude based on the receiver’s environment, including factors like satellite eleva-

tion angle, receiver signal processing, antenna gain pattern, and signal characteristics.

In aviation applications, aircraft structures like fuselage and wings mainly contribute

to multipath errors [40]. However, in terrestrial applications, multipath errors typi-

cally arise from reflections of buildings, terrain features, or other stationary objects

in the vicinity of the receiver. Notably, the natural motion of the aircraft should

cause the relative phase of the multipath carrier to change quickly, which will in turn

cause the multipath error to be noise-like rather than bias-like, as it is at ground

receivers. Therefore, statistical models have been proposed to bound such random

errors in aviation applications.

Receiver noise and distortion encompass random errors originated from the receiver

hardware, such as antenna and cables. These errors introduce biases into both code

and phase measurements. For code measurements, thermal noise jitter and inter-

ference are the primary sources of receiver noise and distortion. The 1σ value for

noise and resolution errors is typically on the order of a decimeter or less in nominal

conditions (without external interference). For phase measurements, the 1σ value is

typically on the order of millimeters in nominal conditions. Therefore, receiver noise

and distortion are usually negligible compared to errors induced by multipath.

Appendix A.1 lists the multipath and code noise error bound (σi
ϱ,user,j,IF ) for GPS

and Galileo airborne receivers.
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2.1.3 Positioning solution

To simplify notations, we omit the indices j when presenting the system state, mea-

surement, and measurement error vectors during the following derivation without loss

of generality.

Let ρij = ϱij,IF − Tdij + cδi. Then, the measurement model in (2.10) can be linearized

by taking the first-order Taylor expansion at x0 = [uj,x,0, uj,y,0, uj,z,0, δj,0]
T as follows:

ρij=ρij,0 − aij,1 (uj,x − uj,x,0)− aij,2 (uj,y − uj,y,0)

−aij,3 (uj,z − uj,z,0) + c(δj − δj,0) + εiϱ,j,IF ,
(2.15)

where

ρij,0=

√
(pix − uj,x,0)

2 +
(
piy − uj,y,0

)2
+ (piz − uj,z,0)

2 + cδj,0 (2.16a)

aij,1=
pix − uj,x,0√

(pix − uj,x,0)
2 +

(
piy − uj,y,0

)2
+ (piz − uj,z,0)

2
(2.16b)

aij,2=
piy − uj,y,0√

(pix − uj,x,0)
2 +

(
piy − uj,y,0

)2
+ (piz − uj,z,0)

2
(2.16c)

aij,3=
piz − uj,z,0√

(pix − uj,x,0)
2 +

(
piy − uj,y,0

)2
+ (piz − uj,z,0)

2
. (2.16d)

Assuming there are n measurements from Nconst constellations, we can redefine the

receiver true state as

xt = [uj,x, uj,y, uj,z,−δj,1, · · · ,−δj,Nconst ]
T , (2.17)

where δj,c, c = 1, 2 · · · , Nconst is the receiver clock offset corresponding to the cth

constellation. For notations, define

m = 3 +Nconst (2.18)

as the size of the state. Similarly, the linearization point is defined as

x0 = [uj,x,0, uj,y,0, uj,z,0,−δj,1,0, · · · ,−δj,Nconst,0]
T . (2.19)
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The matrix form of the linearized measurement model with n measurements from

Nconst constellations can be written as

y = Gx+ ε , (2.20)

where

y =


ρ1j,0 − ρ1j

...

ρnj,0 − ρnj

 , ε =


ε1ϱ,j,IF

...

εnϱ,j,IF

 ,x = xt − x0 , (2.21)

and the elements of the n×m matrix G are defined by

• Gi,1 = aij,1, Gi,2 = aij,2, Gi,3 = aij,3;

• Gi,3+c = 1 if satellite i belongs to constellation q;

• Gi,3+c = 0 if satellite i does not belong to constellation q.

The system state x can be solved by the weighted least square (WLS) method (in an

iterative approach) as follows:

x̂ = Sy , (2.22)

where S is the solution matrix

S =
(
GTWG

)−1
GTW , (2.23)

and W is the weight matrix and will be defined in Section 2.3.2.

2.2 ARAIM Architecture

GNSS measurements are vulnerable to infrequent faults such as satellite and con-

stellation failures, which have the potential to pose significant safety risks to users.

To address this issue, fault detection and exclusion (FDE) algorithms such as legacy

RAIM can be implemented. The legacy RAIM is designed to provide error bounds
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for lateral navigation but faces limitations in precise vertical navigation due to factors

like ionospheric model uncertainty and high DOP.

The modernization of GPS [11–13] and the emerging GNSS constellations present

the chance to elevate legacy RAIM to ARAIM. ARAIM builds upon the foundation

of legacy RAIM by incorporating multi-frequency measurements, which allow for the

utilization of IF linear combinations to remove ionospheric uncertainties and reduce

radio frequency interference. ARAIM also enhances the strength of satellite geome-

tries to provide less conservative protection levels, and introduces the constellation

fault monitors, addressing the limitations of the legacy RAIM. These advancements

in ARAIM aim to support more robust and precise aircraft guidance in civil aviation.

The ARAIM system architecture consists of the space segment, ground segment, air-

borne segment, and Integrity Support Message [41]. Specifically, the space segment

encompasses the GNSS core constellations managed by their respective constella-

tion service providers (CSP) and involves various operations like monitoring stations,

mission segments, orbit determination and time synchronization (ODTS), and per-

formance commitments. The ground segment involves reference stations responsible

for monitoring constellation performance and collecting data for integrity support

message (ISM) generation. The airborne segment mainly comprises aviation users

equipped with ARAIM avionics. The ISM delivers essential inputs for users to as-

sess performance metrics, such as the prior probability of satellite and constellation

faults, the standard deviation of nominal ranging uncertainty due to satellite orbit

and clock errors, and the maximum nominal bias primarily due to signal deforma-

tion. The Worldwide GNSS Committee (WGC) recognizes two services, Horizontal

ARAIM and Vertical ARAIM, for different flight phases. Vertical ARAIM is designed

to support global LPV-200 precision approach operations [27] through either offline

or online ARAIM architectures. Further details on Horizontal ARAIM, offline and

online ARAIM are elaborated in [41]. Subsequent sections will delve into the ARAIM

user algorithms in the airborne segment.
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2.3 ARAIM Airborne Algorithm

2.3.1 Concepts of integrity monitoring

Integrity comprises several factors such as integrity risk, alert limit (AL), and time to

alert (TTA), representing the reliability of a navigation solution in critical situations.

The boundary defining unsafe errors for a specific application is referred to as the AL,

whereas the hazardous condition we strive to prevent is termed misleading information

(MI). Loss of integrity arises when MI exists without notification or mitigation within

the required TTA. Mathematically, integrity risk (PHMI) can be defined as

PHMI = P (|e0| > ℓ ∩ q ̸∈ R) ≤ IREQ , (2.24)

where e0 is the estimation error on the parameter of interest (e.g., the vertical posi-

tioning solution), ℓ is the specified AL, q and R are a general test statistic and its

rejection region, respectively, and IREQ is the integrity budget. The design of test

statistics and the choice of rejection region distinguish different integrity monitoring

algorithms [2, 18,20].

Another important concept in integrity monitoring is continuity risk, which quantifies

the probability of unforeseen navigation loss necessitating the termination of opera-

tions to ensure safety. Three primary factors, including satellite faults, malfunctioning

GNSS system components, and false alerts from integrity monitors, contribute to con-

tinuity loss in GNSS applications. Notably, the determination of the rejection region

for integrity monitors is influenced by the false alert as follows:

P (q ∈ R|Fault-free conditions)PFault-free ≤ CREQ,FA, (2.25)

where CREQ,FA is the continuity budget caused by false alerts, and PFault-free is the

prior probability of no fault, which is close to 1 .

As GNSS users usually have limited control over mitigating satellite faults and failures

in system components compared to managing the false alert rate, integrity monitor-
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ing algorithms typically concentrate on minimizing false alert risk, leading to a direct

trade-off between the continuity and integrity requirements. Specifically, setting the

rejection region of integrity monitors to its maximum allows for detecting and remov-

ing faulty measurements within TTA to prevent integrity loss. However, widening

the rejection region increases the likelihood of excluding fault-free measurements due

to random noise under normal conditions. Balancing this trade-off to meet both in-

tegrity and continuity requirements simultaneously is a key challenge for designers of

integrity monitoring algorithms with stringent safety-of-life demands. The following

sections introduce the core processes of the baseline ARAIM airborne algorithm [20],

covering range error bound, fault detection, and protection level calculations.

2.3.2 Range error bound

The baseline ARAIM airborne algorithm employs two distinct error models, i.e.,the

error model for accuracy and the error model for integrity [20], as listed below:

(1) Error model for accuracy and continuity

The range error is bounded by a zero-mean Gaussian distribution as follows:

εiϱ,j,IF ∼ N
(
0, (σi

acc,j)
2
)
, (2.26)

where

(σi
acc,j)

2 = (σi
URE)

2 + (σi
tropo,j)

2 + (σi
ϱ,user,j,IF )

2 , (2.27)

and σi
URE is the 1-sigma orbit and clock error bound. Notably, the nominal bias for

continuity is assumed to be zero. The covariance matrix for accuracy is then defined

as

Cacc(i, i) = (σi
acc,j)

2 . (2.28)

(2) Error model for integrity

The range error is bounded by a Gaussian distribution as follows

εiϱ,j,IF ∼ N
(
binom, (σ

i
int,j)

2
)
, (2.29)

34



2.3. ARAIM Airborne Algorithm

where

(σi
int,j)

2 = (σi
URA)

2 + (σi
tropo,j)

2 + (σi
ϱ,user,j,IF )

2 , (2.30)

σi
URA (the broadcast user range accuracy (URA) parameter) is the 1-sigma orbit and

clock error bound, and binom is the nominal bias for integrity. The covariance matrix

for integrity is defined as

Cint(i, i) = (σi
int,j)

2 . (2.31)

2.3.3 Integrity and continuity under multiple hypothesis

The baseline ARAIM airborne algorithm employs a multiple-hypothesis approach by

first defining the threat model, which is a collection of error modes that partition

the whole measurement space. Assuming there are n measurements each uniquely

numbered, the threat model is constructed by defining a set of fault modes with

different prior probabilities:

• Fault mode 0: All measurements are nominal measurements (i.e., fault-free).

The prior probability of fault mode 0 is PH0 .

• Fault mode k: Measurements with indices k ∈ idxex
k are faulty measurements

(including single or multiple faults), while measurements with indices k ̸∈ idxex
k

are nominal measurements. The prior probability of fault mode k is PHk
.

In the above definition, the size of idxex
k is the number of simultaneous faults associ-

ated with the fault mode k, which takes value from 1 to n. The total number of fault

modes is assumed to be Nfault modes + 1. Theoretically,

Nfault modes =
n−kmax∑
k=1

(
n

k

)
, (2.32)

where kmax is the maximum number of simultaneous faults that need to be monitored.

kmax is selected so that the prior probability of occurrence of more than kmax simulta-

neous faults is much smaller than IREQ. This probability is denoted as Pnot monitored.
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The procedure for determining kmax and PHi
is detailed in [20]. For information, this

procedure is also briefed in Appendix A.2.

Figure 2.1 conceptualizes the definition of fault modes, where blue dots represent

fault-free measurements and dashed circles indicate faulty measurements under each

fault mode. Then, the hypotheses in the baseline ARAIM airborne algorithm are

given by

• H0: The fault-free hypothesis (fault mode 0).

• Hk: The hypothesis corresponding to fault mode k.

Figure 2.1: Illustration of the multiple hypothesis solution separation in the baseline

ARAIM airborne algorithm.

The integrity risk in Equation (2.24) can be rewritten by

PHMI =

Nfault modes∑
i=0

P

(
{|e0| > ℓ} ∩

Nfault modes⋂
k=1

qk ̸∈ Rk

∣∣∣ Hk

)
PHi

+ Pnot monitored ≤ IREQ ,

(2.33)

where qk and Rk are a general test statistic and its rejection region regarding the test

H0 v.s. Hk, respectively.

The continuity risk is given by

Pcontinuity = P
(Nfault modes⋃

k=1

qk ∈ Rk

∣∣∣ H0

)
PH0 ≤ CREQ,FA . (2.34)
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2.3.4 Solution separation based fault detection

The baseline ARAIM adopts the solution separation (SS) between different measure-

ment subsets as the test statistic. The full set solution associated with fault mode 0

is given in Equation (2.22) and can be re-written by

x̂(0) = S(0)y , (2.35)

where

S(0) =
(
GTW(0)G

)−1
GTW(0) , (2.36)

and W(0) is associated with the integrity range error bound as follows

W(0) = C−1
int . (2.37)

For fault mode k, the measurements with indices k ̸∈ idxex
k are used to compute the

subset solution through WLS

x̂(k) = S(k)y , (2.38)

where

S(k) =
(
GTW(k)G

)−1
GTW(k) (2.39)

is the solution matrix on fault mode k, and W(k) is defined as [20]

W(k)(i, i) =

C−1
int(i, i) if i ̸∈ idxex

k

0 otherwise

. (2.40)

The variance of the positioning solution is given by

(σ(k)
v )2 =

(
GTW(k)G

)−1

v,v
, (2.41)

where the subscript v = 1, 2, 3 designates the east, north, and up components, respec-

tively. Notably, the nominal biases binom of the integrity range error bound also have

impacts on the positioning solution. The worst-case impact on the position solution

x̂(k) is given by

b(k)v =
n∑

i=1

|S(k)
v,i |binom . (2.42)
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The test statistic is constructed by the separation between the full solution and the

kth subsolution as

d(k)v = (x̂− x̂(k))v . (2.43)

Since the residual error εiϱ,j,IF is assumed to have a Gaussian distribution, d
(k)
v is

proven to have the following Gaussian distribution under the fault-free hypothesis

d(k)v ∼ N
(
0,
(
σ(k)
ss,v

)2)
, (2.44)

where (
σ(k)
ss,v

)2
= eTv (S

(k) − S)Cacc(S
(k) − S)Tev , (2.45)

and ev is a vector whose vth entry is 1 and all others are 0. Then the rejection region

is given by

Rk = {d(k)v

∣∣ |d(k)v | > Dk,v} , (2.46)

where Dk,v is the threshold of the integrity monitor. Therefore, the continuity risk in

(2.34) can be written by

Pcontinuity = P
(Nfault modes⋃

k=1

|d(k)v | > Dk,v

∣∣∣ H0

)
PH0 . (2.47)

Since these rejection regions Rk, k = 1, 2, · · · , Nfault modes are not mutually exclusive,

Equation (2.47) can be released by

Pcontinuity ≤
Nfault modes∑

k=1

P
(
|d(k)v | > Dk,v

∣∣∣ H0

)
PH0 . (2.48)

The threshold Dk,v is determined by the allocated continuity budget caused by false

alerts. Specifically,

Dk,v = Q−1

(
Cv

REQ,FA,j

2PH0

)
σ(k)
ss,v , (2.49)

where

Cv
REQ,FA =

Nfault modes∑
j=1

Cv
REQ,FA,j , (2.50)

38



2.3. ARAIM Airborne Algorithm

and Q−1(·) is the quantile function of the standard normal distribution. Here, C3
REQ,FA

standards for the continuity budget for the vertical component, C1
REQ,FA+C2

REQ,FA rep-

resents the continuity budget for the horizontal component, and C1
REQ,FA = C2

REQ,FA.

An equal allocation strategy of the continuity budget is adopted in the baseline

ARAIM algorithm, i.e.,

Cv
REQ,FA,j =

1

Nfault modes

Cv
REQ,FA . (2.51)

A potential fault is detected when d
(k)
v ∈ Rk,∀v = 1, 2, 3, and then an exclusion

process is launched, which is beyond the scope of this thesis and is omitted for the

present. The detailed process of exclusion and its impacts on the system integrity

can be referred to [20]. The following section will illustrate the evaluation of system

integrity in nominal conditions where no faults are detected.

2.3.5 Calculation of protection levels

Instead of directly evaluating the integrity risk, the baseline ARAIM algorithm cal-

culates the PL, the position error bounds at the low probabilities necessary to meet

the integrity requirement for a specified application. Practically, integrity is main-

tained as long as the PL calculated at each epoch remains below the AL. By replacing

the alert limit ℓ with PL and replacing the last inequality with equality in Equation

(2.33), the PL in the baseline ARAIM algorithm is given by

2Q

(
PLv − b

(0)
3

σ
(0)
3

)
+

Nfault modes∑
k=1

PHk
Q

(
PLv −Dk,3 − b

(k)
3

σ
(k)
3

)

= IvREQ

(
1− Pnot monitored

IREQ

)
,

(2.52)

where I3REQ standards for the integrity budget for the vertical component, I1REQ+I2REQ

represents the integrity budget for the horizontal component, and I1REQ = I2REQ. The

vertical protection level (VPL) is directly given by

V PL = PL3 , (2.53)
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and the horizontal protection level (HPL) is calculated by

HPL =
√

PL2
1 + PL2

2 . (2.54)

Notably, Equation (2.52) involves the detection threshold Dk,v, which is determined

by the allocated continuity budget caused by false alerts.

The baseline ARAIM algorithm provides a standard procedure, including range error

modeling, fault detection, and protection level calculation, to support integrity appli-

cations. The whole algorithm is built on the Gaussian overbounds for nominal range

errors, which simplifies the derivation and reduces the computational effort. However,

nominal range errors in the real world usually have non-Gaussian and heavy-tailed

properties [22–24, 42, 43]. The Gaussian overbounds of these errors are likely to be

over-conservative, leading to degraded detection performance and inflated PLs in

real-world applications. To solve this issue, this thesis systematically incorporates

non-Gaussian modeling into the construction of the integrity monitoring algorithm,

including characterization of the range projection of orbit and clock errors (Chap-

ter 3), error bounding with non-Gaussian models (Chapter 4), and fault detection

(Chapter 5) and integrity risk evaluation (Chapter 6) with non-Gaussian nominal

bounds.
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Chapter 3

Characterization of GPS/Galileo

Signal-In-Space Range Error

Navigation satellites transmit electromagnetic waves known as signal-in-space (SIS) to

users and GNSS ground segments [44]. The performance of SIS is commonly assessed

by analyzing the SISRE, which quantifies the statistical uncertainty of the modeled

pseudorange due to errors in the broadcast orbit and clock information [45,46]. SISRE

is one of the most significant factors that degrade positioning accuracy and integrity

[47]. Therefore, understanding the individual SISRE contributions and characterizing

their statistical profiles is essential for the development of ARAIM algorithms.

This chapter aims to characterize GPS/Galileo SISRE to facilitate the development

of non-Gaussian overbounding and ARAIM methods in Chapter 4 and Chapter 6,

respectively.
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3.1 Sources of Signal-In-Space Range Error

SISRE describes the statistical uncertainty of the modeled pseudorange due to errors

in the broadcast orbit and clock information [25, 45, 46]. Satellite orbit and clock

errors arise due to uncertainties in the ODTS process managed by the CSP [25].

Typically, the CSP utilizes dynamic models to establish a reference orbit trajectory.

Sequential estimators, such as Kalman filters, are then deployed to refine this tra-

jectory, forecasting the future evolution of satellite orbit and clock [32, 48]. These

predictions are then employed to determine broadcast ephemeris parameters, which

are uploaded into the satellite’s navigation payload memory and transmitted to the

GNSS user. The estimation error of reference orbit trajectory and the correction error

of sequential estimators together contribute to the broadcast ephemeris errors.

A typical example is given by the ODTS process employed in the MCS of GPS. A

dynamic model is constructed by integrating a gravity model, luni-solar perturba-

tions, solid Earth tides, and a priori solar radiation pressure model. The propagation

of a satellite orbit is then solved by numerical integration of the dynamics model

for given initial values. Meanwhile, the evolution of clock states is characterized by

second-order polynomials over time. Monitor stations collect raw pseudorange, car-

rier phase, and meteorological data, which are smoothed by the MCS and fed into a

Kalman filter for processing. This filter estimates corrections of the inertial satellite

positions and velocities relative to the reference trajectory, two radiation pressure pa-

rameters, and clock offset, drift, and rates for both satellites and monitoring stations.

These estimations are subsequently utilized to predict the future orbit and clock evo-

lution, and to modify the broadcast ephemeris parameters for the next upload to the

satellite. A similar procedure is applied for other constellations such as GLObalnaya

NAvigatsionnaya Sputnikovaya Sistema in Russian (GLONASS) and Galileo.
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3.2 Determination of Orbit and Clock Errors

The broadcast orbit and clock errors can be evaluated as discrepancies between the

satellite position and clock bias given in the broadcast ephemeris (BCE) and the

precise ephemeris (PCE). The data source of the BCEs and PCEs used in this study is

elaborated in Section 3.2.1. Because the BCEs and PCEs are referred to the different

time and coordinate systems, adequate care must be taken to ensure consistency in

the comparison. Aside from time and coordinate system alignment, several additional

corrections are required in the data preprocessing procedures, which will be illustrated

in Section 3.2.3. Thereafter, the computation method of orbit and clock errors is

given.

3.2.1 Data source

This study is carried out by employing the historical broadcast and precise ephemerides

of GPS and Galileo. The performance evaluation for GPS is conducted with respect

to L1/L2 combination over a three-year period from January 1st, 2020 to December

31st, 2022. The analysis for Galileo satellites is conducted with respect to E1/E5a

combination within the same period. Regarding decommissioned satellites, this study

excludes satellites that were retired from duty before December 2022. For GPS satel-

lites, SVN 34 and SVN 60 were retired from active duty in October 2019 and March

2020, respectively [49]. Without considering these two satellites, a total number of 30

GPS satellites are used for analysis in this study. For Galileo satellites, GSAT0204

was decommissioned from active service for constellation management in December

2017 [50], and GSAT0201 and GSAT0202 became unavailable from February 18th,

2021 due to a temporary setting of the Freely Accessible Navigation Message (F/NAV)

and Integrity Navigation Message (I/NAV) health bits to unhealthy [50]. Therefore,

these three satellites are not included in this study. A total number of 24 Galileo

satellites are utilized for further analysis in this three-year period.
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The BCEs for GPS and Galileo satellites are both acquired from International GNSS

Service (IGS), which records multi-GNSS navigation data on a daily basis and com-

piles them into the BRDC file in Receiver Independent Exchange (RINEX) format

Version 3 [51]. Various IGS and Multi-GNSS EXperiment (MGEX) [52] analysis

centers routinely generate PCEs for GPS and GLObalnaya NAvigatsionnaya Sput-

nikovaya Sistema in Russian (GLONASS), along with the emerging Galileo, BeiDou,

and Quasi-Zenith Satellite System (QZSS) constellations. In this study, the precise

orbit and clock products of GPS are obtained from Center for Orbit Determination in

Europe (CODE), which provides daily orbit and clock data with 15-minute sampling.

The precise orbit and clock products of Galileo are also obtained from CODE but

with the sampling interval of 5 minutes. The precise products of CODE are publicly

accessible through the online repository of IGS [53].

3.2.2 Antenna phase center offset correction

According to IGS conventions, most precise orbit products provide the Center of Mass

(CoM) coordinates of the respective space vehicle [54]. However, the precise clock

states are usually referenced to satellite antenna phase center (APC) [44]. In the

case of broadcast messages, both orbit and clock data are referred to the satellite

APC [45]. Figure 3.1 depicts the orbit and clock reference points in broadcast and

precise ephemerides. Due to the different conventions, a proper APC offset correction

is needed before comparing the broadcast and precise ephemerides. However, as

pointed out by [45, 55], there is no reason to assume a uniquely and unambiguously

defined APC between the broadcast ephemeris and precise orbit and clock products.

In this work, the estimated APC offsets by the US National Geospatial-Intelligence

Agency (NGA) [56] are used for the GPS BCE, while the Galileo metadata provided

by the European GNSS Agency (GSA) [57] is used to generate the APC offsets for

the Galileo BCE. In the case of precise products, both the Galileo and GPS APC

offsets are provided by the IGS ANTenna EXchage (ANTEX) files [58].
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Figure 3.1: Different conventions for orbit and clock reference points in GNSS broad-

cast and precise ephemerides. The green dot represents the APC used in BCE and

the blue dot represents the APC used in PCE.

The broadcast CoM position xi,k,BCE
CoM,ECEF of satellite i at epoch k in the ECEF coor-

dinate system is obtained by applying the APC offset correction as follows:

xi,k,BCE
CoM,ECEF = xi,k,BCE

APC,ECEF −Ri,k,ECEF
BF ai

BCE , (3.1)

where xi,k,BCE
APC,ECEF is the broadcast APC position, ai

BCE = [aix,BCE, a
i
y,BCE, a

i
z,BCE]

T is

the APC offset vector for the BCE defined in the satellite body fixed (BF) frame, and

Ri,k,ECEF
BF is the rotation matrix from the BF frame to the ECEF frame at epoch k.

Figure 3.2 shows the definition of the BF frame, where ez,BF is the principal body axis

closest to the antenna boresight direction, ey,BF is parallel to the rotation axis of the

solar panels, and ex,BF is chosen such that the specified solar panel is permanently

sunlit during nominal yaw-steering in IGS conventions [59]. Define the satellite-sun

vector as

xi,k
sat to sun = xk

sun − pi,k , (3.2)

where pi,k and xk
sun are the position of satellite i and the sun at epoch k in the ECEF

frame, respectively. Then, the satellite-sun vector xi,k
sat to sun is orthogonal to the solar
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Figure 3.2: Definition of the BF frame of satellites.

panel, as shown in Figure 3.2. The rotation matrix Ri,k,ECEF
BF can be calculated by

Ri,k,ECEF
BF =

[
xi,k
sat to sun×pi,k×pi,k

|xi,k
sat to sun×pi,k|·|pi,k| −

xi,k
sat to sun×pi,k

|xi,k
sat to sun×pi,k| −

pi,k

|pi,k|

]
. (3.3)

Since the line-of-sight (LOS) vector is closely aligned with the ez,BF axis, the z-

component of the APC offset aiz,BCE can be used to calculate the CoM-referenced

clock offset cδi,kCoM,BCE as follows,

cδi,kCoM,BCE = cδi,kAPC,BCE + aiz,BCE , (3.4)

where cδi,kAPC,BCE is the APC-referenced clock offset in the BCE.

The CoM position of precise orbit xi,k,PCE
CoM,ECEF can be directly computed from the

precise product without APC offset corrections. The CoM-referenced clock offset

cδi,kCoM,BCE in the precise product is computed by

cδi,kCoM,PCE = cδi,kAPC,PCE + aiz,PCE , (3.5)

where cδi,kAPC,BCE is the APC-referenced clock offset in the PCE and aiz,PCE is the

z-component of the APC offset vector ai
PCE related to the precise product.
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In the following sections, the position and clock offset values obtained from broadcast

and precise products are consistently referred to the CoM.

3.2.3 Computation of orbit and clock error vector

As shown in Figure 3.3, the orbit error vector of satellite i at time epoch k in the

ECEF coordinate system can be formalized by

ξi,korb,ECEF = xi,k,BCE
CoM,ECEF − xi,k,PCE

CoM,ECEF . (3.6)

Figure 3.3: Demonstration of orbit error.

The CoM-referenced clock error is computed as

ξi,kclk,ECEF = cδi,kCoM,BCE − cδi,kCoM,PCE . (3.7)

Notably, the underlying realization of the GNSS-specific system time scales is different

between broadcast and precise ephemerides [45]. These differences, which are typically

more significant than the inherent clock solution precision, introduce a systematic bias
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affecting all satellites within a constellation consistently. [55] This bias may vary from

epoch to epoch and cannot be easily quantified. To mitigate this bias, an ensemble

clock difference is computed at each epoch by averaging the clock error between

broadcast and precise ephemerides across satellites within a constellation [44, 55].

Finally, the individual clock error is corrected for this ensemble average as follows:

ξ̃i,kclk,ECEF = ξi,kclk,ECEF −
1

Nsat,k

Nsat,k∑
i=1

ξi,kclk,ECEF , (3.8)

where Nsat,k is the total number of satellites in the corresponding constellation at

epoch k.

3.2.4 Transformation to the RAC frame

The orbit error in the ECEF frame is usually transformed into the radial, along-track

and cross-track (RAC) frame for ease of analysis and visualization, as shown in Figure

3.4. The transformation can be formalized by

ξi,korb,RAC = Ri,k,RAC
ECEF ξi,korb,ECEF (3.9)

with the rotation matrix Ri,k,RAC
ECEF defined as

Ri,k,RAC
ECEF =

[
− pi,k

|pi,k| −
pi,k×vi,k

|pi,k×vi,k| ×
pi,k

|pi,k|
pi,k×vi,k

|pi,k×vi,k|

]T
, (3.10)

where vi,k is the velocity of satellite i at epoch k in the ECEF frame. The radial,

along-track and cross-track components of ξi,korb,RAC are denoted by ξi,korb,R, ξ
i,k
orb,A, and

ξi,korb,C , respectively.

3.3 Definition of SISRE

To reveal the effect of orbit and clock errors on a navigation user, SISRE is calcu-

lated by projecting the orbit and clock errors into the user’s LOS direction. Since
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Figure 3.4: Definition of satellite RAC frame.

Figure 3.5: Demonstration of IURE over a mesh of 200 user locations.

each user positioned within the satellite’s coverage footprint has a distinct LOS vec-

tor, the projected range error can vary with user locations. Therefore, the so-called

instantaneous user range error (IURE) is defined. As shown in Figure 3.5, the orbit

component of the IURE is calculated by projecting the orbit error ξi,korb,ECEF to the

LOS vector xk
i,j from satellite i to receiver j

IUREi,k
j,orb =

ξi,korb,ECEFx
k
i,j∣∣xk

i,j

∣∣ , (3.11)
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where

xk
i,j = xk

j − pi,k . (3.12)

The final IURE is calculated by adding the impacts of the clock error as follows:

IUREi,k
j = IUREi,k

j,orb − ξ̃i,kclk,ECEF . (3.13)

Note that the negative sign in Equation (3.13) accounts for the negative correlation

between the clock error and the orbit error that results from the orbit and clock

determination algorithm of GPS or Galileo [47].

The GPS Standard Positioning Service Performance Standard (GPS-SPS-PS) [60]

defines the SISRE as the average contribution over all IURE values of users located

inside the visibility cone of a satellite. However, the average value cannot reflect the

worst-case scenario. Therefore, the globally averaged IURE is unsuitable for safety-

critical applications.

Alternatively, the user projected error (UPE) is proposed by collecting the IURE of

a large number of globally distributed users [61]. Each healthy satellite is visible to

many but not all users at any given epoch; therefore, there will be multiple UPE

values per satellite at each epoch (one for each user that has this satellite in view).

Therefore, the UPE at epoch k can be formalized as follows:

UPEi,k = {IUREi,k
j |user i is within the visibility cone of satellite j at epoch k} .

(3.14)

Similar to the setting in [61], 200 evenly distributed user locations around the globe

are selected to calculate the UPE, as shown in Figure 3.5. Finally, the SISRE of

satellite i over a period is defined as

SISREi
UPE = {UPEi,k|epoch k is included in the given period} . (3.15)
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3.4 Nominal Performance Characterization

According to the GPS-SPS-PS [60], a GPS satellite is considered to have a major

service failure when its average projected error exceeds 4.42 × σURA. A similar def-

inition for Galileo satellites is given in the Galileo Open Service Service Definition

Document (OS-SDD) [62], where a Galileo satellite is deemed faulty if the average

projected error surpasses 4.17×σURA. Table 3.1 displays the four identified GPS fault

events during the study period (2020–2022), while Table 3.2 presents the two Galileo

fault events identified within the same period. The data in these tables are sourced

from [1], which offers a comprehensive analysis of satellite fault events. To character-

ize the nominal performance characterization of SIS errors, we exclude samples from

the periods listed in Tables 3.1 and 3.2 in the following sections.

Table 3.1: GPS fault events between 2020 and 2022 (Taken from [1])

SVN Date UTC Time

53 February 7, 2021 17:00 – 21:15

69 March 2, 2021 07:10 – 08:15

73 September 24, 2021 11:55 – 14:15

58 October 2, 2022 15:10 – 15:55

Table 3.2: Galileo fault events between 2020 and 2022 (Taken from [1])

SVN Date UTC Time

210 September 5, 2021 05:43 – 6:02

210 April 29, 2022 01:00 – 01:12

51



Chapter 3. Characterization of GPS/Galileo Signal-In-Space Range Error

3.4.1 Nominal performance of GPS SIS

Over a span of three years, a comprehensive analysis is conducted on a total of 30 GPS

satellites, accounting for 2,999,386 orbit and clock nominal error samples. The folded

cumulative distribution function (CDF) of GPS orbit and clock errors, compiled from

all samples within this period, is depicted in Figure 3.6. The folded CDF depicts the

second half of the CDF plot with 1–CDF for values of x > m, where m is the median

of the distribution. As can be seen, most orbit and clock errors are located within

±5m. Among the three orbit error components, the along-track error shows the

largest magnitude and dispersion, with the cross-track error following closely behind.

However, both the along-track and cross-track errors have little contribution to the

range error, as these two directions are almost perpendicular to the LOS vectors.

The radial error, in contrast, closely aligns with the LOS vectors and has the largest

contribution to the range error, showing the smallest error magnitude and dispersion

among the orbit components. As another key contributor to range errors, the clock

error shows a much larger error magnitude and dispersion than the radial error.

Therefore, SISREUPE is most similar to the clock error, as shown in Figure 3.6.

Figure 3.7 plots the folded CDF of SISREUPE for each GPS satellite, where signifi-

cant differences among satellites are observed. Some satellites, such as SVN 44, SVN

51, SVN 73, and SVN 65, exhibit large error magnitude and dispersion, with their

maximum SISREUPE exceeding 10m. However, the SISREUPE of most satellites

is relatively small, which retains within the range of ±5m. Table 3.3 summarizes

the standard deviation of the SISREUPE for each satellite, which also suggests the

difference among satellites. The mean of SISREUPE for each satellite is also listed

in Table 3.3, with the magnitude less than 5 cm for most satellites. Importantly,

GPS precise orbit and clock accuracy stand between 3–4 cm. Since the SISREUPE

references the precise orbit and clock as the truth orbit and clock, its mean values

are reasonably on the order of the precise orbit and clock accuracy. Over a long term

period of several years, the SISREUPE will eventually be nearly zero mean [25].
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Figure 3.6: The folded CDF of GPS radial, along-track, cross-track, clock, and

SISREUPE errors from January 1st, 2020 to December 31st, 2022
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Figure 3.7: The folded CDF of GPS SISREUPE for individual satellites from January

1st, 2020 to December 31st, 2022.

Figure 3.8 shows the quantile-quantile (QQ) plot of the SISREUPE for each GPS

satellite. The QQ plot shows the quantile of error distribution with the equiva-

lent standard normal quantile, such that the Gaussian distributed error exhibits a
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Figure 3.8: The QQ plot of GPS SISREUPE for individual satellites from January 1st,

2020 to December 31st, 2022. The x-axis represents the quantile of error distribution

(unit: meter) while the y-axis stands for the standard normal quantile (unit: meter).

straight line. Three categories of SISREUPE distributions can be identified as fol-

lows: 1) Two-side heavy-tailed SISREUPE; 2) One-side heavy-tailed SISREUPE;

and 3) Gaussian-liked SISREUPE. The category information is also provided in

Table 3.3. For the two-side and one-side heavy-tailed SISREUPE, the Gaussian over-

bound used in the baseline ARAIM algorithm tends to provide conservative bounds,

which potentially enlarges the protection level in the positioning domain. This is-

sue is further discussed in Chapter 4, where a non-Gaussian overbounding method is

developed to address this problem.
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3.4.2 Nominal performance of Galileo SIS

For Galileo satellites, 6,836,848 orbit and clock error samples within 2020–2022 are

used for analyzing their nominal SIS performance. Figure 3.9 shows the folded CDF

of Galileo radial, along-track, cross-track, clock, and SISREUPE errors, with all

samples combined during the three-year period. The mean and standard deviation of

these errors for individual satellites are summarized in Table 3.4. As shown in Figure

3.9, the radial and along-track errors have similar error magnitude and dispersion,

while the cross-track error shows the smallest error magnitude and dispersion among

the three orbit error components. This phenomenon is different from the GPS case.

However, the relationship σ̂rad < σ̂cross < σ̂along still holds in Galileo satellites, as

shown in Table 3.4.

Notably, the folded CDF of Galileo orbit and clock errors exhibits an extremely narrow

core, where most errors are located within ±2m. In the GPS case, most errors are

located within ±5m. However, the dispersion of the orbit and clock errors of Galileo

satellites is significantly larger than that of GPS satellites, with the maximum error

magnitude reaching 25m. These findings suggest that the nominal orbit and clock

errors of Galileo satellites are usually smaller than those of GPS satellites, but Galileo

satellites have larger worse-case nominal orbit and clock errors. Despite all these

differences, we find a common point between Galileo and GPS satellites, i.e., the

Galileo clock error also shows a larger error magnitude and dispersion than the orbit

errors. Consequently, the SISREUPE is similar to the clock error in the Galileo case.

The folded CDF of SISREUPE for individual Galileo satellites is depicted in Fig-

ure 3.10 and the corresponding QQ plot is given in Figure 3.11. Two categories

of SISREUPE distributions can be identified as follows: 1) Two-side heavy-tailed

SISREUPE and 2) One-side heavy-tailed SISREUPE. Intuitively speaking, the

tailedness of the Galileo SISREUPE is much heavier than that of the GPS SISREUPE.

However, the statistics of Galileo SISREUPE in Table 3.4 suggests that the stan-
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Figure 3.9: The folded CDF of Galileo radial, along-track, cross-track, clock, and

SISREUPE errors from January 1st, 2020 to December 31st, 2022.
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Figure 3.10: The folded CDF of Galileo SISREUPE for individual satellites from

January 1st, 2020 to December 31st, 2022.

dard deviation of the Galileo SISREUPE is relatively smaller than that of the GPS

SISREUPE. From Figure 3.9, we know that the nominal orbit and clock errors of

Galileo satellites are usually smaller than those of GPS satellites, but Galileo satel-
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Figure 3.11: The QQ plot of Galileo SISREUPE for individual satellites from Jan-

uary 1st, 2020 to December 31st, 2022. The x-axis represents the quantile of error

distribution (unit: meter) while the y-axis stands for the standard normal quantile

(unit: meter).

lites have larger worse-case nominal orbit and clock errors. Since the SISREUPE is

contributed by orbit and clock errors, the conclusion drawn from Figure 3.9 conse-

quently extends to the SISREUPE. This explains why the Galileo SISREUPE has

a smaller standard deviation but exhibits heavier tails than the GPS SISREUPE.

Finally, another important information in Table 3.4 is that the mean value of the

Galileo SISREUPE is nearly zero, which is similar to the GPS case.
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Table 3.3: The mean and standard deviation of the radial, along-track, cross-track,

clock, and SISREUPE errors for individual GPS satellites from 1/1/2020 to

12/31/2022 (unit: cm)

Radial Along-Track Cross-Track Clock SISREUPE

SVN Type1 mean std mean std mean std mean std mean std

SVN41 O 0.31 11.25 -10.72 89.58 -5.51 54.09 0.82 33.31 -3.45 42.51

SVN43 T 0.29 11.15 10.69 86.72 -0.98 76.68 0.04 45.20 1.09 52.02

SVN44 T 3.20 23.42 6.99 106.60 0.31 92.18 0.53 123.26 -2.30 131.00

SVN45 O 3.39 15.96 -11.85 96.24 -4.50 86.58 -1.11 29.33 -4.67 42.82

SVN46 G 2.07 13.64 -5.09 113.00 3.37 55.05 0.22 34.55 -2.44 46.16

SVN47 G 3.88 13.48 -15.47 76.44 -1.03 60.87 -0.07 25.08 -6.14 36.59

SVN48 G 1.78 13.59 0.00 87.32 0.48 77.91 1.24 47.68 -2.97 55.04

SVN50 G 3.65 15.58 -6.56 78.43 2.76 61.92 -2.18 27.69 -1.99 40.48

SVN51 O 1.91 10.79 13.02 76.13 1.20 65.55 -1.15 30.26 1.33 38.70

SVN52 G 1.45 12.23 -0.71 72.77 -1.35 62.31 2.75 43.28 -4.44 49.91

SVN53 O 2.41 15.84 -2.24 112.50 -4.83 101.11 1.15 71.00 -4.49 80.98

SVN55 G 2.59 11.70 3.31 81.50 0.84 71.73 -2.95 21.74 1.08 34.04

SVN56 G 3.04 13.46 -18.12 83.12 0.29 63.62 -0.89 24.98 -4.66 37.62

SVN57 O 3.94 14.64 17.87 81.23 -3.01 61.31 -0.80 55.75 -0.96 62.42

SVN58 O 2.28 14.59 12.10 91.19 -1.93 82.14 -0.08 29.35 -0.70 40.14

SVN59 G 1.42 12.56 22.54 88.21 -2.79 67.24 -0.80 24.17 2.20 35.15

SVN61 T 2.64 14.07 7.15 108.17 -3.35 87.85 0.49 27.02 -2.55 40.05

SVN62 O -2.20 18.26 10.02 96.69 -2.21 87.62 1.98 27.36 1.27 35.90

SVN63 T 0.73 18.00 4.39 84.49 0.13 68.36 -3.01 36.91 3.03 46.34

SVN64 O 0.35 17.93 0.06 84.66 0.05 59.14 -0.70 31.51 0.38 38.94

SVN65 T -1.74 20.26 11.12 91.37 -4.58 75.78 -0.43 90.42 3.15 95.60

SVN66 O -0.24 18.65 3.72 80.43 -1.58 68.31 1.68 28.22 -1.13 39.58

SVN67 G 2.42 17.38 -4.38 82.90 -0.54 70.36 -1.58 21.46 -1.51 33.14

SVN68 T 0.06 17.02 14.29 74.87 0.34 61.28 1.47 25.60 0.54 35.41

SVN69 T -1.12 19.54 7.82 96.22 -0.90 90.78 -2.25 60.93 4.35 65.74

SVN70 T -0.69 15.11 4.05 77.26 -3.43 65.33 -0.11 21.10 0.86 32.30

SVN71 T -0.16 19.53 -2.51 80.22 -2.39 67.32 -2.20 22.21 1.65 36.05

SVN72 G 1.90 23.66 -15.36 104.69 -1.65 83.87 -0.20 115.60 -4.01 121.97

SVN73 T -0.27 18.77 10.43 94.89 -1.81 81.16 8.46 55.07 -6.99 62.01

SVN74 O -0.12 10.58 -5.73 83.41 0.29 49.19 -1.28 20.58 0.62 32.36

1 “T”: Two-side heavy-tailed; “O”: One-side heavy-tailed; “G”: Gaussian-liked.
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Table 3.4: The mean and standard deviation of the radial, along-track, cross-track,

clock, and SISREUPE errors for individual Galileo satellites from 1/1/2020 to

12/31/2022 (unit: cm)

Radial Along-Track Cross-Track Clock SISREUPE

SVN Type1 mean std mean std mean std mean std mean std

GSAT0101 T -0.26 24.25 -1.16 29.02 -1.12 23.46 2.01 36.63 -2.11 48.13

GSAT0102 T -0.54 20.66 -5.91 36.95 -1.18 25.97 2.13 21.35 -2.66 37.72

GSAT0103 T -0.86 22.12 -2.77 36.93 -3.43 26.84 1.44 46.17 -1.50 57.17

GSAT0203 T -0.42 19.08 -1.60 25.97 -1.00 20.55 4.70 37.61 -4.69 45.92

GSAT0205 O -0.65 15.61 -1.03 26.81 -0.42 19.93 1.76 13.67 -1.34 27.12

GSAT0206 T -0.36 17.27 -0.19 25.06 -0.90 21.67 1.56 14.90 -1.38 27.76

GSAT0207 O -0.79 17.55 -3.02 27.81 -1.01 20.34 1.66 15.29 -1.48 29.75

GSAT0208 T -0.82 18.66 -3.28 27.98 -1.15 20.41 1.27 13.66 -1.12 29.30

GSAT0209 T -0.73 16.81 -0.71 26.93 -1.99 19.96 1.13 13.81 -0.81 27.30

GSAT0210 T -0.21 19.10 -2.73 37.15 -1.44 24.87 -0.05 78.24 -0.36 82.48

GSAT0211 O -0.57 18.69 -0.86 28.42 -1.84 21.14 1.46 14.74 -1.32 30.73

GSAT0212 O -0.81 18.20 -2.41 27.92 -1.27 20.75 1.22 15.40 -0.96 32.05

GSAT0213 T -0.91 18.62 -2.36 29.26 -1.65 20.72 0.60 14.15 -0.30 29.95

GSAT0214 T -0.80 18.34 -0.10 26.25 -1.97 20.70 1.03 15.38 -0.55 29.92

GSAT0215 T -0.71 17.87 -0.64 27.90 -0.78 19.86 0.80 22.90 -0.31 33.80

GSAT0216 T -0.55 15.46 -1.17 27.30 -1.14 19.06 1.15 15.50 -0.96 27.89

GSAT0217 T -0.54 18.25 -1.60 26.42 -0.31 21.54 1.47 13.08 -1.23 27.23

GSAT0218 T -0.80 18.44 -0.37 26.21 -1.25 19.89 1.41 12.82 -0.87 27.81

GSAT0219 T -0.36 23.20 -0.18 43.44 -0.94 25.00 1.49 29.24 -1.30 43.80

GSAT0220 T -0.45 20.85 -2.04 29.33 -0.56 20.64 -1.83 14.93 1.87 31.99

GSAT0221 T -0.18 18.35 -2.78 28.51 -1.64 20.79 1.60 17.06 -2.09 31.33

GSAT0222 T -0.29 19.07 -2.71 28.23 -0.08 21.99 1.48 15.74 -1.63 31.92

GSAT0223 O -0.85 24.27 -0.26 26.59 -1.64 20.28 1.65 15.45 -1.10 35.24

GSAT0224 O -0.83 25.09 -0.75 30.81 -1.63 20.99 1.25 15.98 -0.80 35.56

1 “T”: Two-side heavy-tailed; “O”: One-side heavy-tailed.
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Chapter 4

Principal Gaussian Overbound for

Heavy-tailed Error Distribution

To meet the stringent navigation requirements, precise modeling of the measurement

error distribution using experimental data is essential. Chapter 3 accurately charac-

terizes the SISRE distribution of GPS and Galileo satellites, which use a huge amount

of data. However, it is impossible to transmit all these data to users in satellite or aug-

mentation systems due to limited-bandwidth communication. To address this issue,

a conservative representation of the error distribution known as the overbound should

be employed. For heavy-tailed errors, such as the SISRE, additional challenges are

imposed to overbounds. A sharp yet conservative overbound is preferred to support

integrity monitoring applications due to availability and continuity constraints.

This chapter proposes the Principal Gaussian overbound (PGO) for heavy-tailed error

distributions by leveraging the characteristics of the GMM. Section 4.1 gives a brief

review of the existing overbounding methods. In Section 4.2, the GMM and its appli-

cation on error fitting and overbounding research are illustrated, which provides the

theoretical foundation for the development of PGO in Section 4.3. Section 4.4 com-

pares the bounding performance of the PGO with the two-step Gaussian overbound
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and the Gaussian-Pareto overbound on GPS and Galileo SISRE. Finally, Section 4.5

constructs the nominal error bounds of code IF combination based on the proposed

PGO.

4.1 Review of Overbounding Methods

The first true overbound, known as the CDF overbound, was introduced by DeCleene

in 2000 [63]. It is defined as having more tail mass than the error distribution.

To facilitate the range-to-position projection and simplify the communication and

computation of error bounds, the zero-mean Gaussian model is adopted as the underly

form of the CDF overbound. Since then, the Gaussian CDF overbound and its

variants have dominated the overbounding research and are taken as the basis for

integrity analysis. Nevertheless, DeCleene’s method requires certain shape constraints

on the overbounding distribution, including symmetric and unimodality.

To relax the constraints in the DeCleene’s method, Rife et al. proposed the paired

CDF overbound that uses two Gaussian distributions with non-zero mean to over-

bound the left and right regions separately [64]. However, its stringent requirement

on bounding both regions inflates the standard deviation or enlarges the biases in the

Gaussian overbound [65]. This problem is relieved by allowing the total mass of the

overbound distribution to be greater than one, which is known as the excess-mass CDF

overbound [66]. More recently, Blanch et al. proposed the two-step Gaussian over-

bounding method, significantly reducing the bias in the overbound distribution [65].

Nonetheless, these Gaussian-based overbounding methods fail to truly overbound the

heavy-tailed distributions, a frequent occurrence in pseudorange errors influenced

by multipath [67]. This is because heavy-tailed distributions have tails that are

not exponentially bounded, which makes them impossible to be overbounded by a

Gaussian distribution that only possesses an exponential tail [22, 68]. It is natural
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to apply different models for the core and tail regions of a distribution. Rife et al.

proposed the Gaussian core overbound, which utilizes a Gaussian distribution for the

core bounding and an implicit distribution for the tail bounding [22]. More recently,

Larson et al. proposed the Gaussian-Pareto overbound to tightly bound the tails

by utilizing the extreme value theory [68]. However, the overbounding property of

the Gaussian-Pareto overbound through convolution remains unclear, which currently

limits its applications.

In the remainder of this section, the construction process of the two-step Gaussian

overbound and the Gaussian-Pareto overbound is illustrated, as both the two methods

will be used for comparison with the proposed method in the following sections.

4.1.1 Two-step Gaussian overbound

The two-step Gaussian overbound [65], as the name suggests, involves two steps

of construction. In the first step, a piecewise uniform, symmetric, and unimodal

distribution Gsu(x) is determined through an ad hoc approach:

Gv(x) ≤ Gsu(x) ∀x . (4.1)

In the second step, the left-hand side overbound is determined by finding the minimum

σL that satisfies ∫ x

−∞
fN (x;−bL, σL) dx ≥ Gsu(x) ∀x ≤ 0 . (4.2)

Equation (4.2) relaxes the constraint in paired overbound [64] by only CDF bounding

the left-hand side of the intermediate distribution. The right-hand side overbound is

obtained by repeating the above process on the mirror image of the error distribution,

i.e., Gv(−x). The right-hand side overbound has the CDF form as follows:∫ x

−∞
fN (x; bR, σR) dx ∀x > 0 . (4.3)

Although the two-step Gaussian overbounding method can significantly reduce the

bias compared to the conventional paired overbounding methods [65], its overbound
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for the heavy-tailed distribution can still be conservative, which will be shown through

numerical experiments in Section 4.4.

4.1.2 Gaussian-Pareto overbound

The Gaussian-Pareto overbound is a realization of the core overbounding concept [22].

Specifically, the core overbounding concept decomposes the error distribution into two

fractions, including the core part Gv,core(x) and the tail part Gv,tail(x) as follows,

Gv(x) = Gv,core(x) +Gv,tail(x), (4.4)

where Gv,core(x) and Gv,tail(x) are defined in terms of the error distribution PDF fv(x)

as follows:

Gv,core(x) =


∫ x

−∞ fv(x) dx |x| ≤ T

0 |x| > T

(4.5a)

Gv,tail(x) =

0 |x| ≤ T∫ x

−∞ fv(x) dx |x| > T

, (4.5b)

where T is the core-tail transition point. The core overbound of Gv(x) is defined as

Gov(x) = Ĝov,ex(x) + Ĝov,im(x) , (4.6)

where Ĝov,ex(x) and Ĝov,im(x) are CDFs scaled by a factor within the range of zero

to one. In general, Ĝov,ex(x) is an explicit function that bounds the worse-case CDF

of the core part of the error distribution,

Gv,core(x) ≤ Ĝov,ex(x) ∀ − T ≤ x ≤ 0 (4.7a)

Gv,core(x) ≥ Ĝov,ex(x) ∀0 < x ≤ T , (4.7b)
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and Gov,im(x) is an implicit function (i.e., no assumptions are made on its shape) that

bounds the tail part of the error distribution,

Gv,tail(x) ≤ Ĝov,im(x) ∀x < −T (4.8a)

Gv,tail(x) ≥ Ĝov,im(x) ∀x > T . (4.8b)

As a realization of the core overbounding concept, the Gaussian-Pareto overbound [68]

adopts the generalized Pareto distribution for the tail bounding. The tail of the

Gaussian-Pareto overbound can be formalized as

ĜGP,tail(x) =

Gv (uL)−GGPD (uL − x)Gv (uL) ∀x < uL

GGPD (x− uR)
(
1−Gv (uR)

)
+Gv (uR) ∀x > uR

, (4.9)

where uL < 0 is the left core-tail transition point, uR > 0 is the right core-tail tran-

sition point, and GGPD(x;µ, β, γ) is the CDF of the generalized Pareto distribution

with a location parameter, u, a scale parameter, β, and a shape parameter, γ [69], as

shown below:

GGPD (x;u, β, γ) =

1−
(
1 + γ(x−u)

β

)− 1
γ

γ ̸= 0

1− exp
(
−x−u

β

)
γ = 0

. (4.10)

The Gaussian-Pareto overbound stems from the extreme value theory, which shows

that almost all normalized continuous probability distributions asymptotically ap-

proach a generalized Pareto distribution [70]. This property enables the general-

ized Pareto distribution to provide a true overbound for data far beyond the end of

the empirical distributions, as required in DeCleene’s theorem [63]. Although the

Gaussian-Pareto overbounding method offers the potential to tightly overbound the

tail distribution, it is unclear whether the Gaussian-Pareto overbound can main-

tain the overbounding property through convolution, which is crucial for deriving

pseudorange-level requirements from the position-domain integrity requirement [63].
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4.2 Gaussian Mixture Model

GMM is a statistical technique that plays a crucial role in error modeling, particularly

in capturing heavy-tailed distributions that are commonly observed in real-world

scenarios [61, 71, 72]. A GMM represents a probability distribution as a weighted

combination of multiple Gaussian distributions, each representing a component of

the mixture. In particular, the bimodal Gaussian mixture model (BGMM) is of

significant research interest as it effectively balances simplicity and flexibility, enabling

precise modeling of both the core and tails of heavy-tailed distributions while avoiding

overfitting and excessive parameters [71, 73]. The PDF of a zero-mean BGMM for

heavy-tailed distribution modeling can be formalized as

f(x) = p1fN (x; 0, σ1) + (1− p1) fN (x; 0, σ2) , (4.11)

where fN (x; 0, σ1) and fN (x; 0, σ2) are the PDF of the first and the second Gaussian

component, σ1 and σ2 are the corresponding standard deviations, and p1 and 1− p1

are the mixing weight of the two Gaussian components, respectively. In this work, it

is assumed that σ1 < σ2 and p1 ∈ (0.5, 1), indicating that the Gaussian component

with the smaller standard deviation is selected as the 1st Gaussian component and

exhibits a higher mixing weight. The parameters in a GMM are usually estimated

by employing maximum likelihood estimation (MLE). The expectation-maximization

(EM) algorithm [74] is usually adopted to obtain the MLE. A concise summary of

the EM algorithm is provided in Appendix A.3.

Due to the appealing nature of GMM, research on GMM-based overbounds emerged

as early as 2001 and has received increased attention in recent years [67]. Shively

compared GMM overbounding methods with Gaussian and exponential overbounding

methods in terms of the resulting inflation factor, suggesting that the GMM method

may align most closely with the manner in which errors are present in actual data [67].

Lee used the GMM as an empirical distribution to model the ground facility error

distribution, showing the potential of GMM to reduce the inflation factor and the
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PL [73]. However, the PL is calculated by a Gaussian overbound of the GMM, which

inevitably increases the conservatism. To tackle this issue, Blanch et al. constructed

a BGMM for pseudorange error modeling in the worst case [71]. They proved that

the posterior position density is also GMM and derived the PL by integrating the

posterior position density. Nevertheless, the computation of the PL involves a large

number of matrix inversions, which cause a considerable computation burden.

These studies usually obtain the GMM from the worst-case analysis [71] or sample

data fitting [74, 75]. However, a rigorous method to determine the least conservative

GMM overbound of the error distribution has not been developed. The crux of

this issue lies in the difficulty of establishing overbounding relationships between

two GMMs. In Gaussian scenarios, a Gaussian with a larger standard deviation

can always bound the Gaussian with a smaller standard deviation. However, in the

context of GMMs, the increasing parameters can provide more flexibility in shaping

the distribution, which in turn makes it more difficult to assess whether one GMM’s

distribution covers the entire range of the other GMM’s distribution. Therefore, this

work explores an alternative way to utilize GMM to bound the heavy-tailed error

distribution. We propose the PGO, which is proven to be the true CDF overbound

of the GMM distribution.

4.3 Principal Gaussian Overbound for the Heavy-

Tailed Error Distribution

4.3.1 Membership weight analysis

The process of generating samples from a GMM can be seen as simultaneously gen-

erating samples from multiple Gaussian distributions according to their respective

weights. For example, given a K-component GMM with mixture weights of p1,
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p2,. . . , pK , the sample generated from it at time t is drawn from the 1st compo-

nent with probability p1, drawn from the 2nd component with probability p2, and

etc. From the perspective of statistical inference, we can also estimate the likelihood

of a sample belonging to a specific Gaussian component, which is known as the mem-

bership weight. The membership weight indicates the posterior probability of a data

point being generated from each component, which can be derived by utilizing the

Bayes’ Theorem [76]. For a given observation x, we define the allocation variable

c = {1, 2, . . . , K} that marks the Gaussian component from which x is generated.

Then, the mixture weight of the kth Gaussian component can be interpreted as the

prior probability of the allocation variable that equals k, as shown below:

pk = P (c = k) . (4.12)

For a given c = k, the probability of generating x (i.e., the likelihood) is

P (x|c = k) = fN (x; bk, σk) . (4.13)

According to Bayes’ Theorem, the posterior probability is given by

sk = P (c = k|x) = pkfN (x; bk, σk)∑K
k=1 pkfN (x; bk, σk)

, (4.14)

where sk is the membership weight of the kth Gaussian component for the observation

x.

In this work, we mainly focus on the zero-mean BGMM in Equation (4.11) due to its

good balance of simplicity and flexibility. The membership weights s1 and s2 of the

zero-mean BGMM can be written as

s1(x) =
p1fN (x; 0, σ1)

p1fN (x; 0, σ1) + (1− p1) fN (x; 0, σ2)
(4.15a)

s2(x) =
(1− p1) fN (x; 0, σ2)

p1fN (x; 0, σ1) + (1− p1) fN (x; 0, σ2)

= 1− s1(x) . (4.15b)
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By substituting the probability density function (PDF) equation of a Gaussian dis-

tribution into Equation (4.15a),

s1(x) =

p1
σ1
exp

(
−1

2

(
x
σ1

)2)
p1
σ1
exp

(
−1

2

(
x
σ1

)2)
+ 1−p1

σ2
exp

(
−1

2

(
x
σ2

)2)
=

1

1 + 1−p1
p1

σ1

σ2
exp

(
σ2
2−σ2

1

2σ2
1σ

2
2
x2
) .

(4.16)

Since σ2 > σ1, exp
(

σ2
2−σ2

1

2σ2
1σ

2
2
x2
)

will be a symmetric convex function in terms of x;

Hence, s1(x) will be a symmetric concave function. Since s2(x) = 1 − s1(x), s2(x)

will consequently be a symmetric convex function. Figure 4.1 plots s1(x) and s2(x)

in two settings of GMMs, including p1 = 0.9, σ1 = 0.5, σ2 = 0.7 in Figure 4.1a and

p1 = 0.9, σ1 = 0.5, σ2 = 1.5 in Figure 4.1c. In both cases, s1(x) has large values when

x is located at the central region of the BGMM, and the value decreases dramatically

when x goes far away from the center. However, s2(x) shows an opposite trend

that the largest value of s2(x) is located at the tail region. These trends indicate

the dominance of each Gaussian component in different regions of the BGMM, which

provides the theoretical foundation for the dominance partition illustrated in the next

section.

4.3.2 Dominance partition

It is straightforward to use the intersection points of s1(x) and s2(x) to partition the

core and tail regions of the zero-mean BGMM. The intersection points xL
intersect and

xR
intersect can be found by solving s1(x) = s2(x) as

xL
intersect = −

√
2σ2

1σ
2
2

σ2
2 − σ2

1

ln
p1σ2

(1− p1)σ1

(4.17a)

xR
intersect =

√
2σ2

1σ
2
2

σ2
2 − σ2

1

ln
p1σ2

(1− p1)σ1

. (4.17b)
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(a) (b)

(c) (d)

s (x)1

s (x)2

xrp

xlp

s (x)1

s (x)2

xrp

xlp

Figure 4.1: (a) Membership weights and (b) the relative kurtosis error of a zero-mean

BGMM with p1 = 0.9, σ1 = 0.5, and σ2 = 0.7; (c) Membership weights and (d) the

relative kurtosis error of a zero-mean BGMM with p1 = 0.9, σ1 = 0.5, and σ2 = 1.5.

xlp and xrp are the core-tail transition points. The two intersection points of s1(x)

and s2(x) are marked with blue and red solid points.

According to the convex property of s2(x), the value of s2(x) will exceed 0.5 and

increase monotonically as the data point moves away from xR
intersect to ∞ (or from

xL
intersect to −∞). Meanwhile, s1(x) will decrease monotonically and eventually go to

zero. This trend indicates that the 2nd Gaussian component dominants the region

x ∈
(
−∞, xL

intersect

]
∪
[
xR
intersect,∞

)
.
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However, the dominance relationship in the region x ∈
[
xL
intersect, x

R
intersect

]
is more

complicated than that in the region x ∈
(
−∞, xL

intersect

]
∪
[
xR
intersect,∞

)
. Although

s2(x) monotonically decreases when x gradually moves to the center, s2(x) will not be

reduced to zero, which indicates that the impacts of the 2nd Gaussian component in

the region x ∈
[
xL
intersect, x

R
intersect

]
cannot be ignored. To quantify the impacts of the

2nd Gaussian component on the tailedness of the BGMM distribution, we calculate

the kurtosis, a measure of tailedness, of the doubly truncated zero-mean BGMM and

compare it with the kurtosis of doubly truncated standard normal distribution [77,78].

Specifically, we randomly generate Nt = 10, 000 samples from the zero-mean BGMM

and truncate samples smaller than xL
t or larger than xR

t , where xL
t < 0 and xR

t > 0

are the truncation points. The truncation rate γt is defined by

γt = 1− nt

Nt

, (4.18)

where nt is the number of samples in [xL
t , x

R
t ]. Then we calculate the kurtosis of

samples within [xL
t , x

R
t ] by

kBGMM(x
L
t )=

1
nt

∑
xi∈[xL

t ,x
R
t ](xi − x̄)4[

1
nt

∑
xi∈[xL

t ,x
R
t ](xi − x̄)2

]2 , (4.19)

where x̄ is the mean of samples within [xL
t , x

R
t ]. The corresponding truncation points

of the standard normal distribution can be calculated by

xL
normal=Q−1

(γt
2

)
xR
normal=− xL

normal ,

(4.20)

where Q−1(·) is the quantile function of the standard normal distribution. Equation

(4.20) ensures that the doubly truncated standard normal distribution has the same

truncation rate as the doubly truncated zero-mean BGMM. Similarly, we generate

Nt = 10, 000 samples from the standard normal distribution and calculate the kurtosis

of the truncated distribution by setting xL
normal and xR

normal as the truncation points.

The kurtosis of the doubly truncated standard normal distribution is denoted as
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knormal(x
L
t ). We then calculate the relative error between kBGMM(x

L
t ) and knormal(x

L
t )

by

ek(x
L
t ) =

kBGMM(x
L
t )− knormal(x

L
t )

knormal(xL
t )

, (4.21)

and plot its value against xL
t in Figure 4.1.

Figure 4.1b shows the relative kurtosis error in the case of BGMM with p1 = 0.9, σ1 =

0.5, and σ2 = 0.7. The relative kurtosis error is within the ±5% error region when

xL
t ≥ xL

intersect, indicating that samples in the core region x ∈
[
xL
intersect, x

R
intersect

]
show

similar tailedness with the truncated standard normal distribution. This indicates

that xL
intersect could be a good core-tail transition point since the core region x ∈[

xL
intersect, x

R
intersect

]
is less affected by the 2nd Gaussian component. However, the

situation becomes different in the case of BGMM with p1 = 0.9, σ1 = 0.5, and σ2 =

1.5, as shown in Figure 4.1d. The relative kurtosis error is 14% when xL
t = xL

intersect =

−1.36, and this value slowly decreases to 5% until xL
t increases to −1. If we adopt

xL
intersect as the core-tail transition point, the core region could be severely affected

by the 2nd Gaussian component, making it difficult to distinguish the dominance

relationship in the core region. Therefore, it is more beneficial to use the truncation

point with 5% relative kurtosis error as the core-tail transition point. In summary,

we use the following rules to choose the core-tail transition point

xlp =

xL
intersect if |ek(xL

intersect)| ≤ α

xL
t s.t. ek(x

L
t ) = α if |ek(xL

intersect)| > α

, (4.22)

xrp = −xlp , (4.23)

where α is the partition parameter. We define [xlp, xrp] as the core region and

(−∞, xlp] ∪ [xrp,∞) as the tail region. In this work, we choose α = 0.05.
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4.3.3 Principal Gaussian overbound

In this section, we propose the PGO based on the scaling and shifting of the dominant

Gaussian component of the BGMM in the tail and core regions. The PDF of the PGO

takes the following form:

fo(x) =

(1 + k) (1− p1) fN (x; 0, σ2) |x| > xrp

p1fN (x; 0, σ1) + c |x| ≤ xrp

, (4.24)

where k is the scaling parameter, and c is the shifting parameter. The remainder of

this section illustrates the construction of PGO.

4.3.3.1 Tail region bounding

In the tail region, the BGMM is dominated by the 2nd Gaussian component. There-

fore, the 2nd Gaussian component, along with its mixture weight, is taken as the

basis for bounding the tail region. In addition, compensation is needed to account

for the contribution of the 1st component in the tail region. An intuitive approach of

the CDF overbound at the left tail region is shown as follows:

GL
o (x) = p1G (xlp; 0, σ1) + (1− p1)G (x; 0, σ2) ∀x < xlp , (4.25)

where G (x; 0, σ1) and G (x; 0, σ2) are the CDF of the 1st and 2nd Gaussian com-

ponent, respectively; and G (xlp; 0, σ1) is the CDF of the 1st Gaussian component

evaluated at xlp. Let G(x) be the CDF of the BGMM defined in Equation (4.11),

GL
o (x)−G(x) = GL

o (x)−
(
p1G (x; 0, σ1) + (1− p1)G (x; 0, σ2)

)
= p1

(
G (xlp; 0, σ1)−G (x; 0, σ1)

)
.

(4.26)

Since x < xlp, we have G (xlp; 0, σ1) − G (x; 0, σ1) > 0. Therefore, GL
o (x) is the

CDF overbound of the BGMM at the left tail region. However, the CDF overbound

in Equation (4.25) includes a constant term, p1G (xlp; 0, σ1), which is defined in an
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unbounded interval. This poses a challenge in deriving the PDF of the overbound

distribution, which is necessary for convolution purposes.

We notice that p1G (xlp; 0, σ1) in Equation (4.25) is a constant term, which could be

compensated by inflating the weight of the 1st Gaussian component, i.e., G (x; 0, σ2)

in Equation (4.25). Therefore, we introduce the scaling parameter k into Equation

(4.25) as follows:

GL
o (x) = (1 + k) (1− p1)G (x; 0, σ2) ∀x < xlp . (4.27)

We need to determine the value of k so that Equation (4.27) is a CDF overbound.

Let Equations (4.25) and (4.27) produce the same value at xlp, the value of k can be

determined by

k =
p1G (xlp; 0, σ1)

(1− p1)G (xlp; 0, σ2)
. (4.28)

Appendix A.4 gives proof that GL
o (x) in Equation (4.27) is the CDF overbound at

the left tail region. The PDF of the overbound distribution at the left tail region can

be derived by taking the derivative of Equation (4.27) as

fL
o (x) = (1 + k) (1− p1) fN (x; 0, σ2) ∀x < xlp . (4.29)

Similarly, the PDF of the overbound distribution at the right tail region can be written

as

fR
o (x) = (1 + k) (1− p1) fN (x; 0, σ2) ∀x > xrp . (4.30)

4.3.3.2 Core region bounding

In the core region, the BGMM is dominated by the 1st Gaussian component, as illus-

trated in Section 4.3.2. Nevertheless, the contribution of the 2nd Gaussian component

to the probability distribution in the core region is not negligible. Therefore, we in-

troduce a constant term c to compensate for such a contribution when developing the

overbound distribution in the core region, as shown below:

f core
o (x) = p1fN (x; 0, σ1) + c ∀xlp ≤ x ≤ xrp , (4.31)
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To determine the value of c, we calculate the CDF of f core
o (x) through integration as

follows:

Gcore
o (x) =

∫ xlp

−∞
fL
o (x) dx+

∫ x

xlp

f core
o (x) dx (4.32a)

= GL
o (xlp) + c (x− xlp) + p1

(
G (x; 0, σ1)−G (xlp; 0, σ1)

)
(4.32b)

= p1G (x; 0, σ1) + c (x− xlp) + (1− p1)G (xlp; 0, σ2) . (4.32c)

Let Gcore
o (0) = G(0), the value of c is determined by

c =
(1− p1)

(
G (xlp; 0, σ2)− 0.5

)
xlp

. (4.33)

To prove that Gcore
o (x) is the CDF overbound in the core region, we calculate the

difference between Gcore
o (x) and G(x) as follows:

∆G(x) = Gcore
o (x)−G(x)

=
[
p1G (x; 0, σ1) + c (x− xlp) + (1− p1)G (xlp; 0, σ2)

]
−
[
p1G (x; 0, σ1) + (1− p1)G (x; 0, σ2)

]
= c (x− xlp)− (1− p1)G (x; 0, σ2) + (1− p1)G (xlp; 0, σ2) .

(4.34)

The first and second derivatives of ∆G(x) can be obtained by

∆G(x)
′
= c− (1− p1) fN (x; 0, σ2) (4.35a)

∆G(x)
′′
=

1− p1

σ2
2

√
2π

x exp

(
−1

2

(
x

σ2

)2
)
. (4.35b)

When xlp ≤ x < 0, ∆G(x)
′′
is negative over the domain, indicating that ∆G(x) is

a concave function. We further examine the sign of ∆G(x) at the two endpoints as

follows:

∆G (xlp) = 0 (4.36a)

∆G(0) = Gcore
o (0)−G(0) = 0 . (4.36b)

According to the definition of the concave function, for any ω ∈ [0, 1], the following

equation holds:

∆G
(
(1− ω)xlp + ω × 0

)
≥ (1− ω)∆G (xlp) + ω∆G(0) = 0 . (4.37)
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It is equivalent to saying that

∆G(x) ≥ 0 ∀xlp ≤ x < 0 . (4.38)

Similarly, when 0 < x ≤ xrp, ∆G(x)
′′
is positive over the domain, which means that

∆G(x) is a convex function. The sign of ∆G(x) at xrp is examined as follows:

∆G (xrp) c (xrp − xlp)− (1− p1)G (xrp; 0, σ2) + (1− p1)G (xlp; 0, σ2) . (4.39)

By substituting Equations (4.23), (4.33) and G (xrp; 0, σ2) = 1 − G (xlp; 0, σ2) into

Equation (4.39), we can obtain that ∆G (xrp) = 0. According to the definition of the

convex function, we have

∆G(x) ≤ 0 ∀0 ≤ x ≤ xlp . (4.40)

Combining Equations (4.38) and (4.40), we can conclude that Gcore
o (x) is the CDF

overbound of G(x) at the core region.

The PGO of the BGMM with p1 = 0.9, σ1 = 0.5, and σ2 = 1.5 is plotted in Figure

4.2. In this example, the parameters of the PGO are computed as k = 0.5881 and

c = 0.0245. In addition, the two-step Gaussian overbound [65] is also depicted for

comparison. The plot reveals that the PDF and CDF of the PGO are closely aligned

with those of BGMM in both the tail and core regions, compared to those of the two-

step Gaussian overbound. The thumbnail in Figure 4.2a illustrates the distribution

of the PGO in the vicinity of the core-tail transition point, where the PDF of the

PGO is not continuous at the transition point. Although the leap of PDF at the

transition point is not negligible (calculated to be 0.06 through Equation (4.24)), the

CDF of the PGO appears exceptionally smooth near the core-tail transition point, as

displayed in the thumbnail of Figure 4.2b.

4.3.3.3 Sigma inflation

Equation (4.24) gives the overbound of the zero-mean BGMM distribution; however,

in the application of bounding arbitrary error distributions, samples may not be well
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Figure 4.2: The (a) PDF and (b) CDF of the Principal Gaussian overbound of a

zero-mean bimodal Gaussian mixture model with p1 = 0.9, σ1 = 0.5, and σ2 = 1.5.

The two-step Gaussian overbound is plotted for comparison.

characterized by the zero-mean BGMM distribution. In such a case, the PGO may

not provide an overbound for these samples. These unbounded samples usually occur

in the tails of the error distribution. This is because samples in the central region

usually exhibit a higher likelihood, and therefore the EM algorithm would prioritize

the fitting performance of these central-region samples. In this section, we propose

to inflate the tail of the PGO to tackle these unbounded samples.

The most straightforward approach is to increase σ2. In the meanwhile, we have to

ensure that the inflated PGO is the overbound of the before-inflation PGO and, thus,

fitted zero-mean BGMM. Define σ∗
2 as the inflated σ2, and we have

σ∗
2 = τ2σ2 , (4.41)

where τ2 > 1 is the tail inflation factor. Then, the inflated tail bound can be written

by

GL∗
o (x)= (1 + k∗) (1− p1)G (x; 0, σ∗

2) ∀x < xlp (4.42a)

k∗=
p1G (xlp; 0, σ1)

(1− p1)G (xlp; 0, σ∗
2)

, (4.42b)
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where k∗ is the new scaling parameter. Since σ∗
2 > σ2, we have G (xlp; 0, σ

∗
2) >

G (xlp; 0, σ2) and thus k∗ < k. Therefore, it is difficult to compare the magnitude of

GL∗
o (x) and GL

o (x). A naive solution is to make k∗ = k by scaling σ1 to σ∗
1, as shown

below
p1G (xlp; 0, σ

∗
1)

(1− p1)G (xlp; 0, σ∗
2)

=
p1G (xlp; 0, σ1)

(1− p1)G (xlp; 0, σ2)
. (4.43)

Indeed, Equation (4.43) is satisfied only when σ∗
1 is larger than σ1.

We further check the bounding conditions in the core region by examining Equation

(4.32c) when x < 0. The first term p1G(x; 0, σ1) and the third term (1−p1)G(xlp; 0, σ2)

in Equation (4.32c) will increase with the inflation in σ1 and σ2. The second term

c(x− xlp) in Equation (4.32c) can be re-written by

c(x− xlp) =
(1− p1)

(
G (xlp; 0, σ2)− 0.5

)
(x− xlp)

xlp

, (4.44)

where xlp ≤ x < 0 and 1 − p1 > 0. The inflation in σ2 will increase the value of

G(x; 0, σ2), thus enlarging c(x − xlp). Therefore, Gcore∗
o (x) with inflated σ2 is larger

than Gcore
o (x). In summary, the inflated PGO has the following property when x < 0,GL∗

o (x) > GL
o (x) ∀x < xlp

Gcore∗
o (x) > Gcore

o (x) ∀xlp ≤ x < 0 ,

(4.45)

indicating that the inflated PGO is the overbound of the before-inflation PGO and,

thus, the fitted BGMM.

In addition, unbounded samples may also occur in the core region, although such

cases are rare. A slightly different inflation strategy could be applied. We only inflate

the core of the PGO to bound these samples. Define σ∗
1 as the inflated σ1, and we

have

σ∗
1 = τ1σ1 , (4.46)

where τ1 > 1 is the core inflation factor. The inflation of σ1 only affects the value of

G(x; 0, σ1) in Gcore
o (x) and k in GL

o (x). Actually, both G(x; 0, σ1) and k are increased

by inflating σ1, thereby enlarging the value of Gcore
o (x) and GL

o (x) when x < 0. As
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a result, the same conclusion as in Equation (4.45) can be drawn. Our inflation

strategies in both tail and core regions can ensure the preservation of overbounding

properties with respect to the fitted BGMM.

The inflation of σ2 and σ1 can be realized by an iterative approach. In each iteration,

we inflate σ2 or σ1 according to the violation of bounding conditions with a small

and fixed inflation factor. Based on the inflated PGO, all samples are examined for

the violation of bounding conditions. The iteration process will stop once all samples

are CDF overbounded by the inflated PGO. The pseudocode of the sigma inflation

strategy is given in Algorithm 1. In addition, Algorithm 2 summarizes the steps for

implementing PGO.

Algorithm 1 Sigma Inflation
Input:

Empirical CDF of Samples: Gn(x)

Parameters of the before-inflation PGO: p1, σ1, σ2, xlp, xrp

Output:

Inflated sigma: σ∗
1 , σ

∗
2

1: Initialize the inflation factor: τ1 = 1.01, τ2 = 1.01

2: Core condition: Ξcore ← Gcore
o (x) ≥ Gn(x) ∀xlp < x < 0 AND Gcore

o (x) ≤ Gn(x) ∀0 < x < xrp

3: Tail condition: Ξtail ← GL
o (x) ≥ Gn(x) ∀x ≤ xlp AND GR

o (x) ≤ Gn(x) ∀x ≥ xrp

4: while Ξcore is false OR Ξtail is false do

5: if Ξcore is false then

6: σ1 ← τ1 ∗ σ1

7: end if

8: Update the tail condition Ξtail with the latest PGO parameter

9: if Ξtail is false then

10: σ2 ← τ2 ∗ σ2

11: σ1 ← Equation (4.43)

12: end if

13: Update the core condition Ξcore with the latest PGO parameter

14: Update the tail condition Ξtail with the latest PGO parameter

15: end while

16: σ∗
1 ← σ1, σ

∗
2 ← σ2
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Algorithm 2 Implementation of Principal Gaussian Overbound
Input:

Error data: X = {x1, x2, · · · , xn}
Partition parameter: α

Output:

Parameters of PGO: p1, σ
∗
1 , σ

∗
2 , xlp, xrp

1: Fit a BGMM

f(x) = p1fN (x; 0, σ1) + (1− p1) fN (x; 0, σ2)

← Employ EM algorithm with X

2: xlp, xrp ← Dominance partition by Equations (4.22), (4.23)

3: k ← Calculate the scaling parameter by Equation (4.28)

4: c← Calculate the shifting parameter by Equation (4.33)

5: σ∗
1 , σ

∗
2 ← Algorithm 1 with p1, σ1, σ2, xlp, xrp

4.3.4 Preservation of overbounding property

In GNSS positioning, it is essential to project the range-domain error to the position-

domain error as it allows us to estimate the accuracy of the positioning results ob-

tained from GNSS measurements. In this process, the convolution operation is con-

ducted. In this section, we use DeCleene’s theorem [63] to prove that the overbound-

ing property of the PGO can be preserved through convolution.

Given that Goa(x) and Gov(x) are the overbound distribution of the error distribution

Ga(x) and Gv(x), respectively, it is essential for the overbound distribution to have

the following property:

Goa+ov(x) overbound Ga+v(x) , (4.47)

where

Goa+ov(x) =

∫ x

−∞
foa(x) ∗ fov(x) dx (4.48a)

Ga+v(x) =

∫ x

−∞
fa(x) ∗ fv(x) dx (4.48b)

and ∗ denotes the convolution operation.

DeCleene proves that the above property is established if Goa(x), Gov(x), Ga(x), and

Gv(x) are all unimodal and symmetric distributions [63].
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In this work, the zero-mean BGMM in Equation (4.11) and the PGO in Equation

(4.24) are inherently symmetric distributions. Therefore, we only need to prove the

unimodality of these distributions. The first derivative of the PDF of the zero-mean

BGMM is given by

f
′
(x) = − x

σ2
1

· p1fN (x; 0, σ1)−
x

σ2
2

· (1− p1) fN (x; 0, σ2) . (4.49)

Clearly,

f
′
(x) > 0 ∀x < 0, f

′
(0) = 0, f

′
(x) < 0 ∀x > 0 . (4.50)

Therefore, the zero-mean BGMM is a unimodal distribution.

For the PGO, Appendix A.5 proves that fo(x) is a monotonically increasing function

when x < 0. According to the symmetric property of fo(x), we can conclude that

fo(x) is a monotonically decreasing function when x ≥ 0. Therefore, fo(x) is a

unimodal function. This ends the proof that the overbounding property of the PGO

is preserved through convolution.

4.3.5 Numerical consideration of convolution

4.3.5.1 Fourier transform

Equation (4.48a) solves the distribution of the linear combination of random variables

oa and ov through convolution. Since the two random variables represent the PGO,

which is defined as a piecewise function in Equation (4.24), the convolution operation

can be a challenging task due to the complexity of the function. However, the Fourier

transform (FT) [79] provides an alternative way to compute the convolution. Consider

a linear combination of a set of independent random variables Y1, Y2, · · · , Yn as follows:

Y =
n∑

i=1

aiYi (4.51)

where ai, i = 1, 2, · · · , n is the coefficient. The random variable Yi could be the PGO

or other symmetric overbounds with a zero mean, such as the zero-mean Gaussian
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overbound. The distribution of Y is given by

fY (x) = fỸ1
(x) ∗ fỸ2

(x) ∗ . . . ∗ fỸn
(x) , (4.52)

where

fỸi
(x) =

1

|ai|
fY1

(
x

|ai|

)
(4.53)

and fYi
(x) is the PDF of the random variable Yi. The proof is detailed in Appendix

A.6. According to the convolution theorem, the FT of fY (x) can be expressed by

F (fY (x)) = F
(
fỸ1

(x)
)
· F
(
fỸ2

(x)
)
· . . . · F

(
fỸn

(x)
)
, (4.54)

where F(·) is the Fourier transform operator and · denotes the point-wise multipli-

cation. The distribution of fY (x) is recovered by the inverse Fourier transform (IFT)

as follows:

fY (x) = F−1
(
F
(
fỸ1

(x)
)
· F
(
fỸ2

(x)
)
· . . . · F

(
fỸn

(x)
))

. (4.55)

In practice, the FT and IFT are realized by discrete Fourier transform (DFT) and its

inverse (IDFT) [79], respectively, which means the PDF fỸi
(x) should be discretized.

According to DeCleene’s theorem [63], the discrete model should be the overbound

for the continuous distribution it replaces. However, the discretization strategy that

directly samples the PDF at equal intervals cannot guarantee the preservation of

overbounding properties. Therefore, we propose an alternative discretization strategy,

as illustrated in the next section.

4.3.5.2 Discretization satisfying overbounding

Inspired by the discrete overbounding model proposed in [80], we propose to discretize

the CDF related to fỸi
(x), which can be formalized as follows:

FỸi
(x)=

∫ x

−∞
fỸi

(x)dx =

∫ x

−∞

1

|ai|
fYi

(
x

|ai|

)
dx

=FYi

(
x

|s3,i|

)
,

(4.56)
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where FYi
(x) is the CDF related to fYi

(x). The discretization process can be regarded

as constructing a discretized overbound distribution for FỸi
(x). Specifically, Let 2L−1

be the length of the discretized sequence, and T be the sampling interval (unit: meter),

and then we can (almost) equally divide the domain of FỸi
(x) into 2L intervals,

including (−∞, x1), [x1, x2), ..., [x2L−2, x2L−1), and [x2L−1,∞), where xk = (k −

L)T, k = 1, 2, · · · , 2L− 1. The discretization results are shown in Figure 4.3a, where

each interval has equal length T except the first and the last interval. The discrete

CDF overbound of FỸi
(x) is formalized as a piecewise function as follows:

FD,Ỹi
(x) =



FỸi
(x) if x < x1

FỸi
(xk+1) if xk ≤ x < xk+1, 1 ≤ k < L− 1

FỸi
(xk) if xk ≤ x < xk+1, L− 1 ≤ k < 2L− 2

FỸi
(x) if x ≥ x2L−1

. (4.57)

As can be seen, the discrete model FD,Ỹi
(x) is the overbound for the continuous model

FỸi
(x). The probability mass function (PMF) of FD,Ỹi

(x) can be calculated by

pD,Ỹi
(x) =


FD,Ỹi

(x1)− FD,Ỹi
(x1) if x = x1

FD,Ỹi
(xk)− FD,Ỹi

(xk−1) if x = xk, 1 < k ≤ 2L− 1

0 otherwise

, (4.58)

which has a discrete nature. The discretization process is completed by evaluating

pD,Ỹi
(x) at the 2L− 1 points as follows:

DỸi
[k] = pD,Ỹi

(xk), k = 1, 2, · · · , 2L− 1 . (4.59)

Then, the PMF of Y in the discretized form can be obtained by the discrete convo-

lution as follows:

DY [k] =
(
DỸ1
∗DỸ2

∗ . . . ∗DỸn

)
[k] . (4.60)
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By taking the discrete convolution theorem, DY [k] can be computed as

DY [k] = F−1
D

(
FD

(
DỸ1

)
· FD

(
DỸ2

)
· . . . · FD

(
DỸn

) )
, k = 1, 2, · · · , Lo

Lo = k × (2L− 2) + 1 ,
(4.61)

where FD(·) and F−1
D (·) denote the DFT and IDFT [79], respectively. Note that the

length of DY [k] is extended to n × (2L − 2) + 1. This is because the length of the

resulting sequence in the convolution is given by L1 + L2 − 1, where L1 and L2 are

the lengths of two input sequences, respectively. In addition, the convolution process

does not change the sampling interval; therefore, the distance of the domain of any

two adjacent elements in DY [k] is T , which is the same as that in DỸi
[k]. The DFT

is usually implemented by the fast Fourier transform algorithm [81] in the modern

software solution or even dedicated hardware, whose computational complexity is

only O ((Le)log(Le)), where Le is the length of the input sequence and Le = 2L − 1

in our case.
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Figure 4.3: Demonstrations of (a) the discretization process and (b) the quantile

searching process. The shaded area in (b) shows the cumulative probability from t1

to tm−1.
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4.3.5.3 Finding the Quantile

In integrity monitoring research, finding the quantile of the distribution of test statis-

tics or the positioning error is essential to determine the detection threshold or the

protection level. These distributions are usually the results of convolutions of over-

bounds of measurement errors, which can be calculated by methods developed in

Sections 4.3.5.1 and 4.3.5.2. This section shows how to calculate the quantile of the

resultant discrete distribution in Equation (4.61). Specifically, the discrete sequence

DY [k] in Equation (4.61) can be interpreted as the PMF evaluated at tk = (k−Lo+1
2

)T .

Here we use a different notation t to represent the domain of DY [k] without loss of

generality. The quantile function Q−1
Y (α) with 0 < α < 1 can be obtained by finding

the index m ∈ {1, . . . , Lo} that satisfies the following conditions:

m−1∑
k=1

DY [k] < α

m∑
k=1

DY [k] ≥ α ,

(4.62)

where
∑m−1

k=1 DY [k] is the cumulative probability from t1 to tm−1, as shown in Figure

4.3b. The quantile function is given by

Q−1
Y (α) = tm−1 =

(
(m− 1)− Lo + 1

2

)
T . (4.63)

4.4 Bounding Performance of SISRE

In Section 3.4.1 and Section 3.4.2, we depict the QQ plot of SISREUPE for each

GPS and Galileo satellite, where significant differences are observed among satel-

lites. Three categories of SISREUPE distributions have been identified as follows:

1) Two-side heavy-tailed SISREUPE; 2) One-side heavy-tailed SISREUPE; and 3)

Gaussian-liked SISREUPE. In this section, we analyze the bounding performance of

the proposed PGO on these three types of SISREUPE distributions. For each error
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type, we select one typical satellite from each constellation for detailed analysis. The

proposed method is compared with the following two methods:

1. Gaussian overbound: the overbound method used in baseline ARAIM [20,63];

2. Gaussian-Pareto overbound: a recently developed core overbounding method

that bounds the core part of the error with Gaussian distribution and bounds

the tail part with the generalized Pareto distribution [68].

4.4.1 Two-side heavy-tailed SISRE

In this section, GPS satellite SVN63 and Galileo satellite GSAT0206 are chosen for

analysis. Figure 4.4a shows the folded CDF of SISREUPE for GPS satellite SVN63,

which exhibits significant heavy tails on both sides. The folded CDF of the Gaussian

overbound, Gaussian-Pareto overbound, and the proposed PGO are plotted in Figure

4.4a, and the fitted BGMM of the SISREUPE is also plotted for comparison. As can

be seen, the proposed PGO exhibits a tighter bound than the Gaussian overbound in

both the core and tail regions of the error distribution. The PGO exhibits a slightly

tighter bound than the Gaussian-Pareto overbound in the core region. However,

the Gaussian-Pareto overbound shows the sharpest bound at the left tail region.

This is because the Gaussian-Pareto overbounding method divides the samples into

two individual parts (core and tail parts) and bounds each part separately. In the

tail part bounding, the Gaussian-Pareto overbounding method uses the generalized

Pareto distribution, which is especially suitable for modeling extreme tails that extend

beyond the range of available data [68]. The PGO only shows moderate bounding

performance at the left tail region. However, the PGO has its own advantages in that

its overbounding property can be preserved through convolution, which is essential

in the range-to-position projection process and the calculation of PLs. It is worth

noting that the fitted BGMM fails to overbound the error distribution, as shown in

the regions of x ∈ [−15m,−2m] and x ∈ [2m, 15m] in Figure 4.4a. This is because
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the fitted BGMM can only fit the overall pattern of the error distribution and is not

guaranteed to bound the error distribution.

(a) (b)

Figure 4.4: The folded CDF of SISREUPE and its bounding results for (a) GPS

satellite SVN63; and (b) Galileo satellite GSAT0206.

Figure 4.4b shows the folded CDF of SISREUPE for Galileo satellite GSAT0206.

Similar to GPS satellite SVN63, GSAT0206 has a two-side heavy-tailed SISREUPE.

However, the SISREUPE of Galileo satellite GSAT0206 has a narrower core than that

of GPS satellite SVN63. In addition, the maximum absolute SISREUPE reaches 26m,

which is around 73% larger than that observed in the SVN63’s SISREUPE (15m in

this case). This finding suggests that the SISREUPE of GSAT0206 has heavier tails

than that of SVN63. In this condition, the Gaussian-Pareto overbound has the best

performance in bounding the core region. However, the Gaussian-Pareto overbound

experiences a significant performance degradation when the folded CDF is down to

10−4 in the left tail region and 10−3 in the right tail region. The proposed PGO

shows moderate bounding performance at the core region, which has a tighter bound

than the Gaussian overbound but not as tight as the Gaussian-Pareto overbound. In

the tail region, the proposed PGO keeps producing tighter bounds than the Gaussian

overbound. In summary, the proposed PGO shows the most competitive performance

in bounding SISREUPE of Galileo satellite GSAT0206.
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4.4.2 One-side heavy-tailed SISRE

In this section, GPS satellite SVN66 and Galileo satellite GSAT0212 are chosen for

analysis. Figures 4.5a and 4.5b depict the SISREUPE distribution of these two satel-

lites in the folded CDF view, respectively. SVN66’s SISREUPE has a left-side heavy

tail, while GSAT0212’s SISREUPE has a right-side heavy tail. Though different from

the two-side heavy-tailed case in Section 4.4.1, the SISREUPE of the Galileo satellite

still has a narrower core than that of the GPS satellite. Since the Gaussian overbound

and the proposed PGO have a symmetric form, their tail-bounding results are mostly

determined by the errors on the heavy-tailed side. As can be seen, the PGO and

the Gaussian overbound closely align with the right-tail errors in Figure 4.5a and the

left-tail errors in Figure 4.5b. As a result, the PGO and the Gaussian overbound ex-

hibit loose bounds on the light-tailed side. Nevertheless, the PGO consistently yields

a tighter bound than the Gaussian overbound at all error values in both Figure 4.5a

and Figure 4.5b.

(a) (b)

Figure 4.5: The folded CDF of SISREUPE and its bounding results for (a) GPS

satellite SVN66; and (b) Galileo satellite GSAT0212.

The Gaussian-Pareto overbound is not limited to a symmetric form, and therefore

its bounding results are determined by the errors on each side separately, producing
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asymmetry bounding results. While the Gaussian-Pareto overbound provides tight

bounds in the core region, it is intentionally conservative in the far tail regions to ac-

count for the uncertainty envelope around the empirical distribution [68]. In addition,

the asymmetry in Gaussian-Pareto overbounds can cause difficulties in preserving the

overbounding properties after convolution, making it impossible to calculate the PL.

This, on the other hand, highlights the benefits of applying the proposed method to

bound the heavy-tailed distribution, as it enables the computation of PL for integrity-

assured applications.

4.4.3 Gaussian-like SISRE

In this section, only the GPS satellite is chosen for analysis, as there is no Gaussian-

like SISREUPE in the Galileo satellites. Specifically, we choose SISREUPE of GPS

satellite SVN46 for analysis. Figure 4.6 shows the distribution of SISREUPE and

the bounding results of three methods. As can be seen, the error distribution is not

significantly heavy-tailed, which is also suggested by the QQ plot in Figure 3.8. In this

situation, there seems to be no significant difference among the three overbounding

methods. Therefore, it is recommended to use the Gaussian overbound when the error

distribution does not exhibit heavy-tailed properties, as the Gaussian overbound has

fewer parameters to determine.
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(a)

Figure 4.6: The folded CDF of SISREUPE and its bounding results for GPS satellite

SVN46.

4.4.4 Bounding parameters for individual satellites

Tables 4.1 and 4.2 give the bounding parameters of the Gaussian overbound and the

PGO for GPS and Galileo SISRE, respectively. The 1-sigma Gaussian overbound

of GPS SISRE varies significantly, with an average of 1.67m. This is because the

SISRE of some GPS satellites exhibits heavy-tailed properties while the others have

Gaussian-like behavior, as revealed in Section 3.4.1. This difference is also reflected

in the PGO parameters, where the heavy-tailed SISRE featured with a large gap

between σ1 and σ2, and the Gaussian-liked SISRE has a smaller deviation between

σ1 and σ2.

For the Galileo satellites, the 1-sigma Gaussian overbound of SISRE has a smaller

variation, with an average of 5.58m. This value aligns closely with the Galileo broad-

cast URA parameter, σURA = 6m, as defined in Galileo OS-SDD [62]. Since the

SISRE of all Galileo satellites exhibits significant heavy-tailed properties, the Galileo

broadcast URA parameter is likely to provide an extremely conservative bound for the

SISRE. The impacts of such conservatism will be further discussed in Chapter 5 and
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Chapter 6. For the PGO parameters, all Galileo satellites exhibit a high consistency,

where σ2 is significantly larger than σ1, and the p1 is larger than 0.98.

4.5 Non-Gaussian Nominal Error Bounds of Code

IF Combination

The measurement error of the code IF combination is given in Equation (2.11), which

consists of the range projection of clock and orbit error, tropospheric error, and

multipath and code noise. The nominal error bound of the code IF combination

regarding the satellite i and the receiver j can be formalized as follows:

Gi
ϱ,j,IF,acc(x) =

∫ x

−∞
f i
ϱ,j,IF,acc(x) dx (4.64a)

f i
ϱ,j,IF,acc(x) = f i

orb&clk,PGO(x) ∗ f i
tropo,j,ob(x) ∗ f i

ϱ,user,j,IF,ob(x) , (4.64b)

where f i
orb&clk,PGO(x) is the PGO of the range projection of clock and orbit error,

whose parameters are given in Tables 3.3 and 3.4; f i
tropo,j,ob(x) is the Gaussian over-

bound of the tropospheric error with a zero mean and the standard deviation defined

in Equation (2.14); f i
ϱ,user,j,IF,ob(x) is the Gaussian overbound of the multipath and

code noise with a zero mean and the standard deviation defined in Appendix A.1.

The nominal error bound in Equation (4.64) is developed for accuracy evaluation

and fault detection purposes (as will be exploited in Chapter 5), which does not

consider error sources that introduce biases in the distributions. However, to protect

the integrity, the bound also needs to consider nominal signal deformation errors.

These events usually alter the range projection of orbit and clock error distribution,

moving its median away from the origin. For integrity purposes, the pair overbounding

method [64] introduced the bnom to establish a symmetric error envelope, which is

formed by two equally shifted Gaussian distributions. The nominal error bound

for accuracy in Equation (4.64) could be obtained by simply integrating the same
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principle as follows:

Gi
ϱ,j,IF,int(x) =



∫ x

−∞ f i
ϱ,j,IF,acc(x+ bnom,i) dx if Gv(x) <

1
2

1
2

otherwise∫ x

−∞ f i
ϱ,j,IF,acc(x− bnom,i) dx if Gv(x) >

1
2

, (4.65)

where Gv(x) is the empirical distribution of measurement errors of the code IF com-

bination. In [82], bnom is recommended to take 0.75m to conservatively bound the

impacts of nominal signal deformations. The above modification simply results in

broader margins for the error distributions to account for signal distortion events.

According to [64], the overbounding properties of the bound in Equation (4.65) can

still be preserved through convolution. Now, the nominal error bound in Equation

(4.65) is developed for integrity, which will be exploited in Chapter 6.
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Table 4.1: Parameters of the Gaussian overbound and the Principal Gaussian

overbound of SISREUPE for each GPS satellite (unit: m)

Gaussian PGO

SVN Type1 σ σ1 σ2 p1 xrp

SVN41 O 1.136 0.403 1.343 0.918 0.948

SVN43 T 1.113 0.432 1.195 0.762 0.906

SVN44 T 4.052 0.595 4.425 0.628 1.103

SVN45 O 1.778 0.425 2.226 0.955 1.157

SVN46 G 0.818 0.413 0.780 0.787 0.884

SVN47 G 0.521 0.351 0.612 0.861 0.835

SVN48 G 0.780 0.414 0.804 0.535 0.611

SVN50 G 0.574 0.411 0.691 0.977 1.493

SVN51 O 2.518 0.385 3.211 0.973 1.042

SVN52 G 0.703 0.427 0.765 0.716 0.893

SVN53 O 2.245 0.540 2.426 0.624 1.074

SVN55 G 0.873 0.310 0.998 0.891 0.763

SVN56 G 0.680 0.382 0.815 0.956 1.120

SVN57 O 1.080 0.471 1.333 0.806 0.790

SVN58 O 2.998 0.372 3.998 0.983 1.136

SVN59 G 0.616 0.297 0.544 0.783 0.667

SVN61 T 0.753 0.321 0.837 0.788 0.684

SVN62 O 0.694 0.355 0.835 0.961 1.046

SVN63 T 3.487 0.419 4.425 0.970 1.073

SVN64 O 1.495 0.390 2.050 0.985 1.155

SVN65 T 3.570 0.353 3.901 0.574 0.669

SVN66 O 3.084 0.363 3.968 0.970 0.963

SVN67 G 0.540 0.292 0.600 0.840 0.649

SVN68 T 0.977 0.302 1.170 0.928 0.707

SVN69 T 3.302 0.468 3.908 0.894 1.034

SVN70 T 2.303 0.308 2.959 0.965 0.821

SVN71 T 0.934 0.341 1.112 0.920 0.832

SVN72 G 1.548 1.005 1.441 0.548 0.872

SVN73 T 3.680 0.521 4.110 0.842 1.154

SVN74 O 1.287 0.310 1.602 0.973 0.839

1 “T”: Two-side heavy-tailed; “O”: One-side heavy-tailed; “G”: Gaussian-liked.
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Table 4.2: Parameters of the Gaussian overbound and the Principal Gaussian

overbound of SISREUPE for each Galileo satellite (unit: m)

Gaussian PGO

SVN Type1 σ σ1 σ2 p1 xrp

GSAT0101 T 5.967 0.292 7.717 0.985 0.790

GSAT0102 T 5.758 0.311 7.662 0.984 0.909

GSAT0103 T 6.098 0.289 7.430 0.980 0.752

GSAT0203 T 5.890 0.338 8.278 0.986 0.967

GSAT0205 O 2.333 0.229 2.867 0.984 0.680

GSAT0206 T 5.346 0.236 6.859 0.986 0.717

GSAT0207 O 5.724 0.256 7.188 0.983 0.758

GSAT0208 T 5.687 0.246 7.144 0.985 0.740

GSAT0209 T 5.423 0.232 7.245 0.986 0.682

GSAT0210 T 5.714 0.230 8.783 0.980 0.570

GSAT0211 O 6.197 0.234 7.809 0.984 0.715

GSAT0212 O 5.136 0.250 6.351 0.983 0.725

GSAT0213 T 5.970 0.251 8.416 0.984 0.691

GSAT0214 T 5.561 0.238 6.926 0.983 0.693

GSAT0215 T 5.619 0.238 7.483 0.985 0.694

GSAT0216 T 7.383 0.229 9.264 0.983 0.698

GSAT0217 T 5.518 0.228 7.160 0.986 0.673

GSAT0218 T 5.598 0.229 7.031 0.983 0.676

GSAT0219 T 6.155 0.280 7.761 0.986 0.795

GSAT0220 T 5.000 0.297 6.404 0.985 0.877

GSAT0221 T 5.266 0.269 6.579 0.986 0.799

GSAT0222 T 5.332 0.259 6.663 0.980 0.723

GSAT0223 O 5.521 0.288 7.300 0.988 0.895

GSAT0224 O 5.644 0.275 7.458 0.987 0.860

1 “T”: Two-side heavy-tailed; “O”: One-side heavy-tailed.
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Chapter 5

Fault Detection with Non-Gaussian

Nominal Error Bound

Fault detection is essential for positioning and navigation systems in some safety-

critical applications [15, 83–86], which is the technology to check the occurrence of

faults in the system as well as to determine the time of fault occurs [87]. Most

fault detection methods, such as range comparison method [4], parity space [9, 88],

chi-squared test [2,89], and solution separation [6,16], assume that the nominal mea-

surement error is Gaussian distributed. However, chapter 3 reveals that the SISRE

distribution of GPS and Galileo satellites has heavy tails. The unrealistic Gaussian

assumptions can result in degraded fault detection rates in real-world applications,

limiting the reliability and effectiveness of preventing systems from faults.

In this chapter, a rigorous hypothesis testing method is developed to detect faulty

measurements in navigation systems under non-Gaussian nominal errors by intro-

ducing the jackknife technique, a cross-validation technique in statistics [90,91]. The

basic idea is to quantify the inconsistency between the observed measurement and the

predicted measurement based on subset solutions. Section 5.1 constructs the jack-

knife detector for single fault detection under non-Gaussian nominal errors. Section
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5.2 extends this technique to multi-fault detection. Section 5.3 demonstrates the ex-

cellent performance of the proposed method in a worldwide simulation by comparing

it with the solution separation detector.

5.1 Jackknife Detector for Single Fault Detection

In statistics, the jackknife is a cross-validation technique, initially developed by [92]

and expended and named by [90]. The basic idea of the jackknife technique is to

systematically leave out each observation from a dataset and calculate the parameter

estimate over the remaining observations. Then, these calculations are aggregated

for specific statistical purposes [90, 91]. This section shows how to derive the jack-

knife residual for linearized pseudorange-based positioning systems and develop the

hypothesis test to detect potential faulty measurements.

5.1.1 Full set and subset solutions based on weighted least

square

The proposed method shares the common logic of solution separation to compute

the full set and subset solutions, as shown in Section 2.3.4. To ease the reading, the

linearized measurement model defined in Equation (2.20) is re-written here

y = Gx+ ε . (5.1)

With n measurements, the full set solution x̂t can be solved by the WLS method, as

shown in Equation (2.35):

x̂ = Sy

x̂t = x0 + x̂ ,
(5.2)

where

S = (GTWG)−1GTW . (5.3)
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To obtain the kth subset solution, the measurements with indices i ̸∈ idxex
k are

excluded. In this section, only single faulty measurement is considered, i.e., |idxex
k | =

1. Then the measurement model in Equation (2.20) can be re-written by

y(k,∗) = G(k,∗)x(k) + ε(k,∗) (5.4)

where y(k,∗), ε(k,∗), x(k) and G(k,∗) have the same meaning as that in Equation (2.20)

but are defined on the kth subset. Note that y(k,∗) and ε(k,∗) are (n− 1)× 1 vectors,

x(k) is an m × 1 vector, and G(k,∗) is a (n − 1) ×m matrix. Define the m × (n − 1)

matrix S(k,∗) as the solution matrix on the kth subset

S(k,∗) =
(
G(k,∗)TW(k,∗)G(k,∗)

)−1

G(k,∗)TW(k,∗) , (5.5)

where W(k,∗) is the weight matrix and is constructed by remove the i ∈ idxex
k rows

and columns of W. Here, W(k,∗) has the size of (n − 1) × (n − 1). An alternative

construction of the subset solution matrix is given as follows:

S(k) = (GTW(k)G)−1GTW(k) , (5.6)

where W(k) is a diagonal matrix and is defined as

W
(k)
i,i =

0 if i = k

Wi,i otherwise

. (5.7)

Now, S(k) can operate on the full of measurements. The subsolutions are given by

x̂(k)=S(k)y ∀k = 1 · · ·n (5.8a)

x̂
(k)
t =x0 + x̂(k) ∀k = 1 · · ·n , (5.8b)

where x̂
(k)
t is the estimation of the positioning state x

(k)
t associated with the kth

subset.

5.1.2 Construction of jackknife residual

The predicted kth measurement with the subsolution x̂(k) is given by

ŷk = gkx̂
(k) , (5.9)
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where gk is the kth row ofG. The jackknife residual is given by the difference between

yk and ŷk

tk = yk − ŷk , (5.10)

where yk is the kth element of y.

5.1.3 Distribution of jackknife residual

The predicted measurement vector ŷ(k,∗) based on the subsolution x̂(k) is given by

ŷ(k,∗) = G(k,∗)x̂(k) , (5.11)

where ŷ(k,∗) is a (n−1)×1 column vector and G(k,∗) is a (n−1)×m matrix. Construct

ỹ(k) as follows:

ỹ(k) =


ŷ
(k,∗)
1:k−1,:

ŷk

ŷ
(k,∗)
k:n−1,:

 , (5.12)

where ŷ
(k,∗)
1:k−1,: is the first k−1 rows of ŷ(k,∗) and ŷ

(k,∗)
k:n−1,: is the remaining rows of ŷ(k,∗).

The modified measurement residual is given by

y − ỹ(k)=y −Gx̂(k)

=
(
I− P̃(k)

)
y ,

(5.13)

where

P̃(k) = GS(k) . (5.14)

According to Equations (5.1) and (5.4), y can be re-written by

y = Gx(k) + ε , (5.15)

where ε is the measurement error vector with arbitrary distributions. Then, Equation

(5.13) can be written by

y − ỹ(k) =
(
I− P̃(k)

)
Gx(k) +

(
I− P̃(k)

)
ε . (5.16)
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Since (
I− P̃(k)

)
G =

(
I−GS(k)

)
G

=
(
I−G(GTW(k)G)−1GTW(k)

)
G

= 0 ,

(5.17)

we have

y − ỹ(k) =
(
I− P̃(k)

)
ε . (5.18)

Define p̃
(k)
k as the kth row of

(
I− P̃(k)

)
, then the jackknife residual is given by

tk = p̃
(k)
k ε . (5.19)

Equation (5.19) can be rewritten as the linear combination of measurement errors as

follows:

tk =
n∑

j=1

p̃
(k)
k,jεj , (5.20)

where p̃
(k)
k,j is the jth element of p̃

(k)
k , and εj is the jth element of ε. Remarkably,

εj can have an arbitrary distribution as long as it has a PDF fεj(·). Since tk is

the weighted sum of independent random variables with zero-mean distributions, its

PDF can be easily obtained by (see Appendix A.6).

ftk(x) =
n∏

j=1

∣∣∣p̃(k)k,j

∣∣∣−1

fε1

 x∣∣∣p̃(k)k,1

∣∣∣
 ∗ fε2

 x∣∣∣p̃(k)k,2

∣∣∣
 ∗ . . . ∗ fεn

 x∣∣∣p̃(k)k,n

∣∣∣
 . (5.21)

In the special case where εj has a zero-mean Gaussian distribution, i.e.,

εj ∼ N
(
0, σ2

j

)
∀j = 1 · · ·n , (5.22)

the distribution of tk is given by (a proof is provided in Appendix A.7)

tk ∼ N
(
0,gkS

(k)W−1S(k)TgT
k + σ2

k

)
. (5.23)
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5.1.4 Jackknife test for fault detection

Formalize the following hypotheses:

H0,k: No failure in the kth measurement

H1,k: A failure in the kth measurement .
(5.24)

The hypothesis testing for fault detection can be formalized by:

Origin test: H0,k is rejected if |tk| >
(
gkS

(k)W−1S(k)TgT
k + σ2

k

) 1
2
Q−1(α

2
) at signifi-

cant level of α, where Q−1(·) is the quantile function of a standard normal variable.

The probability of Type I error (false alert) of the origin test is α.

In practice, the above test will be conducted for each subsolution to detect the po-

tential failure in measurements, which evolves into a multiple-testing problem. In

such a case, the Type I error is actually increased. Thus, the following hypotheses

are formalized instead, which are known as the Bonferroni correction [93]:

H0: No failure in the n measurements

H1: At least one failure in the n measurements .
(5.25)

The hypothesis testing using the corrected hypotheses is formalized by:

Corrected test: H0 is rejected if |tk| >
(
gkS

(k)W−1S(k)TgT
k + σ2

k

) 1
2
Q−1( τ

2n
) at

significant level of α∗, where τ is the upper limit of α∗. The probability of Type

I error of the corrected test is α∗.

In implementing the corrected test, τ will be specified (e.g., 0.05) according to the

nature of the application. Then the probability of Type I error of the individual test

would be α = τ
n
(as shown in Appendix A.8), which could be very small when n takes

a large value. Therefore, the individual test and the corrected test both could be

conservative. However, in satellite navigation applications, it is rare to have a large

n, which ensures the feasibility of the corrected test.
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5.2 Extend Jackknife Detector to Simultaneous Faults

The developed jackknife detector in Section 5.1 has an underlying assumption that

at most one faulty measurement occurs per time epoch. This single-fault assumption

was valid in the early stage of satellite navigation with limited satellites in operation

[4, 8, 15]. However, with the growing number of satellites and constellations, the

probability of simultaneous faults becomes non-negligible. For example, multiple

GPS satellites experienced high L1 single-frequency range errors of up to 16m due to

an erroneous ionospheric correction term between May 28 and June 2, 2002 [94]. This

highlights the need for fault detection techniques in handling multiple faults [20].

In fact, researchers have already proposed an optimal fault detection algorithm under

certain assumptions [95]. This algorithm involves evaluating the consistency of all

sets of measurements and selecting the best set with the highest level of consistency.

The implementation of this algorithm in the navigation community can refer to the

multiple-hypothesis solution separation for multiple faults integrity monitoring [20].

In this section, we leverage this idea to extend the jackknife detector to multiple fault

detection with non-Gaussian nominal errors.

5.2.1 Reconstruction of jackknife residual

The threat model defined in [20] is utilized to re-construct the jackknife residual in

Equation (5.10) to handle the multiple-fault condition. The threat model defines a

collection of error modes that partition the whole measurement space. The fault mode

0 represents the fault-free case while other fault modes (i.e., 1, 2, · · · , Nfault modes)

indicate the presence of single or multiple faults. The exact form of the threat model

is detailed in Section 2.3.3 and will not be dwelt upon here.
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For fault mode k, the weight matrix in Equation (5.6) can be re-constructed as follows:

W
(k)
i,i =

0 if i ∈ idxex
k

Wi,i otherwise

. (5.26)

The jackknife residual regarding the i ∈ idxex
k th measurement for fault mode k is

given by

t
(k)
i = yi − ŷ

(k)
i , (5.27)

where ŷ
(k)
i is the predicted ith measurement based on subset solution x̂(k), as defined

in Equation (5.9). It is easy to extend Equation (5.20) to the simultaneous faults

condition as follows:

t
(k)
i =

n∑
j=1

p̃
(k)
i,j εj, i ∈ idxex

k , (5.28)

where p̃
(k)
i,j is the (i, j) element of I− P̃(k).

It is worth noting that the existence of t
(k)
i depends on the existence of the subset

solution x̂(k), which is not guaranteed in the constellation fault mode. This is because

all satellite measurements from the hypothetically faulty constellation are excluded

in this fault mode, making it impossible to solve the receiver clock bias related to

the hypothetically faulty constellation in x̂(k). Therefore, the constellation fault is

temporally not considered in constructing jackknife detectors in the following sections.

This problem will be reviewed in Chapter 6.

5.2.2 Combination of jackknife residuals

When k > n, there are multiple jackknife residuals associated with fault mode k,

making it difficult to construct a hypothesis test. Therefore, the following combination

of jackknife residuals is adopted:

t̃k =
∑

i∈idxex
k

Sv,it
(k)
i , k = n+ 1, n+ 2, · · · , Nfault modes , (5.29)
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where Sv,i is the (v, i)th element of the full set solution matrix S. This kind of

weighting scheme can greatly reduce the complexity of developing integrity monitoring

algorithms, as will be shown in Chapter 6.

By substituting (5.28) into (5.29), we have

t̃k =
n∑

j=1

∑
i∈idxex

k

Sv,ip̃
(k)
i,j εj . (5.30)

The PDF of t̃k can be derived as

ft̃k(x) =
n∏

j=1

∣∣∣∣∣∣
∑

i∈idxex
k

Sv,ip̃
(k)
i,j

∣∣∣∣∣∣
−1

fε1

 x∣∣∣∑i∈idxex
k
Sv,ip̃

(k)
i,1

∣∣∣
 ∗ fε2

 x∣∣∣∑i∈idxex
k
Sv,ip̃

(k)
i,2

∣∣∣
 ∗

. . . ∗ fεn

 x∣∣∣∑i∈idxex
k
Sv,ip̃

(k)
i,n

∣∣∣
 .

(5.31)

In the special case of Gaussian noises, i.e., εj ∼ N (0, σ2
j ), we have

t̃k ∼ N

0,
n∑

j=1

 ∑
i∈idxex

k

Sv,ip̃
(k)
i,j

2

σ2
j

 . (5.32)

To unify the notation in the following sections, we define the following test statistics

t∗k =

tk if k = 1, 2, · · · , n

t̃k if k = n+ 1, n+ 2, · · · , Nfault modes

. (5.33)

5.2.3 Reconstruction of hypothesis tests

The following hypotheses are constructed:

H0: The hypothesis corresponding to fault mode 0

Hk: The hypothesis corresponding to fault mode k .
(5.34)

This, again, involves multiple testing. The reject region for test H0 v.s. Hk can be

defined as

Rk = {t∗k
∣∣ |t∗k| ≥ Tk}, k = 1, 2, · · · , Nfault modes , (5.35)
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where Tk is the threshold for t∗k. Assume that the probability of the Type I error of

the above multiple testing problem is α∗, i.e.,

α∗ = P
(Nfault modes⋃

k=1

t∗k ∈ Rk

∣∣ H0

)
. (5.36)

Since Rk, k = 1, 2, · · · , Nfault modes are not mutually exclusive, we have

α∗ = P
(Nfault modes⋃

k=1

t∗k ∈ Rk

∣∣ H0

)
≤

Nfault modes∑
k=1

P (t∗k ∈ Rk

∣∣ H0)

=

Nfault modes∑
k=1

P
(
|t∗k| ≥ Tk

∣∣ H0

)
= τ .

(5.37)

According to the Bonferroni correction [93], by setting

Tk = Q−1
t∗k

(
τ

2Nfault modes

)
, (5.38)

H0 is rejected if any |t∗k| > Tk at significant level of α∗, where Q−1
t∗k
(·) is the quantile

function of the distribution of t∗k and τ is a user-defined value. (5.37) indicates that

τ is the upper limit of α∗.

5.3 Detection Performance with Worldwide Sim-

ulations

This section shows the faulty measurement detection results of a set of users dis-

tributed over the world during one day. The MATLAB Algorithm Availability Simu-

lation Tool (MAAST) [96] is utilized to simulate code IF combination measurements

with tropospheric correction, satellite positions, and user locations. Specifically, we

investigate the case of one single fault and multiple faults. For the single fault case,

the nominal 24-satellite GPS constellation is used to simulate satellite positions. For
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the multiple faults case, the nominal 24-satellite GPS constellation and the nominal

24-satellite Galileo constellation are employed. The sources of almanacs of the two

constellations are listed in Table 5.1. The users are placed on a grid every 15 degrees

longitude and latitude (which gives 288 locations). For each location, the geometries

are simulated every 10 min (which gives 144 time steps). The code IF combination

measurements are simulated by adding the randomly generated sample from the given

error distribution to the true range. For each time and user location, a given num-

ber of measurements are randomly chosen for additional bias injection. Each bias

is generated from a uniform distribution in the region [−20m,−10m] ∪ [10m, 20m].

The SS detector in the baseline ARAIM [20] and the proposed jackknife detector are

implemented to detect these faulty measurements, separately. The upper limit τ of

the Type I error rate for both detectors is set as 4× 10−6. The experiment setting is

summarized in Table 5.2.

Table 5.1: Source of almanacs of the GPS and Galileo constellations

Constellation GPS Week of Almanacs Source of Almanacs

GPS 2243 U.S. Coast Guard Navigation Center [97]

Galileo 2243 European GNSS Service Center [98]

Table 5.2: Parameters of the fault detection experiments

Number of faults Constellations Fault magnitude τ

1 GPS [−20m,−10m]∪[10m, 20m] 4× 10−6

2 GPS, Galileo [−20m,−10m]∪[10m, 20m] 4× 10−6

The performance of the detectors is evaluated with the actual detection rate at each

user location, which is defined as

Pdec =
Detected epochs in one day

Valid epochs in one day
, (5.39)
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where the denominator could be less than 144 since the number of satellites in view

may not satisfy the minimum requirements for fault detection.

The simulation of the measurement error distribution is detailed in Section 5.3.1. Sec-

tion 5.3.2 and Section 5.3.3 give the detection results in the single-fault and multiple-

fault scenarios, respectively.

Figure 5.1: The setting of the nominal error and bound of the code IF combination.

‘ob’ represents ‘Gaussian’, ‘acc’, or ‘int’.

5.3.1 Nominal error simulation and bounding

The measurement error of the code IF combination is given in Equation (2.11), which

consists the range projection of clock and orbit error, tropospheric error, and mul-

tipath and code noise. In this experiment, the distribution of the range projection

of clock and orbit error εiorb&clk is assumed to be the empirical distribution of the

SISREUPE characterized in Chapter 3. The tropospheric error εitropo,j is assumed to

have a zero-mean Gaussian distribution with the 1-sigma bound defined in Equation

(2.14). The multipath and code noise εiϱ,user,j,IF for airborne receivers is assumed to

have a zero-mean Gaussian distribution with the 1-sigma bound defined in Appendix

A.1. The PDF of the range projection of clock and orbit error, tropospheric error,
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and multipath and code noise are denoted as f i
orb&clk(x), f

i
tropo,j(x), and f i

ϱ,user,j,IF (x),

respectively. For each epoch, the nominal measurement error of the code IF combi-

nation is generated by summing up the randomly generated sample from f i
orb&clk(x),

f i
tropo,j(x), and f i

ϱ,user,j,IF (x), respectively. Figure 5.1 demonstrates the process of sim-

ulating the instance of the nominal measurement error of the code IF combination.

Notably, f i
orb&clk(x) is determined based on authentic experimental data instead of

relying on empirical models. This enhances the reliability of the experimental results

obtained from simulation.

Two types of nominal error bounds on the code IF combination can be obtained,

including the non-Gaussian overbound f i
ϱ,j,IF,acc(x) defined in Equation (4.64) and

the Gaussian overbound as follows:

f i
ϱ,j,IF,Gaussian(x) = f i

orb&clk,Gaussian(x) ∗ f i
tropo,j(x) ∗ f i

ϱ,user,j,IF (x) , (5.40)

where f i
orb&clk,Gaussian(x) is the Gaussian overbound of the range projection of clock

and orbit error with its parameters listed in Tables 3.3 and 3.4. The source of each

component in the Gaussian and non-Gaussian overbound is demonstrated in Figure

5.1 .

In the experiment, the Gaussian overbound f i
ϱ,j,IF,Gaussian(x) is used for the SS detec-

tor. For the jackknife detector, both the Gaussian overbound f i
ϱ,j,IF,Gaussian(x) and

the non-Gaussian overbound f i
ϱ,j,IF,acc(x) are employed. For notations, the jackknife

detector using the Gaussian overbound is named as the JKD-Gaussian, while the one

using the non-Gaussian overbound is named as the JKD-non-Gaussian. Table 5.3

lists the usage of overbounds in different detectors in the experiment.

Table 5.3: Overbounds used in different detectors

Detector SS JKD-Gaussian JKD-non-Gaussian

Overbounds f i
ϱ,j,IF,Gaussian(x) f i

ϱ,j,IF,Gaussian(x) f i
ϱ,j,IF,acc(x)
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(a) (b)

(c) (d)

Figure 5.2: Detection rate contour of (a) the SS detector, (b) JKD-Gaussian, and

(c) JKD-non-Gaussian with single artificially injected bias. (d) The histogram of the

detection rate difference between the JKD-non-Gaussian and the SS detector.

5.3.2 Single-fault detection performance

The first experiment examines the detection performance of the SS detector, JKD-

Gaussian, and JKD-non-Gaussian considering a single faulty measurement. Figure

5.2a and Figure 5.2b show the detection rate contour of the SS detector and JKD-

Gaussian, respectively. As can be seen, the JKD-Gaussian demonstrates identical
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performance as the SS detector, where both detectors show more than 70% detection

rate at most user locations. Figure 5.2c shows the contour plot of the detection rate

for the JKD-non-Gaussian. As can be seen, the JKD-non-Gaussian exhibits a sub-

stantial enhancement in detection rate when compared to the SS detector. In most

user locations, the JKD-non-Gaussian achieves a detection rate of over 75%. More-

over, in considerable user locations, the detection rate even surpasses 85%. Figure

5.2d shows the detection rate difference between the JKD-non-Gaussian and the SS

detector (P JKD-non-Gaussian
dec −P SS

dec) in a histogram view. As can be seen, the maximum

improvement in detection rate by the JKD-non-Gaussian exceeds 20%.

5.3.3 Multiple-fault detection performance

The second experiment examines the detection performance of the SS detector, JKD-

Gaussian, and JKD-non-Gaussian considering two faulty measurements. Similar to

the single-fault case in Section 5.3.2, the SS detector and JKD-Gaussian show an

identical detection performance at all user locations, as shown in Figures 5.3a and

5.3b. However, the detection rate of these two methods is less than 70% at most

user locations, which is significantly smaller than that in the single-fault case (see

Figures 5.2a and 5.2b). The primary reason is that the two-fault setting uses the

dual constellation (GPS and Galileo) to simulate code IF combination measurements,

where the Galileo SISRE is featured with significant heavy-tailed properties. As

discussed in Section 4.4, this heavy-tailed property excessively enlarges the standard

deviation of the Gaussian overbounds of SISRE. Such over-conservative Gaussian

overbounds can inflate the type II error of hypothesis testing, which corresponds to the

degradation of the detection rate in the dual-constellation setting. However, the JKD-

non-Gaussian still shows satisfactory detection performance in the dual-constellation

setting, where the detection rate is larger than 85% in most user locations, as shown in

Figure 5.3c. This result again emphasizes the benefits of using PGO for heavy-tailed

error bounding in detection tasks. Figure 5.3d shows the detection rate difference

108



5.3. Detection Performance with Worldwide Simulations

between the JKD-non-Gaussian and the SS detector in the two-fault setting. As

can be seen, the maximum improvement in detection rate by the JKD-non-Gaussian

exceeds 34%.

(a) (b)

(c) (d)

Figure 5.3: Detection rate contour of (a) the SS detector, (b) JKD-Gaussian, and

(c) JKD-non-Gaussian with two artificially injected biases. (d) The histogram of the

detection rate difference between the JKD-non-Gaussian and the SS detector.

The single-fault and multi-fault detection experiments demonstrate the superiority of

the JKD-non-Gaussian. Shortly speaking, this superiority can be primarily attributed

to two factors: 1) a sharper overbound for heavy-tailed measurement error and 2) the
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accommodation of the jackknife test for non-Gaussian overbounds. On the one hand,

the sharper overbound provided by PGO can better characterize the measurement

error distribution than the Gaussian overbound, as shown in Section 4.4, providing

an accurate probabilistic model for hypothesis testing. It is known that an inaccurate

probabilistic model can hinder the performance of hypothesis testing, such as inflating

the type I error (false alarm) or type II error (miss detection), and even make the

testing invalid. On the other hand, the theoretical underpinnings of the jackknife

test provide a solid basis for its application in fault detection with non-Gaussian

overbounds. The threshold for the JKD-non-Gaussian is derived through rigorous

mathematical derivations rather than relying on simulation techniques. These two

factors complement each other, resulting in the exceptional performance of the JKD-

non-Gaussian. In the next chapter, the JKD-non-Gaussian is further exploited to

develop an integrity monitoring algorithm to support integrity applications under

stringent navigation requirements.

110



Chapter 6

Integrity Monitoring with

Non-Gaussian Nominal Error

Bound

The non-Gaussian nominal error bound constructed in Chapter 4 and the non-Gaussian

fault detection methods proposed in Chapter 5 lay the foundation for this chap-

ter to develop a multiple-hypothesis-based integrity monitoring algorithm with non-

Gaussian nominal error bounds. The proposed method is named the jackknife ARAIM

algorithm to emphasize its usage of the jackknife detector. The jackknife ARAIM al-

gorithm follows a similar process to the baseline ARAIM algorithm, beginning with

defining the threat model, constructing the fault detectors, and determining their

threshold to comply with the continuity requirements, then evaluating integrity risks,

and concluding with deriving protection levels. The principal difference between the

proposed jackknife ARAIM algorithm and the baseline ARAIM algorithm lies in the

choice of fault detectors. Instead of using solution separation in the position do-

main, the proposed method systematically exploits the properties of the jackknife

detector in the range domain and derives a tight bound of the integrity risk. The
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proposed method extends the scope of the integrity monitoring algorithm to handle

non-Gaussian nominal error bounds.

6.1 Threat Model and Multiple Hypotheses

The proposed method uses the same threat model defined in the baseline ARAIM algo-

rithm [20], as elaborated in Section 2.3.3. Briefly, the threat model defines a collection

of error modes that partition the whole measurement space [18, 99]. The fault mode

0 represents the fault-free case while other fault modes (i.e., 1, 2, · · · , Nfault modes) in-

dicate the presence of single or multiple faults. The total number of fault modes, i.e.,

Nfault modes + 1, is determined by the maximum number of simultaneous faults kmax.

Based on the threat model, the following hypotheses are constructed:

• H0: The fault-free hypothesis (fault mode 0).

• Hk: The hypothesis corresponding to fault mode k.

This set of hypotheses is the same as that in the jackknife detector developed in

Section 5.2. Therefore, the jackknife detector can be directly used as the monitor in

the integrity monitoring algorithm.

6.2 Determine the Threshold of Monitors

The threshold of monitors, i.e., jackknife detectors, is determined so that the continu-

ity requirement is satisfied. The continuity risk in Equation (2.34) can be rewritten

as follows:

Pcontinuity = P
(Nfault modes⋃

k=1

t∗k ∈ Rk

∣∣∣ H0

)
PH0 ≤ CREQ,FA , (6.1)

with Rk given by

Rk = {t∗k
∣∣ |t∗k| ≥ Tk}, k = 1, 2, · · · , Nfault modes . (6.2)
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Since R1, R2, · · · , RNfault modes
are not mutually exclusive, we have

Pcontinuity ≤
Nfault modes∑

k=1

P (t∗k ∈ Rk

∣∣ H0)PH0 =

Nfault modes∑
k=1

P
(
|t∗k| ≥ Tk

∣∣∣ H0

)
PH0 . (6.3)

The threshold Tk is determined by the allocated continuity budget caused by false

alert

Tk = Q−1
t∗k

(
CREQ,FA

2Nfault modesPH0

)
. (6.4)

As shown in Equations (5.20), (5.30), and (5.33), t∗k is the linear combination of

nominal measurement error bounds, i.e., ε1, ε2, · · · , εn. Here, εj, j = 1, 2 · · · , n refers

to the nominal error bound for accuracy, which is defined in Equation (4.64). The

quantile function Q−1
t∗k
(·) can be evaluated by using the numerical method developed

in Section 4.3.5.3.

In Equation (6.4), the equal allocation strategy of the continuity budget is adopted,

which is the same as that in the baseline ARAIM algorithm. However, Equation (6.4)

does not require the partition of vertical and horizontal components of the continuity

budget, which is done in the baseline ARAIM algorithm in Equation (2.49).

6.3 Integrity Risk Evaluation

The detection threshold determined in Equation(6.4) can be used to evaluate the

integrity risk in Equation (2.33). By using the jackknife detector developed in Chapter

5, Equation (2.33) can be written by

PHMI =

Nfault modes∑
i=0

P

(
{|e0| > ℓ} ∩

Nfault modes⋂
k=1

|t∗k| < Tk

∣∣∣ Hk

)
PHi

+Pnot monitored ≤ IREQ .

(6.5)

In the navigation system, the estimation error on the parameter of interest is the

positioning error. Therefore, e0 can be rewritten as

e0 = (x̂− x)v , (6.6)
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where the subscript v = 1, 2, 3 designates the east, north, and up components of the

position error, respectively. The alert limit corresponding to (x̂ − x)v is denoted as

ℓv in the following derivations.

Let

Ical =

Nfault modes∑
i=0

P

(
{|(x̂− x)v| > ℓv} ∩

Nfault modes⋂
k=1

|t∗k| < Tk

∣∣∣ Hk

)
PHi

, (6.7)

which is the sum of hazardously misleading information (HMI) probabilities over the

fault-free hypothesis and other faulted hypotheses.

6.3.1 Bound on the probability of HMI under H0

In the fault-free hypothesis H0, a bound on the probability of HMI is established as

follows

P

(
{|(x̂− x)v| > ℓv} ∩

Nfault modes⋂
k=1

|t∗k| < Tk

∣∣∣ H0

)
≤ P

(
|(x̂− x)v| > ℓv

∣∣ H0

)
. (6.8)

This bound is obtained by ignoring knowledge of no detection, which can be consid-

ered a tight bound [18]. This is because the probability of no detection under the

fault-free hypothesis is larger than 1− CREQ,FA, as ensured by Equation (6.1).

By substituting Equation (5.1) and Equation (5.2) into (x̂− x)v, we have

(x̂− x)v = (Sε)v =
n∑

i=1

Sv,iεi , (6.9)

where Sv,i is the (v, i)th element in S. Then the PDF of (x̂ − x)v is given by (see

Appendix A.6)

f(x̂−x)v(t) =
n∏

j=1

|Sv,i|−1fε1

(
t

|Sv,1|

)
∗ fε2

(
t

|Sv,2|

)
∗ . . . ∗ fεn

(
t

|Sv,n|

)
. (6.10)

Equation (6.10) can be used to evaluate the bound in Equation (6.8).
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6.3.2 Bound on the probability of HMI under Hk

In the faulted hypothesis Hk, a similar bound on the probability of HMI is given as

follows:

P

(
{|(x̂− x)v| > ℓv} ∩

Nfault modes⋂
k=1

|t∗k| < Tk

∣∣∣ Hk

)
≤P

(
{|(x̂− x)v| > ℓv} ∩ {|t∗k| < Tk}

∣∣ Hk

)
.

(6.11)

Again, this bound is obtained by ignoring knowledge of no detection for all other

hypothesis tests, except for the one for the test H0 v.s. Hk. As proven in [18],

Equation (6.11) also provides a tight bound on the probability of HMI under Hk.

The right-hand-side of Equation (6.11) can be simplified by invoking the conditional

probability

P
(
{|(x̂− x)v| > ℓv} ∩ {|t∗k| < Tk}

∣∣ Hk

)
=P

(
|(x̂− x)v| > ℓv

∣∣ Hk ∩ {|t∗k| < Tk}
)
P
(
|t∗k| < Tk

∣∣ Hk

)
≤P

(
|(x̂− x)v| > ℓv

∣∣ Hk ∩ {|t∗k| < Tk}
)
.

(6.12)

The inequality in the second line bounds P (|t∗k| < Tk

∣∣ Hk) with P (|t∗k| < Tk

∣∣ Hk) = 1.

A further relaxation of Equation (6.12) is achieved by exploiting the structure of

(x̂−x)v under Hk. Define the fault vector in the faulted hypothesis Hk as b(k). This

n× 1 vector takes the following form:

b
(k)
j =

bj if j ∈ idxex
k

0 otherwise

, (6.13)

where b
(k)
j is the jth element of b(k) and bj, j = 1, 2, · · · , n is an unknown constant

with non-zero values. In the faulted hypothesisHk, the linearized measurement model

in Equation (2.20) can be written by

y = Gx+ ε+ b(k) , (6.14)

115



Chapter 6. Integrity Monitoring with Non-Gaussian Nominal Error Bound

where

yj =

gjx+ εj + bj if j ∈ idxex
k

gjx+ εj otherwise ,

(6.15)

and gj is the jth row of G.

Different from Section 6.2, εi, i = 1, 2, · · · , n in Equations (6.14) and (6.15) refers

to the nominal measurement error bound for integrity, which is developed in Section

4.65. This kind of bound considers the effects of nominal signal deformation errors,

which is realized by introducing a bnom term to create two equally shifted nominal

measurement error bounds for accuracy. To simplify the derivation, we first ignore

the effects of nominal signal deformation errors by setting bnom,i = 0, i = 1, 2, · · · , n.

Then the nominal measurement error bound for integrity is the same as that for

accuracy.

Now, (x̂− x)v under Hk can be written by

(x̂− x)v
∣∣ Hk = (Sy − x)v

∣∣ Hk

=
(
S(Gx+ ε+ b(k))− x

)
v

=
(
Sε+ Sb(k)

)
v

=
n∑

i=1

Sv,iεi +
∑

j∈idxex
k

Sv,jbj .

(6.16)

For each j ∈ idxex
k , the corresponding jackknife residual is given by

t
(k)
j = yj − ŷj

= gjx+ εj + bj − gjx̂
(k)

= gj(x− x̂(k)) + εj + bj

= −gjS
(k)ε+ εj + bj .

(6.17)

The last line holds because x̂(k) − x = S(k)ε. Then, we have

bj = t
(k)
j + gjS

(k)ε− εj . (6.18)
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By substituting Equation (6.18) into Equation (6.16), we have

(x̂− x)v
∣∣ Hk =

n∑
i=1

Sv,iεi +
∑

j∈idxex
k

Sv,j(t
(k)
j + gjS

(k)ε− εj)

=
∑

j ̸∈idxex
k

Sv,jεj +
∑

j∈idxex
k

Sv,jgjS
(k)ε+

∑
j∈idxex

k

Sv,jt
(k)
j .

(6.19)

Let E(k) be a n× n diagonal matrix with the following definition

E
(k)
j,j =

0 if j ∈ idxex
k

1 otherwise

. (6.20)

Equation (6.19) can be simplified to

(x̂− x)v
∣∣ Hk = q(k)ε+

∑
j∈idxex

k

Sv,jt
(k)
j , (6.21)

where

q(k) = svE
(k) +

∑
j∈idxex

k

Sv,jgjS
(k) . (6.22)

The distribution of q(k)ε is given by (see Appendix A.6)

fq(k)ε(x) =
n∏

j=1

∣∣∣q(k)j

∣∣∣−1

fε1

 x∣∣∣q(k)1

∣∣∣
 ∗ fε2

 x∣∣∣q(k)2

∣∣∣
 ∗ . . . ∗ fεn

 x∣∣∣q(k)n

∣∣∣
 , (6.23)

where q
(k)
j , j = 1, 2, · · · , n is the jth element of q(k).

Then the bound on the probability of HMI underHk in Equation (6.12) can be written

by

P
(
|(x̂− x)v| > ℓv

∣∣ Hk ∩ {|t∗k| < Tk}
)

(6.24a)

=P

|q(k)ε+
∑

j∈idxex
k

Sv,jt
(k)
j | > ℓv

∣∣∣ Hk ∩ {|t∗k| < Tk}

 (6.24b)

≤P

|q(k)ε|+ |
∑

j∈idxex
k

Sv,jt
(k)
j | > ℓv

∣∣∣ Hk ∩ {|t∗k| < Tk}

 (6.24c)
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The second line holds because of the triangular inequality.

When k ≤ n, t∗k = tk. Then, the right-hand-side of Equation (6.24) can be written by

P
(
|q(k)ε|+ |Sv,ktk| > ℓv

∣∣ Hk ∩ {tk ≤ Tk}
)
≤ P

(
|q(k)ε|+ |Sv,k|Tk > ℓv

∣∣ Hk

)
.

(6.25)

When k > n, t∗k = t̃k =
∑

j∈idxex
k
Sv,jt

(k)
j . Then, the right-hand-side of Equation (6.24)

can be written by

P

|q(k)ε|+ |
∑

j∈idxex
k

Sv,jt
(k)
j | > ℓv

∣∣∣ Hk ∩ {|
∑

j∈idxex
k

Sv,jt
(k)
j | < Tk}


≤P

(
|q(k)ε|+ Tk > ℓv

∣∣ Hk

)
.

(6.26)

6.3.3 Finalized bound of integrity risk

Finally, the bound of integrity risk for monitored fault modes in Equation (6.7) is

given by summarizing Equations (6.8), (6.25) and(6.26) as follows:

Ical ≤ P
(
|(x̂− x)v| > ℓv

∣∣ H0

)
PH0

+
n∑

k=1

P
(
|q(k)ε|+ |Sv,k|Tk > ℓv

∣∣ Hk

)
PHk

+

Nfault modes∑
k=n+1

P
(
|q(k)ε|+ Tk > ℓv

∣∣ Hk

)
PHk

≤ IvREQ

(
1− Pnot monitored

IREQ

)
,

(6.27)

where IvREQ, v = 1, 2, 3 has the same definition as in Section 2.3.5 and stands for

the integrity budget for different components. Notably, the distributions of (x̂− x)v

and q(k)ε are known, as given in Equation (6.10) and Equation (6.23), respectively.

Hence, the inequality condition in the last line can be evaluated to check if the

integrity requirement is satisfied.

So far, we have derived the bound of integrity risk for monitored fault modes with

bnom = 0. To consider the effects of nominal signal deformation errors, the integrity
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risk bound in Equation (6.27) can be modified as follows:

Ical ≤ P
(
|(x̂− x)v| > ℓv − b(0)v

∣∣ H0

)
PH0

+
n∑

k=1

P
(
|q(k)ε|+ |Sv,k|Tk > ℓv − b(k)v

∣∣ Hk

)
PHk

+

Nfault modes∑
k=n+1

P
(
|q(k)ε|+ Tk > ℓv − b(k)v

∣∣ Hk

)
PHk

≤ IvREQ

(
1− Pnot monitored

IREQ

)
,

(6.28)

where b
(k)
v represents the worst-case impact of nominal signal deformation errors on

the position solution:

b(k)v =
n∑

i=1

|S(k)
v,i |bnom,i . (6.29)

6.4 Protection Level Derivation

As an alternative to integrity risk evaluation, PL can be derived from Equation (6.28)

by replacing the alert limit ℓv with protection level PLv and replacing the last in-

equality with equality as follows:

P
(
|(x̂− x)v| > PLv − b(0)v

∣∣ H0

)
PH0

+
n∑

k=1

P
(
|q(k)ε|+ |Sv,k|Tk > PLv − b(k)v

∣∣ Hk

)
PHk

+

Nfault modes∑
k=n+1

P
(
|q(k)ε|+ Tk > PLv − b(k)v

∣∣ Hk

)
PHk

= IvREQ

(
1− Pnot monitored

IREQ

)
.

(6.30)
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To solve PLv, the integrity budget IvREQ

(
1− Pnot monitored

IREQ

)
needs to be allocated to

each fault mode. Specifically, PLv is given by

PLv = max

{
Q−1

(x̂−x)v

(
IvREQ,0

2PH0

)
+ b(0)v , max

1<k≤n

{
Q−1

q(k)ε

(
IvREQ,k

2PHk

)
+ |Sv,k|Tk + b(k)v

}
,

max
n<k≤Nfault modes

{
Q−1

q(k)ε

(
IvREQ,k

2PHk

)
+ Tk + b(k)v

}}
,

(6.31)

where
Nfault modes∑

k=1

IvREQ,k = IvREQ

(
1− Pnot monitored

IREQ

)
. (6.32)

The quantile functions Q−1
(x̂−x)v

and Q−1
q(k)ε

can be evaluated by using the numerical

method developed in Section 4.3.5.3.

In this thesis, the equal allocation strategy for integrity is applied as follows:

IvREQ,k =
1

Nfault modes

IvREQ

(
1− Pnot monitored

IREQ

)
. (6.33)

The VPL is directly given by PL3, i.e.,

V PL = PL3 , (6.34)

and the HPL is given by synthesizing PL1 and PL2 as follows:

HPL =
√

PL2
1 + PL2

2 . (6.35)

6.5 Consideration of Constellation Faults

As discussed in Section 5.2.1, the jackknife residual is not computable in the con-

stellation fault mode. Therefore, the PL calculation in Section 6.4 does not consider

constellation fault modes. However, it is essential to consider the possibility of con-

stellation faults in the multi-constellation system to protect integrity. To address

this issue, one can use the solution separation detector to construct the hypothesis

regarding the constellation fault and integrate it into the PL equations in Section 6.4.
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Let Ωconst be the set of fault modes involving constellation faults. Under each fault

mode k ∈ Ωconst, the integrity risk of HMI is given by

P
(
{|(x̂− x)v| > ℓv} ∩ {|d(k)v | < Dk,v}

∣∣ Hk, k ∈ Ωconst

)
, (6.36)

where d
(k)
v and Dk,v are the solution separation test statistic and its threshold, re-

spectively (see Section 2.3.4). According to the triangular inequality,

|(x̂− x)v| = |(x̂− x̂(k) + x̂(k) − x)v| ≤ |(x̂− x̂(k))v|+ |(x̂(k) − x)|v . (6.37)

Therefore, Equation (6.36) can be bounded by

P
(
{|(x̂− x)v| > ℓv} ∩ {|d(k)v | < Dk,v}

∣∣ Hk, k ∈ Ωconst

)
(6.38a)

≤ P
(
{|(x̂− x̂(k))v|+ |(x̂(k) − x)v| > ℓv} ∩ {|d(k)v | < Dk,v}

∣∣ Hk, k ∈ Ωconst

)
(6.38b)

≤ P
(
|(x̂(k) − x)v|+Dk,v > ℓv

∣∣ Hk, k ∈ Ωconst

)
. (6.38c)

Following the steps in Section 6.3.3, Equation (6.30) can be eventually re-written as

P
(
|(x̂− x)v| > PLv − b(0)v

∣∣ H0

)
PH0

+
n∑

k=1

P
(
|q(k)ε|+ |Sv,k|Tk > PLv − b(k)v

∣∣ Hk

)
PHk

+

Nfault modes∑
k=n+1,k ̸∈Ωconst

P
(
|q(k)ε|+ Tk > PLv − b(k)v

∣∣ Hk

)
PHk

+
∑

k∈Ωconst

P
(
|(x̂(k) − x)v|+Dk,v > PLv − b(k)v

∣∣ Hk

)
PHk

= IvREQ

(
1− Pnot monitored

IREQ

)
.

(6.39)

Notably, the last term in the left-hand-side of Equation (6.39) is obtained using

the solution separation scheme, which assumes that the nominal error is Gaussian

bounded. Therefore, the distribution of (x̂(k) − x)v
∣∣ k ∈ Ωconst is given by

(x̂(k) − x)v
∣∣ k ∈ Ωconst ∼ N

(
0, (σ(k)

v )2
)
, (6.40)

where σ
(k)
v is the standard deviation of the kth subset solution. Similarly, Dk,v is also

determined with the Gaussian nominal error bound, as detailed in Equation (2.49).
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Finally, with the equal allocation strategy on the integrity budget, the PL can be

obtained by

PLv = max

{
Q−1

(x̂−x)v

(
IvREQ,0

2PH0

)
+ b(0)v , max

1<k≤n

{
Q−1

q(k)ε

(
IvREQ,k

2PHk

)
+ |Sv,k|Tk + b(k)v

}
,

max
n<k≤Nfault modes,k ̸∈Ωconst

{
Q−1

q(k)ε

(
IvREQ,k

2PHk

)
+ Tk + b(k)v

}
,

max
k∈Ωconst

{
σ(k)
v Q−1

(
IvREQ,k

2PHk

)
+Dk,v + b(k)v

}}
.

(6.41)

To sum up, Algorithm 3 lists the steps for implementing the proposed jackknife

ARAIM.

6.6 Worldwide Simulation

This section conducts a worldwide simulation to evaluate the performance of the

proposed jackknife ARAIM algorithm. Specifically, the MAAST toolset [96] is used

to simulate code IF combination measurements with tropospheric correction, satellite

positions, and user locations. The simulation has the same setting as that in the fault

detection experiments in Section 5.3, producing 288 × 144 location-time geometries

in one day. Both the single constellation (the nominal 24-satellite GPS constellation)

and dual constellations (the aforementioned GPS constellations and the nominal 24-

satellite Galileo constellation) cases are examined, where the almanacs file is defined

in Table 5.1. The nominal measurement error of the code IF combination is gener-

ated by summing up the randomly generated sample from f i
orb&clk(x), f

i
tropo,j(x), and

f i
ϱ,user,j,IF (x). As discussed in Section 5.3.1, such the simulation setting can enhance

the reliability of experimental results.

The proposed jackknife ARAIM algorithm is compared with the baseline ARAIM al-

gorithm [16]. For the baseline ARAIM algorithm, the Gaussian overbound f i
ϱ,j,IF,Gaussian(x)

is used. For the jackknife ARAIM algorithm, both the Gaussian overbound f i
ϱ,j,IF,Gaussian(x)
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Algorithm 3 Implementation of Jackknife ARAIM
Input:

Measurements and geometry matrix: y = {y1, y2, · · · , yn}, G
Number of constellations: Nconst

ISM parameters: Psat, Pconst, PTHRES

Continuity and Integrity budgets: CREQ,FA, I
v
REQ

Overbound of nominal code IF combination error: fεj ,∀j = 1, 2, · · · , n
Nominal signal deformation errors: bnom

Output:

Detection state, VPL, HPL

1: kmax, Pnot monitored ← Equations (A.10) and (A.12) with Psat, Pconst, PTHRES, n and Nconst

2: Nfault modes ← Equation (2.32) with kmax and n

3: PHi
,∀i = 1, 2, · · · , Nfault modes ← Equation (A.5) with Psat and Pconst

4: x̂v,S ← Equations (2.36) and (2.35) with y and G

5: for k = 1 : Nfault modes do

6: x̂
(k)
v ,S(k) ← Equations (2.39) and (2.38)with y and G

7: σ
(k)
v ← Equation (2.41) with G and fεj ,∀j = 1, 2, · · · , n

8: if k ̸∈ Ωconst then

9: t∗k ← Equation (5.33) with y, x̂(k), S, and S(k)

10: Tk ← Equation (6.4) with CREQ,FA, Nfault modes, PH0
, and fεj ,∀j = 1, 2, · · · , n

11: else

12: d
(k)
v ← Equation (2.43) with x̂ and x̂(k)

13: σ
(k)
ss,v ← Equation (2.45) with S, S(k), and fεj ,∀j = 1, 2, · · · , n

14: Dk,v ← Equation (2.49) with σ
(k)
ss,v, CREQ,FA, Nfault modes, and PH0

15: end if

16: if t∗k > Tk or d
(k)
v > Dk,v then

17: Detect faults and alert users!

18: Return

19: end if

20: end for

21: IvREQ,0 ← Equation (6.33) with IvREQ, Nfault modes and Pnot monitored

22: b
(0)
v ← Equation (6.29) with S and bnom

23: for k = 1 : Nfault modes do

24: IvREQ,k ← Equation (6.33) with IvREQ, Nfault modes and Pnot monitored

25: q(k) ← Equation (6.22) with S and S(k)

26: b
(k)
v ← Equation (6.29) with S(k) and bnom

27: end for

28: PLv ← Equation (6.41) with b
(0)
v ,b

(k)
v , q(k), Tk, σ

(k)
v , Dk,v, Sv,k,∀k = 1, 2, · · · , Nfault modes,

and fεj ,∀j = 1, 2, · · · , n
29: VPL ← PL3

30: HPL ←
√
PL2

1 + PL2
2

31: No faults are detected

32: Return
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and the non-Gaussian overbound f i
ϱ,j,IF,acc(x) are employed. For notations, the jack-

knife ARAIM algorithm using the Gaussian overbound is named the JK-Gaussian

ARAIM, while the one using the non-Gaussian overbound is named the JK-non-

Gaussian ARAIM. Table 6.1 lists the usage of overbounds in different ARAIM algo-

rithms in the experiment.

Table 6.1: Overbounds used in different ARAIM algorithms

Method Baseline ARAIM JK-Gaussian

ARAIM

JK-non-Gaussian

ARAIM

Overbounds f i
ϱ,j,IF,Gaussian(x) f i

ϱ,j,IF,Gaussian(x) f i
ϱ,j,IF,acc(x)

The integrity and continuity budget, the prior probability of satellite and constellation

faults, and the threshold for the integrity risk coming from unmonitored faults are

listed in Table 6.2. These values are aligned with the recommendation in the ARAIM

algorithm description issued by WGC [100]. The maximum number of simultaneous

faults (kmax)that need to be monitored is determined by the method in [20], which is

also given in Appendix A.2. For the single constellation case, kmax = 1. For the dual

constellation case, kmax = 2. An equal allocation strategy is adopted in allocating the

integrity and continuity budgets to each fault mode.

6.6.1 Single-constellation experiments

In this section, the performance of the proposed JK-Gaussian ARAIM and JK-non-

Gaussian ARAIM algorithms is evaluated in the single GPS constellation setting,

where the baseline ARAIM algorithm is taken as the benchmark. The first analysis

involves the comparison between the baseline ARAIM and the proposed JK-Gaussian

ARAIM algorithms, both of which use the Gaussian overbound for code IF combi-

nation nominal errors. Figures 6.1a and 6.1b show the map of 99.5 percentile of the

VPL over the course of a day of the baseline ARAIM and the proposed JK-Gaussian
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Table 6.2: Parameters used for evaluating integrity monitoring algorithms in the

simulation

Parameter Description Value

I3REQ Vertical integrity risk budget 9.8× 10−8

I1REQ + I2REQ Horizontal integrity risk budget 2× 10−9

C3
REQ,FA Vertical continuity risk budget allocated to false

alarms

3.9× 10−6

I1REQ + I2REQ Horizontal continuity risk budget allocated to false

alarms

9× 10−8

Psat Prior probability of satellite fault per approach 10−5

Pconst Prior probability of constellation fault per approach 10−4

PTHRES Threshold for the integrity risk coming from unmon-

itored faults

9× 10−8

ARAIM algorithms, respectively. As can be seen, the two methods yield the same

results, where the 99.5 percentile VPL is larger than 50m in most user locations.

To gain a comprehensive understanding of the performance of the two methods, the

triangular charts of the baseline ARAIM and the JK-Gaussian ARAIM regarding the

vertical performance are plotted in Figure 6.1c and Figure 6.1d, respectively, which

again demonstrates the equivalence of the two methods. Specifically, each bin in the

triangular chart represents the number of occurrences of a specific pair of absolute

vertical positioning error (VPE) and VPL among all 288× 144 location-time events.

The percentage of the normal operation (the VPL is larger than the VPE but less

than the vertical alert limit (VAL), i.e., 35m here) is around 86%. The percentage of

misleading information (the VPE is larger than the VPL but less than the VAL) and

hazardously misleading information (the VPE is larger than the VAL without alerts)

events are all zero for both methods.
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(a) (b)

(c) (d)

Figure 6.1: 99.5 percentile of the VPL over the course of the day yielded by (a) the

baseline ARAIM and (b) the proposed JK-Gaussian ARAIM for the single constel-

lation; and the triangular chart of (c) the baseline ARAIM and (d) the proposed

JK-Gaussian ARAIM regarding the vertical performance for the single constellation.

“NO” represents normal operation, “MI” represents misleading information, “SU”

represents system unavailable, “SU&MI” represents system unavailable and mislead-

ing information, and “HMI” represents hazardously misleading information.

The second analysis focuses on the benefits brought by introducing non-Gaussian

overbound into the jackknife ARAIM algorithm. Figure 6.2a shows the map of 99.5
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percentile of the VPL over the course of a day of the proposed JK-non-Gaussian

ARAIM algorithm. As can be seen, the 99.5 percentile VPL is less than 45m in

most user locations. By comparing to the results in Figure 6.1b, one can conclude

that introducing non-Gaussian overbound into the jackknife ARAIM algorithm can

reduce the VPL. The triangular chart of the JK-non-Gaussian ARAIM in Figure

6.2b further confirms this conclusion, where the distribution of the VPE-VPL pairs

shows a higher concentration level than that of the jackknife ARAIM algorithm and

the baseline ARAIM algorithm. More importantly, the percentage of the normal

operation of the JK-non-Gaussian ARAIM method increases to 94.799%, indicating

that the JK-non-Gaussian ARAIM seldom comprises integrity.

(a) (b)

Figure 6.2: (a) 99.5 percentile of the VPL over the course of the day yielded by the

proposed JK-non-Gaussian ARAIM for the single constellation; (b) The triangular

chart of the proposed JK-non-Gaussian ARAIM regarding the vertical performance

for the single constellation.

For a better understanding of the possibility of using the JK-non-Gaussian ARAIM to

support LPV-200 precision approach operations, Table 6.3 summarizes the coverage

of the three methods with V AL = 35m at different levels of system availability.

The system availability is the fraction of time that VPL is less than a given VAL

at a given location, while the coverage is the fraction of the earth that satisfies a
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given system availability. All the three methods show satisfactory performance in

coverage under 75% system availability. However, when the availability requirements

increases to 95%, the baseline ARAIM and the JK-Gaussian ARAIM algorithms only

has a coverage of 15.16%. In contrast, the coverage of the JK-non-Gaussian ARAIM

still keeps above 88% in this condition. Nevertheless, the coverage of the JK-non-

Gaussian ARAIM decreases to 7.84% under 99.5% system availability. The above

results reveal that the proposed JK-non-Gaussian ARAIM method has huge potential

to support integrity applications with harsh navigation requirements.

Table 6.3: Coverage for the single constellation at different levels of system availability

VAL Availability Baseline

ARAIM

JK-Gaussian

ARAIM

JK-non-Gaussian

ARAIM

35m
75% 96.3% 96.3% 100 %

95% 15.16% 15.16% 88.64 %

99.5% 0% 0% 7.84 %

6.6.2 Dual-constellation experiments

This section evaluates the performance of the proposed JK-Gaussian ARAIM and

JK-non-Gaussian ARAIM algorithms in the dual constellation setting. Similar to the

single constellation setting in Section 5.3.2, the JK-Gaussian ARAIM exhibits the

equivalent performance to the baseline ARAIM, as shown in the 99.5 percentile VPL

map in Figures 6.3a and 6.3b. However, the magnitude of the 99.5 percentile VPL of

these two methods exceeds 60m at most user locations, which is significantly larger

than that in the single constellation setting (see Figures 6.2a and 6.2b). This phe-

nomenon shares the same reason for the observations in the multiply-fault detection

experiment in Section 5.3.3: the SISRE of Galileo satellites in the dual constellation

setting has significant heavy-tailed properties, which results in the over-conservatism
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in the finalized Gaussian overbounds of code IF combination errors. Such conser-

vatism is passed to the position domain bounding, eventually enlarging the VPLs in

the dual-constellation setting. As a consequence, the system unavailability events of

both methods experience a surge in the dual-constellation setting, which can be ob-

served in the triangular chart in Figures 6.3c and 6.3d, where the system unavailability

events with V AL = 35m account for 45.674%.

(a) (b)

(c) (d)

Figure 6.3: 99.5 percentile of the VPL over the course of the day yielded by (a) the

baseline ARAIM and (b) the proposed JK-Gaussian ARAIM for the dual constel-

lation; and the triangular chart of (c) the baseline ARAIM and (d) the proposed

JK-Gaussian ARAIM regarding the vertical performance for the dual constellation.
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Nevertheless, the JK-non-Gaussian ARAIM still shows satisfactory performance in

the dual-constellation setting, where the 99.5 percentile VPL is smaller than 40m in

most user locations (Figure 6.4a) and the VPE-VPL pairs have extremely concen-

trated distribution (Figure 6.4b). Moreover, the percentage of the normal operation

events with V AL = 35m even exceeds 92%, making it possible to support LPV-200

precision approach operations [27].

Table 6.4 summarizes the coverage of the three methods with V AL = 35m at different

levels of system availability. The baseline ARAIM and the JK-Gaussian ARAIM have

a 54% coverage even under 75% system availability. This result is expected because

both the baseline ARAIM and JK-Gaussian ARAIM use over-conservative Gaussian

overbound. In contrast, the coverage of the JK-non-Gaussian ARAIM is nearly 100%

under 75% system availability. Its coverage even exceed 62% under 95% system

availability. These results reveal the huge potential of the JK-non-Gaussian ARAIM

algorithm to support LPV-200 requirements using the GPS-Galileo dual constellation.

It is worth noting that the reporting result about the baseline ARAIM in this sim-

ulation study is quite different from the findings in [16, 84], from which the baseline

ARAIM is examined to be able to provide global coverage for LPV-200 in GPS-Galileo

dual constellation. The primary reason is that these studies use hypothetical models

to simulate the range errors, which results in over-optimistic results. For example, the

1-sigma error bound of Galileo SISRE is set to be 0.96m in [84], which is significantly

smaller than the value determined by experimental data in Section 4.4. In such a

condition, the system availability of baseline ARAIM is over-estimated.
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(a) (b)

Figure 6.4: (a) 99.5 percentile of the VPL over the course of the day yielded by

the proposed JK-non-Gaussian ARAIM for the dual constellation; (b) The triangular

chart of the proposed JK-non-Gaussian ARAIM regarding the vertical performance

for the dual constellation.

Table 6.4: Coverage for the dual constellation at different levels of system availability

VAL Availability Baseline

ARAIM

JK-Gaussian

ARAIM

JK-non-Gaussian

ARAIM

35m
75% 54% 54% 99.29 %

95% 0% 0% 62.55 %

99.5% 0% 0% 3.68 %
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Chapter 7

Conclusion

This thesis develops the integrity monitoring algorithms with non-Gaussian nominal

errors for safety-critical GNSS navigation in three aspects. These include the non-

Gaussian overbounds for heavy-tailed SISRE, the fault detection method with non-

Gaussian nominal errors, and the high-availability integrity monitoring algorithm.

This thesis systematically introduces the non-Gaussian modeling to the integrity mon-

itoring community and demonstrates its huge potential in improving system availabil-

ity, shielding light on implementing integrity applications under stringent navigation

requirements.

7.1 Summary of Accomplishments

(1) Nominal performance characterization of GPS/Galileo SISRE

This thesis details the methodology of determining satellite orbit and clock errors,

including data source acquisition, antenna phase center offset correction for both

broadcast and precise ephemerides, and computation of orbit and clock vectors in

both ECEF and RAC frame, presenting a handy material for implementation. To

support integrity applications, the UPE is calculated by projecting the orbit and
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clock errors into earth grids within the satellite visibility cone and is regarded as

the SISRE. The nominal performance of SISRE for each individual GPS and Galileo

satellite during 2020–2022 has been analyzed, with emphasis put on the tail properties

and the difference between GPS and Galileo satellites. The analyzed results provide

the empirical basis for developing non-Gaussian overbounding methods and explaining

the performance degradation of fault detection and integrity monitoring algorithms

when incorporating Galileo constellations in the simulation studies.

(2) Non-Gaussian overbounding method for heavy-tailed errors

This thesis proposes the PGO for bounding heavy-tailed error distribution. Specifi-

cally, the BGMM is employed to fit the error distribution based on the EM algorithm.

The CDF overbound of the BGMM is constructed based on the dominant relation-

ship of each Gaussian component at the core and the tail region of the BGMM,

respectively. In addition, a sigma inflation strategy is proposed to compensate the

PGO, which allows it to bound the sample distribution as well as the fitted BGMM.

The overbounding property is proven to be preserved through convolution, which

makes it possible to derive pseudorange-level requirements from the position domain

integrity requirements. To facilitate the range-to-position projection, a discretiza-

tion technique that satisfies overbounding is further proposed and is used in the fast

Fourier transform to reduce the computation time of convolution. The proposed PGO

is applied to bound the GPS/Galileo SISRE, which provides the most competitive

bounding performance when compared to the Gaussian overbound and Gaussian-

Pareto overbound, yielding a sharp bound in both the core and tail parts of the error

distribution. Based on the PGO of SISRE, the non-Gaussian nominal error bounds

of code IF combination are further constructed, providing nominal error models for

constructing non-Gaussian fault detection and integrity monitoring algorithms.

(3) Theoretical foundation for detecting faulty measurements under non-

Gaussian nominal errors
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This thesis develops a fault detection method with rigorous derivations for linearized

pseudorange-based positioning systems under non-Gaussian nominal errors. Specifi-

cally, this thesis first constructs the jackknife test statistic by computing the inconsis-

tency between the observed measurement and the predicted measurement based on

subset solutions under the single-fault condition. Using the constructed jackknife test

statistic, a jackknife detector is developed by formalizing a multiple-testing problem

with the Bonferroni correction to detect faults. Then, the jackknife detector is ex-

tended to simultaneous faults by combining multiple test statistics. It is proven that

the constructed test statistic is the linear combination of measurement errors with-

out making assumptions about the distribution of errors, which provides an accurate

probabilistic model for hypothesis testing and establishes theoretical foundations for

fault detection.

(4) High-availability integrity monitoring algorithm under stringent navi-

gation requirements

This thesis develops an integrity monitoring algorithm by systematically exploiting

the properties of the jackknife detector in the range domain. Specifically, the pro-

posed method constructs a set of hypotheses, including a fault-free hypothesis and

alternative hypotheses, based on threat models. The jackknife detector is employed

to construct the monitors, with its threshold determined by the allocated continuity

budget. Then, the integrity risk under the fault-free hypothesis is bounded by ig-

noring knowledge of no detection. For alternative hypotheses, a tight bound of the

integrity risk is derived by quantifying the impacts of hypothetical fault vectors on

the position solution.

(5) Performance evaluation using real data in simulation

This thesis evaluates the performance of the proposed fault detection and integrity

monitoring algorithm in a worldwide simulation. The range projection of clock and

orbit error of the code IF combination is simulated based on authentic experimen-
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tal data instead of relying on empirical models, which enhances the reliability of

the experimental results. Results show that the proposed fault detection method

demonstrates superior performance than the SS fault detection method under non-

Gaussian nominal errors. Moreover, results reveal that the proposed non-Gaussian

jackknife ARAIM algorithm has higher system availability than the baseline ARAIM

method, making it possible to support LPV-200 requirements using the GPS-Galileo

dual constellation.

7.2 Recommended Topics for Future Research

(1) Reduce conservatism of Galileo broadcast URA parameters

The analysis of SISRE for Galileo satellites reveals that the Galileo broadcast URA

parameter is extremely conservative, which cannot fairly describe the nominal per-

formance of Galileo SISRE at most times. As suggested by experiment results, such

conservatism not only inflates the miss-detection rate of the fault detection algorithm

but also enlarges the protection levels of integrity monitoring algorithms. It is rec-

ommended to use a sharper overbound than the Gaussian overbound in the Galileo

broadcast information. The proposed PGO could be a good choice, but it is essen-

tial to balance the bounding performance and the communication cost introduced by

additional bounding parameters. Using these non-Gaussian overbounds also poses

challenges and brings opportunities for the design of the satellite broadcast message.

(2) Reduce computation cost by position-domain bounding

The proposed PGO provides a sharp yet conservative overbound for heavy-tailed er-

rors in the range domain. However, the range-to-position projection of PGO does not

have an analytical expression as that of the Gaussian overbound, thereby requiring

convolution operations. This causes a computation burden in the proposed jackknife

ARAIM algorithm, where the range-to-position projection needs to be executed in
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each subset. Although a specialized discretization technique is proposed in this thesis

and is used along with the fast Fourier transform to accelerate convolutions in the

range-to-position projection, it still poses challenges for real-time integrity applica-

tions. Since the PGO has an analytical expression in PDF and CDF, it is possible

to develop a parameterized overbound for the range-to-position projection of PGO.

Such a position-domain overbound avoids the convolution operations, which enables

the jackknife ARAIM algorithm to achieve the same computation efficiency as the

baseline ARAIM algorithm, making it possible to realize real-time integrity monitor-

ing with non-Gaussian nominal errors.

(3) Reduce conservatism of multi-testing in constructing monitors

Both the baseline ARAIM and the proposed jackknife ARAIM construct monitor

and conduct hypothesis testing on each subset, which is a multi-testing problem.

The Bonferroni correction is applied in both methods to handle this multi-testing

problem. However, the Bonferroni procedure is known to be conservative, which

can lead to a high miss-detection rate in the monitors. A possible remedy is to

apply the Holm–Bonferroni correction [101], which keeps the family-wise error rate no

higher than a pre-specified significance level. The Holm–Bonferroni correction shows

less conservative in multi-testing problems than the Bonferroni correction. However,

Holm–Bonferroni correction involves the systematic adjustment of the significance

level for each individual test. It is essential to investigate and remove the impacts of

such adjustments on system integrity.

(4) Integrity risk evaluation with fault exclusion

The proposed integrity monitoring algorithm warns the users once a fault is detected.

Future research can develop fault exclusion algorithms to further increase the system

availability. A heuristic method is to rank the p-value of the test statistics on each

subset and exclude the one with the smallest p-value. However, due to the masking

effects of simultaneous faults, it is possible to exclude nominal measurements. There-
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fore, special caution should be given in evaluating the impacts of wrong exclusions

on the integrity risk. Additional tests should be constructed to justify the wrong

exclusion probability, which should be further considered in the PL calculation.

(5) Incorporate additional constellations to improve availability

In the GPS-Galileo dual constellation experiment, the proposed JK-Gaussian ARAIM

and the baseline ARAIM algorithms exhibit significant degradation in system avail-

ability due to the heavy-tailed properties of Galileo SISRE. To further improve the

system availability, one can incorporate additional constellations, such as BeiDou,

GLONASS, and QZSS constellations. The clock and orbit errors of these constel-

lations should be carefully computed by employing suitable corrections, such as the

antenna phase center offset correction mentioned in Chapter 3, the time group delay

correction, and the clock corrections.

7.3 Closing

The non-Gaussian integrity monitoring algorithm presented in this thesis demon-

strates high availability under stringent navigation requirements, making it possible

to achieve the LPV-200 requirements using the recent GPS-Galileo dual constellation.

137



Appendix A

Appendices

A.1 Gaussian Overbound of Multipath and Code

Noise

The Gaussian overbound for multipath and code noise error for code IF combination

is given by

σi
ϱ,user,j,AB = σi

ϱ,user,j

√
γ2 + 1

(γ − 1)2
, (A.1)

where γ is the ratio of squares of two frequencies, as defined in Equation (2.9), and

σi
ϱ,user,j =

√
(σi

ϱ,noise,j)
2 + (σi

ϱ,multipath,j)
2 . (A.2)

The code noise bound σi
ϱ,noise,j and multipath bound σi

ϱ,multipath,j after carrier smooth-

ing suggested by WGC are provided by

(1) GPS Airborne Receiver [102]

σi
ϱ,noise,j = 0.15[m] + 0.43[m] exp

(
−
θij[deg]

6.9

)
(A.3a)

σi
ϱ,multipath,j = 0.13[m] + 0.53[m] exp

(
−
θij[deg]

10

)
. (A.3b)
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(2) Galileo Airborne Receiver [41]

Table A.1: The code noise and multipath error bound for Galileo airborne receiver

against the elevation angle

θij[deg] σi
ϱ,user,j θij[deg] σi

ϱ,user,j θij[deg] σi
ϱ,user,j

5 0.4529 35 0.2504 65 0.2295

10 0.3553 40 0.2438 70 0.2278

15 0.3063 45 0.2396 75 0.2297

20 0.2638 50 0.2359 80 0.2310

25 0.2593 55 0.2339 85 0.2274

30 0.2555 60 0.2302 90 0.2277

A.2 MaximumNumber of Simultaneous Faults That

Need to be Monitored

This section describes the procedure of determining the maximum number of simulta-

neous faults that need to be monitored kmax and the prior probabilities of fault mode

PHk
in the baseline ARAIM algorithm [20].

Define

Pevent,i = Psat,i (A.4a)

Pevent,Nsat+j = Pconst,j . (A.4b)

Assume fault mode k includes the events in set ΩHi
. Then the prior probabilities of

fault mode PHk
is defined as

PHk
=
∏

j∈ΩHi

Pevent,j . (A.5)
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The probability of all fault modes composed of r or more independent events is given

by

P>(r) =
Nsat+Nconst∑

k=r

∑
i1<i2<···<ik

∏
j∈i1,i2,··· ,ik

Pevent,j

∏
j ̸∈i1,i2,··· ,ik

(1− Pevent,j) . (A.6)

It is proven in [20] that

P>(r) ≤
∑

i1<i2<···<ir

Pevent,i1Pevent,i2 · · ·Pevent,ir . (A.7)

Since (
Nsat+Nconst∑

k=1

Pevent,k

)r

≥
∑

i1 ̸=i2 ̸=···̸=ir

Pevent,i1Pevent,i2 · · ·Pevent,ir (A.8a)

= r!
∑

i1<i2<···<ir

Pevent,i1Pevent,i2 · · ·Pevent,ir , (A.8b)

where Equation (A.8b) indicates that there are r! ways to arrange a sequence of

length r, P (r) in Equation (A.7) can be bounded by

P>(r) ≤

(∑Nsat+Nconst

k=1 Pevent,k

)r
r!

. (A.9)

Therefore, kmax is determined by

kmax = φPTHRES

(∑Nsat+Nconst∑
k=1

Pevent,k

)
, (A.10)

where

φPTHRES
(u) = min

{
r| ur+1

(r + 1)!
≤ PTHRES

}
, (A.11)

and PTHRES is the threshold for the integrity risk coming from unmonitored faults.

Then, the probability of the unmonitored events is given by

Pnot monitored = P>(kmax + 1) . (A.12)
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A.3 The EM Algorithm

The PDF of a K-component GMM model with mixture weights of p1, p2,..., pK can

be written as

f (x| Θ) =
K∑
k=1

pkfN (x; bk, σk) , (A.13)

where Θ represents all parameters, including each Gaussian component’s mixture

weight, mean, and variance. For a given observation xi, we define the allocation

(latent) variable c = {1, 2, . . . , K} that marks the Gaussian component from which

xi is generated. Then, the mixture weight of Gaussian components can be interpreted

as the prior probability of the allocation variable as follows,

pk = P (c = k) . (A.14)

The membership weight of the GMM can be defined based on Bayes’ Theorem as

follows,

wi,k = P (c = k|xi) =
pkfN (xi; bk, σk)∑K
k=1 pkfN (xi; bk, σk)

, (A.15)

which indicates the posterior probability of a data point xi being generated from the

kth Gaussian component. The log-likelihood function can be written as

L (x|Θ) =
N∑
i=1

ln
K∑
k=1

P (xi|c = k, bk, σk)P (c = k) . (A.16)

By utilizing Jensen’s inequality [103], the above equation can be simplified as

L (x|Θ) ≥Q (x|Θ) , (A.17a)

Q (x|Θ) =
N∑
i=1

K∑
k=1

wi,kln
pkfN (xi; bk, σk)

wi,k

(A.17b)

=
N∑
i=1

K∑
k=1

wi,k

(
ln pk −

(xi − bk)
2

2σ2
k

− lnwi,k − ln
√

2πσ2
k

)
,

where Q (x|Θ) is the lower bound of L (x|Θ). Therefore, the model parameters of

GMM can be estimated by maximizing Q (x|Θ), which can be effectively achieved
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by the EM algorithm [74]. The EM algorithm is an iterative supervised training

algorithm consisting of two steps: the E-step and the M-step. Firstly, the model

parameters are randomly initialized. In the E-step, the algorithm calculates the value

of membership weight wi,k based on the latest model parameters, as shown in (A.15).

In the M-step, the algorithm updates the model parameters based on the value of wi,k.

In this step, the log-likelihood function is maximized by taking the partial derivative

over the model parameters Θ and letting the partial derivative equal to zero. The

two steps are repeated until convergence is reached.

A.4 Proof of Tail Region Overbound

Recall that Section 4.3.4.3.3 constructs the overbound distribution in the left-tail

region as follows:

GL
o (x) = (1 + k) (1− p1)G (x; 0, σ2) ∀x < xlp . (A.18)

The difference between GL
o (x) and G(x) is given by

GL
o (x)−G(x) = k (1− p1)G (x; 0, σ2)− p1G (x; 0, σ1) . (A.19)

By substituting (4.28) into (A.19),

GL
o (x)−G(x) =

p1
G (xlp; 0, σ2)

(
G (xlp; 0, σ1)G (x; 0, σ2)

−G (x; 0, σ1)G (xlp; 0, σ2)
)
.

(A.20)

If GL
o (x) is the CDF overbound of G(x), then the right-hand side of (A.20) should be

non-negative, which is equivalent to prove

G (xlp; 0, σ1)

G (xlp; 0, σ2)
>

G (x; 0, σ1)

G (x; 0, σ2)
∀x < xlp . (A.21)
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Let f(x) = G(x;0,σ1)
G(x;0,σ2)

, then the derivative of f(x) is given by

f
′
(x) =

fN (x; 0, σ1)G (x; 0, σ2)− fN (x; 0, σ2)G (x; 0, σ1)

G2 (x; 0, σ2)
. (A.22)

Define

m (σ;x) =
fN (x; 0, σ)

G (x; 0, σ)
=

1
σ
√
2π
exp

(
− x2

2σ2

)
1
2

[
1 + erf

(
x

σ
√
2

)] (A.23a)

∀σ > 0, x < xlp ,

h (γ;x) = m

(
−1

γ
;x

)
∀γ < 0, x < xlp . (A.23b)

Then h (γ;x) can be written as

h (γ;x) =

γ

−
√
2π
exp

(
− γ2

2(− 1
x)

2

)
1
2

[
1 + erf

(
γ

(− 1
x)

√
2

)] =

γ
x
· 1

(− 1
x)

√
2π
exp

(
− γ2

2(− 1
x)

2

)
1
2

[
1 + erf

(
γ

(− 1
x)

√
2

)] =
1

x
· γ

fN

(
γ; 0,

(
− 1

x

)2)
G
(
γ; 0,− 1

x

) .

(A.24)

Define λ(γ) =
fN(γ;0,(− 1

x))
G(γ;0,− 1

x)
, which is known as the inverse Mills ratio [104] and has

the following properties [105]:

λ(γ) ≥ 0 ∀γ (A.25a)

λ
′
(γ) < 0 ∀γ . (A.25b)

Then the partial derivative of h (γ;x) with respect to γ can be calculated as

∂h (γ;x)

∂γ
=

1

x

[
λ(γ) + γλ

′
(γ)
]
. (A.26)

According to the chains rule,

∂m (σ;x)

∂σ
=

∂h
(
− 1

σ
;x
)

∂σ
=

∂h
(
− 1

σ
;x
)

∂γ
·
∂
(
− 1

σ

)
∂σ

=
1

x

[
λ

(
− 1

σ

)
− 1

σ
λ

′
(
− 1

σ

)]
1

σ2
.

(A.27)
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When x < 0, we can easily prove that ∂m(σ;x)
∂σ

< 0. This means that m (σ;x) is a

monotonically decreasing function when x < 0. Therefore,

m (σ1;x) =
fN (x; 0, σ1)

G (x; 0, σ1)
>

fN (x; 0, σ2)

G (x; 0, σ2)

= m (σ2;x) ∀σ2 > σ1 > 0, x < 0 .

(A.28)

This is equivalent to saying that (A.22) has the property as follows:

f
′
(x) > 0 ∀σ2 > σ1 > 0, x < 0 . (A.29)

Equation (A.29) indicates that f(x) is a monotonically increasing function when

x < 0, and therefore (A.21) is proved. Then, we can conclude that GL
o (x) is the CDF

overbound of G(x) when x < xlp. According to the symmetric property of GL
o (x) and

GR
o (x), G

R
o (x) is easy to be proved as the CDF overbound of G(x) when x > xrp.

This ends the proof.

A.5 Proof of Monotonicity

In the PGO, its PDF discontinues at the core-tail transition points xlp and xrp. The

value of the leap at xlp can be written as

f core
o (xlp)− fL

o (xlp) = − (1 + k) (1− p1) fN (xlp; 0, σ2) + p1fN (xlp; 0, σ1) + c .

(A.30)

Define

k∗ =
p1fN (xlp; 0, σ1)

(1− p1) fN (xlp; 0, σ2)
. (A.31)

As proved in (A.28) in Appendix A.4,

fN (x; 0, σ1)

G (x; 0, σ1)
>

fN (x; 0, σ2)

G (x; 0, σ2)
∀σ2 > σ1 > 0, x < 0 . (A.32)

We have

k∗ =
p1fN (xlp; 0, σ1)

(1− p1) fN (xlp; 0, σ2)
>

p1G (xlp; 0, σ1)

(1− p1)G (xlp; 0, σ2)
= k > 0 ∀σ2 > σ1 > 0, x < 0 .

(A.33)
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Therefore,

f core
o (xlp)− fL

o (xlp) > − (1 + k∗) (1− p1) fN (xlp; 0, σ2) + p1fN (xlp; 0, σ1) + c .

(A.34)

Substituting (4.33) and (A.31) into (A.34), we have

f core
o (xlp)− fL

o (xlp) >
1− p1
xlp

(
G (xlp; 0, σ2)−xlpfN (xlp; 0, σ2)− 0.5

)
. (A.35)

Define

g (xlp) = G (xlp; 0, σ2)− xlpfN (xlp; 0, σ2)− 0.5 , (A.36)

then its first derivative can be calculated as

g
′
(xlp) =

(
1 +

x2
lp

σ2
2

)
fN (xlp; 0, σ2) > 0 . (A.37)

Since g(0) = 0, we have

g (xlp) < 0 ∀xlp < 0 . (A.38)

Therefore, (A.35) can be written as

f core
o (xlp)− fL

o (xlp) >
1− p1
xlp

g (xlp) > 0 ∀xlp < 0 . (A.39)

Since

fL
o

′
(x) = − x

σ2
2

(1 + k) p2fN (x; 0, σ2) > 0 ∀x < xlp (A.40a)

f core
o

′
(x) = − x

σ2
1

p1fN (x; 0, σ1) > 0 ∀xlp < x < 0 , (A.40b)

we can conclude that fo(x) is a monotonically increasing function when x < 0.

A.6 Distribution of Linear Combination of Ran-

dom Variables

Consider a set of independent random variables Y1, Y2, · · · , YN with zero means. The

PDF of Yi is given by fYi
(x). Let Y be the linear combination of Y1, Y2, · · · , YN as
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follows:

Y =
N∑
i=1

aiYi , (A.41)

where ai, i = 1, 2, · · · , N is the coefficient. Let

Ỹi = aiYi, i = 1, 2, · · · , N (A.42)

be a new random variable, and then Y can be written by

Y =
N∑
i=1

Ỹi . (A.43)

The CDF of Ỹi is given by

FỸi
(y) = P

(
Ỹi < y

)
= P

(
Yi <

y

|ak|

)
=

∫ y/|ak|

−∞
fYi

(x) dx . (A.44)

Let t = |ai|x, then we have

FỸi
(y) =

1

|ai|

∫ y

−∞
fYi

(
t

|ai|

)
dt . (A.45)

Therefore, the PDF of Ỹi is given by

fỸi
(x) =

1

|ai|
fYi

( x

|ai|

)
. (A.46)

Finally, the PDF of Y can be obtained through convolution as

fY (x) = fỸ1
(x) ∗ fỸ2

(x) ∗ . . . ∗ fỸN
(x)

=
n∏

i=1

|ai|−1fY1

(
x

|a1|

)
∗ fY2

(
x

|a2|

)
∗ . . . ∗ fYn

(
x

|an|

)
.

(A.47)

A.7 Distribution of Jackknife Residual under Gaus-

sian Noises

The Gauss-Markov conditions concern the set of noises in the linear system y = Gx+ε

as follows:

146



A.7. Distribution of Jackknife Residual under Gaussian Noises

1. Zero mean: E[εi] = 0 ∀i;

2. Homoscedastic: Var[εi] = σ2 <∞ ∀i;

3. Uncorrelated: Cov[εi, εj] = 0 ∀i ̸= j.

Under Gauss-Markov conditions, the ordinary least squares (OLS) estimator is the

best linear unbiased estimator (BLUE).

A further generalization of the Gauss-Markov conditions to heteroscedastic and cor-

related errors has been developed [106], and its application to the weighted least

squares (WLS) estimator can be stated as follows:

“WLS is the BLUE if the weight matrix is equal to the inverse of the

variance-covariance matrix of the noises.”

Based on the generalized Gauss-Markov conditions, the subsolution in Equation

(2.38a) has the following properties:

E[x̂(k)]=0 (A.48a)

Var[x̂(k)]=S(k)W−1S(k)T . (A.48b)

By substituting Equation (5.9) into Equation (5.10), the jackknife residual can be

written by

tk = yk − gkx̂
(k)

= gkx
(k) + εk − gkx̂

(k)

= gk(x
(k) − x̂(k)) + εk .

(A.49)

The expectation and variance of the jackknife residual in (A.49) are given by

E[tk]=0 (A.50a)

Var[tk]=gk Var
[
x(k) − x̂(k)

]
gT
k + σ2

k

=gkS
(k)W−1S(k)TgT

k + σ2
k . (A.50b)
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Appendix A. Appendices

As shown in Equation (5.19), the Jackknife residual can be rewritten as

tk = p̃kε , (A.51)

which is a linear combination of measurement noises. If εi has a zero-mean Gaussian

distribution defined in Equation (5.22), tk will have a Gaussian distribution

tk ∼ N
(
0, p̃kW

−1p̃T
k

)
. (A.52)

Since a Gaussian distribution is uniquely defined by its mean and variance, the fol-

lowing equation will hold:

gkS
(k)W−1S(k)TgT

k + σ2
k = p̃kW

−1p̃T
k . (A.53)

Therefore,

tk ∼ N
(
0,gkS

(k)W−1S(k)TgT
k + σ2

k

)
. (A.54)

A.8 Bonferroni Correction

The hypotheses with Bonferroni correction [93] in Equation (5.25) have the following

relationship with the original hypotheses in Equation (5.24):

H0=
n⋂

k=1

H
(k)
0

H1=
n⋃

k=1

H
(k)
1 .

(A.55)
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A.8. Bonferroni Correction

Assume that the probability of type I error of the corrected hypothesis test is α∗.

Then,

1− α∗=P (All tests accept
∣∣ H0)

=1− P (At least one test is rejected
∣∣ H0)

≥1−
n∑

k=1

P (Origin test i is rejected
∣∣ H0)

=1−
n∑

k=1

P (Origin test i is rejected
∣∣ H(k)

0 )

=1− nα .

(A.56)

In addition,

α∗=P (At least one test is rejected
∣∣ H0)

≥P (Origin test i is rejected
∣∣ H(k)

0 )

=α .

(A.57)

Therefore,

α ≤ α∗ ≤ nα . (A.58)

To keep the type I error α∗ not exceeding τ (e.g., 0.05),

nα = τ . (A.59)

Thus, the type I error of the individual test would be α = τ
n
.

149



Bibliography

[1] R. Wang and T. Walter, “Characterization and comparison of Galileo and GPS

anomalies,” in Proceedings of the 2023 International Technical Meeting of The

Institute of Navigation, 2023, pp. 597–610.

[2] T. Walter and P. Enge, “Weighted RAIM for precision approach,” in Proceed-

ings of the 8th International Technical Meeting of the Satellite Division of The

Institute of Navigation (ION GPS 1995), vol. 8, no. 1. Institute of Navigation,

1995, pp. 1995–2004.

[3] R. G. Brown, “A baseline GPS RAIM scheme and a note on the equivalence of

three RAIM methods,” NAVIGATION, vol. 39, no. 3, pp. 301–316, Sep. 1992.

[Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/j.2161-4296.

1992.tb02278.x

[4] Y. C. Lee, “Analysis of range and position comparison methods as a means to

provide GPS integrity in the user receiver,” in Proceedings of the 42nd Annual

Meeting of The Institute of Navigation (1986), 1986, pp. 1–4.

[5] A. K. Brown, “Receiver autonomous integrity monitoring using a 24-satellite

GPS constellation,” in Proceedings of the Satellite Division’s First Technical

Meeting (ION GPS 1987), vol. 1, 1987, pp. 256–262.

[6] R. G. Brown and P. W. McBurney, “Self-contained GPS integrity check using

maximum solution separation,” NAVIGATION, vol. 35, no. 1, pp. 41–53, 1988.

150

https://onlinelibrary.wiley.com/doi/10.1002/j.2161-4296.1992.tb02278.x
https://onlinelibrary.wiley.com/doi/10.1002/j.2161-4296.1992.tb02278.x


Bibliography

[7] A. K. Brown, “Civil aviation integrity requirements for the global positioning

system,” NAVIGATION, vol. 35, no. 1, pp. 23–40, 1988.

[8] B. W. Parkinson and P. Axelrad, “Autonomous GPS integrity monitoring using

the pseudorange residual,” NAVIGATION, vol. 35, no. 2, pp. 255–274, Jun.

1988.

[9] M. A. Sturza, “Navigation system integrity monitoring using redundant mea-

surements,” NAVIGATION, vol. 35, no. 4, pp. 483–501, 1988.

[10] R. G. Brown, G. Y. Chin, and J. H. Kraemer, “RAIM: Will it meet the RTCA

GPS minimum operational performance standards?” in Proceedings of the 1991

National Technical Meeting of The Institute of Navigation, 1991, pp. 103–111.

[11] R. Fontana and D. Latterman, “GPS modernization and the future,” in Proceed-

ings of the IAIN World Congress and the 56th Annual Meeting of The Institute

of Navigation (2000), 2000, pp. 222–231.

[12] P. Enge, “GPS modernization: capabilities of the new civil signals,” in Aus-

tralian International Aerospace Congress, vol. 29, 2003.

[13] R. Haddad, K. Kovach, R. Slattery, and J. Gillis, “GPS modernization and

beyond,” in 2020 IEEE/ION Position, Location and Navigation Symposium

(PLANS). IEEE, 2020, pp. 399–406.

[14] F. A. Administration, “Phase II of the GNSS Evolution-

ary Architecture Study,” 2010, accessed on April 2024. [On-

line]. Available: https://www.faa.gov/sites/faa.gov/files/about/office org/

headquarters offices/ato/GEASPhaseII Final.pdf

[15] B. S. Pervan, S. P. Pullen, and J. R. Christie, “A multiple hypothesis approach

to satellite navigation integrity,” NAVIGATION, vol. 45, no. 1, pp. 61–71, 1998.

151

https://www.faa.gov/sites/faa.gov/files/about/office_org/headquarters_offices/ato/GEASPhaseII_Final.pdf
https://www.faa.gov/sites/faa.gov/files/about/office_org/headquarters_offices/ato/GEASPhaseII_Final.pdf


Bibliography

[16] J. Blanch, T. Walter, and P. Enge, “RAIM with optimal integrity and continu-

ity allocations under multiple failures,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 46, no. 3, pp. 1235–1247, 2010.

[17] M. Joerger, F.-C. Chan, S. Langel, and B. Pervan, “RAIM detector and estima-

tor design to minimize the integrity risk,” in Proceedings of the 25th Interna-

tional Technical Meeting of the Satellite Division of the Institute of Navigation

(ION GNSS 2012), 2012, pp. 2785–2807.

[18] M. Joerger, F.-C. Chan, and B. Pervan, “Solution separation versus residual-

based RAIM,” NAVIGATION, vol. 61, no. 4, pp. 273–291, Dec. 2014.

[19] J. Blanch, T. Walter, P. Enge, Y. Lee, B. Pervan, M. Rippl, and A. Splet-

ter, “Advanced RAIM user algorithm description: Integrity support message

processing, fault detection, exclusion, and protection level calculation,” in Pro-

ceedings of the 25th International Technical Meeting of The Satellite Division

of the Institute of Navigation (ION GNSS 2012), Nashville, TN, Sep. 2012, pp.

2828–2849.

[20] J. Blanch, T. Walker, P. Enge, Y. Lee, B. Pervan, M. Rippl, A. Spletter, and

V. Kropp, “Baseline advanced RAIM user algorithm and possible improve-

ments,” IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 1,

pp. 713–732, 2015.

[21] J. Blanch, T. Walter, C. Milner, M. Joerger, B. Pervan, and D. Bouvet, “Base-

line advanced RAIM user algorithm: Proposed updates,” in Proceedings of the

2022 International Technical Meeting of The Institute of Navigation, 2022, pp.

229–251.

[22] J. Rife, S. Pullen, and B. Pervan, “Core overbounding and its implications for

LAAS integrity,” in Proceedings of the 17th International Technical Meeting of

152



Bibliography

the Satellite Division of The Institute of Navigation (ION GNSS 2004), Long

Beach, CA, Sep. 2004, pp. 2810–2821.

[23] R. Braff and C. Shively, “A method of over bounding ground based augmenta-

tion system (GBAS) heavy tail error distributions,” The Journal of Navigation,

vol. 58, no. 1, pp. 83–103, 2005.

[24] B. Pervan, S. Pullen, and I. Sayim, “Sigma estimation, inflation, and moni-

toring in the LAAS ground system,” in Proceedings of the 13th International

Technical Meeting of the Satellite Division of The Institute of Navigation (ION

GPS 2000), 2000, pp. 1234–1244.

[25] S. Perea, M. Meurer, M. Rippl, B. Belabbas, and M. Joerger, “URA/SISA

analysis for GPS and Galileo to support ARAIM,” NAVIGATION, vol. 64,

no. 2, pp. 237–254, 2017.

[26] S. Wang, Y. Zhai, and X. Zhan, “Characterizing bds signal-in-space perfor-

mance from integrity perspective,” NAVIGATION, vol. 68, no. 1, pp. 157–183,

2021.

[27] International Civil Aviation Organisation, “Annex 10, Aeronautical Telecom-

munications, Volume I (Radio Navigational Aids),” July 2006.

[28] E. U. A. S. Agency, “NPA 2024-06: Introduction of a regulatory

framework for the operation of drones — Enabling the initial airworthiness

of UAS subject to certification, and the continuing airworthiness of

those UAS operated in the ‘specific’ category,” 2024, accessed on April

2025. [Online]. Available: https://www.easa.europa.eu/en/document-library/

notices-of-proposed-amendment/npa-2024-06

[29] P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and

Performance, 2nd ed. Lincoln, Mass: Ganga-Jamuna Press, 2006.

153

https://www.easa.europa.eu/en/document-library/notices-of-proposed-amendment/npa-2024-06
https://www.easa.europa.eu/en/document-library/notices-of-proposed-amendment/npa-2024-06


Bibliography

[30] B. Jaduszliwer and J. Camparo, “Past, present and future of atomic clocks for

GNSS,” GPS Solutions, vol. 25, pp. 1–13, 2021.

[31] Interface Control Working Group, “NAVSTAR GPS Space Segment/Navigation

User Segment Interfaces, IS-GPS-200, rev. N,” Space Systems Command, Tech.

Rep., August 2022.

[32] E. D. Kaplan and C. Hegarty, Understanding GPS: principles and applications,

2nd ed. Artech house, 2006.

[33] J. Lee, S. Pullen, and P. Enge, “Sigma Overbounding using a position do-

main method for the local area augmentaion of GPS,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 45, no. 4, pp. 1262–1274, Oct. 2009.

[34] A. Kleusberg, “Atmospheric models from GPS,” in GPS for Geodesy. Springer,

1998, pp. 599–623.

[35] M. M. Hoque and N. Jakowski, “Estimate of higher order ionospheric errors in

GNSS positioning,” Radio Science, vol. 43, no. 05, pp. 1–15, 2008.

[36] M. Z. Jacobson, Fundamentals of atmospheric modeling. Cambridge University

Press, 1999.

[37] RTCA Special Committee 159, “RTCA/DO-229D: Minimum operational per-

formance standards for global positioning system/wide area augmentation

system airborne equipment,” Radio Technical Commission for Aeronautics

(RTCA), Tech. Rep., 2006.

[38] J. W. Betz, “Fundamentals of satellite-based navigation and timing,” in Posi-

tion, Navigation, and Timing Technologies in the 21st Century, Y. J. Morton,

F. van Diggelen, J. J. Spilker Jr, B. W. Parkinson, S. Lo, and G. Gao, Eds.

John Wiley & Sons, Ltd, 2020, ch. 2, pp. 43–64.

154



Bibliography

[39] M. Smyrnaios, S. Schn, M. Liso, and S. Jin, “Multipath propagation, charac-

terization and modeling in GNSS,” Geodetic Sciences-Observations, Modeling

and Applications, pp. 99–125, 2013.

[40] T. Murphy, M. Harris, J. Booth, P. Geren, T. Pankaskie, B. Clark, J. Burns, and

T. Urda, “Results from the program for the investigation of airborne multipath

errors,” in Proceedings of the 2005 National Technical Meeting of The Institute

of Navigation, 2005, pp. 153–169.

[41] Working Group C-ARAIM Technical Subgroup, “Milestone 2 report,” EU-US

Cooperation in Satellite Navigation, Tech. Rep., 2015.

[42] X. Niu, Q. Chen, Q. Zhang, H. Zhang, J. Niu, K. Chen, C. Shi, and J. Liu,

“Using Allan variance to analyze the error characteristics of GNSS positioning,”

GPS Solutions, vol. 18, pp. 231–242, 2014.

[43] L. Zhao, J. Zhang, L. Li, F. Yang, and X. Liu, “Position-domain non-Gaussian

error overbounding for ARAIM,” Remote Sensing, vol. 12, no. 12, p. 1992, 2020.

[44] S. Perea Diaz, “Design of an integrity support message for offline advanced

RAIM,” Ph.D. dissertation, Rheinisch-Westfälische Technische Hochschule

Aachen, 2019.

[45] O. Montenbruck, P. Steigenberger, and A. Hauschild, “Broadcast versus precise

ephemerides: a multi-GNSS perspective,” GPS Solutions, vol. 19, pp. 321–333,

2015.

[46] T. Walter, J. Blanch, and P. Enge, “Evaluation of signal in space error bounds

to support aviation integrity,” NAVIGATION, vol. 57, no. 2, pp. 101–113, 2010.

[47] Y. Wu, X. Liu, W. Liu, J. Ren, Y. Lou, X. Dai, and X. Fang, “Long-term

behavior and statistical characterization of BeiDou signal-in-space errors,” GPS

Solutions, vol. 21, pp. 1907–1922, 2017.

155



Bibliography

[48] O. Montenbruck and P. Steigenberger, “GNSS orbit determination and time

synchronization,” in Position, Navigation, and Timing Technologies in the 21st

Century, Y. J. Morton, F. van Diggelen, J. J. Spilker Jr, B. W. Parkinson,

S. Lo, and G. Gao, Eds. John Wiley & Sons, Ltd, 2020, ch. 11, pp. 233–258.

[49] “GPS Constellation Information,” accessed on Sep 2024. [Online]. Available:

https://www.navcen.uscg.gov/gps-constellation

[50] “Galileo Constellation Information,” accessed on Sep 2024. [Online]. Available:

https://www.gsc-europa.eu/system-service-status/constellation-information

[51] “International GNSS Service, GPS Data Repository,” accessed on May 2024.

[Online]. Available: https://cddis.nasa.gov/archive/gps/data

[52] O. Montenbruck, P. Steigenberger, R. Khachikyan, G. Weber, R. Langley,

L. Mervart, and U. Hugentobler, “IGS-MGEX: preparing the ground for multi-

constellation GNSS science,” Inside GNSS, vol. 9, no. 1, pp. 42–49, 2014.

[53] “International GNSS Service, GNSS Products Repository,” accessed on June

2024. [Online]. Available: https://cddis.nasa.gov/archive/gnss/products

[54] J. Kouba and P. Héroux, “Precise point positioning using igs orbit and clock

products,” GPS Solutions, vol. 5, pp. 12–28, 2001.

[55] O. Montenbruck, P. Steigenberger, and A. Hauschild, “Multi-GNSS signal-in-

space range error assessment–methodology and results,” Advances in Space Re-

search, vol. 61, no. 12, pp. 3020–3038, 2018.

[56] National Geospacial-Intelligence Agency, “NGA GNSS Division Precise

Ephemeris Parameters,” accessed on June 2024. [Online]. Available:

https://earth-info.nga.mil/php/download.php?file=gnss-precise

156

https://www.navcen.uscg.gov/gps-constellation
https://www.gsc-europa.eu/system-service-status/constellation-information
https://cddis.nasa.gov/archive/gps/data
https://cddis.nasa.gov/archive/gnss/products
https://earth-info.nga.mil/php/download.php?file=gnss-precise


Bibliography

[57] European GNSS Agency, “Galileo metadata,” accessed on July

2024. [Online]. Available: https://www.gsc-europa.eu/support-to-developers/

galileo-satellite-metadata

[58] International GNSS Service, “Antenna files,” accessed on July 2024. [Online].

Available: https://igs.org/wg/antenna/#files

[59] O. Montenbruck, R. Schmid, F. Mercier, P. Steigenberger, C. Noll, R. Fatkulin,

S. Kogure, and A. S. Ganeshan, “GNSS satellite geometry and attitude models,”

Advances in Space Research, vol. 56, no. 6, pp. 1015–1029, 2015.

[60] Department of Defense, Global Positioning System Standard Positioning Service

Performance Standard, 5th ed., 2020.

[61] T. Walter, K. Gunning, R. Eric Phelts, and J. Blanch, “Validation of the un-

faulted error bounds for ARAIM,” Navig. J. Inst. Navig., vol. 65, no. 1, pp.

117–133, 2018.

[62] European Union Agency for the Space Programme, Galileo Open Service Service

Definition Document, 2023.

[63] B. DeCleene, “Defining pseudorange integrity - overbounding,” in Proceedings

of the 13th International Technical Meeting of the Satellite Division of The

Institute of Navigation (ION GPS 2000), Salt Lake City, UT, Sep. 2000, pp.

1916–1924.

[64] J. Rife, S. Pullen, B. Pervan, and P. Enge, “Paired overbounding and applica-

tion to GPS augmentation,” in PLANS 2004. Position Location and Navigation

Symposium (IEEE Cat. No.04CH37556), 2004, pp. 439–446.

[65] J. Blanch, T. Walter, and P. Enge, “Gaussian bounds of sample distributions for

integrity analysis,” IEEE Transactions on Aerospace and Electronic Systems,

vol. 55, no. 4, pp. 1806–1815, Aug. 2019.

157

https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata
https://www.gsc-europa.eu/support-to-developers/galileo-satellite-metadata
https://igs.org/wg/antenna/#files


Bibliography

[66] J. Rife, T. Walter, and J. Blanch, “Overbounding SBAS and GBAS error distri-

butions with excess-mass functions,” in Proceedings of the International Sym-

posium on GNSS/GPS, Sydney, Australia, Sydney, Australia, 2004.

[67] C. A. Shively, “A comparison of LAAS error bounding concepts,” in Proceedings

of the 2001 National Technical Meeting of The Institute of Navigation, Long

Beach, CA, Jan. 2001, pp. 501–511.

[68] J. D. Larson, D. Gebre-Egziabher, and J. H. Rife, “Gaussian-Pareto overbound-

ing of DGNSS pseudoranges from CORS,” NAVIGATION, vol. 66, no. 1, pp.

139–150, Jan. 2019.

[69] S. Coles, “Threshold models,” in An Introduction to Statistical Modeling

of Extreme Values. London: Springer London, 2001, pp. 74–91. [Online].

Available: https://doi.org/10.1007/978-1-4471-3675-0 4

[70] J. Pickands III, “Statistical inference using extreme order statistics,” the Annals

of Statistics, pp. 119–131, 1975.

[71] J. Blanch, T. Walter, and P. Enge, “Position error bound calculation for GNSS

using measurement residuals,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 44, no. 3, pp. 977–984, Jul. 2008.

[72] Y. Yun, H. Yun, D. Kim, and C. Kee, “A Gaussian sum filter approach for

DGNSS integrity monitoring,” J. Navig., vol. 61, no. 4, pp. 687–703, 2008.

[73] J. Lee, “LAAS position domain monitor analysis and test results for CAT II/III

operations,” in Proceedings of the 17th International Technical Meeting of the

Satellite Division of The Institute of Navigation (ION GNSS 2004), Long Beach,

CA, Sep. 2004, pp. 2786–2796.

[74] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society:

Series B (Methodological), vol. 39, no. 1, pp. 1–22, Sep. 1977.

158

https://doi.org/10.1007/978-1-4471-3675-0_4


Bibliography

[75] Z. Gao, K. Fang, Z. Wang, K. Guo, and Y. Liu, “An error overbounding method

based on a Gaussian mixture model with uncertainty estimation for a dual-

frequency ground-based augmentation system,” Remote Sensing, vol. 14, no. 5,

p. 1111, 2022.

[76] J. A. Rice, “Probability,” in Mathematical Statistics and data analysis. Thom-

son Brooks/Cole, 2007, p. 1–26.

[77] W. C. Horrace, “Moments of the truncated normal distribution,” Journal of

Productivity Analysis, vol. 43, pp. 133–138, 2015.

[78] S. Shah and M. Jaiswal, “Estimation of parameters of doubly truncated nor-

mal distribution from first four sample moments,” Annals of the Institute of

Statistical Mathematics, vol. 18, no. 1, pp. 107–111, 1966.

[79] R. N. Bracewell, The Fourier Transform and Its Applications, 3rd ed., ser.

McGraw-Hill series in electrical and computer engineering. Boston: McGraw

Hill, 2000.

[80] J. Rife and B. Pervan, “Overbounding revisited: discrete error-distribution

modeling for safety-critical GPS navigation,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 48, no. 2, pp. 1537–1551, 2012.

[81] H. J. Nussbaumer, “The fast Fourier transform,” in Fast Fourier Transform and

Convolution Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982,

pp. 80–111. [Online]. Available: https://doi.org/10.1007/978-3-642-81897-4 4

[82] T. Walter and J. Blanch, “Keynote-Characterization of GNSS clock and

ephemeris errors to support ARAIM,” in Proceedings of the ION 2015 Pacific

PNT Meeting, 2015, pp. 920–931.

[83] O. Osechas, P. Misra, and J. Rife, “Carrier-phase acceleration RAIM for GNSS

satellite clock fault detection,” NAVIGATION, vol. 59, no. 3, pp. 221–235, 2012.

159

https://doi.org/10.1007/978-3-642-81897-4_4


Bibliography

[84] M. Joerger and B. Pervan, “Fault detection and exclusion using solution separa-

tion and Chi-squared ARAIM,” IEEE Transactions on Aerospace and Electronic

Systems, vol. 52, no. 2, pp. 726–742, Apr. 2016.

[85] R. Wang, Z. Xiong, J. Liu, J. Xu, and L. Shi, “Chi-square and SPRT combined

fault detection for multisensor navigation,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 52, no. 3, pp. 1352–1365, 2016.

[86] Y. Liu and Y. J. Morton, “Improved automatic detection of GPS satellite os-

cillator anomaly using a machine learning algorithm,” NAVIGATION, vol. 69,

no. 1, 2022.

[87] Z. Gao, S. X. Ding, and C. Cecati, “Real-time fault diagnosis and fault-tolerant

control,” IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp. 3752–

3756, 2015.

[88] B. S. Pervan, D. G. Lawrence, C. E. Cohen, and B. W. Parkinson, “Parity

space methods for autonomous fault detection and exclusion using GPS car-

rier phase,” in Proceedings of Position, Location and Navigation Symposium-

PLANS’96. IEEE, 1996, pp. 649–656.

[89] M. Joerger and B. Pervan, “Kalman filter-based integrity monitoring against

sensor faults,” Journal of Guidance, Control, and Dynamics, vol. 36, no. 2, pp.

349–361, 2013.

[90] J. W. Tukey, “Bias and confidence in not quite large samples,” Annals of Math-

ematical Statistics, vol. 29, p. 614, 1958.

[91] M. H. Quenouille, “Notes on bias in estimation,” Biometrika, vol. 43, no. 3/4,

pp. 353–360, 1956.

[92] M. H. Quenouille, “Problems in plane sampling,” The Annals of Mathematical

Statistics, vol. 20, no. 3, pp. 355–375, 1949.

160



Bibliography

[93] C. Bonferroni, “Teoria statistica delle classi e calcolo delle probabilita,” Pub-

blicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di

Firenze, vol. 8, pp. 3–62, 1936.

[94] S. Hutsell, M. Forsyth, and C. B. McFarland, “One-way GPS time transfer:

2002 performance,” in Proceedings of the 34th Annual Precise Time and Time

Interval Systems and Applications Meeting, 2002, pp. 69–76.

[95] L. Carlone, A. Censi, and F. Dellaert, “Selecting good measurements via ℓ1

relaxation: A convex approach for robust estimation over graphs,” in 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,

2014, pp. 2667–2674.

[96] S.-S. Jan, W. Chan, T. Walter, and P. Enge, “MATLAB simulation toolset for

SBAS availability analysis,” in Proceedings of the 14th International Techni-

cal Meeting of the Satellite Division of The Institute of Navigation (ION GPS

2001), 2001, pp. 2366–2375.

[97] U.S. Coast Guard Navigation Center, “GPS Almanac File at Week 2243,”

accessed on Oct 2024. [Online]. Available: https://www.navcen.uscg.gov/sites/

default/files/gps/almanac/2023/Yuma/001.alm

[98] European GNSS Service Center, “Galileo Almanac File at Week 2243,”

accessed on Oct 2024. [Online]. Available: https://www.gsc-europa.eu/sites/

default/files/sites/all/files/2023-01-03.xml

[99] L. Yang, N. L. Knight, Y. Li, and C. Rizos, “Optimal fault detection and

exclusion applied in GNSS positioning,” The Journal of Navigation, vol. 66,

no. 5, pp. 683–700, 2013.

[100] EU US Working Group C, “WG-C Advanced RAIM Technical Subgroup

Reference Airborne Algorithm Description Document,” accessed on April

161

https://www.navcen.uscg.gov/sites/default/files/gps/almanac/2023/Yuma/001.alm
https://www.navcen.uscg.gov/sites/default/files/gps/almanac/2023/Yuma/001.alm
https://www.gsc-europa.eu/sites/default/files/sites/all/files/2023-01-03.xml
https://www.gsc-europa.eu/sites/default/files/sites/all/files/2023-01-03.xml


Bibliography

2024. [Online]. Available: https://web.stanford.edu/group/scpnt/gpslab/

website files/maast/ARAIM TSG Reference ADD v3.0.pdf

[101] S. Holm, “A simple sequentially rejective multiple test procedure,” Scandina-

vian Journal of Statistics, pp. 65–70, 1979.

[102] G. A. McGraw, T. Murphy, M. Brenner, S. Pullen, and A. Van Dierendonck,

“Development of the LAAS accuracy models,” in Proceedings of the 13th Inter-

national Technical Meeting of the Satellite Division of The Institute of Naviga-

tion (ION GPS 2000), 2000, pp. 1212–1223.

[103] J. L. W. V. Jensen, “Sur les fonctions convexes et les inégalités entre les valeurs
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