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Abstract

Integrity stands as a paramount concern in civil aviation, ensuring the safety and reli-
ability of global positioning system (GPS) navigation. With the development of new
global navigation satellite system (GNSS) constellations and signals in the Aeronau-
tical Radio Navigation Service (ARNS) bands, efforts from governments, academics,
and the aviation industry are underway to promote a gradual transition from the
legacy receiver autonomous integrity monitoring (RAIM) to the more advanced ver-
sion, known as advanced RAIM (ARAIM). This evolution aims to facilitate a shift
from primarily ensuring integrity in horizontal positioning to encompassing vertical
guidance, addressing the increasingly stringent navigation requirements of modern
aviation. The ARAIM algorithm has undergone regular updates over the years to
incorporate new integrity analysis and performance enhancements. Nonetheless, a
fundamental assumption is made in ARAIM that the nominal error is bounded by a
conservative Gaussian distribution, which unnecessarily enlarges the protection level,
thereby reducing the system availability under stringent navigation requirements. To
release this assumption and improve the availability of integrity monitoring algo-
rithms, this thesis prototypes a receiver autonomous integrity monitoring framework
with non-Gaussian nominal errors covering GNSS error characterizing, overbounding

theory, fault detection, and integrity verification.

This thesis conducts a comprehensive analysis of signal-in-space range error (SISRE)

of GPS and Galileo constellations, which reveals its heavy-tailed properties. A sharp



yet conservative non-Gaussian overbound, Principal Gaussian overbound (PGO), is
proposed to bound this kind of heavy-tailed error by leveraging the characteristics of
the Gaussian mixture model. The overbounding property of the PGO is proved to be
preserved through convolution, which makes it possible to derive measurement-level
requirements from the position domain integrity requirements. Experimental results
show that the PGO provides the most competitive bounding performance for SISRE
when compared to the Gaussian overbound and Gaussian-Pareto overbound, yielding
a sharp bound in both the core and tail parts of the error distribution. The proposed
PGO served as the non-Gaussian nominal error bound for the development of fault

detection and integrity monitoring algorithms in this thesis.

This thesis proposes a fault detection method, the jackknife detector, for linearized
pseudorange-based positioning systems with non-Gaussian nominal error. Specifi-
cally, a test statistic based on the jackknife technique is proposed, which is proved to
be the linear combination of measurement errors without any assumption about error
distribution. A hypothesis test with the Bonferroni correction is constructed to detect
potential faults in measurements under single-fault assumption. Then, the jackknife
detector is extended to simultaneous faults by combining multiple test statistics. The
reliability of the proposed method is examined in a worldwide simulation in both

single- and multiple-fault settings.

This thesis proposes a multiple-hypothesis-based integrity monitoring algorithm, the
jackknife ARAIM algorithm, by systematically exploiting the properties of the jack-
knife detector in the range domain, which is proven to be capable of handling either
Gaussian or non-Gaussian nominal error bounds. A tight bound of the integrity risk
is derived by quantifying the impacts of hypothetical fault vectors on the position
solution. The proposed method is evaluated in a worldwide simulation with both
single and dual constellations. Results reveal that the proposed method has higher
system availability than the baseline ARAIM method, making it possible to support

localizer performance with vertical guidance (LPV) with a decision height of 200 ft
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using the GPS-Galileo dual constellation.

il



Publications Arising from the

Thesis

1. P. Yan, Y. Hu, W. Wen, & L. T. Hsu “Multiple Faults Isolation For Multi-
Constellation GNSS Positioning through Incremental Expansion of Consistent

Measurements”, IEEE Sensors Journal, vol. 25, no. 4, pp. 6967-6981, 2025.

2. P. Yan. “Jackknife Test for Faulty GNSS Measurements Detection Under Non-
Gaussian Noises”, in Proceedings of the 37th International Technical Meeting
of the Satellite Division of The Institute of Navigation, 2024, pp. 1619-1641.
(Best Student Paper Award)

3. P. Yan, Y. Zhong, & L. T. Hsu “Principal Gaussian Overbound for Heavy-tailed
Error Bounding”, IEEE Transactions on Aerospace and Electronic Systems, vol.

61, no. 1, pp. 829-852, 2024.

4. P. Yan, Y. Zhong, & L. T. Hsu “Bounding the Heavy-Tailed Pseudorange Error
by Leveraging Membership Weights Analysis of Gaussian Mixture Model”, in
Proceedings of the ION 2024 Pacific PNT Meeting, 2024, pp. 541-555.

v



Acknowledgments

First, I would like to express my sincerest gratitude to my chief supervisor, Dr. Li-Ta
Hsu. Your insightful feedback and profound knowledge have illuminated the path
ahead for me in academia. You have consistently encouraged me to think critically
and creatively, granting me the freedom to explore the unknown. This support has
significantly shaped my ability to conduct independent research. I would also like to
thank my co-supervisor, Dr. Weisong Wen. Your expertise and constructive criticism
have greatly enhanced the quality of my research. Thank you for your unwavering

support and trust throughout my research journey.

I am also grateful to my collaborators Huang Feng, Yi Han, and Xia Xiao for their
contributions. It is a highly rewarding experience to work alongside you. I am grateful
for the numerous discussions we have had and the insights you have provided, which
have significantly influenced the direction of this work. Furthermore, I would like
to acknowledge my colleagues in the laboratory, including but not limited to Dr.
Guohao Zhang, Dr. Xiwei Bai, Dr. Jiachen Zhang, Dr. Liu Jian, Jiachong Chang,
Sergio Vicenzo, Xikun Liu, Max J. L. Lee, Penghui Xu, Ruizhi Hu, Liyuan Zhang,
Hoi-Fung Ng, and Xi Zheng. Your enthusiasm and diverse perspectives have enhanced
the impact of my research. I would also like to acknowledge my friends in the ION
community. Your encouragement and constructive feedback have been invaluable

throughout this journey.

Finally, I want to express my heartfelt gratitude to my family. Your support, love, and



encouragement have been my greatest source of strength throughout this challenging
journey. Thank you for your patience and understanding during the long hours I

dedicated to my research.

vi



Table of Contents

Abstract i
Publications Arising from the Thesis iv
Acknowledgments v
List of Figures xii
List of Tables Xvi
Acronyms 1
Nomenclature 6
1 Introduction 16

1.1 Background and Motivation . . . . . .. .. ... ... 16

1.2 Contributions . . . . . . . .. ... 18

1.3 Thesis Outline . . . . . . . .. . .. ... 20

2 Fundamentals of Advanced Receiver Autonomous Integrity Moni-

vii



toring 22

2.1 GNSS Positioning Fundamentals . . . . . . ... ... ... ... .. 22
2.1.1 Measurement models . . . . .. ... ..o 23
2.1.2  Error modeling of code IF combination measurements . . . . . 26
2.1.3 Positioning solution . . . . . ... ... oo 30

2.2 ARAIM Architecture . . . . . . . . ..o 31

2.3 ARAIM Airborne Algorithm . . . . . . . ... ... ... ... .... 33
2.3.1 Concepts of integrity monitoring . . . . . . . .. .. ... ... 33
2.3.2 Rangeerror bound . . ... .. ... ... 34
2.3.3 Integrity and continuity under multiple hypothesis . . . . . . . 35
2.3.4 Solution separation based fault detection . . . . . ... .. .. 37
2.3.5 Calculation of protection levels . . . . .. ... ... ..... 39

3 Characterization of GPS/Galileo Signal-In-Space Range Error 41

3.1 Sources of Signal-In-Space Range Error . . . . . . ... .. ... ... 42

3.2 Determination of Orbit and Clock Errors . . . . . ... .. ... ... 43
3.21 Datasource . . . . ... 43
3.2.2  Antenna phase center offset correction . . . . ... ... ... 44
3.2.3 Computation of orbit and clock error vector . . . . ... ... 47
3.2.4  Transformation to the RAC frame . . . . . . . ... ... ... 48

3.3 Definition of SISRE . . . . .. ... oo 48

3.4 Nominal Performance Characterization . . . . . . .. ... ... ... 51

viil



3.4.1

3.4.2

Nominal performance of GPSSIS . . . .. .. ... ... ...

Nominal performance of Galileo SIS . . . . . . .. ... .. ..

4 Principal Gaussian Overbound for Heavy-tailed Error Distribution 60

4.1 Review of Overbounding Methods . . . . . . .. ... .. ... .. ..

4.1.1

4.1.2

Two-step Gaussian overbound . . . . . . . . ... .. ... ..

Gaussian-Pareto overbound . . . . . . .. ...

4.2 Gaussian Mixture Model . . . . . . . . ...

4.3 Principal Gaussian Overbound for the Heavy-Tailed Error Distribution

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

Membership weight analysis . . . . . ... ... ... ... ..
Dominance partition . . . . . ... ... ... ...
Principal Gaussian overbound . . . . . .. ... ... ... ..
Preservation of overbounding property . . . . .. .. ... ..

Numerical consideration of convolution . . . . . . . . . . . ..

4.4 Bounding Performance of SISRE . . . . .. ... ... ... .. ...

4.4.1

4.4.2

4.4.3

4.4.4

Two-side heavy-tailed SISRE . . . . ... ... ... ... ..
One-side heavy-tailed SISRE . . . . . ... ... ... ... ..
Gaussian-like SISRE . . . . . ... ... L.

Bounding parameters for individual satellites . . . . . . . . ..

4.5 Non-Gaussian Nominal Error Bounds of Code IF Combination . . . .

5 Fault Detection with Non-Gaussian Nominal Error Bound

5.1 Jackknife Detector for Single Fault Detection . . . . . . . .. ... ..

X

61

66

66

68

72

79

80

84

85

87

88

89

90

94



5.1.1 Full set and subset solutions based on weighted least square
5.1.2 Construction of jackknife residual . . . . . .. ... ... ...
5.1.3 Distribution of jackknife residual . . . . . ... .. ... ...
5.1.4  Jackknife test for fault detection. . . . . . ... ... ... ..
5.2 Extend Jackknife Detector to Simultaneous Faults . . . . . . . .. ..
5.2.1 Reconstruction of jackknife residual . . . . . . ... ... ...
5.2.2  Combination of jackknife residuals . . . . ... .. ... ...
5.2.3 Reconstruction of hypothesis tests . . . . . ... ... .. ...
5.3 Detection Performance with Worldwide Simulations . . . . . . . . ..
5.3.1 Nominal error simulation and bounding . . . . . . . . .. ...
5.3.2 Single-fault detection performance . . . . . . .. ... ... ..

5.3.3 Multiple-fault detection performance . . . . .. ... ... ..

6 Integrity Monitoring with Non-Gaussian Nominal Error Bound

6.1 Threat Model and Multiple Hypotheses . . . . . . . .. .. ... ...
6.2 Determine the Threshold of Monitors . . . . . . . ... .. ... ...
6.3 Integrity Risk Evaluation . . . . .. .. ... ... ... ... ...
6.3.1 Bound on the probability of HMI under HO. . . . . . . . . ..
6.3.2 Bound on the probability of HMI under Hk . . . . . . . . ..
6.3.3 Finalized bound of integrity risk . . . . . . .. ... ... ...
6.4 Protection Level Derivation . . . . .. ... ... ... ... .....

6.5 Consideration of Constellation Faults . . . . . . . . . . . . .. . ...



6.6 Worldwide Simulation . . . . . . . . ... 122

6.6.1 Single-constellation experiments . . . . . . .. ... ... ... 124

6.6.2 Dual-constellation experiments . . . . . . ... ... ... .. 128

7 Conclusion 132
7.1 Summary of Accomplishments . . . . . . ... .. ... ... 132
7.2 Recommended Topics for Future Research . . . . . . . ... ... .. 135
7.3 Closing . . . . . . . . 137

A Appendices 138
A.1 Gaussian Overbound of Multipath and Code Noise . . . .. .. ... 138

A2 Maximum Number of Simultaneous Faults That Need to be Monitored 139

A.3 The EM Algorithm . . . . . . .. .. ... .. ... ... ... ..., 141
A.4 Proof of Tail Region Overbound . . . . . . .. ... ... ... ..., 142
A.5 Proof of Monotonicity . . . . ... .. ... 144
A.6 Distribution of Linear Combination of Random Variables . . . . .. 145
A.7 Distribution of Jackknife Residual under Gaussian Noises . . . . . . . 146
A.8 Bonferroni Correction . . . . . . . .. .. ... 148
Bibliography 150

x1



List of Figures

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

[lustration of the multiple hypothesis solution separation in the base-

line ARAIM airborne algorithm. . . . . . . ... ... ... ... ...

Different conventions for orbit and clock reference points in GNSS
broadcast and precise ephemerides. The green dot represents the APC
used in BCE and the blue dot represents the APC used in PCE. . . .

Definition of the BF frame of satellites. . . . . . . . . . . . .. . ...
Demonstration of orbit error. . . . . . . . . .. ...
Definition of satellite RAC frame. . . . . . . . . . . . .. . ... ...

Demonstration of IURE over a mesh of 200 user locations. . . . . . .

The folded CDF of GPS radial, along-track, cross-track, clock, and
SISREypg errors from January 1st, 2020 to December 31st, 2022 . .

The folded CDF of GPS SISRE;;pg for individual satellites from Jan-
uary 1st, 2020 to December 31st, 2022. . . . . . . . .. .. ... ...

The QQ plot of GPS SISRFEypE for individual satellites from January
1st, 2020 to December 31st, 2022. The x-axis represents the quantile of
error distribution (unit: meter) while the y-axis stands for the standard

normal quantile (unit: meter). . . . . ... ..o

xii

36

45

46

47

49

49

53

53

o4



3.9

3.10

3.11

4.1

4.2

4.3

4.4

4.5

The folded CDF of Galileo radial, along-track, cross-track, clock, and
SISREypE errors from January 1st, 2020 to December 31st, 2022. . .

The folded CDF of Galileo SISRE;pg for individual satellites from
January 1st, 2020 to December 31st, 2022. . . . . . . . . ... .. ..

The QQ plot of Galileo SISRFEypg for individual satellites from Jan-
uary 1st, 2020 to December 31st, 2022. The x-axis represents the
quantile of error distribution (unit: meter) while the y-axis stands for

the standard normal quantile (unit: meter). . . . ... .. ... ...

(a) Membership weights and (b) the relative kurtosis error of a zero-
mean BGMM with p; = 0.9, o1 = 0.5, and 09 = 0.7; (¢) Membership
weights and (d) the relative kurtosis error of a zero-mean BGMM with
p1 = 0.9, 01 =0.5, and 09 = 1.5. 74, and z,,, are the core-tail transition
points. The two intersection points of s;(x) and sy(x) are marked with

blue and red solid points. . . . . . . . . ..o

The (a) PDF and (b) CDF of the Principal Gaussian overbound of
a zero-mean bimodal Gaussian mixture model with p; = 0.9, o, =
0.5, and o9 = 1.5. The two-step Gaussian overbound is plotted for

COMPATISON. . . . v v v v v v e e e e e e e e

Demonstrations of (a) the discretization process and (b) the quantile
searching process. The shaded area in (b) shows the cumulative prob-

ability from ¢; to t,,_1. . . . . . .

The folded CDF of SISREypgr and its bounding results for (a) GPS
satellite SVN63; and (b) Galileo satellite GSAT0206. . . . . ... ..

The folded CDF of SISREypg and its bounding results for (a) GPS
satellite SVN66; and (b) Galileo satellite GSAT0212. . . . .. .. ..

xiil

26

o6

57

69

76

83

86



4.6

5.1

5.2

5.3

6.1

6.2

The folded CDF of SISREypE and its bounding results for GPS satel-
lite SVN46. . . . . . . .

The setting of the nominal error and bound of the code IF combination.

‘ob’ represents ‘Gaussian’, ‘acc’, or ‘int’. . .. ... ...

Detection rate contour of (a) the SS detector, (b) JKD-Gaussian, and
(¢) JKD-non-Gaussian with single artificially injected bias. (d) The his-
togram of the detection rate difference between the JKD-non-Gaussian

and the SS detector. . . . . . . . ..

Detection rate contour of (a) the SS detector, (b) JKD-Gaussian, and
(¢) JKD-non-Gaussian with two artificially injected biases. (d) The his-
togram of the detection rate difference between the JKD-non-Gaussian

and the SS detector. . . . . . . . ..

99.5 percentile of the VPL over the course of the day yielded by (a) the
baseline ARAIM and (b) the proposed JK-Gaussian ARAIM for the
single constellation; and the triangular chart of (c) the baseline ARAIM
and (d) the proposed JK-Gaussian ARAIM regarding the vertical per-
formance for the single constellation. “NO” represents normal opera-
tion, “MI” represents misleading information, “SU” represents system

unavailable, “SU&MI” represents system unavailable and misleading

107

109

information, and “HMI” represents hazardously misleading information.126

(a) 99.5 percentile of the VPL over the course of the day yielded by
the proposed JK-non-Gaussian ARAIM for the single constellation;
(b) The triangular chart of the proposed JK-non-Gaussian ARAIM

regarding the vertical performance for the single constellation.

Xiv

127



6.3

6.4

99.5 percentile of the VPL over the course of the day yielded by (a) the
baseline ARAIM and (b) the proposed JK-Gaussian ARAIM for the
dual constellation; and the triangular chart of (c) the baseline ARAIM
and (d) the proposed JK-Gaussian ARAIM regarding the vertical per-

formance for the dual constellation. . . . . . . . . . . .. ... ...

(a) 99.5 percentile of the VPL over the course of the day yielded by the
proposed JK-non-Gaussian ARAIM for the dual constellation; (b) The
triangular chart of the proposed JK-non-Gaussian ARAIM regarding

the vertical performance for the dual constellation. . . . . . . . . ..

XV

129



List of Tables

3.1

3.2

3.3

3.4

4.1

4.2

5.1

5.2

5.3

6.1

GPS fault events between 2020 and 2022 (Taken from [1]) . . . . .. 51
Galileo fault events between 2020 and 2022 (Taken from [1]) . . . . . 51

The mean and standard deviation of the radial, along-track, cross-
track, clock, and SISREypg errors for individual GPS satellites from
1/1/2020 to 12/31/2022 (unit: cm) . . . . . . . .. ... ... 58

The mean and standard deviation of the radial, along-track, cross-
track, clock, and SISREypg errors for individual Galileo satellites

from 1/1/2020 to 12/31/2022 (unit: ecm) . . . . . . . . . . ... ... 59

Parameters of the Gaussian overbound and the Principal Gaussian

overbound of SISREypg for each GPS satellite (unit: m) . . .. . . 92

Parameters of the Gaussian overbound and the Principal Gaussian

overbound of SISREypg for each Galileo satellite (unit: m) . . . . . 93
Source of almanacs of the GPS and Galileo constellations . . . . . . . 104
Parameters of the fault detection experiments . . . . . . . ... ... 104
Overbounds used in different detectors . . . . . . ... .. ... ... 106
Overbounds used in different ARAIM algorithms . . . . . . . . . .. 124

Xvi



6.2

6.3

6.4

Al

Parameters used for evaluating integrity monitoring algorithms in the

simulation . . . . . .. L

Coverage for the single constellation at different levels of system avail-

The code noise and multipath error bound for Galileo airborne receiver

against the elevation angle . . . . . .. ... ...

XVil



Acronyms

AL
ANTEX
APC
ARAIM

ARNS

BCE
BF
BGMM

C/A
CDF
CODE
CoM
CSp

DCB
DFT
DOP

Alert Limit.

ANTenna EXchage.

Antenna Phase Center.

Advanced Receiver Autonomous Integrity
Monitoring.

Aeronautical Radio Navigation Service.

Broadcast Ephemeris.
Body Fixed.

Bimodal Gaussian Mixture Model.

Coarse/Acquisition.

Cumulative Distribution Function.

Center for Orbit Determination in Europe.
Center of Mass.

Constellation Service Providers.

Differential Code Bias.
Discrete Fourier Transform.

Dilution Of Precision.



Acronyms

ECEF
EM

F/NAV
FDE
FT

GBAS
GLONASS

GMM

GNSS

GPS
GPS-SPS-PS

GSA

HMI
HPL

I/NAV
IDFT
IF
IFT
IGS
ISM

Earth-centered Earth-fixed.

Expectation-Maximization.

Freely Accessible Navigation Message.
Fault Detection and Exclusion.

Fourier Transform.

Ground-based Augmentation Systems.
GLObalnaya NAvigatsionnaya Sputnikovaya
Sistema in Russian.

Gaussian Mixture Model.

Global Navigation Satellite System.

Global Positioning System.

GPS Standard Positioning Service Perfor-
mance Standard.

European GNSS Agency.

Hazardously Misleading Information.

Horizontal Protection Level.

Integrity Navigation Message.
Inverse Discrete Fourier Transform.
[onosphere Free.

Inverse Fourier Transform.
International GNSS Service.

Integrity Support Message.



Acronyms

IURE

JKD-non-Gaussian

JKD-Gaussian

LOS

LPV

MAAST

MCS

MGEX

MHSS

MI

MLE

MOPS

NGA

ODTS

OS-SDD

PCE
PDF

Instantaneous User Range Error.

Jackknife Detector using Non-Gaussian Nom-
inal Overbound.
Jackknife Detector using Gaussian Nominal

Overbound.

Line-of-Sight.
Localizer Performance with Vertical Guid-

ance.

MATLAB Algorithm Availability Simulation
Tool.

Master Control Station.

Multi-GNSS EXperiment.

Multiple Hypothesis Solution Separation.
Misleading Information.

Maximum Likelihood Estimation.

Minimum Operational Performance Standard.
National Geospatial-Intelligence Agency.
Orbit Determination and Time Synchroniza-
tion.

Open Service Service Definition Document.

Precise Ephemeris.

Probability Density Function.



Acronyms

PGO
PL
PMF

QQ
QZSS

RAC
RAIM
RINEX
RTCA

SBAS
SIS
SISRE
SS

TTA

UPE
URA

VAL
VPE

VPL

WAAS

Principal Gaussian Overbound.
Protection Level.

Probability Mass Function.

Quantile-Quantile.
Quasi-Zenith Satellite System.

Radial, Along-Track and Cross-Track.
Receiver Autonomous Integrity Monitoring.
Receiver Independent Exchange.

Radio Technical Commission for Aeronautics.

Satellite-based Augmentation Systems.
Signal-in-Space.
Signal-in-Space Range Error.

Solution Separation.

Time to Alert.

User Projected Error.

User Range Accuracy.
Vertical Alert Limit.
Vertical Positioning Error.

Vertical Protection Level.

Wide Area Augmentation System.



Acronyms

WGC Worldwide GNSS Committee.
WLS  Weighted Least Square.



Nomenclature

Measurements

g; s Pseudorange measurement regarding the satellite ¢ and the receiver

7 at frequency f

/)3 7 Pseudorange measurement with tropospheric and clock offset correc-

tions regarding the satellite ¢ and the receiver j at frequency f

93 IF Code IF combination measurement regarding the satellite ¢ and the
receiver j

rj- Geometry distance between the satellite ¢ and the receiver j

goé 7 Carrier phase measurement regarding the satellite ¢ and the receiver

7 at frequency f

T; Clock offset of the receiver j from the GNSS time scale

7! Clock offset of the satellite ¢ from the GNSS time scale

co; Clock offset of the receiver j regarding the code IF combination
cd’ Clock offset of the satellite i regarding the code IF combination
T d; Tropospheric delay regarding the satellite ¢ and the receiver j



Nomenclature

Id;

Kw}f

i
o.f

K

»,3,f

i

o, f

Ko jiF
i

Kg,IF

7
N r

Ionospheric delay regarding the satellite ¢ and the receiver j at fre-

quency f

Code instrumental delay of the receiver j at frequency f

Code instrumental delay of the satellite ¢ at frequency f

Carrier phase instrumental delay of the receiver j at frequency f
Carrier phase instrumental delay of the satellite 7 at frequency f
DCB of the receiver j regarding frequencies f, and fg

DCB of the satellite ¢ regarding frequencies f4 and fg

Ambiguity term of the carrier phase measurement regarding the

satellite 7 and the receiver j at frequency f

Measurement Errors

i
Co4f

i
Coif

7
Eorb&eclk

7
8157”0100,]‘

i
inono,j, f

£

)
€g7use,rl7j7f

Residual errors of the pseudorange measurement regarding the satel-

lite ¢ and the receiver j at frequency f

Residual errors of the carrier phase measurement regarding the satel-

lite ¢ and the receiver j at frequency f

Ephemeris and clock error of satellite ¢

Residual tropospheric error regarding the satellite ¢ and the receiver
J

Residual ionospheric error regarding the satellite ¢ and the receiver

j at frequency f

Pseudorange multipath and code noises regarding the satellite ¢ and

the receiver j at frequency f



Nomenclature

7
8@7“'36,,17]‘7.][
7
€04, IF

7
gg,user,j,IF

Carrier phase multipath and code noises regarding the satellite ¢ and

the receiver j at frequency f

Residual errors of the code IF combination measurement regarding

the satellite ¢ and the receiver j

Multipath and code noises of the code IF combination regarding the

satellite ¢ and the receiver j

Measurement Error Bounds

i
O orb&eclk

)
Utropo,j

i
Jg,user,j,IF

érb&clk ()
ftiropo,j ()

é,user,j,]F()

fgrb&clk,PGO(I)

ftiropo,j,ob(x)

Standard deviation of the orbit and clock error bound regarding the

satellite 7

Standard deviation of the residual tropospheric error bound regard-

ing the satellite ¢ and the receiver j

Standard deviation of the multipath and code noise error bound
regarding the satellite ¢ and the receiver j in the IF combination of

the code measurement model

Standard deviation of the Gaussian bound of €} ; ;5

Elevation angle associated with the receiver j and the satellite ¢
PDF of the range projection of clock and orbit error for satellite ¢
PDF of the tropospheric error regarding satellite ¢+ and receiver j

PDF of the multipath and code noise of code IF combination mea-

surement regarding satellite ¢ and receiver j

PDF of the PGO of the range projection of clock and orbit error for

satellite 7

PDF of the Gaussian overbound of the tropospheric error



Nomenclature

é,user,j,lF,ob(if )

7
fg,j,IF,Gaussian

fz;,j,IF,acc(')

Gi_),j,IF,acc (Z‘)

GZ, §IF,int ()

()

PDF of the Gaussian overbound of the multipath and code noise

PDF of the Gaussian overbound for code IF combination measure-

ment regarding satellite ¢ and receiver j

PDF of the non-Gaussian overbound for code IF combination mea-
surement regarding satellite ¢ and receiver j for accuracy evaluation

and fault detection purposes

CDF of the non-Gaussian overbound for code IF combination mea-
surement regarding satellite ¢ and receiver j for accuracy evaluation

and fault detection purposes

CDF of the non-Gaussian overbound for code IF combination mea-

surement regarding satellite ¢ and receiver j for integrity purposes

Position, velocity, and timing

Xt

X0

Nconst

Estimation

p’ = [p., p}, pi] is the position of the ith satellite in the ECEF frame

U; = [Ujz, Ujy, uj.] s the position of the jth receiver in the ECEF

frame

Receiver true state vector
Linearization point
System state vector

Number of constellations

Number of measurements

Size of the receiver state. m = 3 + Neopst



Nomenclature

W)

G (k)

S(k¥)

(k)

-

Measurement vector

Measurement error vector

Full set solution

Solution for subset k, where k = 0 corresponds to the full set

Estimation of the positioning state x,gk) associated with the kth sub-

set

Geometry matrix for full set measurements

Solution matrix for full set measurements

Weight matrix for full set measurements

Solution matrix for subset k, where £ = 0 corresponds to the full set
Weight matrix for subset k, where & = 0 corresponds to the full set

Geometry matrix associated with the kth jackknife test statistic.

The dimension is (n — 1) x m

Solution matrix associated with the kth jackknife test statistic. The

dimension is m x (n — 1)

Reconstructed Projection matrix related to the kth jackknife test

statistic

The ith element of €
The kth row of G

The (v,7)th element in S

The kth row of I — P
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Nomenclature

Dk,j

The jth element of py

Integrity and continuity budgets

Irgq

v
REQ

CRrEQ,FA

v
C(REQ,FA

Integrity requirement of the system

Ireq allocated to vth component. I§g, is the allocated budget for
the vertical component, and Iggq + IRgq is the allocated budget for

the horizontal component
Continuity budget allocated to false alarms

Creqra allocated to vth component. Cfipq gy is the allocated budget
for the vertical component, and C%LEQ,FA + C%EQ’FA is the allocated

budget for the horizontal component

General notations for estimation and inference

PHMI

P continuity

P sat
P const

P THRES

Py

k

P, not monitored
P Fault-free
kmax

N fault modes

Integrity risk

Continuity risk

Prior probability of satellite fault per approach

Prior probability of constellation fault per approach

Threshold for the integrity risk coming from unmonitored faults
Prior probability of fault mode &

Prior probability of the unmonitored events

Prior probability of no fault

Maximum number of simultaneous faults that need to be monitored

The finally solved N tquit.maz
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Nomenclature

€0

qk
Ry,
vdaf®

PL,

€y

Estimation error on the parameter of interest

The specified alert limit

Alert limit of the vth positioning component

General test statistic that associated with the test Hy v.s. Hy
Rejection region of ¢

Set of indices of faulty measurements in fault model k

Protection level of the vth positioning component. PLj3 is the VPL,

and \/PL? + PLZ is the HPL

A column vector with vth entry to be 1 and all others to be 0

Estimation and inference in baseline ARAIM

i
OURE
o
URA
7
bnom

)

Uacc,j

i
Oint,j

C(ICC

Cint

(k)

Ossw

1-sigma orbit and clock error bound of the satellite ¢ for accuracy
1-sigma orbit and clock error bound of the satellite ¢ for integrity
Nominal bias for integrity regarding the satellite ¢

1-sigma accuracy error bound regarding the satellite ¢ and the re-

ceiver j

1-sigma integrity error bound regarding the satellite ¢ and the re-

ceiver j

Covariance matrix for accuracy
Covariance matrix for integrity
1-sigma bound of k)

1-sigma bound of the positioning solution x*)
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Nomenclature

b The worst-case impact of the nominal biases of the integrity range
error bound on the position solution %*)

k) Test statistic regarding fault mode k in the solution separation method

Dy, Threshold of the solution separation integrity monitor

Q7 1(") Quantile function of the standard normal distribution

Estimation and inference in Jackknife detector and ARAIM

y (F*) The y vector associated with fault mode k. The dimension is (n —
1) x1
y(F*) The predicted measurement vector based on subsolution X

y () The reconstructed y vector associated for fault mode k. The dimen-

sionisn x 1

Uk Predicted kth measurement based on subsolution x*)

Yk The kth element of y

gk The € vector associated with fault mode k. The dimension is (n —
1) x1

€k The kth element of €,

7% The Jackknife residual (detector) for the kth subset under single-

fault hypothesis

173 The Jackknife residual (detector) for the kth subset under multi-fault
hypothesis

ty The unified Jackknife residual (detector) for the kth subset

Tk Threshold for the Jackknife detector ¢}
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Nomenclature

T Upper limit of the significance level for the multiple testing problem

b(*) The hypothetical fault vector in hypothesis Hj,

bgk) The jth element of b®

q® Coefficient vector for constructing the positioning error in hypothesis
Hy,

fx=x), (*) The PDF of (x — x),

fqwe(:) The PDF of q¥e

Q;tl(-) Quantile function of the distribution of ¢}

Q(}ix)v(-) The quantile functions of (x — x),

Q;(lk)e(-) The quantile functions of q*)

Satellite Ephemeris and Clock Errors

Xéﬁﬁ%%EF The broadcast CoM position of satellite 7 at epoch %k in the ECEF

coordinate system

xfé"]}’g%%E 7 The broadcast APC position of satellite ¢ at epoch k£ in the ECEF

coordinate system

abop The APC offset vector of satellite ¢ defined in the satellite BF frame

7 _ 7 7 7 T
for the BCE. ajzop = [ax,BCEv Qy BCE> az,BCE]

abop The APC offset vector of satellite ¢ defined in the satellite BF frame

A i i T
for the PCE. apcp = [a; pep, Oy pops @ poE]

R%’;AECEF The rotation matrix from the BF frame to the ECEF frame for satel-

lite 7 at epoch k

ik

Xsat to sun

Satellite-sun vector regarding satellite ¢ at epoch k
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Nomenclature

sun
ik
p
Sk
COcoM,BCE
5z,k
COApPC,BCE
62,1:
COCoM,PCE

52,]6
COApC,PCE

Ei,k
orb,ECEF

gi,k
clk,ECEF

éi,k
clk,ECEF

i,k
€orb,RAC

i,k,RAC
RECEF

Vz,k

IURE™

j,orb

IURE}"
UPE™

SISRE! p;

Sun position at epoch k in the ECEF coordinate system

Position of satellite ¢ at epoch £ in the ECEF coordinate system
CoM-referenced clock offset of satellite ¢ at epoch k in the BCE
APC-referenced clock offset of satellite ¢ at epoch k in the BCE
CoM-referenced clock offset of satellite ¢ at epoch k in the PCE
APC-referenced clock offset of satellite i at epoch &k in the PCE

Orbit error vector of satellite ¢ at time epoch k in the ECEF coordi-

nate system
The CoM-referenced clock error of satellite ¢ at time epoch &

The CoM-referenced clock error of satellite ¢ at time epoch &k with

constellation mean correction

Orbit error vector of satellite 7 at time epoch k£ in the RAM frame.
€;rb,RAC - [&irb,R’ cz)rb,A’ (Z)rb,C]

The rotation matrix from the ECEF frame to the RAC frame for

satellite ¢ at epoch k
Velocity of satellite ¢ at epoch k in the ECEF frame

Orbit component of the IURE regarding satellite ¢ and receiver j at
epoch k

IURE regarding satellite ¢ and receiver j at epoch k
UPE of satellite ¢ at epoch k

SISRE of satellite ¢ over a period
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Chapter 1

Introduction

1.1 Background and Motivation

Safety-of-life systems, such as satellite-based augmentation systems (SBAS), ground-
based augmentation systems (GBAS), and receiver autonomous integrity monitoring
(RAIM), are important in modern aviation to ensure the safety and reliability of
navigation systems [2,3]. These systems are designed to provide integrity-assured
position solutions to GNSS users and typically require a low integrity risk. Among
these safety-of-life systems, RAIM has been a significant focus in the aviation industry

over the last thirty years.

The legacy RAIM was first introduced in the 1980s and was designed to detect
measurement faults and provide error bounds for lateral navigation with the global
positioning system (GPS) [4-10]. In the early exploration, the range-comparison
method [4], the least-squared-residuals method [8], and the parity method [9] have
been proposed, which establish the basis of autonomous integrity monitoring. The
equivalence relationship among the three methods was found in [3], which established
the baseline RAIM scheme. Later, Walter and Enge [2] proposed the weighted form

for RAIM algorithms, which improves the accuracy and integrity of the navigation
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solutions. However, these RAIM algorithms face limitations in precise vertical navi-
gation due to factors like uncertainties in the ionospheric model and high dilution of

precision (DOP).

The modernization of GPS [11-13] and the emerging GNSS constellations present the
chance to elevate legacy RAIM to advanced RAIM (ARAIM), which aims to support
more robust and precise aircraft guidance for en route, terminal, and approach oper-
ations in civil aviation [14]. Pervan et al. [15] developed the multiple hypothesis solu-
tion separation (MHSS) method to directly evaluate integrity risks under the unified
consideration of all single-element failure hypotheses and the no-failure hypothesis,
which lays the foundation for the current airborne ARAIM algorithm. Later, Blanch
et al. [16] expanded this work by optimally allocating the integrity and continuity
budget among the failure modes to obtain the minimum protection level. In parallel,
Joerger et al. developed the residual-based ARAIM [17] and revealed its equivelent re-
lationship with the solution separation-based ARAIM [18]. The detailed comparison
of the residual-based ARAIM and solution-separation ARAIM in [18] provides a prac-
tical guideline for choosing proper algorithms in different applications. These works
together contributed to the standardization of the baseline ARAIM algorithm [19]

and its subsequent refinement based on the latest safety analyses [20,21].

The baseline ARAIM algorithm [20] provides a standard procedure to ensure the
safety and reliability of navigation systems, mainly consisting of range error model-
ing, fault detection, and protection level (PL) calculation. Specifically, the Gaussian
model is employed to bound nominal range errors, including the range projection
of clock and orbit errors, tropospheric error, and multipath and code noise errors.
Then, a set of test statistics, named solution separation, is constructed by comparing
the navigation solutions under the fault-free hypothesis with many other alternative
hypotheses. By leveraging the Gaussian properties of the nominal error bounds, the
threshold for each solution separation test statistic is derived to detect potential faulty

measurements in the system. Finally, the bound of the positioning solution error that
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Chapter 1. Introduction

satisfies integrity requirements, namely, the PL, is calculated. The whole algorithm is
built on the Gaussian overbounds for nominal range errors, which simplifies the deriva-
tion and reduces the computational effort. However, nominal range errors in the real
world usually have non-Gaussian and heavy-tailed properties [22-24]. For example,
as important components of range errors, orbit and clock errors show significantly
heavy-tailed properties [25,26], making their Gaussian overbound over-conservative.
Such over-conservatism will be passed to the position domain and enlarge the PL
of the baseline ARAIM algorithm, eventually hindering the system’s availability in
real-world applications under stringent navigation requirements, such as the LPV-200

precision approach [27] and urban air mobility [28].

1.2 Contributions

To address the conservatism issue in the baseline ARAIM algorithm, this thesis sys-
tematically incorporates non-Gaussian modeling into the construction of the integrity

monitoring algorithm, which results in the following five contributions.

(1) Discover heavy-tailed properties of GPS/Galileo signal-in-space range

errors

This thesis characterizes the nominal performance of signal-in-space range error (SISRE)
for GPS and Galileo satellites using broadcast and precise ephemerides data from
2020-2022, which reveals the heavy-tailed properties of SISRE. Since the SISRE is
one of the most important parts of range errors, the results provide empirical justi-
fication for developing non-Gaussian overbounding methods and incorporating non-
Gaussian modeling into integrity monitoring methods. Results also show that the
Galileo SISRE has a smaller standard deviation but exhibits heavier tails than the
GPS SISRE, which plays an important role in explaining the performance change of

integrity monitoring algorithms in different constellation settings.
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1.2. Contributions

(2) Construct a sharp yet conservative overbound for heavy-tailed error

distributions

This thesis proposes the Principal Gaussian overbound (PGO) for heavy-tailed error
distributions by leveraging the characteristics of the Gaussian mixture model (GMM).
The overbounding property of the PGO is proved to be preserved through convolution,
which makes it possible to derive pseudorange-level requirements from the position
domain integrity requirements. The proposed PGO is then applied to tightly bound
the GPS/Galileo SISRE, based on which, the non-Gaussian nominal error bounds of
code ionosphere-free (IF) combination are constructed, providing nominal error mod-

els for constructing non-Gaussian fault detection and integrity monitoring algorithms.
(3) Develop a fault detection method with non-Gaussian nominal errors

This thesis develops the jackknife detector, which provides the theoretical founda-
tion for detecting single faults in linearized pseudorange-based positioning systems
under non-Gaussian nominal errors. The proposed fault detection method is fur-
ther extended to detect simultaneous faults by combining multiple test statistics. In
a worldwide simulation, the proposed fault detection method demonstrates superior
performance than the solution separation fault detection method under non-Gaussian
nominal errors. The proposed fault detection method provides foundations to improve
the availability of integrity monitoring algorithms under stringent navigation require-

ments.

(4) Prototype an integrity monitoring algorithm with high availability un-

der stringent navigation requirements

This thesis proposes the jackknife ARAIM, a multiple-hypothesis-based integrity
monitoring algorithm, capable of handling either Gaussian or non-Gaussian nomi-
nal error bounds. The proposed method systematically exploits the properties of the
jackknife detector in the range domain and derives a tight bound of the integrity risk.

The proposed method is evaluated in a worldwide simulation with both single and
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Chapter 1. Introduction

dual constellations. Results reveal that the proposed method shows higher system
availability than the baseline ARAIM method, making it possible to support localizer
performance with vertical guidance (LPV) with a decision height of 200 ft using the
GPS-Galileo dual constellation.

(5) Performance evaluation with real data in simulation

In the worldwide evaluation of fault detection and ARAIM algorithms, the range
projection of clock and orbit error of the code IF combination is simulated based on
authentic experimental data instead of relying on empirical models, thereby enhancing
the reliability of the experimental results. By adopting this methodology, this thesis
exposes the vulnerability of the baseline ARAIM model to support the LPV-200
precision approach under the GPS-Galileo dual-constellation setting. At the same
time, the capability of the proposed method to facilitate integrity applications under

stringent navigation requirements, particularly at the LPV-200 level, is also revealed.

1.3 Thesis Outline

The remaining part of this thesis is organized as follows: Chapter 2 first gives a brief
introduction to the fundamentals of global navigation satellite system (GNSS) po-
sitioning, to align notations throughout the thesis. Then the ARAIM architecture
and the baseline ARAIM algorithms are described, which provides an overview of
the standard procedure in integrity monitoring, including range error modeling, fault
detection, integrity risk evaluation, and protection level calculation. Chapter 3 de-
scribes the procedure for calculating the orbit and clock errors, as well as defining
satellite range error for integrity. Moreover, the nominal performance of SISRE for
GPS and Galileo satellites is characterized using historical data, which provides empir-
ical observations for the essence of developing non-Gaussian overbounding methods.

Consequently, a sharp yet conservative overbound for heavy-tailed error distributions
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is constructed in Chapter 4. The bounding performance of the proposed method on
the SISRE of GPS and Galileo satellites is analyzed in detail. Chapter 5 develops the
jackknife detector, which provides the theoretical foundation for detecting faulty mea-
surements in linearized pseudorange-based positioning systems under non-Gaussian
nominal errors. The detection performance of the proposed method is evaluated in a
worldwide simulation in both single and multiple fault settings. Chapter 6 develops
an integrity monitoring algorithm by leveraging the jackknife detector, which shows
significantly higher availability under stringent navigation requirements when com-
pared to the baseline ARAIM algorithm. Finally, Chapter 7 summarizes this thesis

and discusses the future work.
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Chapter 2

Fundamentals of Advanced
Receiver Autonomous Integrity

Monitoring

This chapter introduces the fundamentals of GNSS positioning, including the mea-
surement model, error source modeling, and least-squared-based positioning solution.
Specific focus has been put on the dual-frequency pseudorange measurements in the
dual-constellation system, which provides the basic notion used in the following chap-
ters. In addition, a brief description of the ARAIM architecture and the baseline
ARAIM algorithm is given in this chapter, which presents a standard procedure for
implementing integrity monitoring algorithms, laying the groundwork for the subse-

quent chapters of this thesis.

2.1 GNSS Positioning Fundamentals

GNSS satellites continuously broadcast navigation signals across L. band frequen-

cies, enabling users to calculate signal travel time from the satellite to the receiver
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2.1. GNSS Positioning Fundamentals

and satellite coordinates at any epoch [29]. These navigation signals usually com-
prise ranging codes, the carrier phase signal, and the navigation data. Since GNSS
satellites are equipped with precise onboard atomic clocks [30], the time of signal
transmission can be identified. By estimating the time taken between transmission
and reception, users can obtain pseudorange measurements from ranging codes and
carrier phase measurements from the carrier signal, both of which can be regarded
as a measure of the apparent distance between the satellite and the receiver. The
navigation data contains all the necessary information to allow users to perform the
positioning service, including satellite ephemeris, clock bias parameters, almanac and
satellite health status [31]. In the following sections, the GNSS measurement and its

error modeling are illustrated.

2.1.1 Measurement models

The GNSS signals contain ranging codes and the carrier phase signal, enabling users
to calculate the travel time. Regarding the ranging codes, the receiver determines the
travel time AT by correlating the received Coarse/Acquisition (C/A) code from the
satellite with a replica of this code generated in the receiver. This replica is adjusted
in time until the maximum correlation is achieved. The measurement po = cAT is
known as the pseudorange, where c is the speed of light. Note that the travel time
between transmission and reception is determined as the difference in time measured
on two distinct clocks. Due to the synchronization errors between satellite and receiver
clocks, the pseudorange measurement does not match the geometric distance between
the satellite and the receiver. Moreover, other error sources due to signal propagation
through the atmosphere (ionosphere and troposphere), instrumental delays (both in
satellite and receiver), multipath and receiver noise can also make the pseudorange
measurement deviate from the true geometric distance [32]. With considering all

these error terms, the pseudorange measurement g; s regarding the satellite ¢ and the
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Chapter 2. Fundamentals of Advanced Receiver Autonomous Integrity Monitoring

receiver j at frequency f can be modeled as follows:
dip=ridclry =)+ Td +1d ;+ Kpjy— K+, ¢, (2.1)

where 7’;'- is the geometry distance; 7; and 7" are receiver and satellite clock offsets
from the GNSS time scale, respectively; T’ dé- is the tropospheric delay; I d; s 1s the
frequency-dependent ionospheric delay; K, ; ; and K; s are the frequency-dependent
receiver and satellite code instrumental delays, respectively. The ionospheric delay,
tropospheric delay, and instrumental delay have consolidated models. Nevertheless,
these models still have unmodeled components that can be constrained within a
certain magnitude. These errors are represented by the residual error term €Z)7j7f
in the above equation, mainly including ephemeris and clock error €’ ¢ .., residual

)

. z . . .
tropospheric error €4, ;, residual ionospheric error £, . 1,

and multipath and code

i

NOISeS €7, cer i £

and can be written by

€05.f = Eorbtectk T Etropoj T Eiono,j,f T Eouserif - (2.2)

)

. . . i . .
where the residual ionospheric error €;,,,, ; » and the multipath and code noises €}, .. ; ¢

are frequency dependent. The impacts of the above error sources on the GNSS signal

propagation as well as the empirical models will be further illustrated in Section 2.1.2.

Besides the code, the carrier phase can also be utilized to derive a measure of the
distance between the satellite and the receiver. Carrier phase measurements are sig-
nificantly more accurate compared to code measurements. Nevertheless, the carrier
phase measurement is subject to ambiguity by an unknown integer number of wave-
lengths. This ambiguity changes arbitrarily each time the receiver loses the lock
on the signal, leading to abrupt jumps or range discontinuities. The carrier phase
measurement gpé s regarding the satellite ¢ and the receiver j at frequency f can be

modelled as

30;]0 = 7“;- + ¢(7j — Ti) + Td; — Id;’-’f + Ky 5 — K;,f + n;f + Efo,j,ﬁ (2.3)

where K ;s and K gio, s are instrumental delays related to the carrier phase measure-

ment, n; 7 Is the ambiguity term, and 5; ;.7 1s the residual error remained in the carrier
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2.1. GNSS Positioning Fundamentals

phase measurement

Segf T Corbleclk t Eiropo,j T Cionojf T € user g, f * (2'4)

Note that the ionospheric term has opposite signs for the code and phase measure-

ments.

Given that the ionospheric delay is related to the carrier frequency f, ARAIM users
form the IF linear combination by using the multi-frequency GNSS setup. Before
applying the above equations to obtain the code IF combination measurements, a
new clock definition that refers to the code IF combination of f4 and fp frequencies

is introduced as follows:

2 2
fAKgJ}fA B fBKQ»j»fB

cd; = cT; + 2.5a
T 2
‘ ' 2Ki . 2Ki
cd' = ert + i g’f‘; f]; e./p (2.5b)
Ja—I5

Indeed, the satellite clocks (broadcast or precise) are referred to as the IF combination
of codes in Equation (2.5b). With this new clock definition, Equation (2.1) can be

re-written as

Q;}f = T; +c(0; — 0 + de' + [d;,f +ap(Kyjr — Kjpp) + 52,]',;0’ (2.6)
where L
by = ﬁ , (2.7)
and
Kojir = Kojga = Kojgs (2.8a)
oir =Ko = Ky, (2.8b)

are so-called differential code biases (DCB) of the receiver and the satellite, respec-

tively. By defining
_Ji
=2,

B

(2.9)
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the IF combination of codes can be computed as

g = 1%aa = Gty
j,IF ,y _ 1

=ri+c(0;— 8+ Td +e);p

. . 2 ; ) i i
— \/(p?p — i)+ (P — wjy)” A+ (pL —uj.)? +c(6; — 6) + Tdi + € 1,
(2.10)

where p' = [p;,p;,pizf is the position of the ith satellite, u; = [u;z, w;y, u;.]7 is
the position of the jth receiver in the Earth-centered Earth-fixed (ECEF) coordinate

system, and

éjg,j,IF = Corb&elk + 8tropo,j + 6g,user,j,IF (211&)
7 )
7 _ 76@7“'567,7‘7‘7](‘14 6@7US3Tj:fB (2 11b)
gg,user,j,IF - 7 . 1 . .

Note that the DCBs are canceled in the IF combination. In addition, the receiver
code instrumental delays K, ; s, and K, ; ¢, will be assimilated into the estimation of
the receiver clock. The residual error term &) ; ;r» in (2.10) is usually bounded by a

zero-mean Gaussian distribution as

Ezé,j,IF ~N (0, (O-Z;,j,]F)2) ) (2.12)

where the standard deviation is formalized by

(O-Z,j,IF)2 = (O-ci)rb&clk)2 + (O-zropo,j)2 + (O-Z,user,j,IF>2 : (213)
Section 2.1.2 elaborates the source of each term in Equation (2.13).

The formulation of the IF combination of phases are detailed in [29], which is omitted

for present in this thesis.

2.1.2 Error modeling of code IF combination measurements

As shown in Equation (2.10), the IF combination of code measurements contains

several additional time delays related to the signal propagation or the clocks. Since
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these errors inevitably translate into the position domain and significantly affect the
accuracy and integrity of positioning solutions [33], it is crucial to understand the
underlying mechanisms behind these errors and accurately characterize their profiles.
The remaining parts of this section briefly reviews the mechanisms and models of
the atmospheric delays, orbit and clock errors, and multipath and code noises, all of

which contribute to the range errors of the IF combination of code measurements.
(1) Atmospheric effects

In atmospheric conditions, the density of gases and plasma is known to be non-
uniform, leading to spatial and temporal fluctuations in the refractive index [34].
These variations cause electromagnetic rays to traverse extended geometric paths
compared to free space due to refractive index gradients. Consequently, electromag-
netic signals undergo changes in velocity, both in speed and direction, as they prop-
agate through the atmosphere. From a signal delay perspective, the atmosphere can
be segmented into two primary components: the ionosphere, where signal delays are
frequency-dependent; and the neutral atmosphere, predominantly the troposphere,

acting as a non-dispersive medium [32].

The ionosphere encompasses the atmospheric region extending from approximately 60
km to over 2000 km. The ionospheric refraction of GNSS signals can escalate to a few
meters depending on the elevations and solar activities [35]. It is worth noting that
the ionosphere is a dispersive medium, meaning that the refraction of GNSS signals
is frequency-dependent. This frequency dependence allows dual-frequency users to

mitigate the ionospheric effect by over 99.9 %.

The troposphere is the atmospheric layer between Earth’s surface and an altitude
of approximately 60 km. The transmission delay caused by the troposphere is influ-
enced by factors such as the temperature, pressure, humidity as well as the locations
of the transmitter and receiver antennas. Unlike the ionosphere, the troposphere is

a non-dispersive medium for radio waves at GNSS frequencies. Therefore, it is im-
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possible to remove the tropospheric effects with the combination of dual-frequency
measurements. Various models have emerged to estimate tropospheric delays based
on observational data, emphasizing the characterization of both the dry and wet
atmospheric components. While the dry atmosphere can be modeled using ideal
gas laws from surface pressure and temperature data, the wet component presents
greater challenges due to its unpredictability [36]. In Radio Technical Commission
for Aeronautics (RTCA) GPS/Wide Area Augmentation System (WAAS) Minimum
Operational Performance Standard (MOPS), a simple tropospheric correction model
based on a unified mapping function for both dry and wet components is adopted.
The residual tropospheric error bound used by RTCA-MOPS-229D [37] is common
to all frequencies and signals and is given by

1.001

= 0.12[m] ,
\/ 0.002001 + sin? (6 [rad))

(2.14)

i
Utropo,j

where 6} is the elevation angle.
(2) Orbit and clock errors

The orbit error and clock error both reflect the difference between the contents of the
navigation message and reality [38]. Specifically, the Master Control Station (MCS)
determines and transmits ephemeris parameters and clock correction parameters to
the satellites for rebroadcast in the navigation message. Since these parameters are
computed using a curve-fit to estimate the actual satellite position and clock offset,
some residual error remains. The residual orbit error can affect ranging errors on the
order of 0.8 m, while the residual clock error results in ranging errors that typically
vary from 0.3 ~ 4 m [32]. Typically, the primary factors affecting constellation
performance are the residual orbit and clock errors. In ARAIM, these errors are
bounded by a zero-mean Gaussian distribution with the 1-sigma bound of ¢! ,¢ .-
Chapters 3 and 4 revisit this problem and demonstrate the benefits of using a non-

Gaussian model to bound these errors for integrity applications.

(3) Multipath and code noises
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The multipath occurs when a GNSS signal reaches the receiver antenna through dif-
ferent paths, stemming from reflections of surroundings [39]. The reflected signals
traverse longer paths compared to the direct signals, which produces delayed and
weakened copies that can distort the correlation function in the receiver, eventually
leading to errors in position, velocity, and time estimations. Multipath errors vary in
magnitude based on the receiver’s environment, including factors like satellite eleva-
tion angle, receiver signal processing, antenna gain pattern, and signal characteristics.
In aviation applications, aircraft structures like fuselage and wings mainly contribute
to multipath errors [40]. However, in terrestrial applications, multipath errors typi-
cally arise from reflections of buildings, terrain features, or other stationary objects
in the vicinity of the receiver. Notably, the natural motion of the aircraft should
cause the relative phase of the multipath carrier to change quickly, which will in turn
cause the multipath error to be noise-like rather than bias-like, as it is at ground
receivers. Therefore, statistical models have been proposed to bound such random

errors in aviation applications.

Receiver noise and distortion encompass random errors originated from the receiver
hardware, such as antenna and cables. These errors introduce biases into both code
and phase measurements. For code measurements, thermal noise jitter and inter-
ference are the primary sources of receiver noise and distortion. The 1o value for
noise and resolution errors is typically on the order of a decimeter or less in nominal
conditions (without external interference). For phase measurements, the 1o value is
typically on the order of millimeters in nominal conditions. Therefore, receiver noise

and distortion are usually negligible compared to errors induced by multipath.

Appendix A.1 lists the multipath and code noise error bound (0}, rr) for GPS

and Galileo airborne receivers.
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2.1.3 Positioning solution

To simplify notations, we omit the indices j when presenting the system state, mea-
surement, and measurement error vectors during the following derivation without loss

of generality.

Let pj» = Q; IF— Td; + ¢d". Then, the measurement model in (2.10) can be linearized

by taking the first-order Taylor expansion at Xo = [t 4.0, %; 4.0, Uj.20, 00] as follows:

i

Pézpﬁ,o — Q4 (Uj,m - Uj,z,o) - aé‘,z (Uj,y - Uj,y,O)

' | (2.15)
— a5 (U — )z 0) + (5 — 0jo) + € i1r s
where
i i i 2 i
pj,OZ\/ (P — Uja0)” + (P — jy0)” + (B2 — ujz0)” + cBi0 (2.16a)
al = Po — %0 : (2.16D)
’ . 2 . . 2
\/ (P = wj0)” + (Dh = jy0)” + (P2 — tj20)
4 [—r
as y= Py — Yiwo = (2.16¢)
’ . 2 . . 2
\/ (P = wj0)” + (Dh = jy0)” + (DL — tj20)
Pz — Y20 (2.16d)

K3
a:o—
7,3
. 2 . 2 ; 2
7z . 1 . 1 .
\/(px u]’z70) + (py u]vyvo) + (pZ uj,Z,O)
Assuming there are n measurements from N, constellations, we can redefine the

receiver true state as
T
Xt = [Ujey Ujys Ujzy =015+ 3 =0 Neonae) (2.17)

where §jc,¢c = 1,2+, Neonst s the receiver clock offset corresponding to the cth

constellation. For notations, define
m = 3+ Neonst (2.18)
as the size of the state. Similarly, the linearization point is defined as

X0 = [Uj2,0, Ujy0, Ujz,00 —05,105** + =0 Neomars0) - (2.19)
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The matrix form of the linearized measurement model with n measurements from

Neonst constellations can be written as

y=Gx+e, (2.20)
where
le',o - P} 52,;‘,1F
Yy = , € = , X =Xt — Xg, (2.21)
P?,o - ,0? 5Z,j,IF

and the elements of the n x m matrix G are defined by

o Gii=ajy,Gip=ajy,Giz = ajs;
o G;3:. = 1 if satellite ¢ belongs to constellation g;

o G, 3. = 0 if satellite ¢ does not belong to constellation g.

The system state x can be solved by the weighted least square (WLS) method (in an

iterative approach) as follows:

x = Sy, (2.22)

where S is the solution matrix
S= (GTWG) ™' GTW, (2.23)

and W is the weight matrix and will be defined in Section 2.3.2.

2.2 ARAIM Architecture

GNSS measurements are vulnerable to infrequent faults such as satellite and con-
stellation failures, which have the potential to pose significant safety risks to users.
To address this issue, fault detection and exclusion (FDE) algorithms such as legacy

RAIM can be implemented. The legacy RAIM is designed to provide error bounds
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for lateral navigation but faces limitations in precise vertical navigation due to factors

like ionospheric model uncertainty and high DOP.

The modernization of GPS [11-13] and the emerging GNSS constellations present
the chance to elevate legacy RAIM to ARAIM. ARAIM builds upon the foundation
of legacy RAIM by incorporating multi-frequency measurements, which allow for the
utilization of IF linear combinations to remove ionospheric uncertainties and reduce
radio frequency interference. ARAIM also enhances the strength of satellite geome-
tries to provide less conservative protection levels, and introduces the constellation
fault monitors, addressing the limitations of the legacy RAIM. These advancements

in ARAIM aim to support more robust and precise aircraft guidance in civil aviation.

The ARAIM system architecture consists of the space segment, ground segment, air-
borne segment, and Integrity Support Message [41]. Specifically, the space segment
encompasses the GNSS core constellations managed by their respective constella-
tion service providers (CSP) and involves various operations like monitoring stations,
mission segments, orbit determination and time synchronization (ODTS), and per-
formance commitments. The ground segment involves reference stations responsible
for monitoring constellation performance and collecting data for integrity support
message (ISM) generation. The airborne segment mainly comprises aviation users
equipped with ARAIM avionics. The ISM delivers essential inputs for users to as-
sess performance metrics, such as the prior probability of satellite and constellation
faults, the standard deviation of nominal ranging uncertainty due to satellite orbit
and clock errors, and the maximum nominal bias primarily due to signal deforma-
tion. The Worldwide GNSS Committee (WGC) recognizes two services, Horizontal
ARAIM and Vertical ARAIM, for different flight phases. Vertical ARAIM is designed
to support global LPV-200 precision approach operations [27] through either offline
or online ARAIM architectures. Further details on Horizontal ARAIM, offline and
online ARAIM are elaborated in [41]. Subsequent sections will delve into the ARAIM

user algorithms in the airborne segment.
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2.3 ARAIM Airborne Algorithm

2.3.1 Concepts of integrity monitoring

Integrity comprises several factors such as integrity risk, alert limit (AL), and time to
alert (TTA), representing the reliability of a navigation solution in critical situations.
The boundary defining unsafe errors for a specific application is referred to as the AL,
whereas the hazardous condition we strive to prevent is termed misleading information
(MI). Loss of integrity arises when MI exists without notification or mitigation within

the required TTA. Mathematically, integrity risk (Pgyr) can be defined as

where ¢ is the estimation error on the parameter of interest (e.g., the vertical posi-
tioning solution), ¢ is the specified AL, ¢ and R are a general test statistic and its
rejection region, respectively, and Igrpq is the integrity budget. The design of test
statistics and the choice of rejection region distinguish different integrity monitoring

algorithms [2,18,20].

Another important concept in integrity monitoring is continuity risk, which quantifies
the probability of unforeseen navigation loss necessitating the termination of opera-
tions to ensure safety. Three primary factors, including satellite faults, malfunctioning
GNSS system components, and false alerts from integrity monitors, contribute to con-
tinuity loss in GNSS applications. Notably, the determination of the rejection region

for integrity monitors is influenced by the false alert as follows:
P(q € R|Fault-free conditions) Prauit-free < CREQ,FA, (2.25)

where Crrqra is the continuity budget caused by false alerts, and Prauit-free 1S the

prior probability of no fault, which is close to 1 .

As GNSS users usually have limited control over mitigating satellite faults and failures

in system components compared to managing the false alert rate, integrity monitor-
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ing algorithms typically concentrate on minimizing false alert risk, leading to a direct
trade-off between the continuity and integrity requirements. Specifically, setting the
rejection region of integrity monitors to its maximum allows for detecting and remov-
ing faulty measurements within TTA to prevent integrity loss. However, widening
the rejection region increases the likelihood of excluding fault-free measurements due
to random noise under normal conditions. Balancing this trade-off to meet both in-
tegrity and continuity requirements simultaneously is a key challenge for designers of
integrity monitoring algorithms with stringent safety-of-life demands. The following
sections introduce the core processes of the baseline ARAIM airborne algorithm [20],

covering range error bound, fault detection, and protection level calculations.

2.3.2 Range error bound

The baseline ARAIM airborne algorithm employs two distinct error models; i.e. the

error model for accuracy and the error model for integrity [20], as listed below:
(1) Error model for accuracy and continuity

The range error is bounded by a zero-mean Gaussian distribution as follows:
Eé,j,IF ~N (0> (O.(izcc,j)z) ) (2.26)
where
(O—(izcc,j)z = (opge)’ + (O—iropo,j)Z + (O—;,user7j,IF)27 (2.27)
and o}, 5 1s the 1-sigma orbit and clock error bound. Notably, the nominal bias for
continuity is assumed to be zero. The covariance matrix for accuracy is then defined

as

Caceli, i) = (O-CiLCC,j>2’ (2.28)

(2) Error model for integrity

The range error is bounded by a Gaussian distribution as follows

Ep it ~ N Orom: (T3 )°) (2.29)
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where
(O-z:nt,j)2 = (O-%]RA)Z + (Uiropo,j)2 + (O.;,user,j,IF)2 ) (230)

o1 pa (the broadcast user range accuracy (URA) parameter) is the 1-sigma orbit and

)

t om 1s the nominal bias for integrity. The covariance matrix

clock error bound, and b

for integrity is defined as

Cantli, i) = (0%,,)° (2.31)

2.3.3 Integrity and continuity under multiple hypothesis

The baseline ARAIM airborne algorithm employs a multiple-hypothesis approach by
first defining the threat model, which is a collection of error modes that partition
the whole measurement space. Assuming there are n measurements each uniquely
numbered, the threat model is constructed by defining a set of fault modes with

different prior probabilities:

e Fault mode 0: All measurements are nominal measurements (i.e., fault-free).

The prior probability of fault mode 0 is Pp,.

e Fault mode k: Measurements with indices k € idz}® are faulty measurements
(including single or multiple faults), while measurements with indices k & idz$”

are nominal measurements. The prior probability of fault mode £ is Py, .

In the above definition, the size of idz{" is the number of simultaneous faults associ-
ated with the fault mode k, which takes value from 1 to n. The total number of fault

modes is assumed to be Nt modes + 1. Theoretically,

n—Kmax
n
Nfault modes — Z (k?) ; (232>

k=1
where k.« 1s the maximum number of simultaneous faults that need to be monitored.

kmax is selected so that the prior probability of occurrence of more than k., simulta-

neous faults is much smaller than Izpq. This probability is denoted as Pot monitored-
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The procedure for determining ky., and Py, is detailed in [20]. For information, this

procedure is also briefed in Appendix A.2.

Figure 2.1 conceptualizes the definition of fault modes, where blue dots represent
fault-free measurements and dashed circles indicate faulty measurements under each
fault mode. Then, the hypotheses in the baseline ARAIM airborne algorithm are

given by

e Hy: The fault-free hypothesis (fault mode 0).

e H;: The hypothesis corresponding to fault mode k.

Fault mode Hy H, H, Hy

MeaS. ’I,.... \‘\ ’I,.... \\\ ’I,.... \ ',,.'1.'.'.3.. \‘\

subset "o. e o '\0. ® i "0. o @) eeee lg Tg @leces
\\\i_‘?/’/ \\\h._ —? ,/ \\\9_ —? '/ \\\'.:,_ —?//

Solution X @ %(2) 7B

Figure 2.1: Illustration of the multiple hypothesis solution separation in the baseline

ARAIM airborne algorithm.

The integrity risk in Equation (2.24) can be rewritten by

Nfault modes Ntault modes

Pt = Z P <{|€o| >N m qx & Ry ‘ Hk) P, + Phot monitored < IREQ 5
i=0 k=1
(2.33)
where ¢, and Ry, are a general test statistic and its rejection region regarding the test
Hy v.s. Hy, respectively.
The continuity risk is given by
Nfault modes

Pcontinuity = P( U gk € Rk ’ HO> PHO S C(REQ,FA . (234>
k=1
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2.3.4 Solution separation based fault detection

The baseline ARAIM adopts the solution separation (SS) between different measure-
ment subsets as the test statistic. The full set solution associated with fault mode 0

is given in Equation (2.22) and can be re-written by
% =8Oy (2.35)

where

SO — (G"WOG) " GTW©O, (2.36)
and W is associated with the integrity range error bound as follows

wO = ;!

wnt *

(2.37)

For fault mode k, the measurements with indices k ¢ idx§* are used to compute the
subset solution through WLS
%k = gk)y (2.38)

where

s® — (GTWHG) " gTW® (2.39)
is the solution matrix on fault mode k, and W®*) is defined as [20]

C,i(i,i) ifi & idx®
W) () = (i) A0 g i (2.40)

)
0 otherwise

The variance of the positioning solution is given by

-1

(U(k))2 - (GTW("")G)

v

(2.41)

v,v ?

where the subscript v = 1, 2, 3 designates the east, north, and up components, respec-

tively. Notably, the nominal biases b of the integrity range error bound also have

impacts on the positioning solution. The worst-case impact on the position solution

%) is given by

b =" IS8 [0 - (2.42)
=1

37



Chapter 2. Fundamentals of Advanced Receiver Autonomous Integrity Monitoring

The test statistic is constructed by the separation between the full solution and the

kth subsolution as

d® = (x — %)), . (2.43)

Since the residual error €, ;p is assumed to have a Gaussian distribution, d¥ is

proven to have the following Gaussian distribution under the fault-free hypothesis

a ~ N (0, (01)°) (2.44)
where
(01,)* = (™) — 8)Cyee(S¥ — 8)7e, , (2.45)

and e, is a vector whose vth entry is 1 and all others are 0. Then the rejection region
is given by
Ry = {d | [d"] > Dy}, (2.46)

where Dy, is the threshold of the integrity monitor. Therefore, the continuity risk in

(2.34) can be written by

Ntault modes

Pcontinuity = P( U |d1()k)’ > Dk,v HO) PHO . (247)
k=1
Since these rejection regions Ry, k = 1,2, -+ | Neult modes are not mutually exclusive,
Equation (2.47) can be released by
Nfault modes
Pcontinuity S Z P<|d1(]k)| > Dk,v HO)PHO . (248)

k=1
The threshold Dy, is determined by the allocated continuity budget caused by false
alerts. Specifically,

C% ,
Dy, =0Q7! ZREQFAj ) (k) 2.49
=@t (e ) o (2.49)
where
Nfault modes
ﬁEQ,FA: Z ﬁEQ,FA,ja (2-50)
j=1
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and Q' (-) is the quantile function of the standard normal distribution. Here, CRpq pa
standards for the continuity budget for the vertical component, Cgpq pa+Chiq pa T€D-
resents the continuity budget for the horizontal component, and Cipq pa = CRiq.pa-
An equal allocation strategy of the continuity budget is adopted in the baseline
ARAIM algorithm, i.e.,

1

Y i 2.51
N fault modes REQ,FA ( )

v _
CREQ,FA,j =

A potential fault is detected when P ¢ Ry, Vv = 1,2,3, and then an exclusion
process is launched, which is beyond the scope of this thesis and is omitted for the
present. The detailed process of exclusion and its impacts on the system integrity
can be referred to [20]. The following section will illustrate the evaluation of system

integrity in nominal conditions where no faults are detected.

2.3.5 Calculation of protection levels

Instead of directly evaluating the integrity risk, the baseline ARAIM algorithm cal-
culates the PL, the position error bounds at the low probabilities necessary to meet
the integrity requirement for a specified application. Practically, integrity is main-
tained as long as the PL calculated at each epoch remains below the AL. By replacing
the alert limit ¢ with PL and replacing the last inequality with equality in Equation
(2.33), the PL in the baseline ARAIM algorithm is given by

PLU _ b(O) Ntault modes PL,U _ D _ b(k‘)
2Q< (0) : ) T Z P, Q (Zﬁg :
g o (2.52)

3 k=1 3

P t itored
_ ]”U 1 _ not monitore

where I standards for the integrity budget for the vertical component, Ifpg+ Ifpg
represents the integrity budget for the horizontal component, and Ipq = I§gq. The

vertical protection level (VPL) is directly given by

VPL = PLs, (2.53)
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and the horizontal protection level (HPL) is calculated by

HPL = /PL?+ PL2. (2.54)

Notably, Equation (2.52) involves the detection threshold Dy, which is determined

by the allocated continuity budget caused by false alerts.

The baseline ARAIM algorithm provides a standard procedure, including range error
modeling, fault detection, and protection level calculation, to support integrity appli-
cations. The whole algorithm is built on the Gaussian overbounds for nominal range
errors, which simplifies the derivation and reduces the computational effort. However,
nominal range errors in the real world usually have non-Gaussian and heavy-tailed
properties [22-24,42 43]. The Gaussian overbounds of these errors are likely to be
over-conservative, leading to degraded detection performance and inflated PLs in
real-world applications. To solve this issue, this thesis systematically incorporates
non-Gaussian modeling into the construction of the integrity monitoring algorithm,
including characterization of the range projection of orbit and clock errors (Chap-
ter 3), error bounding with non-Gaussian models (Chapter 4), and fault detection
(Chapter 5) and integrity risk evaluation (Chapter 6) with non-Gaussian nominal

bounds.
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Chapter 3

Characterization of GPS/Galileo

Signal-In-Space Range Error

Navigation satellites transmit electromagnetic waves known as signal-in-space (SIS) to
users and GNSS ground segments [44]. The performance of SIS is commonly assessed
by analyzing the SISRE, which quantifies the statistical uncertainty of the modeled
pseudorange due to errors in the broadcast orbit and clock information [45,46]. SISRE
is one of the most significant factors that degrade positioning accuracy and integrity
[47]. Therefore, understanding the individual SISRE contributions and characterizing
their statistical profiles is essential for the development of ARAIM algorithms.

This chapter aims to characterize GPS/Galileo SISRE to facilitate the development
of non-Gaussian overbounding and ARAIM methods in Chapter 4 and Chapter 6,

respectively.
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3.1 Sources of Signal-In-Space Range Error

SISRE describes the statistical uncertainty of the modeled pseudorange due to errors
in the broadcast orbit and clock information [25,45,46]. Satellite orbit and clock
errors arise due to uncertainties in the ODTS process managed by the CSP [25].
Typically, the CSP utilizes dynamic models to establish a reference orbit trajectory.
Sequential estimators, such as Kalman filters, are then deployed to refine this tra-
jectory, forecasting the future evolution of satellite orbit and clock [32,48]. These
predictions are then employed to determine broadcast ephemeris parameters, which
are uploaded into the satellite’s navigation payload memory and transmitted to the
GNSS user. The estimation error of reference orbit trajectory and the correction error

of sequential estimators together contribute to the broadcast ephemeris errors.

A typical example is given by the ODTS process employed in the MCS of GPS. A
dynamic model is constructed by integrating a gravity model, luni-solar perturba-
tions, solid Earth tides, and a priori solar radiation pressure model. The propagation
of a satellite orbit is then solved by numerical integration of the dynamics model
for given initial values. Meanwhile, the evolution of clock states is characterized by
second-order polynomials over time. Monitor stations collect raw pseudorange, car-
rier phase, and meteorological data, which are smoothed by the MCS and fed into a
Kalman filter for processing. This filter estimates corrections of the inertial satellite
positions and velocities relative to the reference trajectory, two radiation pressure pa-
rameters, and clock offset, drift, and rates for both satellites and monitoring stations.
These estimations are subsequently utilized to predict the future orbit and clock evo-
lution, and to modify the broadcast ephemeris parameters for the next upload to the
satellite. A similar procedure is applied for other constellations such as GLObalnaya

NAvigatsionnaya Sputnikovaya Sistema in Russian (GLONASS) and Galileo.
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3.2 Determination of Orbit and Clock Errors

The broadcast orbit and clock errors can be evaluated as discrepancies between the
satellite position and clock bias given in the broadcast ephemeris (BCE) and the
precise ephemeris (PCE). The data source of the BCEs and PCEs used in this study is
elaborated in Section 3.2.1. Because the BCEs and PCEs are referred to the different
time and coordinate systems, adequate care must be taken to ensure consistency in
the comparison. Aside from time and coordinate system alignment, several additional
corrections are required in the data preprocessing procedures, which will be illustrated
in Section 3.2.3. Thereafter, the computation method of orbit and clock errors is

given.

3.2.1 Data source

This study is carried out by employing the historical broadcast and precise ephemerides
of GPS and Galileo. The performance evaluation for GPS is conducted with respect
to L1/L2 combination over a three-year period from January 1st, 2020 to December
31st, 2022. The analysis for Galileo satellites is conducted with respect to E1/Eba
combination within the same period. Regarding decommissioned satellites, this study
excludes satellites that were retired from duty before December 2022. For GPS satel-
lites, SVN 34 and SVN 60 were retired from active duty in October 2019 and March
2020, respectively [49]. Without considering these two satellites, a total number of 30
GPS satellites are used for analysis in this study. For Galileo satellites, GSAT0204
was decommissioned from active service for constellation management in December
2017 [50], and GSAT0201 and GSAT0202 became unavailable from February 18th,
2021 due to a temporary setting of the Freely Accessible Navigation Message (F/NAV)
and Integrity Navigation Message (I/NAV) health bits to unhealthy [50]. Therefore,
these three satellites are not included in this study. A total number of 24 Galileo

satellites are utilized for further analysis in this three-year period.
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The BCEs for GPS and Galileo satellites are both acquired from International GNSS
Service (IGS), which records multi-GNSS navigation data on a daily basis and com-
piles them into the BRDC file in Receiver Independent Exchange (RINEX) format
Version 3 [51]. Various IGS and Multi-GNSS EXperiment (MGEX) [52] analysis
centers routinely generate PCEs for GPS and GLObalnaya NAvigatsionnaya Sput-
nikovaya Sistema in Russian (GLONASS), along with the emerging Galileo, BeiDou,
and Quasi-Zenith Satellite System (QZSS) constellations. In this study, the precise
orbit and clock products of GPS are obtained from Center for Orbit Determination in
Europe (CODE), which provides daily orbit and clock data with 15-minute sampling.
The precise orbit and clock products of Galileo are also obtained from CODE but
with the sampling interval of 5 minutes. The precise products of CODE are publicly
accessible through the online repository of IGS [53].

3.2.2 Antenna phase center offset correction

According to IGS conventions, most precise orbit products provide the Center of Mass
(CoM) coordinates of the respective space vehicle [54]. However, the precise clock
states are usually referenced to satellite antenna phase center (APC) [44]. In the
case of broadcast messages, both orbit and clock data are referred to the satellite
APC [45]. Figure 3.1 depicts the orbit and clock reference points in broadcast and
precise ephemerides. Due to the different conventions, a proper APC offset correction
is needed before comparing the broadcast and precise ephemerides. However, as
pointed out by [45,55], there is no reason to assume a uniquely and unambiguously
defined APC between the broadcast ephemeris and precise orbit and clock products.
In this work, the estimated APC offsets by the US National Geospatial-Intelligence
Agency (NGA) [56] are used for the GPS BCE, while the Galileo metadata provided
by the European GNSS Agency (GSA) [57] is used to generate the APC offsets for
the Galileo BCE. In the case of precise products, both the Galileo and GPS APC
offsets are provided by the IGS ANTenna EXchage (ANTEX) files [58].
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Reference | BCE PCE
points

Orbit APC CoM
Clock APC APC

APC (BCE) /s

APC (PCE)

Point to earth

Figure 3.1: Different conventions for orbit and clock reference points in GNSS broad-
cast and precise ephemerides. The green dot represents the APC used in BCE and
the blue dot represents the APC used in PCE.

The broadcast CoM position xgiﬁ%% g of satellite ¢ at epoch £ in the ECEF coor-

dinate system is obtained by applying the APC offset correction as follows:

ik,BCE  _ _ikBCE i k,ECEF _;
XCoM,ECEF = XAPC,ECEF — Rpp ApCE s (3.1)

ik,BCE . . i1 ; ;
where X po popr 18 the broadcast APC position, apop = [a), pors @, per, @ por

the APC offset vector for the BCE defined in the satellite body fixed (BF) frame, and
Rk ECEF
BF

1T is

is the rotation matrix from the BF frame to the ECEF frame at epoch k.

Figure 3.2 shows the definition of the BF frame, where e, pp is the principal body axis
closest to the antenna boresight direction, e, g is parallel to the rotation axis of the
solar panels, and e, pp is chosen such that the specified solar panel is permanently
sunlit during nominal yaw-steering in IGS conventions [59]. Define the satellite-sun
vector as

ik ok ik
Xsat to sun — Xsun — P (32)

where p®* and x%_ are the position of satellite i and the sun at epoch k in the ECEF
ik

ont to sun 18 Orthogonal to the solar

frame, respectively. Then, the satellite-sun vector x
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sun
sat

X

Orthogonal to sun ;

Orbit.”

€, Ecer

Figure 3.2: Definition of the BF frame of satellites.

R . . ik, ECEF
panel, as shown in Figure 3.2. The rotation matrix Ry can be calculated by
REFECEF _ | Xy 1o sunXPVF X0 X gy X0t pik 3.3
BF - i,k ik ik i,k ik ik ( : )
Xsat to sunXp R Xsat to sunxp ’ P>

Since the line-of-sight (LOS) vector is closely aligned with the e, g axis, the z-
component of the APC offset a! pop can be used to calculate the CoM-referenced

ik
clock offset cdggy pop as follows,

ik ik ;
CObort.BeE = Oapcpor T 4 BoE » (3.4)

where céfé"]}a pop 1s the APC-referenced clock offset in the BCE.

The CoM position of precise orbit XZCIZJ\I;CEECEF can be directly computed from the

precise product without APC offset corrections. The CoM-referenced clock offset
ik

cO¢onr.pop N the precise product is computed by

ik ik i
C(SCOM,PCE = C5AP(J,PCE +a, pcE (3.5)

where 052];307 pop 18 the APC-referenced clock offset in the PCE and al pcj is the

z-component of the APC offset vector alj; related to the precise product.
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In the following sections, the position and clock offset values obtained from broadcast

and precise products are consistently referred to the CoM.

3.2.3 Computation of orbit and clock error vector

As shown in Figure 3.3, the orbit error vector of satellite i at time epoch k in the

ECEF coordinate system can be formalized by

Ez’,k _ JikBCE _ _ikPCE (3.6)
orb,ECEF — XCoM,ECEF — XCoM,ECEF - .

Broadcast

e
*ECEF Orbit

Figure 3.3: Demonstration of orbit error.

The CoM-referenced clock error is computed as

i,k _ sk ik
gclk,EC’EF = C5COM,BCE - C(SCOM,PCE : (3.7)

Notably, the underlying realization of the GNSS-specific system time scales is different
between broadcast and precise ephemerides [45]. These differences, which are typically

more significant than the inherent clock solution precision, introduce a systematic bias
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affecting all satellites within a constellation consistently. [55] This bias may vary from
epoch to epoch and cannot be easily quantified. To mitigate this bias, an ensemble
clock difference is computed at each epoch by averaging the clock error between
broadcast and precise ephemerides across satellites within a constellation [44, 55].
Finally, the individual clock error is corrected for this ensemble average as follows:

sat k

ik ik
fclk,ECEF = &k ECEF — n Z gclk JECEF 1 (3-8)
S(I = 1

where Ngq o is the total number of satellites in the corresponding constellation at

epoch k.

3.2.4 Transformation to the RAC frame

The orbit error in the ECEF frame is usually transformed into the radial, along-track
and cross-track (RAC) frame for ease of analysis and visualization, as shown in Figure

3.4. The transformation can be formalized by

i,k k,RAC
szorb,RAC - RzECEF Eorb ECEF (39)

with the rotation matrix Rg};};’}c defined as
T

RZ k} RAC . pi,k . pz kaz k pi,k pi,kai,k (3 10)
ECEF phk phk xvik pik pik xvisk :

where v** is the velocity of satellite 7 at epoch k in the ECEF frame. The radial,

ik
along-track and cross-track components of £ rac are denoted by 3 > Sorpa, and

fo’rb o> respectively.

3.3 Definition of SISRE

To reveal the effect of orbit and clock errors on a navigation user, SISRE is calcu-

lated by projecting the orbit and clock errors into the user’s LOS direction. Since
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Figure 3.4: Definition of satellite RAC frame.

Figure 3.5: Demonstration of IURE over a mesh of 200 user locations.

each user positioned within the satellite’s coverage footprint has a distinct LOS vec-
tor, the projected range error can vary with user locations. Therefore, the so-called
instantaneous user range error (IURE) is defined. As shown in Figure 3.5, the orbit
component of the IURE is calculated by projecting the orbit error Ezrkb popp tO the

LOS vector xﬁ ; from satellite ¢ to receiver j

gi’kb ECEFX]‘C j

i,k Sorb, 1,7

IURE_;,OTI) — ‘X—k 9 (3.11)
Z7J
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where

x;; =X —p"*. (3.12)
The final IURE is calculated by adding the impacts of the clock error as follows:

i,k ik Zik
IURE;" = IURE;,,, —{Clk’ECEF. (3.13)
Note that the negative sign in Equation (3.13) accounts for the negative correlation
between the clock error and the orbit error that results from the orbit and clock

determination algorithm of GPS or Galileo [47].

The GPS Standard Positioning Service Performance Standard (GPS-SPS-PS) [60]
defines the SISRE as the average contribution over all [URE values of users located
inside the visibility cone of a satellite. However, the average value cannot reflect the
worst-case scenario. Therefore, the globally averaged IURE is unsuitable for safety-

critical applications.

Alternatively, the user projected error (UPE) is proposed by collecting the IURE of
a large number of globally distributed users [61]. Each healthy satellite is visible to
many but not all users at any given epoch; therefore, there will be multiple UPE
values per satellite at each epoch (one for each user that has this satellite in view).

Therefore, the UPE at epoch k can be formalized as follows:

UPE™ = {]URE;’k|user i is within the visibility cone of satellite j at epoch k} .
(3.14)
Similar to the setting in [61], 200 evenly distributed user locations around the globe
are selected to calculate the UPE, as shown in Figure 3.5. Finally, the SISRE of

satellite 7 over a period is defined as
SISRE}; p, = {UPE"“*|epoch k is included in the given period} . (3.15)

20



3.4. Nominal Performance Characterization

3.4 Nominal Performance Characterization

According to the GPS-SPS-PS [60], a GPS satellite is considered to have a major
service failure when its average projected error exceeds 4.42 X oygra. A similar def-
inition for Galileo satellites is given in the Galileo Open Service Service Definition
Document (OS-SDD) [62], where a Galileo satellite is deemed faulty if the average
projected error surpasses 4.17 x oyra. Table 3.1 displays the four identified GPS fault
events during the study period (2020-2022), while Table 3.2 presents the two Galileo
fault events identified within the same period. The data in these tables are sourced
from [1], which offers a comprehensive analysis of satellite fault events. To character-
ize the nominal performance characterization of SIS errors, we exclude samples from

the periods listed in Tables 3.1 and 3.2 in the following sections.

Table 3.1: GPS fault events between 2020 and 2022 (Taken from [1])

SVN Date UTC Time
53 February 7, 2021 17:00 — 21:15
69 March 2, 2021 07:10 — 08:15
73 September 24, 2021 11:55 — 14:15
58 October 2, 2022 15:10 — 15:55

Table 3.2: Galileo fault events between 2020 and 2022 (Taken from [1])

SVN Date UTC Time
210 September 5, 2021 05:43 — 6:02
210 April 29, 2022 01:00 — 01:12
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Chapter 3. Characterization of GPS/Galileo Signal-In-Space Range Error

3.4.1 Nominal performance of GPS SIS

Over a span of three years, a comprehensive analysis is conducted on a total of 30 GPS
satellites, accounting for 2,999,386 orbit and clock nominal error samples. The folded
cumulative distribution function (CDF) of GPS orbit and clock errors, compiled from
all samples within this period, is depicted in Figure 3.6. The folded CDF depicts the
second half of the CDF plot with 1-C'DF’ for values of x > m, where m is the median
of the distribution. As can be seen, most orbit and clock errors are located within
+5m. Among the three orbit error components, the along-track error shows the
largest magnitude and dispersion, with the cross-track error following closely behind.
However, both the along-track and cross-track errors have little contribution to the
range error, as these two directions are almost perpendicular to the LOS vectors.
The radial error, in contrast, closely aligns with the LOS vectors and has the largest
contribution to the range error, showing the smallest error magnitude and dispersion
among the orbit components. As another key contributor to range errors, the clock
error shows a much larger error magnitude and dispersion than the radial error.

Therefore, SISREypg is most similar to the clock error, as shown in Figure 3.6.

Figure 3.7 plots the folded CDF of SISREypg for each GPS satellite, where signifi-
cant differences among satellites are observed. Some satellites, such as SVN 44, SVN
51, SVN 73, and SVN 65, exhibit large error magnitude and dispersion, with their
maximum SISREypg exceeding 10m. However, the SISREypr of most satellites
is relatively small, which retains within the range of &5m. Table 3.3 summarizes
the standard deviation of the SISRFEypg for each satellite, which also suggests the
difference among satellites. The mean of SISREypg for each satellite is also listed
in Table 3.3, with the magnitude less than 5cm for most satellites. Importantly,
GPS precise orbit and clock accuracy stand between 3-4 cm. Since the SISREypg
references the precise orbit and clock as the truth orbit and clock, its mean values
are reasonably on the order of the precise orbit and clock accuracy. Over a long term

period of several years, the SISREypgr will eventually be nearly zero mean [25].
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GPS radial, along-track, cross track, clock and SISRE error
from 1/1/2020 to 12/31/2022
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Figure 3.6: The folded CDF of GPS radial, along-track, cross-track, clock, and
SISREypE errors from January 1st, 2020 to December 31st, 2022

GPS SISRE from 1/1/2020 to 12/31/2022
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Figure 3.7: The folded CDF of GPS SISREy pg for individual satellites from January
1st, 2020 to December 31st, 2022.

Figure 3.8 shows the quantile-quantile (QQ) plot of the SISREypg for each GPS
satellite. The QQ plot shows the quantile of error distribution with the equiva-

lent standard normal quantile, such that the Gaussian distributed error exhibits a
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Figure 3.8: The QQ plot of GPS SIS REy pg for individual satellites from January 1st,
2020 to December 31st, 2022. The x-axis represents the quantile of error distribution

(unit: meter) while the y-axis stands for the standard normal quantile (unit: meter).

straight line. Three categories of SISRFEypg distributions can be identified as fol-
lows: 1) Two-side heavy-tailed SISREypg; 2) One-side heavy-tailed SISREypg;
and 3) Gaussian-liked SISREypgp. The category information is also provided in
Table 3.3. For the two-side and one-side heavy-tailed SISRFEypg, the Gaussian over-
bound used in the baseline ARAIM algorithm tends to provide conservative bounds,
which potentially enlarges the protection level in the positioning domain. This is-
sue is further discussed in Chapter 4, where a non-Gaussian overbounding method is

developed to address this problem.
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3.4.2 Nominal performance of Galileo SIS

For Galileo satellites, 6,836,848 orbit and clock error samples within 2020-2022 are
used for analyzing their nominal SIS performance. Figure 3.9 shows the folded CDF
of Galileo radial, along-track, cross-track, clock, and SISREypg errors, with all
samples combined during the three-year period. The mean and standard deviation of
these errors for individual satellites are summarized in Table 3.4. As shown in Figure
3.9, the radial and along-track errors have similar error magnitude and dispersion,
while the cross-track error shows the smallest error magnitude and dispersion among
the three orbit error components. This phenomenon is different from the GPS case.
However, the relationship 0yaq4 < Ocross < Oalong Still holds in Galileo satellites, as

shown in Table 3.4.

Notably, the folded CDF of Galileo orbit and clock errors exhibits an extremely narrow
core, where most errors are located within £2m. In the GPS case, most errors are
located within +5 m. However, the dispersion of the orbit and clock errors of Galileo
satellites is significantly larger than that of GPS satellites, with the maximum error
magnitude reaching 25m. These findings suggest that the nominal orbit and clock
errors of Galileo satellites are usually smaller than those of GPS satellites, but Galileo
satellites have larger worse-case nominal orbit and clock errors. Despite all these
differences, we find a common point between Galileo and GPS satellites, i.e., the
Galileo clock error also shows a larger error magnitude and dispersion than the orbit

errors. Consequently, the SISREypg is similar to the clock error in the Galileo case.

The folded CDF of SISREypE for individual Galileo satellites is depicted in Fig-
ure 3.10 and the corresponding QQ plot is given in Figure 3.11. Two categories
of SISREypgE distributions can be identified as follows: 1) Two-side heavy-tailed
SISREypgp and 2) One-side heavy-tailed SISREypg. Intuitively speaking, the
tailedness of the Galileo SIS REy pg is much heavier than that of the GPS SISREy pEg.
However, the statistics of Galileo SISREypgr in Table 3.4 suggests that the stan-
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Galieo radial, along-track, cross track, clock and SISRE error
from 1/1/2020 to 12/31/2022
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Figure 3.9: The folded CDF of Galileo radial, along-track, cross-track, clock, and
SISREypE errors from January 1st, 2020 to December 31st, 2022.

Galileo SISRE from 1/1/2020 to 12/31/2022
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Figure 3.10: The folded CDF of Galileo SISREypE for individual satellites from
January 1st, 2020 to December 31st, 2022.

dard deviation of the Galileo SISRFEy pg is relatively smaller than that of the GPS
SISREypg. From Figure 3.9, we know that the nominal orbit and clock errors of

Galileo satellites are usually smaller than those of GPS satellites, but Galileo satel-
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Figure 3.11: The QQ plot of Galileo SISREypg for individual satellites from Jan-
uary 1st, 2020 to December 31st, 2022. The x-axis represents the quantile of error
distribution (unit: meter) while the y-axis stands for the standard normal quantile

(unit: meter).

lites have larger worse-case nominal orbit and clock errors. Since the SISREypg is
contributed by orbit and clock errors, the conclusion drawn from Figure 3.9 conse-
quently extends to the SISREypgr. This explains why the Galileo SISREypg has
a smaller standard deviation but exhibits heavier tails than the GPS SISREy;pg.
Finally, another important information in Table 3.4 is that the mean value of the

Galileo SISREy pg is nearly zero, which is similar to the GPS case.
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Table 3.3: The mean and standard deviation of the radial, along-track, cross-track,
clock, and SISREypg errors for individual GPS satellites from 1/1/2020 to
12/31/2022 (unit: cm)

Radial Along-Track Cross-Track Clock SISREypE
SVN Type' | mean std mean  std mean std mean std mean std
SVN41 O 0.31 11.25 | -10.72  89.58 -5.51  54.09 0.82 33.31 -3.45 42,51
SVN43 T 0.29 11.15 | 10.69 86.72 | -0.98 76.68 | 0.04 45.20 1.09 52.02
SVN44 T 3.20 23.42 | 6.99 106.60 | 0.31 92.18 | 0.53 123.26 | -2.30  131.00
SVN45 O 3.39 15.96 | -11.85 96.24 -4.50  86.58 -1.11 29.33 -4.67  42.82
SVN46 G 2.07 13.64 | -5.09 113.00 | 3.37 55.05 0.22 34.55 | -2.44  46.16
SVN47 G 3.88 13.48 | -15.47 76.44 | -1.03 60.87 | -0.07 25.08 | -6.14 36.59
SVN48 G 1.78 13.59 | 0.00 87.32 0.48 77.91 1.24 47.68 -2.97  55.04
SVN50 G 3.65 15.58 | -6.56 78.43 2.76 61.92 | -2.18 27.69 | -1.99 40.48
SVN51 O 1.91 10.79 | 13.02  76.13 1.20 65.55 | -1.15  30.26 1.33 38.70
SVN52 G 1.45 12.23 | -0.71 72.77 -1.35 62.31 2.75 43.28 -4.44 4991
SVN53 O 2.41 15.84 | -2.24 112.50 | -4.83  101.11 | 1.15 71.00 -4.49  80.98
SVN55 G 2.59 11.70 | 3.31 81.50 | 0.84 71.73 | -2.95 21.74 1.08 34.04
SVN56 G 3.04 13.46 | -18.12 83.12 0.29 63.62 | -0.80 2498 | -4.66 37.62
SVN57 O 3.94 14.64 | 17.87 81.23 | -3.01 61.31 -0.80 55.75 | -0.96 62.42
SVN58 O 2.28 14.59 | 12.10 91.19 -1.93  82.14 -0.08  29.35 -0.70  40.14
SVN59 G 1.42 12.56 | 22.54 88.21 -2.79 67.24 -0.80  24.17 2.20 35.15
SVN61 T 2.64 14.07 | 7.15 108.17 | -3.35  87.85 0.49 27.02 | -2.55 40.05
SVN62 O -2.20 18.26 | 10.02 96.69 -2.21  87.62 1.98 27.36 1.27 35.90
SVN63 T 0.73 18.00 | 4.39 84.49 0.13 68.36 | -3.01  36.91 3.03 46.34
SVN64 O 0.35 17.93 | 0.06 84.66 0.05 59.14 | -0.70  31.51 0.38 38.94
SVN65 T -1.74  20.26 | 11.12 91.37 -4.58  75.78 -0.43  90.42 3.15 95.60
SVN66 O -0.24  18.65 | 3.72 80.43 | -1.58 68.31 1.68 28.22 | -1.13  39.58
SVN67 G 2.42 17.38 | -4.38 82.90 -0.54  70.36 -1.58  21.46 -1.61  33.14
SVN68 T 0.06 17.02 | 14.29 74.87 0.34 61.28 1.47 25.60 0.54 35.41
SVN69 T -1.12 19.54 | 7.82 96.22 | -0.90 90.78 | -2.25 60.93 | 4.35 65.74
SVN70 T -0.69 15.11 | 4.05 7726 | -3.43 6533 | -0.11  21.10 0.86 32.30
SVN71 T -0.16  19.53 | -2.51 80.22 -2.39  67.32 -2.20 22.21 1.65 36.05
SVN72 G 1.90 23.66 | -15.36  104.69 | -1.65 83.87 | -0.20 115.60 | -4.01  121.97
SVN73 T -0.27  18.77 | 10.43 94.89 -1.81  81.16 8.46 55.07 -6.99  62.01
SVN74 O -0.12  10.58 | -5.73 83.41 0.29 49.19 | -1.28  20.58 0.62 32.36

L« Two-side heavy-tailed; “O”: One-side heavy-tailed; “G”: Gaussian-liked.
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Table 3.4: The mean and standard deviation of the radial, along-track, cross-track,
clock, and SISREypg errors for individual Galileo satellites from 1/1/2020 to
12/31/2022 (unit: cm)

Radial Along-Track Cross-Track Clock SISREypE

SVN Type' | mean std mean std mean std mean std mean std

GSATo0101 T -0.26  24.25 | -1.16  29.02 | -1.12  23.46 | 2.01 36.63 | -2.11  48.13
GSATO0102 T -0.54  20.66 | -5.91  36.95 | -1.18  25.97 | 2.13 21.35 | -2.66  37.72
GSATO0103 T -0.86  22.12 | -2.77  36.93 | -3.43 26.84 | 1.44 46.17 | -1.50  57.17
GSAT0203 T -0.42  19.08 | -1.60  25.97 | -1.00  20.55 | 4.70 37.61 | -4.69  45.92
GSAT0205 O -0.65 15.61 | -1.03  26.81 | -0.42 19.93 | 1.76 13.67 | -1.34  27.12
GSAT0206 T -0.36  17.27 | -0.19  25.06 | -0.90  21.67 | 1.56 14.90 | -1.38  27.76
GSAT0207 O -0.79 17.55 | -3.02  27.81 | -1.01  20.34 | 1.66 15.29 | -1.48  29.75
GSAT0208 T -0.82 18.66 | -3.28  27.98 | -1.15  20.41 | 1.27 13.66 | -1.12  29.30
GSAT0209 T -0.73 16.81 | -0.71  26.93 | -1.99 19.96 | 1.13 13.81 | -0.81  27.30
GSATO0210 T -0.21 19.10 | -2.73  37.15 | -1.44  24.87 | -0.05 78.24 | -0.36  82.48
GSAT0211 O -0.57 18.69 | -0.86 2842 | -1.84 21.14 | 1.46 14.74 | -1.32  30.73
GSAT0212 O -0.81 18.20 | -2.41  27.92 | -1.27  20.75 | 1.22 15.40 | -0.96  32.05
GSAT0213 T -0.91 18.62 | -2.36  29.26 | -1.65  20.72 | 0.60 14.15 | -0.30  29.95
GSAT0214 T -0.80 18.34 | -0.10  26.25 | -1.97  20.70 | 1.03 15.38 | -0.55  29.92
GSAT0215 T -0.71 17.87 | -0.64  27.90 | -0.78 19.86 | 0.80 22.90 | -0.31  33.80
GSAT0216 T -0.55 15.46 | -1.17 2730 | -1.14  19.06 | 1.15 15.50 | -0.96  27.89
GSATO0217 T -0.54 18.25 | -1.60 26.42 | -0.31  21.54 | 1.47 13.08 | -1.23  27.23
GSAT0218 T -0.80 18.44 | -0.37  26.21 | -1.25 19.89 | 1.41 12.82 | -0.87  27.81
GSAT0219 T -0.36  23.20 | -0.18 43.44 | -0.94 25.00 | 1.49 29.24 | -1.30  43.80
GSAT0220 T -0.45 20.85 | -2.04 29.33 | -0.56 20.64 | -1.83  14.93 | 1.87 31.99
GSATO0221 T -0.18 18.35 | -2.78  28.51 | -1.64  20.79 | 1.60 17.06 | -2.09 31.33
GSAT0222 T -0.29 19.07 | -2.71  28.23 | -0.08 21.99 | 1.48 15.74 | -1.63  31.92
GSAT0223 O -0.85  24.27 | -0.26  26.59 | -1.64  20.28 | 1.65 15.45 | -1.10  35.24
GSAT0224 O -0.83  25.09 | -0.75  30.81 | -1.63  20.99 | 1.25 15.98 | -0.80  35.56

L« Two-side heavy-tailed; “O”: One-side heavy-tailed.
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Chapter 4

Principal Gaussian Overbound for

Heavy-tailed Error Distribution

To meet the stringent navigation requirements, precise modeling of the measurement
error distribution using experimental data is essential. Chapter 3 accurately charac-
terizes the SISRE distribution of GPS and Galileo satellites, which use a huge amount
of data. However, it is impossible to transmit all these data to users in satellite or aug-
mentation systems due to limited-bandwidth communication. To address this issue,
a conservative representation of the error distribution known as the overbound should
be employed. For heavy-tailed errors, such as the SISRE, additional challenges are
imposed to overbounds. A sharp yet conservative overbound is preferred to support

integrity monitoring applications due to availability and continuity constraints.

This chapter proposes the Principal Gaussian overbound (PGO) for heavy-tailed error
distributions by leveraging the characteristics of the GMM. Section 4.1 gives a brief
review of the existing overbounding methods. In Section 4.2, the GMM and its appli-
cation on error fitting and overbounding research are illustrated, which provides the
theoretical foundation for the development of PGO in Section 4.3. Section 4.4 com-

pares the bounding performance of the PGO with the two-step Gaussian overbound
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and the Gaussian-Pareto overbound on GPS and Galileo SISRE. Finally, Section 4.5
constructs the nominal error bounds of code IF combination based on the proposed

PGO.

4.1 Review of Overbounding Methods

The first true overbound, known as the CDF overbound, was introduced by DeCleene
in 2000 [63]. It is defined as having more tail mass than the error distribution.
To facilitate the range-to-position projection and simplify the communication and
computation of error bounds, the zero-mean Gaussian model is adopted as the underly
form of the CDF overbound. Since then, the Gaussian CDF overbound and its
variants have dominated the overbounding research and are taken as the basis for
integrity analysis. Nevertheless, DeCleene’s method requires certain shape constraints

on the overbounding distribution, including symmetric and unimodality.

To relax the constraints in the DeCleene’s method, Rife et al. proposed the paired
CDF overbound that uses two Gaussian distributions with non-zero mean to over-
bound the left and right regions separately [64]. However, its stringent requirement
on bounding both regions inflates the standard deviation or enlarges the biases in the
Gaussian overbound [65]. This problem is relieved by allowing the total mass of the
overbound distribution to be greater than one, which is known as the excess-mass CDF
overbound [66]. More recently, Blanch et al. proposed the two-step Gaussian over-

bounding method, significantly reducing the bias in the overbound distribution [65].

Nonetheless, these Gaussian-based overbounding methods fail to truly overbound the
heavy-tailed distributions, a frequent occurrence in pseudorange errors influenced
by multipath [67]. This is because heavy-tailed distributions have tails that are
not exponentially bounded, which makes them impossible to be overbounded by a

Gaussian distribution that only possesses an exponential tail [22,68]. It is natural
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to apply different models for the core and tail regions of a distribution. Rife et al.
proposed the Gaussian core overbound, which utilizes a Gaussian distribution for the
core bounding and an implicit distribution for the tail bounding [22]. More recently,
Larson et al. proposed the Gaussian-Pareto overbound to tightly bound the tails
by utilizing the extreme value theory [68]. However, the overbounding property of
the Gaussian-Pareto overbound through convolution remains unclear, which currently

limits its applications.

In the remainder of this section, the construction process of the two-step Gaussian
overbound and the Gaussian-Pareto overbound is illustrated, as both the two methods

will be used for comparison with the proposed method in the following sections.

4.1.1 Two-step (Gaussian overbound

The two-step Gaussian overbound [65], as the name suggests, involves two steps
of construction. In the first step, a piecewise uniform, symmetric, and unimodal

distribution Gg,(z) is determined through an ad hoc approach:
Gy(z) < Ggu(z) Vo . (4.1)

In the second step, the left-hand side overbound is determined by finding the minimum

o1, that satisfies
/ fn (z;—=bp,oL) dz > Ggu(x) Ve < 0. (4.2)

Equation (4.2) relaxes the constraint in paired overbound [64] by only CDF bounding
the left-hand side of the intermediate distribution. The right-hand side overbound is
obtained by repeating the above process on the mirror image of the error distribution,

i.e., Gy(—x). The right-hand side overbound has the CDF form as follows:

/ fn (x;br, 0r)dz Vo > 0. (4.3)

Although the two-step Gaussian overbounding method can significantly reduce the

bias compared to the conventional paired overbounding methods [65], its overbound

62



4.1. Review of Overbounding Methods

for the heavy-tailed distribution can still be conservative, which will be shown through

numerical experiments in Section 4.4.

4.1.2 Gaussian-Pareto overbound

The Gaussian-Pareto overbound is a realization of the core overbounding concept [22].
Specifically, the core overbounding concept decomposes the error distribution into two

fractions, including the core part Gy core(2) and the tail part Gy tan(z) as follows,

Gv (37> — Gv,core(x) + G'u,tail('r)a (44)

where Gy core(7) and G, tan () are defined in terms of the error distribution PDF f,(z)

as follows:
.
foo folx)dz |z| <T
Gv,core(x) - f (45&)
0 lz| > T
4
0 x| <T
Gy tail(2) = , (4.5Db)
\ffoo fo(x)dz |z|>T

where T is the core-tail transition point. The core overbound of G, (x) is defined as
Gov<x> == Gov,ex(x) + Gov,im<x> ) (46)

where éov’ex(x) and Gov,im(x) are CDF's scaled by a factor within the range of zero
to one. In general, Gov,ex(m) is an explicit function that bounds the worse-case CDF

of the core part of the error distribution,

Gcore(2) < Gopex(2) V=T <2 <0 (4.7a)

Gcore() > Gopex(2) VO < 2 < T, (4.7D)
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and Gy im () is an implicit function (i.e., no assumptions are made on its shape) that

bounds the tail part of the error distribution,

Gv,tail(x) S éov,im(lv) Ve < =T (48&)
Gt () > Gopim(z) VI > T . (4.8D)

As a realization of the core overbounding concept, the Gaussian-Pareto overbound [68]
adopts the generalized Pareto distribution for the tail bounding. The tail of the

Gaussian-Pareto overbound can be formalized as

R Gv (UL) — GGPD (UL — ZL‘) GU (UL) Yo < ur,
Gap tail(T) = : (4.9)
Gapp (z — ur) (1 — Gy (ur)) + G, (ur) Vz > ug

where uy, < 0 is the left core-tail transition point, ug > 0 is the right core-tail tran-
sition point, and Gapp(; p, 8,7) is the CDF of the generalized Pareto distribution
with a location parameter, u, a scale parameter, 3, and a shape parameter, v [69], as

shown below:

1—(1+@> T 40

(4.10)
1 —exp <—%) v=20

GGPD (ZL’, u, ﬁa 7) -

The Gaussian-Pareto overbound stems from the extreme value theory, which shows
that almost all normalized continuous probability distributions asymptotically ap-
proach a generalized Pareto distribution [70]. This property enables the general-
ized Pareto distribution to provide a true overbound for data far beyond the end of
the empirical distributions, as required in DeCleene’s theorem [63]. Although the
Gaussian-Pareto overbounding method offers the potential to tightly overbound the
tail distribution, it is unclear whether the Gaussian-Pareto overbound can main-
tain the overbounding property through convolution, which is crucial for deriving

pseudorange-level requirements from the position-domain integrity requirement [63].
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4.2 Gaussian Mixture Model

GMM is a statistical technique that plays a crucial role in error modeling, particularly
in capturing heavy-tailed distributions that are commonly observed in real-world
scenarios [61,71,72]. A GMM represents a probability distribution as a weighted
combination of multiple Gaussian distributions, each representing a component of
the mixture. In particular, the bimodal Gaussian mixture model (BGMM) is of
significant research interest as it effectively balances simplicity and flexibility, enabling
precise modeling of both the core and tails of heavy-tailed distributions while avoiding
overfitting and excessive parameters [71,73]. The PDF of a zero-mean BGMM for

heavy-tailed distribution modeling can be formalized as

f(x) =pifn (2;0,00) + (1 = p1) fv (2;0,09) , (4.11)

where fy (2;0,01) and fy (x;0, 02) are the PDF of the first and the second Gaussian
component, o; and oy are the corresponding standard deviations, and p; and 1 — p;
are the mixing weight of the two Gaussian components, respectively. In this work, it
is assumed that o < 09 and p; € (0.5, 1), indicating that the Gaussian component
with the smaller standard deviation is selected as the 1st Gaussian component and
exhibits a higher mixing weight. The parameters in a GMM are usually estimated
by employing maximum likelihood estimation (MLE). The expectation-maximization
(EM) algorithm [74] is usually adopted to obtain the MLE. A concise summary of
the EM algorithm is provided in Appendix A.3.

Due to the appealing nature of GMM, research on GMM-based overbounds emerged
as early as 2001 and has received increased attention in recent years [67]. Shively
compared GMM overbounding methods with Gaussian and exponential overbounding
methods in terms of the resulting inflation factor, suggesting that the GMM method
may align most closely with the manner in which errors are present in actual data [67].
Lee used the GMM as an empirical distribution to model the ground facility error

distribution, showing the potential of GMM to reduce the inflation factor and the
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PL [73]. However, the PL is calculated by a Gaussian overbound of the GMM, which
inevitably increases the conservatism. To tackle this issue, Blanch et al. constructed
a BGMM for pseudorange error modeling in the worst case [71]. They proved that
the posterior position density is also GMM and derived the PL by integrating the
posterior position density. Nevertheless, the computation of the PL involves a large

number of matrix inversions, which cause a considerable computation burden.

These studies usually obtain the GMM from the worst-case analysis [71] or sample
data fitting [74,75]. However, a rigorous method to determine the least conservative
GMM overbound of the error distribution has not been developed. The crux of
this issue lies in the difficulty of establishing overbounding relationships between
two GMMs. In Gaussian scenarios, a Gaussian with a larger standard deviation
can always bound the Gaussian with a smaller standard deviation. However, in the
context of GMMs, the increasing parameters can provide more flexibility in shaping
the distribution, which in turn makes it more difficult to assess whether one GMM’s
distribution covers the entire range of the other GMM’s distribution. Therefore, this
work explores an alternative way to utilize GMM to bound the heavy-tailed error
distribution. We propose the PGO, which is proven to be the true CDF overbound
of the GMM distribution.

4.3 Principal Gaussian Overbound for the Heavy-

Tailed Error Distribution

4.3.1 Membership weight analysis

The process of generating samples from a GMM can be seen as simultaneously gen-
erating samples from multiple Gaussian distributions according to their respective

weights. For example, given a K-component GMM with mixture weights of p;,
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P2,- - -, Pk, the sample generated from it at time ¢ is drawn from the 1st compo-
nent with probability p;, drawn from the 2nd component with probability p,, and
etc. From the perspective of statistical inference, we can also estimate the likelihood
of a sample belonging to a specific Gaussian component, which is known as the mem-
bership weight. The membership weight indicates the posterior probability of a data
point being generated from each component, which can be derived by utilizing the
Bayes’ Theorem [76]. For a given observation x, we define the allocation variable
c = {1,2,..., K} that marks the Gaussian component from which z is generated.
Then, the mixture weight of the kth Gaussian component can be interpreted as the

prior probability of the allocation variable that equals k, as shown below:
pr=Pc=k). (4.12)
For a given ¢ = k, the probability of generating x (i.e., the likelihood) is
P(z|lc=k)= fn (z;bg, 0%) . (4.13)

According to Bayes’ Theorem, the posterior probability is given by

prefn (23 0k, o%)
Zlepka (JU; bkaak) ’

where s, is the membership weight of the kth Gaussian component for the observation

sp=P(c=klz)=

(4.14)

x.

In this work, we mainly focus on the zero-mean BGMM in Equation (4.11) due to its
good balance of simplicity and flexibility. The membership weights s; and s, of the

zero-mean BGMM can be written as

pfn (2;0,07)

s1(z) = prfn (2;0,01) + (1 —p1) fv (230, 09) (4.15a)
So(x) = (1 —p1) fn (2;0,09)
2 pufa (2;0,01) + (1 = p1) fv (230, 02)
=1-s1(2). (4.15b)
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By substituting the probability density function (PDF) equation of a Gaussian dis-
tribution into Equation (4.15a),

si(z) = %exj (_% <011>2> |
reo (1)) oo (3E))

1
02 g2 :
1+ﬂﬂexp< 2 %11‘2>

2
p1 02 201 o

2_ 2
9301

Since o9 > oy, exp( x2> will be a symmetric convex function in terms of x;

20103
Hence, si(x) will be a symmetric concave function. Since sy(x) = 1 — s1(x), so(x)
will consequently be a symmetric convex function. Figure 4.1 plots s;(z) and sq(z)
in two settings of GMMs, including p; = 0.9,01 = 0.5,05 = 0.7 in Figure 4.1a and
p1=0.9,0; =0.5,00 = 1.5 in Figure 4.1c. In both cases, s1(z) has large values when
x is located at the central region of the BGMM, and the value decreases dramatically
when x goes far away from the center. However, ss(z) shows an opposite trend
that the largest value of sy(x) is located at the tail region. These trends indicate
the dominance of each Gaussian component in different regions of the BGMM, which

provides the theoretical foundation for the dominance partition illustrated in the next

section.

4.3.2 Dominance partition

It is straightforward to use the intersection points of s1(x) and sy(x) to partition the
core and tail regions of the zero-mean BGMM. The intersection points i ... and

2R can be found by solving s;(z) = so(x) as

20202 PO
L 1¥2 192
: = — 1 4.17
xlntersect \/U% _ 0% n (1 pl) o1 ( a)
20202 P10

R 192 102

: = | ) 4.17b
xmtersect \/U% 0% n (1 _ pl) o1 ( )
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Figure 4.1: (a) Membership weights and (b) the relative kurtosis error of a zero-mean
BGMM with p; = 0.9, 01 = 0.5, and 02 = 0.7; (¢) Membership weights and (d) the
relative kurtosis error of a zero-mean BGMM with p; = 0.9, o7 = 0.5, and 09 = 1.5.
xy, and x,, are the core-tail transition points. The two intersection points of s;(z)

and sy(x) are marked with blue and red solid points.

According to the convex property of so(x), the value of so(x) will exceed 0.5 and

increase monotonically as the data point moves away from xl

intersect to oo (01' from

L

Tintersect 10 —00). Meanwhile, sq(z) will decrease monotonically and eventually go to

zero. This trend indicates that the 2nd Gaussian component dominants the region

S (_oo7aji1;1tersect:| U ['ril?ltersect’ OO)
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R
T intersect

oo) . Although

However, the dominance relationship in the region z € [:EL } is more

intersect’

intersect
intersect

U [Z‘R

complicated than that in the region x € (—oo, x intersect

so(x) monotonically decreases when x gradually moves to the center, so(z) will not be

reduced to zero, which indicates that the impacts of the 2nd Gaussian component in

L

R
intersect) L

intersect}

the region x € [x cannot be ignored. To quantify the impacts of the
2nd Gaussian component on the tailedness of the BGMM distribution, we calculate
the kurtosis, a measure of tailedness, of the doubly truncated zero-mean BGMM and
compare it with the kurtosis of doubly truncated standard normal distribution [77,78].
Specifically, we randomly generate N; = 10,000 samples from the zero-mean BGMM

and truncate samples smaller than z* or larger than zft, where z}' < 0 and z* > 0

are the truncation points. The truncation rate ; is defined by

n=1-—, (4.18)

where n; is the number of samples in [z}, 28]. Then we calculate the kurtosis of

samples within [zF, 2] by
nit Z:ple[mf,xﬂ (1;1 - j>4

ke (2))= 7 (4.19)

where 7 is the mean of samples within [z, 2R]. The corresponding truncation points

of the standard normal distribution can be calculated by

xﬁormale_l (%)
(4.20)

R

_ L
normal— — ¥

x normal »

where Q71() is the quantile function of the standard normal distribution. Equation
(4.20) ensures that the doubly truncated standard normal distribution has the same
truncation rate as the doubly truncated zero-mean BGMM. Similarly, we generate

N; = 10,000 samples from the standard normal distribution and calculate the kurtosis

L
norma.

R

norma.

of the truncated distribution by setting x , and x , as the truncation points.

The kurtosis of the doubly truncated standard normal distribution is denoted as
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Enormal (z¥). We then calculate the relative error between kpgy(7F) and kyormal (7F)

by

L) _ kBGMM(CU%) - knormal<m%>

€k<xt knormal(-r%) ’ (421>

and plot its value against =l in Figure 4.1.

Figure 4.1b shows the relative kurtosis error in the case of BGMM with p; = 0.9, 01 =

0.5, and o9 = 0.7. The relative kurtosis error is within the +5% error region when

L

intersect?

show

ok > kb indicating that samples in the core region = € [a: mgtersect}

intersect
similar tailedness with the truncated standard normal distribution. This indicates
that ok, . could be a good core-tail transition point since the core region x €
(20 ersects Thtersect] 1S less affected by the 2nd Gaussian component. However, the
situation becomes different in the case of BGMM with p; = 0.9, o1 = 0.5, and 09 =
1.5, as shown in Figure 4.1d. The relative kurtosis error is 14 % when ot = 2k = =

—1.36, and this value slowly decreases to 5% until 2¥ increases to —1. If we adopt

L

intersect

T as the core-tail transition point, the core region could be severely affected
by the 2nd Gaussian component, making it difficult to distinguish the dominance
relationship in the core region. Therefore, it is more beneficial to use the truncation
point with 5% relative kurtosis error as the core-tail transition point. In summary,

we use the following rules to choose the core-tail transition point

xi%ltersect lf ’6k (xilrlltersect) ’ S «Q

Ty = : (4.22)

I% s.t. ek(l%) =a if |6k(xi1;1tersect)| >

Tpp = —Tpp (4.23)

where « is the partition parameter. We define [zy,,2,,] as the core region and

(—00, 21| U [2,p, 00) as the tail region. In this work, we choose ov = 0.05.
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4.3.3 Principal Gaussian overbound

In this section, we propose the PGO based on the scaling and shifting of the dominant
Gaussian component of the BGMM in the tail and core regions. The PDF of the PGO
takes the following form:

fo(x) = (14+k)(L—p1) fv (2;0,00) x| > 24 | (4.24)

pifn (2:0,01) + ¢ 2] < 2y
where k£ is the scaling parameter, and c is the shifting parameter. The remainder of

this section illustrates the construction of PGO.

4.3.3.1 Tail region bounding

In the tail region, the BGMM is dominated by the 2nd Gaussian component. There-
fore, the 2nd Gaussian component, along with its mixture weight, is taken as the
basis for bounding the tail region. In addition, compensation is needed to account
for the contribution of the 1st component in the tail region. An intuitive approach of

the CDF overbound at the left tail region is shown as follows:
GE(z) = p1G (21p;0,01) + (1 — p1) G (730, 09) YV < 231, (4.25)

where G (z;0,0,) and G (z;0,09) are the CDF of the 1st and 2nd Gaussian com-
ponent, respectively; and G (x;,;0,01) is the CDF of the 1st Gaussian component

evaluated at zj,. Let G(x) be the CDF of the BGMM defined in Equation (4.11),

Gy(x) = G(z) = Gy (x) — (plG (@;0,01) + (1 = p1) G (w; 0702)) (4.26)

= (G (213 0,01) — G (x; 0, 01)) )
Since x < xy,, we have G (x1,;0,01) — G (2;0,01) > 0. Therefore, G%(z) is the
CDF overbound of the BGMM at the left tail region. However, the CDF overbound

in Equation (4.25) includes a constant term, p;G (z;,;0, 07), which is defined in an
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unbounded interval. This poses a challenge in deriving the PDF of the overbound

distribution, which is necessary for convolution purposes.

We notice that p;G (25,;0,01) in Equation (4.25) is a constant term, which could be
compensated by inflating the weight of the 1st Gaussian component, i.e., G (z;0, 03)
in Equation (4.25). Therefore, we introduce the scaling parameter k into Equation

(4.25) as follows:
GE(z) = (1+k) (1 —p) G (2;0,00) Vo < 1. (4.27)

We need to determine the value of k so that Equation (4.27) is a CDF overbound.
Let Equations (4.25) and (4.27) produce the same value at x;,, the value of k can be

determined by

PG (2350, 01)
(1= p1) G (w13 0,02)
Appendix A.4 gives proof that GL(x) in Equation (4.27) is the CDF overbound at

k= (4.28)

the left tail region. The PDF of the overbound distribution at the left tail region can

be derived by taking the derivative of Equation (4.27) as
fl@) =1 +k) (1 —p1) fv (2;0,00) Vo < ayp. (4.29)

Similarly, the PDF of the overbound distribution at the right tail region can be written

as

foi (@) = (L+k) (1= p1) f (2;0,00) Vo >z (4.30)

4.3.3.2 Core region bounding

In the core region, the BGMM is dominated by the 1st Gaussian component, as illus-
trated in Section 4.3.2. Nevertheless, the contribution of the 2nd Gaussian component
to the probability distribution in the core region is not negligible. Therefore, we in-
troduce a constant term ¢ to compensate for such a contribution when developing the

overbound distribution in the core region, as shown below:

fso(z) = pofn (250,00) + ¢ Vo, <z < x4, (4.31)
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To determine the value of ¢, we calculate the CDF of f¢¢(x) through integration as

follows:
Tip T
6w = [ ey [ g (4:320)
= G%(xlp) +c(x—a) +p1 (G (2;0,01) — G (2; 0, 01)) (4.32b)
=p1G (2;0,01) +c(z — ) + (1 —p1) G (24; 0, 02) . (4.32¢)

Let G°"¢(0) = G(0), the value of ¢ is determined by

. (1 —p1) (G (217 0,02) — 0.5) | (4.33)

xlp

To prove that GS°"(x) is the CDF overbound in the core region, we calculate the

difference between G¢°"(x) and G(x) as follows:
AG(z) = G&(x) — G(x)

= [plG (;0,01) + c(x — xp) + (1 — p1) G (450, 02)}

(4.34)
— [plG (2;0,01) + (1 —p1) G (20, 02)}
=c(z—xp)— (1 —p1)G(x;0,02) + (1 —p1) G (21 0, 02) .
The first and second derivatives of AG(z) can be obtained by
AG(z) =c— (1= p1) fn (2:0,02) (4.35a)

” 1-— Y% 1 xr 2

When x5, < < 0, AG(x)" is negative over the domain, indicating that AG(x) is
a concave function. We further examine the sign of AG(x) at the two endpoints as

follows:

AG (z1,) = 0 (4.36a)
AG(0) = G<(0) — G(0) = 0. (4.36h)

According to the definition of the concave function, for any w € [0, 1], the following

equation holds:

AG((1—w)ap +w x 0) > (1 —w) AG (z) + wAG(0) = 0. (4.37)
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It is equivalent to saying that
AG(z) > 0V, < 2<0. (4.38)

Similarly, when 0 < z < z,,,, AG (a:)” is positive over the domain, which means that

AG(x) is a convex function. The sign of AG(z) at x,, is examined as follows:
AG () ¢ (2p — x1p) — (L = p1) G (243 0, 02) + (1 — p1) G (2150, 09) . (4.39)

By substituting Equations (4.23), (4.33) and G (2,,;0,02) = 1 — G (21,;0,02) into
Equation (4.39), we can obtain that AG (z,,) = 0. According to the definition of the

convex function, we have
AG(z) <OV0 <z <ay. (4.40)

Combining Equations (4.38) and (4.40), we can conclude that G¢°*¢(z) is the CDF

overbound of G(z) at the core region.

The PGO of the BGMM with p; = 0.9, 07 = 0.5, and 0, = 1.5 is plotted in Figure
4.2. In this example, the parameters of the PGO are computed as k£ = 0.5881 and
¢ = 0.0245. In addition, the two-step Gaussian overbound [65] is also depicted for
comparison. The plot reveals that the PDF and CDF of the PGO are closely aligned
with those of BGMM in both the tail and core regions, compared to those of the two-
step Gaussian overbound. The thumbnail in Figure 4.2a illustrates the distribution
of the PGO in the vicinity of the core-tail transition point, where the PDF of the
PGO is not continuous at the transition point. Although the leap of PDF at the
transition point is not negligible (calculated to be 0.06 through Equation (4.24)), the
CDF of the PGO appears exceptionally smooth near the core-tail transition point, as

displayed in the thumbnail of Figure 4.2b.

4.3.3.3 Sigma inflation

Equation (4.24) gives the overbound of the zero-mean BGMM distribution; however,

in the application of bounding arbitrary error distributions, samples may not be well
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Figure 4.2: The (a) PDF and (b) CDF of the Principal Gaussian overbound of a
zero-mean bimodal Gaussian mixture model with p; = 0.9, o1 = 0.5, and o5 = 1.5.

The two-step Gaussian overbound is plotted for comparison.

characterized by the zero-mean BGMM distribution. In such a case, the PGO may
not provide an overbound for these samples. These unbounded samples usually occur
in the tails of the error distribution. This is because samples in the central region
usually exhibit a higher likelihood, and therefore the EM algorithm would prioritize
the fitting performance of these central-region samples. In this section, we propose

to inflate the tail of the PGO to tackle these unbounded samples.

The most straightforward approach is to increase oy. In the meanwhile, we have to
ensure that the inflated PGO is the overbound of the before-inflation PGO and, thus,
fitted zero-mean BGMM. Define o as the inflated o9, and we have

05 = ToO9, (4.41)

where 75 > 1 is the tail inflation factor. Then, the inflated tail bound can be written

by

GE(x)=(1+ k") (1 — p1) G (2;0,0%) Vo < xy (4.42a)

plG(l’lp;OaUl)

k= :
(1 =p1) G (2170, 03)

(4.42b)
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where k* is the new scaling parameter. Since o5 > 09, we have G (2,,;0,03) >
G (21,0, 09) and thus k* < k. Therefore, it is difficult to compare the magnitude of
G™*(x) and GE(x). A naive solution is to make k* = k by scaling o1 to o, as shown
below

P1G (21; 0, 07) P1G (1; 0, 01)

(1 —p1) G (@1p;0,05)  (1—p1) G (2p;0,0) (4.43)

Indeed, Equation (4.43) is satisfied only when of is larger than o;.

We further check the bounding conditions in the core region by examining Equation
(4.32¢) when x < 0. The first term p;G(z; 0, 01) and the third term (1—p; )G (x,; 0, 02)
in Equation (4.32c) will increase with the inflation in oy and o9. The second term

c(z — zy,) in Equation (4.32c) can be re-written by

o — 11,) = (1 —p1) (G (wp; 0;;72) —0.5)(z — xyp) | (4.44)

where z;, < x < 0 and 1 — p; > 0. The inflation in o, will increase the value of
G(z;0,09), thus enlarging c(x — z;,). Therefore, G¢**(z) with inflated o9 is larger
than G°"(z). In summary, the inflated PGO has the following property when x < 0,

GY (z) > GY(z) Vo <z (4.45)

G (z) > G (x) Vay, <z <0,
indicating that the inflated PGO is the overbound of the before-inflation PGO and,
thus, the fitted BGMM.

In addition, unbounded samples may also occur in the core region, although such
cases are rare. A slightly different inflation strategy could be applied. We only inflate
the core of the PGO to bound these samples. Define o] as the inflated oy, and we
have

o] = 1oy, (4.46)

where 7 > 1 is the core inflation factor. The inflation of oy only affects the value of
G(x;0,01) in G(z) and k in G%(x). Actually, both G(x;0,0;) and k are increased
by inflating oy, thereby enlarging the value of G<*(z) and G%(x) when z < 0. As
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a result, the same conclusion as in Equation (4.45) can be drawn. Our inflation
strategies in both tail and core regions can ensure the preservation of overbounding

properties with respect to the fitted BGMM.

The inflation of 09 and o; can be realized by an iterative approach. In each iteration,
we inflate o5 or o; according to the violation of bounding conditions with a small
and fixed inflation factor. Based on the inflated PGO, all samples are examined for
the violation of bounding conditions. The iteration process will stop once all samples
are CDF overbounded by the inflated PGO. The pseudocode of the sigma inflation
strategy is given in Algorithm 1. In addition, Algorithm 2 summarizes the steps for

implementing PGO.

Algorithm 1 Sigma Inflation
Input:

Empirical CDF of Samples: G,,(z)

Parameters of the before-inflation PGO: py, 01, 02, Tip, ZTrp
Output:

Inflated sigma: o7, o3

1: Initialize the inflation factor: = = 1.01, 7 = 1.01

2: Core condition: Ecore ¢ G2(x) > Gy () Vg, < <0 AND G (x) < G (z) VO < < Ty
3: Tail condition: Zgap < G5 () > G (x) Vo < 2y, AND GR(z) < G () Yo > 74
4: while 2., is false OR Zi,; is false do

5: if Ecore is false then

6: 01 T %01

7 end if

8: Update the tail condition Z,;; with the latest PGO parameter

9: if =i.; is false then
10: O9 < Ty % 09
11: o1 < Equation (4.43)
12: end if
13: Update the core condition =, with the latest PGO parameter

14: Update the tail condition Z¢,;; with the latest PGO parameter
15: end while
16: o] 01, 05 < 02
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Algorithm 2 Implementation of Principal Gaussian Overbound
Input:

Error data: X = {x1,29, -+ ,z,}
Partition parameter: «
Output:
Parameters of PGO: pq, o7, 03, Zip, Trp
1: Fit a BGMM
f(x) =p1fn (2:0,01) + (1 = p1) fn (250, 02)
< Employ EM algorithm with X
Tip, Trp < Dominance partition by Equations (4.22), (4.23)
k < Calculate the scaling parameter by Equation (4.28)
¢ « Calculate the shifting parameter by Equation (4.33)

07,05 < Algorithm 1 with py, 01, 02, Zip, Trp

4.3.4 Preservation of overbounding property

In GNSS positioning, it is essential to project the range-domain error to the position-
domain error as it allows us to estimate the accuracy of the positioning results ob-
tained from GNSS measurements. In this process, the convolution operation is con-
ducted. In this section, we use DeCleene’s theorem [63] to prove that the overbound-

ing property of the PGO can be preserved through convolution.

Given that Goe(x) and G, () are the overbound distribution of the error distribution
Go(x) and G,(z), respectively, it is essential for the overbound distribution to have

the following property:

Goason() overbound Gosy() | (4.47)

where
Guntnls) = [ finlo) ¢ fnlo) do (1.482)
Gurn) = [ fulo) + o) (4.48b)

and * denotes the convolution operation.

DeCleene proves that the above property is established if Goo(2), Gop(2), Ga(x), and

Gy (z) are all unimodal and symmetric distributions [63].
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In this work, the zero-mean BGMM in Equation (4.11) and the PGO in Equation
(4.24) are inherently symmetric distributions. Therefore, we only need to prove the
unimodality of these distributions. The first derivative of the PDF of the zero-mean

BGMM is given by

f(z) = —% pif (230,00) — U% (1= p1) f (230, 00) . (4.49)
Clearly,
f(z)>0Vz <0, f(0)=0,f(z)<0VYz>0. (4.50)

Therefore, the zero-mean BGMM is a unimodal distribution.

For the PGO, Appendix A.5 proves that f,(x) is a monotonically increasing function
when x < 0. According to the symmetric property of f,(x), we can conclude that
fo(z) is a monotonically decreasing function when z > 0. Therefore, f,(z) is a
unimodal function. This ends the proof that the overbounding property of the PGO

is preserved through convolution.

4.3.5 Numerical consideration of convolution
4.3.5.1 Fourier transform

Equation (4.48a) solves the distribution of the linear combination of random variables
oa and ov through convolution. Since the two random variables represent the PGO,
which is defined as a piecewise function in Equation (4.24), the convolution operation
can be a challenging task due to the complexity of the function. However, the Fourier

transform (FT) [79] provides an alternative way to compute the convolution. Consider

a linear combination of a set of independent random variables Y7, Y5, - - - | Y,, as follows:
Y =) a (4.51)
i=1

where a;,7 = 1,2,--- ,n is the coefficient. The random variable Y; could be the PGO

or other symmetric overbounds with a zero mean, such as the zero-mean Gaussian
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overbound. The distribution of Y is given by

Ty () = fy.(z) * fg,(2) * ... % fy (), (4.52)

where

1 x
7 = — — 4.53
o) =it () (4.53)
and fy;(z) is the PDF of the random variable Y;. The proof is detailed in Appendix

A.6. According to the convolution theorem, the FT of fy(z) can be expressed by

F(fy(@)) =F (f5,(2) - F (frp () - F (fy, (2)) (4.54)

where F(+) is the Fourier transform operator and - denotes the point-wise multipli-
cation. The distribution of fy(x) is recovered by the inverse Fourier transform (IFT)

as follows:

fo(@) = F 7 (F (f, (@) - F (fr () - F (5, (@) (4.55)

In practice, the FT and IFT are realized by discrete Fourier transform (DFT) and its
inverse (IDFT) [79], respectively, which means the PDF f;. (=) should be discretized.
According to DeCleene’s theorem [63], the discrete model should be the overbound
for the continuous distribution it replaces. However, the discretization strategy that
directly samples the PDF at equal intervals cannot guarantee the preservation of
overbounding properties. Therefore, we propose an alternative discretization strategy,

as illustrated in the next section.

4.3.5.2 Discretization satisfying overbounding

Inspired by the discrete overbounding model proposed in [80], we propose to discretize

the CDF related to fy.(z), which can be formalized as follows:

T z 1
R [ o= [ g ()

5 (55)
’Sa,i\
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where Fy,(z) is the CDF related to fy,(z). The discretization process can be regarded
as constructing a discretized overbound distribution for Fy. (). Specifically, Let 2L—1
be the length of the discretized sequence, and T' be the sampling interval (unit: meter),
and then we can (almost) equally divide the domain of Fy (z) into 2L intervals,
including (—oo, 1), [r1,22), ..., [Tar—2,T2r—1), and [zar_1,00), where xp = (k —
LT, k=1,2,--- 2L — 1. The discretization results are shown in Figure 4.3a, where
each interval has equal length T" except the first and the last interval. The discrete

CDF overbound of Fy, (z) is formalized as a piecewise function as follows:

(

Fy () if v < a4
Fy(zpqr) ifap <o <ap, 1<k<L—1
Fpy (r) = (4.57)
Fy () ifop <rx <z, L—1<k<2L-2
\F~i($) if x > Tor—1

As can be seen, the discrete model F}, y. () is the overbound for the continuous model

Fy.(z). The probability mass function (PMF) of Fy, - () can be calculated by

%

(

FD,Y@-(%) - FDyi(xl) if v =2
0 otherwise

\

which has a discrete nature. The discretization process is completed by evaluating

Ppy, (x) at the 2L — 1 points as follows:

Dy [k = ppy,(ar), k=1,2,--- 2L —1. (4.59)

3

Then, the PMF of Y in the discretized form can be obtained by the discrete convo-

lution as follows:

Dy[k] = (Dy, * Dy, % ... * Dy, ) [K]. (4.60)
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By taking the discrete convolution theorem, Dy [k] can be computed as

Dylk] = F5' (Fo (Dy,) - Fo (Dy,) - F (Dy) ) k=12, L, (4.61)
LOII{}X<2L—2)+17

where Fp(-) and Fp'(+) denote the DFT and IDFT [79], respectively. Note that the
length of Dy[k] is extended to n x (2L — 2) + 1. This is because the length of the
resulting sequence in the convolution is given by L; + Ly — 1, where Ly and L, are
the lengths of two input sequences, respectively. In addition, the convolution process
does not change the sampling interval; therefore, the distance of the domain of any
two adjacent elements in Dy[k] is 7', which is the same as that in Dy, [k]. The DFT
is usually implemented by the fast Fourier transform algorithm [81] in the modern
software solution or even dedicated hardware, whose computational complexity is
only O ((L.)log(L.)), where L. is the length of the input sequence and L, = 2L — 1

in our case.

0.1

CDF
PMF

o*T." M,

hob i1 b T twee g

0
Error (m) Error (m)

(a) (b)

Figure 4.3: Demonstrations of (a) the discretization process and (b) the quantile
searching process. The shaded area in (b) shows the cumulative probability from t;

to tm—l-
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4.3.5.3 Finding the Quantile

In integrity monitoring research, finding the quantile of the distribution of test statis-
tics or the positioning error is essential to determine the detection threshold or the
protection level. These distributions are usually the results of convolutions of over-
bounds of measurement errors, which can be calculated by methods developed in
Sections 4.3.5.1 and 4.3.5.2. This section shows how to calculate the quantile of the
resultant discrete distribution in Equation (4.61). Specifically, the discrete sequence
Dy [k] in Equation (4.61) can be interpreted as the PMF evaluated at tj, = (k—£)T.
Here we use a different notation ¢ to represent the domain of Dy [k] without loss of
generality. The quantile function Q{,l(a) with 0 < a < 1 can be obtained by finding
the index m € {1,..., L,} that satisfies the following conditions:

3

Dy[k’] <«
! (4.62)
DY[k] Z «,

NgERd

B
Il
—

where ZZ:II Dy [k] is the cumulative probability from ¢; to t,,_1, as shown in Figure

4.3b. The quantile function is given by

Qv (@) = tmr = ((m—1) - L"; 1>T. (4.63)

4.4 Bounding Performance of SISRE

In Section 3.4.1 and Section 3.4.2, we depict the QQ plot of SISREypg for each
GPS and Galileo satellite, where significant differences are observed among satel-
lites. Three categories of SISREypg distributions have been identified as follows:
1) Two-side heavy-tailed SISREypg; 2) One-side heavy-tailed SISREypg; and 3)
Gaussian-liked SISREypg. In this section, we analyze the bounding performance of

the proposed PGO on these three types of SISREypg distributions. For each error
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type, we select one typical satellite from each constellation for detailed analysis. The

proposed method is compared with the following two methods:

1. Gaussian overbound: the overbound method used in baseline ARAIM [20,63];

2. Gaussian-Pareto overbound: a recently developed core overbounding method
that bounds the core part of the error with Gaussian distribution and bounds

the tail part with the generalized Pareto distribution [68].

4.4.1 Two-side heavy-tailed SISRE

In this section, GPS satellite SVN63 and Galileo satellite GSAT0206 are chosen for
analysis. Figure 4.4a shows the folded CDF of SISRFEypg for GPS satellite SVNG63,
which exhibits significant heavy tails on both sides. The folded CDF of the Gaussian
overbound, Gaussian-Pareto overbound, and the proposed PGO are plotted in Figure
4.4a, and the fitted BGMM of the SISREy pg is also plotted for comparison. As can
be seen, the proposed PGO exhibits a tighter bound than the Gaussian overbound in
both the core and tail regions of the error distribution. The PGO exhibits a slightly
tighter bound than the Gaussian-Pareto overbound in the core region. However,
the Gaussian-Pareto overbound shows the sharpest bound at the left tail region.
This is because the Gaussian-Pareto overbounding method divides the samples into
two individual parts (core and tail parts) and bounds each part separately. In the
tail part bounding, the Gaussian-Pareto overbounding method uses the generalized
Pareto distribution, which is especially suitable for modeling extreme tails that extend
beyond the range of available data [68]. The PGO only shows moderate bounding
performance at the left tail region. However, the PGO has its own advantages in that
its overbounding property can be preserved through convolution, which is essential
in the range-to-position projection process and the calculation of PLs. It is worth
noting that the fitted BGMM fails to overbound the error distribution, as shown in

the regions of z € [-15m, —2m] and = € [2m, 15m]| in Figure 4.4a. This is because
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the fitted BGMM can only fit the overall pattern of the error distribution and is not

guaranteed to bound the error distribution.

0 SVN 63 —*— Sample dist. GSAT 0206  [——Sample dist.

0
10 - . . ; Gaussian 10 Gaussian
Gaussian-Pareto Gaussian-Pareto
--=- BGMM fitting --=- BGMM fitting
E —— Principal Gaussian E —— Principal Gaussian
S 102k g 107 ]
2] @ byl
g g
a 8
o 10" o 10
3 B
3 b
° [
=2} =
107 10
. ] . . L L . I I I I .
-15 -10 -5 0 5 10 15 -30 -20 -10 0 10 20 30
Error (m) Error (m)

(a) (b)
Figure 4.4: The folded CDF of SISREypg and its bounding results for (a) GPS
satellite SVN63; and (b) Galileo satellite GSAT0206.

Figure 4.4b shows the folded CDF of SISREypg for Galileo satellite GSAT0206.
Similar to GPS satellite SVN63, GSAT0206 has a two-side heavy-tailed SISREypE.
However, the SISREy pg of Galileo satellite GSAT0206 has a narrower core than that
of GPS satellite SVN63. In addition, the maximum absolute SIS RE}; pf reaches 26 m,
which is around 73 % larger than that observed in the SVN63’s SISREypr (15m in
this case). This finding suggests that the SISREypgr of GSAT0206 has heavier tails
than that of SVN63. In this condition, the Gaussian-Pareto overbound has the best
performance in bounding the core region. However, the Gaussian-Pareto overbound
experiences a significant performance degradation when the folded CDF is down to
10~* in the left tail region and 102 in the right tail region. The proposed PGO
shows moderate bounding performance at the core region, which has a tighter bound
than the Gaussian overbound but not as tight as the Gaussian-Pareto overbound. In
the tail region, the proposed PGO keeps producing tighter bounds than the Gaussian
overbound. In summary, the proposed PGO shows the most competitive performance

in bounding SISREypE of Galileo satellite GSAT0206.
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4.4.2 One-side heavy-tailed SISRE

In this section, GPS satellite SVN66 and Galileo satellite GSAT0212 are chosen for
analysis. Figures 4.5a and 4.5b depict the SISRFEypg distribution of these two satel-
lites in the folded CDF view, respectively. SVN66’s SISRFEypg has a left-side heavy
tail, while GSAT0212’s SIS REy pg has a right-side heavy tail. Though different from
the two-side heavy-tailed case in Section 4.4.1, the SIS REy pg of the Galileo satellite
still has a narrower core than that of the GPS satellite. Since the Gaussian overbound
and the proposed PGO have a symmetric form, their tail-bounding results are mostly
determined by the errors on the heavy-tailed side. As can be seen, the PGO and
the Gaussian overbound closely align with the right-tail errors in Figure 4.5a and the
left-tail errors in Figure 4.5b. As a result, the PGO and the Gaussian overbound ex-
hibit loose bounds on the light-tailed side. Nevertheless, the PGO consistently yields
a tighter bound than the Gaussian overbound at all error values in both Figure 4.5a

and Figure 4.5b.

0 SVN 66 —=— Sample dist. 0 GSAT 0212  |—«—Sample dist.
10 : : i ! Gaussian 10 : . : Gaussian
Gaussian-Pareto Gaussian-Pareto
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Figure 4.5: The folded CDF of SISREypgr and its bounding results for (a) GPS
satellite SVNG6; and (b) Galileo satellite GSAT0212.

The Gaussian-Pareto overbound is not limited to a symmetric form, and therefore

its bounding results are determined by the errors on each side separately, producing
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asymmetry bounding results. While the Gaussian-Pareto overbound provides tight
bounds in the core region, it is intentionally conservative in the far tail regions to ac-
count for the uncertainty envelope around the empirical distribution [68]. In addition,
the asymmetry in Gaussian-Pareto overbounds can cause difficulties in preserving the
overbounding properties after convolution, making it impossible to calculate the PL.
This, on the other hand, highlights the benefits of applying the proposed method to
bound the heavy-tailed distribution, as it enables the computation of PL for integrity-

assured applications.

4.4.3 Gaussian-like SISRE

In this section, only the GPS satellite is chosen for analysis, as there is no Gaussian-
like SISREypE in the Galileo satellites. Specifically, we choose SISREypr of GPS
satellite SVN46 for analysis. Figure 4.6 shows the distribution of SISREypr and
the bounding results of three methods. As can be seen, the error distribution is not
significantly heavy-tailed, which is also suggested by the QQ plot in Figure 3.8. In this
situation, there seems to be no significant difference among the three overbounding
methods. Therefore, it is recommended to use the Gaussian overbound when the error
distribution does not exhibit heavy-tailed properties, as the Gaussian overbound has

fewer parameters to determine.
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Figure 4.6: The folded CDF of SISREypE and its bounding results for GPS satellite
SVN46.

4.4.4 Bounding parameters for individual satellites

Tables 4.1 and 4.2 give the bounding parameters of the Gaussian overbound and the
PGO for GPS and Galileo SISRE, respectively. The 1-sigma Gaussian overbound
of GPS SISRE varies significantly, with an average of 1.67m. This is because the
SISRE of some GPS satellites exhibits heavy-tailed properties while the others have
Gaussian-like behavior, as revealed in Section 3.4.1. This difference is also reflected
in the PGO parameters, where the heavy-tailed SISRE featured with a large gap
between o; and oo, and the Gaussian-liked SISRE has a smaller deviation between

o1 and os.

For the Galileo satellites, the 1-sigma Gaussian overbound of SISRE has a smaller
variation, with an average of 5.58 m. This value aligns closely with the Galileo broad-
cast URA parameter, oypa = 6m, as defined in Galileo OS-SDD [62]. Since the
SISRE of all Galileo satellites exhibits significant heavy-tailed properties, the Galileo
broadcast URA parameter is likely to provide an extremely conservative bound for the

SISRE. The impacts of such conservatism will be further discussed in Chapter 5 and
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Chapter 6. For the PGO parameters, all Galileo satellites exhibit a high consistency,

where o5 is significantly larger than o, and the p; is larger than 0.98.

4.5 Non-Gaussian Nominal Error Bounds of Code

IF Combination

The measurement error of the code IF combination is given in Equation (2.11), which
consists of the range projection of clock and orbit error, tropospheric error, and
multipath and code noise. The nominal error bound of the code IF combination

regarding the satellite ¢ and the receiver j can be formalized as follows:

GZJ,]',IF,GCC(Z.) = / f;,j,IF,acc(x) dz (464&)
fz;,j,IF,acc(‘r) = férb&clk,PGO(x) * ffropo,j,ob(‘r) * Z;,user,j,IF,ob(‘r) ) (464b)

where f} ek pao(®) is the PGO of the range projection of clock and orbit error,
whose parameters are given in Tables 3.3 and 3.4; f},,.,; (2) is the Gaussian over-
bound of the tropospheric error with a zero mean and the standard deviation defined
in Equation (2.14); f} ,erjrros(%) 18 the Gaussian overbound of the multipath and

code noise with a zero mean and the standard deviation defined in Appendix A.1.

The nominal error bound in Equation (4.64) is developed for accuracy evaluation
and fault detection purposes (as will be exploited in Chapter 5), which does not
consider error sources that introduce biases in the distributions. However, to protect
the integrity, the bound also needs to consider nominal signal deformation errors.
These events usually alter the range projection of orbit and clock error distribution,
moving its median away from the origin. For integrity purposes, the pair overbounding
method [64] introduced the by, to establish a symmetric error envelope, which is
formed by two equally shifted Gaussian distributions. The nominal error bound

for accuracy in Equation (4.64) could be obtained by simply integrating the same
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principle as follows:

;

ffoo fz;,j,IF,acc(x + bnom,i) dr if G'L;(:C) <
Gl jrmin(T) = 3 otherwise (4.65)

ffoo f;,j,IF,acc(’I - bnom,i) de if GU(ZI}) >

[

DN |

where G, (z) is the empirical distribution of measurement errors of the code IF com-
bination. In [82], b, is recommended to take 0.75m to conservatively bound the
impacts of nominal signal deformations. The above modification simply results in
broader margins for the error distributions to account for signal distortion events.
According to [64], the overbounding properties of the bound in Equation (4.65) can
still be preserved through convolution. Now, the nominal error bound in Equation

(4.65) is developed for integrity, which will be exploited in Chapter 6.
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Table 4.1: Parameters of the Gaussian overbound and the Principal Gaussian

overbound of SISREypg for each GPS satellite (unit: m)

Gaussian PGO

SVN Type' o o1 o9 P1 Trp

SVN41 0 1.136 0.403 1.343 0.918 0.948
SVN43 T 1.113 0.432 1.195 0.762 0.906
SVN44 T 4.052 0.595 4.425 0.628 1.103
SVN45 0] 1.778 0.425 2.226 0.955 1.157
SVN46 G 0.818 0.413 0.780 0.787 0.884
SVN47 G 0.521 0.351 0.612 0.861 0.835
SVN48 G 0.780 0.414 0.804 0.535 0.611
SVN50 G 0.574 0.411 0.691 0.977 1.493
SVN51 0] 2.518 0.385 3.211 0.973 1.042
SVN52 G 0.703 0.427 0.765 0.716 0.893
SVN53 0 2.245 0.540 2.426 0.624 1.074
SVN55 G 0.873 0.310 0.998 0.891 0.763
SVN56 G 0.680 0.382 0.815 0.956 1.120
SVN57 0] 1.080 0.471 1.333 0.806 0.790
SVN58 0] 2.998 0.372 3.998 0.983 1.136
SVN59 G 0.616 0.297 0.544 0.783 0.667
SVNG61 T 0.753 0.321 0.837 0.788 0.684
SVN62 @) 0.694 0.355 0.835 0.961 1.046
SVNG63 T 3.487 0.419 4.425 0.970 1.073
SVN64 ) 1.495 0.390 2.050 0.985 1.155
SVN65 T 3.570 0.353 3.901 0.574 0.669
SVN66 0] 3.084 0.363 3.968 0.970 0.963
SVN67 G 0.540 0.292 0.600 0.840 0.649
SVN68 T 0.977 0.302 1.170 0.928 0.707
SVN69 T 3.302 0.468 3.908 0.894 1.034
SVNT70 T 2.303 0.308 2.959 0.965 0.821
SVNT71 T 0.934 0.341 1.112 0.920 0.832
SVNT72 G 1.548 1.005 1.441 0.548 0.872
SVNT73 T 3.680 0.521 4.110 0.842 1.154
SVN74 Q) 1.287 0.310 1.602 0.973 0.839

L «T”: Two-side heavy-tailed; “O”: One-side heavy-tailed; “G”: Gaussian-liked.
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Table 4.2: Parameters of the Gaussian overbound and the Principal Gaussian

overbound of SISREypg for each Galileo satellite (unit: m)

Gaussian PGO

SVN Type' o o1 o9 1 Trp

GSATO0101 T 5.967 0.292 7.717 0.985 0.790
GSAT0102 T 5.758 0.311 7.662 0.984 0.909
GSAT0103 T 6.098 0.289 7.430 0.980 0.752
GSAT0203 T 5.890 0.338 8.278 0.986 0.967
GSAT0205 0] 2.333 0.229 2.867 0.984 0.680
GSAT0206 T 5.346 0.236 6.859 0.986 0.717
GSATO0207 @) 5.724 0.256 7.188 0.983 0.758
GSAT0208 T 5.687 0.246 7.144 0.985 0.740
GSAT0209 T 5.423 0.232 7.245 0.986 0.682
GSAT0210 T 5.714 0.230 8.783 0.980 0.570
GSATO0211 ] 6.197 0.234 7.809 0.984 0.715
GSAT0212 0] 5.136 0.250 6.351 0.983 0.725
GSAT0213 T 5.970 0.251 8.416 0.984 0.691
GSAT0214 T 5.561 0.238 6.926 0.983 0.693
GSAT0215 T 5.619 0.238 7.483 0.985 0.694
GSAT0216 T 7.383 0.229 9.264 0.983 0.698
GSAT0217 T 5.518 0.228 7.160 0.986 0.673
GSAT0218 T 5.598 0.229 7.031 0.983 0.676
GSAT0219 T 6.155 0.280 7.761 0.986 0.795
GSAT0220 T 5.000 0.297 6.404 0.985 0.877
GSAT0221 T 5.266 0.269 6.579 0.986 0.799
GSAT0222 T 5.332 0.259 6.663 0.980 0.723
GSAT0223 0] 5.521 0.288 7.300 0.988 0.895
GSAT0224 Q) 5.644 0.275 7.458 0.987 0.860

L «T”: Two-side heavy-tailed; “O”: One-side heavy-tailed.
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Chapter 5

Fault Detection with Non-Gaussian

Nominal Error Bound

Fault detection is essential for positioning and navigation systems in some safety-
critical applications [15,83-86], which is the technology to check the occurrence of
faults in the system as well as to determine the time of fault occurs [87]. Most
fault detection methods, such as range comparison method [4], parity space [9, 88],
chi-squared test [2,89], and solution separation [6,16], assume that the nominal mea-
surement error is Gaussian distributed. However, chapter 3 reveals that the SISRE
distribution of GPS and Galileo satellites has heavy tails. The unrealistic Gaussian
assumptions can result in degraded fault detection rates in real-world applications,

limiting the reliability and effectiveness of preventing systems from faults.

In this chapter, a rigorous hypothesis testing method is developed to detect faulty
measurements in navigation systems under non-Gaussian nominal errors by intro-
ducing the jackknife technique, a cross-validation technique in statistics [90,91]. The
basic idea is to quantify the inconsistency between the observed measurement and the
predicted measurement based on subset solutions. Section 5.1 constructs the jack-

knife detector for single fault detection under non-Gaussian nominal errors. Section
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5.1. Jackknife Detector for Single Fault Detection

5.2 extends this technique to multi-fault detection. Section 5.3 demonstrates the ex-
cellent performance of the proposed method in a worldwide simulation by comparing

it with the solution separation detector.

5.1 Jackknife Detector for Single Fault Detection

In statistics, the jackknife is a cross-validation technique, initially developed by [92]
and expended and named by [90]. The basic idea of the jackknife technique is to
systematically leave out each observation from a dataset and calculate the parameter
estimate over the remaining observations. Then, these calculations are aggregated
for specific statistical purposes [90,91]. This section shows how to derive the jack-
knife residual for linearized pseudorange-based positioning systems and develop the

hypothesis test to detect potential faulty measurements.

5.1.1 Full set and subset solutions based on weighted least

square

The proposed method shares the common logic of solution separation to compute
the full set and subset solutions, as shown in Section 2.3.4. To ease the reading, the

linearized measurement model defined in Equation (2.20) is re-written here
y=Gx+e¢. (5.1)

With n measurements, the full set solution X; can be solved by the WLS method, as

shown in Equation (2.35):

X = Sy
(5.2)
)A(t = Xg + )A(,
where
S = (G"WG)'G'W . (5.3)
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Chapter 5. Fault Detection with Non-Gaussian Nominal Error Bound

To obtain the kth subset solution, the measurements with indices ¢ ¢ idx{* are
excluded. In this section, only single faulty measurement is considered, i.e., |idz{*| =
1. Then the measurement model in Equation (2.20) can be re-written by

gk = Gl ®) | glk) (5.4)

k7*)

where y**) gk*) x(*) and G**) have the same meaning as that in Equation (2.20)

but are defined on the kth subset. Note that y**) and e**) are (n — 1) x 1 vectors,
x*) is an m x 1 vector, and G**) is a (n — 1) x m matrix. Define the m x (n — 1)

matrix S(**) as the solution matrix on the kth subset
k) = (G(’“’*)TW(’“’*)G(’“*))_l G TWE (5.5)
where W) is the weight matrix and is constructed by remove the i € idz§® rows
and columns of W. Here, W**) has the size of (n — 1) x (n — 1). An alternative
construction of the subset solution matrix is given as follows:
S® — (GTWHWG)TGTW® | (5.6)
where W) is a diagonal matrix and is defined as

W'Z(f) _ 0 ifi==~F | (5.7
W;; otherwise
Now, S®) can operate on the full of measurements. The subsolutions are given by
xM=8Wy VE=1...n (5.8a)
W =xo +x® Ve =1---n, (5.8b)
where fcgk) is the estimation of the positioning state xgk) associated with the kth

subset.

5.1.2 Construction of jackknife residual

The predicted kth measurement with the subsolution x(*) is given by

O = gpx™ | (5.9)
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5.1. Jackknife Detector for Single Fault Detection

where g, is the kth row of G. The jackknife residual is given by the difference between
yr and Yy
tk = Yk — Uk (5.10)

where g, is the kth element of y.

5.1.3 Distribution of jackknife residual

The predicted measurement vector ¥**) based on the subsolution %*) is given by
k) = Gk (5.11)

where y#*) is a (n—1) x 1 column vector and G**) is a (n—1) x m matrix. Construct

y*) as follows:

k) — : (5.12)

<
|

Ned

ES

(k.*)
:k

where y; (k.

k“7*)

1. is the first k—1rows of y ) and y,ﬁ’f;j_)l’: is the remaining rows of ¥

The modified measurement residual is given by

y — 7=y — G&®

) (5.13)
- (I . P<k>> v,
where
P® = GS® . (5.14)
According to Equations (5.1) and (5.4), y can be re-written by
y =Gx® t ¢, (5.15)

where € is the measurement error vector with arbitrary distributions. Then, Equation

(5.13) can be written by

y— 5k — (I _ p(k)) Gx® 4 (I _ p(k)) c. (5.16)
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Since
(1-P¥)G=(1-Gs¥)G
= (I-G(GTWHG)'GTWW) G (5.17)
=0,
we have
y —y" = (I — 15(’”) €. (5.18)

Define f),(f) as the kth row of (I — P(k)), then the jackknife residual is given by
tr =pe. (5.19)

Equation (5.19) can be rewritten as the linear combination of measurement errors as

follows:

7j=1

where ﬁ,&k]) is the jth element of f),(gk), and ¢; is the jth element of €. Remarkably,
¢; can have an arbitrary distribution as long as it has a PDF f, (). Since t; is
the weighted sum of independent random variables with zero-mean distributions, its

PDF can be easily obtained by (see Appendix A.6).

~(k) Xz Xz xr

oz | | ‘p,(w‘ ol s f | s e [ | . (5.21)
T=m] (k) (k)
Pr1 P2 k,n

In the special case where ¢; has a zero-mean Gaussian distribution, i.e.,
g; ~N(0,07) Vji=1---n, (5.22)
the distribution of ¢, is given by (a proof is provided in Appendix A.7)

b~ N (0, SIWISO gl 4 o2 (5.23)
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5.1. Jackknife Detector for Single Fault Detection

5.1.4 Jackknife test for fault detection

Formalize the following hypotheses:

Hy j: No failure in the kth measurement

(5.24)
H j: A failure in the kth measurement .

The hypothesis testing for fault detection can be formalized by:

1

Origin test: H, is rejected if |t;] > (ng(k)W_ls(k)ng + J,%) : Q7 '(%) at signifi-
cant level of a, where Q71(-) is the quantile function of a standard normal variable.

The probability of Type I error (false alert) of the origin test is a.

In practice, the above test will be conducted for each subsolution to detect the po-
tential failure in measurements, which evolves into a multiple-testing problem. In
such a case, the Type I error is actually increased. Thus, the following hypotheses

are formalized instead, which are known as the Bonferroni correction [93]:

Hy: No failure in the n measurements
(5.25)

H,: At least one failure in the n measurements .

The hypothesis testing using the corrected hypotheses is formalized by:

1
Corrected test: Hj is rejected if |t > (ng(k)W_ls(k)Tgf—i-a,f)Q Q%) at
significant level of a*, where 7 is the upper limit of a*. The probability of Type

I error of the corrected test is a*.

In implementing the corrected test, 7 will be specified (e.g., 0.05) according to the
nature of the application. Then the probability of Type I error of the individual test
would be o = T (as shown in Appendix A.8), which could be very small when n takes
a large value. Therefore, the individual test and the corrected test both could be
conservative. However, in satellite navigation applications, it is rare to have a large

n, which ensures the feasibility of the corrected test.
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5.2 Extend Jackknife Detector to Simultaneous Faults

The developed jackknife detector in Section 5.1 has an underlying assumption that
at most one faulty measurement occurs per time epoch. This single-fault assumption
was valid in the early stage of satellite navigation with limited satellites in operation
[4,8,15]. However, with the growing number of satellites and constellations, the
probability of simultaneous faults becomes non-negligible. For example, multiple
GPS satellites experienced high L1 single-frequency range errors of up to 16 m due to
an erroneous ionospheric correction term between May 28 and June 2, 2002 [94]. This

highlights the need for fault detection techniques in handling multiple faults [20].

In fact, researchers have already proposed an optimal fault detection algorithm under
certain assumptions [95]. This algorithm involves evaluating the consistency of all
sets of measurements and selecting the best set with the highest level of consistency.
The implementation of this algorithm in the navigation community can refer to the
multiple-hypothesis solution separation for multiple faults integrity monitoring [20].
In this section, we leverage this idea to extend the jackknife detector to multiple fault

detection with non-Gaussian nominal errors.

5.2.1 Reconstruction of jackknife residual

The threat model defined in [20] is utilized to re-construct the jackknife residual in
Equation (5.10) to handle the multiple-fault condition. The threat model defines a
collection of error modes that partition the whole measurement space. The fault mode
0 represents the fault-free case while other fault modes (i.e., 1,2, - | Nl modes)
indicate the presence of single or multiple faults. The exact form of the threat model

is detailed in Section 2.3.3 and will not be dwelt upon here.
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For fault mode k, the weight matrix in Equation (5.6) can be re-constructed as follows:

0 if 1 € idxs”
Wi = - (5.26)
Wi otherwise
The jackknife residual regarding the ¢+ € idx{*th measurement for fault mode £ is
given by
1 =y — (5.27)

where g)fk) is the predicted ith measurement based on subset solution x*), as defined
in Equation (5.9). It is easy to extend Equation (5.20) to the simultaneous faults
condition as follows:

0 =" pMe; i € idagT, (5.28)

j=1

where ﬁg? is the (i, ;) element of I — P®).

It is worth noting that the existence of tz(k) depends on the existence of the subset
solution x| which is not guaranteed in the constellation fault mode. This is because
all satellite measurements from the hypothetically faulty constellation are excluded
in this fault mode, making it impossible to solve the receiver clock bias related to
the hypothetically faulty constellation in x*). Therefore, the constellation fault is
temporally not considered in constructing jackknife detectors in the following sections.

This problem will be reviewed in Chapter 6.

5.2.2 Combination of jackknife residuals

When k& > n, there are multiple jackknife residuals associated with fault mode k,
making it difficult to construct a hypothesis test. Therefore, the following combination

of jackknife residuals is adopted:

fk - Z Svﬁitgk)’ k=n + 17 n + 27 e 7Nfau1t modes » (529)

T
i€idzy
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where S,; is the (v,i)th element of the full set solution matrix S. This kind of
weighting scheme can greatly reduce the complexity of developing integrity monitoring

algorithms, as will be shown in Chapter 6.

By substituting (5.28) into (5.29), we have

iy = Z 7 Suiile;. (5.30)

Jj=1 ic€idz{®

The PDF of ¢, can be derived as
-1
N x T
Z Sv,ipgf;) f51 * fag %) *
’ZZEzdac” v sz ’ ’Zieidle S’Uvipi,Q ‘

i€idzy®
Xz
cok fe 7 |
‘Zieid:vzz v sz n

n

ftk H

(5.31)
In the special case of Gaussian noises, i.e., g; ~ N(0, 0']2»), we have
. 2
~N[0Y [ Y sl | oF ] (5.32)
j=1 \icidat®

To unify the notation in the following sections, we define the following test statistics

t ifk=1,2--,n
£ = . (5.33)

tNk ifk=n+1,n+2-, Nuaut modes

5.2.3 Reconstruction of hypothesis tests

The following hypotheses are constructed:

Hy: The hypothesis corresponding to fault mode 0 ( )
5.34

Hy: The hypothesis corresponding to fault mode k.

This, again, involves multiple testing. The reject region for test Hy v.s. Hj can be
defined as
}ak = 1727"' >Nfault modes » (535)

102



5.3. Detection Performance with Worldwide Simulations

where T}, is the threshold for ¢;. Assume that the probability of the Type I error of

the above multiple testing problem is o, i.e.,

Nfault modes

o = P< U tieR| H0> . (5.36)
k=1
Since R,k =1,2,- -, Niault modes are not mutually exclusive, we have

Nfault modes

o =pP( U ticR|H)

< P(t; € Ry, | Ho) (5.37)

Ntault modes
= P<|t;;y > Ty | H0> =7.
k=1

According to the Bonferroni correction [93], by setting
T
T =Qu | = 5.38
g th (2Nfault modes> ’ ( )

Hy is rejected if any [t7| > T} at significant level of o*, where Q&l() is the quantile
function of the distribution of ¢ and 7 is a user-defined value. (5.37) indicates that

7 is the upper limit of a*.

5.3 Detection Performance with Worldwide Sim-

ulations

This section shows the faulty measurement detection results of a set of users dis-
tributed over the world during one day. The MATLAB Algorithm Availability Simu-
lation Tool (MAAST) [96] is utilized to simulate code IF combination measurements
with tropospheric correction, satellite positions, and user locations. Specifically, we
investigate the case of one single fault and multiple faults. For the single fault case,

the nominal 24-satellite GPS constellation is used to simulate satellite positions. For
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the multiple faults case, the nominal 24-satellite GPS constellation and the nominal
24-satellite Galileo constellation are employed. The sources of almanacs of the two
constellations are listed in Table 5.1. The users are placed on a grid every 15 degrees
longitude and latitude (which gives 288 locations). For each location, the geometries
are simulated every 10 min (which gives 144 time steps). The code IF combination
measurements are simulated by adding the randomly generated sample from the given
error distribution to the true range. For each time and user location, a given num-
ber of measurements are randomly chosen for additional bias injection. Each bias
is generated from a uniform distribution in the region [-20m, —10 m] U [10m, 20 m].
The SS detector in the baseline ARAIM [20] and the proposed jackknife detector are
implemented to detect these faulty measurements, separately. The upper limit 7 of
the Type I error rate for both detectors is set as 4 x 107%. The experiment setting is

summarized in Table 5.2.

Table 5.1: Source of almanacs of the GPS and Galileo constellations

Constellation GPS Week of Almanacs Source of Almanacs

GPS 2243 U.S. Coast Guard Navigation Center [97]

Galileo 2243 European GNSS Service Center [98]

Table 5.2: Parameters of the fault detection experiments

Number of faults Constellations Fault magnitude T
1 GPS [~20m, —10m]U[10m, 20m] 4 x 10~
2 GPS, Galileo [—20m, —10m]U[10m,20m] 4 x 107°

The performance of the detectors is evaluated with the actual detection rate at each

user location, which is defined as

P, = Detec.ted epoch?; in one day ’ (5.39)
Valid epochs in one day
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where the denominator could be less than 144 since the number of satellites in view

may not satisfy the minimum requirements for fault detection.

The simulation of the measurement error distribution is detailed in Section 5.3.1. Sec-
tion 5.3.2 and Section 5.3.3 give the detection results in the single-fault and multiple-

fault scenarios, respectively.

: — . . —— —
Th;?rp;i%lzm lglﬁfi;:gf:;:re;::e Fo517(@) = Forpeccn(®) * firopoj(€) * fyuserj1rlz)| Instances are added
(RTCA-MOPS-229D) (WGC) Simulate instances of code-IF nominal error to true range

Empirical distribution of GPS/Galileo SISRE
(Characterized in Chapter 3)

Used in fault detection
and integrity
monitoring algorithm

) ) R .
f;,j,IF,ul,(z) = f;rb&clk,uh(z) * ftlropa,j(z) * f:r,user,j,IF(m)

»
Overbounds (Chapter 4) Nominal error bound of code-IF measurements

Figure 5.1: The setting of the nominal error and bound of the code IF combination.

‘ob’ represents ‘Gaussian’, ‘acc’, or ‘int’.

5.3.1 Nominal error simulation and bounding

The measurement error of the code IF combination is given in Equation (2.11), which
consists the range projection of clock and orbit error, tropospheric error, and mul-
tipath and code noise. In this experiment, the distribution of the range projection
of clock and orbit error £ . .. is assumed to be the empirical distribution of the
SISREypg characterized in Chapter 3. The tropospheric error €}, ; is assumed to
have a zero-mean Gaussian distribution with the 1-sigma bound defined in Equation
(2.14). The multipath and code noise €, .., ; ;- for airborne receivers is assumed to

have a zero-mean Gaussian distribution with the 1-sigma bound defined in Appendix

A.1. The PDF of the range projection of clock and orbit error, tropospheric error,
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and multipath and code noise are denoted as f7,ecr(%); firopo i (%), and fl oo i 1p(),
respectively. For each epoch, the nominal measurement error of the code IF combi-
nation is generated by summing up the randomly generated sample from f! . .. (),
fhopoj (@), and fi . rp(2), respectively. Figure 5.1 demonstrates the process of sim-
ulating the instance of the nominal measurement error of the code IF combination.
Notably, f¢,c..(x) is determined based on authentic experimental data instead of

relying on empirical models. This enhances the reliability of the experimental results

obtained from simulation.

Two types of nominal error bounds on the code IF combination can be obtained,
including the non-Gaussian overbound f} ; ;r,..(¢) defined in Equation (4.64) and

the Gaussian overbound as follows:

fé,j,IF,Gaussian(m) = érb&clk,Gaussian(x) * ftiropo,j (IE) * f;user,j,IF(x) ) (540)

where [, ¢k Gaussian () 15 the Gaussian overbound of the range projection of clock
and orbit error with its parameters listed in Tables 3.3 and 3.4. The source of each

component in the Gaussian and non-Gaussian overbound is demonstrated in Figure

5.1.

In the experiment, the Gaussian overbound f} 1 & Gaussian (%) is used for the SS detec-
tor. For the jackknife detector, both the Gaussian overbound f} ; 1 gayssian () and
the non-Gaussian overbound f;,j, IFace() are employed. For notations, the jackknife
detector using the Gaussian overbound is named as the JKD-Gaussian, while the one

using the non-Gaussian overbound is named as the JKD-non-Gaussian. Table 5.3

lists the usage of overbounds in different detectors in the experiment.

Table 5.3: Overbounds used in different detectors
Detector SS JKD-Gaussian JKD-non-Gaussian

%

Overbounds f;,j,IF,Gaussian (ZE) fg,j,IF,Gaussian (l’) fé,j,IF,acc(x)
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Detection rate nction of user location
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Figure 5.2: Detection rate contour of (a) the SS detector, (b) JKD-Gaussian, and
(c) JKD-non-Gaussian with single artificially injected bias. (d) The histogram of the

detection rate difference between the JKD-non-Gaussian and the SS detector.

5.3.2 Single-fault detection performance

The first experiment examines the detection performance of the SS detector, JKD-
Gaussian, and JKD-non-Gaussian considering a single faulty measurement. Figure
5.2a and Figure 5.2b show the detection rate contour of the SS detector and JKD-

Gaussian, respectively. As can be seen, the JKD-Gaussian demonstrates identical
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performance as the SS detector, where both detectors show more than 70 % detection
rate at most user locations. Figure 5.2c shows the contour plot of the detection rate
for the JKD-non-Gaussian. As can be seen, the JKD-non-Gaussian exhibits a sub-
stantial enhancement in detection rate when compared to the SS detector. In most
user locations, the JKD-non-Gaussian achieves a detection rate of over 75 %. More-
over, in considerable user locations, the detection rate even surpasses 85 %. Figure
5.2d shows the detection rate difference between the JKD-non-Gaussian and the SS
detector (PjiD-mon-Gaussian _ pBS) i 3 histogram view. As can be seen, the maximum

dec dec

improvement in detection rate by the JKD-non-Gaussian exceeds 20 %.

5.3.3 Multiple-fault detection performance

The second experiment examines the detection performance of the SS detector, JKD-
Gaussian, and JKD-non-Gaussian considering two faulty measurements. Similar to
the single-fault case in Section 5.3.2, the SS detector and JKD-Gaussian show an
identical detection performance at all user locations, as shown in Figures 5.3a and
5.3b. However, the detection rate of these two methods is less than 70 % at most
user locations, which is significantly smaller than that in the single-fault case (see
Figures 5.2a and 5.2b). The primary reason is that the two-fault setting uses the
dual constellation (GPS and Galileo) to simulate code IF combination measurements,
where the Galileo SISRE is featured with significant heavy-tailed properties. As
discussed in Section 4.4, this heavy-tailed property excessively enlarges the standard
deviation of the Gaussian overbounds of SISRE. Such over-conservative Gaussian
overbounds can inflate the type II error of hypothesis testing, which corresponds to the
degradation of the detection rate in the dual-constellation setting. However, the JKD-
non-Gaussian still shows satisfactory detection performance in the dual-constellation
setting, where the detection rate is larger than 85 % in most user locations, as shown in
Figure 5.3c. This result again emphasizes the benefits of using PGO for heavy-tailed

error bounding in detection tasks. Figure 5.3d shows the detection rate difference
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between the JKD-non-Gaussian and the SS detector in the two-fault setting. As

can be seen, the maximum improvement in detection rate by the JKD-non-Gaussian

exceeds 34 %.

Detection rate as a function of user location
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Figure 5.3: Detection rate contour of (a) the SS detector, (b) JKD-Gaussian, and
(¢) JKD-non-Gaussian with two artificially injected biases. (d) The histogram of the

detection rate difference between the JKD-non-Gaussian and the SS detector.

The single-fault and multi-fault detection experiments demonstrate the superiority of
the JKD-non-Gaussian. Shortly speaking, this superiority can be primarily attributed

to two factors: 1) a sharper overbound for heavy-tailed measurement error and 2) the
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accommodation of the jackknife test for non-Gaussian overbounds. On the one hand,
the sharper overbound provided by PGO can better characterize the measurement
error distribution than the Gaussian overbound, as shown in Section 4.4, providing
an accurate probabilistic model for hypothesis testing. It is known that an inaccurate
probabilistic model can hinder the performance of hypothesis testing, such as inflating
the type I error (false alarm) or type II error (miss detection), and even make the
testing invalid. On the other hand, the theoretical underpinnings of the jackknife
test provide a solid basis for its application in fault detection with non-Gaussian
overbounds. The threshold for the JKD-non-Gaussian is derived through rigorous
mathematical derivations rather than relying on simulation techniques. These two
factors complement each other, resulting in the exceptional performance of the JKD-
non-Gaussian. In the next chapter, the JKD-non-Gaussian is further exploited to
develop an integrity monitoring algorithm to support integrity applications under

stringent navigation requirements.
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Chapter 6

Integrity Monitoring with
Non-Gaussian Nominal Error

Bound

The non-Gaussian nominal error bound constructed in Chapter 4 and the non-Gaussian
fault detection methods proposed in Chapter 5 lay the foundation for this chap-
ter to develop a multiple-hypothesis-based integrity monitoring algorithm with non-
Gaussian nominal error bounds. The proposed method is named the jackknife ARAIM
algorithm to emphasize its usage of the jackknife detector. The jackknife ARAIM al-
gorithm follows a similar process to the baseline ARAIM algorithm, beginning with
defining the threat model, constructing the fault detectors, and determining their
threshold to comply with the continuity requirements, then evaluating integrity risks,
and concluding with deriving protection levels. The principal difference between the
proposed jackknife ARAIM algorithm and the baseline ARAIM algorithm lies in the
choice of fault detectors. Instead of using solution separation in the position do-
main, the proposed method systematically exploits the properties of the jackknife

detector in the range domain and derives a tight bound of the integrity risk. The
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proposed method extends the scope of the integrity monitoring algorithm to handle

non-Gaussian nominal error bounds.

6.1 Threat Model and Multiple Hypotheses

The proposed method uses the same threat model defined in the baseline ARAIM algo-
rithm [20], as elaborated in Section 2.3.3. Briefly, the threat model defines a collection
of error modes that partition the whole measurement space [18,99]. The fault mode
0 represents the fault-free case while other fault modes (i.e., 1,2, | Npult modes) in-
dicate the presence of single or multiple faults. The total number of fault modes, i.e.,
Niault modes + 1, is determined by the maximum number of simultaneous faults kyax.

Based on the threat model, the following hypotheses are constructed:

e Hy: The fault-free hypothesis (fault mode 0).

e H;: The hypothesis corresponding to fault mode k.

This set of hypotheses is the same as that in the jackknife detector developed in
Section 5.2. Therefore, the jackknife detector can be directly used as the monitor in

the integrity monitoring algorithm.

6.2 Determine the Threshold of Monitors

The threshold of monitors, i.e., jackknife detectors, is determined so that the continu-
ity requirement is satisfied. The continuity risk in Equation (2.34) can be rewritten

as follows:
Nfault modes

Pcontinuity = P( U tz S sz ‘ HO) PHO S C1REQ,FA7 (61)
k=1
with Ry given by

Rk = {tz ’tz‘ Z Tk}a k= 17 27 e >Nfault modes - (62)

112



6.3. Integrity Risk Evaluation

Since Ry, Ra, - , RN moaes @€ Dot mutually exclusive, we have
Ntault modes Ntault modes
Peontinuity < P(t; € Ry | H)Puy = > P(HZ\ > Tj, ’ HO>PH0- (6.3)
k=1 k=1

The threshold T} is determined by the allocated continuity budget caused by false

alert

Tsz;;( Croor ) (6.4)

2-Z\[fault modesPHo
As shown in Equations (5.20), (5.30), and (5.33), t; is the linear combination of

nominal measurement error bounds, i.e., €1,¢€9, -+ ,&,. Here, ¢;,5 =1,2--- ,n refers
to the nominal error bound for accuracy, which is defined in Equation (4.64). The

quantile function Q;,gl(-) can be evaluated by using the numerical method developed

in Section 4.3.5.3.

In Equation (6.4), the equal allocation strategy of the continuity budget is adopted,
which is the same as that in the baseline ARAIM algorithm. However, Equation (6.4)
does not require the partition of vertical and horizontal components of the continuity

budget, which is done in the baseline ARAIM algorithm in Equation (2.49).

6.3 Integrity Risk Evaluation

The detection threshold determined in Equation(6.4) can be used to evaluate the
integrity risk in Equation (2.33). By using the jackknife detector developed in Chapter
5, Equation (2.33) can be written by

Nfault modes Nfault modes

Pavr = Z P <{|€o| > (3N ﬂ th] < Th ’ Hk;) Pp;+ Phot monitored < IREQ -
i=0 k=1

(6.5)
In the navigation system, the estimation error on the parameter of interest is the

positioning error. Therefore, ey can be rewritten as

ep = (X —X)y, (6.6)
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where the subscript v = 1, 2, 3 designates the east, north, and up components of the
position error, respectively. The alert limit corresponding to (x — x), is denoted as

¢, in the following derivations.

Let

Ntault modes Ntault modes
[cal = Z P <{‘(§( - X)v‘ > gv} N ﬂ ’tltzl < Tk ‘ Hk) PHZ ) (67)

=0 k=1

which is the sum of hazardously misleading information (HMI) probabilities over the

fault-free hypothesis and other faulted hypotheses.

6.3.1 Bound on the probability of HMI under HO

In the fault-free hypothesis Hy, a bound on the probability of HMI is established as

follows

Nfault modes

P({](ﬁc—x)v|>£v}ﬂ N |t2|<Tk‘H0> < P(|&=x)| >0 | H) . (6.8)

k=1
This bound is obtained by ignoring knowledge of no detection, which can be consid-
ered a tight bound [18]. This is because the probability of no detection under the
fault-free hypothesis is larger than 1 — Creqra, as ensured by Equation (6.1).

By substituting Equation (5.1) and Equation (5.2) into (x — x),, we have

(x —x), = (Se), = Z Sv,i€i (6.9)

where S, ; is the (v,i)th element in S. Then the PDF of (x — x), is given by (see
Appendix A.6)

2—x = - S, o (L>* s <L>** . <L) 6.10
Fss. () 1:] A ) = sy Fo \ 5 (6.10)

Equation (6.10) can be used to evaluate the bound in Equation (6.8).
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6.3. Integrity Risk Evaluation

6.3.2 Bound on the probability of HMI under Hk

In the faulted hypothesis Hj, a similar bound on the probability of HMI is given as

follows:

Nfault modes
P <{|(§< —x)l>6in () ll< T ‘ Hk>

k=1

(6.11)
<P ({|(x = x)u| > 6} N {|ti] < T} | Hy) -

Again, this bound is obtained by ignoring knowledge of no detection for all other

hypothesis tests, except for the one for the test Hy v.s. Hy. As proven in [18],

Equation (6.11) also provides a tight bound on the probability of HMI under Hj.

The right-hand-side of Equation (6.11) can be simplified by invoking the conditional

probability

P ({I(x = x)o| > €.} N {|ty] < Ta} | Hy)
=P (|(x = x)u| > 6, | He O {|t5] < T}) P (|th] < Ti | Hy) (6.12)

SP (|()A(_X)v| > Ev ‘ Hk ﬂ{|t7;| < Tk}) :

The inequality in the second line bounds P([t;| < T, | Hy) with P(|t;] < Ty | Hi) = 1.

A further relaxation of Equation (6.12) is achieved by exploiting the structure of
(X —x), under Hj. Define the fault vector in the faulted hypothesis Hj, as b®). This
n x 1 vector takes the following form:

b, if j € idaf®

k) = (6.13)

J b
0 otherwise

where bg»k) is the jth element of b®®) and bj,j = 1,2,--- ,n is an unknown constant
with non-zero values. In the faulted hypothesis Hy, the linearized measurement model

in Equation (2.20) can be written by

y =Gx+e+b# (6.14)
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where
gix+e¢e;+b; ifjcidey”
v = (6.15)
gix+¢; otherwise,

and g; is the jth row of G.

Different from Section 6.2, €;,7 = 1,2,--- ,n in Equations (6.14) and (6.15) refers
to the nominal measurement error bound for integrity, which is developed in Section
4.65. This kind of bound considers the effects of nominal signal deformation errors,
which is realized by introducing a b,,,, term to create two equally shifted nominal
measurement, error bounds for accuracy. To simplify the derivation, we first ignore
the effects of nominal signal deformation errors by setting b,om,; = 0,72 = 1,2, , n.
Then the nominal measurement error bound for integrity is the same as that for

accuracy.

Now, (x — x), under Hy can be written by

(ﬁ_x)v | Hy = (Sy_x)v | Hy,
= (S(Gx+e+b®)—x)
= (Se + Sb®) (6.16)
=D Suit D, Suby.
i=1 jeidat
For each j € idx{®, the corresponding jackknife residual is given by
k .
t§ "=y -
J iU J (6.17)
= gj(X — )A((k)) + € + bj
= —ng(k)e —+ €j -+ bj .
The last line holds because x*) — x = S®e. Then, we have
by =t + g;8We —¢;. (6.18)
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Integrity Risk Evaluation

By substituting Equation (6.18) into Equation (6.16), we

(fc—x)v}Hk:ZSlsl+ > St +gi8sPe

J€idx®

= Y Sueit > SugiSPe+ Y5,

jidas® jCidae®

Let E® be a n x n diagonal matrix with the following definition

0 if j €idas”
(k) _ k
Ejvj -
1 otherwise

Equation (6.19) can be simplified to

(k—x), | He=qPe+ Y S,

Jj€idx®

where

have

— &)

jeidze®

] Y

j€idag®

The distribution of q¥)e is given by (see Appendix A.6)

i T

fanel) =T () 2 )

j=1 ‘(h ’

‘Ch

where qj(-k),j =1,2,---,nis the jth element of q*

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

Then the bound on the probability of HMI under Hj, in Equation (6.12) can be written

by

P(\X X)y| >y ‘Hkﬂ{\tkl<Tk})

=P |qk)€+ Z ”JJ

J€idx{®

<P [la¥el+] > St

J€idx{®
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The second line holds because of the triangular inequality.

When k < n, tj = t;. Then, the right-hand-side of Equation (6.24) can be written by

P (la®e| + |Souti| > € | He O {te < Ti}) < P (|a®e| + [Sos|Th > €, | Hy) -
(6.25)

When k > n, tf =t, = > Svyjtg.k). Then, the right-hand-side of Equation (6.24)

jeidze®

can be written by

Pla®el+] 3 Sut® > o | Hon (] 3 8,49 < 13}

jeidase jEidase (6.26)

6.3.3 Finalized bound of integrity risk

Finally, the bound of integrity risk for monitored fault modes in Equation (6.7) is
given by summarizing Equations (6.8), (6.25) and(6.26) as follows:

La < P (|(x = x)u| > £, | Hy) Pu,

+ P (la%e| + [SuulTe > €, | Hi) Pu,
k=1

Nfault modes (627)
+ Y. P(la%e[+Ti > ¢, | Hi) Pu,
k=n+1
Pnot monitored)
< IUy, (1 — ~hotmonitored )
— fREQ ( [REQ

where Ifpq,v = 1,2,3 has the same definition as in Section 2.3.5 and stands for
the integrity budget for different components. Notably, the distributions of (x — x),
and q®e are known, as given in Equation (6.10) and Equation (6.23), respectively.
Hence, the inequality condition in the last line can be evaluated to check if the

integrity requirement is satisfied.

So far, we have derived the bound of integrity risk for monitored fault modes with

brom = 0. To consider the effects of nominal signal deformation errors, the integrity
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risk bound in Equation (6.27) can be modified as follows:

[cal

IN

P (|(x=x),| > £, — b | Ho) Py,

+) P (la%™e| + [SuulTe > €, — b | Hy) Pa,
k=1

Nfault modes (628)
+ > P(la%e[+ T > £, — b | Hy) Py,
k=n+1
P, not monitored)
< I (1 — et monitored
— fREQ ( IREQ

where b represents the worst-case impact of nominal signal deformation errors on

the position solution:

b =3 1S5 [brom, (6.29)
=1

6.4 Protection Level Derivation

As an alternative to integrity risk evaluation, PL can be derived from Equation (6.28)
by replacing the alert limit ¢, with protection level PL, and replacing the last in-

equality with equality as follows:

P (|(x—x),| > PL, — b | Hy) Py,

+3 P (lg®e| +[S,4|T > PL, — b | Hy) Py,

k=1

Ntault modes (630)
+ Y P(lq%e[+Ti > PL,— b | Hy) Py,
k=n+1
Pnot monitored)
= J¢ l— —F .
REQ ( IREQ
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To solve PL,, the integrity budget Igpq (1 — M) needs to be allocated to

Ireq

each fault mode. Specifically, PL, is given by

1% 1Y
PL, = max Q;lfx _REQO + bq(jo), max Q_fk) REQ.k + | Sy lTk + bq()k) ,
( v <k<n Qe QPHk

I'U
1 REQ.k (k)
n<k<Nronte modes {Qq(’% < 2Py, ) Tt by } } ’

(6.31)

where
Nfault modes

Pno monitore
Iipor = Tirg (1 - t—td) . (6.32)
P ’ Ireq

The quantile functions Q(;ix)v and Q;(l,% can be evaluated by using the numerical

method developed in Section 4.3.5.3.

In this thesis, the equal allocation strategy for integrity is applied as follows:

) 1 ) P, not monitored
[REQJC - Nfault modes [REQ (1 - [REQ . (633)

The VPL is directly given by PLs, i.e.,
VPL=PlLj, (6.34)

and the HPL is given by synthesizing PL;, and PLy as follows:

HPL =\/PL?+ PL2. (6.35)

6.5 Consideration of Constellation Faults

As discussed in Section 5.2.1, the jackknife residual is not computable in the con-
stellation fault mode. Therefore, the PL calculation in Section 6.4 does not consider
constellation fault modes. However, it is essential to consider the possibility of con-
stellation faults in the multi-constellation system to protect integrity. To address
this issue, one can use the solution separation detector to construct the hypothesis

regarding the constellation fault and integrate it into the PL equations in Section 6.4.
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6.5. Consideration of Constellation Faults

Let Qconst be the set of fault modes involving constellation faults. Under each fault

mode k € Qeonst, the integrity risk of HMI is given by
P({|x=x)u| > 6} N {|dP| < Dy} | Hiok € Qeonst) (6.36)

where dq(,k) and Dy, are the solution separation test statistic and its threshold, re-

spectively (see Section 2.3.4). According to the triangular inequality,
(% = %) = |(x = x® +x® —x),| <[(x = %0),| + |&" = x)],. (6.37)

Therefore, Equation (6.36) can be bounded by

P ({|(§( - X)v| > Ev} N {|d1()k)| < Dk,v} ‘ Hka k S Qconst) (638&)
< P ({](x = xW),| +|(x® —x),| > €,} N {|dP] < Dy} | Hiok € Qeonss) (6.38b)
S P (‘(fc(k) - X)U‘ + Dk,v > ev ‘ Hk:yk € Qconst) . (638C)

Following the steps in Section 6.3.3, Equation (6.30) can be eventually re-written as
P (|(x —x),| > PL, — b | Hy) Py,

4 § P (|a®e| + |Sy4|T} > PL, — b | Hy) Pr,
k=1
Nfault modes

+ Z P (|q(k)€| + T, > PL, — b | Hy,) Py, (6.39)
k=n+1,kZQconst

+ Z P(|(§((k) —X)o| 4+ Dy > PLv—bq(]k) ‘ Hk) Pu,

k‘eﬂconst

P t it d
— IU (1 - not monitore .
REQ —]REQ

Notably, the last term in the left-hand-side of Equation (6.39) is obtained using
the solution separation scheme, which assumes that the nominal error is Gaussian

bounded. Therefore, the distribution of (x*) — x), ‘ k € Qeonst 1s given by

(f((k) —X), ‘ k€ Qeonst ~ N (0, (af)k))2) , (6.40)
where mgk) is the standard deviation of the kth subset solution. Similarly, Dy, is also

determined with the Gaussian nominal error bound, as detailed in Equation (2.49).
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Finally, with the equal allocation strategy on the integrity budget, the PL can be
obtained by

I v
_ -1 REQ,0 (0) -1 REQ.k (k)
PL, maX{Q(ﬁx)v ( T ) 4 ,1@%{%% ( 2Py, ) + [ S| T + }

]’U
1 REQ,k (k)
max , T.+0b ,
N<k<Nfault modes,KZ2const {Qq(k)s ( 2PHk ) + g + ! }

IU
B o-1 (IREQEY L ) L k)
s (o0 (o) o}

(6.41)

To sum up, Algorithm 3 lists the steps for implementing the proposed jackknife
ARAIM.

6.6 Worldwide Simulation

This section conducts a worldwide simulation to evaluate the performance of the
proposed jackknife ARAIM algorithm. Specifically, the MAAST toolset [96] is used
to simulate code IF combination measurements with tropospheric correction, satellite
positions, and user locations. The simulation has the same setting as that in the fault
detection experiments in Section 5.3, producing 288 x 144 location-time geometries
in one day. Both the single constellation (the nominal 24-satellite GPS constellation)
and dual constellations (the aforementioned GPS constellations and the nominal 24-
satellite Galileo constellation) cases are examined, where the almanacs file is defined
in Table 5.1. The nominal measurement error of the code IF combination is gener-
ated by summing up the randomly generated sample from f7 ¢ (), firopo (%), and
fhserjrr (). As discussed in Section 5.3.1, such the simulation setting can enhance

e

the reliability of experimental results.

The proposed jackknife ARAIM algorithm is compared with the baseline ARAIM al-
gorithm [16]. For the baseline ARAIM algorithm, the Gaussian overbound f* (x)

0,7, F,Gaussian

is used. For the jackknife ARAIM algorithm, both the Gaussian overbound f} ; 11 Gaussian ()
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Algorithm 3 Implementation of Jackknife ARAIM
Input:

Measurements and geometry matrix: y = {y1,v2, - ,yn}, G
Number of constellations: Ngonst
ISM parameters: Psat, Peonst, PTHRES
Continuity and Integrity budgets: Crrq,ra, Iirq
Overbound of nominal code IF combination error: f. ,Vj=1,2,---,n
Nominal signal deformation errors: b,om
Output:
Detection state, VPL, HPL
Emax, Prot monitored < Equations (A.10) and (A.12) with Pss, Peonst, Prurges, 7 and Neonst
Ntault modes < Equation (2.32) with kyax and n
Py,,Vi=1,2,--+ | Niault modes < Equation (A.5) with Py, and Peonst
Xy, S < Equations (2.36) and (2.35) with y and G
for £ =1 : Ngault modes do
%) 8 + Equations (2.39) and (2.38)with y and G
o)« Equation (2.41) with G and f.,,¥j = 1,2,--- ,n
if k& Qconst then
t; < Equation (5.33) with y, x*) S, and S*)
Ti < Equation (64) with CREQ,FAa Ntault modes; Pr,, and faj,Vj =1,2,---,n
else
d¥) + Equation (2.43) with % and %(*)
agg?v +— Equation (2.45) with S, S*)| and fe; ) ¥Vi=1,2,---\n
Dy + Equation (2.49) with 0%, Creq.FA, Nault modes; and Pp,
end if
if £ > Ty or d¥) > Dy, then
Detect faults and alert users!

el e e e el e

Return
end if
: end for

N DN =

: Ifpgo < Equation (6.33) with IRpqs Ntault modes a1d Prot monitored
c b Equation (6.29) with S and by,om
: for k =1 : Ntault modes dO

N
ENOUIIN

Ippor < Equation (6.33) with IRpqs Ntault modes a1d Prot monitored

q'® « Equation (6.22) with S and S(*)

bgk) +— Equation (6.29) with S®) and b,om

: end for

. PL, + Bquation (6.41) with b b, q®, Ty, o, Dy, Sur ¥k = 1,2, Niault modes,
and fe,,Vj=1,2,---,n

29: VPL « PLs

30: HPL « /PL?+ PL3

31: No faults are detected

32: Return

NN NN
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and the non-Gaussian overbound f ; ;7 ,..(%) are employed. For notations, the jack-
knife ARAIM algorithm using the Gaussian overbound is named the JK-Gaussian
ARAIM, while the one using the non-Gaussian overbound is named the JK-non-
Gaussian ARAIM. Table 6.1 lists the usage of overbounds in different ARAIM algo-

rithms in the experiment.

Table 6.1: Overbounds used in different ARAIM algorithms

Method Baseline ARAIM JK-Gaussian JK-non-Gaussian
ARAIM ARAIM
OVGI‘bOUDdS f;,j,]F,Gaussian<x) f;,j,IF,Gaussian (.Z‘) Z;,j,IF,acc('r)

The integrity and continuity budget, the prior probability of satellite and constellation
faults, and the threshold for the integrity risk coming from unmonitored faults are
listed in Table 6.2. These values are aligned with the recommendation in the ARAIM
algorithm description issued by WGC [100]. The maximum number of simultaneous
faults (kmax)that need to be monitored is determined by the method in [20], which is
also given in Appendix A.2. For the single constellation case, ky.x = 1. For the dual
constellation case, k. = 2. An equal allocation strategy is adopted in allocating the

integrity and continuity budgets to each fault mode.

6.6.1 Single-constellation experiments

In this section, the performance of the proposed JK-Gaussian ARAIM and JK-non-
Gaussian ARAIM algorithms is evaluated in the single GPS constellation setting,
where the baseline ARAIM algorithm is taken as the benchmark. The first analysis
involves the comparison between the baseline ARAIM and the proposed JK-Gaussian
ARAIM algorithms, both of which use the Gaussian overbound for code IF combi-
nation nominal errors. Figures 6.1a and 6.1b show the map of 99.5 percentile of the

VPL over the course of a day of the baseline ARAIM and the proposed JK-Gaussian
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Table 6.2: Parameters used for evaluating integrity monitoring algorithms in the

simulation
Parameter Description Value
Iieq Vertical integrity risk budget 9.8 x 1078
IﬁEQ + [12%EQ Horizontal integrity risk budget 2x107°
CREq.FA Vertical continuity risk budget allocated to false 3.9 x 1076

alarms

Ifgq + Iipq Horizontal continuity risk budget allocated to false 9 x 107®

alarms
P Prior probability of satellite fault per approach 107
Ponst Prior probability of constellation fault per approach 1074
Pryures Threshold for the integrity risk coming from unmon- 9 x 1078

itored faults

ARAIM algorithms, respectively. As can be seen, the two methods yield the same

results, where the 99.5 percentile VPL is larger than 50 m in most user locations.

To gain a comprehensive understanding of the performance of the two methods, the
triangular charts of the baseline ARAIM and the JK-Gaussian ARAIM regarding the
vertical performance are plotted in Figure 6.1c and Figure 6.1d, respectively, which
again demonstrates the equivalence of the two methods. Specifically, each bin in the
triangular chart represents the number of occurrences of a specific pair of absolute
vertical positioning error (VPE) and VPL among all 288 x 144 location-time events.
The percentage of the normal operation (the VPL is larger than the VPE but less
than the vertical alert limit (VAL), i.e., 35m here) is around 86 %. The percentage of
misleading information (the VPE is larger than the VPL but less than the VAL) and
hazardously misleading information (the VPE is larger than the VAL without alerts)

events are all zero for both methods.
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VPL as a function of user location

50 50
) )
] Q
2 2
o O o 0
=] =]
£ =
K] 5]
— —
-50 -50
-150  -100  -50 0 50 100 150 -150  -100  -50 0 50 100 150
Longitude (deg) Longitude (deg)
<30 <40 <45 <50 <60 <70 <90 <100 =100 <30 <40 <45 <50 <60 <70 <90 <100 =100
VPL (m) - 99.5% VPL (m) - 99.5%
(a) (b)

120 — 1434 120 — 1434
b 1291 o F 1291
E 100 1147 _ E 100 1147 _
= d E ° = E
5 gof su 1004 ‘2 5 g0k su 1004 ‘2
o 13.879% %60 = o 13.879% g0 2
-g SU&MI E -2 SU&MI £
g 60 0.000% 77 g g 60 0.000% 77 g
o = o =
a 574 2 = 574 2
— 40 No £ = 40k No £
< <
.9 86.121% il 2 86.121% 40 g
= z = z
8 5 287 5 5 287
- ol 143 - ol 143

0.000% 0.000%
0 0 0 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Absolute vertical position error (m) Absolute vertical position error (m)
(c) (d)

Figure 6.1: 99.5 percentile of the VPL over the course of the day yielded by (a) the
baseline ARAIM and (b) the proposed JK-Gaussian ARAIM for the single constel-
lation; and the triangular chart of (c) the baseline ARAIM and (d) the proposed
JK-Gaussian ARAIM regarding the vertical performance for the single constellation.
“NO” represents normal operation, “MI” represents misleading information, “SU”
represents system unavailable, “SU&MI” represents system unavailable and mislead-

ing information, and “HMI” represents hazardously misleading information.

The second analysis focuses on the benefits brought by introducing non-Gaussian

overbound into the jackknife ARAIM algorithm. Figure 6.2a shows the map of 99.5
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percentile of the VPL over the course of a day of the proposed JK-non-Gaussian
ARAIM algorithm. As can be seen, the 99.5 percentile VPL is less than 45m in
most user locations. By comparing to the results in Figure 6.1b, one can conclude
that introducing non-Gaussian overbound into the jackknife ARAIM algorithm can
reduce the VPL. The triangular chart of the JK-non-Gaussian ARAIM in Figure
6.2b further confirms this conclusion, where the distribution of the VPE-VPL pairs
shows a higher concentration level than that of the jackknife ARAIM algorithm and
the baseline ARAIM algorithm. More importantly, the percentage of the normal
operation of the JK-non-Gaussian ARAIM method increases to 94.799 %, indicating

that the JK-non-Gaussian ARAIM seldom comprises integrity.

120 — 1821
s I 1639
) 100

—%D § 1457 _
~ o ]
z 3 80 ! S 1275 &
E = 5201% 1093 &
g S SU&MI z
= 3 60 0.000% R
- 45 »45
2 40 728 2
s ) 546 E
= r i o n n Sé 94.799% 2
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Figure 6.2: (a) 99.5 percentile of the VPL over the course of the day yielded by the
proposed JK-non-Gaussian ARAIM for the single constellation; (b) The triangular
chart of the proposed JK-non-Gaussian ARAIM regarding the vertical performance

for the single constellation.

For a better understanding of the possibility of using the JK-non-Gaussian ARAIM to
support LPV-200 precision approach operations, Table 6.3 summarizes the coverage
of the three methods with VAL = 35m at different levels of system availability.
The system availability is the fraction of time that VPL is less than a given VAL

at a given location, while the coverage is the fraction of the earth that satisfies a
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given system availability. All the three methods show satisfactory performance in
coverage under 75 % system availability. However, when the availability requirements
increases to 95 %, the baseline ARAIM and the JK-Gaussian ARAIM algorithms only
has a coverage of 15.16 %. In contrast, the coverage of the JK-non-Gaussian ARAIM
still keeps above 88 % in this condition. Nevertheless, the coverage of the JK-non-
Gaussian ARAIM decreases to 7.84 % under 99.5 % system availability. The above
results reveal that the proposed JK-non-Gaussian ARAIM method has huge potential

to support integrity applications with harsh navigation requirements.

Table 6.3: Coverage for the single constellation at different levels of system availability

VAL Availability | Baseline JK-Gaussian JK-non-Gaussian
ARAIM ARAIM ARAIM
75 % 96.3 % 96.3 % 100 %
35m
95 % 15.16 % 15.16 % 88.64 %
99.5% 0% 0% 7.84 %

6.6.2 Dual-constellation experiments

This section evaluates the performance of the proposed JK-Gaussian ARAIM and
JK-non-Gaussian ARAIM algorithms in the dual constellation setting. Similar to the
single constellation setting in Section 5.3.2, the JK-Gaussian ARAIM exhibits the
equivalent performance to the baseline ARAIM, as shown in the 99.5 percentile VPL
map in Figures 6.3a and 6.3b. However, the magnitude of the 99.5 percentile VPL of
these two methods exceeds 60 m at most user locations, which is significantly larger
than that in the single constellation setting (see Figures 6.2a and 6.2b). This phe-
nomenon shares the same reason for the observations in the multiply-fault detection
experiment in Section 5.3.3: the SISRE of Galileo satellites in the dual constellation

setting has significant heavy-tailed properties, which results in the over-conservatism
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in the finalized Gaussian overbounds of code IF combination errors. Such conser-
vatism is passed to the position domain bounding, eventually enlarging the VPLs in
the dual-constellation setting. As a consequence, the system unavailability events of
both methods experience a surge in the dual-constellation setting, which can be ob-
served in the triangular chart in Figures 6.3c and 6.3d, where the system unavailability

events with VAL = 35m account for 45.674 %.
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Figure 6.3: 99.5 percentile of the VPL over the course of the day yielded by (a) the
baseline ARAIM and (b) the proposed JK-Gaussian ARAIM for the dual constel-
lation; and the triangular chart of (c¢) the baseline ARAIM and (d) the proposed

JK-Gaussian ARAIM regarding the vertical performance for the dual constellation.
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Nevertheless, the JK-non-Gaussian ARAIM still shows satisfactory performance in
the dual-constellation setting, where the 99.5 percentile VPL is smaller than 40 m in
most user locations (Figure 6.4a) and the VPE-VPL pairs have extremely concen-
trated distribution (Figure 6.4b). Moreover, the percentage of the normal operation
events with VAL = 35m even exceeds 92 %, making it possible to support LPV-200

precision approach operations [27].

Table 6.4 summarizes the coverage of the three methods with VAL = 35 m at different
levels of system availability. The baseline ARAIM and the JK-Gaussian ARAIM have
a 54 % coverage even under 75 % system availability. This result is expected because
both the baseline ARAIM and JK-Gaussian ARAIM use over-conservative Gaussian
overbound. In contrast, the coverage of the JK-non-Gaussian ARAIM is nearly 100 %
under 75% system availability. Its coverage even exceed 62 % under 95% system
availability. These results reveal the huge potential of the JK-non-Gaussian ARAIM
algorithm to support LPV-200 requirements using the GPS-Galileo dual constellation.

It is worth noting that the reporting result about the baseline ARAIM in this sim-
ulation study is quite different from the findings in [16,84], from which the baseline
ARAIM is examined to be able to provide global coverage for LPV-200 in GPS-Galileo
dual constellation. The primary reason is that these studies use hypothetical models
to simulate the range errors, which results in over-optimistic results. For example, the
1-sigma error bound of Galileo SISRE is set to be 0.96 m in [84], which is significantly
smaller than the value determined by experimental data in Section 4.4. In such a

condition, the system availability of baseline ARAIM is over-estimated.
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Figure 6.4: (a) 99.5 percentile of the VPL over the course of the day yielded by
the proposed JK-non-Gaussian ARAIM for the dual constellation; (b) The triangular
chart of the proposed JK-non-Gaussian ARAIM regarding the vertical performance

for the dual constellation.

Table 6.4: Coverage for the dual constellation at different levels of system availability

VAL Availability | Baseline JK-Gaussian JK-non-Gaussian
ARAIM ARAIM ARAIM
5% 54 % 54 % 99.29 %
35m
95 % 0% 0% 62.55 %
99.5% 0% 0% 3.68 %

131



Chapter 7

Conclusion

This thesis develops the integrity monitoring algorithms with non-Gaussian nominal
errors for safety-critical GNSS navigation in three aspects. These include the non-
Gaussian overbounds for heavy-tailed SISRE, the fault detection method with non-
Gaussian nominal errors, and the high-availability integrity monitoring algorithm.
This thesis systematically introduces the non-Gaussian modeling to the integrity mon-
itoring community and demonstrates its huge potential in improving system availabil-
ity, shielding light on implementing integrity applications under stringent navigation

requirements.

7.1 Summary of Accomplishments

(1) Nominal performance characterization of GPS/Galileo SISRE

This thesis details the methodology of determining satellite orbit and clock errors,
including data source acquisition, antenna phase center offset correction for both
broadcast and precise ephemerides, and computation of orbit and clock vectors in
both ECEF and RAC frame, presenting a handy material for implementation. To
support integrity applications, the UPE is calculated by projecting the orbit and
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clock errors into earth grids within the satellite visibility cone and is regarded as
the SISRE. The nominal performance of SISRE for each individual GPS and Galileo
satellite during 2020-2022 has been analyzed, with emphasis put on the tail properties
and the difference between GPS and Galileo satellites. The analyzed results provide
the empirical basis for developing non-Gaussian overbounding methods and explaining
the performance degradation of fault detection and integrity monitoring algorithms

when incorporating Galileo constellations in the simulation studies.
(2) Non-Gaussian overbounding method for heavy-tailed errors

This thesis proposes the PGO for bounding heavy-tailed error distribution. Specifi-
cally, the BGMM is employed to fit the error distribution based on the EM algorithm.
The CDF overbound of the BGMM is constructed based on the dominant relation-
ship of each Gaussian component at the core and the tail region of the BGMM,
respectively. In addition, a sigma inflation strategy is proposed to compensate the
PGO, which allows it to bound the sample distribution as well as the fitted BGMM.
The overbounding property is proven to be preserved through convolution, which
makes it possible to derive pseudorange-level requirements from the position domain
integrity requirements. To facilitate the range-to-position projection, a discretiza-
tion technique that satisfies overbounding is further proposed and is used in the fast
Fourier transform to reduce the computation time of convolution. The proposed PGO
is applied to bound the GPS/Galileo SISRE, which provides the most competitive
bounding performance when compared to the Gaussian overbound and Gaussian-
Pareto overbound, yielding a sharp bound in both the core and tail parts of the error
distribution. Based on the PGO of SISRE, the non-Gaussian nominal error bounds
of code IF combination are further constructed, providing nominal error models for

constructing non-Gaussian fault detection and integrity monitoring algorithms.

(3) Theoretical foundation for detecting faulty measurements under non-

Gaussian nominal errors
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This thesis develops a fault detection method with rigorous derivations for linearized
pseudorange-based positioning systems under non-Gaussian nominal errors. Specifi-
cally, this thesis first constructs the jackknife test statistic by computing the inconsis-
tency between the observed measurement and the predicted measurement based on
subset solutions under the single-fault condition. Using the constructed jackknife test
statistic, a jackknife detector is developed by formalizing a multiple-testing problem
with the Bonferroni correction to detect faults. Then, the jackknife detector is ex-
tended to simultaneous faults by combining multiple test statistics. It is proven that
the constructed test statistic is the linear combination of measurement errors with-
out making assumptions about the distribution of errors, which provides an accurate
probabilistic model for hypothesis testing and establishes theoretical foundations for

fault detection.

(4) High-availability integrity monitoring algorithm under stringent navi-

gation requirements

This thesis develops an integrity monitoring algorithm by systematically exploiting
the properties of the jackknife detector in the range domain. Specifically, the pro-
posed method constructs a set of hypotheses, including a fault-free hypothesis and
alternative hypotheses, based on threat models. The jackknife detector is employed
to construct the monitors, with its threshold determined by the allocated continuity
budget. Then, the integrity risk under the fault-free hypothesis is bounded by ig-
noring knowledge of no detection. For alternative hypotheses, a tight bound of the
integrity risk is derived by quantifying the impacts of hypothetical fault vectors on

the position solution.
(5) Performance evaluation using real data in simulation

This thesis evaluates the performance of the proposed fault detection and integrity
monitoring algorithm in a worldwide simulation. The range projection of clock and

orbit error of the code IF combination is simulated based on authentic experimen-
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tal data instead of relying on empirical models, which enhances the reliability of
the experimental results. Results show that the proposed fault detection method
demonstrates superior performance than the SS fault detection method under non-
Gaussian nominal errors. Moreover, results reveal that the proposed non-Gaussian
jackknife ARAIM algorithm has higher system availability than the baseline ARAIM
method, making it possible to support LPV-200 requirements using the GPS-Galileo

dual constellation.

7.2 Recommended Topics for Future Research

(1) Reduce conservatism of Galileo broadcast URA parameters

The analysis of SISRE for Galileo satellites reveals that the Galileo broadcast URA
parameter is extremely conservative, which cannot fairly describe the nominal per-
formance of Galileo SISRE at most times. As suggested by experiment results, such
conservatism not only inflates the miss-detection rate of the fault detection algorithm
but also enlarges the protection levels of integrity monitoring algorithms. It is rec-
ommended to use a sharper overbound than the Gaussian overbound in the Galileo
broadcast information. The proposed PGO could be a good choice, but it is essen-
tial to balance the bounding performance and the communication cost introduced by
additional bounding parameters. Using these non-Gaussian overbounds also poses

challenges and brings opportunities for the design of the satellite broadcast message.
(2) Reduce computation cost by position-domain bounding

The proposed PGO provides a sharp yet conservative overbound for heavy-tailed er-
rors in the range domain. However, the range-to-position projection of PGO does not
have an analytical expression as that of the Gaussian overbound, thereby requiring
convolution operations. This causes a computation burden in the proposed jackknife

ARAIM algorithm, where the range-to-position projection needs to be executed in
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each subset. Although a specialized discretization technique is proposed in this thesis
and is used along with the fast Fourier transform to accelerate convolutions in the
range-to-position projection, it still poses challenges for real-time integrity applica-
tions. Since the PGO has an analytical expression in PDF and CDF, it is possible
to develop a parameterized overbound for the range-to-position projection of PGO.
Such a position-domain overbound avoids the convolution operations, which enables
the jackknife ARAIM algorithm to achieve the same computation efficiency as the
baseline ARAIM algorithm, making it possible to realize real-time integrity monitor-

ing with non-Gaussian nominal errors.
(3) Reduce conservatism of multi-testing in constructing monitors

Both the baseline ARAIM and the proposed jackknife ARAIM construct monitor
and conduct hypothesis testing on each subset, which is a multi-testing problem.
The Bonferroni correction is applied in both methods to handle this multi-testing
problem. However, the Bonferroni procedure is known to be conservative, which
can lead to a high miss-detection rate in the monitors. A possible remedy is to
apply the Holm—Bonferroni correction [101], which keeps the family-wise error rate no
higher than a pre-specified significance level. The Holm—Bonferroni correction shows
less conservative in multi-testing problems than the Bonferroni correction. However,
Holm—Bonferroni correction involves the systematic adjustment of the significance
level for each individual test. It is essential to investigate and remove the impacts of

such adjustments on system integrity.
(4) Integrity risk evaluation with fault exclusion

The proposed integrity monitoring algorithm warns the users once a fault is detected.
Future research can develop fault exclusion algorithms to further increase the system
availability. A heuristic method is to rank the p-value of the test statistics on each
subset and exclude the one with the smallest p-value. However, due to the masking

effects of simultaneous faults, it is possible to exclude nominal measurements. There-
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fore, special caution should be given in evaluating the impacts of wrong exclusions
on the integrity risk. Additional tests should be constructed to justify the wrong

exclusion probability, which should be further considered in the PL calculation.
(5) Incorporate additional constellations to improve availability

In the GPS-Galileo dual constellation experiment, the proposed JK-Gaussian ARAIM
and the baseline ARAIM algorithms exhibit significant degradation in system avail-
ability due to the heavy-tailed properties of Galileo SISRE. To further improve the
system availability, one can incorporate additional constellations, such as BeiDou,
GLONASS, and QZSS constellations. The clock and orbit errors of these constel-
lations should be carefully computed by employing suitable corrections, such as the
antenna phase center offset correction mentioned in Chapter 3, the time group delay

correction, and the clock corrections.

7.3 Closing

The non-Gaussian integrity monitoring algorithm presented in this thesis demon-
strates high availability under stringent navigation requirements, making it possible

to achieve the LPV-200 requirements using the recent GPS-Galileo dual constellation.
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Appendices

A.1 Gaussian Overbound of Multipath and Code

Noise

The Gaussian overbound for multipath and code noise error for code IF combination

is given by
i 7?41
o,user,j (’Y o 1)2 ’

where 7y is the ratio of squares of two frequencies, as defined in Equation (2.9), and
O-Z,user,j - \/(Ué,noise,j)2 + (O-Z,multi}fmn‘h,j)2 : (AQ)

The code noise bound T pnoise.j

O-Z),use'r,j,AB =0 (A]-)

and multipath bound o}, ,,,.1ipain; after carrier smooth-

ing suggested by WGC are provided by

(1) GPS Airborne Receiver [102]

i 0 [deg]
O ynoise,j = 0-15[m] + 0.43[m] exp <— j6.9 ) (A.3a)

i 0 [deg]
O multipathj = 0.13[m] + 0.53[m] exp (— J 10 ) . (A.3b)
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(2) Galileo Airborne Receiver [41]

Table A.1: The code noise and multipath error bound for Galileo airborne receiver

against the elevation angle

0; [deg] Ug,user,j 0; [deg] Ug,user,j 0; [deg] Ug,user,j
5 0.4529 35 0.2504 65 0.2295
10 0.3553 40 0.2438 70 0.2278
15 0.3063 45 0.2396 75 0.2297
20 0.2638 20 0.2359 80 0.2310
25 0.2593 29 0.2339 85 0.2274
30 0.2555 60 0.2302 90 0.2277

A.2 Maximum Number of Simultaneous Faults That

Need to be Monitored

This section describes the procedure of determining the maximum number of simulta-

neous faults that need to be monitored k., and the prior probabilities of fault mode

Py, in the baseline ARAIM algorithm [20].
Define
Pevent,i = Psat,i <A4a)
Pevent,Nsat—i-j = L const,j - (A4b)

Assume fault mode £ includes the events in set {2y,. Then the prior probabilities of

fault mode Py, is defined as

PHk = H Pevent,j . (A5)

JEQ,
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The probability of all fault modes composed of r or more independent events is given

by

Nsat+Nconst
P.(r)= ) > II Poews T (= Pacus).  (A6)
k=r 11 <t <o <if JEIL,02, ik J&i1 iz, ik

It is proven in [20] that
P> (T> S E Pevent,il Pevent,z'g e Pevent,ir . (A7)
11 <ig<-<ip

Since

Nsat+Nconst T
E Pevent,k 2 E Pevent,ilpevent,iz e Pevent,ir (AS&)
k=1

i FiaF - FEir
=l Z Pevent,il Pevent,i2 e Pevent,ir 9 (A8b)

11 <dg < <ip

where Equation (A.8b) indicates that there are r! ways to arrange a sequence of

length r, P(r) in Equation (A.7) can be bounded by

r
Nsat+Neonst
<Zk§1 cone Pevent,k)

P.(r) < .

(A.9)

Therefore, k., is determined by

N.sat"l‘Nconst
kmax = YPrures (Z Z Pevent,k) ) (AlO)

k=1

where
r—+1

YPruges (U) = min {T| ( S PTHRES} 5 (All)

r+1)!
and Pryrps is the threshold for the integrity risk coming from unmonitored faults.

Then, the probability of the unmonitored events is given by

Pnot monitored — P><kmax + 1) . <A12)
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A.3 The EM Algorithm

The PDF of a K-component GMM model with mixture weights of py, ps,..., px can

be written as .

F@l ©) =" prfw (x;br,0%) (A.13)

k=1

where © represents all parameters, including each Gaussian component’s mixture
weight, mean, and variance. For a given observation z;, we define the allocation
(latent) variable ¢ = {1,2,..., K} that marks the Gaussian component from which
x; is generated. Then, the mixture weight of Gaussian components can be interpreted

as the prior probability of the allocation variable as follows,
pr=Pc=k). (A.14)

The membership weight of the GMM can be defined based on Bayes’ Theorem as

follows,
Pefn (@i by, o)
e prfw (@i by, on)

which indicates the posterior probability of a data point x; being generated from the

wi, = P(c=klz;) =

(A.15)

kth Gaussian component. The log-likelihood function can be written as

L(x|©) =) ) P(xilc=kbyor) P(c=k) . (A.16)

By utilizing Jensen’s inequality [103], the above equation can be simplified as

L(z]©) >Q (z|©) , (A.17a)
ahged prfw (i by, on)
_ 1 PeIN T Ok, Ok Al
Q (z|O) ;_1 ,;_1 w; kln wir (A.17Db)
N K 2
(zi — br) /
= ;1 ];1 W o (1np;C — T‘z —Inw;; —In 2%0,% ,

where @ (z]©) is the lower bound of L (z]|©). Therefore, the model parameters of

GMM can be estimated by maximizing @ (x|©), which can be effectively achieved
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by the EM algorithm [74]. The EM algorithm is an iterative supervised training
algorithm consisting of two steps: the E-step and the M-step. Firstly, the model
parameters are randomly initialized. In the E-step, the algorithm calculates the value
of membership weight w; ; based on the latest model parameters, as shown in (A.15).
In the M-step, the algorithm updates the model parameters based on the value of w .
In this step, the log-likelihood function is maximized by taking the partial derivative
over the model parameters © and letting the partial derivative equal to zero. The

two steps are repeated until convergence is reached.

A.4 Proof of Tail Region Overbound

Recall that Section 4.3.4.3.3 constructs the overbound distribution in the left-tail

region as follows:

GE(z) = (1+k) (1 —p1) G (2;0,00) Vo < 11 . (A.18)

The difference between G%(z) and G(x) is given by

GL(z) = G(z) = k(1 —p)) G (2;0,09) — p1G (2;0,0) . (A.19)

By substituting (4.28) into (A.19),

Gh(z) — Gla) = m(e (21p;0,01) G (;0, 02)
728 ?

(A.20)
— G (2;0,01) G (2, 0, 02)> )

If G%(z) is the CDF overbound of G(z), then the right-hand side of (A.20) should be

non-negative, which is equivalent to prove

G (21p;0,01) _ G (x;0,07)
>
G (21p;0,02) ~ G (2;0,09)

Vo < . (A.21)
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Let f(x) = ggzgg;;, then the derivative of f(x) is given by

, fn (2;0,01) G (x;0,09) — fn (2;0,09) G (x;0,01)

= . A.22
(@) e (A22)
Define
. —_exp (—55-
m(o;x) = J;V (JJ.,((]),U) = fm ( ? > (A.23a)
i Eees)
Vo >0,z <,
1
h(y;x)=m (—;;x) Vy <0,z < . (A.23Db)

Then h (v;x) can be written as

f (’y; 0, (—%)2) |

h(v;z) = = :é” G (70, - 1)
belem)] b))

x

(A.24)
Define A(vy) = W , which is known as the inverse Mills ratio [104] and has
the following properties [105]:
A(y) >0 Vy (A.25a)
N () <0Vy. (A.25b)
Then the partial derivative of h (7; ) with respect to v can be calculated as
Oh(v;z) 1 /
—L =—A A : A2
5 = M+ (A.26)
According to the chains rule,
om (o;z)  Oh (—%,:1:) _ 0Oh (—%;x) 0 (——)
Oo do oy do (A.27)
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When x < 0, we can easily prove that W < 0. This means that m (o;x) is a

monotonically decreasing function when x < 0. Therefore,

m (o 2) = fn (2;0,01) _ fn(2;0,02)
DTG (250, 00) G (x;0,09) (A.28)

=m (o9;x) Yoy > 01 > 0,2 <0.

This is equivalent to saying that (A.22) has the property as follows:
f(z)>0VYoy, >0, >0,2<0. (A.29)

Equation (A.29) indicates that f(z) is a monotonically increasing function when
x < 0, and therefore (A.21) is proved. Then, we can conclude that GL(x) is the CDF
overbound of G(z) when z < z;,. According to the symmetric property of GY(z) and
GR(z), GR(z) is easy to be proved as the CDF overbound of G(z) when = > z,,.
This ends the proof.

A.5 Proof of Monotonicity

In the PGO, its PDF discontinues at the core-tail transition points z;, and x,,. The

value of the leap at x;, can be written as

Feore (z,) — FE () = — (L + k) (1 —p1) fn (210, 02) + p1fv (21p;0,01) + c.

(A.30)
Define
o p1fn (13 0,07) _ (A.31)
(1 —=p1) [ (21; 0, 02)
As proved in (A.28) in Appendix A 4,
fn (2;0,01) _ fw (2;0,09)
. A.32
G (2:0.00) > G (2:0.00) Yoy > 01> 0,2 <0 (A.32)
We have
g = PN (@i 0,01) PG@00) g ey s ey 0,0 <0,

(1 =p1) [y (230,02) = (1 =p1) G (250, 02)
(A.33)
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Therefore,

125 (1) — f2 (21) > — (L4 %) (L= p1) v (01550, 02) + P (2130, 01) + .

(A.34)
Substituting (4.33) and (A.31) into (A.34), we have
1—
£ () = f3 () > ) - (G (2193 0, 02) =i fv (1; 0, 02) = 0.5) . (A.35)
p
Define
g (z1p) = G (2130, 09) — xpp fv (21,0, 02) — 0.5, (A.36)
then its first derivative can be calculated as
, ;
g (iL'lp) = (1 + J—lg> fN (mlp; 0, 0'2) > 0. <A37)
2
Since ¢(0) = 0, we have
g (z1p) <0V, <0. (A.38)
Therefore, (A.35) can be written as
core L 1- b1
[0 (wyp) — £ (z4p) > l g(zyp) >0 Vi, <0. (A.39)
p
Since
Y (2) = —% (1+ k) pofy (2:0,09) >0 Vo < 1y (A.40a)
2
f57' (@) = = S5pif (250,01) > 0 Vi, <2 <0, (A.40b)
i

we can conclude that f,(z) is a monotonically increasing function when = < 0.

A.6 Distribution of Linear Combination of Ran-

dom Variables

Consider a set of independent random variables Yi,Ys, - -+ | Yn with zero means. The

PDF of Y; is given by fy,(z). Let Y be the linear combination of Y, Ys, -, Yn as
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follows: N
Y =) aYi, (A.41)
i=1
where a;,7 =1,2,--- , N is the coefficient. Let

Vi=aY, i=1,2,--- N (A.42)

be a new random variable, and then Y can be written by
N ~
Y =)V (A.43)
The CDF of Y; is given by

Fy(y)="r (Y < y) =P (Yi < ﬁ) — / fy, () dz . (A.44)

Let t = |a;| z, then we have

Fy,(y) = ﬁ/ﬁ; i <|;—|> dt . (A.45)

Therefore, the PDF of Y; is given by

fy(z) = = (i) : (A.46)

|az'| \az'|

Finally, the PDF of Y can be obtained through convolution as

fr(@) = [, (@) * fy, () %% fy ()

; (A.47)
= |t T * L * ...k 2 .
=11l f“(w) f“(m\) fY”(ranr)

A.7 Distribution of Jackknife Residual under Gaus-

sian Noises

The Gauss-Markov conditions concern the set of noises in the linear system y = Gx+e

as follows:
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1. Zero mean: E[g;] = 0 Vi;
2. Homoscedastic: Varle;] = 0% < oo Vi;

3. Uncorrelated: Covle;,e;] =0 Vi # j.

Under Gauss-Markov conditions, the ordinary least squares (OLS) estimator is the

best linear unbiased estimator (BLUE).

A further generalization of the Gauss-Markov conditions to heteroscedastic and cor-
related errors has been developed [106], and its application to the weighted least

squares (WLS) estimator can be stated as follows:

“WLS is the BLUE if the weight matrix is equal to the inverse of the

variance-covariance matrix of the noises.”

Based on the generalized Gauss-Markov conditions, the subsolution in Equation

(2.38a) has the following properties:

E[x®]=0 (A.48a)
Var[x®]=s®WwW-1s®" (A.48D)

By substituting Equation (5.9) into Equation (5.10), the jackknife residual can be

written by

tr =y — grx

The expectation and variance of the jackknife residual in (A.49) are given by

Flnl=0 (A.50a)
Varft,]=g. Var [x* — x®)] gl + o7

—g, SPWWIs® gl | 52 (A.50Db)
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As shown in Equation (5.19), the Jackknife residual can be rewritten as
ty = 15k€7 <A51)

which is a linear combination of measurement noises. If £, has a zero-mean Gaussian

distribution defined in Equation (5.22), ¢, will have a Gaussian distribution
t ~ N (0,pxW'Bf) . (A.52)

Since a Gaussian distribution is uniquely defined by its mean and variance, the fol-

lowing equation will hold:
g SPOWISW gl 4 52 — 5 WIpT . (A.53)

Therefore,

t~ N (0,8 SIWISO gl 4 7). (A.54)

A.8 Bonferroni Correction

The hypotheses with Bonferroni correction [93] in Equation (5.25) have the following
relationship with the original hypotheses in Equation (5.24):

Hy= m H(k)

h=L (A.55)
H,= U H(k)

k=1



A.8. Bonferroni Correction

Assume that the probability of type I error of the corrected hypothesis test is a*.

Then,
1 — o*=P(All tests accept | Hy)

=1 — P(At least one test is rejected ‘ Hy)

>1 - Z P(Origin test 7 is rejected | Ho)

p— (A.56)
=1 — Z P(Origin test ¢ is rejected | Hék))
k=1
=1 —naoa.
In addition,
a*=P(At least one test is rejected | Ho)
> P(Origin test ¢ is rejected | Hg(k)) (A.57)
=a.
Therefore,
a<a <na. (A.58)
To keep the type I error a* not exceeding 7 (e.g., 0.05),
no=r. (A.59)

Thus, the type I error of the individual test would be a =

S
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