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Abstract 
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Abstract 

The integration of urban rail transit (URT) traction networks (TNs) with hybrid 

energy storage systems (HESSs) has become technologically and socioeconomically 

crucial to enabling highly efficient and convenient mass public transportation within 

urban areas while promoting the carbon-neutral transformation of URTs. The spatial-

temporal uncertainties and complexities arising from passenger demand, urban traffic 

congestion, widespread distribution, operational disturbances, etc. have imposed 

significant challenges and limitations on the stable, efficient, sustainable, and intelligent 

operations of the HESS-integrated URT TNs, especially for those involving distributed 

HESSs (DHESSs). 

This thesis reports using reinforcement learning (RL) as a machine-learning base 

technique to develop three different levels of energy management and configuration 

strategies for HESS-integrated URT TNs. These include: (1) a supervised RL-based 

energy-efficient train trajectory optimization (SRL–EETTO) approach for automatic 

train operation at the 1st (train) level, (2) a multi-task RL-based sizing and control 

optimization (MTRL–SCO) approach for HESS-integrated traction substation 

operation at the 2nd (substation) level, (3) a multi-task multi-agent RL-based multi-time 

scale energy management (MTMARL–MTSEM) approach for DHESS-integrated TN 

operation at the 3rd (network) level, and (4) a multi-task multi-agent RL-based 

data-driven multi-objective configuration optimization (MTMARL–DDMOCO) 

approach for furthering the DHESS-integrated TN operation at the 3rd (network) level. 

The research background, problem formulation, approach establishment, and case study 

verifications are also described for each energy management and configuration strategy. 

At the 1st (train) level, the proposed SRL–EETTO approach is aimed to expand 

the capability of automatic train operation systems in addressing the real-time 

responsiveness and dynamic online challenges to state-of-the-art TTO approaches and 

their associated safety, punctuality, and ride comfort issues. A real-time train control 
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model under uncertain disturbances is formulated as a Markov decision process, and a 

supervised twin-delayed deep deterministic policy gradient algorithm with improved 

effectiveness is developed to solve the real-time train control model. Satisfactory 

performances on reduced traction energy use and multiple evaluation indices are 

verified for the proposed SRL–EETTO approach, and the optimal configuration of the 

train trajectory set is investigated. 

At the 2nd (substation) level, the proposed MTRL–SCO approach is intended to 

enhance the coordinated operations of the supercapacitor–battery HESSs and their 

integrated traction substations under dynamic spatial-temporal URT traffic. A dynamic 

traffic model is devised to characterize the multi-train traction load uncertainty induced 

by passenger flow fluctuations, real-time traffic regulations, and train parameters. An 

MTRL algorithm based on a dueling double deep Q network with knowledge transfer 

is presented to learn a generalized HESS control policy adapting to multiple train 

service patterns by leveraging a shareable cross-task experience. Simulations have 

validated the superior computational performance, sizing decisions, and control 

behaviors of the proposed MTRL–SCO approach. 

At the 3rd (network) level, the proposed MTMARL–MTSEM approach strives for 

the economic and low-carbon operation of TNs integrating with photovoltaic–

regenerative braking (PV–RB) DHESSs. A two-stage stochastic scheduling is 

performed on a long-time scale to minimize daily operation and carbon trading costs at 

the upper level and correct day-ahead scheduling deviations against multi-source 

uncertainties at the middle level. A real-time energy management algorithm based on 

MTMARL is established to optimize PV–RB power flow and promote utilization 

through decentralized coordination of DHESSs at the lower level. Representative daily 

TN operation scenarios are selected to demonstrate the improved economic and low-

carbon benefits and PV–RB energy utilization of the proposed MTMARL–MTSEM 

approach. 
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Furthering the 3rd (network) level, the proposed MTMARL–DDMOCO approach 

is focused on promoting an optimal synergy between the economic and energy 

efficiencies of the DHESS-integrated TN operation and the travel time of the passengers. 

A multi-objective configuration optimization model considering the electrothermal 

aging of batteries is formulated to optimize DHESS capacities and train operation 

parameters based on the developed MTMARL–MTSEM approach. The non-dominated 

sorting genetic algorithm is incorporated with ensemble learning-based load prediction 

models to solve the multi-objective configuration optimization model in a data-driven 

manner. The configuration decisions of the proposed MTMARL–DDMOCO approach 

are analyzed thoroughly. 
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Chapter 1: Introduction 

1.1 Research Background 

With the rapid urbanization worldwide, urban rail transits (URTs), including 

metros, light rails, etc. [1], play an increasingly essential role in mass public 

transportation within densely-populated urban regions, leveraging their capability of 

providing highly efficient and convenient transit services (Table 1.2). By the end of 

2023, the total mileage of global URT lines has exceeded 43400 km, and by 2025, the 

global URT passenger flow will reach a historical high of 954 billion person/km [2]. In 

mainland China [3], 53 cities have operated URT lines with a total mileage of 9018 km, 

and the number of carried passengers is 23750 billion. In Hong Kong, the mass transit 

railway system shares 48% of the franchised transport boarding [4].  

With the expansion of URT systems, their energy consumption issues have been 

increasingly prominent. According to the latest survey [5], the total URT electricity 

consumption of China exceeds 24977 GW, and the year-on-year increase is 9.59%. 

Besides, the traction network (TN) energy consumption is 12934 GW, which is the most 

important component among all energy uses of URTs. Driven by the pressing need to 

mitigate energy shortages and global climate changes, many countries, including but 

not limited to the US, China, and the EU, have formulated action plans to enhance clean 

and diversified energy usage for the net-zero emission of URT and its TN operation [6]. 

In this regard, the utilization of renewable and train regenerative braking (RB) energy 

to reduce TN energy consumption has received widespread concerns [7–9]. 



Chapter 1

2 

1.1.1 Renewable Energy Utilization in Urban Rail Transits 

Recent investigations [10–17] have revealed the large-scale renewable energy 

potential of distributed photovoltaics (PVs) and wind turbines using existing URT 

infrastructure such as trackside slopes, elevated station rooftops, and tunnels. So far, 

while distributed wind turbine applications in URTs are at an initial stage, several 

distributed PV demonstration projects have been applied in URTs, as illustrated in the 

Table 1.1 and Fig. 1.1. However, most of the existing projects and studies were utilized 

for non-traction energy supply such as HVAC and lightning. As TN energy consumption 

accounts for 40-60% of the total URT energy consumption [18], it is crucial to realize 

direct power supply from renewable resources to the TN in the near future [19–21].  

   

(a) (b) (c) 

Fig. 1.1 PV projects in (a) Maryland, (b) Shanghai, and (c) Inner Mongolia [21, 22].  

Table 1.1 Typical URT and railway PV projects [21, 22].  

Year Location Parameter Comment 

2013 Beijing 60 kW First solar-powered station in China 

2018 Shanghai 10 MW At vehicle base rooftops

2019 Singapore 1 MW At metro depot rooftops

2024 Inner Mongolia 0.38 MW 
First project for traction energy supply 

in China (high-speed rail) 

2024 Maryland, USA 1.9 MW Under construction 



Chapter 1 

3 

1.1.2 Regenerative Braking Energy Utilization in Urban Rail Transits 

The RB energy is produced by converting train kinetic energy through traction 

inverters during train braking. It is reported that over a third of the total train traction 

energy can be converted to RB energy in some cases [23]. The main RB energy 

utilization schemes include reversible substation, timetable optimization, and energy 

storage system (ESS), as shown in Fig. 1.2.  

The reversible substation enables the feedback of RB energy to the external AC 

power grid. Currently, several available reversible substation systems have been 

developed by Alstom [24], Siemens [25], and Ingeber [26], achieving 7–13% energy 

saving. However, the impact of RB energy feedback and converter harmonics on the 

power quality of the external grid needs to be fully considered and optimized.  

Timetable optimization aims to extend the overlap time of one accelerating train 

and another braking train in adjacent power supply sections so that more RB energy 

can be directly absorbed by the accelerating train [27]. The reported energy saving can 

up to 14% [7]. This scheme does not require additional equipment investment but must 

be strictly subject to train operation requirements, such as punctuality constraints [28]. 

However, during off-peak hours or weekends, the utilization through timetable 

optimization is lower because the overlap occurs less frequently. 

Different from the above schemes which use RB energy immediately, the ESS 

serves as a buffer hub to temporarily store and release RB energy when demanded. 

Their reported energy savings can be up to 30% [7]. The ESSs can be divided into 

onboard and wayside ESSs, where the onboard ESS is installed on the train, and the 

wayside ESS is installed at the substation or trackside. Considering the installation 

space and equipment weight, the wayside ESS has broader application perspectives [29]. 
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In addition, the wayside ESS can also perform multiple functions, such as voltage 

regulation, substation peak load shaving, and power supply for non-railway energy use 

(e.g., electric vehicle charging [30]). Compared with ESS with a single storage medium, 

the state-of-the-art hybrid ESS (HESS) can leverage the advantages of multiple energy 

storage mediums to achieve more efficient and flexible configuration. Considering the 

improvements in renewable–RB energy utilization and the above operation benefits, 

establishing and operating novel URT TNs with advanced energy storage (HESS) and 

enabling technologies (e.g., artificial intelligence (AI) and smart sensors) to promote 

clean energy utilization has become technologically and socioeconomically crucial for 

achieving carbon-neutral transformation of URTs. 

 

 
(a) (b) (c) 

Fig. 1.2 Renewable and RB energy utilization via (a) timetable optimization, (b) 
reversible substation, and (c) energy storage (wayside). 

 

1.1.3 Operation Challenges of Traction Networks with Hybrid 

Energy Storage Systems 

As illustrated in Table 1.2, compared with the high-speed rails, on the one hand, 

URTs possess high-density train services and short distances between stations. On the 

other hand, The real-time URT train operation is more vulnerable to unexpected 

disturbances [31], including passenger flow uncertainty, pedestrian-vehicle conflict 



Chapter 1 

5 

under mixed traffic (for light rails), urban traffic congestion, extreme weather, etc. For 

instance, field tests on a Beijing subway line with an average train running time of 90–

195 s between stations indicated that the range of running time error could reach 15 s 

[32]. In Dutch, the number of severe light rail accidents per kilometer traveled with 

vulnerable road users are 12 times higher than those of cars [33]. These operation 

characteristics have imposed unique challenges on URT TN with HESSs (Fig. 1.3). 

Specifically, at the train level, frequent train acceleration-deceleration can lead to 

remarkable train traction energy consumption and power fluctuations (exceeds 10 MW 

in a few seconds [34]) in the URT TN. Moreover, while the related safety, delay, and 

passenger satisfaction issues need to be addressed, the disturbances have also resulted 

in substantial train load uncertainty. At the substation level, the stochastic volatility of 

the train power and renewable generation has limited the efficient utilization of 

renewable and RB energy via HESSs. Since most traction substations only allow 

unidirectional energy flows from the external power grid to the TN, excessive 

renewable and RB energy not utilized by nearby accelerating trains can cause the rise 

of TN voltage, resulting in stability and thermal management issues [7]. In addition, the 

possible temporal mismatch between tidal passenger demands and peak renewable 

generations can undermine the cost-effectiveness brought by HESS installation. At the 

network level, the geographically and temporally dispersed passenger flows, trains, 

traction substations, HESSs, and renewable distributed generations (RDGs) have 

resulted in highly dynamic and complex energy flows in the URT TN, exacerbating the 

challenges at the train and substation levels. Moreover, with the application of multiple 

sets of HESSs in URTs in the near future, the operation of distributed HESSs (DHESSs) 

requires a thorough investigation to improve their overall application performances. 



Chapter 1 

6 

 
Fig. 1.3 Typical URT TN with HESSs. 

 

In summary, the aforementioned spatial-temporal operation uncertainties and 

complexities have put forward considerable demands on the stable, efficient, 

sustainable, and intelligent operations of HESS-integrated TNs, especially for those 

involving DHESSs. Based on the facts above, this thesis reports using reinforcement 

learning (RL) [35] as a machine learning base technique to develop energy management 

and configuration strategies for the optimal operation of HESS-integrated URT TNs 

from train, substation, and network levels. For the remaining sections, section 1.2 

introduces the existing HESS structure and applications in URTs. Section 1.3 reviews 
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RL principles and algorithms, followed by TN energy management and configuration 

strategies, where RL applications are especially mentioned. Sections 1.4–1.6 illustrate 

the technological challenges, research aim and objectives, and thesis outline, 

respectively.  

 
Table 1.2 Comparison between URTs and high-speed rails.  

Item URT (Subway) URT (Light rail) High-speed rail 

Right-of-

way  
Independent track 

 
Mixed traffic 

 
Independent track 

Range Urban areas Urban areas Inter-cities 

Speed  80 km/h 30 km/h 200–350 km/h 

Station 

distance 
3 km 3 km 30–60 km 

Service 

frequency 

2–5 min 

(Peak hour) 

2–5 min 

(Peak hour) 
Very low 

1.2 Hybrid Energy Storage Systems Applications in Urban 

Rail Transits 

ESSs have been applied to URT TNs for more than twenty years (Table 1.3), where 

supercapacitors, batteries, and flywheels are common energy storage mediums. 

Considering the satisfaction to the huge energy and power demand of the URT TNs and 

the expensive investment and safety issues of flywheels, recent URTs has adopted 

supercapacitor-battery-based HESSs to improve the application performance of ESSs. 

The Enviline HESS of the ABB company has operated in the SEPTA subway system of 
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Philadelphia, USA. In addition to the RB energy recovery function, it also provides 

balancing services to the local electricity grid. In 2021, Enviline HESS was improved 

to support 1500 V DC and has been applied to the Melbourne Metro [36]. In China, the 

750 V DC HESS has been tested in the Beijing Subway in 2020 [37]. 

 
Table 1.3 Typical ESS applications in URTs [7, 36–38]. 

Year Type Location Parameters Comment 

2003 Supercapacitor Mannheim 1 kWh 30% energy saving 

2003 Supercapacitor Madrid 2.3 kWh Voltage stabilization 

2010 Li-ion Kobe 640 V Energy saving 

2010 Supercapacitor Daejeon 10.4 kWh 
Energy saving and voltage 

stabilization 

2012 HESS Philadelphia 2.2 MW 
Energy saving and balancing 

service 

2015 Flywheel Los Angeles 2 MW 10–18% Energy saving 

2020 HESS Beijing 1 MW 10–20% Energy saving 

2021 HESS Melbourne 12.2 kWh Energy saving 

 

As shown in Fig. 1.4, for a typical HESS in URTs, the battery and supercapacitor 

modules are connected in parallel to the DC bus through bidirectional DC-DC 

converters. Under the charge mode, switch S1 (e.g., IGBT) of both converters is off, 

and the energy flows from the DC bus to the HESS. Under the discharge mode, switch 

S2 of both converters is off, and the energy flows from the HESS to the DC bus. The 

control structure of the HESS can be generally divided into four components: the 

voltage threshold adjustment strategy, voltage control loop, power allocation strategy, 

and current control loop (Fig. 1.5). The voltage adjustment strategy determines the 

charge/discharge voltage threshold UCH and UDIS according to the current system status. 
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Then, the voltage control loop compares the referential voltage to UCH and UDIS, and 

generates the referential power by proportional-integral control. Next, the power 

allocation strategy determines the powers of supercapacitor and battery modules and 

generates their referential currents. Finally, the current control loop controls the duty 

ratios of switches (namely, on/off) based on the referential currents. Thus, voltage 

threshold adjustment and power allocation strategies are the key components to realize 

intelligent HESS control.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 1.4 HESS working principles of (a) S2 on, (b) S2 off, (c) S1 on, and (d) S1 off. 
 

 
Fig. 1.5 Typical HESS control structure in URTs [37]. 
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1.3 Literature Review 

1.3.1 Reinforcement Learning Principles and Algorithms 

 

Fig. 1.6 RL principle and history. 
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1.3.1.1 Reinforcement Learning Principles 

RL (Fig. 1.6) is the third basic technique in machine learning, in addition to 

supervised learning (SL) and unsupervised learning. The goal of RL is to learn a 

sequential optimal policy (e.g., a control strategy) by continuous interaction with the 

environment to maximize long-term returns. The RL can be model-free, which means 

it can estimate the optimal policy based on the experiences gained from the repeated 

interaction without prior knowledge of the environment model [35]. Compared with 

conventional model-based optimization methods, the advantages of RL lie in the 

following aspects: 1) RL avoids frequent execution of a complex optimization model 

for each environment state. 2) While model-based methods rely on accurate prediction 

data and exact modeling of uncertainty probability distributions, which are difficult to 

obtain in practice and the solving process is time-consuming, RL enables adaptive 

response to varying environment states without knowing these parameters. 

The learner of RL is called an agent, and the agent-environment interaction process 

is defined as a Markov decision process (MDP), which contains five components 

, , , , . s  is the state of the environment, a  is the available action of 

the agent, r  is the instant reward when state ts  transitions to 1ts  at time step 

t  ,   is the state transition function,   is the discount factor that represents the 

relative importance between current and future rewards. Besides,   is the policy, 

which represents the probability of executing action ta  at state ts . The MDP assumes 

the Markov property of all states, which means that the next state only depends on the 

current state. Based on the MDP, the state-action value functions can be defined as  

 , | , ,t t ti
T i t

i tt
s a rQ s a  (1.1) 
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where ,t tQ s a  is the state-action value function (also known as the Q value), namely, 

the expected return of executing action ta  at state ts  following the policy . 

Based on the Bellman function [39], the expected return *Q  under optimal policy 

*  (namely, the maximum cumulative discounted return) is 

 *
1

* *
1 1, max , ,

t
tt t t ta

Q s a r Q s a  (1.2) 

where by definition, *Q  is the objective of the MDP. Thus, *  can be derived by  

 
*

* 1, arg max ,
0, Otherwise

,|
.

t t
t t

sa Q aa s  (1.3) 

While the MDP well-defines the environmental interaction process of a single 

agent, it is not suitable for considering the involvement of multiple agents with 

cooperation and/or competition relationships. The multi-agent-environment interaction 

process is described by the Markov game [40], which contains 6 components 

, , , , ,i iI . I  is the number of agents,  is the state set observed by all agents, 

i  is the action set of agent i, i  is the reward received by agent i. The relationship 

of agents can be cooperative, competitive, and mixed. In the cooperative setting, all 

agents can share a common reward, and they can be regarded as one agent to enable the 

single-agent RL algorithms. Another more general cooperative setting is to assign 

different rewards to agents and consider a team-average reward. In the competitive 

setting, it is essentially a zero-sum Markov game, where the reward of one agent is the 

loss of the other, and the sum of agents’ rewards is zero. The Nash equilibrium will 

yield a robust policy that optimizes the worst-case long-term return. In the mixed setting, 

no clear constraint is imposed on agents.  

1.3.1.2 Reinforcement Learning Algorithms 

Initially, the classic Q learning algorithm was proposed for a fully observable 

environment with discrete action space [41]. Then, RL was enhanced by integrating 
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deep neural networks for value and/or policy representation, which makes it suitable 

for handling high-dimensional complex decision-making problems.  

Single-agent RL algorithms can be divided into value-based and policy-based 

algorithms. The value-based RL aims to learn the value of states and Q functions, where 

the deep Q network (DQN) [42] was the first attempt. In DQN, an experience reply 

mechanism was used to store the agents environmental interaction data . At each 

training step, the DQN updates the parameters by minimizing the loss 

 
1

2

~ , ~ 1 1max , , ,
w w

w
r s w w w waw s a sr Q Q a�  (1.4) 

where data 1, , ,w w w ws a s r  are randomly extracted from the experience replay buffer. 

  is the deep neural network parameter. Based on DQN, various extensions were 

developed to improve its performance [43–46]. 

Policy-based algorithms directly learn the optimal policy * . For instance, in [47], 

two networks (the actor and critic) were utilized to update the value function and policy 

function parameter, respectively. In [48], parallel actor-environment interactions were 

allowed, and asynchronous training was executed. In [49], the Kullback–Leibler 

divergence constraint was applied to policy updates for training stability. In [50], a 

truncated alternative objective function is used for simplifying the above method. In 

[51], a deep deterministic policy gradient was proposed, which implemented a soft 

update on target networks for training stability and added stochastic noises in the actor 

for exploration efficiency. In [52], TD3 was proposed to improve the above method by 

suggesting delaying policy updates for mitigating value overestimation.  

For multi-agent environments, the initial attempt is to take other agents as part of 

the environment and solve by single-agent algorithms [53]. Although satisfactory 

performance can be achieved in practice, convergence is not theoretically guaranteed. 
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According to the training paradigms, multi-agent RL algorithms can be divided into 

distributed and centralized training algorithms. Distributed training assumes 

information exchange between agents through communication networks to mitigate the 

non-stationary training issue. Generally, the agents share network weights or gradients 

(namely, parameter sharing) [54, 55]. For centralized training, it assumes a centralized 

controller that can collect the joint states, actions, and rewards of all agents. 

Considering the convenience of practical applications, extensive efforts have been 

made on centralized training and decentralized execution architecture. In this regard, 

the representative value-based multi-agent RL algorithms are VDN and QMIX [39, 56], 

which learn a centralized Q value function. The representative policy-based algorithms 

include COMA, MADDPG, and MATD3 [57–59], which utilize joint state and action 

to train the centralized critic network.  

Despite the impressive progress, RL training was less efficient in complex 

environments with rich and dynamic data [60, 61]. To address this issue, one direction 

is to utilize a combination of RL and SL (namely, supervised RL), which has been 

explored in areas of recommendation systems [62], healthcare treatment [63–65], and 

automatic driving/navigation [60, 66]. In [62–64], SL provides a supervision signal to 

RL to learn a hybrid policy. Since RL may suffer from value overestimation, the 

introduced supervision can be a counterbalance to avoid focusing on the long-term 

return while sacrificing too much. In [60], supervised training data were utilized to 

provide candidate action for RL agents. Moreover, in [65, 66], self-supervised learning 

was implemented to generate extra rewards for RL calibration.  

On the other hand, the complexity of the RL task can be reduced by decomposing 

it into multiple components or subtasks. The multi-task RL aims to train a single and 
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universal policy that can be applied to a set of tasks, where each task has a unique MDP. 

In [67–69], the RL agent leverages shared knowledge between tasks. In [70], a well-

learned RL policy is utilized as a start point to be transferred to new tasks via transfer 

learning. Besides, several multi-task learning techniques, such as gradient manipulation 

[71, 72] and loss function weight adaption [73], were introduced into RL training 

updates to address cross-task conflicts. Besides multi-task RL, another task-based 

approach is curriculum RL [74], which trains on simple tasks and gradually increases 

the task difficulty to improve learning efficiency. For instance, in [75, 76], curriculum 

RL was implemented to generate energy-saving car-following strategies. In [77], 

curriculum RL was utilized for energy management optimization of hybrid electric 

vehicles.  

In summary, as a novel sequential decision-making method, RL has the advantages 

of being model-free and able to handle high-dimensional nonlinear objectives, which 

has inspired this thesis to introduce it into the energy management and configuration of 

HESS-integrated URT TNs.  

1.3.2 Energy Management and Configuration Strategies 

1.3.2.1 Energy Management Strategies 

1) Train Level: Train-level energy management aims to realize energy-efficient 

train driving, where the train trajectory is regulated automatically to minimize traction 

energy consumption while ensuring other objectives, such as safety, punctuality, and 

passenger satisfaction of services [8, 78]. In this regard, the onboard automatic train 

operation (ATO) system is responsible for determining all train acceleration and braking 

commands (namely, train trajectories) through rigorous computation [79].  
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Various train trajectory optimization (TTO) methods have been developed for the 

ATO operation, which can be categorized as analytical, numerical, heuristic, and RL-

based methods. The analytical methods [78, 80–84] are based on Pontryagin’s 

maximum principle [85], where the optimal train trajectory was defined as a sequence 

of optimal control regimes and their switching points. Although the theoretical optimal 

solution can be guaranteed, finding such a solution can take substantial computational 

time since real-world URT lines include special sections such as curves, slopes, and 

tunnels. Numerical methods [86–91] (e.g., dynamic programming, pseudo-spectral 

method, etc.) were proposed to find near-optimal solutions within feasible 

computational time. Alternatively, heuristic methods [92–96] (e.g., genetic algorithm 

(GA)) can provide solutions, but their theoretical optimality is not always guaranteed. 

 

 
Fig. 1.7 Example of RL-based TTO model design [97]. 

 

However, most studies assume train trajectories to be optimized and embedded on 

the ATO in advance of real-time operation [98], which is insufficient to address real-

time train operation disturbances. Moreover, these disturbances and uncertain train 
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parameters [90] bring considerable challenges to the URT system modeling and 

forecasting. Compared with the above model-based TTO methods, the model-free RL 

algorithms can effectively handle these uncertainties. In [97], RL is first introduced into 

the TTO, where it was capable of adjusting trajectories dynamically between two 

stations. They [32] further utilized Q learning to address discrete train forces and 

uncertain delays, where the results show superior performance over MD and the 

existing ATO system. In [99], RL was combined with the long short-term memory to 

enhance its TTO performance. However, modern URT trains can output continuous 

traction force, and the dynamic trajectory adjustment capability of trains within the full 

running time range was not tested. In [100], RL was combined with expert knowledge 

rules to solve the TTO and can deal with the continuous train traction force. In [101], 

RL was combined with a reference system for proactive operation constraint handling. 

However, the on-road accidents and the dynamic trajectory adjustment capability were 

not considered in these works.  

2) Substation Level: Based on non-real-time (historical and forecasting) load and 

RDG data, various energy management strategies for traction substation with an ESS 

have been proposed, which were mainly based on stochastic programming [30, 102], 

robust optimization [103], model predictive control [104, 105], and heuristic methods 

[106]. They are generally carried out on a time scale from minutes to days. Nevertheless, 

the real-time uncertainty and volatility of the traction load, RB, RDG output, passenger 

demands, etc., have not been addressed. 

The real-time energy management strategies, alternatively, can be divided into 

rule-based, optimal-control-based, and RL-based strategies. In terms of rule-based 

strategies, the optimal operation rules can be either determined by tracking ESS state-
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of-energy (SoE) [107, 108] or comparing the TN voltage with its voltage thresholds [20, 

109–112]. Some recent studies have investigated dynamic threshold control to better 

adapt to the URT TN operation characteristics [37, 113]. However, only [20] has taken 

RDGs into account. Besides, these rule-based strategies are easy to implement but 

heavily depend on intuition and experience. Considering the dynamic operation 

environment of TNs, the optimal rules can be difficult to set. Regarding optimal-

control-based strategies, in [114] and [115], the optimal strategy was obtained by the 

Euler-Lagrange equation and Lagrange multipliers, respectively. These methods can 

handle a specific operation condition, while their adaptability to various train operation 

conditions can be inadequate. In [116], dynamic programming was applied to minimize 

the braking resistor loss. However, dynamic programming-based methods can suffer 

from the curse of dimensionality. In [117], a hierarchical control strategy was proposed, 

where a state machine was introduced in the energy management layer, and a multi-

objective optimization algorithm was proposed in the converter layer. In [118], a 

comprehensive model integrating train control, substation output, and HESS was 

developed, and a model predictive control framework was proposed to minimize energy 

consumption. In [119], a bi-level multi-objective optimization was performed 

considering substation operation stability based on particle swarm optimization with 

compression factor. Nevertheless, their performance is affected by prediction accuracy. 

So far, only a few studies have been presented on RL-based strategies. In [120], 

DQN was utilized to adjust the voltage thresholds of a supercapacitor-based ESS for 

energy saving and voltage stabilization. In [121], TD3 was adopted to allocate HESS 

power with similar objectives. In [122], a parallel RL framework was established to 

improve energy utilization efficiency with a fast convergence speed.  
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3) Network Level: With the increasing integration of RDGs into URT TNs, a few 

recent studies have concerned the coordinated operation of multiple networked 

substations with DHESSs. Similar to the substation level, some studies [123–126] have 

formulated day-ahead and intraday scheduling plans based on non-real-time data. For 

instance, in [123], the optimal operation of a TN with PVs, wind turbines, 

supercapacitors, and batteries was formulated as a multi-period optimal power flow 

problem and solved by nonlinear programming. For real-time strategies, in [127], a 

novel optimization method based on GA was proposed to jointly consider the energy 

management, location, and size of supercapacitor-based distributed ESSs for obtaining 

optimal economic efficiency and voltage profile. In [128], a control strategy based on 

energy transfer was proposed for peak power shaving. According to the load 

characteristics of the URT TN, part of the RB energy absorbed by battery-based 

distributed ESSs was transferred from off-peak hours to peak hours for release. In [129], 

A dynamic priority-based power allocation strategy was developed to optimize the 

DHESS operation, where the on-board supercapacitors were utilized to accommodate 

the train traction energy demand, and the in-station batteries were responsible for 

voltage stabilization. In [130], a multi-time scale coordinated energy management 

strategy was proposed for supercapacitor-based distributed ESSs based on a genetic and 

fuzzy algorithm. The simulations reported superior performance compared with 

existing strategies using a single time scale. For RL-based strategies, in [131], a 

decentralized multi-agent cooperative control algorithm was proposed for the 

coordination of supercapacitor-based DHESSs. Nevertheless, these strategies were 

performed without considering RDGs. In [132], a real-time control strategy under a 

centralized control scheme was presented for a multi-source traction system integrating 
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the conventional TN, PVs, wind turbines, and ESSs. The case studies reported an 

energy-saving rate of 36% and a peak power reduction rate of 46%. In [133, 134], a 

centralized-decentralized energy management framework was developed to address 

multiple operation objectives of a mainline railway and was evaluated by a field test.  

Furthermore, several real-time energy management strategies have been 

developed for other electrified railways [135–138]. However, these approaches may not 

be suitable for HESS-integrated URT TNs since the operation characteristics of URTs 

(i.e., headway changes and passenger flow fluctuation) and their impacts on PV–RB 

energy utilization require further consideration. 

1.3.2.2 Configuration Strategies 

In this subsection, the current status of existing research on the optimal 

configuration strategies of HESS-integrated URT TNs in terms of the train trajectory 

and ESS is introduced. Conventionally, each running section is equipped with 3–5 

available train trajectories for the ATO system selection, where each trajectory makes a 

trade-off between running time and energy consumption to different degrees [139–141]. 

Recently, considering the short distance between stations and the increasingly frequent 

train services to address passenger demands, in [142, 143], a multi-objective particle 

swarm optimization were performed to generate Pareto front of train trajectories for 

more flexible train scheduling. In [144], considering the uncertainties in train operation, 

a two-stage energy-efficient timetable design method was proposed to reduce train 

delays based on an optimal running time-energy consumption solution set. In [145], a 

preference dominance criterion was proposed to handle the train mass uncertainty, and 

a set of performance-robust driving schemes can be obtained. However, these Pareto 

solutions only consider energy saving and punctuality as the main objectives, while 
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other factors, such as safety and riding comfort, need to be considered simultaneously. 

So far, the optimal configuration strategies for ESSs primarily consider the impact 

of their energy management strategies, TN topologies, and/or train service patterns [121, 

146–150]. To name a few, In [146], the capacities of ESSs were determined by 

predicting the maximum RB energy delivered to each substation. However, the power 

and energy limits of an actual ESS were ignored, which can lead to practically infeasible 

configuration solutions. In [149, 150], deterministic and stochastic programming were 

performed to investigate the optimal configurations and energy management strategies 

of the ESS jointly under different operation scenarios for a catenary-free tramline. In 

fact, the energy flows of the TN are the result of the combined impacts of trains, 

substations, and ESSs. Recently, some studies have investigated the joint optimization 

of ESS and other TN parameters. In [151], the energy-efficient train timetable and 

onboard ESS capacity allocation were jointly optimized, where each train was allowed 

to carry an onboard ESS with different capacities. Although the RB energy utilization 

shows a significant increase, the simplified physical model of the ESS (e.g., ignoring 

ESS size and weight limits) undermines the effectiveness of the result. In [152], a 

timetable optimization model considering ESS installation was proposed, where its 

performance under several ESS configuration scenarios was compared. In [153], 

another timetable optimization model with minimum time overlap was developed to 

match the deceleration and acceleration time of trains with the ESS working properties. 

The theoretical maximum RB energy was obtained, which can be a reference to set ESS 

capacities. Nevertheless, the energy conversion loss, transmission loss, and the ESS 

physical power limits were not considered in these studies. In [154], the ESS size, train 

timetable, RB control parameter, and no-load voltage were synthetically optimized 
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based on a multi-train operation simulator. However, the passenger flow fluctuations 

were ignored. 

Currently, the research on ESS configuration is primarily carried out without 

considering the integration of RDGs. Besides, the optimal capacity allocation among 

different energy sources and locations of DHESSs requires further investigation. More 

importantly, the optimal synergy of the configuration strategy, energy management 

strategy, and train operation parameters (e.g., RB control parameter and timetable) has 

been crucial for the optimal planning and operation of HESS-integrated URT TNs. 

1.4 Technological Challenges and Limitations  

Compared with various model-based energy management and configuration 

strategies, such as rule-based and optimal-control-based (including heuristic-based) 

strategies, the RL-based strategies do not rely on accurate system modeling and 

uncertainty predictions [79, 155] while generating end-to-end sequential decision-

making solutions for online applications instead of frequent execution of a complex 

optimization model for each environment state. Leveraging these advantages, some 

achievements of RL-based strategies have been made regarding the energy 

management and configuration issues within the HESS-integrated URT TNs. However, 

the spatial-temporal uncertainties and complexities of the URT TN operation 

environment arising from passenger demand, urban traffic congestion, widespread 

distribution, operational disturbances, etc., plus the pressing need for carbon-neutral 

transformation have imposed significant challenges and limitations to existing RL-

based strategies in terms of the stable, efficient, sustainable, and intelligent operations 

of the HESS-integrated URT TNs, especially for those involving DHESSs. Specifically: 
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1) At the train level, due to the short running times between stations and frequent 

disturbances in URTs, even short delays that last for several seconds can lead 

to knock-on delays, resulting in extra traction energy use and decreased ride 

comfort to guarantee punctuality. The insufficient capability of the ATO-based 

technologies in terms of calculation and adjustment of energy-efficient 

trajectories online in response to uncertain disturbances and adapting to 

rescheduled trip times significantly limit their application prospects. Thus, it 

is urgent to address the energy-efficient TTO (EETTO) and its associated 

safety, punctuality, and ride-issues under real-time uncertain disturbances to 

enhance the ATO performance. However, existing RL-based methods [32, 97, 

99–101] only addressed one or several objectives in this regard, and therefore, 

a more thorough consideration is needed. Besides, viable trajectory 

configuration suggestions based on the EETTO are required for practical use.  

2) At the substation level, regarding HESS-integrated URT TN operation, few 

studies [119, 154] focused on both sizing and real-time control, while none of 

the sizing strategies was incorporated with an RL-based energy management 

strategy. Although several RL-based energy management strategies have been 

employed [120–122], they focused on learning individual strategies for each 

specific train headway and/or train mass task. Considering the same TN 

topology these tasks shared, it is beneficial to leverage shareable cross-task 

experience to improve RL performance and data efficiency. In addition, the 

joint optimization of voltage threshold adjustments and power allocations to 

fully explore the flexibility in the HESS power regulation has not been 

involved, substantially undermining its economic operation.  
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3) At the network level, for DHESS-integrated URT TNs operation, besides the 

above substation-level challenges, on a short time scale (within seconds), the 

coordination of DHESSs for the optimal complementation of solar, RB, and 

electricity energy and real-time uncertainties lacks a thorough investigation 

[131, 138]. More importantly, it is necessary to adopt an adaptive and 

decentralized DHESS control scheme to handle single-point failure, 

communication burden, and scalability issues. On the other hand, on a long 

time scale (sub-hourly or hourly), the daily train service pattern changes and 

temporal mismatches between peak PV output and peak passenger demand 

require optimal dispatches of DHESS outputs. Nevertheless, except for the 

heuristic-based strategy in [130], the synergetic consideration of multiple time 

scales has not been addressed.  

4) In addition, existing works have not fully characterized the multi-source 

operation uncertainties of HESS-integrated URT TNs, e.g., only a few studies 

[148, 156, 157] partially considered the impacts of passenger flows, delays, 

and/or temporary traffic regulations on the HESS and/or DHESS control. 

Moreover, the spatial-temporal uncertainties and correlations of dispersed PVs 

and passenger demands have strengthened the complexity of the energy 

management and configuration problem. 

1.5 Research Aim and Objectives 

The aim of this thesis is to develop RL-based energy management and 

configuration strategies for HESS-integrated URT TNs, targeting three different levels 

of automatic train operation, HESS-integrated traction substation operation, and 

DHESS-integrated TN operation. In detail, it includes the following objectives: 
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1) At the 1st (train) level, developing a supervised RL-based energy-efficient 

train trajectory optimization (SRL–EETTO) approach to expand the ATO 

system capability in addressing the real-time responsiveness and dynamic 

online challenges to energy-efficient TTO and its associated safety, punctuality, 

and ride comfort issues. 

2) At the 2nd (substation) level, proposing a multi-task RL-based sizing and 

control optimization (MTRL–SCO) approach to enhance the coordinated 

operations of HESSs and their integrated traction substations under dynamic 

spatial-temporal traffic of URTs. 

3) At the 3rd (network) level, presenting a multi-task multi-agent RL-based 

multi-time scale energy management (MTMARL–MTSEM) approach to 

promote the economic and low-carbon operation of DHESS-integrated TNs 

considering operation uncertainties of URTs and RDGs.  

4) Furthering the 3rd (network) level, extending a multi-task multi-agent RL-

based data-driven multi-objective configuration optimization (MTMARL–

DDMOCO) approach to improve the synergy between the economic and 

energy efficiencies of DHESS-integrated TN operation and the travel time of 

the passengers.  

1.6 Thesis Outline 

This thesis presents the work on RL-based energy management and configuration 

for URT TNs with HESSs as follows. 

Chapter 1 introduces the research background and significance, followed by 

literature reviews of RL algorithms, typical energy saving and emission reduction 

measures, energy management strategies, and configuration strategies. Then, the rest of 
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this chapter analyzes the technological challenges of existing studies and summarizes 

the research aim and objectives of this thesis.  

Chapter 2 begins with the formulation of the train control model considering real-

time train operation disturbances. Then, the proposed SRL–EETTO approach is 

presented with MDP formulation for model design, followed by developing a 

supervised twin-delayed deep deterministic policy gradient algorithm for model 

training. Finally, case studies are investigated for model verification.  

Chapter 3 illustrates the structure and modeling of HESS-integrated traction 

substations in TNs, followed by the formulation of the HESS sizing and control 

optimization model and the analysis of HESS control parameters and URT operation 

uncertainties on the operation cost and RB energy utilization. Then, the proposed 

MTRL–SCO approach is developed with the formulation of the dynamic traffic model, 

the multi-task MDP, and a novel KT-D3QN algorithm. Finally, the effectiveness of the 

proposed MTRL–SCO approach is validated. 

Chapter 4 starts with the structure and modeling of DHESS-integrated TNs. Then, 

the tri-level framework of the proposed MTMARL–MTSEM approach is formulated, 

including a two-stage stochastic scheduling model at the upper and middle levels and a 

real-time energy management algorithm at the lower level. Representative daily TN 

operation scenarios are selected to demonstrate the performance of the proposed 

MTMARL–MTSEM approach. 

Chapter 5 states the formulation of the multi-objective optimization model 

considering the electrothermal aging of batteries. Then, the proposed MTMARL–

DDMOCO approach is presented, consisting of the ensemble-learning-based load 

prediction modeling and the data-driven implementation of the non-dominated sorting 
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genetic algorithm based on the developed MTMARL–MTSEM approach. Finally, the 

configuration decisions of the proposed MTMARL–DDMOCO approach are analyzed 

thoroughly.  

Chapter 6 concludes the major findings of this thesis and indicates the future 

directions of the following works.  

 
Fig. 1.8 Thesis outline. 
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Chapter 2: Energy-Efficient Train Trajectory Optimization 

for Automatic Train Operation Based on Supervised 

Reinforcement Learning 

Nomenclature in this chapter 

A. Supervised Reinforcement Learning Elements 

a , a  Actions of agent and target agent 

B Replay buffer 

DP Delayed policy update frequency 

aJ , aJ , sJ , cJ  Weighted actor loss, actor loss, supervision loss, and critic loss 

*Q , Q  Expected return and its value when gr r  

r , gr , r  Reward, goal-state reward, and reward per time t  

Tr , Er , Cr  Coefficients of gr  

s , ss , gs  Agent state, supervisor state, and goal state 

s  Weight coefficient of supervision loss 

* , , sl  Optimal agent policy, agent policy, and supervisor policy 

 Discount factor 

 Soft update rate 

a , c  Learning rates of actor and critic networks 

, , ,  Sets of actions, rewards, states, and transitions 

,  Parameters of actor and target actor networks 

,  Parameters of critic and target critic networks 
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B. Indices 

{1,2, , }i I  Index of stations or traction substations 

{1,2, , }m M  Index of supervisors 

{1,2, , }w W  Index of transitions sampled from replay buffer 

C. Time Scales 

t ,T  Current time step and time horizon on a short time scale for real-

time train and HESS control (e.g., sub-minutely) 

D. Variables 

TRa , TRv , TRx  Train acceleration (m/s3), speed (m/s), and position (m) 

bd , do  Disturbances before departure and during operation (s) 

TBF  Traction or braking force of the train (N) 

TOTM  Total train mass (kg) 

bR , lR , cR , tR  Basic, line, curve, and tunnel resistances (N) 

bd bd
dt , do do

dt  Running time changes and their distributions caused by 

disturbances bd  and do  (s) 

ACTT , PLT , RTTRT  Actual, planned, and rescheduled running times (s) 

ACT
ex , ex  Actual and planned end positions where the train stops (m) 

dx  Position where the train receives rescheduling notifications (m) 

TUx  Length of tunnel (m) 

SA  Slope angle (°) 

R  Curve radius (m) 

E. Parameters 

ACC
lima , DCC

lima  Train acceleration and deceleration limits (m/s3) 

DCC
eba  Minimum deceleration for emergency train braking (m/s3) 
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b  Train acceleration or deceleration constraints according to expert 

knowledge rules (m/s3) 

1c , 2c , 3c  Coefficients of the Davis formula 

vI , pI , tI , eI , cI  Evaluation Indices for on-road speed limit violation (times), 

stopping accuracy (m), punctuality (s), energy saving (J/(km·kg)), 

and ride comfort (m/s3) 

limT , limE , limC , limp  Tolerances for punctuality (s), energy saving (J/(km·kg)), ride 

comfort (m/s3), and stopping accuracy (m) 

TR
limv  On-road speed limits (m/s) 

r  Train rotating mass factor (kg·m2) 

x  Safe braking distance (m) 

2.1 Background 

Nowadays, scholars have investigated various energy-efficient train trajectory 

optimization (EETTO) methods for enhancing automatic train operation (ATO) system 

performances (literature reviews in section 1.3). Nevertheless, the EETTO and its 

associated ride-comfort, punctuality, and safety issues under uncertain disturbances and 

rescheduled trip times in modern urban rail transits (URTs) require comprehensive 

consideration (train-level challenges in section 1.4). Therefore, this chapter focuses on 

developing a three-step supervised reinforcement learning-based energy-efficient train 

trajectory optimization (SRL–EETTO) approach for intelligent automatic train 

operation (iATO) by hybrid-integrating reinforcement learning (RL) and supervised 

learning (SL) at the 1st (train) level. Specifically, the main contributions of this chapter 

are outlined as follows: 
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 The real-time train control model under uncertain disturbances is formulated 

as a Markov Decision Process (MDP). A binary function-based goal-directed 

reward design method is proposed to systematically integrate multiple real-

time train operation objectives associated with energy saving, ride comfort, 

punctuality, and safety into the MDP. A fine-tuning process based on bilinear 

programming is used to correct RL reward parameters toward optimal states. 

 A two-step supervisor-actor-critic (SAC) architecture based on a supervised 

twin-delayed deep deterministic policy gradient (S-TD3) is devised to 

generate optimal train trajectories online. While the first step develops 

multiple EETTO models to obtain optimal fixed-time train trajectories, the 

second step improves model generalization capability within the practical 

running time range by simultaneously optimizing traction energy efficiency 

and learning supervisory actions from pre-trained EETTO models. 

Finally, simulations are implemented to validate the effectiveness of the SRL–

EETTO. Section 2.2 states the problem formulation, including the illustration of the 

real-time train operation process and the train control model. Section 2.3 illustrates the 

SRL–EETTO approach, including an overview of the optimization process and EETTO 

model design, training, and verification. Section 2.4 reports case studies and their 

results. Section 2.5 gives the summary. 

2.2 Problem Formulation 

2.2.1 Automatic Train Operation Principle 

The ATO system operates under an advanced onboard automatic train control 

(ATC) system, and the ATC system is responsible for regulating the train operation 
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according to one or several referential train trajectories and fulfilling specific 

operational requirements such as safety and punctuality. Besides the ATO system, a 

typical ATC system [12] also consists of an automatic train protection (ATP) system 

and an automatic train supervision (ATS) system (Fig. 2.1).  

 

 

Fig. 2.1 ATC system realization. 
 

The primary function of the ATP system is to prevent train accidents by 

automatically monitoring and controlling the trains speed and movement  according to 

the safety speed profile and the safe operating distance between the trains. The ATS 

system is responsible for train schedule creation and updates, automatic routing 

optimization, operation data collection and analysis, and train status supervision. The 

ATO system calculates the optimal referential train trajectories according to the 

predetermined timetable and line data. 

Fig. 2.2 illustrates the real-time train operation process. The planned running times 

between stations are denoted as PL
1,2T , …, PL

, 1i iT , …, PL
1,I IT . When disturbances occur, 

the train timetable can be rescheduled, where the planned trip time PL
, 1i iT   between 
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station i and i+1 can be changed to RTTR
, 1i iT   in real-time. Based on RTTR

, 1i iT  , the train 

trajectory can be re-optimized by the ATO. Correspondingly, the actual running times 

can be denoted as ACT
1,2T , …, ACT

, 1i iT , …, ACT
1,I IT . From the fact above, finding the optimal 

train trajectories online is crucial to the ATO system operation.  

 

 
Fig. 2.2 Real-time train operation process. 

 

2.2.2 Train Control Model 

Generally, the train motion equation is written as 

 
TR TR

TOT TR TR TB TR TR TR
b l

d ( )( ) ( ) ( ) ( ),
dr

v xM v x F v R v R x
x

 (2.1) 

 
TR

TR TR TR
d ( ) 1 ,

d ( )
t x

x v x
 (2.2) 

where TRx  is the train position, TOTM  is the total mass of the train, TB TR( )F v  is the 

traction or braking force, TR
l ( )R x  is the line resistance at position TRx , TR

b ( )R v  is 

the basic resistance at speed TRv , TR TR( )v x  is the train speed at TRx , TR( )t x  is the 

time at position TRx , r  is the rotating mass factor,. 

TB TR( )F v  is bounded by the maximum traction and braking forces. In reality, the 

maximum traction force is not a constant but a function of the speed TRv . According 

to [98], nonlinear functions of a group of hyperbolic or parabolic formulas can be used 
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to approximate the maximum traction force. For maximum braking force, due to safety 

concerns, it is only reserved for an emergency stop. Thus, the maximum braking force 

in this chapter is considered a constant that is much smaller than the actual maximum 

braking force.  

The basic resistance TR
b ( )R v  is a quadratic function of speed, where 1c , 2c , and 

3c  are the coefficients of train characteristics. TR
b ( )R v  can be described as [158] 

 
2TR TR TR

b 1 2 3 .( )R v c c v c v  (2.3) 

The line resistance TR
l ( )R x  includes the resistance introduced by slopes, curves, 

and tunnels on the track, which is formulated as  

 TR TOT SA TR R TR TU TR
l c t( ) sin( ( )) ( ( )) ( , ),R x M g x R x R x v  (2.4) 

where g is the gravity acceleration, SA TR( )x   is the slope angle at position TRx  , 

R TR
c ( ( ))R x   is the curve resistance when the radius of the curve at TRx   is R  , 

TU TR
t ( , )R x v  is the tunnel resistance, TUx  is the length of the tunnel.  

The empirical curve resistance formula [158] is given as follows 

 

TOT
R TR

R TR
R TR

c TOT
R TR

R TR

6.3 , ( ) 300m,
( ) 55

( ( ))
4.91 , ( ) 300m.

( ) 30

M x
x

R x
M x

x

 (2.5) 

For tunnel resistance, if the tunnel exists a limiting gradient, namely, the maximum 

gradient that can be climbed without the help of a second power unit, TU TR
t ( , )R x v  is 

calculated by [98, 158] 

 TU TR 9 TU TOT TR 2
t ( , ) 1.296 10 ( ) .R x v x M g v  (2.6) 

If the tunnel has no limiting gradient, 

 TU TR 7 TU TOT
t ( , ) 1.3 10 .R x v x M g  (2.7) 
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The train operation is subject to the following constraints,  

 DCC TR TR ACC TR
lim lim e( ) , [0, ],a a x a x x  (2.8) 

 TR TR TR TR
lim e( ) , [0, ],v x v x x  (2.9) 

 TR TR PL ACT
e lim(0) 0, ( ) 0, (0) 0, | | ,v v x t T T T  (2.10) 

where TR TR( )a x   is the acceleration at position TRx  , DCC
lima   and ACC

lima   are the 

deceleration and acceleration limits, respectively, TR
limv  is the on-road speed limit, ex  

is the end position where the train stops, limT  is the punctuality tolerance (maximum 

allowed trip time error), PL ACT| |T T  is the absolute difference between the planned 

running time and the actual running time (trip time error), ACT
e( )T t x . 

We use  do   and bd   to denote rescheduling commands or disturbances 

during operation and before departure, respectively. The uncertain trip time changes 

caused by do  and bd  are defined as do
dt  and bd

dt , respectively. Suppose the train 

receives notifications of the rescheduled command at position d e[0, )x x ,  

 
PL bd bd bd bd

d dRTTR
d ePL do do do do

d d

, ~ if
[ , ],

f

, ,

,, ~ , i

T t t
T x x x

T t t
 (2.11) 

 RTTR ACT PL ACT bd ACT do
d d lim| | | ( or ) | ,T T T T t T t T  (2.12) 

where do  and bd  are the time error distribution of do  and bd , respectively. 

2.3 SRL–EETTO Approach 

2.3.1 Approach Overview  

To optimize the train trajectory online, an SRL–EETTO approach is proposed, 

which contains three steps: the model design, training, and verification steps (Fig. 2.3). 

At the model design step, the essential elements of the SRL environment are designed. 

First, the train operation features, including train operation states and constraints, are 
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extracted, and multiple operation objectives (energy saving, ride comfort, punctuality, 

and safety) are formulated to establish evaluation indices for optimal train trajectory. 

Then, the SRL elements (state, action, and reward) are defined based on the train 

operation states and the evaluation indices.  

 

 
Fig. 2.3 Overview of SRL–EETTO. 

 

At the model training step, the SAC architecture is adopted and a two-step training 

is implemented (Algorithm 2.1 and Algorithm 2.2). First, multiple EETTO models are 

pre-trained through the standard agent-environment interactions to serve as supervisors. 

These supervisors are pre-trained without using human driving data or ATO reference 
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trajectories, which avoids the prior data collection process. Besides, each supervisor 

has a fixed but different planned running time PLT  within the practical running time 

range. This is to generate multiple optimal train trajectories on different planned trip 

times for agent learning to improve its generalization capability on disturbances or 

rescheduled trip times. Then, for the second step, an intelligent agent is trained under 

the supervision of supervisors.  

At the model verification step, the well-trained agent, namely the EETTO model, 

is tested by various cases that simulate real-world situations to verify its model 

performance and illustrate its practical usage.  

2.3.2 Model Design 

2.3.2.1 Operation States, Constraints, & Evaluation Indices 

According to the train operation states, such as the train position, speed, reserved 

trip time [159], and acceleration, the real-time train acceleration (deceleration) 

constraints b   can be calculated using (2.8)–(2.12). Besides, to ensure safety and 

reduce the complexity of the problem, the following rules derived from expert 

knowledge of experienced drivers and ATOs are added: 1) A safe braking distance 

2 DCC
lim / 2 ebx v a   is defined. Once the distance between the current train position 

TRx  and the next station is less or equal to x , the train must decelerate in a constant 

TRa  for emergency brakes. DCC
eba -1 m/s2 [100]. 2) TRa 0 whenever the speed of 

the train reaches 95% of the speed limit. 

The optimal train trajectory generated by the proposed approach should be 

evaluated in various aspects, including safety (on-road speed limit restriction and 

stopping accuracy), punctuality, energy saving, and ride comfort. Correspondingly, 
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indices vI , pI , tI , eI , and cI  are formulated [79, 100] 

 
TR

lim1, if
0, Otherwise

,
,v

v vI  (2.13) 

 ACT
e e| |,pI x x  (2.14) 

 RTTR ACT| |,tI T T  (2.15) 

 e TB TR
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TR TR
3

0
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0, Ot r

,

he wise,

T
c

a atI t t  
(2.17) 

where ACT
ex  is the actual distance between stations.  

The key elements of the MDP are formulated as follows to implement SRL. 

2.3.2.2 State & Action 

For the agent, its state s  contains train position, speed, and reserved trip time. 

For supervisors, their state ss  only contains train position and speed. This is because 

they do not need to observe PLT   since it is fixed. The initial state is defined as 

PL
0 [0,0, ]s T   and s

0 [0,0]s  . Action a   is the acceleration of the train, where the 

action space is bounded by the acceleration and deceleration limits.  

 TR TR PL[ , , ],t t ts x v T t  (2.18) 

 s TR TR[ , ].t t ts x v  (2.19) 

 TR .t ta a  (2.20) 

2.3.2.3 Reward 

Following the goal-directed reward design method based on the binary function 

[160], the rewards can be classified into goal-state rewards gr  (namely, for this paper, 

final-state rewards) and rewards per step r  

 g 1 g

s
,,

, Otherwi e,
tr s s

r
r

 (2.21) 
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where gs  is the goal state (final state). 

Thus, the expected return *( , )Q s a  becomes a constant Q  when gr r , 

 1

1

1 .
1 1

tT
t

t

rQ r r  (2.22) 

If gr Q , the final-state rewards are more attractive than rewards in other states, 

leading the agent to the final state. Besides, gr   and r   must be non-negative to 

encourage the agent to move from the current state to the next state. Thus, the 

relationship between gr  and r  is established as 

 g 0.
1

rr  (2.23) 

Thus, according to (2.23), we design different types of rewards following the 

binary reward function form to reflect various real-world objectives. Table 2.1 

illustrates the designed rewards. 

 
Table 2.1 Rewards. 

Item gr  r  

- +350 +2.5 

Speed limit - - vI  

Punctuality T lim,
50, Otherwis ,

,
e

t tr I TI  -0.5, if limtI T  

Stopping accuracy - pI , if limpI P  - 

Energy saving E er I  -0.5, if limeI E  

Ride comfort C ,max/c cr I I  -0.5, if limcI C  

 

For r  , the ride comfort, energy, on-road speed limits, and punctuality are 

considered. These rewards in r   can give immediate feedback at every step to 

accelerate training. Specifically, 1) For speed limits, on the one hand, the agent should 

follow all speed limits; on the other hand, the agent should not stop before its arrival; 
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the agent gets a negative reward for every time step it breaks the above rules; since 

safety is the basic operation requirement and most important objective, the penalty 

weights are higher than other objectives. 2) For punctuality, the agent gets a negative 

reward for every time step its punctuality performance is worse than the tolerance limT ; 

limT  is set to be 3 s [100]. 3) For energy saving, the agent gets a negative reward for 

every time step its energy-saving performance is worse than the tolerance limE ; limE  

is set to be equal to the practical energy consumption of the same line since we expect 

better energy saving in agent performance than in practice. 4) For ride comfort, the 

agent gets a negative reward for every time step its ride comfort performance is worse 

than the tolerance limC ; limC  is set to be 0.3 g/s [161]. 5) A bias term is added to ensure 

the non-negative nature of r .  

For gr  , we design rewards for ride comfort, energy, punctuality, and stopping 

accuracy. The stopping accuracy tolerance limp  is set to be 0.3 m [162]. The upper 

bound is zero for all gr  coefficients since we aim to minimize these reward terms. 

Derived from (2.23), the lower bound is derived from the following equation that all 

coefficients must satisfy 

 C
g,max T E g,max

,max
/ (1 ).c

t e p
c

r Ir r I r I I r r
I

 (2.24) 

pI  can be ignored if the maximum time step T is sufficiently large that the train 

position differences between each step is small. Therefore, (2.24) can be rewritten as 

 

T E C

PL
,max lim lim

T E C

max , ,
s.t. (2.24),

0 , ,0 ,
0, 0, 0,
c c t e

r r r

I I T I T I E
r r r

 

(2.25) 

where ,maxcI   is a sufficiently large value to consider the worst ride comfort case 

(
TR

3d| | 0.3 m/s
d
a

t
 ). Since these coefficients of various gr   terms have a significant 
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impact on model performance, a fine-tuning process is carried out to optimize their 

values. The results are illustrated in subsection 2.4.2. 

2.3.3 Model Training and Verification 

2.3.3.1 Training process 

The model training architecture is shown in Fig. 2.4, where a two-step training 

process is implemented. At the pre-training step, each supervisor is trained with a fixed 

but different PLT  within the practical running time range. This range is determined by 

calculating the minimum and maximum planned trip time PL,minT  and PL,maxT  of the 

trip. The calculation of PL,minT  and PL,maxT  can be referred to [163], where PL,maxT  is 

based on the assumption that the lowest average running speed of 40 km/h offered to 

passengers. PL
1T  , PL

2T  , …, PL
mT   for supervisor 1 , 2  , …, M   are uniformly 

sampled from PL,minT   to PL,maxT  . The TD3 algorithm with prioritized experience 

replay [44] is used to train supervisors.  

At the agent training step, an improved TD3 algorithm, S-TD3, which is suitable 

for training the agent under the SAC architecture, is proposed. Similar to TD3, the actor 

network outputs action a  based on its policy , which is updated according to the 

Q  value, and two critic networks are adopted to estimate the Q  value. However, in 

S-TD3, multiple supervisor networks are added to calculate the supervision loss, 

namely, the differences between the supervisors policy sl ( )s  and the agents policy 

( )s  , to guide the actors action.  Besides, different from TD3, the SRL training 

environment randomly assigns PLT  value for each episode, and the training data are 

stored separately in several independent buffers according to PLT  . Each supervisor 

samples data from its own buffer while the actor receives data from all buffers. In this 

manner, the supervisor avoids providing inappropriate supervisory information, and the 
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actor can receive all supervisory information. The detailed training procedures are 

shown in Algorithm 2.1 and Algorithm 2.2.  

 

 
Fig. 2.4 SAC training architecture. 

 

2.3.3.2 Loss Update of Actor Without Supervisor 

To find the optimal agent’s policy * , the loss function of the actor can be updated 

by taking the gradient of the expected return 

 a ~ ( )( ) ( , ) | ( ) ,
w ws a w w a s wJ Q s a s  (2.26) 

 ( ),a aJ  (2.27) 

where aJ  is the loss of the actor.  is the parameter of critic, a  is the learning rate 

of the actor. It is worth noting that the policy update of the actor is delayed by a rate DP 



Chapter 2 

43 

to let the critic have a better estimation of Q . 

2.3.3.3 Loss Update of Actor with Supervisor 

With the supervisor, the loss update of the actor is modified to include the 

supervision loss by 

 s a s s( ) (1 ) ( ) ( ),aJ J J  (2.28) 

 2
s ~ sl, ,( ) ( ( ) ( )) ,

ws m w m w
m

J s s  (2.29) 

 ( ),a aJ  (2.30) 

where aJ   is the revised loss of the actor, sJ   is the supervision loss, s [0,1]  

represents the trade-off between RL and SL contribution.  

2.3.3.4 Loss Update of Critic 

The update of the critic is by minimizing the critic loss (Q loss) 

 2
c ~ , ~( ) [( ( , ) ) ],

w wr s w wJ Q s a y  (2.31) 

 ( ),c cJ  (2.32) 

where cJ  is the critic loss, y  is calculated by the target critic. c  is the learning rate 

of the critic. 

2.3.3.5 Target Network 

In S-TD3, there are two target critic networks and one target actor network. For 

the target critics, by take the minimum Q   value of both networks, the Q   value 

overestimation issue can be mitigated.  

 
1,2 11 ( ( ) clip( ))( , ) min ( , ) | ,

w ww w w w a sy r s a Q s a  (2.33) 

where  is the parameter of the target critic, a  is the action taken by the target actor, 

 is the policy of the target actor. A target policy smoothing is implemented by adding 

a small stochastic noise to the target actor to mitigate overfitting.  
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Target networks are updated at regular intervals  to enable more stable learning 

(soft update), namely,  

 1 1 1(1 ) , 2 2 2(1 ) , (1 ) . (2.34) 

2.3.3.6 Verification process 

For practical application purposes, the proposed EETTO model can be deployed 

on the onboard ATO system. Prior to the real-time operation, the train and line data 

were loaded into the ATO system. Then, the proposed model generated multiple 

referential train trajectories according to the running time ranges and train parameters. 

In real-time operation, with the received information from onboard and external sensors, 

Algorithm 2.1 Pre-Training 

1 Initialize actor  and critic 
1

Q , 
2

Q  with random weights , 1 , and 

2 . Initialize target networks , 1 , and 2  with weights , 

1 1 , and 2 2 . Initialize replay buffer B . 

2 For episode = 1, Max do 

3  Receive the initial observation s
0s  

4  For t = 1, T do 

5   Select ~ ( )t ta s , clip( , , )t t ta b b , execute ta  and observe tr , 

1ts , 1tb  

6   Store transition 1 1( , , , , , , )t t t t t ts a s r b b done  to B  

7   Sample W  random transitions from B  

8   Select 1~ ( )w wa s , 1 1clip( , , )w w wa b b  

9   
1,,2 21

1 2
1,2 arg min ( ( , ))

w
w wW y Q s a , update 1,2  by (2.32) 

10   If t mod DP then 

11    Update  by (2.26)-(2.27) 

12    1 1 1(1 ) , 2 2 2(1 ) , (1 )  
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other trains, and control centers (the process can be referred to Fig. 2.1), the proposed 

model can dynamically adjust the referential train trajectories online to address 

uncertain disturbances and rescheduled trip times. 

\ 

2.4 Case Study 

In this section, the numerical analysis of the aforementioned formulations and 

algorithms is conducted. First, the optimal selection of reward coefficients is 

demonstrated based on the proposed evaluation indices. In addition, the performance 

of SRL–EETTO is investigated by comparing it with state-of-the-art EETTO 

algorithms under various operation scenarios, including normal operations, uncertain 

Algorithm 2.2 S-TD3 

1 Initialize actor  and critic 
1

Q , 
2

Q , target networks , 1 , and 2 , 

and replay buffers 1B , 2B , …, MB . Load sl,1 , sl,2 , …, sl,M  

2 For episode = 1, Max do 

3  Receive the initial observation  and s 
4  For t = 1, T do 

5   Select ~ ( )t ta s , clip( , , )t t ta b b , execute ta  and observe tr , 

1ts , 1tb  

6   Store transition 1 1( , , , , , , )t t t t t ts a s r b b done  to 1B , 2B , …, MB  

7   Sample W  random transitions from 1B , 2B , …, MB  equally 

8   Select 1~ ( )w wa s , 1 1clip( , , )w w wa b b  

9   
1,,2 21

1 2
1,2 arg min ( ( , ))

w
w wW y Q s a , update 1,2  by (2.32) 

10   If t mod DP then 

11    Update  by (2.26) and (2.28)-(2.30) 

12    1 1 1(1 ) , 2 2 2(1 ) , (1 )  



Chapter 2 

46 

disturbances, uncertain train masses, and uncertain resistances. Finally, the impact of 

supervision weights on the generalization capability is investigated. 

 
Table 2.2 Speed limits and gradients of the training section.  

Item Segment (km) Value Segment (km) Value 

Speed limits (km/h) 
[0, 0.31] 50 (0.64, 1.32] 65 

(0.31, 0.64] 80 (1.32, 2.63] 80 

Gradients (‰) 

[0, 0.02] 0 (1.15, 1.55] -3 

(0.02, 0.34] 2 (1.55, 2.06] 8 

(0.34, 0.65] 3 (2.06, 2.63] -3 

(0.65, 1.15] -10.4 - - 

 
Table 2.3 Train timetable. 

Station 
Arrival 

time (s) 

Dwell 

time (s) 

Mileage 

(m) 
Station 

Arrival 

time (s) 

Dwell 

time (s) 

Mileage 

(m) 

 

SJZ 0 30 0 RJ 1112 30 12065  

XC 220 30 2631 RC 1246 30 13419  

XHM 358 30 3906 TJN 1440 30 15757  

JG 545 30 6272 JH 1620 30 18022  

YZQ 710 30 8254 CQN 1790 35 20108  

WHY 835 30 9274 CQ 1927 45 21394  

WY 979 30 10785 YZ 2087 - 22728  

 

2.4.1 Setup 

In this subsection, the setup of the case study is illustrated. The simulation data of 

the infrastructure, train, and line conditions are from an in-service subway line in 

Beijing containing 13 sections (14 stations) and a total length of 22.73 km. However, 

the curve and tunnel data are not available. Considering that these data can vary greatly 
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due to weather conditions, we ignore the curve and tunnel resistance terms in (2.4) but 

verify the model performance under resistance uncertainty in the following subsection 

instead. The model is trained on section SJZ–XC, where the section length is 2.63 km. 

Then, the evaluation is conducted on the entire subway line. The gradient profile and 

speed limits of the line can be found in [164] and Table 2.2. The train timetable is shown 

in Table 2.3. The train parameters are shown in Table 2.4. We set limE =162 J/(km kg) 

based on practical and simulation data [139] of the same training section.  

 
Table 2.4 Train parameters. 

Parameter Value 

Maximum traction force (kN) 
TR

TR TR

310, 36 km/h

310 20 ( 36), 36 80 km/h

v

v v
 

Basic resistance force (kN) 
2TR TR3.48 0.144 0.0085v v  

Train mass (kg) 2×105 

 
Table 2.5 SRL–EETTO parameters.  

Parameter Value Parameter Value 

c  10-4 M  5 

a  10-5 s  0.99 

 5×10-4 Optimizer Adam 

W  128 Buffer capacity 220 

 0.99 Exploration policy (0,0.2) , clip to ( 0.5,0.5)  

 

The parameters of the SRL–EETTO are listed in Table 2.5, which are suitable for 

both supervisor pre-training and agent training steps. For the supervisor, both actor and 

critic have 256, 256, 128, 64, and 64 units for hidden layers. For the agent, both the 

actor and critic have 400, 300, 200, 100, and 64 units for hidden layers. Each of the 
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hidden layers is followed by Relu non-linearity. The output layer of the actor is followed 

by a Tanh non-linearity, while the output layer of the critic does not have any activation 

function. The target networks have the same structure as the corresponding actor or 

critic. The inputs are normalized for all networks.  is set as 0.99 to fully account for 

the consideration of S-TD3 for future rewards. Besides, in order to make a trade-off 

between exploration and exploitation, the exploration noise is subject to a normal 

distribution (0,0.2)  and then clipped to the range (-0.5,0.5). The learning rate for 

the actor and the critic is 10-5 and 10-4, respectively. The fine-tuning is carried out on 

Gurobi 9.5.2, and the SRL training is on Python 3.9.13 with PyTorch 1.12.1. The PC 

used for the computation has an Intel Core i7-12700KF processor at 3.61 GHz with 

32 GB memory and an RTX3070.  

 
Table 2.6 Model performance with different coefficient values1.  

Tr  Cr  Er  tI  (s) cI  (m/s3) eI  (J/(km·kg)) vI  

0.4 100 0.6 3.5±0.9 12.0±14.9 96.7±34.9 0.3±0.5 

0.4 100 0.4 4.2±4.0 2.9±2.2 82.9±10.9 0±0 

0.4 100 0.2 5.4±5.7 10.9±10.6 96.7±21.2 0.3±0.5 

0.4 0 0.6 2.1±0.6 1.7±0.4 82.5±10.2 0±0 

0.4 0 0.4 7.5±3.3 2.2±0.7 80.0±2.6 0±0 

0.4 0 0.2 4.1±1.8 4.9±4.8 84.2±13.0 0±0 

0.2 100 0.6 4.7±2.6 3.9±3.0 83.3±6.4 0±0 

0.2 100 0.4 2.8±1.1 7.9±4.3 85.2±16.0 0±0 

0.2 100 0.2 4.9±2.6 13.8±17.6 93.8±31.5 0.3±0.5 

0.2 0 0.6 2.6±0.2 4.2±3.4 83.9±16.5 0±0 

0.2 0 0.4 3.0±0.6 10.9±13.8 90.5±24.7 0±0 

0.2 0 0.2 2.3±0.2 2.7±0.5 83.8±9.5 0±0 
1  denotes a single standard deviation, pI  is always zero. 
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2.4.2 Optimal Selection of Reward Coefficients 

In this subsection, the optimal selection results of the reward coefficients of gr  is 

illustrated. By fixing Er  and Cr  to their maximum, the lower bound of Tr  can be 

calculated based on (2.25). Similarly, the lower bounds of Er  and Cr  are obtained. 

E 00.62 r  , T 00.43 r  , and C100 0r  . Table 2.6 shows the model 

performance under different coefficient values averaged by random 3 runs. The best 

parameters are E 0.6r , T 0.4r , C 0r . 

2.4.3 Analysis of Model Performance 

2.4.3.1 Model Performance Under Normal Operations 

In this subsection, the model performance of the proposed approach under normal 

operations is verified. The following approaches are compared to illustrate its overall 

model performance without disturbances or rescheduled trip times: 1) Manual driving 

(MD). 2) ATO-generated trajectories with proportional-integral-derivative controller. 

1)–2) are the practical driving data with no departure delays of the line in March 2012. 

Half of the data are MD, and the others are ATO since both types of driving were used 

at that time. 3) RTO algorithm [32]: a comprehensive knowledge-based system with a 

collection of expert knowledge rules. The selection of experts requires prior data 

collection, surveying, expert selection, data mining, and summarizing. Noted that RTO 

is unable to handle disturbances. 4) STO algorithm [100]: STO utilized advanced RL 

algorithms such as deep deterministic policy gradient and normalized advantage 

function to handle continuous action space for solving the TTO. 5) proposed approach.  

Fig. 2.5 shows the optimal trajectories generated by SRL–EETTO on the training 

set. Five pre-trained supervisors are used with planned running times of 185 s, 197 s, 
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209 s, 221 s, and 234 s, respectively ( PL,minT =183 s and PL,maxT =234 s). The trajectories 

are smooth and have no violations of on-road speed limits. Fig. 2.6 shows the overall 

model performance comparison under normal operation. From the figure, the upper part 

shows the optimal trajectories of SRL–EETTO, while the bottom part shows the 

comparative results of index eI  and cI  in each section. The bars represent the results 

of eI , and the circles with the dotted line and the light-shaded area represent the results 

of cI . Table 2.7 summarizes the average model performance across all sections, where 

the performance of SRL–EETTO is averaged across 5 runs, where EP (avg. eI  of 

MD  avg. eI   of the approach) /  avg. eI   of MD  100%; CP  (min. cI   of MD

avg. cI  of the approach) / min. cI  of MD 100%. 

 
Table 2.7 Comparative model performances of approaches 1–51.  

Item cI  (m/s3) PC (%) eI  (J/(km·kg)) PE (%) tI  (s) 

MD 7.5–14.0 - 147.0±31.0 - 2.5±2.4 

ATO - - 154.7±31.0 -5.2 1.7±1.6 

RTO - - 120.1±20.9 18.3 2.0±1.0 

STO 4.0–5.8 - - - - 

SRL–EETTO 3.4±0.9 54.7 119.8±23.8 18.5 2.2±1.0 
1  denotes a single standard deviation, vI  and pI  are always zero.  

 

 
Fig. 2.5 Optimal trajectories generated on the training set. 
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It can be observed that SRL–EETTO can satisfy on-road speed limits and stopping 

accuracy in all sections. Besides, SRL–EETTO achieves the best performance on eI  

among existing approaches and outperforms MD in an average energy saving of 18.5%. 

Although RTO achieves similar performance on eI  as SRL–EETTO, it is unable to 

handle disturbances. In addition, SRL–EETTO achieves the best performance on cI  

compared with the practical solution and outperforms the practical solution in an 

average energy saving of 54.7%. Moreover, on the one hand, the variance of the trip 

time error of MD is huge, indicating that MD has unsatisfactory punctuality 

performance in some sections. On the other hand, although higher than ATO, the tI  

of SRL–EETTO is still within 3 s.  

 

 

Fig. 2.6 Optimal trajectories and model performances across all sections. 

 

2.4.3.2 Model Performance Under Uncertain Disturbances 

In this subsection, the model performance of the proposed approach under 

uncertain disturbances, namely, the dynamic online train trajectory optimization 

capability under disturbances and rescheduled running times, is verified. First, we use 

Fig. 2.7 as an example to illustrate the model performance of the proposed model with 

disturbances and rescheduled trip times.  
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(a) (b) 

Fig. 2.7 Optimal trajectories with adjusted running times for scenarios (a) 1 and (b) 2. 
 

Table 2.8 Model performances with adjusted running times1.  

Item Adjustment cI  (m/s3) eI  (J/(km·kg)) tI  (s) 

Scheduled - 2.6 73.3 1.1 

Scenario 1 
10 s earlier 3.0 80.6 1.1 

25 s earlier 2.5 102.0 2.3 

Scenario 2 
10 s later 2.4 71.0 1.0 

25 s later 3.0 77.8 1.0 
1

vI  and pI  are always zero. 

 

Suppose the planned running time is scheduled as 210 s for the training section. 

Fig. 2.7(a) shows an accident occurs when the train runs 500 m. The train is informed 

at this moment to arrive at the station 10 s / 25 s earlier, respectively. This indicates that 

PLT  is changed to 200 s / 185 s, respectively. A red star marker represents the position 

where the accident happened. Fig. 2.7(b) are similar, except that the accident happens 

when the train runs 1500 m, and the train is required to arrive 10 s / 25 s later, 

respectively. It can be observed that when the train receives the accident information, 

the proposed model will change the driving strategy (action a ) since the model input 

(state s  ) is changed due to the change of reserved trip time. Table 2.8 shows the 

detailed model performance. The trip time error is always within 3 s. eI  is larger than 
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the example with scheduled PLT  , indicating extra energy consumption due to 

acceleration. cI   is larger than the example with scheduled PLT  , indicating slightly 

uncomfortable passengers may feel due to acceleration or deceleration. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 2.8 Probability distributions of (a) disturbances, (b) arrival times, (c) energies, 
and (d) ride comforts under Monte Carlo simulations. 

 

To test the overall model performance under disturbances / rescheduled trip times, 

we then perform 2000 times of Monte Carlo simulations. Section TJN-JH is between 

two busy stations and is suitable for demonstrating the test results. PL,minT  and PL,maxT  

of section TJN–JH are 150 s and 185 s, respectively. The distributions of trip time 

changes are referred to [32, 165]. bd
dt  is subject to a Weibull distribution where the 

shape parameter is 0.8, and the scale parameter is PL,max PL,min( ) / 2T T . bd
dt  is non-

negative since disturbances or rescheduling commands before departure usually cause 

delays. do
dt   is subject to a Normal distribution where the mean value is 0, and the 
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variance value is PL,max PL,min( ) / 4T T  . For simulation purposes, dx   is set to occur 

within the first half of the trip. This is because when the train is close to the destination, 

it is difficult or even impossible to significantly change trip time by train control. 

 
Table 2.9 Model performances across Monte Carlo results1.  

Disturbance type cI  (m/s3) eI  (J/(km·kg)) tI  (s) 

- 3.0 100.7 1.6 

 3.2±3.1 109.2±13.6 1.6±0.9 

 2.7±1.9 101.5±11.7 1.9±1.0 
1± denotes a single standard deviation, vI  and pI  are always zero. 

 
Table 2.10 Comparative model performances with RL-based algorithms.  

Item Maximum tI  (s) Disturbance (s) 

ITO 5.0 20 

ITOR 4.3 10 

SRL–EETTO 
3.8 ( do ) 

35 
3.3 ( bd ) 

 

Fig. 2.8 shows the Monte Carlo results in histograms. The blue and red colors of 

the histograms represent simulations that are subject to bd  and do , respectively. 

Fig. 2.8(a) shows the distribution of bd
dt   and do

dt  , which denotes the distribution of 

disturbances. Fig. 2.8(b) shows the distribution of ACT bd ACT do
d d( or )T t T t   and 

denotes the arrival time. Fig. 2.8(c) and Fig. 2.8(d) show the distribution of energy and 

ride comfort. The average model performance of the Monte Carlo simulations is 

reported (Table 2.9). It can be observed that disturbances vary on a broad time 

distribution (0–17.5 s for bd , -17.5–17.5 s for do ), but the arrival time distribution 

is concentrated around the planned trip time (around 163–170 s). This indicates that the 

bd

do
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probability of delay is very small across all simulations (0–3.3 s for bd , 0–3.8 s for 

do ) and the average trip time errors are within 2 s under both do  and bd . The 

punctuality against do  is worse than against bd . This indicates the additional trip 

time error caused by trajectory changes during operation. The energy distribution varies 

due to the extra energy consumption for acceleration and deceleration to guarantee 

punctuality. Most of the resulting energy consumptions are concentrated within a small 

range (around 85–110 (J/(km kg)) for bd , and 100–110 (J/(km kg)) for do ) with 

the average energy consumption close to results without disturbances. The ride comfort 

distribution is similar to energy distribution, except that it is more concentrated. 

The Monte Carlo simulation shows that SRL–EETTO can efficiently overcome 

disturbances before departure and during operation and maintain model performance in 

terms of punctuality, energy saving, and ride comfort via online timetable adjustment. 

We then compare SRL–EETTO with state-of-the-art RL-based EETTO algorithms 

reported in the literature that consider disturbances (Table 2.10). For comparison 

purposes, we chose the ITO and ITOR algorithms based on Q learning. It can be 

observed that SRL–EETTO reduces maximum trip time error by at least 24.0% and 

11.6% against a broader disturbance range compared with ITO and ITOR, respectively. 

Moreover, the computational time to re-generate the optimal train trajectory after 

disturbances is about 0.07 s. This fast response time indicates that the SRL–EETTO can 

generate or regenerate the optimal train trajectory online. 

In addition, according to the above performance of SRL–EETTO, a trajectory 

configuration suggestion can be given. Generally, for convenience of scheduling, the 

equipped train trajectories of the ATO are of equal time separation. Considering the 

average trip time error in Table 2.9, this separation can be 3 s for SRL–EETTO. As the 
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running time range of sections is around 33–51 s, the number of equipped trajectories 

can be increased from 5 (current implementation) to 12–18 (SRL–EETTO).  

 

 
Fig. 2.9 Model performances with different train masses. 

 

 
Fig. 2.10 Optimal trajectories under different resistances. 

 

2.4.3.3 Model Performance Under Uncertain Train Masses 

In this subsection, the model performance of the proposed approach under 

uncertain train masses is verified. Since the maximum train capacity during peak hours 

may reach 2000, assuming the average passenger weight is 60 kg, the maximum train 

mass can reach 320 t. Fig. 2.9 shows the trip time error, energy saving, and ride comfort 

of the SRL–EETTO under different train mass conditions within the possible train mass 
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range. The shaded area denotes a single standard deviation from the average value 

across 5 runs. From the figure, it can be observed that punctuality is achieved across all 

train mass conditions, and the maximum trip time error (2.9 s) is at the maximum train 

mass point. As for energy saving, a larger train mass naturally leads to higher energy 

consumption. The index  increases almost linearly. The ride comfort, however, is 

improved with the increasing train mass. To summarize, the overall performance does 

not deteriorate when the train mass is changed. 

 
Table 2.11 Changed gradients of section SJZ–XC.  

Segment (km) Value (‰) Segment (km) Value (‰) 

[0, 0.57] -3 (1.98, 2.29] 3 

(0.57, 1.08] 8 (2.29, 2.61] 2 

(1.08, 1.48] -3 (2.61, 2.63] 0 

(1.48, 1.98] -10.4 - - 

 
Table 2.12 Comparative model performances with different resistances.  

Item cI  (m/s3) eI  (J/(km·kg)) tI  (s) 

MD 7.5–14.0 121.4 8.8 

ATO - 112.6 0.6 

SRL–EETTO 2.6 99.2 2.3 

SRL–EETTO-R 2.7 105.2 2.9 

 

2.4.3.4 Model Performance Under Uncertain Resistances 

In this subsection, the model performance of the proposed approach under 

uncertain resistance conditions is analyzed. We simulate the resistance changes by 

reversing the on-road gradient conditions in Table 2.2, which is shown in Table 2.11. 

The trajectory and model performance on different resistances are reported in Fig. 2.10 

eI
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and Table 2.12, respectively, where SRL–EETTO-R denotes the model performance 

under changed resistances. The results show increased energy saving and ride comfort 

of SRL–EETTO-R compared to MD and ATO. Although indices eI  and tI  of SRL–

EETTO-R are higher than SRL–EETTO due to the resistance change, the trip time error 

is within 3 s, which satisfies the requirements of subway operations. 

2.4.4 Impact of Supervision Weights on Generalization Capabilities 

In this subsection, the impact of supervision weights on the model generalization 

capability is analyzed by investigating the effect of s  and m. The reward curves under 

different parameters were depicted, where the reward values reflect the algorithm 

performance quantitatively during training. For discussion purposes, the following 

model performance is evaluated with PLT  sampled every 5 s from PL,min PL,max[ , ]T T , 

namely, 190 s, 195 s, …, 230 s. 

2.4.4.1 Effect of s 

Fig. 2.12 shows the sensitivity of s   under fixed m  . All curves are averaged 

across 5 runs, with the bold lines and the shaded area representing the average reward 

gained and a single standard deviation, respectively. From the figure, when s 0 , it 

is pure RL training. The rewards gained are significantly less than other curves within 

the maximum episode length, and the learning curve has a large variation even if trained 

for a long time. This indicates that pure RL training is time-consuming and more 

difficult to find the optimum due to the complexity of the problem compared with SRL. 

When s   is larger, the SL supervision accelerates training and improves average 

performance on different trip times as more rewards are gained. Nevertheless, from the 

scale magnification of Fig. 2.12(a), if s 1 , the curve slowly decreases after gaining 

a high reward. This is due to the overfitting of the agent to the supervisors policy 
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sl ( )s . Note that s 1  does not represent pure SL training since RL is in effect for 

the critic. 

 

 

Fig. 2.11 Reward curves under different s . 

 

  

(a) (b) 

 

(c) 

Fig. 2.12 Reward curves under different m with (a) s 1 , (b) s 0.99 , and (c) 

s 0.9 . 

 

2.4.4.2 Effect of m 

Fig. 2.12 shows the sensitivity of m under fixed s  . The learning curves for 

different m   with constant s   are shown in Fig. 2.12. With larger m  , the rewards 
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gained within the maximum episode length increase. The highest reward is obtained by 

5m . When s 0.9 , since the total SL contribution is small, the rewards gained under 

different m are similar. s 0.99   and 5m   is the best and default parameter for 

SRL–EETTO. Compared with pure RL, the designed SRL training architecture 

improves model generalization capability while accelerating training. 

2.5 Summary 

In this chapter, an SRL–EETTO approach is proposed for enabling iATO of 

modern URTs. The research mainly includes the following aspects.  

First, the real-time train operation under uncertain disturbances is formulated as 

an MDP with a goal-directed reward design method to systematically optimize multiple 

operation objectives of energy saving, ride comfort, punctuality, and safety. Then, a 

two-step SAC architecture based on the S-TD3 algorithm is developed to solve the 

MDP and generate optimal train trajectories online. Finally, simulations are 

implemented to validate the effectiveness of the SRL–EETTO using in-service subway 

line data.  

The key findings of the designated case study are summarized as follows: The 

proposed approach shows superior average energy saving of 18.5% and ride comfort 

improvement of 54.7% compared to the practical driving data while providing 

satisfactory performance on punctuality and safety. 2) The adaptability of the proposed 

approach to online running time adjustments, uncertain train masses, and uncertain 

resistance conditions has been verified. 3) a train trajectory configuration suggestion 

based on the proposed approach have been given, where the increased number of 

trajectories can improve the scheduling flexibility. 
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Chapter 3: Sizing and Control Optimization for Hybrid 

Energy Storage System-Integrated Traction Substation 

Operation Based on Multi-Task Reinforcement Learning 

Nomenclature in this chapter 

A. Multi-Task Reinforcement Learning Elements 

AE ,VE  Action advantage estimation and value estimation 

a , s , r , z  Action, state, reward, and task 

B  Replay buffer 

l  Layer of the Q network in soft module 

lP  Connection probability between layer l  and 1l  

*Q , sQ  Expected return and Q value of single-task agent 

, , ,  Sets of actions, rewards, states, and transitions 

, H , P  Sets of tasks, headway tasks, and combination tasks of trajectories 

, , KL  Weighted Q loss, Q loss, and knowledge transfer loss 

 Agent policy 

 Discount factor 

 Soft update rate 

 Weight of knowledge transfer 

q  Learning rate of neural networks 

, , r  Parameters of Q, target Q, and routing networks 

B. Indices 

{1,2, , }d D  Index of average onboard passengers 

{1,2, , }h H  Index of train headways 
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{1,2, , }i I  Index of stations or traction substations 

{1,2, , }j J  Index of stations or traction substations except for station or 

substation i  

{1,2, , }k K  Index of trains 

{1,2, , }p P  Index of train trajectories 

{1,2, , }w W  Index of transitions sampled from replay buffer 

C. Time Scales 

n , n , N  Increment, current time step, and time horizon on a long time scale 

for economic dispatch and prediction (e.g., sub-hourly or hourly) 

t , t ,T  Increment, current time step, and time horizon on a short time scale 

for real-time train and HESS control (e.g., sub-minutely) 

D. Variables 

TRa , TRx , TRv , TRd  Train acceleration (m/s3), position (m), speed (m/s), and direction 

(up/down) 

TRF  Train total resistance (N) 

kH  Headway of train k  (s) 

SCI , BTI , SUBI , TRI  Currents of supercapacitor, battery, substation, and train (A) 

SUBJ , OMJ  Costs of electricity trading and HESS operation ($) 

INVJ , REPJ , FIXJ  Costs of investment, replacement, and installation ($) 

nK  Number of trains running at interval n. 

BTL  Estimated battery life (year) 

BTN , SCN , DCN  Number of battery, supercapacitor, and converter modules 

REPN  Replacement frequency 

BN  Passengers who are onboard 
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SUBP , TRP  Powers of substation and train (W) 

SC,CHP , SC,DISP  Charging and discharging powers of supercapacitor (W) 

BT,CHP , BT,DISP  Charging and discharging powers of battery (W) 

VR , BTR  Resistances of contact line and battery ( ) 

SCSoE , BTSoE  SoEs of supercapacitor and battery (%) 

DT , PLT , RTTRT  Delay, planned running, and rescheduled running times (s) 

T  Running time increment in train trajectory set (s) 

CHU , DISU  Charge and discharge voltage thresholds of HESS (V) 

SCU , CU  Terminal and capacitance voltages of supercapacitor (V) 

BTU , OCVU  Terminal and open-circuit voltages of battery (V) 

SUBU , TRU , LU  Voltages of substation, train and pantograph (V) 

LX  Distance of between train and substation (m) 

 Train trajectory of a specific section 

S  Sensitivity of traction energy consumption (J) 

E , E  Traction energy consumption of a specific train trajectory and its 

difference between train trajectories (J) 

BR  Proportion of train braking power to traction network (%) 

PA  Power allocation ratio of HESS (%) 

, f  Scenario and its probability 

Y  Admittance matrix of the TN 

E. Parameters 

SUBc  Unit cost of electricity trading ($/kWh) 

OM
SCc , OM

BTc  Unit costs of supercapacitor and battery operation ($/MWh) 
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INV
SCc , INV

BTc , INV
DCc  Unit costs of supercapacitor, battery, and converter investment 

($/module) 

SCC  Equivalent capacitance of supercapacitor (F) 

RI  Interest rate (%) 

CRTI  Critical substation load current (A) 

L  System lifetime (year) 

TRM , PM  Total vehicle mass (kg) and passenger mass per person (kg/person) 

LR  Unit resistance of contact line ( /km) 

PR , SUBR , SCR  Resistances of pantograph, substation, and supercapacitor ( ) 

B
0
SUU , BR

1U , BR
2U  No-load voltage and two braking resistor voltage thresholds (V) 

BT,normQ  Nominal battery capacity (Ah) 

,  OD element and passenger arrival rate 

SC , BT , TR  Efficiencies of supercapacitor, battery, and train motor 

CR  Capital recovery factor 

3.1 Background 

The increasing traction energy consumption induced by the rapid growth of 

passenger demand has underscored the necessity of developing effective hybrid energy 

storage system (HESS) sizing and control technologies for traction substations to 

improve energy and cost efficiencies. Nowadays, various methods have been 

successfully applied to HESS sizing and control (literature reviews in section 1.3). 

Nevertheless, the synergistic optimization of HESS sizing and control under the 

dynamic and uncertain urban rail transit (URT) traction network (TN) energy flows 

requires comprehensive consideration (substation-level challenges in section 1.4). 

Therefore, this chapter focuses on developing a multi-task reinforcement learning-
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based sizing and control optimization (MTRL–SCO) approach for enhancing the 

economic operations of the supercapacitor–battery HESSs and their integrated traction 

substations under dynamic spatial-temporal URT traffic at the 2nd (substation) level. 

Specifically, the main contributions of this chapter are outlined as follows: 

 A synergistic sizing and control optimization framework is proposed for the 

coordinated operations of HESSs and traction substations. An iterative sizing 

optimization approach considering daily service patterns is devised to 

minimize the HESS life cycle cost (LCC). The sizing-specific HESS control 

problem under various spatial-temporal traction load distributions is modeled 

as a multi-task Markov decision process (MTMDP), where the voltage 

thresholds and power allocations are jointly optimized for minimizing the 

operation cost. 

 A dynamic traffic model (DTM) considering passenger flow fluctuation and 

delay-induced traffic regulation is formulated to characterize multi-train 

traction load uncertainty for enhancing HESS control decisions. A Copula-

based passenger flow scenario generation method is proposed to capture 

dependencies between multi-station origin-destination (OD) demands. A real-

time timetable rescheduling (RTTR) algorithm incorporating the traction 

energy-passenger-time (TEPT) sensitivity matrix is developed to optimize the 

energy-efficient rescheduled timetable and train trajectories under uncertain 

short delays. 

 An MTRL algorithm based on a dueling double deep Q network with 

knowledge transfer (KT-D3QN) is presented for solving the MTMDP 

effectively. A policy distillation annealing method is developed to learn a 
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generalized multi-task HESS control policy simultaneously and stably from 

task-specific agents and dynamic train operation environments. Soft 

modulation and gradient manipulation techniques are employed to handle 

inter-task parameter sharing and conflicts. 

Finally, comparative studies based on a real-world subway have validated the 

effectiveness of the proposed approach for LCC reduction of HESS-integrated traction 

substation operation under URT traffic. The remaining parts of the chapter are 

organized as follows. Section 3.2 illustrates the problem formulation with structure and 

modeling of HESS-integrated traction substations and their traction networks (TNs), 

followed by the formulation of the HESS sizing and optimization model and the 

analysis of HESS control parameters and URT operation uncertainties on the operation 

cost and RB energy utilization. Section 3.3 presents the proposed MTRL–SCO 

approach, including the formulation of the DTM, MTMDP, and KT-D3QN algorithm. 

Section 3.4 reports case studies and their results. Section 3.5 gives the summary. 

3.2 Problem Formulation 

3.2.1 Structure of Traction Substations With Hybrid Energy Storage 

Systems 

The typical structure of HESS-integrated traction substations is shown in Fig. 3.1. 

The substation contains a unidirectional 24-pulse wave diode rectifier. The HESS 

connects to the traction substation by DC-DC converters. Generally, the passenger flow 

prediction is conducted at a large time interval (e.g., 15 min), while the HESS control 

is carried out at a small time interval (e.g., 1 s). Thus, we use 1,2,, ,n N  to denote 

the “prediction interval”, and 1,2,, ,t T   to denote the “control interval”. The 
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following assumptions are considered: 1) The OD matrix is deterministic, while the 

passenger arrival rate varies [156]. 2) The train stops at each station with a pre-

determined dwell time and running time. While delays extend the planned dwell time, 

the total running and dwell times are unchanged [144]. 

In a scenario , SUB
, ,i tP  is the power of ith traction substation, 1 i I , SC,CH

,tP  

and SC,DIS
,tP  are the discharging and charging power of the supercapacitor, respectively, 

BT,CH
,tP   and BT,DIS

,tP   are the discharging and charging power of the battery, 

respectively, TR
, ,k tP   is the power of kth train, 1 k K  . When a delay time D

,iT   is 

known, the planned running time PL
, ,i jT   is changed to RTTR

, ,i jT   by RTTR, and an 

optimal trajectory is selected from a pre-programmed trajectory set. 

 

 

Fig. 3.1 The structure of HESS-integrated traction substations. 
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3.2.2 Modeling of Hybrid Energy Storage System-Integrated Traction 

Substations and Their Traction Networks 

3.2.2.1 Equivalent Circuit Model Overview 

The equivalent circuit model of such TN (Fig. 3.2) includes traction substation 

(3.2), train (3.3)–(3.4), battery (3.7)–(3.8), and supercapacitor (3.9)–(3.10) models. In 

the figure, L
, , ,k i tX  and L

, 1 ,k i tX  are the distance of the train k  to station i and i+1, 

respectively. PR  is the pantograph resistance. LR  is the contact line resistance per 

km. Since the position of trains is changing during operation, the contact line resistance 

of each circuit branch becomes time varying. Therefore, the contact line resistance is 

modeled as a variable resistance. For instance, the resistance between train k   and 

station i is V L L
, , , ,k i k i tR R X  . Then, the admittance matrix Y   of the circuit can be 

derived. For instance, for the TN in Fig. 3.2,  

 

 
Fig. 3.2 Equivalent circuit model of TNs with a HESS-integrated traction substation. 
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3.2.2.2 Traction Substation Equivalent Circuit Model 

The 24-pulse rectifier in the traction substation contains two traction transformers 

and four sets of diode rectifier bridges, and the transformers operate in parallel. Due to 

the impedances of transformers, characteristics of rectifier bridges, topology, and 

operating conditions, the output characteristics of the 24-pulse rectifier is complex. On 

the one hand, the output voltage of the 24-pulse rectifier decreases with the increasing 

load current. On the other hand, the equivalent resistance of the rectifier varies with the 

load current. In practice, such output characteristics of the 24-pulse rectifier is generally 

simplified with piecewise linear functions [120]. 

 

 
Fig. 3.3 Output characteristics and the equivalent circuit of the traction substation. 

 

Specifically, the simplified output characteristics of the 24-pulse rectifier is shown 

in Fig. 3.3. The equivalent traction substation model can be established as a Thevenin 

circuit model, where the parameters of the ideal voltage source B
0
SUU  and the internal 



Chapter 3 

70 

resistance SUBR  is determined by the intercept and slope of the curve, respectively. A 

diode is in series with the Thevenin circuit to simulate the unidirectional energy flow 

of the rectifier. 

 
SUB,1 SUB,1 SUB CRT SUB

, , , ,SUB
, , SUB,2 SUB,2 SUB CRT S

,

0
UB

, , ,0

0

,

,,

,
i t i t

i t
i t i t

U R I I I
U

U R I I I
 (3.2) 

where SUB
, ,i tU  and SUB

, ,i tI  are the traction substation voltage and current, respectively, 

B
0
SUU   is the no-load traction substation voltage, SUBR   is the traction substation 

resistance. 1
0
SUB,U  and 2

0
SUB,U  are the ideal voltage source in current intervals 1 and 2, 

respectively, SUB,1R  and SUB,2R  are the internal resistance in current intervals 1 and 2, 

respectively, CRTI  is the critical load current.  

3.2.2.3 Train Equivalent Circuit Model 

The train is modeled as an equivalent controlled power source 

 TR TR BR TR
, , , , , , , , ,k t k t k t k tU I P  (3.3) 
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where TR
, ,k tU   and TR

, ,k tI   are the train voltage and current, respectively. BR
, ,k t  

simulates the braking resistor [18], which determines the proportion of braking power 

delivered to the network.  

Generally, the pantograph voltage will rise if the regenerative braking (RB) energy 

is not absorbed by nearby accelerating trains or the HESS. Therefore, the braking 

resistor is adopted to avoid this situation. By controlling the duty cycle of the chopper, 

the redundant RB energy is consumed on the braking resistor. When the pantograph 
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voltage ,
L
,k tU  is lower than the start-up voltage threshold BR

1U , the duty cycle is zero 

and BR
, , 100%k t . This indicates that all RB energy can be delivered to the traction 

network and the braking resistor is not working. When ,
L
,k tU  is higher than BR

1U , the 

duty cycle increases and BR
, ,k t   drops linearly. When ,

L
,k tU   reaches the maximum 

allowed voltage threshold BR
2U  , the duty cycle reaches 1 and BR

, , 0%k t  . This 

indicates that the braking resistor consumes all RB energy. 

3.2.2.4 HESS Equivalent Circuit Model 

As shown in Fig. 3.2, the HESS in the traction substation generally adopts a 

voltage-current double-loop control [120]. The outer loop aims to stabilize the traction 

substation voltage at the charge or discharge voltage threshold of the HESS. When the 

traction substation voltage SUB
, ,i tU   is higher than the HESS charge voltage threshold 

CH
,tU , the HESS charges. When the traction substation voltage SUB

, ,i tU  is lower than the 

HESS discharge voltage threshold DIS
,tU , the HESS discharges. Then, the inner loop 

aims to control the HESS current at the referential value. A proportional-integral 

controller is utilized to generate the referential inner-loop current according to the 

traction substation voltage. Based on the referential inner-loop current and power 

allocation ratio PA
,t  , the referential current of the supercapacitor and battery is 

determined. The referential current is limited by a current limiter, which compares the 

referential current with the maximum current of the supercapacitor and battery. Finally, 

another proportional-integral controller and a pulse width modulation (PWM) module 

are utilized to generate the charge/discharge command for the HESS. 
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Thus, the status of the supercapacitor at the network side (high-voltage side) can 

be described by constant-voltage and constant-current modes. When the referential 

current of the supercapacitor is lower than its maximum current, the current limiter is 

not in effect, and the supercapacitor is essentially a controlled voltage source. When the 

referential current of the supercapacitor reaches its maximum current, the current 

limiter is in effect, and the supercapacitor is essentially a current source that outputs its 

constant maximum current. The status of the battery at the network side is the same as 

that of the supercapacitor. Therefore, when both the supercapacitor and battery work in 

the constant-voltage mode, the traction substation voltage B
, ,
SU
i tU   is known, which 

equals the HESS charge/discharge voltage threshold CH
,tU   (or DIS

,tU  ). Nevertheless, 

when either or both the supercapacitor and battery work in the constant-current mode, 

their currents are known according to the power allocation ratio PA
,t , but the traction 

substation voltage B
, ,
SU
i tU  is higher than the HESS charge voltage threshold CH

,tU  (or 

lower than the HESS discharge threshold DIS
,tU ). 

On the low-voltage side, for the supercapacitor, the first-order RC equivalent 

circuit model is utilized. The parameters of such a model can be easily identified [120]. 

The model is essentially a resistor SCR  in series with a capacitor SCC , where SC
,tU  

and SC
,tI  are its output voltage and current, respectively, C

,tU  is the capacitor voltage. 

For battery, it is modeled as an open-circuit voltage (OCV) source OCV
,tU  in series with 

a resistor BT
,tR . BT

,tU  and BT
,tI  are its output voltage and current, respectively. Both 

OCV
,tU  and BT

,tR  are nonlinear functions of the state-of-energy (SoE), which can be fit 
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by polynomial functions [166]. The SoE-OCV and SoE-resistance relationship of the 

battery in this chapter can be fitted by [167] 

 OCV BT BT BT
, , ,

3 2
,1.186 SoE 1.476 So ,E 1.019So 1.758Et t t tU  (3.5) 
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Moreover, the charging/discharging efficiency of the supercapacitor and battery is 

considered by SC  and BT , respectively. t  is the increment of the control interval. 

To sum up, the status of the supercapacitor and battery at the low-voltage side is 

modeled as 
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3.2.2.5 HESS Degradation Model 

For simplicity, the degradation of the battery and supercapacitor is estimated based 

on the rainflow counting method [166], which analyzes the cyclic loading history of a 

material or structure, while the effects of other aging parameters (e.g., temperature, 
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current, etc.) are ignored. In chapter 5, we provide a more refined degradation model to 

consider the electrothermal coupling relationship of HESS. Besides, the detailed steps 

to implement both rainflow counting and electrothermal-coupled methods for 

degradation estimation are illustrated in Appendix A.  

3.2.3 Formulation of Hybrid Energy Storage System Sizing and 

Control Optimization Problem 

3.2.3.1 Control Optimization Model 

The power flows are modeled by (3.11)–(3.14). The electricity trading and HESS 

operation costs are calculated by (3.15)–(3.16). OM
SCc  and OM

BTc  are the supercapacitor 

and battery operation cost per MWh, respectively, SUBc  is the trading cost per kWh, 

SUB
,tJ  is the electricity trading cost, OM

,tJ  is the HESS operation cost, 

 ,
T Tl s t sY U U I I  (3.11) 
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The aim of HESS control is to minimize the overall operation cost 
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3.2.3.2 Sizing Optimization Model 

Considering the match of converters and HESSs, the number of battery and 

supercapacitor modules in series is fixed. Hence, the sizing optimization problem aims 

to find the optimal number of battery and supercapacitor modules in parallel, 

 INV INV INV INV
SC SC BT BT D

CR
C DC ,c N c NJ c N  (3.18) 

 
REP

BT

INV INV
REP BT BT DC DC CR

1
,

1

N
rep Lrep R

cJ N

I

N c  (3.19) 

 CR 1 / 1 1 ,
L LR R RI I I  (3.20) 

where INVJ  and REPJ  are the investment and replacement cost, respectively, CR  is 

the capital recovery factor, INV
SCc  , INV

BTc  , and INV
DCc   are the investment cost of 

supercapacitor, battery, and converter per module, respectively, SCN   and BTN   are 

the number of supercapacitor and battery modules, respectively, DCN  is the number 

of converter modules for HESS, REPN   is the replacement frequency, BTL   is the 

estimated battery life, L  is the system lifetime, RI  is the interest rate. 

Considering various operation uncertainties, such as passenger flow fluctuation 

and delays, a scenario-based method is adopted. With scenario   and occurrence 

probability f , the objective can be written as 

 
LCC INV REP F CIX R ,

s.t. (3.18) (3.20).

min

–

J J Jf JJ
 (3.21) 

where FIXJ  is other installation cost. 
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3.2.4 Impact Factors for Economic Traction Network Operation and 

Regenerative Braking Energy Utilization 

3.2.4.1 Analysis Overview 

In this subsection, the impacts of HESS control parameters and operation 

uncertainties on economic TN operation and RB energy utilization are analyzed. As an 

example, based on the same subway line described in subsection 2.4.1, four elevated 

stations (RJ, RC, TJN, and JH) are selected for this analysis. The timetable of these 

stations is shown in Table 3.1 and Fig. 3.4. The practical daily service pattern is listed 

in Table 3.2 [168], where there are 122 daily train services. We treat all headways during 

5:30–9:00 and 16:00–19:00 as 350 s, 5:20–5:30 and 19:00–20:00 as 540 s, and 9:00–

16:00 and 20:00–22:05 as 660 s. The train parameters are also listed in subsection 2.4.1, 

where the maximum capacity B
maxN  is 1500 [169], the start-up braking resistor voltage 

threshold R
1
BU =900 V, and the maximum allowed voltage R

2
BU =1000 V. The traction 

substation, TN [18] and HESS [166] parameters are listed in Table 3.3 and Table 3.4, 

respectively. The HESS is assumed to be installed in station 3. 

 
Table 3.1 Planned running and dwell times of the studied sections.  

Section PL
, ,i jT  (s) Length (m) Direction Dwell time (s) 

RJ–RC (1–2) 104 1354 

Down 

30 

RC–TJN (2–3) 165 2337 

TJN–JH (3–4) 151 2265 

JH–TJN (4–3) 151 2265 

Up TJN–RC (3–2) 162 2337 

RC–RJ (2–1) 105 1354 
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Fig. 3.4 Subway station data and illustration of train operation. 
 

Table 3.2 Daily train service pattern. 

Time Headway (s) Time Headway (s) Time Headway (s)  

5:20–5:30 535 9:00–16:00 660 19:00–20:00 540  

5:30–9:00 390 16:00–19:00 350 20:00–22:05 660  

 
Table 3.3 Traction substation and TN parameters. 

Item Value Item Value Item Value 
SUB,1 SUB,

0
2

0 ,U U  860, 832 V L  10 years RI  2.5% 
SUB,1 SUB,2,R R  0.0161, 0.0236  PR  0.015  FIXJ  3.2×105 $ 

CRTI  672 A LR  0.016 /km SUBc  0.11 $/kWh 

 

3.2.4.2 Impact of Hybrid Energy Storage System Control Parameters 

1) Impact of Voltage Thresholds: In order to analyze the impact of HESS 

charge/discharge voltage thresholds in detail, the overall TN operation cost and RB 

energy utilization with respect to the change of voltage thresholds are calculated. In 

such analysis (Fig. 3.5–Fig. 3.6), all uncertainties of train operation are ignored. 

Specifically, the number of onboard passengers is fixed to the maximum train capacity 

B
maxN . No uncertain delays or train resistances are considered. Besides, the initial SoEs 

of supercapacitors and batteries are set as their maximum SoEs. Instead of using a 

dynamic ratio PA
,t  , the power allocation strategy of the HESS follows a fixed 

allocation ratio. The allocation ratio is determined by the maximum battery power 
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divided by the maximum HESS power, which equals 0.20. The thresholds are fixed 

with respect to the change of time.  

 
Table 3.4 HESS parameters. 

Battery module (LTO 20Ah) 

Item Value Item Value 

Nom. voltage 2.3 V No. in series 292 

Nom. capacity 20 Ah No. in parallel 5 

Max. discharge rate 5 C OM
BTc  1 $/MWh 

SoE range 0.2-0.8 INV
BTc  31.51 $/module 

Supercapacitor module (BMOD00165P48) 

Item Value Item Value 

Nom. voltage 48 V No. in series 14 

Nom. capacity 165 F No. in parallel 15 

Nom. current 130 A OM
SCc  7.5 $/MWh 

Resistance 6.3×10-3  INV
SCc  538 $/module 

SoE range 0.25-0.9   

Converter module 

Item Value Item Value 

Max. current 400 A INV
DCc  38500 $/module 

BT  0.8 SC  0.95 

 

From the figure, it can be observed that, generally, the cost increases with a lower 

charge voltage threshold and higher discharge threshold. This is because, as HESS 

charge/discharge voltage thresholds are closer to the no-load voltage, more RB energy 

is reserved for the HESS rather than wasted. Thus, the reserved energy can be further 

utilized for energy saving. However, the cost drops when the discharge voltage 

threshold is close to 835 V, which shows a complex relationship between voltage 
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threshold settings and economic operation. For RB energy utilization, similarly, it 

increases with a lower charge voltage threshold and higher discharge threshold.  

 

 
(a) (b) (c) 

Fig. 3.5 Impact of HESS charge/discharge voltage thresholds on overall TN operation 
cost under (a) 350s, (b) 540s, and (c) 660s headway. 

 

 
(a) (b) (c) 

Fig. 3.6 Impact of HESS charge/discharge voltage thresholds on RB energy utilization 
under (a) 350s, (b) 540s, and (c) 660s headway. 

 

Table 3.5 summarizes the optimal voltage thresholds that have the lowest overall 

operation cost and highest RB energy utilization. It can be observed that, in most cases, 

the optimal voltage thresholds are closer to the no-load voltage. However, they vary 

with different train headways. For instance, when the headway is 540 s, the optimal 
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charge voltage threshold is 892 V, which is closer to the start-up voltage threshold of 

braking resistors. Therefore, the HESS charge/discharge voltage thresholds should 

adapt to various train headways for operation cost minimization and RB energy 

utilization maximization. 

 
Table 3.5 Optimal voltage thresholds in the fixed operation environment.  

Objective Headway (s) Optimal CHU  (V) Optimal DISU  (V) 

Overall operation cost 

350 877 855 

540 892 855 

660 868 855 

RB energy utilization 

350 865 852 

540 877 855 

660 865 854 

 

2) Impact of Power Allocation: The power allocation of the HESS can also 

influence the amount of charge/discharge energy. Similarly, the overall TN operation 

cost and RB energy utilization with respect to the change of power allocation ratio are 

calculated (Fig. 3.7–Fig. 3.8). In such analysis, all uncertainties of train operation are 

ignored. The power allocation ratio is fixed with respect to the change of time. From 

the figure, it can be observed that, generally, with the increase of power allocation ratio, 

the cost drops at first and then increases gradually. RB energy utilization similarly 

increases at first and then drops sharply. Besides, with the increase of the charge voltage 

threshold and the decrease of the discharge voltage threshold, the optimal power 

allocation ratio is smaller. Moreover, the optimal power allocation ratio is slightly larger 

than that in the conventional power allocation strategy, which is determined by the 

maximum battery power divided by the maximum HESS power (in this case, namely, 
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0.20). This is because the operation cost of the battery is much lower than that of the 

supercapacitor. Thus, an increased power allocation ratio will lead to a reduction in the 

operation cost.  

Table 3.6 summarizes the optimal power allocation ratio that has the lowest overall 

operation cost and highest RB energy utilization. From the table, the optimal power 

allocation ratio varies with different train headways and objectives. 

 

 

 

(a) (b) (c) 

Fig. 3.7 Impact of HESS power allocation ratio on overall TN operation cost under (a) 
350s, (b) 540s, and (c) 660s headway. 

 

 

 
(a) (b) (c) 

Fig. 3.8 Impact of HESS power allocation ratio on RB energy utilization under (a) 
350s, (b) 540s, and (c) 660s headway. 
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Table 3.6 Optimal power allocation ratio in the fixed operation environment.  

Objective Headway (s) Optimal PA  (%) 

Overall operation cost 

350 30.0 

540 32.0 

660 28.5 

RB energy utilization 

350 27.5 

540 24.5 

660 27.0 

 

3.2.4.3 Impact of Operation Uncertainties  

1) Impact of Delays and RTTR: The uncertain delays and corresponding RTTR 

can influence the spatial-temporal traction load distribution. Generally, when a delay 

occurs, the railway operator will temporarily shorten the train running time in the next 

section. In order to analyze the impact of delays and RTTR, the overall TN operation 

cost and RB energy utilization with respect to the change of delay times are calculated 

(Fig. 3.9). In such analysis, all uncertainties of train operation except for delays are 

ignored. The delays are set to occur in the down direction of station RJ. Since delays 

generally occur during peak hours, only the train operation under 350 s headway is 

taken into account. The HESS control parameters are set as PA
,t =0.20, CH

,tU =865 V, 

and DIS
,tU =855 V. From Fig. 3.9(a), with the increase of delay times, the overall TN 

operation cost is growing while the RB energy utilization is dropping. This is because 

the overlapping time between accelerating and decelerating trains is reduced, which 

results in a larger amount of RB energy that is wasted. Meanwhile, part of the RB energy 

is absorbed by the HESS, as shown by the declining HESS energy output (Fig. 3.9(b)). 

It is worth noting that, although the total HESS energy output is zero under 15–20 s 
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delays, the HESS power is not zero during train operation. Besides, the cost of 

implementing RTTR is significantly higher. This is because, in order to shorten the 

running time for RTTR, the traction energy consumption increases sharply, resulting in 

a growing traction energy usage. 

 

  
(a) (b) 

Fig. 3.9 Impact of delay times on (a) overall TN operation cost and RB energy 
utilization and (b) total substation and HESS energies. 

 

 

Fig. 3.10 Optimal charge voltage threshold under different delay times. 
 

Then, the impact of delays and RTTR on optimal HESS control parameters is 

analyzed. As an example, the optimal charge voltage threshold with respect to the 

change of delay times is calculated and shown in Fig. 3.10. For convenience, other 

HESS control parameters are fixed as PA
,t =0.20 and DIS

,tU =855 V. It can be observed 

that the optimal charge voltage threshold lays in the range of 860–890 V. Moreover, the 

law of optimal charge voltage threshold with the change of delay times is different with 
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and without implementing RTTR. Therefore, the HESS control parameters should adapt 

to uncertain delays and RTTR.  

2) Impact of Passenger Flows: The passenger flows can influence the amount of 

traction load and RB energy. As an example, the passenger flows in stations RC and 

TJN are analyzed. The overall TN operation cost and RB energy utilization with respect 

to the change of passenger flows are calculated (Fig. 3.11–Fig. 3.12).  

 

 

Fig. 3.11 Impact of passenger flows on overall TN operation cost under (a) 350s, (b) 
540s, and (c) 660s headway. 

 

 

Fig. 3.12 Impact of passenger flows on RB energy utilization under (a) 350s, (b) 540s, 
and (c) 660s headway. 

 

From the figure, it can be observed that, generally, with the growth of the 

passengers, the overall TN operation cost increases while the RB energy utilization 
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decreases. In addition, the impact of passenger flows varies from station to station, 

where station TJN has a more profound influence on the change of cost and utilization. 

Therefore, it is necessary to model the passenger flows in each station for 

comprehensive sizing and control decision-making. 

3) Impact of Initial SoEs: The initial SoEs of the HESS can also influence the 

amount of its charge/discharge energy. Due to its large energy capacity, the SoE of the 

battery only shows minor changes within seconds. Therefore, the subsection mainly 

focuses on the impact of initial supercapacitor SoE. Similarly, the overall TN operation 

cost and RB energy utilization with respect to the change of initial supercapacitor SoE 

are calculated (Fig. 3.13). In such analysis, all uncertainties of train operation are 

ignored. The HESS control parameters are set as PA
,t  =0.20, CH

,tU  =865 V, and 

DIS
,tU  =855 V.  

 

 
Fig. 3.13 Impact of initial supercapacitor SoE on overall TN operation cost and RB 

energy utilization under (a) 350s, (b) 540s, and (c) 660s headway. 
 

From the figure, it can be observed that, with the increase of the initial 

supercapacitor SoE, the overall TN operation cost drops about 8.2%, 7.37%, and 7.74% 

under 350 s, 540 s, and 660 s headway, respectively. As shown in Fig. 3.14, this is 

because more HESS energy can be utilized to supply the traction loads, and the energy 



Chapter 3 

86 

demands from external grids is reduced, leading to a decreased electricity trading cost. 

Nevertheless, the RB energy utilization is almost unchanged with the increase of the 

initial supercapacitor SoE. This indicates that the initial supercapacitor SoE only alters 

the RB energy distribution within the HESS, accelerating trains, and contact lines while 

having little impact on the start-up of braking resistors.  

 

 

Fig. 3.14 Impact of initial supercapacitor SoE on total substation and HESS energies 
under (a) 350s, (b) 540s, and (c) 660s headway. 

 

According to the above analysis, the HESS control parameters have a profound 

impact on the economic operation of TN and the energy utilization of RB. The optimal 

charge/discharge voltage thresholds and power allocation ratio of the HESS vary with 

train service patterns, including headways, delays, and RTTR, and their relationship is 

highly complex and nonlinear. It is necessary to limit the frequency of the start-up of 

the braking resistor to improve the network-wide cost and energy efficiency based on 

real-time traction loads and train positions. Meanwhile, the passenger flows and initial 

HESS SoEs can also substantially decrease the economy of TN operation, which 

become key factors in HESS sizing and control decision-making. Nevertheless, in the 

above derivation, the HESS control parameters are fixed with the change of time, and 

the control parameters that adapt to real-time operation uncertainties are difficult to 
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acquire online under the complex energy interactions between multiple trains. 

Furthermore, it is necessary to take the sizing of HESS into account since its capacity 

can limit the reservation of RB energy, which results in energy waste. Therefore, in this 

chapter, a sizing and control optimization approach for HESS-integrated traction 

substation operation is developed, which mainly focuses on cost efficiency. The 

following chapters will extend the research into DHESSs-integrated TN operation and 

multiple objectives.  

3.3 MTRL–SCO Approach 

3.3.1 Approach Overview 

 

 
Fig. 3.15 Overview of MTRL–SCO. 

 

The proposed approach (Fig. 3.15) contains the following steps: 1) Various traction 

load scenarios are randomly generated based on the DTM, and representative daily 

traction load scenarios are selected based on clustering algorithms. 2) A HESS size is 

selected from the size constraint set, and such a HESS control problem is reformulated 

as an MTMDP. 3) The proposed KT-D3QN algorithm solves the MTMDP and trains an 

intelligent agent for multi-task HESS control. 4) Based on daily service patterns, an 
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LCC analysis is performed, where the daily operation cost is calculated by the well-

trained agent. 5) Repeat 2)–4) to traverse all sizes, and the optimal HESS size and 

control strategy is determined with the lowest LCC. 

3.3.2 Dynamic Traffic Model 

3.3.2.1 Copula-Based Passenger Flow Scenario Generation 

Since passenger flow fluctuations can result in varying traction loads, the spatial-

temporal uncertainty of passenger flows is quantified based on the Copula theory 

(Algorithm 3.1). First, we estimate the historical passenger data B
, ,i nN  according to 

OD and arrival rate tables, where B
, ,i nN  is the average onboard passengers between 

station i and i+1 at time step n. The calculation of B
, ,i nN  is illustrated in Appendix B. 

Then, for simplicity, we only consider the temporal correlation between two 

consecutive time steps, namely, 

 B B B B B
, , 1 , ,1 , , , , 1 , ,| , , | ,i n i i n i n i nf N N N f N N  (3.22) 

where f  is the probability density function (PDF), B
, ,i nN  is the average onboard 

passengers at station i at prediction interval n. 

Then, the conditional PDF in (3.22) can be obtained by (3.23)–(3.24), where the 

joint PDF is written by a Copula function. 

 
B B 2
, , 1 , , 1 2

1 2B
1 2, , 1

| ,
, ,

i n i n

i n

f N N C F F
c F F

F Ff N
 (3.23) 

 B B
1 , , 1 2 , ,,  ,i n i nF F N F F N  (3.24) 

where C  and c  are the Copula function and its PDF, respectively, F  is the 

cumulative distribution function (CDF). Thus, multiple pseudo-observations can be 
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drawn from the conditional CDF to generate sufficient scenarios. 

3.3.2.2 TEPT-Based RTTR & Trajectory Selection Optimization 

Different from the conventional method illustrated in subsection 3.2.4.3, a novel 

TEPT-based RTTR algorithm is proposed and adopted for further cost saving. Rather 

than focusing on delay time minimization, the TEPT-based RTTR aims to minimize 

traction energy consumption by shortening the running time of each section based on 

the energy sensitivity between each train speed profile. Thus, the objective is 
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It is worth noting that since these delay times are short and do not cause any 

interruption of train services, the total running and dwell times are assumed unchanged 

[144]. Specifically, apart from passenger flows, the traction load changes in accordance 

with the running time. By dividing B
, ,i nN  into D intervals, the TEPT sensitivity S  

can be written as 
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 (3.26) 

where each section has P  pre-programmed trajectories, 1 p P , and the trajectories 

are ranked from the highest traction energy consumption to the lowest. ,p i  denotes 

the pth trajectory of section , 1i i  . 
,

S
, p id   and 

,, p idE   are the sensitivity and 

energy difference between the pth and p+1th trajectory of section , 1i i   with 
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passenger interval d. T  is the increment of train running time.  

A TEPT-based RTTR algorithm can then be developed to obtain the rescheduled 

timetable and trajectories after the delay (Algorithm 3.1). The principle is that, at each 

iteration, we allocate a T   to the section with the lowest sensitivity. Then, the 

trajectory ,p i   and sensitivity 
,

S
, p id   for that section are updated, while 

D D
, ,i iT T T  . The allocation process ends when D

, 0iT  . Thus, the rescheduled 

timetable and trajectories of each section are determined. The detailed steps are 

illustrated as follows. 

Step 1: Initialize the delay scenario. Input the delayed station and the 

corresponding delay time D
,iT . Set pre-programmed train trajectory set 1,1 1, 1, , P I  

for each section, and generate the initial trajectory for each section according to the 

timetable PL PL
1,2, 1, ,, , I IT T . Set the passengers B B

1, , 1, ,, ,n I nN N  at time interval n  for 

each station. Calculate the traction energy consumption 
,, p idE   for each trajectory 

under each passenger flow, and generate the TEPT matrix S . 

Step 2: Initialize rescheduling. Following the conventional method, allocate D
,iT  

to the first section , 1i i   after the delayed station. If D
, ( 1)iT p T  , 

D D
, , ( 1)i iT T p T , and then allocate D

,iT  to section 1, 2i i . Repeat the process 

till D
, 0iT . Calculate the total energy consumption 

,0 ,1 p i

I
di

E E . 

Step 3: Select one row 
,1 , 1

S S
, ,, ,

p p Id d   in matrix S   by current passenger 

interval d  of each station and trajectories ,1 , 1, ,p p I  of each section. 

Algorithm 3.1 Passenger Flow Scenario Generation and TEPT-Based RTTR in DTM 
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# Passenger flow scenario generation 

1 Input: OD and arrival rate ,  

2 For prediction interval n = 1, N do 

3  Update arrival rate ,i n  and operation data kH , nK  

4  Estimate historical passengers B
, ,i nN  

5 Establish the joint conditional CDF by conditional Copula functions using (3.23)–

(3.24), draw pseudo-observations from it to generate sufficient scenarios 

6 Output: onboard passenger BN  

# TEPT-based RTTR  

7 Input: passenger BN , speed profile , delay time DT , and running time PLT  

8 Initialize TEPT matrix S  

9 Initialize rescheduling: allocate D
,iT  to section , 1i i , D D

, , ( 1)i iT T p T . 

Then allocate D
,iT  to section 1, 2i i . Repeat the process till D

, 0iT . 

Calculate the total energy consumption 
,0 ,1 p i

I
di

E E  

10 While D
, 0iT  do 

11  Select 
,1 , 1

S S
, ,, ,

p p Id d  by current interval d  and trajectory ,1 , 1, ,p p I  

12  Allocate T  to the target section with 
,1 , 1

S S
, ,arg min , ,

p p Id d , update the 

trajectory and sensitivity of the target section 

13  D D
, ,i iT T T  

14 With the updated trajectories ,1 , 1, ,p p I , calculate 
,0 ,1 p i

I
di

E E  and 

compare with 0E , select the timetable with lowest energy consumption 

15 Output: rescheduled time RTTRT  

 

Step 4: Allocate T  to the target section with the minimum energy sensitivity 
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,1 , 1

S S
, ,arg min , ,

p p Id d  , update the trajectory and sensitivity of the target section. 

Update the delay time by D D
, ,i iT T T .  

Step 5: Repeat step 3–4 until D
, 0iT . With the updated trajectories ,1 , 1, ,p p I , 

calculate the total energy consumption 
,0 ,1 p i

I
di

E E . Compare 0E  with 0E , select 

the timetable and trajectories with the lowest energy consumption. 

3.3.2.3 Traction Load Calculation 

The power of train k is calculated by (3.27), 

 
TR
, ,TR TR B P TR TR

, , , , , , , , TR ,k t
k t i n k t k t

v
P M N M a F  (3.27) 

where TRM   and PM   are the total vehicle mass and passenger mass per person, 

respectively, TR
, ,k tv  and TR

, ,k ta  are the train speed and acceleration, respectively, TR  

is the motor efficiency. Since total resistance TR
, ,k tF  can be uncertain due to weather 

and line conditions, it is subject to a truncated Normal distribution  [170], where 

the standard deviation is 5% of the mean value, and its variance is limited to 10%. 

3.3.3 Multi-Task Markov Decision Process 

3.3.3.1 Task Representation & MTMDP 

Since different headways and rescheduled trajectories significantly change the 

spatial-temporal distribution of traction loads, each headway and each combination of 

trajectories between different stations is a specific task. The task set is ,H P , 

where 1, ,H Hz z   contains H headway tasks in one-hot vectors, and 

1,1 1, 1 1,1 1, 1, , , , , ,P I P P I  contains 1 1P I  combination tasks of 
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trajectories. Hence, the total number of tasks is 1 1H P I . Each task z  can 

be formulated as a MDP introduced in subsection 1.3.1.1, and multiple tasks form a 

MTMDP with components , , , , , .  

3.3.3.2 State, Action, & Reward 

State ts   contains two parts: a) local traction substation operation status, 

including supercapacitor SoE SC
,SoE t  , battery SoE BT

,SoE t  , local traction substation 

outputs SUB
, ,i tU  and SUB

, ,i tI  (suppose HESS is in station i), b) train operation status, 

including position TR TR
1, , , ,, ,t K tx x , direction TR TR

1, , , ,, ,t K td d , and power TR TR
1, , , ,, ,t K tP P . 

By this design, it is not necessary for the agent to exchange information with other 

traction substations for decision making, which reduces the communication burden. 

Action ta   is the voltage thresholds CH
,tU  , DIS

,tU   and power allocation PA
,t  . 

CH DIS PA
, , ,, ,t t t ta U U . According to (3.17), reward tr  is the minus of GRID

,tJ  and OM
,tJ , 

namely, GRID OM
, ,tt tr J J . 

 
TR TR
1, , , ,

TR TR TR TR
1, , , , 1

SC BT SUB S

,

,

, ,

UB
, , , , ,

,

SoE SoE , ,, ,

, , , ,

, , ,

, .
t

t t t K t

t K K

i t i t

t t t

U x x
s

d d P P

I
 (3.28) 

3.3.3.3 State Transition 

The train operation status is updated by the selected trajectory p , and the network 

parameters, such as the contact line resistance, are updated accordingly. Then, the local 

traction substation outputs (e.g., traction substation voltage and current) are updated by 

power flow calculation according to ta . According to the power flows, the SoEs of the 

HESS are updated by 
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2C BT

, ,SC BT BT
, , , 1C,norm BT,norm ,SoE SoE SoE,t t
t t t

U I t
U Q

 (3.29) 

where C,normU   and BT,normQ   are the nominal capacitor voltage and nominal battery 

capacity, respectively.  

Furthermore, there are multiple states that are independent of ta   and have 

intrinsic uncertainties, such as passenger flows and delays. These uncertainties are 

updated by the generated scenario parameters in subsection 3.3.2. 

3.3.4 KT-D3QN Algorithm Implementation 

3.3.4.1 Dueling Double Deep Q Network (D3QN) 

Since the complexity of calculating expected return *Q , D3QN [45] approximates 

*Q  by Q  with parameter , and Q  is decoupled with a value estimation tVE s  

and an action advantage estimation ,t tAE s a . This dueling architecture enables the 

agent to learn independent state values, which is useful in states where the actions have 

no effect on the environment,  

 1
1

.
,

, , t
t ta

t t t t t

AE s a
Q s a VE s AE s a  (3.30) 

Totally H replay buffers are built for all headway tasks, and W transitions 

1, , , ww w ws a r s   are randomly sampled from each buffer for updating the multi-task 

D3QN. Thus, the original loss function of the D3QN in (2.31) is extended to a multi-

task form, namely,  

 2
,1 ,w

w
w

h
y Q s a

HW
 (3.31) 

where 
1

1 11,arg max ,
w

w w
a

w wy r Q s Q s a  , Q   and   are the target network 

and its parameter, respectively.  
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The loss updates can be written as 

 ,q  (3.32) 

where q  is the learning rate. 

3.3.4.2 Knowledge Transfer & Policy Distillation Annealing 

Considering the similarity of different trajectory tasks under a given headway, we 

develop a knowledge transfer method to rapidly and stably learn the multi-task policy 

incorporating common knowledge from task-specific agents by policy distillation. For 

each headway task with several sets of trajectory tasks, a single-task agent is first 

trained in a learning environment without delay. Then, the Kullback-Leibler divergence 

is adopted to measure the discrepancy between the policy distributions of single-task 

agents and the multi-task agent. An annealing strategy is utilized to gradually reduce 

the knowledge transfer for convergence.  

 
softmax ,

softmax , ln
softm

,
ax ,

s
w ws

KL w w
h w w w

Q s a
Q s a

Q s a
 (3.33) 

 ,1 KL  (3.34) 

where sQ  is the Q value of the corresponding single-task agent,  decreases during 

training.  

3.3.4.3 Soft Modulation with Conflict Gradient Projecting 

As the difficulty of learning different tasks varies, soft modulation [69] (Fig. 3.15) 

is introduced to address this issue. The idea of soft modulation is to generate soft 

combinations between different neural network modules without explicitly specifying 

the policy structure for each task. To implement soft modulation, the network structure 

of D3QN is divided into multiple layers, and each layer contains a set of modules. A 
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separate routing network with parameter r   is built to estimate the connection 

probability lP  between modules in layer l  and layer 1l  according to the task and 

current state. Hence, for different tasks, as the connection probability varies, each task 

will have different weighted combinations of shared network modules to construct its 

task-conditioned policy. This reconfiguration of the Q network improves flexibility in 

handling various tasks and ensures the quality of solutions. Moreover, in order to 

mitigate potential inter-task conflicts, the conflict gradient projecting technique [71] is 

adopted. It provides a simple solution to deal with task gradient interference in network 

updates by projecting the conflicting gradient onto the normal plane of the other. Thus, 

by implementing the above techniques, the multi-task learning performance of the 

multi-task D3QN can be enhanced. The training step of the algorithm is summarized in 

Algorithm 3.2. 

 

Algorithm 3.2 KT-D3QN 

1 Initialize Q network with , routing network with r , target network 

with , and replay buffers 1, , HB B  

2 For episode = 1, Max do 

3  Sample a task from the task set to initialize learning environment 

4  Receive the initial state 0s  

5  For control interval t = 1, T do 

6   Select ta  with | ,t ta s z  and -greedy, obtain tr  and 1ts  

in the environment 

7   Store transition 1( , , , )t t t ts a r s  to hB  based on headway task hz  

8   Sample W  transitions 1, , , ww w ws a r s  from each hB  

9   Calculate loss  by (3.31) and (3.33)–(3.34), update , r ,  

10   Soft update: 1  
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3.4 Case Study 

In this section, an analysis of the aforementioned formulations and algorithms is 

conducted. First, the optimal HESS control behaviors are investigated. On the one hand, 

the impact of different control schemes is demonstrated to verify the effectiveness of 

joint adjustments on voltage thresholds and power allocations of the HESS. On the 

other hand, the training and test performance of KT-D3QN on overall operation cost 

and RB energy utilization is examined by comparing it with other learning-based and 

non-learning-based algorithms. Furthermore, the optimal HESS configurations are 

demonstrated with an analysis of various traffic models and RTTR algorithms.  

 
Table 3.7 Rescheduling settings.  

Section Direction RTTR
, ,i jT  (s) Length (m) Dwell time (s) 

RJ–RC (1–2) 

Down 

[94, 104] 1354 

30 

RC–TJN (2–3) [155, 165] 2337 

TJN–JH (3–4) [141, 151] 2265 

JH–TJN (4–3) 

Up 

[141, 151] 2265 

TJN–RC (3–2) [152, 162] 2337 

RC–RJ (2–1) [95, 105] 1354 

 

3.4.1 Setup 

The subway line data and HESS data used in case studies are illustrated in 

subsection 3.2.4.1. The rescheduling settings of these stations are shown in Table 3.7. 

Considering that batteries are not suitable for covering the large traction load power 

[121], their rated power is roughly taken as the average traction substation power during 
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one train headway. To meet the peak traction power demand [171], the power difference 

between the average and peak traction substation power is roughly treated as the rated 

supercapacitor power. Thus, the optimal HESS size is searched in a range near the above 

empirical size setting, where the number of supercapacitors in parallel ranges from 15 

to 25, and the number of batteries in parallel ranges from 5 to 10.  

 

 
(a) 

 
(b) 

  
(c) (d) 

Fig. 3.16 Passenger flows in (a) down and (b) up directions. Time intervals 50–51 and 
sections RJ–RC with TJN–JH are used to show (c) spatial and (d) temporal passenger 

flow correlations. 
 

For simplicity, the delays are only considered during peak hours (namely, 350 s 

headway), and only one delay occurs at a random station in each scenario. D
,iT  is set 
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between 5–20 s [32] using the log-Normal distribution [157] where the mean and 

variance are both 5 s. Hence, according to the delay time range, each station has 15 

combination tasks of train trajectories with different planned running times. The 

trajectories are generated by the proposed SRL–EETTO in chapter 2, which achieves 

traction energy consumption minimization and meets multiple objectives of punctuality, 

safety, and ride comfort. 1T  s. For multi-task control, the proposed algorithm is 

trained and tested by 1000 and 21 random traction load scenarios, respectively. The 

initial HESS SoEs are randomly generated. For sizing optimization, 122 random 

traction load scenarios are included in a daily operation scenario according to the 

service pattern, and 1000 such daily operation scenarios are generated. Then, to 

decrease the computational cost, 10 representative scenarios are retained by K-means 

clustering. The scenario probabilities are 0.112, 0.137, 0.126, 0.101, 0.096, 0.106, 0.077, 

0.073, 0.100, and 0.072. The passenger flow fluctuations and their correlations in the 

representative scenarios are shown in Fig. 3.16, where historical OD and arrival rate 

tables are obtained from [156].  

 
Table 3.8 KT-D3QN parameters.  

Parameter Value Parameter Value Parameter Value 

q  10-4 W  43 Optimizer Adam 

 5×10-4  1 0.05 Buffer capacity 220 

 0.998 H  3 Exploration policy 0.5 0.01 

 

The parameters of the KT-dD3QN are listed in Table 3.8. The Q network has two 

fully connected layers both with 128 units and ReLU non-linearity, and followed by 2 

layers and 2 modules per layer. Each module has two hidden layers with 128 units and 

ReLU non-linearity. The routing network outputs 128 representations for connection 
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probability per layer. The target network and task-specific agents have the same 

structure as the Q network. The exploration rate reduces linearly from 0.5 to 0.01 and 

remains constant at 0.01 after 2000 episodes.  reduces linearly from 1 to 0.05 and 

remains constant at 0.05 after 2000 episodes. All simulations are performed by PyTorch 

1.12.1 and Python 3.9.13 on the same device in subsection 2.4.1. 

3.4.2 Analysis of Hybrid Energy Storage System Control Behaviors 

3.4.2.1 Control Behaviors & Impact of Control Schemes 

In this subsection, the impact of different control schemes on the overall operation 

cost and HESS control behavior are analyzed by the test set. The parallel numbers of 

15 and 5 for supercapacitor and battery are taken, respectively. The following schemes 

are compared: 1) Dynamic threshold and power allocation (DTPA, proposed): Both 

thresholds and the power allocation of the HESS can be dynamically adjusted. 2) Fixed 

threshold (FT): This scheme aims to verify the effectiveness of threshold adjustments. 

CH
,tU  =865 V, DIS

,tU  =855 V. 3) Fixed power allocation (FPA): This scheme aims to 

verify the effectiveness of power allocation adjustments. The fixed power allocation is 

the nominal battery power divided by nominal supercapacitor power. 4) Fixed threshold 

and power allocation (FTPA): A conventional rule-based scheme [37], where 

thresholds and power allocation are fixed.  

 
Table 3.9 Comparative costs of schemes 1–4.  

Performance DTPA FT FPA FTPA 

Overall operation cost ($) 351.57 358.48 368.58 373.56 

Electricity trading cost ($) 337.53 344.94 353.95 356.92 

HESS operation cost ($) 14.04 13.54 14.63 16.63 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 3.17 Train operation and HESS control curves, including curves of (a) total train 
power, (b) train displacement, HESS voltage thresholds under (c) normal operation 

and (d) RTTR, and HESS power allocations under (e) normal operation and (f) RTTR. 
 

Fig. 3.17(a) shows the total train power generation (+) and consumption (-). Fig. 

3.17(b) shows the train displacement curves. When a delay occurs, the rescheduled 

energy-efficient speed profile prefers higher deceleration and braking power to avoid 

extra traction energy consumption due to the decreased running time. Hence, the overall 

power generation under RTTR is higher than that of normal operation. Fig. 3.17(c)–(f) 

show the HESS SoEs, control parameters, and traction substation energies under normal 
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operation and RTTR, respectively. From Fig. 3.17(c) and (e), since the battery operation 

cost is lower than that of the supercapacitor, DTPA and FT utilize more battery capacity 

for cost-saving by leveraging a higher power allocation ratio than FPA.  

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Fig. 3.18 HESS SoEs and traction substation energy curves, including curves of 
supercapacitor SoEs under (a) normal operation and (b) RTTR, battery SoEs under (c) 

normal operation and (d) RTTR, and traction substation energy under (e) normal 
operation and (f) RTTR.
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Besides, from Fig. 3.18(a) and (c), the DTPA and FT release less energy than FPA 

and FTPA during 50–75 s, which prevents the supercapacitor SoE from reaching its 

lowest limit. The continuous supercapacitor power supply of DTPA and FT decreases 

the traction  substation energy consumption, as shown in Fig. 3.18(e). Moreover, 

compared with FT, other schemes maintain a reasonable supercapacitor SoE during 

275–350 s, which can potentially utilize more supercapacitor energy for further usage. 

From Fig. 3.17(d) and (f), compared with normal operation, the power allocation ratio 

of DTPA and FT is closer to FPA. This is to fully utilize the available HESS power to 

absorb the higher braking power under RTTR. From Fig. 3.18(b)–(d), all schemes show 

similar performance in maintaining supercapacitor SoE as in normal operation. From 

Table 3.9, DTPA outperforms other schemes in decreasing the overall operation cost 

under normal operation and RTTR. The cost reduction is 1.93–5.89% on average. 

To further demonstrate how online trip time adjustment affects the proposed 

approach, another RTTR scenario is analyzed (Fig. 3.19), where a train is informed to 

increase the trip time by 10 s after running 20 s at section RJ–RC. From the figures, the 

train speed at section RJ–RC is decreased after receiving the information to extend the 

trip time, and the RB power is reduced. If the control parameters of the HESS are 

unchanged, the direct RB power use by trains is reduced and more power is required 

from the substation to satisfy the traction demand, which increases the energy 

consumption and operation cost. Nevertheless, under the proposed approach, the HESS 

voltage thresholds and power allocation ratio increase, indicating less RB power is 

absorbed by the HESS and the direct RB power use by trains can be maintained. Thus, 

the proposed approach can effectively address the above energy and cost efficiency 

issue, validating its effectiveness under online trip time adjustment.  
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(a) 

 

(b) 

  

(c) (d) 

Fig. 3.19 HESS control behaviors under online trip time adjustment, including curves 
of (a) train trajectory adjustment, (b) train power, (c) HESS voltage thresholds, and 

(d) HESS power allocations. 
 

3.4.2.2 Impact of Control Optimization Algorithms 

In this subsection, the model performance of the proposed KT-D3QN is verified. 

Four learning-based and two non-learning-based algorithms are compared: 1) KT-

D3QN: proposed. 2) MT-D3QN: the task set and the routing network are the same as 

KT-D3QN, while the knowledge transfer is removed. 3) ST-D3QN: The routing network 
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and the knowledge transfer are not included, and no task set is established. The changes 

in speed profiles and headways are treated as uncertainties. 4) MTMH-SAC: The multi-

task multi-head soft-actor-critic algorithm which uses an independent head for each 

task. We revised the realization in [69] to output discrete actions. The above methods 

are running with 4000 episodes and 3 random seeds. Besides, 5) Genetic algorithm 

(GA): GA is directly implemented on the test set, where *Q  is treated as the fitness 

function. To decrease the computational complexity, we perform GA for each test 

scenario individually. The population size is 40, the crossover fraction is 0.9, the 

mutation fraction is 0.1, and the maximum generation is 100. 6) FTPA: as illustrated in 

subsection 3.4.2.1. 

 

 
Fig. 3.20 Comparative reward curves of algorithms 1–6. 

 

Fig. 3.20 shows the reward curves of the test set, where the bold line is the average 

value, the shaded area is one standard deviation, and the curves of learning-based 

algorithms are smoothed with a moving average smoothing factor of 0.1 for visual 

clarity. ST-D3QN gains the lowest reward and shows little improvement with episodes, 

which indicates that a single-task learning framework is insufficient to handle different 

headways and multi-source operation uncertainties. KT-D3QN achieves a stable 
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performance and finds a near-optimal control policy after 3000 episodes. It obtains the 

highest reward.  

Table 3.10 shows the RB energy utilization and overall operation cost of the test 

set, along with the best performance for each algorithm. Although FTPA achieves the 

highest RB energy utilization, its cost is higher than KT-D3QN and MT-D3QN. This is 

because the improved RB energy recovery of HESS also increases its operation cost. 

Hence, due to the multi-task learning framework and knowledge transfer, KT-D3QN 

outperforms other algorithms in improving economic benefits by 4.04%-13.06%, 

respectively, which verifies its effectiveness. 

 
Table 3.10 Comparative RB energy utilizations and costs of algorithms 1–6.  

Performance KT-D3QN MT-D3QN ST-D3QN 

Braking energy (MWh) 25.41 25.41 25.41 

Braking loss (MWh) 7.98 6.09 9.03 

RB energy (MWh) 17.43 19.32 16.38 

Utilization (%) 68.60 76.03 64.46 

Cost ($) 351.57 366.39 404.37 

Performance MTMH-SAC GA FTPA 

Braking energy (MWh) 25.41 25.41 25.41 

Braking loss (MWh) 8.41 9.45 5.67 

RB energy (MWh) 17.00 15.96 19.74 

Utilization (%) 66.90 62.81 77.69 

Cost ($) 387.54 403.83 373.56 
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3.4.3 Analysis of Hybrid Energy Storage System Configurations 

3.4.3.1 Configuration Results & Impact of Traffic Models 

In this subsection, the effectiveness of the proposed DTM and the optimal 

configuration of HESS are investigated. The following traffic models are compared: 1) 

Dynamic traffic model: proposed. 2) Static traffic model: Only one most common 

traction load scenario is generated for each headway, and one daily operation scenario 

containing 122 such traction load scenarios with different headways is used for sizing 

optimization. Specifically, this daily operation scenario assumes no delays occur and 

the daily passenger flows follow the historical average daily passenger curve. The train 

resistance uncertainty is not considered. The initial HESS SoEs are set as the maximum 

SoE. 3) Static passenger model: passenger uncertainty is not considered, and the 

historical average daily passenger curve is used for all daily operation scenarios. 4) No 

delay model: the delays and RTTR are ignored, and only the normal operation scenarios 

in the traction load scenarios are adopted to establish daily operation scenarios. These 

traffic models are combined with different energy management strategies to optimize 

the HESS size. Specifically, we use framework F1–F4 to denote the results of 

combining KT-D3QN with traffic models 1)–4), respectively, and framework F5–F8 to 

denote the results of combining FTPA with traffic models 1)–4), respectively. F6 (FTPA 

and static traffic model) is the conventional approach and baseline.  

Table 3.11 shows the LCC and optimal HESS size under various optimization 

frameworks. Compared with F1, F2–F4 lacks the consideration of spatial-temporal 

traction load characteristics on different degrees, which results in the LCC 

underestimation. Similarly, the LCCs of F6–F8 are lower than F5 due to the lack of the 

proposed dynamic traffic model. Besides, the LCCs of F5–F8 are significantly higher 
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than F1–F4, which further verifies the effectiveness of KT-D3QN. Compared with the 

conventional approach F6, the proposed framework F1 reduces the HESS LCC, 

capacity, and power by 2.65%, 12.29%, and 17.63%, respectively, while increasing the 

battery life by 86.22%. 

 
Table 3.11 Comparative LCCs and optimal HESS sizes of frameworks 1–8.  

Performance F1 F2 F3 F4 

LCC ($) 1283.53 1184.99 1234.59 1209.40 

Supercapacitor capacity (kWh) 14.78 17.74 14.78 17.74 

Battery capacity (kWh) 107.46 80.59 107.46 80.59 

Supercapacitor power (kW) 1.75 2.10 1.75 2.10 

Battery power (kW) 0.54 0.40 0.54 0.40 

Battery life (year) 10.00 10.00 10.00 10.00 

Performance F5 F6 F7 F8 

LCC ($) 1340.22 1318.48 1301.45 1327.83 

Supercapacitor capacity (kWh) 17.74 18.48 17.74 17.74 

Battery capacity (kWh) 107.46 120.89 107.46 120.89 

Supercapacitor power (kW) 2.10 2.18 2.10 2.10 

Battery power (kW) 0.54 0.60 0.54 0.60 

Battery life (year) 5.40 5.25 5.37 5.64 

 

3.4.3.2 Impact of RTTR Algorithms 

In this subsection, the effectiveness of the energy-saving-oriented RTTR based on 

TEPT sensitivity is verified. The following RTTR methods are compared using the test 

set. It is worth noting that only delay scenarios are included in this comparison. 1) 

Method 1 (M1): Proposed TEPT-based RTTR. 2) Method 2 (M2): A conventional 

rescheduling method aiming to minimize the delay time, which is illustrated in line 8 
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of algorithm 3.1. First, it tries to allocate the delay time D
,iT  to the first section after 

the delayed station. Then, if there is remaining D
,iT , allocate it to the second section. 

Repeat the process till D
, 0iT . 3) Method 3 (M3): no RTTR is implemented.  

 
Table 3.12 Comparative overall operation costs and traction substation energies of 

RTTR methods 1–3.  

Performance M1 M2 M3 

Overall operation cost ($) 301.73 311.54 294.53 

substation energy (kWh) 987.89 1021.01 964.00 

 

Table 3.12 shows the overall operation cost and traction substation energy outputs 

under different RTTR methods. M3 achieves the lowest cost and energy consumption 

following the original train trajectories and running times. However, the delay time has 

not been reduced. Although both M1 and M2 can minimize the delay time, M1 achieves 

better cost and energy efficiency due to the consideration of energy sensitivity in 

switching train trajectories. 

3.5 Summary 

In this chapter, an MTRL–SCO approach is proposed for enhancing the economic 

operations of HESSs and their integrated traction substations under dynamic spatial-

temporal URT traffic. The research mainly includes the following aspects.  

The configuration-specific HESS control problem under various spatial-temporal 

traction load distributions is formulated as an MTMDP, and an iterative sizing 

optimization approach considering daily service patterns is devised to minimize the 

HESS LCC. Then, a DTM composed of a Copula-based passenger flow generation 
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method and a traction energy sensitivity-based RTTR algorithm is developed to 

characterize multi-train traction load uncertainty. Furthermore, a KT-D3QN algorithm 

is proposed to simultaneously learn a generalized multi-task HESS control policy from 

knowledge of annealing task-specific agents and operation environments. Finally, 

comparative studies have validated the effectiveness of the proposed approach for LCC 

reduction of HESS operation under URT traffic. 

The key findings of the designated case study are summarized as follows: 1) With 

the joint optimization of voltage thresholds and power allocations in the MTMDP to 

effectively adjust SoEs, the operation cost can be reduced by 5.89% compared with 

conventional rule-based strategies using fixed thresholds and power allocations. 2) 

Leveraging the multi-task learning framework and knowledge transfer, the proposed 

KT-D3QN algorithm shows superior economic performance compared to benchmark 

learning-based and non-learning-based methods, decreasing the average overall 

operation cost by 4.04–13.06%. 3) The lack of consideration of spatial-temporal 

traction load characteristics can result in substantial LCC underestimation up to 6.69% 

for optimal HESS configuration. Compared with the conventional approach, the 

proposed optimization framework reduces the HESS LCC by 2.65% while increasing 

the battery life by 86.22%. 
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Chapter 4: Multi-Time Scale Energy Management for 

Distributed Hybrid Energy Storage System-Integrated 

Traction Network Operation Based on Multi-Task Multi-

Agent Reinforcement Learning 

Nomenclature in this chapter 

A. Multi-Task Multi-Agent Reinforcement Learning Elements 

a , s , o , r , z  Action, state, observation, reward, and task 

B  Replay buffer 

rl  Length of history trajectory used for loss updates 

iQ , totQ  Q value of agent i and joint action-value function 

, , , , ,  Sets of agents, states, observations, actions, rewards, and 

transitions 

, H , P  Sets of tasks, headway tasks, and combination tasks of trajectories 

, , KL  Weighted Q loss, Q loss, and knowledge transfer loss 

 Agent policy 

, , a  Observation history, joint observation history, and joint action 

 Discount factor 

 Soft update rate 

 Weight of knowledge transfer 

q  Learning rate of neural networks 

 Hidden state of the RNN 

, , r , m  Parameters of Q, target Q, routing, and mixing networks 

r  PV-battery energy utilization reward 
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B. Indices 

{1,2, , }h H  Index of train headways 

{1,2, , }i I  Index of stations or traction substations 

{1,2, , }j J  Index of stations or traction substations except for station or 

substation i  

{1,2, , }k K  Index of trains 

{1,2, , }rrt T  Index of the intraday time horizon 

{1,2, , }w W  Index of transitions sampled from replay buffer 

C. Time Scales 

n , n , N  Increment, current time step, and time horizon on a long time scale 

for economic dispatch and prediction (e.g., sub-hourly or hourly) 

t , t ,T  Increment, current time step, and time horizon on a short time scale 

for real-time train and HESS control (e.g., sub-minutely) 

D. Variables 

refE , refE  Referential and available PV-battery energies (kWh) 

SCI , PV-BTI , SUBI  Currents of supercapacitor, PV-battery, and traction substation (A) 

DAJ , INTJ  Objectives of day-ahead and intraday scheduling 

DJ  Cost for any deviation from ref,INTE  ($) 

SUBJ , CAJ , CURJ  Costs of electricity trading, carbon trading, and PV curtailment ($) 

OMJ , SCJ , BTJ , PVJ  Costs of PV-HESS, supercapacitor, battery, and PV operation ($) 

BN  Passengers who are onboard 

PV-BTP  Scheduled power of PV-battery (W) 

PVP , CURP  PV power and its curtailment (W) 

TRP , SUBP  Powers of train and traction substation (W) 
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SC,CHP , SC,DISP  Charging and discharging powers of supercapacitor (W) 

BT,CHP , BT,DISP  Charging and discharging powers of battery (W) 

PVR  Solar irradiance (W/m2) 

SCSoE , BTSoE  SoEs of supercapacitor and battery (%) 

SCU , CU  Terminal and capacitance voltages of supercapacitor (V) 

SUBU , PV-BTU  Voltages of traction substation and PV-battery (V) 

CHU , DISU  Charge and discharge voltage thresholds of DHESS (V) 

, f  Scenario and its probability 

 Binary indicator of battery charging/discharging 

 DHESS operation mode 

E. Parameters 

PVA  Area of PV arrays (m2) 

pc , sc , bc  Weight coefficients of intraday objective 

OM
SCc , OM

BTc  Unit costs of supercapacitor and battery operation ($/MWh) 

OM
PVc , CURc  Unit costs of PV operation and curtailment ($/kWh) 

SUBc ,
2COc  Unit costs of electricity and carbon trading ($/kWh) 

SCC  Equivalent capacitance of supercapacitor (F) 

ek , qk  Coefficient of carbon emission and quote (kg/kWh) 

SCR  Resistance of supercapacitor ( ) 

SC , BT , PV  Efficiencies of supercapacitor, battery, and PV 

4.1 Background 

The integration of distributed photovoltaics (PVs), regenerative braking (RB) 

techniques, and energy storage devices has become crucial to promote energy 

conservation and emission reduction for a sustainable future of urban rail transit (URT) 
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TNs. Nowadays, different aspects of distributed hybrid energy storage system 

(DHESS)-integrated traction network (TN) energy management have been studied in 

previous works (literature reviews in section 1.3). However, a multi-time scale energy 

management strategy to fully utilize inherent temporal and spatial operational 

flexibilities of TNs regarding energy generation (both PV and RB energy) and storage 

(DHESSs) for promoting renewable energy utilization and low-carbon economic TN 

operation requires comprehensive consideration (network-level challenges in 

section 1.4). Therefore, this chapter focuses on developing a multi-task multi-agent 

reinforcement learning-based multi-time scale energy management (MTMARL–

MTSEM) approach for the economic and low-carbon operation of TNs with PV–RB 

DHESSs at the 3rd (network) level. Specifically, the main contributions of this chapter 

are outlined as follows: 

 A tri-level MTSEM framework is proposed for optimal synergies of TN 

operation with solar generation to minimize the overall cost. A two-stage 

stochastic scheduling approach is developed on a long time scale to minimize 

daily operation and carbon trading costs at the upper level and correct day-

ahead scheduling deviations at the middle level. Compared with previous 

frameworks, a lower level is added to coordinate RB energy recycling and PV 

energy consumption optimally on a short time scale for further cost reduction.  

 A MTMARL-based real-time energy management algorithm (MTMARL–

RTEMA) is proposed to optimize PV–RB power flow and promote its 

utilization by coordinating DHESSs, and the DHESS control problem is 

formulated as a decentralized partially observable Markov decision process 

(Dec-POMDP). An MTMARL algorithm based on monotonic value function 
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factorization, recurrent experience replay (RER), and knowledge transfer (KT) 

is developed to solve the Dec-POMDP effectively. A generalized and 

decentralized control scheme can be formed and adapted to different train 

service patterns and network uncertainties without knowing precise system 

models and uncertainty parameters. 

 A Copula-based spatial-temporal dependency model is devised to characterize 

uncertainties of PVs, multi-station passenger flows, and multi-train traction 

loads. Latin hypercube sampling (LHS) is employed to generate typical daily 

TN operation scenarios for enhancing day-ahead and intraday decisions.  

Finally, comparative studies are implemented to validate the effectiveness of the 

proposed approach. Section 4.2 illustrates the problem formulation, including the 

structure, operation modes, and modeling of the studied TN. Section 4.3 presents the 

proposed MTMARL–MTSEM approach, including detailed energy management 

methods at the upper, middle, and lower levels. Section 4.4 reports case studies and 

their results. Section 4.5 gives the summary. 

4.2 Problem Formulation 

4.2.1 Structure and Operation Modes of Traction Networks with 

Distributed Hybrid Energy Storage Systems 

To consider the impact of PV integration, a PV access scheme is proposed [20] 

(Fig. 4.1(a)–(b)). The PV is connected to the TN and battery via a single-input dual-

output DC/DC converter. The battery and supercapacitor are connected to the traction 

network via a bidirectional DC/DC converter.  
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Due to the changes in daily train service patterns and the significant temporal 

mismatch between peak PV output and peak passenger demand in the morning/evening, 

the cost-effectiveness of PV integration can be undermined. For example, the peak PV 

output generally occurs at noon, which is the off-peak hour of urban rail operation. 

During this off-peak hour, the train headway is large, which means that fewer train 

services will be provided. Besides, the number of passengers is also smaller. Hence, it 

is reasonable to store excessive PV energy during periods of low passenger demand for 

later use to maximize PV usage. Besides, considering the uncertainty of PV output, 

energy storage devices are also needed to facilitate continuous and stable renewable 

energy supply. Batteries that possess large capacities can be utilized for these functions. 

However, the timing of storing PV energy should be considered to minimize the overall 

daily cost of URTs. Therefore, we designed two different operation modes for the 

distributed PV-battery system to manage the timing for PV energy storage and 

utilization, namely, the low-demand mode (LDM) and the high-demand mode (HDM). 

In the LDM, the output portal from the PV to the TN is off. The PV can only charge 

the battery. The traction substation rectifier and supercapacitor provide energy for 

trains. The charging/discharging of the supercapacitor is determined based on the 

traction substation voltage [132]. It charges when the traction substation voltage rises 

above the charge voltage threshold and discharges when it drops below the discharge 

voltage threshold. In the HDM, the output portal from PV to the TN is on, and the 

supercapacitor operation is similar to LDM. The PV and battery can supply the TN 

when the traction substation voltage drops below the discharge voltage threshold. 

Considering its limited power, the battery will not absorb energy from the network to 

avoid excess charging and extend its lifetime. Therefore, the PV-battery operation is 



Chapter 4 

117 

similar to LDM when the traction substation voltage rises. In this chapter, a binary 

signal {0,1}   distinguishes LDM and HDM, where 0 represents the LDM, and 

represents the HDM. Considering the limited roof area of the station, the installed PV 

capacity generally cannot satisfy the traction energy demand alone. Hence, the energy 

flow from PV to the battery can be ignored in the HDM, and the output portal from PV 

to the battery can be treated as closed. 

 

 
Fig. 4.1 (a) Low-demand and (b) high-demand operation modes. 
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Through the above analysis, it can be concluded that LDM and HDM can be 

realized by controlling the on/off of the portals of the single-input dual-output DC/DC 

converter. It is worth noting that, for pure optimization purposes, LDM can be regarded 

as a special situation of HDM where all PV-battery system outputs are zero. 

Nevertheless, considering their physical realization and control signal settings in the 

actual operation, we distinguish these two operation modes in this work. 

4.2.2 Modeling of Traction Networks with Distributed Hybrid 

Energy Storage Systems 

The DHESS-integrated TN model is shown in Fig. 4.2, where traction substation 

and train models are the same as (3.2)–(3.3). Nevertheless, considering the operation 

modes in subsection 4.2.1, the PV-battery system is modeled as an equivalent constant 

current source [172] to replace the battery model in (3.7)–(3.8). Besides, due to its large 

capacity, the battery generally does not reach the state-of-energy (SoE) limits within 

seconds. Therefore, the battery SoE limits are considered with the long time scale n . 

For supercapacitor, (3.9)–(3.10) are modified as 
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The SoE of the supercapacitor is constrained by 
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The power flow of such TNs is calculated by (3.11)–(3.13) and (4.4), where we 

use (4.4) to replace (3.14) for obtaining nodal current under the situation of DHESSs. 

 SC BS S
,

UB SPV- T
, , , , , , , , ,

UB/ ,i t i t i t i t i tI I P P U  (4.4) 

 

 
Fig. 4.2 Equivalent circuit model of TN with PV–RB DHESSs. 

 

4.3 MTMARL–MTSEM Approach 

4.3.1 Approach Overview 

The proposed approach is essentially a tri-level energy management framework 

(Fig. 4.3). At the upper level, a day-ahead scheduling plan of operation mode  and 

referential PV-battery energy refE  is formulated to minimize the daily operation cost. 

Meanwhile, the day-ahead referential traction substation power SUBP , supercapacitor 

SoEs SCSoE  , and battery BTSoE  are generated. At the middle level, an intraday 

scheduling plan of intraday referential PV-battery energy ref,INTE   is formulated. to 

minimize the operation deviation from the day-ahead schedule. Specifically, the 

deviation includes SUBP  , SCSoE  , and BTSoE  , and the optimization is performed 

repeatedly with a finite time horizon. At the lower level, according to ref,INTE , the real-

time PV–RB energy utilization is optimized by formulating the DHESS control 
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problem into a Dec-POMDP and solving it with MTMARL. A penalty term ,
D
,i TJ  and 

a reward term r  are utilized to follow the intraday schedule. The optimal solution 

consists of the real-time charge/discharge voltage thresholds of each HESS and the real-

time power allocation between each PV-battery and supercapacitor. For upper and 

middle levels, the time scale 15n  min. For the lower level, the time scale 1t  s. 

 

 
Fig. 4.3 Tri-level framework of MTMARL–MTSEM. 
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4.3.2 Upper Level 

4.3.2.1 Objective 

The overall daily cost is (4.5), and each scenario  has an occurrence probability 

f . Specific cost terms are demonstrated in (4.6)–(4.12), including electricity trading 

cost SUB
,nJ  , supercapacitor operation cost SC

,nJ  , battery operation cost BT
,nJ  , PV 

operation cost PV
,nJ , PV curtailment cost CUR

,nJ , and carbon trading cost CA
,nJ . Based 

on the current carbon trading mechanism [173], 
2COc  is the carbon trading price, qk

and ek  are the carbon emission coefficient and carbon quote coefficient, respectively. 

SUB
, ,i nP  , SC,CH

, ,i nP  , SC,DIS
, ,i nP  , BT,CH

, ,i nP  , BT,DIS
, ,i nP  , PV

, ,i nP  , and CUR
, ,i nP   denote the purchased 

power, supercapacitor charging/discharging power, battery charging/discharging power, 

PV power, and PV curtailment, respectively. N  and I  are the number of time steps 

with n  and the number of traction substations, respectively. SUBc , OM
SCc , OM

BTc , OM
PVc , 

and CURc   are the prices for energy purchasing, supercapacitor operation, battery 

operation, PV operation, and PV curtailment, respectively. 

 

DA
,

DA SUB SC BT PV CUR CA
, , , , , , ,

SUB SUB
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, SC , , , ,1
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J c
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(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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4.3.2.2 Energy & Power Balance Constraints 

,n  and ref
, ,i nE  in (4.13) can be utilized by MTMARL–RTEMA as the reward in 

(4.33) to determine PV-BT
, ,i tP   at the lower level. Then, the power flow is solved with 

PV-BT
, ,i tP . Finally, the energy terms in (4.7)–(4.8) can be obtained by summing up their 

counterparts with t  by (4.14)–(4.15). The power balance is shown in (4.16)–(4.17). 

T  is the number of time steps with t . 

 ref PV-BT
, , , , ,1

,T
n i n i tt
E P t  (4.13) 

 SUB
, , ,

SUB SU
,1
B

, , ,T
i n t ti it

P In U t  (4.14) 

 SC,CH SC,DIS SC,CH SC,DIS
, , , , , , , ,1

,T
i n i n i t i tt

P P n P P t  (4.15) 

 
ref

, , ,PV CUR BT,CH BT,DIS
, , , , , , , , ,n i n

i n i n i n i n
E

P P P P
n

 (4.16) 

 CUR PV
, , , ,0 .i n i nP P  (4.17) 

4.3.2.3 DHESS Charge & Discharge Constraints 

The supercapacitor behaviour is modeled by (4.1)–(4.3), where its SoEs are also 

constrained by (4.18)–(4.19). The battery behaviour is modeled by (4.20)–(4.22), where 

simultaneous charging/discharging event is prevented by (4.21). BT   is the battery 

charging/discharging efficiency. 

 SC SC
, , , ,1SoE SoE ,i N i  (4.18) 

 BT BT
, , , ,1SoE SoE ,i N i  (4.19) 

 BT BT BT
min , , maxSoE SoE SoE ,i n  (4.20) 

 BT,DIS BT BT,CH BT
, , , , max , , , , max0 (1 ) , 0 ,i n i n i n i nP P P P  (4.21) 
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BT,DIS
, ,BT BT BT BT,CH

, , , , 1 , , BTSoE SoE ( ) .i n
i n i n i n

P
P n  (4.22) 

4.3.3 Middle Level 

The objective and constraints of the middle level are defined in (4.23)–(4.27). 

SUB
, ,i nP  is the day-ahead substation power. SC

, ,SoEi n , and BT
, ,SoEi n are the day-ahead SoE 

of supercapacitor and battery, while SC,INT
, ,SoEi n , and BT,INT

, ,SoEi n  are the corresponding 

intraday variables, respectively. PV,INT
, ,i nP  , CUR,INT

, ,i nP  , SC,CH,INT
, ,i nP  , SC,DIS,INT

, ,i nP  , BT,CH,INT
, ,i nP  , 

and BT,DIS,INT
, ,i nP  are the corresponding intraday PV and DHESS power variables. pc , 

sc , and bc  are weight coefficients. rT  is the time horizon. The intraday scheduling is 

performed by: Step 1: At time n , based on current states (PV outputs, energy storage 

states, and traffic flows), perform optimization for time 1n , …, rn t , …, rn T . 

Step 2: Apply results only for time 1n  . At time 1n  , update system states and 

repeat step 1.  

 

INT SUB,INT SUB 2
, , , ,1 1

SC,INT SC 2 BT,INT BT 2
, , , , , , , ,

min [ ( )

               (SoE SoE ) (SoE SoE ) ],

s.t. (3.1) (3.6),(3.11) (3.14),(4.1) (4.4), (4.18) (4.22),– – – –

r

r rr

r r r r

T I
p i t i tt i

s i t i t b i t i t

J c P P
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 ref,INT PV-BT
, , , , ,1

,
r r

T
t i t i tt

E P t  (4.24) 

 ,
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, , ,
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,
r

T
i t t ti it
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, , ,PV,INT CUR,INT BT,CH,INT BT,DIS,INT
, , , , , , , , .r r

r r r r

t i t
i t i t i t i t

E
P P P P
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 (4.27) 
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4.3.4 Lower Level 

4.3.4.1 Task Representation & Dec-POMDP 

The illustration of the lower-level energy management, namely, the MTMARL–

RTEMA, is shown in Fig. 4.4, where each HESS controller is considered an intelligent 

agent. First, the DHESS control problem is formulated as a Dec-POMDP. Generally, 

the Dec-POMDP contains , , , , , ,  . Developed from the Markov game 

introduced in subsection 1.3.1.1, an observation set  is added to indicate that the 

environment is partially observable to the agents. The task representation is the same 

as subsection 3.3.3.1. Then, the Dec-POMDP is solved by the proposed MTMARL 

algorithm.  

 

 
Fig. 4.4 Overview of MTMARL–RTEMA. 
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4.3.4.2 State & Observation 

,i to   comprises two parts: a) train operation status in the adjacent sections 

1,i i   and , 1i i  , including position TR
1, , ,i k tx   and TR

1, , ,i k tx  , direction TR
1, , ,i k td  

and TR
1, , ,i k td , and power TR

1, , ,i k tP  and TR
1, , ,i k tP . If no train runs in adjacent sections, 

, 0,0,0,0,0,0i to  . b) local traction substation information, including the local 

supercapacitor SoE SC
, ,SoEi t  , the local available PV-battery energy f

, ,
re
i tE  , and the 

local traction substation output SUB
, ,i tU  and SUB

, ,i tI . s  includes all observations and 

other environmental information. ,i to  is defined as 

 
TR TR TR TR TR TR

1, , , 1, , , 1, , , 1, , ,

f

1, , , 1, , ,
, SUB SUB

, ,
SC re

, , , , , ,

, , , , , ,

SoE , , , ,

i k t i k t i k t i k t i k t i k t
i t

i t i t i t i t

x d P x d P
o

U IE
 (4.28) 

 ref ref,INT PV-B
, , , , ,

T
1, .n
t

i t i i t
TE E P t
N

 (4.29) 

4.3.4.3 Action 

,i ta  includes the charge/discharge voltage thresholds ( C
, ,
H

i tU  and S
, ,
DI
i tU ) and the 

power -
, ,
PV BT

i tP . Since the battery will not charge from the network, P T
,

B
,

V- 0i tP  when 

the traction substation voltage rises higher than the no-load voltage. 

 , , , , , ,
CH DIS PB

,
-BT ., ,i t i t i t i ta U U P  (4.30) 

4.3.4.4 Reward 

The Dec-POMDP of the lower-level energy management is essentially a fully 

cooperative game. In such a game, all agents share the same reward tr  at each time 

step. Similar to subsection 3.3.3.2, tr  contains the minus of the total electricity trading 

cost B
, ,
SU
i tJ   and operation cost O

, ,
M

i tJ   at t  . Besides, at the final time step T  , a cost 
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term ,
D
,i TJ  is added to penalize any deviation from the referential set-point ref,INT

, ,i nE . 

Nevertheless, ,
D
,i TJ  is a sparse cost term which may result in difficulty in connecting 

a long trajectory of actions to a distant reward [174]. Therefore, r  is designed. It 

rewards the usage of PV-battery energy when ref,INT
, ,i nE   has not been reached while 

penalizing such usage when ref,INT
, ,i nE  has been reached. 

 
,

SUB OM D

SUB O

, , , , ,

,
M

, , ,

, ,

, Otherwise,

i t i t i T
t

i t i t

r
J J J r t T

J J r
 (4.31) 
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 D ref
D, , 1 , , ,T i

I
i i TJ c E  (4.33) 
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, , , ,
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i t i t
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I

t i t
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c P t E
r

c P t E
 (4.34) 

4.3.4.5 State Transition 

The train operation status TR TR TR TR TR TR
1, , , 1, , , 1, , , 1, , , 1, , , 1, , ,, , , , ,i k t i k t i k t i k t i k t i k tx d P x d P   and 

observations that are dependent of ,i ta  (e.g., SC
, ,SoEi t , SUB

, ,i tU , SUB
, ,i tI , and f

, ,
re
i tE ) are 

updated as illustrated in subsection 3.3.3.3. Besides, in order to characterize the state 

transitions that are independent of ,i ta , a comprehensive spatial-temporal dependency 

model is devised to generate TN operation scenarios, as illustrated in subsection 4.3.4.7. 

4.3.4.6 Training Algorithm 

We develop an MTMARL algorithm based on monotonic value function 

factorization (QMIX) [39] with RER [175] and KT for training the RTEMA 

(Algorithm 4.1). The QMIX adopts a centralized training and decentralized execution 

mechanism with recurrent neural networks (RNNs). In training, apart from individual 
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agent networks, a centralized mixing network is added to evaluate the joint action-value 

function totQ  of all agents. In execution, the centralized mixing network is removed, 

and each agent works with its well-trained agent network. totQ  is obtained by  

 
1 1, 1,

tot

, ,

arg max ( , )
arg max ( , ) ,

arg max ( , )

t t

t t

I I t I t

Q a
Q

Q aa
a  (4.35) 

 tot 0,  ,
i

Q i
Q

 (4.36) 

where iQ   represents the Q value of agent i. , ,0 ,, ,i t i i to o   is the observation 

history, 1, , I  and 1, , Ia aa  are the joint action-observation history and 

joint action, respectively. The loss function of QMIX can be written as 

 2
tot ,1 min , ,w w

w
wy Q s

W
a  (4.37) 

where 1to 1tt 1to 1,arg max , , ,ww w w wy r Q Q s sa   is the training target of the 

target network in RL. W  is the sample batch size from the replay buffer. 

For RNNs, their recurrent state  is stored in the RER and used to initialize the 

network when extracted from the buffer. A warm-up process is adopted where a portion 

of the history trajectory will not be used for network update. This is to mitigate the 

inaccurate outputs of RNNs in the first few time steps due to representational drift and 

recurrent state staleness. Therefore, considering the task representation and the warm-

up process, the loss of QMIX in (4.37) is extended to a task-based loss 

 2
tot ,1 min ' , ;w w w

h
r

w
y Q s

HW
la  (4.38) 

where otot 1 1 1t 1 1t' ,arg max , , ; , ;r rw w w w wy r sl lQ Q sa , rl  is the length of the 

history trajectory used for updates. 
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Moreover, to deal with multiple tasks, the knowledge transfer approach with 

several learning tricks is applied to rapidly and stably learn the decentralized DHESS 

control policy incorporating common knowledge. These skills are illustrated in 

subsection 3.3.4.2–3.3.4.3. 

 

Algorithm 4.1 MTMARL–RTEMA Training. 

1 Initialize Q network with , routing network with r , mixing network with 

m , target network with , and replay buffers 1, , HB B . 

2 For episode = 1, Max do 

3  Sample a task from the task set to initialize learning environment 

4  Receive the initial global state 0s  

5  For control interval t=1, T do 

6   For agent=1, I do 

7    Receive observation ,tio  

8    1, , 1, ,{( , )}ti i i it t to a  

9    Select ,tia  with , ,( | , )i t i ta o z  and -greedy, obtain tr  and , 1i to  

from environment 

10    Store , , , 1 ,( , , , , )t t ti i it tia r  to hB  based on headway task hz  

11   Sample W  transitions 1( , , , , )ww w w wa r  from each hB  

12   Obtain the hidden state , rw l  with the first stored recurrent state ,0w  

13   Obtain totQ  with mixing network by (4.35)–(4.36) 

14   Calculate loss  by (3.33)–(3.34) and (4.38), update , r , m ,  

15   Soft update: 1  

 

4.3.4.7 Operation Scenario Generation Method 

The TN operation scenario is generated by Fig. 4.5. In subsection 3.3.2, the DTM 

accounts for the intrinsic uncertainty of passenger flows, delays, delay-induced RTTR, 

and train resistance. In this subsection, we also quantify solar generation uncertainty 
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using the Copula theory. The Copula model of solar generation is similar to (3.22)–

(3.24), where DPV power PV
, ,i nP  replaces variable B

, ,i nN . Since PV power is closely 

related to solar irradiance PVR , we simulate the PV power generation by PVsyst, a PV 

system simulation software with various PV module models. 

 

 

Fig. 4.5 Flowchart of scenario generation. 
 

4.4 Case Study 

In this section, a detailed analysis of the aforementioned formulations and 

algorithms is conducted. First, the configuration method of distributed PVs and 

DHESSs is illustrated. Then, the optimal day-ahead and intraday scheduling results are 

demonstrated to illustrate the effectiveness of energy management at the upper and 
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middle levels. Several impact factors are investigated, including the impacts of energy 

management framework structures and prediction levels of PV and passenger flows. 

Besides, the optimal real-time control results are demonstrated to illustrate the 

effectiveness of energy management at the lower level. The impacts of control 

optimization algorithms and schemes are discussed. The training and test performance 

of MTMARL–RTEMA is verified by comparing it with other learning-based algorithms. 

In addition, the impact of different control schemes is also analyzed.  

4.4.1 Setup 

The description of the subway line and train data used in the case study is presented 

in subsection 3.2.4.1. The carbon emission quota and cost is obtained from [176], where  

ek =1.303 kg/kWh, 
2COc =6.15 $/t. The day-ahead scheduling is solved by stochastic 

programming, and 1000 initial scenarios are generated. Since n  =15 min, the time 

horizon N=96 to represent 24 h. To decrease the computational cost, K-means clustering 

is utilized for scenario reduction, and 9 scenarios are retained with probabilities 0.090, 

0.107, 0.113, 0.089, 0.106, 0.112, 0.111, 0.132, and 0.140. The PV power and passenger 

flow profiles of each scenario are shown in Fig. 4.6, and their correlations are shown in 

Fig. 4.7. The configuration method for PVs is illustrated in subsection 4.4.2, and the 

passenger flows are generated by the historical OD and arrival rate tables. The intraday 

scheduling is performed by GA with rT =1 h. The population size is 40, the crossover 

fraction is 0.9, and the mutation fraction is 0.1. The intraday PV output and passenger 

flow predictions are assumed to increase from the day-ahead prediction by 15%. They 

are added with a random error as the actual value. The random error is subject to Normal 

distribution with a 5% standard deviation. 1p s bc c c .  
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(a) 

 

(b) 

Fig. 4.6 Typical (a) PV output and (b) passenger flow scenarios. 
 

Table 4.1 MTMARL–RTEMA parameters.  

Parameter Value Parameter Value Parameter Value 

q  10-4 H  3 Buffer capacity 220 

 5×10-4 rl  30 Exploration policy 1 0.05 

 0.998 W  43 Transition length 60 

 1 0.05 Optimizer Adam   

 

For MTMARL, the parameters of the MTMARL–RTEMA are listed in Table 4.1. 

The agent network is formulated as follows. Each agent network has two fully 

connected layers with 64 units and ReLU non-linearity to obtain the inputs of the 

routing network. Then, these layers are followed by two “soft” layers, where each “soft” 

layer consists of two modules. Each module has two hidden layers with 64 units and 



Chapter 4 

132 

ReLU non-linearity. These “soft” layers aim to handle the task-level coordination [69]. 

Moreover, a GRU layer with a 64-dimensional hidden state is added to deal with the 

partial observability issue of the Dec-POMDP. Finally, the dueling architecture [45] is 

implemented after the GRU layer to improve the network performance. As for the 

mixing network, it consists of a hypernetwork [39] and a single hidden layer of 256 

units with an ELU nonlinearity. The hypernetwork also has a hidden layer of 256 units 

with ReLU nonlinearity, which conditions the weight of the mixing network on state 

s  in an arbitrary manner, thus flexibly integrating state s  into the Q value estimation.  

The agent adopts -greedy exploration. Since the learning environment is much 

more complex than the HESS-integrated traction substation operation in chapter 3, a 

larger value of exploration rate is reserved at the end of training to encourage policy 

exploration. Thus, the exploration rate in this case study reduces linearly from 1 to 0.05 

and remains constant at 0.05 after 5000 episodes. The knowledge transfer trade-off  

reduces linearly from 1 to 0.05 and remains constant at 0.05 after 2000 episodes. The 

time scale t =1 s. Since train services are periodic, the time horizon T  is equal to 

the time of the headway. To implement the RER, each transition that is randomly 

extracted from the replay buffer is clipped to have the same total time steps of 60. rl  

is set as 30 to balance the time steps for recovering the start hidden state and network 

updates. The initial scenarios are also utilized as the training set for MTMARL–

RTEMA, while 400 random scenarios other than the training scenarios are generated to 

construct the test set. We generate 50 random scenarios for each headway under LDM 

and HDM, respectively. The task and delay settings are the same as in subsection 3.4.1.  

The stochastic programming is conducted by Gurobi 10.0.0, while the genetic 

algorithm is performed with a Python library PYGAD 3.3.1 using parallel computing. 
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The MTMARL is implemented by PyTorch 1.12.1. All simulations are performed with 

Python 3.9.13 on the same device in subsection 2.4.1. 

 

  

  

Fig. 4.7 (a)–(b) are PV spatial-temporal correlations, (c)–(d) are passenger spatial-
temporal correlations, (e)–(h) are marginal CDFs for (a)–(d). The demonstration uses 

traction substations 1 and 4, and time periods 57 and 58. 
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4.4.2 Configuration Method for Distributed Photovoltaics and 

Hybrid Energy Storage Systems 

For simplicity, distributed PVs and DHESSs are assumed to be installed at each 

station with the same configuration. The configuration of distributed PVs is illustrated 

as follows. Since no PVs are actually installed in the studied subway line, a reasonable 

PV size for each station should be considered. We first obtained the latest hourly solar 

irradiance PVR  of nearby areas from a public database [177]. Then, a PV generation 

model is established. The azimuth angle is set as 0°, and the array is tilted at 30°. The 

parameters of the PV array are listed in Table 4.2, where the maximum efficiency of the 

assigned inverter module is 97%. Next, the available area for PV installation is 

determined according to a recent survey [10], in which the rooftop PV potential 

assessment of an elevated metro station in a nearby area was studied. Thus, the total 

rooftop area of all elevated stations in the case study is set at around 2700 m2, where 

the skylights account for around 30% of the total rooftop area. Taking the laying gaps 

and maintenance aisles into account, we assume that 16.4% of the total rooftop area is 

occupied by PV arrays. Finally, based on the above PV generation model, the average 

daily distributions of PV power generation at each station can be obtained, and their 

correlations are calculated. However, considering the spatial grid cell size of solar 

irradiance data is 2 km×2 km, there are some distances between the subway station and 

the nearest data point. The spatial correlation calculated from these data points may not 

represent the correlation at the station’s location. Hence, we use an empirical correlation 

equation [178] to calculate the spatial correlations according to the distances of stations 

from each other. The economic parameters of PV are obtained from [103, 179].  
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(a) 

 
(b) 

 
(c) 

Fig. 4.8 Total power of all traction substations without DHESSs in typical operation 
scenarios under (a) 350s, (b) 540s, and (c) 660s headway. 

 

The configuration of DHESSs is illustrated as follows. The economic and 

technical parameters of supercapacitor and battery modules are listed in 

subsection 3.2.4.1. Empirically [121], the power of DHESSs should be large enough 

for peak traction power shaving. Since the supercapacitor generally provides most of 

the power of the HESS, the peak traction power of the traction substation is roughly 

selected as the rated power of the supercapacitor. Fig. 4.8 shows traction substation 

power curves of different train headways in typical operation scenarios without 

DHESSs. According to the figure, the highest traction substation power occurs when 

the headway is 540 s, and its value is 3.5 MW. Considering that the battery will also 

provide power, the total rated power of supercapacitors are set as 2.8 MW, where each 
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station has a supercapacitor of 700 kW. As the rated power is determined, other 

parameters of the supercapacitor can be obtained according to its type.  

Then, since the battery capacity should be large enough to store the daily PV 

energy, an iterative method is developed, and the procedure is illustrated as follows: 1) 

Set an initial battery capacity, which is a relatively small value, e.g., 10 kWh. 2) Perform 

the day-ahead optimization to obtain the PV curtailment powers in each scenario. 3) If 

the curtailment occurred, increase the battery capacity in steps, and repeat 1)–2). 

Following the above iterations, the marginal battery capacity that avoids PV curtailment 

can be obtained. Finally, the DC-DC converter data is obtained from [154]. To match 

with the converter, the parallel number of supercapacitor and battery modules is 14 and 

292, respectively. The maximum C-rate of the battery is limited to 1.25. 

 
Table 4.2 Technical and economic parameters of HESS and PV. 

Item Parameter 

Battery 

BT
maxE =160 kWh BT

maxP =200 kW 
ref
maxE =7.5 kWh ref

minE =0.75 kWh 
BT
maxSoE =0.8 BT

minSoE =0.2 
OM
BTc =1 $/MWh BT =0.8 

Supercapacitor 

SC
maxE =6 kWh SC

maxP =700 kW 
SC
maxSoE =0.9 SC

minSoE =0.25 

SCR =11 m  SCC =94 F 
SC =0.95 SC

maxI =1040 A 

 OM
SCc =7.5 $/MWh 

PV 

PVA =443 m2 PV =13.58 % 

ref
CUR , ,

D ref
SUB , ,

, 0,

, 0.
i t

i t

c E
C

c E
 

OM
PVc =4.5 $/MWh 

CURc =0.26 $/kWh 
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4.4.3 Analysis of Day-Ahead and Intraday Scheduling Results 

4.4.3.1 Day-Ahead & Intraday Scheduling Results 

In this subsection, the optimal day-ahead and intraday schedules are demonstrated. 

First, Fig. 4.9 shows the day-ahead power balance. It can be observed that the maximum 

traction power demand occurs during peak hours 8:00–9:00 and 17:00–19:00. Generally, 

DHESSs charge during off-peak hours between 9:00–16:00 and discharge during peak 

hours between 16:00–19:00. As a result, the peak substation power during evening peak 

hours can be reduced. Besides, a substantial amount of train braking energy is directly 

utilized to supply traction load.  

 

 

Fig. 4.9 Day-ahead power balance. 
 

  
(a) (b) 

Fig. 4.10 Optimal (a) day-ahead and (b) intraday PV-battery powers. 
 

Then, the optimal intraday schedule is demonstrated, where Fig. 4.10 illustrates 

the day-ahead and intraday referential PV-battery energy refE   at different traction 

substations. Since the intraday prediction of PV outputs is different from the day-ahead 
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perdition, if the operation of the PV-battery is based on the day-ahead schedule, 

curtailment of PV power can occur, with consequent increasing operation cost. From 

the figure, it can be observed that, according to the correction, refE  during peak hours 

are generally larger than during off-peak hours to meet the load demand. refE  is zero 

in some time steps, which represents LDM. HDM is in effect for other situations. LDM 

and HDM are switched optimally to minimize the overall daily operation cost. Since 

the intraday predictions increase, the intraday refE   is larger than its day-ahead 

counterparts in general to avoid PV curtailment. 

 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 4.11 SoEs at traction substations 1–4 (a)–(d), and (e) total substation power1.  
1DA: day-ahead, INT: intraday, NRO: no rolling optimization, BT: battery, SC: supercapacitor. 
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Table 4.3 Comparative correction performances. 

Scenario 
MRAE of SoE MRAE of substation power  

INT (%) NRO (%) INT (%) NRO (%) 

1 3.90 6.55 6.09 6.37 

2 4.27 6.68 6.59 7.35 

3 4.33 6.78 7.05 8.02 

4 4.21 6.80 5.35 6.24 

5 4.48 7.03 5.81 7.00 

6 4.35 7.27 6.67 7.82 

7 4.70 7.21 5.38 6.11 

8 4.94 7.61 6.34 7.09 

9 4.80 7.28 6.21 7.51 

Avg. 4.44 7.02 6.17 7.06 

 

To further illustrate the performance of the intraday operation deviation correction, 

Fig. 4.11 compares the intraday correction terms (DHESS SoEs and total substation 

power) with and without the middle-level energy management. From the figure, the 

operation deviations resulting from passenger flow and PV generation uncertainties are 

smoothed by the intraday correction. The mismatch between actual energy consumption 

and the schedule plan is compensated. In order to quantify the correction performance, 

the mean relative absolute error (MRAE) is introduced to calculate the average of the 

absolute value of the difference between the intraday and day-ahead variables.  
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From Table 4.3, the proposed rolling optimization in the intraday can effectively 

track day-ahead scheduling plans. The MRAE of SoE and traction substation power can 

be reduced by 36.75% and 12.61% compared with non-rolling optimization. 

4.4.3.2 Impact of Energy Management Framework Structures 

In this subsection, the effectiveness of the proposed tri-level structure is verified, 

where the following frameworks are compared: 1) The proposed framework (PF). 2) 

Real-time PV-battery output control (RPOC): A real-time energy management strategy 

similar to [131], while we add PVs and passenger flows for comparison purposes. 3) 

Day-ahead scheduling (DAS): Similar to [180], while their model is extended to involve 

multiple stations for comparison purposes. To simulate the situation of no control 

strategy, the charge/discharge thresholds are fixed and close to the no-load voltage, 

which maximizes the DHESS usage. CH
, ,i tU  =865 V, DIS

, ,i tU  =855 V. Meanwhile, 

PV-BT BT
, , maxi tP P  regardless of operation modes. 4) Day-ahead and intraday scheduling 

(DAIS): Similar to [134], while we add passenger flows and train service patterns for 

comparison purposes. 5) Maximum PV-battery output (MPO): the basic framework 

which utilizes the maximum PV-battery output at each time step.  

 
Table 4.4 Comparative performances of frameworks 1–5 under prediction level 1. 

Item PF RPOC DAS DAIS MPO 

Overall cost ($) 595.81 642.50 703.15 674.89 682.95 

Purchasing cost ($) 502.15 515.02 610.01 601.82 599.21 

Carbon trading cost ($) 14.18 14.54 17.22 16.99 16.92 

O&M cost ($) 58.13 55.21 46.10 46.10 55.23 

Curtailment cost ($) 21.35 57.03 29.81 9.99 11.59 

PV–RB energy utilization (%) 80.81 78.49 67.31 68.45 68.66 
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Table 4.5 Comparative performances of frameworks 1–5 under prediction level 2. 

Item PF RPOC DAS DAIS MPO 

Overall cost ($) 610.16 650.17 727.33 696.76 695.40 

Purchasing cost ($) 513.74 524.62 623.40 614.44 609.62 

Carbon trading cost ($) 14.50 14.81 17.60 17.35 17.21 

O&M cost ($) 59.11 56.49 47.66 47.66 56.99 

Curtailment cost ($) 22.81 54.25 38.67 17.30 11.57 

PV–RB energy utilization (%) 80.56 78.55 67.51 68.71 69.25 

 
Table 4.6 Comparative performances of frameworks 1–5 under prediction level 3. 

Item PF RPOC DAS DAIS MPO 

Overall cost ($) 551.92 591.59 628.75 626.18 636.62 

Purchasing cost ($) 473.15 481.70 571.32 569.87 566.98 

Carbon trading cost ($) 13.36 13.60 16.13 16.09 16.01 

O&M cost ($) 51.48 48.81 38.75 38.75 47.00 

Curtailment cost ($) 13.94 47.48 2.54 1.47 6.63 

PV–RB energy utilization (%) 83.01 80.38 67.38 67.47 67.47 

 
Table 4.7 Comparative performances of frameworks 1–5 under prediction level 4. 

Item PF RPOC DAS DAIS MPO 

Overall cost ($) 544.61 579.12 618.14 618.10 627.27 

Purchasing cost ($) 466.74 473.74 563.20 563.00 560.05 

Carbon trading cost ($) 13.18 13.38 15.90 15.90 15.81 

O&M cost ($) 50.21 47.79 37.53 37.53 45.57 

Curtailment cost ($) 14.48 44.21 1.50 1.68 5.83 

PV–RB energy utilization (%) 83.14 80.63 67.09 67.13 67.13 

 

In Fig. 4.12(a). compared with MPO, frameworks 1–4 achieve average cost-

savings of 12.76%, 5.92%, -2.96%, and 1.18%, respectively. For DAS and DAIS, due 
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to the lack of consideration of DHESS control in the short time scale, their average 

operation cost is at least 13.27% higher than PF. Besides, the lack of day-ahead and 

intraday scheduling plans in RPOC will also significantly increase the operation cost 

compared with PF. Thus, leveraging the synergistic consideration of energy 

management on both time scales, the proposed approach achieves more economic and 

low-carbon TN operation than other frameworks.  

4.4.3.3 Impact of Prediction Levels 

In this subsection, the impact of various prediction levels of PV outputs and 

passenger flows is analyzed. Based on the common range of prediction errors of PV 

outputs [181] and passenger flows [182], four prediction levels are set for comparison. 

For prediction levels 1–4, the intraday predictions increase from the day-ahead 

predictions by 15%, 20%, -15%, -20%, respectively. Then, a random error is added to 

generate the actual values. The random error is subject to Normal distribution with a 5% 

(for levels 1 and 3) and 10% (for levels 2 and 4) standard deviation, respectively. 

As shown in Table 4.4–Table 4.7 and Fig. 4.12, DAS and MPO generally have the 

worst performance because they cannot deal with real-time uncertainties effectively. 

Besides, PF achieves the lowest overall daily cost across all prediction levels, which is 

11.98% (11.72–12.43%) lower compared with DAIS. According to the figures, it can 

also be observed that PF has the best economic performance in all scenarios. In addition, 

PF also achieves the highest PV–RB energy utilization and is 13.94% (11.85–16.01%) 

higher than DAIS on average. Furthermore, the PV–RB utilization of RPOC and PF is 

significantly higher than other approaches, indicating the effectiveness of real-time PV–

RB power flow optimization. Thus, the effectiveness of the proposed approach under 

various perdition levels of PV outputs and passenger flows is verified.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4.12 Comparative operation costs of frameworks 1–5 under prediction levels 1–4 
(a)–(d). 

 

4.4.4 Analysis of Real-Time Control Results 

4.4.4.1 Real-Time Control Results 

In this subsection, the real-time control behaviors of the TN are demonstrated. 

First, the DHESS and PV operation under the normal operation condition is analyzed, 

where Fig. 4.13 shows the DHESS charge/discharge voltage thresholds, and Fig. 4.14 
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presents the charging (-) and discharging (+) powers of each HESS, as well as the 

traction substation powers. For illustration purposes, the initial DHESS SoEs are set as 

the minimum SoE. It can be observed that the voltage thresholds and PV-battery power 

of each HESS are adjusted dynamically according to real-time TN operation states. The 

DPVs and DHESSs release energy to reduce traction substation output and shave peak 

power during 0–50 s, 140–170 s, 220–260 s, and 330–350 s. Especially under HDM, 

the PV power complements the deficiency of RB power generation during 0–50 s, 

further reducing the traction substation power supply. In addition, a more significant 

amount of supercapacitor energy is released during 225–260 s under HDM. This is 

because the use of PV-battery power during 0–200 s reserves more available capacity 

of the supercapacitor. 

To further analyze the capacity reservation of supercapacitors under HDM, Fig. 

4.15 demonstrates the SoE curves of supercapacitors. From the figure, due to the use of 

PV-battery power under HDM, the SoEs of supercapacitors at stations 3–4 increase 

sharply during 100-200 s, indicating a large amount of energy is reserved for later use. 

Nevertheless, the SoEs at stations 1–2 decrease. To explain the reason, the train power 

and displacement curves are drawn in Fig. 4.16. From the figure, during this time period, 

train 1 is braking at sections 3–4. Train 2 stops at station 2 and then accelerates. Train 

3 accelerates at sections 3–2. Therefore, the RB energy is mainly distributed between 

stations 3 and 4, while the traction demand is mainly distributed between stations 2 and 

3. Considering the contact line loss due to distance, it is reasonable to deliver the RB 

energy to the supercapacitor at station 4 and supply the traction demand by 

supercapacitors at stations 1–3. As PV-battery power covers part of the traction demand 

under HDM, more RB energy is delivered to the supercapacitor at stations 3 and 4. 
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From the above analysis, by implementing the proposed real-time control over 

supercapacitors and PB-batteries, the DHESS capacity is flexibly adjusted to reserve 

more RB energy, satisfy the traction load demands, and reduce contact line losses, 

which ensures the network-wide cost efficiency. 

 

  

(a) (b) 

Fig. 4.13 Voltage thresholds of HESSs under (a) LDM and (b) HDM. 

  

(a) (d) 

  

(b) (e) 

  

(c) (f) 

Fig. 4.14 DHESS and substation powers. (a) PV-battery powers under HDM 
(under LDM, the powers are always zero), supercapacitor powers under (b) LDM and 

(c) HDM, substation powers under (d) LDM, (e) HDM, and (f) no PV-DHESS. 
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4.4.4.2 Impact of Control Optimal Algorithms 

In this subsection, the effectiveness of the MTMARL–RTEMA on single-task and 

multi-task learning is discussed. First, the following algorithms are compared to 

illustrate the model performance on single-task learning. 1) MTMARL–RTEMA-1: 

Coordinated DHESS control is considered, while only adjacent train information and 

local traction substation information are utilized. RER is used (Proposed). 2) QMIX: 

the original QMIX is used while the RER is removed. 3) MTMARL–RTEMA-2: Similar 

to MTMARL–RTEMA-1, however, traction substation information can be exchanged 

and shared by all agents, as shown in (4.41). 4) IQL: No mixing network to coordinate 

DHESSs, and each HESS independently takes actions based on local observations [39]. 

For single-task learning, each algorithm trains on a single task till convergence and uses 

well-trained agents to evaluate the model performance on this single task. Then, new 

training starts with another task and generates new agents for evaluation on this task. 

Repeat the above process till all tasks are evaluated. Finally, the evaluation of each task 

is averaged to represent the performance of each algorithm. To better illustrate the 

results, delay scenarios are not included in the single-task environment but are added 

in the multi-task environment. 

 

  

(a) (b) 

Fig. 4.15 Supercapacitor SoEs under LDM and HDM, at stations (a) 1–2 and (b) 3–4. 
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(a) (b) 

Fig. 4.16 Curves of train (a) power and (b) displacement. 
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The performance of algorithms 1–4 in the single-task learning environment is 

depicted in Table 4.8 and Fig. 4.17. The figure shows the training episodic reward 

curves, where five random runs are performed. Generally, QMIX obtains a much lower 

reward compared with MTMARL–RTEMA-1, which verifies the effectiveness of using 

the RER. Besides, IQL obtains the second lowest reward, and its curve shows a 

declining trend at the end. This is because IQL only focuses on local observation while 

disregarding the actions of other agents, which causes training instability. Meanwhile, 

the other three algorithms overcome the stability issue by coordinately considering the 

actions of all agents. MTMARL–RTEMA-1 obtains a similar high reward and 

utilization compared to MTMARL–RTEMA-2. It indicates that high-quality decisions 

can be made without global traction substation information, which verifies the 

effectiveness of the Dec-POMDP design. From the table, MTMARL–RTEMA-1 

achieves the highest PV–RB energy utilization. Thus, the proposed Dec-POMDP 

design, the necessity of DHESS coordination, and the performance of MTMARL–

RTEMA-1 under the single-task learning environment are verified. 
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Fig. 4.17 Comparative rewards of algorithms 1–4 in single-task learning environment. 
Solid lines are moving averages over 200 episodes. Shaded areas are one standard 

deviation ranges. 
 

Table 4.8 Comparative performances of algorithms 1–4. 

Item Algorithm Avg. 
Headway (s) 

350 540 660 

Braking & PV 

energy (kWh) 
- 92.43 88.54 94.87 93.87 

Braking resistor 

loss (kWh) 

MTMARL–RTEMA-1 22.94 7.73 27.45 33.65 

MTMARL–RTEMA-2 22.58 7.26 24.79 35.70 

QMIX 24.45 9.33 28.94 35.08 

IQL 29.09 11.26 37.02 38.98 

Curtailment (kWh) 

MTMARL–RTEMA-1 0.24 0.00 0.00 0.72 

MTMARL–RTEMA-2 0.35 0.00 0.89 0.17 

QMIX 1.62 0.00 0.55 4.32 

IQL 3.90 2.88 6.48 2.33 

PV–RB energy 

utilization (%) 

MTMARL–RTEMA-1 75.24 91.27 71.07 63.38 

MTMARL–RTEMA-2 75.51 91.80 72.93 61.79 

QMIX 72.13 89.46 68.91 58.03 

IQL 64.72 84.03 54.15 55.99 
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Furthermore, the following algorithms are compared to illustrate the model 

performance on multi-task learning. 1) MTMARL–RTEMA-1: (Proposed). 5) 

MTMARL–RTEMA-noKT: The KT function is removed from the proposed algorithm to 

verify its effectiveness. 6) QMIX-MT: Since the original QMIX algorithm can only be 

used in single-task learning. We extend the QMIX into the multi-task learning 

framework by adding the soft module and conflict gradient projecting techniques. Thus, 

the QMIX-MT is essentially the MTMARL–RTEMA-1 without RER and KT. 

 

  

Fig. 4.18 Comparative rewards of algorithms 1, 5, and 6 in multi-task learning 
environment. Solid lines are moving averages over 200 episodes. 

 

The performance of algorithms 1, 5, and 6 in the multi-task learning environment 

is depicted in Fig. 4.18. Similarly, the figure shows the training episodic reward curves. 

It can be observed that, generally, the rewards in the multi-task learning environment is 

higher than the single-task learning environment. This is because the added delay 

scenarios in the multi-task learning environment have short train headways (350 s) and 

their scenario costs are usually lower than 540 s and 660 s headways. Based on (4.31), 

since the average scenario cost of multi-task learning environment is lower, its reward 

is usually higher than the single-task learning environment. Moreover, due to the 

difficulty of learning from multiple tasks simultaneously, the algorithms take more 



Chapter 4 

150 

episodes to converge. Furthermore, the performance of MTMARL–RTEMA-1 is 

superior to MTMARL–RTEMA-noKT and QMIX-MT, and QMIX-MT has the worst 

performance. Hence, the effectiveness of KT and RER under the multi-task learning 

environment is verified.  

The scalability of the proposed approach is analyzed in Table 4.9. with the increase 

of agents, the total training time increases almost linearly, while the average test time 

per agent remains almost unchanged (<1 ms), validating excellent scalability of the 

proposed approach.  

 
Table 4.9 Scalability analysis. 

Number of agents Total training time (h) Average test time per agents (ms) 

4 1.03 0.79 

12 2.39 0.76 

20 3.59 0.79 

 

4.4.4.3 Impact of Control Schemes 

In this subsection, the impact of different control schemes on the overall operation 

cost is investigated. Four control strategies are compared to evaluate the decision-

making performance and generalization capability of MTMARL–RTEMA by the test 

set (Table 4.10). 1) Proposed control strategy (MTMARL–RTEMA). 2) Fixed threshold 

(FT): The charge/discharge thresholds are fixed to be CH
, ,i tU =865 V and DIS

, ,i tU =855 V, 

which aims to encourage maximum DHESS usage. 3) Fixed power allocation (FPA): 

The PV-battery power is set to be PV-BT BT
, , maxi tP P , which aims to use PV-battery power 

as much as possible. 4) No control strategy (NCS): As illustrated in framework DAS. 

Besides, the situation with no PV and HESS (NPH) are also included for comparison.  
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From the table, since LDM does not involve any PV consumption, only threshold 

control is in effect under LDM. Hence, the performance of FPA and MTMARL–

RTEMA under LDM is the same. MTMARL–RTEMA achieves the lowest average 

operation cost in the test set, which verifies its generalization capability on different 

train service patterns and network uncertainties. Compared with FT, MTMARL–

RTEMA exerts coordinated control over the voltage threshold and PV–RB power 

allocation of the DHESS, thereby significantly reducing the deviation of real-time PV 

consumption to the intraday scheduling decision and slightly decreasing the operation 

cost. Since the excessive usage of the PV-battery results in a high deviation cost, the 

operation cost of FPA under HDM and NCS is higher than MTMARL–RTEMA.  

 
Table 4.10 Comparative performances of control schemes 1–5. 

LDM ($) MTMARL–RTEMA NCS FPA FT NPH 

Avg. operation cost 4.79 6.38 4.79 4.89 8.42 

Avg. purchasing cost 4.31 3.27 4.31 4.39 8.42 

Avg. O&M cost 0.48 0.36 0.48 0.50 0.00 

Avg. deviation cost  0.00 2.75 0.00 0.00 0.00 

Min. operation cost 3.11 4.71 3.11 3.21 6.52 

Max. operation cost 6.69 8.30 6.69 6.55 11.00 

HDM ($) MTMARL–RTEMA NCS FPA FT NPH 

Avg. operation cost 4.25 5.31 5.39 4.31 8.42 

Avg. purchasing cost 3.74 3.27 3.53 3.66 8.42 

Avg. O&M cost 0.51 0.49 0.47 0.54 0.00 

Avg. deviation cost 0.00 1.55 1.39 0.11 0.00 

Min. operation cost 2.76 3.61 3.61 2.83 6.52 

Max. operation cost 6.12 7.01 7.01 6.18 11.00 
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4.5 Summary 

In this chapter, an MTMARL–MTSEM approach is proposed for the economic 

and low-carbon operation of TNs integrated with PV–RB DHESSs. The research 

mainly includes the following aspects. 

A tri-level energy management framework is developed, where the upper level 

minimizes daily operation and carbon trading costs, the middle level corrects day-ahead 

scheduling deviations against multi-source uncertainties, and the lower level proposes 

an MTMARL–RTEMA to address the DHESS control problem. A Copula-based 

spatial-temporal dependency model is devised to characterize uncertainties of PVs, 

passenger flows, and traction loads. Finally, comparative studies demonstrate the 

effectiveness of the proposed framework in terms of cost reduction and PV–RB energy 

utilization improvement. 

The key findings of the designated case study are summarized as follows: 1) the 

proposed framework with multiple time scales can outperform other energy 

management frameworks on system operational economy (11.98% reduction) and 

renewable energy utilization (13.94% increase) compared to the conventional long-

time-scale energy management framework. 2) The MTMARL–RTEMA can coordinate 

voltage threshold and PV–RB power allocation of DHESSs, and its PV–RB energy 

utilization can be increased by 10.31% compared to the uncoordinated control scheme. 

3) The generalization capability of MTMARL–RTEMA is verified under train 

operation scenarios.
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Chapter 5: Data-Driven Multi-Objective Configuration 

Optimization for Distributed Hybrid Energy Storage 

System-Integrated Traction Network Operation Based on 

Multi-Task Multi-Agent Reinforcement Learning 

Nomenclature in this chapter 

A. Multi-Task Multi-Agent Reinforcement Learning Elements 

, H , P , D , RB  Set of tasks, headway tasks, combination tasks of trajectories, 

dwell time tasks, and RB parameter tasks 

B. NSGA-II Elements 

F  Fitness function 

iterg  Generation 

gaN , gaS  Number and set of solutions being dominated by a specific 

solution 

popN  Number of solutions 

gap , gaq  Pareto solution and solution which is dominated by gap  

PA , OS  Parent and off-spring populations 

gax  Decision variable 

*P , ,  Optimal solution, weight term, and entropy of information of 

multi-criteria decision-making 

P , P  Positive and negative ideal distances 

C. EL Elements 

el,1c , el,2c  XGBoost parameters 

f  Functional space that represents a set of regression trees 
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leavesT  Number of leaves 

elx , ely , elŷ  Feature, label, and estimated label of training samples 

 Regularization term 

EL , L  Losses of EL and regression tree 

 Weight of leaves 

e  Learning rate of ensemble models 

D. Indices 

{1,2, , }d D  Index of training samples 

{1,2, , }h H  Index of train headways 

{1,2, , }i I  Index of stations or traction substations 

{1,2, , }j J  Index of stations or traction substations except for station or 

traction substation i  

{1,2, , }k K  Index of trains 

{1,2, , }m M  Index of regression trees 

1,2, ,o O  Index of objectives 

1,2, ,w W  Index of Pareto solutions 

E. Time Scales 

n , n , N  Increment, current time step, and time horizon on a long time scale 

for economic dispatch and prediction (e.g., sub-hourly or hourly) 

t , t ,T  Increment, current time step, and time horizon on a short time scale 

for real-time train and HESS control (e.g., sub-minutely) 

F. Variables 

PVA  Area of PV array (m2) 

refE  Referential PV-battery energy (kWh) 
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SUBE , PVE , CURE  Energies of traction substations, PV, and PV curtailment (kWh) 

SCE , RBE , BRE  Energies of supercapacitors, RB, and braking resistor (kWh) 

LCCJ , EUJ , TTJ  Economic, energy utilization, and travel time indicators 

INVJ , REPJ , FIXJ  Costs of investment, replacement, and installation ($) 

SUBJ , CAJ , CURJ  Costs of electricity trading, carbon trading, and PV curtailment ($) 

OMJ , SCJ , BTJ , PVJ  Costs of PV-HESS, supercapacitor, battery, and PV operation ($) 

BTL  Estimated battery lifetime (year) 

BTN , SCN , DCN  Number of battery, supercapacitor, and converter modules 

P
BTN , P

SCN  Number of in-parallel battery and supercapacitor modules  

SUBP , PVP , RBP , BRP  Powers of traction substation, PV, RB, and braking resistor (W) 

SC,CHP , SC,DISP  Charging and discharging powers of supercapacitor (W) 

DWT  Dwell time (s) 

BR
1U  Voltage threshold of braking resistor (V) 

BR  Proportion of train braking power to traction network (%) 

G. Parameters 

INV
SCc , INV

BTc , INV
DCc  Unit costs of investment of supercapacitor, battery, and converter 

($/module) 

INV
PVc  Unit cost of investment of PV ($/kW) 

OM
SCc  Unit cost of supercapacitor operation ($/MWh) 

SUBc  Unit cost of electricity trading ($/kWh) 

SC
maxI , BT

maxI , DC
maxI  Maximum currents of supercapacitor, battery, and converter 

modules (A) 

S
BTN , S

SCN  Number of in-series battery and supercapacitor modules  

CR  Capital recovery factor 
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5.1 Background 

In order to comprehensively consider the balance between the economic benefits, 

photovoltaic–regenerative braking (PV–RB) energy utilization, and passenger demands 

associated with the installation of DHESSs, the DHESS capacities and train operation 

parameters should be flexibly configured based on factors such as line conditions, train 

service patterns, and energy management strategies. Nowadays, most studies on 

configuration optimization focused solely on supercapacitor-based ESSs (literature 

reviews in section 1.3). However, the sizes of DHESSs and distributed PVs and the 

parameters of train operation (e.g., RB parameter and timetable) have not been jointly 

optimized. Besides, it is necessary to consider the operation uncertainties (e.g., 

passenger flow fluctuations and delays) and a generalized model-free energy 

management strategy to handle them (network-level challenges in section 1.4). 

Therefore, furthering the 3rd (network) level, this chapter focuses on developing a multi-

task multi-agent reinforcement learning-based data-driven multi-objective 

configuration optimization (MTMARL–DDMOCO) approach to optimize DHESS and 

train operation parameter configurations considering the proposed multi-time scale 

energy management framework, the electrothermal-coupled DHESS operation, and the 

spatial-temporal operation uncertainty for coordinating economy, energy efficiency, 

and passenger demands. Specifically, the main contributions of this chapter are outlined 

as follows: 

 A multi-objective configuration optimization model of DHESS-integrated 

URT TNs considering electrothermal-degradation of batteries is formulated 

for balancing economy, energy efficiency, and passenger demands. The first 

stage optimizes DHESS and train operation parameter configurations to 
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coordinate multiple objectives. The second stage implements the multi-time 

scale energy management approach developed in chapter 4 to minimize the 

daily operation cost, where its decentralized partially observable Markov 

decision process (Dec-POMDP) is reformulated to take first-stage decision 

variables as inputs.  

 A non-dominated sorting genetic algorithm (NSGA-II) integrated with 

ensemble load prediction models is developed to solve the configuration 

optimization model effectively. The computational performance and 

configuration decisions of the proposed approach are thoroughly analyzed.  

The remaining parts of this chapter are organized as follows. Section 5.2 illustrates 

the problem formulation of the two-stage configuration optimization model. Section 5.3 

presents the proposed MTMARL–DDMOCO approach, including the ensemble load 

prediction model and the algorithm implementation. Section 5.4 reports case studies 

and their results. Section 5.5 gives the summary. 

5.2 Problem Formulation 

5.2.1 Overview 

Similar to subsection 3.2.3, the configuration optimization model is formulated as 

a two-stage optimization problem. The aim of the first stage is formulated as a multi-

objective function to optimize economy, energy efficiency, and passenger demands. The 

electrothermal-degradation relationship is especially considered for a more accurate 

replacement cost calculation. One of the first-stage decisions is to determine the 

capacities of DHESSs. As the specifications of the HESS and PV are illustrated in 

previous chapters and the in-series number of battery and supercapacitor modules is 
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fixed, this decision is essential to determine the optimal in-parallel number of battery 

and supercapacitor modules, as well as the size of each rooftop PV. Another first-stage 

decision is to determine train operation parameters. Note that the start-up voltage 

threshold of train braking resistors determines the proportion of total braking energy 

delivered to the TN, which directly influences the RB energy utilization. Therefore, it 

is regarded as one key decision variable. Besides, the train timetable also influences the 

total energy consumption and RB energy utilization. To simplify the problem, we aim 

to fine-tune the dwell time of each station to adjust the timetable. The configuration 

decisions are then regarded as boundary parameters of the second stage. The second 

stage addresses the multi-time scale energy management issue in chapter 4 to minimize 

the daily operation cost. The Dec-POMDP is reformulated to take various train 

operation parameters as tasks. Finally, the objective and scheduling plan of the second 

stage is returned to the first stage for assessing configuration decisions.  

5.2.2 Two-Stage Configuration Optimization Model 

5.2.2.1 Battery Electrothermal-Degradation Model 

Unlike the rainflow counting method focusing on the cyclic loading history, in 

order to consider more general cases where some traction substations may lack enough 

space for cooling system installation or utilize other thermal management measures 

(e.g., an optimal thermal management algorithm) to control the battery temperature, a 

more refined degradation model is provided to depict the electrothermal-degradation 

relationship of HESSs. The detailed steps to implement both rainflow counting and 

electrothermal-coupled methods for degradation estimation are illustrated in 

Appendix A.  
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5.2.2.2 Objectives and Constraints of the First Stage 

The objective function can be written as 

 LCC EU TTmin ,100% , .J J J  (5.1) 

where LCCJ  , EUJ  , and TTJ   are the economic, energy utilization, and travel time 

indictor, respectively.  

1) Economic Indicator: The life cycle cost (LCC) of the urban rail transit (URT) 

TN is utilized as the economic indicator, which consists of the investment cost INVJ , 

operation cost OMJ  , replacement cost REPJ  , and other installation cost FIXJ  . The 

objective can be written as 

 LCC INV OM REP FIX CR ,J J J J J  (5.2) 

where CR  is the capital recovery factor.  

Specifically, the investment cost INVJ  is modified from (3.18) by adding a PV 

investment cost term 

 INV INV INV INV INV PV m CR,nor
SC SC BT BT DC DC PV ,J c N c N c N c P  (5.3) 

where PV,normP  is the nominal power of the PV generator, INV
SCc , INV

BTc , and INV
DCc  are 

the investment cost of supercapacitor, battery, and converter per module, respectively, 

INV
PVc   is the investment cost of PV per kW. SCN   and BTN   are the number of 

supercapacitor and battery modules, respectively, DCN   is the number of converter 

modules for HESS. 

As for the operation cost OMJ , it is derived from (4.6), namely, 

 OM SUB SC BT PV CUR CA ,n n n n n n
n

J J J J J J J  (5.4) 

where SUB
nJ  , SC

nJ  , BT
nJ  , PV

nJ  , CUR
nJ  , and CA

nJ   are the electricity trading, 

supercapacitor operation, battery operation, PV operation, PV curtailment, and carbon 
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trading costs at time interval n, respectively. Specially, SUB
nJ  and SC

nJ  are obtained 

by summing up their counterparts on the short time scale, 

 

 
SUB SUB SUB

SUB , SUB ,1 1 1

SC OM SC OM SC,CH SC,DIS
SC , SC , ,1 1 1

,

,

I T I
n i n i ti t i

I T I
n i n i t i ti t i

J c E c P t

J c E c P P t
 

(5.5) 

(5.6) 

where SUBE   and SCE   are the traction substation and supercapacitor energy, 

respectively. SUBP   is the traction substation power. SC,CHP   and SC,DISP   are the 

supercapacitor charge and discharge power, respectively. SUBc   is the electricity 

trading cost per kWh, OM
SCc  is the supercapacitor operation cost per MWh. 

As for the replacement cost REPJ , since the lifetime of a PV array can be much 

longer than the system lifetime [183], it is the same as (3.19). The only difference is 

that the replacement frequency here is estimated based on the battery electrothermal-

degradation model.  

2) Energy Utilization Indicator: To improve energy efficiency, we aim to 

maximize the energy utilization related to PV and RB. From the impact factor analysis 

in section 0, the optimal HESS control parameters for cost-saving and RB utilization 

improvement are different. Thus, the energy utilization indicator EUJ  is also included 

as one of the objectives, which can be defined as one minus the ratio of total PV 

curtailment plus total braking loss to the total PV and braking energy, 

 

CUR BR
, ,

EU
PV RB BR
, , ,

,1 100%
i n k n

i k

n i n k n k n
i k k

J
E E

E E E
 (5.7) 

where PV
,i nE   and CUR

,i nE   are the PV energy and curtailment at substation i at time 

interval n, respectively, RB
,k nE  and BR

,k nE  are the RB and braking resistor energies of 

train k  at time interval n , respectively.  
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PV
,i nE  and CUR

,i nE  are formulated by (4.13)–(4.17). For RB
,k nE  and BR

,k nE , they are 

formulated as the sum of their components on the short time scale, namely,  

 RB RB BR BR
, , , ,, ,k n k t k n k t

t t
E P t E P t  (5.8) 

 BR BR TR
, , ,1 .k t k t k tPP  (5.9) 

where RB
,k tP  is determined by the train trajectory profile. BR

,k tP  is determined by the 

operation status BR
,k t  of the braking resistor.. 

3) Travel Time Indicator: Apart from economy and energy utilization, we also aim 

to minimize passenger travel time by timetable adjustments. For simplicity, only the 

dwell time adjustment is considered in this work. TTJ   is defined as the average 

difference between the dwell time and its lower bound of each station. 

 TT DW DW
min ,1

i
i

J T T
I

 (5.10) 

where DWT  represents the dwell time.  

4) Constraints: For the configuration model, the decision variables include: the 

area of PV arrays, the in-parallel number of battery and supercapacitor modules, and 

the braking resistor start-up voltage threshold. Thus, the constraints can be written as 

 

S P
SC SC SC,1

S P
BT BT BT,1

SC P BT P
max SC, max BT,1 1

DC DC DC
max max

P P P P P P
SC,min SC, SC,max BT,min BT, BT,max

PV PV PV
min max
BR BR BR
1,min 1 1,max

,

,

,

,  ,

,

I
ii

I
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N N N
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I I
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A A A
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,
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(5.11) 
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where S
SCN  and S

BTN  are the number of supercapacitor and battery modules in series, 

respectively. P
SCN  and P

BTN  are the number of supercapacitor and battery modules in 

parallel, respectively. SC
maxI  , BT

maxI  , and DC
maxI   are the maximum current of 

supercapacitor, battery, and converter modules, respectively. PVA  is the area occupied 

by PV arrays, BR
1U  is the braking resistor start-up voltage threshold.  represents the 

ceiling function to round up to the nearest integer.  

5.2.2.3 Objectives and Constraints of the Second Stage 

The proposed multi-time scale energy management framework in chapter 4 is 

utilized at the second stage to minimize the daily operation cost. While its upper and 

middle-level formulation is the same as section 4.3, the Dec-POMDP at the lower level 

is reformulated to take first-stage decision variables as inputs. The task representation 

is modified to take different dwell time and RB parameter settings as tasks,  

 , , , ,H P D RB  (5.12) 

where H , P , D , RB  are the headway, trajectory, dwell time, and RB parameter 

tasks, respectively. Through this modification, the agent aims to learn a generalized 

DHESS control policy adapting to different headway, trajectory, dwell time, and RB 

parameter tasks.  

It is worth noting that the task set  can be huge with the increase of stations 

and train headway numbers, and it is possible that not all tasks are seen by the agent 

during training. This problem can be properly addressed by combining meta-learning 

with RL or simply increasing the neural network size to improve performance on 

unseen tasks. Due to our limited computational resources, for simplicity, we only 

consider the worst-case representative scenario in subsection 4.4.1 for daily operation 

cost calculation. As the scenario is fixed, the headway and delay information can be 
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known, where H  and P  include only a small amount of tasks. The detailed task 

set capacity and agent performance are illustrated in the case study.  

 

 
Fig. 5.1 Overview of MTMARL–DDMOCO. 

 

5.3 MTMARL–DDMOCO Approach 

5.3.1 Approach Overview 

The two-stage configuration optimization model is solved by the following steps: 

1) training multiple RL agents based on the modified Dec-POMDP and the MTMARL–

RTEMA proposed in chapter 4 under different DHESS capacity and train operation 

parameter configurations. 2) training multiple ensemble load prediction models to 

estimate the total energy output of substations, supercapacitors, and RB on the short 

time scale, respectively, where the well-trained RL agents are utilized to generate the 

EL dataset. 3) Perform NSGA-II with the proposed multi-time scale framework and 

load prediction models to obtain the Pareto solutions. Specifically, the first-stage 
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configuration decisions are provided by NSGA-II, and they are taken as inputs to 

optimize the scheduling plan on the long-time scale based on load prediction models. 

The calculated daily operation cost and other variables are returned to the first stage for 

assessing configuration decisions. A detailed illustration is provided in Fig. 5.1.  

5.3.2 Ensemble Learning-Based Load Prediction 

5.3.2.1 Principle of Ensemble Learning & XGBoost 

Generally speaking, combining the predictions from several models has proven to 

be an effective approach for increasing the prediction accuracy of the models [184]. EL 

is a machine learning method that strategically combines different models (classifiers, 

prediction models, experts, etc.) to address regression or classification problems. 

Bagging, boosting, and stacking are the three main categories of EL. Among EL 

methods, boosting functions essentially as an approach to combine a series of weak 

models to develop a strong model, where weak models are sequentially ensembled to 

correct the predictions made by prior models, aiming to improve the prediction accuracy.  

Extreme gradient boosting (XGBoost) [185] is a widely used boosting algorithm 

that shows efficiency and flexibility over other EL methods. It has an ensemble of M  

regression trees with individual predictions to construct the final output as a weighted 

sum of predictions. Suppose there are D samples with feature labels el, el,,d dx y  . 

XGBoost is equipped with a loss function EL  consisting of a training loss term and a 

regularization term 

 el, el,
1

ˆ( ) , ,
D

EL L d d
d

f y y f  (5.13) 

where L  is the training loss function, el,dy  is the real label, el,ˆ dy  is the estimated 

label,  is the regularization term, f  is the functional space that represents a set of 
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regression trees used for boosting. The training loss L  evaluates the model prediction 

performance of the regression tree m , while the regularization term  mitigates the 

overfitting problem. As the final outcome of XGBoost is the sum of predictions of all 

trees, namely, l
1

e ,ˆ ,
M

d m d
m

y f x  the loss of the m th tree can be written as [186] 

 1
el, el, el

1
,ˆ( ) , ,

D

EL L d d d
m

d
m m mf y y f x f  (5.14) 

where 1
el,ˆ d
my  represents the estimated label of the 1m th tree. 

Then, the Taylor approximation technique is utilized to transform the loss function 

to a function that can be solved by traditional optimization techniques, namely,  

 21
el, el, e

1
l, ,

2
el

1 1ˆ( ) , ,
2

D

EL L d d d
m

m m dm
d

mf y y f f x f f x f  (5.15) 

 
el, el,

1 1
el, el, el e

1 2 2
, lˆ ˆ ,ˆ ˆ, , , ,

d
m m

d
L d d

m m
L d dy y

f y y f y y  (5.16) 

The regularization term  is calculated by 

 21
el,1 el,22 ,leavesf c T c  (5.17) 

where leavesT  is the number of leaves,  is the weight of leaves, el,1c  and el,2c  are 

coefficients with default values of 1 and 0, respectively.  

With the regularization term, XGBoost can mitigate the overfitting problem. 

Meanwhile, in chapter 4, in order to generate the optimal schedules, it is necessary to 

1) train RL agents under specific configuration decisions and 2) calculate power flows 

subject to agents’ actions to calculate operation cost under different referential PV-

battery energy. Nevertheless, on the one hand, due to the short time scale for DHESS 

control, each operation scenario requires hundreds of power flow calculations. On the 

other hand, each configuration solution requires retraining of the RL agents, which 

results in substantial computational time.  



Chapter 5 

166 

Therefore, in this work, several ensemble load prediction models are developed to 

directly predict energy terms in (5.5)–(5.6) and (5.8) instead of executing hundreds of 

power flow calculations. These models learn from environmental settings and behaviors 

of well-trained RL agents. More importantly, the generalized EL models can adapt to 

different DHESS and train operation configurations, which do not require retraining of 

the RL agents. The detailed approach to load prediction is illustrated as follows. 

5.3.2.2 Construction of Ensemble Load Prediction Models 

To simplify the training process of XGBoost, the aim of the proposed load 

prediction models is to estimate the total energy output of substations, supercapacitors, 

and RB of each time step under the specific operation scenario for configuration 

optimization purposes. In the scenario, several operation parameters, such as the daily 

passenger flow, train trajectory, dwell time, and delay setting, are fixed. Therefore, we 

do not aim to develop a comprehensive load prediction model that adapts to various TN 

operation scenarios.  

Totally three load prediction models are trained. The scheduled referential PV-

battery energy ref ref
1, ,, ,n I nE E  , time step n  , headway h  , supercapacitor in-parallel 

module number P P
SC,1 SC,, , IN N , battery in-parallel module number P P

BT,1 BT,, , IN N , and 

train operation parameters BR DW DW
1 1, , , IU T T   are chosen as the same input of these 

models. Accordingly, the total substation energy SUB
,1

I
i ni

E  , total supercapacitor 

energy SC
,1

I
i ni

E , and total RB energy RB
,1

K
k nk

E  are the outputs of prediction models 

#1, #2, and #3, respectively. 

The training data are generated based on the fixed operation scenario and the 

trained RL agents, and the generation process is illustrated as follows. First, randomly 



Chapter 5 

167 

set the supercapacitor and battery module numbers and train corresponding RL agents. 

Next, randomly generate the referential PV-battery energy schedule for each time step. 

Next, run the operation scenario with fixed daily passenger flow, train trajectory, dwell 

time, and delay settings, as well as the random referential PV-battery energy schedule. 

Noted that the well-trained RL agents will determine the DHESS charge/discharge 

voltage thresholds and PV-battery power on a short time scale. Finally, match the input 

and output to form a data point and repeat the process till sufficient data are obtained. 

80% of the dataset is randomly taken for training, and the rest 20% is for testing.  

5.3.3 NSGA-II Implementation with Multi-Time Scale Energy 

Management Framework and Load Prediction Models 

5.3.3.1 Principle of NSGA-II 

The genetic algorithm (GA) [187] is a heuristic search algorithm that emulates the 

processes of natural selection and evolutionary genetics observed in the biological 

realm. Although GA demonstrates strong applicability for single-objective optimization 

problems, it exhibits significant limitations when applied to multi-objective 

optimization challenges. For the configuration optimization problem in this work, the 

objectives are interrelated and exhibit conflicting interactions. For instance, increasing 

the PV–RB utilization can result in excessive usage of battery and increased 

replacement cost, which leads to a worse performance on LCC. The optimal solution to 

such a problem should consist of a set of non-dominated solutions, namely, Pareto 

optimal solutions [188]. By definition, for decision variables ga,1x  and ga,2x : 1) If for 

{1,2, , }o O  , the fitness function ga,1 ga,2( ) ( )o oF x F x  , variable ga,1x   dominates 

ga,2x  . 2) If for {1,2, , }o O  , ga,1 ga,2( ) ( )o oF x F x  , and {1,2, }o O  , 
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ga,1 ga,2( ) ( )o oF x F x , variable ga,1x  weakly dominates ga,2x . 3) If for arbitrary decision 

variable ga,2x   and {1,2, , }o O  , ga,1 ga,2( ) ( )o oF x F x  , variable ga,1x   is the non-

dominated solution for objective minimization. To effectively solve the multi-objective 

configuration optimization problem, the NSGA-II [189] is introduced as the backbone 

of the proposed algorithm. The features of NSGA-II are summarized as follows. 

First, it utilizes a fast non-dominated sorting (NDS) method to significantly 

decrease computational complexity. In general, for the multi-objective optimization 

problem, it aims to calculate the number of solutions ga ga( )N p  which dominate the 

solution gap  and the solution set ga ga( )S p  that the solution gap  dominates. 1) Find 

the solution gap   with ga ga( ) 0N p   and save them to a set ga (1)S  , 

ga ga ga(1) (1) { }S S p , rank it with 1rank . 2) For the solution gaq  in set ga ga( )S q  

which is dominated by solution gap   in set ga (1)S  , ga ga ga ga( ) ( ) 1N p N p  . If 

ga ga( )N p =0, save gaq  to a set ga (2)S , ga ga ga(2) (2) { }S S q , rank it with 2rank . 

3) Repeat the process till all solutions are saved. The non-dominated sets ga (1)S  , 

ga (2)S , ga (3)S , … are generated with rank 1, 2, 3, ….  

Then, it introduces the crowding distance metric to estimate the density of 

solutions around a particular solution and maintain the diversity in the population. Thus, 

after the above two steps, each solution is characterized by the non-dominated rank and 

crowding distance. The population selection process based on the non-dominated 

sorting and crowding distance metric can be described as follows: 1) If the ranks 

determined by non-dominated sorting of solutions are different, the solution with a 

smaller rank is selected. 2) If the ranks are the same, the solution with a larger crowding 

distance is selected. Third, it implements elitism, which retains the best solutions from 

the current and previous generations, ensuring that progress is not lost over generations.  
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5.3.3.2 Algorithm Implementation 

The detailed steps of performing NSGA-II with the multi-time scale energy 

management strategy and load prediction models are summarized in Algorithm 5.1. 

 

Algorithm 5.1 NSGA-II with the multi-time scale energy management strategy and 

load prediction models 

1 Initialization: Load TN operation scenario data and ensemble load prediction 

models, set the hyperparameters for NSGA-II 

2 Randomly generate an initial population PA(0) 

3 LCCJ  calculation: Predict the energy terms in (5.5)–(5.6) for all possible input 

conditions in PA(0). Then, optimize the scheduling decisions and calculate the 

fitness function in (5.2) based on the prediction 

4 EUJ  calculation: Predict the energy terms in (5.8) based on PA(0) and the 

optimal schedule. Then, calculate the fitness function in (5.7) based on the 

prediction 

5 TTJ  calculation: Calculate (5.10) directly from PA(0) 

6 Implement fast NDS, crowding distance calculation, and elite selection, 

generate the parent population PA(1) 

7 For generation giter=1, giter,max do 

8  Implement selection, crossover, and mutation operations, generate an off-

spring population OS(giter). Calculate the fitness function by step 2–4, simply 

substitute PA(0) by OS(giter) 

9  Merge the parent and off-spring population, obtain a new population with 

2Npop solutions, PA(giter) OS(giter) 

10  Implement fast NDS, crowding distance calculation, and elite selection, 

generate the parent population PA(giter+1) 

11 Output: Pareto solutions 
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5.4 Case Study 

In this section, a detailed analysis of the aforementioned formulations and 

algorithms is conducted. First, the performance of the proposed ensemble load 

prediction models is illustrated. An optimal model selection process is conducted to 

verify the effectiveness of the proposed model compared with common load prediction 

models. The impacts of the training set size and the RL agent number on model 

prediction performance are discussed to demonstrate the trade-off effect between 

prediction accuracy and computational efficiency. Then, the optimal configuration of 

DHESS-integrated URT TNs is investigated. The configuration results consider only 

two objectives (economic and energy utilization indicators), and all three objectives 

(economic, energy utilization, and travel time indictors) are compared. Besides, the 

impact of battery degradation is analyzed with different ambient temperatures.  

5.4.1 Setup 

The search range of each decision variable is shown in Table 5.1, and the basis of 

the search range setting is illustrated as follows. For the DHESS sizing setting, the 

battery and supercapacitor specifications used in this case study are listed in Table 5.2 

and Table 3.4, respectively. Due to the data availability, we use the LiFePO4 battery 

data reported in [190, 191] to replace the aforementioned LTO battery data. Referred to 

the analysis in subsection 4.4.2, the parallel number of supercapacitor modules P
SC,iN  

is set to make the rated supercapacitor power cover 0–120% of the maximum power of 

its integrated traction substation. On the other hand, the parallel number of battery 

modules P
BT,iN  is set to make the rated battery energy cover 0–100% of the maximum 

energy of the PV in its integrated traction substation.  
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Table 5.1 Range of decision variables1.  

Parameter Value Parameter Value Parameter Value 

P
SC,iN  [0, 12] PV

iA  (m2) [0, 1620] DW,up
iT  (s) [20, 50] 

P
BT,iN  [0, 100] BR

1U  (V) [860, 1000] DW,down
iT  (s) [20, 50] 

1 {1,2, , }i I , P
SC,iN  is based on the maximum power of the integrated traction substation, P

BT,iN  

is based on the maximum daily generation of PV in the integrated traction substation, PV
iA  is based 

on the maximum rooftop area, BR
1U  is based on the no-load and maximum operation voltages of 

the TN, DW,up
iT  and DW,down

iT  are based on possible dwell time ranges in [192]. 

 

Table 5.2 LiFePO4 battery parameters. 

Item Value Item Value 

Nom. voltage 3.2 V No. in series 210 

Nom. capacity 10 Ah No. in parallel Table 5.1 

Max. charge/discharge rate 1 C/2 C OM
BTc  1 $/MWh 

SoE range 0.2-0.8 INV
BTc  11.58 $/module 

 
Table 5.3 NSGA-II parameters.  

Parameter Value Parameter Value 

iter,maxg  300 Mutation function mutationpower 
popN  150 Crossover function crossoverlaplace 

Selection function selectiontournament Crossover probability 0.8 

 

Besides, with the change of battery type, considering the maximum PV-battery 

energy consumption and the computational burden, we set refmax E =25 kWh and the 

increment of refE  =2.5 kWh in this case study. As for the PV sizing setting, its 

occupation PV
iA  is limited by the total rooftop area of the station (2700 m2, reported 

in [10]). It is worth noting that 30% of the total rooftop area is occupied by skylights. 

Besides, we assume 10% of the total rooftop area is reserved for laying gaps and 



Chapter 5 

172 

maintenance aisles. Thus, the PV occupation can be 0–60% of the total rooftop area. In 

addition, the braking resistor threshold BR
1U  is bounded by the no-load and maximum 

operation voltages of the TN. The available dwell time ranges DW,up
iT  and DW,down

iT  

for up and down train directions are reported in [192]. Furthermore, other economic 

parameters are the same as subsection 4.4.1, and a PV investment cost INV
PVc =462 $/kW 

is obtained from the statistics in China, 2025 [193] (taking the exchange rate 6.5 

RMB/USD). The NSGA-II algorithm parameters are illustrated in Table 5.3. Since 

ensemble models are sensitive to hyperparameters, a fine-tuning model selection 

process is required for their optimal performance, and the optimal parameters are 

illustrated in the following subsection. XGBoost and the fitness calculation part of 

NSGA-II are performed with Python 3.9.13, and other parts of NSGA-II are conducted 

by Matlab 2022b. The operation scenario and related scheduling plan are simulated and 

optimized by Gurobi 10.0.0 with Python 3.9.13. All simulations are performed on the 

same device in subsection 2.4.1. 

5.4.2 Analysis of Load Prediction Results 

5.4.2.1 Model Selection Results 

In this subsection, the ensemble model selection process, including key model 

parameter optimization and model prediction performance comparison, is illustrated. 

First, several key parameters are optimized, including: 1) the number of regression tree 

models M , 2) learning rate e , 3) maximum depth of regression trees, with a higher 

value for more complex models, 4) the minimum loss reduction “gamma” to divide 

further on the leaf nodes of the tree, which a higher value for more conservative models, 

and 5) the subsample rate.  

 



Chapter 5 

173 

Table 5.4 XGBoost parameters. 

Parameter Searching range 
Optimal value 

Model #1 Model #2 Model #3 

M  [100, 1000] 1000 1000 1000 

e  [0.01, 0.1] 0.1 0.075 0.05 

Maximum depth [3, 10] 4 4 4 

Gamma [0, 0.5] 0 0 0.3 

Subsample [0.5, 0.9] 0.9 0.9 0.6 

 
Table 5.5 Comparative performances under different prediction methods.  

Metrics 
XGBoost-model RF-model LR-model 

#1 #2 #3 #1 #2 #3 #1 #2 #3 

MAE 0.239 0.008 2.183 0.296 0.011 2.523 0.430 0.016 3.585 

RMSE 0.305 0.010 2.772 0.378 0.014 3.258 0.541 0.020 4.513 

MAPE 5.347 7.448 5.728 6.676 9.166 6.502 9.520 15.985 9.540 

R2 0.898 0.920 0.916 0.843 0.861 0.883 0.678 0.712 0.776 

 

The optimal values of these parameters are listed in Table 5.4. Then, the 

performance of different prediction methods is compared to verify the effectiveness of 

the proposed approach: 1) XGBoost: the EL method utilized in this work. 2) Random 

Forest (RF): a classical and widely used bagging-based EL method that builds decision 

trees and takes average predictions for regression. 3) Linear Regression (LR): baseline 

method. The training and test samples are 20000 and 5000, respectively. The RL agent 

number is 500. The mean absolute error (MAE), root mean square error (RMSE), mean 

absolute percentage error (MAPE), and coefficient of determination (R2) are utilized as 

metrics to evaluate the prediction results. Table 5.5 summarizes the evaluation results, 

where XGBoost shows superior prediction performance on the test set for all metrics.  



Chapter 5 

174 

  

(a) (b) 

 

(c) 

Fig. 5.2 Contribution ranking of each feature to prediction results for load 
prediction model (a) #1, (b) #2, and (c) #3. 

 

Furthermore, in order to quantify the impact of input features on prediction results, 

the Shapley additive explanation (SHAP) [194], a unifying interpretability framework 

based on cooperative game theory, is introduced. SHAP uses the average marginal 

contribution of a feature to all feature coalitions with that feature to obtain explanations 

of machine learning models. Fig. 5.2 shows the final ranking diagram of the importance 
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of all features affecting the load prediction models. It can be observed that, headway 

and time are two common major factors that affect the prediction results of all models. 

Besides, the referential PV-battery energy and battery module number in different 

stations are crucial factors for substation and supercapacitor energy demand predictions. 

In contrast, supercapacitor module number, dwell time, and braking resistor parameter 

substantially impact RB energy prediction. 

5.4.2.2 Impact of Training Set Size and RL Agent Number 

In this subsection, the impact of training set size and RL agent number on model 

prediction performance and the trade-off between prediction accuracy and 

computational efficiency is demonstrated. The test performance curves of each model 

with respect to training set size and RL agent number are depicted in Fig. 5.3. From the 

figure, with the increase of training set size and RL agent number, the model 

performance also increases gradually. Then, the total training time is calculated. Note 

that parallel computing has been implemented for RL agent training. The prediction 

models with the minimum total training time and satisfactory prediction performance 

(R2>0.9) are selected, and their performances are listed in Table 5.6. From the table, 

most of the computational time is spent on RL agent training and data generation. 

Although the generation of one sample is less than 0.1 s, the large number of training 

samples can make the generation process long. However, this issue can be addressed 

by parallel computing. In general, compared with carrying out enumeration calculations 

in the entire sampling space to obtain accurate operation cost under different conditions, 

the proposed load prediction models significantly improve the computational efficiency 

while slightly reducing the accuracy of operation cost calculations. 
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(c) 

Fig. 5.3 Test performance with respect to training set size and RL agent number for 
prediction model (a) #1, (b) #2, and (c) #3. 

 
Table 5.6 Computational performance of prediction models 1–31,2.  

Items Model#1 Model #2 Model #3 

EL training set size (sample) 20000 20000 10000 

Number of RL agents 2000 1600 1600 

Number of RL algorithm training times 500 400 400 

Total RL training time (h) 25.77 20.61 20.61 

Data generation time (s) 1506.574 1507.533 722.352 

Data generation time per sample (s) 0.075 0.075 0.072 

Total EL model training time (s) 0.411 0.369 0.0314 

Execute time (s) 0.002 0.002 0.002 
1 Total training time includes RL training, data generation, EL model training, and execute times. 
2 Parallel computing was used, where 20 RL algorithms were trained simultaneously.  
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5.4.3 Analysis of Optimal Configuration Results 

5.4.3.1 Comparison of Configuration Results 

In this subsection, the optimal configuration results are discussed with the 

following configuration strategies: 1) Strategy I (proposed): the DHESS and train 

operation parameter configurations are coordinated to optimize all three objectives. The 

electrothermal-degradation (A.2)–(A.10) of batteries is considered. 2) Strategy II: same 

as strategy I, except that only two objectives (economic and energy utilization) are 

considered. 3) Strategy III: same as strategy II, except that only DHESS configurations 

are considered. For train operation parameters, we set BR
1U =860 V, DW,up DW,down

i iT T

=50 s, {1,2 , }i I . 4) Strategy IV: same as strategy I, except that the multi-time scale 

energy management approach developed in chapter 4 is replaced by the framework 

DAIS in subsection 4.4.3.2. DAIS performs day-ahead and intraday scheduling without 

optimizing the charge/discharge thresholds and real-time PV-battery outputs of 

DHESSs. For strategies II-III, as only two objectives are optimized, the population 

popN  is set as 50 to save computational resources. popN =150 for all other strategies.  

The Pareto solutions of all strategies are shown in Fig. 5.4. From Fig. 5.4(a), it can 

be observed that the Pareto solutions of strategy II are generally better than those of 

strategy III. This is because the optimization of train operation parameters by strategy 

II increases RB energy generation and further releases its utilization flexibility. From 

Fig. 5.4(b), the Pareto front of strategy IV is located within $1200–2100 and is more 

concentrated than strategy I. Besides, the energy utilization of strategy I is generally 

higher than that of strategy IV when the LCC is higher than $1500.  
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(a) (b) 

Fig. 5.4 Pareto fronts of (a) strategies II-III and (b) strategies I and IV. 
 

Table 5.7 Comparative train operation parameters of strategies I–IV. 

Parameters DW,down
iT  (s) DW,up

iT  (s) BR
1U  (V) 

Station 1 2 3 4 3 2  

Current 30 30 30 30 30 30 900 

Strategy I 24 44 26 32 26 38 910 

Strategy II 32 24 26 28 38 44 910 

Strategy III 50 50 50 50 50 50 860 

Strategy IV 36 40 34 24 48 24 910 

 

Then, a multi-criteria decision-making is implemented to select the optimal 

configuration solution from the Pareto [195]. After calculating the entropy term, the 

optimal solution is selected based on the weighted distance to the idea solution, 
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where *P   is the optimal solution, wP   and wP   are the positive and negative ideal 

distance of the w  th Pareto solution, respectively,   is the weight term,   is the 

entropy of information.  
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Table 5.8 Comparative PV sizes of strategies I–IV. 

Parameters PV size (m2) 

Station 1 2 3 4 

Strategy I 314.45 204.30 1204.18 526.29 

Strategy II 1007.37 238.14 1288.44 239.22 

Strategy III 677.97 293.22 620.46 714.69 

Strategy IV 143.22 653.31 968.21 1097.12 

 
Table 5.9 Comparative DHESS configuration results of strategies I–IV. 

Power HESS (MW) Supercapacitor (MW) Battery (MW) 

Station 1 2 3 4 1 2 3 4 1 2 3 4 

I 1.18 1.44 1.01 0.65 0.70 0.87 0.61 0.35 0.48 0.56 0.40 0.30 

II 0.25 1.56 1.67 0.18 0.09 0.61 0.61 0.09 0.16 0.97 1.06 0.09 

III 1.51 0.23 1.00 1.39 1.05 0.17 0.96 0.79 0.46 0.05 0.04 0.60 

IV 1.81 0.74 0.26 1.12 0.87 0.70 0.09 1.05 0.94 0.04 0.17 0.07 

Energy HESS (kWh) Supercapacitor (kWh) Battery (kWh) 

Station 1 2 3 4 1 2 3 4 1 2 3 4 

I 325 386 274 189 83 103 72 41 242 282 202 148 

II 91 556 603 57 10 72 72 10 81 484 531 47 

III 353 48 134 396 124 21 114 93 228 27 20 302 

IV 574 103 98 158 103 83 10 124 470 20 87 34 

 
Table 5.10 Comparative performance of strategies I–IV. 

Item Current 
Strategy 

I II III IV 

LCCJ  ($) 2141.44 1561.33 1784.15 1471.44 1487.20 
EUJ  (%) 24.38 81.53 93.58 76.36 78.66 
TTJ  (s) 10.00 11.67 12.00 30.00 14.33 
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Table 5.11 Comparative battery degradation of strategies I–IV. 

Strategy I II 

Ambient temperature ( ) 25 35 45 25 35 45 
REPJ  ($) 0.00 0.00 0.00 0.00 55.51 57.20 

BT , 1L i  (year) 10.00 10.00 10.00 10.00 9.60 8.39 

BT , 2L i  (year) 10.00 10.00 10.00 10.00 10.00 10.00 

BT , 3L i  (year) 10.00 10.00 10.00 10.00 10.00 10.00 

BT , 4L i  (year) 10.00 10.00 10.00 10.00 10.00 10.00 

Strategy III IV 

Ambient temperature ( ) 25 35 45 25 35 45 
REPJ  ($) 0.00 49.79 51.35 105.44 108.10 177.56 

BT , 1L i  (year) 10.00 10.00 10.00 10.00 10.00 10.00 

BT , 2L i  (year) 10.00 10.00 10.00 7.93 6.92 6.02 

BT , 3L i  (year) 10.00 9.79 8.54 10.00 10.00 8.81 

BT , 4L i  (year) 10.00 10.00 10.00 8.00 6.99 6.10 

 

Table 5.7–Table 5.9 shows the configuration results of the optimal solution of each 

strategy, and the current operation situation with no installation of PVs and DHESSs is 

also compared ( BR
1U =900 V, DW,up DW,down

i iT T =30 s, {1,2 , }i I ). From Table 5.7, 

the optimized dwell time of each station in strategies I–IV is generally higher than the 

current dwell time schedule to increase the economic benefits and energy saving. The 

optimized braking resistor start-up voltage threshold of strategies I, II, and IV is higher 

than the current threshold, promoting more RB energy generation.  

From Table 5.8 and Table 5.9, due to the change in the spatial-temporal distribution 

of the traction load and RB energy under the optimized dwell timetable and braking 

resistor parameter, the PV and DHESS sizes of each station vary. The average HESS 
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power and energy per station of strategies I-IV reach 0.92–1.07 MW and 232.75–

326.75 kWh, respectively. Besides, all strategies utilize 20–27% of the total rooftop 

area on average (or 33–45% of the available area) for PV arrays in each station. This 

indicates that the current rooftop area is enough for the PV installation, considering the 

economic PV energy use for traction demands.  

Table 5.10 summarizes the performance of the optimal solution of each strategy. 

Compared with strategies II-III, which ignore the travel time indicator, the passenger 

travel time saving of strategy I is improved by at least 2.75%. Compared with strategy 

IV, strategy I using the proposed multi-time scale energy management approach 

improves the PV–RB energy utilization and the passenger travel time saving by 3.65% 

and 18.56%, respectively, while decreasing the LCC by 4.98%. Moreover, compared 

with strategy III, strategy II optimizes the train operation parameters, which promotes 

PV–RB energy utilization and passenger travel time-saving. In general, different 

strategies improve the LCC by 16.68–31.29% and the PV–RB energy utilization by 

213.21–283.84% while decreasing the travel time saving by 16.7–200%. The proposed 

strategy I is superior to other strategies on at least two objectives, which verifies its 

effectiveness. 

5.4.3.2 Impact of Battery Degradation 

To analyze the impact of battery degradation, the battery lifetime and replacement 

cost under different ambient temperatures are investigated. Noted that the ambient 

temperature will affect the battery degradation calculation by (A.3), (A.7)–(A.8), and 

(A.10) in appendix A. Table 5.11 illustrates the battery degradation of strategies I–IV 

under different ambient temperatures. With the increase in temperature, the battery 

lifetimes are generally shortened, and the replacement cost grows. Strategy IV is more 
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sensitive to temperature change than other strategies, where its average battery lifetime 

can be shortened by 13.92%, and its total replacement cost can be increased by 68.40%. 

In contrast, strategy I reduces battery usage through a reasonable scheduling plan, 

intelligent control of RL agents, and joint configuration of DHESSs and train operation 

parameters, limiting the replacement times under different ambient temperatures. 

5.5 Summary 

In this chapter, an MTMARL–DDMOCO approach is proposed for promoting an 

optimal synergy between the economic and energy efficiencies of the DHESS-

integrated TN operation and the travel time of the passengers. The research mainly 

includes the following aspects. 

A multi-objective configuration optimization model considering the 

electrothermal-degradation relationship of batteries is formulated for balancing 

economy, energy efficiency, and passenger demands based on the developed 

MTMARL–MTSEM approach in Chapter 4. The NSGA-II algorithm is incorporated 

with ensemble load prediction models to solve the multi-objective configuration 

optimization model in a data-driven manner. 

The key findings of the designated case study are summarized as follows: 1) By 

quantitatively analyzing the impacts of EL methods and training parameters on load 

prediction, the XGBoost method and critical parameters achieving R2>0.9 are selected 

to obtain optimal substation, supercapacitor, and RB energy output predictions under 

minimum total training time. 2) The MTMARL–DDMOCO improves the LCC and 

PV–RB energy utilization by 27.09% and 234.41%, respectively, compared with the 

current situation. 3) The MTMARL–DDMOCO is also superior to other configuration 

strategies on at least two objectives and reduces battery usage by leveraging a 
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reasonable scheduling plan, intelligent control of RL agents, and joint configuration of 

DHESSs and train operation parameters.
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Chapter 6: Conclusions and Future Perspectives 

6.1 Conclusions 

The integration of URT TNs with HESSs has become a technologically and 

socioeconomically crucial pathway to enable highly efficient and convenient mass 

public transportation within urban areas while promoting energy consumption 

reduction and carbon-neutral transformation of URTs. In order to address the spatial-

temporal uncertainties and complexities arising from passenger demand, urban traffic 

congestion, widespread distribution, operational disturbances, etc., this thesis reports 

using RL as a machine learning base technique to develop three different levels of 

energy management and configuration strategies for HESS-integrated URT TNs in a 

model-free and data-driven manner. The specific works and conclusions are 

summarized as follows.  

An SRL–EETTO approach is developed for automatic train operation at the 1st 

(train) level. The real-time train operation model under uncertain disturbances is 

formulated as an MDP, and an S-TD3 algorithm with improved effectiveness is 

developed to solve it and generate optimal train trajectories online. Satisfactory 

performances on reduced traction energy use of 18.5% and evaluation indices of safety, 

punctuality, and ride comfort are verified compared to the practical driving data for the 

proposed SRL–EETTO approach. Besides, its maximum trip time error under real-time 

uncertain disturbances is decreased by 11.6% compared to state-of-the-art RL-based 

EETTO algorithms, while its adaptability to uncertain train masses and resistance 

conditions is demonstrated. A suggestion for the train trajectory configuration based on 

the proposed SRL–EETTO approach is given.  
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An MTRL–SCO approach is proposed for HESS-integrated traction substation 

operation at the 2nd (substation) level. The configuration-specific HESS control 

problem under various spatial-temporal traction load distributions is formulated as an 

MTMDP based on a DTM, and an iterative sizing optimization approach considering 

daily service patterns is devised to minimize the HESS LCC. Then, a KT-D3QN 

algorithm is presented to learn a generalized HESS control policy adapting to multiple 

train service patterns by leveraging a shareable cross-task experience for solving the 

MTMDP. With the joint optimization of voltage thresholds and power allocations to 

effectively adjust SoEs, the operation cost can be reduced by 5.89% compared with 

conventional rule-based strategies using fixed thresholds and power allocations. Under 

multi-task learning and knowledge transfer, the operation cost can be further decreased 

by at most 13.06% compared with state-of-the-art HESS control optimization methods. 

Considering the spatial-temporal traction load characteristics, the HESS LCC is 

reduced by 2.65% while the battery life is extended by 86.22% compared with 

conventional sizing optimization methods.  

An MTMARL–MTSEM is presented for DHESS-integrated TN operation at the 

3rd (network) level. A two-stage stochastic scheduling is performed on a long-time scale 

to minimize daily operation and carbon trading costs at the upper level and correct day-

ahead scheduling deviations against multi-source uncertainties at the middle level. An 

MTMARL–RTEMA is established to optimize PV–RB power flow and promote 

utilization through decentralized coordination of DHESSs at the lower level. By 

leveraging the synergetic consideration of energy management of the TN with multiple 

time scales, the overall daily operation cost is reduced by 11.98%, and the PV–RB 

energy utilization is improved by 13.94% compared with the conventional long-time-
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scale scheduling approach. Similar to the conclusion of the proposed MTRL–SCO 

approach, the joint optimization of voltage thresholds and PV–RB power allocations 

increases the spatial-temporal energy complementation of PV–RB by 10.31% 

compared to the uncoordinated control scheme. Finally, the adaptability of the proposed 

MTMARL–MTSEM approach under various train service patterns and network 

uncertainties is verified.  

An MTMARL–DDMOCO approach is established for furthering the DHESS-

integrated TN operation at the 3rd (network) level. Based on the developed MTMARL–

MTSEM approach, a multi-objective configuration optimization model considering the 

electrothermal aging of batteries is formulated to optimize DHESS capacities and train 

operation parameters simultaneously. Then, a non-dominated sorting genetic algorithm 

is incorporated with data-driven EL-based load prediction models to solve the multi-

objective configuration optimization model. The optimal load prediction models 

(R2>0.9) under minimum total training time are obtained with the XGBoost method and 

critical training parameters. By leveraging a reasonable scheduling plan, intelligent 

control of RL agents, and joint configuration of DHESSs and train operation parameters, 

the proposed MTMARL–DDMOCO improves the LCC and PV–RB energy utilization 

by 27.09% and 234.41%, respectively, compared with the current situation, and is 

superior to other configuration strategies on at least two objectives. 

6.2 Future Perspectives 

Considering the diverse operation objectives, geographically dispersed 

infrastructure and equipment, frequent train services, and highly complicated, dynamic, 

and uncertain TN energy flows possessed by URTs, the research of this thesis can be 

extended from the following aspects.  
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6.2.1 Further Consideration of Timetabling and Circulation Planning 

In chapters 3-4, the impact of the real-time rescheduled timetable is considered in 

the substation-level and network-level energy management strategies, and in chapter 5, 

the dwell time is incorporated into the configuration strategy. However, for energy 

management, the coordinated optimization of RTTR and TN power flow to fully release 

the regulation flexibility of traction load has not been explored further. Thus, the 

traction load flexibility regulation methods (e.g., train driving and real-time 

rescheduling of timetables and rolling stocks) and the HESS control optimization 

methods can be comprehensively utilized to investigate the demand response strategy 

of traction loads and the coordinated operation strategy of URTs. On the other hand, the 

impact of delay propagation should be taken into account for train operation simulation, 

and the adaptability of the proposed approach under delay propagation needs to be 

further verified. Similarly, for the configuration problem, a more thorough 

consideration of timetable and rolling stock scheduling, including dwell time, running 

time, headway, etc., is required. For passenger travel time, a refined formulation such 

as that of [156] can be integrated into the multi-objective configuration optimization 

model to improve its model performance. Furthermore, under certain situations 

(first/last train), the trains may skip a few stations to have a higher commercial speed. 

This skip-stopping strategy can also be considered in future works.  

6.2.2 Implementation of Distributed Computational Architecture  

In this thesis, RL has been demonstrated as a crucial base and effective tool for 

energy management and configuration of HESS-integrated TNs. However, it is 

necessary to consider the distributed deployment issue of in trains and traction 
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substations (1st and 2nd levels) and the decentralized operation issue of DHESS-

integrated TNs (3rd level) of the proposed RL-based energy management strategies. In 

addition, with the expansion of the URT system, the communication and data 

processing capability of the centralized control center can be insufficient to deal with 

huge training data and commands. Furthermore, the NSGA-II algorithm in Chapter 5 

can have the curse of dimensionality when dealing with a large number of decision 

variables. 

In this regard, distributed computing architecture has great potential for future 

applications of RL-based energy management and configuration strategies. For instance, 

edge computing [196], which provides computational capabilities close to the dispersed 

end users with internet-of-things (IoT) devices, has been regarded as a practically viable 

solution. By implementing edge computing, not only can the computational burden be 

offloaded to edge servers/devices, but the communication issue from various end users 

to the centralized control center can be mitigated. To further reduce the computational 

burden of configuration strategies, a selection process of decision variables can be 

conducted before the optimization, where experiments containing different 

combinations of decision variables can be carried out by parallel computing to speed 

up the selection process. Moreover, it is worth noting that the combination of RL-based 

strategies and IoT devices via edge computing enables artificial intelligence of things 

(AIoT) [197], which contributes to intelligent, efficient, carbon-neutral, and convenient 

URT services.  

6.2.3 Investigation on Green Artificial Intelligence 

With the increased adoption of AI, a more powerful AI model generally requires 

more energy consumption with respect to computing hardware manufacturing, model 
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training, and model execution. In this regard, the concept of green AI [198] has been 

proposed to address the research and application concerns of AI-related energy 

consumption and environmental issues. Although the existing studies were limited, 

there have been various directions for achieving green AI, such as optimizing the 

workload during deployment, improving computational efficiency, assessing the carbon 

footprint, etc. In order to leverage AI for more sustainable URTs, it is necessary to 

incorporate green AI technologies into the proposed RL-based energy management and 

configuration strategies as an extension of this thesis.  
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Appendix A: Degradation Estimation of Hybrid Energy 

Storage Systems 

A.1 Degradation Estimation Based on Railflow Counting 

The rainflow method analyzes the cyclic loading history of a material or structure 

and converts the loading history into a series of closed-loop cycles, which are then 

added up as lifetime losses. In this work, as the supercapacitor generally has a much 

longer cycle life (up to 106) than the battery, its replacement during the system lifetime 

is ignored, and its rainflow counting is not implemented. For the battery case, generally, 

a survey which is provided by the cell manufacturer relates the number of counted 

cycles to the end of the battery lifetime as a function of the DoD. Thus, the battery 

degradation estimation process based on the survey and rainflow counting can be 

summarized as follows. The battery data is obtained from a LTO battery [166]. 

Step 1: Identify all local maximums and minimums of the SoE profile. 

Step 2: Count the discharge semi-cycles from each local maximum to the 

minimum, as indicated by the red line in Fig. A.1.  

Step 3: Similar to step 2, count the charge semi-cycles from each local minimum 

to the maximum. 

Step 4: Match the discharge semi-cycles with the charge semi-cycles to form 

complete cycles. Group the cycles according to their DoDs. The relationship between 

DoD and battery cycle life is shown in Table A.1. 

Step 5: Calculate the lifetime loss in each group and then add up to estimate the 

lifetime of the battery, 
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where i  is the index of DoD ranges, Norm
BTC  is the amount of available life cycles, 

BTC  is the number of cycles counted per day, BTL  is the estimated battery lifetime, 

L  is the system lifetime. 

 

 

Fig. A.1 Illustration of the cycle counting process. 
 

Table A.1 DoD ranges and battery (LTO 20Ah) cycle life.  

Item Value 

DoD (%) <15 15-25 25-35 35-45 45-55 55-65 65-75 75-85 >85 
Norm
BTC  70000 31000 18100 11800 8100 5800 4300 3300 2500 

 

A.2 Degradation Estimation Based on Electrothermal Coupling 

The degradation estimation consists of two steps: first, the electrothermal model 

of the battery is developed; then, a dynamic capacity degradation model is utilized to 

quantify the impact of battery power, accumulated electric charge, and temperature on 

battery life. Due to the data availability, we use the LiFePO4 battery data reported in 
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[190], instead of the aforementioned LTO battery data, to model the electrothermal 

characteristics. Namely, the LTO battery data is used for case studies in chapters 3–4, 

and LiFePO4 battery data is used for case studies in chapter 5. 

For the first step, considering that the HESS contains many battery modules in 

series and parallel, we assume that the operating state of cells is the same, and the space 

between cells is large enough. In order to analyze the thermal behavior of the battery, 

the simple equivalent circuit model in Fig. 3.2 is replaced by a first-order equivalent 

circuit model (Fig. A.2), where a constant RC network is added to capture the battery 

relaxation process.  

 

 

Fig. A.2 Battery first-order equivalent circuit model. 
 

According to [190], the battery OCV OCV
,tU  is insensitive to internal temperature 

BT,in
,tT . Besides, as the impact of SoE BT

,SoE t  on internal resistance BT
,tR  is relatively 

minor, we only model the relationship between temperature and internal resistance. 

Thus, the SoE-OCV and temperature-resistance relationship of the LiFePO4 battery can 

be fitted by 

 
OCV BT BT

, , ,

BT BT
, ,

4 3
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U
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The rest of the model is formulated by  

 RC RC BT
, ,

4
1 , 1,0.982 2.1 10t t tU U I  (A.4) 

 BT OCV BT BT RC
, , , , , ,t t t t tU U I R U  (A.5) 

 BT BT OCV BT BT RC
, , , , , , ,t t t t t tP I U I R U  (A.6) 

where BT
,tP  is the charge or discharge power, RC

,tU  is the voltage of the RC network. 

The coefficients in (A.4) are obtained by field tests.  

The thermal model of the battery can be referred to [190], and we also provide it 

below  

 BT,in BT BT BT,in BT,sh
, , , , 1 , 1

2
264.7 1.286 ,t t t t tT I R T T  (A.7) 

 BT,sh BT,in BT,sh BT,sh am
, , 1 , 1 , 130.7 1.286 0.3009 ,t t t tT T T T T  (A.8) 

where BT,sh
,tT   is the shell temperature, amT   is the ambient temperature. The 

coefficients in (A.5)–(A.6) are obtained by field tests. 

It is also worth noting that, as the studied URT stations have HVAC systems, we 

assume that the ambient temperature is constant during operation. Besides, 

manufacturers have fully tested the thermal stability of batteries and supercapacitors. 

Therefore, the thermal management issue and the thermal constraint of DHESSs are out 

of the scope, and this thesis only considers the impact of temperature rise on the 

degradation. 
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For the second step, a dynamic capacity degradation model [167] is utilized, as 

formulated below 

 REP
BT BT
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 (A.9) 
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where BTQ  is the percentage capacity loss. Generally, 20% capacity loss is regarded 

as the end of battery lifetime. BTQ  is calculated at a daily basis. GR  is the ideal gas 

constant, G 8.31R   J/(mol·K). -rateC   is the charge or discharge rate. Other 

coefficients in (A.10) are obtained by field tests. 
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Appendix B: Calculation of Passenger Demands  

A passenger demand calculation method is provided in this appendix and the aim 

is to find the average number of onboard passengers during each time interval n. 

According to the predetermined arrival rates and OD table, the arrival passengers are 

distributed to each station and then to each in-service train. Assume only one train 

direction (e.g., up or down) is considered,  
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where the total waiting passengers W
, ,k iN  at station i is calculated by (B.1)–(B.2), kH  

is the headway of train k, ,i j  is the OD element, ,i n  is the arrival rate, W
, , ,k i jN  is 

the proportion of W
, ,k iN  who travel from station i to j. Then, the passengers getting on 

ON
, ,k iN  and off OFF

, ,k iN  can be calculated by (B.3)–(B.4), B
maxN  is the maximum train 

capacity. The onboard passengers B
, ,k iN  on each train can be obtained by (B.5). Finally, 
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the average onboard passengers B
, ,i nN   is obtained by (B.6), N

nK   is the number of 

trains running at interval n.  
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