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ABSTRACT

Efficient airport baggage transport is critical for improving airport operation efficiency
and quality. In practice, the baggage transport is usually achieved by the cooperation of
tractors and trailers under the drop-and-pull mode. Recently, new electric autonomous
vehicles have been introduced to promote the intelligent and sustainable development of
airports. However, scheduling baggage transport vehicles presents significant challenges
due to the complex relationships among tractors, trailers, and flights, which are further
addressed by considering the recharging decision-making problem of electric autonomous
vehicles. Besides, the airport ground handling is a highly dynamic and uncertain scenario,
particularly at busy hub airports.

To address these challenges, this thesis reviewed the literature related to vehicle schedul-
ing for airport baggage transport services. Based on the previous studies and the intelligent
development process of airports, this research focuses on vehicle scheduling under two op-
erating modes: multi-trailer drop-and-pull baggage transport and electric auto-dolly-based
baggage transport.

For the multi-trailer drop-and-pull baggage transport, this study develops a two-stage
scheduling model for tractors and trailers under the drop-and-pull mode, as well as design-
ing an efficient hybrid intelligence-based solution algorithm. Specifically, the Adaptive
Large Neighborhood Search is taken as the foundation of the algorithm, with carefully de-
signed operators. Besides, two key methods are introduced to enhance the efficiency of the

algorithm, including a K-means clustering-based initialization method and a topological



sort-based solution evaluation method.

For the electric auto-dolly-based baggage transport, a simplified scheduling model is
established based on the model of Vehicle Routing Problem, which is then modeled into
the Markov Decision Process of improvement heuristic. Then, a scheduling algorithm
that integrates reinforcement learning and the Transformers variant-based deep learning
model is improved, with specifically designed problem embeddings to effectively present
the constraints on service time and electricity consumption, thus improving the algorithm
convergence speed.

Finally, supported by the flight and map data collected from real-world airports, a
SUMO-based integrated airport service vehicle scheduling simulation platform is estab-
lished. Simulation experimental results are analyzed to improve the algorithm and provide
references for airport service vehicle scheduling in practice.

Keywords: airport baggage transport, airport service vehicle scheduling, adaptive large

neighborhood search, reinforcement learning
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1 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Efficient airport ground handling services are essential for the smooth functioning of air-
ports and the operation of airlines while ensuring the level of aviation safety and security
[1]-[3]. It was reported that approximately 5-10% of flight delays can result from inad-
equate airport ground handling services [4], and accidents during ground operations are
frequently reported, resulting in significant flight delays and even leading to the loss of
ground operator lives [5]. Insufficient and inefficient ground services have become major
obstructions to further decreasing airport capacity. For instance, Singapore aviation firms
are ramping up hiring ground service operators to cope with the recent surge in air travel.

Among various airport ground handling services, baggage transport plays an essential
role. In 2017, the daily baggage handling volume of the Hong Kong International Airport
(HKIA) reached 80000 pieces. In 2022, airports worldwide successfully managed an im-
pressive 4.5 billion bags, and it is predicted that the size of the airport baggage handling
system market worldwide will reach 16.1 billion U.S. dollars. Efficient airport baggage
transport service is also recognized as a key indicator for airport operation performance.
Any inefficient operations or mistakes would delay the flight directly and even lead to a
cascade effect for all upcoming flights. In the practices of most existing airports, baggage
transport service is usually operated by motorized tractors and non-motorized trailers un-
der the drop-and-pull mode, as shown in Fig. 1.2 (a). Trailers are non-motorized and

only used to hold passenger baggage, while motorized tractors are utilized to tow trailers



between the Baggage Handling Area (BHA) and aircraft stands.

In last few years, the vigorous development of the aviation industry has heightened the
demand for improved operational efficiency and quality of airport ground handling [6].
Nowadays, many airports are transitioning towards higher automation and sustainability
[7], [8]. Governments are actively supporting the development of intelligent airports. For
example, China has announced many civil aviation policies, actively promoting automa-
tion and electrification [9], which is shown in Fig. 1.1. Global airports are also intro-
ducing new equipment for airport baggage transport service, like self-driving tractors in
Hong Kong, electric auto-dollies in Singapore, baggage loading robots in the United King-
dom, etc [10], [11]. The adoption of clean fuels and electric ground equipment effectively
reduces the airport’s carbon emissions [12]. Fig. 1.2 (b) shows the electric auto-dolly de-

veloped by AURRIGO, which is under test at the Singapore Changi International Airport.
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Figure 1.1: The civil aviation policies announced by the China Aviation Administration
of China from 2017 to 2022.

Nowadays, airports primarily use two modes: the existing and widely used tractor-
trailer mode, and the emerging electric auto-dolly mode. Fig. 1.3 shows their difference,

which are mainly demonstrated from the following perspectives:

1. All electric auto-dollies are self-motorized, while the movement of trailers com-

pletely relies on tractors under the drop-and-pull mode;

2. The equipped robot arms on auto-dollies can make the process of baggage load-



ing and unloading unmanned, while loading and unloading baggage for trailers are

implemented manually;

3. Auto-dolly is generally more expensive than the tractor and trailer because of its

equipped smart devices and sensors.

(b)

Figure 1.2: Airport baggage transport vehicles: (a). tractor and trailers; (b). electric auto-
dolly.
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Figure 1.3: The two different airport baggage transport modes: (a). tractor-trailer mode;
(b). electric auto-dolly mode.

Following the existing multi-trailer drop-and-pull baggage transport enables flexible cou-

pling and decoupling of tractors and trailers as required [13], potentially lowering oper-



ational costs. However, it greatly increases the complexity of operation scheduling. Al-
though adopting new-type vehicles, i.e., electric auto-dollies, can simplify the scheduling
decision-making process, their high cost may necessitate scheduling under limited dolly
resources. According to our investigations, the scheduling of tractors and trailers is usually
done manually based on predefined rules or expert experiences. For example, schedulers
always dispatch the closest tractor to the flight, and the tractor driver usually looks for
empty trailers while moving. Such manual decisions are inefficient and cannot well cope
with the dense and dynamic demands, especially in large airports during busy hours [14].
Thus, automatic tools are urgently needed to support vehicle scheduling, which is essential
in improving the performance of airport ground handling while reducing operating costs
and flight delays [15].

Many works have been conducted to optimize the scheduling efficiency of airport
ground handling services [16]—[18] under dynamic and uncertain environments [19], [20]
and with electric vehicles [21]. Generally, the scheduling problem of airport service ve-
hicles is regarded as the Vehicle Routing Problem (VRP) [14]. It is usually modeled as
Integer Programming (IP) and Mixed Integer Programming (MIP) [22], [23], and is solved
by mature solvers such as CPLEX and heuristic algorithms. However, considering the
operational features of airport baggage transport, there are still several limitations to be
addressed.

On the one hand, the specialized roles of tractors and trailers are not classified in
most existing works but treated as fixed units, which is rarely aligned with the practi-
cal application and would hinder the effective utilization of the multi-trailer capability of
tractors [24]. Prior studies demonstrate that decoupled trailer operation systems, where
tractors and trailers are independently scheduled, enable dynamic resource allocation and
operational flexibility [25]. This approach proves particularly advantageous in scenar-
10s involving prolonged cargo transfer processes [26], such as airport baggage handling

systems, where manual loading/unloading of luggage containers onto trailers creates sig-



nificant time bottlenecks. Empirical evidence from Cui et al. [27] further suggests that
coordinated scheduling optimization of transport units under such decoupled mechanisms
could enhance baggage logistics throughput by 18-22% in typical hub operations. On the
other hand, current research related to airport ground electric vehicle scheduling primarily
focuses on the scheduling of aircraft tractors [21], [28], [29]. However, these findings can
not directly guide electric auto-dolly scheduling, as the operation modes and contents of
different ground services vary significantly from each other.

Moreover, many challenges still exist in vehicle scheduling for airport baggage trans-
port. The first difficulty arises from the strict requirements of the airport baggage transport
service. A single flight usually requires multiple trailers (or dollies) to serve, and the num-
ber of trailers (or dollies) needed differs from the number of flights. Such divisible demand
settings will greatly increase the complexity of dolly scheduling, which is a typical variant
of the split delivery vehicle routing problem [30]. Besides, baggage transport is usually
conducted under tight time constraints, making it challenging to solve real-world large-
scale cases in a short time. Another challenge comes from the operation mode of baggage
transport vehicles. When adopting tractors and trailers, the complex route dependencies
between a tractor and multiple trailers must be considered. Similarly, when employing
electric auto-dollies, it is necessary to make recharging decisions without compromising
operational efficiency. Therefore, how to efficiently obtain effective schedules in a short
time is always a great challenge.

In summary, to promote the development of airport ground handling, this thesis aims
to achieve the optimization of vehicle scheduling for baggage transport service based on

the existing related research.



1.2 RESEARCH SCOPE AND OBJECTIVES

Based on the above analysis, this study aims to achieve intelligent vehicle scheduling for
reducing airport operating costs, and further promoting the green airport baggage transport

service. The research objectives are as follows:

1. Achieve efficient vehicle scheduling of multi-trailer drop-and-pull airport bag-
gage transport. Firstly, based on the operating characteristics of multi-trailer drop-
and-pull baggage transport service, a tractor and trailer scheduling model is estab-
lished. Then, a heuristic scheduling algorithm is developed to solve this problem,
followed by specialized initial solution generation algorithm, local operators, and

an acceleration algorithm for large-scale instances.

2. Design an effective electric auto-dolly scheduling method to improve sustain-
able airport baggage transport. Firstly, the model construction for the electric
auto-dolly scheduling problem is investigated. Then, the development of the rein-
forcement learning-based scheduling algorithm is researched, including the design

of the Markov Decision Process, problem embedding, and training algorithm.

3. Conduct empirical analysis on the constructed airport vehicle scheduling sim-
ulation platform. An integrated vehicle scheduling simulation platform for airport
ground handling is constructed. Then, guidelines for the real-world airport baggage

transport service are developed based on empirical analysis.

1.3 THESIS ORGANIZATION

The research framework of intelligent vehicle scheduling for green airport baggage trans-
port service is shown in 1.4. According to the research framework, this paper is organized

as follows:



First, a brief introduction of the research background, research scopes, and research
objectives is developed in Chapter 1.

Chapter 2 reviews the research studies related to airport baggage transport optimization
and the approaches for vehicle routing problems. Finally, the research potential in the
domain is summarized in this section.

Chapter 3 illustrates how to achieve efficient vehicle scheduling of multi-trailer drop-
and-pull airport baggage transport. We first defined the tractor and trailer scheduling prob-
lem in the airport baggage transport scenario. And we established the mathmatical for-
mulations of the integrated tractor and trailer scheduling problem. Then we decomposed
it into a two-stage scheduling model to decrease the solving complexity. Finally, a hy-
brid intelligence-based algorithm that integrates K-means clustering and Adaptive Large
Neighborhood Search is developed to efficiently solve the two-stage scheduling problem.
The algorithm performances are validated by comparison experiments.

Chapter 4 designs an effective electric auto-dolly scheduling method for improving
green airport baggage transport. So we first constructed a simplified electric auto-dolly
scheduling model to decrease the model-solving complexity. Then we define the pro-
cess of solving this problem as a Markov Decision Process, including designing scenario-
specific state embeddings, actions, and the reward function. To solve this problem, a
Proximal Policy Optimization (PPO) policy with Transformers structure-based encoder
and decoder and Curium Learning (CL) strategy is developed. Extensive experiments are
conducted to verify the model and algorithm effectiveness.

Chapter 5 firstly introduces the simulation platform construction, which is achieved by
processing flight information and airport ground map data through the Open Street Map
(OSM) and the Simulation of Urban Mobility (SUMO). Then, an energy consumption
model is established to measure the energy consumption and emissions of different types
of vehicles. Based on it, the two modes that adopt fuel tractors and electric auto-dollies

are compared. A statistical analysis of energy consumption for airport baggage transport



service is also conducted in Chapter 5 to provide guidance to real-world airport operations.

Chapter 6 concludes this thesis and discusses future work.
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Figure 1.4: The research framework of intelligent vehicle scheduling for green airport
baggage transport service.



2 LITERATURE REVIEW

In this chapter, the literature on relevant studies of operations research in airport ground
handling and optimization methods is reviewed. First, the state-of-the-art vehicle schedul-
ing research for airport ground handling services is summarized to investigate compen-
satory and potential research directions of baggage transport vehicle scheduling problems.
Regarding the different challenges presented by the multi-trailer drop-and-pull mode and
the electric auto-dolly for baggage transport operations, the drop-and-pull routing prob-
lem and the electric vehicle routing problem are reviewed, respectively. In the aspect of
optimization methods, the reinforcement learning-based methods for routing problems are

investigated. Finally, the research limitations and gaps are summarized.

2.1 VEHICLE SCHEDULING FOR AIRPORT GROUND HANDLING

Focusing on improving the operational efficiency of various airport ground services, ex-
tensive works have been conducted for the scheduling of different types of service ve-
hicles, such as de-icing vehicles [31], [32], ferry buses [33], fuelling vehicles [34], and
aircraft towing vehicles [35]. Meanwhile, some works considered the interactions among
different vehicles to improve the overall efficiency of airport ground handling, e.g., the
scheduling of multi-type airport service vehicles with service priority [36], [37] and col-
laborative optimization of different ground activities [38].

With the popularity of electric vehicles, some scholars have also begun to investigate

the application of electric vehicles in airport ground service. In recent studies, Bao ef al.

10



developed an integrated operational framework for hybrid fuel-electric aircraft tractors.
This model simultaneously optimizes temporal efficiency, energy expenditure, and carbon
footprint by incorporating auxiliary power unit (APU) energy substitution effects. Then,
an enhanced adaptive large-scale neighborhood search heuristic is designed to obtain near-
optimal solutions for this complex optimization challenge [28]. Zoutendijk et al. also
investigated the electric aircraft tractor routing and recharging problem, while considering

a limit for the supply of energy.

Table 2.1: Summary of literature related to vehicle scheduling for airport baggage trans-
port service.

. Objective Time Vehicle type  Capacity Two-way

Literature (Minimum) window classification' =1 >1  service? Drop-and-pull - Method

[39] The total cost of fixed and fuel consumption v v v v ALNS
of tractors

[40] The total cost of fixed consumption of all v v v v ALNS
vehicles and fuel consumption of tractors

[41] The number of used vehicles and the total v v GA
travel distance of vehicles

[18] The number of used vehicles and the total v v NSGA-II
extra time cost of vehicles

[42] The vehicle travel time v v LNS

[43] The number of undelivered baggage and v v Greedy
the vehicle travel time

This paper The total travel time of tractors v v v v v ALNS

! Distinguishing between the tractor and trailer in the baggage transport vehicle.
2 Allowing vehicles to serve both departure and arrival flights in one trip.

In recent years, as an essential part of airport ground handling, vehicle scheduling in
airport baggage transport has been extensively studied, and related works are summarized
in Table 2.1. Most works focused on minimizing operation costs, including the number
of vehicles adopted, travel time, fuel consumption, etc. Some considered reducing flight
delays, e.g., Padron et al. studied the bi-objective collaborative scheduling of multiple
service vehicles to minimize flight waiting time [44]. Considering the constraints of ve-
hicle capacity and service time window, Clausen ef al. and Guo ef al. modeled the ve-
hicle scheduling problem as a Capacitated Vehicle Routing Problem with Time Windows
(CVRPTW) [41], [43]. Meanwhile, various heuristic algorithms have been developed,
including Variable Neighborhood Search (VNS) [44], Large Neighborhood Search (LNS)
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[42], and ALNS [39]. Besides, some attempted to integrate learning-based methods with
heuristic methods. For example, Zhou et al. proposed a learning-assisted LNS method
that integrates imitation learning and the graph convolutional network [42]. They further
improved the heuristic policy with an attention-based neural network trained with rein-

forcement learning [14].

2.2 DROP-AND-PULL ROUTING PROBLEM

Table 2.2: Summary of literature related to tractor and trailer drop-and-pull problem.

Number of Trailers Mixed Routes

Literature ~ Application Vehicle type =1 =2 52 Transport! Interdependence? Method
[45] . . . v Branch-and-price-and-cut

+
[46] Intercity Freight Truck+trailer v Hybrid metaheuristic
[24] v v Branch-and-price-and-cut
[47] Container drayage . v v GA

+

(48] at ports Tractorttrailer v v v ALNS
[49] v Branch-and-price-and-cut
This paper Airport baggage transport ~ Tractor+trailer v v v ALNS

! Allowing tractors to transport both vacant and full trailers in one trip
2 A trailer can be transported alternately by multiple tractors.

The drop-and-pull mode has been widely applied in freight transportation. In intercity
freight transportation, a vehicle is typically composed of a truck and a trailer [50], where
both truck and trailer can load cargo, allowing for the shifting of cargo between them. In
such problems, the transport demand usually involves distributing cargo from the depot
to customers or collecting cargo from customers, and scheduling the truck to transport
both vacant and full trailers in one trip is rarely considered. The common scenario is
that some customers could only be served by trailers, while others can only be served by
trucks. Thus, the truck sometimes needs to drop the trailer off at a transit station before
implementing tasks [45], [46].

Another typical application is the container drayage problem at ports. Different from
trucks, the tractor cannot carry cargo and is usually only used to pull trailers. One trac-
tor normally can pull at most two trailers [47], [48]. In particular, A foldable container

drayage problem is researched in [26], demonstrating tractors’ capability to transport 4-
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6 folded units versus single loaded containers. For the solution algorithms, Song et al.
formulated a branch-and-price-and-cut framework addressing synchronized drayage rout-
ing with rigid synchronization constraints [49]. In their work, one drayage task finished
by the same tractor is forbidden, so there are no route dependencies between different
tractors [49]. Moghaddam et al. established a multi-modal container routing paradigm in-
corporating heterogeneous container dimensions and decoupled tractor-trailer operations,
significantly expanding solution space dimensionality [51]. Similarly, tractor change is

not allowed during one task, and the tractor can only engage in single-trip services.

2.3 ELECTRIC VEHICLE ROUTING PROBLEM

Over the past decade, electric vehicles (EVs) have garnered significant attention and have
witnessed a substantial surge in market share, which is prompted by the mounting global
consciousness towards environmental sustainability. Recently, EVs have been widely
used in public transportation systems [52], freight [53], yard [54], and last-mile trans-
portation [55].

Recent advancements in sustainable logistics have driven significant research efforts
toward optimizing electric vehicle (EV) fleet management systems [56]. A critical de-
velopment in this domain is the Electric Vehicle Routing Problem (EVRP), a specialized
adaptation of the classical VRP. Unlike conventional VRP formulations, EVRP explic-
itly incorporates battery capacity limitations, charging station location constraints, and
time-energy consumption coupling effects [57]. With the consideration of the routing
constraints, charging operations, etc, many works have emerged over the years focusing
on EVRP variants, which can be classified as following attributes:

Charing and discharging attributes. Charging and discharging attributes are popu-
larly discussed in many works, as they are very important for a realistic EVRP. Conven-

tional charging modeling approaches typically posit a direct linear relationship between
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state-of-charge (SOC) and charging duration [58]. However, emerging research incorpo-
rates state-dependent charging profiles that better reflect electrochemical dynamics. Mon-
toya et al. extended the EVRP by considering a non-linear charging function coupled with
a hybrid metaheuristic combining iterated local search with heuristic concentration tech-
niques to handle solution space discontinuities. [59]. Besides, a linear model between the
energy consumption and travel time is commonly used for the vehicle discharging process.
But it actually may be influenced by many other realistic factors, like speed, weight [60],
temperature [61], etc. Lastly, battery swapping is also investigated in some research to
introduce an alternative strategy for replenishing the energy of EVs [62], [63].

Recharge station attributes. In most of the literature, the recharging station infor-
mation is assumed to be known in advance. However, this approach doesn’t always align
with real-world complexities, such as the rapidly evolving urban landscapes. This interde-
pendence necessitates co-optimization of geo-spatial allocation of charging stations and
operational scheduling of electric vehicles [64], [65]. Advanced EVRP variants further
integrate power grid operational constraints, like capacity thresholds of substations, peak
load balancing mechanisms at charging hubs, and so on [56]. Moreover, different recharge
stations may provide different recharge speeds with different prices, which can also affect
the selection of recharge stations in the EVRP [66].

Vehicle fleet attributes. The operational constraints of EVs, particularly regarding
payload-range trade-offs, drive logistics research studies toward heterogeneous fleet com-
positions integrating EVs with conventional fuel vehicles (FVs) [67]. Compared to tra-
ditional fuel vehicles, the energy cost of EVs are relatively lower, followed by a higher
purchase cost. Hybrid electric vehicles (HEVs) further complicate the advantages of EVs
and FVs through dual-propulsion architectures, enabling dynamic energy source switching
between battery packs and diesel generators. Hiermann et al. addressed the mixed fleet
scheduling problem that contains FVs, EVs, and HEVs, which was solved by a hybrid

meta-heuristic framework [68].
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2.4 REINFORCEMENT LEARNING FOR ROUTING PROBLEMS

The temporal state transition modeling capabilities of reinforcement learning (RL) have
positioned it as a dominant paradigm for combinatorial routing optimization. RL-driven
frameworks demonstrate particular effectiveness in addressing NP-hard challenges, such
as traveling salesman problems, Capacity-constrained routing, and demand-coupled lo-
gistics [69]-[72]. Current methodological innovations on RL-based algorithms primarily
involve the following perspectives,

RL algorithms. RL algorithms mainly include two principal optimization paradigms
according to the differences in learning objectives [73], [74]. The first value-centric ap-
proach approximates state-action value functions, which enables solution construction by
temporal difference estimation. Representative implementations include Deep Q-Networks
(DQN) [75], [76] and its variants, double DQN and Dueling DQN [77]. The second cat-
egory is policy-gradient paradigms, which directly parameterize the policy to optimize
action selection probability distribution through gradient ascent on expected returns. The
existing popular policy-based RL algorithms include REINFORCE [70], [78] and Prox-
imal Policy Optimization (PPO) [79], [80]. In existing research, policy-based RL algo-
rithms are the mainstream of RL algorithms designed for routing problems, due to their
advantages in handling high-dimensional action spaces and naturally supporting stochastic
policies, which can be beneficial in uncertain environments.

In the domain of combinatorial routing optimization, both value-centric and policy-
gradient RL algorithms have been studied [73]. On the one hand, value functions guide
the decision-making process, enabling the system to learn optimal routes through iterative
evaluations. On the other hand, policy-gradient methods have advantages in exploring
the action space and can adapt more swiftly to complex and high-dimensional decision-
making scenarios in routing. Existing popular policy-based RL methods include REIN-

FORCE [70], [78], Proximal Policy Optimization (PPO) [79], [80], etc.
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Heuristic types of RL policy. Generally, the heuristic types of RL policy can be
categorized as constructive [71], [81], and improvement heuristics [82], [83]. The con-
struction methods learn a policy to build solutions by iteratively selecting nodes from the
problem graph. Although this approach can save more inference time cost, it often lacks
the ability to obtain (near-)optimal solutions [84]. On the contrary, with the initialized
solutions, improvement strategies utilize local search mechanisms to iteratively optimize
the initial solution. Typical examples include the 2-opt operator proposed by [82], the
ruin-and-repair operation from [85], and the node-swapping technique developed in [86].
Improvement model-based RL is advantageous for its scalability in complex environments
but may suffer from sample inefficiency.

Deep learning models of RL policy. Various deep learning architectures such as
Recurrent Neural Networks (RNN) [86]-[88], Graph neural networks (GNN) [89], [90],
and Transformers [71], [91] have been employed. Different from RNN and GNN, Trans-
formers allow for parallel processing of input sequences, which significantly speeds up
training and inference. The multi-head self-attention mechanism enhances the ability of
Transformers to effectively capture long-range dependencies in the data. These advan-

tages make Transformer particularly well-suited for complex RL tasks.

2.5 SUMMARY

In the above literature review, many scholars have made some achievements in the re-
search of airport baggage transport vehicle scheduling. However, there are still some
limitations need to be further investigated.

Firstly, previous works provide extensive knowledge on scheduling baggage transport
vehicles. However, they seldom considered the drop-and-pull mode or considered both
departure and arrival flights together. Works are still needed on the integrated scheduling

of tractors and trailers with the consideration of various practical requirements so as to
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support real-life operations. Besides, it is important to highlight that simulations and ex-
periments conducted in existing related research often lack the utilization of actual flight
and map information obtained from real-world airports.

Secondly, to the best of our knowledge, vehicle scheduling under drop-and-pull mode
in airport baggage transport is still not well studied. Different from previous works, a trac-
tor can pull more than three trailers simultaneously in airport baggage transport. Mean-
while, considering both arrival and departure flights, the tractor should be allowed to trans-
port both vacant and fully loaded trailers in one trip.

Thirdly, although many real-world EVRP variants have been well studied, research
on electric auto-dolly scheduling is still very limited. Unlike the scenarios of cargo and
public transport systems, where electric vehicle power consumption can be more accu-
rately estimated, the working status and energy consumption of electric auto-dollies are
highly correlated with flight plans, which increases the difficulty in making charging de-
cisions. Besides, due to capacity limitations, electric auto-dollies need to make multiple
trips between the BHA and aircraft stands. Incorporating charging-related decisions into
such multi-trip scenarios would greatly increase the complexity of the problem, which in
turn would require a more efficient solution method.

Finally, although reinforcement learning has been proven to be effective in solving
large-scale combinatorial optimization problems recently However, to our knowledge,
most works still mainly focus on some classical problems with few constraints (e.g. TSP,
VRP, and the Jop Shop Problem), and they are rarely tested on datasets from real sce-
narios. Moreover, the electric auto-dolly scheduling problem in this study needs to take
into account the uncertain charging time, which is also a challenge for the training and
convergence of reinforcement learning algorithms.

Based on the above analysis, this study aims to fill the gaps in the current research
on airport baggage transport vehicle scheduling. A vehicle scheduling problem for multi-

trailer drop-and-pull baggage transport is first studied, which enables the flexible coupling
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and decoupling of tractors and trailers. Then, a hybrid intelligence-based algorithm inte-
grating K-means clustering and ALNS is designed to solve this problem. Besides, the elec-
tric auto-dolly scheduling problem is solved by a reinforcement learning and Transformers
variant-based algorithm, which shows its advantages in large-scale real-world instances.
Finally, supported by real-world airport information, an integrated airport service vehicle
scheduling simulation platform is established to contribute to algorithm improvement and

provide references for future airport baggage transport.
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3 VEHICLE SCHEDULING FORMULTI-TRAILER DROP-

AND-PULL AIRPORT BAGGAGE TRANSPORT

This chapter aims to propose an efficient scheduling method for multi-trailer drop-and-
pull airport baggage transport. Firstly, a two-stage model for the multi-trailer drop-and-
pull problem in airport baggage transport is developed, which can effectively decrease
the computation complexity without affecting the scheduling performance. Secondly, a
hybrid intelligence-based method that integrates K-means clustering and Adaptive Large
Neighborhood Search (ALNS) is developed to efficiently solve the two-stage scheduling
problem. To further improve the algorithm efficiency, several effective operators and a
topological sort-based solution evaluation method are proposed that could accelerate the
computing processes and effectively cope with large-scale problems. Finally, extensive
experimental case studies are conducted to verify the effectiveness of the proposed method

and provide benchmarks for future works.

3.1 PROBLEM DESCRIPTION

In a typical airport baggage transport scenario, the drop-and-pull mode with motorized
tractors and non-motorized trailers is popularly adopted. Generally, there are two main
transport tasks. One is for departing flights. The baggage will be collected at the BHA and
loaded onto the trailers waiting there. After the baggage check-in process (a cut-off time
at the BHA before each flight), these trailers will be towed by tractors to the corresponding

aircraft stand, and then the baggage will be loaded onto the aircraft by ground handling
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operators. The process should be conducted within strict time windows according to the
flight plan to ensure the aircraft can take off on time. The other is for arrival flights. After
an aircraft arrives at the aircraft stand, the baggage will be unloaded from the aircraft and
loaded onto the trailers waiting there. These trailers will then be towed by tractors to the
BHA. The process should also be conducted efficiently to minimize the waiting time of

passengers at the baggage claim area. The process is illustrated in Fig. 3.1.
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Figure 3.1: The example of 2 tractors and 3 trailers transporting baggage for 3 flights.

Considering a specific planning period, the schedules of tractors and trailers are de-
cided based on the information of arrival and departure flights simultaneously, including
the arrival/departure time and the number of trailers required for each flight. Specifically,

for each flight, the information required is listed as follows:

1. Number of Trailers Required: According to the volume of baggage the flight carries,

the number of trailers needed will be known in advance before the scheduling starts.

2. O-D Information: The origination and destination information of each baggage
transport demand will be generated based on the nature of the arrival/departure flight

and the stand that the corresponding aircraft parks.
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3. Earliest Baggage Loading Start Time: It refers to the earliest time that the baggage

can be loaded onto the trailers.

4. Latest Baggage Unloading End Time: 1t refers to the latest time for completing

unloading baggage from trailers.

With the above information, the schedules of tractors and trailers in a given period
can be made. For example, considering the scenario in Fig. 3.1, the number of trailers
needed for Flight 1, 2, and 3 are 3, 1, and 2, respectively. A feasible solution is that Flight
1 is served by all three trailers, Flight 2 is served by Trailer 3, and Flight 3 is served by
Trailer 1 and 2. Tractor A departs from the tractor depot, picks up all three trailers at the
trailer depot, and tows them to the aircraft stand of Flight 1. After disconnecting Trailer
1 and 2, Tractor A tows Trailer 3 to serve Flight 2, while Trailer 1 and 2 are left at the
aircraft stand of Flight 1. After the baggage is unloaded, they will be towed by Tractor B
to serve Flight 3 before returning to the depot. In this process, one tractor can pull multiple
trailers simultaneously, and the tractors and trailers can flexibly connect and disconnect

when needed.

3.2 INTEGRATED MODEL

Considering an airport baggage transport scenario in a given period, the sets of tractors
and trailers are M and K, respectively. The notations adopted are given in Table 3.1.
According to the above analysis, the typical locations involved in the problem include the
depot of tractors/trailers, BHA, and aircraft stands. Since the tractors and trailers can load
and unload baggage at any aircraft stand and BHA, to make the problem clear, this paper
defines these locations as pickup and delivery nodes of baggage in the model. Thus, the
transport network can be denoted as Gy = (N, Ayr). Here, Ny = Is U Ip U {sy},
which includes baggage loading and unloading nodes of all flights in set F' and the trailer

depot s,.
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Table 3.1: Notations for Chapter 3.

Indicates
f Index for flights.
1,7 Index for baggage loading and unloading nodes, ¢, j € Ny;.
u,v  Index for trailer pickup and delivery nodes, u,v € Nk.
Sy The depot of trailers, s); € Nyy.
Sk The depot of tractors, s € Nk.
fs The baggage loading node of flight f, fs € Ny,.
fE The baggage unloading node of flight f, fr € Ig.
i The pickup request from trailer m at node ¢, p* € N.
ar The delivery request from trailer m at node 7, d" € Ng.
o The [th pickup request of trailer m.
dr The lth delivery request of trailer m.
m,m Indicating trailers, m, m € M.
k Indicating tractors, k € K.
Sets
M Set of trailers.
M* Set of used trailers in the solution of the trailer allocation problem.
K Set of tractors.
F Set of flights.
Is Set of the baggage loading nodes of all flights, g C Ny,.
Ig Set of the baggage unloading nodes of all flights, Ip C N,.
Ny Set of service nodes for trailers and s,,.
Ng  Set of all possible pickup and delivery nodes.
N} Set of pickup and delivery request from set M/ * and sk.
P, Set of pickup requests from trailer m.
D,,  Setof delivery requests from trailer m.
P Set of pickup requests from M*, P = |J P,, C Nj.
meM
D Set of delivery requests from M*, D = |J D,, C Nj..
meM
Parameters
tij Travel time from node ¢ to j.
Lo Travel time from node w to v.
ely Earliest baggage loading start time for flight f.
€ Earliest pickup or delivery start time for node u.
tr Allowed duration time of baggage transport for each flight.
tyr Average time for baggage loading or unloading.
Tu Load of node « (r, denotes the load of depot).
Q Capacity of a tractor.
%4 A sufficiently large positive constant.
Decision Variables

T = 1, if trailer m successively serves at node ¢ and node j,

or 0 otherwise.
yr = 1, if tractor £ travels from node u to node v, or 0 otherwise.
Zu The order of tractors visiting node w.
BL; Baggage loading or unloading start time at node :.
B, Pickup or delivery start time at node w.
R Load of tractor k after serving node u.

u
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There are two key decisions. One is deciding the route of trailers, denoted as z7;. It
equals 1 if trailer m successively serves node j after severing node 7 or 0 otherwise. The
other is deciding the route of tractors, denoted as y*,. The routes of tractors are highly
dependent on the routes of trailers. For example, if 7} = 1, there must be a tractor visiting
node ¢ to pick up trailer m and then delivering it to node j. Thus, the routes of tractors
are defined on the network Gx = (Ng, Ak), where N = {p*,d"|i € Ny,m €
M} U {sk}, where p/* and d" indicate the request to pickup trailer m at node i and
deliver trailer m to node i, respectively. It is noted that Ny contains all possible pickup
and delivery requests from all trailers at all nodes in Nj;. Therefore, y*, = 1 if trailer k
implement request at node u and v successively, or 0 otherwise.

The objective of airport baggage transport vehicle scheduling is to minimize the oper-
ation cost of all the vehicles while ensuring service quality under strict time requirements.

Thus, the model can be developed as follows:

Minimize Y )tk (3.1)
u,vENK ke K

s.t.:
oali=Yal =1VmeM (3.2)
1€ENM i€NN
doak =D b =1VkeK (3.3)
u€Ng u€ENg

Yooar= > anVieNymeM (3.4)
jENjw,j#Z‘ jGNjw,j#i

o= > yh.WeENgkeEK (3.5)
vENK ,v#u vENK vF#u
d af, =1VfeF (3.6)
meM

Y Y ap=1Vie Ny\{su} (3.7)

meM jEN ,j#i

Y ap=0vielp (3.8)

meM jelg ij
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(3.17)
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(3.19)
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By < Byn + W (1 — 2f}), Vi, j € Nyp,i # j,m € M (3.24)
Zu— 2z + Wyt <W —1,Vu € Ng, (3.25)
veE Ng\{sk},u#v,ke K

aft € {0,1},Vi,j € Nyym € M (3.26)

yr €{0,1},2, > 0,Vu,v € Ng, k€ K (3.27)

The objective (3.1) is to minimize the total travel time of all tractors. Constraint (3.2)
requires all trailers to be parked at s, at the very beginning and returned there after serving
all flights. Similarly, constraint (3.3) requires all tractors to start from the depot and return
to sy after completing all pickup and delivery requests. Constraints (3.4) and (3.5) are the
flow balance constraints of trailers and tractors, respectively.

Constraints (3.6)-(3.16) are the baggage transport service demand constraints. In this
work, the concept of virtual flight is introduced, based on which a flight requiring multiple
trailers can be represented as multiple virtual flights requiring only one trailer. In this way,
the modeling process can be greatly simplified. Subsequent discussions are all based on
virtual flights.

Constraints (3.6)-(3.8) ensure that the baggage loading demands must be satisfied,
including: 1) The baggage loading and unloading node of each flight must be visited by
trailers once and only once; 2) If one trailer leaves the baggage loading node of any flight,
it should move to its baggage unloading node directly; 3) If one trailer leaves the baggage
unloading node of any flight, it cannot move to another unloading node directly.

Constraints (3.9)-(3.16) restrict the relationship between the routes of trailers and trac-
tors. That is, the trailers can only be moved by tractors: 1) Each pickup or delivery request
can be implemented at most once; 2) If trailer m is not used by any flight, it will not be
picked up or delivered; 3) If trailer m did not access node ¢, it will not be picked up at

node 7; on the contrary, if trailer m accesses node 7, there must be one and only one tractor
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picking up trailer m at node ¢. The same goes for the trailer delivery requests; 4) If trailer
m successively visits node i and j, i.e. z7; = 1, it will be picked up at node ¢ and delivered
to node j once by the same tractor, respectively, and other trailers will not be picked up
at node ¢ or delivered to node j.

Constraint (3.17) ensures that the capacity of any tractor should not exceed its capacity
after visiting any node. Constraint (3.18) ensures the load consistency of tractors.

Constraints (3.19)-(3.24) are related to the time and order of tractors picking up and
delivering trailers. Constraints (3.19)-(3.22) are the time window requirement for picking
up and delivering trailers, including: 1) Every pickup and delivery request must be imple-
mented after the allowed earliest pickup and delivery time; 2) If trailer m is needed to be
delivered to a baggage unloading node, the arrival time of trailer m must be no later than
eqn +1r; 3) If trailer m is delivered to a node 7 outside the depot sy, trailer m will be occu-
pied for ¢y to load or unload baggage. Thus, the time of trailer m being re-picked up Bym»
must be no earlier than the end time of baggage loading or unloading; 4) All scheduled
trailers must be picked up first and delivered to the depot s,;.

Constraint (3.23) ensures the time consistency of tractors. Constraint (3.24) requires
that if trailer m needs to successively visit node ¢ and node j, the time of delivering trailer
m to node 7 must be no earlier than the time of picking it up at node .

Constraint (3.25) is the Miller-Tucker-Zemlin sub-tour constraint to eliminate sub-

tours in the routes of tractors [92]. Constraints (3.26)-(3.27) define the range of variables.

3.3 TWO-STAGE MODEL

The above integrated scheduling model is a special and complex variant of the classical
Vehicle Routing Problem (VRP), which has already been proven to be NP-hard in the liter-
ature. Since the model involves cooperative routing of tractors and trailers, incorporating

time windows and pickup and delivery requirements, it should also be NP-hard, demon-
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strating greater complexity. Moreover, the scale of network Gx expands exponentially
with the increase of flights and trailers numbers, where | Nx | = 2% (2| F|+ 1) % | M|+ 1.
Numerous constraints are also introduced to delineate the route dependencies between
tractors and trailers, leading to high model complexity. Therefore, to efficiently solve
the problem, this part will re-formulate the integrated scheduling model as a two-stage
scheduling model. The first stage optimizes the routes of trailers. Then, in the second
stage, the routes of tractors will be optimized to fulfill the pickup and delivery requests
from the generated trailer routes, rather than all potential requests Nx. The order of trac-
tors transporting trailers is also determined by trailer routes, simplifying the route depen-

dencies between trailers and tractors.

3.3.1 Trailer allocation model

Based on the integrated scheduling model, the trailer allocation model is defined on the
transport network G, with decision variables 27} and BL;. The mathematical formulation

is presented below.

Minimize )~ > tyall+ Y (BLy, —ely) (3.28)
i,JENN meEM feF,frelp

s.t.:
doali=Y ap =1YmeM (3.29)
i€EN i€ENN

Yoo oap= > allVieNymeM (3.30)
JENNM,j#1 JENNM,jFi
S aj, =1LVfeF (3.31)
meM
Y ap=1Vie Ny\{su} (3.32)

>N ap=o0vielp (3.33)

meM jelp, ij
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BLy, > el;¥fs€ls, f € F (3.34)
BLfE+tM§6lf—|—tF,VfE €[E7f€F (335)

BL;+ti; +ty < BL;+ W (1 —21), (3.36)

Vi,j € Nyyi # j,me M

2™ € {0,1},Vi,j € Nypym € M 3.37
ij

The objective function (3.28) minimizes the total travel time of all trailers and the
flight waiting time. The former objective aims to minimize operating costs, while the
latter seeks to create opportunities for tractors to pick up and deliver multiple trailers in
subsequent stages.

Constraints (3.29)-(3.33) ensure the flow balance and service demand are satisfied,
which are consistent with constraints (3.2), (3.4), (3.6)-(3.8) in the integrated scheduling
model. Constraints (3.34)-(3.36) describe the service time window and time consistency
requirements. Constraint (3.37) defines the value range of 7}, which is consistent with

constraint (3.26).

3.3.2 Tractor routing model

Each movement of trailer m requires one pickup and one delivery operation. Thus, the
demand arising from predetermined trailer routes can be denoted by sequential lists in-
volving paired pickup and delivery requests {p{*, d}", p5*,d5", ..., p% . d' '}, Vm € M*,
where M* is the set of used trailers, n,, is the number of request pairs from trailer m,
p;" and d]" denote the [th pair of pickup and delivery requests on the route of trailer m,
respectively. Fig. 3.2 shows an example of transferring the route of trailer m into pickup
and delivery requests for subsequent tractor routing. As shown in Fig. 3.2, trailer m is
allocated to two flights, so the route of trailer m contains five nodes, including the depot

sy and baggage loading and unloading locations of two flights. Thus, the demand gener-
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ated from trailer m can be denoted by a sequential list containing four pairs of pickup and

delivery requests {p}", dy, g, di, pi, di', pif, di'}.

The route of f - \\z> . - \t
trailer m @ C?) @l@ ég\ @ '@
' ! !

!
}
@7, d7) (@7 d7) @5, d5) (%, di)
- ~N P -

— N —
- —
—
— ~ -

~ vl
The requests from trailer m {7\, dT, p3, d7', p3, d3, pf, di}
Su The trailer depot @ The baggage unloading node
@ The flight number ——  Trailer route
A The baggage loading node ——»  Generation process

Figure 3.2: The pickup and delivery requests generation process of the route of trailer m

Tractors are scheduled to pick up and deliver trailers following the specified sequence
within the required time window. The tractor routing problem is defined on a sub-network
of Gi: G}, = (N, Ay), where N, = PUDU{sk}, P and D are the set of pickup and
delivery request nodes from trailer set M*, respectively. The decision variables involve

y* . 2u» Bu, and R*. The mathematical formulation is presented below.

Minimize Y )tk (3.38)

uweN; keK

s.t.:

) Yk =1vuer (3.39)

ke K veNj; v#u

Yo Y= ) Yk (3.40)

vEN v#EP" vEN A"

Vo' € P,d" € Dyy,me M* ke K
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> wh= Y. w.VuePUDkeK (3.41)

vENF v#u vENF v#u

b= yh=1LVkeK (3.42)
vENE uENL

By +tuw < B+ W (1—yk,) Vu,v € Njc,u# v,k € K (3.43)
RE4r, <RF+W (1—yl,) Yu,ve Ny utv, ke K (3.44)
w < By,Yue PUD (3.45)
Byn < egp + tp,Vd" € Dyyym € M (3.46)
By < Byp V" € Py, di® € Dyyym € M* (3.47)
By +tar < By Vply € Poyd™ € Dy om € M (3.48)
max{0,7,} < RF <min{Q,Q +r,},Vu € Nji.k € K (3.49)
2y — 2o + Wyl <W —1,Vu € Ny, (3.50)

veE N \{sk},u#v,ke K

Yk € {0,1},2, > 0,Yu,v € Ni,k € K (3.51)

The objective function (3.38) minimizes the total travel time of tractors, aligning with the
optimization objective in (3.1).

Constraints (3.39)-(3.41) ensure that each request node in Ny, is visited exactly once,
and the [th pickup and delivery nodes p;" and d;" are visited by the same tractor. Constraint
(3.42) is consistent with constraint (3.3). Consistency of the time and capacity are ensured
by constraints (3.43) and (3.44). Constraints (3.45) and (3.46) restrict the time window
for picking up and delivering trailers. Constraints (3.47) and (3.48) require that the trans-
portation sequence of trailer m adheres to the order {p{", d{*, p5',dy', ..., p;' . dy }, en-
suring that pickups and deliveries for trailer m occur in the prescribed manner. Constraints
(3.49)-(3.51) are consistent with constraints (3.17), (3.25), and (3.27) in the integrated

scheduling model.
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3.4 METHODOLOGY

Although the complexity of the scheduling model has been reduced by dividing it into
two stages, it is still difficult to solve efficiently by exact optimal solution algorithms,
especially when the number of tractors and trailers is large. Besides, in practice, the solu-
tion algorithms should be efficient enough to dynamically cope with the uncertainties of
flight departures and arrivals. Therefore, this part develops an efficient hybrid-intelligence
based solution algorithm that integrates the diversity of ALNS, Simulated Annealing (SA),
and K-means clustering [93]. The overall framework of the algorithm is shown in Fig. 3.3.
It starts by obtaining the information of the flight, tractor, and trailer within a planning
horizon, usually a couple of hours. Then, the routes of trailers and tractors will be gener-
ated sequentially. After that, the final results will be decoded by integrating the routes of
both trailers and tractors.

Specifically, considering the advantages of reducing the chance of being trapped in lo-
cal optima [94], ALNS [95] is adopted as the foundation of the solution algorithm. Mean-
while, to further improve the efficiency and performance of the solution algorithm, several
key methods are developed. Firstly, effective destruction and repair operators were de-
signed based on the specific features of the tractor and trailer scheduling problems, which
could further enhance the search capability. Secondly, since the generation of initial so-
lution for ALNS is vital for the overall performance. However, existing methods, e.g.,
greedy, CW-saving, often take a long time to produce a relatively good initial solution.
Thus, an efficient K-means clustering-based initial solution generation algorithm is de-
veloped to speed up convergence and save search time. Thirdly, it is found that checking
whether the complex constraints in the second stage are satisfied is also time-consuming.
Thus, a topological sort-based solution evaluation algorithm is proposed to accelerate the
process of ALNS. In the following, the detailed design of the hybrid-intelligence based

scheduling algorithm will be further discussed.
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Figure 3.3: The framework of the hybrid intelligence-based two-stage scheduling algo-
rithm.

3.4.1 ALNS-based trailer allocation algorithm

The ALNS-based trailer allocation algorithm is shown in Fig. 3.3, and the detailed pro-
cesses are introduced below.

Initial solution generation. The natural number encoding scheme is adopted for
trailer route encoding, s, is denoted by 0, and each node in V), responds to a natural

number. We adopt the regret insertion heuristic [96] to obtain an initial solution:
+ Step 1: Sort the nodes in V), according to the arrival or departure time of flights.

» Step 2: Try to add node i to the end of each trailer’s route and calculate the in-
creased cost of each route while checking the solution feasibility for each insertion.

Recording all feasible insertions and their increased costs.

 Step 3: If multiple feasible insertions exist, insert node ¢ into the incumbent solution

at the location with the second lowest increased cost. If there is only one feasible
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location, add node 7 there.

» Step 4: Delete ny nodes with the maximum cost while there are still nodes not in-
serted, but no feasible insertion. The cost of demand j between 7 and k is calculated
by: c(i) = c(i,j) + c(j, k) — c(i, k). ng is a random integer with a range 0 to

Mo * |NM‘.

» Step 5: Stop and return the initial solution if all nodes are inserted; otherwise, return

to Step 1.

Destroy and repair operators design. Five destroy operators are designed for the

trailer allocation problem:

* Trailer-Random Removal (TA-RR): It randomly removes 7, nodes from the current

solution, which could help diversify the search space.

* Trailer-Maximum Travel Time Removal (TA-MTTR): It removes n,. nodes with the
maximum travel time from the current solution. The travel time of node i is calcu-
lated by tt(j) = (i, j), where node j is the next node of node ¢ in the corresponding

trailer route.

* Trailer-Maximum Service Time Removal (TA-MSTR): It removes n, baggage un-

loading nodes with the maximum service end time BL ¢, from the current solution.

* Trailer-Maximum Cost Removal (TA-MCR): It removes n, nodes with the maxi-
mum saved objective value from the current solution. It is evaluated by the objective

value z,,(7) after removing node 1.

* Trailer-Maximum Cost Route Removal (TA-MCRR): It removes the trailer route

with the maximum objective value from the current solution.
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Note that the number of demand nodes to be removed n, is counted by: n, = g *
| Ny |+ pe1 * njger, where nyqe, is the current number of iterations, 1o and i are the param-
eters.

The proposed three repair operators are also listed below:

* Trailer-Greedy Insertion (TA-GI): It inserts demand ¢ to the place with the minimum

increased objective value.

* Trailer-Regret Insertion (TA-RGI): It inserts demand : to the place with the second

minimum increased objective value.

* Trailer-Random Insertion (TA-RDI): It inserts demand ¢ to a random feasible place

to diversify the search space.

Acceptance and selection criterion. The SA criterion is adopted here for accepting
solutions, which uses an updated temperature to determine the possibility of accepting
the incumbent solution. SA requires three parameters: the initial temperature 7', the
final temperature 67, and the temperature updating step . The current temperature
is updated by T = max{T — =, 0T+ }. The operator selection criterion used here is the
roulette wheel selection scheme, which iteratively updates operator scores according to

the performance of operators.

3.4.2 ALNS and K-means clustering-based tractor routing algorithm

The tractor routing algorithm also follows the procedure shown in Fig. 3.3. It integrates
ALNS with the K-means clustering-based initial solution generation method and topolog-
ical sort-based solution evaluation method.

Initial solution generation. The framework of the proposed K-means clustering-
based initial solution generation algorithm is shown in Algorithm 1. The basic idea of this

algorithm is to assign the pickup and delivery requests with close distance and similar time
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Algorithm 1 K-means Clustering-based Initial Solution Generation Framework

Input: Routes of all trailers { R™}, service time lists on routes of all trailers { BL™},
tractor set K, used trailer set M*

Output: Initial routes of tractors { R*}

1: Similarity matrix M?® <— None

2. for R, R* € {R™}, BL*, BL® € {BL"™},a # b do

30 M3 < S argmin tt (u,v)

u€Rq, |BLy—BLy|
: end for

4
5: ny < max{1l, 5 * min{| K|, |M*|}}

6: Clusters of trailer routes C' +—K-means based Clustering(M*, ny)
7: Route of each tractor R* < None

8: for cluster c € C' do

9

for R™ € cdo
10: Generating pickup and delivery request sequence RS™ from R™
11: Randomly choose an empty tractor route R*
12: Last inserted request ;" <— None
13: The feasible insertion set of the last inserted request U} <— None
14: Flag < 0
15: for request r™ € RS™ do
16: while Flag =0 do
17: Set U™ as the set of all feasible insertions of r,,,
18: if U* # () then
19: Set u* as the insertion in U* with the minimum cost
20: Insert r™ to R* at the location of u*
21: U* « U* —{u*}
22: rt =™ U = U”
23: Flag < 1
24: else if U;" # () then
25: Remove R* < RF — {r’"}
26: Set u;as the insertion in U;" with the minimum cost
27 Insert 7" to R at u}
28: U < U —{u}}
29: else
30: Insert ™ to any feasible location on the route of other tractors
31: end if
32: end while
33: end for
34:  end for
35: end for

36: return {R*}
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windows to the same tractor can better take advantage of multi-trailer capacity. Therefore,
we developed a K-means-based algorithm to cluster the trailer routes according to the
similarity of distance and service time, and then allocate the requests on the trailer routes
belonging to the same cluster to the same tractor. The metric defined to measure the sim-
ilarity between two trailer routes R, and R, is defined by M2, = S argmin tt (u,v),
u€Ra |BLu—BLy|
where R, 1s assumed to be the shorter route, BL,, and B L, are the service time of node
and v, respectively, and t¢ (u, v) is the distance from node u to v.

To obtain clusters of trailer routes, the similarity matrix M, is fed into the K-means
clustering algorithm to categorize similarity into ny levels, where n; is an adaptable pa-
rameter that varies in accordance with the problem’s scale. Subsequently, routes that share
the highest similarity ranking are aggregated into the same cluster. Moreover, to enhance
tractor utilization, scenarios where a cluster only contains a single trailer route or where the
quantity of clusters exceeds the number of tractors are precluded by amalgamating these
clusters into larger ones. Finally, the requests belonging to the same cluster are inserted
preferentially into the feasible location with the lowest cost of the same tractor route, as
described in Algorithm 1.

Destroy and repair operators design. Three destroy operators are designed as fol-

lows:

« Tractor-Random Removal (TR-RR): It randomly removes 7., pairs of pickup and de-

livery requests from the current solution, which helps to diversify the search space.

+ Tractor-Maximum Travel Time Removal (TR-MTTR): It removes 7., pairs of pickup
and delivery requests with the maximum tractor travel time from the current solu-
tion. The travel time of request pair (u,v) is counted by: tt (u,v) = t(ug,u) +

t(vo, v), while ug and v, are the former request of u and v, respectively.

» Tractor-Maximum Service Time Removal (TR-MSTR): It removes n.. pairs of pickup

and delivery requests with the maximum service end time from the current solution.
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’ i

Here, n, is counted by: n,. = jig* | Nas| + 1 %1, Where n;, is the iteration number.

iter> iter

The repair operators are listed as follows.

* Tractor-Greedy Insertion (TR-GI): It inserts the pair of pickup and delivery request

(u, v) to the place with the minimum increased objective value.

 Tractor-Regret Insertion (TR-RI): It inserts the pair of pickup and delivery request

(u, v) to the place with the second minimum increased objective value.

* Tractor-Local Insertion (TR-LI): It inserts the pair of pickup and delivery request

(u, v) to the place with the minimum increased objective value in one tractor route.

Acceptance and selection criterion. The SA criterion and roulette wheel selection
scheme are also adopted here as the solution acceptance criterion and the operator selection
criterion, respectively.

Topological sort-based solution evaluation. Constraints (3.47) and (3.48) require
that the order of tractors transporting trailers must follow the determined order of trailers
serving flights, as well as the generated pickup and delivery sequences. However, enu-
merating whether these constraints are satisfied by checking B, is time-consuming. Thus,
a topological sort-based solution evaluation method is introduced here to enhance the ef-
ficiency of the scheduling algorithm. We first construct a network G containing both
the routes of tractors and trailers to trace the sequence of tractors transporting trailers. If
the required sequences are broken, there must be at least one directed cycle existing in the
G- Then, topological sort is applied to check the existence of directed cycles. The key

steps of this algorithm are listed here:

« Constructing the directed graph G} = (N}, AL), where A} is composed of the

routes of tractors and specific pickup and delivery sequences from trailers.

« Using the topological ordering to check whether G} contains any directed cycle. If

the directed cycle exists, then this solution is not feasible; otherwise, it is feasible.
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The tractor depot —> Route of tractor 1

. . — Route of tractor 2
@ Pickup or delivery request oute ot tractor

from trailer 1 __, The pickup and delivery
sequence for trailer 1

Pickup or delivery request " The pickup and delivery

from trailer 2 sequence for trailer 2

Figure 3.4: The network that includes the tractor routes and order Constraints from trailers.

A simple example is given in Fig. 3.4(a) about the feasible solutions for tractor rout-
ing, in which the pickup and delivery requests from 2 trailers are served by 2 tractors.
The hard arrows represent the routes of 2 tractors, while the dashed arrows are the spe-
cific pickup and delivery sequences, also representing constraints (3.47) and (3.48). If any
directed cycle exists in G, it must be composed of the hard and dashed arrows, as con-
straints (3.50) have ensured that there is no directed cycle in tractor routes (hard arrows).
Therefore, the directed cycle in G, only exists when the solution breaks the determined

sequences, as shown in Fig. 3.4 (b) and (c¢).

3.5 CASE STUDY

This section presents computational experiments to validate the proposed models and so-

lution algorithm.

3.5.1 Testinstances

We take HKIA as an example to conduct the experiments, which one of the busiest inter-

national airports around the world that connects about 220 destinations around the world
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and is operated by about 120 airlines, with a passenger throughput of 71.5 million passen-
gers [97] and a cargo throughput of 4.8 million tons in 2019!. We constructed the road
network of airport ground vehicles in HKIA, a total of 71 aircraft stands are included here,
mainly located around Terminal 1. The detailed road network construction process will
be introduced in Chapter 6. Without loss of generality, we consider each flight needs 2 or
3 trailers [39]. The allowed duration of baggage transport is set as t{ = 60 minutes, the
average baggage loading or unloading time ¢,; = 10 minutes, the capacity of the tractor
@ = 6, and the speed of the tractor is to be 20 km/h.

With the above analysis, three types of instances are generated to simulate different

scenarios:

* Random instances: It is designed to simulate the off period. The gates of flights are

randomly selected, and flight arrival or departure times are randomly generated.

* Cluster instances: It is designed to simulate the busy period. In each instance, de-
parting and arriving flights have a higher chance of being allocated at adjacent stands

with very close time slots.

* Practical instances: It is designed to simulate real-world scenarios. Each instance
contains real flight information collected from HKIA, and the numbers of tractors

and trailers are set to be 20 and 30, respectively.

3.5.2 Performance evaluation

To evaluate the performance of the proposed two-stage scheduling model and hybrid-
intelligence-based solution algorithm, we compared their results with those obtained by
Gurobi (version 10.0.03, 64 bits) with the integrated scheduling model on generated ran-
dom instances, since Gurobi can only solve the small-scale instances of this complex prob-

lem.

Thttps://www.hongkongairport.com/tc/the-airport/hkia-at-a-glance/fact-figures.page
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Table 3.2: Comparison of Gurobi and the proposed algorithm based on the integrated and
two-stage scheduling on small instances.

I Integrated Model+Gurobi Two-stage Model+Gurobi Integrated Model+Proposed Two-stage Model+Proposed
Feas. LB BestObj #K #M TE;‘“ Feas. LB BestObj #K #M T—(:)“" Cost #K #M TE;‘“ Cost #K #M T(:;“
1 Opt. 4.99 4.99 1 3 205.50 Opt. 499 4.99 1 3 7.87 4.99 1 3 6.29 4.99 1 3 4.70
2 Opt. 7.23 7.23 1 2 2.90 Opt. 7.23 7.23 1 2 0.24 7.23 1 2 1.80 7.23 1 2 1.22
3 Opt. 12.05  12.05 1 2 3.70 Opt. 12.05  12.05 1 2 0.41 1205 1 2 1.77 1205 1 2 1.20
4 Opt.  5.09 5.09 1 2 2.70 Opt.  5.09 5.09 1 2 0.14 5.09 1 2 1.58 5.09 1 2 1.20
5 Opt.  8.04 8.04 1 3 4430 Opt.  8.04 8.04 1 3 8.63 8.04 1 3 6.36 8.04 1 3 4.80
6 Opt.  5.32 532 1 3 52.50 Opt.  5.32 532 1 3 6.11 5.32 1 3 5.92 5.32 1 3 5.47
7 Opt. 594 5.94 1 2 3.50 Opt. 594 5.94 1 2 0.19 5.94 1 2 1.85 5.94 1 2 1.86
8 Opt. 5.24 5.24 1 2 2.90 Opt. 524 5.24 1 2 0.30 5.24 1 2 3.20 5.24 1 2 2.40
9 Opt.  4.19 4.19 1 2 2.70 Opt.  4.19 4.19 1 2 0.28 4.19 1 2 1.50 4.19 1 2 1.53
10 Opt. 21.63  21.63 1 2 849.00 Opt. 21.63  21.63 1 2 6.95 2163 1 3 8.39 2163 1 2 2.99
11 Opt. 1823 1823 1 2 2313.90 Opt. 1823 1823 1 2 13.28 1823 1 3 9.12 1823 1 2 3.61
12 Opt. 10.85 10.85 1 2 63.50 Opt. 1085 10.85 1 2 3.77 1085 1 2 8.65 1085 1 2 2.87
13 Opt. 2656  26.56 1 2 6066.50 Opt. 2656  26.56 1 2 11.54 2886 1 2 5.26 2886 1 2 2.61
14 Opt. 15.65 15.65 1 2 640.90 Opt. 1565 15.65 1 2 11.94 1796 1 2 4.96 1565 1 2 4.35
15 Feas. 743 3388 1 2 7200.00 Opt. 33.88 33.88 1 2 473.27 3999 1 2 6.38 36.18 1 2 4.90
16 Feas. 9.17 14.13 1 2 7200.00 Opt. 1413 1413 1 2 53.70 1432 1 2 4.80 1432 1 2 3.15
17 Opt. 13.05  13.05 1 2 165.10 Opt. 13.05  13.05 1 2 10.72 13.05 1 2 15.42 13.05 1 2 4.17
18 Opt. 9.83 9.83 1 2 51.70 Opt. 9.83 9.83 1 2 3.47 9.83 1 2 1333 9.83 1 2 3.80
19 Opt. 1990  19.90 1 2 470.20 Opt. 1990  19.90 1 2 8.81 19.90 1 2 16.95 2613 1 2 4.82
20 Opt.  8.83 8.83 1 2 66.20 Opt. 8.83 8.83 1 2 1.55 8.83 1 2 14.56 8.83 1 2 3.06
21 Opt. 1822 1822 1 2 52.80 Opt. 1822 1822 1 2 4.67 1822 1 2 8.00 1822 1 2 4.20
22 Opt.  6.78 6.78 1 2 27.90 Opt.  6.78 6.78 1 2 1.58 6.78 1 2 7.88 6.78 1 2 3.14
23 Opt.  6.11 6.11 1 2 1499.60 Opt.  6.11 6.11 1 2 23.60 6.11 1 2 5.77 6.11 1 2 4.57
24 Feas. 0.13 17.02 1 3 14400.00 Opt. 17.02  17.02 1 3 2448.08 17.02 1 3 50.00 17.02 1 3 11.75
25 Feas. 0.07  31.20 1 3 14400.00 Feas. 24.63  31.20 1 3 14400.00 3120 1 3 27.73 33.51 1 3 2348
26 - 0.00 - - - 14400.00 Feas. 5.07 16.96 1 3 14400.00 2791 1 3 56.12 1696 1 3 1575
27 - 0.00 - - - 14400.00 - 0.00 - - - 14400.00 3073 1 3 66.02 3073 1 3 11.62
28 Feas. 5.33 18.87 1 3 14400.00 Opt. 18.87 1887 1 3 5104.68 2987 1 3 13715 3223 1 3 3124
29 Feas. 0.00  20.72 1 3 14400.00 Opt.  20.80  20.80 1 3 10978.05 2612 1 3 2137 2612 1 3 11.20
30 - 2.82 - - - 14400.00 Feas. 13.78 24.12 1 3 14400.00 2448 1 3 62.59 2448 1 3 8.87
31 Feas. 829  14.52 1 3 14400.00 Opt. 1547 1547 1 3 3652.36 1547 1 3 27.11 2620 1 3 11.63
32 Feas. 1422 2223 1 3 14400.00 Opt. 2232 2232 1 3 3857.11 3820 1 3 14.26 3999 1 301947
33 Feas. 2.07 6.24 1 3 14400.00 Opt.  6.24 6.24 1 3 339.33 7.99 1 3 35.31 7.99 1 3 2261
34 Feas. 0.02 15.78 1 3 14400.00 Feas. 13.54 1578 1 3 14400.00 2545 1 3 11081 2545 1 3 1579
35 - 0 - - - 14400.00 Opt. 11.07 11.07 1 3 342.95 11.07 1 3 119.28 11.07 1 3 2876
Avg. 9.63 13.82 1.00 235 5708.23 12.87 1417 1.00 2.41 2839.30 16.52 1.00 2.49 2536 1670 1.00 2.43 825

* Opt. : solving the instance to optimality within time limits;
* Feas.: only obtaining a feasible solution within time limits.

The results are reported in Table 3.2, where column “LB” is the lower bound obtained
by the Gurobi solver, “Cost” is the total cost, “#K” and “#M” are the number of used
tractors and trailers, and “T run” is the running time (in seconds). On the one hand, the
results show that compared with the integrated model, the two-stage scheduling model can
obtain more feasible solutions in a much shorter running time while having little impact
on the solution quality. While both using Gurobi and changing the model to the two-
stage scheduling model, infeasible instances are reduced, and the average running time is
decreased by 2265.92 seconds, which proves the effectiveness of the proposed two-stage
model. On the other hand, our proposed scheduling algorithm can significantly enhance
solving speed with the premise of approaching the optimal solution in most instances,
both on the integrated and two-stage scheduling models. Thus, integrating the two-stage
scheduling model and the proposed scheduling algorithm has a significant advantage on

the balance of solution quality and running time, it can be seen that all instances were
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solved within 32 seconds.

3.5.3 Algorithm performance analysis

In this part, experiments are conducted to evaluate the performance of different parts of
the proposed hybrid-intelligence based scheduling algorithm.

Parameter setting. The parameter setting for the hybrid-intelligence based solution
algorithm is shown in Table 3.3.

Table 3.3: Parameters for ALNS.

Parameter Value
Niter 300
n;’ter 200
Tstart 1.0

0 0.025
y 0.95
1 0.005
15} 0.7

Initial solution generation algorithm comparison. As shown in Table 3.4, the pro-
posed K-means clustering-based initial solution generation algorithm for the tractor rout-
ing problem is compared with two other existing popular algorithms: the Cheapest Fea-
sible Insertion (CFI) algorithm [27] and the Clark Wright (CW) Algorithm [98]. The
experiment is implemented on random instances, and the number of flights ranges from 4
to 16. The average result of 20 cases with the same number of flights is regarded as the
final result. Besides, the running time “T _run” is restricted to 1800 s. Table 3.4 shows
that the running time of the three algorithms all increases with the increase of the instance
scale. The CFI algorithm follows the greedy principle to insert the demand node into the
location with the cheapest cost. Although the CFI algorithm can generate the solution
with the cheapest cost, its running time is much longer than CW and our algorithm. The
CFI algorithm cannot obtain a solution within the required time limit when |F'| > 10.

Compared with CFI, the running time of CW is reduced a lot on small instances, but its
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running time increases rapidly as the scale of the instances increases. Although the cost

obtained by our proposed algorithm has a certain increase compared with CFI, its running

time is much less than that of CFI and CW algorithms.

Table 3.4: The comparison for initial solution generation algorithms.

|F|
4
6
8
10
12
14
16

CFI1 CW Proposed

T run(s) Cost T run(s) Cost T run(s) Cost
178.44  32.13 20.61 64.64 5.08 45.21
609.17 43.83 71.79 80.74 11.19 57.69
1393.88 60.35 212.52  113.66 18.40 93.36
1775.09 64.90 45371  127.01 45.14 98.43
1800.00 - 481.90 118.65 30.36 138.82
1800.00 - 833.93 151.04 64.85 169.84
1800.00 - 1257.62 143.25 119.79  175.37

* -: The initial solution generation is not finished within 1800 s.

Performance of topological sort-based solution evaluation algorithm. We com-

pared the running time of the whole scheduling algorithm with and without the topological

sort-based solution evaluation algorithm. The saved time per iteration when applying our

algorithm is shown in Fig. 3.5. The experiment is also implemented on random instances

with different problem scales. The average result of 20 instances on each problem scale

is regarded as the final result. It could be seen that our algorithm effectively accelerated

the process of entire scheduling algorithm. Besides, as the scale of the problem increases,

our solution evaluation algorithm can effectively save much more running time.

— D W B N
o O O o o O

Saved time per iteration (s)

10 12
IF|

46.79

Figure 3.5: The time cost saved per iteration by the proposed algorithm on different in-

stance scales.
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Performance of destroy and repair operators. The number of times that each op-
erator leads to a new global best or better solution, and the used times of each operator
are presented in Fig. 3.6. The experiments are implemented on both random and cluster
instances, in which the number of flights ranges from 4 to 16. According to the results,
the operator that produced the most New Global Best and Better Solution among all de-
stroy operators in the trailer allocation stage is TA-MCR, which is also the most frequently
used. Besides, TA-RCI performs best among repair operators. As for the subsequent trac-
tor routing stage, TR-WTTR and TR-GI perform best in removal and repair operators,
respectively. The influence of different destroy and repair operators on solution search is

evaluated by the following two metrics:
* New Global Best: The generated candidate solution is a new global best solution.

* Better Solution: The generated candidate solution is better than the incumbent so-

lution.
mm New Global Best ~ mmiBetter Solution ——Total Amount mm New Global Best  mmBetter Solution ——Total Amount
120 103 1600 250 2500
1400
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Figure 3.6: The performance of destroy and repair operators.
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3.5.4 Result comparison on three types of instances

We implemented the simulation experiments based on two other heuristic algorithms for
comparison on the above three types of instances. The “First Arrival First Serve” (FAFS)
scheme simulates the practical scheduling strategy at HKIA. It always assigns the trailer
closest to its baggage loading location. For each trailer requiring pickup, the tractor that
can reach the trailer’s location the fastest is assigned. Another algorithm is the Genetic Al-
gorithm (GA)-based two-stage trailer and tractor scheduling scheme [41], and the number
of iterations follows the parameter setting in our algorithm.

The scheduling results obtained by our algorithm, GA, and FAFS are shown in Fig.
3.7 and Table 3.5. For random and cluster instances, the number of flights ranges from
4 to 8, and the final result is the average of 20 cases. The results show that the solution
of the proposed algorithm could save much more costs and tractor resources than FAFS
and GA on all types of instances, especially in large-scale practical instances. It could be
seen that sometimes it is difficult for GA to obtain feasible solutions, and the solutions

produced by GA require more vehicle resources and operating costs.

= ALNS-#M == GA-#M = AFS-#M == ALNS-#M ==GA-#M m=FAFS-#M
ALNS-#K GA-#K FAFS-#K ALNS-#K GA-#K FAFS-#K
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Figure 3.7: Result Comparison on (a). random and (b). cluster instances.
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Table 3.5: Result comparison on practical instances.

Proposed GA FAFS
Cost #K #M Cost #K #M Cost #K #M
1 17 24751 10 22 270.01 20 26 302.88 20 30
2 21 283.64 11 28 390.73 20 30 398.49 20 30
3 31 38942 18 30 - - - 548.05 20 30
4 24 24392 14 30 39235 20 28 408.55 20 30
5 26 37327 16 30 - - - 556.18 20 30
6
7
8
T

Instances | F|

34 37351 20 30 - - - 548.77 20 30
13 13423 10 25 281.57 20 26 273.14 20 30
24 218.84 12 28 37120 20 28 407.22 20 30

he feasible solution is not obtained within the required iterations.

3.6 CONCLUDING MARKS

In this chapter, a practical tractor and trailer scheduling problem for airport baggage trans-
port service is investigated. Different from previous research on drop-and-pull schedul-
ing, this work allows each tractor to tow more than 3 trailers, which significantly increases
the challenges of scheduling. In the scenario addressed, a tractor can tow multiple trail-
ers, operating under the drop-and-pull mode that allows for the flexible detachment and
reattachment of trailers as required. This operational flexibility introduces complex route
dependencies between tractors and trailers, presenting a significant challenge in vehicle
scheduling.

To tackle these challenges, a two-stage scheduling model is developed to reduce the
complexity of the scheduling model and streamline the problem-solving process. Besides,
a hybrid intelligence-based two-stage scheduling algorithm is introduced. It leverages a
K-means clustering initial solution generation approach and employs a topological sort-
based solution evaluation method to enhance algorithm efficiency. Experimental results
show that the proposed algorithm significantly outperforms other scheduling methods in

enhancing vehicle utilization and reducing operational costs.

45



4 ELECTRICAUTO-DOLLY SCHEDULING FOR SUS-

TAINABLE AIRPORT BAGGAGE TRANSPORT

This chapter aims to propose an efficient electric auto-dolly scheduling method to reduce
the operating cost of airport baggage transport service. Firstly, the practical problem of
adopting a new type of electric auto-dolly in airport baggage transport service is inves-
tigated. Secondly, a simplified electric auto-dolly scheduling model is proposed, which
effectively decreases the model-solving complexity. Then we define the process of solv-
ing this problem as a Markov Decision Process, including designing scenario-specific
state embeddings. Thirdly, a scheduling algorithm based on RL and Transformers variant
is improved, and the problem embedding is designed specifically, which can effectively
represent the problem characteristics, thus improving the algorithm’s convergence speed.
Finally, extensive experimental case studies are conducted to verify the effectiveness of

the proposed method and provide benchmarks for future works.

4.1 PROBLEM DESCRIPTION

Considering the scenario where a fleet of electric auto-dollies is adopted to implement the
airport baggage transport tasks. Generally, there are two main transport tasks. One is for
departing flights, the baggage needs to be collected at the BHA and then delivered to the
aircraft stand. The other is for arriving flights, in which the baggage transport direction
is reversed. The process should be conducted within strict time windows to ensure the

aircraft can take off on time and reduce the time passengers wait for baggage. In a specific

46



planning period, the schedules of electric auto-dollies are decided based on the information
about flights, including 1) the number of dollies required; 2) the origination and destination
location of baggage for each flight, specified by the corresponding aircraft stand and flight
type (departing/arriving), and specified time windows for baggage transport.

Due to the capacity limitation, a dolly can usually only load part of the baggage for
one flight simultaneously. Meanwhile, the electric auto-dollies may need to recharge their
batteries to maintain their operations. A dolly is allowed to recharge multiple times during
its route, and recharge stations are set near the BHA for dollies’ easy access. Besides, the
static charging speed model and the entire charging strategy are adopted in our problem,
which means that the dollies are always fully charged. With the above information, the
schedules of electric auto-dollies in a given period can be made, an example is shown in

the left part of Fig. 4.1.

—)

simplify

€
E[‘j’ recharge station e auto-dolly depot ﬁ electric auto-dolly £ BHA

> departing flight 2 arrriving flight (f) depating flight task (f)arrriving flight task

Figure 4.1: An instance of the electric auto-dolly scheduling problem with 3 dollies, 3
arriving flights, and 3 departing flights

4.2 ELECTRIC AUTO-DOLLY SCHEDULING MODEL

Considering an airport baggage transport scenario in a given time period, A fleet of electric
auto-dollies L starting from the depot s is scheduled to serve flight tasks F'. The notations

adopted are given in Table 4.1.
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Table 4.1: Notations for Chapter 4.

Indicates
a,b Index for flight task nodes, u,v € Ny.
Sk The depot of electric auto-dollies, sp € Ny.
l Indicating electric auto-dollies, m € L.
Sets
L Set of electric auto-dollies.
F Set of flight tasks.
N¢ Set of dummy recharge stations.
N;, Set of all nodes that dollies may access, N, = F'U N¢ U {sg}
Parameters
t9P tDO Travel time from the baggage origination(destination) of task a to the
destination(origination) of task b, note that t95, = tOP = 0,Va € N¢
elg Earliest baggage loading start time for flight task a.
P, Maximum electricity capacity of the electric auto-dolly.
P Lowest electricity threshold of the electric auto-dolly.
r Recharge speed.
Decision Variables
oy = 1, if electric auto-dolly [ travels from node a and node b, or 0 otherwise.
BE, Task start time at node a.
Dal Electricity of electric auto-dolly / when leaving node a.

According to the above analysis, once a dolly is loaded with baggage at its origination,

it has to first reach the baggage destination for unloading before continuing to transport

other baggage. Based on this, we define a flight task a € F' that includes the process of

transporting baggage from the origin to the destination to simplify the modeling process.

Besides, one flight requiring multiple dollies is modeled by multiple virtual flights requir-

ing only one trailer. The set of dummy recharge station N is also introduced to enable

the case that a dolly can be recharged multiple times. Thus, the transport network can

be denoted as G, = (N, Ay), where N, = F'U N¢ U {s)/}. The objective of electric

auto-dolly scheduling is to minimize the operation cost of all dollies while ensuring ser-

vice quality under strict time requirements, and the battery of all dollies is kept within the
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allowable range. Thus, the model can be developed as follows:

s.t.:

Minimize Z Z (2P + 52,

a,beENL IEL

Z VS Z Toe = LVIEL

aGNL aGNL
Z szbl == Z xial,va S NL,l € L
beNp, ,b#a beNy b#a
leL beNg
L bENT,

ely + 2ty +t9P < BE, + 2ty +t9P <el, +tp,Va € F
BE, + 2ty +t9P +t50 — W (1 — 2¢,)) < BE,,

Va € N,/N¢,b € Np,a# bl €L

BE, +tg +tg + (Po —pa)/r =W (1 — 23) < BE,
Va € No,b € Np,a#b,leL

P <py<P,Vae NplelL

pa+ W1 =" 28) > PVl € La € NoU{sp}
beNT,

pa — (t9P 0O L W (1 — 2%,)) > pw,Va,b € Np,a #b,l € L

z, € {0,1} ,Va,b e Np,l € L

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

4.11)

(4.12)

Constraints (4.2) ensure the routes of all dollies must start and end at the depot sp. Con-

straints (4.3)-(4.4) ensure the flow balance and baggage transport demand are satisfied.

Constraints (4.5) limit that each dummy recharge station can be accessed at most once.

Constraints (4.6)-(4.8) describe the service time window and time consistency require-

ments. Itis noted that the recharging time for a dolly with left electricity pq; is (P, —par) /7
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Constraints (4.9)-(4.11) describe the electricity range and consistency requirements. An
allowed electricity threshold is set to extend the battery life of dollies. In particular, con-
straints (4.10) ensure that dollies are fully recharged when leaving the recharge station.

Constraint (4.12) defines the value range of z¢,,.

4.3 MARKOY DECISION PROCESS

The process of solving the electric auto-dolly scheduling problem by the reinforcement
learning algorithm can be defined as a Markov Decision Process M = (S, A, T, R, ).
The definitions of state S, action A, state transaction rule 7, and reward function R are
introduced as follows.

State S. The state at time ¢ for the electric auto-dolly scheduling problem is defined
to include the following contents: 1) features of the current solution ¢;, 2) the record of

previous actions, and 3) the minimum objective function value so far, i.e.,

St = {{n<a)}a€\NL\7 {pt(a)}a€|NL|>H(t> K)v f(ét*)} (4.13)

where 0, can be divided into two parts: n(a) contains features of node a and p;(a) indicates
the positional features of node a in d; (i.e., node positional feature); The most recent K
previous actions at time ¢ is restored in (¢, K); f(-) is the objective function to minimize,
and ;] = arg min(;t/e{(;o,m,gt} f(6,). Specifically, n(a) arranges depending on the node
type a as shown in Table 4.2. Among them, the 2-dim coordinates, power restored at the
recharge station, time windows, and task duration are fixed embedding decided by the
specific problem instance settings. Power left” and “’Service time left” are two variables
that change as the solution J; is updated, and they are used to describe the electric power
left at node a and the time left after completing the flight task at node a, respectively.
Action A. At each time step, the RL policy is required to remove one node from the

current solution, and then reinsert it back to a specific place. So, action at time ¢ is defined
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as a; = {a, b}, which means the agent removes node a and then reinserts it to the location
after node 0.

State transaction rule 7. A deterministic transition rule is adopted here to perform
a;, which means that it always accepts the current action to generate a new solution, it is
noted that infeasible actions will be masked, regardless of their impact on the objective
value.

Reward R. For each time index ¢, the reward mechanism assigns a value r; calculated

by subtracting the minimum of f(d;,1) and f(0*) from f(6*), i.e.:

re = f(6%) — min [f(641), f(07)] (4.14)

In this way, the total reward throughout the entire training or inference process equates to

the cumulative reduction in cost compared to the objective value of the initial solutions.

Table 4.2: The embedding contents for different types of nodes.

Node type Embedding contents
Coordinates

Dummy depot Power left
Coordinates

Dummy recharge station
y g Power stored

Coordinates of start
Coordinates of end
Time window

Task duration
Power left

Service time left

Flight task

44 METHODOLOGY

This section presents the details of our Deep Reinforcement Learning algorithm (DRL),

which is an improvement on the Neural Neighborhood Search algorithm (N2S) proposed
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in [84]. The concrete implementation process of DRL on the electric auto-dolly schedul-
ing problem is presented in Figure 4.2, which illustrates an example with 3 dollies, 3
recharge stations, and 6 flights. Our DRL policy follows a heuristic improvement pol-
icy to learn to improve the solution quality. First, the DRL encoder integrates the node
features and positional features to embed an electric auto-dolly scheduling solution, in
which the self-attention correlations of node and positional features are computed indi-
vidually, respectively. Following the network in N2S, a Synthesis Attention (Synth-Att)
mechanism is adopted to generate enhanced problem embeddings by synthesizing the two
attention scores. After that, taking the encoder output as input, two DRL decoders are
proposed to generate the node removal and reinsertion actions, respectively. Besides, the
RL training algorithm also follows the settings in [84], which is the proximal policy opti-
mization that integrates n-step return estimation and the curriculum learning strategy. The

main components of DRL are introduced in the following sections.
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Figure 4.2: The inference framework of the RL-based electric auto-dolly scheduling al-
gorithm.
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4.4.1 Synth-Att mechanism enhanced encoder

We follow the network structures of the encoder to generate the problem embeddings for
our electric auto-dolly scheduling problem.

Taking the state s, = {{n(a)}ecn, |, {Pt(a)}acin,|, H(t, K)} as input, the encoder
is designed to learn problem embeddings and current solution representations from input
{n(a)}aeein,| and {pi(a)}acin, |- Specifically, the inputs are first projected into two kinds
of embeddings, i.e., node feature embeddings (NFEs) {ha}‘a]i%‘ and positional feature em-
beddings (PFEs) { ga}‘aji%‘. For each node a, NFE h,, with dimension d;, = 128 is set to be
the linear projection of its node features n(a). PFE g, with dimension d, = 128 is gener-
ated by the Cyclic Positional Encoding (CPE) scheme [84], which is an improvement on
the positional encoding scheme in Transformers and can encode cyclic sequences more
accurately. Besides, NFEs are set to serve as the primary set of embeddings, while PFEs
function as auxiliary ones. Thus the multi-head auxiliary attention scores learned from

PFEs can be obtained as follows,

1
aux — H,M/ Qaux H/Kaux T 415
A bm \/@(g m )(gb m ) ( )

where W& € Rdoxda |1/ Kax ¢ Rs*dr gre network parameters. m is the number of
heads in the multi-head attention mechanism. Here m is set to 4, d, dj, and d, are all set
to 32.

According to [72], directly integrating the two sets of embeddings can introduce unde-
sired noise to self-attention. To solve this problem, a straightforward and versatile Synth-
Att mechanism is introduced to the DRL, which functions by incorporating a MultiLayer
Perceptron (MLP) (2m * 2m % m). The original self-attention scores from NFEs and the
above auxiliary attention scores from PFEs are combined and fed into an element-wise
MLP, allowing Synth-Att to synthesize them into comprehensive ones. The details are

presented below,
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self
a,b,m

First, the self-attention scores « for NFEs is counted according to the parameters

W& € R¥>*da and WE € R > for m heads as follows,

1
et — ——_ (h, W) (hyWE)T 4.16
Aabm \/d_k:( m)( b m) ( )

aux self

Thereafter, the attention scores o®* and o**" are together fed into an element-wise three-

layer MLP for computing the synthesized attention scores as follows,

Synth Synth self self aux aux
Wyt s Qg ym = MLP(oza’bJ, ooy Qg Qb 15 o5 amb’m) (4.17)

Then, a Softmax layer is adopted to further normalize the obtained synthesized attention
scores for each head m, and the output is &, ,,. Finally, the outputs of the Synth-Att

mechanism are given by Formula (4.19) with parameter WO ¢ R xdn(do=dn/m)

Ny,
headym = Y _ G pm(eW") (4.18)
b=1
hy = Concat|head, 1, ..., heada,m]Wo (4.19)

To enhance the problem representation ability of the DRL, L encoders are stacked to
construct the final DRL encoder (L = 3). It is noted that the proposed encoder retains the
structural integrity of the Transformers encoder, while replacing the original multi-head

self-attention mechanism with the multi-head Synth-Att module.

4.4.2 DRL Decoder

The decoder designed in N2S is specifically designed for pickup and delivery problems.
Here we make further improvements to extend it to VRP applications. The DRL decoder is
designed to output two actions: node removal action and node reinsertion action. Firstly,

the max-pooling layer is adopted to transfer the global representation of all embeddings

54



into each individual one for each node a as follows,

|NL|

ha = ha W + max[{h, },_; W (4.20)

Then the enhanced embedding A, is input into the node removal decoder to choose the
node to remove. After that, the node insert decoder integrates h, and the node removal
decoder output to choose the node reinsertion location. The detailed structure of the node

removal decoder and the node reinsertion decoder is introduced as follows:

|V

u—y and the action

Node removal decoder. Given the enhanced embeddings {,}
history H (¢, K), the node removal decoder outputs a probability distribution over | Ny |
nodes to decide the removal node. Specifically, it first computes an evaluation score )\,

for each a € N, to measure the cross attentions between node a and its neighbor nodes as

follows:

Ao = (hprea(@y W) (ha W)™ + (0 W) (hsuce(@y W)™ (4.21)

- (ilpred(a)W)?)(ilsucc(a)w){()T (422)

where pred(a) and succ(a) are defined as the former and the successor nodes of a, re-
spectively, and W& € R#xd WK ¢ R#¥dn )\, | to \,,, are obtained by using the
multi-head technique, which are then fed into a three-layer MLP), (m + 4,32,32, 1) for

each node as follows,
Aa = MLP)\()\a,la ey )\a,ma C(@), ]]-last(l):aa :H-last(2):a7 ]]-last(3):a) (423)

where c(a) represents the frequency of node a being selected as a removal node in the
last K steps, and 1jaq(1)— €quals to 1 if node a was selected in the last step at time ¢; 0
otherwise. The final probability distribution for choosing the removal node is obtained by

the activation of a Tanh function and the normalization by a Softmax function.
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Node reinsertion decoder. Input a designated removal node b and the current state
st, the reinsertion decoder is designed to generate the probability distributions for reposi-
tioning the removed node. Specifically, it computes insertion likelihoods for placing node
a after each candidate position in the existing solution sequence. We designed two eval-
uation metrics pP[a, b] and p*[a, b] to measure the likelihoods of node a accepting node b

as its new predecessor and successor nodes, respectively,

pPla,b] = (hy W) (hy W ie)T (4.24)

pla,b] = (hg W) (hy W )" (4.25)

where W27 W e Rinxdn, wee, Wi e R Taking the scores as input, the de-
coder predicts the distribution of reinserting node a after node b using MLP,, (2m * 31z *

32x1),
fi, = MLP,, (1] [succ(b), ], ..., ub [suce(b), al, p3[b, al, ..., s, [b, a]) (4.26)

where pred(-) and succ(-) is considered in the new solution without the node 7. Similar
to the node removal decoder, a Tanh function is also applied for activation, and infeasible
nodes are masked before implementing the normalization by Softmax. Finally, a node b is
sampled from all nodes in /V;, according to the obtained distribution, which indicates that

the location of reinserting the node « is right behind node b.

4.4.3 RL training algorithm

We follow the Proximal Policy Optimization [99] with n-step return estimation and a Cur-
riculum Learning strategy (n-step PPO with CL strategy) used in [84] for the DRL policy
training. PPO is a type of policy gradient reinforcement learning algorithm that strikes

a balance between simplicity and performance. It is widely used due to its simplicity
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and strong performance across various tasks. Besides, a critic network is introduced here
to enable the implementation of the actor-critic variant of PPO, which can facilitate the
convergence of the PPO policy. Besides, the CL strategy is used here to avoid the agent
lacking the opportunity to explore high-quality solutions during training by gradually im-
proving the quality of initial states. Moreover, the n-step return estimation strategy extends
the standard PPO by using n-step returns for updating the policy. Thus, the advantage es-
timates are calculated using returns over n steps rather than just single-step transitions,

which can facilitate the model convergence and decrease the variance.

4.5 CASE STUDY

4.5.1 Experiment settings

The server infrastructure for this study comprised 4 RTX 4090 Ti GPU accelerators paired
with an Intel Xeon Platinum 8370C multi-core CPU (2.80 GHz base frequency), ensuring
parallel processing capabilities. Instances with three sizes, 20, 50,and 100 are designed,
where the nodes of each instance are uniformly located in the unit square [0, 1]x[0, 1].
Besides, the initial solution J, is generated randomly. Since the case of the depot and
recharge stations being visited multiple times by multiple auto-dollies may exist, the solu-
tion length for each instance might be longer than | F'| + 1. There is also a possibility that
the length of multiple solutions varies on the same instance, this is because the number
of sub-routes and vehicles may be different in different solutions. To solve this problem,
multiple dummy depots and recharge stations are added to the end of the initial solutions.
Each dummy depot can be regarded as one available dolly, and the number of dummy
recharge stations indicates the allowed times of recharging for all dollies. In our experi-
ments, we set 10, 20, and 30 dummy depots, and 5, 10, and 20 dummy recharge stations
for three problem sizes, respectively. The time windows of flights randomly generated

from a planning horizon [0, 480]min, the auto-dolly speed is set to 20 km/h, the auto-
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dolly endurance is set to F,,, = 120 min, the time for loading or unloading baggage is set
to t); = 10min, and the recharge speed is set to » = 4. To facilitate the model training,
the planning horizon is scaled into [0, 1]min. Follow this, P, is scaled to 120/480min, ¢,

is set to 10/480min.

4.5.2 Benchmark methods

Three algorithms are used in this experiment to compare and verify the proposed DRL

method’s performance as follows.

1. Gurobi: Gurobi is a state-of-the-art optimization solver designed to solve a wide
range of mathematical programming problems. It functions here by providing a
reference to the solution upper bound and giving a rough estimate of the problem

complexity.

2. FAFS: First Arrive First Service algorithm (FAFS) assigns dollies to flight tasks
in the order in which the service time window begins and dispatches the dolly that
reaches the task node earliest. It is widely adopted with practical reference signifi-

cance [74].

3. ALNS: Adaptive large neighborhood search integrates the advantages of multiple

human-designed local operators, which works well in vehicle routing problems [39].

It is noted that all iterative algorithms share the same reference time (number of inference

interactions) Tiys, as our proposed DRL method.

4.5.3 Comparison experiments

The comparison experiments are developed on the instances of size 20, 50, and 100 with
the uniform distribution. For ALNS and our DRL algorithm, we run each instance 20 times

with randomly generated seeds, and the average result is taken for comparison as shown
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in Table 4.3. Besides, ”ObjV” indicates the objective value of the obtained solution, and
”T_run” indicates the running time of the algorithm.

It can be seen that the solver Gurobi can only get the optimal solution when the problem
size is smaller than 50. Besides, ALNS can reach the near-optimal solution for small and
medium-sized problems, but requires a long solving time. Compared to them, our DRL
algorithm can reach a relatively satisfactory performance with a short running time, and

the change in problem size has little effect on the running time.

Table 4.3: Results comparison on instances of small, medium, and large scales.

IF| Gurobi ALNS FAFS Ours

ObjV T run (s) ObjV T run(s) ObjV T run(s) ObjV T run(s)
20 0.008709°  0.538 0.009951  40.659 0.012760  0.073 0.010993  0.118
50 0.020538"  33.071 0.023371  263.415 0.031472  0.306 0.030841 0.219
100 - 7200 0.051855 1145.631 0.061057  0.877 0.059311 0.351

*: The optimal solution is obtained.
-: The feasible solution is not obtained within the required time.

4.5.4 Generalization experiments

The generalization ability of our DRL algorithm is verified on instances with different
problem sizes and distributions. For comparison, the node coordinates of test instances of
size 20, 50, and 100 are generated on the unit square [0, 1]x[0, 1] with the normal, cluster,
and center distribution, respectively. The example instances are shown in Fig. 4.3. In this
experiment, the models are trained with instances in the uniform distribution with sizes of
20 and 50, respectively. The generalization performance and gaps to optima on instances
of small and middle sizes with different distributions are shown in Table 4.4 and Table
4.5, respectively.

It can be seen that our DRL algorithm also shows good performance when being tested
with unknown instances in the cluster and center distribution. Specifically, for the in-
stances in three distributions with sizes of 20 and 50, the difference between the results

of our algorithm and the optimal solutions obtained by Gurobi is in the range of [21%,
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(a) size 20, uniform

(b) size 20, cluster

(c) size 20, center

(d) size 50, uniform

(e) size 50, cluster

(f) size 50, center

(g) size 100, uniform

(h) size 100, cluster

(1) size 100, center

Figure 4.3: Example instances of size 20, 50, and 100 with the uniform, cluster, and center

distribution.

Table 4.4: Generalization performance on instances with different instance scales and

distributions.
Train Uniform Cluster Center
20 50 100 20 50 100 20 50 100
Uniform 20 0.010993 0.030846 0.059313 0.005818 0.016527 0.032014 0.003668 0.009902 0.019938
50 0.012604 0.030841 0.059311 0.005848 0.016525 0.032022

0.003666 0.009900 0.019945
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Table 4.5: Gaps to Optima on instances of small and middle size with different distribu-
tions.

Train Uniform Cluster Center
20 50 20 50 20 50
. 20 26.23% 50.19% 21.24% 49.81% 24.57% 50.37%
Uniform

50 26.35% 50.17% 21.88% 49.79% 24.52% 50.33%

27%] and [49%, 51%], respectively. Besides, the models trained with instances of prob-
lem sizes 20 and 50 have little difference in generalization performance, which indicates

that the reward space is effectively sampled.

4.6 CONCLUDING REMARKS

In this chapter, an electric auto-dolly scheduling problem for sustainable airport baggage
transport service is investigated. In practice, one flight usually requires multiple dollies,
and such divisible demands setting will greatly increase the complexity of dolly schedul-
ing. It is even more complex as dollies are required to complete baggage transport within
the required time window while recharging at the right time without compromising oper-
ational efficiency.

To tackle these challenges, a simplified electric auto-dolly scheduling model is pro-
posed, which effectively decreases the model-solving complexity. Then, a scheduling
algorithm that integrates deep reinforcement learning and the Transformers variant is de-
veloped. To effectively represent the problem characteristics and improve the algorithm
convergence speed, the service time of flight tasks and the auto-dolly battery status are
specifically embedded into the state space. Besides, a pair of destroy and reinsertion de-
coders are designed based on the model of Transformers to facilitate the solution quality
improvement under the improvement heuristic policy. Finally, extensive experimental
case studies are conducted to verify the effectiveness and generalization performance of

the proposed method and provide benchmarks for future works.
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S EMPIRICAL ANALYSIS

This chapter introduces the empirical analysis of baggage transport service based on the
scenario of the Hong Kong International Airport. First, we built an integrated airport
ground vehicle simulation platform based on the collected flight data and the ground ve-
hicle road network obtained by SUMO of the Hong Kong International Airport. Secondly,
to evaluate the operating costs and carbon emissions of baggage transport service under
tractor-trailer and electric auto-dolly modes, the energy consumption models of fuel trac-
tors and electric auto-dollies are formulated. Finally, based on the simulation platform
and the above model, the practical application of baggage transport service is analyzed,
including the comparison between the two operating modes in operating costs and carbon
emissions, and the prediction of the sustainable development of baggage transport service

in the future.

5.1 SIMULATION PLATFORM CONSTRUCTION

The construction of the simulation platform mainly includes the process of flight data
collection and road network construction. The detailed implementation is described as

follows.

5.1.1 Flight data collection

The flight data of HKIA is obtained from the HKIA official website via Python’s open

source library request [100]. Fig. 5.1 shows some samples of flight information provided
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by the HKIA official website. A piece of departing flight information includes the airline,
flight number, scheduled departure time, actual arrival time, boarding gate, etc. A piece of
arriving flight information includes the airline, flight number, scheduled departure time,
actual arrival time, aircraft parking stand, etc. We mainly collected flight data for eight

months from March to May 2023, September to November 2023, and June to July 2024.

TIME AIRLINE FLIGHT DESTINATION TERMINAL CHECKIN LE:::SFER GATE STATUS

00:05 \.  Cathay Pacific CX 383 Zurich T Q8/c QOw Q3 Dep 00:10

43swiss WSS International LX 9515
Air Lines

00:05 \.  Cathay Pacific CX 880 Los Angeles T QB/C Owi Q3 Dep 00:07
~ American Airlines AA 8933
LAl Malaysia Airlines MH 9190
"F MIAT Mongolian OM 5880
Airlines
(a) Departing flights
TIME AIRLINE FLIGHT ORIGIN PARKING STAND HALL BELT STATUS
00:25 \  Cathay Pacific CX 636 Singapore S31 QB Q13 At gate 00:05
s FINNAIR AY 5852
& MIAT Mongolian OM 5614
Airlines
FIJI AIRWAYS FJ 5463
00:25 B JEWUAR 7 2107 Seoul/ICN N6 Qe Q1 At gate 00:02
(b) Arriving flights

Figure 5.1: Flight information samples of HKIA.

5.1.2 Road network construction

The construction of the map for the simulation platform involves three steps. Firstly, the
airport ground area to be modeled is determined on the satellite map of HKIA, as shown
in Fig. 5.2 (a). Here we mainly model the area around Terminal 1, including 61 aircraft
stands. This is because the aircraft stands near Terminal 1 are typically near aircraft stands
(connected to the corridor bridge), so the stand number corresponds to the gate number

one by one, which can facilitate us to query the aircraft stand according to the boarding
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gate for departing flight as Table 5.1. Next, the road information file for airport ground
service vehicles in the selected area is downloaded from the OpenStreetMap (OSM), as
shown in Fig. 5.2 (b). OSM is a collaborative project to create a free, editable map of
the world, which provides a wealth of geographic data. Finally, the above file is imported
into the SUMO. SUMO is an open-source, highly portable, microscopic, and continuous
road traffic simulation package designed to handle large road networks. We further edit
the road network, marking the locations of the parking stands and BHA to generate the
final road network as shown in Fig. 5.2 (¢).

Furthermore, we extract the length, start node, and end node of each road in this net-
work to generate the adjacency matrix of the road network with stand and BHA as nodes
using the Dijkstra algorithm. This allows us to quickly get the distance between any two
stands, or between one stand and the BHA, facilitating the operation of vehicle scheduling
algorithms.

By constructing these detailed scenario maps using satellite imagery and road network
data, the simulation platform can accurately simulate the HKIA scenario, enabling the

simulation and evaluation of various airport service vehicle scheduling optimization.

Table 5.1: The correspondence between boarding gates and aircraft stands.

Boarding Gate 1 2 3 4 5 6 7 8 9 10 11 12
Alrcraft Stand  S1 S2 S3  S4 N5 N6 N7 N8 N9 NIO S11 Ni12

Boarding Gate 13 14 15 16 17 18 19 20 21 23 24 25
Alrcraft Stand R13 R14 RI15 R16 R17 RI18 RI19 R20 R21 S23 N24 S25

Boarding Gate 26 27 28 29 30 31 32 33 34 35 36 40
Alrcraft Stand N26 S27  N28 S29 N30 S31 N32 S33 N34 S35 N36 W40

Boarding Gate 41 42 43 44 45 46 47 48 49 50 60 61
Alrcraft Stand S41 W42 S43 W44 S45 W46 S47 W48 S49 W50 N60 W6l
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(c) Road network in SUMO

Figure 5.2: HKIA ground map construction process.
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5.2 SUSTAINABLE DEVELOPMENT ANALYSIS OF AIRPORT

BAGGAGE TRANSPORT SERVICE

5.2.1 Vehicle energy consumption and carbon emission models

This section introduces the energy consumption and carbon emission models for airport
baggage transport vehicles. Because trailers are non-motorized, we focus on the tradi-
tional fuel tractors and electric auto-dollies here. The notations used in this chapter are
introduced in Table 5.2, and the parameter value settings follow the settings in [28] and
[101]. Moreover, the emission factor of diesel oil £ is set referring to the report of the
Intergovernmental Panel on Climate Change. The carbon emissions of the power grid can
be regarded as the carbon emissions of electric vehicles since electric vehicles produce
little carbon emissions during driving. Thus k. is set to 0.6 kg/kW h, which is the carbon
emission factor of China Southern Power Grid in 2023.

Table 5.2: Notations for Chapter 5.

Parameters Meaning Value

P Air density 1.2041 kg/m?
Ay The frontal area of the vehicle 3.912 m?

Ch Coefficient of Aerodynamic drag 0.6

fr Rolling resistance constant 0.03

g Gravity acceleration 9.81 m/s*

n Diesel engine efficiency 0.4

Nt Travel train efficiency 0.9

Md Driveline efficiency 92%

Nim Electric motor efficiency 91%

13 Fuel-to-air mass ratio 1

K Heating value of typical diesel fuel 44k /g

v Unit conversion factor 737 L/g

fe Engine friction factor 02kJ/r/L
N Engine speed 33r/s

D Engine displacement 5L

ky Emission factor of diesel oil 0.074 kg/MJ
ke Emission factor of electricity power grid 0.6 kg/kWh
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Mechanical energy calculation. First of all, according to basic physics, the required
tractive effort for a vehicle driving is determined by three major resistances described as

follows [102]:
F=mpa+F,+F,+ F, (5.1)

where F'is the tractive effort; my, is vehicle mass; a is vehicle acceleration, and F,,, F,;, and
F, are aerodynamic, rolling, and grade resistances, respectively, which can be calculated

by:

;

F, =kv* = gCDAfUQ

Frl = frlmkg (52)

Fy = mygsinf
\

Combining Formulas. (5.1), (5.2), then the required power p can be expressed as:
F =mypa + gCDAfv2 + frumig + mygsind (5.3)

The above equation can be applied to both fuel and electric vehicles. Assuming that
airport ground roads are flat and tractors are traveling at a constant speed, thus § = 0,a =
0 m/s® Thus, the required power p (in W) for a vehicle traveling at v to generate the

above tractive force can be estimated using the following formula:
p= F.uv= (gCDAfU2 + lemkg>’U (54)

Fuel and electricity consumption model. The fuel consumption f,, (in L) of a fuel
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vehicle traveling from node u to v can be obtained by:

T kU s

Given the required mechanical power, the energy consumption g,, of an electric ve-

hicle traveling from node « to v can be defined by:

o ptuv
NdTm

(5.6)

Guv

where ., (in s) is the time required for traveling from node « to v.
Carbon emission model. The mass of CO, emission produced by a fuel and electric

vehicle traveling from node u to v can be obtained by Formula (5.7) and (5.8), respectively.

emiv = kf : fuv (57)

ems, = ke Guy (5.8)

5.2.2 Fleet settings

To analyze the operating costs, energy consumption, and carbon emission when operating
airport baggage transport service under two different modes practically, we investigated
some energy consumption-related parameters of fuel tractors and electric auto-dollies, as
shown in Table 5.3, referring to [28]. It is noted that the energy capacity and replenish-
ment process of fuel tractors can be ignored because of the high range and short refueling
time of fuel vehicles [28]. Besides, the unit electricity energy cost is set according to the
announcement of CLP Power Limited in November 2023; the diesel oil price refers to the
announcement of the Hong Kong Consumer Council in August 2024. The operating costs
of the tractor-trailer mode and the electric auto-dolly mode are defined by the fuel and

electricity costs, respectively, which are calculated by multiplying the unit energy price
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by the energy consumption.

Along with the settings in Chapter 3, the number of trailers/dollies required by each
flight is randomly set to 2 or 3. The allowed duration of baggage transport is set as tz = 60
minutes, the average baggage loading or unloading time ¢); = 10 minutes, the capacity
of the tractor () = 6, and the speed of the tractor/dolly to be 20 km/h. The number of

tractors, trailers, and dollies is set to 30, 50, and 50, respectively.

Table 5.3: Parameters of fuel tractors and electric auto-dollies.

Parameters Fuel tractor Electric auto-dolly
Energy capacity - 100 kWh
Available energy capacity - 100 kWh*70%
Vehicle mass 4000kg 1200kg

Energy dissipation rate - 4

Average Speed 20 km/h 20 km/h

Unit Energy Price 22.45 HKD/L 1.429 HKD/kWh
Energy replenishment rate - 90 kW

5.2.3 Comparison of two airport baggage transport service modes

At present, the mainstream airport baggage transport service is generally operated by trac-
tors and trailers, and with the electrification and intelligence of airports, the future bag-
gage transport service may be operated by electric auto-dollies. To analyze the differences
between the two modes in terms of operating costs, sustainable development, etc., the bag-
gage transport vehicle scheduling experiments are conducted on practical cases in various
periods.

We first counted the average number of flights per day in a week and the average
number of flights per two hours in a day, the statistical results are shown in Fig. 5.3. It can
be seen that the days in a week with the fewest and most flights are Monday and Sunday,
respectively. This is also in line with practical experience, as passengers tend to travel

more on weekends. Besides, there are significant peaks and lows of flight numbers at
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different times in a day, which can be defined as 10:00-20:00 and 0:00-10:00, respectively.
Based on the above statistical results, we chose all Mondays and Sundays in March 2023
for the experiment. The reason for choosing March 2023 is that there are no additional
public holidays in 2023 March in Hong Kong, so the statistical regularity of flight data

will not be affected by holidays.
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Figure 5.3: The average number of flight statistics.

The performance of the tractor-trailer mode and the electric auto-dolly mode is com-
pared here. Table 5.4 displays the comparison results on the cases of Monday and Sunday,

while Table 5.5 shows the comparison results on the cases of peak and low periods. The
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experimental results are evaluated based on the travel time, number, operating costs, and
carbon emission mass of all used vehicles. Firstly, the baggage transport service under
the electric auto-dolly operation mode consumes less operating costs and generates less
carbon emissions in the case of different time periods. The 30 tractors consume 6300-
7100 HKD per day and emit 700-780 kg of CO,; the average daily cost of 50 dollies is
210-220 HKD and the carbon emissions are 80-100 kg. Therefore, the daily operating
costs and carbon emissions of the electric auto-dolly mode are about 3% and 12% of the
tractor-trailer mode, respectively. The main energy consumption during the day is obvi-
ously during the peak hours. Fig. 5.4 shows that under both operation modes, the energy

consumption during the 10-hour peak period reaches are at least 60%.

Table 5.4: The comparison of two modes on the cases of Monday and Sunday.

Tractor-Trailer Mode Electric Auto-dolly Mode
Travel Trailer  Tractor Cost CO, Travel Dolly Cost CO,
Time (h) Number Number (HKD) (kg) Time (h) Number (HKD) (kg)

23/3/6 45.78 35 17 6406 702 62.47 50 211 89
23/3/13 45.94 36 18 6430 705 62.36 50 210 89

Mon. 23/3/20  42.80 35 17 5989 656 60.12 50 203 85
23/3/27 46.72 36 19 6538 716 64.42 50 217 91

Avg. 4531 35.5 17.75 6341 695 62.35 50 210 88

23/3/5 48.21 38 20 6747 739 64.86 50 219 92
23/3/12 4591 39 18 6425 704 63.42 50 214 90

Sun. 23/3/19 47.82 40 19 6692 733 65.54 50 221 93
23/3/26 50.68 38 19 7093 777 65.62 50 221 93

Avg. 48.16 38.75 19 6739 739 64.86 50 219 92

mPeak wLow = Othertime m Peak = Low = Other time
9%

17.07%

(a) Tractor-trailer mode (b) Electric auto-dolly mode

Figure 5.4: The percentage of energy consumed at peak, low, and other times of the day
in two operation modes.
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Table 5.5: The comparison of two modes on the cases of peak and low in one day.

Tractor-Trailer Mode Electric Auto-dolly Mode
Travel Trailer  Tractor Cost CO, Travel Dolly Cost CO,
Time (h) Number Number (HKD) (kg) Time (h) Number (HKD) (kg)

23/3/6 28.88 49 25 4042 443 34.24 50 116 49

Monday 23/3/13 2733 47 26 3825 419 34.38 50 116 49
23/3/20  28.21 48 24 3948 433 35.03 50 118 50

23/3/27  29.60 50 29 4142 454 37.55 50 127 53

Peak 23/3/5 28.25 47 27 3953 433 34.57 50 117 49
Sunday 23/3/12 2833 50 27 3964 434 35.75 50 121 51
23/3/19  28.34 50 26 3966 435 36.50 50 123 52

23/3/26  32.05 48 27 4485 491 38.70 50 131 55

Avg. 28.87 48.63 26.38 4041 443 35.84 50 121 51

23/3/6 8.99 21 9 1258 138 17.11 50 58 24

Monday 23/3/13  11.11 25 11 1555 170 17.84 50 60 25
23/3/20 8.35 20 9 1169 128 17.01 50 57 24

23/3/27 9.16 18 8 1282 141 10.93 50 37 16

Low 23/3/5 11.01 27 12 1540 169 19.00 50 64 27
Sunday 23/3/12 9.14 25 9 1279 140 17.59 50 59 25
23/3/19  10.71 26 11 1499 164 19.16 50 65 27

23/3/26  10.61 24 10 1484 163 17.08 50 58 24

Avg. 9.88 23.25 9.875 1383 152 16.97 50 57 24

Secondly, the total travel time of all dollies is longer than that of all tractors, due to the
capacity limitation of dollies and the multi-trailer capacity of tractors. However, electric
auto-dollies are more advantageous in terms of energy and cost savings, the reasons may
include the following: 1) the electric motor efficiency of electric vehicles is usually higher
than the internal combustion engine efficiency of fuel vehicles; 2) Hong Kong has a strong
ability of power generation, about 3/4 of the electricity is locally supplied; 3) The Hong
Kong Government is actively promoting the process of carbon neutrality and encouraging
the use of clean energy through electricity subsidy policy; 4) The diesel oil price in Hong
Kong has shown a slow and steady rising trend in the past two years, as shown in Fig. 5.5.

The experimental results show different potential and advantages of the two modes in
different aspects. Generally, it is recommended to use the tractor-trailer mode in daytime,
since tractor-trailer operations require skilled ground staff, daytime shifts align with staff
availability, ensuring efficient manual coordination during busy periods. Besides, electric
auto-dolly mode is more suitable to adopt at night, as there will be a lower electricity price

at night than during the day. We could also restrict dollies to high-density zones to ensure
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the electricity supply while covering critical routes. To bridge both modes’ strengths, it
may also be a good choice to replace diesel tractors with electric tractors, retaining multi-

trailer capacity while cutting emissions.
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Figure 5.5: The diesel oil price trend of five companies in Hong Kong.

In addition to the above analysis, there are many other factors that may affect the
practical application of the two modes. For example, the new electric auto-dolly, which
is equipped with multiple sensors and robotic arms, is likely to be more expensive and
maintain than the traditional fuel tractor and trailer. The labor cost of the two modes
is reflected in different aspects. The use of tractors and trailers requires hiring external
airport ground handling staff, like tractor drivers, workers for baggage loading/unloading,
etc., while using electric auto-dolly requires more management talent and engineers, and
comes with higher training costs. Finally, our experiment and analysis are mainly based
on the scenario of the HKIA. The differences of different airports in scale, ground road

network, busyness, and local economic level may lead to different suitable modes.

5.2.4 [Energy consumption prediction of baggage transport service

According to the analysis in the above section, it is found that the electric auto-dolly mode
has the advantages of low operating cost, low energy consumption, and low carbon emis-

sion, which meet the needs of airport intelligence and sustainable development. Therefore,
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we analyze the future energy consumption of baggage transport service based on the elec-
tric auto-dolly mode here.

We first generated cases on a daily basis, conducted experiments on all the collected
flight data, and then obtained seven sets of monthly dolly operating times. Based on
this, a linear regression analysis is conducted on the monthly number of flights F;,, and
the monthly dolly travel time 7,,,. The results are shown in Fig. 5.6 and the following

formula:7}, = 0.02F},, — 117.07 (h).

T T T T

3500 - Confidence Interval: 80%

N

ravel Time (h)
[\ [\ (98]
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Number of Flights x10*

Figure 5.6: The linear regression analysis on the monthly number of flights and monthly
dolly travel time.

Next, we use Seasonal Auto-regressive Integrated Moving Average (SARIMA) to
forecast the monthly flight number from January 2025 to December 2026 based on the
monthly flight number at HKIA from January 2021 to December 2024. SARIMA is the
extension of ARIMA for analyzing time series data with seasonal patterns [103]. It com-
bines seasonal differencing, auto-regressive (AR), and moving average (MA) terms to
model both non-seasonal (p, d, ¢) and seasonal (P, D, ), S) parameters. This method is
widely used for forecasting data with trends and recurring cycles, such as monthly sales
or temperature variations. The optimized SARIMA parameters using Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) are as follows: p = 0,d =
1,¢q=0,P=1,D =1,Q = 0,5 = 12. The prediction result is shown in Fig. 5.7. The

Mean Absolute Percentage Error (MAPE) of flight number prediction is 10.27%.
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According to the above analysis, the predicted flight number and energy consumption

of airport baggage transport service from January 2025 to December 2026 under the elec-

tric auto-dolly mode is shown in Fig. 5.8. As we forecast that the air traffic of HKIA will

continue to grow, the operating costs and carbon emissions of the airport baggage trans-

port service will also continue to increase. However, the impact from this growth can be

mitigated by further optimizing the electric auto-dolly scheduling strategy.
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Figure 5.7: The fitted and forecasted number of flights by SARIMA.
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Figure 5.8: The predicted monthly auto-dolly travel time, operation costs, and emissions
from Jan 2025 to Dec 2026.
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6 CONCLUSIONS AND SUGGESTIONS FOR FUTURE

RESEARCH

In order to keep up with the needs of the booming aviation industry, the smart and sus-
tainable development of airports around the world has been gradually promoted. Efficient
airport baggage transport service plays a key role in enhancing airport operational effi-
ciency and service quality. Traditional baggage transport is managed through the collab-
oration of tractors and trailers operating under the drop-and-pull mode. Recently, new
electric auto-dollies have been gradually introduced in airport baggage transport service
to foster the intelligent and sustainable development of airports. In this context, it is of
great significance to investigate the baggage transport vehicle scheduling problem under
two operating modes, tractor-trailer mode and electric auto-dolly mode, to promote the
development of airport ground handling. However, the coordinated scheduling of tractors
and trailers poses significant challenges due to the complex interactions among tractors,
trailers, and flights. Besides, the difficulties of scheduling electric auto-dollies mainly
come from the demand for charging and the large problem scale. Additionally, airport
ground handling is highly dynamic and uncertain, especially at busy hub airports.

To optimize the baggage transport vehicle scheduling under the two modes and ana-
lyze the sustainable development prospect of airport baggage transport service, this study
mainly includes the following three aspects. The multi-trailer drop-and-pull baggage
transport problem is first investigated. A two-stage scheduling model for tractors and

trailers is developed, along with an efficient hybrid intelligence-based solution algorithm.
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Specifically, the Adaptive Large Neighborhood Search forms the foundation of the algo-
rithm, enhanced with carefully designed operators. Additionally, two key methods are
introduced to boost the algorithm’s efficiency: a K-means clustering-based initialization
method and a topological sort-based solution evaluation method. The validity of the above
methods and operators is verified by simulation experiments.

Secondly, the electric auto-dolly scheduling problem for airport baggage transport is
researched. To solve this, a simplified scheduling model is established, which is then for-
mulated into a Markov Decision Process with a heuristic improvement policy. Then, a
deep reinforcement learning-based scheduling algorithm is developed, in which the struc-
tures of the encoder and decoder are based on the model of the Transformers variant. In
addition, the solution features about service time and vehicle power are specifically added
to the problem embeddings, thereby improving the algorithm’s convergence speed. The
performance of our proposed algorithm has been verified through the comparison experi-
ment with other algorithms and the generalization experiment with different distributions
and different scale cases.

Finally, empirical analysis is conducted on the baggage transport service under these
two modes in the scenario of the Hong Kong International Airport (HKIA). The exper-
iments were carried out on the established integrated airport ground vehicle scheduling
simulation platform. Besides, we modeled the energy consumption and carbon emissions
of vehicles to support the analysis of the operating cost and sustainable development of
the airport baggage transport service. Experiment results show that the electric auto-dolly
mode has obvious advantages in terms of operating costs and carbon emissions, but it
may require higher vehicle purchase costs and labor costs. Moreover, the monthly flight
volume for the second half of 2024, as well as the monthly energy consumption and car-
bon emissions of airport baggage transport services under the electric auto-dolly mode, to
guide airports and related businesses.

In conclusion, this study solved the problem of scheduling airport baggage transport
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vehicles under the tractor-trailer mode and electric auto-dolly mode, and carried out nu-
merous simulation experiments and detailed empirical analysis. However, there are still
some limitations and deficiencies in this study. Firstly, the proposed two-stage algorithm
for tractor and trailer based on ALNS shows difficulties in solving large-scale cases, such
as providing vehicle scheduling schemes for full-day flights. Therefore, reinforcement
learning algorithms can be considered to realize integrated scheduling for tractors and
trailers in the future. Secondly, this study only considers the two scenarios of pure fuel
and electric fleet, but the mixed vehicle scheduling problem may be an important issue,
which may be encountered in the transition phase before the realization of airport full
electrification. Finally, based on the existing static scheduling results, it is also a possible
important future topic to dynamically adjust the scheduling scheme of baggage transport
vehicles using dynamic planning to cope with the high uncertainty and dynamics of flight

arrival and departure.
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