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ABSTRACT

Efficient airport baggage transport is critical for improving airport operation efficiency

and quality. In practice, the baggage transport is usually achieved by the cooperation of

tractors and trailers under the drop-and-pull mode. Recently, new electric autonomous

vehicles have been introduced to promote the intelligent and sustainable development of

airports. However, scheduling baggage transport vehicles presents significant challenges

due to the complex relationships among tractors, trailers, and flights, which are further

addressed by considering the recharging decision-making problem of electric autonomous

vehicles. Besides, the airport ground handling is a highly dynamic and uncertain scenario,

particularly at busy hub airports.

To address these challenges, this thesis reviewed the literature related to vehicle schedul-

ing for airport baggage transport services. Based on the previous studies and the intelligent

development process of airports, this research focuses on vehicle scheduling under two op-

eratingmodes: multi-trailer drop-and-pull baggage transport and electric auto-dolly-based

baggage transport.

For the multi-trailer drop-and-pull baggage transport, this study develops a two-stage

scheduling model for tractors and trailers under the drop-and-pull mode, as well as design-

ing an efficient hybrid intelligence-based solution algorithm. Specifically, the Adaptive

Large Neighborhood Search is taken as the foundation of the algorithm, with carefully de-

signed operators. Besides, two keymethods are introduced to enhance the efficiency of the

algorithm, including a K-means clustering-based initialization method and a topological
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sort-based solution evaluation method.

For the electric auto-dolly-based baggage transport, a simplified scheduling model is

established based on the model of Vehicle Routing Problem, which is then modeled into

the Markov Decision Process of improvement heuristic. Then, a scheduling algorithm

that integrates reinforcement learning and the Transformers variant-based deep learning

model is improved, with specifically designed problem embeddings to effectively present

the constraints on service time and electricity consumption, thus improving the algorithm

convergence speed.

Finally, supported by the flight and map data collected from real-world airports, a

SUMO-based integrated airport service vehicle scheduling simulation platform is estab-

lished. Simulation experimental results are analyzed to improve the algorithm and provide

references for airport service vehicle scheduling in practice.

Keywords: airport baggage transport, airport service vehicle scheduling, adaptive large

neighborhood search, reinforcement learning
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1 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Efficient airport ground handling services are essential for the smooth functioning of air-

ports and the operation of airlines while ensuring the level of aviation safety and security

[1]–[3]. It was reported that approximately 5-10% of flight delays can result from inad-

equate airport ground handling services [4], and accidents during ground operations are

frequently reported, resulting in significant flight delays and even leading to the loss of

ground operator lives [5]. Insufficient and inefficient ground services have become major

obstructions to further decreasing airport capacity. For instance, Singapore aviation firms

are ramping up hiring ground service operators to cope with the recent surge in air travel.

Among various airport ground handling services, baggage transport plays an essential

role. In 2017, the daily baggage handling volume of the Hong Kong International Airport

(HKIA) reached 80000 pieces. In 2022, airports worldwide successfully managed an im-

pressive 4.5 billion bags, and it is predicted that the size of the airport baggage handling

system market worldwide will reach 16.1 billion U.S. dollars. Efficient airport baggage

transport service is also recognized as a key indicator for airport operation performance.

Any inefficient operations or mistakes would delay the flight directly and even lead to a

cascade effect for all upcoming flights. In the practices of most existing airports, baggage

transport service is usually operated by motorized tractors and non-motorized trailers un-

der the drop-and-pull mode, as shown in Fig. 1.2 (a). Trailers are non-motorized and

only used to hold passenger baggage, while motorized tractors are utilized to tow trailers
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between the Baggage Handling Area (BHA) and aircraft stands.

In last few years, the vigorous development of the aviation industry has heightened the

demand for improved operational efficiency and quality of airport ground handling [6].

Nowadays, many airports are transitioning towards higher automation and sustainability

[7], [8]. Governments are actively supporting the development of intelligent airports. For

example, China has announced many civil aviation policies, actively promoting automa-

tion and electrification [9], which is shown in Fig. 1.1. Global airports are also intro-

ducing new equipment for airport baggage transport service, like self-driving tractors in

HongKong, electric auto-dollies in Singapore, baggage loading robots in the United King-

dom, etc [10], [11]. The adoption of clean fuels and electric ground equipment effectively

reduces the airport’s carbon emissions [12]. Fig. 1.2 (b) shows the electric auto-dolly de-

veloped by AURRIGO, which is under test at the Singapore Changi International Airport.

Figure 1.1: The civil aviation policies announced by the China Aviation Administration
of China from 2017 to 2022.

Nowadays, airports primarily use two modes: the existing and widely used tractor-

trailer mode, and the emerging electric auto-dolly mode. Fig. 1.3 shows their difference,

which are mainly demonstrated from the following perspectives:

1. All electric auto-dollies are self-motorized, while the movement of trailers com-

pletely relies on tractors under the drop-and-pull mode;

2. The equipped robot arms on auto-dollies can make the process of baggage load-
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ing and unloading unmanned, while loading and unloading baggage for trailers are

implemented manually;

3. Auto-dolly is generally more expensive than the tractor and trailer because of its

equipped smart devices and sensors.

(a) (b)

Figure 1.2: Airport baggage transport vehicles: (a). tractor and trailers; (b). electric auto-
dolly.

(a) (b)

Figure 1.3: The two different airport baggage transport modes: (a). tractor-trailer mode;
(b). electric auto-dolly mode.

Following the existing multi-trailer drop-and-pull baggage transport enables flexible cou-

pling and decoupling of tractors and trailers as required [13], potentially lowering oper-
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ational costs. However, it greatly increases the complexity of operation scheduling. Al-

though adopting new-type vehicles, i.e., electric auto-dollies, can simplify the scheduling

decision-making process, their high cost may necessitate scheduling under limited dolly

resources. According to our investigations, the scheduling of tractors and trailers is usually

done manually based on predefined rules or expert experiences. For example, schedulers

always dispatch the closest tractor to the flight, and the tractor driver usually looks for

empty trailers while moving. Such manual decisions are inefficient and cannot well cope

with the dense and dynamic demands, especially in large airports during busy hours [14].

Thus, automatic tools are urgently needed to support vehicle scheduling, which is essential

in improving the performance of airport ground handling while reducing operating costs

and flight delays [15].

Many works have been conducted to optimize the scheduling efficiency of airport

ground handling services [16]–[18] under dynamic and uncertain environments [19], [20]

and with electric vehicles [21]. Generally, the scheduling problem of airport service ve-

hicles is regarded as the Vehicle Routing Problem (VRP) [14]. It is usually modeled as

Integer Programming (IP) andMixed Integer Programming (MIP) [22], [23], and is solved

by mature solvers such as CPLEX and heuristic algorithms. However, considering the

operational features of airport baggage transport, there are still several limitations to be

addressed.

On the one hand, the specialized roles of tractors and trailers are not classified in

most existing works but treated as fixed units, which is rarely aligned with the practi-

cal application and would hinder the effective utilization of the multi-trailer capability of

tractors [24]. Prior studies demonstrate that decoupled trailer operation systems, where

tractors and trailers are independently scheduled, enable dynamic resource allocation and

operational flexibility [25]. This approach proves particularly advantageous in scenar-

ios involving prolonged cargo transfer processes [26], such as airport baggage handling

systems, where manual loading/unloading of luggage containers onto trailers creates sig-
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nificant time bottlenecks. Empirical evidence from Cui et al. [27] further suggests that

coordinated scheduling optimization of transport units under such decoupled mechanisms

could enhance baggage logistics throughput by 18-22% in typical hub operations. On the

other hand, current research related to airport ground electric vehicle scheduling primarily

focuses on the scheduling of aircraft tractors [21], [28], [29]. However, these findings can

not directly guide electric auto-dolly scheduling, as the operation modes and contents of

different ground services vary significantly from each other.

Moreover, many challenges still exist in vehicle scheduling for airport baggage trans-

port. The first difficulty arises from the strict requirements of the airport baggage transport

service. A single flight usually requires multiple trailers (or dollies) to serve, and the num-

ber of trailers (or dollies) needed differs from the number of flights. Such divisible demand

settings will greatly increase the complexity of dolly scheduling, which is a typical variant

of the split delivery vehicle routing problem [30]. Besides, baggage transport is usually

conducted under tight time constraints, making it challenging to solve real-world large-

scale cases in a short time. Another challenge comes from the operation mode of baggage

transport vehicles. When adopting tractors and trailers, the complex route dependencies

between a tractor and multiple trailers must be considered. Similarly, when employing

electric auto-dollies, it is necessary to make recharging decisions without compromising

operational efficiency. Therefore, how to efficiently obtain effective schedules in a short

time is always a great challenge.

In summary, to promote the development of airport ground handling, this thesis aims

to achieve the optimization of vehicle scheduling for baggage transport service based on

the existing related research.
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1.2 RESEARCH SCOPE AND OBJECTIVES

Based on the above analysis, this study aims to achieve intelligent vehicle scheduling for

reducing airport operating costs, and further promoting the green airport baggage transport

service. The research objectives are as follows:

1. Achieve efficient vehicle scheduling of multi-trailer drop-and-pull airport bag-

gage transport. Firstly, based on the operating characteristics of multi-trailer drop-

and-pull baggage transport service, a tractor and trailer scheduling model is estab-

lished. Then, a heuristic scheduling algorithm is developed to solve this problem,

followed by specialized initial solution generation algorithm, local operators, and

an acceleration algorithm for large-scale instances.

2. Design an effective electric auto-dolly scheduling method to improve sustain-

able airport baggage transport. Firstly, the model construction for the electric

auto-dolly scheduling problem is investigated. Then, the development of the rein-

forcement learning-based scheduling algorithm is researched, including the design

of the Markov Decision Process, problem embedding, and training algorithm.

3. Conduct empirical analysis on the constructed airport vehicle scheduling sim-

ulation platform. An integrated vehicle scheduling simulation platform for airport

ground handling is constructed. Then, guidelines for the real-world airport baggage

transport service are developed based on empirical analysis.

1.3 THESIS ORGANIZATION

The research framework of intelligent vehicle scheduling for green airport baggage trans-

port service is shown in 1.4. According to the research framework, this paper is organized

as follows:
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First, a brief introduction of the research background, research scopes, and research

objectives is developed in Chapter 1.

Chapter 2 reviews the research studies related to airport baggage transport optimization

and the approaches for vehicle routing problems. Finally, the research potential in the

domain is summarized in this section.

Chapter 3 illustrates how to achieve efficient vehicle scheduling of multi-trailer drop-

and-pull airport baggage transport. We first defined the tractor and trailer scheduling prob-

lem in the airport baggage transport scenario. And we established the mathmatical for-

mulations of the integrated tractor and trailer scheduling problem. Then we decomposed

it into a two-stage scheduling model to decrease the solving complexity. Finally, a hy-

brid intelligence-based algorithm that integrates K-means clustering and Adaptive Large

Neighborhood Search is developed to efficiently solve the two-stage scheduling problem.

The algorithm performances are validated by comparison experiments.

Chapter 4 designs an effective electric auto-dolly scheduling method for improving

green airport baggage transport. So we first constructed a simplified electric auto-dolly

scheduling model to decrease the model-solving complexity. Then we define the pro-

cess of solving this problem as a Markov Decision Process, including designing scenario-

specific state embeddings, actions, and the reward function. To solve this problem, a

Proximal Policy Optimization (PPO) policy with Transformers structure-based encoder

and decoder and Curium Learning (CL) strategy is developed. Extensive experiments are

conducted to verify the model and algorithm effectiveness.

Chapter 5 firstly introduces the simulation platform construction, which is achieved by

processing flight information and airport ground map data through the Open Street Map

(OSM) and the Simulation of Urban Mobility (SUMO). Then, an energy consumption

model is established to measure the energy consumption and emissions of different types

of vehicles. Based on it, the two modes that adopt fuel tractors and electric auto-dollies

are compared. A statistical analysis of energy consumption for airport baggage transport

7



service is also conducted in Chapter 5 to provide guidance to real-world airport operations.

Chapter 6 concludes this thesis and discusses future work.
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Figure 1.4: The research framework of intelligent vehicle scheduling for green airport
baggage transport service.
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2 LITERATURE REVIEW

In this chapter, the literature on relevant studies of operations research in airport ground

handling and optimization methods is reviewed. First, the state-of-the-art vehicle schedul-

ing research for airport ground handling services is summarized to investigate compen-

satory and potential research directions of baggage transport vehicle scheduling problems.

Regarding the different challenges presented by the multi-trailer drop-and-pull mode and

the electric auto-dolly for baggage transport operations, the drop-and-pull routing prob-

lem and the electric vehicle routing problem are reviewed, respectively. In the aspect of

optimization methods, the reinforcement learning-based methods for routing problems are

investigated. Finally, the research limitations and gaps are summarized.

2.1 VEHICLESCHEDULINGFORAIRPORTGROUNDHANDLING

Focusing on improving the operational efficiency of various airport ground services, ex-

tensive works have been conducted for the scheduling of different types of service ve-

hicles, such as de-icing vehicles [31], [32], ferry buses [33], fuelling vehicles [34], and

aircraft towing vehicles [35]. Meanwhile, some works considered the interactions among

different vehicles to improve the overall efficiency of airport ground handling, e.g., the

scheduling of multi-type airport service vehicles with service priority [36], [37] and col-

laborative optimization of different ground activities [38].

With the popularity of electric vehicles, some scholars have also begun to investigate

the application of electric vehicles in airport ground service. In recent studies, Bao et al.
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developed an integrated operational framework for hybrid fuel-electric aircraft tractors.

This model simultaneously optimizes temporal efficiency, energy expenditure, and carbon

footprint by incorporating auxiliary power unit (APU) energy substitution effects. Then,

an enhanced adaptive large-scale neighborhood search heuristic is designed to obtain near-

optimal solutions for this complex optimization challenge [28]. Zoutendijk et al. also

investigated the electric aircraft tractor routing and recharging problem, while considering

a limit for the supply of energy.

Table 2.1: Summary of literature related to vehicle scheduling for airport baggage trans-
port service.

Literature Objective
(Minimum)

Time
window

Vehicle type
classification1

Capacity Two-way
service2 Drop-and-pull Method=1 >1

[39] The total cost of fixed and fuel consumption ✓ ✓ ✓ ✓ ALNS
of tractors

[40] The total cost of fixed consumption of all ✓ ✓ ✓ ✓ ALNS
vehicles and fuel consumption of tractors

[41] The number of used vehicles and the total ✓ ✓ GA
travel distance of vehicles

[18] The number of used vehicles and the total ✓ ✓ NSGA-II
extra time cost of vehicles

[42] The vehicle travel time ✓ ✓ LNS
[43] The number of undelivered baggage and ✓ ✓ Greedy

the vehicle travel time
This paper The total travel time of tractors ✓ ✓ ✓ ✓ ✓ ALNS
1 Distinguishing between the tractor and trailer in the baggage transport vehicle.
2 Allowing vehicles to serve both departure and arrival flights in one trip.

In recent years, as an essential part of airport ground handling, vehicle scheduling in

airport baggage transport has been extensively studied, and related works are summarized

in Table 2.1. Most works focused on minimizing operation costs, including the number

of vehicles adopted, travel time, fuel consumption, etc. Some considered reducing flight

delays, e.g., Padrón et al. studied the bi-objective collaborative scheduling of multiple

service vehicles to minimize flight waiting time [44]. Considering the constraints of ve-

hicle capacity and service time window, Clausen et al. and Guo et al. modeled the ve-

hicle scheduling problem as a Capacitated Vehicle Routing Problem with Time Windows

(CVRPTW) [41], [43]. Meanwhile, various heuristic algorithms have been developed,

including Variable Neighborhood Search (VNS) [44], Large Neighborhood Search (LNS)
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[42], and ALNS [39]. Besides, some attempted to integrate learning-based methods with

heuristic methods. For example, Zhou et al. proposed a learning-assisted LNS method

that integrates imitation learning and the graph convolutional network [42]. They further

improved the heuristic policy with an attention-based neural network trained with rein-

forcement learning [14].

2.2 DROP-AND-PULL ROUTING PROBLEM

Table 2.2: Summary of literature related to tractor and trailer drop-and-pull problem.

Literature Application Vehicle type Number of Trailers Mixed
Transport1

Routes
Interdependence2 Method=1 =2 >2

[45] Intercity Freight Truck+trailer ✓ Branch-and-price-and-cut
[46] ✓ Hybrid metaheuristic
[24]

Container drayage
at ports Tractor+trailer

✓ ✓ Branch-and-price-and-cut
[47] ✓ ✓ GA
[48] ✓ ✓ ✓ ALNS
[49] ✓ Branch-and-price-and-cut
This paper Airport baggage transport Tractor+trailer ✓ ✓ ✓ ALNS
1 Allowing tractors to transport both vacant and full trailers in one trip
2 A trailer can be transported alternately by multiple tractors.

The drop-and-pull mode has been widely applied in freight transportation. In intercity

freight transportation, a vehicle is typically composed of a truck and a trailer [50], where

both truck and trailer can load cargo, allowing for the shifting of cargo between them. In

such problems, the transport demand usually involves distributing cargo from the depot

to customers or collecting cargo from customers, and scheduling the truck to transport

both vacant and full trailers in one trip is rarely considered. The common scenario is

that some customers could only be served by trailers, while others can only be served by

trucks. Thus, the truck sometimes needs to drop the trailer off at a transit station before

implementing tasks [45], [46].

Another typical application is the container drayage problem at ports. Different from

trucks, the tractor cannot carry cargo and is usually only used to pull trailers. One trac-

tor normally can pull at most two trailers [47], [48]. In particular, A foldable container

drayage problem is researched in [26], demonstrating tractors’ capability to transport 4-
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6 folded units versus single loaded containers. For the solution algorithms, Song et al.

formulated a branch-and-price-and-cut framework addressing synchronized drayage rout-

ing with rigid synchronization constraints [49]. In their work, one drayage task finished

by the same tractor is forbidden, so there are no route dependencies between different

tractors [49]. Moghaddam et al. established a multi-modal container routing paradigm in-

corporating heterogeneous container dimensions and decoupled tractor-trailer operations,

significantly expanding solution space dimensionality [51]. Similarly, tractor change is

not allowed during one task, and the tractor can only engage in single-trip services.

2.3 ELECTRIC VEHICLE ROUTING PROBLEM

Over the past decade, electric vehicles (EVs) have garnered significant attention and have

witnessed a substantial surge in market share, which is prompted by the mounting global

consciousness towards environmental sustainability. Recently, EVs have been widely

used in public transportation systems [52], freight [53], yard [54], and last-mile trans-

portation [55].

Recent advancements in sustainable logistics have driven significant research efforts

toward optimizing electric vehicle (EV) fleet management systems [56]. A critical de-

velopment in this domain is the Electric Vehicle Routing Problem (EVRP), a specialized

adaptation of the classical VRP. Unlike conventional VRP formulations, EVRP explic-

itly incorporates battery capacity limitations, charging station location constraints, and

time-energy consumption coupling effects [57]. With the consideration of the routing

constraints, charging operations, etc, many works have emerged over the years focusing

on EVRP variants, which can be classified as following attributes:

Charing and discharging attributes. Charging and discharging attributes are popu-

larly discussed in many works, as they are very important for a realistic EVRP. Conven-

tional charging modeling approaches typically posit a direct linear relationship between
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state-of-charge (SOC) and charging duration [58]. However, emerging research incorpo-

rates state-dependent charging profiles that better reflect electrochemical dynamics. Mon-

toya et al. extended the EVRP by considering a non-linear charging function coupled with

a hybrid metaheuristic combining iterated local search with heuristic concentration tech-

niques to handle solution space discontinuities. [59]. Besides, a linear model between the

energy consumption and travel time is commonly used for the vehicle discharging process.

But it actually may be influenced by many other realistic factors, like speed, weight [60],

temperature [61], etc. Lastly, battery swapping is also investigated in some research to

introduce an alternative strategy for replenishing the energy of EVs [62], [63].

Recharge station attributes. In most of the literature, the recharging station infor-

mation is assumed to be known in advance. However, this approach doesn’t always align

with real-world complexities, such as the rapidly evolving urban landscapes. This interde-

pendence necessitates co-optimization of geo-spatial allocation of charging stations and

operational scheduling of electric vehicles [64], [65]. Advanced EVRP variants further

integrate power grid operational constraints, like capacity thresholds of substations, peak

load balancing mechanisms at charging hubs, and so on [56]. Moreover, different recharge

stations may provide different recharge speeds with different prices, which can also affect

the selection of recharge stations in the EVRP [66].

Vehicle fleet attributes. The operational constraints of EVs, particularly regarding

payload-range trade-offs, drive logistics research studies toward heterogeneous fleet com-

positions integrating EVs with conventional fuel vehicles (FVs) [67]. Compared to tra-

ditional fuel vehicles, the energy cost of EVs are relatively lower, followed by a higher

purchase cost. Hybrid electric vehicles (HEVs) further complicate the advantages of EVs

and FVs through dual-propulsion architectures, enabling dynamic energy source switching

between battery packs and diesel generators. Hiermann et al. addressed the mixed fleet

scheduling problem that contains FVs, EVs, and HEVs, which was solved by a hybrid

meta-heuristic framework [68].
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2.4 REINFORCEMENTLEARNINGFORROUTINGPROBLEMS

The temporal state transition modeling capabilities of reinforcement learning (RL) have

positioned it as a dominant paradigm for combinatorial routing optimization. RL-driven

frameworks demonstrate particular effectiveness in addressing NP-hard challenges, such

as traveling salesman problems, Capacity-constrained routing, and demand-coupled lo-

gistics [69]–[72]. Current methodological innovations on RL-based algorithms primarily

involve the following perspectives,

RL algorithms. RL algorithms mainly include two principal optimization paradigms

according to the differences in learning objectives [73], [74]. The first value-centric ap-

proach approximates state-action value functions, which enables solution construction by

temporal difference estimation. Representative implementations includeDeepQ-Networks

(DQN) [75], [76] and its variants, double DQN and Dueling DQN [77]. The second cat-

egory is policy-gradient paradigms, which directly parameterize the policy to optimize

action selection probability distribution through gradient ascent on expected returns. The

existing popular policy-based RL algorithms include REINFORCE [70], [78] and Prox-

imal Policy Optimization (PPO) [79], [80]. In existing research, policy-based RL algo-

rithms are the mainstream of RL algorithms designed for routing problems, due to their

advantages in handling high-dimensional action spaces and naturally supporting stochastic

policies, which can be beneficial in uncertain environments.

In the domain of combinatorial routing optimization, both value-centric and policy-

gradient RL algorithms have been studied [73]. On the one hand, value functions guide

the decision-making process, enabling the system to learn optimal routes through iterative

evaluations. On the other hand, policy-gradient methods have advantages in exploring

the action space and can adapt more swiftly to complex and high-dimensional decision-

making scenarios in routing. Existing popular policy-based RL methods include REIN-

FORCE [70], [78], Proximal Policy Optimization (PPO) [79], [80], etc.
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Heuristic types of RL policy. Generally, the heuristic types of RL policy can be

categorized as constructive [71], [81], and improvement heuristics [82], [83]. The con-

struction methods learn a policy to build solutions by iteratively selecting nodes from the

problem graph. Although this approach can save more inference time cost, it often lacks

the ability to obtain (near-)optimal solutions [84]. On the contrary, with the initialized

solutions, improvement strategies utilize local search mechanisms to iteratively optimize

the initial solution. Typical examples include the 2-opt operator proposed by [82], the

ruin-and-repair operation from [85], and the node-swapping technique developed in [86].

Improvement model-based RL is advantageous for its scalability in complex environments

but may suffer from sample inefficiency.

Deep learning models of RL policy. Various deep learning architectures such as

Recurrent Neural Networks (RNN) [86]–[88], Graph neural networks (GNN) [89], [90],

and Transformers [71], [91] have been employed. Different from RNN and GNN, Trans-

formers allow for parallel processing of input sequences, which significantly speeds up

training and inference. The multi-head self-attention mechanism enhances the ability of

Transformers to effectively capture long-range dependencies in the data. These advan-

tages make Transformer particularly well-suited for complex RL tasks.

2.5 SUMMARY

In the above literature review, many scholars have made some achievements in the re-

search of airport baggage transport vehicle scheduling. However, there are still some

limitations need to be further investigated.

Firstly, previous works provide extensive knowledge on scheduling baggage transport

vehicles. However, they seldom considered the drop-and-pull mode or considered both

departure and arrival flights together. Works are still needed on the integrated scheduling

of tractors and trailers with the consideration of various practical requirements so as to
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support real-life operations. Besides, it is important to highlight that simulations and ex-

periments conducted in existing related research often lack the utilization of actual flight

and map information obtained from real-world airports.

Secondly, to the best of our knowledge, vehicle scheduling under drop-and-pull mode

in airport baggage transport is still not well studied. Different from previous works, a trac-

tor can pull more than three trailers simultaneously in airport baggage transport. Mean-

while, considering both arrival and departure flights, the tractor should be allowed to trans-

port both vacant and fully loaded trailers in one trip.

Thirdly, although many real-world EVRP variants have been well studied, research

on electric auto-dolly scheduling is still very limited. Unlike the scenarios of cargo and

public transport systems, where electric vehicle power consumption can be more accu-

rately estimated, the working status and energy consumption of electric auto-dollies are

highly correlated with flight plans, which increases the difficulty in making charging de-

cisions. Besides, due to capacity limitations, electric auto-dollies need to make multiple

trips between the BHA and aircraft stands. Incorporating charging-related decisions into

such multi-trip scenarios would greatly increase the complexity of the problem, which in

turn would require a more efficient solution method.

Finally, although reinforcement learning has been proven to be effective in solving

large-scale combinatorial optimization problems recently However, to our knowledge,

most works still mainly focus on some classical problems with few constraints (e.g. TSP,

VRP, and the Jop Shop Problem), and they are rarely tested on datasets from real sce-

narios. Moreover, the electric auto-dolly scheduling problem in this study needs to take

into account the uncertain charging time, which is also a challenge for the training and

convergence of reinforcement learning algorithms.

Based on the above analysis, this study aims to fill the gaps in the current research

on airport baggage transport vehicle scheduling. A vehicle scheduling problem for multi-

trailer drop-and-pull baggage transport is first studied, which enables the flexible coupling
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and decoupling of tractors and trailers. Then, a hybrid intelligence-based algorithm inte-

grating K-means clustering andALNS is designed to solve this problem. Besides, the elec-

tric auto-dolly scheduling problem is solved by a reinforcement learning and Transformers

variant-based algorithm, which shows its advantages in large-scale real-world instances.

Finally, supported by real-world airport information, an integrated airport service vehicle

scheduling simulation platform is established to contribute to algorithm improvement and

provide references for future airport baggage transport.
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3 VEHICLESCHEDULINGFORMULTI-TRAILERDROP-

AND-PULL AIRPORT BAGGAGE TRANSPORT

This chapter aims to propose an efficient scheduling method for multi-trailer drop-and-

pull airport baggage transport. Firstly, a two-stage model for the multi-trailer drop-and-

pull problem in airport baggage transport is developed, which can effectively decrease

the computation complexity without affecting the scheduling performance. Secondly, a

hybrid intelligence-based method that integrates K-means clustering and Adaptive Large

Neighborhood Search (ALNS) is developed to efficiently solve the two-stage scheduling

problem. To further improve the algorithm efficiency, several effective operators and a

topological sort-based solution evaluation method are proposed that could accelerate the

computing processes and effectively cope with large-scale problems. Finally, extensive

experimental case studies are conducted to verify the effectiveness of the proposedmethod

and provide benchmarks for future works.

3.1 PROBLEM DESCRIPTION

In a typical airport baggage transport scenario, the drop-and-pull mode with motorized

tractors and non-motorized trailers is popularly adopted. Generally, there are two main

transport tasks. One is for departing flights. The baggage will be collected at the BHA and

loaded onto the trailers waiting there. After the baggage check-in process (a cut-off time

at the BHA before each flight), these trailers will be towed by tractors to the corresponding

aircraft stand, and then the baggage will be loaded onto the aircraft by ground handling
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operators. The process should be conducted within strict time windows according to the

flight plan to ensure the aircraft can take off on time. The other is for arrival flights. After

an aircraft arrives at the aircraft stand, the baggage will be unloaded from the aircraft and

loaded onto the trailers waiting there. These trailers will then be towed by tractors to the

BHA. The process should also be conducted efficiently to minimize the waiting time of

passengers at the baggage claim area. The process is illustrated in Fig. 3.1.

Trailer DepotTractor Depot

1

2

3B

A

Baggage Handling Area

A123

Flight 1

Flight 2

B 1 2B 1 2

Flight 3

B 1 2

A 3

A123

A 3

tractor trailer baggage departing flight arriving flight

start route of tractor A

routes of tractor B
start route of tractor B

A 3

routes of tractor A

Figure 3.1: The example of 2 tractors and 3 trailers transporting baggage for 3 flights.

Considering a specific planning period, the schedules of tractors and trailers are de-

cided based on the information of arrival and departure flights simultaneously, including

the arrival/departure time and the number of trailers required for each flight. Specifically,

for each flight, the information required is listed as follows:

1. Number of Trailers Required: According to the volume of baggage the flight carries,

the number of trailers needed will be known in advance before the scheduling starts.

2. O-D Information: The origination and destination information of each baggage

transport demandwill be generated based on the nature of the arrival/departure flight

and the stand that the corresponding aircraft parks.
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3. Earliest Baggage Loading Start Time: It refers to the earliest time that the baggage

can be loaded onto the trailers.

4. Latest Baggage Unloading End Time: It refers to the latest time for completing

unloading baggage from trailers.

With the above information, the schedules of tractors and trailers in a given period

can be made. For example, considering the scenario in Fig. 3.1, the number of trailers

needed for Flight 1, 2, and 3 are 3, 1, and 2, respectively. A feasible solution is that Flight

1 is served by all three trailers, Flight 2 is served by Trailer 3, and Flight 3 is served by

Trailer 1 and 2. Tractor A departs from the tractor depot, picks up all three trailers at the

trailer depot, and tows them to the aircraft stand of Flight 1. After disconnecting Trailer

1 and 2, Tractor A tows Trailer 3 to serve Flight 2, while Trailer 1 and 2 are left at the

aircraft stand of Flight 1. After the baggage is unloaded, they will be towed by Tractor B

to serve Flight 3 before returning to the depot. In this process, one tractor can pull multiple

trailers simultaneously, and the tractors and trailers can flexibly connect and disconnect

when needed.

3.2 INTEGRATED MODEL

Considering an airport baggage transport scenario in a given period, the sets of tractors

and trailers are M and K, respectively. The notations adopted are given in Table 3.1.

According to the above analysis, the typical locations involved in the problem include the

depot of tractors/trailers, BHA, and aircraft stands. Since the tractors and trailers can load

and unload baggage at any aircraft stand and BHA, to make the problem clear, this paper

defines these locations as pickup and delivery nodes of baggage in the model. Thus, the

transport network can be denoted as GM = (NM , AM). Here, NM = IS ∪ IE ∪ {sM},

which includes baggage loading and unloading nodes of all flights in set F and the trailer

depot sM .
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Table 3.1: Notations for Chapter 3.

Indicates
f Index for flights.
i, j Index for baggage loading and unloading nodes, i, j ∈ NM .
u, v Index for trailer pickup and delivery nodes, u, v ∈ NK .
sM The depot of trailers, sM ∈ NM .
sK The depot of tractors, sK ∈ NK .
fS The baggage loading node of flight f , fS ∈ NM .
fE The baggage unloading node of flight f , fE ∈ IE .
pmi The pickup request from trailerm at node i, pmi ∈ NK .
dmi The delivery request from trailerm at node i, dmi ∈ NK .
pml The lth pickup request of trailerm.
dml The lth delivery request of trailerm.
m, m̃ Indicating trailers,m, m̃ ∈M .
k Indicating tractors, k ∈ K.

Sets
M Set of trailers.
M∗ Set of used trailers in the solution of the trailer allocation problem.
K Set of tractors.
F Set of flights.
IS Set of the baggage loading nodes of all flights, IS ⊂ NM .
IE Set of the baggage unloading nodes of all flights, IE ⊂ NM .
NM Set of service nodes for trailers and sM .
NK Set of all possible pickup and delivery nodes.
N∗

K Set of pickup and delivery request from setM∗ and sK .
Pm Set of pickup requests from trailerm.
Dm Set of delivery requests from trailerm.
P Set of pickup requests fromM∗, P =

∪
m∈M

Pm ⊂ N∗
K .

D Set of delivery requests fromM∗, D =
∪

m∈M
Dm ⊂ N∗

K .

Parameters
tij Travel time from node i to j.
t̃uv Travel time from node u to v.
elf Earliest baggage loading start time for flight f .
eu Earliest pickup or delivery start time for node u.
tF Allowed duration time of baggage transport for each flight.
tM Average time for baggage loading or unloading.
ru Load of node u (rs denotes the load of depot).
Q Capacity of a tractor.
W A sufficiently large positive constant.

Decision Variables
xm
ij = 1, if trailerm successively serves at node i and node j,

or 0 otherwise.
ykuv = 1, if tractor k travels from node u to node v, or 0 otherwise.
zu The order of tractors visiting node u.
BLi Baggage loading or unloading start time at node i.
Bu Pickup or delivery start time at node u.
Rk

u Load of tractor k after serving node u.
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There are two key decisions. One is deciding the route of trailers, denoted as xm
ij . It

equals 1 if trailer m successively serves node j after severing node i or 0 otherwise. The

other is deciding the route of tractors, denoted as ykuv. The routes of tractors are highly

dependent on the routes of trailers. For example, if xm
ij = 1, there must be a tractor visiting

node i to pick up trailer m and then delivering it to node j. Thus, the routes of tractors

are defined on the network GK = (NK , AK), where NK = {pmi , dmi |i ∈ NM ,m ∈

M} ∪ {sK}, where pmi and dmi indicate the request to pickup trailer m at node i and

deliver trailer m to node i, respectively. It is noted that NK contains all possible pickup

and delivery requests from all trailers at all nodes in NM . Therefore, ykuv = 1 if trailer k

implement request at node u and v successively, or 0 otherwise.

The objective of airport baggage transport vehicle scheduling is to minimize the oper-

ation cost of all the vehicles while ensuring service quality under strict time requirements.

Thus, the model can be developed as follows:

Minimize
∑

u,v∈NK

∑
k∈K

t̃uvy
k
uv (3.1)

s.t. :∑
i∈NM

xm
sM i =

∑
i∈NM

xm
isM

= 1, ∀m ∈M (3.2)

∑
u∈NK

xk
sKu =

∑
u∈NK

xk
usK

= 1, ∀k ∈ K (3.3)

∑
j∈NM ,j ̸=i

xm
ij =

∑
j∈NM ,j ̸=i

xm
ji , ∀i ∈ NM ,m ∈M (3.4)

∑
v∈NK ,v ̸=u

ykuv =
∑

v∈NK ,v ̸=u

ykvu, ∀v ∈ NK , k ∈ K (3.5)

∑
m∈M

xm
fSfE

= 1, ∀f ∈ F (3.6)

∑
m∈M

∑
j∈NM ,j ̸=i

xm
ij = 1, ∀i ∈ NM\{sM} (3.7)

∑
m∈M

∑
j∈IE ,i ̸=j

xm
ij = 0, ∀i ∈ IE (3.8)
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∑
k∈K

∑
v∈NK ,v ̸=pmi

ykpmi v ≤ 1, ∀i ∈ NM ,m ∈M (3.9)

∑
k∈K

∑
i∈NM

(
∑

v∈NK ,v ̸=pmi

ykpmi v +
∑

v∈NK ,v ̸=dmi

ykdmi v) ≤ (3.10)

W ∗
∑

j∈NM\{sM}

xm
sM j, ∀m ∈M

∑
k∈K

∑
v∈NK ,v ̸=pmi

ykpmi v =
∑

j∈NM ,j ̸=i

xm
ij , ∀i ∈ NM ,m ∈M (3.11)

∑
k∈K

∑
v∈NK ,v ̸=dmj

ykvdmj =
∑

i∈NM ,i ̸=j

xm
ij , ∀j ∈ NM ,m ∈M (3.12)

∑
k∈K

∑
m̃∈M,m̃ ̸=m

∑
v∈NK ,v ̸=pm̃i

ykpm̃i v ≤ W (1− xm
ij ), (3.13)

∀i ∈ NM\ {sM} , j ∈ NM , i ̸= j,m ∈M∑
k∈K

∑
m̃∈M,m̃ ̸=m

∑
v∈NK ,v ̸=dm̃j

ykvdm̃j
≤ W (1− xm

ij ), (3.14)

∀i ∈ NM , j ∈ NM\ {sM} , i ̸= j,m ∈M∑
v∈NK ,v ̸=pmi

ykpmi v −
∑

v∈NK ,v ̸=dmj

ykvdmj ≤ W (1− xm
ij ), (3.15)

∀i, j ∈ NM , i ̸= j,m ∈M,k ∈ K∑
v∈NK ,v ̸=pmi

ykpmi v −
∑

v∈NK ,v ̸=dmj

ykvdmj ≥ W (xm
ij − 1), (3.16)

∀i, j ∈ NM , i ̸= j,m ∈M,k ∈ K

max{0, ru} ≤ Rk
u ≤ min{Q,Q+ ru}, ∀u ∈ NK , k ∈ K (3.17)

Rk
u + rv ≤ Rk

v +W
(
1− ykuv

)
, ∀u, v ∈ NK , u ̸= v, k ∈ K (3.18)

Bpmi
≥ max{epmi , Bdmi

+ tM}, ∀m ∈M, i ∈ NM\{sM} (3.19)

epmsM ≤ BpmsM
≤ BdmsM

, ∀m ∈M (3.20)

Bdmi
≥ edmi , ∀m ∈M, i ∈ NM (3.21)

Bdmi
≤ edmi + tF , ∀m ∈M, i ∈ IE (3.22)

Bu + t̃uv ≤ Bv +W
(
1− ykuv

)
, ∀u, v ∈ NK , u ̸= v, k ∈ K (3.23)
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Bpmi
≤ Bdmj

+W (1− xm
ij ), ∀i, j ∈ NM , i ̸= j,m ∈M (3.24)

zu − zv +W ∗ ykuv ≤ W − 1, ∀u ∈ NK , (3.25)

v ∈ NK\{sK}, u ̸= v, k ∈ K

xm
ij ∈ {0, 1} , ∀i, j ∈ NM ,m ∈M (3.26)

ykuv ∈ {0, 1} , zu ≥ 0, ∀u, v ∈ NK , k ∈ K (3.27)

The objective (3.1) is to minimize the total travel time of all tractors. Constraint (3.2)

requires all trailers to be parked at sM at the very beginning and returned there after serving

all flights. Similarly, constraint (3.3) requires all tractors to start from the depot and return

to sK after completing all pickup and delivery requests. Constraints (3.4) and (3.5) are the

flow balance constraints of trailers and tractors, respectively.

Constraints (3.6)-(3.16) are the baggage transport service demand constraints. In this

work, the concept of virtual flight is introduced, based on which a flight requiring multiple

trailers can be represented as multiple virtual flights requiring only one trailer. In this way,

the modeling process can be greatly simplified. Subsequent discussions are all based on

virtual flights.

Constraints (3.6)-(3.8) ensure that the baggage loading demands must be satisfied,

including: 1) The baggage loading and unloading node of each flight must be visited by

trailers once and only once; 2) If one trailer leaves the baggage loading node of any flight,

it should move to its baggage unloading node directly; 3) If one trailer leaves the baggage

unloading node of any flight, it cannot move to another unloading node directly.

Constraints (3.9)-(3.16) restrict the relationship between the routes of trailers and trac-

tors. That is, the trailers can only be moved by tractors: 1) Each pickup or delivery request

can be implemented at most once; 2) If trailer m is not used by any flight, it will not be

picked up or delivered; 3) If trailer m did not access node i, it will not be picked up at

node i; on the contrary, if trailerm accesses node i, there must be one and only one tractor
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picking up trailerm at node i. The same goes for the trailer delivery requests; 4) If trailer

m successively visits node i and j, i.e. xm
ij = 1, it will be picked up at node i and delivered

to node j once by the same tractor, respectively, and other trailers will not be picked up

at node i or delivered to node j.

Constraint (3.17) ensures that the capacity of any tractor should not exceed its capacity

after visiting any node. Constraint (3.18) ensures the load consistency of tractors.

Constraints (3.19)-(3.24) are related to the time and order of tractors picking up and

delivering trailers. Constraints (3.19)-(3.22) are the time window requirement for picking

up and delivering trailers, including: 1) Every pickup and delivery request must be imple-

mented after the allowed earliest pickup and delivery time; 2) If trailerm is needed to be

delivered to a baggage unloading node, the arrival time of trailerm must be no later than

edmi +tF ; 3) If trailerm is delivered to a node i outside the depot sM , trailermwill be occu-

pied for tM to load or unload baggage. Thus, the time of trailerm being re-picked upBpmi

must be no earlier than the end time of baggage loading or unloading; 4) All scheduled

trailers must be picked up first and delivered to the depot sM .

Constraint (3.23) ensures the time consistency of tractors. Constraint (3.24) requires

that if trailerm needs to successively visit node i and node j, the time of delivering trailer

m to node j must be no earlier than the time of picking it up at node i.

Constraint (3.25) is the Miller-Tucker-Zemlin sub-tour constraint to eliminate sub-

tours in the routes of tractors [92]. Constraints (3.26)-(3.27) define the range of variables.

3.3 TWO-STAGE MODEL

The above integrated scheduling model is a special and complex variant of the classical

Vehicle Routing Problem (VRP), which has already been proven to be NP-hard in the liter-

ature. Since the model involves cooperative routing of tractors and trailers, incorporating

time windows and pickup and delivery requirements, it should also be NP-hard, demon-
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strating greater complexity. Moreover, the scale of network GK expands exponentially

with the increase of flights and trailers numbers, where |NK | = 2∗ (2∗ |F |+1)∗ |M |+1.

Numerous constraints are also introduced to delineate the route dependencies between

tractors and trailers, leading to high model complexity. Therefore, to efficiently solve

the problem, this part will re-formulate the integrated scheduling model as a two-stage

scheduling model. The first stage optimizes the routes of trailers. Then, in the second

stage, the routes of tractors will be optimized to fulfill the pickup and delivery requests

from the generated trailer routes, rather than all potential requests NK . The order of trac-

tors transporting trailers is also determined by trailer routes, simplifying the route depen-

dencies between trailers and tractors.

3.3.1 Trailer allocation model

Based on the integrated scheduling model, the trailer allocation model is defined on the

transport networkGM with decision variables xm
ij andBLi. Themathematical formulation

is presented below.

Minimize
∑

i,j∈NM

∑
m∈M

tijx
m
ij +

∑
f∈F,fE∈IE

(BLfE − elf ) (3.28)

s.t. :∑
i∈NM

xm
sM i =

∑
i∈NM

xm
isM

= 1, ∀m ∈M (3.29)

∑
j∈NM ,j ̸=i

xm
ij =

∑
j∈NM ,j ̸=i

xm
ji , ∀i ∈ NM ,m ∈M (3.30)

∑
m∈M

xm
fSfE

= 1, ∀f ∈ F (3.31)

∑
m∈M

∑
j∈NM ,j ̸=i

xm
ij = 1, ∀i ∈ NM\{sM} (3.32)

∑
m∈M

∑
j∈IE ,i ̸=j

xm
ij = 0, ∀i ∈ IE (3.33)
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BLfS ≥ elf , ∀fS ∈ IS, f ∈ F (3.34)

BLfE + tM ≤ elf + tF , ∀fE ∈ IE, f ∈ F (3.35)

BLi + tij + tM ≤ BLj +W
(
1− xm

ij

)
, (3.36)

∀i, j ∈ NM , i ̸= j,m ∈M

xm
ij ∈ {0, 1} , ∀i, j ∈ NM ,m ∈M (3.37)

The objective function (3.28) minimizes the total travel time of all trailers and the

flight waiting time. The former objective aims to minimize operating costs, while the

latter seeks to create opportunities for tractors to pick up and deliver multiple trailers in

subsequent stages.

Constraints (3.29)-(3.33) ensure the flow balance and service demand are satisfied,

which are consistent with constraints (3.2), (3.4), (3.6)-(3.8) in the integrated scheduling

model. Constraints (3.34)-(3.36) describe the service time window and time consistency

requirements. Constraint (3.37) defines the value range of xm
ij , which is consistent with

constraint (3.26).

3.3.2 Tractor routing model

Each movement of trailer m requires one pickup and one delivery operation. Thus, the

demand arising from predetermined trailer routes can be denoted by sequential lists in-

volving paired pickup and delivery requests {pm1 , dm1 , pm2 , dm2 , ..., pmnm
, dmnm

}, ∀m ∈ M∗,

where M∗ is the set of used trailers, nm is the number of request pairs from trailer m,

pml and dml denote the lth pair of pickup and delivery requests on the route of trailer m,

respectively. Fig. 3.2 shows an example of transferring the route of trailerm into pickup

and delivery requests for subsequent tractor routing. As shown in Fig. 3.2, trailer m is

allocated to two flights, so the route of trailer m contains five nodes, including the depot

sM and baggage loading and unloading locations of two flights. Thus, the demand gener-
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ated from trailerm can be denoted by a sequential list containing four pairs of pickup and

delivery requests {pm1 , dm1 , pm2 , dm2 , pm3 , dm3 , pm4 , dm4 }.

Figure 3.2: The pickup and delivery requests generation process of the route of trailerm

Tractors are scheduled to pick up and deliver trailers following the specified sequence

within the required time window. The tractor routing problem is defined on a sub-network

ofGK : G∗
K = (N∗

K , A
∗
K), whereN∗

K = P ∪D∪{sK}, P andD are the set of pickup and

delivery request nodes from trailer set M∗, respectively. The decision variables involve

ykuv, zu, Bu, and Rk
u. The mathematical formulation is presented below.

Minimize
∑

u,v∈N∗
K

∑
k∈K

t̃uvy
k
uv (3.38)

s.t. :∑
k∈K

∑
v∈N∗

K ,v ̸=u

ykuv = 1, ∀u ∈ P (3.39)

∑
v∈N∗

K ,v ̸=pml

ykpml v =
∑

v∈N∗
K ,v ̸=dml

ykvdml , (3.40)

∀pml ∈ Pm, d
m
l ∈ Dm,m ∈M∗, k ∈ K
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∑
v∈N∗

K ,v ̸=u

ykuv =
∑

v∈N∗
K ,v ̸=u

ykvu, ∀u ∈ P ∪D, k ∈ K (3.41)

∑
v∈N∗

K

yksKv =
∑
u∈N∗

K

ykusK = 1, ∀k ∈ K (3.42)

Bu + t̃uv ≤ Bv +W
(
1− ykuv

)
, ∀u, v ∈ N∗

K , u ̸= v, k ∈ K (3.43)

Rk
u + rv ≤ Rk

v +W
(
1− ykuv

)
, ∀u, v ∈ N∗

K , u ̸= v, k ∈ K (3.44)

eu ≤ Bu, ∀u ∈ P ∪D (3.45)

Bdml
≤ edml + tF , ∀dml ∈ Dm,m ∈M∗ (3.46)

Bpml
≤ Bdml

, ∀pml ∈ Pm, d
m
l ∈ Dm,m ∈M∗ (3.47)

Bdml
+ tM ≤ Bpml+1

, ∀pml+1 ∈ Pm, d
m
l ∈ Dm,m ∈M∗ (3.48)

max{0, ru} ≤ Rk
u ≤ min{Q,Q+ ru}, ∀u ∈ N∗

K , k ∈ K (3.49)

zu − zv +W ∗ ykuv ≤ W − 1, ∀u ∈ N∗
K , (3.50)

v ∈ N∗
K\{sK}, u ̸= v, k ∈ K

ykuv ∈ {0, 1} , zu ≥ 0, ∀u, v ∈ N∗
K , k ∈ K (3.51)

The objective function (3.38) minimizes the total travel time of tractors, aligning with the

optimization objective in (3.1).

Constraints (3.39)-(3.41) ensure that each request node in N∗
K is visited exactly once,

and the lth pickup and delivery nodes pml and dml are visited by the same tractor. Constraint

(3.42) is consistent with constraint (3.3). Consistency of the time and capacity are ensured

by constraints (3.43) and (3.44). Constraints (3.45) and (3.46) restrict the time window

for picking up and delivering trailers. Constraints (3.47) and (3.48) require that the trans-

portation sequence of trailer m adheres to the order {pm1 , dm1 , pm2 , dm2 , . . . , pmnm
, dmnm

}, en-

suring that pickups and deliveries for trailerm occur in the prescribed manner. Constraints

(3.49)-(3.51) are consistent with constraints (3.17), (3.25), and (3.27) in the integrated

scheduling model.

30



3.4 METHODOLOGY

Although the complexity of the scheduling model has been reduced by dividing it into

two stages, it is still difficult to solve efficiently by exact optimal solution algorithms,

especially when the number of tractors and trailers is large. Besides, in practice, the solu-

tion algorithms should be efficient enough to dynamically cope with the uncertainties of

flight departures and arrivals. Therefore, this part develops an efficient hybrid-intelligence

based solution algorithm that integrates the diversity of ALNS, Simulated Annealing (SA),

and K-means clustering [93]. The overall framework of the algorithm is shown in Fig. 3.3.

It starts by obtaining the information of the flight, tractor, and trailer within a planning

horizon, usually a couple of hours. Then, the routes of trailers and tractors will be gener-

ated sequentially. After that, the final results will be decoded by integrating the routes of

both trailers and tractors.

Specifically, considering the advantages of reducing the chance of being trapped in lo-

cal optima [94], ALNS [95] is adopted as the foundation of the solution algorithm. Mean-

while, to further improve the efficiency and performance of the solution algorithm, several

key methods are developed. Firstly, effective destruction and repair operators were de-

signed based on the specific features of the tractor and trailer scheduling problems, which

could further enhance the search capability. Secondly, since the generation of initial so-

lution for ALNS is vital for the overall performance. However, existing methods, e.g.,

greedy, CW-saving, often take a long time to produce a relatively good initial solution.

Thus, an efficient K-means clustering-based initial solution generation algorithm is de-

veloped to speed up convergence and save search time. Thirdly, it is found that checking

whether the complex constraints in the second stage are satisfied is also time-consuming.

Thus, a topological sort-based solution evaluation algorithm is proposed to accelerate the

process of ALNS. In the following, the detailed design of the hybrid-intelligence based

scheduling algorithm will be further discussed.
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Figure 3.3: The framework of the hybrid intelligence-based two-stage scheduling algo-
rithm.

3.4.1 ALNS-based trailer allocation algorithm

The ALNS-based trailer allocation algorithm is shown in Fig. 3.3, and the detailed pro-

cesses are introduced below.

Initial solution generation. The natural number encoding scheme is adopted for

trailer route encoding, sM is denoted by 0, and each node in NM responds to a natural

number. We adopt the regret insertion heuristic [96] to obtain an initial solution:

• Step 1: Sort the nodes in NM according to the arrival or departure time of flights.

• Step 2: Try to add node i to the end of each trailer’s route and calculate the in-

creased cost of each route while checking the solution feasibility for each insertion.

Recording all feasible insertions and their increased costs.

• Step 3: If multiple feasible insertions exist, insert node i into the incumbent solution

at the location with the second lowest increased cost. If there is only one feasible
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location, add node i there.

• Step 4: Delete n0 nodes with the maximum cost while there are still nodes not in-

serted, but no feasible insertion. The cost of demand j between i and k is calculated

by: c(i) = c(i, j) + c(j, k) − c(i, k). n0 is a random integer with a range 0 to

µ0 ∗ |NM |.

• Step 5: Stop and return the initial solution if all nodes are inserted; otherwise, return

to Step 1.

Destroy and repair operators design. Five destroy operators are designed for the

trailer allocation problem:

• Trailer-Random Removal (TA-RR): It randomly removes nr nodes from the current

solution, which could help diversify the search space.

• Trailer-Maximum Travel Time Removal (TA-MTTR): It removes nr nodes with the

maximum travel time from the current solution. The travel time of node i is calcu-

lated by tt(j) = t(i, j), where node j is the next node of node i in the corresponding

trailer route.

• Trailer-Maximum Service Time Removal (TA-MSTR): It removes nr baggage un-

loading nodes with the maximum service end time BLfE from the current solution.

• Trailer-Maximum Cost Removal (TA-MCR): It removes nr nodes with the maxi-

mum saved objective value from the current solution. It is evaluated by the objective

value zM(i) after removing node i.

• Trailer-Maximum Cost Route Removal (TA-MCRR): It removes the trailer route

with the maximum objective value from the current solution.
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Note that the number of demand nodes to be removed nr is counted by: nr = µ0 ∗

|NM |+µ1 ∗niter, where niter is the current number of iterations, µ0 and µ1 are the param-

eters.

The proposed three repair operators are also listed below:

• Trailer-Greedy Insertion (TA-GI): It inserts demand i to the place with the minimum

increased objective value.

• Trailer-Regret Insertion (TA-RGI): It inserts demand i to the place with the second

minimum increased objective value.

• Trailer-Random Insertion (TA-RDI): It inserts demand i to a random feasible place

to diversify the search space.

Acceptance and selection criterion. The SA criterion is adopted here for accepting

solutions, which uses an updated temperature to determine the possibility of accepting

the incumbent solution. SA requires three parameters: the initial temperature Tstart, the

final temperature θTstart, and the temperature updating step γ. The current temperature

is updated by T = max{T − γ, θTstart}. The operator selection criterion used here is the

roulette wheel selection scheme, which iteratively updates operator scores according to

the performance of operators.

3.4.2 ALNS andK-means clustering-based tractor routing algorithm

The tractor routing algorithm also follows the procedure shown in Fig. 3.3. It integrates

ALNS with the K-means clustering-based initial solution generation method and topolog-

ical sort-based solution evaluation method.

Initial solution generation. The framework of the proposed K-means clustering-

based initial solution generation algorithm is shown in Algorithm 1. The basic idea of this

algorithm is to assign the pickup and delivery requests with close distance and similar time
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Algorithm 1 K-means Clustering-based Initial Solution Generation Framework
Input: Routes of all trailers {Rm}, service time lists on routes of all trailers {BLm},

tractor setK, used trailer setM∗

Output: Initial routes of tractors {Rk}
1: Similarity matrixM s ← None
2: for Ra, Rb ∈ {Rm}, BLa, BLb ∈ {BLm}, a ̸= b do
3: M s

ab ←
∑

u∈Ra

argmin
|BLu−BLv |

tt
′
(u, v)

4: end for
5: nk ← max{1, β ∗min{|K|, |M∗|}}
6: Clusters of trailer routes C ←K-means based Clustering(M s, nk)
7: Route of each tractor Rk ← None
8: for cluster c ∈ C do
9: for Rm ∈ c do
10: Generating pickup and delivery request sequence RSm from Rm

11: Randomly choose an empty tractor route Rk

12: Last inserted request rml ← None
13: The feasible insertion set of the last inserted request U∗

l ← None
14: Flag← 0
15: for request rm ∈ RSm do
16: while Flag = 0 do
17: Set U∗ as the set of all feasible insertions of rm
18: if U∗ ̸= ∅ then
19: Set u∗ as the insertion in U∗ with the minimum cost
20: Insert rm to Rk at the location of u∗

21: U∗ ← U∗ − {u∗}
22: rml ← rm, U∗

l ← U∗

23: Flag← 1
24: else if U∗

l ̸= ∅ then
25: Remove Rk ← Rk − {rml }
26: Set u∗

l as the insertion in U∗
l with the minimum cost

27: Insert rml to Rk at u∗
l

28: U∗
l ← U∗

l − {u∗
l }

29: else
30: Insert rm to any feasible location on the route of other tractors
31: end if
32: end while
33: end for
34: end for
35: end for
36: return {Rk}
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windows to the same tractor can better take advantage of multi-trailer capacity. Therefore,

we developed a K-means-based algorithm to cluster the trailer routes according to the

similarity of distance and service time, and then allocate the requests on the trailer routes

belonging to the same cluster to the same tractor. The metric defined to measure the sim-

ilarity between two trailer routes Ra and Rb is defined byM s
ab =

∑
u∈Ra

argmin
|BLu−BLv |

tt
′
(u, v),

where Ra is assumed to be the shorter route, BLu and BLv are the service time of node u

and v, respectively, and tt′(u, v) is the distance from node u to v.

To obtain clusters of trailer routes, the similarity matrix Ms is fed into the K-means

clustering algorithm to categorize similarity into nk levels, where nk is an adaptable pa-

rameter that varies in accordance with the problem’s scale. Subsequently, routes that share

the highest similarity ranking are aggregated into the same cluster. Moreover, to enhance

tractor utilization, scenarios where a cluster only contains a single trailer route or where the

quantity of clusters exceeds the number of tractors are precluded by amalgamating these

clusters into larger ones. Finally, the requests belonging to the same cluster are inserted

preferentially into the feasible location with the lowest cost of the same tractor route, as

described in Algorithm 1.

Destroy and repair operators design. Three destroy operators are designed as fol-

lows:

• Tractor-RandomRemoval (TR-RR): It randomly removesn′
r pairs of pickup and de-

livery requests from the current solution, which helps to diversify the search space.

• Tractor-MaximumTravel TimeRemoval (TR-MTTR): It removesn′
r pairs of pickup

and delivery requests with the maximum tractor travel time from the current solu-

tion. The travel time of request pair (u, v) is counted by: tt′(u, v) = t(u0, u) +

t(v0, v), while u0 and v0 are the former request of u and v, respectively.

• Tractor-MaximumService TimeRemoval (TR-MSTR): It removesn′
r pairs of pickup

and delivery requests with the maximum service end time from the current solution.
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Here, n′
r is counted by: n

′
r = µ0∗|NM |+µ1∗n

′
iter, where n

′
iter is the iteration number.

The repair operators are listed as follows.

• Tractor-Greedy Insertion (TR-GI): It inserts the pair of pickup and delivery request

(u, v) to the place with the minimum increased objective value.

• Tractor-Regret Insertion (TR-RI): It inserts the pair of pickup and delivery request

(u, v) to the place with the second minimum increased objective value.

• Tractor-Local Insertion (TR-LI): It inserts the pair of pickup and delivery request

(u, v) to the place with the minimum increased objective value in one tractor route.

Acceptance and selection criterion. The SA criterion and roulette wheel selection

scheme are also adopted here as the solution acceptance criterion and the operator selection

criterion, respectively.

Topological sort-based solution evaluation. Constraints (3.47) and (3.48) require

that the order of tractors transporting trailers must follow the determined order of trailers

serving flights, as well as the generated pickup and delivery sequences. However, enu-

merating whether these constraints are satisfied by checkingBu is time-consuming. Thus,

a topological sort-based solution evaluation method is introduced here to enhance the ef-

ficiency of the scheduling algorithm. We first construct a network G+
K containing both

the routes of tractors and trailers to trace the sequence of tractors transporting trailers. If

the required sequences are broken, there must be at least one directed cycle existing in the

G+
K . Then, topological sort is applied to check the existence of directed cycles. The key

steps of this algorithm are listed here:

• Constructing the directed graph G+
K = (N∗

K , A
+
K), where A

+
K is composed of the

routes of tractors and specific pickup and delivery sequences from trailers.

• Using the topological ordering to check whetherG+
K contains any directed cycle. If

the directed cycle exists, then this solution is not feasible; otherwise, it is feasible.
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Figure 3.4: The network that includes the tractor routes and order Constraints from trailers.

A simple example is given in Fig. 3.4(a) about the feasible solutions for tractor rout-

ing, in which the pickup and delivery requests from 2 trailers are served by 2 tractors.

The hard arrows represent the routes of 2 tractors, while the dashed arrows are the spe-

cific pickup and delivery sequences, also representing constraints (3.47) and (3.48). If any

directed cycle exists in G+
K , it must be composed of the hard and dashed arrows, as con-

straints (3.50) have ensured that there is no directed cycle in tractor routes (hard arrows).

Therefore, the directed cycle in G+
K only exists when the solution breaks the determined

sequences, as shown in Fig. 3.4 (b) and (c).

3.5 CASE STUDY

This section presents computational experiments to validate the proposed models and so-

lution algorithm.

3.5.1 Test instances

We take HKIA as an example to conduct the experiments, which one of the busiest inter-

national airports around the world that connects about 220 destinations around the world
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and is operated by about 120 airlines, with a passenger throughput of 71.5 million passen-

gers [97] and a cargo throughput of 4.8 million tons in 20191. We constructed the road

network of airport ground vehicles in HKIA, a total of 71 aircraft stands are included here,

mainly located around Terminal 1. The detailed road network construction process will

be introduced in Chapter 6. Without loss of generality, we consider each flight needs 2 or

3 trailers [39]. The allowed duration of baggage transport is set as tF = 60 minutes, the

average baggage loading or unloading time tM = 10 minutes, the capacity of the tractor

Q = 6, and the speed of the tractor is to be 20 km/h.

With the above analysis, three types of instances are generated to simulate different

scenarios:

• Random instances: It is designed to simulate the off period. The gates of flights are

randomly selected, and flight arrival or departure times are randomly generated.

• Cluster instances: It is designed to simulate the busy period. In each instance, de-

parting and arriving flights have a higher chance of being allocated at adjacent stands

with very close time slots.

• Practical instances: It is designed to simulate real-world scenarios. Each instance

contains real flight information collected from HKIA, and the numbers of tractors

and trailers are set to be 20 and 30, respectively.

3.5.2 Performance evaluation

To evaluate the performance of the proposed two-stage scheduling model and hybrid-

intelligence-based solution algorithm, we compared their results with those obtained by

Gurobi (version 10.0.03, 64 bits) with the integrated scheduling model on generated ran-

dom instances, since Gurobi can only solve the small-scale instances of this complex prob-

lem.
1https://www.hongkongairport.com/tc/the-airport/hkia-at-a-glance/fact-figures.page
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Table 3.2: Comparison of Gurobi and the proposed algorithm based on the integrated and
two-stage scheduling on small instances.

Instances Integrated Model+Gurobi Two-stage Model+Gurobi Integrated Model+Proposed Two-stage Model+Proposed

Feas. LB BestObj #K #M T_run
(s) Feas. LB BestObj #K #M T_run

(s) Cost #K #M T_run
(s) Cost #K #M T_run

(s)
1 Opt. 4.99 4.99 1 3 205.50 Opt. 4.99 4.99 1 3 7.87 4.99 1 3 6.29 4.99 1 3 4.70
2 Opt. 7.23 7.23 1 2 2.90 Opt. 7.23 7.23 1 2 0.24 7.23 1 2 1.80 7.23 1 2 1.22
3 Opt. 12.05 12.05 1 2 3.70 Opt. 12.05 12.05 1 2 0.41 12.05 1 2 1.77 12.05 1 2 1.20
4 Opt. 5.09 5.09 1 2 2.70 Opt. 5.09 5.09 1 2 0.14 5.09 1 2 1.58 5.09 1 2 1.20
5 Opt. 8.04 8.04 1 3 44.30 Opt. 8.04 8.04 1 3 8.63 8.04 1 3 6.36 8.04 1 3 4.80
6 Opt. 5.32 5.32 1 3 52.50 Opt. 5.32 5.32 1 3 6.11 5.32 1 3 5.92 5.32 1 3 5.47
7 Opt. 5.94 5.94 1 2 3.50 Opt. 5.94 5.94 1 2 0.19 5.94 1 2 1.85 5.94 1 2 1.86
8 Opt. 5.24 5.24 1 2 2.90 Opt. 5.24 5.24 1 2 0.30 5.24 1 2 3.20 5.24 1 2 2.40
9 Opt. 4.19 4.19 1 2 2.70 Opt. 4.19 4.19 1 2 0.28 4.19 1 2 1.50 4.19 1 2 1.53
10 Opt. 21.63 21.63 1 2 849.00 Opt. 21.63 21.63 1 2 6.95 21.63 1 3 8.39 21.63 1 2 2.99
11 Opt. 18.23 18.23 1 2 2313.90 Opt. 18.23 18.23 1 2 13.28 18.23 1 3 9.12 18.23 1 2 3.61
12 Opt. 10.85 10.85 1 2 63.50 Opt. 10.85 10.85 1 2 3.77 10.85 1 2 8.65 10.85 1 2 2.87
13 Opt. 26.56 26.56 1 2 6066.50 Opt. 26.56 26.56 1 2 11.54 28.86 1 2 5.26 28.86 1 2 2.61
14 Opt. 15.65 15.65 1 2 640.90 Opt. 15.65 15.65 1 2 11.94 17.96 1 2 4.96 15.65 1 2 4.35
15 Feas. 7.43 33.88 1 2 7200.00 Opt. 33.88 33.88 1 2 473.27 39.99 1 2 6.38 36.18 1 2 4.90
16 Feas. 9.17 14.13 1 2 7200.00 Opt. 14.13 14.13 1 2 53.70 14.32 1 2 4.80 14.32 1 2 3.15
17 Opt. 13.05 13.05 1 2 165.10 Opt. 13.05 13.05 1 2 10.72 13.05 1 2 15.42 13.05 1 2 4.17
18 Opt. 9.83 9.83 1 2 51.70 Opt. 9.83 9.83 1 2 3.47 9.83 1 2 13.33 9.83 1 2 3.80
19 Opt. 19.90 19.90 1 2 470.20 Opt. 19.90 19.90 1 2 8.81 19.90 1 2 16.95 26.13 1 2 4.82
20 Opt. 8.83 8.83 1 2 66.20 Opt. 8.83 8.83 1 2 1.55 8.83 1 2 14.56 8.83 1 2 3.06
21 Opt. 18.22 18.22 1 2 52.80 Opt. 18.22 18.22 1 2 4.67 18.22 1 2 8.00 18.22 1 2 4.20
22 Opt. 6.78 6.78 1 2 27.90 Opt. 6.78 6.78 1 2 1.58 6.78 1 2 7.88 6.78 1 2 3.14
23 Opt. 6.11 6.11 1 2 1499.60 Opt. 6.11 6.11 1 2 23.60 6.11 1 2 5.77 6.11 1 2 4.57
24 Feas. 0.13 17.02 1 3 14400.00 Opt. 17.02 17.02 1 3 2448.08 17.02 1 3 50.00 17.02 1 3 11.75
25 Feas. 0.07 31.20 1 3 14400.00 Feas. 24.63 31.20 1 3 14400.00 31.20 1 3 27.73 33.51 1 3 23.48
26 - 0.00 - - - 14400.00 Feas. 5.07 16.96 1 3 14400.00 27.91 1 3 56.12 16.96 1 3 15.75
27 - 0.00 - - - 14400.00 - 0.00 - - - 14400.00 30.73 1 3 66.02 30.73 1 3 11.62
28 Feas. 5.33 18.87 1 3 14400.00 Opt. 18.87 18.87 1 3 5104.68 29.87 1 3 137.15 32.23 1 3 31.24
29 Feas. 0.00 20.72 1 3 14400.00 Opt. 20.80 20.80 1 3 10978.05 26.12 1 3 21.37 26.12 1 3 11.20
30 - 2.82 - - - 14400.00 Feas. 13.78 24.12 1 3 14400.00 24.48 1 3 62.59 24.48 1 3 8.87
31 Feas. 8.29 14.52 1 3 14400.00 Opt. 15.47 15.47 1 3 3652.36 15.47 1 3 27.11 26.20 1 3 11.63
32 Feas. 14.22 22.23 1 3 14400.00 Opt. 22.32 22.32 1 3 3857.11 38.20 1 3 14.26 39.99 1 3 19.47
33 Feas. 2.07 6.24 1 3 14400.00 Opt. 6.24 6.24 1 3 339.33 7.99 1 3 35.31 7.99 1 3 22.61
34 Feas. 0.02 15.78 1 3 14400.00 Feas. 13.54 15.78 1 3 14400.00 25.45 1 3 110.81 25.45 1 3 15.79
35 - 0 - - - 14400.00 Opt. 11.07 11.07 1 3 342.95 11.07 1 3 119.28 11.07 1 3 28.76
Avg. 9.63 13.82 1.00 2.35 5708.23 12.87 14.17 1.00 2.41 2839.30 16.52 1.00 2.49 25.36 16.70 1.00 2.43 8.25

* Opt. : solving the instance to optimality within time limits;
* Feas.: only obtaining a feasible solution within time limits.

The results are reported in Table 3.2, where column “LB” is the lower bound obtained

by the Gurobi solver, “Cost” is the total cost, “#K” and “#M” are the number of used

tractors and trailers, and “T_run” is the running time (in seconds). On the one hand, the

results show that compared with the integrated model, the two-stage scheduling model can

obtain more feasible solutions in a much shorter running time while having little impact

on the solution quality. While both using Gurobi and changing the model to the two-

stage scheduling model, infeasible instances are reduced, and the average running time is

decreased by 2265.92 seconds, which proves the effectiveness of the proposed two-stage

model. On the other hand, our proposed scheduling algorithm can significantly enhance

solving speed with the premise of approaching the optimal solution in most instances,

both on the integrated and two-stage scheduling models. Thus, integrating the two-stage

scheduling model and the proposed scheduling algorithm has a significant advantage on

the balance of solution quality and running time, it can be seen that all instances were
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solved within 32 seconds.

3.5.3 Algorithm performance analysis

In this part, experiments are conducted to evaluate the performance of different parts of

the proposed hybrid-intelligence based scheduling algorithm.

Parameter setting. The parameter setting for the hybrid-intelligence based solution

algorithm is shown in Table 3.3.

Table 3.3: Parameters for ALNS.

Parameter Value
niter 300
n

′
iter 200

Tstart 1.0
θ 0.025
γ 0.95
µ0 0.12
µ1 0.005
β 0.7

Initial solution generation algorithm comparison. As shown in Table 3.4, the pro-

posed K-means clustering-based initial solution generation algorithm for the tractor rout-

ing problem is compared with two other existing popular algorithms: the Cheapest Fea-

sible Insertion (CFI) algorithm [27] and the Clark Wright (CW) Algorithm [98]. The

experiment is implemented on random instances, and the number of flights ranges from 4

to 16. The average result of 20 cases with the same number of flights is regarded as the

final result. Besides, the running time “T_run” is restricted to 1800 s. Table 3.4 shows

that the running time of the three algorithms all increases with the increase of the instance

scale. The CFI algorithm follows the greedy principle to insert the demand node into the

location with the cheapest cost. Although the CFI algorithm can generate the solution

with the cheapest cost, its running time is much longer than CW and our algorithm. The

CFI algorithm cannot obtain a solution within the required time limit when |F | > 10.

Compared with CFI, the running time of CW is reduced a lot on small instances, but its
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running time increases rapidly as the scale of the instances increases. Although the cost

obtained by our proposed algorithm has a certain increase compared with CFI, its running

time is much less than that of CFI and CW algorithms.

Table 3.4: The comparison for initial solution generation algorithms.

|F | CFI CW Proposed
T_run (s) Cost T_run (s) Cost T_run (s) Cost

4 178.44 32.13 20.61 64.64 5.08 45.21
6 609.17 43.83 71.79 80.74 11.19 57.69
8 1393.88 60.35 212.52 113.66 18.40 93.36
10 1775.09 64.90 453.71 127.01 45.14 98.43
12 1800.00 - 481.90 118.65 30.36 138.82
14 1800.00 - 833.93 151.04 64.85 169.84
16 1800.00 - 1257.62 143.25 119.79 175.37
* -: The initial solution generation is not finished within 1800 s.

Performance of topological sort-based solution evaluation algorithm. We com-

pared the running time of the whole scheduling algorithmwith and without the topological

sort-based solution evaluation algorithm. The saved time per iteration when applying our

algorithm is shown in Fig. 3.5. The experiment is also implemented on random instances

with different problem scales. The average result of 20 instances on each problem scale

is regarded as the final result. It could be seen that our algorithm effectively accelerated

the process of entire scheduling algorithm. Besides, as the scale of the problem increases,

our solution evaluation algorithm can effectively save much more running time.

Figure 3.5: The time cost saved per iteration by the proposed algorithm on different in-
stance scales.
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Performance of destroy and repair operators. The number of times that each op-

erator leads to a new global best or better solution, and the used times of each operator

are presented in Fig. 3.6. The experiments are implemented on both random and cluster

instances, in which the number of flights ranges from 4 to 16. According to the results,

the operator that produced the most New Global Best and Better Solution among all de-

stroy operators in the trailer allocation stage is TA-MCR, which is also the most frequently

used. Besides, TA-RCI performs best among repair operators. As for the subsequent trac-

tor routing stage, TR-WTTR and TR-GI perform best in removal and repair operators,

respectively. The influence of different destroy and repair operators on solution search is

evaluated by the following two metrics:

• New Global Best: The generated candidate solution is a new global best solution.

• Better Solution: The generated candidate solution is better than the incumbent so-

lution.

(a) (b)

(c) (d)

Figure 3.6: The performance of destroy and repair operators.
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3.5.4 Result comparison on three types of instances

We implemented the simulation experiments based on two other heuristic algorithms for

comparison on the above three types of instances. The “First Arrival First Serve” (FAFS)

scheme simulates the practical scheduling strategy at HKIA. It always assigns the trailer

closest to its baggage loading location. For each trailer requiring pickup, the tractor that

can reach the trailer’s location the fastest is assigned. Another algorithm is the Genetic Al-

gorithm (GA)-based two-stage trailer and tractor scheduling scheme [41], and the number

of iterations follows the parameter setting in our algorithm.

The scheduling results obtained by our algorithm, GA, and FAFS are shown in Fig.

3.7 and Table 3.5. For random and cluster instances, the number of flights ranges from

4 to 8, and the final result is the average of 20 cases. The results show that the solution

of the proposed algorithm could save much more costs and tractor resources than FAFS

and GA on all types of instances, especially in large-scale practical instances. It could be

seen that sometimes it is difficult for GA to obtain feasible solutions, and the solutions

produced by GA require more vehicle resources and operating costs.

(a) (b)

Figure 3.7: Result Comparison on (a). random and (b). cluster instances.
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Table 3.5: Result comparison on practical instances.

Instances |F | Proposed GA FAFS
Cost #K #M Cost #K #M Cost #K #M

1 17 247.51 10 22 270.01 20 26 302.88 20 30
2 21 283.64 11 28 390.73 20 30 398.49 20 30
3 31 389.42 18 30 - - - 548.05 20 30
4 24 243.92 14 30 392.35 20 28 408.55 20 30
5 26 373.27 16 30 - - - 556.18 20 30
6 34 373.51 20 30 - - - 548.77 20 30
7 13 134.23 10 25 281.57 20 26 273.14 20 30
8 24 218.84 12 28 371.20 20 28 407.22 20 30

* -: The feasible solution is not obtained within the required iterations.

3.6 CONCLUDING MARKS

In this chapter, a practical tractor and trailer scheduling problem for airport baggage trans-

port service is investigated. Different from previous research on drop-and-pull schedul-

ing, this work allows each tractor to towmore than 3 trailers, which significantly increases

the challenges of scheduling. In the scenario addressed, a tractor can tow multiple trail-

ers, operating under the drop-and-pull mode that allows for the flexible detachment and

reattachment of trailers as required. This operational flexibility introduces complex route

dependencies between tractors and trailers, presenting a significant challenge in vehicle

scheduling.

To tackle these challenges, a two-stage scheduling model is developed to reduce the

complexity of the scheduling model and streamline the problem-solving process. Besides,

a hybrid intelligence-based two-stage scheduling algorithm is introduced. It leverages a

K-means clustering initial solution generation approach and employs a topological sort-

based solution evaluation method to enhance algorithm efficiency. Experimental results

show that the proposed algorithm significantly outperforms other scheduling methods in

enhancing vehicle utilization and reducing operational costs.

45



4 ELECTRICAUTO-DOLLYSCHEDULINGFORSUS-

TAINABLE AIRPORT BAGGAGE TRANSPORT

This chapter aims to propose an efficient electric auto-dolly scheduling method to reduce

the operating cost of airport baggage transport service. Firstly, the practical problem of

adopting a new type of electric auto-dolly in airport baggage transport service is inves-

tigated. Secondly, a simplified electric auto-dolly scheduling model is proposed, which

effectively decreases the model-solving complexity. Then we define the process of solv-

ing this problem as a Markov Decision Process, including designing scenario-specific

state embeddings. Thirdly, a scheduling algorithm based on RL and Transformers variant

is improved, and the problem embedding is designed specifically, which can effectively

represent the problem characteristics, thus improving the algorithm’s convergence speed.

Finally, extensive experimental case studies are conducted to verify the effectiveness of

the proposed method and provide benchmarks for future works.

4.1 PROBLEM DESCRIPTION

Considering the scenario where a fleet of electric auto-dollies is adopted to implement the

airport baggage transport tasks. Generally, there are two main transport tasks. One is for

departing flights, the baggage needs to be collected at the BHA and then delivered to the

aircraft stand. The other is for arriving flights, in which the baggage transport direction

is reversed. The process should be conducted within strict time windows to ensure the

aircraft can take off on time and reduce the time passengers wait for baggage. In a specific
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planning period, the schedules of electric auto-dollies are decided based on the information

about flights, including 1) the number of dollies required; 2) the origination and destination

location of baggage for each flight, specified by the corresponding aircraft stand and flight

type (departing/arriving), and specified time windows for baggage transport.

Due to the capacity limitation, a dolly can usually only load part of the baggage for

one flight simultaneously. Meanwhile, the electric auto-dollies may need to recharge their

batteries to maintain their operations. A dolly is allowed to recharge multiple times during

its route, and recharge stations are set near the BHA for dollies’ easy access. Besides, the

static charging speed model and the entire charging strategy are adopted in our problem,

which means that the dollies are always fully charged. With the above information, the

schedules of electric auto-dollies in a given period can be made, an example is shown in

the left part of Fig. 4.1.

Figure 4.1: An instance of the electric auto-dolly scheduling problem with 3 dollies, 3
arriving flights, and 3 departing flights

4.2 ELECTRIC AUTO-DOLLY SCHEDULING MODEL

Considering an airport baggage transport scenario in a given time period, A fleet of electric

auto-dolliesL starting from the depot sE is scheduled to serve flight tasksF . The notations

adopted are given in Table 4.1.
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Table 4.1: Notations for Chapter 4.

Indicates
a, b Index for flight task nodes, u, v ∈ NL.
sE The depot of electric auto-dollies, sE ∈ NL.
l Indicating electric auto-dollies,m ∈ L.

Sets
L Set of electric auto-dollies.
F Set of flight tasks.
NC Set of dummy recharge stations.
NL Set of all nodes that dollies may access, NL = F ∪NC ∪ {sE}

Parameters
tOD
ab , tDO

ab Travel time from the baggage origination(destination) of task a to the
destination(origination) of task b, note that tOD

sEsE
= tOD

aa = 0, ∀a ∈ NC

ela Earliest baggage loading start time for flight task a.
Pm Maximum electricity capacity of the electric auto-dolly.
Pl Lowest electricity threshold of the electric auto-dolly.
r Recharge speed.

Decision Variables
xe
abl = 1, if electric auto-dolly l travels from node a and node b, or 0 otherwise.

BEa Task start time at node a.
pal Electricity of electric auto-dolly l when leaving node a.

According to the above analysis, once a dolly is loaded with baggage at its origination,

it has to first reach the baggage destination for unloading before continuing to transport

other baggage. Based on this, we define a flight task a ∈ F that includes the process of

transporting baggage from the origin to the destination to simplify the modeling process.

Besides, one flight requiring multiple dollies is modeled by multiple virtual flights requir-

ing only one trailer. The set of dummy recharge station NC is also introduced to enable

the case that a dolly can be recharged multiple times. Thus, the transport network can

be denoted as GL = (NL, AL), where NL = F ∪ NC ∪ {sM}. The objective of electric

auto-dolly scheduling is to minimize the operation cost of all dollies while ensuring ser-

vice quality under strict time requirements, and the battery of all dollies is kept within the
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allowable range. Thus, the model can be developed as follows:

Minimize
∑

a,b∈NL

∑
l∈L

(tOD
aa + tDO

ab )xe
abl (4.1)

s.t. :∑
a∈NL

xe
sEbl =

∑
a∈NL

xe
asE l = 1, ∀l ∈ L (4.2)

∑
b∈NL,b ̸=a

xe
abl =

∑
b∈NL,b ̸=a

xe
bal, ∀a ∈ NL, l ∈ L (4.3)

∑
l∈L

∑
b∈NL

xe
abl = 1, ∀a ∈ F (4.4)

∑
l∈L

∑
b∈NL

xe
abl ≤ 1, ∀a ∈ NC (4.5)

ela + 2tM + tOD
aa ≤ BEa + 2tM + tOD

aa ≤ ela + tF , ∀a ∈ F (4.6)

BEa + 2tM + tOD
aa + tDO

ab −W (1− xe
abl) ≤ BEb, (4.7)

∀a ∈ NL/NC , b ∈ NL, a ̸= b, l ∈ L

BEa + tOD
aa + tDO

ab + (Pm − pal)/r −W (1− xe
abl) ≤ BEb, (4.8)

∀a ∈ NC , b ∈ NL, a ̸= b, l ∈ L

Pl ≤ pal ≤ Pm, ∀a ∈ NL, l ∈ L (4.9)

pal +W (1−
∑
b∈NL

xe
abl) ≥ Pm, ∀l ∈ L, a ∈ NC ∪ {sE} (4.10)

pal − (tOD
aa + tDO

ab ) +W (1− xe
abl) ≥ pbl, ∀a, b ∈ NL, a ̸= b, l ∈ L (4.11)

xe
abl ∈ {0, 1} , ∀a, b ∈ NL, l ∈ L (4.12)

Constraints (4.2) ensure the routes of all dollies must start and end at the depot sE . Con-

straints (4.3)-(4.4) ensure the flow balance and baggage transport demand are satisfied.

Constraints (4.5) limit that each dummy recharge station can be accessed at most once.

Constraints (4.6)-(4.8) describe the service time window and time consistency require-

ments. It is noted that the recharging time for a dolly with left electricity pal is (Pm−pal)/r.
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Constraints (4.9)-(4.11) describe the electricity range and consistency requirements. An

allowed electricity threshold is set to extend the battery life of dollies. In particular, con-

straints (4.10) ensure that dollies are fully recharged when leaving the recharge station.

Constraint (4.12) defines the value range of xe
abl.

4.3 MARKOV DECISION PROCESS

The process of solving the electric auto-dolly scheduling problem by the reinforcement

learning algorithm can be defined as a Markov Decision ProcessM = (S,A, T ,R, γ).

The definitions of state S , action A, state transaction rule T , and reward function R are

introduced as follows.

State S . The state at time t for the electric auto-dolly scheduling problem is defined

to include the following contents: 1) features of the current solution δt, 2) the record of

previous actions, and 3) the minimum objective function value so far, i.e.,

st = {{n(a)}a∈|NL|, {pt(a)}a∈|NL|,H(t,K), f(δt∗)} (4.13)

where δt can be divided into two parts: n(a) contains features of node a and pt(a) indicates

the positional features of node a in δt (i.e., node positional feature); The most recent K

previous actions at time t is restored inH(t,K); f(∙) is the objective function to minimize,

and δ∗t = argminδ
t
′∈{δ0,...,δt}f(δt′ ). Specifically, n(a) arranges depending on the node

type a as shown in Table 4.2. Among them, the 2-dim coordinates, power restored at the

recharge station, time windows, and task duration are fixed embedding decided by the

specific problem instance settings. ”Power left” and ”Service time left” are two variables

that change as the solution δt is updated, and they are used to describe the electric power

left at node a and the time left after completing the flight task at node a, respectively.

Action A. At each time step, the RL policy is required to remove one node from the

current solution, and then reinsert it back to a specific place. So, action at time t is defined
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as at = {a, b}, which means the agent removes node a and then reinserts it to the location

after node b.

State transaction rule T . A deterministic transition rule is adopted here to perform

at, which means that it always accepts the current action to generate a new solution, it is

noted that infeasible actions will be masked, regardless of their impact on the objective

value.

RewardR. For each time index t, the reward mechanism assigns a value rt calculated

by subtracting the minimum of f(δt+1) and f(δ∗) from f(δ∗), i.e.:

rt = f(δ∗)−min [f(δt+1), f(δ
∗
t )] (4.14)

In this way, the total reward throughout the entire training or inference process equates to

the cumulative reduction in cost compared to the objective value of the initial solutions.

Table 4.2: The embedding contents for different types of nodes.

Node type Embedding contents

Dummy depot Coordinates
Power left

Dummy recharge station Coordinates
Power stored

Flight task

Coordinates of start
Coordinates of end
Time window
Task duration
Power left
Service time left

4.4 METHODOLOGY

This section presents the details of our Deep Reinforcement Learning algorithm (DRL),

which is an improvement on the Neural Neighborhood Search algorithm (N2S) proposed
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in [84]. The concrete implementation process of DRL on the electric auto-dolly schedul-

ing problem is presented in Figure 4.2, which illustrates an example with 3 dollies, 3

recharge stations, and 6 flights. Our DRL policy follows a heuristic improvement pol-

icy to learn to improve the solution quality. First, the DRL encoder integrates the node

features and positional features to embed an electric auto-dolly scheduling solution, in

which the self-attention correlations of node and positional features are computed indi-

vidually, respectively. Following the network in N2S, a Synthesis Attention (Synth-Att)

mechanism is adopted to generate enhanced problem embeddings by synthesizing the two

attention scores. After that, taking the encoder output as input, two DRL decoders are

proposed to generate the node removal and reinsertion actions, respectively. Besides, the

RL training algorithm also follows the settings in [84], which is the proximal policy opti-

mization that integrates n-step return estimation and the curriculum learning strategy. The

main components of DRL are introduced in the following sections.

Figure 4.2: The inference framework of the RL-based electric auto-dolly scheduling al-
gorithm.
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4.4.1 Synth-Att mechanism enhanced encoder

We follow the network structures of the encoder to generate the problem embeddings for

our electric auto-dolly scheduling problem.

Taking the state st = {{n(a)}a∈|NL|, {pt(a)}a∈|NL|,H(t,K)} as input, the encoder

is designed to learn problem embeddings and current solution representations from input

{n(a)}a∈|NL| and {pt(a)}a∈|NL|. Specifically, the inputs are first projected into two kinds

of embeddings, i.e., node feature embeddings (NFEs) {ha}|NL|
a=0 and positional feature em-

beddings (PFEs) {ga}|NL|
a=0 . For each node a, NFE ha with dimension dh = 128 is set to be

the linear projection of its node features n(a). PFE ga with dimension dg = 128 is gener-

ated by the Cyclic Positional Encoding (CPE) scheme [84], which is an improvement on

the positional encoding scheme in Transformers and can encode cyclic sequences more

accurately. Besides, NFEs are set to serve as the primary set of embeddings, while PFEs

function as auxiliary ones. Thus the multi-head auxiliary attention scores learned from

PFEs can be obtained as follows,

αaux
a,b,m =

1√
dk

(gaW
Qaux
m )(gbW

Kaux
m )T (4.15)

where WQaux
m ∈ Rdg×dq ,WKaux

m ∈ Rdg×dk are network parameters. m is the number of

heads in the multi-head attention mechanism. Herem is set to 4, dq, dk, and dg are all set

to 32.

According to [72], directly integrating the two sets of embeddings can introduce unde-

sired noise to self-attention. To solve this problem, a straightforward and versatile Synth-

Att mechanism is introduced to the DRL, which functions by incorporating a MultiLayer

Perceptron (MLP) (2m ∗ 2m ∗m). The original self-attention scores from NFEs and the

above auxiliary attention scores from PFEs are combined and fed into an element-wise

MLP, allowing Synth-Att to synthesize them into comprehensive ones. The details are

presented below,
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First, the self-attention scores αself
a,b,m for NFEs is counted according to the parameters

WQ
m ∈ Rdh×dq andWK

m ∈ Rdh×dk form heads as follows,

αself
a,b,m =

1√
dk

(haW
Q
m)(hbW

K
m )T (4.16)

Thereafter, the attention scores αaux and αself are together fed into an element-wise three-

layer MLP for computing the synthesized attention scores as follows,

αSynth
a,b,1 , ..., α

Synth
a,b,m = MLP(αself

a,b,1, ..., α
self
a,b,m, α

aux
a,b,1, ..., α

aux
a,b,m) (4.17)

Then, a Softmax layer is adopted to further normalize the obtained synthesized attention

scores for each head m, and the output is α̃a,b,m. Finally, the outputs of the Synth-Att

mechanism are given by Formula (4.19) with parameterWO ∈ Rmdv×dh(dv=dh/m).

heada,m =

NL∑
b=1

α̃a,b,m(hbW
NL
m ) (4.18)

h̃a = Concat[heada,1, ..., heada,m]WO (4.19)

To enhance the problem representation ability of the DRL, L encoders are stacked to

construct the final DRL encoder (L = 3). It is noted that the proposed encoder retains the

structural integrity of the Transformers encoder, while replacing the original multi-head

self-attention mechanism with the multi-head Synth-Att module.

4.4.2 DRL Decoder

The decoder designed in N2S is specifically designed for pickup and delivery problems.

Here wemake further improvements to extend it to VRP applications. The DRL decoder is

designed to output two actions: node removal action and node reinsertion action. Firstly,

the max-pooling layer is adopted to transfer the global representation of all embeddings
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into each individual one for each node a as follows,

ĥa = h̃aW
local
h +max[{h̃a}

|NL|
a=1 ]W

global
h (4.20)

Then the enhanced embedding h̃a is input into the node removal decoder to choose the

node to remove. After that, the node insert decoder integrates h̃a and the node removal

decoder output to choose the node reinsertion location. The detailed structure of the node

removal decoder and the node reinsertion decoder is introduced as follows:

Node removal decoder. Given the enhanced embeddings {ĥa}|NL|
a=1 and the action

history H(t,K), the node removal decoder outputs a probability distribution over |NL|

nodes to decide the removal node. Specifically, it first computes an evaluation score λa

for each a ∈ NL to measure the cross attentions between node a and its neighbor nodes as

follows:

λa = (ĥpred(a)W
Q
λ )(ĥaW

K
λ )T + (ĥaW

Q
λ )(ĥsucc(a)W

K
λ )T (4.21)

− (ĥpred(a)W
Q
λ )(ĥsucc(a)W

K
λ )T (4.22)

where pred(a) and succ(a) are defined as the former and the successor nodes of a, re-

spectively, and WQ
λ ∈ Rdh×dh ,WK

λ ∈ Rdh×dh . λa,1 to λa,m are obtained by using the

multi-head technique, which are then fed into a three-layer MLPλ (m + 4, 32, 32, 1) for

each node as follows,

Λ̃a = MLPλ(λa,1, ..., λa,m, c(a),1last(1)=a,1last(2)=a,1last(3)=a) (4.23)

where c(a) represents the frequency of node a being selected as a removal node in the

last K steps, and 1last(1)=a equals to 1 if node a was selected in the last step at time t; 0

otherwise. The final probability distribution for choosing the removal node is obtained by

the activation of a Tanh function and the normalization by a Softmax function.
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Node reinsertion decoder. Input a designated removal node b and the current state

st, the reinsertion decoder is designed to generate the probability distributions for reposi-

tioning the removed node. Specifically, it computes insertion likelihoods for placing node

a after each candidate position in the existing solution sequence. We designed two eval-

uation metrics µp[a, b] and µs[a, b] to measure the likelihoods of node a accepting node b

as its new predecessor and successor nodes, respectively,

µp[a, b] = (ĥaW
Qp
µ )(ĥbW

Kp
µ )T (4.24)

µs[a, b] = (ĥaW
Qs
µ )(ĥbW

Ks
µ )T (4.25)

where WQp
µ ,WQs

µ ∈ Rdh×dh ,W
Kp
µ ,WKs

µ ∈ Rdh×dh . Taking the scores as input, the de-

coder predicts the distribution of reinserting node a after node b using MLPµ (2m ∗ 31x ∗

32 ∗ 1),

µ̃b = MLPµ(µp
1[succ(b), i], ..., µ

p
m[succ(b), a], µ

s
1[b, a], ..., µ

s
m[b, a]) (4.26)

where pred(∙) and succ(∙) is considered in the new solution without the node i. Similar

to the node removal decoder, a Tanh function is also applied for activation, and infeasible

nodes are masked before implementing the normalization by Softmax. Finally, a node b is

sampled from all nodes in NL according to the obtained distribution, which indicates that

the location of reinserting the node a is right behind node b.

4.4.3 RL training algorithm

We follow the Proximal Policy Optimization [99] with n-step return estimation and a Cur-

riculum Learning strategy (n-step PPO with CL strategy) used in [84] for the DRL policy

training. PPO is a type of policy gradient reinforcement learning algorithm that strikes

a balance between simplicity and performance. It is widely used due to its simplicity
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and strong performance across various tasks. Besides, a critic network is introduced here

to enable the implementation of the actor-critic variant of PPO, which can facilitate the

convergence of the PPO policy. Besides, the CL strategy is used here to avoid the agent

lacking the opportunity to explore high-quality solutions during training by gradually im-

proving the quality of initial states. Moreover, the n-step return estimation strategy extends

the standard PPO by using n-step returns for updating the policy. Thus, the advantage es-

timates are calculated using returns over n steps rather than just single-step transitions,

which can facilitate the model convergence and decrease the variance.

4.5 CASE STUDY

4.5.1 Experiment settings

The server infrastructure for this study comprised 4 RTX 4090 Ti GPU accelerators paired

with an Intel Xeon Platinum 8370C multi-core CPU (2.80 GHz base frequency), ensuring

parallel processing capabilities. Instances with three sizes, 20, 50,and 100 are designed,

where the nodes of each instance are uniformly located in the unit square [0, 1]×[0, 1].

Besides, the initial solution δ0 is generated randomly. Since the case of the depot and

recharge stations being visited multiple times by multiple auto-dollies may exist, the solu-

tion length for each instance might be longer than |F |+ 1. There is also a possibility that

the length of multiple solutions varies on the same instance, this is because the number

of sub-routes and vehicles may be different in different solutions. To solve this problem,

multiple dummy depots and recharge stations are added to the end of the initial solutions.

Each dummy depot can be regarded as one available dolly, and the number of dummy

recharge stations indicates the allowed times of recharging for all dollies. In our experi-

ments, we set 10, 20, and 30 dummy depots, and 5, 10, and 20 dummy recharge stations

for three problem sizes, respectively. The time windows of flights randomly generated

from a planning horizon [0, 480]min, the auto-dolly speed is set to 20 km/h, the auto-
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dolly endurance is set to Pm = 120min, the time for loading or unloading baggage is set

to tM = 10min, and the recharge speed is set to r = 4. To facilitate the model training,

the planning horizon is scaled into [0, 1]min. Follow this, Pm is scaled to 120/480min, tM

is set to 10/480min.

4.5.2 Benchmark methods

Three algorithms are used in this experiment to compare and verify the proposed DRL

method’s performance as follows.

1. Gurobi: Gurobi is a state-of-the-art optimization solver designed to solve a wide

range of mathematical programming problems. It functions here by providing a

reference to the solution upper bound and giving a rough estimate of the problem

complexity.

2. FAFS: First Arrive First Service algorithm (FAFS) assigns dollies to flight tasks

in the order in which the service time window begins and dispatches the dolly that

reaches the task node earliest. It is widely adopted with practical reference signifi-

cance [74].

3. ALNS: Adaptive large neighborhood search integrates the advantages of multiple

human-designed local operators, whichworks well in vehicle routing problems [39].

It is noted that all iterative algorithms share the same reference time (number of inference

interactions) Tinfer as our proposed DRL method.

4.5.3 Comparison experiments

The comparison experiments are developed on the instances of size 20, 50, and 100 with

the uniform distribution. For ALNS and our DRL algorithm, we run each instance 20 times

with randomly generated seeds, and the average result is taken for comparison as shown

58



in Table 4.3. Besides, ”ObjV” indicates the objective value of the obtained solution, and

”T_run” indicates the running time of the algorithm.

It can be seen that the solver Gurobi can only get the optimal solutionwhen the problem

size is smaller than 50. Besides, ALNS can reach the near-optimal solution for small and

medium-sized problems, but requires a long solving time. Compared to them, our DRL

algorithm can reach a relatively satisfactory performance with a short running time, and

the change in problem size has little effect on the running time.

Table 4.3: Results comparison on instances of small, medium, and large scales.

|F| Gurobi ALNS FAFS Ours
ObjV T_run (s) ObjV T_run (s) ObjV T_run (s) ObjV T_run (s)

20 0.008709∗ 0.538 0.009951 40.659 0.012760 0.073 0.010993 0.118
50 0.020538∗ 33.071 0.023371 263.415 0.031472 0.306 0.030841 0.219
100 - 7200 0.051855 1145.631 0.061057 0.877 0.059311 0.351

*: The optimal solution is obtained.
-: The feasible solution is not obtained within the required time.

4.5.4 Generalization experiments

The generalization ability of our DRL algorithm is verified on instances with different

problem sizes and distributions. For comparison, the node coordinates of test instances of

size 20, 50, and 100 are generated on the unit square [0, 1]×[0, 1] with the normal, cluster,

and center distribution, respectively. The example instances are shown in Fig. 4.3. In this

experiment, the models are trained with instances in the uniform distribution with sizes of

20 and 50, respectively. The generalization performance and gaps to optima on instances

of small and middle sizes with different distributions are shown in Table 4.4 and Table

4.5, respectively.

It can be seen that our DRL algorithm also shows good performance when being tested

with unknown instances in the cluster and center distribution. Specifically, for the in-

stances in three distributions with sizes of 20 and 50, the difference between the results

of our algorithm and the optimal solutions obtained by Gurobi is in the range of [21%,
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(a) size 20, uniform (b) size 20, cluster (c) size 20, center

(d) size 50, uniform (e) size 50, cluster (f) size 50, center

(g) size 100, uniform (h) size 100, cluster (i) size 100, center

Figure 4.3: Example instances of size 20, 50, and 100with the uniform, cluster, and center
distribution.

Table 4.4: Generalization performance on instances with different instance scales and
distributions.

Train Uniform Cluster Center
20 50 100 20 50 100 20 50 100

Uniform 20 0.010993 0.030846 0.059313 0.005818 0.016527 0.032014 0.003668 0.009902 0.019938
50 0.012604 0.030841 0.059311 0.005848 0.016525 0.032022 0.003666 0.009900 0.019945
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Table 4.5: Gaps to Optima on instances of small and middle size with different distribu-
tions.

Train Uniform Cluster Center
20 50 20 50 20 50

Uniform 20 26.23% 50.19% 21.24% 49.81% 24.57% 50.37%
50 26.35% 50.17% 21.88% 49.79% 24.52% 50.33%

27%] and [49%, 51%], respectively. Besides, the models trained with instances of prob-

lem sizes 20 and 50 have little difference in generalization performance, which indicates

that the reward space is effectively sampled.

4.6 CONCLUDING REMARKS

In this chapter, an electric auto-dolly scheduling problem for sustainable airport baggage

transport service is investigated. In practice, one flight usually requires multiple dollies,

and such divisible demands setting will greatly increase the complexity of dolly schedul-

ing. It is even more complex as dollies are required to complete baggage transport within

the required time window while recharging at the right time without compromising oper-

ational efficiency.

To tackle these challenges, a simplified electric auto-dolly scheduling model is pro-

posed, which effectively decreases the model-solving complexity. Then, a scheduling

algorithm that integrates deep reinforcement learning and the Transformers variant is de-

veloped. To effectively represent the problem characteristics and improve the algorithm

convergence speed, the service time of flight tasks and the auto-dolly battery status are

specifically embedded into the state space. Besides, a pair of destroy and reinsertion de-

coders are designed based on the model of Transformers to facilitate the solution quality

improvement under the improvement heuristic policy. Finally, extensive experimental

case studies are conducted to verify the effectiveness and generalization performance of

the proposed method and provide benchmarks for future works.
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5 EMPIRICAL ANALYSIS

This chapter introduces the empirical analysis of baggage transport service based on the

scenario of the Hong Kong International Airport. First, we built an integrated airport

ground vehicle simulation platform based on the collected flight data and the ground ve-

hicle road network obtained by SUMO of the Hong Kong International Airport. Secondly,

to evaluate the operating costs and carbon emissions of baggage transport service under

tractor-trailer and electric auto-dolly modes, the energy consumption models of fuel trac-

tors and electric auto-dollies are formulated. Finally, based on the simulation platform

and the above model, the practical application of baggage transport service is analyzed,

including the comparison between the two operating modes in operating costs and carbon

emissions, and the prediction of the sustainable development of baggage transport service

in the future.

5.1 SIMULATION PLATFORM CONSTRUCTION

The construction of the simulation platform mainly includes the process of flight data

collection and road network construction. The detailed implementation is described as

follows.

5.1.1 Flight data collection

The flight data of HKIA is obtained from the HKIA official website via Python’s open

source library request [100]. Fig. 5.1 shows some samples of flight information provided
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by the HKIA official website. A piece of departing flight information includes the airline,

flight number, scheduled departure time, actual arrival time, boarding gate, etc. A piece of

arriving flight information includes the airline, flight number, scheduled departure time,

actual arrival time, aircraft parking stand, etc. We mainly collected flight data for eight

months from March to May 2023, September to November 2023, and June to July 2024.

(a) Departing flights

(b) Arriving flights

Figure 5.1: Flight information samples of HKIA.

5.1.2 Road network construction

The construction of the map for the simulation platform involves three steps. Firstly, the

airport ground area to be modeled is determined on the satellite map of HKIA, as shown

in Fig. 5.2 (a). Here we mainly model the area around Terminal 1, including 61 aircraft

stands. This is because the aircraft stands near Terminal 1 are typically near aircraft stands

(connected to the corridor bridge), so the stand number corresponds to the gate number

one by one, which can facilitate us to query the aircraft stand according to the boarding
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gate for departing flight as Table 5.1. Next, the road information file for airport ground

service vehicles in the selected area is downloaded from the OpenStreetMap (OSM), as

shown in Fig. 5.2 (b). OSM is a collaborative project to create a free, editable map of

the world, which provides a wealth of geographic data. Finally, the above file is imported

into the SUMO. SUMO is an open-source, highly portable, microscopic, and continuous

road traffic simulation package designed to handle large road networks. We further edit

the road network, marking the locations of the parking stands and BHA to generate the

final road network as shown in Fig. 5.2 (c).

Furthermore, we extract the length, start node, and end node of each road in this net-

work to generate the adjacency matrix of the road network with stand and BHA as nodes

using the Dijkstra algorithm. This allows us to quickly get the distance between any two

stands, or between one stand and the BHA, facilitating the operation of vehicle scheduling

algorithms.

By constructing these detailed scenario maps using satellite imagery and road network

data, the simulation platform can accurately simulate the HKIA scenario, enabling the

simulation and evaluation of various airport service vehicle scheduling optimization.

Table 5.1: The correspondence between boarding gates and aircraft stands.

Boarding Gate 1 2 3 4 5 6 7 8 9 10 11 12
AIrcraft Stand S1 S2 S3 S4 N5 N6 N7 N8 N9 N10 S11 N12

Boarding Gate 13 14 15 16 17 18 19 20 21 23 24 25
AIrcraft Stand R13 R14 R15 R16 R17 R18 R19 R20 R21 S23 N24 S25

Boarding Gate 26 27 28 29 30 31 32 33 34 35 36 40
AIrcraft Stand N26 S27 N28 S29 N30 S31 N32 S33 N34 S35 N36 W40

Boarding Gate 41 42 43 44 45 46 47 48 49 50 60 61
AIrcraft Stand S41 W42 S43 W44 S45 W46 S47 W48 S49 W50 N60 W61
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(a) Satellite map of chosen area in HKIA (b) Road network in OSM

(c) Road network in SUMO

Figure 5.2: HKIA ground map construction process.
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5.2 SUSTAINABLE DEVELOPMENT ANALYSIS OF AIRPORT

BAGGAGE TRANSPORT SERVICE

5.2.1 Vehicle energy consumption and carbon emission models

This section introduces the energy consumption and carbon emission models for airport

baggage transport vehicles. Because trailers are non-motorized, we focus on the tradi-

tional fuel tractors and electric auto-dollies here. The notations used in this chapter are

introduced in Table 5.2, and the parameter value settings follow the settings in [28] and

[101]. Moreover, the emission factor of diesel oil kf is set referring to the report of the

Intergovernmental Panel on Climate Change. The carbon emissions of the power grid can

be regarded as the carbon emissions of electric vehicles since electric vehicles produce

little carbon emissions during driving. Thus ke is set to 0.6 kg/kWh, which is the carbon

emission factor of China Southern Power Grid in 2023.

Table 5.2: Notations for Chapter 5.

Parameters Meaning Value

ρ Air density 1.2041 kg/m3

Af The frontal area of the vehicle 3.912 m2

CD Coefficient of Aerodynamic drag 0.6
frl Rolling resistance constant 0.03
g Gravity acceleration 9.81 m/s2

η Diesel engine efficiency 0.4
ηtf Travel train efficiency 0.9
ηd Driveline efficiency 92%
ηm Electric motor efficiency 91%
ξ Fuel-to-air mass ratio 1
κ Heating value of typical diesel fuel 44kJ/g
Ψ Unit conversion factor 737 L/g
fc Engine friction factor 0.2 kJ/r/L
N Engine speed 33 r/s
D Engine displacement 5 L
kf Emission factor of diesel oil 0.074 kg/MJ
ke Emission factor of electricity power grid 0.6 kg/kWh
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Mechanical energy calculation. First of all, according to basic physics, the required

tractive effort for a vehicle driving is determined by three major resistances described as

follows [102]:

F = mka+ Fa + Frl + Fg (5.1)

whereF is the tractive effort;mk is vehiclemass; a is vehicle acceleration, andFa,Frl, and

Fg are aerodynamic, rolling, and grade resistances, respectively, which can be calculated

by:


Fa = kv2 =

ρ

2
CDAfv

2

Frl = frlmkg

Fg = mkg sin θ

(5.2)

Combining Formulas. (5.1), (5.2), then the required power p can be expressed as:

F = mka+
ρ

2
CDAfv

2 + frlmkg +mkg sin θ (5.3)

The above equation can be applied to both fuel and electric vehicles. Assuming that

airport ground roads are flat and tractors are traveling at a constant speed, thus θ = 0, a =

0 m/s2. Thus, the required power p (in W ) for a vehicle traveling at v to generate the

above tractive force can be estimated using the following formula:

p = F · v = (
ρ

2
CDAfv

2 + frlmkg)v (5.4)

Fuel and electricity consumption model. The fuel consumption fuv (in L) of a fuel
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vehicle traveling from node u to v can be obtained by:

fuv =
ξ

κΨ
(fc ·N ·D +

p

ηηtf
) · tuv (5.5)

Given the required mechanical power, the energy consumption guv of an electric ve-

hicle traveling from node u to v can be defined by:

guv =
ptuv
ηdηm

(5.6)

where tuv (in s) is the time required for traveling from node u to v.

Carbon emission model. The mass of CO2 emission produced by a fuel and electric

vehicle traveling from node u to v can be obtained by Formula (5.7) and (5.8), respectively.

emf
uv = kf · fuv (5.7)

eme
uv = ke · guv (5.8)

5.2.2 Fleet settings

To analyze the operating costs, energy consumption, and carbon emission when operating

airport baggage transport service under two different modes practically, we investigated

some energy consumption-related parameters of fuel tractors and electric auto-dollies, as

shown in Table 5.3, referring to [28]. It is noted that the energy capacity and replenish-

ment process of fuel tractors can be ignored because of the high range and short refueling

time of fuel vehicles [28]. Besides, the unit electricity energy cost is set according to the

announcement of CLP Power Limited in November 2023; the diesel oil price refers to the

announcement of the Hong Kong Consumer Council in August 2024. The operating costs

of the tractor-trailer mode and the electric auto-dolly mode are defined by the fuel and

electricity costs, respectively, which are calculated by multiplying the unit energy price
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by the energy consumption.

Along with the settings in Chapter 3, the number of trailers/dollies required by each

flight is randomly set to 2 or 3. The allowed duration of baggage transport is set as tF = 60

minutes, the average baggage loading or unloading time tM = 10 minutes, the capacity

of the tractor Q = 6, and the speed of the tractor/dolly to be 20 km/h. The number of

tractors, trailers, and dollies is set to 30, 50, and 50, respectively.

Table 5.3: Parameters of fuel tractors and electric auto-dollies.

Parameters Fuel tractor Electric auto-dolly

Energy capacity - 100 kWh
Available energy capacity - 100 kWh*70%
Vehicle mass 4000kg 1200kg
Energy dissipation rate - 4
Average Speed 20 km/h 20 km/h
Unit Energy Price 22.45 HKD/L 1.429 HKD/kWh
Energy replenishment rate - 90 kW

5.2.3 Comparison of two airport baggage transport service modes

At present, the mainstream airport baggage transport service is generally operated by trac-

tors and trailers, and with the electrification and intelligence of airports, the future bag-

gage transport service may be operated by electric auto-dollies. To analyze the differences

between the twomodes in terms of operating costs, sustainable development, etc., the bag-

gage transport vehicle scheduling experiments are conducted on practical cases in various

periods.

We first counted the average number of flights per day in a week and the average

number of flights per two hours in a day, the statistical results are shown in Fig. 5.3. It can

be seen that the days in a week with the fewest and most flights are Monday and Sunday,

respectively. This is also in line with practical experience, as passengers tend to travel

more on weekends. Besides, there are significant peaks and lows of flight numbers at
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different times in a day, which can be defined as 10:00-20:00 and 0:00-10:00, respectively.

Based on the above statistical results, we chose all Mondays and Sundays in March 2023

for the experiment. The reason for choosing March 2023 is that there are no additional

public holidays in 2023 March in Hong Kong, so the statistical regularity of flight data

will not be affected by holidays.

(a) The average number of flights per day for a week

(b) The average number of flights per two hours in a day

Figure 5.3: The average number of flight statistics.

The performance of the tractor-trailer mode and the electric auto-dolly mode is com-

pared here. Table 5.4 displays the comparison results on the cases of Monday and Sunday,

while Table 5.5 shows the comparison results on the cases of peak and low periods. The
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experimental results are evaluated based on the travel time, number, operating costs, and

carbon emission mass of all used vehicles. Firstly, the baggage transport service under

the electric auto-dolly operation mode consumes less operating costs and generates less

carbon emissions in the case of different time periods. The 30 tractors consume 6300-

7100 HKD per day and emit 700-780 kg of CO2; the average daily cost of 50 dollies is

210-220 HKD and the carbon emissions are 80-100 kg. Therefore, the daily operating

costs and carbon emissions of the electric auto-dolly mode are about 3% and 12% of the

tractor-trailer mode, respectively. The main energy consumption during the day is obvi-

ously during the peak hours. Fig. 5.4 shows that under both operation modes, the energy

consumption during the 10-hour peak period reaches are at least 60%.

Table 5.4: The comparison of two modes on the cases of Monday and Sunday.

Tractor-Trailer Mode Electric Auto-dolly Mode
Travel
Time (h)

Trailer
Number

Tractor
Number

Cost
(HKD)

CO2
(kg)

Travel
Time (h)

Dolly
Number

Cost
(HKD)

CO2
(kg)

Mon.

23/3/6 45.78 35 17 6406 702 62.47 50 211 89
23/3/13 45.94 36 18 6430 705 62.36 50 210 89
23/3/20 42.80 35 17 5989 656 60.12 50 203 85
23/3/27 46.72 36 19 6538 716 64.42 50 217 91
Avg. 45.31 35.5 17.75 6341 695 62.35 50 210 88

Sun.

23/3/5 48.21 38 20 6747 739 64.86 50 219 92
23/3/12 45.91 39 18 6425 704 63.42 50 214 90
23/3/19 47.82 40 19 6692 733 65.54 50 221 93
23/3/26 50.68 38 19 7093 777 65.62 50 221 93
Avg. 48.16 38.75 19 6739 739 64.86 50 219 92

(a) Tractor-trailer mode (b) Electric auto-dolly mode

Figure 5.4: The percentage of energy consumed at peak, low, and other times of the day
in two operation modes.

71



Table 5.5: The comparison of two modes on the cases of peak and low in one day.

Tractor-Trailer Mode Electric Auto-dolly Mode
Travel
Time (h)

Trailer
Number

Tractor
Number

Cost
(HKD)

CO2
(kg)

Travel
Time (h)

Dolly
Number

Cost
(HKD)

CO2
(kg)

Peak

Monday

23/3/6 28.88 49 25 4042 443 34.24 50 116 49
23/3/13 27.33 47 26 3825 419 34.38 50 116 49
23/3/20 28.21 48 24 3948 433 35.03 50 118 50
23/3/27 29.60 50 29 4142 454 37.55 50 127 53

Sunday

23/3/5 28.25 47 27 3953 433 34.57 50 117 49
23/3/12 28.33 50 27 3964 434 35.75 50 121 51
23/3/19 28.34 50 26 3966 435 36.50 50 123 52
23/3/26 32.05 48 27 4485 491 38.70 50 131 55

Avg. 28.87 48.63 26.38 4041 443 35.84 50 121 51

Low

Monday

23/3/6 8.99 21 9 1258 138 17.11 50 58 24
23/3/13 11.11 25 11 1555 170 17.84 50 60 25
23/3/20 8.35 20 9 1169 128 17.01 50 57 24
23/3/27 9.16 18 8 1282 141 10.93 50 37 16

Sunday

23/3/5 11.01 27 12 1540 169 19.00 50 64 27
23/3/12 9.14 25 9 1279 140 17.59 50 59 25
23/3/19 10.71 26 11 1499 164 19.16 50 65 27
23/3/26 10.61 24 10 1484 163 17.08 50 58 24

Avg. 9.88 23.25 9.875 1383 152 16.97 50 57 24

Secondly, the total travel time of all dollies is longer than that of all tractors, due to the

capacity limitation of dollies and the multi-trailer capacity of tractors. However, electric

auto-dollies are more advantageous in terms of energy and cost savings, the reasons may

include the following: 1) the electric motor efficiency of electric vehicles is usually higher

than the internal combustion engine efficiency of fuel vehicles; 2) Hong Kong has a strong

ability of power generation, about 3/4 of the electricity is locally supplied; 3) The Hong

Kong Government is actively promoting the process of carbon neutrality and encouraging

the use of clean energy through electricity subsidy policy; 4) The diesel oil price in Hong

Kong has shown a slow and steady rising trend in the past two years, as shown in Fig. 5.5.

The experimental results show different potential and advantages of the two modes in

different aspects. Generally, it is recommended to use the tractor-trailer mode in daytime,

since tractor-trailer operations require skilled ground staff, daytime shifts align with staff

availability, ensuring efficient manual coordination during busy periods. Besides, electric

auto-dolly mode is more suitable to adopt at night, as there will be a lower electricity price

at night than during the day. We could also restrict dollies to high-density zones to ensure
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the electricity supply while covering critical routes. To bridge both modes’ strengths, it

may also be a good choice to replace diesel tractors with electric tractors, retaining multi-

trailer capacity while cutting emissions.

Figure 5.5: The diesel oil price trend of five companies in Hong Kong.

In addition to the above analysis, there are many other factors that may affect the

practical application of the two modes. For example, the new electric auto-dolly, which

is equipped with multiple sensors and robotic arms, is likely to be more expensive and

maintain than the traditional fuel tractor and trailer. The labor cost of the two modes

is reflected in different aspects. The use of tractors and trailers requires hiring external

airport ground handling staff, like tractor drivers, workers for baggage loading/unloading,

etc., while using electric auto-dolly requires more management talent and engineers, and

comes with higher training costs. Finally, our experiment and analysis are mainly based

on the scenario of the HKIA. The differences of different airports in scale, ground road

network, busyness, and local economic level may lead to different suitable modes.

5.2.4 Energy consumption prediction of baggage transport service

According to the analysis in the above section, it is found that the electric auto-dolly mode

has the advantages of low operating cost, low energy consumption, and low carbon emis-

sion, whichmeet the needs of airport intelligence and sustainable development. Therefore,
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we analyze the future energy consumption of baggage transport service based on the elec-

tric auto-dolly mode here.

We first generated cases on a daily basis, conducted experiments on all the collected

flight data, and then obtained seven sets of monthly dolly operating times. Based on

this, a linear regression analysis is conducted on the monthly number of flights Fm and

the monthly dolly travel time Tm. The results are shown in Fig. 5.6 and the following

formula:Tm = 0.02Fm − 117.07 (h).

Figure 5.6: The linear regression analysis on the monthly number of flights and monthly
dolly travel time.

Next, we use Seasonal Auto-regressive Integrated Moving Average (SARIMA) to

forecast the monthly flight number from January 2025 to December 2026 based on the

monthly flight number at HKIA from January 2021 to December 2024. SARIMA is the

extension of ARIMA for analyzing time series data with seasonal patterns [103]. It com-

bines seasonal differencing, auto-regressive (AR), and moving average (MA) terms to

model both non-seasonal (p, d, q) and seasonal (P,D,Q, S) parameters. This method is

widely used for forecasting data with trends and recurring cycles, such as monthly sales

or temperature variations. The optimized SARIMA parameters using Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC) are as follows: p = 0, d =

1, q = 0, P = 1, D = 1, Q = 0, S = 12. The prediction result is shown in Fig. 5.7. The

Mean Absolute Percentage Error (MAPE) of flight number prediction is 10.27%.
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According to the above analysis, the predicted flight number and energy consumption

of airport baggage transport service from January 2025 to December 2026 under the elec-

tric auto-dolly mode is shown in Fig. 5.8. As we forecast that the air traffic of HKIA will

continue to grow, the operating costs and carbon emissions of the airport baggage trans-

port service will also continue to increase. However, the impact from this growth can be

mitigated by further optimizing the electric auto-dolly scheduling strategy.

Figure 5.7: The fitted and forecasted number of flights by SARIMA.

Figure 5.8: The predicted monthly auto-dolly travel time, operation costs, and emissions
from Jan 2025 to Dec 2026.
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6 CONCLUSIONSANDSUGGESTIONSFORFUTURE

RESEARCH

In order to keep up with the needs of the booming aviation industry, the smart and sus-

tainable development of airports around the world has been gradually promoted. Efficient

airport baggage transport service plays a key role in enhancing airport operational effi-

ciency and service quality. Traditional baggage transport is managed through the collab-

oration of tractors and trailers operating under the drop-and-pull mode. Recently, new

electric auto-dollies have been gradually introduced in airport baggage transport service

to foster the intelligent and sustainable development of airports. In this context, it is of

great significance to investigate the baggage transport vehicle scheduling problem under

two operating modes, tractor-trailer mode and electric auto-dolly mode, to promote the

development of airport ground handling. However, the coordinated scheduling of tractors

and trailers poses significant challenges due to the complex interactions among tractors,

trailers, and flights. Besides, the difficulties of scheduling electric auto-dollies mainly

come from the demand for charging and the large problem scale. Additionally, airport

ground handling is highly dynamic and uncertain, especially at busy hub airports.

To optimize the baggage transport vehicle scheduling under the two modes and ana-

lyze the sustainable development prospect of airport baggage transport service, this study

mainly includes the following three aspects. The multi-trailer drop-and-pull baggage

transport problem is first investigated. A two-stage scheduling model for tractors and

trailers is developed, along with an efficient hybrid intelligence-based solution algorithm.
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Specifically, the Adaptive Large Neighborhood Search forms the foundation of the algo-

rithm, enhanced with carefully designed operators. Additionally, two key methods are

introduced to boost the algorithm’s efficiency: a K-means clustering-based initialization

method and a topological sort-based solution evaluation method. The validity of the above

methods and operators is verified by simulation experiments.

Secondly, the electric auto-dolly scheduling problem for airport baggage transport is

researched. To solve this, a simplified scheduling model is established, which is then for-

mulated into a Markov Decision Process with a heuristic improvement policy. Then, a

deep reinforcement learning-based scheduling algorithm is developed, in which the struc-

tures of the encoder and decoder are based on the model of the Transformers variant. In

addition, the solution features about service time and vehicle power are specifically added

to the problem embeddings, thereby improving the algorithm’s convergence speed. The

performance of our proposed algorithm has been verified through the comparison experi-

ment with other algorithms and the generalization experiment with different distributions

and different scale cases.

Finally, empirical analysis is conducted on the baggage transport service under these

two modes in the scenario of the Hong Kong International Airport (HKIA). The exper-

iments were carried out on the established integrated airport ground vehicle scheduling

simulation platform. Besides, we modeled the energy consumption and carbon emissions

of vehicles to support the analysis of the operating cost and sustainable development of

the airport baggage transport service. Experiment results show that the electric auto-dolly

mode has obvious advantages in terms of operating costs and carbon emissions, but it

may require higher vehicle purchase costs and labor costs. Moreover, the monthly flight

volume for the second half of 2024, as well as the monthly energy consumption and car-

bon emissions of airport baggage transport services under the electric auto-dolly mode, to

guide airports and related businesses.

In conclusion, this study solved the problem of scheduling airport baggage transport
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vehicles under the tractor-trailer mode and electric auto-dolly mode, and carried out nu-

merous simulation experiments and detailed empirical analysis. However, there are still

some limitations and deficiencies in this study. Firstly, the proposed two-stage algorithm

for tractor and trailer based on ALNS shows difficulties in solving large-scale cases, such

as providing vehicle scheduling schemes for full-day flights. Therefore, reinforcement

learning algorithms can be considered to realize integrated scheduling for tractors and

trailers in the future. Secondly, this study only considers the two scenarios of pure fuel

and electric fleet, but the mixed vehicle scheduling problem may be an important issue,

which may be encountered in the transition phase before the realization of airport full

electrification. Finally, based on the existing static scheduling results, it is also a possible

important future topic to dynamically adjust the scheduling scheme of baggage transport

vehicles using dynamic planning to cope with the high uncertainty and dynamics of flight

arrival and departure.
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