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Abstract 

 

The incomplete combustion of carbon-based fuels leads to the appearance of soot. 

It is required to predict and control soot emissions due to the detrimental effects on the 

environment and human health. Detailed soot models are based on aerosol dynamics, 

which is governed by the population balance equation (PBE). In the present study, 

solving the particle size distribution (PSD) of the PBE is conducted to deepen the 

understanding of aerosol dynamics and coupled with CFD to investigate soot formation 

and evolution in laminar and turbulent combustion flows. 

A new sorting algorithm-based merging weighted fraction Monte Carlo 

(SAMWFMC) method is firstly proposed and developed to solve the PBE of 

coagulation based on sorting algorithm and a new merging scheme. Numerical results 

of the SAMWFMC method show excellent agreement with analytical solutions and 

very low stochastic errors in different order moments of PSD. 

Instead of dealing with only one or several dynamic processes, a new sorting 

algorithm-based merging Monte Carlo method (SAMMC) capable of solving all 

aerosol dynamic processes is then proposed and developed based on a new neighbour 

merging method. Numerical results show that the SAMMC method has very high 

computational accuracy and can accurately deal with dynamic processes without 

introducing systematic errors. 

Simultaneously, a new OpenFOAM solver incorporating a detailed transport 

model is developed for reacting flow simulations. Systematic validations are conducted 

to evaluate its computational performance. The successful development and 

implementation of the accurate numerical framework provide a new CFD tool for the 

combustion community. 

A newly proposed dimer-based soot model involving various aerosol dynamics is 

then incorporated into the new numerical framework for investigating soot formation 

in laminar diffusion flames. Simulated soot volume fractions (SVFs) agree very well 

with experimental data under different oxygen mole fractions (XO) and strain rates (K). 
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With XO increasing or K decreasing, dimer production and surface growth are 

significantly enhanced, leading to an increase of SVF and skewness of SVF profile 

towards the fuel stream. 

To gain a deeper understanding of turbulence modelling, a new one-equation 

turbulence model is developed in the numerical framework, which combines the best 

characteristics of standard k-ε and Wilcox’s k-ω turbulence models. Numerical 

validation of benchmark flow configurations demonstrates that the new turbulence 

model has a great potential to predict flow separation and reattachment. 

Finally, the numerical framework coupling an extended soot sectional method 

with a finite-rate chemistry model is used for soot modelling in turbulent bluff body 

flames. Results show that the numerical framework can accurately predict the flow and 

flame properties and well capture the soot formation and evolution processes. With 

bluff body radius increasing, soot PSD remains a bimodal shape and shifts towards the 

larger soot aggregate side at the centerline and within the recirculation zone. 

Coagulation predominantly occurs at small soot aggregates, while PAH condensation 

and HACA surface growth take significant effect at large soot aggregates. 

In summary, numerical simulation of aerosol dynamics provides a better 

understanding of PSD evolution, and the newly developed CFD numerical framework 

demonstrates high capability in soot modelling. 
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Chapter 1 Introduction 

 

1.1 Research Background and Scope 

At present, burning coal, oil and natural gas generates the most part of energy consumed 

by human activities. Except for energy conservation, improving energy efficiency is 

particularly important due to the finiteness of these natural resources. Ideally, the products of 

complete combustion of hydrocarbons are H2O and CO2, resulting in the maximum heat 

released and energy generation available [1,2]. However, the phenomenon of incomplete 

combustion of fuels is ubiquitous in nature and human activities [2-5] due to locally insufficient 

oxygen [1,2,6,7], unavoidably leading to the universal appearance of soot in the process of fuel 

combustion. Anthropogenic factors related to the consumption of hydrocarbon fuels, such as 

generating electricity by firing coal or natural gas, driving vehicles running on gasoline or 

diesel fuels and cooking on the gas stove on a daily basis, are primarily responsible for the 

considerable number of soot emissions from the exhaust of the different types of combustion 

devices. It should be noted that soot is black carbons generated by incomplete combustion of 

hydrocarbon fuels, while particulates describe a great variety of liquid and solid particles 

including soot. 

Soot is a kind of small particles or aerosols produced by burning carbonaceous substances, 

and its size ranges from several nanometers (nm) to micrometers (μm) [3,4,7-9], which plays 

different roles in our daily life and industry. First of all, soot has an adverse impact on the 

environment as it is a main source of air pollution. The constantly high consumption and 

commonly incomplete combustion of carbon-based fuels have led to an increasing significant 

number of soot emissions. Although so far only restrictions on the total mass of soot are set out 

in most regulations, new regulations in the near future will call for control of soot number 

concentrations and particle size distributions (PSDs) due to the contributions of these two 

factors to the poor air quality. In addition, these small particles have posed a serious threat to 

human health because they may cause various particle-induced diseases including various 

respiratory diseases and even cancers due to the easy access of soot aerosols to the respiratory 

system and the lung. Safety issues such as traffic accidents may also happen due to limited 
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visibility caused by suspended particles in the air. On the other hand, a controllable number of 

soot aerosols of flame synthesis with a specific size distribution and fractal structure can be a 

kind of technologically advanced and commercially valuable materials due to its wide 

application in various industries [10-12]. For example, it is reported that soot can enhance the 

heat transfer by radiation in industrial furnaces [13], and filling soot in tyres can markedly 

increase the strength and wear-resistance of rubber required in the auto sector; the toner and 

ink of printers are mainly composed of soot while a specific amount of soot can be used to 

prepare fabric dye. Consequently, it is demanded for decreasing its detrimental effects on the 

environment and human health, concurrently making full use of its advantages for better 

catering for practical applications. This can be achieved by accurately predicting and 

controlling the formation and evolution, and fractal structure of these nano to fine particles on 

a case-by-case basis. Under these circumstances, having a complete knowledge of soot 

formation and evolution processes in combustion flows leading from gas-phase molecules to 

soot aerosols can lay a sound foundation for flexible applications of corresponding technology 

into practice. 

It is agreed that fuel-soot conversion occurs through a series of complex interactions, each 

of which involves a number of chemical and physical steps. Generally, soot formation and 

evolution are composed of inception, coagulation, agglomeration, surface growth and 

oxidation [4,8,12,14,15], which lead to the change of soot aerosol numbers or sizes. Non-linear 

and partial integrodifferential population balance equation (PBE) [5] governs these phenomena 

of number or size change, whose analytical solution only exists in a few special cases [9,10,16-

20] due to its complex characteristics. These obtained analytical solutions are of great 

significance and can be used as a useful benchmark for validating other numerical methods 

[10], but it is normally based on some rigid assumptions [21]. In consequence, the selection of 

suitable numerical methods can be a sensible choice in approximating the solution of the PBE 

[18,22].  

In order to solve the PBE for an aerosol system of interest, researchers have developed a 

number of methods aiming at different problems of aerosol dynamics, among which sectional 

method (SM), method of moments (MOM) and Monte Carlo (MC) methods are the most 

widely used. The SM is a discrete numerical approach to solve the PBE, which divides the 

particle size spectrum into several sections according to the particle sizes [22,23] and then 

disposes particle sizes by sections [18,22]. However, the solution accuracy of SM largely relies 
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on the discretized section number. It implies the number of sections which are related to the 

particle sizes should increase if a higher computational accuracy is required. This may result 

in fairly complex algorithms, the increase of computational cost (i.e., computational time and 

computer memory), and even numerical diffusion. The MOM can be used to solve the PBE 

and simultaneously deal with the problem of high computational cost, which is typically 

encountered in the SM. But the MOM is a quite different approach from the SM. Unlike the 

SM that attempts to solve the particle size distribution (PSD) of the PBE, the MOM aims to 

compute the moments of the PBE [10,24-26]. As a result, a closure problem arises which may 

introduce approximation error into the moment solutions. Although the MOM has a big 

advantage in computational cost, it seems to be not highly flexible in dealing with complex 

aerosol dynamics due to its complexity [27,28]. The MC methods are conducted by adopting 

representative numerical particles towards the processes of the PBE, and these processes are 

randomly implemented based on probabilities. The discrete nature of the MC can perfectly 

match the stochastic properties of Brownian motion of particles, which means that it can be 

possible to closely simulate the behavior of particles. Moreover, the evolution of any number 

of particles can be tracked [27,28]. Despite these advantages, problems of stochastic property 

and computational cost remain in MC methods. In addition, due to the restriction of the 

computer memory and central processing unit speed, solely a limited number of numerical 

particles could be used, which inevitably influences the computational precision.  

Except for straightforwardly adopting advanced computational techniques including high 

performance cluster (HPC) or graphic processing unit (GPU) to accelerate computations [29-

31], a great variety of MC algorithms including direct simulation Monte Carlo (DSMC) method 

[17], multi-Monte Carlo (MMC) method [32] and weighted fraction Monte Carlo (WFMC) 

method [33] have been developed to reduce the stochastic errors and to increase the 

computational accuracy of MC methods, especially for coagulation which is regarded as the 

most demanding process for modelling among various aerosol dynamics [32,34]. Although the 

WFMC method reduces the stochastic errors in high-order moments of the PSD compared with 

the DSMC and MMC methods, the stochastic error in the total particle number concentration 

becomes considerable large. In addition, the WFMC method has a stringent restriction on the 

fraction functions, making few fraction functions applicable to the WFMC method except for 

several specifically selected adjustable fraction functions. To overcome these limitations, the 

sorting algorithm-based merging weighted fraction Monte Carlo (SAMWFMC) method [35] 
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applicable to both adjustable and constant fraction functions is developed, which is aimed at 

solving the PBE in terms of coagulation with lower stochastic error. 

Most MC methods are specifically aimed at only one dynamic process or several dynamic 

processes of interest instead of dealing with all aerosol dynamic processes, which greatly 

restricts the application of these MC methods to simulate all aerosol dynamic processes. 

Although the stepwise constant-volume method [36] and mass-based and number-based 

constant-number methods [37] could possibly deal with all dynamic aerosol processes, their 

performance in computational accuracy and efficiency still require further improvement and 

enhancement. In addition, the new numerical particle population may not completely preserve 

the information of old numerical particle population. Therefore, the sorting algorithm-based 

merging Monte Carlo (SAMMC) method [38] is proposed and developed in the present study 

to tackle these technical problems. 

Besides aerosol dynamics, it is generally agreed that soot formation and evolution could 

be strongly influenced by the local reacting flow field involved, which requires coupling fluid 

dynamics with aerosol dynamics in soot modelling. Numerical simulations play an increasingly 

significant role in modelling soot aerosol dynamics in combustion flows due to the advancing 

computational methods and developing computational tools, and both macroscopic and 

microscopic information about soot formation and evolution may be possibly provided in detail 

besides experiment investigations. Normally, soot aerosols in the fluid flow can be treated as a 

continuous phase or a disperse phase in numerical simulations, which is called Eulerian and 

Lagrangian methods, respectively. In a Lagrangian method, each soot particle is tracked and 

their trajectories are obtained at an extremely high computational cost [39], leading to a limited 

number of applications of this method [39-50]. By comparison, it is very straightforward and 

computationally cheap to simulate soot aerosol dynamics in combustion flows by using 

Eulerian methods combined with computational fluid dynamics (CFD). 

Open-source Field Operation and Manipulation (OpenFOAM) software is a leading free 

open-source CFD platform using C++ language, in which customized libraries and numerical 

solvers as well as pre- and post-processing utilities can be developed to solve continuum 

mechanics problems based on the finite volume method. However, the molecular transport 

model integrated into a reacting flow solver is highly simplified in the original OpenFOAM 

codes [51,52], which is only acceptable and valid in some specific combustion cases. In 

addition, this simplified model is not capable of resolving all physical scales for new insights 
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into physical phenomena with direct or quasi-direct numerical simulations. To tackle this 

critical technical problem, a new library for calculating transport properties based on a detailed 

transport model is developed and coupled with a newly developed combustion solver called 

standardReactingFoam [53] for modelling reacting flows involving multi-species, in which a 

new utility for inputting molecular transport parameters required by the detailed transport 

model is also developed based on the numerical framework. 

Apart from enhancing the understanding of solving fluid flow and gas-phase chemistry, 

an enhanced knowledge of soot aerosol dynamic mechanism for combustion flows is 

essentially required in both scientific research and engineering applications. Due to the least 

understood soot inception mechanism, accurate modelling of gas-phase species and soot 

transport processes is challenging especially in laminar flows due to the differential diffusion 

[10]. Specifically, as the diffusivity of soot aerosols in laminar flows is remarkably lower than 

gas-phase species counterparts, differential diffusion between them should be considered for 

accurately modelling their transport processes in CFD simulations. Therefore, a new dimer-

based soot model is proposed and coupled with the newly developed numerical framework for 

simulating soot formation and evolution in laminar combustion flows, in which dimers are 

regarded as the link from polycyclic aromatic hydrocarbons (PAHs) to soot. 

The presence of turbulence characterized by rapid and random fluctuations of the flow 

velocity normally leads to closure problems, which originate from the nonlinear convection 

terms involving unknown fluctuating variables. These problems can be tackled by establishing 

a set of equations and introducing a turbulence model for the unknow quantities. To gain a 

deeper understanding of turbulence modelling in CFD, a one-equation turbulence model [54] 

combining desirable features in two-equation turbulence models is newly proposed and 

implemented into the newly developed numerical framework of OpenFOAM. 

As soot formation and evolution closely depend on the local gas-phase species and 

thermochemical conditions, successful soot prediction in a turbulent flow requires precise 

modelling of turbulence-chemistry and turbulence-soot interactions based on detailed 

chemistry. In finite-rate chemistry simulations, combustion described by detailed chemistry is 

solved in real-time to capture intricate chemical kinetics with high fidelity. Taking differential 

diffusion into account, soot could be fully coupled with the thermochemical state of the gas 

phase by simultaneously solving all governing equations together with considering turbulence-

chemistry interactions. When a SM is adopted to simulate soot aerosol dynamics in combustion 
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flows, detailed information on the local soot PSDs can be accessed directly [55]. Therefore, the 

newly developed OpenFOAM numerical framework coupling an extended soot sectional 

method with a finite-rate chemistry model based on detailed chemistry is developed for 

modelling soot aerosol dynamics in turbulent combustion. 

1.2 Research Motivation and Objectives 

Combustion of hydrocarbon fuels unavoidably leads to soot generation. The motivation 

of the present study is to develop a general numerical framework capable of studying soot 

formation and evolution in practical combustion devices with current and future fuels including 

ethylene, natural gas, liquefied petroleum gas and even hydrogen doping hydrocarbon fuels. 

Soot formation and evolution in combustion flows can be described by detailed soot models, 

which are normally composed of aerosol dynamics and chemical kinetics, therefore involving 

a series of complicated physicochemical processes involving nucleation, condensation, 

coagulation, aggregation, surface growth and oxidation. In the present study, a sorting 

algorithm-based merging weighted fraction Monte Carlo (SAMWFMC) method is proposed 

for specifically dealing with coagulation, and a new sorting algorithm-based merging Monte 

Carlo (SAMMC) method is then developed for simulating all aerosol dynamic processes, 

especially effective in those challenging aerosol dynamic processes generating additional 

numerical particles. Simultaneously, a detailed transport model based on the standard kinetic 

theory of gases is incorporated into computational fluid dynamics (CFD) solvers for accurate 

reacting flow simulations based on the OpenFOAM platform, and this numerical framework 

incorporates a newly proposed dimer-based soot model for investigating soot aerosol dynamics 

in laminar combustion flows. In addition, a one-equation turbulence model with high 

computational efficiency is developed based on this newly developed numerical framework to 

gain a deeper understanding of turbulence modelling. Finally, the developed numerical 

framework coupling an extended soot sectional method with a finite-rate chemistry model 

based on detailed chemistry is used for investigating soot PSDs evolution in turbulent flames. 

Therefore, the objectives of this thesis are: 

1. To deepen the understanding of numerical simulations in soot aerosol dynamics 

including coagulation, nucleation and surface growth in both laminar and turbulent combustion 

flows. 

2. To propose a sorting algorithm-based merging weighted fraction Monte Carlo 



Chapter 1                                                                                                                   Introduction 

7 

 

(SAMWFMC) method dedicated to solving the most challenging coagulation with various 

conditions in aerosol dynamics. 

3. To propose a sorting algorithm-based merging Monte Carlo (SAMMC) method 

applicable for the simulation of all aerosol dynamic processes (i.e., nucleation, coagulation, 

breakage, condensation/evaporation, deposition), especially effective in those challenging 

aerosol dynamic processes generating additional numerical particles. 

4. To develop a numerical framework of incorporating a detailed transport model based 

on standard kinetic theory of gases into combustion solvers for accurate reacting flow 

simulations in OpenFOAM. 

5. To develop a soot model including surface growth and oxidation, inception, 

condensation and coagulation to investigate soot formation in laminar combustion flows based 

on the newly developed numerical framework in OpenFOAM. 

6. To derive a turbulence model incorporated into the new numerical framework of 

OpenFOAM to gain a deeper understanding of turbulence modelling as well as CFD. 

7. To extend the new numerical framework coupling a soot sectional method with a finite-

rate chemistry based on detailed chemistry for numerically investigating the evolution of soot 

PSDs in turbulent combustion flows. 

1.3 Outline of the Thesis 

The outline of this thesis is organized as: 

Chapter 1 overviews the research background and scope of numerical simulations on 

aerosol dynamics especially soot aerosol dynamics in combustion flows, which indicates the 

motivations and objectives of the present study based on the research and knowledge gaps. 

Chapter 2 presents the literature review of investigating soot aerosol dynamics for 

combustion flows, indicating the knowledge development and its limitations where the 

knowledge gap may lie. 

Chapter 3 presents the mathematical models indicating the theoretical fundamentals of 

numerical simulations based on computational fluid dynamics (CFD) and aerosol dynamics. 

Chapter 4 validates a newly proposed and developed sorting algorithm-based merging 

weighted fraction Monte Carlo (SAMWFMC) method aimed at various coagulation conditions 
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in aerosol dynamics. 

Chapter 5 describes the detailed development of sorting algorithm-based merging 

(SAMMC) method applicable for all aerosol dynamic processes with very high computational 

accuracy, with applications to those challenging aerosol dynamic processes generating 

additional numerical particles. 

Chapter 6 introduces the detailed development of a numerical framework incorporating 

the mixture-averaged transport model based on the standard kinetic theory of gases into 

combustion solvers for reacting flow simulations in Open-source Field Operation and 

Manipulation (OpenFOAM). 

Chapter 7 investigates soot formation and evolution in laminar combustion flows based 

on the new numerical framework by using a proposed dimer-based soot model involving 

surface growth and O2 and OH oxidation, inception, condensation and coagulation, in which 

an ethylene laminar counterflow diffusion flame is used as a realization of the laminar flamelet 

for fundamental soot studies. 

Chapter 8 provides the derivation of a newly proposed one-equation turbulence model 

combining the desirable features of the two-equation standard k-ε and Wilcox’s k- turbulence 

models in the complete form without simplification in the diffusion terms based on the new 

numerical framework. 

Chapter 9 investigates soot formation and evolution via the soot PSDs for turbulent 

combustion flames via the newly developed numerical framework coupling an extended soot 

sectional method with a finite-rate chemistry based on detailed chemistry. 

Chapter 10 concludes the main research contributions and scientific findings with 

recommendations for future work. 
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Chapter 2 Literature Review 

 

2.1 Introduction 

Soot aerosol dynamics describe the continuous process transited from gas-phase 

hydrocarbon molecules to mature soot aerosols, which occur rapidly in high temperature zone 

of rich fuel combustion. Figures 2.1 and 2.2 present soot formation and evolution for coflow 

and counterflow flames, which includes fuel pyrolysis, polycyclic aromatic hydrocarbon (PAH) 

growth, soot nucleation, growth and oxidation [56]. Specifically, fuel decomposes to a broad 

range of small hydrocarbons before these degraded products form into small aromatic 

hydrocarbons [57]. After these small aromatic hydrocarbons grow larger by constantly adding 

hydrocarbon molecules as shown in Figure 2.3, these larger aromatic hydrocarbons containing 

more benzenoid rings become small soot aerosols. Once these soot aerosols are incepted, they 

experience the process of surface growth, aggregates, and later-oxidation. Surface growth 

(condensation) increases the size of soot aerosols but remains the number of particles 

unchanged, which is realised by condensing PAH species on the particles. It is also found that 

benzene can grow to inception particle via H-abstraction-C2H2-addition (HACA) mechanism 

[14,58-60], which demonstrates that precursors such as C2H2 and PAHs significantly influence 

the subsequent evolution of soot aerosols [4,61-63]. Aggregates refer to soot agglomerates 

taking the form of chain-like structures or particle collision. Because of inherent instability, 

small particles in the gas collide due to the Brownian motion and adhere through attractive 

forces to form larger particles or structures [9], in which the number of particles decreases 

while the size of each particle increases. However, surface oxidation by oxidizing agents (i.e., 

O2 and OH) can destroy soot particles, therefore reducing the particle size and surface area 

[4,7,8,12,14,64]. 

Apart from relying on the local chemical composition including C2H2, PAHs, O2 and OH, 

soot formation and evolution also strongly depend on the thermodynamics and surrounding air 

flows, which implies that it is required to couple soot models with fluid dynamics and transport 

properties in numerical simulations. The transport processes of gas-phase species and soot are 

rather important especially for laminar flows, which directly affect their local distributions, 

therefore necessitating considering differential diffusion when modelling. The presence of 
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turbulence makes soot modelling even more challenging as all variables including velocity, 

temperature and concentrations of gas-phase species as well as soot properties fluctuate at 

random in turbulent combustion, which requires taking turbulence model as well as turbulence-

chemistry and turbulence-soot interactions into account. These interactions generally lead to 

unclosed terms in transport equations, which should be appropriately modelled in numerical 

simulations. 

 

 

Figure 2.1 Soot formation and evolution from gas molecules to solid nanoparticles in coflow 

flames [56]. 
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Figure 2.2 Soot formation and evolution from gas molecules to solid nanoparticles in 

counterflow flames [65]. 

 

 

Figure 2.3 Polycyclic aromatic hydrocarbon formation via H-abstraction-C2H2-addition 

mechanism [65]. 
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2.2 Transport Properties 

Combustion normally leads to the production of a multi-species mixture, and the transport 

properties may change significantly with pressure and temperature as well as species 

composition, which should be fully considered in a numerical simulation. It is reported that 

transport properties of chemical species are as important as reaction rates in flame modelling 

[66], and flame shapes, velocities and emissions are all affected by transport properties [67], 

which implies that accurate combustion simulations should be based on precise transport 

properties and chemical kinetics. Physical properties of a substance depend directly on the 

nature of its molecule, and transport properties of a gas result from molecule collision 

interactions. Specifically, the thermodynamic state of a multi-species mixture in a reacting flow 

depends on molecular transport, as collisions between molecules can lead to mass, momentum 

or energy transfer. Accurately predicting the fundamental characteristics of a multi-species 

mixture in a combustion process requires taking into account the molecular transport of 

individual species. Therefore, specific attention in combustion simulations should be given to 

the mixture transport properties including multicomponent viscosities, thermal conductivities 

and diffusion coefficients, which are associated with the characterization of the molecular 

transport of species, momentum and energy in a multi-species mixture. 

Many combustion codes involve transport properties of individual species, but most of 

them are not readily available [68]. Industrial and academic researchers tend to implement 

different computational methodologies for solving reacting flow problems within open-source 

applications. The open-source field operation and manipulation (OpenFOAM) software [51,52] 

is a leading free open-source computational fluid dynamics (CFD) platform using C++ 

language, in which customized libraries and numerical solvers as well as pre- and post-

processing utilities can be developed to solve continuum mechanics problems based on the 

finite volume method (FVM) [54]. 

In the original OpenFOAM codes [52], the molecular transport model integrated into a 

reacting flow solver is highly simplified by assuming unity Schmidt number and Lewis number 

[68-71]. Under these assumptions, the thermal conductivity and mass diffusivity of a species 

are obtained from its viscosity, which is calculated from the Sutherland formula [71]. If the 

same Sutherland coefficients are used for each chemical species, the diffusion coefficients for 

all chemical species are the same, which may be not justified for most combustion cases. As a 

result, this model is only acceptable and valid in some specific cases, for example, strong 
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turbulent reacting flows with negligible molecular mixing phenomena, where molecular 

viscosities and diffusivities can be negligible in comparison with eddy counterparts [68]. In 

addition, this simplified model is not capable of resolving all physical scales for new insights 

into physical phenomena with direct or quasi-direct numerical simulations [68]. It implies that 

effective measures should be taken to accurately simulate laminar or low turbulent flames.  

Researchers in terms of combustion modelling has recognized the importance of transport 

models and have gradually paid attention to the appropriate treatment of molecular transport, 

the development of suitable methods and tools to study reacting flows for numerical 

combustion based on OpenFOAM evolves rapidly in the past few years. The simplest way to 

integrate a transport model into reacting flow simulations is to assume constant Lewis number 

either unity or non-unity, which can provide acceptable computational accuracy and reasonable 

computational cost [49,71,72]. However, detailed diffusion coefficients obtained from detailed 

transport models are essentially required to correctly capture flame structures in highly 

resolved combustion simulations. The multi-component transport model is considered as the 

most accurate but rather complex and computationally expensive model [73,74]. As a result, 

the mixture-averaged transport model has become the most widely used detailed transport 

model in combustion simulations. 

Normally, there are two ways to incorporate detailed transport models into OpenFOAM 

for calculating transport properties in multi-species systems. One is to develop an interface 

between OpenFOAM and Cantera, as Cantera is freely developed and used for solving 

problems in terms of chemical kinetics, thermodynamics and transport processes [75]. 

Specifically, necessary parameters of a flow field computed by OpenFOAM are sent to Cantera 

for calculating transport properties, which are then sent back to OpenFOAM, therefore 

achieving the data exchange between OpenFOAM and Cantera [76]. The representative solvers 

adopting this method in the combustion community are diffusionFoam [77], EBIdnsFoam 

[78,79], reactingDNS [80], combustionFoam [81], CTreactingFoam [71], reactingFoam-SCI 

[69] and DeepFlame [82]. Essentially, these solvers can correctly deal with problems of 

reacting or non-reacting flows of a multi-species system due to the utilization of Cantera, which 

also demonstrates that all these solvers rely highly on this open-source software (i.e., Cantera). 

Specifically, the program structure of Cantera directly restricts the performance of these solvers 

[78] since the whole Cantera program should be performed to call a function. It is also required 

to reinstall Cantera every time on a target machine before running these solvers, which makes 
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it very inconvenient and difficult for use and maintenance [78]. In addition, chemical reaction 

mechanisms in CHEMKIN [83] format should also be firstly converted into Cantera format 

and then used by these solvers. As chemical reaction mechanisms in Cantera format depend on 

the version of Cantera, these solvers become version-dependent. The frequent changes of 

Cantera version make these solvers difficult to use widely. An alternative way is to include a 

separate package for the evaluation of transport properties. Dasgupta et al. [68] developed an 

OpenFOAM-based code which is capable of calculating transport properties for flame 

modelling. As the code is written based on the OpenFOAM framework, it is viable to be 

coupled with OpenFOAM-based solvers. For example, this OpenFOAM-based code rather 

than Cantera [75] was used by reactingFoam-SCT [84-86] to calculate transport properties for 

reacting flows, while reactingFoam-SCT is an updated version of reactingFoam-SCI [69]. The 

detonationFoam [87] was also developed based on the transport property calculation codes 

provided by Dasgupta et al. [68] with dynamic load balancing algorithm [88]. It should be 

noted that since this code depends on several pre-compiled and pre-built utilities and libraries 

when using, the operation is relatively complicated. The same issue arose in the famous 

OpenSMOKE software [89-93]. Nguyen et al. [94] developed and implemented a set of 

transport models for real fluids at high pressure in OpenFOAM, which adopted parameter 

updating functions to avoid class interface problems. However, all the molecular transport 

parameters for each species should be pre-dealt with before serving as inputs for transport 

models, which means that this highly species-dependent method is not convenient to use for 

different cases with different species involved. 

It should be noted that the reason why so many methods are developed for obtaining the 

transport properties in multi-species systems is attributed to the native algorithm of 

OpenFOAM, which is based on the use of Sutherland formula, and the assumption of unity 

Schmidt number and Lewis number [71]. As a result, only two parameters (i.e., Sutherland 

coefficient and Sutherland temperature) in the Sutherland’s formula are required to be specified. 

By comparison, detailed transport models used in combustion simulations, which are 

developed based on Boltzmann’s equation from the standard kinetic theory of gases [67], 

require completely different parameters to calculate transport properties. It should be noted that 

all these information are provided by a separate file of chemical reaction mechanisms in 

CHEMKIN format, but they are always ignored by OpenFOAM and do not work in solvers in 

terms of combustion modelling due to the use of Sutherland formula. 
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2.3 Turbulence Model 

Apart from governing equations of fluid dynamics, creating a mathematical model to 

approximate the physical behaviour of turbulence flows is required as turbulence flows are a 

common and complicated phenomenon in fluid dynamics. Two-equation turbulence models 

normally use two transport equations for modelling two variables (i.e., length and time scales) 

in a turbulent flow region. A transport equation for the computation of turbulent kinetic energy, 

k and another transport equation for the turbulent dissipation, ε, the turbulent specific 

dissipation rate, ω or the turbulent length scale, L are most commonly used for two-equation 

turbulence models, which are known as the typical k-ε, k-ω or k-kL turbulence model, 

respectively. The eddy viscosity is then calculated through the turbulent length scale obtained 

by the two transport equations.  

By comparison, one-equation turbulence models directly solve the transport equation of 

the eddy viscosity, rather than the algebraic length scales, which have the advantage of high 

computational efficiency [95-97]. Due to the obvious advantage in simplicity and accuracy, 

one-equation turbulence models have attracted increasingly attention [97-100]. Based on the 

wide scientific and engineering applications, many research studies have focused on the 

transformation of two-equation turbulence models to one-equation turbulence models [96,101]. 

Menter [96] proposed the transformation methodology of two-equation k-ε turbulence model 

to a one-equation turbulence model based on the assumption that there is a linear relationship 

between the turbulent shear stress and turbulent kinetic energy. It is worth noting that the 

coefficients in the diffusion terms are assumed to be equal in the process of the transformation, 

while they are not the same in the original formulations, therefore neglecting some specific 

terms in the derivational process. Following the assumption, Han et al. [101] proposed and 

improved the one-equation turbulence model derived from the two-equation k-ω turbulence 

model by including a cross diffusion term which made it possible to change the behaviour of 

the one-equation turbulence model between the two-equation k-ε and k-ω turbulence models. 

The results showed that the one-equation turbulence model has a good agreement with the 

experimental data. Note that all these one-equation turbulence models based on the two-

equation k-ω turbulence models do not include the third-order velocity derivative-based length 

scale. 

It is common practice to assume equal coefficients of the diffusion terms in the parent 

equations in many research studies due to simplicity [96,101]. However, a number of 
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simplifying assumptions lead to neglecting several diffusion terms in the process of 

transformation of the parent two-equation turbulence model. The effect of these terms has not 

been fully examined and even for a very simple case, the performance of the resulting one-

equation turbulence model may differ from the underlying parent two-equation turbulence 

model [96]. Based on the two-equation k-ε turbulence model, the one-equation turbulence 

model proposed by Elkhoury [95] does not assume equal coefficients of the diffusion terms 

leading to the emergence of the third-order velocity gradient term. The one-equation turbulence 

model is proved to be more accurate than other turbulence models due to the presence of the 

third-order velocity derivatives. Although the one-equation turbulence model retained the 

third-order velocity gradient term, a specific term related to the third-order velocity gradients 

is removed in the derivational process. 

2.4 Turbulence-Chemistry Interaction 

Combustion processes involve a great variety of species and elementary reactions, which 

necessitates solving detailed chemistry with numerous time and length scales in combustion 

modelling, especially for turbulent flows. Turbulence and chemistry interact in quite complex 

ways, which influence the temperature and composition distributions in the flow field. 

Accurate characterization of combustion processes requires the use of detailed chemistry to 

capture complex chemical kinetics with high fidelity, but direct resolution of the real-time 

complete chemistry in turbulent combustion flows is normally quite computationally expensive. 

By comparison, tabulated chemistry is a computational efficient strategy for the computation 

of gas-phase compositions [102], in which the assumption of high Damköhler number 

decouples chemistry evaluations from flow field evaluations [103]. Instead of real-time 

computing reaction mechanisms at every time step, tabulated chemistry looks up or interpolates 

pre-calculated chemical reaction data stored in a table to obtain real-time results, which 

significantly reduces the computational time. Tabulated chemistry has been widely used in 

flamelet approaches, which describe turbulent flames as a set of characteristic one-dimensional 

flames [103]. In flamelet-based models, thermochemical quantities of interest are represented 

by several control variables, and a pre-assumed probability density function would be 

employed for turbulence-chemistry interaction [104]. Transport equations of these variables 

are solved in CFD simulations, and thermophysical and thermochemical properties including 

temperature, dynamic viscosity and species mass fractions could be interpolated or looked up 

from the flamelet library [105]. The typical flamelet-based models successfully used for soot 
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modelling in turbulent combustion flows include flamelet generated manifold  model [106] and 

steady laminar flamelet model [107] as well as its extended flamelet/progress variable model 

[55,108]. 

Although tabulated chemistry can significantly reduce computational time, there are still 

several critical limitations. Mass exchange between gas-phase species and soot in flamelet-

based models may not be accounted for, therefore neglecting the effect of the solid-phase soot 

on gas-phase compositions [102]. This cannot be avoided in a simpler manner due to the 

tabulated nature. It implies that the tabulated method may not be suitable for certain scenarios, 

where real-time feedback and dynamic adjustments are required, for example, unsteady 

combustion processes or systems that need dynamic adaptation. Additionally, it is reported that 

the impact of differential diffusion cannot always be neglected in turbulent diffusion flames 

[109] and may be significant in weak turbulent regions such as near the jet exit [55,110], and 

the assumed unity Lewis number may introduce large numerical errors [111]. It indicates that 

non-unity Lewis numbers may significantly affect the transport of species including pyrene 

(A4) [112,113]. Nevertheless, unity Lewis number is generally applied to evaluate the diffusion 

coefficients in flamelet equations [103,114,115], which may lead to quantitative 

underprediction of PAH and soot. This problem may be reduced by introducing a strain-

sensitivity parameter to categorize each species and then applying non-unity Lewis number for 

PAHs, but unity Lewis number may be still assumed in other species [116]. It should be noted 

that retaining molecular diffusivity in the transport equations of PAHs may lead to an 

inconsistency when the flamelet table is generated based on unity Lewis number [55]. 

2.5 Soot Models 

A soot model generally denotes the model of fundamental physicochemical soot kinetics, 

which mainly contains chemical kinetics and aerosol dynamics [10,15]. Chemical kinetics 

includes surface reactions kinetics of growth and oxidation as well as nucleation kinetics, while 

aerosol dynamics describe the particle size distribution (PSD) as well as soot population 

evolution due to the involved physicochemical processes including nucleation, coagulation, 

aggregation, surface growth and oxidation [10,15]. 

2.5.1 Chemical kinetics 

As the complete pathway of soot aerosols with the smallest size formed from gas-phase 
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species has not been fully understood, the successful modelling of soot yields requires 

accurately accounting chemical kinetics. Traditionally, soot is phenomenologically described 

by using empirical correlations to overall parameters, which are normally applied in practical 

engineering such as gas turbines and diesel engines [117]. Although these models could 

possibly present the effects of operating conditions including temperature, pressure, 

equivalence ratio, operation speed and load, on soot yields to some extent, their extensive 

application to different types of devices under different operating conditions is greatly 

restricted due to the correlation nature. In addition, the detailed insights of soot formation 

processes cannot be fully provided by these empirical models, which may assume that soot is 

monodisperse. With significant progress made in soot models, it is generally regarded that 

chemical kinetics rely heavily on the concentration of specific species, making it possible to 

offer detailed information on soot aerosol dynamics. According to the gas-phase chemistry in 

soot modelling, soot models could be categorised to classifications: detailed soot models as 

well as semi-empirical non-precursor and precursor models [10].  

2.5.1.1 Semi-empirical non-precursor models 

Soot could be considered only dependent on mixture fraction or temperature in the 

simplest models. Tesner et al. [118] proposed a two-equation model of soot and radical nuclei 

number densities, in which soot formation results from a branched-chain process and 

adsorption of radical nuclei on the soot surface. As soot formation is only linked with 

temperature in this model, the true mechanisms of soot formation cannot be reflected. In 

addition, soot surface growth has not been considered and important soot information such as 

soot volume fraction cannot be obtained. Kennedy et al. [119] linked mixture fraction with soot 

volume fraction (SVF) but neglected model variable for number density, making it not very 

realistic. By comparison, Moss et al. [120] proposed a more realistic soot model considering 

nucleation, surface growth and coagulation, and linked soot formation and growth rates with 

mixture fraction. Soot formation is described by soot number density, n and SVF, fv, which 

could be formulated as [120]:  

 

𝑑(𝑛/𝑁𝐴)

𝑑𝑡
= 𝛼()⏟
nucleation

− 𝛽() (
𝑛

𝑁𝐴
)
2

⏟      
coagulation

 
(2-1) 
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 𝜌𝑠
𝑑(𝑓𝑣)

𝑑𝑡
= 𝛾()𝑛⏟  
surface growth

+ 𝐶𝛿𝛼()⏟    
nucleation

 (2-2) 

where t is time; NA and C  are Avogadro’s number and a constant; s is the soot density and 

the local mixture fraction,  depends on fuel mole fraction, density and temperature. It is worth 

noting that surface growth is assumed irrespective of soot surface area here, making it 

unphysical. This critical problem was handled by Syed et al. [121] with modifications on soot 

surface growth, which is considered linear with surface area. Thus, the concept of two-equation 

soot models of SVF and soot number density has been introduced extensively. 

2.5.1.2 Semi-empirical precursor models 

Actual soot dynamic behaviours are normally represented by empirical kinetics in these 

models, in which complex soot phenomena are simplified via a global reaction and only 

essential soot formation and oxidation are considered. Thus, relatively detailed chemistry is 

required as soot is linked to specific species.  

Fairweather et al. [122] proposed a two-equation soot model including nucleation, surface 

growth and coagulation, in which acetylene (C2H2) is treated as the precursor to represent all 

nucleation pathways and soot surface growth and oxidation occur via C2H2 and O2 respectively, 

making it possible to use reduced chemical mechanisms. The general form of the soot model 

based on soot number density and soot mass concentration could be expressed by [123]: 

 
𝑑𝑁soot
𝑑𝑡

= (
𝑑𝑁

𝑑𝑡
)
nucleation

− (
𝑑𝑁

𝑑𝑡
)
coagulation

 (2-3) 

 
𝑑𝑀soot
𝑑𝑡

= (
𝑑𝑀
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nucleation
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𝑑𝑀

𝑑𝑡
)
surface growth

− (
𝑑𝑀

𝑑𝑡
)
oxidation

 (2-4) 

where nucleation (nuc) is related to the molar concentration of C2H2, which is expressed as 

[10]: 

 C2H2 → 2C(s) + H2 (2-5) 

 𝑅nuc = 𝑘nuc(𝑇)[C2H2] (2-6) 

where rate constant, k relies on temperature, T in an Arrhenius expression. Sometimes, two and 

three-ringed aromatics formed from C6H5 and C6H6 are also added as precursors in some 

extended soot models [124-127]. As the monodispersed soot PSDs are commonly assumed, the 
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coagulation (coag) rate proportionally relies on the square of N by [10]: 

 𝑅coag = 𝑘coag(𝑇)𝑁
2 (2-7) 

Investigations show that surface growth proportionally depends on surface area, S [128], 

and C2H2 is believed to contribute to soot surface growth [129]. The resulting expressions for 

surface growth (sg) is formulated as [10]: 

 C2H2 + 𝑛C(s) → (𝑛 + 2)C(s) + H2 (2-8) 

 𝑅sg = 𝑘sg(𝑇)𝑆[C2H2] (2-9) 

But Leung et al. [130] found that soot reactivity would reduce due to the effect of aging, 

so surface growth should be modified. Similar to surface growth, O2 oxidation could be 

described based on temperature and soot surface area as [130]: 

 C(s) +
1

2
O2 → CO (2-10) 

 𝑅ox = 𝑘ox(𝑇)𝑆[O2] (2-11) 

Different expressions for soot oxidation have been developed due to different 

thermodynamic states and oxidant species. Lee et al. [131] takes the partial pressure of O2 into 

account, and Nagle and Strickland-Constable [132] uses a nonlinear combination of Arrhenius-

style rate constants. In addition, OH is also found to possibly contribute to soot oxidation [133-

135].  

Obviously, semi-empirical precursor soot models can provide some information about 

soot formation and some information about soot number density and diameters. Although not 

all fundamental mechanisms of soot phenomena such as soot morphology can be accurately 

captured by these models due to the use of rate constants in global reactions, they are popular 

in simulating combustion involving soot [91,92,136-138] due to the easy implementation and 

relatively low computational cost. 

2.5.1.3 Detailed soot models 

These models aiming at aerosol dynamics could provide complete information on soot 

particle size distribution (PSD) evolution. Especially, polycyclic aromatic hydrocarbon (PAH) 

chemistry is found only in these models, which contributes to soot inception and condensation, 

resulting in the requirement for detailed chemistry. Due to a much more expensive 
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computational cost, most detailed soot models are normally applied to one- or two-dimensional 

laminar flows as well as ideal reactors [10]. 

Chemical kinetic mechanisms involving reaction and specie numbers have evolved 

rapidly for modelling soot formation in combustion simulations. The chemical kinetic 

mechanism of Appel et al. [59] could be used for soot modelling in combustion simulations, in 

which PAH growth has been considered and pyrene (A4) is the largest aromatic species. The 

detailed pathways of C2H2 and PAH formation are described by Slavinskaya et al. [139] in 

detail. The chemical reaction mechanism of Narayanaswamy et al. [140] could be employed 

for both gaseous and gasoline surrogate fuels for PAH formation. Wang et al. [141] developed 

a chemical kinetic mechanism containing PAH species up to coronene (C24H10), which leads 

to more accurate PAH results. 

In general, the distribution of soot aerosols is assumed monodispersed in the free 

molecular regime in semi-empirical precursor models, while detailed models track the PSD of 

soot aerosols and are able to provide soot structure and morphology. A detailed model normally 

describes the whole processes from fuel pyrolysis to nucleation via PAH molecules as well as 

coagulation and surface growth and oxidation due to HACA [14,58,60]. In general, it is 

assumed that soot nuclei are generated by the PAH molecule dimerization, so the nucleation 

rate is calculated via the coagulation kernel based on the free molecular regime. Appel et al. 

[59] developed a commonly used dimerization model, which only takes the dimerization of A4 

into account [142]. As it is considered that PAHs with different sizes may be involved in soot 

nucleation, the dimerization of PAHs with two and more aromatic rings is considered [143-

148]. However, it is reported that the binding energy and lifetime of these dimers could be quite 

small, resulting in a small effective rate of dimer formation. Specifically, nucleated soot 

particles cannot be directly generated via effective interactions between PAHs due to the small 

sizes of PAHs [144]. As a result, Blanquart and Pitsch [147,148] introduced a sticking 

coefficient in a statistical soot model, which assumes that soot is formed via PAH dimer 

collision while a PAH dimer is generated by the free molecular coagulation of two PAH 

molecules [146]. However, it is argued that the direct nucleation of soot particles only occurs 

from the collisions of PAHs made up of 50 or more carbon atoms (i.e., 650 Da) [149] due to 

their stable Van der Waals forces [144], which implies that PAH species for dimer formation 

should be larger than phenanthrene (C14H10). It is worth noting that soot nucleation is assumed 

to be formed only via homogeneous collision of the same PAH species, which is not 
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sufficiently realistic due to the random collision between PAH molecules [144]. By comparison, 

Wang et al. [150] proposed a homogeneous and heterogeneous dimerization model, which 

allows collisions between all combinations of two larger PAH molecules (A4 or higher) due to 

the higher inertia and sticking possibilities, leading to 36 nucleation reactions from 8 PAH 

molecules. Quadarella et al. [144] further proposed a physically consistent nucleation model 

including all PAHs from naphthalene (A2) to coronene (A7), which is only used to study the 

qualitative behaviour of stain rate sensitivity. 

In most detailed models, the HACA mechanism [58,59] with rate expressions in the 

Arrhenius form is applied to describe the soot kinetics, in which elementary reactions are 

employed and soot surface growth and oxidation rates could be calculated from the steady state 

radical surface site number density. Furthermore, the pathway of soot surface growth also 

includes PAH condensation. It is also reported that methyl (CH3), propargyl (C3H3) and ethynyl 

(C2H) radicals are important in soot growth [150,151]. However, it is argued that the rate of 

PAH-soot collision is usually much smaller than that of PAH-PAH collision, so the dimer-soot 

collision mechanism for soot surface growth is developed [144,146-148]. 

More importantly, soot morphology in the form of fractal-like structures is normally 

considered in detailed models. It is reported that soot particles with diameters up to 50 nm are 

spherical while fractal aggregates would be formed via collision of larger soot particles. As a 

result, fractal aggregates are normally characterized by fractal dimension, Df and primary 

particle diameter, dp as [10]: 

 𝑛𝑝 = 𝐴(
𝑑𝑔

𝑑𝑝
)

𝐷𝑓

 (2-12) 

where A is a constant, np and dg are the primary particle number in an aggregate and gyration 

diameter, respectively. It should be noted that Df is determined from MC simulations and 

experiments, which is 3.0 for spherical particles and 1.8 for soot aggregates. 

2.5.2 Aerosol dynamics 

Aerosol dynamics directly influence soot PSD and shape, therefore influencing soot 

formation and evolution in combustion flows. Modelling aerosol dynamics in terms of PSD 

necessities solving population balance equation (PBE). As it is impossible to directly solve the 

governing equation of aerosol dynamics (i.e., PBE) of interest due to its complexity, several 



Chapter 2                                                                                                          Literature Review 

23 

 

methods have been developed to approximate its solution, among which Monte Carlo (MC) 

methods as stochastic methods are very flexible in simulating all aerosol dynamic processes, 

which can provide a deep insight into aerosol dynamic behaviours. 

MC methods adopt representative particles to simulate the dynamic evolution of the 

dispersed system, so the behaviour of each representative particle can be closely simulated and 

the trajectory history of each particle can also be tracked. Specifically, each dynamic process 

in a MC simulation can be modelled by simply changing the particle number or volume, for 

example, adding a new particle for nucleation, removing an existing particle for deposition, 

increasing/decreasing the existing particle volume for condensation/evaporation, breaking one 

existing particle into several ones for breakage and colliding two existing particles into one for 

coagulation. All these straightforward operations make the MC simulation very robust [152]. 

However, stochastic property and computational cost are two shortcomings of stochastic 

methods due to the finite number of numerical particles, which is limited by the computer 

memory and central processing unit (CPU) speed, therefore would inevitably influence the 

computational precision. Although graphic processing unit or high performance cluster 

technique is efficient in accelerating computations [29-31], it is still of great importance to 

develop more accurate and efficient MC algorithms. 

In practical engineering applications, particles are located in the computational domain, 

the volume of which is normally constant. Garcia et al. [153] developed a constant-volume 

method for coagulation, in which the number of numerical particles always decreases. But it 

may lead to only one numerical particle left in the computational domain and reduce the 

computational accuracy. In order to address these crucial issues, Liffman [154] presented a 

direct simulation Monte Carlo method for coagulation, in which the doubling operation is 

implemented to prevent statistical fatigue. Specifically, the number of numerical particles and 

volume of the computational domain are doubled to conserve the statistical properties when 

the number of numerical particles decreases by half. Maisels et al. [36] further extended the 

direct simulation Monte Carlo method aiming at more dynamic aerosol processes, which is 

called stepwise constant-volume method. Similarly, adding a copy of all existing numerical 

particles to the doubled computational domain is required when the number of numerical 

particles reduces by half. But the computational domain volume is halved when the numerical 

particle number exceeds twice of its initial value, in which a half of numerical particles are 

removed from the computational domain by a stochastic process while the other half of 
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numerical particles remain in the computational domain. It should be noted that the doubling 

procedure can completely conserve the statistical properties but the halving operation may lead 

to mass non-conservation when the sizes of numerical particles are not equal. In fact, deposition 

or coagulation generally leads to a decrease in the computational accuracy due to the decreasing 

number of numerical particles, while nucleation and breakage significantly reduces the 

computational efficiency because of the increasing number of numerical particles. It implies 

that both computational accuracy and efficiency of these constant-volume-related methods 

depend highly on the number of numerical particles.  

Therefore, Smith and Matsoukas [155] developed a constant-number method. The main 

idea of the constant-number method is to generate a copy of one numerical particle or to 

exclude one numerical particle by a stochastic process according to the decrease or increase in 

the number of numerical particles, respectively. Although indefinitely long numerical 

simulations are allowed in this constant-number method, the statistical properties possibly are 

not conserved during the numerical simulations. In order to tackle this technical problem, Lin 

et al. [37] improved the constant-number method to conserve the total particle mass/volume or 

number concentration through continuously changing the volume of the computational domain. 

Depending on whether the total particle number or mass/volume concentration is preserved, 

the number-based constant-number and mass-based constant-number methods were proposed. 

It should be noted that only when the volumes of all numerical particles are equal, the total 

particle mass/volume and number concentrations of mass- and number-based constant-number 

methods are conserved; otherwise, only total particle mass/volume or number concentration is 

conserved. The constant expansion or contraction for the volume of the computational domain 

and only conservation for the total particle number or mass/volume concentration greatly 

restrict the general applications of both mass-based and number-based constant-number 

methods.  

By comparison, the volume of the computational domain is kept unchanged and the 

number of numerical particles always keeps constant in the multi-Monte Carlo (MMC) method 

in Zhao and Zheng [156], in which each numerical particle with different statistical weights 

represents some real particles in the computational domain. As real particles in the edge of the 

PSD are also represented, more detailed information of the PSD are presented and the statistical 

precision is then improved. In the MMC method, a probabilistic coagulation rule [32] is 

adopted to conserve the mass/volume between two numerical particles having different weights 
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for coagulation. As for deposition, one numerical particle is not tracked after a deposition 

process, and a randomly selected existing numerical particle is divided into two numerical 

particles with the same volume but half weight. The treatment of a new numerical particle 

generated by nucleation and breakage processes is to merge it with an existing numerical 

particle with the most similar volume, where their weights are simply added together to only 

preserve the total particle number concentration, leading to the introduction of some systematic 

errors originated from mass non-conservation [157].  

Eibeck and Wagner [158] developed an implicit stochastic weighted particle method to 

deal with coagulation, where the statistical weight of a numerical particle is related to the mass 

of real particles. Patterson et al. [159] proposed a new class of stochastic weighted particle 

methods based on the construction of weight transfer functions, in which the number of 

numerical particles remains constant during the simulation of coagulation. Boje et al. [160] 

developed a hybrid particle-number and particle model to deal with rapid formation and growth 

of particles with a finite ensemble size, where small particles are treated by the particle-number 

model while large particles and aggregates are resolved by the particle model, therefore 

improving the computational resolution of particles. 

In order to conserve both the total particle number and mass/volume concentrations, 

Kotalczyk and Kruis [161] proposed a random removal method using the smart bookkeeping 

technique [17] and a new merging MC method, where all possible numerical particle pairs 

should be compared to obtain two numerical particles that are the most appropriate to be 

merged. But it is highly computationally expensive to conduct double MC loops from the 

beginning to the end by comparing to each numerical particle, so parallel computing technique 

and graphic processing units are used to accelerate computations, making the whole algorithm 

and programming much more complicated. Jiang and Chan [33] proposed a new weighted 

fraction Monte Carlo (WFMC) method for coagulation, in which one of the uncoagulated 

numerical particles is probabilistically removed. The WFMC method with introducing 

adjustable fraction functions can significantly improve the computational precision in second- 

and third- order moments of the PSD. It should be noted that both removal and merging 

operations can retain some or even all information (i.e., velocity, momentum, energy, electric 

charge, etc.) about old numerical particles while the resetting method [156] or reconstructing 

method [162] cannot fully transfer these information of old numerical particles to the new 

numerical particles, leading to some numerical errors.  
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In addition, there are some MC methods aimed at specific dynamic processes for an 

aerosol system of interest. For example, MC methods [156,162-165] are developed for 

breakage while the weighted flow algorithms [166] and fast MC methods [17,34] are focused 

on coagulation. Simultaneous coagulation and breakage is considered in [167-171] based on 

equal-weight scheme, which lead to limited computational accuracy, while Zhao et al. [172] 

proposed a different-weight-based MC method, but it may introduce systematic errors. Debry 

et al. [173] developed a mass flow algorithm for all aerosol dynamic processes except for 

breakage, and Celnik et al. [174] introduced an operator splitting approach to deal with 

simultaneous coagulation and surface growth, which requires special treatment due to their 

different characteristic times. Both the stochastically weighted operator splitting Monte Carlo 

method [91,175,176] and differentially weighted operator splitting Monte Carlo method [177-

181] use the operator splitting technique combining deterministic and stochastic methods to 

deal with complex aerosol dynamic processes without considering breakage.  

2.6 Summary 

Fundamental investigation on soot aerosol dynamics in combustion flows is essentially 

required in terms of both scientific research and engineering applications, in which numerical 

simulations perform an increasingly significant role, leading to the requirement for developing 

advanced and efficient numerical methods. 

Monte Carlo (MC) methods provide a stochastic approach to approximate the exact 

solution of soot aerosol dynamics, which makes it very flexible to simulate all aerosol dynamics 

processes of soot particles. As aerosol dynamic behaviours of soot particles are closely 

simulated, a deep insight into the aerosol dynamic processes of soot particles can be provided. 

But high stochastic errors and computational costs lead to the requirement of developing more 

accurate and efficient MC algorithms. Furthermore, soot formation and evolution in 

combustion processes could be rather complicated, which involve fluid dynamics, transport 

phenomena, chemical kinetic chemistry, aerosol dynamics and heat and mass transfer. 

Especially, the possible pathways from gas-phase species to condensed nanoparticles should 

be considered. In laminar flows, differential diffusion of gas-phase species with soot makes it 

difficult to accurately simulate their transport processes in CFD simulations. By comparison, 

it is required to account for the random fluctuations of variables in turbulent combustion, which 

should be properly modelled in numerical simulations. 
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The basic concepts, knowledge and methods in terms of numerical simulation on soot 

aerosol dynamics of combustion flows are described, in which the knowledge gap and recent 

important development are revealed. The literature review could be summarized as: 

1. Accurately predicting and controlling soot formation and evolution as well as fractal 

structures are of great scientific and engineering importance, which requires having a complete 

knowledge of chemical kinetics and aerosol dynamics in combustion processes together with 

transport phenomena and turbulence-chemistry interaction. 

2. Solving aerosol dynamics by MC method normally leads to the inevitable introduction 

of stochastic errors and a high computational cost. Many developed MC methods are mainly 

aimed at improving the computational accuracy, but their stochastic errors are still relatively 

large, especially for coagulation. 

3. Many MC methods with high computational accuracy or efficiency are developed 

aimed at specific aerosol dynamic processes of interest. However, there does not exist a general 

MC method capable of dealing with all aerosol dynamic processes with high computational 

accuracy. 

4. Accurate modelling of reacting flows requires coupling a detailed transport model as 

mass diffusivity of gas-phase species are normally different, especially in laminar flows. 

However, the use of simplified molecular transport model in Computational fluid dynamics 

(CFD) codes including OpenFOAM makes it impossible to resolve all physical scales for new 

insights into combustion phenomena. 

5. It is accepted that soot formation depends on specific key species. Acetylene (C2H2) is 

normally treated as the soot precursor in semi-empirical precursor models, while the 

dimerization of polycyclic aromatic hydrocarbon (PAH) molecules is regarded to contributes 

to soot nucleation and surface growth via condensation in detailed soot models. Therefore, 

modelling soot aerosol dynamics in combustion flows should consider nucleation via the 

dimerization of PAH molecules and condensation by dimers as well as coagulation and surface 

growth and oxidation. 

6. The presence of turbulence leads to non-linear unclosed terms, which should be 

modelled in CFD simulations. CFD is an important tool to solve problems in terms of fluid 

dynamics including combustion flows, in which turbulence modelling is a key ingredient. 

Turbulence flows are a common and complicated phenomenon in fluid dynamics, whose 
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physical behaviour can be approximated by creating a mathematical model in terms of length 

and time scales. 

7. The turbulence-chemistry interaction in turbulent combustion directly influences 

temperature and composition distributions in the flow fields, which would influence soot 

formation and evolution. Accurate characterization of combustion processes requires the use 

of detailed chemistry to capture complex chemical kinetics with high fidelity. This can be 

achieved by finite-rate chemistry simulations, in which combustion described by detailed 

chemistry can be solved in real-time with taking the effect of differential diffusion into account. 

However, tabulated chemistry together with the unity Lewis number assumption is normally 

used for turbulent combustion simulations due to the cheap computational cost, which would 

possibly lead to some numerical errors in simulating soot formation and evolution in 

combustion flows. 

 

 



Chapter 3                                                            Theoretical Fundamentals of the Present Study 

29 

 

 

Chapter 3 Theoretical Fundamentals of the Present Study 

 

3.1 Introduction 

The theoretical fundamentals of modelling soot aerosol dynamics in combustion flows by 

computational fluid dynamics (CFD) technique are introduced. Specifically, conservation 

equations of solving laminar and turbulent reacting flows would be formulated, and soot 

models involving aerosol dynamics governed by population balance equation (PBE) are 

presented. Furthermore, basic theories of coupling PBE with CFD as well as their 

approximation solutions based on the finite volume method (FVM) are described in detail. 

3.2 Governing Equations 

Mathematical model of physic phenomena generally includes boundary conditions as well 

as integro-differential or partial differential equations [182], and forms the basis of numerical 

methods. Transport equations of fluid flows in a conservative form could be expressed by 

introducing a general variable  as [183]: 

 
𝜕(𝜌𝜙)

𝜕𝑡
+ ∇ ∙ (𝜌𝜙𝐔) = ∇ ∙ (𝛤∇𝜙) + 𝑆𝜙 (3-1) 

where t and  are time and density, and U is velocity and  is diffusion coefficient. The first to 

fourth terms represent the rate of change, convection, diffusion and sources term, respectively.  

Since analytical solutions of these differential equations possibly are not available, their 

solutions should be estimated by various algebraic equations describing the discrete temporal 

and spatial locations of a variable. The FVM integrals conservation equations to approximate 

all terms with physical meaning, which is very simple to understand and program, so it is 

popular with fluid engineers.  

The volume integrals on the whole bounding surface (A) in a control volume (V) at a time 

interval (t) formulates the integration form of a transport equation as [183]: 
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∫
𝜕

𝜕𝑡
Δ𝑡

(∫ 𝜌𝜙

𝑉

𝑑𝑉)𝑑𝑡 + ∫ ∫ 𝐧 ∙ (𝜌𝜙𝐔)𝑑𝐴𝑑𝑡

𝐴Δ𝑡

= ∫ ∫ 𝐧 ∙ (𝛤∇𝜙)𝑑𝐴𝑑𝑡

𝐴Δ𝑡

+ ∫ ∫ 𝑆𝜙𝑑𝑉𝑑𝑡

𝑉Δ𝑡

 

(3-2) 

where n represents surface normal vector. 

3.2.1 Continuity 

By setting  = 1, the mass (continuity) conservation equation in fluid flows are derived as 

[182]: 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝐔) = 0 (3-3) 

3.2.2 Momentum equations 

By setting  = U, the momentum conservation equation in fluid flows are derived as [182]: 

 
𝜕(𝜌𝐔)

𝜕𝑡
+ ∇ ∙ (𝜌𝐔𝐔) − ∇ ∙ 𝛕 = −∇𝑝 (3-4) 

where p represents pressure; viscous stress tensor,  could be formulated based on the Stokes 

hypothesis as: 

 𝛕 = −
2

3
𝜇(∇ ∙ 𝐔)𝐈 + 𝜇[∇𝐔 + (∇𝐔)𝑇] (3-5) 

where I and  are unit tensor and dynamic viscosity, respectively. 

3.2.3 Transport equations for species 

Transport equations for mass conservation of kth species in reacting flows can be obtained 

by setting  = Yk as [183]: 

 
𝜕(𝜌𝑌𝑘)

𝜕𝑡
+ ∇ ∙ (𝜌𝑌𝑘𝐔) = ∇ ∙ (𝜌𝐷𝑘∇𝑌𝑘) + 𝜔𝑘 (3-6) 

where k and Dk are the reaction rate and diffusion coefficient of kth species, respectively. 
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3.2.4 Energy equation 

Mixture composition and thermodynamic state determine temperature in combustion 

flows as heat could be released from chemical energy, which requires solving mixture enthalpy 

transport equation (i.e.,  = h) as [183]: 

𝜕(𝜌ℎ)

𝜕𝑡
+ ∇ ∙ (𝜌𝐔ℎ)

= ∇ ∙ (
𝜆

𝐶𝑝
∇ℎ −∑

𝜆

𝐶𝑝
ℎ𝑘∇𝑌𝑘

𝑁

𝑘=1

) + ∇ ∙ (∑𝜌ℎ𝑘𝐷𝑘∇𝑌𝑘

𝑁

𝑘=1

) +
𝜕𝑝

𝜕𝑡
+ 𝑄𝑟 

(3-7) 

where Cp and λ are specific heat capacity at constant pressure and thermal conductivity of the 

mixture, respectively; Qr and hk represent radiative heat source and specific enthalpy of species 

k. 

3.3 Turbulence Modelling 

Fluid flows are observed to become unstable at a certain Reynolds number, which could 

be dictated by flow kinematic viscosity, length scale and characteristic velocity. Flows would 

be turbulent or laminar at high or low Reynolds number. Numerical methods for turbulence 

flows involve direct numerical simulation (DNS), large-eddy simulation (LES) and Reynolds-

averaged Navier-Stokes (RANS) for obtaining mean and fluctuating equations. 

With regard to the transport equations, there are closure issues associated with various 

variables of fluid dynamics. Theoretically, it is possible to solve the differential equations by 

numerical discretization techniques without closure and obtain detailed information about 

flows, but DNS is computationally expensive because time and length scales with a broad range 

exhibited in turbulent flows necessities many computational grids and time steps. In addition, 

DNS is believed to devote a great deal of effort to resolve insignificant scales concerning 

second-order quantities including the scalar flux and Reynolds stresses, therefore resulting in 

a waste of computational resources. LES, however, only resolves flow-dependent scales and 

spatially filters small scales. These small scales are considered to be flow-independent and can 

be modelled by sub-grid-scale (SGS) models. As a result, the closure problems still exist in 

SGS micro-mixing and chemical reactions due to the unresolved small scales and filtering of 

the chemical source term, and corresponding closure models still need to be proposed. Because 

of straightforward CFD applications and less expensive computational cost, RANS turbulence 



Chapter 3                                                            Theoretical Fundamentals of the Present Study 

32 

 

models are commonly used with various closure models proposed [184]. This strategy is 

considered as a compromise of computational accuracy and cost [184]. 

It is observed that turbulence results in a flow property (i.e., 𝜙) randomly fluctuating 

around its steady mean value (i.e., 𝜙̅), and the fluctuation component (i.e., 𝜙′) with zero mean 

value is time varying. This is called Reynolds decomposition. The resulting equation of a mean 

scalar quantity based on Equation (3-1) could be expressed by [182]: 

 
𝜕(𝜌̅𝜙̅)

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̅𝑗𝜙̅ + 𝜌̅𝑢𝑗′𝜙′̅̅ ̅̅ ̅̅ ) =

𝜕

𝜕𝑥𝑗
(𝛤
𝜕𝜙̅

𝜕𝑥𝑗
) + 𝑆𝜙̅̅ ̅ (3-8) 

Therefore, Reynolds-averaged Navier-Stokes (RANS) equations by averaging continuity 

and momentum equations for turbulent flow could be expressed by [183]: 

 
𝜕𝜌̅

𝜕𝑡
+
𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̅𝑖) = 0 (3-9) 

 
𝜕(𝜌̅𝑢̅𝑖)

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̅𝑖𝑢̅𝑗 + 𝜌̅𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) = −

𝜕𝑝̅

𝜕𝑥𝑖
+
𝜕𝜏𝑖̅𝑗

𝜕𝑥𝑗
 (3-10) 

where 𝜏𝑖̅𝑗 is the mean viscous stress tensor given as [182]: 

 𝜏𝑖̅𝑗 = 𝜇 (
𝜕𝑢̅𝑖
𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
) (3-11) 

The eddy viscosity and diffusion models should be introduced for the Reynolds stress and 

scalar quantity, which are expressed as [182]: 

 −𝜌̅𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (
𝜕𝑢̅𝑖
𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
) −

2

3
𝜌̅𝛿𝑖𝑗𝑘 (3-12) 

 −𝜌̅𝑢𝑗′𝜙′̅̅ ̅̅ ̅̅ = 𝛤𝑡
𝜕𝜙̅

𝜕𝑥𝑗
 (3-13) 

where ij represents the Kronecker delta, and turbulent diffusivity, t could be calculated as 

[183]: 

 𝛤𝑡 =
𝜇𝑡
𝜎𝑡

 (3-14) 

where t varies for different flows. Turbulent kinetic energy, k could be calculated by [182]: 
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 𝑘 =
1

2
𝑢𝑖′𝑢𝑖′̅̅ ̅̅ ̅̅  (3-15) 

By using dimensional analysis, turbulent (or eddy) viscosity t could be expressed by 

length and velocity scales (L and ϑ) as [183]: 

 𝜇𝑡 = 𝜌̅𝐶𝜗𝐿 (3-16) 

where C is constant.  

Therefore, turbulence description necessities velocity and length scale [182]. As the 

velocity scale is linked with turbulent kinetic energy, turbulence models could be developed to 

calculate turbulence length scale or equivalent as well as turbulent kinetic energy. 

3.3.1 k-ε turbulence model 

This model solves k and its dissipation rate, ε in the standard form by [185]: 

 
𝜕(𝜌̅𝑘)

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̅𝑗𝑘) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 − 𝜌̅𝜖 (3-17) 

 
𝜕(𝜌̅𝜖)

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̅𝑗𝜖) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝜖
)
𝜕𝜖

𝜕𝑥𝑗
] + 𝐶𝜖1𝑃𝑘

𝜖

𝑘
− 𝜌̅𝐶𝜖2

𝜖2

𝑘
 (3-18) 

where Pk is the production rate of k, which is expressed as [185]: 

 𝑃𝑘 = 𝜇𝑡 (
𝜕𝑢̅𝑖
𝜕𝑥𝑗

+
𝜕𝑢̅𝑗

𝜕𝑥𝑖
)
𝜕𝑢̅𝑖
𝜕𝑥𝑗

 (3-19) 

In this model, the length scale is determined as [185]: 

 𝐿 =
𝑘3/2

𝜖
 (3-20) 

Therefore, the eddy viscosity is expressed as [185]: 

 𝜇𝑡 = 𝜌̅𝐶𝜇√𝑘𝐿 = 𝜌̅𝐶𝜇
𝑘2

𝜖
 (3-21) 

The model parameters commonly used in this model are [185]: 

 𝐶𝜇 = 0.09; 𝐶𝜖1 = 1.44; 𝐶𝜖2 = 1.92; 𝜎𝑘 = 1.0; 𝜎𝜖 = 1.3 (3-22) 
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3.3.2 k- turbulence model 

Another widely adopted turbulence model would be the k- turbulence model popularized 

by Wilcox [186], which uses an equation for k and an equation for an inverse time scale  (i.e., 

specific dissipation rate) as [182]: 

 
𝜕(𝜌̅𝑘)

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̅𝑗𝑘) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝑘
∗)
𝜕𝑘

𝜕𝑥𝑗
] + 𝑃𝑘 − 𝜌̅𝛽

∗𝑘𝜔 (3-23) 

 
𝜕(𝜌̅𝜔)

𝜕𝑡
+
𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̅𝑗𝜔) =

𝜕

𝜕𝑥𝑗
[(𝜇 +

𝜇𝑡
𝜎𝜔∗
)
𝜕𝜔

𝜕𝑥𝑗
] + 𝛼𝑃𝑘

𝜔

𝑘
− 𝜌̅𝛽𝜔2 (3-24) 

The eddy viscosity for this model is calculated as [182]: 

 𝜇𝑡 = 𝜌̅
𝑘

𝜔
 (3-25) 

The model parameters commonly used in this model are [182]: 

 𝛼 =
5

9
;  𝛽 = 0.075; 𝛽∗ = 0.09; 𝜎𝑘

∗ = 𝜎𝜔
∗ = 2;  𝜖 = 𝛽∗𝑘𝜔 (3-26) 

3.4 Combustion Modelling 

CFD modelling of combustion is very complex as combustion itself involves a wide 

variety of processes, leading to a great number of models coupled for these physical and 

chemical processes. Governing equations of reacting flows would be provided in Equations (3-

3) to (3-7). Specifically, combustion modelling may require solving transport equations of fluid 

flow, chemical species and heat, which involves chemical kinetics and thermodynamics.  

3.4.1 Chemical kinetics 

Chemical kinetics focus on studying reaction rates and reaction mechanisms, which 

ultimately determines the time for a chemically reacting flow system to an equilibrium state. 

In practical chemically reacting flow systems, there normally exists a large number of chemical 

species and reactions. Specifically, combustion of a fuel normally involves a few different steps, 

rather than occurs in a single overall reaction or a global reaction. Detailed reaction 

mechanisms involving many intermediate equations with appropriate rate constants are 

available in the literature. The famous GRI-Mech 3.0 [187] for methane combustion has been 

widely used, which takes NO formation into account. A detailed chemical reaction mechanism 
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called ABF mechanism was reported by Appel et al. [59], in which the famous H-abstraction-

C2H2-addition (HACA) mechanism describes surface growth and oxidation. The ABF 

mechanism [59] named from the initials of the author's last name has been successfully applied 

in soot modelling ofs various flames [49,143,188,189]. For a chemical kinetic model including 

NS species, the NR elementary reversible (or irreversible) reactions can be represented in the 

general form [83]: 

 ∑(𝜈𝑘𝑗
′ 𝜒𝑘)

𝑁𝑆

𝑘=1

⇔∑(𝜈𝑘𝑗
′′ 𝜒𝑘)

𝑁𝑆

𝑘=1

  (3-27) 

where 𝜈𝑘𝑗
′  and 𝜈𝑘𝑗

′′  represent stoichiometric coefficients of jth reaction and kth species; 𝜒𝑘 

represents the chemical symbol of kth species and its production rate can be expressed as [83]: 

 𝜔𝑘 = 𝑊𝑘∑(𝜈𝑘𝑗
′′ − 𝜈𝑘𝑗

′ )

𝑁𝑅

𝑗=1

(𝐾𝑓𝑗∏[𝑋𝑘]
𝜈𝑘𝑗
′

𝑁𝑆

𝑘=1

− 𝐾𝑟𝑗∏[𝑋𝑘]
𝜈𝑘𝑗
′′

𝑁𝑆

𝑘=1

) (3-28) 

The kth species molar concentration, [Xk] is expressed as [83]: 

 [𝑋𝑘] =
𝜌𝑌𝑘
𝑊𝑘

 (3-29) 

The rate constants of forward or reverse reaction j, Kfj and Krj could be given based on the 

Arrhenius law as [83]: 

 𝐾𝑗 = 𝐴𝑗𝑇
𝛽𝑗 exp (−

𝐸𝑗

𝑅𝑇
) (3-30) 

where Aj is pre-exponential constant, j denotes temperature exponent and Ej represents 

activation energy. As most chemical kinetic models are developed by the widely used 

CHEMKIN [83] software package, these rate constants are normally provided by the literature 

in the CHEMKIN format, which are derived based on computational predictions and 

experimental measurements. 

3.4.2 Thermodynamics 

The thermodynamic properties in the standard state (293K) could be computed via 

National Aeronautics and Space Administration polynomial fits [83]. Specific heat at constant 

pressure of perfect gases in molar form can be calculated as [83]: 
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𝐶𝑝,𝑘
𝑜

𝑅𝑢
=∑𝑎𝑛,𝑘𝑇

𝑛−1

𝑁

𝑛=1

 (3-31) 

where superscript “o” represents 1 atmosphere of standard state. Standard-state enthalpy and 

entropy are calculated by specific heat integrals as [83]: 

 𝐻𝑘
𝑜 = ∫ 𝐶𝑝,𝑘

𝑜 𝑑𝑇
𝑇

0

= 𝑅𝑢𝑇∑
𝑎𝑛,𝑘𝑇

(𝑛−1)

𝑛

𝑁

𝑛=1

+ 𝑎𝑁+1,𝑘𝑅𝑢 (3-32) 

 𝑆𝑘
𝑜 = ∫

𝐶𝑝,𝑘
𝑜

𝑇
𝑑𝑇

𝑇

0

= 𝑎1,𝑘𝑅𝑢 ln 𝑇 +∑
𝑎𝑛,𝑘𝑇

𝑛−1

𝑛 − 1

𝑁

𝑛=2

+ 𝑎𝑁+2,𝑘𝑅𝑢 (3-33) 

where the constants of integration aN+1,kRu and aN+2,kRu are evaluated from the standard-state 

heat and entropy of formation at 298 K. Seven coefficients (i.e., N = 5) for each of two 

temperature ranges based on the Joint Army Navy Air Force (JANAF) table of thermodynamics 

are used in CHEMKIN software. 

3.5 Soot Modelling 

The dynamic behaviours of aerosols with size i at time t in terms of coagulation, surface 

growth and coagulation are normally described by PBE in a discrete form as [42]: 

𝜕

𝜕𝑡
𝑁(𝑡, 𝑖) =

1

2
∑𝛽(𝑡, 𝑖 − 𝑗, 𝑗)𝑁(𝑡, 𝑖 − 𝑗)𝑁(𝑡, 𝑗)

𝑖−1

𝑗=1

−∑𝛽(𝑡, 𝑖, 𝑗)𝑁(𝑡, 𝑖)𝑁(𝑡, 𝑗)

∞

𝑗=1

+∑[𝑤𝑙(𝑡, 𝑖 − 𝛿𝑖
𝑙)𝑁(𝑡, 𝑖 − 𝛿𝑖

𝑙) − 𝑤𝑙(𝑡, 𝑖)𝑁(𝑡, 𝑖)]

4

𝑙=1

+ 𝑅(𝑡)𝛿𝑖𝑛
∗  

(3-34) 

𝑁(0, 𝑖) = 𝑁0(𝑖) ≥ 0 (3-35) 

where N(t,i) represents particle number density; (t,i,j) is coagulation kernel; R(t) is particle 

inception rate, and 𝛿𝑖𝑛
∗  is the smallest inception particle size; wl(t,i) represents rates of dynamic 

processes involving condensation, surface growth and oxidation, and 𝛿𝑖
𝑙 is change in mass.  

As soot formation and evolution closely relate to the local gas-phase species and 

thermodynamics conditions, investigation on soot aerosol dynamics should be based on 

precisely modelling of reacting flows, which requires coupling soot aerosol dynamics with 

combustion flows. 
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3.5.1 Soot nucleation 

It is generally agreed that soot formation is closely associated with polycyclic aromatic 

hydrocarbons (PAHs), in which soot is modelled by coagulating two pyrene (A4) molecules 

[42,49,143,189]. Because the radii of A4 molecules could be quite smaller than mean molecular 

free path, particle inception can be modelled by the Smoluchowski’s coagulation equation [190] 

based on the free molecular regime. On that account, the soot nucleation rate is written as [42]: 

 𝑅nuc =
1

2
𝛽A4,A4𝑁A4

2  (3-36) 

where NA4 is the number concentration of A4, and βA4,A4 represents A4 molecule coagulation 

kernel, which could be calculated as [60]: 

 𝛽A4,A4 = 4𝐸𝐹√
𝜋𝑘𝐵𝑇

𝑚A4
𝑑A4
2  (3-37) 

where kB and EF are the Boltzmann constant and van del Waals enhancement factor equal to 

2.2, respectively; T is temperature, and the diameter of A4, dA4 is expressed as [150]: 

 𝑑A4 = 𝑑𝐴√
2𝑛𝐶,A4
3

 (3-38) 

where nC,A4 and dA are carbon atomic number of a A4 molecule and an aromatic ring size, 

respectively. The mass of A4, mA4 is normally calculated as [191]: 

 𝑚A4 = 𝐶m𝑛𝐶,A4 (3-39) 

where Cm is atomic mass of carbon. 

3.5.2 Soot coagulation 

Soot coagulation between two particles with masses m and  can be expressed by 

Smoluchowski’s equation as [9]: 

 𝑅coag(𝑚) =
1

2
∫ 𝛽(,𝑚 − )𝑛()𝑛(𝑚)𝑑
𝑚

0

−∫ 𝛽(𝑚,)𝑛()𝑛(𝑚)𝑑
∞

0

 (3-40) 

where n(m) represents particle size distribution; β(m,) is the collision frequency or 

coagulation kernel of two particles, which is calculated as [9]: 
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 𝛽(𝑚,) = 𝐸𝐹 (
𝜋𝑘𝐵𝑇

2
)
1/2

(
1

𝑚
+
1


)
1/2

(
6

𝜋𝜌𝑠
)
2/3

(𝑚1/3 + 1/3)
2
 (3-41) 

where s is the soot density. 

3.5.3 Soot surface growth and oxidation 

These dynamic processes can be described via H-abstraction-C2H2-addition mechanism 

adopting Arrhenius rate expressions, in which OH oxidation could be modelled via the collision 

theory based on the free molecular regime, while soot surface growth via C2H2 and O2 oxidation 

take place on the soot surface activated sites. In general, surface growth and oxidation rates can 

be expressed as [10,192]: 

 𝑅sg,𝑖 = 𝛼𝑘𝑔,𝑠𝜒𝑠𝐶𝑔𝑆𝑖𝑁𝑖 (3-42) 

where α and Cg are the fraction of available surface sites and gas species concentration, 

respectively; χs and kg,s are nominal surface site number density and per-site rate coefficient, 

respectively;  Ni and Si are the number density and surface area, respectively. 

Apart from C2H2, it is reported that PAHs also significantly influence soot growth process 

in the PAH-based soot model [10]. Specifically, soot aerosols can grow by condensing PAHs 

on these particle surfaces, which would be modelled by the collision of PAH molecules with 

soot aerosols. 

3.6 Modelling Soot Aerosol Dynamics in Combustion Flows 

In CFD modelling of soot formation and evolution in reacting flows, soot population 

properties (soot mass and number densities) are solved in transport equations, in which soot 

aerosol dynamic processes are coupled as source terms. The most widely used transport 

equations for modelling soot aerosol dynamics in the general form is formulated as [92,125]: 

 
𝜕

𝜕𝑡
(𝜌𝑁) + ∇ ∙ (𝜌𝐔𝑁) + ∇ ∙ (𝜌𝐕𝑇𝑁) − ∇ ∙ (𝜌𝐷𝑠∇𝑁) = 𝑆

𝑁 (3-43) 

 
𝜕

𝜕𝑡
(𝜌𝑌) + ∇ ∙ (𝜌𝐔𝑌) + ∇ ∙ (𝜌𝐕𝑇𝑌) − ∇ ∙ (𝜌𝐷𝑠∇𝑌) = 𝑆

𝑌 (3-44) 

where N and Y are variables corresponding to soot number density and soot mass density; t and 

ρ are time and density; U and VT are velocity and thermophoretic velocity; Ds is diffusion 

coefficient of soot; SY and SN are source terms in terms of soot aerosol dynamic processes 
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involved. It is worth noting that this model assumes that soot is monodisperse. 

By comparison, soot aerosol dynamics normally described by detailed soot models 

compose a series of complicated physicochemical processes involving nucleation, 

condensation, coagulation, aggregation, surface growth and oxidation are governed by 

population balance equation (PBE) [25,33,35,38,176-178,193], which is normally 

approximated by Monte Carlo (MC) methods, method of moments (MOM) and sectional 

methods (SMs). In MC methods, an ensemble of particles is represented by several numerical 

particles with dynamic processes of particles handled probabilistically. Although the resulting 

solution is normally very accurate, the computational cost is rather high. In addition, coupling 

a MC method with the CFD framework for combustion simulations is not straightforward, 

which is only used as a postprocessing technique to study the soot dynamics [10,194], greatly 

limiting their application in soot modelling [43,49,50]. Instead of solving the PSD directly, 

MOM solves the moments of the PBE. This approach is computationally efficient but may 

encounter closure problems, so various MOM-based methods have been developed for soot 

modelling [92,146,195-200]. By comparison, the SMs are intuitive and easy to implement, in 

which the PSD is divided into several sections and then the aerosol dynamics described by the 

PBE in each section is solved [10]. The commonly used SM algorithm for soot modelling in 

turbulent flames is developed by Netzell et al. [114], which uses SVF to evaluate the soot 

number density in every section. Specifically, transport equations of SVF in every section, Ys,i 

are formulated with convection and diffusive terms, in which the soot dynamic processes are 

evaluated as source terms as [55,102,106,201]: 

 
𝜕

𝜕𝑡
(𝜌𝑌𝑠,𝑖) + ∇ ∙ (𝜌𝐔𝑌𝑠,𝑖) + ∇ ∙ (𝜌𝐕𝑇𝑌𝑠,𝑖) − ∇ ∙ (𝜌𝐷𝑠,𝑖∇𝑌𝑠,𝑖) = 𝑆𝑠,𝑖 (3-45) 

where Ss,i and Ds,i are soot source terms and diffusion coefficient in ith section. However, this 

conventional SM algorithm is not capable of modelling fractal-like soot aggregate structure 

[202]. 

In order to fill this gap, an advanced SM of solving primary particle and soot aggregate 

size distributions in each section was developed [203,204], but this method was mainly used 

in laminar diffusion flames [202,205-207]. This is attributed to the high computational cost, 

and its application to computationally intricate turbulent flames is limited due to the 

involvement of several different dynamics processes occurring at the same time but different 

length scales. As soot dynamic processes in a turbulent combustion flow closely depend on the 
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local fluctuated concentrations of related gas-phase species as well as thermochemical 

parameters, modelling of chemistry as well as turbulence-chemistry and turbulence-soot 

interactions is required to accurately predict soot in a turbulent combustion flow. 

3.7 Summary 

The basis of fundamental theories of the PBE for solving aerosol dynamics are described 

in detail, and transport equations of coupling soot aerosol dynamics with CFD in combustion 

flows are formulated in the present study. 
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Chapter 4 Development of Sorting Algorithm-based Merging Weighted 

Fraction Monte Carlo Method for Coagulation 

 

4.1 Introduction 

The objective of this chapter is to propose and develop a new Monte Carlo (MC) method 

for solving the population balance equation for the weighted fraction coagulation process in 

aerosol dynamics with high computational accuracy and efficiency. Although the introduction 

of adjustable fraction functions in the weighted fraction Monte Carlo (WFMC) method [33] 

are conducive to the computational accuracy of high-order moments of the particle size 

distribution (PSD), the stochastic error in the total particle number concentration significantly 

increases which is always much larger than the direct simulation Monte Carlo (DSMC) as well 

as multi-Monte Carlo (MMC) methods [33]. In addition, the WFMC method has a rigid 

limitation on the fraction functions, making few fraction functions applicable to the WFMC 

method except for those specifically selected adjustable fraction functions. For example, if the 

fraction function is a constant which is not equal to 1, a large statistical noise or even error will 

be shown. This significantly reduces the generality of fraction functions and limits the 

applicability of the WFMC method. To tackle these problems, a new sorting algorithm-based 

merging weighted fraction Monte Carlo (SAMWFMC) method is proposed and developed in 

the present study. Three adjustable fraction functions applicable to the WFMC method and 

constant fraction functions are also introduced to check the reliability of the SAMWFMC 

method. A new merging scheme is then proposed and developed to ensure a constant-number 

and constant-volume scheme. Six benchmark test cases with existing analytical solutions are 

used to validate the newly developed SAMWFMC method and the resulting stochastic errors 

are also compared with those of the DSMC, MMC and WFMC methods. 

4.2 Methodology 

The occurrence of aerosol dynamic processes normally leads to the change in the particle 

size distribution (PSD) with time and position, which are governed by the population balance 

equation (PBE) (i.e., general dynamic equation, GDE) [9]. Coagulation is one of the most 

important aerosol dynamic processes, which refers to two particles colliding to form a large 
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one and leads to the decrease of the particle number and the increase of the average particle 

size. As a coagulation event always occurs between two particles, it is regarded as the most 

demanding event for modelling among various aerosol dynamic events [32,34]. The dynamic 

evolution of PSD due to coagulation is described by the so-called Smoluchowski coagulation 

equation as [9]: 

𝜕𝑛(𝑣, 𝑡)

𝜕𝑡
=
1

2
∫ 𝛽(𝑢, 𝑣 − 𝑢, 𝑡)𝑛(𝑢, 𝑡)𝑛(𝑣 − 𝑢, 𝑡)𝑑𝑢
𝑣

0

− 𝑛(𝑣, 𝑡)∫ 𝛽(𝑢, 𝑣, 𝑡)𝑛(𝑢, 𝑡)𝑑𝑢
∞

0

 

(4-1) 

where n(v,t) is the PSD function at time t; n(v,t)dv is the particle number concentration with 

size range between v and v+dv at time t; β(u,v,t) is the collision frequency or coagulation kernel 

of two particles with volume u and v at time t which is a description of the coagulation rate.  

In Monte Carlo (MC) methods for particle coagulation, the construction of a jump Markov 

process depends on the coagulation rate between numerical particles with different particle 

weights, because the coagulation rate determines the time step between two successive 

coagulation events and the selection of a coagulation particle pair. The development of the new 

SAMWFMC method is presented. 

4.2.1 Calculation of the coagulation rate 

A numerical particle, i is a representative of a group of real particles with the number 

equals to wi and the volume equals to vi. The real particle number concentration of this group 

is wi/V, where V is the volume of the computational domain. Similarly, wj/V is the real particle 

number concentration of a group represented by the numerical particle, j. Therefore, the 

number of coagulation events among real particles per unit time and volume between ith-group 

and jth-group of numerical particles can be expressed by [32]: 

Φij=β
ij
×

wi

V
×

wj

V
 (4-2) 

where Φij is the coagulation rate between a random chosen real particle from the ith-group and 

a random chosen real particle from the jth-group, while βij is the coagulation kernel function of 

particles i and j. Thus, the number of coagulation events of the real particles between the ith-

group and jth-group per unit time in the computational domain is VΦij.  

In the present study, it is considered that coagulation events occur among a part of or all 



Chapter 4               Sorting Algorithm-based Merging Weighted Fraction Monte Carlo Method 

43 

 

real particles between the ith-group and jth-group, which is characterized by a fraction function, 

αij [33,49]. The mean number of coagulation events within these real particles is given by [33]: 

Ω = αij min (wi,wj) ,αij∈(0,1] (4-3) 

Therefore, the number of coagulation events of the real particles between the ith-group 

and jth-group per unit time in the computational domain can also be formulated by ΩCij [33]:  

VΦij=ΩCij (4-4) 

where Cij is the coagulation rate between numerical particles, i and j, which can be written as 

[33]: 

Cij=
max(wi,wj)

αij

β
ij

V
=

β
ij

′

V
 

β
ij

′
=
max(wi,wj)

αij

β
ij
 

(4-5) 

where βij
’ is the new coagulation kernel function which is used to construct the jump Markov 

process.  

4.2.2 Determination of a time step 

The waiting time between two events (i.e., coagulation) is an exponentially distributed 

random variable as [208]:  

P(τ) = C0 exp (-C0τ) (4-6) 

where C0 is the total coagulation rate which is written as [208]: 

𝐶0 = ∑ ∑ 𝐶𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 (4-7) 

Therefore, the occurrence probability of a coagulation event of numerical particles, 

Pcoag(Δt) in the computational domain with a volume of V and within a time step of Δt is given 

by [33]:  

Pcoag(∆t) = 1- exp (-∆tC0) (4-8) 

The time step is then determined as [153,208]:  
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∆t = 
ln(1/r1)

C0

 (4-9) 

where r1 is a random number from the uniform distribution between zero and one.  

4.2.3 Selection of a coagulation particle pair 

The acceptance-rejection method [153] and the cumulative probability method (i.e., the 

inverse method) [154] are two commonly used for selecting a coagulation pair at random basis. 

Since the inverse method needs to calculate the coagulation rates of all possible particle pairs 

which is time-consuming [17], the acceptance-rejection method is then adopted in the present 

study. At first, the numerical particles, i and j, are randomly selected, and then they would be 

accepted as a numerical particle pair to conduct a coagulation event if the following condition 

is satisfied as [153,208]: 

r2 ≤ 
Cij

max
∀k,∀m

Ckm

 (4-10) 

where r2 is a random number from the uniform distribution in the unit interval. Otherwise, they 

are rejected, and then a new numerical particle pair is entirely selected at random basis to repeat 

the acceptance or rejection procedure until a satisfied numerical particle pair is obtained. It 

should be noted that the Markov process still can be exactly implemented even though the 

max
∀k,∀m

Ckm in Equation (4-10) is overestimated [34,153].  

4.2.4 Fraction functions 

In the WFMC method, three types of adjustable fraction functions (i.e., hyperbolic 

fraction function (HFF), exponential fraction function (EFF) and stepwise constant fraction 

function (SCFF)) with a rigid assumption are specially selected [33] as presented in Equations 

(4-11) to (4-13). It should be noted that all these three types of adjustable fraction functions 

have a specific range from 0.5 to 1 closely related to the volumes of numerical particles i and 

j, which may lead to a totally different value of each numerical particle from others. In addition, 

all these fraction functions for numerical particles with large size discrepancy are strictly 

restricted to almost 1, which means that a numerical particle pair with small size difference 

undergoes a weighted fraction coagulation event while two numerical particles of large size 

discrepancy do not experience a weighted fraction coagulation. From this point of view, all 
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these fraction functions are used to control the coagulation process of a numerical particle pair 

in terms of its volume ratio in the WFMC method. This is the prerequisite of adopting the 

WFMC method [33]. If this rule is not followed, the WFMC method can lead to a very large 

statistical noise or even error and cannot be used for simulating coagulation anymore. This is 

the reason why only a few fraction functions (i.e., HFF, EFF and SCFF) are applicable to the 

WFMC method. Actually, even though these three types of adjustable fraction functions are 

used in the WFMC method, the stochastic error in the total particle number concentration is 

still large [33].  

In the present study, these three types of adjustable fraction functions (HFF, EFF and 

SCFF) are used in the newly proposed and developed SAMWFMC method to validate the 

computational accuracy and efficiency. Meanwhile, constant fraction functions (CFF) in 

Equation (4-14) are also introduced to extend the generality of the fraction functions and check 

the applicability of the new SAMWFMC method. It should be noted that C in Equation (4-14) 

can be an arbitrary number between zero and unity, which is consistent with the expression in 

Equation (4-3). 

𝛼𝑖𝑗 =
1

1 +min(𝑣𝑖 , 𝑣𝑗) /max(𝑣𝑖 , 𝑣𝑗)
 (4-11) 

𝛼𝑖𝑗 = 1 − 2
−max(vi,vj) min(vi,vj)⁄  (4-12) 

𝛼𝑖𝑗 = {
0.5, max(vi,vj) min(vi,vj)⁄ ≤ 2 

1, max(vi,vj) min(vi,vj)⁄ > 2
 (4-13) 

𝛼𝑖𝑗 = 𝐶 (4-14) 

4.2.5 A new merging scheme 

Every time when a numerical particle pair undergoes a weighted fraction coagulation 

event, there is an additional new numerical particle generated in the computational domain, 

leading to the continuous increasing in the number of numerical particles when more 

coagulation events occur. As a result, the computational efficiency will drop. It should be noted 

that the additional numerical particle with the lowest weight after a coagulation event is 

represented by “New x” as shown in Figure 4.1. In order to keep the number of numerical 

particles constant in the constant computational domain, Jiang and Chan (2021) have recently 

proposed a probabilistic removal scheme by randomly removing one of the coagulated 
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numerical particles (“New i” or “New j” as shown in Figure 4.1) out of the computational 

domain and then adjusting the weight of the other coagulated numerical particle after the 

coagulation event. However, this probabilistic removal scheme may result in the fluctuation of 

the total particle number concentration. 

 

 

Figure 4.1 Schematic diagram of numerical particles undergoing a weighted fraction 

coagulation [35]. 

 

In the present study, a new merging scheme is proposed and developed to ensure a 

constant-number and constant-volume scheme. If the fraction function is equal to 1 and the 

weights of two coagulated numerical particles are equal, it is straightforward to distribute the 

equal volume and weight to the two new numerical particles as shown in Figure 4.2. Otherwise, 

the schematic diagrams of the merging scheme in terms of different volumes and weights of a 

coagulated numerical particle pair are shown in Figures 4.3 and 4.4. Instead of removing one 

coagulated numerical particle out of the computational domain in the WFMC method [33], the 

idea of the merging scheme in the present study is to add the “New x” in Figure 4.1 to an 

existing numerical particle in the computational domain.  

If the volumes of two coagulated numerical particles are equal, only these two coagulated 

numerical particles are required to be involved in the merging scheme. If the weight of the “Old 

i” is not larger than that of the “Old j” as shown in Figure 4.3(a), the “Old i” will be replaced 

by the “New i” with the volume equal to (vi + vj), and the “New x” will be added to the “Old j” 

and the “New j” will then be formed. If the weight of the “Old i” is larger than that of the “Old 

j” as shown in Figure 4.3(b), the “Old j” will be replaced by the “New j” with the volume equals 

to (vi + vj), and the “New x” will be added to the “Old i” and the “New i” will then be formed. 
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Figure 4.2 Schematic diagram of merging weighted fraction when αij = 1 and wi = wj [35]. 

 

 

(a) wi ≤ wj 

 

(b) wi > wj 

Figure 4.3 Schematic diagram of merging weighted fraction when vi = vj [35]. 

 

By comparison, the handling of the “New x” is completely different when the volumes of 

these two numerical particles, vi and vj, are not equal. Under this circumstance, a totally new 

numerical particle, “Old k”, neither “Old i” nor “Old j”, in the computational domain is 

introduced to implement the merging scheme as shown in Figure 4.4. If the weight of the “Old 
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i” is not larger than that of the “Old j” as shown in Figure 4.4(a), the “Old i” will be replaced 

by the “New i” with the volume equal to (vi + vj), the “Old j” will be replaced by the “New j” 

with the same volume vj, and the “New x” will be added to the “Old k” and the “New k” will 

then be formed. But if the weight of the “Old i” is larger than that of the “Old j” as shown in 

Figure 4.4(b), the “Old j” will be replaced by the “New j” with the volume equals to (vi + vj), 

and the “Old i” will be replaced by the “New i” with the same volume vi and the “New x” will 

be added to the “Old k” and the “New k” will then be formed. 

 

 

(a) wi ≤ wj 

 

(b) wi > wj 

Figure 4.4 Schematic diagram of merging weighted fraction when vi ≠ vj [35]. 

 

Therefore, the choice of the numerical particle, “Old k” becomes of great importance in 

the merging scheme because a randomly chosen “Old k” in the computational domain 

undoubtedly leads to the introduction of large statistical noise. However, if the volume of the 

“Old k” is close or equal to that of the “New x”, the statistical noise of the new merging scheme 

can significantly reduce. Clearly, the most appropriate “Old k” has the same properties as the 
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“New x” or has the nearest properties to the “New x”, so the property (i.e., volume) difference 

between the “New x” and “Old k” is defined as:  

Sx= |vk-vx| (4-15) 

when Sx is the minimal where the corresponding k is the most appropriate numerical particle 

for “New x” to be merged.  

It should be noted that the volume of the “New k” is treated as the same as the “Old k” 

after merging, while the weight of the “New k” would be adjusted according to the 

volume/mass conservation rule, which will be presented later in Section 4.2.7. Therefore, the 

newly proposed merging scheme in the present study is completely different from those used 

in Kotalczyk and Kruis [161] and Zhao et al. [172]. In order to deal with an additional 

numerical particle generated by a breakage event, Zhao et al. [172] adopted a merging measure 

where the number of numerical particles is kept to be constant by directly adding the weights 

of the additional numerical particle and a randomly selected one with the similar volume 

together. Although the total particle number concentration is conserved exactly, the stochastic 

error in the total particle volume/mass concentration may occur. By comparison, Kotalczyk 

and Kruis [161] introduced a technique of merging a generated numerical particle due to 

nucleation, breakage or transport to conserve both the total particle number and volume/mass 

densities, but the purpose of each merging treatment is to reduce one numerical particle and 

vacate a position in the computational domain by selecting two existing numerical particles to 

form a new one. But these two existing numerical particles should be specially selected; 

otherwise a very large stochastic noise or even error would be introduced. A low weight 

merging scheme is then introduced to minimize the stochastic error, in which the most 

appropriate merging numerical particle pair should be determined by comparing all possible 

numerical particle pairs. If the number of numerical particles used is N, the number of 

comparisons in numerical particle pairs is then N(N-1), which is very computationally 

expensive. Although the time complexity of this merging scheme is reduced to O(logN) which 

can be achieved to accelerate computations by using both parallel computing and graphic 

processing units (GPUs), the whole algorithm and programming are fairly complex. 

Obviously, it is not sensible to compare the properties of all the numerical particles one-

by-one with that of “New x” because it is highly time-consuming, especially when the number 

of numerical particles is large. But if the properties (i.e., volume and weight) of numerical 
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particles are sorted and stored in the computer memory, it is more convenient to find the target 

“Old k” by adopting the 1-nearest neighbour (1-NN) algorithm. In Figure 4.4(a), if the “Old k” 

is one of the nearest neighbours of the “Old i”, it is obvious that the “Old k” has a similar 

volume with the “New x”. Therefore, the “Old k” can be determined by:  

k = {
i-1,  Si-1<Si+1

i+1,  Si-1≥Si+1
 (4-16) 

Similarly, the “Old k” in Figure 4.4(b) is determined as:  

k = {
j-1,  Sj-1<Sj+1

j+1,  Sj-1≥Sj+1
 (4-17) 

Therefore, the sorting algorithm-based merging weighted fraction scheme is newly 

proposed and developed for easily and rapidly determining the target “Old k” with the nearest 

property to the “New x” by using 1-NN algorithm. 

4.2.6 Selection of a sorting algorithm 

As sorting numerical particles is vital to the computational accuracy in the newly 

developed SAMWFMC method, the selection of the most efficient sorting algorithm is 

essentially required for reducing the computational cost. 

As discussed in the Section 4.2.5, the number of numerical particles remains constant 

during the numerical simulation by introducing the new merging scheme, so there is no need 

to implement the operation of adding or removing numerical particles anymore. This feature 

matches well with the data structure of array in the computer programming. More importantly, 

array supports random access, which implies that every numerical particle can be directly 

accessed by its index, which can significantly improve computational efficiency especially 

when the number of numerical particles is large. An object-oriented programming (OOP) 

language, C++ has classes and objects. A class is a type of data which includes properties and 

functions while an object is an instance of a class. In the present study, a class of the numerical 

particle including properties (e.g., identification number [ID], volume and weight) is defined. 

Then each object is created as an instance of the numerical particle class. Finally, an array is 

used to store a collection of objects of the numerical particle class. 

As the prerequisite of implementing the merging scheme is that the numerical particle 

array should be sorted, it is necessary to sort the numerical particle array before the next 
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coagulation event. Note that it is unnecessary to sort the initial numerical particle array if the 

initial PSD is monodispersed; otherwise, sorting the initial numerical particle array is required 

when the initial numerical particle system is generated. In the present study, the numerical 

particles are sorted by their properties (i.e., volume and weight), so all numerical particles are 

in order in terms of their properties. When two numerical particles, “Old i” and “Old j” with 

the same volume coagulate as shown in Figures 4.2 and 4.3, they are replaced in place by the 

“New i” and “New j”; otherwise, the “Old i”, “Old j” and “Old k” are replaced in place by the 

“New i”, “New j” and “New k” after coagulation as shown in Figure 4.4. Other numerical 

particles in the array remain constant, which demonstrate that there are only two or three 

numerical particles required to be sorted, so only an efficient sorting algorithm for the nearly 

sorted numerical particle array is needed. 

There are a great variety of sorting algorithms such as bubble sort, selection sort, insertion 

sort, merge sort, heapsort and quicksort, and their variations [209] as there is no one sorting 

method that can deal with every situation [210]. The performance of a sorting algorithm is 

evaluated by the complexities of time and space in the notation of the standard big O(n), where 

n is the size of the input data [211]. The average time complexities of the bubble, selection and 

insertion sorts are O(n2) while the average time complexities of the merge sort, heapsort and 

quicksort are O(nlogn). But, if the array is nearly or completely sorted, the time complexities 

of the selection sort, merge sort, heapsort and quicksort remain unchanged, while the time 

complexities of the bubble and insertion sorts become O(n), which implies that bubble and 

insertion sorts have high efficiency for nearly or completely sorted arrays [212]. It is worth 

noting that both bubble and insertion sorts aim at small numbers of elements in the array. It is 

better to choose a suitable sorting algorithm with the time complexity of O(nlogn) when the 

number of elements needed to be sorted is large. In addition, the bubble sort adopts the 

exchanging method when sorting, which is not as efficient as the insertion method by the 

insertion sort. Therefore, in the newly proposed and developed SAMWFMC method, the 

insertion sort is used to sort the numerical particle array after a coagulation event is taken place 

as the numerical particle array is already in order except for only two or three numerical 

particles. Furthermore, if the initial PSD is not monodispersed, the quicksort is adopted to sort 

the initial numerical particle array after the numerical particle system is generated. 
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4.2.7 Treating a coagulation event 

If two numerical particles undergo a coagulation event, the real particles represented by 

these two numerical particles also experience coagulation, which leads to the change in the 

properties (i.e., volume and weight) of these two numerical particles. If the fraction function, 

αij in Equation (4-3) is equal to 1 and the weights of “Old i” and “Old j” are the same as shown 

in Figure 4.2, all real particles would be coagulated. The consequence of this coagulation event 

is denoted as [32]: 

if wi = wj, {
vi

'  = vi+vj, wi
'  = wi 2⁄

vj
'  = vi+vj, wj

'  = wj 2⁄
 (4-18) 

Otherwise, two or three numerical particles are involved as shown in Figures 4.3 and 4.4. The 

volume/mass of the “New x” is (wi-αijwi)vi in Figures 4.3(a) and 4.4(a), and (wj-αijwj)vj in 

Figures 4.33(b) and 4.4(b), respectively, which is merged with a selected numerical particle 

based on mass conservation, so the consequence of a coagulation event in terms of merging 

scheme is formulated as: 

if vi = vj and wi≤ wj,  

{

vi
'  = vi+vj, wi

'  = αijwi

vj
'  = vj,wj

'= wj − αijwi +(wi − αijwi)
vi

vj

= wi+ wj − 2αijwi 
 

(4-19) 

if vi = vj  and wi>wj,  

{
vi

'  = vi,wi
'= wi − αijwj+(wj − αijwj)

vj

vi

= wi+ wj − 2αijwj

vj
'=vi+vj, wj

'=αijwj

 

(4-20) 

if vi ≠ vj and wi≤wj, 

{
 
 

 
 vi

'  =vi+vj, wi
'= αijwi

vj
'  = vj,wj

'= wj − αijwi

vk
' = vk,wk

' = wk+(wi − αijwi)
vi

vk

 

(4-21) 
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if vi ≠ v j and wi>wj, 

{
 
 

 
 vi

'= vi,wi
'  = wi − αijwj

vj
'  =vi+vj, wj

'  = αijwj

vk
'  = vk,wk

'  = wk+(wj−αijwj)
vj

vk

 

(4-22) 

It should be noted that if the fraction function, αij is always equal to 1, the Equations (4-

18) to (4-22) are completely consistent with those of the MMC method [32], which demonstrate 

that the MMC method is only a special case of the newly proposed SAMWFMC method when 

αij = 1.  

 

 

Figure 4.5 Flowchart of the newly proposed and developed SAMWFMC algorithm [35]. 
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Every time when a coagulation event takes place, the coagulation rate Cij in Equation (4-

5), the total coagulation rate, C0 in Equation (4-7) and max
∀k,∀m

Ckm in Equation (4-10) should be 

recalculated since there are two or three numerical particles in the array whose volumes and 

weights are changed in the SAMWFMC method. In the present study, the smart bookkeeping 

technique [17] is used to calculate C0 in Equation (4-7) and max
∀k,∀m

Ckm in Equation (4-10), which 

can avoid spending a large amount of time for recalculating the coagulation rates, Cij of those 

uncoagulated numerical particles. More specifically, double traversing and counting on each 

numerical particle from the beginning to the end only takes place in the initial calculation of 

the total coagulation rate, C0 and there is no further double traversing and counting anymore 

during the numerical simulation.  

4.2.8 Description of the SAMWFMC algorithm 

Figure 4.5 shows the flowchart of the newly proposed and developed SAMWFMC 

algorithm for particle coagulation, in which the full algorithm is described. 

4.3 Results and Discussion 

In the present study, two initial particle size distributions (i.e., initial monodispersed 

distribution [IMD] and initial exponential distribution [IED]), three coagulation kernels (i.e., 

constant coagulation kernel [CCK], linear coagulation kernel [LCK] and quadratic coagulation 

kernel [QCK]) and four fraction functions (i.e., hyperbolic fraction function [HFF], exponential 

fraction function [EFF], stepwise constant fraction function [SCFF] and constant fraction 

function [CFF]) are completely used. The newly proposed SAMWFMC method is fully 

validated by comparing the numerical results of the PSD and corresponding different orders of 

moments with the existing analytical solutions [154,213] to assess the computational accuracy. 

In addition, a comparison of stochastic errors as well as computational efficiency with the 

DSMC [17], MMC [32] and WFMC [33] methods is performed. The general moment of the 

PSD function can be defined by the expression [9]: 

Mk=∫ vkn(v)
∞

0

dv (4-23) 

where k is the order of the moment. Different order moments normally have their specific 

physical meanings. For example, the zeroth moment, M0 and the first moment, M1 are the total 

particle number and mass (volume) densities, respectively. The mean standard deviations of 
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the Mk are denoted as σMk
 [32,34,214]. 

𝜎𝑀𝑘(𝑡) =
1

𝑄
∑√

1

𝑡
∫ [

𝑀𝑘
𝑀𝐶(𝑖)(𝑡) −𝑀𝑘

𝐴𝑆(𝑡)

𝑀𝑘
𝐴𝑆(𝑡)

]

2

𝑑𝑡
𝑡

0

𝑄

𝑖=1

 (4-24) 

where Q is the number of MC repetitions. The analytical solution is represented by “AS” while 

MC(i) is the numerical results of the i-th MC simulation. In the present study, the number of 

MC repetitions used for all studied cases is 200 for achieving good enough stable mean 

standard deviations. The initial number of numerical particles used in the present study is 2000 

[17,32,152,156,161,176,177,214] for all MC methods, which can achieve highly accurate 

numerical results. It has been proved that the choosing of the initial number of numerical 

particles to be 2000 can achieve high computational accuracy with a reasonable computational 

time. 

4.3.1 Initial monodispersed distribution and constant coagulation kernel 

Aerosols composed of particles with all the same size are called monodisperse aerosols. 

A typical case with the initial monodispersed distribution (IMD) and constant coagulation 

kernel (CCK) function is a benchmark for algorithm validation, as the analytical solution of 

the Smoluchowski equation exists [154]. In this case, the initial total particle number 

concentration, N0 = 106 particles/cm3 [17] and the coagulation kernel βij is equal to a constant 

A where A = 10−6 cm3/s [17]. The characteristic coagulation time is defined as τc = 1/(AN0).  

Figure 4.6 shows the time evolutions of zeroth-order to third-order moments (i.e., M0, M1, 

M2 and M3) obtained from DSMC, MMC, WFMC and SAMWFMC methods and their 

corresponding mean standard deviations (i.e., σM0
, σM1

, σM2
 and σM3

) for different fraction 

functions (i.e., HFF, EFF, SCFF and CFF) with the IMD and CCK when compared with 

analytical solutions [154]. In Figure 4.6(a), the total particle number concentrations, M0 for all 

studied MC methods decrease over time and show excellent agreement with the analytical 

solution due to the reduction in the number of real particles in each coagulation process. But 

the mean standard deviations, σM0
 vary for different MC methods. It can be found that the σM0

 

obtained from the new SAMWFMC method are always lower than the counterparts of WFMC 

method [33], which demonstrates that the SAMWFMC method always has higher 

computational accuracy in predicting M0 than the WFMC method. Especially, the σM0
 for the 
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WFMC method with the HFF is the largest, even larger than that of the DSMC method, and 

keeps increasing with time, which are also found in Jiang and Chan [33]. It implies that the 

stochastic error in M0 for the WFMC method with the HFF is very large and this method cannot 

allow for indefinitely long numerical simulations of the particle coagulation. It is because more 

coagulation events will occur with time advancing, the stochastic error will be even larger and 

the computational accuracy will be further reduced. By comparison, the σM0
 for the 

SAMWFMC method with the HFF still remains at a very low stochastic error level and nearly 

unchanged with time, which demonstrates that the new merging scheme implemented in the 

proposed SAMWFMC method can effectively reduce the stochastic error in M0. More 

importantly, as the WFMC method is not applicable to a CFF due to the limitation of the 

particle size discrepancy while the applicability of the SAMWFMC method is fully assessed 

for different CFFs (i.e., C = 0.5, 0.6, 0.7, 0.8 and 0.9) in the present study. It is found that 

different constants of the CFF have little effect on the σM0
, as all the σM0

 obtained from the 

SAMWFMC method with C = 0.5 to 0.9 are very close and lower than that of the MMC method 

[32]. As the coagulation process does not change the total volume/mass of numerical particles 

due to volume/mass conservation, the total volume concentrations, M1 for all MC methods 

remain constant during the numerical simulation, therefore leading to no stochastic error in M1 

as shown in Figure 4.6(b).  

In Figures 4.6(c) and 4.6(d), the time evolutions of higher-order moments (i.e., M2 and 

M3) obtained from different MC methods are also in very good agreement with the analytical 

solutions. The DSMC method has the largest σM2
 and σM3

 than other MC methods, while the 

σM2
 and σM3

 obtained from the both WFMC and SAMWFMC methods are lower than those of 

the MMC method, which demonstrates that the introduction of the fraction function in the both 

WFMC and SAMWFMC methods has a significant reduction of stochastic errors in the higher-

order moments. When the fraction function (i.e., HFF, EFF or SCFF) used in both WFMC and 

SAMWFMC methods is the same, the σM2
 and σM3

 for the SAMWFMC method are only 

slightly larger than those of the WMFC method, respectively, which implies that the new 

SAMWFMC method can achieve almost the same computational accuracy as the WFMC 

method. Furthermore, the effect of different CFFs for the SAMWFMC method on the σM2
 and 

σM3
 is also studied. Results show that with the CFF, the σM2

 and σM3
 obtained from the 

SAMWFMC method with C = 0.5 are the lowest, and the σM2
 and σM3

 gradually increase with 
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increasing C from 0.5 to 0.9. When C = 0.9, the σM2
 and σM3

 for the SAMWFMC method are 

almost equal to those of the MMC method. 

 

Figure 4.6 Time evolutions of zeroth-order to third-order moments and mean standard 

deviations obtained from DSMC, MMC, WFMC and SAMWFMC methods for different 

fraction functions with the IMD and CCK when compared with analytical solutions [35]. 

 

Figure 4.7 shows the probabilities of obtaining a cluster containing k primary particles, Pk 

obtained from DSMC, MMC, WFMC and SAMWFMC methods for different fraction 

functions (i.e., HFF, EFF, SCFF and CFF) at t/τc = 50 when compared with the analytical 

solution [154], where Pk represents the PSD at k = v/v0. Results show that all MC methods 

follow the analytical solution and track the PSD well, but there are varying degrees of 

fluctuations in the PSD for different MC methods. The DSMC method is found to have the 

narrowest PSD and the MMC method is slightly wider, the fluctuation in the PSD for the latter 

is smaller than the former when the particle size is the same at the high-end of the PSD. It can 

be also found that larger size particles can be obtained in both WFMC and SAMWFMC 

methods than those in the DSMC and MMC methods, so both WFMC and SAMWFMC 

methods with different fraction functions have wider PSDs than the MMC method, which 
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implies that the introduction of the fraction function can significantly extend the prediction 

range of the PSD. When the fraction function used in the WFMC and SAMWFMC methods is 

the same (i.e., HFF, EFF or SCFF), the SAMWFMC method has almost the same wide PSDs 

as the WFMC method, while the PSD obtained from the SAMWFMC method with the CFF 

becomes wider when decreasing C from 0.9 to 0.5. 

 

Figure 4.7 Probabilities of obtaining a cluster containing k primary particles, Pk obtained from 

DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with the IMD 

and CCK at t/τc = 50 when compared with analytical solution [35]. 

 

Figure 4.8 shows the number of numerical particles, NNP at different particle volumes, v/v0 

obtained from DSMC, MMC, WFMC and SAMWFMC methods for different fraction 

functions (i.e., HFF, EFF, SCFF and CFF) at t/τc = 50. The DSMC method has the most 

numerical particles at v/v0 = 1, but the number of numerical particles significantly reduces with 

the increase of the particle size. Finally, DSMC method has the least numerical particles at the 

high-end of the PSD, which implies that there are few or no numerical particles to represent 

the large real particles. This leads to the narrowest PSD among all MC methods, which is also 

shown in Figure 4.7, and the largest fluctuations in the high-order moments of the PSD (i.e., 

M2 and M3) are shown in Figures 4.6(c) and 4.6(d). By comparison, the MMC method 

distributes more numerical particles to represent the large real particles and extends the 
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prediction of the PSD at the high-end, which reduces the fluctuations of M2 and M3 as shown 

in Figures 4.6(c) and 4.6(d). The number of numerical particles for the WFMC method for 

different fraction functions (i.e., HFF, EFF and SCFF) increases at first and then decreases with 

the increasing particle sizes, especially for the HFF, which is totally inconsistent with the 

DSMC and MMC methods. This implies that the WFMC method changes the number 

distribution of the numerical particles, in which more numerical particles are used to represent 

larger real particles, but few numerical particles to represent smaller real particles. As a result, 

the WFMC method reduces the fluctuations in the high-order moments of the PSD (i.e. M2 and 

M3) as shown in Figures 4.6(c) and 4.6(d), but results in large fluctuation in the total number 

concentration, M0 as shown in Figure 4.6(a), which is also found in the original work of Jiang 

and Chan [33]. The reason is that the statistic precision of stochastic approaches is inversely 

proportional to the square root of the numerical particle numbers. The SAMWFMC method for 

different fraction functions (i.e., HFF, EFF and SCFF) has the same trend as the MMC method 

in the number distribution of numerical particles, which decreases with the increase of the 

particle sizes. Compared with the WFMC method, more numerical particles at the low-end of 

the PSD but slightly less numerical particles at larger particle size areas are observed in the 

SAMWFMC method, therefore reducing the fluctuation in M0 with less change in M2 and M3. 

In addition, it is found that the number distribution of numerical particles for the SAMWFMC 

method with the CFF gradually moves to the high-end of the PSD with the decrease of the 

constant, C from 0.9 to 0.5 as shown by the arrow in the Figure 4.8. It implies that the number 

of numerical particles with small sizes gradually decreases while the number of numerical 

particles with larger sizes increases, therefore resulting in the gradual reduction of the 

fluctuation in the high-order moments (i.e., M2 and M3) of the PSD as shown in Figures 4.6(c) 

and 4.6(d). It should be noted that the SAMWFMC method for the CFF (C = 0.5) has wider 

PSD and more numerical particles at v/v0 > 60 than the WFMC method for the HFF, so smaller 

σM2
 and σM3

 for the former are shown in Figures 4.6(c) and 4.6(d). Although the PSD obtained 

from the SAMWFMC method for the CFF (C = 0.7) is almost as the same wide as the WFMC 

method for the HFF, the number of numerical particles for the former is less than that of the 

latter at v/v0 > 25, leading to larger σM2
 and σM3

 for the former as shown in Figures 4.6(c) and 

4.6(d). 
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Figure 4.8 Number of numerical particles, NNP at different particle volumes, v/v0 obtained from 

DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with the IMD 

and CCK at t/τc = 50 [35]. 

 

4.3.2 Initial monodispersed distribution and linear coagulation kernel 

The analytical solution of the Smoluchowski equation with the initial monodispersed 

distribution (IMD) and linear coagulation kernel (LCK) function is well known [154], which 

is also used to validate the newly proposed SAMWFMC method. The initial total particle 

number concentration, N0 = 106 particles/cm3 [17] and the coagulation kernel βij = A(vi+vj) 

where A = 10−6 cm3/s [17], vi and vj are the dimensionless volumes of the two coagulation 

particles, i and j, respectively. The characteristic coagulation time is defined as τc = 1/(AN0). 

For simplicity, only the HFF for both WFMC and SAMWFMC methods and the CFF with C= 

0.7 for the SAMWFMC method are used.  

Figure 4.9 shows a very good agreement for zeroth-order to third-order moments (M0, M1, 

M2 and M3) between the analytical solutions [154] and DSMC, MMC, WFMC and 

SAMWFMC methods for different fraction functions (i.e., HFF and CFF) with the IMD and 

LCK, and their corresponding mean standard deviations are also presented. All MC methods 

show an excellent mass/volume conservation, as the total volume/mass concentrations, M1 for 
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all MC methods remain constant during the numerical simulation, therefore leading to no 

stochastic error in M1 as shown in Figure 4.9(b). The mean standard deviations of zeroth-order 

to third-order moments (i.e., M0, M2 and M3) obtained from different MC methods have a 

similar trend with time. The DSMC method has the largest σM0
, σM2

 and σM3
 among all MC 

methods. Although the σM2
 and σM3

 for the WFMC method are almost smaller than those of 

other MC methods, the WFMC method has larger σM0
 than the MMC method but has just 

slightly smaller than the DSMC method. By comparison, the SAMWFMC method has the 

smallest σM0
 among all MC methods and can achieve as low σM2

 and σM3
 as the WFMC method, 

which shows the advantage of the SAMWFMC method in reduction of the stochastic errors for 

M0, M2 and M3, respectively. In addition, the SAMWFMC method for the CFF with C = 0.7 

also has smaller σM0
, σM2

 and σM3
 than those of the DSMC and MMC methods, which 

demonstrates the newly proposed SAMWFMC method can deal with different fraction 

functions at very small stochastic error. 

 

Figure 4.9 Time evolutions of zeroth-order to third-order moments (M0, M1, M2 and M3) and 

mean standard deviations obtained from DSMC, MMC, WFMC and SAMWFMC methods for 

different fraction functions with the IMD and LCK when compared with analytical solutions 

[35]. 
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Figure 4.10 shows that the DSMC method has the narrowest particle size range and a 

slight wider particle size range with smaller fluctuation at the high-end is observed in the MMC 

method, which results in the differences of the σM2
 and σM3

 as shown in Figures 4.9(c) and 

4.9(d), respectively. Compared with the MMC method, the fraction functions introduced in the 

WFMC and SAMWFMC methods can effectively extend the prediction of the particle size 

range and then obtain wider particle size ranges, which finally reduce the σM2
 and σM3

. Small 

differences of σM2
 and σM3

 between the WFMC and SAMWFMC methods are found due to the 

almost identical width of particle size ranges. 

 

Figure 4.10 Probabilities of obtaining a cluster containing k primary particles, Pk obtained from 

DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with the IMD 

and LCK at t/τc = 2 when compared with analytical solution [35]. 

 

4.3.3 Initial monodispersed distribution and quadratic coagulation kernel 

Another benchmark test case with initial monodispersed distribution (IMD) and quadratic 

coagulation kernel (QCK) function is also validated in the present study, the analytical solution 

of this case exists in [154]. The initial total particle number concentration, N0 =106 

particles/cm3 [17] and the coagulation kernel, βij = A(vi×vj), where A = 10−6 cm3/s [17], vi and 

vj are the dimensionless volumes of a coagulation particle pair, i and j, respectively. The 
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characteristic coagulation time is defined as τc = 1/(AN0). It should be noted that if the time is 

greater than τc, the analytical solution of the Smoluchowski equation does not exist [17] in this 

case due to the formation of the supercluster when t = τc [154]. 

 

Figure 4.11 Time evolutions of zeroth-order to third-order moments and mean standard 

deviations for DSMC, MMC, WFMC and SAMWFMC methods for different fraction 

functions with the IMD and QCK when compared with analytical solutions [35]. 

 

Figures 4.11 and 4.12 are the time evolutions of zeroth-order to third-order moments and 

corresponding mean standard deviations and PSDs for different MC methods when compared 

with analytical solutions [154], respectively. An excellent agreement of the first four moments 

for different MC methods and the analytical solutions with the IMD and QCK is observed in 

Figure 4.11. As the total volume/mass concentrations, M1 for all MC methods remain constant, 

the resulting σM1
 is always zero during the numerical simulation as shown in Figure 4.11(b). 

The SAMWFMC method has the lowest σM0
 than other MC methods, while the σM2

 and σM3
 

obtained from the SAMWFMC method are very close to those of the WFMC method because 

of the almost identical width of the PSDs as shown in Figure 4.12, which are lower than those 

of the DSMC and MMC methods. This further demonstrates the contribution of the fraction 
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functions to the PSD.  

 

Figure 4.12 Probabilities of obtaining a cluster containing k primary particles, Pk obtained from 

DSMC, MMC, WFMC and SAMWFMC methods for different fraction functions with the IMD 

and QCK at t/τc = 0.8 when compared with analytical solution [35]. 

 

4.3.4 Initial exponential distribution and constant coagulation kernel 

As particles with different sizes are more common than those with the same size in most 

practical cases involved in combustion emission sources and atmospheric aerosols [9], the 

newly proposed SAMWFMC method must be validated the computational accuracy with the 

initial polydisperse PSD. In the present study, an exponential function is chosen as the initial 

polydisperse PSD, which is given by [213]: 

𝑛𝑝(𝑣, 0) = 𝑁0/𝑣0[exp(−𝑣/𝑣0)] (4-25) 

where N0 is the initial total particle number concentration of real particles with the initial mean 

particle volume of v0. The analytical solution of the Smoluchowski equation with the initial 

exponential distribution (IED) and constant coagulation kernel (CCK) function is provided in 

[213]. In the present study, N0 = 106 particles/cm3 [213] and v0 = 1 (dimensionless) are used. 

The coagulation kernel, βij = A, where A = 10−6 cm3/s. The characteristic coagulation time is 

defined as τc = 1/(AN0). 
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Figure 4.13 Time evolutions of zeroth-order to third-order moments and mean standard 

deviations obtained from DSMC, MMC, WFMC and SAMWFMC methods for different 

fraction functions with the IED and CCK when compared with analytical solutions [35]. 

 

A very good agreement between the analytical solutions [213] and the first four moments 

(M0, M1, M2 and M3) obtained from different MC methods (i.e., DSMC, MMC, WFMC and 

SAMWFMC) for different fraction functions (i.e., HFF and CFF) with the IED and CCK is 

shown in Figure 4.13. The results of M1 obtained from the four MC methods remain constant 

and there are no changes in σM1
 for all MC methods during the numerical simulation as shown 

in Figure 4.13(b). The SAMWFMC method with the HFF and CFF has the lowest σM0
, while 

the WFMC method has the largest σM0
 among all MC methods, which is even larger than that 

of the DSMC method and keeps increasing with time. With the HFF, the σM2
 and σM3

 for the 

SAMWFMC and WFMC methods are very close to each other and have the lowest stochastic 

errors. It demonstrates that the SAMWFMC method can achieve lower stochastic error in M0 

and nearly the equally lowest stochastic errors in M2 and M3, respectively when compared with 

the WFMC method. It also implies that the SAMWFMC method surpass the WFMC method 
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in obtaining accurate numerical results. In addition, the SAMWFMC method with CFF has 

lower σM0
, σM2

 and σM3
 than the MMC and DSMC methods, which also demonstrates the 

significant improvement in computational accuracy by the SAMWFMC method.  

Figure 4.14 shows the dimensionless particle number concentration (PNC) functions at 

different particle volumes, v/v0 obtained from DSMC, MMC, WFMC and SAMWFMC 

methods for different fraction functions (i.e., HFF and CFF) with the IED and CCK at t/τc= 0, 

1, 5 and 20 when compared with analytical solutions [213]. In here, t/τc= 0 is the initial particle 

number concentration function. A very good agreement between the analytical solutions and 

the numerical results obtained from different MC methods is observed at different times, t/c. 

As coagulation events take place, particle sizes become larger with time and the PNC functions 

gradually moves to the right side, but the PNC functions still remain the “self-preserving” form 

[9]. As the PNC functions expand and the number of large particles increases, the maximum 

value of the PNC gradually decreases. It is still shown that the WFMC and SAMWFMC 

methods can obtain particles with larger volumes than the DSMC and MMC methods, and also 

extend the prediction of the particle volumes at the high-end. It also implies that the 

introduction of the fraction functions can significantly reduce the σM2
 and σM3

 in the MC 

simulations with initial polydispersed distribution. The particle size range obtained from the 

MMC method are slightly wider than that of the DSMC method, which leads to the differences 

in the stochastic errors of the high-order moments in Figures 4.13(c) and 4.13(d). The large 

particle size regime for the WFMC and SAMWFMC methods are almost identical at t/τc = 1, 

but the difference becomes larger with time. The WFMC method can obtain larger particles at 

the high-end than the SAMWFMC method when t/τc = 20, and the volume of particles at the 

low-end for the WFMC method is also larger than those of all the MC methods. It further 

demonstrates that the WFMC method is developed to obtain more particles with large volumes, 

in which smaller real particles are poorly or even not represented. As a result, the WFMC 

method achieves very low σM3
 as shown in Figures 4.13(d) by the contribution of those large 

volume particles but deteriorates the statistical precision at the low-end. By comparison, 

although the volume of particles obtained from the SAMWFMC method at the high-end is 

smaller, the small particles at the low-end is still represented, which lead to slightly larger σM3
 

and even lower σM2
, but significantly lower σM0

 as shown in Figures 4.13(c), 4.13(d) and 4.13(a), 

respectively. As the volume/mass is always conserved during numerical simulation, the σM1
 for 
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both WFMC and SAMWFMC methods are equal to zero as shown in Figure 4.13(b).  

 

Figure 4.14 Dimensionless particle number concentration functions at different particle 

volumes, v/v0 obtained from DSMC, MMC, WFMC and SAMWFMC methods for different 

fraction functions with the IED and CCK at t/τc = 0, 1, 5 and 20 when compared with analytical 

solutions [35]. 

 

4.3.5 Initial exponential distribution and linear coagulation kernel 

There also exists the analytical solution of the Smoluchowski equation with the initial 

exponential distribution (IED) and linear coagulation kernel (LCK) function in [213]. In the 

present study, N0 = 106 particles/cm3 [213] and v0 = 1 (dimensionless) are used. The coagulation 

kernel, βij = A(vi+vj), where A = 10−6 cm3/s, vi and vj are the dimensionless volumes of the two 

coagulation particles, i and j, respectively. The characteristic coagulation time is defined as τc 

= 1/(AN0v0).  

Figure 4.15 shows the time evolutions of first four moments (i.e., M0, M1, M2 and M3) 

obtained from different MC methods and corresponding mean standard deviations (i.e., σM0
, 

σM1
, σM2

 and σM3
) for different fraction functions (i.e., HFF and CFF) with the IED and LCK 

when compared with analytical solutions [213]. The first four moments for all MC methods 

have a very good agreement with the analytical solutions. The SAMWFMC method with the 
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CFF has the lowest σM0
, while the σM0

 for the DSMC method is the largest. The stochastic error 

in M0 introduced by the WFMC method is still larger than that of the MMC method, but the 

SAMWFMC method with HFF has lower σM0
 than the MMC method. The σM2

 and σM3
 for the 

SAMWFMC and WFMC methods with different fraction functions (i.e., HFF and CFF) are 

very close to each other but are smaller than those of the DSMC and MMC methods. There are 

no changes in σM1
 for all MC methods as shown in Figure 4.15(b) since the volume/mass is 

always conserved during the numerical simulation. 

 

Figure 4.15 Time evolutions of zeroth-order to third-order moments and mean standard 

deviations obtained from DSMC, MMC, WFMC and SAMWFMC methods for different 

fraction functions with the IED and LCK when compared with analytical solutions [35]. 

 

Figure 4.16 shows the dimensionless PNC functions at different particle volumes, v/v0 for 

different MC methods for different fraction functions with the IED and LCK at t/τc = 0 and 0.5 

when compared with the analytical solution [213]. In here, t/τc = 0 is the initial particle number 

concentration function. The numerical results obtained from DSMC, MMC, WFMC and 

SAMWFMC methods have an excellent agreement with the analytical solution. The DSMC 

method has narrower particle size range than other MC methods while the particle size range 



Chapter 4               Sorting Algorithm-based Merging Weighted Fraction Monte Carlo Method 

69 

 

for the MMC method is obviously wider due to the introduction of the weight numerical 

particles. Compared with the DSMC and MMC methods, the WFMC and SAMWFMC 

methods have wider particle size ranges due to the occurrence of the larger size particles at the 

high-end, which have been proved to have contribution to the high-order moments. 

 

Figure 4.16 Dimensionless particle number concentration functions at different particle 

volumes, v/v0 obtained from DSMC, MMC, WFMC and SAMWFMC methods for different 

fraction functions with the IED and LCK at t/τc = 0.5 when compared with analytical solution 

[35]. 

 

4.3.6 Initial exponential distribution and quadratic coagulation kernel 

The initial exponential distribution (IED) and quadratic coagulation kernel (QCK) 

function are also used to validate the computational accuracy of the SAMWFMC method when 

compared with the analytical solution [213]. In this case, N0 = 106 particles/cm3 [213] and v0 = 

1 (dimensionless) are used. The coagulation kernel, βij = A(vi×vj), where A = 10−6 cm3/s, vi and 

vj are the dimensionless volumes of the two coagulation particles, i and j, respectively. The 

characteristic coagulation time is defined as τc = 1/(AN0v0
2). It is reported that the critical 

phenomena of gelation may be caused by the quadratic coagulation kernel in this case, but the 

existing analytical solution is still useful for the algorithm validation [213]. 
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Figure 4.17 shows that the time evolutions of first four moments (i.e., M0, M1, M2 and M3) 

obtained from different MC methods (i.e., DSMC, MMC, WFMC and SAMWFMC) have a 

very good agreement with analytical solutions [213]. The results of M1 and σM1
 obtained from 

all MC methods remain constant during the numerical simulation as shown in Figure 4.17(b). 

The SAMWFMC method has smaller σM0
, σM2

 and σM3
 than other MC methods. A very good 

agreement of the PNC functions at different particle volumes, v/v0 between the analytical 

solution and numerical results for all MC methods is also found at t/τc= 0.3 in Figure 4.18, but 

the differences among these MC methods are also clear. The particle size ranges obtained from 

the WFMC and SAMWFMC methods are still found to be wider than those of the DSMC and 

MMC methods, which leads to lower stochastic errors in the high-order moments. This further 

demonstrates the significant effect of the fraction functions on the computational accuracy in 

the high-order moments.  

 

Figure 4.17 Time evolutions of zeroth-order to third-order moments and mean standard 

deviations obtained from DSMC, MMC, WFMC and SAMWFMC methods for different 

fraction functions with the IED and QCK when compared with analytical solutions [35]. 
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Figure 4.18 Dimensionless particle number concentration functions at different particle 

volumes, v/v0 obtained from DSMC, MMC, WFMC and SAMWFMC methods for different 

fraction functions with the IED and QCK at t/τc = 0.3 when compared with analytical solution 

[35]. 

 

4.3.7 Computational efficiency 

The computational efficiency of the new SAMWFMC method is evaluated by comparing 

with other studied MC methods. The computational time required for the WFMC method with 

the HFF in each case is regarded as the reference time because the WFMC method with the 

HFF has been fully tested for different cases in Jiang and Chan [33] and also used for studying 

soot aerosol dynamics in Jiang and Chan [49]. Hence, the corresponding normalized 

computational times of different cases required for all MC methods are listed in Table 4.1.  

Results show that the computational times required for the DSMC method are the lowest 

among all MC methods, the reason is that when the DSMC method is used, the number of 

numerical particles gradually reduces with time due to the occurrence of coagulation events, 

which lowers the computational cost. However, the decrease in the number of numerical 

particles has a significant adverse effect on the computational accuracy. The MMC, WFMC 

and SAMWFMC methods remain the number of numerical particles unchanged during the 
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numerical simulation which can improve the computational accuracy but it definitely leads to 

larger consumption of computational times. As the introduction of fraction functions to the 

WFMC and SAMWFMC methods leads to larger Cij in Equation (4-5) and C0 in Equation (4-

7) but has smaller time step, Δt in Equation (4-9) than those of the MMC method, therefore 

requiring more computational times. When the fraction function (i.e., HFF, EFF or SCFF) is 

the same, the computational times for the SAMWFMC method are slightly longer than those 

of the WFMC method in each case. The reason is that when compared with the WFMC method, 

the central processing units (CPUs) require more computational cost to deal with the operations 

of sorting and merging numerical particles in the SAMWFMC method. The computational cost 

required by Case 1 with and without insertion sort is also evaluated. It is worth noting that if 

the sorting algorithm (i.e., insertion sort) is not used, then a very large statistical noise is 

obtained and the computational accuracy is largely reduced. Hence, only the computational 

efficiency is discussed here. Numerical results show that the computational cost for sorting 

numerical particles is 1.05 times of that without having insertion sort. It implies that the 

insertion sort is highly computational efficient when dealing with nearly sorted arrays. Hence, 

the finding and merging numerical particles require a slightly more computational cost in the 

SAMWFMC method when compared with the removing operation in the WFMC method. 

However, considering the high computational accuracy in high-order moments and significant 

reduction in the stochastic error in the particle number concentration, the computational cost 

of the SAMWFMC method is highly acceptable. In addition, the computational time for the 

SAMWFMC method with the CFF significantly reduces when the constant C increases from 

0.5 to 0.9, the reason is that the Cij in Equation (4-5) and C0 in Equation (4-7) become smaller 

while the time step, Δt in Equation (4-9) becomes larger. As the stochastic errors in different 

moments (i.e., M0, M2 and M3) are very low and the stochastic errors in M1 are always zero due 

to volume/mass conservation for the SAMWFMC method for the CFF with C = 0.5 to 0.9, the 

choice of the constant, C is mainly dependent on the computational cost. 
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Table 4.1 Normalized computational times of different cases for all studied MC methods [35]. 

Case DSMC MMC WFMC SAMWFMC SAMWFMC 

1 0.21 0.65 

    CFF 0.5 2.82 

HFF 1 HFF 1.40 CFF 0.6 2.14 

EFF 1.00 EFF 1.44 CFF 0.7 1.83 

SCFF 1.72 SCFF 2.51 CFF 0.8 1.50 

    CFF 0.9 1.39 

2 0.07 0.45 HFF 1 HFF 1.01 CFF 0.7 1.49 

3 0.17 0.55 HFF 1 HFF 1.19 CFF 0.7 1.32 

4 0.22 0.63 HFF 1 HFF 1.39 CFF 0.7 1.83 

5 0.25 0.62 HFF 1 HFF 1.25 CFF 0.7 1.69 

6 0.30 0.64 HFF 1 HFF 1.22 CFF 0.7 1.47 

 

4.4 Summary 

A new Monte Carlo method based on sorting algorithm is proposed and developed for 

solving the weighted fraction coagulation process in aerosol dynamics. In the new sorting 

algorithm-based merging weighted fraction Monte Carlo (SAMWFMC) method, three types 

of fraction functions (HFF, EFF and SCFF) are used to validate the computational accuracy 

and efficiency. Constant fraction functions are not applicable to the WFMC method but are 

also introduced to extend the generality of the fraction functions and used to evaluate the 

reliability of the newly developed SAMWFMC method. A new merging weighted fraction 

scheme is also proposed to ensure that the number of numerical particles and the volume of 

computational domain are constant. Six benchmark test cases are used to fully validate the 

SAMWFMC method by comparing with the existing analytical solutions as well as the 

numerical results of the direct simulation Monte Carlo (DSMC), multi-Monte Carlo (MMC) 

and weighted fraction Monte Carlo (WFMC) methods. The main conclusions are drawn as 

follows: 
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1. The particle number concentration (PNC) function and the zeroth-order to third-order 

moments (i.e., M0, M1, M2 and M3) obtained from the SAMWFMC method show excellent 

agreement with analytical solutions. As M1 for all MC methods remain constant, their 

corresponding stochastic errors are always zero during the numerical simulation. 

2. The SAMWFMC method has lower stochastic errors in M0, M2 and M3 than the DSMC 

and MMC methods. Compared with the WFMC method, the SAMWFMC method does not 

increase the stochastic errors in high-order moments (i.e., M2 and M3) but significantly reduces 

the stochastic error in the total particle number concentration, M0, even though the 

computational cost of the new SAMWFMC method is slightly higher than that of the WFMC 

method. Furthermore, the numerical results obtained from the SAMWFMC method with 

constant fraction functions show excellent agreement with analytical solutions with very low 

stochastic errors in M0, M2 and M3 and no stochastic error in M1. 

3. The new SAMWFMC method shows a significant advantage in dealing with weighted 

fraction coagulation process in aerosol dynamics. It also demonstrates that the SAMWFMC 

method provides excellent potential to deal with various fraction functions with high 

computational accuracy and efficiency. 
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Chapter 5 Development of Sorting Algorithm-based Merging Monte 

Carlo Method for Aerosol Dynamics 

 

5.1 Introduction 

In this chapter, a new event-driven sorting algorithm-based merging Monte Carlo 

(SAMMC) method is proposed and developed for solving the general dynamic equation in 

aerosol dynamics. A neighbour merging method is proposed to maintain a constant-volume 

and constant-number scheme with minimal interference to the numerical particle population, 

where absolute volume difference (AVD) and relative volume difference (RVD) are used as 

the crucial merging criteria. The SAMMC method can be used for simulating all aerosol 

dynamic processes with very high computational accuracy, especially effective in those aerosol 

dynamic processes generating additional numerical particles. Very comprehensive 

computational conditions are used to study their impacts on computational accuracy and 

efficiency by comparing the SAMMC method to previous Monte Carlo (MC) methods and 

analytical solutions.  

5.2 Methodology 

The occurrence of a dynamic aerosol process may alter the number or volume of particles 

in the dispersed system, leading to the change of the particle size distribution (PSD) with time 

as well as position. The dynamic evolution of PSD due to aerosol dynamic processes involving 

coagulation, breakage, nucleation, condensation/evaporation and deposition is mathematically 

described by the general dynamic equation (i.e., population balance equation, PBE) [157]: 

 

∂n(v,t)

∂t
 = {

1

2
∫ β(u,v-u,t)n(u,t)n(v-u,t)du

v

0

− n(v,t)∫ β(u,v,t)n(u,t)du
∞

0

}
coagulation

 

+ {∫ γ(u,v,t)b(u,t)B(u,t)n(u,t)du
∞

v

− B(v,t)n(v,t)}
breakage

 + {J(v,t)δ(v,vmin)}nucleation 

+{𝐶𝑠𝐾𝑠(𝑣 − 𝑣𝑠, 𝑡)𝑛(𝑣 − 𝑣𝑠, 𝑡) − 𝐶𝑠𝐾𝑠(𝑣, 𝑡)𝑛(𝑣, 𝑡)}condensation/evaporation

− {𝐷(𝑣, 𝑡)𝑛(𝑣, 𝑡)}deposition 

(5-1) 
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where v is the particle volume; n(v,t) is the PSD function at time t; n(v,t)dv is the particle 

number concentration with volumes ranging from v to v+dv at time t; β(u,v,t) is the coagulation 

kernel for the particles of volumes u and v at time t; B(v,t) is the breakage rate for the particle 

with volume v at time t; γ(u,v,t) is the probability of generating a daughter particle with volume 

v from a parent particle with volume u, while b(u,t) is the number of child particles resulting 

from the breakage of a parent particle with volume u, so γ(u,v,t)b(u,t) represents the size 

distribution of the fragment with volume v forming from a parent particle with volume u; J(v,t) 

is the nucleation kernel for the particle with volume v at time t, and vmin is the volume of nucleus; 

vs and Cs are the volume and number concentration of condensing monomers, respectively, 

while Ks(v,t) is the proportional coefficient of the condensation/evaporation rate for the particle 

with volume v at time t; D(v,t) is the deposition kernel of the particle with volume v at time t. 

In event-driven MC methods for dynamic processes in the dispersed system, the 

development of the jump Markov process is based on the rates of all aerosol dynamic processes 

involved. The new sorting algorithm-based merging Monte Carlo (SAMMC) method for all 

aerosol dynamic processes (i.e., deposition, condensation/evaporation, breakage, nucleation, 

and coagulation) is developed as below. 

5.2.1 Flowchart of the SAMMC algorithm 

Figure 5.1 shows the detailed flowchart of the event-driven sorting algorithm-based 

merging Monte Carlo (SAMMC) algorithm for all dynamic processes (i.e., deposition, 

condensation/evaporation, breakage, nucleation, and coagulation) in the dispersed system. 

Overall, the initial numerical particles are generated at the time of initialization, and the total 

dynamic process rates are calculated before sorting numerical particles. The inter-event time 

of quiescence (i.e., time step), the dynamic process and the selected numerical particle(s) are 

determined by the jump Markov process, which is constructed based on the rates of all aerosol 

dynamic processes involved. If the merging is required to deal with a new numerical particle 

generated in a dynamic process, an existing neighbour numerical particle pair should be found 

to merge for accommodating the new numerical particle. Before advancing the time step, the 

total dynamic process rates are updated for the next dynamic process according to the change 

in volumes or weights of numerical particles involved in the current dynamic process. The 

details of each step are described as follows. 
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Figure 5.1 Flowchart of the event-driven SAMMC method [38]. 

 

5.2.2 Calculation of the dynamic event rates 

Table 5.1 lists the rates of all dynamic processes taking place in the dispersed system in 

terms of equal- and different-weight schemes. As deposition, condensation/evaporation and 

breakage processes involve only one existing numerical particle, the formulations of the 

corresponding rates are the same in both equal- and different-weight schemes. However, the 

rates of nucleation and coagulation are different in these two types of weight schemes. 

Nucleation is associated with a newly generated numerical particle, irrespective of any existing 

numerical particles. The nucleation rates of a real particle in both equal- and different-weight 

schemes are the same, but the nucleation rates of a numerical particle which would be added 

to the computational domain are slightly different in these two types of weight schemes. In the 

equal-weight scheme, the weights of all numerical particles are always the same, which 

requires the weight of the newly nucleated numerical particle to be equal to the weights of other 

existing numerical particles. Specifically, the weights of all numerical particles are guaranteed 
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to be the same after a nucleation process in the equal-weight scheme, where the weight refers 

to the number of real particles. It can be achieved by dividing the nucleation rate of a numerical 

particle by “w” where “w” is the weight of other numerical particles in the computational 

domain before each nucleation process. But it is not required that all the weights of numerical 

particles are equal in the different-weight scheme. Therefore, each nucleation process of one 

real particle is tracked and each nucleated real particle is represented by a numerical particle 

with a certain weight. By comparison, the calculation of coagulation rate is totally different 

from those of other dynamic processes due to its always involvement of two existing numerical 

particles. 

 

Table 5.1 The rates of different dynamic processes for equal- and different-weight schemes 

[38]. 

Dynamic process Rl (s
-1) Equal-weight scheme Different-weight scheme 

Deposition D0 ∑𝐷𝑖

𝑁𝑠

𝑖=1

 ∑𝐷𝑖

𝑁𝑠

𝑖=1

 

Condensation/evaporation K0 𝐶𝑠∑𝐾𝑠,𝑖

𝑁𝑠

𝑖=1

 𝐶𝑠∑𝐾𝑠,𝑖

𝑁𝑠

𝑖=1

 

Breakage B0 ∑𝐵𝑖

𝑁𝑠

𝑖=1

 ∑𝐵𝑖

𝑁𝑠

𝑖=1

 

Nucleation J0 
𝑉𝑠
2𝐽(𝑣)𝛿(𝑣min, 𝑣 )

𝑤
 𝑉𝑠

2𝐽(𝑣)𝛿(𝑣min, 𝑣 ) 

Coagulation C0 ∑ ∑
𝛽𝑖𝑗

𝑉𝑠
𝑤

𝑁𝑠

𝑗=𝑖+1

𝑁𝑠−1

𝑖=1

 ∑ ∑
max(𝑤𝑖, 𝑤𝑗)

𝛼𝑖𝑗

𝛽𝑖𝑗

𝑉𝑠

𝑁𝑠

𝑗=𝑖+1

𝑁𝑠−1

𝑖=1

 

 

In the present study, the coagulation rate is derived based on the different-weight scheme. 

For a different-weight-based MC method, each numerical particle is considered to represent a 

group of real particles, so the weight of numerical particles is defined as w = NR/NS, where NR 

and NS are the numbers of real and numerical particles, respectively [178]. The weights of all 
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numerical particles are set to the same value at the time of initialization. 

A numerical particle, i is used to represent a group of real particles with number wi and 

volume vi, and a numerical particle, j is used to represent a group of real particles with number 

wj and volume vj. Thus, the real particle number concentrations of these groups are wi/VS and 

wj/VS, respectively, where VS is the volume of the computational domain. The number of 

coagulation processes among real particles of these two numerical particles groups per unit 

time and volume is then expressed by: 

 Φij = β
ij
×

wi

VS

×
wj

VS

 (5-2) 

where Φij is the coagulation rate of two real particles from ith and jth groups at both randomly 

chosen basis, respectively, and βij is the coagulation kernel of particles i and j. 

If the probabilistic coagulation rule [32] is adopted, it means that not all real particles from 

the ith and jth groups would participate in a coagulation process [32]. Jiang and Chan [33] 

introduced a fraction function, αij(0,1] to characterize coagulation that occurs among all or 

partial real particles between the ith and jth groups. Thus, the mean coagulation number 

between real particles from the ith and jth groups is expressed by:  

  Ω = αij min(wi,wj) (5-3) 

When the fraction function, αij = 1, all real particles from the ith or jth group would 

participate in a coagulation process, which is called homogeneous coagulation in the present 

study; otherwise, the partial real particles from the ith group and partial real particles from the 

jth group would coagulate, and this is called non-homogeneous coagulation in the present study. 

One of the most widely used fraction functions is the hyperbolic fraction function [33,35,49] 

which is defined as: 

 αij = 
1

1+ min(wi,wj) max(wi,wj)⁄
 (5-4) 

The coagulation rate, Cij of numerical particle, i and numerical particle, j, is then 

calculated by: 

 Cij = 
VSΦij

Ω
 = 

max(wi,wj)

αij

β
ij

VS

 (5-5) 

Therefore, the total coagulation rate, C0 is expressed as: 
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 C0 = ∑ ∑
max(wi,wj)

αij

β
ij

Vs

Ns

j=i+1

Ns−1

i=1

 (5-6) 

It should be noted that when the weights of all numerical particles are equal (i.e., wi = wj 

= w) for homogeneous coagulation (i.e., αij = 1), the Equation (5-6) is completely consistent 

with that in the equal-weight scheme. It demonstrates that the equal-weight scheme is only a 

special case of the different-weight scheme. 

5.2.3 Determination of the time step 

As the occurrence of a dynamic process in the dispersed system is regarded as a standard 

Markov process, the quiescent time interval between two successive dynamic processes is an 

exponentially distributed random variable [215]. The time step is calculated [167] as: 

 ∆t = 
ln(1 r1⁄ )

∑ Rii

 (5-7) 

where ∑iRi is the sum of the rates of all related dynamic processes that take place in the 

computational domain, and r1 is a uniformly distributed random number from zero and one. 

5.2.4 Determination of the dynamic process 

For a dispersed system with only one single dynamic process, l, the dynamic process 

always happens after every waiting time. But if more dynamic processes take place in the 

dispersed system, the probability of a related dynamic process, l is obtained [37,156,167] by: 

 Pl = 
Rl

∑ Rii

 (5-8) 

where l represents a dynamic process (i.e., deposition, condensation/evaporation, breakage, 

nucleation or coagulation). The probabilities of all these dynamic processes in the dispersed 

system are PD, PK, PB, PJ and PC, respectively, which are used to determine the dynamic process 

by using a stochastic process as shown in Figure 5.2. A random number, r2 is generated from 

the uniform distribution between zero and one. If 0 ≤ r2 ≤ PD, the dynamic process is determined 

as deposition; if PD < r2 ≤ PD+PK, the dynamic process is condensation/evaporation; if PD+PK 

< r2 ≤ PD+PK+PB, breakage is chosen; if PD+PK+PB < r2 ≤ PD+PK+PB+PJ, nucleation is selected 

as the dynamic process; if PD+PK+PB+PJ < r2 ≤ PD+PK+PB+PJ+PC = 1, coagulation occurs. 
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Figure 5.2 Determination of the dynamic process by a stochastic process [38]. 

 

5.2.5 Determination of the selected numerical particle(s) 

If nucleation is determined as the dynamic process, there is no need to select the existing 

numerical particle because a nucleation process itself is independent of any existing numerical 

particles. Otherwise, the numerical particle(s) existing in the array for this process should be 

selected once the dynamic process is determined. Two commonly used methods for 

determining the numerical particle(s) existing in the computational domain are the acceptance-

rejection method [153] and the inverse method (i.e., cumulative probability method) [154]. It 

should be noted that it is very computational time-consuming to calculate the rates of all 

dynamic events in the cumulative probability method, especially when the numerical particle 

array is large [17]. Hence, the acceptance-rejection method is employed in the present study. 

For a dynamic process associated with only one single numerical particle (i.e., deposition, 

condensation/evaporation or breakage), a numerical particle, i is randomly selected and then 

accepted if the following inequality is satisfied [168]: 

 r3 ≤ 
Ei

max
∀k

Ek

 (5-9) 

where r3 is a random number from the uniform distribution in the unit interval and Ei is the rate 

of a dynamic process (i.e., deposition, condensation/evaporation or breakage) accordingly. 

Otherwise, i is rejected and the acceptance-rejection procedure is repeated until a new, 

randomly selected numerical particle is accepted. By comparison, two randomly selected 

numerical particles, i and j are accepted as a coagulation pair if the following condition is 

satisfied [35,153,208] as: 

 r3 ≤ 
Cij

max
∀k,∀m

Ckm

 (5-10) 
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If the numerical particle pair is rejected, another two numerical particles are randomly 

chosen until the Equation (5-10) is satisfied according to the acceptance-rejection method. It 

should be noted that the Markov process can still be implemented exactly in the acceptance-

rejection method, even though the maximum rate of the dynamic event in Equations (5-9) and 

(5-10) is overestimated [34,35,153,156]. 

5.2.6 Neighbour merging method 

For a MC method for dynamic processes in the dispersed system, it is vital to keep both 

the volume of the computational domain and number of numerical particles constant. 

Increasing the number of numerical particles leads to a reduction in the computational 

efficiency, while decreasing the number of numerical particles deteriorates the statistical 

precision [156]. In addition, any change (i.e., expansion or contraction) in the volume of the 

computational domain results in a poor applicability of the MC methods. Therefore, additional 

numerical particles generated by nucleation, breakage or non-homogeneous coagulation should 

be properly treated to ensure that the volume of the computational domain and number of 

numerical particles are kept constant. 

For dynamic aerosol processes in which an additional numerical particle is generated, the 

main idea is to merge two existing numerical particles into one and then put the additional 

numerical particle into the vacated position of the numerical particle array, so that the total 

number of numerical particles is kept unchanged.  

It should be noted that these two numerical particles should be properly selected to avoid 

introducing a large statistical noise. Hence, it means that the sizes of these two selected 

numerical particles should be close or equal to each other, so the statistical noise can 

significantly be reduced. Specifically, finding two existing numerical particles with the same 

or similar volume in the numerical particle array can minimize the stochastic error of the 

merging method. But it is very computational time-consuming and is unwise to compare the 

volumes of a large number of numerical particles one-by-one. But when the sequence of 

numerical particles is already sorted in the array based on their volumes and weights, any two 

neighbour numerical particles always have similar or even the same properties. When the 

property difference between two neighbour numerical particles is found to be the minimal, the 

stochastic error introduced by merging these two neighbour numerical particles would also be 

the minimal. It should be noted that this method is called the neighbour merging method in the 
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present study. Thus, the minimal property difference of two neighbour numerical particles 

should be determined before the merging operation is implemented. In the present study, the 

absolute volume difference (AVD) and relative volume difference (RVD) are defined as: 

 εi = vi+1 − vi (5-11) 

 εi = 
vi+1 − vi

vi

 (5-12) 

where i is the index of a numerical particle in the array, i[1, NS−1]. It should be noted that 

only one numerical particle, i needs to be determined in the proposed neighbour merging 

method, because the other numerical particle is the neighbour of i and is selected automatically 

(i.e., i+1) due to the introduction of sorting algorithm. Thus, finding two numerical particles is 

then transformed to search the only one numerical particle, i, which is called the target 

numerical particle in the present study. Therefore, a numerical particle pair for merging 

operation is determined as i and i+1, if the volume difference, εi in Equation (5-11) or (5-12) 

is the minimal in the array of numerical particle. From this point of view, sorting algorithm 

introduced in the MC method not only helps to improve the computational efficiency of finding 

a numerical particle pair but also to minimize the numerical error originating from the merging 

operation and increase the computational precision. 

The most straightforward method for determining the target numerical particle is the 

traversing method, where the neighbour numerical particles with the minimal volume 

difference is obtained by comparing the volume differences of all neighbour numerical particle 

pairs from the beginning to the end. The number of comparisons in the neighbour numerical 

particles is equal to NS−1. When there are several numerical particle pairs whose volume 

differences are the same, the numerical particle with the lowest weight would be selected as 

the target numerical particle, which can minimize the alteration of the PSD. It implies that not 

only the volume differences in the array of numerical particles but also the weights of the 

numerical particles should also be compared. After comparing the volume differences, re-

comparing the weights of those potential target numerical particles is not desirable, as it is very 

computational time-consuming. Therefore, a comparison class including properties (i.e., 

volume difference and weight) is defined, and then an object as an instance of this comparison 

class is created based on each numerical particle. Specifically, if the volume differences of two 

objects are not the same, the object with lower volume difference is selected; otherwise, the 

object with lower weight would be chosen. This is described by the property difference in terms 
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of volume difference and weight in the present study. Therefore, only one traversing is needed 

to obtain the target numerical particle and the time complexity is still O(NS). It should be noted 

that this traversing method has very high computational efficiency when one numerical particle 

pair should be merged for only one newly generated additional numerical particle. 

However, the traversing method might not be appropriate anymore when more additional 

numerical particles are generated by a dynamic process. For example, if the target numerical 

particles with number k (i.e., k > 1) are needed to add into the computational domain, k pairs 

of neighbour numerical particles in the array should be merged to vacate k positions. This leads 

to k times of searching the numerical particle array if the traversing method is used, which is 

very computational time-consuming especially when k and NS are large. Thus, two methods 

based on the complete binary tree data structure [216,217] are introduced to determine k target 

numerical particle pairs with their property differences lower than those of other numerical 

particles in the array. One is to create a max heap with k nodes, where the value of the root 

node is greater than or equal to either of its child nodes. Each node stores the property 

difference (i.e., volume difference and particle weight) of a neighbour numerical particle pair. 

If the property difference of the root node is larger than that of the numerical particle in the 

array, the root node is removed and the numerical particle is inserted to recreate a max heap; 

otherwise, the next numerical particle in the array is traversed. Finally, the k target numerical 

particle pairs with the minimal property differences are stored at the k nodes of the max heap. 

This is called the max-heap method. It should be noted that this max-heap method is highly 

efficient when the number of numerical particles is very large and the time complexity of this 

method is O(NSlogk). The other one is called min-heap method, in which a min heap with NS−1 

nodes is firstly created and the value of each node is equal to or greater than that of its parent 

node. The k target numerical particles with the minimal property differences are obtained by 

removing the root node to store, and creating a min heap for k times, leading to a time 

complexity of only O(klogNS).  

Figure 5.3 shows the neighbour merging method based on the sorted numerical particle 

array. If only one additional numerical particle (i.e., k = 1) is generated by a dynamic process 

which needs to be added to the computational domain, the first step is to determine the target 

numerical particle, i with the minimal property difference by using the traversing method, and 

then the target numerical particle, i is merged with numerical particle, i+1. The merging of i 

and i+1 follows volume/mass conservation, so the merged numerical particle with weight 
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(wi+wi+1) and volume (viwi+vi+1wi+1)/(wi+wi+1) replaces in place the original i+1. Finally, the 

position vacated by i is filled by the newly generated additional numerical particle with weight 

wnew and volume vnew. But if k ≠ 1, k target numerical particles with the minimal property 

differences can be obtained by the min-heap method. As the numbers of numerical particles 

and target numerical particle pairs are small in the present study, the min-heap method is more 

computationally efficient than the max-heap method. k repetition times are needed to merge 

each numerical particle pair and to place the merged and additional numerical particles. It 

should be noted that all chosen k target numerical particles are not neighbour particles in the 

sorted numerical particle array. 

 

Figure 5.3 Neighbour merging method based on sorted numerical particle array [38]. 

 

5.2.7 Selecting the sorting algorithm 

A sorted array of numerical particles can significantly improve the computational 

precision and efficiency of the newly proposed SAMMC method because merging two 

neighbour numerical particles in an already sorted numerical particle array can greatly reduce 

the stochastic error and a numerical particle pair can be easily and rapidly determined by only 

finding one target numerical particle. Thus, it is of great importance to select the most efficient 

sorting algorithm.  

Numerical particles are sorted according to their volumes and weights in the present study, 

where volumes and weights are the properties of numerical particles. As quicksort is a highly 
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efficient sorting algorithm for dealing with a completely unsorted array [209], it is used to sort 

the array of numerical particles which are initially generated with polydisperse PSD. But if the 

numerical particle array is generated with an initial monodispersed PSD, there is no need to 

sort the numerical particles. After a dynamic process takes place in the computational domain 

of a dispersed system, the volumes or weights of the related numerical particles possibly may 

be changed. Actually, a few numerical particles are only involved in the dynamic process in 

each time step, making the properties of most numerical particles unchanged. It demonstrates 

that the array of numerical particles is nearly sorted and only a few numerical particles need to 

be sorted after a dynamic process. Under this circumstance, the insertion sort has the highest 

computational efficiency for a completely or nearly sorted array among all sorting algorithms 

[209] which is then adopted to sort the array of numerical particles.  

5.2.8 Treating the dynamic process 

As the volumes or weights of several numerical particles are changed after a dynamic 

process occurring in a dispersed system, properly treating the volumes and weights of all 

related numerical particles is required to maintain constant for the volume of the computational 

domain and the number of numerical particles. It should be noted that not all dynamic processes 

lead to a change in the number of numerical particles. 

Deposition refers to the removal of numerical particles out of the computational domain, 

resulting in the constant decrease of the number of numerical particles. Numerical particle, i is 

not tracked anymore if being selected to conduct deposition, resulting in the reduction in the 

number of numerical particles. As the position vacated by i should be filled and the number of 

numerical particles should be maintained unchanged, a numerical particle, j with volume vj and 

the highest weight wj among all other numerical particles is selected and grouped into two equal 

parts. One part with volume vj and weight wj/2 replaces in place the original j, and the other 

one with volume vj and weight wj/2 is put into the vacancy of the original i, therefore always 

keeping a constant-volume and constant-number scheme. 

Condensation/evaporation does not change the number of numerical particles but 

increases/decreases the volume/mass of numerical particles accordingly. If a numerical particle, 

i with volume vi and weight wi experiences a condensation process, the weight of i remains wi 

and the volume of i becomes (vi+vs) after the process, where vs is the volume of the condensing 

monomer. 
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A breakage process of a parent numerical particle, i with volume vi and weight wi leads to 

generating child numerical particles with number b(vi,t), and the volumes of child numerical 

particles are determined by the probability of obtaining a child numerical particle with volume 

v, γ(vi,v,t). It implies that there are child numerical particles with number b(vi,t)−1 required to 

be added to the numerical particle array, as the parent numerical particle, i can be replaced by 

one of the child numerical particles. If a breakage process leads to the generation of two child 

numerical particles (i.e., b(vi,t) = 2), one child numerical particle directly replaces the parent 

numerical particle and the other one is placed on the position vacated by the merging operation 

of two neighbour numerical particles with the minimal property difference, which is found and 

determined by the traversing method. But if more child numerical particles are generated by a 

breakage process, (b(vi,t)−1) pairs of numerical particles are found by the min-heap method 

and merged to vacate the positions for the child numerical particles to be filled in. It should be 

noted that the weights of all child numerical particles are equal to that of the parent numerical 

particle (i.e., wi). 

There is a new numerical particle, i with volume vi and weight wi generated in the 

computational domain when a nucleation process takes place, which results in the increase in 

the number of numerical particles. The traversing method is used to determine two neighbour 

numerical particles with the minimal property difference, and the vacancy obtained by the 

neighbour merging method is filled by the newly nucleated numerical particle, i with volume 

vi and weight wi, where vi is equal to the volume of a nucleus or precursor, vmin.  

Both homogeneous and non-homogeneous coagulation are considered in the present study. 

If a coagulation process occurs between two numerical particles, the volumes and weights of 

this numerical particle pair possibly change, which demonstrates the coagulation of real 

particles. For a homogeneous coagulation process as shown in Figure 5.4, the fraction function 

in Equation (5-3) αij = 1, and the consequence of this coagulation process is formulated [32] as: 

 if 𝑤𝑖 = 𝑤𝑗, {
𝑤𝑖
′ = 𝑤𝑖/2, 𝑣𝑖

′ = 𝑣𝑖 + 𝑣𝑗
𝑤𝑗
′ = 𝑤𝑗/2, 𝑣𝑗

′ = 𝑣𝑖 + 𝑣𝑗
 (5-13) 

 if 𝑤𝑖 ≠ 𝑤𝑗 , {
𝑤𝑖
′ = max(𝑤𝑖, 𝑤𝑗) − min(𝑤𝑖, 𝑤𝑗) , 𝑣𝑖

′ = 𝑣𝑚|𝑤𝑚=max(𝑤𝑖,𝑤𝑗)

𝑤𝑗
′ = min(𝑤𝑖, 𝑤𝑗) , 𝑣𝑗

′ = 𝑣𝑖 + 𝑣𝑗
 (5-14) 

where vi and wi are the volume and weight of numerical particle, i, and vj and wj are the volume 

and weight of numerical particle, j, respectively. But when numerical particles, i and j undergo 
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non-homogeneous coagulation (i.e., αij ≠ 1), it leads to the generation of an additional numerical 

particle and then a completely different consequence after a coagulation process is taken place 

as shown in Figure 5.5. Only these two coagulated numerical particles are needed when their 

volumes are equal to each other, as shown in Figure 5.5(a). The consequence is then treated 

[35] as: 

 if vi = vj, {
wi

'  = wi + wj − 2αij min(wi,wj) , vi
'  = vm|wm = max(wi,wj)

wj
'  = αij min(wi,wj) , vj

'  = vi + vj 
 (5-15) 

 

  

(a) wi = wj (b) wi ≠ wj 

Figure 5.4 Homogeneous coagulation between two weighted numerical particles [38]. 

 

However, when the volumes of both numerical particles are not the same in a non-

homogeneous coagulation process, two neighbour numerical particles, k and k+1 with the 

minimum property difference are determined by the traversing method and are then merged to 

one numerical particle based on volume/mass conservation, which would be placed on the 

position of k+1. Finally, the additional numerical particle replaces k in the numerical particle 

array as shown in Figure 5.5(b). Thus, the consequence of a non-homogeneous coagulation is 

denoted as: 

if vi ≠ vj , 

{
 
 

 
 

wi
'  = wi − αij min(wi,wj) , vi

'  = vi

wj
'  = wj − αij min(wi,wj) , vj

'  = vj

wk
'  = αij min(wi,wj) , vk

'  = vi + vj

wk+1
'  = wk + wk+1, vk+1

' = (vkwk + vk+1wk+1) (wk + wk+1)⁄

 (5-16) 
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(a) vi = vj 

 

(b) vi ≠ vj 

Figure 5.5 Non-homogeneous coagulation between two weighted numerical particles and 

merging [38]. 

 

It should be noted that Wang and Chan [35] have innovatively introduced the sorting 

algorithm into the MC method and have recently developed a new sorting algorithm-based 

merging weighted fraction Monte Carlo (SAMWFMC) method for coagulation. As a result, 

very low stochastic errors in each moment of the PSD with arbitrary fraction functions are 

shown, which is mostly attributed to the merging method. As one of the neighbour numerical 

particles is merged with the uncoagulated numerical particle with the lowest weight, the 

merging error introduced is the minimal after a coagulation process. As the main idea in the 

present study is to merge two existing numerical particles, the newly proposed neighbour 

merging method is totally different from that in the SAMWFMC method [35], where only one 

existing numerical particle are used to conduct merging with the additional generated 

numerical particle. Therefore, the treatment of a dynamic process in the SAMMC and 

SAMWFMC methods are completely different. 

After a dynamic process, the rates of different dynamic events listed in Table 5.1 should 

be recalculated as the volumes or weights of relevant numerical particles may be changed. As 
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the number of numerical particles involved in a dynamic process is only a few and those 

without undergoing a dynamic process do not need to change the rates of dynamic processes, 

the smart bookkeeping technique [17] is highly efficient to update the rates of dynamic 

processes and to obtain their maximum rates. Especially for coagulation which always involves 

two numerical particles, the calculation of the total coagulation rate by double loops only takes 

place once at the beginning of the numerical simulation, but it is not required to double traverse 

and count on every numerical particle anymore.  

When the volumes and weights of a numerical particle pair (i.e., i and j) after coagulation 

are calculated by Equations (5-13) to (5-15), the total coagulation rate, C0 is updated by 

Equation (5-17). If two neighbour numerical particles (i.e., k and k+1) are needed to merge for 

the coagulation of i and j, the volumes and weights of i, j, k and k+1 after coagulation are 

obtained by Equation (5-16), while Equation (5-18) is used to update the total coagulation rate. 

Thus, only one single loop is needed to update the total coagulation rate, and there is no further 

double counting during the numerical simulation. It should be noted that even though the 

coagulation kernel (i.e., βij) or fraction function (i.e., αij) is a function of the volumes or weights 

of the numerical particle pair in a physical case, which results in a varying coagulation rate, 

Equation (5-17) or (5-18) can still be used to calculate the total coagulation rate because those 

uncoagulated numerical particles remain unchanged. 

C0
new

 = C0
old − ( ∑ Cim

old

Ns

m=1, m≠i, m≠j

+ ∑ Cjm
old

Ns

m=1, m≠i, m≠j

+Cij
old) 

+( ∑ Cim
new

Ns

m=1, m≠i, m≠j

+ ∑ Cjm
new

Ns

m=1, m≠i, m≠j

+Cij
new) 

(5-17) 

C0
new

 = C0
old − ( ∑ Cim

old

Ns

m=1, m≠i, m≠j, m≠k, m≠k+1

+ ∑ Cjm
old

Ns

m=1, m≠i, m≠j, m≠k, m≠k+1

) 

+( ∑ Cim
new

Ns

m=1, m≠i, m≠j, m≠k, m≠k+1

+ ∑ Cjm
new

Ns

m=1, m≠i, m≠j, m≠k, m≠k+1

)

− (Cij
old

+Cik
old

+Ci(k+1)
old

+Cjk
old

+Cj(k+1)
old

+Ck(k+1)
old ) 

+(Cij
new

+Cik
new

+Ci(k+1)
new

+Cjk
new

+Cj(k+1)
new

+Ck(k+1)
new ) 

(5-18) 
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5.2.9 Choice of efficient implementation  

As each numerical particle has properties including identification number (ID), weight 

and volume, it well matches the object-oriented programming (OOP) language, where each 

numerical particle is regarded as an instance object of a class. An OOP language (i.e., C++) is 

used to define a particle class including properties (i.e., ID, weight and volume) and to create 

each numerical particle object. It should be noted that the data structure of an array rather than 

a linked list is used in the present study. Numerical particles are then placed in contiguous 

computer memory locations by using the data structure of an array, which supports random 

access by using its index. Even though the array of numerical particles is large, it is still highly 

accurate and computationally efficient to access each numerical particle when compared with 

a linked list. In addition, an array shows greater advantage of computational efficiency than a 

linked list if there is no adding or removing operation of numerical particles and the number of 

numerical particles in the array always remains unchanged. Thus, all numerical particles in the 

array are readily available for access. 

5.3 Results and Discussion 

Aerosols with equal sizes, called monodisperse aerosols, can be carefully produced by 

taking special measures in the laboratory setting [9]. By comparison, particles of different sizes 

are more common in the atmosphere due to several different mechanisms. Those with a wide 

range of particle sizes form the polydisperse aerosols. An example of initial polydisperse PSD 

is the exponential distribution function [172], which is defined as: 

  n(v,0) = 
N0

v0

exp (−
v

v0

) (5-19) 

where N0 and v0 are the initial total particle number concentration and mean particle volume, 

respectively. The kth-order moment of the PSD function is defined [9] as: 

  Mk = ∫ vkn(v)dv

∞

0

 (5-20) 

Different order moments represent different physical interpretations. The first two 

moments, M0 and M1 are the total particle number concentration and the total particle volume 

(mass) concentration, respectively. MC methods normally show stochastic errors related to the 

random sampling process and statistics, but the stochastic errors can be determined by 

randomly repeating enough numerical simulations. The mean standard deviation of Mk is used 
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to quantify the corresponding stochastic error [32,34,35,214] as:  

  𝜎𝑀𝑘(𝑡) =
1

𝑄
∑√

1

𝑡
∫ [

𝑀𝑘
𝑀𝐶(𝑖)(𝑡) − 𝑀𝑘

𝐴𝑆(𝑡)

𝑀𝑘
𝐴𝑆(𝑡)

]

2

𝑑𝑡
𝑡

0

𝑄

𝑖=1

 (5-21) 

where superscripts “AS” and “MC(i)” represent the analytical solution and numerical results 

of the i-th MC simulation, respectively. Q is the repetitions of the MC simulation. 

The MC repetitions in the present study are 200 which is enough to obtain stable mean 

standard deviations. The volume of the computational domain VS = 1 m3. The initial number of 

numerical particles NS = 2000, which has proved to be able to provide high accuracy numerical 

results [17,32,33,35,152,156,161,176,177]. The initial particle volume for initial 

monodispersed PSD and the initial mean particle volume for initial exponential PSD are unity 

(dimensionless) (i.e., v0 = 1). The computational accuracy and efficiency of the newly 

developed SAMMC method are assessed by comparing with the stepwise constant-volume 

method [36], mass- and number-based constant-number methods [37] and multi-Monte Carlo 

(MMC) method [156] as well as the corresponding analytical solutions. The computational 

environment used is dual Intel Xeon processor E5-2630 v3 16 cores 2.4GHz CPU and 64GB 

RAM. As absolute volume difference (AVD) and relative volume difference (RVD) are used 

as the crucial merging criteria, the effects of AVD and RVD on the computational accuracy 

and efficiency are also fully assessed. It should be noted that the volumes of the computational 

domain remain unchanged in three equal-weight-based MC methods (i.e., the stepwise 

constant-volume method and mass- and number-based constant-number methods) in the 

present study, but the weights of numerical particles are doubled/halved in the stepwise 

constant-volume method while the weights of numerical particles in both mass- and number-

based constant-number methods are adjusted at each time step according to the conserved 

property. In addition, as SAMMC method can be used to deal with non-homogeneous 

coagulation, the resulting computational accuracy and efficiency are compared with the 

numerical results of the weighted fraction Monte Carlo (WFMC) method [33], sorting 

algorithm-based merging weighted fraction Monte Carlo (SAMWFMC) method [35] and the 

corresponding analytical solutions, because WFMC and SAMWFMC methods are specifically 

developed for non-homogeneous coagulation. It should be noted that the mass- and number-

based constant-number methods are referred to simply as “constant-number (mass)” and 

“constant-number (number)” respectively, and the SAMMC method with different merging 
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criteria (i.e., AVD and RVD) are denoted as “AVD-based SAMMC” method and “RVD-based 

SAMMC” method, respectively in the present study. 

5.3.1 Pure nucleation 

For nucleation, new particles are considered to be formed by a first-order irreversible 

chemical reaction [218], irrespective of any other particle growth mechanism. Specifically, 

nucleation refers to the transformation of precursors into nuclei via chemical reactions, and the 

conversion rate (i.e., chemical reaction rate) is proportional to the precursor number 

concentration, which is expressed [218] by: 

  VSJ(t)δ(vmin,v) = −
dCpre(t)

dt
 = KNCpre(t) (5-22) 

where VS is the volume of the computational domain, KN is the chemical reaction rate constant 

and Cpre(t) is the precursor number concentration at time t. The analytical solution of nucleation 

by first order chemical reaction is provided in [157]. In Case 1, KN = 5.0×10-6 s-1, Cpre(0) = 105 

m-3. The initial nuclei number concentration, N0 = 3000 m-3 with initial precursor and nuclei 

volumes, vpre = v0 = 1 (dimensionless) [157]. The characteristic nucleation time is defined as τN 

= 1/KN. When the PSD remains monodispersed, the difference between the particle number 

concentration and particle volume/mass concentration is a multiplicative constant. As the 

volumes of the precursor and nuclei are assumed to be 1, the values of the particle number and 

particle volume/mass concentrations along with time are always the same. Therefore, only 

numerical results in terms of the particle number concentration are shown. 

Figure 5.6 shows the time evolutions of total particle number concentrations, M0 and mean 

standard deviations, σM0
 obtained from six MC methods for nucleation when compared with 

the corresponding analytical solution. Numerical results of M0 obtained from all MC methods 

grow over time because of the continuous increase in the number of new real particles in every 

nucleation process, but the growth rate of M0 gradually reduces along with time because of the 

gradual reduction in the precursor number concentration. As M0 for all MC methods agree 

excellently with the analytical solution, all these MC methods can be used to deal with 

nucleation process in aerosol dynamics.  

But the differences of σM0
 among these MC methods indicate different levels of 

computational accuracy. As the volumes of all numerical particles are always 1 during the 
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numerical simulation, the mass-based constant-number method functions as the same as the 

number-based constant-number method, which leads to almost the same stochastic error in M0. 

The stepwise constant-volume method has lower stochastic error in M0 than both mass- and 

number-based constant-number methods, which is attributed to two reasons. On one hand, the 

number of numerical particles in mass- and number-based constant-number methods is always 

NS, while the numerical particle number is between NS and 2NS during the numerical simulation 

in the stepwise constant-volume method. As the number of numerical particles used in the 

mass- and number-based constant-number methods is always fewer than that used in the 

stepwise constant-volume method, the computational accuracy of the former methods is 

accordingly lower than that of the latter method. The main reason is that the computational 

accuracy is inversely proportional to the square root of the number of numerical particles [154], 

which implies that the greater number of numerical particles in the stepwise constant-volume 

method would lead to higher computational accuracy and lower stochastic error. On the other 

hand, the frequency of the sample restoration has a negative effect on the computational 

accuracy. More specifically, less sample restoration means less disturbance to the statistical 

ensemble [156], therefore achieving higher statistical precision. The number of numerical 

particles in the array would only be adjusted when reaching 2NS in the stepwise constant-

volume method where a half of numerical particles are randomly chosen and are removed out 

of the computational domain. By comparison, both mass- and number-based constant-number 

methods restore the number of numerical particles in every time step by removing a randomly 

chosen numerical particle from the array and accordingly adjusting the weights of each 

numerical particle. Obviously, the stepwise constant-volume method has a far smaller number 

of sample restorations than both mass- and number-based constant-number methods, therefore 

having lower stochastic error in M0 than both mass- and number-based constant-number 

methods. 

It can be also found that different-weight-based MC methods (i.e., MMC, AVD- and 

RVD-based SAMMC methods) have far lower stochastic errors than equal-weight-based 

methods (i.e., stepwise constant-volume, mass- and number-based constant-number methods). 

The σM0
 of all the different-weight-based MC methods are less than 0.013%, much lower than 

those of three respective equal-weight-based MC methods (i.e., 1.17%, 1.42% and 1.43%) as 

shown in Figure 5.6. It implies that different-weight-based MC methods have much higher 

computational accuracy than equal-weight-based MC methods. The reason is that each real 
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particle generated by a nucleation process for the different-weight-based MC methods is 

represented while the equal-weight-based MC methods track a nucleation process with several 

real particles generated in the computational domain, leading to more accurate statistical 

properties of the different-weight-based MC methods than those of the equal-weight-based MC 

methods. As a result, the time steps of the different-weight-based MC methods are always 

smaller than those of the equal-weight-based MC methods. 

The difference of the time step between equal-weight-based and different-weight-based 

MC methods also leads to the different levels of computational time-consumption. Smaller 

time step normally requires longer computational time, so the different-weight-based MC 

methods have higher computational cost than their counterparts as shown in Table 5.2 for Case 

1. The essential reason is the larger nucleation rate of the different-weight-based MC methods 

as shown in Table 5.1. It implies that it is possible to reduce the computational time of different-

weight-based MC methods by decreasing the nucleation rate to increase the time step, which 

can be achieved by tracking each nucleation process with more generated real particles (instead 

of only one real particle). Accordingly, the weight of each generated numerical particle 

becomes larger, but this may increase the stochastic error in the statistical properties. Therefore, 

a trade-off between the computational accuracy and efficiency may be required in the different-

weight-based MC methods. In addition, AVD- and RVD-based SAMMC methods have higher 

computational cost than the MMC method, which is attributed to the sorting algorithm. 

Specifically, the finding and sorting operations of numerical particles in the array in AVD- and 

RVD-based SAMMC methods are more computational time-consuming than only finding an 

existing numerical particle of the similar volume with the nucleated one in the MMC method. 

As the difference between AVD- and RVD-based SAMMC methods is the expression of the 

volume difference, the computational costs of AVD- and RVD-based SAMMC methods are 

almost the same. Furthermore, as the number of numerical particles changes between NS and 

2NS in the stepwise constant-volume method while the numerical particle numbers in both 

constant-number methods remain NS, the computational time consumed by the stepwise 

constant-volume method is higher than those of both mass- and number-based constant-number 

methods. The reason is that the number of numerical particles negatively affects the 

computational efficiency.  
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Figure 5.6 Time evolutions of total particle number concentrations, M0 and their corresponding 

mean standard deviations for nucleation in Case 1 [38]. 

 

5.3.2 Pure coagulation 

Binary coagulation between particles is considered in the present study, which describes 

the collision of two particles and then the formation of a large one, therefore leading to an 

increase of the average particle size and a reduction in the particle number. It is considered that 

modelling a coagulation process involving two particles is always more demanding than other 

aerosol dynamic processes [34]. Both homogeneous and non-homogeneous coagulations as 

well as initial monodispersed and exponential PSDs are considered to validate newly proposed 

AVD- and RVD-based SAMMC methods. Homogeneous coagulation is considered in both 

Cases 2 and 3, but the difference is that the initial PSD of Case 2 is monodispersed while in 

Case 3 it is an exponential distribution. As a non-homogeneous coagulation process leads to 

the generation of an additional numerical particle, it can be used to validate the computational 

accuracy and efficiency of the newly proposed and developed AVD- and RVD-based SAMMC 

methods. In Case 4, the coagulation is non-homogeneous with initial monodispersed PSD. The 

initial total particle number concentration, N0 = 106 cm-3, and the coagulation kernel βij is a 

constant A, where A = 10−6 cm3/s [17,35]. The characteristic coagulation time, τC = 1/(AN0).  
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5.3.2.1 Homogeneous coagulation with initial monodispersed distribution 

Figure 5.7 shows the time evolutions of M0, M1 and M2 as well as corresponding σM0
, σM1

 

and σM2
 and the resulting PSDs at t/τC = 50 obtained from different MC methods for 

homogeneous coagulation with initial monodispersed distribution when compared with the 

corresponding analytical solutions [17]. 

Numerical results show that M0 obtained from all these MC methods decrease constantly 

over time because of the continuous occurrence of coagulation processes and have excellent 

agreements with the analytical solution, while their corresponding σM0
 vary for different MC 

methods as shown in Figure 5.7(a). Although M0 during the numerical simulation in the 

stepwise constant-volume method is always conserved, the constant change in the number of 

numerical particles adversely affects the computational accuracy, leading the mean standard 

deviation to 1.79%. The most significant feature between the stepwise constant-volume method 

and the mass-based constant-number method is that the number of numerical particles for the 

former method is always between 0.5NS and NS while the latter method restores the sample at 

every time step. But the latter method has larger σM0
 than the former method, which implies 

that the frequency of sample restoration has a more obvious effect on the computational 

accuracy than the number of numerical particles. By comparison, AVD- and RVD-based 

SAMMC methods treat a homogeneous coagulation process as the same as the MMC method, 

so the stochastic errors in M0 among these three different-weight-based MC methods are almost 

the same. In addition, the number-based constant-number method has almost the same σM0
 as 

three different-weight-based MC methods, where M0 for all these four methods (i.e., number-

based constant-number method, MMC method, and AVD- and RVD-based SAMMC methods) 

are always conserved, leading to lower stochastic errors than other two methods (i.e., stepwise 

constant-volume method and the mass-based constant-number method). But the σM1
 obtained 

from the number-based constant-number method is the largest at 2.38% because of 

mass/volume non-conservation, while M1 of other MC methods are always conserved and their 

corresponding σM1
 are always zero as shown in Figure 5.7(b). All these MC methods can 

precisely predict the evolution of the high-order moment, M2 as shown in Figure 5.7(c), but 

σM2
 obtained from the number-based constant-number method is the largest, while the other 

two equal-weight-based MC methods have significantly lower σM2
. The resulting σM2

 obtained 

from mass-based constant-number method is slightly lower than that of the stepwise constant-



Chapter 5                                              Sorting Algorithm-based Merging Monte Carlo Method 

98 

 

volume method, which demonstrates that the computational accuracy of M2 of the number-

based constant-number is the lowest, and the mass-based constant-number method has higher 

computational accuracy of M2 than the stepwise constant-volume method. By comparison, the 

corresponding σM2
 of all different-weight-based MC methods are the lowest and almost the 

same, which implies that different-weight-based MC methods have higher computational 

accuracy than the equal-weight-based MC methods, and AVD- and RVD-based SAMMC 

methods show the same computational precision as the MMC method. 

 

Figure 5.7 Time evolutions of zeroth- to second-order moments and their corresponding mean 

standard deviations, and PSDs for homogeneous coagulation with initial monodispersed 

distribution in Case 2 [38]. 

 

Figure 5.7(d) shows the PSD at t/τC = 50, where Pk is the probability of obtaining a cluster 

containing k primary particles and k = v/v0. Numerical results of these six MC methods agree 

and track well with the corresponding analytical solution, but different resolutions of large size 

particles are shown for different MC methods. The different-weight-based MC methods have 

wider PSD than the equal-weight-based MC methods because the different-weight-based MC 

methods are better suited for resolving larger size particles. As a result, the fluctuation in M2 
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of different-weight-based MC methods is reduced, leading to lower statistical noise in M2 and 

higher computational accuracy than equal-weight-based MC methods in Figure 5.7(c). It is also 

found that the different-weight-based MC methods have smaller fluctuations in the PSD at the 

high end than the equal-weight-based MC methods, which further implies that the different-

weight-based MC methods have higher computational accuracy than the equal-weight-based 

MC methods. Since AVD- and RVD-based SAMMC methods work in the similar way as the 

MMC method in the homogeneous coagulation process, the PSDs obtained from AVD- and 

RVD-based SAMMC methods are almost the same width as the MMC method, therefore 

leading to almost the same σM2
 as shown in Figure 5.7(c). In addition, the stepwise constant-

volume method has a narrower PSD than all the other MC methods. Hence, the real particles 

at the high end are poorly represented by the numerical particles, which results in a large 

stochastic error in M2. The mass-based constant-number method has slightly wider PSD, and 

the resulting σM2
 is slightly lower. Although the PSD obtained from the number-based constant-

number method is almost as wide as that of the mass-based constant-number method, the total 

particle mass/volume concentration is not conserved, which results in the largest σM2
 of the 

number-based constant-number method. 

5.3.2.2 Homogeneous coagulation with initial exponential distribution 

Figure 5.8 shows the time evolutions of M0, M1 and M2 and their corresponding σM0
, σM1

 

and σM2
 and the resulting PSDs at t/τC = 0, 1, 5 and 20 obtained from different MC methods for 

homogeneous coagulation with initial exponential distribution when compared with the 

corresponding analytical solutions [213]. M0 obtained from all these MC methods show 

excellent agreement with the analytical solution as shown in Figure 5.8(a), but the mass-based 

constant-number method has the largest stochastic error in M0, which is not preserved. Another 

equal-weight-based MC method (i.e., the stepwise constant-volume method) has the second 

largest σM0
 due to the constant alteration of numerical particle numbers. The resulting σM0

 

obtained from the number-based constant-number method and three different-weight-based 

MC methods are the lowest and almost the same, which is attributed to the preservation of the 

total particle number concentration during the numerical simulation. As the total particle 

mass/volume concentration is not conserved, the number-based constant-number method has 

the largest stochastic error in M1. The M1 of other MC methods remain constant as shown in 

Figure 5.8(b) because of the conserving mass/volume, therefore resulting in no stochastic error 



Chapter 5                                              Sorting Algorithm-based Merging Monte Carlo Method 

100 

 

in M1. The high-order moment, M2 obtained from all these MC methods are in excellent 

agreement with the analytical solution with the variations of σM2
 in different MC methods in 

Figure 5.8(c). It is found that the number-based constant-number method and the stepwise 

constant-volume method have the largest σM2
, while the resulting σM2

 of the mass-based 

constant-number method is slightly lower. The lowest and almost the same σM2
 are observed in 

three different-weight-based MC methods, which demonstrates that these three methods have 

the highest and almost the same level of computational accuracy in terms of M2. Figure 5.8(d) 

shows the particle number concentrations (PNCs) at different v/v0 at t/τC = 0, 1, 5 and 20, which 

also represents the PSD. The PNCs obtained from different MC methods have excellent 

agreement with the analytical solutions at different times t/τC. With coagulation taking place 

over time, particle volumes become larger and the PNC moves to the large volume regime on 

the right side, but it still remains the “self-preserving” form. 

 

Figure 5.8 Time evolutions of zeroth- to second-order moments and their corresponding mean 

standard deviations and PSDs for homogeneous coagulation with initial exponential 

distribution in Case 3 [38]. 
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5.3.2.3 Non-homogeneous coagulation with initial monodispersed distribution 

 

 

Figure 5.9 Time evolutions of zeroth- to second-order moments and their corresponding mean 

standard deviations, and PSDs for non-homogeneous coagulation with initial monodispersed 

distribution in Case 4 [38]. 

 

A non-homogeneous coagulation process leads to the generation of an additional 

numerical particle, which is necessary for validating the computational accuracy and efficiency 

of the newly developed AVD- and RVD-based SAMMC methods. Evolutions of M0 to M2 and 

corresponding σM0
 to σM2

 over time, and the resulting PSDs at t/τC = 50 obtained from different 

MC methods for non-homogeneous coagulation with initial monodispersed distribution when 

compared with the corresponding analytical solutions [154] are shown in Figure 5.9. Excellent 

agreements with analytical solutions are presented in the numerical results obtained from all 

different MC methods. Figure 5.9(b) shows that the total volume/mass concentrations, M1 and 

the resulting σM1
 are always constant because of mass conservation. Both AVD- and RVD-

based SAMMC methods show lower σM0
 than the SAMWFMC method [35] as shown in Figure 
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5.9(a), which implies that AVD- and RVD-based SAMMC methods have higher computational 

accuracy of M0 than the SAMWFMC method. The resulting σM0
 obtained from the WFMC 

method [33] is the largest and remains increasing over time, which implies that it does not 

allow indefinitely long numerical simulation of non-homogeneous coagulation. But both 

WFMC and SAMWFMC methods have lower σM2
 than AVD- and RVD-based SAMMC 

methods as shown in Figure 5.9(c), which is attributed to wider particle size ranges of the 

former methods as shown in Figure 5.9(d). This implies that WFMC and SAMWFMC methods 

are developed to obtain larger size particles and to further predict the PSD, therefore reducing 

the stochastic error in the high-order moment. In addition, the AVD- and RVD-based SAMMC 

methods have lower σM0
 to σM2

 in non-homogeneous coagulation than those in homogeneous 

coagulation of Case 2 in Section 5.3.2.1. 

5.3.2.4 Computational time for pure coagulation 

 

Table 5.2 Comparison of computational times for Cases 1 to 4 [38]. 

t (s) Case 1 Case 2 Case 3 Case 4 

Stepwise constant-volume 3.35 24.84 19.03 _ 

Constant-number (mass) 2.44 85.51 61.61 _ 

Constant-number (number) 2.58 89.65 63.81 _ 

MMC 16.59 73.20 53.74 − 

SAMMC (absolute) 17.43 76.50 55.65 154.94 

SAMMC (relative) 18.23 75.50 55.27 154.89 

WFMC − − − 92.92 

SAMWFMC − − − 130.21 

Remarks: The WFMC and SAMWFMC methods are specifically developed for non-

homogeneous coagulation in Case 4 and are not aimed at nucleation and homogeneous 

coagulation for Cases 1 to 3, so their corresponding computational times for Cases 1 to 3 are 

not shown here. Similarly, stepwise constant-volume method, mass-and number-based 

constant-number methods and MMC method are not applicable to non-homogeneous 
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coagulation in Case 4, their corresponding computational times for Case 4 are not shown here. 

 

The computational costs of all MC methods for pure coagulation are presented in Table 

5.2 from Cases 2 to 4. For homogeneous coagulation (i.e., Cases 2 and 3), the computational 

times consumed by the stepwise constant-volume method are the lowest, which is owing to the 

decreasing number of numerical particles. Mass- and number-based constant-number methods 

require higher computational cost than other three different-weight-based MC methods. It is 

because both mass- and number-based constant-number methods restore the sample at every 

time step, leading to a large amount of time consumption. The computational time required by 

the MMC method is only slightly smaller than those of the AVD- and RVD-based SAMMC 

methods, which implies that AVD- and RVD-based SAMMC methods have almost the same 

level of computational efficiency as the MMC method. By comparison, AVD- and RVD-based 

SAMMC methods have larger computational time consumption than the WFMC and 

SAMWFMC methods for non-homogeneous coagulation (i.e., Case 4), since sorting and 

finding neighbour numerical particles with the minimal property difference in the array in 

AVD- and RVD-based SAMMC methods require more computational cost than only removing 

operation in the WFMC method and only finding and merging operations in the SAMWFMC 

method. 

5.3.3 Pure breakage 

Breakage is classified into two types according to the number of daughter particles. They 

are binary breakage and multi-breakage. Binary breakage refers to a particle fragmented into 

two smaller numerical particles while a multi-breakage process normally leads to more 

fragments generated. If the sizes of child fragments are the same, it is equal daughter PSD. If 

a uniform daughter PSD is used, the volumes of child fragments are determined by the 

stochastic process. For example, a parent particle, i with volume vi undergoes a binary breakage, 

the volumes of both child fragments (i.e., j and k) for the equal daughter PSD are vj = vk = 0.5vi, 

but for the uniform daughter PSD, the volume of one fragment is vj = r4vi while the other one 

is vk = (1−r4)vi, where r4 is a uniformly distributed random number between zero and one. 

Different breakage cases with different computational conditions as listed in Table 5.3 are 

selected for validation purpose of the new AVD- and RVD-based SAMMC methods. Cases 5 

and 6 are binary breakage cases with the initial monodispersed distribution and linear breakage 
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rate in the particle volume. The difference is that the daughter PSD in Case 5 is equal, while 

Case 6 is uniform. An initial exponential distribution with quadratic breakage rate in the 

particle volume is considered in Case 7. Case 8 is a very complicated breakage case, in which 

twelve daughter fragments with equal volume are fragmented by a parent particle with the 

power law breakage rate. The number of numerical particles considerably increases with the 

occurrence of breakage processes. The initial total particle number concentration, N0 = 3000 

m-3, and the characteristic breakage time, τB = 1/B(v0).  

 

Table 5.3 The computational conditions for Cases 5 to 8 [38]. 

Case Breakage type Initial PSD Daughter PSD γ(v,u) b(v) B(v) 

5 binary breakage monodispersed equal δ(v,u/2) 2 v 

6 binary breakage monodispersed uniform 1/u 2 v 

7 binary breakage exponential uniform 1/u 2 v2 

8 multi-breakage monodispersed equal δ(v,u/12) 12 v1.8 

 

5.3.3.1 Binary breakage of linear breakage rate with initial monodispersed distribution 

and equal daughter PSD 

Figure 5.10 shows the time evolutions of M0 to M2 and corresponding σM0
 to σM2

, and the 

resulting PSDs at t/τB = 25 and 50 obtained from different MC methods for binary breakage of 

linear breakage rate with initial monodispersed distribution and equal daughter PSD when 

compared with the corresponding analytical solutions [219]. With binary breakage processes 

taking place, the total particle number concentration, M0, increases constantly but the total 

particle mass/volume concentration, M1, remains unchanged. M1 obtained from the stepwise 

constant-volume method, number-based constant-number method and MMC method 

significantly deviate from the analytical solution as shown in Figure 5.10(b), leading to large 

σM1
 during the numerical simulation. In addition, σM0

 and σM2
 for these three MC methods are 

also the largest as shown in Figures 5.10(a) and 5.10(c), although the corresponding M0 and M2 

are in good agreements with analytical solutions. By comparison, mass-based constant-number 

method and AVD- and RVD-based SAMMC methods have excellent agreements of M0, M1 
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and M2 with analytical solutions. Because of mass conservation, the σM1
 for these three MC 

methods are zero and remain constant. But AVD- and RVD-based SAMMC methods have 

lower σM0
 and σM2

 than other MC methods including the mass-based constant-number method, 

which implies that AVD- and RVD-based SAMMC methods have the highest computational 

accuracy among all MC methods. It is also found that the stochastic errors of AVD- and RVD-

based SAMMC methods are almost the same, which implies that it has no effect using AVD 

or RVD method as the crucial merging criteria on the computational accuracy. Figure 5.10(d) 

shows the PNCs for different particle volumes at t/τB = 25 and 50, which also describes the 

results of PSD. As all fragments are of equal volume, the volumes of particles are powers of 

0.5 and the resulting PSD is sparse. With time advancing, the particle volumes gradually 

decrease and the PNC moves to the smaller volume regime on the left side, while the “self-

preserving” form still remains. The PNCs of all MC methods agree excellently with the 

analytical solutions at different t/τB. 

 

Figure 5.10 Time evolutions of zeroth- to second-order moments and their corresponding mean 

standard deviations, and PSDs for binary breakage of linear breakage rate with initial 

monodispersed distribution and equal daughter PSD in Case 5 [38]. 
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5.3.3.2 Binary breakage of linear breakage rate with initial monodispersed distribution 

and uniform daughter PSD 

 

 

Figure 5.11 Time evolutions of zeroth- to second-order moments and their corresponding mean 

standard deviations, and PSDs for binary breakage of linear breakage rate with initial 

monodispersed distribution and uniform daughter PSD in Case 6 [38].  

 

Compared with Case 5, the daughter PSD in Case 6 is uniform. The numerical results of 

Case 6 with the corresponding analytical solutions [220] are shown in Figure 5.11. As the 

treatment after a breakage process is only adding the weights of a fragment and a numerical 

particle with the similar volume directly in the MMC method, the systematic errors are 

unavoidably introduced which are originated from mass non-conservation [156,157]. These 

large systematic errors demonstrate that the MMC method cannot be used to precisely simulate 

a breakage process. Hence, the numerical results of MMC method are not shown. Similarly, 

the systematic errors are also shown in the stepwise constant-volume method, while M1 of the 

number-based constant-number method fluctuates around 1, which are also attributed to the 
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non-conserving mass as shown in Figure 5.11(b). The resulting σM1
 of these two MC methods 

(i.e., stepwise constant-volume method and number-based constant-number method) are the 

largest while σM1
 of other methods (i.e., mass-based constant-number method, MMC method, 

and AVD- and RVD-based SAMMC methods) are always zero. Actually the resulting σM0
 and 

σM2
 of these two MC methods are also the largest, and the mass-based constant-number method 

has lower σM0
 and σM2

. AVD- and RVD-based SAMMC methods has the lowest σM0
 and σM2

 

as shown in Figures 5.11(a) and 5.11(c), which demonstrates the highest computational 

accuracy of AVD- and RVD-based SAMMC methods. It is also found that the PNCs obtained 

from all MC methods agree excellently with the analytical solution at t/τB = 50 in Figure 5.11(d). 

 

5.3.3.3 Binary breakage of quadratic breakage rate with initial exponential distribution 

and uniform daughter PSD 

A quadratic breakage rate and an initial exponential distribution for binary breakage are 

also simulated in the present study with analytical solutions in [221]. The MMC method still 

shows large systematic errors due to mass non-conservation, so the corresponding numerical 

results are not shown. Two MC methods (i.e., stepwise constant-volume method and number-

based constant-number method) with non-conserving mass (i.e., M0) still have the largest σM0
, 

σM1
 and σM2

, although M0 and M2 agree well with analytical solutions as shown in Figures 

5.12(a), 5.12(b) and 5.12(c), respectively. By comparison, zeroth- to second-order moments 

obtained from all three mass conservation methods (i.e., mass-based constant-number method, 

and AVD- and RVD-based SAMMC methods) exhibit excellent agreement with analytical 

solutions, and the resulting σM1
 always remain zero. The mass-based constant-number method 

has slightly higher σM0
 and almost the same σM2

 when compared with AVD- and RVD-based 

SAMMC methods. It demonstrates that AVD- and RVD-based SAMMC methods still have 

higher computational accuracy in handling binary breakage of quadratic breakage rate with 

initial exponential distribution than the mass-based constant-number method. As the volumes 

of particles decrease with the occurrence of breakage, time evolution of the PNC moves to the 

smaller size regime but still remains the exponential distribution. The PNCs obtained from all 

these MC methods follow the “self-preserving” curve well as shown in Figure 5.12(d). 

 



Chapter 5                                              Sorting Algorithm-based Merging Monte Carlo Method 

108 

 

 

Figure 5.12 Time evolutions of zeroth- to second-order moments and their corresponding mean 

standard deviations, and PSDs for binary breakage of quadratic breakage rate with initial 

exponential distribution and uniform daughter PSD in Case 7 [38].  

 

5.3.3.4 Multi-breakage of power law breakage rate with initial monodispersed 

distribution and equal daughter PSD 

In Case 8, one parent particle breaks into twelve child particles with equal volumes, 

leading to a dramatic increase in the number of numerical particles. The analytical solutions 

for multi-breakage can be obtained from [219]. In the stepwise constant-volume method, when 

the number of numerical particles exceeds twice of its initial value (i.e., 2NS), several numerical 

particles are randomly chosen and discarded and finally only NS numerical particles are left in 

the computational domain, which leads to non-conserving mass. The total particle number 

concentration instead of the total particle mass/volume concentration is only conserved in the 

number-based constant-number method. By comparison, when a new numerical particle is 

generated, the treatment in the MMC method is to merge it with an existing numerical particle 

having the most similar volume, where their weights are simply added together to only preserve 

the total particle number concentration, resulting in mass non-conservation. Compared with 



Chapter 5                                              Sorting Algorithm-based Merging Monte Carlo Method 

109 

 

Case 5, Case 8 is more challenging for the stepwise constant-volume method and MMC method, 

as larger systematic errors are introduced in both methods because of non-conserving mass. 

Therefore, the numerical results of both stepwise constant-volume method and MMC method 

are not shown here. Another non-conserving mass method (i.e., the number-based constant-

number method) shows a deviation of M1 from the analytical solution, leading to the largest 

σM0
, σM1

 and σM2
 in Figure 5.13. As other three MC methods (i.e., mass-based constant-number 

method and AVD- and RVD-based SAMMC methods) are mass-conserved, the M1 and σM1
 

remain constant in Figure 5.13(b). Only mass is conserved in the mass-based constant-number 

method, while the statistical properties are entirely conserved in AVD- and RVD-based 

SAMMC methods, leading to lower stochastic errors in M0 and M2 of the latter methods than 

those of the former method as shown in Figures 5.13(a) and 5.13(c). It is worth noting that the 

σM0
 and σM2

 obtained from the RVD-based SAMMC method are lower than those of the AVD-

based SAMMC method. The reason is that the volume differences for RVD are constants while 

the volume differences are possibly linear with the particle volume for AVD. As a result, the 

particle weight would be compared in the RVD-based SAMMC method but not in the AVD-

based SAMMC method, thus leading to lower stochastic error of the RVD-based SAMMC 

method than the AVD-based SAMMC method. It implies that the former method has higher 

computational precision than the latter method in Case 8. Twelve equally sized child particles 

are generated by one parent particle, so the child particle volumes are 1/12 of the parent particle 

volume. The numerical results in a sparsely discretized PSD are shown in Figure 5.13(d). The 

number-based PSDs obtained from all MC methods agree excellent with analytical solutions 

and remain “self-preserving” form when moving towards the smaller size regime over time. 
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Figure 5.13 Time evolutions of zeroth- to second-order moments and their corresponding mean 

standard deviations, and PSDs for multi-breakage of power law breakage rate with initial 

monodispersed distribution and equal daughter PSD in Case 8 [38].  

 

5.3.3.5 Computational time for pure breakage 

Table 5.4 shows the computational times required by different MC methods for pure 

breakage from Cases 5 to 8. Different-weight-based MC methods normally have larger 

computational time than the equal-weight-based MC methods. The reason is that randomly 

removing method used in equal-weight-based MC methods requires less computational time 

than the merging method in the counterparts. In addition, the daughter PSD has little effect on 

the computational time when comparing Case 5 with Case 6. The computational time of mass- 

and number-based constant-number methods are the lowest while the stepwise constant-

volume method requires slightly higher computational times in Cases 5 and 6. The reason is 

that the numbers of numerical particles for the former methods always remain NS while that of 

the latter method changes between NS and 2NS with breakage taking place. However, mass- 

and number-based constant-number methods have a significant larger computational time than 

the stepwise constant-volume method in Case 7. It demonstrates that the computational time 
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of both constant-number methods are closely related to the initial exponential distribution. In 

the stepwise constant-volume method, every time when the number of numerical particles 

reaches or exceeds twice of its initial value (i.e, 2NS) due to breakage, several numerical 

particles are randomly selected and discarded and finally only NS numerical particles are left 

in the computational domain [36]. It leads to a great reduction in the total breakage rate and 

then a dramatic increase in the time step. Therefore, the computational time for stepwise 

constant-volume method is significantly reduced. By comparison, mass- and number-based 

constant-number methods randomly remove only one numerical particle from the 

computational domain at every breakage process, therefore resulting in very small change in 

the total breakage rate and time step. The small change of the time step is also observed in 

AVD- and RVD-based SAMMC methods, in which the merging operation of numerical 

particles is implemented. Therefore, the computational time of AVD- and RVD-based 

SAMMC methods are slightly higher than those of constant-number methods due to the 

introduction of sorting algorithm. It is also found that the computational time of AVD- and 

RVD-based SAMMC methods are higher than that of the MMC method in Case 5 due to the 

sorting operation of numerical particles. Considering the large systematic errors unavoidably 

introduced in the MMC method, AVD- and RVD-based SAMMC methods are only the 

different-weight-based MC methods with high computational accuracy developed for breakage. 

Actually, both AVD- and RVD-based SAMMC methods have the highest computational 

accuracy among all these MC methods with highly acceptable computational time. 

 

Table 5.4 Comparison of the computational times for Cases 5 to 9 [38]. 

t (s) Case 5 Case 6 Case 7 Case 8 Case 9 

Stepwise constant-volume 3.41 4.11 6.73 −− 142.78 

Constant-number (mass) 3.16 3.26 36.04 1.85 157.22 

Constant-number (number) 3.39 3.31 34.61 1.87 156.20 

MMC 8.19 −− −− −− −− 

SAMMC (absolute) 12.36 11.58 40.74 6.31 291.25 

SAMMC (relative) 12.51 11.50 42.12 6.32 297.93 
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Remarks: Very large systematic errors are found in MMC method for Cases 6 to 9 and stepwise 

constant-volume method for Case 8, so the corresponding computational times as well as 

numerical results are not shown here. 

 

5.3.4 Simultaneous coagulation and nucleation 

Simultaneous coagulation and nucleation in the dispersed system is used to validate the 

computational accuracy and efficiency of the newly developed SAMMC method, as a 

nucleation-related process involves the generation of a new numerical particle, which is very 

suitable for testing the neighbour merging method. Analytical solutions for the total particle 

number and mass/volume concentrations could be obtained through integration of the 

corresponding general dynamic equation in [36]. It should be noted that if each nucleation 

process occurring is tracked and each real particle generated in the computational domain is 

represented by a numerical particle in the different-weight-based methods, the time step would 

be very small, leading to great computational time. One effective way to improve the 

computational efficiency is to track each nucleation process with more real particles as 

discussed in Section 5.3.1 (i.e., Case 1). Thus, the number of real particles represented by a 

numerical particle in the different-weight-based methods in the present study is set equal to the 

initial weights of numerical particles. The initial total precursor and particle number 

concentrations are constants (i.e., Cpre(0) = 5.0×104 cm-3 and N0 = 105 cm-3). The nucleation 

rate constant, KN = 20 s-1, and the homogeneous coagulation is chosen with a constant 

coagulation kernel, βij = A = 10−5 cm3/s. The characteristic nucleation and coagulation times 

are defined as τN = 1/KN and τC = 1/(AN0). 

The resulting total particle number concentration, M0, grows rapidly due to the domination 

of nucleation at first, but the growth rate decreases over time with the occurrence of coagulation. 

The stationary state of M0 between nucleation and coagulation is finally reached. By 

comparison, the total particle mass/volume concentration, M1 linearly increases with time. As 

the systematic errors in the MMC method are unavoidable due to the non-conserving mass, the 

numerical results are not shown here. Numerical results of M0 and M1 obtained from different 

MC methods agree fairly well with analytical solutions as shown in Figure 5.14, but the 

resulting σM0
 and σM1

 are different. The mass-based constant-number method has the largest 

σM0
, while the σM1

 of the number-based constant-number method is the largest. The σM0
 and 



Chapter 5                                              Sorting Algorithm-based Merging Monte Carlo Method 

113 

 

σM1
 obtained from the stepwise constant-volume method are lower than those of both mass- 

and number-based constant-number methods. It further demonstrates that frequently changing 

the number of numerical particles leads to higher stochastic errors and lower computational 

accuracy. Stochastic errors obtained from AVD- and RVD-based SAMMC methods are the 

lowest, leading to the highest computational accuracy. The computational time of AVD- and 

RVD-based SAMMC methods are higher than those of equal-weight-based MC methods as 

shown in Table 5.4 for Case 9 due to the finding and sorting operations of numerical particles.  

 

Figure 5.14 Time evolutions of total particle number and mass/volume concentrations and their 

corresponding mean standard deviations for simultaneous coagulation and nucleation with the 

initial monodispersed distribution in Case 9 [38].  

 

5.3.5 Simultaneous coagulation and breakage 

A coagulation process leads to the reduction in the total number of real particles while 

breakage increases the total number of real particles. For simultaneous coagulation and 

breakage, the total particle number concentration is therefore determined by the competition 

between coagulation and breakage in the dispersed system. It implies that the resulting steady 

state of total particle number concentration depends on the relative strength of coagulation and 

breakage. It is necessary to adopt different computational conditions to study the computational 

accuracy and efficiency of the newly developed SAMMC method as well as other MC methods 

for different competing mechanisms. The MMC method introduces large systematic errors due 

to mass non-conservation when dealing with breakage-related processes as discussed in Section 

5.3.3, so the corresponding numerical results regarding simultaneous coagulation and breakage 

are not shown here. The initial total particle number concentration, N0 = 107 cm-3 and the 
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homogeneous coagulation is chosen with a constant coagulation kernel, βij = A = 10−7 cm3/s 

[172]. The characteristic coagulation and breakage times are defined as τC = 1/(AN0) and τB = 

1/B(v0), respectively. 

Table 5.5 lists six cases with different computational conditions for simultaneous 

coagulation and breakage. The initial PSDs for Cases 10 to 13 are monodispersed distribution 

while the other two Cases 14 and 15 are exponential distribution. Both Cases 10 and 12 are in 

the equilibrium state between coagulation and breakage, but the difference is that the daughter 

PSD of Case 10 is equal while Case 12 is uniform. The dominating dynamic processes at the 

beginning of the numerical simulation in Cases 11 and 13 are coagulation and breakage, 

respectively. The breakage rate in Case 15 is linearly dependent on the particle volume, i.e., 

B(v) = 0.5v.  

 

Table 5.5 List of computational conditions for Cases 10 to 15 [38]. 

Case Initial PSD βij Daughter PSD γ(v,u) B(v) 

10 monodispersed A equal δ(v,u/2) 0.5 

11 monodispersed A uniform 1/u 0.25 

12 monodispersed A uniform 1/u 0.5 

13 monodispersed A uniform 1/u 10 

14 exponential A uniform 1/u 0.5 

15 exponential A uniform 1/u 0.5v 

 

5.3.5.1 Simultaneous coagulation and breakage of constant breakage rate (i.e., 0.5) with 

initial monodispersed distribution and equal daughter PSD 

Figures 5.15 shows the time evolutions of M0 and M1 and their corresponding σM0
 and σM1

 

obtained from different MC methods for simultaneous coagulation and breakage with initial 

monodispersed distribution and equal daughter PSD when compared with analytical solutions 

[37], where the breakage rate is a constant and is independent of particle volumes. It should be 

noted that the competition between coagulation and breakage is of the same intensity when B(v) 
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= 0.5, so the M0 is always constant during the numerical simulation. Numerical results show 

that M0 obtained from all MC methods agree excellently with the analytical solution. The mass-

based constant-number method has the largest σM0
, while σM0

 of other MC methods are lower 

and are almost the same. By comparison, non-conserving mass of the number-based constant-

number method leads to the largest σM1
, but M1 and σM1

 remain constant in all other MC 

methods. It is found that the computational accuracy of the stepwise constant-volume method 

is almost the same as AVD- and RVD-based SAMMC methods in Case 10. 

 

Figure 5.15 Time evolutions of total particle number and mass/volume concentrations and their 

corresponding mean standard deviations for simultaneous coagulation and breakage of constant 

breakage rate (i.e. 0.5) with initial monodispersed distribution and equal daughter PSD in Case 

10 [38].  

 

5.3.5.2 Simultaneous coagulation and breakage of constant breakage rate (i.e., 0.25, 0.5 

and 10) with initial monodispersed distribution and uniform daughter PSD 

Figures 5.16 to 5.18 show the effect of the breakage rate on M0 and M1 obtained from all 

MC methods. Coagulation is dominated when the breakage rate is equal to 0.25, leading to the 

decrease in the total particle number concentration until a steady state between coagulation and 

breakage is reached. If the breakage rate is increased to 0.5, coagulation and breakage are in 

the equilibrium state. Further increasing the breakage rate to 10, the total particle number 

concentration sharply increases at the beginning and it finally remains unchanged with time. 

This trend is well followed by all MC methods. Analytical solutions of Cases 11 to 13 are 

provided by Lin et al. [37]. It should be noted that simultaneous coagulation and breakage does 

not change the total particle mass/volume concentration, so M1 always remains constant. As 
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the mass is not conserved in the number-based constant-number method, σM1
 is the largest 

among all MC methods. The mass is no longer conserved in the stepwise constant-volume 

method when the breakage rate is increased to 10. Although M1 of the mass-based constant-

number method remains unchanged, the resulting stochastic error in M0 is the largest for Cases 

11 to 13. By comparison, AVD- and RVD-based SAMMC methods have very low stochastic 

error in M0 and they do not have any stochastic error in M1, which demonstrates the high 

computational accuracy of both methods. Compared Case 12 with Case 10, the daughter 

distribution is independent of the computational accuracy of M0 and M1 in AVD- and RVD-

based SAMMC methods, which have almost the same computational accuracy. 

 

 

Figure 5.16 Time evolutions of total particle number and mass/volume concentrations and their 

corresponding mean standard deviations for simultaneous coagulation and breakage of constant 

breakage rate (i.e. 0.25) with initial monodispersed distribution and uniform daughter PSD in 

Case 11 [38].  
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Figure 5.17 Time evolutions of total particle number and mass/volume concentrations and their 

corresponding mean standard deviations for simultaneous coagulation and breakage of constant 

breakage rate (i.e. 0.5) with initial monodispersed distribution and uniform daughter PSD in 

Case 12 [38].  

 

 

Figure 5.18 Time evolutions of total particle number and mass/volume concentrations and their 

corresponding mean standard deviations for simultaneous coagulation and breakage of constant 

breakage rate (i.e. 10) with initial monodispersed distribution and uniform daughter PSD in 

Case 13 [38].  

 

5.3.5.3 Simultaneous coagulation and breakage of constant breakage rate (i.e., 0.5) with 

initial exponential distribution and uniform daughter PSD 

Unlike Case 12, the initial PSD of Case 14 is exponential distribution, which is used to 

study the effect of initial PSD on the computational accuracy of M0 and M1 in the newly 

developed SAMMC methods by comparing with analytical solutions [37]. Numerical results 

show that σM0
 and σM1

 obtained from AVD- and RVD-based SAMMC methods for initial 

exponential distribution are at the same level of those for initial monodispersed distribution, 

which demonstrates that the initial PSD has no effect on the computational accuracy of AVD- 

and RVD-based SAMMC methods. Mass- and number-based constant-number methods only 

conserve either total particle number concentration or total particle mass/volume concentration, 

which lead to large σM0
 or σM1

, respectively. The stepwise constant-volume method and AVD- 

and RVD-based SAMMC methods agree excellent with the analytical solutions, which have 
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the lowest stochastic error in M0 and do not have any stochastic error of M1 in Figure 5.19. 

 

 

Figure 5.19 Time evolutions of total particle number and mass/volume concentrations and their 

corresponding mean standard deviations for simultaneous coagulation and breakage of constant 

breakage rate (i.e. 0.5) with initial exponential distribution and uniform daughter PSD in Case 

14 [38].  

 

5.3.5.4 Simultaneous coagulation and breakage of linear breakage rate (i.e., 0.5v) with 

initial exponential distribution and uniform daughter PSD 

This Case 15 is very special for simultaneous coagulation and breakage, because the initial 

exponential PSD is also its steady state solution, which implies that the PSD at any time 

remains constant, leading to M1, M2 and M3 remaining unchanged with time. The analytical 

solutions are presented by Patil and Andrews [222], Figure 5.20 shows the time evolutions of 

M0, M1 and M2 and their corresponding mean standard deviations (i.e., σM0
, σM1

 and σM2
) and 

the resulting number-based PSDs at t/τB = 0, 0.5, 1, 1.5 and 2.5 obtained from different MC 

methods. The number-based constant-number method shows obvious mass non-conservation, 

and the largest stochastic error in M1 is still observed in the mass-based constant-number 

method. AVD- and RVD-based SAMMC methods and the stepwise constant-volume method 

show excellent agreement of M1, M2 and M3 with analytical solutions and have almost the same 

stochastic errors. The PSDs with the exponential distribution obtained from all MC methods 

agree well with the analytical solutions and are always preserved at different times, t/τB. 
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Figure 5.20 Time evolutions of total particle number and mass/volume concentrations and their 

corresponding mean standard deviations for simultaneous coagulation and breakage of linear 

breakage rate (i.e. 0.5v) with initial exponential distribution and uniform daughter PSD in Case 

15 [38]. 

 

5.3.5.5 Computational time for simultaneous coagulation and breakage 

The computational time of all MC methods for simultaneous coagulation and breakage 

are compared and listed in Table 5.6. As the MMC method introduces large systematic errors 

in Cases 10 to 15, the computational time is not shown here. Generally, the stepwise constant-

volume method has the highest computational efficiency, because the number of numerical 

particles survived in the array is normally smaller than other MC methods. But the exception 

is the Case 13 which is dominated by breakage as the number of numerical particles always 

changes between NS and 2NS, leading to less computational efficiency. The reason is that when 

the number of numerical particles is larger than NS, more computational time would be required 

than using NS numerical particles. By comparison, other MC methods spend almost the same 

time for different cases (i.e., Cases 11, 12, 14 and 15), and AVD- and RVD-based SAMMC 

methods have only slightly higher computational time than mass- and number-based constant-
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number methods. It demonstrates that AVD- and RVD-based SAMMC methods are highly 

computationally efficient in dealing with simultaneous coagulation and breakage for different 

computational conditions. 

 

Table 5.6 Comparison of computational times for Cases 10 to 15 [38]. 

t (s) Case 10 Case 11 Case 12 Case 13 Case 14 Case 15 

Stepwise constant-volume 1128.78 1126.82 1127.62 1812.92 1105.38 52.71 

Constant-number (mass) 1802.14 1807.00 1816.43 1796.78 1809.26 79.46 

Constant-number (number) 1935.85 1908.52 1917.84 1814.61 1810.76 78.71 

MMC −− −− −− −− −− −− 

SAMMC (absolute) 1910.70 1920.14 1935.05 1863.68 1916.05 85.06 

SAMMC (relative) 1965.08 2049.78 1964.26 1943.42 1932.55 85.18 

Remarks: There exist large systematic errors in MMC method for simultaneous coagulation 

and breakage, so the corresponding computational times as well as numerical results for Cases 

10 to 15 are not shown here. 

 

5.3.6 Deposition 

Deposition refers to the removal of numerical particles out of the computational domain, 

resulting in the constant decrease of the number of numerical particles. Numerical particle, i is 

not tracked anymore if being selected to conduct deposition, resulting in the reduction of the 

number of numerical particles. The initial total particle number concentration for pure 

deposition, N0 = 1010 m-3 [157] is used with monodispersed PSD, and constant deposition rate, 

D(v) = D0 = 10-5 s-1 [157] is used. The corresponding analytical solution is calculated and 

obtained from the derived equation in Zhao et al. [157]. The numerical particle number, NS 

used is 2000, and τD = 1/D0 represents the characteristic deposition time. In Case 16, the PSD 

is always monodispersed with volume v = 1 (dimensionless), the evolutions of the particle 

number and particle volume/mass concentrations over time are always the same. Thus, only 

the particle number concentration (i.e., M0) over time is shown here. Figure 5.21 shows that 
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the total particle number concentration (i.e., M0) has an excellent agreement with analytical 

solution. 

 

Figure 5.21 Time evolutions of total particle number concentrations and the corresponding 

mean standard deviations for deposition with initial monodispersed distribution in Case 16 [38]. 

 

5.3.7 Condensation/evaporation 

Condensation/evaporation leads to the change in the particle volumes but would not 

change the particle number. The PBE for condensation/evaporation in the continuous form is 

used, and the condensation rate is linear with particle volumes, I(v) = σ1v [16]. It should be 

noted that condensation occurs if σ1 > 0, while it is an evaporation process when σ1 < 0. Only 

the condensation process is considered in Case 17 for simplicity as evaporation can be similarly 

considered. The initial total particle number concentration for condensation, N0 = 106 m-3 is 

used with initial exponential PSD and the rate constant, σ1 = 1 s-1 is used [176]. The 

corresponding analytical solution is calculated and obtained from the derived equations in 

Ramabhadran et al. [16]. The numerical particle number, NS used is 2000, and τK = 1/σ1 

represents the characteristic condensation time. Figure 5.22 shows the numerical results (i.e., 

M0, M1, M2 and PSD) for condensation. As condensation would not change the total particle 

number, M0 remains unchanged with time, therefore the mean standard deviation, σM0
, always 
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equal to 0. M1 and M2 are in excellent accord with analytical solutions with very small mean 

standard deviations. The resulting PSD shows a “self-preserving” form with time, which agrees 

excellently with analytical solutions. 

 

Figure 5.22 Time evolutions of zeroth- to second-order moments and their corresponding mean 

standard deviations, and PSDs for condensation with initial exponential distribution in Case 17 

[38]. 

 

5.4 Summary 

A new sorting algorithm-based merging Monte Carlo (SAMMC) method is developed to 

solve the general dynamic equation for aerosol dynamics. A neighbour merging method is 

newly proposed to maintain constant for the volume of the computational domain and the 

number of numerical particles with the information of numerical particle population preserved, 

where absolute volume difference (AVD) and relative volume difference (RVD) are used as 

the crucial merging criteria, respectively. Compared to previous MC methods, AVD- and 

RVD-based SAMMC methods proposed in the present study can be used for modelling all 

aerosol processes without introducing any systematic errors and the event-driven scheme is 



Chapter 5                                              Sorting Algorithm-based Merging Monte Carlo Method 

123 

 

adopted to avoid introducing uncoupling errors during the numerical simulation. Hence, high-

precision numerical results can be obtained.  

The newly developed SAMMC method is applied to simulate aerosol dynamic processes 

involving nucleation, coagulation and breakage. The resulting statistical properties are 

compared with those obtained from the stepwise constant-volume method, mass- and number-

based constant-number methods, multi-Monte Carlo (MMC) method, weighted fraction Monte 

Carlo (WFMC) method and sorting algorithm-based merging weighted fraction Monte Carlo 

(SAMWFMC) method. The computational accuracy is assessed by the mean standard 

deviations in the zeroth- to second-order moments of the PSDs in comparison with 

corresponding analytical solutions, while the computational efficiency is evaluated by the 

computational time consumed by the central processing unit. 

Numerical results of AVD- and RVD-based SAMMC methods agree excellently with 

analytical solutions, which proves that these two methods have very high computational 

accuracy. For pure nucleation, AVD- and RVD-based SAMMC methods have lower stochastic 

errors and higher computational accuracy than equal-weight-based MC methods (i.e., stepwise 

constant-volume method and mass- and number-based constant-number methods), and they 

have the same computational efficiency and accuracy as the MMC method. The similar 

numerical results are also found in pure homogeneous coagulation. Although the stochastic 

errors in the high-order moment for AVD- and RVD-based SAMMC methods are higher than 

those of WFMC and SAMWFMC methods in non-homogeneous coagulation, more accurate 

total particle number concentrations are found in AVD- and RVD-based SAMMC methods but 

have slightly higher computational times. In addition, large systematic errors for breakage-

related processes and simultaneous coagulation and nucleation are introduced in the MMC 

method, leading numerical results to a large deviation from analytical solutions. By comparison, 

the newly proposed AVD- and RVD-based SAMMC methods can completely deal with 

breakage-related processes and simultaneous coagulation and nucleation process with very 

high computational accuracy at only slightly higher computational cost. It is also found that 

the computational accuracy of AVD- and RVD-based SAMMC methods are generally almost 

the same except for multi-breakage, where RVD-based SAMMC methods has higher 

computational accuracy than the AVD-based SAMMC methods. Furthermore, the 

computational efficiencies of AVD- and RVD-based SAMMC methods for all aerosol dynamic 

processes are also almost the same. 
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Chapter 6 Development of Reacting Flow Solver Incorporating Detailed 

Transport Model for Combustion Simulations 

 

6.1 Introduction  

OpenFOAM (Open-source Field Operation and Manipulation) has become an important 

scientific tool for solving computational fluid dynamics due to its free and open-source nature, 

but its application in reacting flows may be restricted due to either the use of a simplified 

transport model or the requirement for pre-specified species (binary) mass diffusion 

coefficients as well as the use of Sutherland’s formula. Since two empirical parameters (i.e., 

Sutherland coefficient and Sutherland temperature) are used in the Sutherland’s formula, it is 

not accurate enough to calculate the transport properties of a number of species. To fill this gap, 

a detailed transport model using a mixture-averaged formulation based on the standard kinetic 

theory of gases is newly incorporated into combustion solvers for dealing with reacting flow 

simulations in OpenFOAM. This is achieved by developing a new utility to input molecular 

transport parameters and a new library to calculate transport properties. All the codes are 

completely written under the code framework of OpenFOAM, making them very easy to read, 

use, maintain, enhance and extend. The developed utility and library are then coupled with a 

new reacting flow solver developed for the governing equations in terms of mass, momentum, 

species and energy by configurating an interface. In the present study, the function of the new 

utility is firstly examined and then a new solver (i.e., standardReactingFoam) is developed for 

solving reacting flows. A systematical validation and assessment in different flame 

configurations with detailed chemical kinetics is studied to evaluate the computational 

performance of these new solvers.  

6.2 Mathematical Models 

6.2.1 Governing equations 

The present study aims at computational fluid dynamics (CFD) calculations of reacting 

flows, where the mixture-averaged transport model is used as the detailed transport model for 

differential diffusion of species. The governing equations in terms of mass, momentum, species 
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and energy without considering Soret and Dufour effects [80,81] are formulated as [223,224]: 

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝐔) = 0 (6-1) 

 
𝜕(𝜌𝐔)

𝜕𝑡
+ ∇ ∙ (𝜌𝐔𝐔) − ∇ ∙ 𝛕 = −∇𝑝 (6-2) 

 
𝜕(𝜌𝑌𝑘)

𝜕𝑡
+ ∇ ∙ (𝜌𝑌𝑘𝐔) + ∇ ∙ (𝜌𝑌𝑘𝐕𝒌) = 𝜔𝑘 (6-3) 

 

𝜕(𝜌ℎ𝑠)

𝜕𝑡
+ ∇ ∙ (𝜌𝐔ℎ𝑠) +

𝜕(𝜌𝐾)

𝜕𝑡
+ ∇ ∙ (𝜌𝐔𝐾) −

𝜕𝑝

𝜕𝑡

= −∇ ∙ 𝐪 + 𝑄𝑟 + 𝜔𝑇 + ∇ ∙ (𝛕 ∙ 𝐔) 

(6-4) 

where t is time and U is velocity;  and p are density and pressure, respectively; Yk and k are 

the mass fraction and reaction rate of species k, respectively; hs is mixture sensible enthalpy 

and K is kinematic energy;  is viscous stress tensor, which is formulated based on the Stokes 

hypothesis [80,81] as [224]: 

 𝛕 = −
2

3
𝜇(∇ ∙ 𝐔)𝐈 + 𝜇[∇𝐔 + (∇𝐔)𝑇] (6-5) 

where  is dynamic viscosity and I is the unit tensor. The mass-average diffusion velocity of 

species k, Vk is computed in terms of the mole fraction gradient as [223,224]: 

 𝐕𝑘 = −
𝐷𝑘,mix
𝑋𝑘

∇𝑋𝑘 (6-6) 

where Dk,mix is the diffusion coefficient of the kth species into the rest of the mixture. It should 

be noted that it is required to correct the diffusion velocity for maintaining the global mass 

conservation [224], which is expressed as: 

 𝐕𝑘
𝐶 = 𝐕𝑘 + 𝐕𝐶 (6-7) 

where VC is a spatially varying correction velocity but the same for all species at each time step 

[224], which is calculated as: 

 𝐕𝐶 = −∑𝑌𝑘𝐕𝑘

𝑁

𝑘=1

 (6-8) 

where N is the number of species. It is common in the combustion community to solve the 

transport equations of all species except for the inert species firstly, and then to obtain the mass 
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fraction of the inert species by explicitly subtracting the solved mass fractions of the rest of 

species from one. As a result, all inconsistencies introduced by the system can be absorbed by 

the inert species. It should be noted that this method is still effective when the correction 

velocity is introduced and used. Similarly, the diffusion flux of the inert species is explicitly 

computed to satisfy the condition of zero net species diffusion flux [224] as: 

 ∑𝜌𝑌𝑘𝐕𝑘

𝑁

𝑘=1

= 0 (6-9) 

In Equation (6-4), the heat flux including heat conductivity and mass diffusion of species 

is computed as [81,224]: 

𝐪 = −𝜆∇𝑇 +∑𝜌ℎ𝑠,𝑘𝑌𝑘𝐕𝑘

𝑁

𝑘=1

= −(
𝜆

𝐶𝑝
∇ℎ𝑠 −∑

𝜆

𝐶𝑝
ℎ𝑠,𝑘∇𝑌𝑘

𝑁

𝑘=1

) +∑𝜌ℎ𝑠,𝑘𝑌𝑘𝐕𝑘

𝑁

𝑘=1

 (6-10) 

where T is temperature and hs,k is the sensible enthalpy of species k; λ and Cp are thermal 

conductivity and specific heat capacity of the mixture at constant pressure, respectively. The 

heat production rate due to combustion, T is given as [224]: 

 𝜔𝑇 = −∑ℎ𝑓,𝑘𝜔𝑘

𝑁

𝑘=1

 (6-11) 

where hf,k is the formation enthalpy of species k. Qr is the radiative heat source, while the heat 

source originating from viscous stress can be neglected in low Mach number flows [223]. 

The ratio of thermal diffusivity to mass diffusivity of a species is defined by a 

dimensionless number, Lek, which is expressed as [72]: 

 𝐿𝑒𝑘 =
𝜆

𝜌𝐶𝑝𝐷𝑘,mix
 (6-12) 

When Lewis numbers of all species are assumed to be unity (i.e., unity Lewis number 

transport model), the contribution from mass diffusion of species in Equation (6-10) to energy 

transport is neglected [81], leading to a simplified energy transport equation. By comparison, 

the constant non-unity Lewis number approximation can lead to acceptable numerical results, 

but the Lewis number is highly species-dependent [72]. 

The governing equations are closed by the perfect gas assumption [81], where the equation 

of state of a mixture is expressed as [223,224]: 
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 𝑝 = 𝜌
𝑅𝑢
𝑊
𝑇 (6-13) 

where Ru is the universal gas constant and W is the mean molecular weight of the mixture. For 

a mixture composed of N perfect gases, the total pressure of the mixture is the sum of the partial 

pressures of each gas [223,224]. 

 𝑝 =∑𝑝𝑘

𝑁

𝑘=1

=∑𝜌𝑘
𝑅𝑢
𝑊𝑘

𝑇

𝑁

𝑘=1

 (6-14) 

where ρk and Wk are the density and molecular weight of the kth species, respectively. 

6.2.2 Thermodynamic properties 

The thermodynamic properties of a perfect gas only vary with temperature, which are 

obtained from the National Aeronautics and Space Administration (NASA) polynomials based 

on the Joint Army Navy Air Force (JANAF) table of thermodynamics [225]. Therefore, the 

molar specific heat capacity (i.e., Cp,k) at constant pressure, enthalpy (i.e., Hk) and entropy (i.e., 

Sk) of kth species at standard state are calculated as [83,90]: 

 
𝐶𝑝,𝑘

𝑅𝑢
=∑𝑎𝑛,𝑘𝑇

𝑛−1

5

𝑛=1

 (6-15) 

 
𝐻𝑘
𝑅𝑢𝑇

= ∑
𝑎𝑛,𝑘𝑇

𝑛−1

𝑛

5

𝑛=1

+
𝑎6,𝑘
𝑇

 (6-16) 

 
𝑆𝑘
𝑅𝑢
= 𝑎1,𝑘 ln 𝑇 +∑

𝑎𝑛,𝑘𝑇
𝑛−1

𝑛 − 1

5

𝑛=2

+
𝑎7,𝑘
𝑇

 (6-17) 

where an,k are the least-squares coefficients [90] which are different for each species. The 

thermodynamic properties of a multi-species mixture on a per mass basis are then calculated 

by summing up the contributions of each species in terms of mass fraction. 

6.2.3 Transport properties 

The mixture-averaged approach based on the pure species properties is used to efficiently 

approximate the transport properties of the mixture. The mixture viscosity is calculated as 

[223,226]: 
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 𝜇 =∑
𝑋𝑘𝜇𝑘

∑ 𝑋𝑗Φ𝑘𝑗
𝑁
𝑗=1

𝑁

𝑘=1

 (6-18) 

where 

 Φ𝑘𝑗 =
1

√8
(1 +

𝑊𝑘
𝑊𝑗
)

−
1
2

[1 + (
𝜇𝑘
𝜇𝑗
)

1
2

(
𝑊𝑗

𝑊𝑘
)

1
4
]

2

 (6-19) 

where k and j are the viscosity of pure species, k and j, respectively. 

A combination averaging formula is used to calculate the mixture-averaged thermal 

conductivity, which is given as [223,226]: 

 𝜆 =
1

2
(∑𝑋𝑘𝜆𝑘

𝑁

𝑘=1

+
1

∑ 𝑋𝑘/𝜆𝑘
𝑁
𝑘=1

) (6-20) 

where Xk represents the mole fraction of kth species, and k is the thermal conductivity of pure 

species k. 

The mixture-averaged diffusion coefficient of species k in the rest of the mixture, Dk,mix, 

is approximated as [223,226]: 

 𝐷𝑘,mix =
1 − 𝑌𝑘

∑ 𝑋𝑗/𝐷𝑗𝑘
𝑁
𝑗=1,𝑗≠𝑘

 (6-21) 

where Djk is the binary diffusion coefficient between species k and species j. 

6.2.3.1 Pure species properties 

For a pure species k, its viscosity k is calculated by the standard kinetic theory expression 

as [223,226]: 

 𝜇𝑘 =
5

16

√𝜋𝑚𝑘𝑘𝐵𝑇

𝜋𝜎𝑘
2Ω𝑘𝑘

(2,2)∗
 (6-22) 

where kB is the Boltzmann constant, mk is the molecular mass, σk is the Lennard-Jones collision 

diameter, and Ω𝑘𝑘
(2,2)∗

 is the reduced collision integral. 

The thermal conductivity (i.e., k) of pure species k comprising translational, rotational 

and vibrational contributions is obtained from its viscosity (i.e., k) as [223,226]: 
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 𝜆𝑘 =
𝜇𝑘
𝑊𝑘

(𝑓trans𝐶𝑣,trans + 𝑓rot𝐶𝑣,rot + 𝑓vib𝐶𝑣,vib) (6-23) 

where 

 𝑓trans =
5

2
(1 −

2

𝜋

𝐶𝑣,rot
𝐶𝑣,trans

𝐴

𝐵
) (6-24) 

 𝑓rot =
𝜌𝐷𝑘𝑘
𝜇𝑘

(1 +
2

𝜋

𝐴

𝐵
) (6-25) 

 𝑓vib =
𝜌𝐷𝑘𝑘
𝜇𝑘

 (6-26) 

 𝐴 =
5

2
−
𝜌𝐷𝑘𝑘
𝜇𝑘

 (6-27) 

 𝐵 = 𝑍rot +
2

𝜋
(
5

3

𝐶𝑣,rot
𝑅𝑢

+
𝜌𝐷𝑘𝑘
𝜇𝑘

) (6-28) 

where Dkk is the self-diffusion coefficient of molecule k, and the rotational relaxation collision 

number, Zrot is dependent on temperature expressed by [223,226]: 

 𝑍rot(𝑇) = 𝑍rot(298)
𝐹(298)

𝐹(𝑇)
 (6-29) 

where 

 𝐹(𝑇) = 1 +
𝜋3/2

2
(
𝜖𝑘 𝑘𝐵⁄

𝑇
)

1/2

+ (
𝜋2

4
+ 2)(

𝜖𝑘 𝑘𝐵⁄

𝑇
) + 𝜋3/2 (

𝜖𝑘 𝑘𝐵⁄

𝑇
)

3/2

 (6-30) 

where ϵk is Lennard-Jones potential well depth of molecule k. 

The total molar specific heat capacity at constant volume is denoted by Cv, and the 

contributions to Cv from translation, vibration and rotation are denoted as Cv,trans, Cv,vib and Cv,rot, 

respectively. The molar heat capacities depend on the geometry of the molecule (i.e., single 

atom, linear or non-linear), which are given as [223,226]: 

 𝐶𝑣,trans =
3

2
𝑅𝑢 (6-31) 

 𝐶𝑣,rot = {

0, single atom
𝑅𝑢, linear molecule

3

2
𝑅𝑢, nonlinear, polyatomic molecule

 (6-32) 
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 𝐶𝑣,vib = 𝐶𝑣 − 𝐶𝑣,trans − 𝐶𝑣,rot (6-33) 

6.2.3.2 Binary diffusion coefficient 

The binary diffusion coefficient is associated with temperature and pressure, which is 

defined as [223,226]: 

 𝐷𝑗𝑘 =
3

16

√2𝜋𝑘𝐵
3𝑇3/𝑚𝑗𝑘

𝑝𝜋𝜎𝑗𝑘
2 Ω𝑗𝑘

(1,1)∗
 (6-34) 

where the reduced mass, mjk is defined as [223,226]: 

 𝑚𝑗𝑘 =
𝑚𝑗𝑚𝑘

𝑚𝑗 +𝑚𝑘
 (6-35) 

The collision integrals Ω𝑗𝑘
(1,1)∗

 and Ω𝑗𝑘
(2,2)∗

 are calculated by [223]: 

 Ω𝑗𝑘
(1,1)∗ = [𝑎1(𝑇

∗)−𝑎2 + (𝑇∗ + 𝑎3)
−𝑎4] [1 +

(𝑒𝑎5/𝑇
∗
− 𝑒−𝑎6/𝑇

∗
)(𝛿𝑗𝑘

∗ )
2

2 + 2.5𝛿𝑗𝑘
∗ ] (6-36) 

 Ω𝑗𝑘
(2,2)∗ = [𝑏1(𝑇

∗)−𝑏2 + (𝑇∗ + 𝑏3)
−𝑏4] [1 +

(𝑒𝑏5/𝑇
∗
− 𝑒−𝑏6/𝑇

∗
)(𝛿𝑗𝑘

∗ )
2

2 + 2.5𝛿𝑗𝑘
∗ ] (6-37) 

where coefficients, am and bm, are provided in Table 6.1.  

 

Table 6.1 Coefficients [223] of Equations (6-36) and (6-37) [53]. 

Coefficient m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 

am 1.0548 0.15504 0.55909 2.1705 0.093193 1.5 

bm 1.0413 0.11930 0.43628 1.6041 0.095661 2.0 

 

T* and δjk
* are the reduced temperature and dipole moment, respectively, which are defined as 

[223,226]: 

 𝑇∗ = 
𝑇𝑘𝐵
𝜖𝑗𝑘

 (6-38) 
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 𝛿𝑗𝑘
∗ =

1

2
 
𝜇̅𝑗𝜇̅𝑘

𝜖𝑗𝑘𝜎𝑗𝑘
3  (6-39) 

where 𝜇̅𝑘 is the dipole moment of the kth species, and σjk and ϵjk are the effective collision 

diameter and Lennard-Jones potential well depth of species j and k, respectively, which are 

associated with their polarizabilities αj and αk. For two polar molecules or two nonpolar 

molecules j and k, the reduced quantities are calculated as [223,226]: 

 𝜖𝑗𝑘 = √𝜖𝑗𝜖𝑘 (6-40) 

 𝜎𝑗𝑘 =
1

2
 (𝜎𝑗 + 𝜎𝑘) (6-41) 

But when a polar molecule interacts with a nonpolar molecule, the reduced quantities are 

corrected as [223,226]: 

 𝜖𝑗𝑘 = 𝜉
2√𝜖𝑗𝜖𝑘 (6-42) 

 𝜎𝑗𝑘 =
1

2
 (𝜎𝑗 + 𝜎𝑘)𝜉

−1/6  (6-43) 

where 

 𝜉 = 1 +
1

4
𝛼𝑛
∗ 𝜇̅𝑝

∗√
𝜖𝑝

𝜖𝑛
 (6-44) 

The subscripts “n” and “p” denote the “nonpolar” and “polar”, respectively. 𝜇̅𝑝
∗  and 𝛼𝑛

∗  

are the reduced dipole moment of the polar molecule and polarizability of the nonpolar 

molecule, which are defined as [223,226]: 

 𝛼𝑛
∗ =

𝛼𝑛

𝜎𝑛
3 (6-45) 

 
𝜇̅𝑝
∗ =

𝜇̅𝑝

√𝜖𝑝𝜎𝑝
3

 
(6-46) 

It should be noted that when substituting the subscript “j” with “k” in the Equation (6-34), 

the self-diffusion coefficient, Dkk used in Equations (6-25) to (6-28) is obtained. Similarly, the 

Ω𝑘𝑘
(2,2)∗

 in Equation (6-22) is calculated by changing “j” to “k” in Equation (6-37). 
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6.3 Implementation 

In this section, the critical incorporation of a detailed transport model into a new 

combustion solver for reacting flow simulations in OpenFOAM is presented in detail, which is 

achieved by a newly developed utility named standardChemkinToFoam and a newly 

developed library named thermophysicalModels. The new thermophysicalModels library 

includes several sub-libraries, which are generated by ThermoType, ChemistryReader, 

MixtureType and BasicType code blocks. All the newly developed codes with a user guide are 

provided, which involves three versions of OpenFOAM (i.e., OpenFOAM 6, OepenFOAM 11 

and OpenFOAM v2306). Developing the libraries, utility and solvers of different OpenFOAM 

versions can meet the requirements of users using different OpenFOAM versions. In the 

present study, the authors use OpenFOAM 6 as an example to explain the development of all 

the libraries, utility and solvers. The code structures of OpenFOAM v2306 related to the 

developed libraries, utility and solvers are nearly the same as OpenFOAM 6. It should be noted 

that due to the significant change in the code structure of OpenFOAM 11 (a recent version of 

OpenFOAM by The OpenFOAM Foundation), some modifications should be made to the 

development procedures in the user manual of OpenFOAM 6 when implementing in 

OpenFOAM 11. Specifically, the development of libraries and utility in OpenFOAM 11 is 

similar with those in OpenFOAM 6 and OpenFOAM v2306, but the development of solvers in 

OpenFOAM 11 is totally different. For example, the reactingFoam solver was provided in all 

versions of OpenFOAM by ESI OpenCFD as well as OpenFOAM 10 and earlier versions by 

The OpenFOAM Foundation. By comparison, OpenFOAM 11 uses a modular library named 

multicomponentFluid to replace the reactingFoam solver in other versions with significant 

changes in the code structure. In order to follow these new features in OpenFOAM 11, the 

standardReactingFoam solver incorporating the detailed transport model in the present study 

is correspondingly modified to a library named standardMulticomponentFluid, which is 

developed based on the multicomponentFluid library. All these newly developed libraries, 

utility and solvers of these OpenFOAM versions are provided in the source codes to facilitate 

users. In addition, the computational performance (i.e., performance implications, simulation 

time and memory usage) of the solvers in different versions of OpenFOAM (i.e., OpenFOAM 

6, OpenFOAM v2306 and OpenFOAM 11) are evaluated, which would facilitate users in 

choosing the solvers of different versions of OpenFOAM. It should also be noted that the 

resulting library and sub-libraries are applicable for any multi-species system involving 
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molecular transport. 

Based on the standard kinetic theory of gases, the calculation of transport properties in 

combustion modeling according to the derivation in Section 6.2 is accomplished by using the 

value of collision integrals developed from the Stochmayer potential [223], which is based on 

the Lennard-Jones potential [223] with polar interaction. The potential depends on six 

molecular transport parameters for each species that should be specified for eventually 

evaluating transport properties [67]. They are the indicator of molecule geometrical 

configuration in Equation (6-32), Lennard-Jones potential well depth (i.e., ϵ) in Equation (6-

40), Lennard-Jones collision diameter (i.e., σ) in Equation (6-41), dipole moment (i.e., 𝜇̅) in 

Equation (6-39), polarizability (i.e., α) in Equation (6-45) and rotational relaxation collision 

number (i.e., Zrot) at 298K in Equation (6-29). Actually, all information in terms of these 

molecular transport properties are included in chemical reaction mechanisms in CHMEKIN 

format. Therefore, measures should be taken to handle these molecular transport parameters of 

a species. 

Figure 6.1 shows the class diagram of a ThermoType Block in terms of a species. 

Following the object-oriented programming language (i.e., C++), each box denotes a class 

which consists of members and member functions, where “‒” and “+” represent private and 

public, respectively. A solid line with a hollow arrow describes an inheritance relationship from 

a derived class to a base class.  

The physical properties of a species are directly or indirectly calculated and stored in 

individual classes. For example, the specie class is developed to input and store data including 

name, mass fraction and mole weight of a species, and then species density is determined by 

pressure and temperature according to the selected equation of state (i.e., perfect gas). The 

thermodynamic properties of this perfect-gas species including specific heat capacity and 

absolute enthalpy are calculated based on the Joint Army Navy Air Force (JANAF) tables [52] 

of thermodynamics. In the original code of OpenFOAM [52], the sutherlandTransport class 

derived from the thermo class is developed to accommodate transport properties of a species, 

which should be replaced in the present study. Thus, a new class in terms of transport properties 

should be developed to read and store molecular transport parameters of a species. As detailed 

transport models are based on the standard kinetic theory of gases, this newly developed class 

is referred to as “standardKineticTransport” in the present study, which is presented by a red 

box in Figure 6.1. 
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Figure 6.1 Class diagram of ThermoType Block based on standard kinetic theory [53]. 

 

The six critical molecular transport parameters of a species required by a detailed transport 

model are performed as private members of the standardKineticTransport class with self-

explanatory names, which can be accessed by individual public member functions. The 

transport properties of a species including dynamic viscosity, thermal conductivity, thermal 

diffusivity of enthalpy and self-diffusion coefficient are evaluated by individual member 
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functions of the standardKineticTransport class, which are dependent on pressure and 

temperature. Consequently, all parameters of a species involved in a detailed transport model 

are available by the member functions of the standardKineticTransport class. It should be 

noted that the standardKineticTransport class is derived from many base classes, leading to a 

rather long name as shown in Figure 6.1, so an alias of “gasHThermoPhysics” is provided for 

later convenient use. 

 

 

Figure 6.2 Class diagram of ChemistryReader Block interfacing with 

standardChemkinToFoam utility based on standard kinetic theory [53]. 

 

Before storing the six molecular transport parameters of a species with respect to a 

detailed transport model, all these information should be inputted first, which is accomplished 

by the chemistryReader class. Figure 6.2 shows the class diagram of the ChemistryReader 
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Block interfacing with a newly developed standardChemkinToFoam utility to achieve the input 

of all parameters required by chemically reacting flow simulations. A dashed line with an arrow 

denotes the dependency of one class on another, which means that the chemistryReader class 

uses the newly developed standardKineticTransport class. Specifically, the chemkinReader or 

foamChemistryReader class derived from the chemistryReader class is used to achieve reading 

chemical kinetic, thermodynamic and transport quantities, where all transport properties of all 

species are then stored due to the use of the standardKineticTransport class. As a result, a 

chemical reaction mechanism transformed by the standardChemkinToFoam utility is inputted 

by either chemkinReader or foamChemistryReader, which is based on the 

standardKineticTransport class in the present study, leading to the dependence of any case of 

reacting flows on the standardKineticTransport class. 

It should be noted that the format of a file comprising molecular transport parameters 

should be readable by OpenFOAM, so a new utility named standardChemkinToFoam with a 

highlighted red box is developed as shown in Figure 6.2, which is based on the existing 

chemkinToFoam utility in original OpenFOAM. The solid line with a solid arrow shows the 

procedure of file processing. The standardChemkinToFoam utility uses the chemkinReader 

class to read chemical reaction mechanism files in CHEMKIN format and transforms them to 

OpenFOAM format. After executing the new utility, both chemistry readers (i.e., 

chemkinReader and foamChemistryReader) can correctly read and store all the information 

provided by the chemical reaction mechanism file, especially those neglected by the original 

OpenFOAM. It is of great significance to note that the use of the standardChemkinToFoam 

utility is completely the same as that of the original chemkinToFoam utility so that the operation 

is very friendly and easy. 

Figure 6.3 presents the critical class diagram of the MixtureType block where multi-

species mixture properties are handled according to a detailed transport model. Protected 

members and member functions are marked by “#” in a C++ box. The class boxes requiring 

modification to be compatible with the detailed transport model are highlighted in light blue in 

Figure 6.3. Modifications of the multiComponentMixture class should be carried out to 

compute binary diffusion coefficient of two species as well as the dynamic viscosity and 

thermal diffusivity of enthalpy in a cell, patch and face. These variables are evaluated by adding 

corresponding member functions to the multiComponentMixture class, which are dependent on 

pressure and temperature. It should be noted that a member function also requires to be 
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specified in this class when the unity Lewis or constant non-unity Lewis number transport 

model is considered for a multi-species system, where the interface between a running case and 

the selection of a transport model is configurated in the thermophysicalProperties file at the 

constant directory of the running case. In addition, a member function used to obtain the 

boundary and internal fields of diffusion coefficients of each species in the rest of the mixture 

should be added to the reactingMixture class, in which each cell, patch and face in the whole 

computational domain are looped. The diffusion coefficient of a species in the rest of the 

mixture is a function of pressure, temperature and mass fraction of each species. Therefore, all 

mixture properties of a multi-species system in the computational domain can be obtained by 

accessing corresponding member functions of the reactingMixture class, which is the base class 

of the SpeciesMixture class. 

Figure 6.4 shows the class diagram of the BasicType block interfacing with a combustion 

solver for combustion modelling. It should be noted that the BasicType block can be psi-based 

or rho-based. As the implementation logics of psi-based and rho-based BasicType blocks are 

the same, an example of psi-based BasicType block is selected here to specify the algorithm. 

The heThermo class is derived from the SpeciesMixture class, which means that all mixture 

properties of the muti-species system can be also accessed by the heThermo class as well as its 

derived hePsiThermo class. This is also the same for the derived heRhoThermo class. It should 

be noted that dynamic viscosities and thermal diffusivities of enthalpy in each cell, patch and 

face are updated by the member function of the hePsiThermo class, which depends on the 

psiThermo class. Therefore, the thermophysical properties involving energy, heat and physical 

properties are computed by using the specified thermophysical models as shown in Figure 6.4. 

For reacting flow simulations, a combustion model depends on the psiReactionThermo class 

derived from the psiThermo class to return the thermophysical properties of the computational 

domain, which would be finally used by a combustion solver. Simultaneously, the dependency 

of the code blocks of chemistry models and turbulence models as well as radiation models on 

the BasicType code block should be updated accordingly. It demonstrates that the 

corresponding interface should be configured in a reacting flow solver, therefore leading to the 

requirement of developing a new combustion solver for governing equations in terms of mass, 

momentum, species and energy. It should be noted that the combustion solver relies on the 

reactingMixture class to provide diffusion coefficients of each species, which are finally used 

in the species and energy equations. Consequently, a new combustion solver incorporating a 
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detailed transport model is developed with the combination of different chemistry models, 

turbulence models and radiation models, which is aimed at reacting flows of a multi-species 

system. 

 

 

Figure 6.3 Class diagram of MixtureType Block based on standard kinetic theory [53]. 
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Figure 6.4 Class diagram of BasicType interfacing with combustion solver based on 

standard kinetic theory [53]. 
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6.4 Results 

Following the basic structure of OpenFOAM, governing equations including unsteady, 

convection, diffusion and source terms are approximated based on the finite volume method. 

The pressure implicit with splitting of operator (PISO) algorithm [227] is adopted to achieve 

the pressure-velocity coupling. Different numerical schemes for different physically 

meaningful terms are readily available in OpenFOAM [52]. In the present study, unsteady 

terms are discretized by a first-order time-stepping while a second-order central differencing 

scheme is adopted to discretize the convection and diffusion terms. The chemical reaction 

mechanism used is the well-known GRI-Mech 3.0 [187] involving 325 reactions and 53 species, 

which does not involve a pressure-dependent reaction type (i.e., pressure logarithmic 

interpolation, PLOG). It should be noted that this specific PLOG reaction type is used in some 

newly developed reaction mechanisms, which is not defined by the original OpenFOAM due 

to the lack of necessary functions to handle this reaction type [70,71]. As a result, PLOG cannot 

be supported by the libraries, utility and solvers developed in the present study. An Euler 

implicit solver is used for chemistry. Specifically, the Euler implicit integration based on the 

Jacobian matrix of reaction rates is used for solving the composition while the Euler explicit 

integration is used for solving temperature. The separation of temperature integration from 

composition integration significantly enhances stability for exothermic reaction systems. It 

should be noted that a well-balanced second-order accurate Strang splitting scheme may be 

required to handle flame extinction and re-ignition predictions since the splitting scheme used 

in the original OpenFOAM is the first-order accurate, which is not well-balanced [70,71]. The 

maximum Courant number is set to be 0.2 for constraining the time step of integration. 

Transport properties are calculated by the mixture-averaged transport model, and it is newly 

implemented and coupled with combustion solvers (i.e., standardChemFoam and 

standardReactingFoam) for a multi-species system, where the standardChemFoam solver is 

used for examining the function of the newly developed standardChemkinToFoam utility and 

then the standardReactingFoam solver is also newly developed for solving reacting flows. 

In the present study, the newly developed solvers for chemically reacting flows are 

systematically validated in different flame configurations. Specifically, a zero-dimensional 

auto ignition is used to verify the chemical source term in governing equations by the newly 

developed standardChemFoam solver while verification of convection and diffusion terms in 

governing equations are then conducted by the new standardReactingFoam solver using a one-
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dimensional premixed flame. A counterflow configuration is also simulated to examine the 

standardReactingFoam solver for a two-dimensional axisymmetric non-premixed laminar 

flame. Numerical simulation results of these flames are validated against Cantera [75] and 

CHEMKIN [83] simulations with the same chemical and physical conditions. In addition, the 

standardReactingFoam solver is applied for a realistic combustion simulation of a two-

dimensional partially premixed coflow flame. The detailed experimental datasets were 

available in literature [228], which are used as a reference benchmark to assess the performance 

of the standardReactingFoam solver. 

6.4.1 Zero-dimensional auto ignition 

The zero-dimensional (0D) auto ignition is a canonical case [79] for assessing the 

temporal numerical integration accuracy of chemical source terms, because convection and 

diffusion do not take effect in the 0D simulation. Therefore, this configuration is very 

appropriate for evaluating the calculation of chemical reaction rates. As any case involving 

reacting flows requires inputting a readable chemical reaction mechanism, the 

standardChemkinToFoam utility is newly developed to transform a chemical reaction 

mechanism from the chemkin format. The resulting chemical reaction mechanism is then 

inputted by the chemkinReader or foamChemistryReader as shown in Figure 6.2 for any 

combustion solver. Due to the dependence of any combustion case on the newly developed 

standardKineticTransport class as discussed in Section 7.3, it is required to examine the correct 

reading of all the information in the chemical reaction mechanism. Thus, the purpose of using 

this case in the present study is mainly to check the function of the newly developed 

standardChemkinToFoam utility. Derived from the original rho-based chemFoam solver in the 

OpenFOAM, a new combustion solver named standardChemFoam is developed for a muti-

species system, which is coupled with the newly implemented detailed transport model 

involving molecular transport parameters based on the standard kinetic theory of gases. The 

flame setup is a homogeneous and constant-volume batch reactor filling an unburned methane-

air mixture with unity equivalence ratio, where one cell of computational mesh is generated in 

OpenFOAM with a time step of 1×10−5 s. The initial pressure of the gas mixture is 13.5 bar 

with temperature of 1000 K. As initial temperature is larger than the temperature of auto-

ignition, unburned methane-air mixture starts to ignite when the numerical simulation begins 

and gradually becomes a burned state. The same initial conditions are set up in Cantera and 

CHEMKIN, whose results are taken as benchmarks. 
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Figure 6.5 presents the time evolution of temperature profiles of ignition process by the 

developed standardChemFoam, which is in excellent agreement with those obtained from 

Cantera and CHEMKIN platforms. The time evolution of mass fraction profiles of main species 

obtained from the standardChemFoam solver, Cantera and CHEMKIN are presented in 

Figures 6.6 and 6.7. Numerical simulation results of the newly developed solver are consistent 

with both benchmarks [75,83], which validate the correctly implemented algorithm for 

chemistry problems. 

 

Figure 6.5 Time evolution of temperature profiles of standardChemFoam in comparison 

with Cantera and CHEMKIN of 0D auto-ignition [53]. 

 

 

Figure 6.6 Time evolution of species mass fraction profiles of standardChemFoam in 

comparison with Cantera of 0D auto-ignition [53]. 

 



Chapter 6                        Incorporating Detailed Transport Model for Combustion Simulations 

143 

 

 

Figure 6.7 Time evolution of species mass fraction profiles of standardChemFoam in 

comparison with CHEMKIN of 0D auto-ignition [53]. 

 

6.4.2 One-dimensional premixed flame 

In the present study, a case of a one-dimensional (1D) freely propagating premixed planar 

laminar flame [79] is investigated to evaluate the implementation of the detailed transport 

model involving molecular transport parameters based on the standard kinetic theory of gases, 

which takes the effects of convection and diffusion into account. Correspondingly, a new 

combustion solver named standardReactingFoam derived from the original psi-based 

reactingFoam solver in the OpenFOAM is developed for chemically reacting flows with 

mixture-averaged transport properties. The computational domain consists of an inlet of a fresh 

gas mixture with unity equivalence ratio of methane and air, where the mixture is consumed 

and the flame propagates against the fresh mixture due to combustion. When the inlet velocity 

is equal to the burning velocity, a steady state is reached and the flame front in the 

computational domain remains unchanged. The inlet velocity is set the same as the laminar 

flame speed (i.e., 38 cm/s) in the present study. The inlet temperature is set to be 300 K and 

the pressure of the computational domain is set to be 1 bar while the outlet boundary conditions 

are set to be zero-gradient. The length of the computational domain is 100 cm, and the grid 

independence is verified by using a uniform grid resolution of 200 μm, 100 μm, 50 μm and 25 

μm. Numerical simulation results show that converged solutions have achieved at a grid size 

of 25 μm. 

Numerical simulation results obtained from the standardReactingFoam solver, Cantera 
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and CHEMKIN are shown in Figures 6.8 to 6.10, where the axial location of the resulting 

maximum heat release rate is set to zero. Results show that the calculated temperature profile 

and mass fraction profiles of main species obtained from the standardReactingFoam solver are 

in excellent agreement with the Cantera and CHEMKIN solutions. The minor deviations 

between the numerical results obtained from the standardReactingFoam solver and Cantera as 

well as CHEMKIN platform are mainly attributed to the different computational grids used in 

these platforms [78]. In the present study, different adaptive grid refinement strategies are used 

at the flame front by the Cantera and CHEMKIN platforms while a static grid is used by the 

standardReactingFoam solver in OpenFOAM. It should be noted that it is impossible to 

achieve the agreement by the original reactingFoam solver in the OpenFOAM due to the lack 

of a detailed transport model [229]. It also validates the newly developed 

standardReactingFoam solver incorporating a detailed transport model involving molecular 

transport properties for a multi-species system in chemically reacting flows, which can be 

further used for more complicated two- and three-dimensional combustion simulations. 

 

 

Figure 6.8 Comparison of temperature profile obtained from standardReactingFoam, 

Cantera and CHEMKIN of 1D steady state premixed flame [53]. 
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Figure 6.9 Comparison of species mass fraction profiles obtained from 

standardReactingFoam and Cantera of 1D steady state premixed flame [53]. 

 

 

Figure 6.10 Comparison of species mass fraction profiles obtained from 

standardReactingFoam and CHEMKIN of 1D steady state premixed flame [53]. 

 

6.4.3 Two-dimensional non-premixed counterflow flame 

A counterflow configuration is also simulated to examine the standardReactingFoam 

solver for a two-dimensional (2D) axisymmetric non-premixed laminar flame [81] by using a 

detailed chemical kinetics and transport model. This 2D case is widely used for understanding 

the basics of diffusion flames due to its relatively simple flow field, whose solution can be 

approximated by 1D simulations. Figure 6.11 shows the schematic diagram of the 2D non-

premixed counterflow flame setup, where the inlets of fuel (i.e., CH4) and air (i.e., 21% O2 and 
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79% N2 by volume) are on the left and right sides, respectively. The counterflow flame outlet 

is on the top while the bottom side is the axis of symmetry. The computational domain is a 

wedge of a cylinder, whose length and radius are 2 cm. Pure methane and regular air are 

injected into the computational domain from the left and right side, respectively, leading to a 

mixing process of methane and air. It should be noted that this case can be also used to examine 

the capability of the newly developed standardReactingFoam solver for pure species (i.e., 

methane) diffusion in addition to multi-species diffusion. The initial temperature and velocity 

of both inlets are set to be 293 K and 10 cm/s [71,81], while the pressure of the computational 

domain is fixed at 101325 Pa. The consistent computational conditions are used in Cantera and 

CHEMKIN simulations for the purpose of providing benchmark solutions, so the 2D numerical 

simulation results of the standardReactingFoam solver are validated against the 1D axial 

profiles obtained from the Cantera and CHEMKIN softwares. 

 

 

Figure 6.11 Schematic diagram of 2D non-premixed counterflow flame setup, temperature 

distributions and streamline profiles [53].  
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The grid independence is firstly validated by different grid resolutions. It is reported that 

the prediction of the heat release rate of this flame has a strong dependence on the grid 

resolution [81]. In the present study, the grid size along with the radial direction (i.e., r) is 

uniformly 200 μm, while the grid size along with the axial direction (i.e., x) is set to be 

uniformly 200 μm, 20 μm, 10 μm and 5 μm. Numerical simulation results show that two peaks 

of the heat release rate can be fully resolved and remain unchanged when the grid size is less 

than 10 μm, which demonstrates that the grid resolution is high enough to obtain convergent 

results. Figure 6.11 also shows the temperature distribution of the 2D axisymmetric non-

premixed laminar flame at a grid size of 5 μm, where streamlines denoted by white solid lines 

with arrows are also presented, leading to a clear presentation of the flame and stagnation plane. 

As the global equivalence ratio is larger than unity, the flame stabilizes at the air side relative 

to the stagnation plane. The reason is that the flame front moves towards the air side to maintain 

stable combustion with a complete fuel-air reaction. 

The comparisons of thermodynamic properties, transport properties and main species 

mass fractions obtained from the standardReactingFoam solver with Cantera and CHEMKIN 

are presented in Figures 6.12 and 6.13, respectively. It should be noted that the real distance 

instead of non-dimensional distance is used to reflect the actual physical scale of this type of 

flame setup. Excellent agreements of the heat release rate are observed between the 

standardReactingFoam solver and Cantera as well as CHEMKIN, in which two peaks of the 

heat release rate and heat absorption region are accurately captured by the 

standardReactingFoam solver. The numerical predictions of the variations of temperature, 

axial velocity, density, viscosity, thermal conductivity and specific heat capacity of the mixture 

along the center axis by using the standardReactingFoam solver are very consistent with those 

obtained from other two platforms. In addition, the resulting spatial mass fraction profiles of 

main species at the central axis of the new solver also show a consistent tendency and a very 

good agreement with their counterparts obtained from Cantera and CHEMKIN, which 

demonstrates the correct implementation of the algorithm in terms of coupling the detailed 

transport model with the new combustion solver. It should be noted that the slight deviations 

between the numerical results obtained from the standardReactingFoam solver and Cantera as 

well as CHEMKIN platform are mainly attributed to the different computational grids used in 

these platforms as discussed in Section 6.4.2 as well as solver settings including discretization 

schemes. 
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Figure 6.12 Comparison of thermodynamic property, transport property and species mass 

fraction profiles obtained from standardReactingFoam and Cantera of 2D steady state non-

premixed counterflow flame [53]. 
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Figure 6.13 Comparison of thermodynamic property, transport property and species mass 

fraction profiles obtained from standardReactingFoam and CHEMKIN of 2D steady state non-

premixed counterflow flame [53]. 
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6.4.4 Two-dimensional partially premixed coflow flame 

Except for premixed and diffusion flames, a partially premixed coflow laminar flame is 

considered in the present study to evaluate the computational performance of the newly 

developed algorithm, which couples a detailed transport model with a combustion solver for a 

realistic combustion simulation. The experimental setup of the partially premixed coflow flame 

used from Bennett et al. [228] consists of two concentric tubes and a cylindrical shield as shown 

in Figure 6.14. A mixture of methane and air is injected from the inner tube with a fully 

developed laminar profile while a regular air is supplied from the concentric annulus. Chemical 

compositions, initial temperature (i.e., ambient temperature) and pressure (i.e., standard 

atmospheric pressure) of both jets are shown in Figure 6.14. The inner and outer radii of the 

inner tube are 5.55 mm and 6.35 mm, while the inner and outer radii of the outer tube are 47.6 

mm and 51 mm, respectively. The air volumetric flowrate of the concentric annulus is 44000 

cm3/min, while the volumetric flowrates of methane and air in the inner tube are 330 cm3/min 

and 1050 cm3/min, respectively. The length of the computational domain at the downstream of 

the inlets is 200 mm. 

 

 

Figure 6.14 Schematic diagram of 2D partially premixed coflow flame setup, computational 

mesh and temperature distribution [53]. 

 

Figure 6.14 shows the 2D axisymmetric structured mesh of the flame setup including 

18400 hexahedra cells for the numerical simulation, where local refinements are conducted 

near the inlets. Gird independence validation shows that further mesh refinements have no 
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significant effect on the numerical solution. As it is found that there is a relative heat loss of 

about 15% [77,228], radiation heat transfer is considered in the numerical simulation, which is 

achieved by the radiative heat source term in the energy equation. The optically thin radiation 

model is adopted for this flame, in which H2O, CO2, CH4 and CO are regarded as the significant 

radiative species and self-absorption is neglected [77,89,228,230]. The resulting temperature 

distribution at the central section of the computational domain numerically simulated by the 

newly developed standardReactingFoam solver is also shown in Figure 6.14. 

A comparison of the CFD predictions with experimental measurements [228] along the 

centerline in the axial direction is presented in Figure 6.15, which includes temperature profile 

and mole fraction profiles of main species (i.e., CH4, O2, H2O, CO2 and OH). It should be noted 

that all the experiment data [228] were collected within the flame height (i.e., around 5 cm). 

Numerical simulation results show that the simulated magnitude and axial position of the 

maximum temperature at the centerline are almost the same as the experimental results [228], 

which demonstrates that the standardReactingFoam solver has the capacity to capture the 

temperature peak in terms of both position and magnitude. In addition, temperature profiles 

along the centerline in the axial direction obtained from the numerical simulation show a very 

similar tendency with that of the experiment. Simultaneously, mole fraction profiles of the 

main species along the centerline in the axial direction can be well predicted by the new solver 

especially for CO2 and OH, and the simulated species mole fraction profiles vary consistently 

with the experimental data. With respect to CH4 and O2, the numerical predictions of mole 

fraction profiles of both species along the centerline in the axial direction agree very well with 

the experimental results except for the region near the exit of the inner jet. Obviously, the 

experimental data near the exit of the inner jet should not be of great difference from the 

boundary condition, which demonstrates the unreasonable experimental data near the exit of 

the inner jet. As reported by Bennett et al. [228], the same species calibration procedure was 

applied throughout the measurement domain, which introduced relatively large measurement 

error near the exit of the inner jet. As a result, it is appropriate not to compare the experimental 

data at this exit region of inner jet, and focus can be paid on other regions and the profile shape. 

It should be noted that the experimental mole fraction profile of H2O along the centerline in 

the axial direction in Figure 6.15 was corrected by a scale factor [228] due to the difficulties in 

experimental calibration of low vapor pressure of H2O at non-flame temperature, which makes 

it more appropriate to qualitatively compare the tendency of mole fraction of H2O between 
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numerical results and experimental data [73,89]. Considering the consistent tendency between 

numerical and experimental results including temperature and species mass fraction along the 

centerline in the axial direction, the overall agreement is quite satisfactory. 

 

Figure 6.15 Comparison of temperature and species mole fraction profiles along the 

centerline in the axial direction obtained from standardReactingFoam with experimental 

results of 2D partially premixed coflow flame [53]. 

 

6.5 Summary 

The free, open-source platform (i.e., OpenFOAM) has been widely used to solve various 

scientific problems in terms of fluid dynamics based on the finite volume method, in which 

libraries, solvers and pre- and post-processing utilities can be conveniently customized. As for 

reacting flows, however, the use of OpenFOAM is greatly limited by a highly simplified 

transport model, which makes assumptions of unity Schmidt number and Lewis number and 

uses Sutherland formula, leading to incorrect numerical calculation of the critical transport 

properties. Thus, it is essentially required to incorporate a detailed transport model into 

OpenFOAM to calculate transport properties for combustion modelling. Developing an 

interface between OpenFOAM and Cantera to achieve data exchange is the most used way to 

evaluate transport properties of a detailed transport model, but it is highly version-dependent, 

making it difficult to widely use and inconvenient for maintenance. Another way is to develop 
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a separate package for obtaining transport properties, resulting in a very complicated operation 

when using.  

In the present study, a detailed transport model is implemented completely under the code 

framework of OpenFOAM, making it very easy to read, use, maintain, enhance and extend. 

The detailed transport model uses a mixture-averaged formulation based on the standard kinetic 

theory of gases, which takes molecular properties of each species into account. Thus, a new 

pre-processing utility named standardChemkinToFoam is newly developed to input the critical 

molecular transport parameters of each species, which is provided by a chemical reaction 

mechanism file. The function of the standardChemkinToFoam utility is examined by a newly 

developed standardChemFoam solver, which can be used to verify chemical source terms in 

the governing equations. The inputted molecular transport parameters of each species are then 

used to calculate transport properties by a new customized library named 

thermophysicalModels. The newly developed library is finally coupled with a new low-Mach 

combustion solver named standardReactingFoam for validation purpose, in which species and 

energy equations are solved without simplification. It implies that the standardReactingFoam 

solver can be used for direct or quasi-direct numerical simulation of reacting flows. Compared 

with the original OpenFOAM, any additional operation is not required when using the newly 

developed utility, library and solvers. 

With a detailed chemical kinetics, a zero-dimensional auto ignition is used to verify the 

chemical source term and a one-dimensional premixed flame is used for validating convection 

and diffusion terms in the governing equations, which are solved by standardChemFoam and 

standardReactingFoam, respectively. A two-dimensional non-premixed counterflow flame is 

also simulated to evaluate the computational performance of the standardReactingFoam solver. 

Numerical simulation results of all these flames are compared with those obtained from Cantera 

and CHEMKIN platforms. In addition, a realistic combustion simulation of a two-dimensional 

partially premixed coflow flame is also verified. Numerical simulation results of the newly 

developed solvers are in very good agreements with counterparts, which demonstrates the 

successful incorporation of a detailed transport model into a combustion solver for accurate 

reacting flow simulations. 
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Chapter 7 Development of Dimer-based Soot Model for Soot Aerosol 

Dynamics in Laminar Combustion Flow 

 

7.1 Introduction 

The objective of this chapter is to develop a dimer-based soot model coupling the H-

abstraction-C2H2-addition (HACA) mechanism with homogeneous and heterogeneous 

nucleation and dimer condensation, in which dimers are regarded as the link from polycyclic 

aromatic hydrocarbons (PAHs) to soot. The masses of PAHs used for dimer formation are 

determined based on a weighted average of total PAH masses and their densities are estimated 

to be associated with their chemical compositions. Rather than roughly including all PAHs, the 

PAHs selected for dimer formation in the present study are made up of 50 or more carbon 

atoms due to their stable nature. As the physical realization of the laminar flamelet and 

frequently used for fundamental soot studies in CFD, counterflow diffusion flames are adopted 

to validate the newly developed dimer-based soot model implemented in the 

standardReactingFoam solver developed by Wang et al. [53]. Numerical results would be in 

comparison with available experimental dataset in a wide range of strain rates as well as oxygen 

mole fractions in the oxidize stream. 

7.2 Numerical Modelling 

Numerical simulations are conducted by using OpenFOAM-v2012 in the present study, 

where governing equations of reacting flows are solved by mixture-averaged transport model 

and transport equations of the developed dimer-based soot model are coupled into combustion 

models. 

7.2.1 Gas phase model 

Continuity, momentum, species and enthalpy governing equations could be expressed by 

[223,224]: 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝐔) = 0 (7-1) 
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𝜕(𝜌𝐔)

𝜕𝑡
+ ∇ ∙ (𝜌𝐔𝐔) − ∇ ∙ 𝛕 = −∇𝑝 (7-2) 

𝜕(𝜌𝑌𝑖)

𝜕𝑡
+ ∇ ∙ (𝜌𝑌𝑖𝐔) + ∇ ∙ (𝜌𝑌𝑖𝐕𝑖) = 𝜔𝑖 (7-3) 

𝜕(𝜌ℎ𝑠)

𝜕𝑡
+ ∇ ∙ (𝜌ℎ𝑠𝐔) +

𝜕(𝜌𝐾)

𝜕𝑡
+ ∇ ∙ (𝜌𝐾𝐔) =

𝜕𝑝

𝜕𝑡
− ∇ ∙ 𝐪 + 𝑄𝑟 + 𝜔𝑇 + ∇ ∙ (𝛕 ∙ 𝐔) (7-4) 

where t and ρ are time and density; p and U represents pressure and velocity; ωi and Yi 

represents reaction rate and mass fraction of ith species, respectively; hs and K are mixture 

sensible enthalpy and kinematic energy, respectively; ∙(∙U) represents the contribution of 

viscous stress to heat source, which is negligible in low Mach number flows; τ represents 

viscous stress tensor by using Stokes assumption [224]: 

 𝛕 = −
2

3
𝜇(∇ ∙ 𝐔)𝑰 + 𝜇[∇𝐔 + (∇𝐔)𝑇] (7-5) 

where I represents identity tensor; the mixture viscosity, μ is calculated based on the viscosities 

of each pure species as [223,226]: 

 𝜇 =∑
𝑋𝑖𝜇𝑖

∑ 𝑋𝑗Φ𝑖𝑗
𝑁
𝑗=1

𝑁

𝑖=1

 (7-6) 

where 

 Φ𝑖𝑗 =
1

√8
(1 +

𝑊𝑖
𝑊𝑗
)

−
1
2

[1 + (
𝜇𝑖
𝜇𝑗
)

1
2

(
𝑊𝑗

𝑊𝑖
)

1
4
]

2

 (7-7) 

where mi and mj are the viscosity, Wi and Wj are the molecular weight, and Xi and Xj are the ith 

and jth species mole fractions, respectively. 

Diffusion velocity of ith species (i.e., Vi) in Equation (7-3) is formulated based on mole 

fraction gradient by [223,224]: 

 𝐕𝑖 = −
𝐷𝑖,mix
𝑋𝑖

∇𝑋𝑖 (7-8) 

where Di,mix is the diffusion coefficient of species i into the rest of the mixture, which is 

calculated in a mixture-averaged formulation as [223,226]: 
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 𝐷𝑖,mix =
1 − 𝑌𝑖

∑ 𝑋𝑗/𝐷𝑗𝑖
𝑁
𝑗=1,𝑗≠𝑖

 (7-9) 

where the binary diffusion coefficient (i.e., Dji) as well as pure species properties including 

viscosity (i) and thermal conductivity (i) can be calculated via the standard kinetic theory of 

gas, which is described in detail by Kee et al. [223]. It should be noted that the diffusion 

velocity, Vi should be corrected by adding a spatially varying correction velocity, VC [224] to 

ensure global mass conservation [224]. 

 𝐕𝐶 = −∑𝑌𝑖𝐕𝑖

𝑁

𝑖=1

 (7-10) 

In Equation (7-4), the heat flux, q is calculated as [81,224]: 

 𝐪 = −𝜆∇𝑇 + 𝜌∑ℎ𝑠,𝑖𝑌𝑖

𝑁

𝑖=1

𝐕𝑖 (7-11) 

where T and N are temperature and the number of species; hs,i represents the specific enthalpy 

of ith species; λ represents mixture thermal conductivity, which is calculated using a 

combination averaging formula as [223,226]: 

 𝜆 =
1

2
(∑𝑋𝑖𝜆𝑖

𝑁

𝑖=1

+
1

∑ 𝑋𝑖/𝜆𝑖
𝑁
𝑖=1

) (7-12) 

where i represents ith species thermal conductivity. Contributions to radiative heat source, Qr 

[231] from significant radiative species including H2O, CO2, CO and CH4) and soot are 

considered, which neglects self-absorption based on the optically thin radiation model [77]. 

 𝑄𝑟 = 4𝜎𝑎𝑝(𝑇
4 − 𝑇env

4 ) (7-13) 

where σ and Tenv are the Stefan-Boltzmann constant and environment temperature, respectively; 

Planck mean absorption coefficient, ap could be calculated as [231]: 

 𝑎𝑝 =∑𝑝𝑖𝑎𝑖

4

𝑖=1

+ 𝑘𝑝 (7-14) 

where ai and pi are Planck mean absorption coefficient [232] and partial pressure of ith species, 

respectively; the soot absorption coefficient, kp depends on soot volume fraction (SVF), fv as 

well as temperature, which could be calculated by [231]: 
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 𝑘𝑝 = 700𝑓𝑣𝑇 (7-15) 

The production rate of heat from combustion, T could be calculated as [224]: 

 𝜔𝑇 = −∑ℎ𝑓,𝑖𝜔𝑖

𝑁

𝑖=1

 (7-16) 

where hf,i is the formation enthalpy of the ith species, and ωi and ωT include the contribution 

of soot particles. 

Based on equation of state, total pressure of mixture with N perfect gases is formulated as 

[223,224]: 

 𝑝 =∑𝜌𝑖
𝑅𝑢
𝑊𝑖
𝑇

𝑁

𝑖=1

 (7-17) 

where Ru is the universal gas constant, and ρi is the density of species i. 

7.2.2 Soot model 

Soot mass and number densities, i.e., M (kg/m3) and N (#/m3), are calculated as [125]: 

 𝑀 = 𝜌𝑌𝑠 (7-18) 

 𝑁 = 𝑁𝐴𝜌𝑁𝑠 (7-19) 

where NA is the Avogadro number. Taking thermophoresis and diffusion effects of soot into 

account, the resulting Ns and Ys transport equations of soot number and mass densities could 

be formulated as [92,125,130]: 

𝜕

𝜕𝑡
(𝜌𝑌𝑠) + ∇ ∙ (𝜌𝐔𝑌𝑠) + ∇ ∙ (𝜌𝐕𝑇𝑌𝑠) − ∇ ∙ (𝜌𝐷𝑠∇𝑌𝑠)

= (𝑆nuc
𝑌 + 𝑆cond

𝑌 ) + 𝑆sg
𝑌 + 𝑆O2

𝑌 + 𝑆OH
𝑌  

(7-20) 

𝜕

𝜕𝑡
(𝜌𝑁𝑠) + ∇ ∙ (𝜌𝐔𝑁𝑠) + ∇ ∙ (𝜌𝐕𝑇𝑁𝑠) − ∇ ∙ (𝜌𝐷𝑠∇𝑁𝑠) =

1

𝑁𝐴
(𝑆nuc
𝑁 + 𝑆coag

𝑁 ) (7-21) 

where soot dynamics including nucleation (nuc), condensation (cond), surface growth (sg), O2 

and OH oxidation as well as coagulation (coag) are treated as sources terms in the present study, 

while breakage and fragmentation are not considered [150]. 
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7.2.2.1 Soot morphology 

Based on the soot mass fraction, SVF could be calculated as [136]: 

 𝑓𝑣 =
𝑀

𝜌soot
 (7-22) 

where soot is the soot density, which is 1850 kg/m3 [233,234]. The particle diameter and 

particle surface area per volume are then determined as [130]: 

𝑑𝑝 = (
6𝑀

𝜋𝜌soot𝑁
)
1/3

 (7-23) 

𝐴𝑆 = (
6𝑀

𝜌soot
)
2/3

(𝜋𝑁)1/3 (7-24) 

The mass of an aggregate can be calculated via soot mass and number densities as [130]: 

 𝑚agg =
𝑀

𝑁
 (7-25) 

Primary particle number in an aggregate could be calculated by [205]: 

 𝑛𝑝 =
𝑚agg

𝑚pri
 (7-26) 

where mpri is the mass of primary particles. Primary particles are formed from two PAH dimer 

collision, which means that the primary particle mass equals the sum of these two PAH dimers. 

The mobility diameter dm and gyration diameter dg is then expressed as [235,236]: 

𝑑𝑚 = 𝑑𝑝𝑛𝑝
0.45 (7-27) 

𝑑𝑔 =

{
 
 

 
 

𝑑𝑚

𝑛𝑝
−0.2 + 0.4

, 𝑖𝑓 𝑛𝑝 > 1.8

𝑑𝑚

√5/3
, 𝑖𝑓 𝑛𝑝 ≤ 1.8

 (7-28) 

7.2.2.2 Thermophoresis 

The thermophoretic velocity, VT for soot is calculated from the gas kinetic theory as 

[49,237]: 

 𝐕𝑇 = −
3

4 (1 +
𝜋
8 𝛼𝑚)

𝜇

𝜌

∇𝑇

𝑇
 (7-29) 



Chapter 7    Dimer-based Soot Model for Soot Aerosol Dynamics in Laminar Combustion Flow 

159 

 

where the accommodation factor, am is equal to unity [125].  

7.2.2.3 Diffusion 

The diffusion coefficient of soot, Ds is expressed as [202,238]: 

 𝐷𝑠 =
𝑘𝐵𝑇

3𝜋𝜇𝑑𝑚
𝐶𝑠 (7-30) 

where kB represents Boltzmann constant; the Cunningham slip correction factor of soot, Cs is 

expressed as [239,240]: 

 𝐶𝑠 = 1 + 𝐾𝑛 [1.257 + 0.4 exp (−
1.1

𝐾𝑛
)] (7-31) 

where the Knudsen number, Kn is calculated as [202]: 

 𝐾𝑛 =
2𝜆𝑙
𝑑𝑚

 (7-32) 

where dm is the mobility diameter of soot, and l represents gas mean free path defined as mean 

air free path, which is calculated as [241]: 

 𝜆𝑙 =
𝜇

𝑝
√
𝜋𝑅𝑢𝑇

2𝑊
=
𝜇

𝜌
√

𝜋𝑊

2𝑘𝐵𝑁𝐴𝑇
 (7-33) 

where W represents mixture molecular weight. 

7.2.2.4 Dimerization 

Nucleation or inception is a process in which soot particles with the smallest size are 

formed. Polycyclic aromatic hydrocarbon (PAH) molecule dimerization is regarded as the link 

from gas phase to soot. Collision frequency of PAH molecules are calculated as [147,148]: 

 𝛽𝑖𝑗 = √
𝜋𝑘𝐵𝑇

2𝑚𝑖𝑗
(𝑑𝑖 + 𝑑𝑗)

2
 (7-34) 

where di is collision diameter of PAH molecule i; mij is reduced dimer mass based on the mass 

of PAH molecules i and j, which is calculated as [143,242]: 

 𝑚𝑖𝑗 =
𝑚𝑖𝑚𝑗

𝑚𝑖 +𝑚𝑗
 (7-35) 
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Therefore, the dimerization rate of PAH molecules i and j is then determined from the 

collision rate of these two molecules as [144,147,148]: 

 𝜔𝑖𝑗 = 𝛾𝑖𝑗𝛽𝑖𝑗[PAH𝑖][PAH𝑗]𝑁𝐴
2 (7-36) 

where γij is the sticking coefficient between PAH species i and j, which is calculated as [143]: 

 𝛾𝑖𝑗 = √𝛾𝑖𝛾𝑗 (7-37) 

It is assumed that the sticking coefficient of a PAH species scales with its mass to the 

fourth power, for example, the sticking coefficients of phenanthrene (A3) and pyrene (A4) are 

0.015 and 0.025, respectively [143,147,148], and the combination of these two species is able 

to directly generate stable soot nuclei [144,149]. [PAHi] and [PAHj] are the molar 

concentrations of PAH species i and j, respectively. The diameter of different PAH molecules 

can be calculated based on the density of PAH species, which could be estimated by [242-244]: 

 𝜌PAH =
1

0.260884𝑙2𝑠

𝑊C
C
H +𝑊H

C
H + 1

 (7-38) 

where s and l are interlayer spacing and graphite length unit cell of basal plane, respectively; 

wH and wC are hydrogen and carbon atom molecular weights, respectively; and C/H represents 

the ratio of carbon and hydrogen numbers in a PAH species [245]. 

The formation of dimers is modelled via heterogeneous collisions of PAH molecules 

based on detailed chemistry, so the dimer production rate due to the heterogeneous collision of 

PAH species is calculated as [144]: 

 𝜔dimer,pro =
1

2
∑ ∑ 𝜔𝑖𝑗

𝑛PAH

𝑗=1

𝑛PAH

𝑖=1

 (7-39) 

where nPAH represents total number of PAH species used for dimer formation. It should be 

noted that rather than calculating every possible dimer, only the total production rate of dimers 

would be evaluated [148]. The mass of each PAH species used for dimer formation can be 

determined based on a weighted average of total PAH masses involved in the dimerization 

process as [144]: 

 𝑚PAH =
∑ ∑ (𝑚𝑖 +𝑚𝑗)𝜔𝑖𝑗

𝑛PAH
𝑗=1

𝑛PAH
𝑖=1

∑ ∑ 𝜔𝑖𝑗
𝑛PAH
𝑗=1

𝑛PAH
𝑖=1

 (7-40) 
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It is considered that the dimer number density is kept in a balance between the 

dimerization rate and consumption rate because of soot inception and growth of condensation, 

resulting in the realization of a steady state of the dimer number density due to the frequent 

collision with soot particles and other dimers. The dimer consumption rate is then determined 

as [144]: 

 𝜔dimer,con = 𝛽𝑁𝑁dimer
2 + 𝛽𝐶𝑁dimer (7-41) 

where Ndimer is the dimer number density; N and C are the nucleation and condensation 

collision rate with van der Walls enhancement factor (i.e., EF=2.2), respectively. 

7.2.2.5 Nucleation and condensation 

Soot is nucleated by the collision of PAH dimers and grows via the condensation of these 

dimers in the present study. As the rate of dimer production equals that of dimer consumption 

because of nucleation and condensation, the mass increase rate of soot equals the net mass 

production rate of dimers while the soot number increase rate is the dimer collision rate. 

Therefore, source terms of transport equations of soot number and mass densities could be 

calculated: 

𝑆nuc
𝑌 + 𝑆cond

𝑌 =
1

2
∑ ∑ (𝑚𝑖 +𝑚𝑗)𝜔𝑖𝑗

𝑛PAH

𝑗=1

𝑛PAH

𝑖=1

 (7-42) 

𝑆nuc
𝑁 =

1

2
𝛽𝑁𝑁dimer

2  (7-43) 

7.2.2.6 Coagulation 

The coagulation source term is expressed as below [130]: 

 𝑆coag
𝑁 = −𝐸𝐹 (

24𝑘𝐵𝑇

𝜌soot
)
1/2

(
6𝑀

𝜋𝜌soot
)
1/6

𝑁11/6 (7-44) 

7.2.2.7 Surface growth and oxidation 

These dynamic events are described by HACA mechanism [59], which contains six 

reactions including two reversible reactions as listed in Table 7.1 with individual reaction rate 

constants (i.e., k). OH oxidation (i.e., S6) is modelled via collision theory of free molecular 

regime, in which collision efficiency γOH is 0.13. Other surface reactions (i.e., S1-S5) are 
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regarded to take place on the soot surface activated sites, which is dehydrogenated (Csoot∙) or 

saturated (Csoot−H). The molar concentration of dehydrogenated sites [Csoot∙] on particle surface 

could be computed by [202]: 

 [Csoot ∙] =
𝐴𝑠
𝑁𝐴
𝜒Csoot∙ (7-45) 

where As represents primary particle surface area; χCsoot∙
 represents dehydrogenated site number 

per unit surface area, which is calculated by [246]: 

 𝜒Csoot∙ =
𝑘1[H] + 𝑘2[OH]

𝑘−1[H2] + 𝑘−2[H2O] + 𝑘3[H] + 𝑘4[C2H2] + 𝑘5[O2]
𝜒CSoot−H (7-46) 

where saturated site number of unit surface area, χCsoot−H is 2.3×1019 m-2. Surface activated site 

fraction for reactions, α is defined as [59]:  

 𝛼 = tanh (
𝑎

log 𝜇1
+ 𝑏) (7-47) 

where a and b are parameters associated with temperature, which is given by [59]: 

 𝑎 = 12.65 − 0.00563𝑇 (7-48) 

 𝑏 = −1.38 + 0.00068𝑇 (7-49) 

μ1 is calculated by [247]: 

 𝜇1 =
𝜌𝑠𝑜𝑜𝑡𝜋𝑑𝑝

3

6𝑊C
𝑁𝐴 (7-50) 

where WC is carbon atom molecular weight. The surface growth (sg) and O2 oxidation reaction 

rates are then calculated as [246]: 

 𝜔sg = 𝛼𝑘4[C2H2][Csoot ∙] (7-51) 

 𝜔O2 = 𝛼𝑘5[O2][Csoot ∙] (7-52) 

The surface oxidation reaction rate originating from OH is calculated based on the 

collision theory, which is given as [202]: 

 𝜔OH = 𝑘6[OH]
𝑁

𝑁𝐴
 (7-53) 

Thus, source terms of surface growth and O2 and OH oxidation are then expressed as 
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follows: 

 𝑆sg
𝑌 = 2𝑊C𝜔sg (7-54) 

 𝑆O2
𝑌 = −𝑊C𝜔O2 (7-55) 

 𝑆OH
𝑌 = −𝑊C𝜔OH (7-56) 

 

Table 7.1 Soot surface growth and oxidation reactions [59,248], k=ATnexp(−E/RuT). 

No. Reaction A (cm3mol-1s-1) n E (kcal/mol) 

S1 Csoot − H + H ↔ Csoot ∙ +H2 4.2×1013 0.0 13.0 

  3.9×1012 0.0 9.32 

S2 Csoot − H + OH ↔ Csoot ∙ +H2O 1.0×1010 0.734 1.43 

  3.68×108 1.139 17.1 

S3 Csoot ∙ +H → Csoot − H 2.0×1013 0.0 0.0 

S4 Csoot ∙ +C2H2 → Csoot − H+ H 8.0×107 1.56 3.8 

S5 Csoot ∙ +O2 → 2CO + products 2.2×1012 0.0 7.5 

S6 Csoot − H + OH → CO + products γOH = 0.13   

 

7.3 Results and Discussion 

Governing equations including unsteady, convection, diffusion and source terms are 

solved based on the finite volume method. The pressure implicit with splitting of operator 

(PISO) algorithm [227] is adopted to achieve the pressure-velocity coupling. Different 

numerical schemes for different physically meaningful terms are readily available in 

OpenFOAM [249]. In the present study, unsteady terms are discretized by a first-order time-

stepping while a second-order central differencing scheme is adopted to discretize the 

convection and diffusion terms. The chemical reaction mechanism used is the famous ABF 

mechanism [59] involving 544 reactions and 101 species, and an Euler implicit solver is used 

for chemistry. The maximum Courant number is set to be 0.2 for constraining the time step of 

integration. Transport properties are calculated by the mixture-averaged transport model, and 



Chapter 7    Dimer-based Soot Model for Soot Aerosol Dynamics in Laminar Combustion Flow 

164 

 

the dimer-based soot model coupling with the combustion model is newly developed. 

In the present study, the counterflow diffusion flame (CDF) configuration in Wang and 

Chung [250] is employed to validate the new dimer-based soot model. Two vertical nozzles 

with 10 mm inner diameters are opposed positioned from 8 mm, from which oxidizer and fuel 

are injected, respectively. The fuel is pure ethylene (XF=1.0) while oxidizer is composed of 

nitrogen and oxygen. In the oxidizer, the oxygen mole fraction (XO) ranges from 0.20 to 0.30, 

leading to different mixing processes of fuel and oxidizer, which is consistent with the 

boundary conditions provided in the related experiments. In the reference experiments, the 

lower sooting limit is the oxygen level of almost 0.20 for ethylene, which is effective for flame 

thermochemical structure validation. When the oxygen level is higher than the sooting limit 

(0.20), fuels have higher sooting tendencies, which can be used to validate the numerical 

framework developed for modelling soot formation and evolution in this study. The initial 

pressure is 1bar with temperature of 298K, respectively. The velocities at the nozzle exits are 

adjusted to manipulate the strain rate, which is normally employed to characterize the flow and 

flame defined as [251]: 

 𝐾 =
2𝑈O
𝐿
(1 +

𝑈F
𝑈O
√
𝜌F
𝜌O
) (7-57) 

where L represents the distance of two nozzle exits; U and ρ are axial velocity and density; 

subscripts “O” and “F” represents oxidizer and fuel. 

7.3.1 Validation of grids and gas chemistry 

As a necessary step, numerical simulation of a typical ethylene (C2H4) CDF should be 

conducted to verify the correctness of the developed program and validate the grid 

independence. The C2H4 CDF with XO = 0.20 experimentally investigated by Jiang et al. [252] 

is considered, and oxidizer and fuel inlet velocities are 20cm/s. The grid independence is firstly 

validated by different grid resolutions in an axisymmetric cylindrical coordinate. The grid size 

along the radial direction (i.e., r) is uniformly 100 μm, while the grid size along the axial 

direction (i.e., x) is set to be uniformly 100 μm, 50 μm, 25 μm and 12.5 μm. Figure 7.1 presents 

the axial velocity profiles of the centerline at different grid sizes, which remain unchanged 

when the grid size is less than 50 μm, meaning that the grid size has no significant effect on 

the numerical results, which demonstrates that the grid resolution is high enough to obtain 
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convergent results. 

 

Figure 7.1 Comparison of axial velocities at different grid sizes along the flame centerline with 

XF = 1.0 and XO = 0.20. 

 

It should be noted that the aerodynamic conditions in this case are almost the lower sooting 

limit [250,253], which would be effective for flame thermochemical structure validation. 

Figure 7.2 presents the CFD predictions of axial profiles of major species mole fractions and 

temperature compared with experimental dataset provided in Jiang et al. [252]. Numerical 

results show that the simulated magnitude and position of the temperature peak at the flame 

centerline are almost the same as the experimental results, which demonstrates the capacity of 

correctly capturing the temperature peak in terms of both position and magnitude. A consistent 

tendency of temperature profiles along the flame centerline between CFD predictions and 

experimental measurements is also shown. Predicted axial profiles of mole fractions of several 

species are also presented in Figure 7.2 together with experimental data of Jiang et al. [252]. 

Mole fraction profiles of the major species (i.e., C2H4, O2, CO, H2 and CO2) along the flame 

centerline agree with experimental results very well, and the axial locations of the 

concentration peak of intermediate species (i.e., C2H2, C4H4 and A1C2H3) are well captured by 

the present simulation and in the same magnitude order as the experimental counterpart. More 

importantly, predictions on A1 and A2 concentrations are quite quantitatively satisfactory 
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especially in the high temperature region, which are important for soot modelling as aromatic 

species are regarded as the origination of soot, therefore warranting the application in soot 

modelling [150].  

 

Figure 7.2 Comparisons between computed and experimental temperatures and species mole 

fractions along the flame centerline with XF = 1.0 and XO = 0.20. 

 

7.3.2 Effect of oxygen mole fraction 

It is reported that fuels generally have higher sooting tendencies [250,253] with oxygen 

mole fraction (i.e., XO) of the oxidizer increasing for a CDF, especially when XO is large than 

sooting limit (almost 0.2 for ethylene). The reason is that the variation of XO leads to different 

flame temperatures while soot formation is sensitive to the flame temperature. The newly 

developed dimer-based soot model is validated at different XO (0.25, 0.27 and 0.30) with both 

oxidizer and fuel inlet velocities of 20 cm/s in the present study, and the underlying 

mechanisms are discussed based on soot surface growth and oxidation and dimer production 

for soot inception and condensation. 

Figure 7.3 presents effects of different XO on SVF profiles along the flame centerline from 

the new dimer-based soot model in comparison with experimental dataset provided by Xu et 

al. [254]. As soot only exists at a specific region (i.e., 2 mm < z < 5 mm), only this region is 

presented for clear comparisons. Results show that the simulated SVF profiles along the flame 
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centerline follow well with the experimental data at different XO, especially both the magnitude 

and position of the SVF peak are well captured, which indicates that the new dimer-based soot 

mode is capable of correctly modelling soot formation and evolution in CDF. With axial 

distance (i.e., z) increasing, the SVF at different XO increases firstly and then decreases sharply. 

It is worth noting that because soot could be generated on flame fuel-rich part, SVF profiles at 

different XO are highly skewed towards the fuel stream, which are also well resolved by the 

numerical simulations. With the increase of XO, this skewness to the fuel stream side becomes 

more markedly. Simultaneously, the SVF gradient become larger with the increase of XO, and 

the shape of the SVF profiles becomes more asymmetrical. In addition, both flame temperature 

and mole fraction of C2H2 increase with XO increasing as presented in Figure 7.4, resulting in 

the increase of surface growth and soot formation. This is consistent with previous research 

[253-255]. 

To explain these phenomena from the perspective of soot chemical kinetics, the changes 

in dimer number density as well as phenanthrene (A3) and pyrene (A4) mole fractions along 

the flame centerline at varying XO are provided as shown in Figure 7.5, as dimers originating 

from A3 and A4 are responsible for soot formation in the present study. Results show that as 

XO increases from 0.25 to 0.30, the maximum value of the dimer number density increases and 

its position moves towards the fuel stream gradually as shown in Figure 7.5(a). This reason is 

that the maximum concentrations of A3 and A4 also increase and the corresponding locations 

move towards the fuel stream with XO increasing as presented in Figure 7.5(b). It should be 

noted that the profile shapes of A3, A4 and dimer concentrations are nearly symmetrical at 

different XO, but the resulting SVF profiles as shown in Figure 7.3 are completely not 

symmetrical, which is originating from convection [254]. Specifically, soot particles generated 

in the oxidizing region are always transported away towards the fuel stream, leading to the 

skewness of the SVF profiles as shown in Figure 7.3. 

Soot is assumed to be formed due to dimer collision and grows via dimer condensation, 

while a dimer is the heterogeneous collision result of PAH species (i.e., A3 and A4) in the 

present study. It is obvious that higher concentrations of A3 and A4 lead to higher dimer 

production rate as presented in Figure 7.6(a). HACA surface growth rates at different XO would 

be presented in Figure 7.6(b). With XO increasing, the HACA surface growth rate increases 

because of the increasing flame temperature and C2H2 as shown in Figure 7.4, which 

demonstrates that increasing XO greatly enhances HACA surface growth rate as well as dimer 
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production rate. The oxidation rate by O2 increases but the OH oxidation rate decreases with 

XO increasing as presented in Figure 7.6(c) and 7.6(d), but influence of OH oxidation rate is 

very small in comparison with O2 at varying XO. Compared with HACA surface growth rate, 

the oxidation rates due to O2 and OH are much smaller at different XO, which implies that 

surface growth always plays a main role in HACA mechanisms for soot evolution. As a result, 

the collective effects of higher dimer production rate and dominant HACA surface growth rate 

result in larger mass growth rate of soot, therefore leading to higher SVF in the flame as shown 

in Figure 7.3. The soot number change rates due to nucleation and coagulation along the flame 

centerline are presented in Figure 7.7. As soot particles are nucleated via the collision of dimers, 

higher dimer number density leads to more frequently collision of dimers to generate new soot 

particles. As a result, the soot number nucleation rate increases to its peak and then drops, 

which shows a consistent tendency with dimer number density in Figure 7.5(a). The same 

tendency is also shown at different XO, and the peak number nucleation rate increases with the 

increase of XO. It should be noted that the soot number change rate due to coagulation is 

associated with the soot number density, which means that higher soot number density as 

shown in Figure 7.8(a) leads to higher coagulation frequency and higher coagulation rate. In 

addition, the number nucleation and coagulation rates increase with XO increasing. It is of great 

interest to observe that with the increase of axial distance along the flame centerline, the soot 

number density increases quickly, then increase slower to its peak magnitude and then 

decreases sharply as shown in Figure 7.8(a). The reason is that coagulation starts to take effect 

at around z = 2.7 mm as presented in Figure 7.7(b), resulting in the slower increase in soot 

number density. Soot morphology is characterized by primary particles, mobility diameter and 

gyration diameter, which are shown in Figures 7.8(b) to 7.8(d), respectively. Simulation results 

present that the computed primary particle number in a soot aggregate, mobility diameter and 

gyration diameter increase to the maximum value and then drop along the centreline. With XO 

increasing, peak primary particle number in a soot aggregate, mobility diameter and gyration 

diameter increase, and their peak positions are consistent with the SVF peak as presented in 

Figure 7.3. 
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Figure 7.3 Comparisons between computed and experimental soot volume fractions along the 

flame centerline at different XO (XF = 1.0). 

 

 

Figure 7.4 Temperature and C2H2 mole fraction profiles along the flame centerline at different 

XO (XF = 1.0). 
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Figure 7.5 Dimer number density and mole fraction profiles of A3 and A4 along the flame 

centerline at different XO (XF = 1.0). 

 

 

Figure 7.6 Dimer production rate, HACA surface growth rate, O2 oxidation rate and OH 

oxidation rate along the flame centerline at different XO (XF = 1.0). 
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Figure 7.7 Numerical soot number change rate due to nucleation and coagulation along the 

flame centerline at different XO (XF = 1.0). 

 

 

Figure 7.8 Numerical soot number density, number of primary particles in a soot aggregate, 

mobility diameter and gyration diameter along the flame centerline at different XO (XF = 1.0). 
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7.3.3 Effect of strain rate 

The aerodynamic strain rate is an important factor in affecting soot formation, which could 

be determined by changing the oxidizer and fuel inlet velocities. The effect of adjusting strain 

rates with a wide range from 99 s-1 to 173 s-1 on SVF is numerically investigated by the new 

dimer-based soot model at XF = 1.0 and XO = 0.25. In this regard, simulations are conducted at 

varying oxidizer and fuel inlet velocities, whose experimental measurements are available in 

Zhou et al. [256]. 

 

 

Figure 7.9 Computed soot volume fraction profiles along the flame centerline at different strain 

rates (XF = 1.0 and XO = 0.25). 

 

The change of SVF profiles along the flame centerline with strain rates obtained from the 

dimer-based soot model is presented in Figure 7.9. Numerical results show that the SVF profile 

is more likely to skew towards the fuel stream with the reduction in strain rate, and the 

increasing strain rate leads to a gradually decrease of SVF due to the reducing residence time. 

The decreasing sooting tendency with strain rate increasing essentially stems from the 

evolution of dimers as well as A3 and A4. Specifically, with strain rate increasing, the 

concentrations of A3 and A4 decrease significantly, resulting in the reduction of dimer number 

density as shown in Figure 7.10. In addition, the resulting dimer production and HACA surface 
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growth rates gradually decreases, while peak dimer production rate location gradually skews 

towards the oxidizer stream, leading to the skewness of the location of the peak dimer number 

density towards the oxidizer stream. Therefore, the resulting location of the peak SVF finally 

skews towards the oxidizer stream with the strain rate increasing. It should be noted that the 

SVF profiles in CDF show a unimodal function along the flame centerline, which makes it 

popular to use the maximum SVF in CDF for sooting comparisons. The computed peak SVF 

at varying strain rates are quantitatively compared with experimental dataset [256] as presented 

in Figure 7.11, and the peak SVF decreases monotonically with the strain rate increasing. 

Numerical results agree with experimental counterparts very well, among which slight 

discrepancies are shown at different strain rates from 99 s-1 to 173 s-1. Their good agreements 

demonstrate that the dimer-based soot model is capable of reasonably predicting soot formation 

and evolution processes at a wide range of strain rates. 

 

Figure 7.10 Dimer number density, mole fraction profiles of A3 and A4, dimer production rate 

and HACA surface growth rate along the flame centerline for varying strain rates (XF = 1.0 and 

XO = 0.25). 
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Figure 7.11 Comparisons between computed and experimental peak soot volume fractions at 

different strain rates (XF = 1.0, XO = 0.25). 

 

7.4 Summary 

In the present study, a new dimer-based soot model for laminar counterflow diffusion 

flames is proposed and developed to model soot formation. Transport equations of soot number 

and mass densities are formulated considering dimer formation and condensation, HACA 

surface growth and oxidation and coagulation. Soot would be formed because of dimer 

collision and grows via dimer condensation, while a dimer is the homogeneous and 

heterogeneous collision results of polycyclic aromatic hydrocarbon (PAH) species made up of 

50 or more carbon atoms. In a steady state, the generation rate and consumption rate of dimers 

are kept in a balance. The masses of PAHs used for dimer formation are calculated based on a 

weighted average of total PAH masses and their densities are estimated to be associated with 

their chemical compositions. The dimer-based soot model is validated at different strain rates 

as well as varied oxygen mole fractions (XO) of the oxidizer based on the OpenFOAM solver, 

which integrates the mixture-averaged transport model for reacting flows. Numerical results 

show that the simulated SVF profiles agree well with experimental counterparts, in which the 

magnitudes of the SVF peak are well captured. With the increase of XO, HACA surface growth 

and dimer production (soot nucleation and surface growth via dimer condensation) are 
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significantly enhanced, leading to an increase in the SVF. Compared with HACA surface 

growth, the impact of varying oxygen mole fractions on oxidation rates of O2 and OH is slight, 

which implies that surface growth is a dominant factor in determining SVF. As the strain rate 

increases, the SVF gradually decreases as dimer production and HACA surface growth rates 

significantly decrease. With the increase in XO or decrease in strain rate, the skewness of the 

SVF profile towards the fuel stream become more significant.  
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Chapter 8 Development of One-equation Turbulence Model 

 

8.1 Introduction  

Governing equations for turbulent flows are not closed by using Reynolds averaging 

due to the introduction of turbulent viscosity, which should be modelled. The present 

study is to derive the transport equations in the complete form and retain the third-order 

velocity gradient term without simply assuming equal coefficients of the diffusion terms 

in the process of transformation of the parent two-equation turbulence model to one-

equation turbulence model. The newly proposed and developed one-equation turbulence 

model combines the best characteristics of the two-equation standard k-ε (SKE) [185] and 

Wilcox’s k-ω (WKO) [257] turbulence models. The accuracy of the new one-equation 

turbulence model is compared with the results of the experimental dataset, the commonly 

used one- and two-equation turbulence models and the high-accuracy NASA codes (i.e., 

CFL3D and FUN3D) as well as the direct numerical simulation (DNS) for benchmark 

flow configurations. It should be noted that turbulent Schmidt and Prandtl numbers can 

be introduced for turbulent transport of scalar quantities based on the turbulent viscosity 

solved by the developed one-equation turbulence model. 

8.2 Methodology 

The development of a new one-equation turbulence model [54] based on two-equation 

SKE [185] and WKO [257] turbulence models is presented. The derived equations are written 

in boundary-layer coordinates for simplicity. x and y represent the streamwise coordinate and 

normal to the boundary layer, respectively, and t is time. 

8.2.1 k-ε based one-equation turbulence model 

The SKE two-equation in the boundary layer can be written as [54]:  

Dk

Dt
 = G − ε +

∂

∂y
[(ν + 

νt̃

σk

)
∂k

∂y
] (8-1) 

Dε

Dt
 = Cε1G

ε

k
 − Cε2

ε2

k
 + 

∂

∂y
[(ν + 

νt̃

σε

)
∂ε

∂y
] (8-2) 
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𝐺 =
𝜏𝑖𝑗

𝜌

𝜕𝑢𝑖
𝜕𝑦

 (8-3) 

𝜏𝑖𝑗 = 𝜌𝜈𝑡 (2𝑆𝑖𝑗 −
2

3

𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗) −
2

3
𝜌𝑘𝛿𝑖𝑗 (8-4) 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑦

+
𝜕𝑢𝑗

𝜕𝑥
) (8-5) 

νt̃ = Cμ

k
2

ε
 (8-6) 

where G is the production term and δij is the Kronecker delta; Sij and τij are shear stress and 

strain rate tensors; ν and νt̃ represent kinematic and eddy viscosities; k and ε represent turbulent 

kinetic energy and its dissipation rate. 

Using the time derivatives of k and ε to express the time derivative of νt̃, a new transport 

equation for the turbulent viscosity is obtained as [54]: 

Dνt̃

Dt
 = Cμ (2

k

ε

Dk

Dt
 − 

k
2

ε2

Dε

Dt
) (8-7) 

The relationship between k and ε is confirmed by many experimental boundary layer data 

[96,101,258], which is expressed as: 

|−u'v'̅̅ ̅̅ | =  νt̃ |
∂u

∂y
|=√Cμk (8-8) 

where |−u'v'̅̅ ̅̅ | is the turbulent shear stress, and Cμ is a constant. Further, the invariant value, S, 

is widely used to replace the absolute value of streamwise velocity gradient along the normal 

direction, which is defined by [96]: 

S =√ 2SijSij (8-9) 

Thus, a general form of the one-equation turbulence model transformed from SKE is 

obtained by straightforward substitution as [54]: 

Dνt̃

Dt
 = (Cε2 − Cε1)Cμ

1
2νt̃S + 6 (

1

σk

 − 
1

σε

)
νt̃

S

∂S

∂xj

∂νt̃

∂xj

 + 2 (
1

σk

 − 
1

σε

)
νt̃

2

S

∂

∂xj

(
∂S

∂xj

) (8-10) 
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−
2

σε

νt̃
2

S
2

∂S

∂xj

∂S

∂xj

 + 
∂

∂xj

{[ν+ (
2

σk

 − 
1

σε

) νt̃]
∂νt̃

∂xj

} 

where Cμ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1.0 and σε = 1.3.  

It is worth noting that the third term on the right-hand side in Equation (8-10) involves the 

third-order velocity gradients, which is always neglected due to simplicity in many studies by 

assuming that the coefficients of the diffusion terms are equal [96]. It is reported that the third-

order velocity gradients are essential to the combustion modelling due to their appearance in 

the thickened flame model, which are widely used [95,259]. Thus, a one-equation turbulence 

model preserving the completeness of the SKE is derived, and the transport equation for νt̃ in 

the complete form is solved as [54]: 

Dνt̃

Dt
=  β

ε
νt̃S+γ

ε

νt̃

S

∂S

∂xj

∂νt̃

∂xj

 + C1

νt̃
2

S

∂

∂xj

(
∂S

∂xj

) − C2

νt̃
2

S
2

∂S

∂xj

∂S

∂xj

 + 
∂

∂xj

[(ν + αενt̃)
∂νt̃

∂xj

] (8-11) 

where the values of the coefficients are recalibrated and given by αε = 1.0, βε = 0.144, γε = 

0.2386, C1 = 0.0795 and C2 = 1.5385. 

The transport equation for νt̃ based on SKE is still in the high-Reynolds-number form 

which does not have any damping function given. 

8.2.2 k-ω based one-equation turbulence model 

The WKO two-equation in the boundary layer can be written as [54]: 

Dk

Dt
 = G − β*

kω + 
∂

∂y
[(ν + αkνt̃)

∂k

∂y
] (8-12) 

Dω

Dt
= γ

ω

k
G − βω2 + 

∂

∂y
[(ν + αωνt̃)

∂ω

∂y
] (8-13) 

where the eddy viscosity, νt̃= k ω⁄ . 

The substantial derivative of the eddy viscosity is expressed as [54]: 

Dνt̃ 

Dt
= 

1

ω

Dk

Dt
 − 

k

 ω2

Dω

Dt
 (8-14) 

By a similar procedure with the above derivations (Equations (8-8) to (8-9)), the one-

equation turbulence model transformed from WKO in a general form is expressed as [54]: 
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Dνt̃

Dt
 = [(1 − γ)Cμ

1
2  + (β − β*)Cμ

-
1
2] νt̃S + (3αk − αω)

νt̃

S

∂S

∂xj

∂νt̃

∂xj

 + 
∂

∂xj

[(ν + αkνt̃)
∂νt̃

∂xj

] (8-15) 

where Cμ = 0.09, β = 3/40, β*= 0.09, αk = 0.5, αω = 0.0795 and γ = 1.5385. 

However, it is reported that the coefficient of the diffusion term is small, which leads to a 

large velocity gradient near the boundary layer edge [96] and a higher value is suggested [260]. 

The resulting one-equation based on WKO can be written as [54]: 

Dνt̃

Dt
 = β

ω
νt̃S + γω

νt̃

S

∂S

∂xj

∂νt̃

∂xj

 + 
∂

∂xj

[(ν + αωνt̃)
∂νt̃

∂xj

] (8-16) 

where the recalibrated coefficients are αω = 1.2, βω = 0.084 and γ = 1.7. 

8.2.3 Development of a new one-equation turbulence model 

Based on the two transport equations derived in Equations (8-11) and (8-16), Equation (8-

11) is multiplied by (1-F1) and Equation (8-16) is multiplied by F1, a completely new equation 

is then obtained as [54]: 

Dνt̃

Dt
 = β

ν
νt̃S + γν

νt̃

S

∂S

∂xj

∂νt̃

∂xj

 + C1(1−F1)
νt̃

2

L2
 − C2(1−F1)

νt̃
2

Lvk
2

 + 
∂

∂xj

[(ν + αννt̃)
∂νt̃

∂xj

] (8-17) 

where Lvk and L represent von Kármán length scale and length scale, which are similar to the 

terms used in the k-kL equation [95] as:  

1

L2
= 

1

S

∂

∂xj

(
∂S

∂xj

) ,
1

Lvk
2

= 
1

S
2

∂S

∂xj

∂S

∂xj

 (8-18) 

The coefficients in the Equation (8-17) are defined as [54]:  

αν = αωF1 + αε(1−F1), βν
 = β

ω
F1 + β

ε
(1−F1), γν

 = γ
ω

F1 + γ
ε
(1−F1) (8-19) 

where F1 is the blending function given by [54]:  

F1= tanh  (arg1
4) (8-20) 

The newly proposed and developed one-equation turbulence model [54] behaves like the 

SKE when F1→0, while it functions as the WKO when F1→1, which combines the best 

features of both two-equation turbulence models. More importantly, the blending function has 

the similar form with that of the SST k-ω turbulence model [261], so the new one-equation 

turbulence model can behave like the SST k-ω turbulence model [261]. 
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arg1= max(
Cμ

1/4νt̃
1/2

 

β
*
S

1/2
d

,
500Cμ

1/2ν

d
2
S

) (8-21) 

where d represents distance to nearest wall; t represents turbulent eddy viscosity, which could 

be expressed as [54]:  

νt = fμνt̃ (8-22) 

where the wall damping function, fμ, is given by [54]:  

f
μ
=

χ3

χ3+Cw
3

,χ=
νt̃

ν
,Cw=9.1 (8-23) 

To prevent singularity when S goes to zero, it is necessary to bound S in the third term 

with a very small value while the fourth term of the right-hand side of Equation (8-17) can be 

given by [54]:  

νt̃
2

Lvk
2

= C3EBB tanh (
Eνt̃

C3EBB

) (8-24) 

where 

Eνt̃
 =

νt̃
2

S
2

∂S

∂xj

∂S

∂xj

, EBB = 
∂νt̃

∂xj

∂νt̃

∂xj

,C3= 7.0 (8-25) 

The value of νt̃ at smooth and viscous solid walls is prescribed to be zero while the value 

of νt̃ for the freestream is set to be 3ν to 5ν. 

8.3 Numerical Methods 

The proposed new one-equation turbulence model is developed based on the open-

source CFD toolbox, OpenFOAM [262], and is discretized using the Gaussian integration 

scheme based on the finite-volume method (FVM). The OpenFOAM solver used in the 

present study is the simpleFoam, which utilizes the Semi-Implicit Method for Pressure 

Linked Equations (SIMPLE) algorithm for pressure-velocity coupling. The central 

difference scheme (i.e., Gauss linear) is used for all gradient terms while a second-order 

upwind difference scheme (i.e., Gauss linearUpwind) is used to discretize the convection 

terms in all equations. The central difference interpolation scheme (i.e., linear) is used 

while the Gauss linear corrected is used for the Laplacian term. An explicit non-

orthogonal correction method (i.e., corrected) is used for surface-normal gradients. 



Chapter 8                                                        Development of One-equation Turbulence Model 

181 

 

8.4 Results and Discussion 

Several typical benchmark flow cases are used based on an open source CFD software 

OpenFOAM to evaluate the performance of the newly proposed and developed one-equation 

turbulence model based on the two-equation SKE [185] and WKO turbulence models [257]. 

Meshes in all typical benchmark flow cases are obtained from the website of the Langley 

Research Center Turbulence Modeling Resource (TMR) [263]. Mesh independence study is 

also performed for all cases where the value of the maximum wall y+ is less than 1. Except for 

the third-order velocity gradient term, the one-equation Wray-Agarwal turbulence model (WA) 

[101] and the two-equation SST k-ω turbulence model (SST k-ω) [261] are very similar with 

the newly developed one-equation turbulence model. Thus, the numerical results of the new 

one-equation turbulence model [54] are fully validated and compared with the WA and SST k-

ω turbulence models [101,261], the high-accuracy NASA codes (i.e., CFL3D and FUN3D) 

[263] and the experimental results [264-266]. 

Pressure coefficient, Cp and wall skin friction coefficient, Cf are defined as [267]: 

Cp = 
Pw−Pref

1
2

ρUref
2

 (8-26) 

Cf = 
τw

1
2

ρUref
2

 
(8-27) 

where τw is the skin shear stress on a surface, Pw is the wall static pressure and 
1

2
ρUref

2  is the 

local dynamic pressure. 

8.4.1 Flow over a flat plate at zero pressure gradient 

The classical case for a turbulence modelling testing and validation is the flat plate with 

zero pressure gradient provided by the NASA TMR [263]. The flow configuration is shown in 

Figure 8.1 with the initial boundary conditions [263]. Two meters long of solid wall and one-

third meter of symmetry boundary conditions are prescribed to obtain a uniform inlet flow. A 

far field Riemann boundary condition (BC) is also prescribed. The static pressure at the outlet, 

P is equal to the reference pressure, Pref, while the total pressure at the inlet, Pt is 1.02828Pref. 

The Reynolds number, Rex= ρUref x/μ, based on the distance, x from the leading edge of a flat 

plate where Uref is the uniform inlet velocity, and ρ and μ are the fluid density and dynamic 

viscosity, respectively. The Mach, Ma and Reynolds, Rex numbers at the inlet are 0.2 and 5×106 
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based on x = 1 m. 

The numerical results of the wall skin friction coefficient, Cf is compared with the 

experimental results [264] as well as the selected one-equation WA and two-equation SST k-

ω turbulence models, along the streamwise Rex as shown in Figure 8.2. The results show that 

the one-equation WA turbulence model [101] has the best prediction of Cf at Rex< 1.0×106, but 

overpredicts Cf at the rest of Rex region. However, the values of Cf of the new one-equation 

turbulence model [54] agree well with that of the experimental results [264]. The new one-

equation turbulence model performs much better in predicting Cf along the flat plate than the 

two-equation SST k-ω turbulence model [261]. 

 

Figure 8.1 Configuration of the turbulent flow over a flat plate [54]. 

 

 

Figure 8.2 Wall skin friction coefficients for different Reynolds numbers [54]. 
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8.4.2 Bump-in-channel flow 

The main difference between the turbulent flat plate flow and bump-in-channel flow is 

that the latter involves pressure gradients due to the wall curvature. Figure 8.3 presents the flow 

configuration in terms of the bump in channel and the initial boundary conditions [263]. The 

solid wall including the bump extends from x = 0 to 1.5 m, and the symmetry boundary 

conditions with 25 m long are prescribed to the upstream and downstream of the solid bump 

wall. The Ma and Rel based on the inlet velocity and length l = 1 m are 0.2 and 3×106, 

respectively. The static pressure at the outlet, P is equal to the reference pressure, Pref, while 

the total pressure at the inlet, Pt is 1.02828Pref.  

Figure 8.4 shows the wall skin friction coefficient, Cf along the bump wall when compared 

with those numerical data obtained from CFL3D and FUN3D codes [263]. The SST k-ω 

turbulence model [261] has the best prediction of Cf at x < 0.15 m, but underpredicts the wall 

skin friction coefficient at 0.6 < x < 0.8 m. Although the WA turbulence model [101] predicts 

Cf well at 0.6 < x < 0.8 m, it overpredicts the values at the rest of x region. The new one-

equation turbulence model [54] performs better in predicting Cf than the WA turbulence model 

at x < 0.15 m and has the better prediction of Cf than other turbulence models at x > 0.15 m. 

The pressure coefficients, Cp along the bump wall simulated by all these turbulence models 

have an excellent agreement with the results of CFL3D and FUN3D codes [263] as shown in 

Figure 8.5. 

 

 

Figure 8.3 Bump-in-channel flow configuration. 
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Figure 8.4 Wall skin friction coefficient along the bump wall [54]. 

 

 

Figure 8.5 Pressure coefficient along the bump wall [54]. 
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8.4.3 Backward facing step flow 

The backward facing step flow is used as the benchmark validation, which is widely used 

for evaluating the turbulence models, due to its complicated flow mechanism but it is a simple 

geometric configuration. Figure 8.6 shows the backward facing step geometry and flow initial 

boundary conditions [265]. The step height, H is 12.7 mm, and the height of the inlet channel 

before the step is 8H. The inlet channel is 110H long before the step to ensure a fully developed 

turbulent flow condition in the numerical simulation. The distance between the step and outlet 

is 50H which is far larger than the distance from the flow separation point to the reattachment 

point of the flow. The Ma and ReH based on the inlet velocity and step height are 0.128 and 

3.6×104, respectively. 

Figure 8.7 shows the wall skin friction coefficient, Cf along the step wall when compared 

with experimental data [265]. The new one-equation turbulence model [54] has the better 

prediction of Cf before the step than other turbulence models. When the flow is separated, the 

new one-equation turbulence model and one-equation WA turbulence model [101] predict 

precisely the values of Cf while the two-equation SST k-ω turbulence model [261] substantially 

overpredicts the values of Cf. In the reattachment region, the two-equation SST k-ω turbulence 

model underestimates the values of Cf, and the experimental results best match the numerical 

results of the one-equation WA turbulence model. The numerical results of the new one-

equation turbulence model have an acceptable agreement with the experimental data [265]. But 

it is worth noting that the new one-equation turbulence model provides better prediction of the 

wall skin friction coefficient recovery after the reattachment point, while the WA and the SST 

k-ω turbulence models slowly recover the wall skin friction coefficients after the flow 

separation. The main reason is that the effect of the third-order velocity gradients can increase 

the turbulent diffusion which is also found in the research study of Elkhoury [95]. The pressure 

coefficient, Cp along the step wall is shown in Figure 8.8. Compared with the experimental data 

[265], there are the overpredictions of Cp by all these turbulence models at x/H < 3, while they 

have a good agreement with the experimental results at x/H > 3. Of all these turbulence models, 

the new one-equation turbulence model [54] performs comparably with    the two-equation 

SST k-ω turbulence model [261] and has better prediction of Cp than the one-equation WA 

turbulence model [101]. 

The comparison of the velocity profiles at various x/H locations with the experimental 

results [265] is shown in Figure 8.9. The velocity profiles obtained by all these turbulence 
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models are very close and agree well with the experimental data including the new one-

equation turbulence model [54]. It implies that the introduction of the third-order velocity 

derivative term in the new one-equation turbulence model has little effect on the velocity 

profile near the boundary layer, which is also found in the research study of Elkhoury [95]. 

 

 

Figure 8.6 Backward facing step flow configuration. 

 

 

Figure 8.7 Wall skin friction coefficient along the step wall [54]. 
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Figure 8.8 Pressure coefficient along the step wall [54]. 

 

 

(a) x/H= −4 (b) x/H= 1 (c) x/H= 4 (d) x/H= 6 (e) x/H= 10 

Figure 8.9 Velocity profiles of the backward facing step at x/H= −4, 1, 4, 6 and 10 [54]. 
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[268] and initial boundary conditions [266]. The hump chord length, c is 420 mm and the height 

of the inlet channel before the start of the hump is 2.17c. The inlet channel has a length of 15.2c 

before the start of the hump and the distance from the end of the hump to the outlet is 7.15c. 

The Ma and Rec based on the inlet velocity and hump chord are 0.1 and 9.36×105, respectively. 

Pref is the reference pressure, and the static pressure at the outlet, P = 0.99962Pref while the 

total pressure at the inlet, Pt is 1.007Pref.  

Figure 8.11 shows the wall skin friction coefficient, Cf along the hump wall when 

compared with the experimental data [266]. Before the flow separation point, the values of Cf 

of the new one-equation turbulence model [54] along the hump wall agree well with that of the 

experimental results. The new one-equation turbulence model also provides better prediction 

of Cf than the one-equation WA turbulence model [101] in the flow separation region. 

Compared with the experimental data, the new one-equation turbulence model has a closer 

prediction of the reattachment point and the wall skin friction coefficient than that of other 

turbulence models after the reattachment point. The new one-equation turbulence model 

provides better prediction of the wall skin friction coefficient recovery after the reattachment 

point as shown in previous test case in Section 8.4.3. Figure 8.12 shows the pressure coefficient, 

Cp along the hump wall. In most regions, the new one-equation turbulence model predicts the 

pressure coefficients along the hump wall better than the WA turbulence model [101] when 

compared with the experimental data [266], and also predicts better in the recovery of Cp after 

the flow reattachment. 

 

Figure 8.10 NASA wall-mounted hump separated flow configuration. 
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Figure 8.11 Wall skin friction coefficient along the hump wall [54]. 

 

 

Figure 8.12 Pressure coefficient along the hump wall [54]. 

 

8.4.5 Channel flow 

Another widely used benchmark for validating turbulence models is the fully developed 

turbulent channel flow. Figure 8.13 presents corresponding configuration with initial boundary 

conditions [269]. The axial length of the channel is Lx = 8πδ, where δ is channel half-width. 
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The bulk and friction Reynolds numbers of this channel flow are 1.25×105 and 5.186×103, 

respectively. 

 

Figure 8.13 Channel flow configuration. 

 

Velocity profiles of this fully developed turbulent channel flow obtained from the new 

one-equation turbulence model [54] and WA turbulence model [101] as depicted in Figure 8.14 

agree excellently with the DNS results [269] when compared with the two equation SST k-ω 

turbulence model [261]. 

 

 

Figure 8.14 Velocity profiles of the channel flow. 
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8.5 Summary 

A new one-equation turbulence model based on the two-equation standard k-ε and Wilcox’s 

k-ω turbulence models is proposed and developed for validating the benchmark flow configurations 

including the flow over a flat plate at zero pressure gradient bump-in-channel flow, backward facing 

step flow, NASA wall-mounted hump separated flow and channel flow. The numerical results of the 

wall skin friction and pressure coefficients of the new one-equation turbulence model are fully validated 

and compared with the results of the experimental dataset, the one- and two-equation turbulence models 

and the high-accuracy NASA codes (i.e., CFL3D and FUN3D) as well as the direct numerical 

simulation (DNS). The new one-equation turbulence model makes better prediction on the turbulent 

flow over a flat plate than one-equation Wray-Agarwal (WA) and two-equation shear stress transport 

(SST) k-ω turbulence models. In addition, the new one-equation turbulence model almost always 

outperforms than the two-equation SST k-ω turbulence model for all benchmark test cases. It has also 

a better performance in simulating bump-in-channel flow and NASA wall-mounted hump separated 

flow than the one-equation WA turbulence model. The main feature of the new one-equation turbulence 

model has the improvement capacity in the prediction of the recovery of pressure and wall skin friction 

coefficients after reattachment point without affecting on the boundary-layer velocity profiles. It 

demonstrates that the present new one-equation turbulence model has a great potential to predict 

turbulent flow separation and reattachment. 
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Chapter 9 Numerical Investigation on Soot Particle Size Distribution in 

Turbulent Combustion Flows 

 

9.1 Introduction 

The objectives of this chapter are: (a) to develop a newly numerical framework coupling 

a finite-rate chemistry model with a soot sectional method based on detailed chemistry and 

differential diffusion; (b) to validate the feasibility and accuracy of the new numerical 

framework in real-time solving chemical species as well as soot in turbulent non-premixed 

flames; and (c) to obtain further insights into soot formation and evolution via the soot PSD. 

Specifically, a soot sectional method is firstly extended to solve soot aggregate and primary 

particle number densities for turbulent flows and is then fully coupled with a finite-rate 

chemistry model based on detailed chemistry, which are implemented into the modified 

OpenFOAM solver [53]. As a result, chemical species and soot can be solved simultaneously 

and accurately with considering differential diffusion as well as mass exchange between soot 

and chemical species. It should be noted that the newly developed CFD framework is not 

limited to the specific Partially Stirred Reactor (PaSR) combustion model, and coupling the 

soot sectional method with other finite-rate chemistry models [270,271] is also achievable. 

Considering the prohibitive computational cost of directly solving chemistry [88,272-274], a 

dynamic load balancing approach together with a reference mapping model [88] is incorporated 

into the numerical framework to deal with the load imbalance in parallel simulations based on 

high-performing computers. The numerical framework is validated by a well-characterized 

turbulent non-sooting bluff body flame for accurate estimation of gas-phase flow field and then 

adopted for simulating soot aerosol dynamics of turbulent sooting bluff body flames. The 

resulting flow, flame and soot characteristics are in comparison with available experimental 

dataset. The simulated soot PSDs at different locations are analyzed and the underlying 

competing mechanism of different dynamic processes is fully explored. It should be noted that 

turbulent bluff body flames involving jet and recirculating flows are commonly observed in 

different practical combustion systems since the generated recirculating flows close to the bluff 

body surface facilitate the effective fuel-oxidizer mixing, flame stabilization and ignition 

processes. 
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9.2 Mathematical Models 

A numerical framework is newly developed in OpenFOAM for modelling soot aerosol 

dynamics in turbulent combustion. Specifically, governing equations in terms of turbulent 

chemically reacting flows could be solved by the equation of state and Reynolds-averaged 

Naver-Stokes method, in which a soot sectional model is formulated and coupled with the 

Partially Stirred Reactor (PaSR) combustion model [275] for simulating soot formation and 

evolution based on detailed chemistry. The optically thin radiation model and molecular 

diffusion of species and soot are also taken into consideration in the computational fluid 

dynamics (CFD) framework, in which a dynamic load balancing approach and a reference 

mapping model are utilized to accelerate the parallel CFD simulations of reacting flows. 

9.2.1 Gas phase model 

Turbulent chemically reacting flows for the gas phase are solved [115,276-279] with 

viscous heating in the enthalpy governing equation neglected for low-speed flows [106,280], 

which are implemented into OpenFOAM based on the standardReactingFoam solver 

developed by Wang et al. [53]. 

𝜕𝜌̅

𝜕𝑡
+
𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖) = 0 (9-1) 

𝜕(𝜌̅𝑢̃𝑖)

𝜕𝑡
+
𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖𝑢̃𝑗) +

𝜕𝑝̅

𝜕𝑥𝑗
=
𝜕

𝜕𝑥𝑖
(𝜏𝑖̅𝑗 − 𝜌̅𝑢𝑖′′𝑢𝑗′′̃) (9-2) 

𝜕(𝜌̅𝑌̃𝑘)

𝜕𝑡
+
𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖𝑌̃𝑘) =

𝜕

𝜕𝑥𝑖
[(𝜌̅𝐷𝑚,𝑘 +

𝜇𝑡
Sc𝑡
)
𝜕𝑌̃𝑘
𝜕𝑥𝑖

] + 𝜔̅𝑘 (9-3) 

𝜕(𝜌̅ℎ̃𝑠)

𝜕𝑡
+
𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖ℎ̃𝑠) −

𝐷𝑝

𝐷𝑡

̅̅ ̅̅

= 𝜔̅𝑇 +
𝜕

𝜕𝑥𝑖
(
𝜆

𝐶𝑝
+
𝜇𝑡
Pr𝑡
)
𝜕ℎ̃𝑠
𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑖
[
𝜆

𝐶𝑝
∑(

𝜌𝐶𝑝𝐷𝑚,𝑘

𝜆
− 1)

𝑁

𝑘=1

ℎ̅𝑠,𝑘
𝜕𝑌̃𝑘
𝜕𝑥𝑖

] + 𝑄𝑟 

(9-4) 

where t, ρ and p represent time, density and pressure; xi and ui are coordinate and velocity in i 

direction, respectively; Dm,k represents the mixture-averaged molecular diffusion coefficient of 

kth species in the mixture [223] which takes differential diffusion into account; Yk is kth species 
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mass fraction; λ and Cp are the thermal conductivity and specific heat capacity at constant 

pressure, which are calculated via the standard gas kinetic theory as implemented by Wang et 

al. [53]; Qr represents radiative heat loss from CH4, H2O, CO and CO2 and as well as soot based 

on optically-thin approximation [231]; hs is the sensible enthalpy and ωT is the heat generation 

rate because of gas-phase species combustion and interaction with soot. The turbulence Prandtl 

(Prt) and Schmidt (Sct) numbers used are 0.7 [115]. The viscous tensor is given by the Newton 

law as [276]: 

 𝜏𝑖̅𝑗 = 𝜇 (
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗

𝜕𝑥𝑖
) −

2

3
𝜇𝛿𝑖𝑗

𝜕𝑢̃𝑘
𝜕𝑥𝑘

 (9-5) 

whereij and μ represent Kronecker symbol and molecular viscosity. Reynolds stress tensor 

could be modeled based on the Boussinesq hypothesis as [115]: 

 𝜌̅𝑢𝑖′′𝑢𝑗′′̃ = −𝜇𝑡 (
𝜕𝑢̃𝑖
𝜕𝑥𝑗

+
𝜕𝑢̃𝑗

𝜕𝑥𝑖
−
2

3
𝛿𝑖𝑗
𝜕𝑢̃𝑘
𝜕𝑥𝑘

) +
2

3
𝜌̅𝑘𝛿𝑖𝑗 (9-6) 

By using turbulence dissipation rate () and turbulence kinetic energy (k), the turbulence 

viscosity, μt is given as [279]: 

 𝜇𝑡 = 𝜌̅𝐶𝜇
𝑘2

𝜀
 (9-7) 

The k- turbulence model used for turbulence closure is formulated as [279]: 

 
𝜕

𝜕𝑡
(𝜌̅𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖𝑘) =

𝜕

𝜕𝑥𝑖
[(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑖
] + 𝐺 − 𝜌̅𝜀 (9-8) 

 
𝜕

𝜕𝑡
(𝜌̅𝜀) +

𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖𝜀) =

𝜕

𝜕𝑥𝑖
[(𝜇 +

𝜇𝑡
𝜎𝜀
)
𝜕𝜀

𝜕𝑥𝑖
] + 𝐶1

𝜀

𝑘
𝐺 − 𝐶2𝜌̅

𝜀2

𝑘
 (9-9) 

where G is the production rate of k, which is defined as [115]: 

 𝐺 = −𝜌̅𝑢𝑖′′𝑢𝑗′′̃
𝜕𝑢̃𝑖
𝜕𝑥𝑗

 (9-10) 

where C = 0.09, C1 = 1.6, C2 = 1.92, k = 1.0,  = 1.3. Dissipation coefficient (C1) should be 

modified from 1.44 to 1.6 [281], because it is reported that the spreading and decaying rates 

for a round jet flow would be overpredicted in the standard k- turbulence model [282]. In 

Equation (9-3), ωk is kth species source term because of gas-phase reaction as well as 

interaction with soot. Successful prediction of gas-phase species concentrations of a turbulent 
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flow requires taking turbulence-chemistry interaction into consideration. The turbulence-

chemistry interaction could be described by the PaSR combustion model [275], in which each 

computational cell would be split into non-reacting and reacting zones. The Perfectly Stirred 

Reactor is used to model the homogeneous reacting zone [275]. Mean reaction rate 𝜔̅𝑘 of kth 

species could be calculated as: 

 𝜔̅𝑘 = 𝜅𝜔𝑘
∗  (9-11) 

where k
* represents kth species formation rate on the basis of mean species concentration in 

the cell based on kinetic mechanism, and  is the reactive volume fraction which is calculated 

as [278]: 

 𝜅 =
𝜏𝑐

𝜏𝑐 + 𝜏mix
 (9-12) 

where c is chemical time scale; mix is the mixing time scale which is expressed as [280,283]: 

 𝜏mix = 𝐶mix√
𝜇eff
𝜌̅𝜀

 (9-13) 

where eff is the effective dynamic viscosity based on turbulent and molecular viscosities, and 

the mixing constant Cmix used is 0.3. 

9.2.2 Soot model 

The soot sectional method is described via fixed pivot approach [284], in which soot 

aggregate mass range would be logarithmically discretized to several sections. Every section 

has a prescribed and fixed representative mass, and every soot aggregate according to its mass 

would be assigned to the corresponding section. It is assumed that soot aggregates within the 

same section are identical and every soot aggregate has the same sized spherical primary 

particles. Taking thermophoresis and diffusion effects of soot into account, transport equations 

of soot aggregate and (i.e., agg) primary particle (i.e., pri) number densities (𝑁̃agg,𝑖 and 𝑁̃pri,𝑖) 

in section i are formulated and extended for turbulence flows. The introduced turbulent scalar 

fluxes are closed by the classical gradient transport assumptions generally used in turbulence 

models [277], in which the turbulence Schmidt number is used to estimate the turbulent 

diffusivity [283]. 
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𝜕

𝜕𝑡
(𝜌̅𝑁̃pri,𝑖) +

𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖𝑁̃pri,𝑖) +

𝜕

𝜕𝑥𝑖
(𝜌̅𝑉̃𝑇,𝑖𝑁̃pri,𝑖)

=
𝜕

𝜕𝑥𝑖
[(𝜌̅𝐷𝑖 +

𝜇𝑡
Sc𝑡
)
𝜕𝑁̃pri,𝑖

𝜕𝑥𝑖
] + 𝜌̅𝑆p̅ri,𝑖 

(9-14) 

 

𝜕

𝜕𝑡
(𝜌̅𝑁̃agg,𝑖) +

𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖𝑁̃agg,𝑖) +

𝜕

𝜕𝑥𝑖
(𝜌̅𝑉̃𝑇,𝑖𝑁̃agg,𝑖)

=
𝜕

𝜕𝑥𝑖
[(𝜌̅𝐷𝑖 +

𝜇𝑡
Sc𝑡
)
𝜕𝑁̃agg,𝑖

𝜕𝑥𝑖
] + 𝜌̅𝑆a̅gg,𝑖 

(9-15) 

where 𝑆p̅ri,𝑖  and 𝑆a̅gg,𝑖  are the sum combining inception, coagulation, polycyclic aromatic 

hydrocarbon (PAH) condensation, H-abstraction-C2H2-addition (HACA) surface growth, O2 

and OH oxidation. Thermophoretic velocity, 𝑉̃𝑇,𝑖 associated with temperature, T is defined as 

[92]: 

 𝑉̃𝑇,𝑖 = −
3

4 (1 +
𝜋
8)

𝜇

𝜌̅𝑇̃

𝜕𝑇̃

𝜕𝑥𝑖
 (9-16) 

The diffusion coefficient of soot, Di is expressed as [202]: 

 𝐷𝑖 =
𝑘𝐵𝑇̃

3𝜋𝜇𝑑m,𝑖
𝐶𝑠,𝑖 (9-17) 

where kB represents Boltzmann constant; Cunningham slip correction factor of soot, Cs,i is 

expressed as [240]: 

 𝐶𝑠,𝑖 = 1 + 𝐾𝑛,𝑖 [1.257 + 0.4 exp (−
1.1

𝐾𝑛,𝑖
)] (9-18) 

where the Knudsen number, Kn is calculated as [202]: 

 𝐾𝑛,𝑖 =
2𝜆𝑙
𝑑m,𝑖

 (9-19) 

where dm,i is the mobility diameter of soot, and l represents gas mean free path defined as 

mean air free path, which is calculated as [241]: 

 𝜆𝑙 =
𝜇

𝑝̅
√
𝜋𝑅𝑢𝑇̃

2𝑊
=
𝜇

𝜌
√

𝜋𝑊

2𝑘𝐵𝑁𝐴𝑇̃
 (9-20) 

where W represents mixture molecular weight; NA and Ru are Avogadro number and the 
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universal gas constant, respectively. 

The mobility diameter dm,i and gyration diameter dg,i are expressed as [39,285]: 

 𝑑m,𝑖 = 𝑑p,𝑖𝑛p,𝑖
0.45 (9-21) 

 𝑑g,𝑖 = {
𝑑m,𝑖(𝑛p,𝑖

−0.2 + 0.4)
−1
, 𝑛p,𝑖 > 1.8

𝑑m,𝑖√3/5, 𝑛p,𝑖 ≤ 1.8
 (9-22) 

where dp,i and np,i represent average diameter and primary particle number of a soot aggregate 

in ith section, respectively. The collision diameter of a soot aggregate is chosen as the large 

one between the mobility diameter and gyration diameter [39,235]. 

The source terms of soot transport equations of each section highly rely on the gas phase 

and soot characteristics [55]. It is reported that the impact of soot-turbulence interactions on 

soot prediction is less significant than the model parameters of aerosol dynamic processes 

[10,106], so interactions between turbulent and soot are neglected in many research studies 

[102,106,198]. The source terms of soot transport equations of each section could be calculated 

during run-time by using the local concentrations of related gas-phase species as well as 

thermochemical parameters in the present study. Inception or nucleation is modelled by the 

dimerization of PAH molecules, which links gas-phase species with incipient soot of the first 

section. Generally speaking, soot in a lower section moves to a higher section when coagulation, 

PAH condensation or HACA surface growth occurs, while soot in a higher section moves to a 

lower section by O2 oxidation or OH oxidation. In the present study, an incipient soot could be 

formed by the dimerization of pyrene (A4) molecules and only contributes to the first soot 

section. Since all mass exchanges between soot and gas-phase species are given from 

exchanged number of carbon atoms, hydrogen atoms in gas-phase species are assigned to form 

H2 to close the hydrogen balance [102], therefore achieving a complete gas-solid coupling. The 

nucleation or inception (i.e., inc) source terms (i.e., 𝑆agg,1
inc  and 𝑆pri,1

inc ) are evaluated based on 

the gas kinetic theory as [147,148,246,286,287]: 

 𝑆agg,1
inc = 𝑆pri,1

inc = 𝛾𝐸𝐹 (
4𝜋𝑘𝐵𝑇

𝑚A4
)
1/2

(
6𝑚A4

𝜋𝜌soot
)
2/3

[A4]2𝑁𝐴
2 (9-23) 

where soot=1800kg/m3 represents soot density [286,288]; [A4] and mA4 are the concentration 

and mass of A4, respectively; the parameter  is 0.002 [287] and van der Waals enhancement 

factor EF=2.2 [246,286]. Coagulation (i.e., coag) source terms (i.e., 𝑆agg,𝑖
coag

 and 𝑆pri,𝑖
coag

) are 
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evaluated according to the Knudsen number of the collision soot aggregates as [203]: 

 

𝑆agg,𝑖
coag

= ∑ (1 −
𝛿𝑗𝑘

2
) 𝜂𝑖𝑗𝑘𝛽𝑗𝑘𝑁agg,𝑗𝑁agg,𝑘

𝑘≤𝑗≤𝑖

𝑚𝑖−1≤𝑚𝑗+𝑚𝑘≤𝑚𝑖+1

− 𝑁agg,𝑖 ∑ 𝛽𝑖𝑚𝑁agg,𝑚

𝑁

𝑚=1

 

(9-24) 

 

𝑆pri,𝑖
coag

= ∑ (1 −
𝛿𝑗𝑘

2
) 𝜂p,𝑖𝑗𝑘𝜂𝑖𝑗𝑘𝛽𝑗𝑘𝑁agg,𝑗𝑁agg,𝑘

𝑘≤𝑗≤𝑖

𝑚𝑖−1≤𝑚𝑗+𝑚𝑘≤𝑚𝑖+1

− 𝑁pri,𝑖 ∑ 𝛽𝑖𝑚𝑁agg,𝑚

𝑁

𝑚=1

 

(9-25) 

where N and mi represent section number and soot aggregate mass in ith section, and jk is delta 

function. In the present study, soot is represented by thirty-five sections [202-207] and a section 

spacing factor of two [204]. Parameter ijk could be evaluated by [203]: 

 𝜂𝑖𝑗𝑘 =

{
 
 

 
 𝑚𝑖+1 − (𝑚𝑗 +𝑚𝑘)

𝑚𝑖+1 −𝑚𝑖
, 𝑚𝑖 ≤ 𝑚𝑗 +𝑚𝑘 ≤ 𝑚𝑖+1

𝑚𝑖−1 − (𝑚𝑗 +𝑚𝑘)

𝑚𝑖−1 −𝑚𝑖
, 𝑚𝑖−1 ≤ 𝑚𝑗 +𝑚𝑘 ≤ 𝑚𝑖

 (9-26) 

Parameter p,ijk could be evaluated by [203]: 

 𝜂p,𝑖𝑗𝑘 =
𝑚𝑖

𝑚𝑗 +𝑚𝑘
(𝑛p,𝑗 + 𝑛p,𝑘) (9-27) 

The collision kernels of the free molecular, 𝛽𝑖𝑗
fm (i.e., fm, Kn,i > 10) and continuum, 𝛽𝑖𝑗

cont 

(i.e., cont, Kn,i < 0.1) regimes are calculated as [49,147,148]: 

 𝛽𝑖𝑗
fm = 𝐸𝐹√

𝜋𝑘𝐵𝑇

2
(
1

𝑚𝑖
+
1

𝑚𝑗
) (𝑑𝑐,𝑖 + 𝑑𝑐,𝑗)

2
 (9-28) 

 𝛽𝑖𝑗
cont =

2𝑘𝐵𝑇

3𝜇
(
𝐶𝑠,𝑖
𝑑𝑐,𝑖

+
𝐶𝑠,𝑗

𝑑𝑐,𝑖
) (𝑑𝑐,𝑖 + 𝑑𝑐,𝑗) (9-29) 

where dc,i represents collision diameter of soot aggregates in ith section. Collision kernel in 

transition, 𝛽𝑖𝑗
tran (i.e., tran, 0.1  Kn,i  10) regime is calculated based on the harmonic mean 

technique as [147,148]: 
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 𝛽𝑖𝑗
tran =

𝛽𝑖𝑗
fm𝛽𝑖𝑗

cont

𝛽𝑖𝑗
fm + 𝛽𝑖𝑗

cont
 (9-30) 

PAH condensation consumes A4 and results in the mass growth of soot aggregates, which 

could be modelled as the collision of A4 molecules on soot aggregate surfaces based on the gas 

kinetic collision frequency with a collision efficiency of 0.5 [289-292]. The PAH condensation 

rate in section i, 𝐼cond,𝑖 is then calculated as [246]: 

 𝐼cond,𝑖 = 16𝑊𝐶𝛽A4,𝑖[A4]𝑁agg,𝑖 (9-31) 

The soot aggregate mass also increases or decreases by the surface growth or oxidation, 

which can be modelled by the famous HACA mechanism [59]. Six reactions including two 

reversible reactions are listed in Table 9.1 with their individual reaction rate constants (i.e., k). 

OH oxidation (i.e., S6) is modelled via collision theory of free molecular regime, in which 

collision efficiency γOH is 0.13. Other surface reactions (i.e., S1-S5) are regarded to take place 

on the soot surface activated sites, which is dehydrogenated (Csoot∙) or saturated (Csoot−H). In 

each section, the molar concentration of dehydrogenated sites [Csoot∙] on a soot aggregate 

surface can be calculated by [202]: 

 [Csoot ∙] =
𝐴𝑠
𝑁𝐴
𝜒Csoot∙ (9-32) 

where As represents primary particle surface area; χCsoot∙ represents dehydrogenated site number 

of unit surface area, which could be calculated by [246]: 

 𝜒Csoot∙ =
𝑘1[H] + 𝑘2[OH]

𝑘−1[H2] + 𝑘−2[H2O] + 𝑘3[H] + 𝑘4[C2H2] + 𝑘5[O2]
𝜒CSoot−H (9-33) 

where saturated site number of unit soot surface area, χCsoot−H is 2.3×1019 m-2; [H2], [H2O], [H], 

[C2H2], [O2] and [OH] are molar concentrations of corresponding species. Surface activated 

site fraction for chemical reactions, α is defined by [59]: 

 𝛼 = tanh (
𝑎

log 𝜇1
+ 𝑏) (9-34) 

where a and b are parameters associated with temperature T, which is given as [59]: 

 𝑎 = 12.65 − 0.00563𝑇 (9-35) 

 𝑏 = −1.38 + 0.00068𝑇 (9-36) 
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μ1 is calculated as [59]: 

 𝜇1 =
𝜌soot𝜋𝑑p

3

6𝑊𝐶
𝑁𝐴 (9-37) 

where WC is carbon atom molecular weight. The surface growth and O2 oxidation reaction rates 

(i.e., 𝐼HACA and 𝐼O2) are then evaluated as [246]: 

 𝐼HACA = 2𝑊𝐶𝛼𝑘4[C2H2][Csoot ∙] (9-38) 

 𝐼O2 = −𝑊𝐶𝛼𝑘5[O2][Csoot ∙] (9-39) 

The surface oxidation reaction rate of the soot aggregate in the ith section originating from 

OH (i.e., 𝐼OH,𝑖) is calculated based on the collision theory, which is evaluated as [202]: 

 𝐼OH,𝑖 = −𝑊𝐶𝑘6[OH]
𝑁agg,𝑖

𝑁𝐴
 (9-40) 

Thus, the soot growth (i.e., sg) source terms (i.e., 𝑆agg,𝑖
sg

 and 𝑆pri,𝑖
sg

) of HACA surface 

growth and PAH condensation can be expressed as [202]: 

 𝑆agg,𝑖
sg

=

{
  
 

  
 −

𝐼sg,1

𝑚2 −𝑚1
, 𝑖 = 1

𝐼sg,𝑖−1

𝑚𝑖 −𝑚𝑖−1
−

𝐼sg,𝑖

𝑚𝑖+1 −𝑚𝑖
, 𝑖 = 2,… ,𝑁 − 1

𝐼sg,𝑁−1

𝑚𝑁 −𝑚𝑁−1
, 𝑖 = 𝑁

 (9-41) 

 𝑆pri,𝑖
sg

=

{
  
 

  
 −

𝐼sg,1

𝑚2 −𝑚1
, 𝑖 = 1

𝐼sg,𝑖−1𝑛p,𝑖−1

𝑚𝑖 −𝑚𝑖−1
−

𝐼sg,𝑖𝑛p,𝑖

𝑚𝑖+1 −𝑚𝑖
, 𝑖 = 2,… ,𝑁 − 1

𝐼sg,𝑁−1𝑛p,𝑁−1

𝑚𝑁 −𝑚𝑁−1
, 𝑖 = 𝑁

 (9-42) 

The soot oxidation (i.e., ox) source terms (i.e., 𝑆agg,𝑖
ox  and 𝑆pri,𝑖

ox ) of O2 and OH can be 

calculated as [202]: 
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 𝑆agg,𝑖
ox =

{
  
 

  
 

−

−
𝐼ox,2

𝑚2 −𝑚1
+
𝐼ox,1
𝑚1

, 𝑖 = 1

𝐼ox,𝑖+1
𝑚𝑖+1 −𝑚𝑖

+
𝐼ox,𝑖

𝑚𝑖 −𝑚𝑖−1
, 𝑖 = 2,… ,𝑁 − 1

𝐼ox,𝑁
𝑚𝑁 −𝑚𝑁−1

, 𝑖 = 𝑁

 (9-43) 

 𝑆pri,𝑖
ox =

{
  
 

  
 

−

−
𝐼ox,2𝑛p,2

𝑚2 −𝑚1
+
𝐼ox,1
𝑚1

, 𝑖 = 1

𝐼ox,𝑖+1𝑛p,𝑖+1

𝑚𝑖+1 −𝑚𝑖
+

𝐼ox,𝑖𝑛p,𝑖

𝑚𝑖 −𝑚𝑖−1
, 𝑖 = 2,… ,𝑁 − 1

𝐼ox,𝑁𝑛p,𝑁

𝑚𝑁 −𝑚𝑁−1
, 𝑖 = 𝑁

 (9-44) 

 

Table 9.1 Soot surface growth and oxidation reactions [59,201], k = ATnexp(−E/RuT). 

No. Reaction A (cm3mol-1s-1) n E (kcal/mol) 

S1 Csoot − H + H ↔ Csoot ∙ +H2 4.2×1013 0.0 13.0 

  3.9×1012 0.0 11.0 

S2 Csoot − H + OH ↔ Csoot ∙ +H2O 1.0×1010 0.734 1.43 

  3.68×108 1.139 17.1 

S3 Csoot ∙ +H → Csoot − H 2.0×1013 0.0 0.0 

S4 Csoot ∙ +C2H2 → Csoot − H+ H 8.0×107 1.56 3.8 

S5 Csoot ∙ +O2 → 2CO + products 2.2×1012 0.0 7.5 

S6 Csoot − H + OH → CO + products γ = 0.13   

 

9.3 Results and Discussion 

Governing equations including unsteady, convection, diffusion and source terms are 

solved by using the finite volume method in the present study. The pressure implicit with 

splitting of operator (PISO) algorithm [227] is used to achieve the pressure-velocity coupling. 

Different numerical schemes for different physically meaningful terms are readily available in 

OpenFOAM [54,249]. Unsteady terms are discretized by a first-order time-stepping while a 
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second-order central differencing scheme is used to discretize the diffusion and convection 

terms [53]. The chemical reaction mechanism used is the famous ABF mechanism [59] 

involving 544 reactions and 101 species with the polycyclic aromatic hydrocarbon (PAH) 

species up to four aromatic rings (i.e., pyrene), and an Euler implicit solver is used for 

chemistry. Time step could be limited with Courant-Friedrichs-Lewy number, CFL=0.8 [293]. 

Transport and thermodynamic parameters are calculated by using the mixture-averaged 

transport model based on standard gas kinetic theory as incorporated into OpenFOAM by 

Wang et al. [53], while a dynamic load balancing approach and a reference mapping model [88] 

are utilized to accelerate the parallel computational fluid dynamics (CFD) simulations of 

reacting flows. 

Turbulent bluff body flames are commonly observed in different practical combustion 

systems since the generated recirculating flows close to the bluff body surface facilitate the 

effective fuel-oxidizer mixing, flame stabilization and ignition processes [293,294]. However, 

bluff body flame configurations have not received enough attention and in-depth investigation 

[295] in comparison with the simple jet flame configurations which do not involve more 

complex fluid dynamics such as recirculating flows. Most previous investigations on bluff body 

flame configurations have mainly focused on the experimental and numerical flow and flame 

characteristics in non-sooting premixed and non-premixed flame configurations 

[293,294,296,297]. As the fuel mixtures may be rich at some specific conditions, soot could 

also be produced in the recirculation zone [294,295], which is undesirable for the design of 

many combustion systems. Research on soot formation and evolution of the bluff body flame 

configuration especially in the recirculation zone was then conducted because of its relatively 

simple but effective emulation of the recirculation component in many industrial combustion 

systems [298]. Soot prediction is highly challenging because of its strong reliance on flow and 

flame characteristics as well as soot properties, especially for turbulent flames [55]. A 

laboratory-scale bluff body sooting flame configuration was numerically and experimentally 

investigated firstly by Mueller et al. [299], and results show that large SVFs in the recirculation 

zone are the results of the entrainment effect of the circulation vortex and the dominant effect 

of the acetylene-based surface growth on soot particles. Deng et al. [300] numerically 

investigated a bluff body flame configuration and found that adding hydrogen to fuel 

dramatically reduces the maximum SVF in the recirculation zone because of both chemical and 

hydrodynamic effects. But it was reported that the computational model cannot correctly 
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capture the soot evolution due to overprediction of soot oxidation [295]. Rowhani et al. 

[301,302] experimentally investigated bluff body flame configurations and showed that the 

bluff body radius substantially affects the SVF due to the different residence times in the 

recirculation zone. Colmán et al. [295] numerically studied the soot evolution of the bluff body 

flame configurations and qualitatively compared numerical results with experimental results, 

but the SVFs for all bluff body flame configurations were overpredicted. Rowhani et al. [303] 

investigated the soot formation and evolution of a bluff body flame configuration based on 

pure methane flames and found that soot nucleates early in the recirculation zone. It should be 

noted that numerical model uncertainties may be introduced in a methane-fueled flame [299] 

and the poorly understood nucleation dominates the soot formation mechanism in methane 

flames [303], which leads to further uncertainties in soot prediction. Accurately modelling of 

soot evolution necessitates a detailed description of the basic physicochemical soot kinetics for 

bluff body flames. 

Schematic structure of the bluff body flame configuration, boundary conditions and 

computational domain are presented as Figure 9.1(a) based on the experimental set-up 

[294,301,302]. A central tube with 2.3 mm radius (Rj) is placed in the bluff body center, and 

the central tube is 385 mm length, which is far larger than the entrance length of a fully 

developed turbulent round pipe [304]. Different outer radii (i.e., R = 19 mm, 25 mm and 32 

mm) of the bluff body are used, which are named as ENB-1, ENB-2 and ENB-3 [294,301,302]. 

The mixture with 4:1 by volume of ethylene/nitrogen of atmospheric pressure and ambient 

temperature is injected from the central tube with a bulk jet exit Reynolds number of 15000, 

while air is supplied as a coflow surrounding the burner with constant 20 m/s from a contraction 

having a radius of 95 mm (Rc). It should be noted that the addition of nitrogen to the fuel in the 

experiments is to help reduce the soot concentration so that reduce the interference from soot 

particles on the PIV measurements. The mixture fraction (Z) [305] is employed for describing 

turbulent mixing between the air co-flow and fuel jet. The stoichiometric mixture fraction (Zst) 

for these flames is 0.078. 

A two-dimensional axisymmetric model for the bluff body flame configuration is adopted 

as shown in Figure 9.1(a) of the present study, in which computational domain begins at fuel 

exit and extends axially to 10R with its radius of 120 mm [295]. The velocity profile of the fuel 

inlet is calculated in an analytical solution form [306] by the widely used 1/7th power law 

[106,283,307]. The corresponding turbulent intensity is set to be 5% [308]. The coflow inlet 
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adopts a uniform velocity profile with a turbulence intensity of 2% [293]. Zero-gradient/total-

pressure is applied for outlet while walls adopt no-slip and zero-gradient boundary conditions 

for velocity and other scalars [309], respectively. Grid independence validation is conducted 

on 8250, 10800, 13650 and 16800 cells, respectively. Grids are axially and radially stretched, 

where the inner and outer shear layers as well as the inlet zone are refined axially and radially 

as presented in Figure 9.1(b). The results of grid independence validation show that the second 

grid is fine enough and used, which includes 120×90 axial and radial cells.  

 

Figure 9.1 Schematic diagram of (a) bluff body flame configuration [294,301,302] and 

computational domain and (b) computational grid. 

 

9.3.1 Validation of non-sooting turbulent flame 

As an essential step to validate the newly developed numerical framework, simulated 

flame properties including axial and radial velocities, temperature, mixture fraction and species 

mass fractions should be validated against well-documented experimental dataset. Because of 

lacking corresponding experimental data of the present C2H4-fueled bluff body flame 

configurations, the experimental measurements of a similar designed burner, i.e., the famous 

Sydney & Sandia bluff body flame called HM1 [296,297] can serve as a comprehensive dataset 

for model validation purpose. Particularly, this non-sooting flame is well suited to validate 
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species prediction of the newly developed CFD framework. The HM1 has a bluff body radius 

of 25 mm and is fueled by a mixture of methane/hydrogen (1:1 in volume) at 294 K, resulting 

in a non-sooting turbulent flame. The central tube of HM1 has a radius of 1.8 mm with bulk 

Reynolds number of 15800, while the mean velocity of air coflow equals 40 m/s. 

Figure 9.2 presents comparison of numerical and experimental [296] results of mean axial 

and radial velocity radial profiles at five different axial locations (i.e., z/R = 0.52, 1.2, 1.8, 2.6 

and 3.6) of HM1. The newly developed numerical framework reproduces excellently the mean 

axial velocity radial profiles. The first four axial locations are inside the recirculation zone (RZ) 

while the last location is situated at the downstream of the RZ. The mean radial velocity radial 

profiles at axial location near bluff body surface (i.e., z/R = 0.52) are also accurately predicted. 

For other axial locations, there are only slight underpredictions in the radial regions of 0.1 < 

r/R < 0.8, and the reason is attributed to the high velocity gradient in the shear layers, leading 

to the change of the center of the RZ at any instance and an inaccuracy in the radial velocity. 

But the mean radial velocities of other radial regions are well predicted, which would facilitate 

the prediction of mixing process between the air coflow and fuel jet. Comparison of radial 

profiles of mean temperature between numerical and experimental results [296] is depicted as 

Figure 9.3. Results show that the simulated mean temperature distributions agree very well 

with the experimental measurements, especially within the RZ. More importantly, the spatial 

locations of chemical reaction zones can be well captured by the present numerical framework, 

as the radial regions of the largest temperature gradients for five axial locations are predicted 

at 0.8 < r/R < 1.0, which are consistent with the experimental ones. The simulated mean mixture 

fractions at all axial locations also agree very well with the experimental counterparts [296,297] 

as presented in Figure 9.4. It implies that the turbulent mixing and chemical reaction processes 

in the flow field are successfully captured by the newly developed numerical framework, as 

the mixture fraction reflects the production of chemical species as well as the mixing degree 

and chemical reaction rate between the fuel and oxidizer. More specifically, the simulated mean 

mass fraction distributions of species including O2, N2, H2, H2O, CO and CO2 at different axial 

locations have an overall excellent agreement with those experimental dataset [297] as 

presented in Figure 9.5. All these numerical results indicasste that the present new numerical 

framework can predict the flow and flame properties of the bluff body flame configuration, 

which forms a solid foundation for accurately and successful modelling soot formation and 

evolution as soot greatly depends on combustion flows. 
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Figure 9.2 Comparison of experimental [296] and simulated radial profiles of axial velocity, U 

(upper row) and radial velocity, V (lower row) at different axial locations of HM1, z/R = 0.52, 

1.2, 1.8, 2.6 and 3.6. 

 

 

Figure 9.3 Comparison of experimental [296] and simulated radial profiles of temperature, T 

at different axial locations of HM1, z/R = 0.52, 1.2, 1.8, 2.6 and 3.6. 

 

 

Figure 9.4 Comparison of experimental [296] and simulated radial profiles of mixture fraction, 

Z at different axial locations of HM1, z/R = 0.52, 1.2, 1.8, 2.6 and 3.6. 
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Figure 9.5 Comparison of experimental [297] and simulated radial profiles of mass fractions 

of O2, N2, H2, H2O, CO and CO2 (from top row to bottom row) at different axial locations of 

HM1, z/R = 0.52, 1.2, 1.8, 2.6 and 3.6. 

 

9.3.2 Simulation of sooting turbulent flames 

Figures 9.6 to 9.8 show the numerical results of mean axial and radial velocity radial 

profiles in comparison to the experimental results [294] for ENB-1, ENB-2 and ENB-3 at four 

axial locations, where z/R=0.6, 1.2 and 1.8 are within the recirculation zone (RZ) and z/R = 4 

is downstream of the RZ. Generally speaking, the overall distributions of axial and radial 

velocities estimated by the developed numerical framework agree very well with the 

experimental measurements. The minor discrepancy in the axial velocities and underprediction 

on the radial velocities at radial regions 0.6<r/R<0.9 are attributed to the high velocity gradient 

[294], but the numerical results for other radial regions (r/R<0.15 and 0.9<r/R<1.0) involving 

strong mixing process are well predicted, where an intermediate mixing layer (IML) is situated 

between the outer and inner shear layers (i.e., OSL and ISL) as shown in Figure 9.9. These two 

shear layers having high turbulent intensities are formed at both edges of the recirculation zone 

originating from the interactions of the air coflow and fuel jet with RZ, respectively. The 

simulated RZs for ENB-1, ENB-2 and ENB-3 in the flows would be also presented as Figure 

9.9 by magenta dashed lines, which denote isolines of axial velocity equal to zero (i.e., U = 0). 

It should be noted that the magenta dashed lines of numerical simulations are irrespective of 

the black dotted lines representing ISL and OSL in the experimental results. Numerical results 

depict that the RZ size grows remarkably with bluff body radius increasing from 19 mm to 32 

mm (i.e., ENB-1 to ENB-3). The most downstream locations of U = 0 measured by the 

experiments for three studied flames are also denoted by the horizontal magenta dashed lines, 

which describe the lengths of the RZ. The simulated and measured lengths of the RZ are 

quantitively compared in Figure 9.10, and the simulated results show consistent trends with the 
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experimental results although there are slight underpredictions of the lengths of the RZ for 

these three studied flames. The larger discrepancy is observed at ENB-1, but the discrepancy 

gradually reduces with the bluff body radius increasing, which is also clearly reflected on the 

mean soot volume fraction (SVF) distributions. The simulated mean SVF distributions for three 

studied flames as depicted in Figure 9.9 have well agreement with experimental results, and 

qualitative and quantitative structure of the SVF distributions for three studied flames are well 

captured, where the highest SVF appears near the OSL between the RZ and the air coflow. For 

ENB-1, soot is incepted at the region of high mixture fraction, which is close to the ISL between 

the RZ and fuel jet, as well as bluff body surface. Incipient soot is transported radially towards 

the OSL and back towards the bluff body surface after entrained by the RZ, leading to the high 

SVF in the RZ. With the bluff body radius increasing from 19 mm to 32 mm (i.e., ENB-1 to 

ENB-3), more soot is formed near the ISL as well as near the bluff body surface. Since O2 

concentration in the air coflow would be high and OH is generated in high temperature zone 

near the OSL, their combined effect of rapid oxidation results in a relatively high gradient of 

SVF between the RZ and air coflow. 

 

 

 

Figure 9.6 Comparison of experimental [294] and simulated radial profiles of axial velocity, U 

(upper row) and radial velocity, V (lower row) at different axial locations of ENB-1, z/R=0.6, 

1.2, 1.8 and 4. 
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Figure 9.7 Comparison of experimental [294] and simulated radial profiles of axial velocity, U 

(upper row) and radial velocity, V (lower row) at different axial locations of ENB-2, z/R=0.6, 

1.2, 1.8 and 4. 

 

 

 

Figure 9.8 Comparison of experimental [294] and simulated radial profiles of axial velocity, U 

(upper row) and radial velocity, V (lower row) at different axial locations of ENB-3, z/R=0.6, 

1.2, 1.8 and 4. 
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Figure 9.9 Comparison of experimental [301] and simulated mean soot volume fraction 

distributions for ENB-1, ENB-2 and ENB-3. 

 

 

Figure 9.10 Comparison of experimental [301] and simulated lengths of recirculation zone, LRZ 

for ENB-1, ENB-2 and ENB-3. 
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Figure 9.11 quantitatively compares the mean SVF profiles of three studied flames along 

the centerline between the experimental measurements and numerical simulations. Overall, the 

SVF changes along the centerline for three studied flames are well tracked, especially for ENB-

2 and ENB-3, although there are some underpredictions at the axial locations of z/R < 5 for the 

ENB-1. The discrepancy may be caused by three reasons. Firstly, the soot inception mechanism 

is poorly understood. The present study assumes soot inception through pyrene (A4) 

dimerization, as A4 is the largest PAH in the chemical reaction mechanism which is commonly 

recognized as the soot precursor. Secondly, gas phase chemistry may be also a contributing 

factor. Since soot formation could be greatly influenced by the concentration of the soot 

precursor, gas chemistry for PAH prediction should be sufficiently reliable. Thirdly, the 

prediction of the flow pattern would be dictated by the interactions between the fuel jet and air 

coflow with the RZ, which reflects on the underprediction of the length of the RZ. 

The simulated and measured mean SVF radial profiles for three studied flames at different 

axial locations (i.e., z/R = 1, 1.6, 4.9 and 10) are compared in Figure 9.12. Each flame has a RZ 

immediately downstream from the bluff body surface at z/R < 3.2, a neck zone at 3.2 < z/R < 

4.4 and a jet-like zone at z/R > 4.4 as the experimental measurements by Rowhani et al. [301]. 

Four axial locations are selected here for direct comparison, in which z/R = 1 and 1.6 are within 

the recirculation zone. It should be noted that z/R = 4.9 is just near the beginning of the jet-like 

zone and z/R = 10 is the location far from the recirculation zone. Numerical results show that 

the trends and structures of the mean SVF profiles for three studied flames along the radial 

direction are well reproduced. The slight underpredictions of the mean SVF for ENB-1 

originate from the underprediction of the RZ, but the qualitative structure of the radial profile 

of the mean SVF is quite consistent with the experimental one, especially the non-uniform 

radial profile at axial location of z/R=1.6. Overall excellent agreements between the numerical 

and experimental results for three studied flames are shown especially for ENB-2 and ENB-3, 

in which the peaks of mean SVF are well captured at around the region of r/R = 1 within the 

recirculation zone. With the bluff body radius increasing from 19 mm to 32 mm, the residence 

time within the RZ extends which provides a longer time for soot and its precursor formation, 

therefore resulting in the increase of the SVF. This quantitative trend could be well reproduced 

by the numerical simulation, which demonstrates that the present new numerical framework 

could well capture the significant soot formation and evolution processes under different bluff 

body radii. 
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Figure 9.11 Comparison of experimental [302] and simulated mean soot volume fraction 

profiles for ENB-1, ENB-2 and ENB-3 (from left to right) along the centerline. 

 

 

 

 

Figure 9.12 Comparison of experimental [302] and simulated radial profiles of mean soot 

volume fraction for ENB-1, ENB-2 and ENB-3 (from top row to bottom row) at different axial 

locations, z/R = 1, 1.6, 4.9 and 10. 
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Since the present numerical framework for soot modelling is newly developed on the basis 

of a soot sectional method, its significant advantage is that the full information about soot 

particle size distribution (PSD) evolution could be characterized directly, which can provide 

in-depth insights into soot formation and evolution at different regions for the turbulent flames 

with different bluff body radii. In the present study, Figures 9.13 to 9.15 firstly show the mean 

soot PSD profiles at four axial locations (i.e., z/R=0.5, 1, 2 and 4) of three radial regions (i.e., 

r/R = 0, 0.5 and 1) for further characterization of the sooting turbulent flames., which are not 

easily obtained from the experimental work. 

At the centerline of r/R = 0 with high mixture fraction, soot is nucleated through the 

production of the soot precursor (A4). Bimodal PSD shapes are observed at axial location of 

z/R=0.5 for three studied flames as shown in Figure 9.13, which include four key features: (i) 

a mode of the inception peak representing incipient soot particles at small soot diameter, (ii) a 

trough, (iii) a mode of the coagulation peak at larger soot diameter by surface growth as well 

as coagulation, and (iv) the largest particle [49,188,310]. With the axial location of z/R 

increasing from 0.5 to 2, the soot aggregate number density increases significantly and the 

bimodal PSD shape remains almost unchanged for all these three studied flames, which 

demonstrates that the strong soot nucleation and growth processes take place in these regions. 

In addition, the bluff body radius increasing from 19 mm to 32 mm (i.e., ENB-1 to ENB-3) at 

axial location of z/R=0.5, inception peak gradually increases while the trough significantly 

drops, the coagulation peak gradually decreases and the number of large soot aggregates (i.e., 

dm > 10 nm) considerably increases. It demonstrates that the PSD shifts gradually towards the 

larger soot aggregate side with bluff body radius increasing. This would be attributed to the 

growing axial distance from the fuel jet outlet, which facilitates the occurrence of soot 

nucleation and growth processes. The same trends are also observed at axial locations of z/R=1 

and 2. Further increasing axial location of z/R to 4 which is larger than the length of the RZ, 

different PSD shapes are shown for different flames. For ENB-1, the PSD shape changes from 

bimodal to unimodal and the number density of soot aggregate further increases, especially 

those small soot aggregates. Obviously, the unimodal PSD shape in ENB-1 can be regarded as 

a bimodal PSD shape as a consequence of increasing the trough. By comparison, the number 

densities of soot aggregates for ENB-2 and ENB-3 also increase but remain bimodal PSD 

shapes. It is worth noting that the inception peak at axial location of z/R=4 gradually decreases 

with the increasing of bluff body radius while the trends of other three features are similar with 
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those at axial locations of z/R=0.5, 1 and 2. In addition, the increasing magnitude of soot 

aggregate number density gradually decreases with the increasing of bluff body radius at axial 

location of z/R=4. This is due to that the distance to the largest length of the RZ for ENB-1 is 

larger than those for another two flames. As a result, less nucleated soot aggregates at the 

centerline are entrained into the recirculation zone and more soot aggregates are accumulated 

in the downstream. As the PAH is also accumulated in the downstream of the centerline, PAH-

based soot growth process promotes. 

The mean PSD profiles for different axial locations at radial region of r/R=0.5 are 

provided as Figure 9.14, in which axial locations of z/R=0.5, 1 and 2 are within the recirculation 

zone. At axial location of z/R=0.5, soot aggregate number density of r/R = 0.5 is significantly 

larger than that of the centerline for three studied flames, which implies that stronger soot 

nucleation and growth processes take place. The same trend is also seen at the axial locations 

of z/R = 1 and 2. At the RZ outside (i.e., z/R = 4), the number densities of soot aggregates at 

r/R = 0.5 for ENB-2 and ENB-3 are smaller than their corresponding counterparts at the 

centerline because of the oxidation effect of leaner mixture fraction. However, small soot 

aggregate number density at r/R = 0.5 for ENB-1 is larger than that of the centerline, but large 

soot aggregate number density at r/R = 0.5 is smaller than that of the centerline. The reason is 

that in addition to soot nucleation process, the soot growth process constantly takes effect at 

small soot aggregates but soot oxidation significantly occurs at large soot aggregates. For ENB-

1, the soot aggregate number density decreases slightly with increasing the axial location of 

z/R from 0.5 to 1, which is also shown in another two studied flames. Further increasing the 

axial location of z/R to 2, the large soot aggregate number density reduces significantly because 

of the stronger oxidation, while the small soot aggregate number density increases because of 

nucleation as well as soot growth processes, leading to the transition of the PSD shape from 

bimodal to unimodal, which is also clearly observed in ENB-2. When the axial location of z/R 

increases to 4, the impacts of nucleation and soot growth on small soot aggregates become 

stronger in ENB-1 while the number density of soot aggregates further decreases in ENB-2 due 

to the stronger oxidation. By comparison, the bimodal PSD shape remains almost constant for 

ENB-3 with increasing the axial location of z/R from 0.5 to 4, and the soot aggregate number 

density in ENB-3 slightly decreases. Furthermore, large soot aggregate number density 

increases significantly at axial location of z/R=0.5 with bluff body radius increasing. This is 

because of the increasing soot aggregate residence time within RZ. The same trends are also 
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seen at the axial locations of z/R = 1, 2 and 4, which illustrates a shift of the PSD towards the 

larger soot aggregate side due to the occurrence of soot growth processes. 

Figure 9.15 shows the mean PSD profiles of three studied flames at different axial 

locations for the radial region of r/R = 1, which is just radially outside of the OSL. The lean 

mixture fraction inhibits soot precursor production and subsequently soot nucleation and 

growth processes, but the turbulent fluctuations can lead to the soot and soot precursor 

appearing outside the stoichiometric mixture fraction isoline. The number densities of soot 

aggregates for all three studied flames decrease gradually along with the increasing of axial 

location, z/R from 0.5 to 2 due to the constant oxidation, which is totally different from the 

trends at the centerline and r/R=0.5. At axial location of z/R=0.5, with bluff body radius 

increasing from 19 mm to 32 mm, the small soot aggregate number density decreases gradually 

but the large soot aggregate number density increases significantly. The similar trends are also 

observed at another three axial locations (i.e., z/R = 1, 2 and 4). As a consequence, the PSD 

shapes at different axial locations appear a unimodal distribution for ENB-1 and ENB-2, but 

the PSD shape of ENB-3 gradually changes from unimodal to bimodal distribution with the 

increasing of axial location, z/R from 0.5 to 4. A noticeable shift of the PSD towards the larger 

soot aggregate side with the increase in the bluff body radius is still observed. 

 

 

Figure 9.13 Mean soot particle size distribution profiles at different axial locations, z/R=0.5, 1, 

2 and 4 along the centerline. 
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Figure 9.14 Mean soot particle size distribution profiles at different axial locations, z/R=0.5, 1, 

2 and 4 of radial region, r/R = 0.5. 

 

 

Figure 9.15 Mean soot particle size distribution profiles at different axial locations, z/R=0.5, 1, 

2 and 4 of radial region, r/R = 1. 

 

Figure 9.16 shows the mean soot aggregate sectional source terms in terms of PAH 

condensation and coagulation at different axial locations (i.e., z/R = 0.5, 1, 2 and 4) for the 

centerline (i.e., r/R = 0) to further elucidate the evolution of soot. The coagulation source terms 

here represent the consumption of soot aggregates, and the same treatments are also applied to 

the source terms of O2 and OH oxidation. HACA surface growth, OH or O2 oxidation occurs 

where concentrations of C2H2, OH or O2 are high. At the centerline, the soot aggregate sectional 

source terms of O2 and OH oxidation and HACA surface growth are extremely small due to 

their very low concentrations, therefore leading to the dominance of PAH condensation and 

coagulation. These two processes contribute to the production of large soot aggregates, which 

corresponds to the trends as shown in Figure 9.13. For ENB-1 at axial location of z/R=0.5, 

magnitudes of coagulation source terms are larger than those of PAH condensation at 2 nm < 

dm < 7 nm, where corresponds to the region from the trough to the coagulation peak of the 
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bimodal PSD shape as shown in Figure 9.13. It indicates the dominance of coagulation over 

PAH condensation in this region. At other soot aggregate diameters, the magnitudes of 

coagulation source terms are smaller than those of PAH condensation, which implies that the 

PAH condensation is dominant. In addition, with the increasing of bluff body radius, the 

magnitudes of coagulation source terms extend further towards the large soot aggregate side, 

which leads to the movement of the coagulation peak towards the large soot aggregate side. 

Similar trends are also observed at axial locations of z/R=1 and 2. However, when axial location 

of z/R is 4 which is larger than the length of the RZ, the PAH condensation always dominates 

over coagulation for ENB-1, which leads to the transition of the PSD shape from bimodal to 

unimodal distribution. By comparison, coagulation is dominant at small soot aggregates while 

PAH condensation dominates at large soot aggregates for ENB-2 and ENB-3. As a result, the 

PSD shapes of these two flames remain bimodal distribution. With the increase in the bluff 

body radius, the source terms of coagulation and PAH condensation decrease at small soot 

aggregates but increase at large soot aggregates. Overall, PAH condensation is comparable to 

coagulation at small soot aggregates but dominant at large soot aggregates along the centerline. 

Both coagulation and PAH condensation enhance significantly with the increase in the axial 

location.  

The mean soot sectional source terms of PAH condensation, coagulation and HACA 

surface growth as well as O2 and OH oxidation at different axial locations (i.e., z/R=0.5, 1, 2 

and 4) for radial region of r/R=0.5 are shown in Figures 9.17 and 9.18. Obviously, stronger 

coagulation and PAH condensation occur at radial region of r/R=0.5 than at the centerline. It 

is observed that coagulation mainly occurs and dominates at small soot aggregates, while PAH 

condensation and HACA surface growth become dominant at large soot aggregates for ENB-

1 at axial location of z/R=0.5. With bluff body radius increasing, the PAH condensation source 

terms decrease at small soot aggregates but gradually increase at large soot aggregates. It is 

also observed that the source terms of HACA surface growth as well as the magnitudes of OH 

and O2 oxidation increase significantly, while the coagulation magnitudes decrease at small 

soot aggregates. The same trends are observed at axial locations of z/R=1 and 2. At axial 

location of z/R=4, PAH condensation dominates over coagulation for ENB-1, but the PAH 

condensation source terms are smaller than the magnitude of coagulation source terms at small 

soot aggregates but larger at large soot aggregates for ENB-2 and ENB-3. It should be noted 

that the effect of O2 oxidation as well as OH oxidation on the soot evolution is small but 
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gradually becomes significant for three studied flames with the increasing of axial location. 

Overall, coagulation dominates at small soot aggregates for ENB-1 and ENB-2, but HACA 

surface growth is dominant at large soot aggregates when the axial location of z/R is 0.5 and 1, 

which results in the bimodal PSD shape as shown in Figures 9.14(a) and 9.14(b). Further 

increasing the axial location of z/R to 4, HACA surface growth gradually dominates over 

coagulation, leading to the gradual change of the PSD shape from bimodal to unimodal 

distribution. The effect of PAH condensation on the soot evolution is also very significant, and 

O2 oxidation as well as OH oxidation gradually enhances with the increase in the axial location. 

By comparison, coagulation is dominant at small soot aggregates for ENB-3 while PAH 

condensation dominates at large soot aggregates for different axial locations. Therefore, the 

bimodal PSD shape remains for varying axial locations as presented in Figure 9.14(c). 

 

 

Figure 9.16 Mean soot sectional source terms of PAH condensation and coagulation at 

different axial locations, z/R=0.5, 1, 2 and 4 of radial region, r/R=0. 
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Figure 9.17 Mean soot sectional source terms of PAH condensation and coagulation at 

different axial locations, z/R=0.5, 1, 2 and 4 of radial region, r/R = 0.5. 
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Figure 9.18 Mean soot sectional source terms of HACA surface growth, O2 oxidation and OH 

oxidation at different axial locations, z/R=0.5, 1, 2 and 4 of radial region, r/R = 0.5. 

 

Figures 9.19 and 9.20 show the mean soot sectional source terms of PAH condensation, 

coagulation and HACA surface growth as well aas O2 and OH oxidation for different axial 

locations (i.e., z/R = 0.5, 1, 2 and 4) at radial region of r/R=1. It is obvious that O2 oxidation at 

radial region of r/R=1 is stronger than that at the centerline as well as radial region of r/R=0.5 

because of the high concentration of O2. For ENB-1 at axial location of z/R=0.5, coagulation 

and PAH condensation effects are comparable at small soot aggregates, but the source terms 

of PAH condensation are larger than the magnitudes of coagulation source terms at large soot 

aggregates. With increasing the axial location of z/R to 4, the sources terms of coagulation and 

PAH condensation as well as HACA surface growth gradually decrease. By comparison, O2 

oxidation dominates at different axial locations due to the large concentration of O2 in the air 

coflow, and HACA surface growth also significantly influences soot evolution while effects of 

OH oxidation are negligible due to the low concentration of OH. The same trends are observed 
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in ENB-2 and ENB-3. The magnitudes of coagulation source terms for ENB-3 are larger than 

those for ENB-1 and ENB-2 at the axial locations of z/R = 2 and 4, which leads to the formation 

of the bimodal PSD shape of ENB-3 as shown in Figure 9.15. In addition, ENB-3 has stronger 

O2 oxidation than the other two studied flames at axial location of z/R=1, while magnitudes of 

O2 oxidation for ENB-3 become more significantly larger than those of ENB-1 and ENB-2 

with increasing the axial location of z/R to 4. 

 

 

Figure 9.19 Mean soot sectional source terms of PAH condensation and coagulation at 

different axial locations, z/R=0.5, 1, 2 and 4 of radial region, r/R = 1. 
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Figure 9.20 Mean soot sectional source terms of HACA surface growth, O2 oxidation and OH 

oxidation at different axial locations, z/R=0.5, 1, 2 and 4 of radial region, r/R = 1. 

 

9.4 Summary 

In the present study, an OpenFOAM numerical framework coupling an extended soot 

sectional method with a finite-rate chemistry model based on detailed chemistry is newly 

developed for soot modelling in turbulent combustion. The soot sectional method is formulated 

to solve soot aggregate and primary particle number densities for every section. Soot 

aggregates and gas-phase species are solved simultaneously with considering differential 

diffusion and mass exchange between soot and chemical species. A dynamic load balancing 

approach together with a reference mapping model is incorporated into the new numerical 

framework to accelerate the parallel reacting flow simulations. 

The newly developed numerical framework is validated by a well-characterized turbulent 

non-sooting bluff body flame and is then applied for simulating soot aerosol dynamics of 
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turbulent sooting bluff body flames. Numerical results of gas-phase species and soot of flow, 

mixture, flame structure and SVF are fully compared with available experimental dataset. 

Excellent quantitative and qualitative agreements demonstrate that the new numerical 

framework can accurately predict the flow and flame properties and well capture the significant 

soot formation and evolution processes for different bluff body radii. 

The soot PSDs as well as source terms of formulated soot transport equations at different 

axial and radial locations are numerically investigated. The soot aggregate number density 

gradually increases with the increasing axial location at the centerline because of the enhanced 

nucleation, coagulation and PAH condensation. The resulting soot PSD always remains a 

bimodal shape for the axial locations of z/R < 4. At the radial region of r/R = 0.5, coagulation 

dominates at small soot aggregates while PAH condensation and HACA surface growth take 

significant effect at large soot aggregates. Meanwhile, O2 oxidation as well as OH oxidation 

gradually enhances with the increase in the axial location. These collectively lead to the gradual 

change of the PSD shape from bimodal to unimodal distribution. O2 oxidation shows dominant 

at the radial region of r/R = 1 while the impacts of PAH condensation and HACA surface 

growth gradually drop with axial location increasing. This results in a gradual decrease in the 

soot aggregate number density. With bluff body radius increasing, the time of soot aggregates 

residing in the recirculation zone increases, leading to a significant shift of the soot PSD 

towards the larger soot aggregate side, and the PSD shape always remains bimodal distribution 

at the centerline and within the recirculation zone. 
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Chapter 10 Conclusions and Recommendations for Future Work 

 

10.1 Review of the Present Research Study 

The present research aimed at numerically modeling soot aerosol dynamics in both 

laminar and turbulent combustion flows, in which the population balance equation (PBE) of 

aerosol dynamics coupling with computational fluid dynamics (CFD) would be solved. The 

developed numerical framework can be used to model soot formation and evolution in practical 

combustion devices with different types of fuels, in which only the chemical reaction 

mechanism used should be changed. The research work in this thesis is mainly comprised of 

six parts. 

In the first part of the present study, a new sorting algorithm-based merging weighted 

fraction Monte Carlo (SAMWFMC) method is proposed and developed to solve coagulation 

in aerosol dynamics in Chapter 4. In the new SAMWFMC method, the jump Markov process 

is constructed based on both adjustable and constant fraction functions, and a new merging 

scheme is proposed to ensure a constant-number and constant-volume scheme with the 

introduction of sorting algorithm. This new SAMWFMC method is fully validated by 

comparing with existing analytical solutions of six benchmark test cases. The numerical results 

obtained from the SAMWFMC method show excellent agreement with the analytical solutions, 

and lower stochastic errors are found in different order moments of the particle size distribution 

(PSD) at an only slightly higher computational cost when compared with other MC methods. 

The second part of the present study focuses on developing a new sorting algorithm-based 

merging Monte Carlo method capable of solving all aerosol dynamic processes (nucleation, 

coagulation, breakage, deposition and condensation/evaporation) in Chapter 5. A neighbour 

merging method is proposed to maintain a constant-volume and constant-number scheme with 

minimal interference to the numerical particle population. Very comprehensive computational 

conditions are used to study their impacts on computational accuracy and efficiency by 

comparing the SAMMC method to previous Monte Carlo (MC) methods and analytical 

solutions. Numerical results show that the SAMMC method has excellent agreement with 

analytical solutions and very high computational accuracy for all specified cases of different 
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aerosol dynamic processes. More importantly, the SAMMC method can deal with breakage-

related processes and simultaneous coagulation and nucleation with very high computational 

accuracy and efficiency without introducing systematic errors.  

The third part is to develop an Open-source Field Operation and Manipulation 

(OpenFOAM) solver incorporating a detailed transport model for reacting flow simulations as 

the use of the highly simplified molecular transport model in the CFD code greatly restricts the 

resolution of important physical scales for new insights into combustion phenomena, especially 

in laminar flows. A systematical validation in different flame configurations with detailed 

chemical kinetics are conducted to evaluate the computational performance of the new solver 

in Chapter 6. The successful development and implementation of the new accurate solver 

provide a new CFD tool and numerical framework for the combustion community. 

The fourth part is to study the soot aerosol dynamics in laminar combustion flows by using 

the numerical framework coupled with a newly developed dimer-based soot model, which 

involves dimer formation and condensation as well as soot nucleation, coagulation, H-

abstraction-C2H2-addition (HACA) surface growth, O2 and OH oxidation. In Chapter 7, the 

formation of dimers is modelled via homogeneous and heterogeneous collisions of polycyclic 

aromatic hydrocarbon (PAH) molecules made up of 50 or more carbon atoms based on detailed 

chemistry while soot is nucleated by the collision of these dimers and grows via the 

condensation of these dimers. In a steady state, the generation rate and consumption rate of 

dimers are kept in a balance. Numerical results obtained from the new soot model agree well 

with the published experimental counterparts under different strain rates and oxygen mole 

fractions in the oxidizer for counterflow diffusion flames, and supplementary insights into soot 

formation and evolution are provided numerically. 

The fifth part of the present study is aimed at turbulence modelling in CFD based on the 

developed numerical framework of OpenFOAM. In Chapter 8, a new one-equation turbulence 

model is developed by deriving the transport equations in the complete form without simply 

assuming equal coefficients of the diffusion terms, which combines the best characteristics of 

the two-equation standard k-ε and Wilcox’s k-ω turbulence models. Five benchmark flow 

configurations with available results are used to validate the new one-equation turbulence 

model, which is compared with those widely adopted two- and one- equation turbulence 

models. Numerical results demonstrate that the present new one-equation turbulence model has 

a great potential to predict turbulent flow separation and reattachment. 
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The sixth part is to further extend the numerical framework coupling an extended soot 

sectional method with a finite-rate chemistry model based on detailed chemistry for simulating 

soot formation and particle size distribution (PSD) evolution in turbulent combustion. In 

Chapter 9, The soot sectional method is formulated to solve soot aggregate and primary particle 

number densities for every section. Soot aggregates and gas-phase species are solved 

simultaneously with considering differential diffusion and mass exchange between soot and 

chemical species. A dynamic load balancing approach together with a reference mapping 

model is incorporated into the new numerical framework to accelerate the parallel reacting 

flow simulations. The numerical framework is validated by a well-characterized turbulent non-

sooting bluff body flame for accurate estimation of gas-phase flow field and then applied for 

simulating soot aerosol dynamics of turbulent sooting bluff body flames. The resulting flow, 

flame and soot characteristics are in comparison with available experimental dataset. The 

simulated soot PSDs at different locations are analyzed and the underlying competing 

mechanism of different dynamic processes is fully explored. 

10.2 Main Conclusions of the Thesis 

10.2.1 Conclusion of development of sorting algorithm-based merging weighted fraction 

Monte Carlo Method for coagulation 

The new sorting algorithm-based merging weighted fraction Monte Carlo (SAMWFMC) 

method is fully validated by comparing with existing analytical solutions for six benchmark 

test cases. The numerical results obtained from the SAMWFMC method with both adjustable 

and constant fraction functions show excellent agreement with the analytical solutions and low 

stochastic errors. The SAMWFMC method has lower stochastic errors different order moments 

than the direct simulation Monte Carlo (DSMC) and multi-Monte Carlo (MMC) methods. 

Compared with the weighted fraction Monte Carlo (WFMC) method, the SAMWFMC method 

can significantly reduce the stochastic error in the total particle number concentration without 

increasing the stochastic errors in high-order moments of the particle size distribution (PSD) 

at only slightly higher computational cost. The new SAMWFMC method shows a significant 

advantage in dealing with weighted fraction coagulation process in aerosol dynamics, which 

demonstrates that the SAMWFMC method provides excellent potential to deal with various 

fraction functions with high computational accuracy and efficiency. 



Chapter 10                                                  Conclusions and Recommendations for Future Work 

228 

 

10.2.2 Conclusion of development of sorting algorithm-based merging Monte Carlo 

method for aerosol dynamics 

Comprehensive computational conditions are used to study their impacts on 

computational accuracy and efficiency by comparing the sorting algorithm-based merging 

Monte Carlo (SAMMC) method to previous Monte Carlo (MC) methods and analytical 

solutions. Numerical results show that the SAMMC method has excellent agreement with 

analytical solutions for all specified cases of different aerosol dynamic processes and shows 

higher computational accuracy than equal-weight-based MC methods (i.e., the stepwise 

constant-volume method and mass- and number-based constant-number methods). In addition, 

the computational accuracy of the SAMMC method in the total particle number concentration 

is much higher than those of the weighted fraction Monte Carlo (WFMC) method and sorting 

algorithm-based merging weighted fraction Monte Carlo (SAMWFMC) method in non-

homogeneous coagulation. The SAMMC method can also achieve the same computational 

precision as the multi-Monte Carlo (MMC) method at only slightly higher computational cost 

in homogeneous coagulation. More importantly, the SAMMC method can deal with breakage-

related processes and simultaneous coagulation and nucleation with very high computational 

accuracy and efficiency, while the numerical results of the MMC method may significantly 

deviate from analytical solutions due to the introduction of systematic errors.  

10.2.3 Conclusion of development of reacting flow solver incorporating detailed 

transport model for combustion simulations 

A detailed transport model using a mixture-averaged formulation based on the standard 

kinetic theory of gases is newly incorporated into combustion solvers for dealing with reacting 

flow simulations in OpenFOAM. This is achieved by developing a new utility to input 

molecular transport parameters and a new library to calculate transport properties. All the codes 

are completely written under the code framework of OpenFOAM, making them very easy to 

read, use, maintain, enhance and extend. More importantly, the developed utility and library 

can be coupled with any reacting flow solver for accurately modelling a multi-species system 

without requiring any extra operation when using. In the present study, the function of the new 

utility is firstly examined and then a new solver (i.e., standardReactingFoam) is developed for 

solving reacting flows. A systematical validation and assessment in different flame 

configurations with detailed chemical kinetics is studied to evaluate the computational 
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performance of these new solvers. A zero-dimensional auto ignition, one-dimensional 

premixed flame and two-dimensional non-premixed counterflow flame are selected to validate 

the solvers against Cantera and CHEMKIN, while a realistic combustion simulation of a two-

dimensional partially premixed coflow flame is also verified. Numerical simulation results 

show that very good agreements with the benchmark data are obtained for all studied flames, 

which demonstrates the high computational accuracy of the developed combustion solvers 

incorporating a detailed transport model. 

10.2.4 Conclusion of development of dimer-based soot model for soot aerosol dynamics 

in laminar combustion flows 

A dimer-based soot model combining HACA surface growth and oxidation mechanism 

with homogeneous and heterogeneous nucleation and dimer condensation is proposed to 

investigate soot formation of counterflow diffusion flames. As intermediate species between 

soot and polycyclic aromatic hydrocarbons (PAHs), the formation of dimers is modelled by 

heterogeneous collision of PAHs, resulting in the direct generation of stable soot. The masses 

of PAHs used for dimer formation are calculated based on a weighted average of total PAH 

masses and their densities are estimated to be associated with their chemical compositions. 

Combined with the mixture-averaged transport model for combustion modelling, numerical 

validations of the dimer-based soot model would be conducted at varying strain rates as well 

as varying oxygen mole fractions of the oxidizer. Simulated soot volume fractions (SVF) show 

a satisfactory agreement with experimental dataset, and the peak SVF magnitudes are 

accurately captured. With oxygen mole fraction of the oxidizer increasing, surface growth via 

dimer condensation and HACA mechanism as well as soot nucleation are significantly 

enhanced, leading to an increase in the SVF. Compared with HACA surface growth, the impact 

of varying oxygen mole fractions on oxidation rates of O2 and OH is slight, which implies that 

surface growth is a dominant factor in determining SVF. As the strain rate increases, the SVF 

gradually decreases as dimer production and HACA surface growth rates significantly decrease. 

Decreasing strain rate or increasing oxygen mole fractions leads to more significant skewness 

of the SVF profile towards the fuel stream. 

10.2.5 Conclusion of development of one-equation turbulence model 

The new one-equation turbulence model is used to simulate for different benchmark flow 

configurations including the flow over a flat plate at zero pressure gradient, bump-in-channel 
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flow, backward facing step flow, NASA wall-mounted hump separated flow and channel flow. 

The numerical results are fully validated and compared with the results of the experimental 

dataset, the one- and two-equation turbulence models, and the high-accuracy NASA codes (i.e., 

CFL3D and FUN3D). The new one-equation turbulence model is proved to be more accurate 

when compared with the one-equation Wray-Agarwal and two-equation shear stress transport 

(SST) k-ω turbulence models for the benchmark flow configurations. It also demonstrates that 

the present new one-equation turbulence model has a great potential to predict turbulent flow 

separation and reattachment. 

10.2.6 Conclusion of numerical investigation on soot particle size distribution in 

turbulent combustion flows. 

The newly extended numerical framework is validated by a well-characterized turbulent 

non-sooting bluff body flame and is then applied for simulating soot aerosol dynamics of 

turbulent sooting bluff body flames. Numerical results of gas-phase species and soot of flow, 

mixture, flame structure and SVF are fully compared with available experimental dataset. 

Excellent quantitative and qualitative agreements demonstrate that the new numerical 

framework can accurately predict the flow and flame properties and well capture the significant 

soot formation and evolution processes for different bluff body radii. The soot PSDs as well as 

source terms of formulated soot transport equations at different axial and radial locations are 

numerically investigated. The soot aggregate number density gradually increases with the 

increasing axial location at the centerline because of the enhanced nucleation, coagulation and 

PAH condensation. The resulting soot PSD always remains a bimodal shape for the axial 

locations of z/R < 4. At the radial region of r/R = 0.5, coagulation dominates at small soot 

aggregates while PAH condensation and HACA surface growth take significant effect at large 

soot aggregates. Meanwhile, O2 oxidation as well as OH oxidation gradually enhances with the 

increase in the axial location. These collectively lead to the gradual change of the PSD shape 

from bimodal to unimodal distribution. O2 oxidation becomes dominant at the radial region of 

r/R = 1 while the impacts of PAH condensation and HACA surface growth gradually drop with 

axial location increasing. This results in a gradual decrease in the soot aggregate number 

density. With bluff body radius increasing, the time of soot aggregates residing in the 

recirculation zone increases, leading to a significant shift of the soot PSD towards the larger 

soot aggregate side, and the PSD shape always remains bimodal distribution at the centerline 

and within the recirculation zone. 
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10.3 Recommendations for Future Work 

The transition of gas-phase hydrocarbon molecules to mature soot aerosols in combustion 

processes goes through various complex physical and chemical processes involving fluid 

dynamics, transport phenomena, chemical kinetics and aerosol dynamics and heat and mass 

transfer, which are required to be taken into account in soot modelling. This thesis aims at 

numerically modeling soot aerosol dynamics in both laminar and turbulent combustion flows, 

in which the population balance equation (PBE) of aerosol dynamics coupling with 

computational fluid dynamics (CFD) is solved. 

However, recommendations with regard to further research work to overcome the 

limitations of the present research and further deepen the understanding of soot aerosol 

dynamics are still required. 

1. More detailed chemistry that has a better prediction on species concentrations can be 

used to better capture soot aerosol dynamic processes as soot formation and evolution strongly 

depend on local thermodynamic conditions as well as chemical composition. In the present 

study, the popular ABF chemical reaction mechanism is used, which includes 544 reactions 

and 101 species. More detailed chemical reaction mechanisms can provide more intermediate 

reactions and species, which may include possible pathways leading to soot formation, 

therefore achieving a better prediction. 

2. Chemical species contributed to the formation of precursors may require some 

modifications if different chemical reaction mechanisms are used. Normally, the largest PAH 

molecule of ABF mechanism would be employed as soot precursor. However, the heaviest 

PAH molecule may be up to coronene (A7) or more in some newly proposed chemical reaction 

mechanisms, which requires taking these species into account for a more general application 

to soot modelling. 

3. More detailed chemistry normally involves many reactions and species, and direct 

resolution of the complete chemistry is very computationally expensive. As a result, actions 

should be taken to speed up the parallel reacting flow simulations as well as soot modelling 

based on high-performing computers. 

4. More soot aerosol dynamics such as fragmentation and carbonization may be required 

to be considered, which are neglected in the present study. Fragmentation may influence the 

morphology and soot PSD, as the soot aggregate structures could be weakened by oxidation, 
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which may result in the formation of smaller aggregates fragmented from larger aggregates. 

Carbonization is a process that converts soot precursor particles into mature soot particles with 

an ordered graphitic shell, which dehydrogenates PAHs in soot primary particles, resulting in 

a slight decrease of soot masses. 
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