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Abstract

Recently, integrated sensing and communication (ISAC) has been listed as one of the six

key usage scenarios in the sixth-generation (6G) network by International Telecommunication

Union (ITU). Specifically, base stations (BSs) in 6G network will emit orthogonal frequency

division multiplexing (OFDM) signals not only to convey information to communication users,

but also to sense the environment with ultra-high range/angle resolutions. The key challenge

of 6G ISAC lies in how to achieve high-resolution sensing in a communication network. In this

thesis, we aim to leverage the technique of networked sensing to tackle the above challenge.

Specifically, in practice, the BSs can fuse their observations to reap the joint estimation gain.

We will propose various signal processing techniques to enable network sensing for 6G ISAC.

The first work considers an OFDM-based multi-cell localization system, where multiple

BSs emit downlink OFDM signals simultaneously to localize the targets. A novel two-phase

sensing framework is proposed, under which we design a model-free range estimation ap-

proach by leveraging the OFDM channel estimation technique for determining the delay values

of all the two-way BS-target-BS paths in Phase I and localize each target based on its distances

to various BSs in Phase II. Especially, we build new theory about data association in Phase II,

which is a long-standing issue for multi-anchor multi-target localization.

Our second work extends the networked sensing results from a pure line-of-sight (LOS)

environment to a complicated multipath environment. We propose efficient methods that can

mitigate the effect arising from non-line-of-sight (NLOS) paths on 6G multi-cell localization.

In our thirdwork, we extend our study from localization to target three-dimension (3D) re-

construction. We consider a multi-view approach, under which a mobile transceiver equipped

with multiple transmit and receive antennas moves to different known sites to image an ex-

tended target from different angles, and fuse all the single-view images into a multi-view image

at last. It is shown that the multi-view technique can significantly improve the reconstruction

quality.

Last, we build a millimeter wave (mmWave) ISAC platform that works at 27-29 GHz. We

implement our proposedmethods on this platform and achieve very high localization accuracy.
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In summary, in this thesis, we propose advanced signal processing technique to enable

point target localization and extended target reconstruction via the networked sensing tech-

nique in 6G ISAC systems. Platform is also built to verify our results. These works can provide

new insight into investigation of the 6G ISAC technique.
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Chapter 1

Introduction

1.1 Background

In the past several decades, there have been great developments in communication and

radar technologies. In radar, the pre-designed radios are leveraged for target detection and

target localization, including but not limited to estimating the range, the direction, and the

velocity of target, while the communication waveform is utilized for accurately sending the

message from the source to the destination. There are a number of applications for radar sys-

tems in both military and civilian, such as unmanned aerial vehicle (UAV), aircraft detection

and tracking, and robot navigation. The communication systems go through several genera-

tions to the current 5G network with lower latency, higher data transmission and enhanced

bandwidth, which are more compatible with the nowadays needs of information exchange,

especially for mobile phones.

1.1.1 Radar Technology

A typical radar system consists of three parts, transmitter, receiver, and switch. The

switch is connected to the transmitter and the receiver to determine whether to emit the elec-

trical waves or receive the echoes. The main process of the radar system detecting the targets

and/or estimating the parameters of targets is: (i) the transmitter produces the pre-designed

waveforms and emits the signals into the environment towards the direction of interest; (ii)

if there are targets in the region of interest, the sent electrical waves will be reflected by the

target or scatted into the environment; (iii) if the signal echoes can be received by the radar

1



2 Chapter 1. Introduction

system, the received signals will be processed and analyzed, from which the information about

targets can be extracted.

To avoid self-interference from the transmitter located in the same radar system, e.g.,

mono-static radar, the switch is used to make sure that the transmitter and receiver will not

work at the same time. However, if the transmitter is far away from the receiver, e.g., bi-static

radar, the switch is not needed. At the receiver, the received signals are first downconverted

into the intermediate frequency (IF) band. After that, an IF amplifier is used to convert the

passband signals to the baseband signals. Then, the detector will extract information from the

processed signals, which is normally followed by analog-to-digital converter (ADC) and signal

processor in order to obtain more results. Note that in the radar system with only the aim of

detecting the targets, the ADC and the signal processor are not required.

1.1.2 Communication Technology

A typical communication system comprises two parts, transmitter and receiver. The trans-

mitter is used to process the input message, where redundant information in the source will

be removed (source coding) and additional information will be added to mitigate the effect

caused by the channel (channel coding). When propagating through the channel, the signals

will experience the distortion and the noise. The goal of the receiver is to recover the original

message from the encoded and polluted signals. The main process of the communication send-

ing message is: (i) the input message will be first processed by the source encoder to compress

the message or remove the redundant information. Following the source encoding, the chan-

nel encoder is applied, where additional information is added to the message but can be used

to correct the error or combat the distortion caused by the channel. Then, the encoded base-

band signals will be modulated into the passband, i.e., multiplying signals by higher frequency

carriers for transmission. (ii) the pre-processed signals are transmitted and then go through

the environment or the channel, where there will be noise and distortion in the propagation.

(iii) if the power of the received signals exceeds the threshold, the receiver will demodulate the

signals into baseband. After that, the channel decoder will make use of the additional infor-

mation to correct the error and remove it. Then, the source decoder leverages the corrected

data to decompress and get the original information. Note that there is also ADC to convert

the continuous signal into a discrete signal at the receiver, i.e. sampling. Besides, to eliminate
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the inter-symbol interference (ISI), the matched filter and the equalization will be both imple-

mented. Moreover, there will be beamforming or precoding at the transmitter to achieve the

spatial gain.

1.1.3 Motivation for joint radar and communication

Joint radar and communication (JRC) has been proposed recently. The reasons are three-

fold: (i) the demanded high-speed data transmission of the increasing number of devices and

services results in frequency congestion, which requires JRC to enhance spectral efficiency.

(ii) sensing and communication functions are expected to be provided simultaneously in many

emerging scenarios, such as vehicle navigation in intelligent transportation systems and object

detection in smart home. (iii) sensing and communication functions can benefit each other

such that the performance of the whole system can be improved. For example, the real-time

sensory information can be fused with the map downloaded from the cloud in the intelligent

transportation system, which can help navigate the vehicle accurately and avoid collision.

1.2 Literature Review

To enable the communication and the radar functions simultaneously, there are two main

research directions, one is Radar and Communication Coexistence (RCC) and the other one

is Integrated Sensing and Communication (ISAC). In RCC, only the spectrum is reused, while

the communication and radar systems are independent. Therefore, the main issue of RCC

is interference management. The latter enables JRC via the same waveforms, i.e., both the

spectrum and the hardware are shared. As a result, the spectral and energy efficiency of the

system can be improved. Compared to RCC, the key of ISAC lies in the joint waveform design

and signal processing techniques such that the two functions can be realized simultaneously

via the samewaveform at the same platform. The comparison between RCC and ISAC is shown

in Table 1.1. Appealed by the fancy benefits of JRC, there are many interesting and important

explorations made for this emerging direction, as discussed in the following.
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Table 1.1: The comparison between RCC and ISAC.

RCC ISAC
Spectrum reused reused
Waveforms distinct same
Hardware Platforms different same
Main Challenge interference management waveform design

1.2.1 Radar and Communication Coexistence

For RCC, there are different degrees of cooperation between the communication and sens-

ing systems. On one side, the cooperation between the two sub-systems is limited, since the

attention is only paid to the performance of either the communication system or the radar sys-

tem. Moreover, from the view of the signal processing, there are two main research directions

in interference management, one is to cancel the interference from the radar system at the

communication system, i.e., communication-centric RCC, and the other one is the interference

cancellation from the communication system at the radar system, i.e., sensing-centric RCC. For

example, the characteristics of MIMO in radar systems are exploited to deal with communi-

cation interference, and the performance of the radar system is considered in priority[1]. The

interference at the radar system from the sub-bandwidths allocated for the communication

users is limited in [2] and [3]. Similarly, the communication-centric strategy is adopted in [4],

where the sparsity of a proper representation of the interference is exploited to perform adap-

tive radar interference removal at the communication receiver. The prior information about the

radar interference is directly utilized at the communication transmitter for radar interference

mitigation in [5], [6].

On the other side, the information between the two sub-systems is exchanged, where

the transmit policies are negotiated to guarantee the performance of both communication and

sensing. In [7], the objective is to minimize the effective interference power (EIP) at the radar in

RCC systems, while maintaining the communication capacity over the predefined value under

the constraint of transmit power. The radar sampling and communication precoding matrix

are jointly optimized using alternating optimization (AO). Furthermore, [8] takes account into

the interference from both radar return and clutter, where the local optimum is obtained based

on AO and then the global optimum can be inferred. The millimeter wave (mmWave) RCC is

investigated in [9], where the cross-interference between radar and communication is elim-

inated by designing the beamformer assuming the known perfect CSI. The summary of the
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Table 1.2: The classification of RCC techniques.

RCC techniques Characteristics
non-cooperation RCC cancel the radar (communication) interference at

the communication (radar) receiver
cooperation RCC predesign the signals at the communication and radar transmitters

above RCC techniques is shown in Table 1.2.

1.2.2 Integrated Sensing and Communication

Compared with RCC, it is much more complicated to achieve ISAC, since there is no dedi-

cated hardware for the two functions, respectively. Besides, the integration of communication

and radar will give rise to the trade-off between the performance of the two systems, as their

objectives are different. Generally, ISAC also needs expert knowledge in the two fields as well,

whichmakes it more intractable to be implemented in practice. However, themain trend in JRC

is ISAC, because there will be gains brought by such integration. Specifically, ISAC captures

two advantages over the independent communication and radar systems: 1) integration gain

to improve spectral and energy efficiency, 2) coordination gain to perform mutual assistance

in communication and sensing functions. To achieve ISAC, there are two popular ways, one

is radar-based ISAC, where the radar is the primary function and the communication is the

secondary function; the other one is communication-based ISAC, where the communication

is dominant over the radar. For the former direction, the key challenge lies in how to embed

information into the radar signals; while for the latter direction, the key challenge lies in how

to sense the targets using the communication signals.

1.2.2.1 Radar-centric ISAC

A major advantage of radar-centric ISAC is that long-range communication can be

achieved, but the communication rate in radar-centric is inherently limited. There are two

main radar waveforms for information embedding, one is pulsed radar signal and the other

one is continuous-wave radar signal. For example, the interval between radar pulses is utilized

for realizing communication functions [10]. On the other hand, FMCW is also investigated to

convey the communication data, one simple method is adjusting the frequency chirp rate, i.e.,

transmit bit “0" if the sign of chirp rate is positive, and bit “1" otherwise. Furthermore, FMCW is
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Table 1.3: The techniques of radar-centric ISAC.

Methods Examples
Pulsed radar the pulse interval of the signals to embed information
FMCW the sign or the value of the chirp rate to convey message
IM the index over space, time, frequency and code domains

combined with OFDM and minimum shift keying (MSK) for improving the spectrum efficiency

in [11, 12], since the chirp radar waveform occupies a large range of frequencies that leads to

low spectral efficiency. However, the previous works cannot achieve high data rate transmis-

sion, as the modulated phase is discontinuous. To address this issue, [13] proposes continuous

phase modulation (CPM) by mapping the bit sequence into bipolar amplitude modulated se-

quence, which is then converted into the phase.

Instead of applying conventional modulations, incorporating communication information

into radar waveforms via index modulation (IM) is studied in MIMO-OFDM radar [14]. Here,

IM means different combinations and/or permutations of signal parameters over space, time,

frequency and code domains for integrating communication functions into radar systems[15–

17]. For instance, the indexes of subcarriers and antennas can be leveraged for conveying com-

munication information. Another example is frequency-hopping technique, where the signal

frequency is rapidly changed among a large number of different frequencies. Note that the

radar waveform and signal structure are not modified in index modulation such that there is

little impact on the radar systems. The summarization of the above radar-centric ISAC tech-

niques is shown in Table 1.3.

1.2.2.2 Communication-centric ISAC

The communication system can inherently provide high data rate transmission, since

the standardized communication waveforms, protocols, and architectures can be utilized in

communication-centric ISAC. The communication data are normally random to embed as

many messages as possible, while the radar waveform is deterministic for extracting the infor-

mation from the channel. To tackle this issue, there are some works proposing excellent meth-

ods in this direction. Particularly, pilot signals and frame preambles are utilized for sensing

in[18, 19], since they have a good auto-correlation property and can be predesigned according

to the sensing condition. In [20], the spread spectrum in communication system is utilized for

radar probing. However, the imperfect orthogonality of the spread sequence limits the radar
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Table 1.4: The techniques of communication-centric ISAC.

Methods Pros Cons
Preamble orthogonal limited sequences
Spread Spectrum good auto-correlation property low spectral efficiency
OFDM multi-carrier and robust to multipath PAPR
OTFS handle both multipath and high complexity

high Doppler frequency

dynamic range. Besides, it is quite complicated to estimate the velocity of the target from radar

echoes due to its high complexity.

Apart from the spread spectrum technique, there is increasing attention paid to OFDM

based communication-centric ISAC [21, 22], because the OFDM technique is compatible with

the current 5G and the future 6G standards [20]. OFDMwaveform is widely applied in commu-

nication system for its high spectral efficiency and good ability to handle inter-symbol interfer-

ence. As discussed above, OFDM is also implemented in radar, i.e., OFDM-radar. Hence, OFDM

is a promising technology for ISAC. The sub-carrier spacing is optimized to maximize the un-

ambiguous range and the velocity in [23]. Besides, [24] studies the allocation of sub-carriers

to maximize the sum of the mutual information of the communication and radar systems. The

disadvantage of OFDM signal is its peak-to-average-power ratio (PAPR), which introduces a

serious degradation in performance when the signal passes through the amplifier. To address

this issue, a weighted OFDM waveform is considered to prevent the high PAPR in [25].

Another communication signal waveform is OTFS, which can be regarded as a combina-

tion of the OFDM and the CDMA. Compared with OFDM signal which is aimed at handling

the frequency selective channel, the OTFS signal is developed to deal with both time and fre-

quency selective channels, i.e., the channel with multipath and Doppler frequency. Similar to

OFDM, [26] explores the possibility of utilizing the OTFS signal for target sensing. Besides,

it is shown in [27] that the OTFS can achieve a similar performance of target sensing as the

conventional radar waveform, which verifies the effectiveness of the OTFS communication

signal based ISAC. Furthermore, the effect of the inter-symbol interference (ISI) and intercar-

rier interference (ICI) is considered in OTFS based ISAC system[28], which can be exploited

to enhance the unambiguous range and velocity detection scope. The summarization of the

above communication-centric ISAC techniques is shown in Table 1.4.
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1.2.3 Network-level Sensing

Several interesting works have been done to propose practical algorithms for realizing

ISAC in the 6G network. For instance, efficient algorithms have been proposed such that a

BS can extract the range/angle/Doppler information of the targets based on the OFDM signals

[29, 30], the orthogonal time frequency space (OTFS) signals [27], and the millimeter wave

signals [31], that are reflected by these targets. Moreover, [32, 33] have devised powerful esti-

mation schemes such that a mobile user can utilize the cellular signals for realizing simultane-

ous localization and mapping (SLAM). It is worth noting that the above works mainly consider

the scenario where localization is performed with one transmitter and one collocated/separate

receiver, as in the monostatic/bistatic radar systems, i.e., standalone-level sensing. However, it

is difficult to provide high-resolution sensing in a point-to-point communication network due

to the limited detection capability and range/angle resolution of each BS. Inspired by the cloud

radio access network (C-RAN) where the BSs can collaborate to mitigate inter-cell interference,

we aim to leverage a unique advantage of the cellular network to tackle the above challenge

- networked sensing. Specifically, in practice, the BSs are connected via the fronthaul links.

When a target’s echo signals are heard by multiple BSs, they should fuse their observations

for improving the sensing performance. This is a notable difference to radar systems, where

radars usually perform sensing in an independent manner. Therefore, in this thesis, we are

devoted to exploiting the power of networked sensing in performing high-resolution target

sensing tasks.

1.3 Thesis Contributions and Organization

Motivated by the above discussion, we devote our endeavor to the study of advanced

signal processing techniques for estimating the locations of passive targets by leveraging the

communication signals sent by the base stations (BSs) in the cellular network. The ultimate

goal of this line of research is to pave the way for transforming the cellular network into a huge

sensor, such that the new function of networked localization can be provided to users in the

future beyond-fifth-generation (B5G) and sixth-generation (6G) cellular networks. We focus

on the communication-centric ISAC, where the 6G OFDM communication signal is leveraged

to realize device-free sensing. Specifically, we consider point target localization and extended
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target reconstruction in networked device-free sensing, where the multi-view information of

the target via communication signals is fused. The rest of the thesis is organized as follows.

Chapter 2 is the foundation of the thesis. This chapter considers an OFDM-based multi-

cell localization system, where multiple BSs emit downlink OFDM signals simultaneously to

localize the targets. A novel two-phase sensing framework is proposed to localize the passive

targets that cannot transmit/receive reference signals to/from the base stations (BSs), under

which we design a model-free range estimation approach by leveraging the OFDM channel

estimation technique for determining the delay values of all the two-way BS-target-BS paths

in Phase I and localize each target based on its distances to various BSs in Phase II. Particularly,

we face the data association issue in Phase II, because each BS does not know how to match

its estimated distance values to the targets. Theoretically speaking, a wrong data association

solutionmay lead to the detection of ghost targets that do not exist. Interestingly, we show that

under the ideal case of perfect range estimation in Phase I, ghost targets will not be detected

almost surely in Phase II. This builds a theoretical foundation to 6G networked sensing - its

performance is not fundamentally limited by data association. Moreover, under the practical

case of imperfect range estimation in Phase I, we propose an efficient algorithm for joint data

association and target localization in Phase II.

To extend our results to the scenario where non-line-of-sight (NLOS) paths exist, we ex-

plores networked device-free sensing in an OFDM cellular system with a multipath environ-

ment in Chapter 3. Similar to the first work, a two-phase protocol is considered, where target

range information is estimated in Phase I, and target locations are estimated in Phase II. How-

ever, there are two main differences over the first work. First, in Phase I, besides the path from

a BS to the target to the same BS, we also estimate the range of any path from a BS to some

target to another BS. Because the BSs are not synchronized, we propose a novel method to es-

timate the time offsets among BSs such that range estimation in Phase I is accurate. Second, in

Phase II, besides data association, we also need to find out the range information correspond-

ing to the LOS paths. To achieve this goal, we propose an efficient algorithm for joint data

association, NLOS mitigation, LOS identification, and localization. The first two works then

complete our study of the networked sensing technique for localization.

In Chapter 4, we consider the networked sensing technique for multi-view target three-

dimension (3D) reconstruction, which is an important application due to its ability to provide
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accurate and detailed digital models of objects or scenes. Under our considered setup, a ra-

dio frequency (RF) transceiver equipped with multiple transmit and receive antennas moves

to different known sites at several time slots. At each time slot, the transceiver emits OFDM

communication signals to image an extended target that is modeled as multiple adjacent scat-

ter points. We propose a novel scheme that is able to construct a single-view image of the

target that can be observed by the RF transceiver at each time slot via the OFDM signals, and

fuse these single-view images into a multi-view image, which is more accurate and complete

compared to all the single-view images.

Chapter 5 describes the built ISAC platform that works at 27-29 GHz. Under this platform,

there is a 64-element transmitter that is able to generate a narrow beam, and a 4-antenna

receiver. We implement our range and angle estimation algorithms, and our platform can

achieve the range estimation error and the angle estimation error are less than 0.15 meter

and 4◦, respectively. Building on these exciting results, our future work will collect sensing

data from multiple sites and perform data fusion techniques as in our theoretical works to

implement the networked sensing technique via our platform.

Chapter 6 summarizes this thesis, list the future research directions and present an outlook

on the future development of networked device-free sensing in the future 6G network.



Chapter 2

Device-free sensing in OFDM

cellular network

2.1 Introduction

2.1.1 Motivation

Radar and wireless communication are probably the two most successful applications of

radio technology over the past decades. Recently, there has been growing interests in achiev-

ing integrated sensing and communication (ISAC) under a common system via reusing the

same radio frequency (RF) signals due to its significant benefits brought to many use cases

[20, 34–40]. For example, the intelligent transportation system can take advantage of the ISAC

techniques for sensing the environment and disseminating the sensed data among vehicles to

improve the traffic efficiency and safety. Moreover, ISAC techniques can play a crucial role in

future communication systems as well. For instance, sensing information in millimeter wave

(mmWave) systems can be leveraged to design efficient beam selection and alignment [41].

Despite the appealing future promised by ISAC techniques, how to realize the functions

of sensing and communication simultaneously in a practical system is still an open problem.

Motivated by this, in this paper, we devote our endeavor to the study of advanced signal pro-

cessing techniques for estimating the locations of targets by leveraging the communication

signals sent by the base stations (BSs) in the cellular network. The ultimate goal of this line

of research is to pave the way for transforming the cellular network into a huge sensor, such

11
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that the new function of networked localization can be provided to the users in the future

beyond-fifth-generation (B5G) and sixth-generation (6G) cellular networks.

2.1.2 Prior Work

The study of ISAC techniques is still in its infancy. However, there are many interest-

ing and important explorations made recently for this emerging direction, as discussed in the

following.

2.1.2.1 Radar Signal Based Versus Communication Signal Based ISAC

Intuitively, we can use either the radar signals or the communication signals to achieve

ISAC. For the former direction, the key challenge lies in how to embed information into the

radar signals; while for the latter direction, the key challenge lies in how to localize the tar-

gets using the communication signals. Although several interesting works have been done to

modulate a small number of bits into the radar signals [42, 43], this approach cannot achieve

high-rate data transmission that is necessary for many ISAC applications (e.g., autonomous

cars may generate a huge amount of sensing data to be exchanged among adjacent cars in a

short time), since modulating high-order random data symbols on the radar signals will sig-

nificantly reduce the autocorrelation between the transmitted and reflected signals, thus dete-

riorating the sensing performance. Motivated by this limitation, this paper aims to exploit the

use of communication signals in the cellular network for achieving target localization with an

accuracy level similar to that achieved by the radar system.

2.1.2.2 Device-Based Versus Device-Free ISAC

Along the line of communication signal based ISAC, the sensing techniques can be further

divided into two categories: device-based sensing for localizing registered targets with com-

munication capabilities, and device-free sensing for localizing unregistered targets that cannot

transmit/receive communication signals.

Device-based sensing estimates the target locations based on a set of wireless reference

signals exchanged between the targets and the BSs [44, 45], and has been available in the cel-

lular network since the second generation (2G), e.g., the location of a mobile phone can be
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estimated when it makes an emergency call. Typical methods include time-of-arrival (ToA)

based localization which estimates each target’s location at the intersection of at least three

circles whose radii are products of the speed of the light and the signal propagation time, and

angle-of-arrival (AoA) based localization which estimates each target’s location at the inter-

section of lines formed by measuring the arrival angles of radio signals between the target and

multiple BSs.

On the other hand, for passive targets that do not have communication capabilities or are

unregistered in the network, device-free sensing needs to be leveraged for their localization.

For example, in low-altitude economy scenario, it is required to monitor those unregistered

unmanned aerial vehicle (UAV) in the sky for security. Note that in device-free sensing, the

cellular network can only estimate the locations of the targets based on their reflected commu-

nication signals (instead of the actively exchanged reference signals in device-based sensing),

similar to the radar systems. However, the signal processing techniques used in radar sys-

tems cannot be applied because the communication signals usually do not have an ambiguity

function with steep and narrow main lobes. This thus motivates our work on developing new

methods for device-free sensing.

2.1.2.3 Fundamental Limits Versus Practical Solutions

For device-free sensing based on cellular communication signals, there are generally two

research directions: revealing fundamental limits on the communication-sensing trade-off, and

designing practical sensing solutions.

Firstly, the optimal waveform design for communication is generally different from that

for sensing due to the distinct objectives (i.e., to maximize the mutual information versus to

minimize the sensing error), thus leading to a fundamental trade-off between the capacity in

communication and the estimation distortion in sensing. Several pioneering works have been

done to characterize such an important capacity-distortion trade-off, to reveal the performance

upper bound of ISAC systems (see, e.g., [46–51]). Secondly, it is also crucial to design practical

signal processing solutions for approaching the above fundamental limits. Note that the BS-

target-BS reflected channel is generally a function of the target location, thusmaking it possible

to extract the location information by exploiting the reflected channel that can be estimated via

channel training. To achieve this goal, several prior works have proposed advanced algorithms
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Figure 2.1: System model for an ISAC network with simultaneous downlink/uplink commu-
nication and target sensing.

based on knowledge of the reflected channel models [18, 52–55]. However, the exact BS-target-

BS reflected channel models are generally difficult to obtain in practice due to the complicated

and time-varying wireless environment, while inexact channel models that do not match with

the actual channels will lead to erroneously estimated location even if channel estimation is

perfect. This thus motivates us to propose a model-free scheme for localization that does not

depend on knowledge of the reflected channel model, similar to device-based sensing.

2.1.3 Main Contributions

In this paper, we aim to devise practical solutions to achieve device-free sensing in a cel-

lular network, where multiple BSs and multiple mobile users send downlink and uplink com-

munication signals, respectively, while the BSs also collaboratively estimate the locations of

multiple passive targets based on the downlink communication signals reflected by the targets,

as illustrated in Fig. 2.1. In particular, we consider the orthogonal frequency division multiplex-

ing (OFDM) scheme for communication signal transmission, thus our results are compatible

with the 5G and beyond cellular networks. Under this setup, we propose advanced signal pro-

cessing techniques for localizing the passive targets based on their reflected OFDM signals

back to the BSs. The main contributions of this paper are summarized as follows.

• First, we propose a novel two-phase framework for device-free sensing as shown in Fig. 2.2.

Specifically, in Phase I, each BS estimates the values of its distance (also termed as range)

to the multiple targets by extracting the delay information embedded in the BS-target-BS
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Figure 2.2: Proposed two-phase framework for device-free sensing in OFDM-based ISAC cel-
lular networks.

channels; then, in Phase II, all the BSs share their range information through the fronthaul

links in the cellular network (as illustrated in Fig. 2.1), such that the location of each target

can be estimated based on the values of its distance to different BSs, similar to the ToA-based

localization approach [44, 45].

• Second, for Phase I in our considered framework, we propose a new model-free scheme to

estimate the values of the distance between the BSs and the targets. Specifically, we identify

that the signal propagation from the BSs to the targets and then back to the BSs automati-

cally forms a multi-path channel, where each BS-target-BS link can be viewed as a (delayed)

path between the transmitter and the receiver. Such channels are similar to those in wide-

band communications, thus the channels at different delayed taps can be efficiently estimated

using mature techniques in OFDM communications [56]. Note that if the channel tap asso-

ciated with a particular delay value is non-zero, a path causing that delay exists between the

transmitter and the receiver. Inspired by the above, we propose to first estimate the non-zero

channel taps and their associated delay values between the BSs and the targets, and then es-

timate the range of each target as half of the reflection delay multiplied by the speed of the

light. The range estimation accuracy is shown to increase with the channel bandwidth, thus

is practically high due to the sufficiently large bandwidth in future cellular networks (e.g.,

up to 400 MHz in the 5G network [57]). Note that in contrast to the conventional device-free

sensing approaches [18, 52–54], our proposed range estimation method does not depend on

the assumption of any BS-target channel model for extracting the distance information.

• Third, note that the target localization in Phase II of the proposed framework has a key

difference from the conventional ToA-based localization. Specifically, in ToA-based localiza-

tion, different active targets can transmit/receive signals with different signatures such that

each BS has a clear mapping between different ranges and different targets. On the contrary,

in device-free sensing, all the targets reflect the same signals to the BSs, thus the BSs do

not directly know how to match the ranges with the right targets. In the literature, such a

matching process is referred to as data acquisition [58], and it is well-known that an incor-

rect matching solution may result in ghost targets that do not exist [58, 59]. To tackle this
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challenge, we first consider the ideal case with perfect range estimation in Phase I, and prove

that ghost targets never exist when the number of BSs is more than twice of the number of

targets, and do not exist almost surely even when the number of BSs is much smaller than

the number of targets. As a result, the ghost target issue is not a fundamental limitation for

device-free sensing. Moreover, in the case with imperfect range estimation in Phase I, we

propose a maximum-likelihood (ML) based algorithm to match each range with the right

target, and then estimate the location of each target based on its matched distance values to

different BSs.

2.1.4 Organization

The rest of this paper is organized as follows. Section 2.2 describes the ISAC systemmodel.

Section 2.3 introduces the proposed framework for OFDM-based device-free sensing. Section

2.4 presents the method to estimate the values of distance between the BSs and the targets.

Section 2.5 studies the fundamental limits for the ghost target existence probability in the ideal

case with perfect range estimation; and Section 2.6 proposes an ML algorithm to estimate the

target locations with high accuracy and low ghost target detection probability in the practical

case with imperfect range estimation. At last, Section 2.7 concludes this paper and points out

some interesting future research directions.

2.2 System Model

2.2.1 Device-Free Sensing Network

In this paper, we consider an OFDM-based ISAC cellular system that consists of M ≥ 3

BSs,1 denoted by M = {1, . . . ,M}; I ≥ 1 mobile users with communication capability, de-

noted by I = {1, . . . , I}; and K ≥ 1 targets without communication capability, denoted by

K = {1, . . . ,K}, as illustrated in Fig. 2.1. Under a two-dimensional (2D) Cartesian coordinate

system, the locations of the k-th target and the m-th BS are denoted as (xk,yk) and (am,bm) in

meter (m), respectively, ∀k ∈ K and ∀m ∈M. Thus, the distance between the m-th BS and the

k-th target is given by dm,k =
√

(am − xk)2 +(bm − yk)2 m, and that between the m-th BS and
1We consider M ≥ 3 since at least 3 BSs are needed for localization even in device-based sensing where targets

can transmit/receive reference signals.
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Figure 2.3: Proposed FDD architecture at the BSs for ISAC.

the u-th BS is given by dBS
m,u =

√
(am −au)2 +(bm −bu)2 m, ∀k ∈ K and ∀m,u ∈ M.2 In the

above ISAC system, the BSs send downlink communication signals to the mobile users, while

the mobile users send uplink communication signals to the BSs. Moreover, the downlink com-

munication signals from the BSs are reflected by the targets back to the BSs, based on which

the cellular network can estimate the locations of the targets as well, similar to radar systems.

To simultaneously enable downlink communication, uplink communication, as well as

target sensing, this paper proposes a frequency-division duplexing (FDD) based ISAC frame-

work. Specifically, as shown in Fig. 2.3, each BS is equippedwith one transmit antennaworking

at frequency band 1 for transmitting the downlink communication signals to the mobile users,

one communication receive antenna working at frequency band 2 that is non-overlapping with

frequency band 1 for receiving the uplink communication signals from the mobile users, and

one sensing receive antenna working at frequency band 1 to receive the downlink signals re-

flected by the targets. Under this FDD architecture, the communication receive antennas will

not receive interference from the signals reflected by the targets, while the sensing receive an-

tennas will not receive interference from the uplink signals sent by the mobile users. However,

each sensing receive antenna will receive strong self-interference from the transmit antenna at

the same BS, since each BS works in the full-duplexing mode at frequency band 1. To deal with

this issue, we propose to use the techniques of RF isolation and digital-domain cancellation

together to mitigate the self-interference [60]. Specifically, RF isolation works well in practice

when the distance between the transmit and receive antennas is equal to 5−10 wavelengths of
2Similar to [44, 45, 59], this paper focuses on 2D localization for the purpose of exposition. In practice, the height

of each target is usually negligible as compared to that of a BS. Thus, withHm denoting the height of them-th BS, the
results in this paper can be directly applied by re-expressing dm,k and dBS

m,u as dm,k =
√
(am−xk)2+(bm−yk)2+H2

m

and dBS
m,u=

√
(am−au)2+(bm−bu)2+(Hm−Hu)2, respectively. On the other hand, when the height of each target

is non-negligible and needs to be accurately estimated, our results can also be extended to three-dimensional (3D)
localization by considering an additional height coordinate for each target.
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the RF signals. For example, considering a typical 5G carrier frequency at 3.5 GHz, the trans-

mit antenna and sensing receive antenna can be placed around 0.43−0.86 m away from each

other at each BS to achieve RF isolation. Then, since each BS knows its transmit signals, the

self-interference can be cancelled in the the digital domain efficiently. Note that in practice,

the distance between a remote target and the BS is much larger than the aforementioned RF

isolation distance between antennas. As a result, we assume in this paper that the distance

between target k and the transmit antenna at BS m as well as that between target k and the

sensing receive antenna at BS m are both equal to dm,k, ∀k ∈ K and ∀m ∈M, as illustrated in

Fig. 2.3.

2.2.2 Sensing Signal Model

Since the OFDM cellular communication technology is quite mature, in the rest of this

paper, we mainly study how to leverage the OFDM communication signals for sensing the

targets in our considered ISAC cellular system. Let N and ∆ f (in Hz) denote the number of

sub-carriers and the sub-carrier spacing of the downlink OFDM signals, respectively, thus the

channel bandwidth is B = N∆ f Hz. Then, in the baseband domain, define

χm = [χm,1, . . . ,χm,N ]
T =

√
pW Hsm, ∀m, (2.1)

as a time-domain OFDM symbol transmitted from BS m consisting of N OFDM samples,

χm,1, . . . ,χm,N , where p denotes the common transmit power at the BSs; sm = [sm,1, . . . ,sm,N ]
T

denotes the frequency-domain OFDM symbol with sm,n denoting the unit-power signal at the

m-th BS over the n-th sub-carrier; andW ∈CN×N denotes the discrete Fourier transform (DFT)

matrix with WW H =W HW = I . Note that the lengths of each OFDM symbol period and

each OFDM sample period are 1/∆ f seconds (s) and 1/(N∆ f ) s, respectively.

Before the beginning of each OFDM symbol, a cyclic prefix (CP) consisting of Q < N

OFDM samples is inserted to eliminate the inter-symbol interference. The overall time-domain

transmitted signal by the m-th BS for one OFDM symbol is thus expressed as

χ̄m =[χ̄m,−Q, . . . , χ̄m,−1︸ ︷︷ ︸
CP

, χ̄m,0, . . . , χ̄m,N−1︸ ︷︷ ︸
pilot or data

]T

=[χm,N−Q+1, . . . ,χm,N︸ ︷︷ ︸
CP

,χm,1, . . . ,χm,N︸ ︷︷ ︸
pilot or data

]T , ∀m. (2.2)
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In this paper, we neglect the signals that are reflected by more than one target since they

are generally too weak to be detected at the sensing receive antennas. The received signal at

the sensing receive antenna at each BS is thus the superposition of the receiver noise and the

downlink OFDM signals sent from all the M BSs, each reflected by all the K targets. Note that

this automatically constitutes amulti-path channel between the BSs’ transmit antennas and the

BSs’ sensing receive antennas, with each target serving as a scatter that causes a delayed path.

Let L denote the maximum number of resolvable paths, with L < Q. The received signal at the

sensing receive antenna at the m-th BS in the n-th OFDM sample period is thus expressed as

ym,n =
M

∑
u=1

L

∑
l=1

hu,m,l χ̄u,n−l + zm,n, ∀m,n, (2.3)

where hu,m,l denotes the complex channel for the path from the u-th BS to the m-th BS scattered

by a target that causes a delay of l OFDM sample periods, and zm,n ∼ CN (0,σ2
z ) denotes the

circularly symmetric complex Gaussian (CSCG) noise at the sensing receive antenna of the

m-th BS during the n-th OFDM sample period, with σ2
z denoting the average noise power.

After removing the first Q samples corrupted by the CP, the received signal at the sensing

receive antenna of the m-th BS over one OFDM symbol period can be expressed as

ym =
M

∑
u=1

Hu,mχu +zm, ∀m, (2.4)

where ym = [ym,1, . . . ,ym,N ]
T ; Hu,m is an N ×N circulant matrix with the first row defined as

[hu,m,1,0, · · · ,0,hu,m,L, · · · ,hu,m,2] ∈C1×N ; and zm = [zm,1, . . . ,zm,N ]
T ∼ CN (0,σ2

z I). After mul-

tiplying the time-domain signal by the DFT matrix, the received signal at the sensing receive

antenna of the m-th BS in the frequency domain is given by

ȳm =[ȳm,1, . . . , ȳm,N ]
T

=Wym =
√

p
M

∑
u=1

diag(su)Ghu,m + z̄m, ∀m, (2.5)

where hu,m = [hu,m,1, . . . ,hu,m,L]
T ; diag(su) is a diagonal matrix with the main diagonal being

su;G ∈CN×L with the (n, l)-th element being Gn,l = e
− j2π(n−1)(l−1)

N ; and z̄m = [z̄m,1, . . . , z̄m,N ]
T =

Wzm∼CN (0,σ2
z I) since WW H = I .
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2.3 Two-Phase Device-Free Sensing Framework

In this section, we propose a two-phase framework for device-free sensing based on the

signals received by the sensing receive antennas, as illustrated in Fig. 2.2.

2.3.1 Phase I: Range Estimation

First, in Phase I, each BS m estimates the channels between its transmit antenna and its

sensing receive antenna, hm,m,l ’s, l = 1, . . . ,L. A key observation is that if hm,m,l ̸= 0 for some l,

a target indexed by k̄m,l ∈ K exists, where the signal propagation from BS m to target k̄m,l and

then back to BS m experiences a delay of l OFDM sample periods. Hence, by recalling that the

duration of one OFDM sample period is 1/(N∆ f ) s, the distance (range) between target k̄m,l

and BS m (which is half of the propagated distance) lies in the following range set (in m):

Θ(l) =
{

d
∣∣∣∣(l −1)c0

2N∆ f
< d ≤ lc0

2N∆ f

}
, (2.6)

where c0 denotes the speed of the light (in m/s). In this case, we propose to estimate the

distance between the m-th BS and the k̄m,l-th target, dm,k̄m,l
, as the middle point in the above

range set Θ(l):

d̄m,k̄m,l
=

(l −1)c0

2N∆ f
+

c0

4N∆ f
, if h̄m,m,l ≥ δ0, (2.7)

where h̄m,m,l is the channel estimation for hm,m,l , and δ0 is a predefined constant. Note that

under the above estimation rule, the worst-case range estimation error is given by

|d̄m,k̄m,l
−dm,k̄m,l

| ≤ c0

4N∆ f
∆
= ∆d. (2.8)

For example, in 5G OFDM systems, the channel bandwidth is B = 100 MHz at the sub-6G

frequency band and B = 400 MHz at the mmWave band according to 3GPP Release 15 [57].

In this case, the worst-case range estimation errors are 0.75 m and 0.1875 m, respectively.

Since ∆d is practically very small, we assume in the sequel that the values of distance for any

two paths reflected back to a BS by two different targets differ by more than 2∆d, thus the

corresponding paths are resolvable. Therefore, there are K non-zero entries in each hm,m.
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After obtaining d̄m,k̄m,l
’s, each BS m has a range set consisting of the values of distance

(ranges) with the targets:

Dm = {d̄m,k̄m,l
|∀l satisfying h̄m,m,l ≥ δ0}, ∀m. (2.9)

For convenience, we define Dm(g) as the g-th largest element in Dm, ∀m. Moreover, define

gm,k’s as the mapping (or matching) between the element in Dm and the k-th target, such that

d̄m,k is the gm,k-th largest element in Dm, i.e.,

d̄m,k =Dm(gm,k), ∀m,k. (2.10)

In Section 2.4, we will introduce in details the estimation of hm,m,l ’s based on the signals

at the sensing receive antennas for obtaining the range sets Dm’s in Phase I.

2.3.2 Phase II: Localization Among BSs Based on Estimated Range

Next, in Phase II, all the BSs share their range sets Dm’s with each other via the cellular

fronthaul links, and jointly estimate the location of each target k based on the values of its

distance to the M BSs, {d̄1,k, . . . , d̄M,k}, ∀k. Note that in conventional device-based sensing for

active targets that can send/receive RF signals with different signatures, the BSs can know the

exact mapping between a range and a target, i.e., each BS m knows which element inDm is d̄m,k,

∀k. However, in our considered device-free sensing for passive targets without communication

capability, all the targets will reflect the same signals to the BSs. As a result, each BS m only

knows that the range of target k lies in the set Dm, but does not know which element in Dm

corresponds to this range, i.e., gm,k is unknown, ∀k. In this case, a wrong matching solution of

gm,k’s may lead to the detection of ghost targets (for which the exact definition will be given in

Section 2.5) that do not exist, as illustrated in Example 2.1.

Example 2.1. Suppose that there are M = 3 BSs and K = 2 targets. The coordinates of BSs 1, 2,

and 3 are (0,3), (5,0), and (0,−4), respectively, and the coordinates of targets 1 and 2 are (2,−2)

and (−2,2), respectively. Suppose that the BSs can perfectly estimate the ranges of targets, i.e.,

d̄m,k = dm,k, ∀m,k. Thus, we haveD1 = {
√

29,
√

5},D2 = {
√

13,
√

53}, andD3 = {2
√

2,2
√

10}.

The job of the BSs is to solve the set of equations
√

(am − xk)2 +(bm − yk)2 =D(gm,k), m =

1,2,3, k = 1,2, where xk’s, yk’s, and gm,k’s are all unknown variables. If the BSs set g1,1 = 1,
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Figure 2.4: An example with ghost targets. In (a), we have g1,1 = 1, g2,1 = 2, g3,1 = 2, g1,2 = 2,
g2,2 = 1, g3,2 = 1; in (b), we have g1,1 = 1, g2,1 = 1, g3,1 = 2, g1,2 = 2, g2,2 = 2, g3,2 = 1; in
(c), we have g1,1 = 1, g2,1 = 2, g3,1 = 1, g1,2 = 2, g2,2 = 1, g3,2 = 2; in (d), we have g1,1 = 1,

g2,1 = 1, g3,1 = 1, g1,2 = 2, g2,2 = 2, g3,2 = 2.

g2,1 = 2, g3,1 = 2 for sensing one target, and g1,2 = 2, g2,2 = 1, g3,2 = 1 for sensing the other

target, i.e., d1,1 = D1(1) =
√

29, d2,1 = D2(2) =
√

13, and d3,1 = D3(2) = 2
√

2 are used for

sensing one target, and d1,2 =D1(2) =
√

5, d2,2 =D2(1) =
√

53, and d3,2 =D3(1) = 2
√

10 are

used for sensing the other target, then the real targets (2,−2) and (−2,2) can be detected, as

shown in Fig. 2.4 (a). However, if the BSs set g1,1 = 1, g2,1 = 1, g3,1 = 2 for sensing one target

and g1,2 = 2, g2,2 = 2, g3,2 = 1 for sensing the other target, i.e., d1,1 = D1(1) =
√

29, d2,1 =

D2(1) =
√

53, and d3,1 =D3(2) = 2
√

2 are used for sensing one target, and d1,2 =D1(2) =
√

5,

d2,2 = D2(2) =
√

13, and d3,2 = D3(1) = 2
√

10 are used for sensing the other target, then two

ghost targets with coordinates (−2,−2) and (2,2) will be detected, as shown in Fig. 2.4 (b). Note

that under the other matching solutions, e.g., g1,1 = 1, g2,1 = 2, g3,1 = 1 for sensing one target

and g1,2 = 2, g2,2 = 1, g3,2 = 2 for sensing the other target, as shown in Fig. 2.4 (c), and g1,1 = 1,

g2,1 = 1, g3,1 = 1 for one target and and g1,2 = 2, g2,2 = 2, g3,2 = 2 for the other target, as shown

in Fig. 2.4 (d), no ghost target exists.

Although Example 2.1 indicates that ghost targets may be detected under certain setups,

it is worth noting that they do not always exist, as shown in the following example.

Example 2.2. Suppose that there are M = 3 BSs and K = 2 targets. The coordinates of BSs 1, 2,

and 3 are (0,3), (5,0) and (0,−4), respectively, and the coordinates of targets 1 and 2 are (−1,2)

and (2,−1), respectively. Similar to Example 2.1, suppose that the BSs can perfectly estimate the

ranges of targets, i.e., D1 = {
√

2,2
√

5}, D2 = {2
√

10,
√

10}, and D3 = {
√

37,
√

13}. If the BSs
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Figure 2.5: An example without ghost targets. In (a), we have g1,1 = 1, g2,1 = 2, g3,1 = 2,
g1,2 = 2, g2,2 = 1, g3,2 = 1; in (b), we have g1,1 = 1, g2,1 = 1, g3,1 = 2, g1,2 = 2, g2,2 = 2,
g3,2 = 1; in (c), we have g1,1 = 1, g2,1 = 2, g3,1 = 1, g1,2 = 2, g2,2 = 1, g3,2 = 2; in (d), we have

g1,1 = 1, g2,1 = 1, g3,1 = 1, g1,2 = 2, g2,2 = 2, g3,2 = 2.

set g1,1 = 1, g2,1 = 2, g3,1 = 2 for sensing one target and g1,2 = 2, g2,2 = 1, g3,2 = 1 for sensing the

other target, as shown in Fig. 2.5 (a), then the location of the real targets can be correctly estimated.

Otherwise, with the other matching solutions of gm,k’s, no ghost targets will be detected, as shown

in Fig. 2.5 (b), (c) and (d).

In Section 2.5, wewill study the fundamental limit of the ghost target detection probability

arising from the range matching issue at each BS; then, we will propose an ML algorithm to

solve the joint range matching and target localization problem to approach the above limit in

Section 2.6.

2.4 Phase I: Range Estimation

In this section, we propose a range estimation algorithm for obtaining d̄m,k̄m,l
’s as well as

Dm’s in Phase I, by estimating the multi-path channels hm,m,l ’s via OFDM channel estimation

techniques.

2.4.1 Algorithm Design

Note that each BS m only knows its own transmitted signals, i.e., sm, but does not know

the transmitted signals of the other BSs, i.e., su, ∀u ̸= m. As a result, the main challenge to
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estimate the channels based on the frequency-domain received signal in (2.5) at each BS lies in

the partial (instead of full) knowledge about the sensing matrix in (2.5). In the following, we

show that the above challenge can be tackled by the fractional frequency reuse technique that

is widely used in cellular networks to control the inter-cell interference. Specifically, suppose

that each BS m occupies a partial of the N sub-carriers denoted by the setNm ⊂ {1, . . . ,N}, i.e.,

sm,n = 0, ∀n /∈Nm, ∀m. (2.11)

For simplicity, define Nm(n) as the n-th smallest element in the set Nm. Moreover, adja-

cent BSs will be assigned with totally different sub-carrier sets under the fractional frequency

reuse scheme. Let ϒm denote the set of BSs that are far away from BS m and thus share

the same sub-carrier set with BS m, i.e., Nm = Nu holds ∀u ∈ ϒm. Under the above scheme

and according to (2.5), the received signal of BS m at its assigned sub-carriers, denoted by

ỹm = [ȳm,Nm(1), . . . , ȳm,Nm(|Nm|)]
T , is given by

ỹm =
√

pdiag(s̃m)G̃mhm,m + z̃m, ∀m, (2.12)

where s̃u = [su,Nu(1), . . . ,su,Nu(|Nu|)]
T , ∀u ∈M, G̃m = [gNm(1), . . . ,gNm(|Nm|)]

T with gT
n being the

n-th row ofG, and z̃m =
√

p∑u∈ϒm diag(s̃u)G̃mhu,m+[z̄m,Nm(1), . . . , z̄m,Nm(|Nm|)]
T is the effective

noise at BS m with weak interference caused by the distant BSs in the set ϒm.

Note that among the L elements in each hm,m, only K ≪ L of them are non-zero since

there are merely K scatters (targets) for each BS. Recovering the sparse channels hm,m’s based

on (2.12) is thus a compressed sensing problem, which motivates us to use the least absolute

shrinkage and selection operator (LASSO) [61] technique to estimatehm,m’s. Specifically, given

a carefully designed parameter λ ≥ 0,3 the LASSO problem for estimating each hm,m is formu-

lated as

minimize
hm,m

1
2
∥ȳm,m −√

pdiag(s̃m)G̃mhm,m∥2
2 +λ∥hm,m∥1. (2.13)

Note that (2.13) is a convex optimization problem, for which the optimal solution can be effi-

ciently obtained by CVX and serve as the estimated channel h̄m,m = [h̄m,m,1, . . . , h̄m,m,L]
T .4

3More details on LASSO can be found in [61].
4For the special case of rank(diag(s̃m)G̃m) = L (e.g., N/M ≥ L) where (2.12) describes an overdeter-

mined linear system, we can set λ = 0 in problem (2.13), which leads to the ML channel estimators h̄m,m =
(G̃H

mdiag(s̃m)diag(s̃m)G̃m)
−1G̃H

mdiag(s̃m)ỹm/
√

p, ∀m.
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Then, if h̄m,m,l ̸= 0 for some l, d̄m,k̄m,l
can be estimated via (2.7), and the range sets Dm’s

can be obtained via (2.9).

2.4.2 Numerical Examples

In the following, we provide a numerical example to evaluate the accuracy of the proposed

range estimation algorithm. Specifically, we set N = 3300 and ∆ f = 30 kHz such that B = 100

MHz [57]. According to [62], with ∆ f = 30 kHz, the length of the CP is 2.34 µs. To make

L < Q such that the CP can be cancelled at the BSs, we assume that the maximum number of

resolvable paths is L = 200. Moreover, we consider M = 4 BSs in the network, while each BS is

randomly assigned with N/M = 825 sub-carriers such thatNm
⋂
Nu = /0, ∀m ̸= u, i.e., ϒm = /0,

∀m. Under this setup, we randomly generate 105 independent localization realizations of the

M = 4 BSs and K targets, following uniform distribution over a 200 m × 200 m square. Given

the values of the BS-target distance, we can know the delay in terms of OFDM sample periods

from BS m to target k back to BS m, ∀m,k, according to (2.6). Define Lm as the set of K true

delay values in terms of OFDM sample periods caused by the K targets to BS m, ∀m. Then,

we estimate the channels hm,m’s by solving problem (2.13), and define L̄m = {l|h̄m,m,l ̸= 0, l =

1, . . . ,L} as the set of estimated delay values at BS m, ∀m. If there exists at least an m such that

Lm ̸= L̄m, we say that the range estimation is in error in this realization. Fig. 2.6 shows the

range estimation error probability versus the number of targets, K (ranging from 2 to 8), where

the BS transmit power is set as 6 Watt (W) and 8 W, respectively. It is observed that the range

estimation error probability is very low under our proposed scheme, and can be significantly

reduced by increasing the transmit power.

After d̄m,k̄m,l
’s and the range sets Dm’s are obtained, we need to study how the BSs can

cooperate with each other to localize the K targets based on Dm’s. As discussed at the end

of Section 2.3, the main challenge here lies in the lack of information about gm,k’s, i.e., each

BS m does not know how to match the ranges in Dm with the right targets, which may lead

to the detection of ghost targets instead of the true targets. In the following, we will first

consider the ideal case without error in estimating the values of the distance between the BSs

and targets, i.e., d̄m,k = dm,k, ∀m,k, and investigate the fundamental limit of the ghost target

detection probability in Section 2.5. Then, in Section 2.6, we will focus on the practical case

with possible error in estimating dm,k’s, and propose an ML algorithm to find a good matching

solution gm,k’s at each BS so as to minimize the target localization error.
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Figure 2.6: Range estimation error probability versus the number of targets.

2.5 Phase II: Localization with Perfect Range Estimation

In this section, we introduce the target localization in Phase II, assuming that the range

estimation based on (2.7) is perfect, i.e., d̄m,k = dm,k, ∀m,k, in order to derive the fundamental

limits and draw essential insights. This corresponds to the ideal case of an infinite channel

bandwidth such that ∆d = 0 in (2.8).

Note that in device-based sensing where each BS can distinguish the ranges of different

targets, the locations of the targets can be estimated by solving the following equations:

√
(am − xk)2 +(bm − yk)2 = dm,k, ∀m,k. (2.14)

It is well-known that three BSs are sufficient to localize the targets. However, in our considered

device-free sensing where each BS cannot distinguish the ranges of different targets, the BSs

need to solve the following equations to estimate the target locations:

√
(am − xk)2 +(bm − yk)2 =Dm(gm,k), ∀m,k, (2.15)

g1,k = k, ∀k, (2.16)

{gm,1, . . . ,gm,K}=K, ∀m > 2. (2.17)

Different from the device-based sensing equations in (2.14), under device-free sensing, gm,k’s

are also unknown variables in (2.15) that need to satisfy conditions (2.16) and (2.17), i.e., dif-

ferent ranges for each BS belong to different targets. In (2.16), we define target k as the target
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whose distance to BS 1 is the k-th largest element in D1, i.e., d1,k =D1(k), ∀k ∈K. The reason

is to mitigate the ambiguity in target indexing. To illustrate this, let us consider Example 2.1 in

Section 2.4. In Fig. 2.4 (a), under the matching solution of g1,1 = 1, g2,1 = 2, g3,1 = 2, g1,2 = 2,

g2,2 = 1, g3,2 = 1, the location of target 1 is (2,−2), while that of target 2 is (−2,2). However,

if we consider the matching solution of g1,1 = 2, g2,1 = 1, g3,1 = 1, g1,2 = 1, g2,2 = 2, g3,2 = 2,

the location of target 1 is (−2,2), while that of target 2 is (2,−2). In fact, these two matching

solutions lead to the same localization result. Thus, we add constraint (2.16) to avoid the above

ambiguity.

It is worth noting that in device-free sensing, the target locations may not be accurately

estimated by three BSs because there may be multiple solutions to equations (2.15), (2.16), and

(2.17) when M = 3, which leads to the existence of ghost targets, as shown in Example 1. In

the following, we propose an algorithm to detect the existence of ghost targets, and derive the

fundamental limit of ghost target existence.

2.5.1 Definition of Ghost Targets

First, we present the rigourous definition of ghost targets.

Definition 2.1. Define X = {(x1,y1), . . . ,(xK ,yK)} as the set of coordinates for all the K tar-

gets. Then, consider another coordinate set XG = {(xG
1 ,y

G
1 ), . . . ,(x

G
K ,y

G
K)} ̸= X and define

dG
m,k =

√
(am − xG

k )
2 +(bm − yG

k )
2, ∀m,k, (2.18)

DG
m = {dG

m,1, . . . ,d
G
m,K}, ∀m. (2.19)

We say K ghost targets exist with the coordinates shown in the set XG if and only if

Dm =DG
m, ∀m. (2.20)

In other words, besides X , XG is another solution to equations (2.15), (2.16), and (2.17).

2.5.2 Algorithm to Detect the Existence of Ghost Targets

Based on Definition 2.1, given any particular BS locations (am,bm)’s and range sets Dm’s,

we can efficiently check whether ghost targets exist as follows. First, since three BSs can
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locate any target if the matching solution is given, we can fix the matching solution for BS

1 as (2.16) and list all the feasible matching solutions for BSs 2 and 3 that satisfy condition

(2.17). In total, there are (K!)2 feasible matching solutions for BSs 2 and 3. Moreover, a feasible

matching solution for BSs 1, 2, and 3 should also satisfy the following triangle inequalities for

each target k:

|Dm1(gm1,k)−Dm2(gm2,k)| ≤ dBS
m1,m2

, ∀m1,m2 ∈ {1,2,3}, (2.21)

|Dm1(gm1,k)+Dm2(gm2,k)| ≥ dBS
m1,m2

, ∀m1,m2 ∈ {1,2,3}. (2.22)

To summarize, we can define a set consisting of all the feasible matching solutions for BSs 1,

2, and 3 as follows:

H={{g1,k,g2,k,g3,k}K
k=1|{g1,k,g2,k,g3,k}K

k=1 satisfies (2.16),

(2.17), and (g1,k,g2,k), (g1,k,g3,k), (g2,k,g3,k) satisfy

(2.21), (2.22), ∀k}. (2.23)

Usually, the cardinality ofH is much smaller than (K!)2 thanks to the utilization of the triangle

inequalities (2.21) and (2.22) to eliminate the infeasible matching solutions.

Then, for each matching solution for BSs 1, 2, and 3 in the setH, which is given by ḡm,k’s,

m = 1,2,3 and ∀k, we check whether there is a localization solution to the following equations:

√
(am − xk)2 +(bm − yk)2 =Dm(ḡm,k),m = 1,2,3, ∀k. (2.24)

If there is no solution, we can conclude that under all the matching solutions for all the BSs

where the matching solution to BSs 1, 2, and 3 is gm,k = ḡm,k, m = 1,2,3 and k = 1, . . . ,K, no

ghost target exists. Otherwise, if there is a solution denoted by {(x̄k, ȳk)}K
k=1 to the above

equations, we can use this solution to calculate D̄m, ∀m > 3, the elements of which are√
(am − x̄k)2 +(bm − ȳk)2’s, k ∈ K. If there exists an m̄ > 3 such that D̄m̄ ̸= Dm̄, then we can

conclude that under all the matching solutions for all the BSs where the matching solution to

BSs 1, 2, and 3 is gm,k = ḡm,k, m = 1,2,3 and k = 1, . . . ,K, no ghost targets exist. Otherwise,

if D̄m = Dm, ∀m > 3, then {(x̄k, ȳk)}K
k=1 is defined as a feasible localization solution, which

may be the locations of either the true targets or the ghost targets. After searching over all

the feasible matching solutions for BSs 1, 2, and 3 in the set H, if only one feasible solution of

{(x̄k, ȳk)}K
k=1 is found, it indicates that given this particular (am,bm)’s andDm’s, no ghost target
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Algorithm 1: Algorithm to Check Whether Ghost Target Exists
1 Input: (am,bm)’s and Dm’s, ∀m ∈M.
2 Initialization: Obtain the feasible matching solutions for BSs 1, 2, and 3 inH given in
(2.23). DefineH(t) as the t-th matching solution in H. Set t = 1 and τ = 0.

3 Repeat:
1. SetH(t) as the matching solution of BSs 1, 2, and 3, denoted by ḡm,k’s, m = 1,2,3 and

k = 1, . . . ,K;

2. Check whether there exists a localization solution to equations (2.24) given the above
matching solution. If there exists a solution, which is denoted by {(x̄k, ȳk)}K

k=1, then:

2.1 For each BS m > 3, set D̄m = {
√

(am − x̄k)2 +(bm − ȳ2
k)|k = 1, . . . ,K};

2.2 Check whether D̄m =Dm, ∀m > 3, holds. If this is true, set τ = τ +1.

3. Set t = t +1.

Until t = |H|.
Output: If τ = 1, no ghost target exists; otherwise, if τ > 1, ghost target exists.

exists. Otherwise, if multiple feasible solutions of {(x̄k, ȳk)}K
k=1 are found, then ghost targets

exist given this (am,bm)’s and Dm’s. A summary of this algorithm is given in Algorithm 1.

2.5.3 Fundamental Limit for Existence of Ghost Target

Note that Algorithm 1 can help us determine whether ghost target exists given any

(am,bm)’s and Dm’s. In the following, we aim to show some stronger results about the fun-

damental limit of the ghost target detection probability merely given the BS locations, i.e.,

(am,bm)’s, but regardless of the range sets Dm’s. To achieve this goal, given any target coordi-

nate set X and another set XG ̸= X consisting of K pairs of coordinates, define

X C = X
⋂

XG, (2.25)

X̃ = X/X C, (2.26)

X̃G = XG/X C, (2.27)

whereA/B = {x|x ∈A and x /∈ B}. As a result, X C is the set of common coordinates in X and

XG, while X̃ and X̃G consist of the distinct parts in X and XG. Then, define

Sk,q = {m|dm,k = dG
m,q,∀m}, ∀k,q, (2.28)
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as the set of BSs whose distance values to (xk,yk) and (xG
q ,y

G
q ) are the same, where dG

m,q is

given in (2.18). Note that if (xk,yk) = (xG
q ,y

G
q ) ∈ X C, then Sk,q =M. Otherwise, if (xk,yk) ∈ X̃

and (xG
q ,y

G
q ) ∈ X̃G such that (xk,yk) ̸= (xG

q ,y
G
q ), then all the BSs in the set Sk,q must be on the

perpendicular bisector of the line segment connecting (xk,yk) and (xG
q ,y

G
q ). In the following,

we provide one BS deployment topology where ghost target never exists no matter where the

true targets are.

Theorem 2.2. Suppose that range estimation is perfect at all BSs. If M ≥ 2K +1 and any three

of the BSs are not deployed on the same line, then no matter where the K targets are, ghost target

does not exist.

Proof. We prove Theorem 2.2 by contradiction. Suppose that there exists a coordinate set for

the K true targetsX = {(x1,y1), . . . ,(xK ,yK)} such that K ghost targets exist with a coordinate

setXG = {(xG
1 ,y

G
1 ), . . . ,(x

G
K ,y

G
K)} ̸=X . Let us consider a coordinate (xk,yk)∈X which however

does not appear in XG, i.e., (xk,yk) ∈ X̃ defined in (2.26). In this case, the BSs in the set Sk,q

should be on the perpendicular bisector of the line segment connecting (xk,yk) and (xG
q ,y

G
q ),

∀q ∈ K. Since any three BSs are not deployed on the same line, we have |Sk,p| = 0, 1, or 2,

∀q ∈ K. It thus follows that
K
∑

q=1
|Sk,q| ≤ 2K < M. In other words,

⋃
q∈KSk,q ̸= M, and there

exists an m ∈ M such that m /∈
⋃

q∈KSk,q. This indicates that dm,k is not in the set DG
m and

Dm ̸= DG
m , which contradicts (2.20) in Definition 2.1. Therefore, if M ≥ 2K + 1 and any three

BSs are not deployed on the same line, then there never exist ghost targets no matter where

the K true targets are. Theorem 2.2 is thus proved.

The key condition for Theorem 2.2 is M ≥ 2K+1. It is worth noting that if this condition

does not hold, there may exist some target locations that can lead to ghost targets, as shown

in Example 2.1, where M = 3 and K = 2. Interestingly, the following theorem shows that even

if M < 2K +1, when the targets are located independently and uniformly in the network, the

probability that these targets happen to be at the locations that can lead to ghost targets is zero.

Theorem 2.3. Suppose that range estimation is perfect at all BSs. If M ≥ 4 and any three of

the BSs are not deployed on the same line, then given any finite number of targets, ghost target

does not exist almost surely when the true targets are located independently and uniformly in the

network.

Proof. Please refer to Appendix 7.1.
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Figure 2.7: Examples of the BS deployment strategies shown in Lemma 2.4 for detecting K = 2
targets with M = 4 BSs.

In the following, we provide a toy example with M = 4 BSs and K = 2 targets to help

understand Theorem 2.3.

Lemma 2.4. Suppose that range estimation is perfect at all BSs. Consider the case of M = 4 and

K = 2, where any three of the BSs are not deployed on the same line. If the line connecting any two

BSs is not perpendicular to the line connecting the other two BSs, then no matter where the K true

targets are, there never exist ghost targets. If there exist two BSs such that the line connecting them

is perpendicular to the line connecting the other two BSs with an intersection point (x0,y0), then

there exist ghost targets only when the coordinates of the two true targets satisfy x1+x2 = 2x0 and

y1+y2 = 2y0, i.e., the intersection point (x0,y0) is the middle point of the line segment connecting

the two true targets.

Proof. Please refer to Appendix 7.2.

The BS deployment strategies of Lemma 2.4 are shown in Fig. 2.7 with M = 4 BSs, where

ghost targets never exist regardless of the location of the K = 2 true targets under the strategy

shown in Fig. 2.7(a), and may exist given some special target location, i.e., x1 + x2 = 2x0 and

y1 + y2 = 2y0, under the strategy shown in Fig. 2.7(b). Lemma 2.4 indicates that even if the

BSs are deployed as in Fig. 2.7 (b), ghost targets do not exist almost surely if the targets are

located independently and uniformly in the network, because the probability of the event of

x1 + x2 = 2x0 and y1 + y2 = 2y0 is zero in a four-dimension space constructed by x1,x2,y1,y2.

We also implement tremendous Monte Carlo simulations to verify Theorem 2.3, where

we set M = 4 and K up to 20. For each value of K, we generate 105 realizations, where BS and

target locations are generated independently and randomly under the uniform distribution in

each realization, similar to the setup for Fig. 2.6. Based on the generated locations of BSs and
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targets, we use Algorithm 1 to check whether ghost target exists. It is observed that no ghost

target is detected in any realization.

Theorems 2.2 and 2.3 provide a theoretical guarantee to the performance of our proposed

two-phase device-free sensing framework. Specifically, compared to device-based sensing, a

key issue in device-free sensing is the potential existence of ghost targets as pointed out in

the above. However, Theorems 2.2 and 2.3 imply that this issue is actually not the bottleneck

under our considered framework, since the ghost target never exists, or does not exist almost

surely, depending on the relationship between the number of BSs and that of the targets.

Despite the above results, matching each range with the right target is a main technical

challenge for implementing device-free sensing compared to implementing device-based sens-

ing, although such a matching will not degrade the fundamental performance as explained

above. In the next section, we study the range matching at the BSs for localization for the

practical case with imperfect range estimation in Phase I.

2.6 Phase II: Localization with Imperfect Range Estimation

In this section, we consider the practical case when the range estimation is imperfect in

Phase I due to the limited bandwidth, i.e., d̄m,k shown in (2.7) is not equal to dm,k, ∀m,k. In this

case, we propose an ML-based algorithm to estimate the locations of the targets based on the

knowledge of the BS locations, i.e., (am,bm)’s, and the target range sets, i.e., Dm’s.

2.6.1 Algorithm Design

Similar to [44, 59], in the rest of this paper, we assume that the estimated range shown in

(2.7) follows

d̄m,k = dm,k + εm,k,∀m,k, (2.29)

where εm,k ∼CN (0,σ2
m,k) denotes the error for estimating dm,k and εm,k’s are independent over

m and k. Based on the above range estimationmodel, for each BSm and target k, the conditional

probability for the event that d̄m,k is the gm,k-th largest element in Dm, i.e., d̄m,k = Dm(gm,k),
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given (xk,yk) and gm,k, is

fm,k(Dm(gm,k)|xk,yk,gm,k)

=
1√

2πσm,k
e
−

(Dm(gm,k)−
√

(am−xk)
2+(bm−yk)

2)2

2σ2
m,k , ∀m,k. (2.30)

Define G = {gm,k|m = 1, . . . ,M,k = 1, . . . ,K}. Then, the ML problem to estimate the loca-

tions of all the K targets can be formulated as

maximize
X ,G

K

∏
k=1

M

∏
m=1

fm,k(Dm(gm,k)|xk,yk,gm,k) (2.31)

subject to (2.16),(2.17).

Note that different from the device-based sensing problem, the matching solutions gm,k’s need

to be jointly optimized with the target locations in our considered device-free sensing problem,

since each BS m does not know the matching between the elements in Dm and the targets.

Based on (2.30), problem (2.31) can be simplified into the following problem

minimize
X ,G

K

∑
k=1

M

∑
m=1

(Dm(gm,k)−
√

(am−xk)2 +(bm−yk)2)2

σ2
m,k

(2.32)

subject to (2.16),(2.17).

Problem (2.32) is a non-convex optimization problem, which is thus difficult to solve. Nev-

ertheless, it is worth noting that given any matching solution satisfying conditions (2.16) and

(2.17), denoted by gm,k = ḡm,k, ∀m,k, problem (2.32) can be decoupled into K subproblems, each

being formulated as follows for estimating the location of target k:

minimize
xk,yk

M

∑
m=1

(Dm(ḡm,k)−
√
(am − xk)2 +(bm − yk)2)2

σ2
m,k

. (2.33)

Similar to the device-based localization scenario, problem (2.33) given the matching solution is

a nonlinear least squared problem, which can be solved efficiently by using the Gauss-Newton

algorithm [63, 64]. As a result, problem (2.32) can be solved in a straightforward manner based

on the exhaustive search method. Specifically, given any matching solution gm,k = ḡm,k’s sat-

isfying (2.16) and (2.17), we can solve problem (2.33) to obtain the locations of all the targets

and check the corresponding objective value of problem (2.32). Then, after all the matching
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solutions satisfying (2.16) and (2.17) are searched, we can select the matching solution that

minimizes the objective function of problem (2.32). However, the above approach based on ex-

haustive search is of prohibitively high complexity in practice. Specifically, there are (K!)M−1

differentmatching solutions for gm,k’s satisfying (2.16) and (2.17). Moreover, given each feasible

matching solution, we need to solve the complex optimization problem (2.33) for K times (each

corresponding to one target). This thus motivates us to propose a low-complexity algorithm

for solving problem (2.32).

To this end, we first note that some matching solutions can be easily determined to be

infeasible with very high probability under imperfect range estimation. For instance, for any

two range setsDm1 andDm2 , ifDm1(gm1,k) andDm2(gm2,k) do not satisfy the triangle inequalities

for target k, i.e.,

|Dm1(gm1,k)−Dm2(gm2,k)| ≤ dBS
m1,m2

+δ0, ∀m1,m2, (2.34)

|Dm1(gm1,k)+Dm2(gm2,k)| ≥ dBS
m1,m2

−δ0, ∀m1,m2, (2.35)

where δ0 > 0 is some given value, then (gm1,k,gm2,k) is not a feasible matching solution for

target k with very high probability. Note that different from (2.21) and (2.22) for the case of

perfect range estimation, we put a margin δ0 here considering the imperfect estimation of

dm,k’s.

Inspired by the above property, we propose a low-complexity algorithm to solve problem

(2.32) as follows. First, we just consider BSs 1, 2, and 3. Define the set of feasible matching

solutions for these 3 BSs as

G(3) ={{g1,k,g2,k,g3,k}K
k=1|{g1,k,g2,k,g3,k}K

k=1 satisfies

(2.16), (2.17), and (g1,k,g2,k), (g1,k,g3,k), (g2,k,g3,k)

satisfy (2.34), (2.35), ∀k}. (2.36)

Next, given any {ḡ1,k, ḡ2,k, ḡ3,k}K
k=1 ∈ G(3), we solve problem (2.33) by setting M = 3 to

find the location of target k, ∀k. Let (x(3)k ,y(3)k )’s, k = 1, . . . ,K, denote the obtained solutions.

Then, given these solutions, we can check the distance from any target k to any BS m > 3 as

d̄(3)
m,k =

√
(am − x(3)k )2 +(bm − y(3)k )2. (2.37)
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Note that for any BS m > 3, it does not know which element in Dm is the distance of target k

to it. If BS m > 3 decides that gm,k = k̃, then we define a cost for this decision as

∆dm,k,k̃ = |Dm(k̃)− d̄(3)
m,k|, ∀k, k̃, and m > 3. (2.38)

As a result, the cost for BS m > 3 to select gm,k = k̃ is the error for using d̄(3)
m,k to replace Dm(k̃).

Define the indicator functions for matching as follows:

βm,k,k̃ =

 1, if gm,k is set to be k̃,

0, otherwise,
∀k, k̃,m > 3. (2.39)

Note that for each BS m > 3, (2.17) indicates that any k̃ can only be assigned to one target.

Moreover, for any target k, only one k̃ can be assigned to it. As a result, we have the following

constraints for the indicator functions:

K

∑
k=1

βm,k,k̃ = 1, ∀k̃ and m > 3, (2.40)

K

∑
k̃=1

βm,k,k̃ = 1, ∀k and m > 3. (2.41)

Define Bm = {βm,k,k̃|∀k, k̃ ∈K}, ∀m > 3. Given the estimated target locations (x(3)k ,y(3)k )’s,

we aim to find a matching solution for each BS m > 3 such that the overall mismatch between

d̄m,k’s and d̄(3)
m,k’s for all the targets is minimized, for which we formulate the following opti-

mization problem for any BS m > 3:

minimize
Bm

K

∑
k=1

K

∑
k̃=1

βm,k,k̃∆dm,k,k̃ (2.42)

subject to (2.40),(2.41).

Problem (2.42) is an assignment problem, which can be efficiently solved by the Hungarian

algorithm [65]. After solving problem (2.42) for all the BSs m > 3, we can find the matching

solutions of gm,k’s for these BSs based on (2.39).

Given any feasible matching solutions for BSs 1, 2, and 3 denoted by {ḡ1,k, ḡ2,k, ḡ3,k}K
k=1 ∈

G(3), after the assignment problem (2.42) is solved for the other BSs, the matching solutions for

all the M BSs, denoted by {ḡ1,k, . . . , ḡM,k}K
k=1, are known. Then, by plugging these matching
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solutions of all the M BSs into problem (2.33), we can get a better estimation of the K target

locations, which is denoted by (x(M)
k ,y(M)

k ), k = 1, . . . ,K. According to (2.32), the overall cost

for choosing the matching solutions of BSs 1, 2, and 3 as {ḡ1,k, ḡ2,k, ḡ3,k}K
k=1 ∈ G(3) is defined

as

Γ({ḡ1,k, ḡ2,k, ḡ3,k}K
k=1)

=
M

∑
m=1

K

∑
k=1

(Dm(ḡm,k)−
√

(am − x(M)
k )2 +(bm − y(M)

k )2)2

σ2
m,k

. (2.43)

At last, after searching all the feasible matching solutions of BSs 1, 2, and 3 in the set G(3)
K ,

we can select the one that can minimize the above overall error as follows

{g∗1,k,g
∗
2,k,g

∗
3,k}K

k=1

=arg min
{g1,k,g2,k,g3,k}K

k=1∈G(3)
Γ({g1,k,g2,k,g3,k}K

k=1). (2.44)

Then, the optimal matching solution of the other BSs and the optimal location solution of all

the targets can be obtained via solving problem (2.42) and problem (2.33), respectively.

The above procedure for solving problem (2.32) is summarized in Algorithm 2. As com-

pared to the exhaustive search based method, the complexity of Algorithm 2 is significantly

reduced. First, instead of searching over all the (K!)(M−1) matching solutions of all the BSs

that satisfy (2.16) and (2.17), under our proposed algorithm, we merely search over the feasible

matching solutions of BSs 1, 2, and 3, i.e., G(3) given in (2.36), as shown in problem (2.44). Note

that there are at most (K!)2 solutions in G(3) satisfying constraints (2.16) and (2.17); moreover,

under constraints (2.34) and (2.35), the number of matching solutions in G(3) is usually much

smaller than (K!)2. Second, under our proposed algorithm, given any matching solutions for

BSs 1, 2, and 3, each BS m > 3 can independently obtain its own matching solution by solv-

ing problem (2.42), instead of collaborating with the other BSs to jointly obtain their matching

solutions.

2.6.2 Numerical Examples

In the following, we provide numerical examples to verify the effectiveness of Algorithm

2 for target localization, under the setup with M = 4 BSs and 2 ≤ K ≤ 7 targets.
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Algorithm 2:ML-Based Algorithm to Solve Problem (2.32) for Target Localization
1 Input: (am,bm)’s and Dm’s, ∀m ∈M.
2 Initialization: Obtain the feasible matching solutions for BSs 1, 2, and 3 in G(3) given in
(2.36). Define G(3)(t) as the t-th matching solution in G(3). Set t = 1.

3 Repeat:
1. Set G(3)(t) as the matching solutions of BSs 1, 2, and 3, denoted by {ḡ1,k, ḡ2,k, ḡ3,k}K

k=1;

2. Solve problem (2.33) via the Gauss-Newton algorithm by setting M = 3 to get an
estimation of target locations via BSs 1, 2, and 3, denoted by {(x(3)k ,y(3)k )}K

k=1;

3. Calculate ∆dm,k,k̃’s based on (2.38), ∀k, k̃,m > 3, and solve problem (2.42) via the
Hungarian algorithm to obtain the matching solution of BSs 4, . . . ,M, denoted by
{ḡ4,k, . . . , ḡM,k}K

k=1;

4. Solve problem (2.33) given {ḡ1,k, . . . , ḡM,k}K
k=1 to get a better estimation of target

locations via all the BSs, denoted by {(x(M)
k ,y(M)

k )}K
k=1;

5. Calculate Γ({ḡ1,k, . . . , ḡ3,k}K
k=1) based on (2.43);

6. Set t = t +1.

Until t = |G(3)|.
Output:
1). Obtain the optimal matching solutions for BSs 1, 2, and 3 via solving problem (2.44),
denoted by {g∗1,k,g

∗
2,k,g

∗
3,k}K

k=1.
2). Obtain the optimal matching solutions for BSs 4, . . . ,M via solving problem (2.42),
denoted by {g∗4,k, . . . ,g

∗
M,k}K

k=1.
3). Obtain the optimal locations of all the K targets via solving problem (2.33), denoted by
{(x∗k ,y∗k)}K

k=1.

First, we consider the case where the channel bandwidth is B = 100 MHz at the sub-6G

band [57], and the worst-case range estimation error shown in (2.8) is ∆d = 0.75 m. We assume

that the BSs and targets are uniformly and randomly located in a 240 m × 240 m square, and

generate 105 independent realizations of their locations. In each realization, we first estimate

Dm’s based on (2.7), and then localize the targets by Algorithm 2 given Dm’s, where an error

event for localizing a target is defined as the case that the estimated location is not lying within

a radius of r m from the true target location. Let Nerror denote the total number of error events

in these 105 realizations. Then, the location estimation error probability is defined as Nerror
K×105 .

Note that Algorithm 2 is designed based on the range estimation model in (2.29), where the

estimation error is modeled as a Gaussian random variable, rather than the true range model in

(2.7). To show that (2.29) is a good approximation of (2.7), in each realization, we also generate

Dm’s based on (2.29) with σ2
m,k = σ2, ∀m,k, as the input of Algorithm 2, and evaluate the

corresponding location estimation error probability.
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Figure 2.8: Location estimation error probability versus the number of targets with B = 100
MHz.

Considering r = 1.5 m and r = 2.5 m, Fig. 2.8 shows the location estimation error proba-

bility achieved by Algorithm 2 under the true range estimation model in (2.7) with worst-case

error of ∆d = 0.75 m and the approximated model in (2.29) with σ2 = 0.2025 or σ2 = 0.25.

It is observed that under the true range estimation model, the error probability to estimate

the locations of K = 7 targets is below 4% and 1.6% with r = 1.5 m and r = 2.5 m, respec-

tively. Therefore, the estimation accuracy of our proposed scheme is in the order of meter

with a probability higher than 95% when the channel bandwidth is B = 100 MHz. Moreover,

it is observed that when σ2 = 0.2025 in model (2.29), the performance achieved under this

approximated model is very close to that achieved under the true range model (2.7). Thus, it is

reasonable to use the Gaussian range model (2.29) in Algorithm 2 for localization in practical

systems.

Next, we consider the case where the channel bandwidth is B = 400 MHz at the mmWave
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Figure 2.9: Location estimation error probability versus the number of targets with B = 400
MHz.

band [57]. In this case, the worst-case range estimation error shown in (2.8) is reduced to

∆d = 0.1875 m, and the length of CP is 0.585 µs according to [62]. We assume that the BSs

and users are located uniformly in an 80 m × 80 m square.5 Moreover, we set r = 0.6 m and

r = 1 m, respectively. Under the above setup, Fig. 2.9 shows the location estimation error

probability achieved by Algorithm 2 under the true range estimation model (2.7) with worst-

case error of ∆d = 0.1875 m and the approximatedmodel (2.29) with σ2 = 0.01 or σ2 = 0.0225.

It is observed that the estimation accuracy of our proposed scheme is in the order of decimeter

with a probability higher than 95% when the channel bandwidth is B = 400 MHz, thanks to

the reduced worst-case estimation error due to the increased bandwidth.
5In this case, the maximum value of distance between a target and a BS such that the delay spread can be

compensated by the CP (i.e., L < Q) is 0.585×10−6 × c0/2 = 87.75 m, thus we consider an 80 m × 80 m region.
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2.7 Concluding Remarks

In this paper, we proposed a novel two-phase framework for device-free sensing in an

OFDM cellular network to achieve ISAC. In Phase I, the delay of each BS-target-BS path is

obtained based on the OFDM channel estimation technique for range estimation; while in

Phase II, each BS matches each estimated range with the right target such that the locations

of the targets can be estimated based on their values of distance with different BSs. Compared

with existing device-free sensing techniques, the proposed framework does not depend on any

specific channel model for range estimation in Phase I. Moreover, different from the legacy

device-based sensing techniques, this paper proposed a range matching algorithm in Phase

II to avoid the detection of ghost targets and analytically proved that the ghost target issue

actually is not a fundamental limitation for device-free sensing.

There are a number of directions alongwhich the device-free sensing framework proposed

in this paper can be further enriched. For example, it is interesting to investigate how to

deploy the BSs in the cellular network not only to improve the communication throughput, but

also to reduce the ghost target existence probability when the range estimation is imperfect.

Moreover, in practice, signals reflected by other objects, e.g., buildings, may also be received

by the sensing receive antennas. It is thus crucial to explore clutter suppression techniques to

avoid such interference under the proposed framework.



Chapter 3

Joint LOS Identification and Data

Association for 6G-Enabled

Networked Device-Free Sensing

In Chapter 2, we focus on the case that merely line-of-sight (LOS) paths exist between the

targets and the BSs. In this Chapter, we explores networked device-free sensing in an OFDM

cellular system with a multipath environment, where non-line-of-sight (NLOS) paths exist and

the cooperative BSs are not synchronized. Similarly, a two-phase protocol is considered, where

target range information and time offsets among BSs are estimated in Phase I, and target loca-

tions are estimated in Phase II.

3.1 Introduction

3.1.1 Background and Motivations

Recently, integrated sensing and communication (ISAC) has been listed as one of the

six key usage scenarios in the future sixth-generation (6G) cellular network by International

Telecommunication Union (ITU)[66]. Under the ISAC technology, a common radio signal can

be used for conveying messages and sensing the environment simultaneously. It is expected

that the ISAC technology can play an active role in traffic monitoring at Smart Transportation,

fall detection at Smart Hospital, robot tracking at Smart Factory, etc.

41
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Motivated by the significance of the ISAC technology in the 6G network, a lot of attempts

for this emerging direction have been made. Many prior works focus on investigating the

performance balance between the capacity of communication and the estimation distortion

in radar systems[38, 67, 68], because the optimal waveforms for the communication signals

and the sensing signals are quite different [20]. Apart from the performance optimization,

there are also works investigating practical signal processing techniques for embedding the

sensing function into the 6G cellular network. For instance, efficient algorithms have been

proposed such that a BS can extract the range/angle/Doppler information of the targets based

on the OFDM signals [29, 30], the orthogonal time frequency space (OTFS) signals [27], and

the millimeter wave signals [31], that are reflected by these targets. Moreover, [32, 33] have

devised powerful estimation schemes such that a mobile user can utilize the cellular signals

for realizing simultaneous localization and mapping (SLAM).

It is worth noting that the above works mainly consider the scenario where localization

is performed with one transmitter and one collocated/separate receiver, as in the monostat-

ic/bistatic radar systems. Inspired by cooperative communication techniques such as cloud

radio access network (C-RAN) [69–71], we are interested in the networked device-free sensing

setup [72–74], where the targets passively reflect the OFDM signals emitted by the BSs for

downlink communication, and the BSs share the local sensing information obtained from their

received echoes to jointly localize these targets, as shown in Fig. 3.1. The goal of this paper is

to provide practical solutions for incorporating the sensing functions into the cellular network,

such that ubiquitous sensing can also be realized in future 6G cellular networks.

3.1.2 Prior Works

There are many interesting and important explorations made for network-level sensing,

as discussed in the following.

3.1.2.1 Networked Device-based Sensing

In networked device-based sensing, the targets are able to transmit signals actively such

that the mapping between the measurements at each BS and the targets can be known based on

the signal signature[72]. In this case, if LOS paths can be identified, all BSs can cooperatively

localize each target, e.g., time-of-arrival (ToA) based method and angle-of-arrival (AoA) based
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method [75]. Therefore, it is important to mitigate NLOS paths in networked device-based

sensing, which has been well surveyed in various works [76–78]. The simplest way is that the

LOS path is assumed to be the shortest and/or the strongest one among all paths, but it may

be affected by obstacles in the environment[76]. In [79], it is observed that the AoA/ToA of

the LOS path has a smaller variation over several continuous packets than that of the NLOS

path, which is leveraged for identifying the LOS path. The distance bias of NLOS path caused

by other objects is modeled as some certain probability distribution[80, 81]. By leveraging the

modeled probability distribution, the maximum likelihood (ML) based algorithm is proposed

to estimate the locations of targets. Moreover, the prior knowledge of statistics of LOS path

and NLOS path is assumed to be known in [82]. Then, the likelihood-ratio tests for LOS/NLOS

identification are conducted to localize the target.

3.1.2.2 Network Device-free Sensing

When the targets are passive and not equippedwith communication functions, device-free

sensing is leveraged to estimate their locations. For example, when monitoring unregistered

UAVs in the sky, each UAV will have LOS paths to most BSs and they can only be localized via

signal echoes. Similarly, the LOS paths between targets and BSs should also be identified for

target localization. On the other hand, as pointed out by [83] where there is no NLOS path

or LOS blockage, the data association between ranges of LOS paths and targets also needs to

be addressed in networked device-free sensing. Specifically, each BS does not know which

(range of) LOS path belongs to which target, since the signatures of signals reflected by all tar-

gets are the same. To associate measurements with targets, plenty of pioneering and excellent

algorithms have been presented in previous works. One straightforward way is the nearest

neighbor (NN) method, which directly associates the most likely measurement to each target.

However, the same measurement may be allocated to two or more targets, which is not appli-

cable to the case that one measurement is associated with at most one target, e.g., when any

two targets can be distinguished in the range/angle domain. The problem of globally assigning

the measurements to the targets can be formulated as a multi-dimensional assignment (MDA)

problem[84, 85]. When the dimension of the MDA problem is two, it is a linear assignment

problem, which can be solved in polynomial time via the Hungarian algorithm[65]. When the

dimension exceeds two, it is an NP-hard problem, which can be solved by branch and bound

algorithm and Lagrangian relaxation algorithm [84, 85]. Instead of only retaining the best data

association in the MDA method, the PDA and JPDA methods consider each kind of possible
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data association hypothesis [86, 87]. Different from considering data association hypotheses at

one snapshot, the hypotheses over several consecutive snapshots are jointly taken into account

in the MHT method[88].

However, these works mainly focus on multiple target tracking (MTT), where prior infor-

mation about target locations is available for associating measurements with targets at each

time slot. With prior target locations as a reference, each BS can individually associate its

measurements with these targets. Nevertheless, the locations of targets are unknown in our

considered framework, where all BSs need to jointly localize passive targets only based on the

obtainedmeasurements. More importantly, LOS identification and data association are coupled

together in networked device-free sensing, because each BS does not know either the mapping

between paths and targets or that between ranges of LOS paths and targets. In detail, each BS

should not only mitigate NLOS paths and identify which BSs have the range information about

a particular target, but also perform data association between ranges of identified LOS paths

and targets. To our best knowledge, there is a lack of research works that jointly consider the

LOS identification and data association problem under networked device-free sensing. Multi-

ple passive target localization in a multi-path environment is studied in [89], but the mapping

constraint between targets and ranges is ignored. Specifically, it is assumed that each range can

be associated with multiple targets due to low range resolution, which will lead to a high prob-

ability of the existence of undesired targets. Motivated by this, we propose to jointly tackle the

issues of LOS identification and data association under networked device-free sensing, where

any two targets can be distinguished in the range domain thanks to the high range resolution

provided in the future 6G cellular network.

3.1.3 Main Contributions

In this paper, we study the networked device-free sensing technique in the OFDM cel-

lular network. As shown in Fig. 1, multiple BSs transmit downlink OFDM signals to convey

messages to mobile users. At the same time, each target reflects the OFDM signals to the BSs

via the NLOS paths and/or LOS paths. Under this setup, we consider a two-phase protocol to

perform networked sensing via BS cooperation. In Phase I, based on its received signals emit-

ted by various BSs, each BS estimates the ranges of all the LOS paths and NLOS paths to it. In

Phase II, all the BSs transmit their range information obtained in Phase I to the cloud over the
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Cloud

BS 1

BS 2

BS 3

Target 1

Target 2

Obstacle

Blocked LOS link

Figure 3.1: System model of our considered networked device-free sensing architecture. The
BSs are connected to the central processor via fronthaul links to share the range estimations.
For wireless propagation, there are Type I paths (e.g., the path from BS 1 to BS 3), Type II
paths (e.g., the path from BS 1 to Target 1 to BS 2), Type III paths (e.g., the path from BS 2 to
the building to Target 1 back to BS 3), and LOS blockage (Target 2 cannot be detected by BS 1

due to the obstacle).

optical fibers, such that the global range information can be utilized to estimate the number

and the locations of the targets. Our contributions are summarized as follows.

• First, in practice, the BSs are not perfectly synchronized. The difference between the

clocks at two BSs is defined as the sampling timing offset (STO). For OFDM communi-

cation, it is known that as long as the STO is shorter than the length of the cyclic prefix

(CP), the effect of STO on communication can be mitigated by removing the CP [90, 91].

However, such an approach cannot mitigate the effect of STO on sensing. Specifically,

due to the STO, the estimated propagation delay from a transmitting BS to a target to the

receiving BS is the sum of the true propagation delay and the STO between the transmit-

ting and the receiving BSs. Therefore, STO will affect the accuracy of range estimation

in Phase I. In this paper, we design an efficient method that can estimate both the STO

and the effective propagation delay including the STO based on the sparse optimization

technique. Therefore, the true propagation delay can be efficiently estimated when the

BSs are not perfectly synchronized.

• In Phase II, we pointed out three challenges to performing target localization based on

the range information obtained in Phase I. The first challenge is that the LOS path be-

tween a target and a BS may not exist due to the blockage. Therefore, some useful range

information is missing at each BS. Besides, due to the multipath environment, a target’s
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echo signal can be received by a BS over the NLOS path. Therefore, some range infor-

mation obtained by the BSs is not useful. The last one is that at each BS, it does not

directly know how to match one estimated range to the right target. This is the data as-

sociation issue for networked device-free sensing [83]. Due to the first two challenges,

it is difficult to estimate the number of targets based on the cardinality of the range set

at each BS. Due to the second and third challenges, we need to jointly perform NLOS

mitigation and data association. In other words, for each range estimated in Phase I, we

should determine whether it is obtained via a LOS path, and if yes, which target it will

belong to.

• To decouple the above three challenges in Phase II, we propose a novel algorithm. Sup-

pose that the number of BSs is M. Under this algorithm, at the first iteration, we aim

to estimate the number and locations of the targets that have LOS paths to all M BSs,

and in the second iteration, we aim to estimate the number and locations of the targets

that have LOS paths just to M −1 BSs, and so on. This architecture can tackle the first

challenge because at each iteration, we just consider the targets that have LOS paths to

a set of the BSs. Next, at each iteration of this algorithm, we propose an efficient method

to perform NLOS mitigation and data association to localize the targets that do not have

the LOS blockage issue to the considered set of BSs.

The rest of this paper is organized as follows. The system model and the sensing signal

model are described in Section 3.2. Section 3.3 first introduces how to eliminate the synchro-

nization error between any two BSs. Then, the true delays (ranges) of all paths between the

BSs can be estimated. In Section 3.4, an efficient algorithm is proposed to jointly tackle the

issues of LOS identification and data association to estimate the number and the locations of

targets. The numerical results in Section 3.5 verify the effectiveness of the proposed algorithm

in localizing targets in the multi-path environment. In the end, Section 3.6 concludes the paper.

Notations: Boldface lower-case and boldface upper-case letters are used to represent vec-

tors and matrices, respectively. Denote superscripts (·)T and (·)H by the transpose and the

Hermitian operators, respectively. Let diag(·) and [·]i, j denote the diagonal matrix with the

vector being the main diagonal and (i, j)-th entry of a matrix, respectively. Denote ∥ · ∥1 by

the l1 norm of a vector and | · | by the absolute value of a scalar. We use
(n

k

)
for k-combinations

of the set with n elements, |A| for the cardinality of the setA, C for the set of complex values,
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CN×N for the set of complex-value matrices of size N ×N, and IN for the identity matrix of

size N ×N.

3.2 System Model

In this paper, we consider a 6G-enabled ISAC system consisting of M BSs, K targets to be

localized (the value of K is unknown and needs to be estimated), and I users for communica-

tion, as shown in Fig. 3.1. Since the communication technology is very mature in the cellu-

lar network, we mainly focus on the sensing function in this ISAC system. Let (am,bm) and

(xk,yk) denote the 2D coordinates of the m-th BS and the k-th target, respectively, m= 1, . . . ,M,

k = 1, . . . ,K. Then, the direct distance between the m-th BS and the k-th target is given by

dm,k = f (xk,yk,am,bm)

=
√
(am − xk)2 +(bm − yk)2, ∀m,k. (3.1)

Moreover, the sum of the distance between the u-th BS and the k-th target and that between

the k-th target and the m-th BS is

du,m,k = du,k +dm,k, ∀u,m,k. (3.2)

In the downlink, the BSs will transmit the OFDM signals to the information receivers, while

these signals can be reflected by the targets to different BSs as well. In practice, each target

may have LOS links to some BSs while having no LOS links to the other BSs, as shown in Fig.

3.1. Define Mk as the set of BSs that have the LOS links to the k-th target.1 If there exists a

LOS link between target k and BS m, we may estimate their distance, i.e., dm,k, based on the

propagation delay from BS m to target k back to BS m. Moreover, if there exist LOS links from

target k to both BS m and BS u ̸= m, then we can also estimate du,m,k based on the propagation

delay from BS u to target k to BS m. Last, each target can be localized based on these distance

values obtained from the LOS links.

Specifically, let sm = [sm,1, . . . ,sm,N ]
T denote one frequency-domain OFDM symbol at the

m-th BS, ∀m, where sm,n is the signal at the n-th sub-carrier and N is the number of sub-

carriers. Then, the time-domain modulated signal of BS m over one OFDM symbol consisting
1In our paper, it is assumed that each target is detected by at least three BSs, i.e., |Mk| ≥ 3, ∀k.
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of N samples is given byχm = [χm,1, ...,χm,N ]
T =

√
pW Hsm, ∀m, where p denotes the common

transmit power for all the BSs, and W ∈ CN×N denotes the discrete Fourier transform (DFT)

matrix with WW H = W HW = I . After inserting the CP consisting of Q OFDM samples,

the time-domain signal transmitted by BS m over one OFDM symbol period is given by χ̄m =

[χ̄m,−Q, . . . , χ̄m,−1, χ̄m,0, . . . , χ̄m,N−1], where if n> 0, χ̄m,n = χm,n+1 denotes the useful signal, and

if n ≤ 0, χ̄m,n = χm,N+n+1 denotes the CP.

Because the BSs are not perfectly synchronized in practice, define the STO between BS

u and BS m as τu,m OFDM sample periods2, ∀u,m, i.e., if the local clock time at BS m is tm,

then that at BS u is tu = tm + τu,m. In other words, for BSs m and u that are not perfectly

synchronized, τu,m > 0 if the clock time at BS m is earlier, while τu,m < 0 otherwise. Then,

define the maximum absolute STO in the network as τmax = maxu,m|τu,m|. Moreover, define

hu,m = [hu,m,0, . . . ,hu,m,L−1]
T as the L-tap multi-path channel from BS u to BS m, where hu,m,l

denotes the complex channel coefficient of the path with a delay of l OFDM sample periods

and L denotes the maximum number of resolvable paths. Then, the received time-domain

OFDM signal at the m-th BS in the n-th OFDM sample period, which is contributed by the

signals transmitted by the m-th BS itself as well as the other M −1 BSs that are not perfectly

synchronized with the m-th BS, can be expressed as

ym,n =
M

∑
u=1

L−1

∑
l=0

hu,m,l χ̄u,n−l−τu,m + zm,n, ∀m,n, (3.3)

where zm,n ∼ CN (0,σ2
z ) denotes the noise at the m-th BS in the n-th OFDM sample period.

Note that each BS m can potentially receive the signals transmitted by BS u via three types of

paths - Type I path: the LOS path3 from BS u to BS m; Type II path: the combination of the

LOS path from BS u to some target and that from this target to BS m; Type III path: the NLOS

path, e.g., the path from BS u to BS m via not only some target but also some reflector/scatter.

Thereby, hu,m,l ̸= 0 indicates that there exists a Type I/II/III path from BS u to BS m, whose

propagation delay is of l OFDM sample periods. Specifically, if hu,m,l ̸= 0 for a particular l is

contributed by a Type I path from BS u to BS m, then the propagation delay, i.e.,

lu,m =
⌊N∆ f

√
(au −am)2 +(bu −bm)2

c0

⌋
, ∀u,m, (3.4)

2There are also carrier frequency offset and sampling frequency offset in the network, but we assume that they
have been estimated and mitigated by existing methods[90, 91].

3We assume that a Type I path exists between any two BSs because BSs are deployed at high locations such that
there is no blockage among them.
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should be of lu,m = l OFDM sample periods, where c0 is the speed of the light and ⌊·⌋ denotes

the floor function; if hu,m,l ̸= 0 is contributed by a Type II path from BS u to some target k to BS

m, then the propagation delay of this path, i.e., ⌊du,m,k/c0⌋, is equal to l OFDM sample periods.

As will be shown later in this paper, Type I paths are useful for estimating the STOs among the

BSs, Type II paths are useful for localizing the targets, while Type III paths are not beneficial

to localization and their impact should be mitigated.

Based on the above observation, in this paper, we adopt a two-phase networked device-

free sensing protocol. Specifically, in Phase I, each BS m first estimates the channels hu,m,l ’s

based on its received signals, and then sends its delay (thus range) information to a central

processor. The main challenge that will be tackled here lies in the unknown STOs τu,m’s, be-

cause if the clocks at different BSs are not perfectly synchronized, the estimated delays will

be shifted by STOs. Then, in Phase II, the central processor will estimate the number and the

locations of the targets based on the range information sent by all the BSs. Specifically, for each

target, we need to first identify the BSs that have the LOS links to this target, and then find the

useful LOS range information (corresponding to Type II paths) for localization by mitigating

the NLOS range information (corresponding to Type III paths). In the following two sections,

we show the details of Phase I and Phase II under the above protocol.

3.3 Phase I: Range Estimation

It is challenging to apply the conventional OFDM channel estimation techniques to es-

timate hu,m,l ’s based on (3.3) because the STOs, i.e., τu,m’s, are unknown. In this section, we

show that even when the BSs are not perfectly synchronized, the channel estimation problem

can still be formulated as a sparse signal recovery problem, which can be efficiently solved by

the standard compressed sensing techniques, such as LASSO [61]. Then, we will propose an

efficient approach that can jointly estimate the STOs and the range of each path based on the

estimated channels.
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Specifically, we reformulate the received signals given in (3.3) as

ym,n
(a)
=

M

∑
u=1

L−1

∑
l=lu,m

hu,m,l χ̄u,n−l−τu,m

=
M

∑
u=1

L+τu,m−1

∑
l=lu,m+τu,m

hu,m,l−τu,m χ̄u,n−l

=
M

∑
u=1

L+τmax−1

∑
l=0

h̃u,m,l χ̄u,n−l + zm,n, ∀m,n, (3.5)

where lu,m is the propagation delay for the Type I path between BS u and BS m as given in (3.4),

and h̃u,m,l is defined as

h̃u,m,l =

 hu,m,l−τu,m , if l ∈ [lu,m + τu,m,L+ τu,m −1],

0, otherwise.
(3.6)

Therefore, h̃u,m,l can be interpreted as the virtual channel corresponding to a path from BS u

to BS m whose delay is believed by the imperfectly synchronized BSs to be of l OFDM sample

periods but actually is of l−τu,m OFDM sample periods. In other words, if h̃u,m,l ̸= 0, then there

is a path from BS u to BS m, whose propagation delay is of l−τu,m OFDM sample periods. Note

that in (3.5), (a) holds because no path with a delay of l < lu,m OFDM sample periods exists

between BS u and BS m, i.e., hu,m,l = 0, ∀l ∈ [0, lu,m). To guarantee that all the inter-symbol

interference (ISI) from the last OFDM symbol is received within the CP of the current OFDM

symbol for all the BSs, we assume that the length of the CP satisfies Q > L+τmax. Besides, it is

assumed that lu,m+τu,m ≥ 0, ∀u,m, such that BS m sees no ISI from the next OFDM symbol sent

by BS u even when BS u’s clock time is earlier than that at BS m, i.e., τu,m < 0. Note that the

maximum absolute STO of 5G networks is within 130 ns[92]. Therefore, as long as the distance

between any two BSs is larger than 39 m, which is true in practice, then lu,m + τu,m ≥ 0 will

hold, ∀u,m.

Because h̃u,m,l ’s are defined as (3.6), we do not have STOs, i.e., τu,m’s, in the new received

signal model (3.5), indicating that h̃u,m,l ’s can be estimated based on the conventional OFDM

channel estimation techniques. However, the cost is the shifted delay estimation for each path

- if h̃u,m,l ̸= 0, there is a path from BS u to BS m with a delay of l − τu,m, rather than l, OFDM

sample periods. If the STOs are unknown, then the delay/range estimation is always incorrect.

Interestingly, we can efficiently tackle the above issue by utilizing the LOS signals between

any two BSs. Specifically, among all the paths from BS u to BS m, the Type I path, i.e., the LOS
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path between them, is of the minimum range. Therefore, let us define

l′u,m =min{l|∀l with h̃u,m,l ̸= 0},∀u ̸= m. (3.7)

Then, the imperfectly synchronized BSs u and m estimate the delay of their LOS path as l′u,m

OFDM sample periods. However, we know that the true delay of this LOS path is of lu,m OFDM

sample periods, as defined in (3.4). Therefore, the STOs can be determined as

τu,m = l′u,m − lu,m,∀u ̸= m. (3.8)

After STOs are known, we can correct the delay estimationmade from h̃u,m,l ’s. In the following,

we show how to achieve the above goals in Phase I of our considered protocol.

According to (3.5), the frequency-domain signal received at BS m over all the N sub-

carriers can be expressed as [83, 93]

ȳm=
√

p
M

∑
u=1

diag(su)Gh̃u,m+z̄m =
√

pG̃h̃m+z̄m, ∀m, (3.9)

where h̃m = [h̃1,m, . . . , h̃M,m]
T with h̃u,m = [h̃u,m,0, . . . , h̃u,m,L+τmax−1]

T , G ∈ CN×(L+τmax) with

the (n, l)-th element being Gn,l = e
− j2π(n−1)(l−1)

N , G̃ = [diag(s1)G, . . . , diag(sM)G], and z̄m =

[z̄m,1, . . . , z̄m,N ]
T =Wzm ∼ CN (0,σ2

z I).

In this paper, we assume that all the BSs know s1, . . . ,sM sent by the BSs. For example, in

the channel estimation phase for communication, sm’s are pilot signals and can be known by

all the BSs. In the data transmission phase, the BSs can exchange the messages sm’s with each

other over the fronthaul links as in the cloud radio access network [94]. Hence, G̃ in (3.9) is

known by all the BSs. Moreover, due to the limited number of targets, reflectors, and scatters,

very few elements in h̃m’s are non-zero, i.e., h̃m is a sparse channel vector, ∀m. This motivates

us to utilize the LASSO technique to estimate the time-domain channels [61]. Therefore, given

any penalty parameter α > 0, the problem of channel estimation is formulated as

minimize
h̃m

1
2
∥ȳm −√

pG̃h̃m∥2
2 +α∥h̃m∥1. (3.10)

Note that the above problem is convex and can be solved efficiently by CVX [95].

Let h̄m = [h̄1,m, . . . , h̄M,m]
T denote the optimal solution to problem (3.10), where h̄u,m =

[h̄u,m,0, . . . , h̄u,m,L+τmax−1]
T , u,m = 1, . . . ,M. If h̄u,m,l ̸= 0 for some l, then there exists a path from
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BS u to BS m whose delay is estimated as l − τu,m OFDM sample periods. As shown in the

method described in (3.7) and (3.8), define

l̄′u,m =min{l|∀l with h̄u,m,l ̸= 0}, ∀u ̸= m, (3.11)

as the estimated propagation delay of the Type I path between BS u and BS m. Then, the STOs

can be estimated as

τ̄u,m =

 l̄′u,m − lu,m, if u ̸= m,

0, if u = m.
(3.12)

Once the STOs are estimated, if h̄u,m,l ̸= 0 with l ̸= l̄′u,m, we claim that there exists a Type II/III

path from BS u to BS m with a range of

r̄u,m,l =
(l − τ̄u,m)c0

N∆ f
+

c0

2N∆ f
. (3.13)

Based on the definitions of Type II and Type III paths in Section 3.2, we can know that

r̄u,m,l =

 du,m,ku,m,l + εu,m,ku,m,l , Type II path,

du,m,ku,m,l + εu,m,ku,m,l +ηu,m,l, Type III path,
(3.14)

where ku,m,l denotes the index of the target which reflects the signal from BS u to BS m with

a delay of l OFDM sample periods, εu,m,ku,m,l denotes the error caused by the estimation shown

in (3.13), and ηu,m,l denotes the bias introduced by the NLOS propagation. Note that under the

above estimation rule, the worst-case range estimation error for each target is given by

|d̄u,m,ku,m,l −du,m,ku,m,l | ≤
c0

2N∆ f
∆
= ∆d. (3.15)

For example, in 5G OFDM systems, the channel bandwidth can be up to B = 400 MHz at the

mmWave band according to 3GPP Release 15 [57]. In this case, the worst-case range estimation

error is 0.375 m. Since ∆d is practically very small, we assume in the sequel that the values

of distance for any two Type II paths originated from one BS and reflected back to another BS

by two different targets differ by more than 2∆d, thus the corresponding paths are resolvable.

Therefore, any two targets will not generate the same ranges of Type II paths in our considered

framework.
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To summarize, after Phase I of our considered two-phase networked device-free sensing

protocol, each BS m will possess M range estimation sets

Du,m = {r̄u,m,l|∀l with h̄u,m,l ̸= 0 and l ̸= l̄′u,m},

u = 1, · · · ,M. (3.16)

Then, each BS m will transmit the above M range sets, i.e., D1,m, . . . ,DM,m, to the central pro-

cessor via the fronthaul links. The job of the central processor in Phase II is to first identify

the ranges belonging to Type II paths in Du,m’s and then utilize these ranges for estimating

the number and the locations of the targets. However, there are some challenges to achieving

the above goal. First, for each target, its LOS range information to some BSs may be missing

because as shown in Fig. 3.1, in practice, the Type II paths between some targets and some

BSs may be blocked. We thus need to identify which BSs have the LOS range information for

a particular target to localize it. Second, even if a target’s LOS ranges corresponding to Type

II paths are known to be contained in some Du,m’s, they are mixed with many NLOS ranges

corresponding to Type III paths. We thus need to mitigate the effects of NLOS propagation for

localization. Last, even if r̄u,m,l is identified to be the range estimation associated with a Type

II path from BS u to BS m via some target, we do not know whether r̄u,m,l is an estimation of

du,m,1 for target 1, . . ., or du,m,K for target K. We thus need to perform data association such

that each useful range of a Type II path can be matched to the right target for localizing it[83].

In the next section, we will show how the central processor can tackle the above challenges in

Phase II to estimate the number and the locations of the targets based on Du,m’s.

3.4 Phase II: Target Number and Location Estimation

With the range sets Du,m’s, ∀u,m, the objectives of the central processor in Phase II are

two-fold. First, it needs to estimate the number of targets in the network, i.e., K. Second, it

needs to estimate the coordinates of the K targets, i.e., (xk,yk), k = 1, . . . ,K. To achieve the

above goals, in this section, we will first formulate a problem for joint target number and

location estimation. Then, we will propose an efficient LOS identification and data association

algorithm to solve the above problem.

For convenience, given any setD, letD(g) denote its g-th smallest element. If the Type II

LOS path from BS u to target k and to BS m exists and the estimation of du,m,k is contained in the
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set Du,m, then define gu,m,k > 0 as an integer such that Du,m(gu,m,k) is the estimation of du,m,k.

Otherwise, define gu,m,k = 0. Note that gm,m,k > 0 and gu,u,k > 0 is equivalent to gu,m,k > 0 and

vice versa. Moreover, define

Gk = {gu,m,k,∀u,m} (3.17)

as the solution of LOS identification and data association for target k to all the M BSs, k =

1, . . . ,K. This is because (i) among all the elements inDu,m, onlyDu,m(gu,m,k)’s, ∀k with gu,m,k >

0, are the estimated ranges for Type II LOS paths; (ii) if gu,m,k > 0, then Du,m(gu,m,k) is the

estimated range of a Type II path for target k. Therefore, if Gk’s are known, we can know

which BSs have the LOS links to target k, i.e., the set of BSs that can detect target k is given by

Mk =M(Gk) = {m|gm,m,k > 0,∀gm,m,k ∈ Gk}. (3.18)

Furthermore, we can find the range estimations belonging to Type II LOS paths from Du,m’s

and associate them with the right targets.

For convenience, define Ḡk as the set containing all the positive integer elements in Gk, ∀k.

If G1, . . . ,GK can be found out, then the number of the targets can be directly known because

one mapping corresponds to one target and vice versa. Further, given Gk, the location of each

target k can be estimated based on its range informationDu,m(gu,m,k)’s, ∀u,m, i.e., trilateration

or multilateration localization. In the following, we show how to estimate the number of the

targets and their locations via solving the mapping solution G1, . . . ,GK .

3.4.1 Problem Formulation

First, we define the conditions that a feasiblemapping solution ofG1, . . . ,GK should satisfy.

Given u,m, the number of elements in the range setDu,m is denoted by Nu,m = |Du,m|. Since the

range associated with each target must originate from the range sets, the elements in G1, . . . ,GK

should satisfy

gu,m,k ∈ {0,1, . . . ,Nu,m}, ∀u,m,k. (3.19)
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Moreover, if one range estimation in Du,m is matched to target k, then it cannot be matched to

another user k̄ ̸= k, i.e.,

gu,m,k ̸= gu,m,k̄, ∀gu,m,k ∈ Ḡk,gu,m,k̄ ∈ Ḡk̄. (3.20)

Another condition that G1, . . . ,GK should satisfy arises from (3.2): the length of the Type II

path from BS u to target k to BS m, i.e., du,m,k, is equal to the sum of the distance between BS

u and target k, i.e., du,k, and that between BS m and target k, i.e., dm,k. Note that the imperfect

estimations of du,m,k, du,k, and dm,k’s are Du,m(gu,m,k) (also Dm,u(gm,u,k)), Du,u(gu,u,k)/2, and

Dm,m(gm,m,k)/2. Therefore, we set the following constraints for G1, . . . ,GK :∣∣∣∣Du,u(gu,u,k)

2
+
Dm,m(gm,m,k)

2
−Du,m(gu,m,k)

∣∣∣∣≤ δ , (3.21)∣∣∣∣Du,u(gu,u,k)

2
+
Dm,m(gm,m,k)

2
−Dm,u(gm,u,k)

∣∣∣∣≤ δ ,

∀gu,m,k ∈ Ḡk, (3.22)

where δ > 0 is a given threshold. The last constraint about G1, . . . ,GK is on the localization

residual associated with this solution of LOS identification and data association. Specifically,

given Gk, the location of target k is estimated by solving the following nonlinear least squared

(NLS) problem

(P1) minimize
xk,yk

∑
(u,m):gu,m,k∈Ḡk

( f (xk,yk,au,bu)

+ f (xk,yk,am,bm)−Du,m(gu,m,k))
2, ∀k,

where f (xk,yk,am,bm)’s are given in (3.1). Problem (P1) is a non-convex problem. We can adopt

the Gauss-Newton method to solve it [63]. Given Gk for target k, define R(Gk) as the value of

problem (P1) achieved by the Gauss-Newton method. Therefore, R(Gk) can be interpreted as

the residual for localizing target k given Gk. If Gk is the right solution, then the localization

residual R(Gk) should be small, ∀k, because the correct ranges are associated with each target.

For example, when the range estimation error is zero, the localization residual will also be zero

if the correct ranges are utilized for localizing each target. We thus set the following residual

constraints about Gk’s:

R(Gk)≤ β , k = 1, . . . ,K, (3.23)
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where β > 0 is some given threshold.

To summarize, any G1, . . . ,GK satisfying constraints (3.19)-(3.23) can be a feasible solution

for LOS identification and data association. Hence, we need to decide which one is optimal

among all feasible mapping solutions. When there are K targets, it is not likely that the range

data estimated from the NLOS paths at various BSs can be well matched such that more than

K targets can be detected. In other words, the probability that the number of mappings satis-

fying constraints (3.19)-(3.23) is larger than that of the true targets (mappings) is low[96–98].

Therefore, we want to maximize the number of targets whose locations can be estimated in

this paper. Specifically, the solution of LOS identification and data association can be found by

solving the following problem

(P2) maximize
K,G1,...,GK

K (3.24)

subject to (3.19)− (3.23).

Next, we focus on solving problem (P2) to estimate the number of targets and the mapping

solutions. With the obtained mapping solution, the location of each target can be estimated by

solving problem (P1).

3.4.2 The Proposed Algorithm

There are three challenges to solve problem (P2). The first challenge is that a target may

have no LOS paths to some BSs. Therefore, the range information of many Type II paths is

missing in the range set of each BS, i.e., there are Ku,m ≤ K targets detected by BS u and BS m,

∀u,m. The number of possibilities for assigning the Nu,m ranges inDu,m to the detected Ku,m out

of K targets is
(Nu,m

Ku,m

)( K
Ku,m

)
(Ku,m!). When there is no LOS blockage, i.e., Ku,m = K, ∀u,m, there

are
(Nu,m

K

)
(K!) assignment possbilities. However, when there is LOS blockage, i.e., Ku,m ranges

from 0 to K, the number of possibilities is ∑
K
Ku,m=0

(Nu,m
Ku,m

)( K
Ku,m

)
(Ku,m!), which is much larger than

the casewithout LOS blockage. The second one is that a target may reflect the signals to the BSs

via NLOS paths. Due to the Type III paths, the cardinality of the range set at each BS is larger,

i.e., Nu,m is larger, such that the number of assignment probabilities for the range set Du,m also

increases. Furthermore, we have to mitigate the range information of the Type III paths, which

are not beneficial for target localization. The last one is that given the range of a Type II path,

how to match it to the corresponding target is also a big challenge. Moreover, the above three
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challenges are coupled together. To localize each target, we need to jointly determine which

BSs have LOS paths to it, and for these BSs, which ranges in the range sets belong to this target.

In the following, we propose an iterative algorithm to decouple Challenge 1 from Challenges

2 and 3. Specifically, the targets can be classified into the following categories: the targets that

have LOS paths to exactly M BSs, the targets that have LOS paths to exactly M−1 BSs, and so

on. The last category will be the targets that have LOS paths to exactly 3 BSs4.

Define the number of targets that have LOS paths to exactly l BSs as Kl , l = 3, . . . ,M.

Then, we have

K =
M

∑
l=3

Kl. (3.25)

Under our proposed algorithm, at the first iteration, we aim to localize all the targets that

have LOS paths to exactly M BSs, while at the second iteration, we aim to localize all the

targets that have LOS paths to exactly M−1 BSs, and so on. Note that at each iteration of our

proposed algorithm, we do not face Challenge 1, because when we localize some targets, we

only consider the BSs that have LOS paths to them. Specifically, the problem of localizing the

targets that have LOS paths to l BSs can be formulated as

(P3−l) maximize
Kl ,G

(l)
1 ,...,G(l)

Kl

Kl (3.26)

subject to |M(G(l)
k )|= l, k = 1, . . . ,Kl, (3.27)

(3.19)− (3.23).

where G(l)
k denotes the mapping for target k that can be detected by l BSs andM(G(l)

k ) is given

in (3.18). In the following, we first focus on how to deal with problem (P3−l), ∀l. Then, based

on (3.25), the solutions to problem (P3−l), l = M, . . . ,3, are used for solving problem (P2) such

that the number of targets and the mapping solutions can be estimated. Last, with the obtained

mapping solution, the location of each target can be estimated by solving problem (P1).

Problem (P3−l) can be solved by exhaustive search, i.e., given each Kl and G(l)
1 , . . . ,G(l)

Kl
,

we check whether conditions (3.19)-(3.23) and (3.27) hold. However, such an approach needs

to solve the non-convex problem (P1) many times, which is of high complexity. To resolve

this issue, we first ignore constraints (3.20) and (3.23) in problem (P3−l), and find the feasible
4We do not consider the targets that have LOS paths to only one or two BSs because they cannot be localized

based on the range information.
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region that any mapping Gk should satisfy constraints (3.19), (3.21), (3.22), and (3.27), i.e.,

Ḡ(l) = {G(l)
k |G(l)

k ∈ G(l) satisfies (3.21) and (3.22)}. (3.28)

where

G(l) = {G(l)
k |G(l)

k satisfies (3.19) and (3.27)}. (3.29)

Due to the constraints (3.21) and (3.22), the size of Ḡ(l) is generally small, because the proba-

bility that (3.21) and (3.22) holds for Type III paths is very small. Then, we just need to check

which mappings in Ḡ(l) rather than G(l) satisfy the constraint (3.23). As a result, the num-

ber of times to solve problem (P1) is significantly reduced compared to the exhaustive search

approach to problem (P3−l). Define

G̃(l) = {G(l)
k |G(l)

k ∈ Ḡ(l) and R(G(l)
k )≤ β}. (3.30)

In other words, by removing G(l)
k ’s that do not satisfy condition (3.23) from Ḡ(l), we can obtain

G̃(l). Note that each element contained in G̃(l) satisfies conditions (3.19), (3.21)-(3.23), i.e., it is a

feasible solution of LOS identification and data association to localize one target. However, for

two mappings G(l)
k ∈ G̃(l) and G(l)

k̄ ∈ G̃(l), it is possible that gu,m,k ∈ G(l)
k is equal to gu,m,k̄ ∈ G(l)

k̄

for some u,m, i.e., in these two solutions, some estimated range at BS m is matched to both

target k and target k̄. Therefore, the last step to solve problem (P3−l) is to select the maximum

number of elements in G̃ such that condition (3.20) can be satisfied. Such a problem can be

formulated as

(P4) maximize
Kl ,G

(l)
1 ,...,G(l)

K

Kl (3.31)

subject to G(l)
k ∈ G̃(l),k = 1, . . . ,Kl, (3.32)

(3.20).

One way to solve problem (P4) is the exhaustive search method. For a given Kl , we need

try
(NG̃(l)

Kl

)
possiblities to see whether (3.20) is satisfied, where NG̃(l) denotes the cardinality of

G̃(l). Because we do not know the exact value of Kl , we need to try each possible value of Kl ,

which is quite computationally prohibitive. To alleviate the complexity, we can divide G̃(l) into
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N1,1 +1 subsets based on the value of g1,1,k , i.e.,

G̃(l) = G̃(l)
0 ∪G̃(l)

1 ∪ . . .∪G̃(l)
N1,1

, (3.33)

where

G̃(l)
i = {G(l)

k |G(l)
k ∈ G̃(l) and g1,1,k = i with g1,1,k ∈ G(l)

k }

i = 0,1, . . . ,N1,1. (3.34)

As a consequence, at most one mapping G(l)
k can be selected from each G̃(l)

i to make sure (3.20)

is satisfied. In other words, some G̃(l)
i ’s contain the mappings G(l)

k ’s, while others do not. Note

that the number of G̃(l)
i ’s containing the mappings G(l)

k ’s is equal to Kl , i.e., the Kl constraints

in (3.32). Motivated by this, we aim at finding the indexes of G̃(l)
i ’s that contain the mappings

G(l)
k ’s. As a result, problem (P4) can be transformed into

(P5) maximize
Ω,G(l)

1 ,...,G(l)
|Ω|

|Ω| (3.35)

subject to Ω ⊆ {0,1, . . . ,N1,1}, (3.36)

G(l)
k ∈ G̃(l)

Ω(k), k = 1, . . . , |Ω|, (3.37)

(3.20).

Given Ω in problem (P5), there may be multiple feasible mapping solutions that satisfy (3.37)

and (3.20). Compared with problem (P4), problem (P5) is of lower complexity, since the cases

that two or more mappings G(l)
k ’s belong to the same G̃(l)

i need not be considered. However,

it is still of high complexity for large NG̃(l) . To tackle this issue, we greedily maximize |Ω|

iteratively. At the beginning, we initialize Ω(0) = {}. At the t-th iteration, we try to increase

|Ω| by 1. Specifically, we set Ω = Ω(t−1)∪{t −1} in problem (P5) to see whether there exists

a mapping solution G(l)
1 , . . . ,G(l)

|Ω| that satisfies (3.20) and (3.37). If such a mapping solution

do exist, we update Ω(t) = Ω(t−1)∪{t − 1}; otherwise, Ω(t) = Ω(t−1). By repeating the above

procedure until t > N1,1+1, we can get the solution of problem (P5), denoted by Ω̂ = Ω(N1,1+1).

Note that if G(l)
1 , . . . ,G(l)

|Ω(t)| is a mapping solution forΩ=Ω(t) =Ω(t−1)∪{t−1} in problem

(P5), then G(l)
1 , . . . ,G(l)

|Ω(t−1)| is a solution for Ω = Ω(t−1). This can be utilize to simplify finding

G(l)
1 , . . . ,G(l)

|Ω| at the t-th iteration. Denote G(t)
nt = {G(l)

nk }
|Ω(t)|
k=1 by the nt-th mapping solution for

Ω = Ω(t) in problem (P5) at the t-th iteration. Then, we just need to check whether there
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Algorithm 3: Algorithm for Solving Problem (P3−l)
1 Input: (am,bm)’s, Du,m’s, ∀u,m, and l
2 Procedure:

1. Find G̃(l) based on (3.30) and get G̃(l)
i ’s according to (3.34);

2. Initialize t = 1 and Ω(0) = {}; Get G(0)
1 = {}; Set k = 1;

3. Repeat:

3.1. For each G(t−1)
nt−1 , check whether there exists G(l)

k ∈ G̃(l)
t−1 that satisfies (3.20) with

any mapping in G(t−1)
nt−1 ;

3.2. If such G(l)
k and G(t−1)

nt−1 exist or G(t−1)
nt−1 is empty, add G(t)

nt = G(t−1)
nt−1 ∪{G(l)

k } as the
mapping solution for Ω = Ω(t−1)∪{t −1}. After finding all such G(t)

nt ’s, update
Ω(t) = Ω(t−1)∪{t −1} and k = k+1; otherwise, only update Ω(t) = Ω(t−1) and
G(t)

nt = G(t−1)
nt−1 for each G(t−1)

nt−1 ;
3.3. Update t = t +1;

Until t > N1,1 +1.

4. Get the index solution to problem (P5), denoted by Ω̂ = Ω(N1,1+1). If there are multiple
mapping solutions, i.e., G(N1,1+1)

nN1,1+1 ’s, nN1,1+1 = 1,2, . . . , select the one minimizing the
localization residual as the optimal mapping solution, denoted by (G(l))∗.

Output:
1) Obtain the estimated number and the solution of LOS identification and data
association for the targets that are detected by l BSs, denoted by K̂(l) = |Ω̂| and
{Ĝ(l)

k }K̂
k=1 = (G(l))∗, respectively;

2) Estimate the target locations by solving problem (P1) given the mapping solution Ĝ(l)
k ’s,

denoted by (x̂k, ŷk)’s, k = 1, . . . , K̂.

exists G(l)
k ∈ G̃(l)

t−1 that satisfy (3.20) with any mapping element in G(t−1)
nt−1 at the t-th iteration.

If such G(l)
k and G(t−1)

nt−1 exist or G(t−1)
nt−1 is empty, we can update Ω(t) = Ω(t−1) ∪ {t − 1} and

add G(t)
nt = G(t−1)

nt−1 ∪ {G(l)
k } as a feasible mapping solution for Ω = Ω(t); otherwise, we keep

Ω(t) = Ω(t−1) and update G(t)
nt = G(t−1)

nt−1 for each G(t−1)
nt−1 as the mapping solution for Ω = Ω(t).

The details of the above process are shown in Algorithm 3. Since there may be multiple

mapping solutions, we will try each of them in Step 3.1. If some G(t−1)
nt−1 ’s can lead to Ω(t) =

Ω(t−1)∪{t}while others cannot, we only update G(t)
nt = G(t−1)

nt−1 ∪{G(l)
k } for these G(t−1)

nt−1 ’s as the

mapping solutions forΩ=Ω(t)=Ω(t−1)∪{t−1}. If noG(t−1)
nt−1 can lead toΩ(t)=Ω(t−1)∪{t−1}

, thenwe keepG(t)
nt =G(t−1)

nt−1 for eachG(t−1)
nt−1 as themapping solution forΩ=Ω(t)=Ω(t−1). In the

end, there may be multiple mapping solutions for Ω= Ω̂ in problem (P5). For the n-th mapping

solution, denoted by {Ĝ(l)
nk }

|Ω̂|
k=1, its localization residual, i.e., ∑

|Ω̂|
k=1R(Ĝ(l)

nk ), is calculated. Then,
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we select the one with the smallest localization residual as the optimal mapping solution for

the estimated |Ω̂| targets, denoted by {Ĝ(l)
k }|Ω̂|

k=1.

Next, we show how to get the solution problem (P2) by iteratively solving problem (P3−l).

We sequentially solve problem (P3−l) for l from M to 3 and obtain the mapping solutions for

each l, denoted by {Ĝ(l)
k }K̂l

k=1. In this process, the ranges corresponding to {Ĝ(l+1)
k }K̂l+1

k=1 are

removed from the range sets before solving problem (P3-l), ∀l. As a result, we can find the

targets that are exactly detected by l BSs when solving problem (P3−l) for each l. Specifically,

at the t-th step, t = 1, . . . ,M − 2, we find the mapping solution for the targets that can be

detected by Mt = M − t + 1 BSs based on Algorithm 3. Denote the obtained solution at the

t-th step by K̂Mt and Ĝ(Mt)
1 , . . . , Ĝ(Mt)

KMt
, which are regarded as the estimated number and the

mapping solution for the targets that are exactly detected by Mt BSs. Then, we remove these

assigned ranges, Du,m(ĝu,m,k)’s, ∀ĝu,m,k ∈ Ĝ(Mt)
k with ĝu,m,k > 0, k = 1, . . . , K̂Mt , from Du,m’s,

∀u,m, because each range is associated with at most one target and these assigned ranges

should not be considered at the next step. As mentioned above, the complexity will be further

reduced at the (t +1)-th step, because each Du,m has a smaller number of ranges such that the

size of the feasible region G̃(Mt+1) becomes smaller. Then, we update t = t+1 to go into the next

step. By repeating the above procedure until t > M −2, we can obtain the estimated number

of targets and the mapping solution for problem (P2). In the end, with the estimated mapping

solutions for all targets, the location of each target can be estimated by solving problem (P1).

The details of the above process are shown in Algorithm 4. Note that solving problem

(P2) is decoupled into sequentially finding the solution to problem (P3−l). Thus, Algorithm 3

can be applied to each step of Algorithm 4. Moreover, if there are multiple mapping solutions

at the t-th step, the one minimizing the localization residual is selected as the optimal solution.

After finding the mapping solution for the targets that are exactly detected by M− t +1 BSs at

the t-th step, the corresponding ranges are removed fromDu,m’s and should not be considered

at the next step.

The complexity of solving problem (P3-l) depends on the times of solving problem (P1),

because we need to check the constraint (3.23) for each mapping G(l)
k , k = 1, . . . ,Kl . If the

constraints (3.21) and (3.22) are not utilized to filter those ineffective mappings, we may solve

problem (P1)many times to checkwhether (3.23) holds for eachmapping element inG(l), whose

cardinality is much larger than that of Ḡ(l). On the other hand, the complexity of problem (P4)

is derermined by the cardinality of G̃(l), which is generally small after applying constrains
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Algorithm 4: Algorithm for estimating the mapping and location solutions of all targets
1 Input: (am,bm)’s, Du,m’s, ∀u,m
2 Initialize: t = 1, K̂ = 0 and Ĝ = {};
3 Repeat:

1. Apply Algorithm 3 to solve problem (P3) and obtain the solution K̂Mt and
Ĝ(Mt)

1 , . . . , Ĝ(Mt)
KMt

;

2. Remove Du,m(ĝu,m,k) from Du,m, ∀ĝu,m,k ∈ Ĝ(Mt)
k with ĝu,m,k > 0, k = 1, . . . , K̂Mt , ∀u,m;

3. Infer the mapping solution for the K̂Mt new detected targets, denoted by
ĜK̂+1, . . . , ĜK̂+KMt

4. Update Ĝ = Ĝ ∪{ĜK̂+1, . . . , ĜK̂+KMt
}, K̂ = K̂ + K̂Mt , and t = t +1;

Until t > M−2.
Output:
1) Obtain the estimated number of targets and the solution of LOS identification and data
association, respectively, i.e., K̂ and Ĝ = {Ĝk}K̂

k=1;
2) Estimate the target locations by solving problem (P1) given the mapping solution Ĝk’s,
denoted by (x̂k, ŷk)’s, k = 1, . . . , K̂.

(3.21)-(3.23). In Section 3.5, we provide numerical results about the cardinalities of G(l), Ḡ(l),

and G̃(l) to prove the reduction of computational complexity. Moreover, the complexity of

the proposed algorithm can be further reduced by transforming problem (P4) into problem

(P5), since the data association possibilities that any two mappings belonging to the same

G̃(l)
i will not be considered in problem (P5). Denote the cardinality of G̃(l)

i by N(l)
i in (3.34).

Specifically, we just need to try atmost∏
N1,1
i=0 N(l)

i data association possibilities to checkwhether

(3.20) holds in problem (P5). In exhaustive search method to problem (P4), the number of data

association possibilities in problem (P4) is
(NG̃(l)

Kl

)
for a given Kl such that the total ∑

NG̃(l)

n=Kl

(NG̃(l)
n

)
data association possibilities need to be numerated.

Remark 3.1. It is worth noting that theremay be error propagation in the proposedAlgorithm 4.

Define the error propagation event as that before the last step, i.e., Mt > 3, a spurious mapping

G(Mt)
kt

occurs, which satisfies

|{gm,m,k|gm,m,k > 0,gm,m,k ∈ Gk,gm,m,k ∈ G(Mt)
kt

}| ≤ 2, ∀k. (3.38)

In other words, the spurious target kt with the mapping G(Mt)
kt

shares at most two same direct

ranges with any true target k. The error propagation event is most likely to happen when

Mt = 4, because there will be more constraints arising from (3.22) to prevent errors when Mt

is larger. Then, there will be two cases for the target kt when Mt = 4: (i) the target kt shares at
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most one direct range with any true target; (ii) the target kt shares two direct ranges with some

true target k. Case (i) indicates that the four direct ranges are independent of each other and

should satisfy (3.23) to lead to one target. Besides, there should exist sum ranges that satisfy

(3.21) and (3.22) with these direct ranges. As for Case (ii), the two direct ranges corresponding

to the true target k give rise to two possible locations with one being the location of the true

target k and the other one being that of the target kt . In this case, the other two direct ranges

should be matched with the location of the target kt . Similarly, there should also exist sum

ranges that can be associated with the target kt . Therefore, the probability that Case (i) or Case

(ii) happens in our proposed algorithm is quite low. In summary, the error propagation will

not significantly degrade the performance of target localization.

3.5 Numerical Results

In this section, we provide the numerical results to verify the effectiveness of our proposed

two-phase protocol for networked device-free sensing. In the network, we consider M = 4 BSs

and 2 ≤ K ≤ 7 targets over a 80 m × 80 m square. To account for LOS blockage, we denote Pb

by the probability that the LOS path between a target and a BS is blocked. As for Type III paths,

we assume that the number of Type III paths for each target between any two BSs follows a

Binomial distribution. In detail, the probabilities that there is/is not one Type III path for each

target are Pnl and 1−Pnl, respectively. Besides, the range of the Type III path is randomly

generated in our setup.

3.5.1 Joint STO and Range Estimation in Phase I

In this part, we provide a numerical example to evaluate the range estimation performance

of our proposed algorithm in Phase I. Specifically, we set N = 3300 and ∆ f = 120 kHz such

that B = 400 MHz [57]. According to [62], with ∆ f = 120 kHz, the length of the CP is 0.59 µs.

Besides, the STOs between any two BSs are randomly generated in the interval [−τmax,τmax],

where τmax is set as 10. To make L+τmax < Q such that all the ISI is received within the CP, we

assume that the maximum number of resolvable paths is L = 200. Moreover, Pb and Pnl are set

as 0.1 and 0.5, respectively. Under this setup, we randomly generate 105 independent location

realizations of BSs and targets, which are uniformly distributed in the considered area. Given

the coordinates of BSs and targets, we can know the delays in terms of OFDM sample periods
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Figure 3.2: Range estimation error probability versus the number of targets.

for Type I and Type II paths. Define Lu,m as the set consisting of the indices of the non-zero

channel coefficients in hu,m, ∀u,m. Then, we estimate the channels h̃u,m’s by solving problem

(3.10), and define the set consisting of the indices of the non-zero channel coefficients in h̄u,m

as L̄u,m. Based on the estimated channels and the true range between any two BSs, we can

estimate the STOs between any two BSs based on (3.11) and (3.12). With the estimated STO

τ̄u,m’s, we will substract each element in L̄u,m by τ̄u,m to get L̂u,m, ∀u,m., i.e., STO compensation

in (3.13). If there exist u and m such that Lu,m ̸= L̂u,m, we say that the range estimation is in

error in this realization. The range estimation error probability versus the number of targets,

i.e., K, is shown in Fig. 3.2, where the BS transmit power is set as 20 Watt (W) and 22.5 W,

respectively. It is observed that the range estimation error probability is very low under our

proposed scheme, and can be significantly reduced by increasing the transmit power.

3.5.2 Localization Accuracy of Two-Phase Protocol

In this part, we provide numerical examples to verify the effectiveness of the overall two-

phase protocol for target localization. To show the effectiveness of our proposed algorithm,

we adopt the following schemes as benchmark schemes for performance comparison.

• Benchmark Scheme 1: Under this benchmark scheme, range estimation in Phase I is the

same as our method in Section 3.3, while in Phase II, there is no constraint (3.20) for mul-

tiple target localiztion[89]. In other words, each range can be associated with multiple

targets. Therefore, each mapping that satisfies the contraints (3.19), and (3.21)-(3.23) is
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used for target localization. Specifically, given eachmapping element in G̃(l), ∀l, problem

(P1) is solved for estimating the location of the target corresponding to the mapping.

• Benchmark Scheme 2: Under this benchmark scheme, range estimation in Phase I is the

same as our method in Section 3.3, while in Phase II, we assume that data association is

perfectly known, and we just need to perform LOS identification to localize the targets.

As a result, this scheme can serve as an error probability lower bound. With the known

data association solution, given each target, each BS knows which ranges estimated in

Phase I belong to this range. For these ranges belonging to some target, the job of each

BS is to identify the ones of Type I/Type II paths if it has the LOS path to this target. We

adopt the LOS identification scheme proposed in [80] to tackle the above challenge.

To compare the performance of the proposed scheme and benchmark schemes, we gen-

erate 104 independent location realizations of BSs and targets, which are distributed in the

considered area. The setup is same as that introduced in the last sub-section, i.e., τmax = 10,

L = 200, B = 400 MHz, Pnl = 0.5, and Pb = 0.1. Besides, the transmit power is set as 20 W. In

each realization, we first estimate channels by solving problem (10) to obtain Du,m’s based on

(3.16), and then estimate the number and the locations of targets by Algorithm 4, Benchmark

1, and Benchmark 2, respectively. A target is said to be localized correctly if the distance be-

tween its estimated location and its true location is no larger than r m. Denote Ni and Ki as

the numbers of the correctly localized targets and the detected targets in the i-th realization,

respectively. Then, miss detection (MD) and false alarm (FA) error probabilities over the 104

realizations, which are defined as PMD = ∑
104
i=1(K−Ni)
K×104 and PFA = ∑

104
i=1(Ki−Ni)
K×104 , respectively, are used

to characterize the target localization performance for each method.

Fig. 3.3 gives the comparison between the benchmarks and the proposed algorithm in

terms of PMD and PFA with different values of r. It is observed that under our proposed scheme,

the probabilities of miss detection and false alarm are below 12% and 9% when K ranges from

2 to 7 and with r = 0.375 m and r = 0.5 m, respectively. We can also see that the proposed

algorithm outperforms Benchmark 1 in terms of both miss detection and false alarm error

probabilities when K ranges from 2 to 7. Moreover, there is merely a small performance gap

between the proposed algorithm and Benchmark 2, where data association is assumed to be

known. Therefore, the performance of our proposed joint data association and LOS identifica-

tion scheme is very close to the localization error probability lower bound.
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Figure 3.3: The comparison of location estimation error probability between the benchmark
and the proposed algorithm with different r when B = 400 MHz, Pb = 0.1, and Pnl = 0.5.

As for the complexity, the three methods are compared in terms of the average running

time in seconds (s) over the 104 realizations, which is depicted in Fig. 3.4. We can see that

the average running time for the proposed scheme is less than 0.16 seconds in each realization

whenK ranges from 2 to 7. Considering each BSwill havemuchmore computational resources,

the actual running time will be lower. Besides, the running time for Benchmark 1 is longer than

that of our proposed algorithm when the number of targets is small. There are two reasons,

(i) since all possible mappings satisfying constraints (3.19), and (3.21)-(3.23) will be retained,

the times of solving problem (P1) in Benchmark 1 is more than that in the proposed algorithm;

(ii) the complexity of solving problem (P5) will not be high in the proposed algorithm when

the number of targets is small. However, when the number of targets is larger, e.g., K = 7, the

complexity of solving problem (P5) will be higher such that the running time for the proposed
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Figure 3.4: The comparison of the average running time for the benchmarks and the proposed
algorithm when B = 400 MHz, Pb = 0.1, and Pnl = 0.5.
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Figure 3.5: The cardinalities of G(l), Ḡ(l), and G̃(l) for the proposed algorithm when B = 400
MHz, Pb = 0.1, and Pnl = 0.5.

algorithm is longer.

On the other hand, we also provide the simulation results for the average cardinalities of

G(l), Ḡ(l), and G̃(l) over the 104 realizations, as shown in Fig. 3.5. It is observed that via utilizing

(3.21) and (3.22), the cardinality of Ḡ(l) is much smaller than that of G(l), ∀l ∈ {3,4}. In other

words, the sum distance constraints can efficiently remove the bad data association solutions

in G(l), ∀l ∈ {3,4}. Therefore, thanks to constraints (3.21)-(3.23), the utilizations of solving

problem (P1) can be greatly reduced. Moreover, the number of possible mapping solutions can

be further reduced by (3.23), i.e., the cardinality of G̃(l) is fewer than that of Ḡ(l), ∀l ∈ {3,4},

which can reduce the complexity for solving problem (P4).
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Figure 3.6: The comparison of location estimation error probability between the benchmark
and the proposed algorithm with different Pb and Pnl when B = 400 MHz and r = 0.5 m.

3.5.3 Effect of LOS Blockage, NLOS Paths, and Bandwidth on Performance

In this sub-section, we show the impact of LOS blockage, NLOS paths, and bandwidth on

target localization. Specifically, the probability that determines the number of Type III paths,

i.e., Pnl, is set as 0.75, 0.5, and 0.25, respectively. The bandwidth that determines the range

resolution, i.e., B, is set as 400 MHz and 300 MHz, respectively. The probability that the LOS

path between a target and a BS is blocked, i.e., Pb, is set as 0.1, 0.05, and 0.025, respectively.

The effect of bandwidth, LOS blockage, and NLOS paths on target localization for the

proposedmethod is shown in Fig. 3.6 and Fig. 3.7 with r = 0.5 m. It is depicted that the location

error probability will be lower when the probability Pb is decreased, since the additional LOS

path information is beneficial for target localization. Moreover, we can see that when the
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Figure 3.7: The comparison of location estimation error probability between the benchmark
and the proposed algorithm with different Pb and Pnl when B = 300 MHz and r = 0.5 m.

probability of the existence of NLOS paths Pnl is increased, the location error probabilities of

our proposed algorithm increase as well. The reason is that the NLOS paths will increase the

probability of the existence of spurious mappings such that the localization performance is

degraded. It is observed from Fig. 3.6 and Fig. 3.7 that the target localization performance

can be improved by increasing the system bandwidth from 300 MHz to 400 MHz. Because the

larger bandwidth can bring a higher range resolution, the accuracy of target localization in our

proposed algorithm will be enhanced.

3.6 Conclusion

In this paper, we study networked device-free sensing based on the echoes of the trans-

mitted downlink communication signals in a multi-path environment, where the BSs are not
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perfectly synchronized but will share the communication and sensing information. A two-

phase protocol was adopted. In the first phase, each BS estimated the direct distances from

targets to itself and the sum distances from other BSs to targets to itself. Since the range of the

LOS path between any two BSs is known, it is utilized to estimate the STOs such that the range

of each path between any two BSs can be accurately estimated. In the second phase, all BSs

collaboratively localized targets based on range estimations obtained in Phase I. Nevertheless,

there are issues of range interference arising from NLOS paths, LOS blockage for some BSs and

some targets, and the unknown mapping between ranges of LOS paths and targets, which are

coupled together. To tackle the above challenges, an efficient algorithm was proposed to iter-

atively localize the targets that are exactly detected by a given number of BSs. In this way, we

can decouple the issue of LOS blockage from the problem of NLOS paths and data association.

As a result, the number and the locations of targets can be efficiently estimated. Numerical

results showed that the proposed strategy can achieve high accuracy of target localization,

thanks to BS coordination and large bandwidth in the 6G cellular network.



Chapter 4

A 6G-Based Multi-View

Reconstruction Approach

4.1 Introduction

Reconstruction is the process of capturing the shape and appearance of real objects. It

finds wide applications in practice, such as object detection, activity monitoring, and vehicle

navigation[99]. Currently, reconstruction mainly relies on the camera technology, and there

are lots of excellent computer vision based methods proposed in the literature[100, 101]. De-

spite the high resolution of the camera, the vision based method poses stringent requirements

on light and weather conditions[102]. Moreover, there are privacy concerns in vision based

systems, because too many details of the sensed objects may be exposed to unauthorized par-

ties.

To overcome the above issues arising from vision based reconstruction technique, this

paper aims to investigate an alternative - radio signal based reconstruction technique. Specif-

ically, integrated sensing and communication (ISAC) is a main use scenario of the future 6G

cellular technology[72, 83, 103–105]. This brings a paradigm shift to cellular systems, because

ISAC also promises many sensing applications such as target detection, drone navigation, etc.

In particular, the high range resolution brought by the millimeter wave (mmWave) and Tera-

hertz (THz) techniques and the high angle resolution brought by the massive multiple-input

multiple-output (MIMO) technique make it possible to leverage 6G signals to perform recon-

struction. Compared to vision based counterpart, 6G-based reconstruction can work in any

71
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Figure 4.1: The illustration of a 6G-based multi-view reconstruction system. A mobile UE
moves to different known locations to image a static extended target from different angles.

light and weather condition. Moreover, 6G-based reconstruction belongs to textureless (here,

texture includes but is not limited to the granularity, regularity, and roughness of the extended

target) sensing techniques, because it can merely recover the shape of the target. It is thus

more appealing than the conventional vision based reconstruction technique in applications

where privacy is a main concern. Another drawback is that quite a lot of vision based methods

rely on deep learning. As a result, these deep learning models may lack good generalization

to different environments and leads to poor performance of target reconstruction. We be-

lieve that 6G-based textureless reconstruction can be used in myriad applications such as pose

recognition, object tracking, etc.

Motivated by the above, this paper will explore the 6G-based technique to reconstruct

the shape of an extended target consisting of many adjacent point targets. Specifically, a user

equipment (UE), e.g., drone, robot, etc., is merely equipped with the radio transceiver (without

requiring extra space to carry a camera) and emits orthogonal frequency division multiplexing

(OFDM) signals for both communication and reconstruction purposes. Particularly, we are

interested in the multi-view reconstruction technique. As shown in Fig. 4.1, at each time

slot, the UE first moves to a known location, then emits the OFDM signals, and records the

echo signals reflected by the point targets belonging to the extended target. After observing

the target from sufficient angles, we will fuse all the echo signals received at all time slots

and localize the point targets for the reconstruction purpose. Specifically, the multi-view data

is used to build a probability density map, on which each grid represents the probability of
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the existence of a point target of the extended target. Numerical results show that the image

obtained based on our proposed multi-view technique is of much higher resolution than that

observed from each angle based on the single-view technique.

A related work is [106], where a high-resolution single-view imaging system, named mm-

Eye, was presented based on the 69GHz Wi-Fi technique. However, as shown in [106], many

point targets are not detected based on the proposed imaging technique. The multi-view tech-

nique can overcome this issue because the point targets that are not detected from one angle

can be detected from other angles. In the existing literature, multi-view reconstruction was

mainly studied in the field of computer vision [107–111]. Quite a lot of deep learning based

techniques have been proposed based on texture information, e.g., color, edge, and corner,

which is not available under the 6G imaging technique. However, our proposed textureless

algorithm merely relies on the location information of the point targets for target reconstruc-

tion.

4.2 System Model

We consider a 6G-based reconstruction system consisting of a mobile UE (e.g., a drone, a

robot, etc.) that is equipped with NT transmit antennas and NR receive antennas and a static

passive extended target that is modeled as a collection of K adjacent point targets. The location

of the k-th point target of the extended target is denoted by (xk,yk), k = 1, . . . ,K. Moreover,

towards any direction θ , let a(θ ,NT ) ∈ CNT×1 and b(θ ,NR) ∈ CNR×1 denote the transmit and

receive steering vectors of the mobile UE, respectively. For example, under the uniform linear

array (ULA) model, the transmit and receive steering vectors are respectively

a(θ ,NT ) = [1,e−
j2πdAsinθ

λ , . . . ,e−
j2π(NT −1)dAsinθ

λ ]T , (4.1)

and

b(θ ,NR) = [1,e−
j2πdAsinθ

λ , . . . ,e−
j2π(NR−1)dAsinθ

λ ]T , (4.2)

where dA is the antenna spacing and λ is the signal wavelength. We consider M time slots, and

at the m-th time slot, the UE first moves to a known location (a(m),b(m)), then emits OFDM

communication signals, and last receives the echo signals from the extended target. After
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collecting the echo signals received over all the M time slots, our goal is to reconstruct the

shape of the extended target, which is equivalent to precisely localizing all the K point targets

of the extended target.

Specifically, at them-th time slot, define s(m)
nT = [s(m)

nT ,1, . . . ,s
(m)
nT ,N ]

T as one frequency-domain

OFDM symbol for transmit antenna nT , where N is the number of sub-carriers of the trans-

mitted OFDM signals and s(m)
nT ,n is the signal at the n-th sub-carrier. Then, the time-domain

modulated signal of the UE at the m-th time slot over one OFDM symbol consisting of N sam-

ples is given byχ(m)
nT = [χ

(m)
nT ,1, . . . ,χ

(m)
nT ,N ]

T =
√

pW Hs
(m)
nT , ∀m,nT , where p denotes the transmit

power for the UE andW ∈CN×N denotes the the discrete Fourier transform (DFT) matrix with

WW H =W HW = IN . After inserting the cyclic prefix (CP) consisting of Q OFDM samples,

the time-domain signal for transmit antenna nT over one OFDM symbol period is given by

χ̄
(m)
nT = [χ̄

(m)
nT ,−Q, . . . , χ̄

(m)
nT ,−1, χ̄

(m)
nT ,0, . . . , χ̄

(m)
nT ,N−1]

T , where when n ≥ 0, χ̄
(m)
nT ,n = χ

(m)
nT ,n+1 denotes the

useful signal, and when n < 0, χ̄
(m)
nT ,n = χ

(m)
nT ,N+n+1 denotes the CP.

Moreover, the distance and angle between the k-th point target and the UE at the m-th

time slot are respectively

d(m)
k =

√
(a(m)− xk)2 +(b(m)− yk)2, (4.3)

and

θ
(m)
k = atan

yk −b(m)

xk −a(m)
, (4.4)

where atan(·) is the arctan function. On one hand, the line-of-sight (LOS) channel between the

k-th point target and the UE at the m-th time slot can be expressed as

Ĥ
(m)
k = α

(m)
k b(θ

(m)
k ,NR)a

T (θ
(m)
k ,NT ), ∀k ∈ Kdet

m , (4.5)

where α
(m)
k denotes the attenuation coefficient caused by the path loss and radar cross section

(RCS) between the UE and point target k at time slot m, and Kdet
m ⊆ {1, . . . ,K} consists of the

point targets that have the LOS paths to the UE at the m-th time slot. Under the Swerling target

model, α
(m)
k ’s are Gaussian distributed and independent over m and k, i.e., α

(m)
k ∼ CN (0,σ2

m,k).

On the other hand, define τ
(m)
k = ⌊2N∆ f d(m)

k
c0

⌋ as the propagation delay (in terms of OFDM sample

periods) from the UE to point target k and back to the UE at the m-th time slot, where ∆ f is

the sub-carrier spacing of the transmitted OFDM signals and c0 is the speed of light. Then,
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under an L-tap multi-path propagation environment, at the m-th time slot, define the set that

consists of all the point targets that cause signal delay of l OFDM sample periods as

Ω
(m)
l = {k : τ

(m)
k = l and k ∈ Kdet

m }, ∀m, l. (4.6)

Therefore, at time slot m, the channel associated with the l-th tap of the multi-path environ-

ment from the transmit antennas of the UE to the receive antennas of the UE via the extended

target is modeled as

H̃
(m)
l = ∑

k∈Ω
(m)
l

Ĥ
(m)
k ∈ CNR×NT ,∀m, l. (4.7)

Note that if Ω
(m)
l ̸= /0, then H̃

(m)
l is a function of d(m)

k ’s and θ
(m)
k ’s for the point targets in Ω

(m)
l ;

while if Ω
(m)
l = /0, then H̃

(m)
l = 0.

Hence, the time-domain signal at receive antenna nR for the n-th sampling period at the

m-th time slot can be expressed as

y(m)
nR,n =

NT

∑
nt=1

L−1

∑
l=0

h(m)
nR,nT ,l χ̄

(m)
nT ,n−l + z(m)

nR,n, ∀nR,n,m, (4.8)

where h(m)
nR,nT ,l is the element at the nR-th row and nT -th column of H̃(m)

l and represents the

channel of path from transmit antenna nT to receive antenna nR with a delay of l OFDM sam-

ples at the m-th time slot, and z(m)
nR,n ∼CN (0,σ2

z ) denotes the noise at the nR-th receive antenna

in the n-th OFDM sample period at the m-th time slot.

After collecting the received signals given in (4.8) over all the M time slots, we adopt a

two-phase method to estimate the locations of the K point targets and reconstruct the shape

of the extended target. In Phase I, we estimate the distances and angles from point targets

to the UE at each time slot, i.e., d(m)
k and θ

(m)
k , ∀k ∈ Km, ∀m. Note that each pair of distance

and angle estimations can localize one point target. At each time slot m, we can construct a

textureless image of the extended target by putting all the point targets detected at this time slot

together. Therefore, after Phase I, we have M single-view textureless images. However, each

image obtained at each time slot may be of quite low quality due to the following two reasons.

First, as shown in (4.7) and (4.8), the received signal at each time slot m is only contributed

by the point targets in Kdet
m , and the corresponding single-view image cannot contain all the

information about the extended target. Second, at each time slot m, even for the point targets in
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Kdet
m , their range and angle estimations are subject to errors. Therefore, the mismatch between

each single-view image and the extended target can be large. In Phase II, we aim to fuse the

M single-view images in an effective way so as to better reconstruct the shape of the extended

target. This is possible because 1. a point target that cannot be detected at one time slot can

be detected at other time slots; 2. each point target is usually detected in multiple time slots,

and the estimation of its location can be more accurate based on all these observations. In

the rest of this paper, we introduce how to devise Phase I and Phase II to perform multi-view

reconstruction.

4.3 Phase I: Range and Angle Estimation

In this section, we show how to obtain the range and angle information of the point targets

based on the signals received at each time slot. By removing the first Q CP samples, the time-

domain received signal for the nR-th receive antenna over one OFDM symbol at the m-th time

slot is given by [83]

y
(m)
nR = [y(m)

nR,1, . . . ,y
(m)
nR,N ]

T

=
√

p
NT

∑
nt=1

H
(m)
nR,nT χ

(m)
nT +z

(m)
nR , ∀nR,m, (4.9)

where H
(m)
nR,nT ∈ CN×N is a circulant matrix with the first row being

[h(m)
nR,nT ,0,0, . . . ,0,h

(m)
nR,nT ,L−1, . . . ,h

(m)
nR,nT ,2]

T , and z
(m)
nR = [z(m)

nR,1, . . . ,z
(m)
nR,N ]

T ∼ CN (0,σ2
z IN). After

multiplying the time-domain signal by the DFT matrix W , the received frequency-domain

OFDM signal for the nR-th receive antenna at the m-th time slot is given by [55]

ȳ
(m)
nR =Wy

(m)
nR

=
√

p
L−1

∑
l=0

G̃lh̃
(m)
nR,l + z̄

(m)
nR , ∀nR,m, (4.10)

where G̃l ∈ CN×NT with the (n,nT )-th element [G̃l]n,nT = snT ,ne−
− j2π(n−1)l

N , h̃nR,l =

[h(m)
nR,1,l, . . . ,h

(m)
nR,NT ,l]

T ∈ CNT×1, and z̄
(m)
nR = [z̄(m)

nR,1, . . . , z̄
(m)
nR,N ]

T = Wz
(m)
nR ∼ CN (0,σ2

z IN) since



4.3. Phase I: Range and Angle Estimation 77

WW H =W HW = IN . By stacking the overall received signal across all the NR receive an-

tennas and N sub-carriers, it follows that

ȳ(m) =[(ȳ
(m)
1 )T , . . . ,(ȳ

(m)
NR

)T ]T

=
√

p
L−1

∑
l=0

[(G̃lh̃
(m)
1,l )

T , . . . ,(G̃lh̃
(m)
NR,l)

T ]T + z̄(m)

=
√

p
L−1

∑
l=0

Θ̃lh̃
(m)
l + z̄(m)

=
√

pΘ̃h̃(m)+ z̄(m), ∀m, (4.11)

where

Θ̃=[Θ̃0, . . . ,Θ̃L−1] ∈ CNRN×LNT NR , (4.12)

Θ̃l =


G̃l · · · 0
... . . . ...

0 · · · G̃l

 ∈ CNRN×NT NR , ∀l, (4.13)

h̃(m) =[(h̃
(m)
0 )T , . . . ,(h̃

(m)
L−1)

T ]T ∈ CLNT NR×1, (4.14)

h̃
(m)
l =[(h̃

(m)
1,l )

T , . . . ,(h̃
(m)
NR,l)

T ]T ∈ CNT NR×1, ∀l, (4.15)

z̄(m) =[(z̄
(m)
1 )T , . . . ,(z̄

(m)
NR

)T ]T ∈ CNRN×1. (4.16)

Note that h̃(m) is a function of point targets’ distances and angle-of-arrivals (AOAs) to the UE

at time slot m. The job of the UE is to estimate these location parameters based on the received

signals given in (4.11) at each time slot. In the following, we show how to estimate the range

information and the AOA information, respectively.

Note that h̃(m)
l in (4.15) is the vector-form expression of H̃(m)

l in (4.7). Hence, it can be

known from (4.7) that h̃(m)
l = 0 (equivalent to H̃

(m)
l = 0) if there is no point target in the l-th

range bin at the m-th time slot, i.e., Ω
(m)
l = /0. As a result, there is block sparsity in h̃(m), which

motivates us to employ the group LASSO technique [61] to estimate the OFDM channels based

on (4.14). Specifically, given a carefully designed parameter ρ > 0, the group LASSO problem

for estimating each h̃(m) is formulated as

(P1) minimize
h̃(m)

1
2
∥ȳ(m)−√

pΘ̃h̃(m)∥2
2 +ρ

L−1

∑
l=0

∥h̃(m)
l ∥2, (4.17)
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which is a convex problem, and thus can be efficiently solved by CVX toolbox [95]. De-

note the solution of channel estimation by h̄(m) = [(h̄
(m)
0 )T , . . . ,(h̄

(m)
L−1)

T ]T , ∀m, with h̄
(m)
l =

[(h̄
(m)
1,l )

T , . . . ,(h̄
(m)
NR,l)

T ]T = [h̄(m)
1,1,l, . . . , h̄

(m)
1,NT ,l, . . . , h̄

(m)
NR,1,l, . . . , h̄

(m)
NR,NT ,l]

T , ∀l. Based on the discus-

sion above, if h̄(m)
l ̸= 0 for some l, then Ω

(m)
l ̸= /0. In other words, there are some point targets

in Ω
(m)
l , whose ranges to the UE lie in [ lc0

2N∆ f ,
(l+1)c0
2N∆ f ) at the m-th time slot. Hence, the distance

from each point target in Ω
(m)
l , ∀l with h̄

(m)
l ̸= 0, to the UE can be estimated as

r̄(m)
l =

lc0

2N∆ f
+

lc0

4N∆ f
. (4.18)

Next, we estimate the AOAs from the K(m)
l = |Ω(m)

l | point targets in Ω
(m)
l to the UE based

on h̄
(m)
l , ∀m, l. Based on (4.7), under the ULA model of the steering vector, we have

h̄(m)
nR,nT ,l

=h(m)
nR,nT ,l + ε

(m)
nR,nT ,l

= ∑
k∈Ω

(m)
l

α
(m)
k e−

j2π(nR+nT −2)dAsinθ
(m)
k

λ + ε
(m)
nR,nT ,l, (4.19)

where εnR,nT ,l ∼CN (0,σ2
ε ) denotes the channel estimation error for h(m)

nR,nT ,l . By defining ĥ(m)
na,l =

h̄(m)
nR,nT ,l and ε

(m)
na,l = ε

(m)
nR,nT ,l with na = nR +nT −1, it leads to

ĥ(m)
na,l = ∑

k∈Ω
(m)
l

α
(m)
k e−

j2π(na−1)dAsinθ
(m)
k

λ + ε
(m)
na,l . (4.20)

Then, we can get

ĥ
(m)
l =[ĥ(m)

1,l , . . . , ĥ
(m)
Na,l]

T =A
(m)
l α

(m)
l +ϵ

(m)
l , (4.21)

where Na = NR + NT − 1, A
(m)
l = [a(θ

(m)
1 ,Na), . . . ,a(θ

(m)

K(m)
l

,Na)] ∈ CNa×K(m)
l and α

(m)
l =

[α
(m)
1 , . . . ,α

(m)

K(m)
l

]T ∈ CK(m)
l ×1 are the steering matrix and the channel coefficient vector for

the point targets in Ω
(m)
l at the m-th time slot, respectively, and ϵ

(m)
l = [ε

(m)
1,l , . . . ,ε

(m)
Na,l]

T ∼

CN (0,σ2
ε INa).

In this work, we utilize multiple signal classification (MUSIC) [112] to estimate the angles

from the K(m)
l point targets in Ω

(m)
l to the UE at time slot m. The covariance of ĥ(m)

l can be
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expressed as

R
ĥ
(m)
l

= E[ĥ(m)
l (ĥ

(m)
l )H ]

=A
(m)
l E[α(m)

l (α
(m)
l )H ](A

(m)
l )H +E[ϵ(m)

l (ϵ
(m)
l )H ]

=A
(m)
l R

α
(m)
l
(A

(m)
l )H +σ

2
ε INa , (4.22)

where R
α

(m)
l

= diag(σ2
m,1, . . . ,σ

2
m,K(m)

l

) is the covariance of α(m)
l since the attenuation coeffi-

cients α
(m)
k ’s are independent over m and k. The eigenvalues λ1, . . . ,λNa ofRĥ

(m)
l

are sorted in

a nonascending order, associated with Na eigenvectors e1, . . . ,eNa . Then, the noise subspace

can be constructed asEn = [e
K(m)

l +1
, . . . ,eNa ], whereK(m)

l stands for the dimension of the signal

subspace. The (pseudo) spatial spectrum for any direction θ can be obtained as

P(m)
l (θ) =

1
aH(θ ,Na)EnEH

n a(θ ,Na)
. (4.23)

Large values of the spatial spectrum P(m)
l (θ) in a specific part of the space would most likely

indicate the presence of one or more reflected signals; low values of P(m)
l (θ) would indicate

the absence of such reflections. One critical problem in applying MUSIC is to determine the

number of signals K(m)
l that impinge on the array. Akaike information criterion (AIC), a well-

known information-theoretic approach formodel order selection, is used to estimateK(m)
l [113],

given by

(K(m)
l )⋆

=argmax
K(m)

l

log

∏
Na

i=1+K(m)
l

λ
1/(β (m)

l )
i

∑
Na

j=1+K(m)
l

λ j/β
(m)
l


β
(m)
l

−K(m)
l (Na +β

(m)
l ), (4.24)

where β
(m)
l = Na −K(m)

l . Therefore, we can find the (K(m)
l )⋆ peaks of the spatial spectrum

P(m)
l (θ) to get angle estimations {θ̄

(m)
kl

}(K
(m)
l )⋆

kl=1 for the point targets in Ω
(m)
l .
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To summarize, after Phase I of our considered protocol, the UE acquires M measurement

sets (single-view textureless images) about the extended target, i.e.,

D(m) ={(r̄(m)
l , θ̄

(m)
kl

)|∀l with h̄
(m)
l and

kl = 1, . . . ,(K(m)
l )⋆}, m = 1, . . . ,M. (4.25)

The job of the UE in Phase II is to fuse these M single-view images of measurement to recon-

struct the extended target. However, there are two challenges to achieving the above goal.

First, each point target may not be detected by the UE at some time slots. In other words, each

single-view image may only provide partial information about the extended target. Second,

different from vision-based approaches where there is texture information that can be utilized

to find the correspondences of point targets across different image views, i.e., data association,

we can only extract location information about the extended target from the communication

signal views. Hence, it is challenging to fuse all the M single-view images of measurement for

target reconstruction. In detail, with range and angle information about the point targets, the

UE can directly estimate the point targets at each time slot. However, the two point targets of

the extended target may be close in our considered case. As a result, it is likely to associate

the estimated point target with the wrong nearby point target of the extended target. In other

words, the two nearby point targets of the extended target may be thought to be the same point

target across different communication signal views. In the next section, we will show how to

deal with the above challenges in Phase II to perform passive extended target reconstruction.

4.4 Phase II: Data Fusion

In this section, we fuse the M single-view images of measurement in a grid-based way

for target reconstruction[114, 115]. In detail, the whole region of interest (ROI) is divided into

multiple grids, and the probability existence of a point target of the extended target at each

grid is calculated based on the M measurement sets obtained in Phase I. Then, the probability

density map of the target over the whole ROI is leveraged for recovering the extended target.

Based on (4.3) and (4.4), each measurement element (r̄(m)
l , θ̄

(m)
kl

) in Dm can be directly

used to estimate the location of its corresponding point target. Specifically, given the n-th

measurement in Dm, i.e., (r̄(m)
n , θ̄

(m)
n ) ∈ Dm, the location of the corresponding point target can
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Figure 4.2: Setup of the numerical example. The extended target is modeled as a circle with
the center at (0,0)m and the radius r = 1 m, and consists of K = 30 points. The UE moves to

eight sites as shown in the figure at different time slots to sense the extended target.

be estimated as

(x̄(m)
n , ȳ(m)

n )

=(a(m)+ r̄(m)
n cos(θ̄ (m)

n ),b(m)+ r̄(m)
n sin(θ̄ (m)

n )), n = 1, ...,Nm, (4.26)

where Nm = |Dm| is the cardinality of Dm. Therefore, there are Nm estimated point targets for

each measurement set Dm at the m-th time slot.

Next, we show how to calculate the probability density map of the target over the whole

ROI based on these estimated point targets, i.e., the probability existence of a point target at

each grid. First, the whole ROI is divided into Ng = Ngx ×Ngy grids and the location of the

(i, j)-th grid is denoted by (xg
i, j,y

g
i, j), i = 1, . . . ,Ngx , j = 1, . . . ,Ngy . Intuitively, for a particular

estimated point target, if one grid is closer to the estimated point target, it is more likely that

there is the existence of a point target at this grid. Then, the probability existence of the point

target at the (i, j)-th grid, which is contributed by the n-th measurement element in Dm (the

estimated point target (x̄(m)
n , ȳ(m)

n )), is formulated as

P(m)
n (i, j) = ηe−γd2

m,n,i, j , ∀m,n, i, j, (4.27)

where

dm,n,i, j =

√
(x̄(m)

n − xg
i, j)

2 +(ȳ(m)
n − yg

i, j)
2 (4.28)
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Figure 4.3: The probability densitymap obtained by our algorithm based on themeasurements
seen until time slotsm= 1,2,4, and 8. The red small circle in each sub-figure denotes the point

targets that can be detected by the UE until the corresponding time slot.

is the range between the (i, j)-th grid and the estimated point target (x̄(m)
n , ȳ(m)

n ), γ is a pre-

defined constant, and η is the normalizing factor such that the sum of the probabilities over

all grids is equal to one. Hence, the probability existence of a point target at the (i, j)-th grid,

which is contributed by the measurement set Dm, is expressed as

Pm(i, j) =
Nm

∑
n=1

Pm,n(i, j) = η

Nm

∑
n=1

e−γd2
m,n,i, j , ∀m, i, j. (4.29)

As a result, the probability density map of the target at the (i, j)-th grid based on the measure-

ment sets until the m-th time slot, i.e., D1, . . . ,Dm, is given by

Im(i, j) =
m

∑
t=1

Pt(i, j) = η

m

∑
t=1

Nm

∑
n=1

e−γd2
m,n,i, j ,

m = 1, . . . ,M. (4.30)

According to (4.30), we can get the grid-based target reconstruction results based on the mea-

surement sets until any time slotm, m= 1, . . . ,M. Note that IM(i, j)’s are leveraged to represent

the final reconstructed image of the extended target over all the M time slots.
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4.5 Numerical Results

In this section, we evaluate the performance of the proposed two-phase multi-view sens-

ing method. Specifically, we consider a scenario as illustrated in Fig. 4.2, where the UE moves

in a counterclockwise direction from (0,−4)m to (−2
√

2,−2
√

2)m over the M = 8 time slots.

The transmit and receive steering vectors of the UE follow the ULA model as shown in (4.1)

and (4.2), respectively, where the numbers of transmit and receive antennas are NT = NR = 16,

and the antenna spacing is set as dA = λ

2 . Besides, we set the transmit power as p = 10 W,

the bandwidth as B = N∆ f = 250 MHz with N = 256, and the maximum number of resolvable

paths as L = 16. The extended target is modeled as a circle with the center at (0,0) m and

the radius being r = 1 m, and consists of K = 30 point targets. At each time slot, only the

point targets whose ranges to the UE are less than
√

15 m can be detected with the probability

PD = 0.9. Moreover, under Phase II, the probability density map is obtained via dividing the 3

m × 3 m square into 30×30 grids, each of the size 0.1 m × 0.1 m. In this numerical example,

at each time slot, we generate the set of point targets that can be detected, i.e., Kdet
m , based on

which the channel is generated based on (4.7) and the received signal is generated based on

(4.8). Then, we perform the proposed multi-view reconstruction method based on the received

signals over all the time slots.

Fig. 4.3 shows the probability density map of the target obtained by our proposed method

based on themeasurements until time slotsm= 1,2,4, and 8. From Fig. ?? (a), it is observed that

the probability density map obtained just based on the measurements at time slot m= 1 is quite

different from the shape of the target. First, many point targets are not detected. Second, with

the detected point targets, their positions are subject to some errors. It is seen from Figs. 4.3

(b)-(d) that with observations from more angles, the quality of target reconstruction improves

significantly. Particularly, more and more point targets can be detected, and the locations of

the detected point targets are more and more accurately estimated. When the measurements

of all the M = 8 time slots are utilized, the probability density map obtained by our method is

quite close to the shape of the target.
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4.6 Conclusion

In this paper, we considered 6G-based multi-view target reconstruction, where a UE with

a radio transceiver moves to different positions at different time slots to emit signals for recov-

ering the shape of an extended target. A two-phase framework was adopted. In Phase I, the

range and angle measurements about the extended target towards the position of the UE at

each time slot can be obtained via standard OFDM channel estimation technique. In Phase II,

the multi-view range and angle values obtained over all the time slots were used to construct

the probability density map, on which each grid denotes the probability that a point target

exists at this position. Numerical results were provided to show that compared to the single-

view counterpart, our proposed multi-view reconstruction method based on 6G signals can

recover the shape of the target with significantly improved quality. This verifies the feasibility

of leveraging the 6G technique to perform target reconstruction.



Chapter 5

ISAC Prototype

In this chapter, we describe the hardware architecture and the frame structure of the

proposed ISAC prototype system. Besides, the experimental results of communication signal

based device-free sensing are displayed.

5.1 Hardware Architecture

The architecture of the ISAC-based prototype is shown in Fig. 5.1, which consists of

four parts: an arbitrary waveform generator (AWG), an ISAC transmitter, an ISAC receiver,

and one oscilloscope. The bandwidth of the optical signals generated by AWG can reach 1

GHz, which enables high data transmission and high range resolution target sensing. The

generated optical signals are fed into the transmitter after being converted into electric signals

via the photodiode. The ISAC transmitter contains a single RF chain, a mmWave up-and-down

frequency converter, and one mmWave phased array. The mmWave phase array adopts a 8×8

UPA analog beamforming architecture. Beamforming can be achieved by controlling the phase

shifters in the personal computer (PC). The receiver contains a 1× 4 ULA with 4 RF chains.

The receive ULA can convert the received RF signal to an intermediate frequency (IF) band and

transmit it to the oscilloscope. The IF signals are sampled at the oscilloscope and can be saved

in the PC, where we can make programming to perform tasks, such as channel estimation

and OFDM constellation display. Noth that the clocks in the transmitter and the receiver are

synchronized such that they can transmit/receive the signals at the same time. The specific

hardware equipment selection and capabilities are as follows:

85
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(a) AWG (b) Oscilloscope (c) Transmitter (d) Receiver

Figure 5.1: The components of the ISAC prototype.

• 1) AWG: Keysight AWG-M9502A is fully compatible with the AXIe 1.0 specification. It

includes an embedded system module (ESM) that does not take up an instrument slot.

This system module performs the chassis management functions contained in the AXIe

specification. Additionally, it provides PCI and LAN interfaces for connection to an ex-

ternal computer, external clock and trigger connectors, and Keysight-exclusive, inter-

chassis synchronization connectors. The local bus implemented in the M9502A provides

the maximum 62 pairs allowed by the AXIe specification.

• 2) mmWave phased array: UME-28TR64 is a 64-elements mmWave Active Phased Array

Antenna, with PA, LNA and phase-shifter for each element. The antenna can be con-

trolled by USB port via C DLL command or highspeed digital I/O to perform high-speed

2D beam scanning. The input and output frequency range of UME-28TR64 is 27-29GHz

which can be integrated with NI mmWave VST and MTS. It can also be integrated with

any IF system with external LO and mixer.

• 3) Receive ULA: The UME-28UDx4 is a four channel version of the UME-28UD, equipped

with 4-channel up and down conversion (TDDmode) and 4-channel 12dBi gain antennas,

providing higher transmission gain (up to 31dB) and reception gain (up to 33dB). The

UME-28UDx4 is a common local oscillator design, with an RF range between channels

covering 27.2-29GHz and an intermediate frequency range covering 2-3.8GHz. As a 4-

channel up and down converter, the UME-28UDx4 can work with most SDR platforms

on the market to expand Sub6G SDR devices to the millimeter wave frequency band. For

example, the USRP X410 with a bandwidth of 400MHz and frequency coverage of 1M-

7.2GHz can achieve 4-channel millimeter wave frequency band reception/transmission

through a single UME-28UDx4.
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Figure 5.2: The workflow of the ISAC prototype.

5.2 Experimental Setup

5.2.1 Experiment Workflow

The workflow of the ISAC prototype is shown in Fig. 5.2. The transmitted OFDM com-

munication signal is provided by the AWG, where we can design the characteristics of the

signals, such as the bandwith, the number of sub-carriers, the sub-carrier spacing, and the

frame duration. Note that the generated optical communication signals lie in the IF band.

Then, the generated optical signals are transformed into the electric signals, which are fed into

the mmWave phase array and upconverted into the RF band. The RF communication signals

are sent by the transmitter, and propagates through the environment. The receiver observes

the signal echoes reflected by the targets in the environment and downconverts the received

signals into the IF band to the oscilloscope. After that, the IF signals will be downconverted to

the baseband signal for subsequent signal processing.

5.2.2 Frame Struture

The frame structure of the transmitted signals is illustrated in Fig. 5.3. There are 7 slots

in each frame and each slot is composed of 14 OFDM symbols. Specifically, in each subframe,

the first 10 OFDM symbols are preamble and the rest symbols are data payload. In each OFDM

symbol, the number of sub-carriers and that of CP samples are 1024 and 64, respectively. Be-

sides, the bandwidth of each OFDM symbol is 1 GHz.
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Figure 5.3: The frame structure of the transmitted signals in the ISAC prototype.

5.2.3 Target Localization

The experiment scenario is shown in Fig. 5.4, where the ISAC transmitter and receiver

are colocated and synchronized. There are one or multiple targets in the environment. At

the beginning, the locations of the targets are unknown. Hence, the transmitter will perform

beam scanning and the receiver records the signal echoes sent from different scanning angles.

Then, the receiver can estimate the AOD from the transmitter to the targets as the scanning

angle with the maximum power of signal echoes. Moroever, the receiver performs the channel

estimation based on the receiver signals from the optimal scanning angle. As a result, the range

and angle information about the targets can be extracted from the channels, which are utilized

to localize the targets.

5.3 Experimental Results

In this section, we give the experiment results for the range and angle estimations of one

or multiple targets in the environment.
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Figure 5.4: The experiment scenario for target localization via communication signals.

Table 5.1: The comparison between the true and estimated range and angle for one target
with known position.

Ground Truth Estimation Error
Target 1 1.607 m, 52◦ 1.65 m, 53.6◦ 0.043 m, 1.6◦

5.3.1 Known Target Position

In this part, we give the experiment results when the transmitter does not scan the envi-

ronment. In other words, the target position is known to the transmitter such that the beam is

sent towards the targets.

In the first case, there is only one target in the environment, as shown in Fig. 5.5 (a). The

distance from the transmitter to the target and that from the target to the receiver are 0.775 m

and 0.832 m, respectively, and the AOA of the target with respect to the receiver is 52◦. Based

on the received signals, the range and angle can be estimated as discussed in Chapter 4. The

experiment result is shown in Fig. 5.6, where the sum distance from the transmitter to the

target and back to the receiver is estimated as 1.65 m and the AOA is estimated as 53.6◦. The

above results are summarized in Table. 5.1.

In the second case, there are two targets in the environment, as shown in Fig. 5.5 (b). The

distance from the transmitter to the first target and that from the first target to the receiver

are 0.500 m and 0.571 m, respectively, and the AOA of the first target is 44◦. The distance from

the transmitter to the second target and that from the second target to the receiver are 1.189 m
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(a) One target (b) Two targets (c) Three targets

Figure 5.5: The experiment scenario with one or more targets and known target position.
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Figure 5.6: The experiment results with one target.

Table 5.2: The comparison between the true and estimated range and angle for two targets
with known position.

Ground Truth Estimation Error
Target 1 1.071 m, 44◦ 1.05 m, 41.8◦ 0.021 m, 2.2◦

Target 2 2.437 m, 53◦ 2.55 m, 52.9◦ 0.113 m, 0.1◦

and 1.248 m, respectively, and the AOA of the second target is 53◦. Similarly, the experiment

result is shown in Fig. 5.7. The sum distance and the angle for the first target are estimated as

1.05 m and 41.8◦, respectively. Besides, the sum distance and the angle for the second target

are estimated as 2.55 m and 52.9◦, respectively. The above results are summarized in Table.

5.2.

In the third case, there are three targets in the environment, as shown in Fig. 5.5 (c). The

distance from the transmitter to the first target and that from the first target to the receiver

are 0.500 m and 0.571 m, respectively, and the AOA of the first target is 44◦. The distance
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Figure 5.7: The experiment results with two targets.

Table 5.3: The comparison between the true and estimated range and angle for three targets
with known position.

Ground Truth Estimation Error
Target 1 1.071 m, 44◦ 1.05 m, 41.8◦ 0.021 m, 2.2◦

Target 2 2.437 m, 53◦ 2.55 m, 52.9◦ 0.113 m, 0.1◦

Target 3 3.471 m, 62◦ 3.45 m, 58.5◦ 0.021 m, 3.5◦

from the transmitter to the second target and that from the second target to the receiver are

1.189 m and 1.248 m, respectively, and the AOA of the second target is 53◦. The distance from

the transmitter to the third target and that from the third target to the receiver are 1.708 m

and 1.763 m, respectively, and the angle of arrival for the first target is 62◦. Similarly, the

experiment result is shown in Fig. 5.8. The sum distance and the angle for the first target are

estimated as 1.05 m and 41.8◦, respectively. The sum distance and the angle for the second

target are estimated as 2.55 m and 52.9◦, respectively. The distance and the angle for the third

target are estimated as 3.45 m and 58.5◦, respectively. The above results are summarized in

Table. 5.3.

5.3.2 Unknown Target Position

In this part, we give the experiment results when the transmitter needs to scan the envi-

ronment, since the target position is unknown to the transmitter.

In the first case, there are two targets in the environment, as shown in Fig. 5.9 (a). The

distance from the transmitter to the first target and that from the first target to the receiver are
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Figure 5.8: The experiment results with three targets.

Table 5.4: The comparison between the true and estimated range and angle for three targets
with unknown position.

Ground Truth Estimation Error
Target 1 1.343 m, 103◦ 1.35 m, 104.1◦ 0.007 m, 1.1◦

Target 2 1.071 m, 44◦ 1.05 m, 40.5◦ 0.021 m, 3.5◦

0.698m and 0.645 m, respectively, and the angle of arrival for the first target is 103◦. The dis-

tance from the transmitter to the second target and that from the second target to the receiver

are 0.500 m and 0.571 m, respectively, and the angle of arrival for the second target is 44◦.

Because the locations of the targets are unknown, the transmitter will adjust the scanning

angles from −30◦ to 30◦. The receiver will calculate the received signal strength (RSS) from

different scanning angles to measure the angle-of-departure (AOD) of the target with respect

to the transmitter. As shown in Fig. 5.10, we can see that there are targets in the environment

when the scanning angle is −20◦ and 27◦. Then, based on the received signals when the

scanning angle of the transmitted signal is −20◦, the range and angle estimation result for

the first target is shown in Fig. 5.11. The sum distance and the angle for the first target are

estimated as 1.35 m and 104.1◦, respectively. On the other side, when the scanning angle of the

transmitted signal is 27◦, the range and angle estimation result for the second target is shown

in Fig. 5.12. The sum distance and the angle for the second target are estimated as 1.05 m and

40.5◦, respectively. The above results are summarized in Table. 5.4.

In the second case, there are three targets in the environment, as shown in Fig. 5.9 (b).

The distance from the transmitter to the first target and that from the first target to the receiver
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(a) Two targets (b) Three targets

Figure 5.9: The experiment scenario with one or more targets and unknown target position.
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Figure 5.10: RSS over different scanning angles for two targets.
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Figure 5.11: The range and angle estimations when the scanning angle is −20◦.

are 0.698m and 0.645 m, respectively, and the angle of arrival for the first target is 103◦. The

distance from the transmitter to second target and that from the second target to the receiver

are 0.500 m and 0.571 m, respectively, and the angle of arrival for the second target is 44◦.

The distance from the transmitter to the third target and and that from the third target to the

receiver are 1.189 m and 1.248 m, respectively, abd the angle of arrival for the third target is

53◦.

As shown in Fig. 5.13, we can see that there are targets in the environment when the

scanning angle is−20◦ and 27◦ as well. Then, based on the received signals when the scanning
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Figure 5.12: The range and angle estimations when the scanning angle is 27◦.

Table 5.5: The comparison between the true and estimated range and angle for three targets
with unknown position.

Ground Truth Estimation Error
Target 1 1.343 m, 103◦ 1.35 m, 104.1◦ 0.007 m, 1.1◦

Target 2 1.071 m, 44◦ 1.05 m, 40.5◦ 0.021 m, 3.5◦

Target 3 2.437 m, 53◦ 2.55 m, 52.0◦ 0.113 m, 1.0◦
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Figure 5.13: RSS over different scanning angles for three targets.

angle of the transmitted signal is−20◦, the range and angle estimation result for the first target

is shown in Fig. 5.14. The sum distance and the angle for the first target are estimated as 1.35 m

and 105.7◦, respectively. On the other side, when the scanning angle of the transmitted signal

is 27◦, the range and angle estimation results for the second target and the third target are

shown in Fig. 5.15. The sum distance and the angle for the second target are estimated as 1.05

m and 40.2◦, respectively. The sum distance and the angle for the third target are estimated as

2.55 m and 52.0◦, respectively. The above results are summarized in Table. 5.5.
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Figure 5.14: The range and angle estimations when the scanning angle is −20◦.
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Figure 5.15: The range and angle estimations when the scanning angle is 27◦.

5.4 Conclusion

In this chapter, the development and evaluation of an ISAC prototype system designed

for 6G technology was presented. In detail, the hardware architecture, frame structure, and

experimental results of the prototype were shown. The system utilized components such as an

AWG to generate OFDM signal in IF band, an mmWave phased array for transmitting signals

and beam scanning, and a receiver with multiple RF chains for receiving signal echoes. Then,

by performing standard OFDM channel estimation with signal echoes, the range and angle

information about passive targets can be obtained. The experimental results showed the range

and angle estimation error is small, which demonstrates the feasibility of ISAC for high data

transmission and precise target sensing via mmWave OFDM communication signals.



Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we proposed to realize device-free sensing functions via communication

signals such that ubiquitous target sensing can be provided in the future 6G network. In Chap-

ter 2, we considered device-free sensing in an OFDM cellular network for passive point target

localization via communication signals. A novel two-phase sensing framework was adopted.

In Phase I, we estimated the ranges between the BSs and the targets. In Phase II, we showed

that the ghost target is not the bottleneck of device-free sensing in the case with perfect range

estimation. Moreover, in the case of imperfect range estimation in Phase I, we proposed a

maximum-likelihood (ML) based algorithm to match each range with the right target, and

then estimated the location of each target based on its matched ranges to different BSs. As an

extension of the case in Chapter 2, networked device-free sensing in an OFDM cellular system

with multipath environment was investigated in Chapter 3. Similarly, a two-phase localization

protocol was considered. In Phase I, we tackled the issue of synchronization among different

BSs and estimated the ranges from one BS to the targets and to another BS (or the same BS). In

Phase II, we jointly tackled the issues of NLOS mitigation, LOS identification, and data associ-

ation. Specifically, an efficient algorithm was proposed to localize multiple passive targets by

decoupling LOS identification from NLOS mitigation and data association. Chapter 4 studied

multi-view based extended target three-dimensional (3D) reconstruction via communication

signals. A mobile UE acquired the multiple single-view textureless images of the extended tar-

get by emitting OFDM communication signals to sense the target from different angles. Then,

all single-view textureless images of the target were fused to reconstruct the target. In detail,

96
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the measurement set obtained at each time slot was converted into a local probability density

map of the target. Then, all the local probability density maps were added to form the global

probability density map of the target, which is leveraged to represent the target reconstruction

result. In Chapter 5, some practical experiments about communication signal based mono-

static sensing were performed. The mmWave OFDM communication signals were leveraged

by the transceiver to estimate the locations of the targets in the environment. The experimen-

tal results showed that the range and angle information about the targets can be extracted from

the signal echoes. Through the simulation results, we can conclude that the communication

signal based ISAC can achieve high performance of point target localization and extended tar-

get reconstruction in the 6G network. Thus, it is shown that the communication signal based

target sensing is feasible in the future 6G network, which can provide a better quality of service

to the user services.

6.2 Outlook

There are several interesting research directions for future ISAC-assisted device-free sens-

ing. One particularly interesting direction is target recognition and tracking through commu-

nication signals, where the vital motion of the target needs to be captured and processed but

requires a much higher range/angle/velocity resolution. Since the mapping between the tar-

get parameters and the channel in the environment is hard to model and quite complicated,

artificial intelligence (AI) or machine learning (ML) appears as one promising solution, which

is inherently model-free and has achieved good performance in some communication applica-

tions, such as channel estimation. Therefore, it motivates us to exploit ML-based methods for

passive target sensing. Furthermore, reconfigurable intelligent surfaces (RIS) can control the

propagation environment, which is also helpful for target sensing especially when the direct

link between the target and the transmitter/receiver is blocked. Besides, RIS can help obtain

better angle information of the target due to its large number of reflection elements, especially

when the number of RF chains at the AP is not enough to acquire the angle information directly.

Hence, it is desired to explore RIS-assisted target localization or target reconstruction.



Chapter 7

Appendix

7.1 Appendix A

Define E as the event that ghost target exists, i.e., there exists XG ̸= X satisfying (2.20)

in Definition 2.1. Moreover, when event E occurs, define Ei as the event that K− i true targets

and K − i ghost targets share the same coordinates, while the other i ghost targets and i true

targets do not share any common coordinate, i.e., |XG⋂
X| = K − i, i = 2, . . . ,K.1 We then

have E =
⋃K

i=2Ei. Next, when event Ei occurs, based on which i true targets possess different

coordinates with the ghost targets, there are
(K

i

)
sub-events. Define E (r)

i as the r-th sub-event,

r = 1, . . . ,
(K

i

)
. Then, it follows that Ei =

⋃(K
i )

r=1E
(r)
i , i = 2, . . . ,K. To summarize, we have

Pr(E) = Pr

 K⋃
i=2

(K
i )⋃

r=1

E (r)
i

≤
K

∑
i=2

(K
i )

∑
r=1

Pr(E (r)
i ), (7.1)

where Pr(A) is the probability that event A happens.

Without loss of generality, let us define sub-event 1, i.e., E (1)
i , as the event that each of the

coordinates of true targets 1, . . . , i is not the coordinate of any ghost target, while each of the

coordinates of true targets i+1, . . . ,K is the coordinate of some ghost target. Note that error

event E (1)
i is equivalent to the event that in a system merely consisting of true target 1 to true

target i (without the other K − i true targets), there exist i ghost targets, whose coordinates

are all different from the coordinates of the i true targets. In the following, we show that
1If K −1 true targets and K −1 ghost targets share the same coordinates, the remaining true target and ghost

target will also have the same coordinate since three BSs can uniquely locate one target. As a result, under event
E , i = 1 will never happen.
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Pr(E (1)
i ) =

∫
{x1,y1,...,xi,yi}∈B(1)

i

p(x1,y1, . . . ,xi,yi)dx1dy1 · · ·dxidyi

=
∫
{x1,y1,...,xi−1,yi−1}∈B̃

(1)
i

(∫
{xi,yi}∈B̂(1)

i (x1,y1,...,xi−1,yi−1)
p(xi,yi|x1,y1, . . . ,xi−1,yi−1)dxidyi

)
p(x1,y1, . . . ,xi−1,yi−1)dx1dy1 · · ·dxi−1dyi−1 (7.47)

=
∫
{x1,y1,...,xi−1,yi−1}∈B̃

(1)
i

(∫
{xi,yi}∈B̂(1)

i (x1,y1,...,xi−1,yi−1)
p(xi,yi)dxidyi

)
p(x1,y1, . . . ,xi−1,yi−1)dx1dy1 · · ·dxi−1dyi−1, (7.48)

Pr(E (1)
i ) = 0, i = 2, . . . ,K. The similar approach can also be used to show that Pr(E (r)

i ) = 0,

∀r ̸= 1.

Define B(1)
i as the set of (x1,y1, . . . ,xi,yi) such that if (x1,y1, . . . ,xi,yi) ∈ B(1)

i , the coordi-

nates of the i true targets with coordinates (x1,y1), . . . ,(xi,yi) can lead to i ghost targets with

coordinates (xG
1 ,y

G
1 ), . . . ,(x

G
i ,y

G
i ), where

(xG
q ,y

G
q ) ̸= (xk,yk), k,q = 1, . . . , i. (7.46)

Moreover, define p(·) as the probability density function (PDF). Then, we have (7.47) and (7.48),

where B̃(1)
i is the set of (x1,y1, . . . ,xi−1,yi−1) such that if (x1,y1, . . . ,xi−1,yi−1) ∈ B̃(1)

i , there

exists some (xi,yi) to satisfy (x1,y1, . . . ,xi,yi) ∈ B(1)
i , and B̂(1)

i (x1,y1, . . . ,xi−1,yi−1) is the set of

(xi,yi) such that given any (x1,y1, . . . ,xi−1,yi−1) ∈ B̃(1)
i , if (xi,yi) ∈ B̂(1)

i (x1,y1, . . . ,xi−1,yi−1),

then the coordinates of the i true targets (x1,y1), . . . ,(xi,yi) can lead to i ghost targets with

coordinates (xG
1 ,y

G
1 ), . . . ,(x

G
i ,y

G
i ) satisfying (7.46). In the above, (7.48) holds because all the

targets are independently located in the network.

In the following, we prove that given any {x1,y1, . . . ,xi−1,yi−1} ∈ B̃(1)
i , there are

a finite number of elements in the set B̂(1)
i (x1,y1, . . . ,xi−1,yi−1). If this is true, then

when (xi,yi) is uniformly distributed in a continuous two-dimension region consisting of

an infinite number of points, the probability that (xi,yi) falls on the finite number of

points in B̂(1)
i (x1,y1, . . . ,xi−1,yi−1) is zero, i.e.,

∫
{xi,yi}∈B̂(1)

i (x1,y1,...,xi−1,yi−1)
p(xi,yi)dxidyi = 0,

∀{x1,y1, . . . ,xi−1,yi−1} ∈ B̃(1)
i . This will indicate that Pr(E (1)

i ) = 0 according to (7.48) because∫
{x1,y1,...,xi−1,yi−1}∈B̃

(1)
i

p(x1,y1, . . . ,xi−1,yi−1) dx1dy1 · · ·dxi−1dyi−1 is finite when target 1 to tar-

get i−1 are located uniformly in the network.
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Define

D(i)
m = {dm,1, . . . ,dm,i}, ∀m, (7.49)

as the set consisting of the values of distance between BS m and target 1 to target i, andD(i)
m (g)

as the g-th largest element inD(i)
m . Moreover, define g(i)m,k such that dm,k =D(i)

m (g(i)m,k), k = 1, . . . , i,

m = 1, . . . ,M. Given any {x1,y1, . . . ,xi−1,yi−1} ∈ B̃(1)
i , i− 1 elements in D(i)

m are fixed, ∀m.

Define the range set to localize target i as

Ti = {D(i)
1 (g(i)1,i), . . . ,D

(i)
M (g(i)M,i)}, (7.50)

which consists of the remaining one variable range of each BS. In the following, we study all

the possibilities of Ti such that with (xi,yi) localized by Ti and the given {x1,y1, . . . ,xi−1,yi−1} ∈

B̃(1)
i , i ghost targets with coordinates (xG

1 ,y
G
1 ), . . . ,(x

G
i ,y

G
i ) satisfying (7.46) exist.

Consider a matching solution {ḡ(i)m,1, . . . , ḡ
(i)
m,i}M

m=1 that is different from the correct match-

ing solution {g(i)m,1, . . . ,g
(i)
m,i}M

m=1 and satisfies {ḡ(i)m,1, . . . , ḡ
(i)
m,i} = {1, . . . , i}, ∀m. Note that there

are (i!)M −1 matching solutions satisfying the above conditions. According to Definition 2.1,

a matching solution can lead to i ghost targets if and only if for each q ∈ {1, . . . , i}, there exists

a solution (xG
q ,y

G
q ) to the following M equations:

√
(am − xG

q )
2 +(bm − yG

q )
2 =D(i)

m (ḡ(i)m,q), ∀m ∈M. (7.51)

Note that if we can find a q ∈ {1, . . . , i} such thatD(i)
m (ḡ(i)m,q) =D(i)

m (g(i)m,i) holds for at least three

values of m, then it indicates that (xG
q ,y

G
q ) = (xi,yi), because true target i and ghost target q

have the same distance values to three BSs, and three BSs not on the same line can localize a

unique target. This violates the definition of B(1)
i where all true targets and ghost targets have

different coordinates, i.e., (7.46). As a result, for any q ∈ {1, . . . , i},D(i)
m (ḡ(i)m,q) =D(i)

m (g(i)m,i) holds

for at most two values of m, denoted by mq,1 and/or mq,2, and if m ∈Mq = {m|m ∈M,m ̸=

mq,1,m ̸= mq,2}, we haveD(i)
m (ḡ(i)m,q) =D(i)

m (g(i)m,k) for some k ∈ {1, . . . , i−1}, whereD(i)
m (g(i)m,k)’s

are known given {x1,y1, . . . ,xi−1,yi−1} ∈ B̃(1)
i . Note that if M ≥ 4, |Mq| ≥ 2, ∀q. As a result,

for any q, the following |Mq| ≥ 2 equations with knownD(i)
m (ḡ(i)m,q)’s have at most two possible

solutions for the coordinate of ghost target q:

√
(am − xG

q )
2 +(bm − yG

q )
2 =D(i)

m (ḡ(i)m,q), ∀m ∈Mq. (7.52)
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Then, for any q, there are at most two possible values of D(i)
mq,1(g

(i)
mq,1,i) = D(i)

mq,1(ḡ
(i)
mq,1,q) and

at most two possible values of D(i)
mq,2(g

(i)
mq,2,i) =D(i)

mq,2(ḡ
(i)
mq,2,q). Note that

⋃i
q=1{mq,1,mq,2}=M,

since if ghost target exists, for each m, there must exist some q such thatD(i)
m (ḡ(i)m,q) =D(i)

m (g(i)m,i)

according to Definition 2.1. As a result, given each matching solution {ḡ(i)m,1, . . . , ḡ
(i)
m,i}M

m=1,

D(i)
m (g(i)m,i) has at most two possible values, ∀m, and there are thus at most 2M possibilities

for the set Ti defined in (7.50). Recall that there are (i!)M − 1 feasible matching solutions of

{ḡ(i)m,1, . . . , ḡ
(i)
m,i}M

m=1. Therefore, given any {x1,y1, . . . ,xi−1,yi−1} ∈ B̃(1)
i , we have

|B̂(1)
i (x1,y1, . . . ,xi−1,yi−1)| ≤ ((i!)M −1)2M. (7.53)

To summarize, when M ≥ 4, given any {x1,y1, . . . ,xi−1,yi−1} ∈ B̃(1)
i , the number of ele-

ments in the set B̂(1)
i (x1,y1, . . . ,xi−1,yi−1) is finite. As stated in the above, this indicates that

Pr(E (1)
i ) = 0 in (7.48). Similarly, we can prove that Pr(E (r)

i ) = 0, ∀r ̸= 1. According to (7.1), it

follows that Pr(E) = 0. Theorem 2.3 is thus proved.

7.2 Appendix B

First, we show that two necessary conditions for the existence of ghost targets are as

follows

⋃
q∈K

Sk,q =M, ∀k ∈ K, (7.54)

⋃
k∈K

Sk,q =M, ∀q ∈ K. (7.55)

Specifically, given some XG ̸= X , suppose that (7.54) does not hold. In this case, suppose that

there exist m̄ ∈M and k̄ ∈K such that m̄ /∈
⋃

q∈KSk̄,q. This indicates that dm̄,k̄ is not in the set

DG
m̄ . In other words, Dm̄ ̸= DG

m̄ . As a result, for any XG ̸= X such that (7.54) does not hold, it

cannot be the set of coordinates of ghost targets according to Definition 2.1. Similarly, for any

XG ̸= X such that (7.55) does not hold, it cannot be the set of coordinates of ghost targets. To

summarize, if XG ̸= X is the set of coordinates of ghost targets, then (7.54) and (7.55) should

hold.

In the following, we prove Lemma 2.4 with M = 4 and K = 2 based on the above two

necessary conditions. First, consider the case when XG ̸=X satisfies that X C defined in (2.25)
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is not an empty set, i.e., (xk,yk) = (xG
q ,y

G
q ) for some k,q ∈ K. We show by contradictory that

in this case, XG cannot be the coordinates of ghost targets. Suppose that XG consists of the

coordinates of ghost targets. Then, conditions (7.54) and (7.55) indicate that dm,k̄ = dm,q̄, m =

1,2,3,4, where k̄ ∈ K ̸= k and q̄ ∈ K ̸= q. Since any 3 BSs are not on the same line, dm,k̄ =

dm,q̄, m = 1,2,3,4, indicates that (xk̄,yk̄) = (xG
q̄ ,y

G
q̄ ). Together with (xk,yk) = (xG

q ,y
G
q ), this

contradicts to the fact that XG ̸= X . As a result, if XG ̸= X satisfies that Sk,q =M for some k

and q, then XG cannot be the coordinates of ghost targets.

Next, consider the case when XG ̸= X satisfies that X C defined in (2.25) is an empty set.

In the following, we show the necessary conditions for the existence of ghost targets in this

case. Suppose that XG consists of the coordinates of ghost targets. Then, conditions (7.54) and

(7.55) indicate that

2

∑
q=1

|Sk,q|= 4, ∀k ∈ K, (7.56)

2

∑
k=1

|Sk,q|= 4. ∀q ∈ K. (7.57)

Because any 3 BSs are not on the same line and X C defined in (2.25) is an empty set, we

have |Sk,q| ≤ 2, ∀k,q. To satisfy (7.56) and (7.57), we must have |Sk,q|= 2, Sk,1
⋂
Sk,2 = /0, and

S1,q
⋂
S2,q = /0, ∀k,q. Then, it follows that S1,1 = S2,2 = {1,2,3,4}/S1,2 and S1,2 = S2,1 =

{1,2,3,4}/S1,1. S1,1 = S2,2 and |S1,1|= |S2,2|= 2 require that the line connecting the two BSs

in S1,1 = S2,2 is the perpendicular bisector of the line segment connecting (x1,y1) and (xG
1 ,y

G
1 )

as well as the line segment connecting (x2,y2) and (xG
2 ,y

G
2 ). Similarly, we can show based on

S1,2 = S2,1 and |S1,2| = |S2,1| = 2 that the line connecting the two BSs in S1,2 = S2,1 is the

perpendicular bisector of the line segment connecting (x1,y1) and (xG
2 ,y

G
2 ) as well as the line

segment connecting (x2,y2) and (xG
1 ,y

G
1 ). The above shows that the necessary conditions for

the existence of the ghost targets are as follows: 1. the line connecting the BSs in S1,1 = S2,2

is perpendicular to that connecting the BSs in S1,2 = S2,1; and 2. the line segment connecting

(x1,y1) and (xG
1 ,y

G
1 ), that connecting (x2,y2) and (xG

2 ,y
G
2 ), that connecting (x1,y1) and (xG

2 ,y
G
2 ),

and that connecting (x2,y2) and (xG
1 ,y

G
1 ) form a rectangle. As a result, if the first necessary

condition does not hold, there never exist the ghost targets. On the other hand, if the first

necessary condition holds, we show that the probability that the second necessary condition

holds is zero when the two targets are located uniformly in the network. Let (x0,y0) denote the

intersection point of the two perpendicular lines that connect the BSs inS1,1 =S2,2 and connect

the BSs in S1,2 = S2,1. If the second necessary condition is true, then we have x1+x2 = 2x0 and
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y1+y2 = 2y0, which define a two-dimension plane in the four-dimension space for x1,x2,y2,y2.

If the two targets are located uniformly in the network, x1 + x2 = 2x0 and y1 + y2 = 2y0 occur

with probability zero. As a result, if the first necessary condition is true, there exist no ghost

targets almost surely if the targets are located uniformly in the network.

By combining the cases when X C is not an empty set and is an empty set, Lemma 2.4 is

thus proved.
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