

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

DEEP REINFORCEMENT LEARNING-BASED
MOBILE ROBOT PATH PLANNING AND

CONTROL SUBJECT TO MODEL UNCERTAINTY
AND EXTERNAL DISTURBANCES

YEFENG YANG

PhD

The Hong Kong Polytechnic University

This programme is jointly offered by The Hong Kong
Polytechnic University and Harbin Institute of

Technology

2025

The Hong Kong Polytechnic University

Department of Aeronautical and Aviation Engineering

Harbin Institute of Technology

Department of Control Science and Engineering

Deep Reinforcement Learning-Based Mobile Robot Path
Planning and Control Subject to Model Uncertainty and

External Disturbances

Yefeng Ya n g

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy

Oct 2024

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it
reproduces no material previously published or written, nor material that has been accepted for the
award of any other degree or diploma, except where due acknowledgment has been made in the text.

Yefeng YANG

Abstract

Autonomous robots have attracted significant attention in recent years due to their wide-ranging
applications in industry, environmental monitoring, and agriculture. However, many challenging is-
sues must be addressed before robots can reliably execute specific tasks in complex environments.
These challenges include mapping, self-localization, task allocation, planning, and control. Among
these, trajectory planning and control are especially critical in design. This thesis introduces novel
methodologies to address the challenges of trajectory planning and control.

1) To address the global and local planning challenges of autonomous robots, this thesis presents
an enhanced Rapidly-exploring Random Tree (RRT) algorithm alongside a Deep Reinforce-
ment Learning (DRL)-based obstacle avoidance method. Initially, a sampling-efficient RRT
algorithm is proposed, which integrates the geometric properties of the environment to mini-
mize the number of sampling nodes required in complex scenarios. Subsequently, in the local
planning phase, the Network Decoupling (ND) technique is employed in the design of DRL to
accelerate the training process and improve the efficacy of obstacle avoidance.

2) A DRL-based optimization framework is proposed to optimize the hyper-parameters in the tra-
ditional Recursive Fast Non-singular Terminal Sliding Mode Control(ler) (RFNTSMC). The
Fast Non-singular Terminal Sliding Mode Control(ler) (FNTSMC) optimized by DRL achieves
better performance in the quadrotor control problem. Thereafter, a fixed-time disturbance ob-
server is utilized for compensating external disturbances and modeling uncertainty. The stabil-
ity of the closed-loop learning-based control framework is guaranteed in a Lyapunov sense.

3) Building upon the second contribution, a distributed control framework is developed to stabi-
lize a group of multi-quadrotors. First, a fully distributed FNTSMC and a distributed fixed-time
disturbance observer are proposed to ensure the stability of the multi-quadrotor system. Sub-
sequently, DRL techniques are employed to adaptively learn the near-optimal hyperparameters
for the FNTSMCs. The stability of the framework is formally guaranteed using graph theory
and Lyapunov stability analysis.

I

4) Building upon the second and third studies, and considering the impact of system conver-
gence time characteristics on practical applications, we further propose an enhanced distributed
predefined-time convergence control framework. This framework allows the upper bound of
the convergence time for multi-agent systems to be explicitly specified. First, we derive a more
generalized predefined-time stability criterion. Subsequently, we utilize this criterion to design
a predefined-time stable observer. This observer simultaneously estimates external disturbances
and their upper bounds, which enables the reduction of control gains, thereby mitigating chatter-
ing issues to a certain extent. Furthermore, we develop a distributed predefined-time controller
to ensure that the entire quadrotor formation system achieves stability within the predefined
time. Finally, extensive simulations and physical experiments are conducted to validate the
effectiveness and superiority of the proposed control method.

5) Two simulation platforms are developed as auxiliary tools during the algorithm design process,
and extensive physical experiments are conducted to validate the superiority and effectiveness
of the proposed algorithms.

Keywords: Trajectory planning; Quadrotor control; Deep reinforcement learning; Adaptive dynamic
programming; Multi-agent consensus control; Finite-time control; Fixed-time control; Predefined-
time control.

Mathematical symbol announcement: The mathematical symbols in this thesis are defined inde-
pendently in each chapter when they appear for the first time in this chapter since we introduce a
complete system in each chapter. To fit the algorithms used in each chapter, the symbols may be dif-
ferent in those chapters to represent a very similar concept, please refer to the definition in its current
chapter.

II

Publications

Published/Accepted:
Journal

1 Yefeng Yang, Tao Huang, Tianqi Wang, Wenyu Yang, Han Chen, Boyang Li∗, and Chih-yung
Wen, "Sampling efficient rapidly exploring random tree path planning and improved Actor-
Critic based obstacle avoidance for autonomous robots", Science China: Information Science,
vol. 67, no. 5, pp: 1-18, 2024.

2 Yefeng Yang∗, Tao Huang, Xinxin Wang, Chih-yung Wen, Xianlin Huang, "High-Speed Three-
Dimensional Aerial Vehicle Evasion based on a Multi-stage Dueling Deep Q-Network", Aerospace,
vol. 9, no. 11, pp. 673-689, 2022.

3 Y. Cai, Y. Yang, T. Huang, B. Li*, “Robust Reinforcement Learning Control Framework for
a Quadrotor Unmanned Aerial Vehicle Using Critic Neural Network”, Advanced Intelligent
Systems, pp. 2400427, 2025.

4 X. Wang, Y. Yang, Z. Zuo*, "Three-Dimensional Intercept-Angle-Constrained and Field-of-
View-Constrained Guidance for Maneuvering Target", Journal of Guidance, Control, and Dy-
namics, pp. 1-11, 2024.

5 X. Wang*, G. Lan, Y. Yang, H. Lu, and X. Huang, "Terminal angle constrained time-varying
sliding mode guidance law with autopilot dynamics and input saturation", Asian Journal of
Control, vol. 25, no 2, pp. 1130-1144, 2023.

6 Yefeng Yang, Tao Huang, Tianqi Wang∗, and Chih-yung Wen, "A Robust Adaptive Dynamic
Programming-Based Sliding-mode Control for Quadrotors Subject to Model Uncertainty and
External Disturbance". (under review, submitted to Nonlinear Dynamics)

7 Yefeng Yang, Kang Liu∗, Li-Yu Lo, Tao Huang, Yanming Fu, and Chih-yung Wen, "Fixed-time
Adaptive Consensus Control for Multi-Quadrotor Subject to External Disturbances Via Deep
Reinforcement Learning". (under review, submitted to Aerospace Science and Technology)

III

8 Yefeng Yang, Kang Liu∗, Tao Huang, Xinxin Wang, Yanming Fu, Chih-yung Wen, "Modi-
fied Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding Mode Con-
trol for Multi-Quadrotor Subject to External Disturbances". (under review, submitted to IEEE

Transactions on Instrumentation and Measurement)

9 K. Liu, Y. Yang*, W. Yang, Y. Zhang, X. Wang, C.-Y. Wen, “Adaptive Predefined-Time Dis-
turbance Observer-Based Fast Nonsingular Sliding Mode Control for Quadrotor UAVs Under
Unknown Disturbances”, (under review, submitted to IEEE Transactions on Industrial Elec-
tronics)

Conference

1 Yefeng Yang, Xiaojun Ban∗, Xianlin Huang and Chenghao Shan, "A Dueling-Double-Deep
Q-Network Controller for Magnetic Levitation Ball System," 2020 39th Chinese Control Con-
ference (CCC), Shenyang, China, pp. 1885-1890, 2020.

2 Yefeng Yang, Tao Huang, Tianqi Wang∗, Chih-Yung Wen, "A Robust Sliding-mode Control
Framework for Quadrotors Subject to Model Uncertainty and External Disturbances", 2024
American Control Conference (ACC), Toronto, Canada, pp. 3809–3814, 2024.

3 Yefeng Yang, Xiaojun Ban, Hongqian Lu, Tao Huang∗, and Xianlin Huang, "Parameter Opti-
mization for a Quadrotor System with External Disturbance and Uncertainty via Reinforcement
Learning", 2024 43th Chinese Control Conference (CCC), Kunming, China, pp. 2480-2485,
2024.

4 Tao Huang, Hongqian Lu, Yefeng Yang∗, and Xianlin Huang, "Robust Sliding Mode Adaptive
Dynamic Programming Control for Partially Unknown Second-order Nonlinear Systems", 2024
43th Chinese Control Conference (CCC), Kunming, China, 2024, pp. 2351-2356, 2024.

5 Li-Yu Lo, Yang Hu, Boyang Li; Chih-Yung Wen, Yefeng Yang∗, "An Adaptive Model Predic-
tive Control for Unmanned Underwater Vehicles Subject to External Disturbances and Mea-
surement Noise", 2024 14th Asian Control Conference (ASCC), Dalian, China, pp. 01-07,
2024.

6 Y. Yang, T. Huang*, Y. Zhang, W. Yang, L.-Y. Lo, C.-Y. Wen, "A new type of predefined
time convergence criteria and its application on quadrotor systems", (Prepare to submit to 2026
Control and Decision Conference, CDC)

IV

Acknowledgements

Completing my PhD has taken longer than expected, and I owe much to those who supported
me. I am a joint PhD student at the Harbin Institute of Technology (HIT) and The Hong Kong
Polytechnic University (PolyU). When I joined PolyU in September 2021 under Professor Chih-Yung
Wen’s group, it was already my fourth year of doctoral studies in HIT. However, due to the heavy
workload from various engineering projects at HIT, I had not yet settled on a research topic when I
arrived at PolyU.

First and foremost, I would like to express my heartfelt gratitude to Professor Chih-Yung Wen
for allowing me to join his research group. He graciously allowed me to begin my PhD journey
anew at PolyU without judgment of my previous experience. His continuous encouragement and
support have been invaluable throughout my studies, particularly during the challenging three-month
quarantine period in Shanghai due to COVID-19, when I made little progress in my research. His
understanding during that time is something I sincerely appreciate.

I would also like to extend my sincere thanks to my two co-supervisors, Dr. Boyang Li and Dr.
Tianqi Wang. Dr. Li’s creative insights, patience, and assistance with experimental equipment enabled
me to start my research swiftly upon joining the group. Dr. Wang’s rigorous academic approach and
strong mathematical expertise taught me how to write academic papers effectively.

I am grateful to my lab mates at PolyU, especially Mr. Liyu Lo and Mr. Bailun Jiang, whose
assistance in hardware design saved me considerable time. I would also like to thank Mr. Wenyu
Yang for his help with my physical experiments and Mr. Tao Huang, another joint PhD student
from HIT and PolyU, for his companionship and support over the past six years, particularly during
our time at HIT. His timely and invaluable assistance in my theoretical research was crucial to my
progress. During my final six months at PolyU, I received support from two postdoctoral fellows,
Dr. Yu Li and Dr. Kang Liu, whose guidance on my future research directions, writing skills, and
mathematical derivations in control theory was greatly appreciated. I would also like to thank my
friends from HIT, including Dr. Yue Sun, Dr. Xinxin Wang, and Dr. Jingying Li, for their guidance
on my thesis, their comfort during difficult times, and their corrections when I made mistakes.

Finally, I want to express my deepest gratitude to my family for their unwavering support, love,
and encouragement. I also thank all the friends in Professor Wen’s lab and at HIT. Without their help,

V

I would have faced many more challenges.

VI

Contents

Certificate of Originality

Abstract I

Publications III

Acknowledgements V

Contents X

List of Figures XIV

List of Tables XV

List of Abbreviations XVI

1 Introduction 1
1.1 Robotic Trajectory Planning . 2

1.2 Mobile Robot Control . 3

1.3 Multi-mobile Robot Control . 4

1.4 Deep Reinforcement Learning . 5

1.5 Thesis Overview . 6

2 Literature Review 8
2.1 Trajectory Planning . 8

2.1.1 Global planning . 8

2.1.2 Local planning . 11

2.2 Quadrotor Control . 12

2.3 Multi-quadrotor Control . 14

2.4 Deep Reinforcement Learning . 15

VII

3 Simulation Platform Establishment 18
3.1 Research Background and Motivation . 18
3.2 Path Planning Simulation Platform . 19

3.2.1 Platform Establishment . 19
3.2.2 Some Demonstrations . 24

3.3 Deep Reinforcement Learning Simulation Platform 27
3.3.1 Platform Establishment . 27
3.3.2 Some Demonstrations . 29

3.4 Conclusion . 31

4 Sampling Efficient Global Path Planning and Obstacle Avoidance 32
4.1 Research Background . 32
4.2 Sampling Efficient Global Path Planner Design . 33

4.2.1 Algorithm design . 34
4.2.2 Probabilistic completeness proof . 37

4.3 DRL-Based Obstacle Avoidance Method Design 39
4.3.1 AC framework . 39
4.3.2 Network decoupling technology . 41

4.4 Simulation and Experiments . 43
4.4.1 Simulation results of the global planner . 43
4.4.2 Simulation results of the local planner . 45
4.4.3 Simulation and experiments with the integrated planner 50

4.5 Conclusion . 53

5 Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning 54
5.1 Research Background . 54
5.2 Problem Formulation and Preliminaries . 56

5.2.1 System Modeling . 56
5.2.2 Preliminaries . 59

5.3 System Design . 60
5.3.1 Rotational subsystem stability . 60
5.3.2 Translational subsystem stability . 66

5.4 Deep Reinforcement Learning for Parameter Optimization 67
5.4.1 System re-organization . 67
5.4.2 HJB Equation and NN approximation . 68
5.4.3 NN Training . 73

VIII

5.5 Simulation . 76
5.5.1 Simulation Group 1: Fixed-point control 78
5.5.2 Simulation Group 2: Trajectory tracking control 80

5.6 Real World Experiments . 81
5.6.1 Experiment Group 1: Fixed-point control 82
5.6.2 Experiment Group 2: Trajectory tracking control 83

5.7 Conclusion . 86

6 Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External Dis-
turbances Via Deep Reinforcement Learning 87
6.1 Research Background . 87
6.2 Preliminaries and Problem Formulation . 88

6.2.1 Fundamental Mathematics . 88
6.2.2 System Description . 90
6.2.3 Problem Formulation . 92

6.3 Controller Design . 93
6.3.1 Rotational subsystem stability . 93
6.3.2 Translational Subsystem Stability . 97

6.4 DRL for Parameter Optimization . 101
6.4.1 Rotational Subsystem Parameter Optimizer Training 102
6.4.2 Translational Subsystem Parameter Optimizer Training 105

6.5 Simulation . 106
6.5.1 Simulation Group 1 . 106
6.5.2 Simulation Group 2 . 108

6.6 Physical Experiments . 110
6.6.1 Experiment Group 1 . 111
6.6.2 Experiment Group 2 . 113

6.7 Conclusions . 116

7 Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances 117
7.1 Research Background . 117
7.2 Preliminaries and Problem Formulation . 118

7.2.1 Mathematical fundamental . 118
7.2.2 System modelling . 121
7.2.3 Control Objective . 124

7.3 Main results . 124

IX

7.4 Controller design . 129
7.4.1 Translational subsystem stability . 129
7.4.2 Rotational subsystem stability . 136

7.5 Numerical validation . 139
7.5.1 Simulation group 1 . 139
7.5.2 Simulation group 2 . 142

7.6 Real-world experiment . 144
7.6.1 Experiment group 1 . 145
7.6.2 Experiment group 2 . 147

7.7 Conclusions . 149

8 Conclusions and Future Work 150

Bibliography 152

X

List of Figures

2.1 Classification of global planning algorithms. 8

2.2 A demonstration of D algorithm (left) and A* algorithm (right). 9

3.1 The structure of the Path Planning Simulation Platform (PPSP). 19

3.2 The basic description of the polygon design. 20

3.3 The basic description of the circle and ellipse design. 21

3.4 Some demonstrations of sampling maps. 22

3.5 Some demonstrations of grid maps. 23

3.6 Some planning results of Dijkstra algorithm. 24

3.7 Some planning results of A-Star algorithm. 24

3.8 Some planning results of JPS algorithm. 24

3.9 Some planning results of RRT algorithm. 25

3.10 Some planning results of RRT-Connect algorithm. 25

3.11 Some planning results of RRT-Connect-Smart algorithm. 25

3.12 Some planning results of RRT-Smart algorithm. 26

3.13 Some planning results of RRT-Star algorithm. 26

3.14 Some planning results of RRT-Star-Smart algorithm. 26

3.15 Structure of Deep Reinforcement Learning Simulation Platform (DRLSP). 27

3.16 The structure of an environment. 28

3.17 Environments of UAV position control-related systems. 29

3.18 Environment of UAV attitude control. 30

3.19 Environment of two-link robot manipulator. 30

3.20 Environment of one-dimensional ball balance system. 30

3.21 Environment of CartPole control-related systems. 30

3.22 Environment of second-order integration system. 30

3.23 Environments of UGV-related systems. 30

4.1 Schematic representation of ACDP-RRT. 33

XI

4.2 The relationship between AC framework and the local planner. 40

4.3 Comparison of the actor networks in the original learning framework and the decou-
pled learning framework. 42

4.4 Data flow diagram of the systemic path planning framework. 43

4.5 Global planning process of the ACDP-RRT. 44

4.6 Planning results of ACDP-RRT. Different paths are indicated by different colours. . . 45

4.7 Evaluation of the time and memory efficiency for each algorithm from scenario (1)
to (10). 46

4.8 An illustration of the learning environment. The purple LiDAR detection points mean
that no obstacles are detected at the corresponding angle. The pink LiDAR detection
points indicate the obstacles are detected at the corresponding angle. 47

4.9 The complete DRL-based local planner learning framework. 48

4.10 Training processes of two AC-based DRL algorithms: TD3 and DDPG. The two on
the left are the success rates of the robot in obstacle avoidance. The two on the right
are the immediate rewards. 49

4.11 A graphical demonstration of local planning. 49

4.12 Comparative experiments on the success rates of AC local planner and ND-AC local
planner in maps with a different number of obstacles. 50

4.13 NanoRobot platform equipped with a single wire LiDAR. 51

4.14 Demonstrations of complete path planning simulation experiments. The trajectories
between different starting and ending points are highlighted in different colors. . . . 51

4.15 Physical experiments of the corresponding six office building scenarios. The dimen-
sion of the grids shown in the maps is 0.3m×0.3m. The perimeter is made of plastic
plates with a thickness of 1cm. Opaque rough tapes are attached to the surfaces of
the plastic boards to ensure the quality of the LiDAR data. The initial position is the
bottom left corner and the target position is the top right corner. 52

5.1 Physical configuration of a quadrotor. 56

5.2 The structures of the NNs in PPO. 74

5.3 Logic block diagram of the rotational subsystem training process. 75

5.4 Cost for rotational learning subsystem in the training process (upper) and evaluation
process (lower). 75

5.5 Logic block diagram of the translational subsystem training process. 77

5.6 Cost for translational learning subsystem in the training and evaluation process. . . . 77

5.7 The cost surface under different control frameworks. 77

5.8 The diagram of the quadrotor control system. 78

XII

5.9 State response of the quadrotor in the fixed-point simulation. 79

5.10 OOutputof the observer in the fixed-point simulation. 79

5.11 hyper-parameters tuned by DRL in the fixed-point simulation. 79

5.12 State response of the quadrotor in the tracking simulation. 80

5.13 OOutputof the observer in the tracking simulation. 80

5.14 hyper-parameters tuned by DRL in the tracking simulation. 81

5.15 The quadrotor configuration and physical experiment environment. 81

5.16 State response of the quadrotor in the fixed-point experiment. 82

5.17 OOutputof the observer in the fixed-point experiment. 82

5.18 hyper-parameters tuned by DRL in the fixed-point experiment. 83

5.19 State response of the quadrotor in trajectory tracking experiment. 84

5.20 OOutputof the observer in trajectory tracking experiment. 84

5.21 hyper-parameters tuned by DRL in the trajectory tracking experiment. 85

6.1 The architecture of the actor and the critic networks. 101

6.2 Diagram of the learning-based control framework 104

6.3 Reward of the training process of the rotational subsystem. 104

6.4 Comparative cost surface under different control frameworks and initial conditions
for the rotational subsystem. 104

6.5 Reward of the training process of the translational subsystem. 106

6.6 Comparative cost surface under different control frameworks and initial conditions
for the translational subsystem. 106

6.7 Topological graph of simulation group 1. 106

6.8 ||eη ,i||2 of each quadrotor under different control frameworks. 107

6.9 Graphic demonstration of the quadrotor formation in a 3D view. 108

6.10 Output of the observers. 108

6.11 Topological graph of simulation group 2. 108

6.12 ||eη ||2 of each quadrotor under different control frameworks. 109

6.13 Graphic demonstration of the quadrotor formation in a 3D view. 109

6.14 Output of the observers. 109

6.15 The quadrotors used in the experiment. 110

6.16 The entire experiment configuration. 111

6.17 Topological graph in Experiment Group 1. 111

6.18 Hyperparameters kη1, kη2, and kη4 tuned by DRL in experiment group 1. 112

6.19 ||eη ||2 of each quadrotor under different control frameworks. 113

6.20 Graphic demonstration of the quadrotor formation in a 3D view. 113

XIII

6.21 Output of the observers in experiment group 1. 113
6.22 Topological graph in Experiment Group 2. 114
6.23 Hyperparameters kη1, kη2, and kη4 tuned by DRL in experiment group 2. 114
6.24 ||eη , i||2 of each quadrotor under different control frameworks. 114
6.25 Graphic demonstration of the quadrotor formation in a 3D view. 115
6.26 Output of the observers in experiment group 2. 115

7.1 Comparative simulation of Theorem 7.1 with different conditions. 128
7.2 Diagram of the entire control framework. 138
7.3 Topological graph of simulation group 1. 140
7.4 2-norm of the consensus tracking error ||eη ,i|| in simulation group 1. 140
7.5 A 3D demonstration of the quadrotor group in simulation group 1. 141
7.6 Output of the observers in simulation group 1. 141
7.7 Comparative simulations under different ‘predefined convergence times’ in simula-

tion group 1. 141
7.8 Topological graph of simulation group 2. 142
7.9 2-norm of the consensus tracking error ||eη ,i|| in simulation group 2. 143
7.10 A 3D demonstration of the quadrotor group in simulation group 2. 143
7.11 Output of the observers in simulation group 2. 143
7.12 Comparative simulations under different ‘predefined convergence times’ in simula-

tion group 2. 143
7.13 Hardware configuration of the experiments. 144
7.14 2-norm of the consensus tracking error ||eη ,i|| in experiment group 1. 146
7.15 A 3D demonstration of the quadrotor group in experiment group 1. 146
7.16 Output of the observers in experiment group 1. 146
7.17 Comparative experiment under different ‘predefined convergence times’ in experi-

ment group 1. 147
7.18 2-norm of the consensus tracking error ||eη ,i|| in experiment group 2. 148
7.19 A 3D demonstration of the quadrotor group in experiment group 2. 148
7.20 Output of the observers in experiment group 2. 148
7.21 Comparative experiment under different ‘predefined convergence times’ in experi-

ment group 2. 149
7.22 L1- and L2-norms of eη of the two groups’ experiments under different control frame-

works. 149

XIV

List of Tables

3.1 Some geometric operation functions. 23
3.2 Some classes and their functionality in "classes.py". 28
3.3 Environments in DRLSP . 29

4.1 Hyper-parameters of the learning framework. 47

5.1 Some related parameters of the PPO optimizer. 74
5.2 Tracking errors of the quadrotor under two groups of experiments. 86

6.1 Some related parameters of the PPO optimizer. 102
6.2 Tracking errors of the quadrotor group under two groups of experiments. 115

7.1 Parameters of the controllers in the translational loop in simulation. 139
7.2 Parameters of the observers in the translational loop in simulation. 139
7.3 Parameters of the controllers in the translational loop in physical experiments. 145
7.4 Parameters of the observers in the translational loop in physical experiments. 145

XV

List of Abbreviations

1) Path planning:

A* A Star

ACDP-RRT Adaptive Clustering-based Dynamic Programming-based RRT

ACO Ant Colony Optimization

ADP Adaptive Dynamic Programming

AI Artificial Intelligence

APF Artificial Potential Field

ApprDP Approximate Dynamic Programming

D algorithm Dijkstra Algorithm

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DWA Dynamic Window Approach

GA Genetic algorithm

JPS Jump Point Search

MA Memetic Algorithm

NRRT* Neural Rapidly-exploring Random Tree-Star

PRM Probabilistic Road Map

PSO Particle Swarm Optimization

RRT Rapidly-exploring Random Tree

RRT* Rapidly-exploring Random Tree-Star

TEB Time-Elastic Band

2) Reinforcement Learning:

A3C Asynchronous Advantage Actor-Critic

XVI

AC Actor-Critic

AED Adaptive Evaluation Design

CPO Conversative Policy Optimization

DDPG Deep Deterministic Policy Gradient

DL Deep Learning

DLT Deep Learning Toolbox

DP Dynamic Programming

DPPO Distributed Proximal Policy Optimization

DPPO2 Distributed Proximal Policy Optimization2

DQN Deep Q-Network

DRL Deep Reinforcement Learning

GAE Generalized Advantage Estimation

MA-DDPG Multi-agent DDPG

MA-PPO Multi-agent PPO

MDP Markov Decision Proces

ND Network Decoupling

NDP Neural Dynamic Programming

NPG Natural Policy Gradient

NN neural network

PG Policy Gradient

PID Proportional-Integral-Derivative

PPO Proximal Policy Optimization

PPO2 Proximal Policy Optimization2

RL Reinforcement Learning

SAC Soft Actor Critic

TD3 Twin Delayed Deep Deterministic Policy Gradient

TRPO Trust Region Policy Gradient

VI Value Iteration

3) Control&Robitic:

XVII

AFTO Appointed Fixed-time Observer

DO disturbance observer

FCU Flight Control Unit

FNSMC Fast Non-singular Sliding Mode Control(ler)

FNTSMC Fast Non-singular Terminal Sliding Mode Control(ler)

FTDO fixed-time disturbance observer

HJB Hamilton–Jacobi–Bellman

LQR Linear Quadratic Regulating

LQG Linear Quadratic Gaussian

QUAV Quadrotor Unmanned Aerial Vehicle

RFNTSMC Recursive Fast Non-singular Terminal Sliding Mode Control(ler)

ROS Robot Opeartion System

SMC Sliding Mode Control(ler)

TSMC Terminal Sliding Mode Control(ler)

UAV Unmanned Aerial Vehicle

UUB Uniformly Ultimately Bounded

PdT Predefined-time

PdTDO Predefined-time Disturbance Observer

PdTFNTSMC Predefined-time Fast Nonsingular Terminal Sliding Mode Control

4) Other:

DRLSP Deep Reinforcement Learning Simulation Platform

PPSP Path Planning Simulation Platform

XVIII

Chapter 1

Introduction

The primary motivation for developing mobile robots is to undertake repetitive, complex, or
hazardous tasks for humans. This necessity becomes even more critical in challenging environments
such as ruins, landfills, or significant heights. As robotics has advanced, mobile robots have found
widespread applications in industries such as manufacturing [1], agriculture [2], automation [3], sci-
entific research [4], and defense [5]. With the rapid advancement of automation and artificial intel-
ligence technologies, the demand for more intelligent robots has grown substantially in recent years.
However, this progress has also introduced a range of unresolved theoretical and engineering chal-
lenges.

Mobile robots encompass various robot types, each serving distinct purposes. For example, under-
water vehicles are employed to explore marine environments [6]; ground autonomous cars are widely
used in autonomous driving [7]; multi-rotor aircraft are utilized for tasks such as terrain exploration,
logistics, aerial photography, and agricultural protection [2]; fixed-wing drones are applied in recon-
naissance, mapping, and remote sensing [8–10]; humanoid robots are often adopted in the service
industry [11]; warehouse robots are employed for tasks like material handling, placement, and in-
ventory management [12]; and robotic manipulators are used in industrial production and precision
component manufacturing [13], among other applications. Although the structure and functionality
of different robots vary greatly, the challenges that need to be addressed during task execution are re-
markably similar. These challenges include task allocation, communication, localization, navigation,
planning, and control.

Among the various challenges outlined, trajectory planning and control are particularly critical
for mobile robot systems. Consequently, this paper provides a comprehensive study and exploration
of trajectory planning and control in mobile robots. The structure of this chapter is organized as
follows: Section 1.1 introduces the concept of trajectory planning. Section 1.2 reviews state-of-the-
art advancements in the field of robotics control. Given the application of DRL techniques in this
thesis, Section 1.4 offers a brief overview of DRL technology. Finally, Section 1.5 summarizes the

1

Chapter 1. Introduction

main content of the thesis.

1.1 Robotic Trajectory Planning
Path planning for mobile robots is crucial for optimizing performance in complex environments.

A comprehensive path-planning framework typically consists of both global and local planners. The
global planner generates paths or reference waypoints based on a worldwide map. In contrast, the
regional planner is responsible for creating a smooth trajectory and avoiding previously unmapped
obstacles as the robot follows the international path.

Global path planning is a fundamental problem in robotics that involves computing a collision-
free trajectory for a robot to navigate from an initial position to a target destination. This process
requires considering the robot’s environment, which may include various obstacles and constraints.
In contrast to local path planning, which addresses immediate, short-term decisions based on real-
time sensor data, global path planning evaluates the entire environment to develop a comprehensive
strategy for reaching the goal.

Despite advancements in global path planning, several challenges and limitations persist, especially
when applying these techniques in real-world scenarios. Key issues include:

1) High-Dimensional Spaces: Path planning in high-dimensional spaces, such as those involving
robotic manipulators or drones with complex configurations, can be computationally intensive.
The number of potential paths increases exponentially with dimensions, making it challenging
to find optimal solutions within a practical timeframe.

2) Real-Time Constraints: Applications such as autonomous driving and drone navigation often
require real-time path planning. Existing algorithms frequently struggle to compute optimal
paths, particularly in dynamic environments quickly.

3) Large-Scale Environments: Global path planning in large-scale environments, such as entire
cities or extensive indoor spaces, presents significant challenges. The vast size of the climate
complicates the efficient search for optimal paths.

Local planning, also known as local navigation, is a critical component of autonomous robotics
that emphasizes real-time decision-making as a robot traverses its environment. Unlike global path
planning, which establishes an overarching path from the start to the goal while considering the entire
environment, local path planning addresses immediate, short-term decisions necessary for navigating
the robot safely and efficiently within its current surroundings. Key aspects of regional planning
include:

1) Dynamic Environments: Local planning is crucial in dynamic environments where obstacles
can appear suddenly, such as pedestrians on a busy street or other robots in a warehouse. The
local planner must continuously adjust the robot’s path to avoid collisions.

2

Chapter 1. Introduction

2) Sensor Integration: Local planners depend heavily on real-time sensor data (e.g., LiDAR,
cameras, sonar) to detect obstacles and modify the robot’s trajectory. This feedback loop allows
the robot to react promptly to environmental changes.

3) Immediate Adjustments: Local planning emphasizes the robot’s immediate surroundings,
making rapid decisions about subsequent movements. These decisions are typically based on a
predefined window or horizon around the robot, enabling quick responses to new obstacles.

Despite decades of research, several bottlenecks remain in local planning. For example:

1) Local Minima: Local planning approaches based on potential fields can encounter local min-
ima, where the robot may become "stuck" in a position without a clear path to the goal.

2) Overreaction to Obstacles: Local planners often exhibit strong reactions to obstacles, which
can result in erratic or overly cautious behavior. For instance, a robot might execute sharp,
unnecessary turns or stop frequently in response to obstacles, reducing efficiency and causing
instability in its trajectory.

3) High Computational Load: For robots operating at high speeds or within complex environ-
ments, the computational demands of local path planning can be substantial. Balancing real-
time operation with accuracy and safety remains a significant challenge.

1.2 Mobile Robot Control
Mobile robotics is a fundamental area within the field of robotics, dedicated to developing al-

gorithms and systems that guide robot behavior with precision, reliability, and efficiency. This field
integrates principles from various disciplines, including mechanical engineering [14], electrical en-
gineering [14], computer science [15], and control theory [16], to enable robots to execute complex
tasks autonomously or semi-autonomously.

Mobile robot control fundamentally involves determining the precise actions required for a robot to
achieve specific objectives. These objectives may include navigating to a particular location, handling
and manipulating various objects, or maintaining stability and balance. Control systems ensure the
robot’s actions align with its intended goals. They accomplish this by accounting for both the robot’s
internal states—such as joint angles or velocities—and external factors, including obstacles or envi-
ronmental changes. Control systems enable robots to operate effectively and efficiently in diverse and
dynamic environments by continuously monitoring and adjusting to these factors.

Among the various types of robots, quadrotors are particularly favored for their simple structure,
low cost, and ease of operation. These attributes make them suitable for multiple applications, from
hobbyist projects to advanced research and industrial uses. However, the nonlinear dynamics, strong
coupling, and under-actuated nature of quadrotor models present significant challenges in control
theory. The complexity of quadrotor dynamics makes accurate modeling difficult, necessitating so-

3

Chapter 1. Introduction

phisticated control algorithms to achieve stable and precise flight. As a result, quadrotor control
represents a challenging and illustrative problem within robotics control. This issue is theoretically
intriguing and practically significant, as it addresses real-world uncertainties and disturbances. There-
fore, research in quadrotor control is crucial for advancing the field of robotics. Progress in this area
can enhance the performance and reliability of quadrotors, thereby expanding their applications in
areas such as surveillance, delivery, and environmental monitoring.

1.3 Multi-mobile Robot Control
In recent years, the field of multi-quadrotor control has attracted significant attention. This area

of research focuses on coordinating and managing multiple quadrotor drones operating simultane-
ously. The growing interest in multi-quadrotor control is driven by its potential applications across
various domains, including surveillance [17], search and rescue operations [18], environmental mon-
itoring [19], and delivery services [20]. Coordinating multiple quadrotors presents unique challenges
distinct from those encountered in single-quadrotor control. These challenges include ensuring colli-
sion avoidance, maintaining formation, and achieving synchronized movements, all of which demand
advanced algorithms and robust communication systems. Conversely, the opportunities offered by
multi-quadrotor systems include enhanced efficiency, increased coverage, and the ability to perform
complex tasks that a single quadrotor cannot accomplish alone. Consequently, research in multi-
quadrotor control is essential for advancing the capabilities and applications of robotic systems.

In summary, multi-quadrotor control can be categorized into several key areas: consensus control,
formation control, swarm control, meeting control, synchronization control, and encirclement control.

Consensus Control: [21] The objective of consensus control is to align the states of all agents,
ensuring that they eventually converge to the same state or trajectory. This approach is often employed
to maintain formation or synchronize movements. For instance, in drone formation flying, all drones
must maintain consistent speed and direction to achieve a stable formation.

Formation Control: [22] Formation control involves arranging agents into a predetermined ge-
ometric configuration. Common strategies include the leader-follower approach (where one agent
leads and others follow), the behavior-based approach (where each agent adheres to local rules), and
the virtual structure approach (where agents follow a predefined virtual structure). These methods
facilitate cooperative movement within a specified formation.

Swarm Control: [23] Swarm control, also known as flocking control, emulates natural group behav-
iors, such as those seen in bird flocks or fish schools. Agents achieve complex collective behaviors
through simple local rules, including maintaining distance, aligning directions, and avoiding colli-
sions. This method benefits large-scale coordination tasks, such as environmental monitoring and
search and rescue operations.

4

Chapter 1. Introduction

Meeting Control: [24] Meeting control focuses on directing multiple agents to converge at a spe-
cific location. This approach is often utilized for task allocation and resource concentration. For
example, various robots may need to assemble at a designated spot to complete a task, ensuring that
all robots accurately reach the intended location.

Synchronization Control: [25] Synchronization control ensures that agents remain temporally syn-
chronized, which is crucial for tasks requiring precise timing. In multi-robot collaborative transporta-
tion tasks, all robots must start and finish simultaneously to ensure seamless execution.

Encirclement Control: [26] Encirclement control, or envelope control, involves agents surrounding
a target area or object to ensure it remains within their control range. This method is commonly
applied to protection and monitoring tasks. For example, drones might encircle a moving target to
maintain continuous monitoring.

1.4 Deep Reinforcement Learning
This thesis employs Deep Reinforcement Learning (DRL) to develop a local planner. Recent ad-

vancements in Artificial Intelligence (AI) technology, driven by significant developments in computer
science and GPU capabilities, have led to its extensive application across various fields in our daily
lives. As a substantial branch of AI, Reinforcement Learning (RL) has demonstrated its potential in
numerous areas, including task allocation, robotics control, navigation, and recommendation systems.
Based on Markov Decision Proces (MDP) theory and Dynamic Programming (DP) theory [27–29],
RL iteratively optimizes an agent’s policy through interaction with the environment. Additionally, RL
effectively addresses the dimensionality explosion present in DP. Consequently, RL is also referred
to as Adaptive Dynamic Programming (ADP) (Approximate Dynamic Programming), Approximate
Dynamic Programming (ApprDP) (Approximate Dynamic Programming), Neural Dynamic Program-
ming (NDP) (Neuro-Dynamic Programming), and Adaptive Evaluation Design (AED) (Approximate
Experience Design).

Werbos introduced the first reinforcement learning (RL) application to optimization problems in
1987 [30]. He emphasized the need for control systems to adaptively tune themselves as their com-
plexity increases to meet evolving requirements. Werbos stated [30], "Adaptive systems, like hu-
man infants, are less agile than young monkeys but have something important to contribute as they
mature." This insight laid the foundation for what is now known as ADP (Approximate Dynamic
Programming) in addressing optimization problems.

In reinforcement learning control, applications of DRL can be broadly classified into two main
categories: end-to-end learning and optimization of controller parameters using DRL. End-to-end
DRL represents a comprehensive approach where the learning process spans the entire pipeline, from
raw sensory inputs to action outputs, without requiring manual feature engineering or intermediate

5

Chapter 1. Introduction

processing steps. In this framework, a deep neural network (NN) is trained to directly map high-
dimensional inputs, such as images or sensor data, to actions that maximize cumulative rewards. This
approach harnesses the representation learning capabilities of Deep Learning (DL) to automatically
extract relevant features from raw data, allowing the agent to develop complex policies and behaviors.
End-to-end DRL has achieved notable success in various domains, including autonomous driving,
robotic manipulation, and game playing, where it has demonstrated superhuman performance by
learning directly from interactions with the environment through trial and error.

Using DRL to optimize traditional controllers involves harnessing the advanced learning capabil-
ities of DRL to enhance the performance of conventional control systems. Traditional controllers,
such as Proportional-Integral-Derivative (PID) controllers, are popular for their simplicity and ef-
fectiveness in many applications. However, tuning their parameters for optimal performance can be
challenging, particularly in complex and dynamic environments. DRL can automatically adjust these
parameters by learning from interactions with the environment. This method enables the controller to
adapt to varying conditions, improving its robustness and efficiency. By integrating DRL with tradi-
tional control techniques, superior control performance can be achieved, making this hybrid approach
highly valuable in domains such as robotics, autonomous systems, and industrial automation.

1.5 Thesis Overview
This thesis presents our contributions to robotics trajectory planning and control across four

chapters, specifically from Chapter 3 to Chapter 6.
Chapter 3 introduces two simulation platforms developed to support the design and validation of our

algorithms: the Path Planning Simulation Platform (PPSP) and Deep Reinforcement Learning Simu-
lation Platform (DRLSP). The PPSP integrates several commonly used path planning algorithms as
benchmarks and includes a geometric operations function library to increase map complexity during
simulations. The DRLSP incorporates over 10 Deep Reinforcement Learning (DRL) algorithms and
16 physical experiments to validate the effectiveness of our proposed methods. All methods and al-
gorithms presented in this thesis have been tested using these simulation platforms. Additionally, we
have designed the function interfaces of the simulation platforms to ensure compatibility with Robot
Opeartion System (ROS) for ease of experimentation.

Following the development of the simulation platforms, Chapter 4 delves into the trajectory plan-
ning problem, which is divided into two stages: the global planning process and the local plan-
ning process. For global planning, we enhanced the sampling efficiency of the traditional Rapidly-
exploring Random Tree (RRT) algorithm by leveraging geometric information from the map. Specifi-
cally, we applied Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to classify
obstacles into clusters. Then, the sampling region of RRT was confined to a series of connected "con-

6

Chapter 1. Introduction

vex hull rings" and "rectangular connectors," significantly improving sampling efficiency. For local
planning, DRL methods have become increasingly popular due to their adaptability and independence
from explicit models. However, data obfuscation is challenging when the training data exhibits high
dimensionality and similar values. To address this, we improved the structure of the critic network in
DRL by applying a network decoupling technique. This technique separates the input data into two
groups: sensor-related data and motion-related data. Extensive simulations and physical experiments
were conducted using an autonomous ground vehicle to validate the effectiveness and superiority of
the proposed planning framework.

In addition to trajectory planning, control is a critical aspect of robotics. While controlling ground
robots is relatively straightforward due to their typically full actuation and limited nonlinearity under
most conditions, controlling Quadrotor Unmanned Aerial Vehicle (QUAV)s presents more complex
challenges. QUAVs are characterized by their nonlinear, strongly coupled, and under-actuated dy-
namics.

Chapter 5 addresses these challenges by focusing on QUAV control. We introduce a novel Recursive
Fast Non-singular Terminal Sliding Mode Control(ler) (RFNTSMC) (Robust Finite-Time Nonlinear
Sliding Mode Control) approach to stabilize the closed-loop system. A fixed-time disturbance ob-
server (DO) estimates the equivalent disturbances affecting the system. Additionally, DRL is used to
optimize hyper-parameters within the RFNTSMC, enhancing the system’s robustness and adaptabil-
ity. The stability of the closed-loop system, including the learning module, is rigorously guaranteed
in a Lyapunov sense.

Building on the learning-based hybrid control framework discussed previously, Chapter 6 extends
this framework to multi-agent systems. We introduce a fully distributed Fast Non-singular Terminal
Sliding Mode Control(ler) (FNTSMC) (Finite-Time Nonlinear Sliding Mode Control) and a robust
differentiator-based fixed-time DO to stabilize the closed-loop system. DRL is employed to distribute
the optimization of hyper-parameters across the FNTSMCs of each quadrotor, aiming to enhance
overall control performance. Given that the agents in the multi-agent system are homogeneous, we
utilize DRL to train a single agent within the simulation environment, which is then generalized to
the entire multi-agent group.

Based on the control method proposed in Chapter 6, in Chapter 7, a modified Predefined-time (PdT)
consensus control framework is introduced for the multi-quadrotor formation control problem. A
Predefined-time Disturbance Observer (PdTDO) and a Predefined-time Fast Nonsingular Terminal
Sliding Mode Control (PdTFNTSMC) are proposed to estimate the external disturbances and control
the multi-quadrotor system simultaneously.

The methods presented in Chapters 4 through 7 have been validated through extensive simulations
and real-world experiments. Finally, Chapter 8 summarizes the key contributions of this PhD thesis
and outlines potential areas for future research.

7

Chapter 2

Literature Review

2.1 Trajectory Planning

2.1.1 Global planning

Trajectory planning methods can be categorized into three main types: graph decomposition-
based, sampling-based, and biologically inspired (Figure 2.1).

Trajectory

Planning

Graph

Decomposition
Sampling

Biological

inspiration

Figure 2.1: Classification of global planning algorithms.

(a) Graph Decomposition-Based Methods
Graph decomposition involves dividing the entire environment into sub-regions marked by various

attributes such as obstacles, convex hulls, distances, and reachability. Trajectories are then gener-
ated using graph search techniques. These methods typically abstract the map into points, lines, and
regions and assign penalties to paths between points based on constraints. Standard graph decompo-
sition methods include Dijkstra Algorithm (D algorithm), A Star (A*) algorithm, D*-lite, and their
variants.

Proposed by Dijkstra [31] in 1958, Dijkstra’s algorithm is a classical global planning algorithm
renowned for its optimality in solving planning problems. However, Dijkstra’s algorithm requires a

8

Chapter 2. Literature Review

search of the entire environment, regardless of the number of obstacles or the size of the environment,
which can lead to excessive computation time and storage usage.

To address this limitation, A* was developed as a modification to accelerate the search process.
Introduced by Dutch scientists in 1968 [32], A* uses a heuristic approach to search for paths. It cal-
culates the cost between points based on prior environmental information and systematically searches
for the optimal path during its iterative process, thus reducing search time. As illustrated in Figure 2.2,
A* traverses fewer nodes compared to Dijkstra’s algorithm when converging on the optimal path, as
shown by the yellow grids representing the paths explored by both algorithms.

Figure 2.2: A demonstration of D algorithm (left) and A* algorithm (right).

Several improved versions of the A* algorithm have been developed to address its limitations.
Dmitri Dolgov et al. [33] introduced Hybrid A*, which integrates kinematic and dynamic constraints,
allowing the resulting paths to be used directly as robot control commands. Sedighi et al. [34] com-
bined Hybrid A* with the visible graph planning method, achieving a 40% improvement in runtime
for path planning in mixed discrete-continuous environments. Le et al. [35] proposed an enhanced
A* algorithm that generates waypoints in narrow spaces, successfully applied to the cleaning robot
hTetro. Liu et al. [36] developed a variant that balances path length and navigation safety, addressing
uncertainties such as water flow and collision risks in ship trajectory planning.

(b) Sampling-based methods
In contrast to graph decomposition-based methods, sampling-based methods describe paths as se-

quences of waypoints or nodes, providing a feasible route from the initial point to the terminal point.
The primary advantage of sampling-based methods is their ability to find accessible solutions in high-
dimensional and complex maps. However, they do not guarantee the optimality of the path. Sampling-
based algorithms are typically categorized into three types: Probabilistic Road Map (PRM) [37],
Rapidly-exploring Random Tree (RRT) [38], and Artificial Potential Field (APF) [39].

PRM was proposed by Kavraki et al. [37]. It constructs a grid map of possible paths within a given
space, distinguishing between available and occupied areas. It uses a map search method to convert

9

Chapter 2. Literature Review

continuous space into discrete space. The fundamental idea is to generate several points within the
available subspace randomly and then, along with the initial and terminal points, create a collision-
free path that includes both the initial and terminal points.

RRT generates waypoints and sampling points simultaneously and is a widely used sampling-based
algorithm. Several advanced methods have been introduced based on the traditional RRT. Kuffner
et al. [40] proposed RRT-Connect in 2000, which searches for accessible sub-paths from both the
initial and terminal positions simultaneously. The algorithm terminates when the two random trees
meet, reducing the number of redundant nodes. Karaman et al. [41] introduced the Rapidly-exploring
Random Tree-Star (RRT*) algorithm in 2011, demonstrating its asymptotic optimality. RRT* recon-
nects nodes within a specific range to replace longer path connections. Informed RRT*, proposed by
Gammell et al. [42] in 2014, uses an admissible ellipsoidal heuristic to accelerate the convergence of
RRT*. Recently, learning-based RRT methods have emerged. Y. Li et al. [43] proposed a neural net-
work (NN) approximation technique to optimize RRT with kino-dynamic constraints. H. L. Chiang et
al. introduced a Reinforcement Learning (RL)-RRT method, which employs a DDPG controller for
obstacle avoidance and robot control, using a trained NN reachability estimator as the distance func-
tion in RRT. J. Wang et al. [44] developed Neural Rapidly-exploring Random Tree-Star (NRRT*),
a neural-based RRT algorithm that predicts the probabilistic distribution of the optimal path using a
NN. The dataset for this NN is generated by the A* algorithm, and simulations show that NRRT*
performs competitively compared to other state-of-the-art path planning algorithms.

(c) Biological inspiration-based methods
The basic idea of bio-inspired algorithms is to abstract path-planning methods by mimicking the

behavior of creatures in the natural world. Unlike graph-based and sampling-based methods, which
focus on modeling the environment and solving pathfinding problems, bio-inspired methods address
challenges such as local minima and complex multi-objective optimization problems. These algo-
rithms leverage natural processes and behaviors to find solutions, often yielding robust and adaptive
strategies for navigating intricate environments.

Genetic algorithm (GA), proposed by Holland [45] in 1975, simulate Darwin’s theory of biological
evolution to search for optimal solutions. This algorithm transforms problem-solving into a process
akin to the natural evolution of chromosomes, involving operations such as crossover and mutation.
GAs solve complex optimization problems by mimicking the natural selection process, which itera-
tively improves solutions through a simulated evolutionary process.

Memetic Algorithm (MA), introduced by Moscato [46] in 1989, heuristically simulates the muta-
tion process supported by extensive domain knowledge. Combining population-based global search
with individual-based local heuristic search, MAs provide a flexible framework for integrating vari-
ous search strategies. This framework allows for forming different algorithms, such as hill climbing,
simulated annealing, greedy algorithms, and taboo search, thereby enhancing the algorithm’s ability

10

Chapter 2. Literature Review

to solve complex optimization problems.
Particle Swarm Optimization (PSO), introduced by Dr. Kennedy and Eberhart [47] in 1995,

addresses optimization problems through the collective behavior of particles and their interactions
within a swarm. PSO is known for its simplicity and rapid convergence. However, it can suffer from
premature convergence and easily fall into local optima as the problem’s complexity increases. These
issues are typically addressed by tuning PSO’s parameters and integrating them with other methods
to enhance performance and robustness.

Ant Colony Optimization (ACO), introduced by Marco Dorigo [48] in his doctoral dissertation in
1992, is inspired by the behavior of ants searching for food. Although the actions of individual ants
are relatively simple, their collective behavior demonstrates remarkable intelligence. Ants deposit
pheromones along their paths, which guide other ants toward food-rich areas. This pheromone-based
communication enables the colony to find efficient paths, and ACO algorithms mimic this process to
solve optimization problems by simulating how ants find optimal paths.

Apart from the methods mentioned earlier, many other trajectory-planning algorithms exist. De-
tailed overviews of multi-agent trajectory planning can be found in the works of Madridano et al. [49],
Mohanan et al. [50], Zhao et al. [51], and Aggarwal et al. [52].

2.1.2 Local planning

Besides global planning, local planners focus on the robot’s immediate surroundings, allow-
ing the agent to address challenges of unforeseen environmental changes. Several well-established
algorithms, such as Dynamic Window Approach (DWA) [53], APF [54], and Time-Elastic Band
(TEB) [55], have been introduced as practical solutions for local path planning in robotics.

The DWA [53] emphasizes real-time obstacle avoidance by accounting for the robot’s kinematic
constraints and dynamic environment. It evaluates a range of possible velocities within a dynamic
window, determined by the robot’s current velocity and acceleration limits, and predicts trajectories
to identify potential collisions. The algorithm then selects the optimal velocity that balances reach-
ing the target and avoiding obstacles, making it particularly effective for autonomous navigation in
dynamic environments such as warehouses or urban areas. However, DWA has some drawbacks,
including a tendency to get trapped in local optima and an inability to guarantee a globally optimal
path. Additionally, it can be computationally intensive, particularly in environments with numerators.

The APF [54] algorithm is widely used in robotics for path planning and obstacle avoidance due to
its simplicity and ease of implementation. It models the robot’s environment using attractive forces
directed toward the goal and repulsive forces pushing away from obstacles. This approach is ad-
vantageous because it provides a straightforward mathematical model that is easy to understand and
implement. However, APF has notable drawbacks, such as a tendency to get trapped in local min-
ima, where the robot may become stuck in a suboptimal position that is not the goal. Additionally,

11

Chapter 2. Literature Review

it can struggle with target accessibility when obstacles are near the goal, limiting its effectiveness in
complex environments.

The TEB [55] algorithm is a local path-planning method used in robotics, particularly for au-
tonomous navigation in dynamic environments. It improves upon the traditional elastic band method
by incorporating time as an additional dimension, allowing for more precise trajectory optimization
and dynamic obstacle avoidance. TEB is advantageous due to its flexibility in adapting constraints
based on different needs and ability to produce smooth, efficient paths. However, it has some draw-
backs, such as potential increases in computational complexity and the possibility of local detours in
complex environments, leading to higher energy consumption.

Robotics local planning involves creating real-time, feasible paths for robots to navigate dynamic
environments while avoiding obstacles. Traditional methods like DWA and APF have been widely
used due to their simplicity and effectiveness. However, they often face challenges such as get-
ting trapped in local minima or increased computational complexity. Future research increasingly
focuses on Deep Reinforcement Learning (DRL)-based methods, which offer advantages like model-
free planning and integrating global and local planning paradigms. DRL-based approaches can adapt
to complex, unpredictable environments and enhance the robot’s decision-making capabilities. On-
going research addresses challenges related to computational efficiency and real-time adaptability in
these advanced methods.

2.2 Quadrotor Control
In recent decades, Unmanned Aerial Vehicle (UAV)s have garnered significant attention within

numerous academic research endeavors due to their extensive range of applications. Among them,
the quadrotor is the most extensively examined and utilized type of UAV due to its straightforward
mechanical structure, cost-effectiveness, and relatively unconstrained mathematical model with aero-
dynamics. Ensuring the stable control of a quadrotor is fundamental to achieving dependable flight
performance and accomplishing intricate missions. However, quadrotor control presents significant
challenges primarily due to its inherent underactuated nature, nonlinearity, and strong coupling among
system components [56,57]. Additionally, tracking control becomes increasingly complex when deal-
ing with external disturbances, uncertainties, and time-varying parameters within the quadrotor’s dy-
namics. Thus, achieving robustness and adaptability in the quadrotor’s control system is crucial for
its extensive utilization.

In response to these challenges, several conventional methodologies have been proposed. Refer-
ence [58] introduced a feedback implicit PID controller based on linear matrix inequalities (LMIs) for
quadrotor control under time and space constraints. Sun et al. [59] conducted an empirical comparison
between two advanced control frameworks: the nonlinear model predictive controller (NMPC) [60]

12

Chapter 2. Literature Review

and the differential flatness-based controller (DFBC) [61], in the context of high-speed flight. An
adaptive fuzzy quantized controller for accurate position and attitude tracking was proposed by Zhang
et al. [62]. Hou et al. [63] designed a non-singular Terminal Sliding Mode Control(ler) (TSMC) for
quadrotor control and examined its performance under rotor failure. Additionally, a robust adaptive
backstepping fast TSMC was introduced by Labbadi et al. [64]. Linear-based controllers have also
been employed for quadrotor control, such as the finite-horizon Linear Quadratic Regulating (LQR)
controller used by Cohen et al. [65], and the Linear Quadratic Gaussian (LQG) controller devel-
oped by Zioud et al. [66] for trajectory tracking. Among these methodologies, Sliding Mode Con-
trol(ler) (SMC) has garnered significant interest due to its design convenience and robustness. How-
ever, the design of the gain for the signum function in SMC critically impacts system performance.
Inadequate gains can lead to sluggish system responses or controller chattering, making the design of
an appropriate sliding mode approach and chattering mitigation essential concerns in the domain of
SMC [64, 67, 68].

Several existing works have addressed this issue. An adaptive fractional-order SMC was proposed
by Vahdanipour et al. [69] to control a quadrotor with varying loads, using an adaptive correcting
coefficient to estimate load variations. Lian et al. [70] introduced a Fast Non-singular Sliding Mode
Control(ler) (FNSMC) for adaptive attitude control of a quadrotor. Labbadi et al. [71] utilized a robust
adaptive Fast Non-singular Terminal Sliding Mode Control(ler) (FNTSMC) to handle an uncertain
quadrotor with external disturbances, also developing an SMC-based observer to estimate disturbance
bounds. Mofid et al. [72] proposed an adaptive finite-time backstepping global SMC for quadrotor
tracking control amidst wind disturbances and model uncertainties. Li et al. [73] investigated an
Appointed Fixed-time Observer (AFTO) combined with SMC for a quadrotor UAV facing external
disturbances, employing a novel disturbance observer (DO)r to estimate these disturbances within a
specified settling time. Despite these advancements, two significant challenges remain unresolved.
Firstly, many DOs rely on the assumption that the disturbance’s derivative remains bounded, with
some even assuming it to be zero, which may not always be realistic.

However, such assumptions often lead to inadequate estimation by the observer, which can nega-
tively impact the gain of the signum function in SMC. Another significant challenge is the design of
the sliding mode approach law. Determining an appropriate reaching law is complex: if set too large,
it can cause oscillations in the system, while a minimal reaching law may result in sluggish response
characteristics. Therefore, finding the right balance and optimizing the reaching law is crucial for
achieving the desired performance in SMC.

Several methods have been proposed to address the problem of approaching law tuning. Xiong et
al. [74] introduced a self-tuning SMC for an uncertain coaxial octorotor UAV. In [75], an adaptive fast
TSMC with a power rate proportional reaching law was proposed for position and attitude tracking
control of a quadrotor. Beyond these classical methods, the advent of Artificial Intelligence (AI) tech-

13

Chapter 2. Literature Review

nology has generated significant interest in using Adaptive Dynamic Programming (ADP) (approxi-
mate dynamic programming) and Reinforcement Learning (RL) (reinforcement learning) as innova-
tive approaches. ADP provides a robust framework for optimizing problems and efficiently solving
the complex nonlinear Hamilton–Jacobi–Bellman (HJB) equation [76–78]. Typically, ADP involves
two NNs: the actor, which generates control commands, and the critic, which evaluates the quality
of the actor’s output and helps optimize its performance. This ADP framework operates iteratively
through interaction with the environment. Several ADP-based methodologies have been proposed for
quadrotor control. Cai et al. [79] introduced a distributed ADP framework for multi-quadrotor for-
mation control. Yi et al. [80] addressed the visual servoing feedback control problem for quadrotors
using ADP. An on-policy learning framework for quadrotor tracking control was proposed by Dou et
al. [81].

Nevertheless, the approaches above directly utilize ADP to estimate the optimal controller. It is
important to note that ADP is inherently a data-driven algorithm, and therefore, directly learning the
controller imposes significant requirements on initial system excitation. The network may converge
to suboptimal control performance if the initial incentive is not sufficiently effective. On the other
hand, using ADP to optimize the hyper-parameters within a classical controller offers a preferable
alternative. This method maintains the stability of the closed-loop system throughout the learning
process, especially during the initial stages. By restructuring the closed-loop system to parameterize
the hyper-parameters that require optimization, it becomes possible to train the actor-network within
ADP to achieve an approximate optimal solution while ensuring system stability.

2.3 Multi-quadrotor Control
Multi-agent control encompasses various sub-branches, as detailed in Section 1.3. Among these

fields, multi-agent consensus control is particularly significant in swarm robotics. Specifically, multi-
agent formation control is a specialized case of multi-agent consensus control. In this context, the
reference trajectory for the i-th agent, tra jd,i, is uniquely defined by the group’s center, tra jd , and an
offset biasd .

Multi-agent consensus control consists of two categories: leaderless consensus control and leader-
follower control. Nuño et al. [82] propose a leaderless consensus formation control for a group of
two-wheel differential ground robots with output feedback. An adaptive leaderless consensus control
for strict-feedback nonlinear systems with unknown model parameters and control directions is inves-
tigated in [83]. In [84], the authors consider directed topologies and introduce a leaderless consensus
control law using an event-trigger mechanism. Mei et al. [85] investigate a multi-agent leaderless
consensus control protocol for uncertain multi-agent systems and directed graphs. Wand et al. [86] in-
troduce a novel control framework to address leaderless consensus in heterogeneous Euler–Lagrange

14

Chapter 2. Literature Review

systems with unknown disturbances. However, leaderless control protocols are generally not appli-
cable to multi-robot systems, such as multi-quadrotor systems, because a physical or virtual leader
usually generates a reference signal for the multi-agent system.

As for leader-follow consensus control, many scholars have introduced solid results. In [87], Zhang
et al. propose an innovative event-trigger-based leader-follower consensus controller for linear multi-
agent systems. A closed-loop state estimator is introduced to decrease the triggering time, and the
consensus control protocol has been successfully applied to vehicle platoons. A distributed adaptive
leader-follower control protocol for a class of strict-feedback nonlinear systems is proposed in [88].
Considering convergence time, a finite-time leader-follower consensus controller based on the back-
stepping theory that compensates for mismatched disturbances is introduced in [89]. Fan et al. [90]
propose an event-trigger and sliding mode control (SMC)-based finite-time consensus control frame-
work. A distributed state estimator is used to estimate the tracking errors of each agent, given that
the entire topological graph is not fully connected and there are unknown disturbances. Among the
controllers mentioned, the SMC is superior due to its robustness, fast response, and simple design. In
contrast, other controllers are difficult to adjust in complex environments, are susceptible to distur-
bances, require high accuracy of the system model, and are computationally complex. Therefore, the
sliding mode controller performs better in handling uncertainties and external disturbances.

However, tuning the gains in sliding mode control (SMC) and SMC-related frameworks is challeng-
ing. If the gains are set too high, there will be noticeable chattering or overshoot; if the gains are too
low, the state response may be sluggish. Therefore, designing an appropriate law to adaptively tune
the hyper-parameters in SMC is a critical problem. Deep reinforcement learning (DRL) is an ideal
approach for complex function approximation and is naturally suitable for SMC parameter optimiza-
tion. Additionally, DRL has already been utilized in conjunction with traditional controllers. In [91],
approximate dynamic programming (ADP), a DRL technique from the control theory perspective, is
integrated with conventional SMC to stabilize multi-agent systems. However, this approach decou-
ples the ADP learning process from the design of the sliding mode surface, effectively using pure
ADP control without SMC. Mousavi et al. [92] propose a multi-agent consensus control framework
that combines fuzzy control, SMC, and ADP, utilizing fuzzy-based ADP to optimize the sliding mode
surface of the system. Similar to the previous approach, the final controllers are predominantly ADP-
based rather than SMC-based. Therefore, using DRL to optimize the parameters of SMC directly is
of significant research importance.

2.4 Deep Reinforcement Learning
In recent years, artificial intelligence (AI) technology has found extensive applications in al-

most all areas of life due to significant advancements in computer science and GPU technology. As

15

Chapter 2. Literature Review

a crucial branch of AI, reinforcement learning (RL) theory and technology have demonstrated their
potential across various fields, such as task allocation problems, robotics control, navigation, and rec-
ommendation systems. Based on Markov Decision Process (MDP) theory and dynamic programming
(DP) theory, RL iteratively optimizes the agent’s policy through interactions with the environment.
Moreover, RL effectively addresses the problem of dimensional explosion inherent in DP. Therefore,
RL is also referred to as Approximate Dynamic Programming (ADP), Neuro-Dynamic Programming
(NDP), and Adaptive Engineering Design (AED) [93–95].

The first application of using RL to tackle optimization problems was proposed in 1987 by Wer-
bos [96]. He suggested, ’ It is necessary for scholars to consider how to make control systems tune
themselves adaptively as their complexity increases to meet people’s requirements.’ Werbos empha-
sized that ’Adaptive systems, like human infants, are less agile than young monkeys but have some-
thing important to contribute as they mature.’ This idea forms the foundation of ADP for solving
optimal control problems.

Reinforcement Learning (RL) requires an effective function approximation unit. In the early
development of RL, various methods, such as tabular approaches, fuzzy logic, and Gaussian pro-
cesses, were used as approximators. Nowadays, Deep Learning (DL) techniques are widely em-
ployed in RL methods, giving rise to the theory of Deep Reinforcement Learning (DRL). In 2015,
researchers from DeepMind at Google [97] groundbreaking introduced the first DRL algorithm, Deep
Q-Network (DQN). This was the first instance where an agent trained by DRL outperformed human
players in 23 Atari computer games. DQN uses video streams captured from the screen as input, with
a NN consisting of convolutional layers for feature extraction and fully connected layers for optimal
action learning.

Following this, several improved versions of DQN were proposed. H. V. Hasselt et al. [98] in-
troduced Double-DQN, which mitigates the overestimation of the value function. It achieves this by
decoupling action selection and evaluation using two sets of parameters: the online network for select-
ing actions and the target network for evaluating them. This approach reduces overestimation, leading
to more stable and reliable learning, and has demonstrated improved performance in reinforcement
learning tasks.

Similarly, Z. Wang et al. [99] proposed Dueling-DQN to address the overestimation problem during
the training process. This method introduces a novel network architecture that separates the estimation
of the state value function from the advantage function, representing each action’s relative value in a
given state. By doing so, Dueling-DQN allows the model to learn which states are valuable without
understanding each action’s effect on every state. This leads to more efficient learning and better
performance, particularly in environments with many similarly valued actions.

Considering that DQN-based algorithms are limited to discrete action spaces, researchers from
DeepMind at Google [100] developed another Deep Reinforcement Learning (DRL) algorithm named

16

Chapter 2. Literature Review

Deep Deterministic Policy Gradient (DDPG) to address continuous action space problems in DRL.
DDPG is a state-of-the-art algorithm in reinforcement learning specifically designed for environments
with continuous action spaces. It combines the strengths of deterministic policy gradients with DL
techniques to learn optimal policies. DDPG operates off-policy, allowing it to learn from data gen-
erated by different policies, and uses methods such as Experience Replay and slowly updating target
networks to ensure stable training. This makes it particularly effective for tasks requiring precise
control, such as robotic manipulation and autonomous driving.

Subsequently, several advanced Deep Reinforcement Learning (DRL) algorithms were proposed.
V. Mnih et al. [101] introduced Asynchronous Advantage Actor-Critic (A3C) in 2016. A3C enhances
the traditional actor-critic method by running multiple instances of the agent in parallel, each inter-
acting with its copy of the environment. This asynchronous approach helps stabilize training and
improves efficiency by decorating the data. A3C is known for its simplicity, robustness, and ability
to achieve high performance on various standard reinforcement learning tasks, making it suitable for
continuous and discrete action spaces.

J. Schulman et al. [102] proposed Proximal Policy Optimization (PPO) in 2017. PPO balances
simplicity, stability, and sample efficiency, making it a popular choice for training agents in complex
environments. PPO improves upon previous methods by using a clipping mechanism to limit the size
of policy updates, ensuring that the new policy does not deviate excessively from the old one. This
approach helps maintain stable and reliable learning, making PPO effective for various tasks, from
robotic control to playing video games.

An improved version of Deep Deterministic Policy Gradient (DDPG) named Twin Delayed Deep
Deterministic policy gradient (Twin Delayed Deep Deterministic Policy Gradient (TD3)) was pro-
posed in 2018 by S. Fujimoto et al. [103]. TD3 enhances performance and stability in continuous
control tasks by incorporating three key techniques: Clipped Double Q-Learning, which mitigates
overestimation bias by learning two Q-functions and using the smaller value; Delayed Policy Up-
dates, which updates the policy less frequently than the Q-functions to improve learning stability;
and Target Policy Smoothing, which adds noise to target actions to prevent the policy from exploiting
errors in the Q-function. These innovations make TD3 a robust choice for complex environments
requiring precise and stable control.

More detailed reviews of Deep Reinforcement Learning (DRL) algorithms can be found in [104–
106].

17

Chapter 3

Simulation Platform Establishment

3.1 Research Background and Motivation
Simulation technology is a vital branch in robotics trajectory planning and control. Simulation

enables the safe and efficient testing of algorithms and strategies in a virtual environment before
real-world implementation. These techniques allow for the precise modeling of robot dynamics,
environmental interactions, and potential obstacles, ensuring that the planned trajectories are feasible
and optimized for performance. Using simulations, engineers can identify and rectify issues such
as collisions, inefficiencies, and unexpected behaviors without risking damage to physical robots or
their surroundings. This accelerates the development process and enhances the reliability and safety
of robotic systems in complex and dynamic environments.

Simulation techniques are also vital in robotics control, providing a risk-free environment to test
and refine control algorithms before deploying them on physical robots. These techniques allow
engineers to model and predict the behavior of robots under various conditions, ensuring that control
strategies are robust and effective. By simulating different scenarios, including potential failures
and environmental interactions, developers can optimize control systems for performance and safety
without the high costs and risks associated with real-world testing. This accelerates the development
process, enhances the reliability of robotic systems, and ultimately leads to more efficient and safer
robotic operations.

There are some open-sourced, well-established simulation platforms or semi-physical simulation
platforms. However, these platforms are all designed for more general purposes, which may not be
suitable for our research. Therefore, to better serve our research and physical experimental equipment,
it is still necessary to establish our simulation platforms.

18

Chapter 3. Simulation Platform Establishment

3.2 Path Planning Simulation Platform

3.2.1 Platform Establishment

The overall structure of the Path Planning Simulation Platform (PPSP) is shown in Figure 3.1.
The source code of the PPSP has been open-sourced to Github.

https://github.com/Yang-Yefeng/PathPlanningAlgorithms

Path Planning Simulation Platform

Planning

Algorithm

Obstacle

Description

Map

Generation

Grid MapSampling Map

Ellipse

Circle

Polygontriangle

p
en

ta
g

o
n

h
ex

ag
o

n

h
ep

ta
g

o
n

re
ct

an
g
le

octagon

Searching

Sampling based

Dijkstra A-StarJPS

RRT

RRT*

RRT-Connect RRT-Smart

Informed RRT*

…

Figure 3.1: The structure of the PPSP.

It is demonstrated that the main body of the PPSP can be divided into three modules, namely,
(a) obstacle description module
(b) stochastic map generation module
(c) planning algorithm module
(a) obstacle description module
The obstacle description module is an essential map generation and planning algorithm component.

For planning algorithms such as Dijkstra, A-Star, and Jump Point Search (JPS), only grid maps are
required, where obstacles can be simply defined using "0" for free grids and "1" for occupied grids.
Therefore, unique characteristics for obstacles in grid maps are not designed. However, obstacles in
sampling-based maps (or continuous maps) require more detailed design.

In sampling maps, obstacles can be categorized into polygons and ellipses. For simplicity, poly-

19

Chapter 3. Simulation Platform Establishment

gons are limited to having up to 8 edges, meaning only triangles, rectangles, pentagons, hexagons,
heptagons, and octagons are defined. Additionally, circles are considered exceptional cases of el-
lipses.

To facilitate definition, coding, and description, we represent polygons using their circumscribed
circles and angular offsets rather than the coordinates of their vertices. This approach is preferred
because manually inputting the coordinates of all vertices, especially for polygons with a more sig-
nificant number of edges, is cumbersome and tedious. Instead, the coordinates of the vertices can be
automatically computed and recorded in .txt or .csv files, simplifying the design process. Figure 3.2
provides a basic description of the polygon-shaped obstacle design.

bb

bbbb

bbb

0

b

0
b

0

b

0

r r r

r r r

Triangle Rectangle Pentagon

Hexagon Heptagon Octagon

o x

y

0 0(,)x y
0 0(,)x y

0 0(,)x y 0 0(,)x y 0 0(,)x y

0 0(,)x y

Figure 3.2: The basic description of the polygon design.

For simplicity, only triangles and rectangles are designed to be non-equilateral. In Figure 3.2,
polygons with 5 to 8 edges can be uniquely defined by their center (x0,y0), radius r, and angular bias
θb. Additionally, an extra parameter θ0 is required to design triangles and rectangles.

Similarly, the parameterized design of circles and ellipses is shown in Figure 3.3.
An ellipse can be uniquely defined by the center (x0,y0), short-axis a, long-axis b, and angular bias

θb. Especially, θb is neglected when a = b causes the ellipse to degenerate into a circle.
The obstacles defined in a specific map are stored in a Python class. The coordinates of the vertices

are recorded for polygons, while for circles and ellipses, the center, long-axis, short-axis, and angular
bias are recorded.

(b) stochastic map generation module

20

Chapter 3. Simulation Platform Establishment

o x

y

b

0 0(,)x y
a

b

Figure 3.3: The basic description of the circle and ellipse design.

The stochastic map generation module is responsible for generating maps. The maps can be either
generated randomly or specifically. For random map generation, Algorithms 1 and 2 are respectively
adopted for grid maps and sampling maps.

Algorithm 1 Random grid map generation

Input (1) Map size (xm,ym), Number of obstacle grids No

Output Map with obstacles
Map initialization: map()

Obstacle initialization: obs()

for i := 1 to N do
while (xi,yi) is an obstacle do

xi = randomly choose in 0,1, · · · ,xm−1
yi = randomly choose in 0,1, · · · ,ym−1

Define new obstacle: obsi = (xi,yi)

Add the new obstacle to the obstacle class: obs.add(obsi)

Add all obstacles into the map: map.add(obs)

return map()

21

Chapter 3. Simulation Platform Establishment

Algorithm 2 Random sampling map generation

Input (1) Map size (xm,ym), Number of obstacle grids No

Output Map with obstacles
Map and obstacle initialization: map(), obs()

for i := 1 to N do
Randomly select a new obstacle in {Polygon,Ellipse}.
if The new obstacle is an Ellipse then

Randomly determine (xi,yi), a, b, and θb.
Define new obstacle: obsi = {(xi,yi),a,b,θb}.

else
Randomly determines the number of edges from 3 to 8.
Random determine (xi,yi), r, θb, and θ0 (triangles and rectangles).
Define new obstacle: obsi = {(xi,yi),r,θb,θ0} or obsi = {(xi,yi),r,θb}.

Add the new obstacle to the obstacle class: obs.add(obsi).

Add all obstacles into the map: map.add(obs)

return map()

Users can also specially design the configuration of obstacles by manually defining the coordinates,
the number, the type, and the parameters of each obstacle. The following figures demonstrate the
maps: Figure 3.4 for sampling maps and Figure 3.5 for grid maps.

Figure 3.4: Some demonstrations of sampling maps.

22

Chapter 3. Simulation Platform Establishment

Figure 3.5: Some demonstrations of grid maps.

We also establish a complete geometric computation function library, which is designed as an
auxiliary tool for map generation and path planning algorithms. Table 3.1 lists some of those functions
and their functionalities.

Table 3.1: Some geometric operation functions.

Function Functionality
1 point_is_in_ellipse Determine whether a point is inside an ellipse
2 line_is_in_ellipse Determine whether a line segment is inside an ellipse

3 line_is_in_many_polys2
Determine whether a line segment is inside multiple poly-
gons

4 dis_point_2_line_segment Calculate the distance of point to two line segments
5 uniform_sample_on_ellipse Uniformly sample on an ellipse
6 cal_two_pt_set_dis Calculate the distance of two point sets
7 get_convex_hull_area Generate the convex hull of an area
8 get_minAeraEllipse Calculate the circumscribed ellipse of an area
9 get_convex_hull_triangle Spilt a convex hull into some triangles
10 point_is_in_poly Determine whether a point is inside a polygon
11 line_is_in_poly Determine whether a line segment is inside a polygon

12 is_two_points_same_side_line
Determine whether two points lie on the same side of a line
segment

13 dis_point_2_line Calculate the distance between a point and a line
14 uniform_sample_in_ellipse Uniformly sample in an ellipse
15 find_convex_hull Find a convex hull of a point set
16 convex1_is_in_convex2 Determine whether convex hull 2 contains convex hull 1
17 uniform_sample_in_triangle Uniformly sample in an triangle
18 uniform_sample_between_two_hullUniformly sample in two convex hulls

23

Chapter 3. Simulation Platform Establishment

3.2.2 Some Demonstrations

This subsection illustrates some demonstrations of the planning results.
(1) Dijkstra Algorithm

Figure 3.6: Some planning results of Dijkstra algorithm.

(2) A-Star Algorithm

Figure 3.7: Some planning results of A-Star algorithm.

(3) JPS Algorithm

Figure 3.8: Some planning results of JPS algorithm.

24

Chapter 3. Simulation Platform Establishment

(4) RRT Algorithm

Figure 3.9: Some planning results of RRT algorithm.

(5) RRT-Connect Algorithm

Figure 3.10: Some planning results of RRT-Connect algorithm.

(6) RRT-Connect-Smart Algorithm

Figure 3.11: Some planning results of RRT-Connect-Smart algorithm.

25

Chapter 3. Simulation Platform Establishment

(7) RRT-Smart Algorithm

Figure 3.12: Some planning results of RRT-Smart algorithm.

(8) RRT-Star Algorithm

Figure 3.13: Some planning results of RRT-Star algorithm.

(9) RRT-Star-Smart Algorithm

Figure 3.14: Some planning results of RRT-Star-Smart algorithm.

26

Chapter 3. Simulation Platform Establishment

3.3 Deep Reinforcement Learning Simulation Platform

3.3.1 Platform Establishment

The structure of the Deep Reinforcement Learning Simulation Platform (DRLSP) is shown in
Figure 3.15. The source code of the DRLSP has been open-sourced at Github:

https://github.com/HKPolyU-UAV/ReinforcementLearningPlatform

Deep Reinforcement Learning Simulation Platform

environment

actor_critic

algorithm

policy_base

utils demo

Flight Attitude

Simulator

Differential Car

CartPole

UAV

classes.py

functions.py <algorithm>-4-<env>

DDPG

SAC

TD3

value_base

PPO

DPPO

PPO2

DQN

Dueling

DQN

Double

DQN

rl_base

continuous

discrete

forward

bidirectional

obstacle

avoidance
angle & position

angle only

hover

2nd integration

continuous state, continuous action

continuous state, discrete action

RobotManipulators

BallBalancer

DPPO2

UAV_rfntsmc_param

UAV_fntsmc_param

tracking position

attitude

position

attitude

Figure 3.15: Structure of DRLSP.

As shown in Figure 3.15, the entire simulation platform can be divided into four parts, say, (a.)
utilization module, (b.) algorithm module, (c.) environment module, and (d.) demonstration module.

(a) utilization module
The utilization module includes some commonly used classes and functions in this DRLSP. For

example, Table 3.2 lists some classes and their functionality in the "classes.py" of the utilization
module.

Additionally, the "functions.py" integrates some commonly used functions.
(b) Algorithm Module
The algorithm module is a core part of the entire simulation platform. Currently, this platform

includes 10 algorithms (shown in Figure 3.15), namely, DQN, Double-DQN, Dueling-DQN, DDPG,
TD3, Soft Actor Critic (SAC), PPO, Proximal Policy Optimization2 (PPO2), Distributed Proximal
Policy Optimization (DPPO), and Distributed Proximal Policy Optimization2 (DPPO2).

Among the aforementioned DRL algorithms, DQN, Double-DQN, and Dueling-DQN are value-
based DRL algorithms. DDPG, TD3, and SAC are actor-critic-based algorithms, while the remaining
four are policy-based algorithms.

(c) environment module

27

Chapter 3. Simulation Platform Establishment

Table 3.2: Some classes and their functionality in "classes.py".

Class Functionality
1 Actor The Actor net in DRL
2 Critic The Critic net in DRL
3 TD3Critic The Critic net utilized in TD3
4 ReplayBuffer Replay buffer used in value-based methods
5 RolloutBuffer Buffer used in policy-based methods
6 PPOActorCritic The AC framework used in PPO
7 PPOActor_Gaussian The Actor with gaussian noise used in PPO
8 Normalization State normalization
9 RewardScaling Scale the immediate reward
10 SharedAdam The optimizer used for multi-process learning methods

The environment module is another essential part of the entire simulation platform. The authen-
ticity of the environment setup largely determines the applicability of the controllers learned by DRL
algorithms in the real world, which is why we determined to establish the DRLSP by ourselves.

Several well-established open-sourced DRL simulation platforms have been found on GitHub, for
example, TianShou designed by Tsinghua University and Lizhi-sjtu designed by Shanghai Jiao Tong
University, et al. However, most platforms primarily aim for RL algorithms rather than RL for control.
Most environments related to control systems in those platforms are designed to be overly simplistic,
making it impossible for them to reasonably approximate real-world physical processes. That is the
motivation for us to establish our simulation platform.

Inspired by some popular RL libraries, such as OpenAI Gym, the environment defined in our
platform consists of a mathematical model, rl_base, graphical visualization, state update, episode
termination criteria, reward function, and reset. Figure 3.16 provides the structure of an environment.

mathematical

model (ode)

visualization

reward

get_state

state update
action

merge

reset

episode termination criteria

Rl_base

environment

Figure 3.16: The structure of an environment.

28

Chapter 3. Simulation Platform Establishment

All environments are designed with a unified interface to facilitate invocation, debugging, and data
storage. Table 3.3 lists all environments in this platform.

Table 3.3: Environments in DRLSP

Environment Description
UAV (hover, tracking) UAV control

Flight Attitude Simulator (continuous, discrete) Flight simulator control
Robot Manipulators Robot Manipulators control

Ball Balancer An 1-dimensional ball balancer on a beam
CartPole (angle only) A cart pole with free position

CartPole A cart pole with both angle and position
UAV_rfntsmc_param (position, attitude) Parameter optimization in RFNTSMC of a UAV
UAV_fntsmc_param (position, attitude) Parameter optimization in FNTSMC of a UAV

Differential Car (forward) A differential car only move forward
Differential Car (bi-directional) A differential car move forward and backward

Differential Car Obstacle Avoidance Obstacle avoidance of a differential car
2nd integration Second-order integration control

(d) demonstration module This module includes some demonstrations, and all demos follow the
naming rule "<DRL algorithm name>-4-<environment name>.py". For example, "PPO-4-BallBalancer1D.py"
means using PPO algorithm to learn a controller for a one-dimensional ball balance system. More
detailed descriptions are given in section 3.3.2.

3.3.2 Some Demonstrations

This section conducts some well-trained demonstrations. The recorded gifs can be found in the
README.md file of our GitHub repository. (https://github.com/HKPolyU-UAV/ReinforcementLearningPlatform).
We only use some screenshots to represent the corresponding training environments.

Figure 3.17: Environments of UAV position control-related systems.

29

Chapter 3. Simulation Platform Establishment

Figure 3.18: Environment of UAV attitude control.

Figure 3.19: Environment of two-link robot ma-
nipulator.

Figure 3.20: Environment of one-dimensional
ball balance system.

Figure 3.21: Environment of CartPole control-
related systems.

Figure 3.22: Environment of second-order inte-
gration system.

Figure 3.23: Environments of UGV-related systems.

30

Chapter 3. Simulation Platform Establishment

3.4 Conclusion
This section gives a detailed introduction to the two simulation platforms related to our research:

the path planning simulation platform and the deep reinforcement learning simulation platform. Sim-
ulation projects of the work studied in later sections are all extracted from the two simulation plat-
forms.

31

Chapter 4

Sampling Efficient Global Path Planning and
Obstacle Avoidance

4.1 Research Background
Although widely investigated, robotics trajectory planning remains a hot topic worthy of further

study. For global planning, RRT is a basic and efficient algorithm. However, many state-of-the-art
methods primarily focus on enhancing the growth of random trees, leading to limited improvements
in sampling efficiency. Additionally, intelligently selecting sampling regions presents a promising ap-
proach to significantly boost sampling efficiency. In light of these challenges, this chapter introduces
a novel method named Adaptive Clustering-based Dynamic Programming-based RRT (ACDP-RRT)
to efficiently address the global path planning problem.

For local planning, APF, DWA, and TEB have been proposed to tackle obstacle avoidance. How-
ever, in complex environments, precisely defining these boundaries can be challenging, and any
imprecision in their specification may result in excessively conservative control strategies. Conse-
quently, many DRL-based methods have been developed. Despite advancements in enhancing robot
adaptability, inherent limitations in DRL can negatively impact the effectiveness of local planners.
One significant issue is data obfuscation, where different dimensions of structured data input into the
neural network have distinct physical meanings but similar values. Data obfuscation highlights the
limited feature extraction capability of NNs when dealing with complex data compositions. There-
fore, optimizing the structure of NNs in DRL-based algorithms is crucial to mitigate the effects of
data obfuscation.

Considering the aforementioned challenges in robot trajectory planning, the main contributions of
this chapter are as follows.

1) A novel ACDP-RRT algorithm for robot global path planning is proposed. Compared with
several existing algorithms, the ACDP-RRT leverages the geometric characteristics of obstacles

32

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

to precisely define the sampling region and guide the growth direction of the tree structure.
2) A novel Network Decoupling (ND)-Actor-Critic (AC) algorithm is introduced for robot local

planning. In a pioneering approach, the utilization of ND technology effectively segregates
sensor data and robot motion data within the NN, leading to improved data quality. The in-
tegration of ND technology enhances the rate of obstacle avoidance, thereby improving the
overall performance of the ND-AC local planner.

3) All proposed methods are integrated into a complete autonomous navigation system for ground
vehicles. Comprehensive simulations and experiments are conducted to verify the robustness
and effectiveness of the proposed methods.

4.2 Sampling Efficient Global Path Planner Design
In this section, we propose the ACDP-RRT global planning algorithm, which includes six steps:

1) Obstacle adaptive clustering
2) Convex hull and key point generation
3) Distance matrix and topological map generation
4) Path search in the topological map
5) Sampling region determination
6) Random tree growth
Then, the feasibility analysis of the ACDP-RRT is performed. Figure 4.1 illustrates the procedures

of the ACDP-RRT algorithm.

Sampling region determination

Sampling region determination

Sampling region determination

Obstacle clustering

Obstacle clustering

Convex hull and

key points generation

Convex hull and

key points generation

Distance matrix and

topology map generation

...

...

...

... ...

... ...

...

...

...

... ...

... ...

...

...

...

... ...

... ...

...

...

...

... ...

... ...

Distance matrix and

topology map generation

...

...

...

... ...

... ...

...

...

...

... ...

... ...

Path search in topology map

Path search in topology map

① ② ③

④ ⑤

Random tree growth

Random tree growth

Random tree growth⑥

Figure 4.1: Schematic representation of ACDP-RRT.

The proposed ACDP-RRT represents an extension of the classical RRT algorithm. The original
RRT algorithm employs a uniform sampling strategy across the entire map, which tends to be suitable

33

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

for relatively simple maps without significant complexities. In such scenarios, the uniform sampling
approach does not present significant challenges or obstacles to efficient path planning. However, the
search efficiency of the RRT algorithm significantly diminishes in the presence of highly complex
maps. This can be attributed to the propensity of the random tree’s expansion trajectory to encounter
obstacles and the inherent lack of foresight in the random tree’s growth direction. In contrast to
the RRT, ACDP-RRT incorporates the geometric information of obstacles in the map into its path
planning strategy, providing directional guidance for the growth of the random tree, thereby improving
the sampling efficiency compared to the RRT algorithm.

The ACDP-RRT algorithm extracts the geometric information of the obstacles in the map. The
obstacles are grouped into clusters, each bounded by a convex hull. A topological map with a distance
matrix is then created to represent the map. The path from the initial position to the final position in
the topological map with minimum cost is computed using DP [107]. Finally, the complete sampling
region for the RRT is determined.

4.2.1 Algorithm design

1) Obstacle adaptive clustering
Obstacles in the environment are abstracted as convex polygons. To classify obstacles on the map,

we use the DBSCAN [108] algorithm. Obstacle clustering is a vital module in the pre-processing of
path planning. Although a plethora of clustering algorithms, such as k-means [109] and k-means++ [110],
can be effectively employed to cluster obstacles, k-means-based methods require the number of clus-
ters and the initial clustering center for each cluster. In contrast, the DBSCAN algorithm is a density-
based clustering method that does not require any prior information about the number of obstacle
clusters.

The DBSCAN algorithm classifies data into different clusters and identifies noise using two hyper-
parameters: ε and N0. Here, ε represents the search radius of each data point, while N0 denotes
the minimum number of data points required to form a dense region. Algorithm 3 illustrates the
pseudo-code of the adaptive clustering process.

2) Generation of convex hulls and key points
Each cluster is bounded by a circumscribed convex hull. Some vertices of the convex hull are

defined as the key points of the cluster. Definition 4.1 defines the key points.

Definition 4.1 (Key points) The free space of the map is denoted by X f ree. For a convex hull H

and the corresponding vertex set VH , the key point set K is defined as follows:

K =
{

v|v ∈ (VH ∩X f ree)
}

(4.1)

34

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

Algorithm 3 Adaptive clustering [108]

Input ε , N0, obstacle space Xobs = ∪N
i=1X

i
obs ▷ X i

obs is the ith obstacle
Output Number of clusters: nc, all clusters: C

1: Initialization: wa = {}, nc = 0, C = {}, C′ = {}
2: while Xobs is not empty do
3: Pop the first element from Xobs and push it to wa
4: while wa is not empty do
5: Pop w, the first element of wa
6: Push w to C′

7: Find all obstacles belong to the same cluster as w by using function f ind_C(Xobs,w)
8: The result of f ind_C(Xobs,w) is stored in new
9: for _new ∈ new do

10: Push _new to wa
11: Push C′ to C
12: Empty C′

13: nc+= 1
return nc, C

3) Distance matrix and topological map generation
A topological map is a way of modeling a map by simplifying it to only contain essential infor-

mation. It typically consists of nodes and edges, where each node represents a significant feature or
region, and edges denote connections between these features or regions. In this chapter, each obstacle
cluster is abstracted as a node, and the interconnections between clusters are modeled as edges.

A distance matrix M is employed to record the distances between different clusters, as well as the
robot’s origin and destination positions on the map. The topological map is a graphical representation
of M. Specifically, M is a square matrix of dimension (N+2)×(N+2), where N denotes the number
of clusters.

Definition 4.2 defines the distance between cluster ci and cluster c j.

Definition 4.2 (Distance between cluster ci and cluster c j) We denote Ki as the key point set of the

ith obstacle cluster ci, K j as the key point set of the jth obstacle cluster c j, and Xobs as the obstacle

space. For all p ∈Ki, q ∈K j, the distance between ci and c j is:

di, j = d j,i =

min
p,q
∥p−q∥2 line segment pq does not pass through Xobs

−1 otherwise
(4.2)

Algorithm 4 shows the pseudo-code of distance matrix generation.

35

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

Algorithm 4 Distance matrix generation
Input Key point sets of all clusters: K = ∪n

i=1Ki

Input Kn+1 = {S }, Kn+2 = {T } ▷ S is starting position, and T is target position
Output Distance matrix M

1: for i := 1 to n+2 do ▷ Traversal of matrix rows
2: Mi,i =−1
3: for j := i+1 to n+2 do ▷ Traversal of matrix columns
4: for ∀p ∈Ki, ∀q ∈K j do
5: Mi, j = di, j, M j,i = d j,i

return M

4) Topological path search in topological map
DP [107] is utilized to find the topological path with minimum cost in the topological map. Unlike

Dijkstra’s algorithm [111], which is a single-source shortest path algorithm, DP solves an optimiza-
tion problem in a graph iteratively by identifying optimal substructures and overlapping subproblems.
Consequently, DP can be more efficient in terms of memory and computational resources for large
maps [107].

The topological path consists of alternating nodes and edges. Specifically, in the topological path,
a node (n) represents either an obstacle cluster, the starting position, or the target position, while an
edge (e) represents the connection between two clusters. The cost between the i-th and j-th clusters
is given by Mi, j (or M j,i).

It is important to note that the path found in the topological map represents an abstract expression of
the sampling region rather than the final global path. Specifically, the topological path only determines
the neighborhoods of obstacle clusters and the connectors between the corresponding clusters. In
Step 5), the topological path is utilized to restore the sampling regions in the map accordingly. This
means that the actual sampling regions are derived from the vicinity of the obstacle clusters and the
connections between them as indicated by the topological path.

5) Determination of sampling region
The complete sampling region is constructed by combining the convex hulls and connectors iden-

tified after the path is computed in Step 4). A convex hull is a polygon that encapsulates an obstacle
cluster, while a connector (represented as an edge in the topological path) is a slender rectangle that
links two adjacent convex hulls.

If a convex hull does not enclose any other obstacle cluster areas, it is simplified to a convex hull
ring. This simplification helps in reducing computational complexity and improving the clarity of the
sampling region.

To further optimize the sampling region, we adjust the endpoints of the connectors. This adjustment
is performed without altering the path computed in Step 4). The goal of moving the connectors is to

36

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

minimize the distance between adjacent connectors, thereby refining the efficiency of the sampling
process. Algorithm 5 provides the pseudo-code for the connector movement principle.

Algorithm 5 Connector movement
Input (1) Two adjacent connectors (edges) ei and ei+1

Input (2) The obstacle cluster (node) between ei and ei+1: ni

Output Updated e1 and e2

1: Denote the vertices set of ni as v = ∪N
j=1v j

2: Keep the first endpoint of ei and the second endpoint of ei+1 fixed.
3: Set dis = ∞.
4: for id1 := 1 to N do
5: for id2 := 1 to N do
6: Set vid1 as the second endpoint of ei, vid2 as the first endpoint of ei+1

7: if Neither ei nor ei+1 overlap the obstacle region then
8: if ∥vid1− vid2∥2 < dis then
9: dis = ∥vid1− vid2∥2

10: Update the second endpoint of ei to vid1

11: Update the first endpoint of ei+1 to vid2
return ei, ei+1

6) Random tree growth
Unlike conventional RRT-based methods, the sampling region of ACDP-RRT is limited to the

region generated in Step 5) rather than the entire free space of the map. In ACDP-RRT, the tree
begins growing only within the first sub-region. As the random tree expands and its nodes appear
in the second sub-region, the growth in the first sub-region is halted, and growth is initiated in the
second sub-region. This process of transitioning from one sub-region to the next continues until the
tree reaches the final sub-region.

The global planning algorithm concludes when the target position is included within the random
tree. The growth principle of the random tree within each sub-region follows the same approach as
traditional RRT methods, maintaining consistency in the expansion strategy.

4.2.2 Probabilistic completeness proof

Probabilistic completeness refers to the property wherein the likelihood of discovering a feasible
solution if one exists, tends to converge to unity as the number of sampling episodes increases [112].

Let X be the space of the environment. The free space in X is denoted as F . The obstacles in
X are denoted as Xobs. The start state of the robot is denoted as xs. The target state of the robot is
denoted as xt . Br(x) denotes the ball of radius r and centered at x. For simplicity, we assume that

37

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

there exists d0 > 0, and a target region Xt ∈F , such that Xt = Bd0(xt). Then, the pseudo-code of
traditional RRT (Algorithm 1 in [113]) can be given by

Algorithm 6 RRT
Input xs, xt , Xt , d, K, τ

Output The random tree τ

1: for i = 1 to K do
2: xrand ← RANDOM_SAM()

3: xnear← NEIGHBOR(xrand,τ)

4: xnew← NEW_NODE(xrand,xnear,d)

5: if COLLISION_FREE(xnear,xnew) then
6: τ.add_vertex(xnew)

7: τ.add_edge(xnear,xnew)

In Algorithm 6, τ is the random tree, K is the number of iterations, and d is the distance ∥xnear− xnew∥.
Noting that xrand is a vertex that uniformly sampled in X , xnear ∈ τ is the vertex which is near-
est to xrand , and xnew is on the line segment between xnear and xnew. In addition, the function
COLLISION_FREE() is utilized to check if the path from xnear to xnew is collision-free. If so, xnew

is added as a vertex of τ , and the line segment between xnear and xnew is added as an edge of τ .
Otherwise, the candidate vertex xnew is discarded.

We now introduce a preliminary lemma and theorem to support the probabilistic completeness
proof. Suppose that a branch in the random tree corresponds to a collision-free path τ from the initial
point xs to the destination xt . Let the length of this path be L, and let the number of vertices on the path
be p > 5L

d , where d < δ0 and δ0 is the minimum distance between the random tree and the obstacles.
With these assumptions, we can now state the following lemma and theorem.

Lemma 4.1 (Lemma 1 in [113]) By the above analysis, we denote the vertexes on the path as x0 =

xs, x1, · · · , and xp = xt . We assume that the length between two consecutive points is less than d/5,

namely, ∥xi− xi+1∥ ≤ d/5 for 0≤ i < p. Suppose that RRT has reached the ith vertex xi. Then, there

must be another vertex x′i such that x′i ∈Bd(xi) (otherwise, xi cannot exist). If a new random node

xrand is in the near region of xi+1, namely, xrand ∈Bd(xi+1). Then, the line segment between xrand

and xnear in τ lies in free space F .

Further, note the fact that ∥xrand− xnear∥≤ ∥xrand− x′i∥≤ ∥x′i− xi∥+∥xi− xi+1∥+∥xi+1− rrand∥≤
3 · d

5 < d, which means that xrand = xnew. Then, a theorem can be given as follows.

38

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

Theorem 4.1 (Theorem 1 in [113]) Based on Lemma 4.1, the probability that RRT fails to reach Xt

after k iterations is at most p
p−1kpe−p0k, namely,

Pr [Xk < p]≤ p
p−1

kpe−p0k,

where Pr is the probability that RRT fails to reach the goal after k iterations, p is the number of

vertexes on the path, p0 is the probability that xrand falls into the ball Bd(xi).

Theorem 4.1 shows that the probability decays exponentially with k. For the ACDP-RRT algo-
rithm, the comprehensive sampling region is divided into multiple concatenated sub-regions, which
are interspersed with connectors and convex hulls (or convex hull rings). The following observations
can be made:

a). The principle underlying the proposed ACDP-RRT implies that two adjacent sampling areas
are bound to have overlapping segments.

b). Based on the principle of ACDP-RRT, the presence of obstacles within certain sub-sampling
areas does not compromise the connectivity between adjacent areas.

Therefore, based on the analysis, it can be inferred that all sampling sub-regions are intercon-
nected. Given that the random tree generation process in ACDP-RRT follows the same principles as
traditional RRT, we can conclude that ACDP-RRT maintains the probabilistic completeness of RRT.
Hence, ACDP-RRT is proven to be probabilistically complete.

4.3 DRL-Based Obstacle Avoidance Method Design
In this section, we present the ND-AC local planning algorithm, which represents an advance-

ment over the classical AC-based method. Both AC and ND-AC share a common learning framework.
However, traditional AC primarily focuses on the agent’s learning process within the environment,
often neglecting the importance of data pre-processing. As a result, when structured data contains
excessive information, the quality of neural network learning can deteriorate in traditional AC. The
introduction of a network decoupling pre-processing module in ND-AC significantly enhances train-
ing performance compared to traditional AC methods. By decoupling the network’s input processing,
ND-AC can handle different aspects of the input data independently. This approach improves the
network’s ability to extract meaningful information from the input, leading to enhanced training per-
formance and, ultimately, superior overall performance compared to traditional AC algorithms.

4.3.1 AC framework

The basic local planning learning framework utilized in this study is AC [114], which integrates
Policy Gradient (PG) [115] and Value Iteration (VI) [116] methods. The proposed AC allows the

39

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

benefits of both PG and VI to coexist within DRL. The AC framework simultaneously updates the
policy network (actor) and the value network (critic). In the context of the local planner, the actor
serves as the robot’s controller, responsible for obstacle avoidance. The critic, in this case, is an NN-
based cost function that evaluates and quantifies the performance of the actor. Figure 4.2 illustrates
the relationship between the AC framework and the local planner.

data feedback

Interactive

Environment

Actor

(controller)
Critic

Local

Planning
Robot

optimize

Autonomous system

Figure 4.2: The relationship between AC framework and the local planner.

The objective of the actor is to maximize the expectation of cumulative reward:

η (θ) = Eτ∼πθ
[Gt |S = s,A = a]

= Eτ∼πθ
[R(τ)]

= ∑
s∈S

dπθ (s) ∑
a∈A

πθ (a|s)Qπθ
(s,a;θ),

(4.3)

where η (θ) is the objective function, πθ is the policy parameterized by θ , s is the state, a is the action,
τ is a trajectory (s1,a1,s2,a2, · · · ,sn,an, · · ·) induced by πθ , R(τ) is the reward function, dπθ (s) is the
distribution of the state space with the current policy πθ , Qπθ

(s,a;θ) is the state-action value function
of the tuple ⟨s,a⟩, and θ is the parametric vector of the actor-network in the AC framework.

According to policy gradient theory (Theorem 1 in [115]), the gradient of J(θ) with respect to θ

is given by:

∇θ η(θ) = ∇θ ∑
s∈S

dπθ (s) ∑
a∈A

Qπθ
(s,a)πθ (a|s)

= ∑
s∈S

dπθ (s) ∑
a∈A

Qπθ
(s,a)∇θ πθ (a|s)

= ∑
s∈S

dπθ (s) ∑
a∈A

πθ (a|s)Qπθ
(s,a)

∇θ πθ (a|s)
πθ (a|s)

.

(4.4)

It follows that:

∇θ η(θ) = Eπθ
[Qπθ

(s,a)∇θ lnπθ (a|s)] . (4.5)

40

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

The actor net is introduced to approximate policy πθ (a|s). A critic net is unitized to approximate
the state-action value function Qπ(s,a). The objective of the critic net is to maximize the state-action
value function Qπ(s,a) by minimizing the temporal difference (TD) error. The formula for the TD
error δt is given by:

δt = rt+1 + γQπθ
(st+1,at+1)−Qπθ

(s,a), (4.6)

where rt+1 is the immediate reward of step t+1 and δt is the loss function of the critic network whose
gradient can be computed automatically by the Deep Learning Toolbox (DLT). Algorithm 7 provides
the pseudo-code of the one-step training of AC, where τ is the soft update rate, and the learn() is
automatically realized by DLT.

Algorithm 7 One-step learning of AC

Input (1)Target actor-network: π (s;θ), evaluation actor-network: π ′ (s;θ ′)
Input (2)Target critic network: qπ (s,a;ω), evaluation critic network: q′π (s,a;ω ′)
Output Updated π (s;θ), π ′ (s;θ ′), qπ (s,a;ω), and q′π (s,a;ω ′)

1: Get action at+1 at time step t +1: at+1← π (st+1;θt)
2: Get values Qt+1 and Qt at time step t +1 and t: Qt+1← qπ (st+1,at+1;ωt), Qt ← q′π (st ,at ;ω ′t)
3: Get reward rt+1 at time step t +1 from the environment
4: critic net training:
5: loss = 1

2(rt+1 + γQt+1−Qt)
2

6: Compute ω ′t+1 ▷ Computed automatically by DLT
7: actor net training:
8: loss =−q′π (st ,π

′ (st ;θ ′t) ;ω ′t)
9: Compute θ ′t+1 ▷ Computed automatically by DLT

10: parameter update
11: ωt+1 = τωt +(1− τ)ω ′t+1
12: θt+1 = τθt +(1− τ)θ ′t+1
13: return π (s;θ), π ′ (s;θ ′), qπ (s,a;ω), and q′π (s,a;ω ′)

4.3.2 Network decoupling technology

Theoretically, neural networks (NNs) with more than two layers possess the capability to approx-
imate functions of arbitrary complexity. However, their practical performance may be unreliable due
to limitations in data quality and the potential for the optimizer to get trapped in local minima. To ad-
dress these challenges, Network Decoupling (ND) techniques are employed to enhance NN learning
performance. By decoupling the network’s input processing, ND helps mitigate the adverse effects of
insufficient data quality and local minima, thereby improving the overall performance and reliability
of NN-based function approximation.

Figure 4.3 provides a comparative demonstration of the original actor network and the decoupled

41

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

actor network. The input data to the neural network (NN), which represents the state space of the
autonomous robot, consists of two parts: the motion part (s1 in Figure 4.3) and the sensor part (s2

in Figure 4.3). The layers l1, l2, and l3 are fully connected hidden layers with the ReLU activation
function, while l4 is the output layer with the tanh activation function. The number in each bracket
following l· denotes the number of neurons in the corresponding layer. The green circular node
indicates the concatenation of the outputs from l13 and l23.

full connected layer

output layer

tanhReLu

concatenate

s1

s2

l1(128) l2(64) l3(64) l4(2)

l21(128)

l4(2)

l22(64) l23(64)

l11(128) l12(64) l13(64)

original framework decoupled framework

Figure 4.3: Comparison of the actor networks in the original learning framework and the decoupled
learning framework.

The physical meanings of these two parts are different. The sensor-related data represents the spa-
tial distribution of obstacles around the robot, while the motion-related data encompasses informa-
tion about the robot’s position, orientation, and velocity. The implementation of Network Decoupling
(ND) technology facilitates the independent processing of these two types of data. By doing so, the
two distinct sub-networks can independently extract their unique features without interference from
each other. The concatenation of the outputs from these sub-networks occurs prior to the final hid-
den layer. Ultimately, the output of the actor-network is influenced by both the motion and LiDAR
components.

42

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

4.4 Simulation and Experiments
This section contains comparative simulations and real-world experiments to demonstrate the

robustness and effectiveness of the proposed global and local planner. Figure 4.4 shows the flowchart
of the systemic path planning framework for a real autonomous robot system.

ACDP-RRT

global planner

RRT

Smart

ND-AC

local planner

Remove redundant way points

Way points Optimized way

points

Figure 4.4: Data flow diagram of the systemic path planning framework.

As shown in Figure 4.4, the complete path planning task is divided into two parts: global planning
and local planning. The RRT-Smart technique is utilized as a bridge between the global planner and
the local planner. Initially, the ACDP-RRT global planner generates a global path for the autonomous
robot, represented by a sequence of nodes. However, this path often contains an excessive number
of redundant nodes, which increases the burden on the local planner. To address this issue, the RRT-
Smart methodology is applied to effectively eliminate redundant nodes and optimize the path. RRT-
Smart connects the furthest node on the path to the current node if the node is directly visible. The
detailed optimization process of RRT-Smart is described in Algorithm 2 in [117]. After optimization
with RRT-Smart, the number of nodes in the global path is significantly reduced. The remaining
nodes in the optimized path are considered targets for the local planner. The robot then sequentially
advances towards each of these nodes until it reaches the vicinity of the final node.

4.4.1 Simulation results of the global planner

Figure 4.5 demonstrates the detailed process of global planning. In Figure 4.5(a), six clusters are
generated and obstacles belonging to different clusters are marked with different colors. After that,
six convex halls (the red rectangles in Figure 4.5(b)) and the corresponding key points (the black solid
points in Figure 4.5(b)) are generated. Additionally, all convex hulls are extended outward by half
the size of the robot to ensure that the robot can pass through the gaps between obstacle clusters.
Then, as shown in Figure 4.5(c), the topological map abstracted from Figure 4.5(b) is developed.
In Figure 4.5(d) and (e), the topological path (the red lines) is generated in the topological map.
Based on the result in Step 4, the sampling region is determined in Step 5. The sampling region
shown in Figure 4.5(f) is the combination of one convex hull (the cyan region in Figure 4.5(f)) and
two connectors (the orange rectangles in Figure 4.5(f)). The simplified sampling region is shown in
Figure 4.5(g), which is, the convex hull is simplified as a convex hull ring. Finally, based on Step 5,
the global path containing four-way points (P1 to P4 in Figure 4.5(h)) is generated.

43

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

①

②

③

①

②

③

①

②

③

①

②

③

(a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

(e) Step 4. (f) Step 5. (g) Step 5. (h) Step 6.

P1

P2 P3
P4

1node

2edge

2node

1edge

3node

Figure 4.5: Global planning process of the ACDP-RRT.

Figure 4.6 shows the planning results in different scenarios using ACDP-RRT. We compare our
proposed ACDP-RRT algorithm with two RRT-based planning algorithms: RRT and RRT*. For
each office scenario depicted in Figure 4.6, we select any two of the four corners of the room as a
(start, target) tuple. The dimensions of the office scenarios are 11m× 11m. The four corners are
located at (1m,1m), (1m,10m), (10m,1m), and (10m,10m). There are C2

6 = 12 (start, target)
tuples. Each tuple is tested 50 times in each scenario. We evaluate the time and memory efficiency
of each algorithm based on the time consumption and the number of nodes in the random tree when
generating paths.

Figure 4.7 shows the efficiency of each algorithm across all ten scenarios. The box plots indicate
the standard deviation, while the line within each box represents the mean value of the 600 simulation
results. The top sub-figure of each scenario illustrates time efficiency, and the bottom sub-figure
depicts memory efficiency. The ten figures clearly demonstrate that the performance of the proposed
ACDP-RRT algorithm significantly surpasses that of the conventional RRT and RRT*.

The time efficiency can be assessed by comparing the top sub-figures in Figure 4.7. Although
RRT* is an enhanced version of RRT, its primary improvements focus on path length and the proof of
asymptotic optimality. However, path length is not a criterion in this study because RRT-Smart [117]
is applied after path generation, making the length of the global path a non-critical factor. Generally,
the time efficiency of RRT* is lower than that of RRT due to the need for tree re-connecting within
the neighborhood of new nodes. In contrast, the time efficiency of ACDP-RRT is significantly better
than that of the other two algorithms in all scenarios. ACDP-RRT searches the map more direc-

44

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

Scenario6 Scenario7 Scenario8 Scenario9 Scenario10

Figure 4.6: Planning results of ACDP-RRT. Different paths are indicated by different colours.

tionally and avoids collision detection when the tree grows within connectors, thus saving additional
computational resources.

The memory efficiency is illustrated in the bottom sub-figures of each scenario in Figure 4.7. The
figures indicate that the number of nodes generated by RRT and RRT* for a global path is similar. In
contrast, ACDP-RRT requires only 1

5 to 1
2 as many nodes to generate a global path. The improvement

in time efficiency is less pronounced than the improvement in memory efficiency because ACDP-RRT
involves some pre-processing before it begins searching the map.

4.4.2 Simulation results of the local planner

In this subsection, we evaluate the performance of the proposed ND-AC local planner using
a two-wheel differential mobile robot as the test platform. This choice allows for a thorough val-
idation of the ND-AC local planner’s effectiveness and applicability in real-world scenarios. The
two-wheel differential ground vehicle is selected for its nonholonomic characteristics, which means
that its steering capabilities are restricted to adjusting the speed difference between its two wheels,
unlike an omnidirectional robot such as a four-wheeled mecanum wheel robot. The nonholonomic
nature of the platform makes the local planner’s design more challenging, highlighting the advanced
capabilities of the ND-AC-based local planner.

1) Dynamic Model for Two-Wheeled Differential Robot
A dynamic model of the two-wheeled robot is required for local planning. As in [118], the dynamic

model is given by:

ẋ = r
2 (ωL +ωR)cosϕ, ẏ = r

2 (ωL +ωR)sinϕ, ϕ̇ = r
rb
(ωL−ωR) , , (4.7)

45

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

n
o
d
es

(1
0

2
)

ti
m

e(
s)

n
o
d
es

(1
0

2
)

ti
m

e(
s)

100

20

40

60

80

10

20

30
Scenario5

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

10

20

30

1

2

3

4

5
Scenario1

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

10

20

30

1

2

3

4

5
Scenario1

ACDP-RRT

RRT

RRT-Star

ACDP-RRT

RRT

RRT-Star

Figure 4.7: Evaluation of the time and memory efficiency for each algorithm from scenario (1) to
(10).

where [x,y] is the location, ϕ is the yaw angle, r is the radius of the wheel, rb is the radius of the
robot base, and [ωL,ωR] represents the rotation speeds of the left and right wheels, respectively. In the
training environment, we limit the maximum linear velocity to Vmax and the maximum wheel speed
to ωmax to match the motion capability of the robot. The action space is given by:

a = [ωL,ωR]. (4.8)

The state variable is a 45-dimensional vector given by:

s = [ẽx, ẽy, x̃, ỹ,ϕ, ẋ, ẏ, ϕ̇]+Lidar(), (4.9)

where ẽx = k(tx− x)/X , ẽy = k(ty− y)/Y , x̃ = kx/X , and ỹ = ky/Y are normalized to improve the
generalization ability of the learned policy, [tx, ty] is the location of the target, X and Y are the di-
mensions of the map, [x,y] is the location of the robot, k is a static gain, Lidar() is a 37-dimensional
vector down-sampled from the raw data of the LiDAR in intervals [0°,90°] and [270°,360°] with a
resolution of 5°.

2) Learning framework setup
The training environment for the proposed DRL method is implemented on a computer equipped

with an i7-11700 CPU and NVIDIA-RTX 2060 GPU. The software platforms used are Ubuntu 20.04,
ROS Noetic, and PyTorch 1.8.1. Figure 4.8 shows an illustration of the learning environment.

The reward function consists of position reward r1, orientation reward r2, and sparse reward r3.

46

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

start location

target location

obstacles

trajectory

lidar

lidar

ground vehicle

Figure 4.8: An illustration of the learning environment. The purple LiDAR detection points mean
that no obstacles are detected at the corresponding angle. The pink LiDAR detection points indicate
the obstacles are detected at the corresponding angle.

r1 is a positive value (= 5) if the position error decreases; otherwise, it is negative (= −5). r2 is a
positive value (= 2) if the angular error decreases; otherwise, r2 is a negative value (=−2). r3 is set
to be positive (= 10) if the vehicle reaches the destination successfully; otherwise, r3 is set to zero.
The complete formation of the reward function is the sum of the following three parts.

r = r1 + r2 + r3. (4.10)

The three parts of the immediate reward function r are given by

r1 =

{
5 positional error is smaller
−5 otherwise

r2 =

{
2 angular error is smaller
−2 otherwise

r3 =

{
0 collision
10 otherwise

(4.11)

Table 4.1: Hyper-parameters of the learning framework.

Parameter Value Parameter Value
γ 0.99 N 60000

up_C 0.01 up_A 0.01
noise 0.25 noise_clip 0.5
lr_c 1e-3 lr_a 1e-4

batch 512 n_d 5

In each episode, the agent explores different maps generated by a stochastic map generator to

47

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

enhance the generalization of the learned policy. The obstacles in the maps are modeled as convex
polygons or circles. Table 4.1 lists several hyperparameters of the proposed learning framework. The
discount factor is denoted by γ , up_C represents the soft update rate of the critic network, and up_A

is the soft update rate of the actor-network. The parameters noise and noise_clip denote the variance
and maximum value of the Gaussian distributed noise, respectively. The learning rates of the critic
and actor networks are represented by lr_c and lr_a, respectively. The capacity of the replay buffer
is denoted by N, batch refers to the number of samples the neural network processes each time, and
n_d indicates the number of steps by which the TD3 actor network delays the update.

ActorActor CriticCritic

a

noise

Replay bufferReplay buffer

(), , , 's a r s(), , , 's a r s

sampling

s

r

s’

a

s

a

a

Q value

evaluate

maximize

learning

data set

environment

motion

stochastic map generatorstochastic map generator

Figure 4.9: The complete DRL-based local planner learning framework.

Figure 4.9 illustrates the complete learning process of the proposed DRL method. The learning
framework is composed of three interconnected modules: an environment module, a learning module,
and a dataset module. The environment module receives the agent’s actions from the learning module
and updates the states of the mobile robot accordingly. It then sends a tuple (s,a,r,s′) to the dataset.
Meanwhile, the learning module updates both the actor and critic networks by sampling batches of
tuples from the dataset at each time step. This creates a recursive process among the three modules.

3) Policy learning and simulation
We assess the performance of the proposed ND technology by comparing the success rate of the

mobile robot in reaching its destination on various maps. To evaluate the effectiveness of ND tech-
nology, we implement two state-of-the-art AC-based DRL methods: TD3 [119] and DDPG [120].
Figure 4.10 illustrates the success rate and immediate reward throughout the training process.

Figure 4.10 shows that integrating the network decoupling mechanism into the training framework

48

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

episode time step(10
4
)

episode time step(10
4
)

ND-TD3

TD3

ND-TD3

TD3

ND-TD3

TD3

ND-TD3

TD3

ND-TD3

TD3

ND-TD3

TD3

ND-DDPG

DDPG

ND-DDPG

DDPG

ND-DDPG

DDPG

ND-DDPG

DDPG

Figure 4.10: Training processes of two AC-based DRL algorithms: TD3 and DDPG. The two on the
left are the success rates of the robot in obstacle avoidance. The two on the right are the immediate
rewards.

results in a higher success rate. The lower success rate of DDPG compared to TD3 can be attributed to
TD3’s use of a double network, actor-network delayed update, and target-policy smoothing regular-
ization, which collectively mitigate overestimation of the critic network and improve policy smooth-
ness. The figure for immediate rewards further supports the effectiveness of the ND mechanism, as
the rewards for planning algorithms incorporating ND are consistently higher than those for the origi-
nal algorithms. The fluctuations in immediate rewards are due to the addition of Gaussian-distributed
noise to both the hidden layers and output of the actor-network, which ensures thorough exploration
of the state space. Consequently, we choose TD3, which demonstrates a higher success rate, as the
foundational method for the proposed ND-AC local planner in real-world experiments.

In Figure 4.11, we list four examples of successful obstacle avoidance to give a clear graphical
representation of local planning.

Figure 4.11: A graphical demonstration of local planning.

49

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

In addition, extensive Monte Carlo experiments are conducted to validate the conclusions of the
proposed ND technology and to demonstrate the capabilities of the well-trained ND-AC local plan-
ner. We perform 1000 Monte Carlo experiments on maps containing between 1 and 30 obstacles to
evaluate the performance of both AC and ND-AC local planners. The starting positions, target posi-
tions, shapes, sizes, and locations of the obstacles for each experiment are stochastically initialized to
ensure the robustness of the results. Figure 4.12 illustrates the success rates of the AC and ND-AC
local planners across maps with varying numbers of obstacles. Notably, the success rates for the ND-
AC and original AC local planners in obstacle-free environments are 0.999 and 0.987, respectively.

Figure 4.12: Comparative experiments on the success rates of AC local planner and ND-AC local
planner in maps with a different number of obstacles.

Figure 4.12 clearly demonstrates that the performance of the ND-AC local planner surpasses that of
the original AC local planner. The success rate of the ND-AC local planner remains above 90 % even
when 30 obstacles are present on the map. The effectiveness and robustness of the proposed ND-AC
local planner are further validated by 30,000 episodes of Monte Carlo simulation experiments.

4.4.3 Simulation and experiments with the integrated planner

A complete path planning framework integrates both global and local planning. In this section,
we present simulation and experimental results that combine the proposed global and local plan-
ning algorithms. The NanoRobot, as shown in Figure 4.13, is used to test the trained local planner.
The NanoRobot is equipped with a Raspberry Pi 4B processor (CPU frequency: 1.5 GHz) running
Ubuntu 20.04, ROS Noetic, and PyTorch 1.8.1. Its sensors include a rplidar-SUPER single-wire Li-
DAR mounted on top of the robot and two encoders connected to the motors. Markers on the robot’s
body are used for positioning within the VICON motion capture environment. The maximum linear
and angular velocities are set to Vmax = 0.7m/s and ωmax = 10rad/s, respectively. The LiDAR de-
tection range is 8m. In the learning environment, we reduce the LiDAR distance value to the range

50

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

Lidar

Marker

Wheel

Controller

18.5cm

0 2π

3.5cm

Figure 4.13: NanoRobot platform equipped with a single wire LiDAR.

[0.15m,2m], with 2m being sufficient for obstacle avoidance in both simulation and experiments.
Additionally, the minimum detection range is set to 0.15m to align with the hardware properties of
the LiDAR.

1) Simulation results
Four corners (1m,1m), (1m,10m), (10m,10m), and (10m,1m) are set as the start and target

positions, respectively. Ten different groups of simulations are performed for each map. The complete
path planning simulation results for different scenarios are shown in Figure 4.14.

Scenario1 Scenario2 Scenario3 Scenario4 Scenario5

Scenario6 Scenario7 Scenario8 Scenario9 Scenario10

Figure 4.14: Demonstrations of complete path planning simulation experiments. The trajectories
between different starting and ending points are highlighted in different colors.

2) Real-world experiment results

51

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

Finally, experiments are conducted in real-world scenarios to further validate the performance of
the proposed methods. The scale of both the physical and simulation scenarios is 1 : 2.5. We use
six office scenarios similar to those created in the simulation. Figure 4.15 presents snapshots of the
complete path planning results. The first and second rows display the official maps for the simulation
and the natural world, respectively. The last row shows the actual trajectories of the mobile robot.
The results indicate that the robot follows the waypoints smoothly and successfully avoids obstacles.
These demonstrations underscore the effectiveness and robustness of the ACDP-RRT global planner
and the ND-AC local planner. Additionally, the runtime of the local planner on the onboard Raspberry
Pi is less than 2ms. The ND-AC local planner, as a compact end-to-end solution, involves only
minimal computations during onboard operation, representing a significant advantage over classical
motion planning methods. Thus, the DRL-based local planner ensures effective navigation and safety
by effectively addressing environmental changes.

(5)(1) (2) (4)(3) (6)

Real map drawings

Real maps

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

Trajectories in XOY plane

Figure 4.15: Physical experiments of the corresponding six office building scenarios. The dimension
of the grids shown in the maps is 0.3m×0.3m. The perimeter is made of plastic plates with a thickness
of 1cm. Opaque rough tapes are attached to the surfaces of the plastic boards to ensure the quality of
the LiDAR data. The initial position is the bottom left corner and the target position is the top right
corner.

52

Chapter 4. Sampling Efficient Global Path Planning and Obstacle Avoidance

4.5 Conclusion
This chapter presents an innovative planning framework designed to address trajectory planning prob-
lems in autonomous robots. For global planning, an ACDP-RRT global planner is introduced, which
efficiently generates global waypoints for local planning. Compared to conventional global planning
algorithms, the ACDP-RRT approach enhances sampling efficiency and reduces memory costs by
intelligently determining the sampling region within the environment. For local planning, an ND-
AC-based local planner is employed, which iteratively learns an approximately optimal policy that
integrates both the robot’s controller and planner. The integration of ND technology not only expe-
dites the training process of the AC framework but also improves the robot’s success rate in obstacle
avoidance. Real-world experiments validate the robustness and effectiveness of the entire planning
framework. In future work, we plan to pursue two main research directions: firstly, investigating
path planning methodologies tailored to scenarios with unknown or partially known maps, and sec-
ondly, exploring the implementation and adaptation of the proposed path planning algorithms within
a multi-agent system context.

53

Chapter 5

Approximate Optimal Recursive Sliding
Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep
Reinforcement Learning

5.1 Research Background
In recent decades, UAVs have garnered significant attention in numerous academic research

endeavors due to their extensive range of applications, including surveillance [121], forest fire detec-
tion [122], and disaster rescue operations [123]. The quadrotor is the most extensively examined and
utilized among the various types of UAVs. This is primarily due to its straightforward mechanical
structure, cost-effectiveness, and relatively unconstrained mathematical model with aerodynamics.

Ensuring stable control of a quadrotor is fundamental to achieving reliable flight performance and
accomplishing complex missions. However, controlling quadrotors presents significant challenges
due to their inherent under-actuated nature, nonlinearity, and strong coupling among the system’s
components [124, 125]. Furthermore, tracking control becomes increasingly complex when dealing
with external disturbances, uncertainties, and time-varying parameters within the quadrotor’s dynam-
ics. Consequently, achieving robustness and adaptability in the quadrotor’s control system is crucial
for widespread utilization.

Among the methodologies discussed in Chapter 2, SMC has garnered considerable interest due
to its design convenience and robustness. However, the design of the gain for the signum function
in SMC significantly impacts system performance. Inappropriate gains can lead to sluggish system
response or controller chattering, making the design of a practical sliding mode approach and the
mitigation of chattering critical concerns in the field of sliding mode control [126–128].

54

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Nevertheless, two aspects are still present: specific challenges and unresolved issues. First and fore-
most, a notable issue arises concerning the disturbance observers discussed in the papers above. These
observers typically rely on the assumption that the derivative of the disturbance remains bounded and,
in some cases, even assume the derivative of the disturbance to be zero. Such assumptions often lead
to inadequate estimation by the observer, which impacts the gain of the signum function in SMC.

Secondly, another significant challenge lies in the design of the sliding mode approach law. Finding
an appropriate-reaching law proves to be a non-trivial task. If the reaching law is set too high, it
can lead to oscillations within the system. Conversely, the system may exhibit sluggish response
characteristics if the reaching law is too low. Striking a balance and determining an optimal reaching
law thus becomes crucial for achieving the desired system performance in SMC.

ADP (or DRL) is an excellent mathematical tool for function application, making it well-suited for
optimizing the hyperparameters of traditional SMCs. Given the challenges prevalent in this field, this
chapter makes a fourfold contribution, which can be summarized as follows:

1) An approximate optimal RFNTSMC method is proposed for quadrotors. First, In contrast to
methodologies introduced in [129], [130], we improve by removing the requirement of the dis-
turbances being slowly time varient. The proposed FTDOs can accurately estimate the external
disturbances in both rotational and translational subsystems, and the estimation errors converge
to a set near zero. Second, using the DRL theory, we can learn the approximate optimal control
gains of the RFNTSMC by minimizing the discounted cumulative cost function. This approach
not only alleviates the burden of manual parameter tuning but also ensures the optimality of the
parameters.

2) Dissimilar to methods investigated in [121, 131, 132], the method proposed in this study does
not weaken the stability of the system. The learning frameworks introduced in [121, 131, 132]
proved to be UUB due to the introduction of neural networks. In contrast, the learning method
proposed in this chapter only optimizes the hyper-parameters of the RFNTSMCs rather than
directly generating neural network-based controllers. Therefore, the stability of the closed-loop
system with a network remains consistent with that of the system without a deep network.

3) Unlike works proposed in [133–135], we have developed a faster, more efficient, and stable
training method that isolates the rotational and translational loops during the training process.
The implementation proposed in this study simplifies the nonlinear mapping that the neural
network needs to approximate, thereby reducing training time and enhancing training stability.

Different sliding mode surfaces are adopted compared to work proposed in [136]. Additionally, the
FTDO proposed in this study incorporates two exponential terms designed to enhance the convergence
speed for both large and small observation errors.

Notations: In this study, diag(·) denotes the diagonal matrix. ◦ is the Hadamard product operator.
C(·), S(·), and T(·) respectively denote sin(·), cos(·), and tan(·) functions. |x| is the absolute value

55

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

world frameo1 x1

y1

z1

world frameo1 x1

y1

z1

o2

z2

y2

x2

body frame

o2

z2

y2

x2

body frame

Figure 5.1: Physical configuration of a quadrotor.

function by column vector x elements. sgn(·) is the signum function. xa is the power function by
elements of column vector x. ⌊x⌉α = |x|α ◦ sgn(x).

5.2 Problem Formulation and Preliminaries

5.2.1 System Modeling

The physical configuration of a quadrotor is shown in Fig. 5.1. Referring to literature [137], the
dynamic model of the quadrotor can be yielded as

η̈ =
u f

m
A(ρ)− kt

m
η̇−g+

d
m
,

ω̇ = J−1
0 [−krω−ω× (Jω)+∆+ τ] ,

ρ̇ =W (ρ)ω,

(5.1)

where η = [x,y,z]⊤ is the position of the quadrotor in world-fixed frame, m is the mass, kt is the
translational drag coefficient, u f is the thrust; ω = [φ ,θ ,ψ]⊤ is the attitude in world-fixed frame, J0 =

diag(Jx,Jy,Jz) is the inertial tensor matrix, kr is the rotational drag coefficient, τ is the control torque,
and g = [0,0,g]⊤. Rotation vector A ≜ A(ρ) and transformation matrix W ≜ W (ρ) are respectively

56

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

defined by

A =

CϕCψSθ +SϕSψ

CϕSψSθ −SϕCψ

CθCϕ

 ,W =

1 SϕTθ CϕTθ

0 Cϕ −Sϕ

0 Sϕ/Cθ Cϕ/Cθ

 ,
and d and ∆ are disturbances acting on translational and rotational loops, respectively.

Similar to [137], we decouple the mathematical model into a rotational and translational subsystem.
1) Rotational Subsystem We denote the reference attitude command as ρd = [ϕd,θd,ψd]

⊤ and define
the tracking error as eρ = ρ−ρd . Using Eq. (5.1), we have

ėρ =Wω− ρ̇d,

ëρ = Ẇω +W ω̇− ρ̈d,
(5.2)

where

Ẇ =


0 ϕ̇TθCϕ +

θ̇Sϕ

C2
θ

−ϕ̇SϕTθ +
θ̇Cϕ

C2
θ

0 −ϕ̇Sϕ −ϕ̇Cϕ

0 ϕ̇CϕCθ+θ̇Sϕ Sθ

C2
θ

−ϕ̇SϕCθ+θ̇Cϕ Sθ

C2
θ

 .
Further, define the equivalent disturbance of inner-loop subsystem as ∆ρ = J−1

0 ∆− ρ̈d . Substituting
∆ρ into (5.2) gives

ëρ = Ẇω +W fρ +WJ−1
0 τ +∆ρ , (5.3)

where fρ =−J−1
0 [krω +ω× (Jω)]. Eq. (5.3) can be given as

ëρ = Aρ +Bρτ +∆ρ , (5.4)

where Aρ = Ẇω +W fρ ∈ R3×1 and Bρ =WJ−1
0 ∈ R3×3.

Remark 5.1 Note that the second-order derivative of ρd is known for pure attitude control. However,

for quadrotor position control, the expected attitude commands are generated by the translational

subsystem. Therefore, ρ̈d is covered into ∆ρ and regarded as part of the unknown disturbances.

2) Translational Subsystem The translational subsystem generates the quadrotor’s thrust and ex-
pected pitch and roll angles. However, a so-called “virtual control input" is required due to the under-
actuated characteristic of the quadrotor. Specifically, the error dynamic of the translational subsystem
is given by

ëη =−kt

m
η̇ +uη − η̈d +∆η , (5.5)

57

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

where uη = [ax,ay,az]
⊤ is the virtual expected linear acceleration of the quadrotor that is generated

by the FNTSMC controller introduced in a later section, eη = η −ηd is the position tracking error,
and

∆η =
u f

m

CφCψSθ +Sφ Sψ

Cφ SψSθ −SφCψ

CθCϕ

+ d
m
−g−uη .

Furthermore, the translational and rotational subsystems are connected by the following nonlinear
mapping:

u f = m
√

a2
x +a2

y +(az +g)2,

ϕd = arcsin
m
(
axSψ −ayCψ

)
u f

,

θd = arctan
axCψ +aySψ

az +g
.

(5.6)

We make the following assumption to our system model:

Assumption 5.1 [138] The disturbances ∆ρ and ∆η and their derivatives are all bounded by some

unknown positive constants, namely, ||∆̇ρ || ≤ ∆ρ and ||∆̇η || ≤ ∆η with ∆ρ ,∆η > 0. The yaw angle is

bounded as−π ≤ψ ≤ π . To avoid singularities, the roll and pitch angles are bounded as−π

2 <ϕ < π

2

and −π

2 < θ < π

2 , respectively.

Remark 5.2 In real-world experimental scenarios, the attitude angle ranges are automatically lim-

ited by the quadrotor’s Flight Control Unit (FCU) to satisfy the conditions required in Assumption 5.1.

Based on the analysis and summation aforementioned, the problem we consider is described as
follows:

Control Objective: Given quadrotor system (5.1) and a set of reference trajectories {xd,yd,zd,ψd},
where {xd,yd,zd} is the reference position and ψd is the reference yaw angle, design a type of ADP-
based robust sliding-mode control law such that

lim
t→Tη

(x(t)− xd(t)) = 0, lim
t→Tη

(y(t)− yd(t)) = 0, (5.7a)

lim
t→Tη

(z(t)− zd(t)) = 0, lim
t→Tρ

(ψ(t)−ψd(t)) = 0, (5.7b)

with Tη and Tρ being the settling time.

58

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

5.2.2 Preliminaries

In this section, we introduce several definitions and lemmas that form the theoretical foundation of
our approach.

Definition 5.1 [139] For system ẋ = f (x), f (0) = 0,x ∈ Rn is the system state. The system globally

and uniformly converges to a neighborhood Ω of the origin in a finite time if there exists a locally

bounded function T0 : Rn → R+ ∪{0} such that x ∈ Ω when t ≥ T0(x0). The system is considered

globally uniformly finite-time convergent to Ω if function T0 is globally bounded by some positive

number Tm. T0 is called the settling-time function.

Definition 5.2 [139] Let r = [r1,r2, · · · ,rn],ri > 0 be a generalised weight vector. The dilation as-

sociated with the generalised weight r is Λr(λ) = diag(λ r1,λ r2 , · · · ,λ rn) for λ > 0. A function field

f : Rn→ Rn (or a function f : Rn→ R) is r-homogeneous with a degree of d if and only if ∀x ∈ Rn

and ∀λ > 0, λ−dΛ−1
r (λ) f (Λr(λ)x) = f (x) holds if f is a function field or λ−d f (Λr(λ)x) = f (x)

holds if f is a function.

Definition 5.3 [139] A function field f :Rn→Rn (or function f :Rn→R) is said to be homogeneous

in the p-limit (p = 0,∞) with an associated tuple (r,d, f) if

lim
λ→p

sup
x∈Rn\{0}

∥∥∥λ
−d

Λ
−1
r (λ) f (Λr(λ)x)− f (x)

∥∥∥= 0,

where r is a generalised weight vector, d ∈ R, and f : Rn→ Rn is a function field or

lim
λ→p

sup
x∈Rn\{0}

∥∥∥λ
−d f (Λr(λ)x)− f (x)

∥∥∥= 0

if f and f : Rn→ R are functions.

Definition 5.4 [139] A function field f : Rn→ Rn is said to be homogeneous in the bi-limit if it is

homogeneous in the 0-limit and ∞-limit simultaneously.

Lemma 5.1 [140] For system ẋ = f (x), f (0) = 0,x ∈Rn. The system is practically fixed-time stable

if there exists a Lyapunov function V for the system, such that

V̇ ≤−(a1V a2 +a3V a4)k +δ , (5.8)

where a1,a3 > 0, a2k < 1 < a4k, δ > 0. Specifically, the settling time is given by

Tm ≤
1

ak
1ϑ k(1−a2k)

+
1

ak
3ϑ k(a4k−1)

,

59

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

and the residual set is given by

{
x : V ≤min

{
a
− 1

a2
1

(
δ

1−ϑ k

) 1
a2k

,a
− 1

a4
3

(
δ

1−ϑ k

) 1
a4k }}

with t→ Tm, where ϑ ∈ (0,1)

Lemma 5.2 [140] For system ẋ = f (x), f (0) = 0,x ∈ Rn. If there exists a Lyapunov function V (x)

such that V̇ (x) ≤ −aV b(x),0 < b < 1,a > 0, then the origin of the system is finite-time stable. The

adjusting time of V (x) is Ta ≤ V 1−b(0)
a(1−b) .

Lemma 5.3 [141] For ∀xi ∈ R, i = 1,2, · · · ,n, 0 < p≤ 1, there is(
n

∑
i=1
|xi|
)p

≤
n

∑
i=1
|xi|p ≤ n1−p

(
n

∑
i=1
|xi|
)p

.

Lemma 5.4 For scalar a,b ∈R+ and a function κ(a,b) = a(1+b)
1+a . Then, there exists κ0 > 0 such that

κ(a,b) = κ0a+b if a > b and κ(a,b) = a+κ0b if a < b hold.

Proof 5.1 Solving κ(a,b) = κ0a+b yields κ0 =
a−b
a+a2 , which requires the condition a > b. Similarly,

solving κ(a,b) = a+κ0b yields κ0 =
a(b−a)
ab+b , which requires the condition a < b. This completes the

proof.

5.3 System Design

5.3.1 Rotational subsystem stability

To accurately estimate external disturbances, an FTDO is designed as

żρ1 = ζρmρ1

⌊
ẽρ1

k0

⌉α1

+(1−ζρ)nρ1

⌊
ẽρ1

k0

⌉β1

+ zρ2,

żρ2 = ζρmρ2

⌊
ẽρ1

k0

⌉α2

+(1−ζρ)nρ2

⌊
ẽρ1

k0

⌉β2

+ zρ3 +Aρ +Bρτ,

żρ3 = ζρmρ3

⌊
ẽρ1

k0

⌉α3

+(1−ζρ)nρ3

⌊
ẽρ1

k0

⌉β3

,

(5.9)

where zρ1, zρ2, and zρ3 are the estimates of eρ , ėρ , and ∆ρ , respectively, ẽρ1 = eρ − zρ1 is the es-
timation error of eρ ; α1, α2, α3, β1, β2, β3 are all positive constants; ζρ is a switching parameter;
k0 > 0 is a scale factor; mρi and nρi, i = 1,2,3 are some positive constants that need to be designed.

60

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

To guarantee the stability of the FTDO, we let α1 =
3
4 , α2 =

2
4 , α3 =

1
4 , β1 =

5
4 , β2 =

6
4 , β3 =

7
4 ,

ζρ =

{
0 if ||ẽρ1||2 > e∗ρ ,

1 if ||ẽρ1||2 ≤ e∗ρ ,

with e∗ρ being the threshold of the estimation error of eρ , and for i = 1,2,3, mη ,i, nη ,i are such that
matrices

Γρ1 =

−mρ1 1 0
−mρ2 0 1
−mρ3 0 0

 ,Γρ2 =

−nρ1 1 0
−nρ2 0 1
−nρ3 0 0


are Hurwitz.

Using (5.9), it is easy to verify that the estimation errors ẽρ1 = eρ − zρ1, ẽρ2 = ėρ − zρ2, and
ẽρ3 = ∆ρ − zρ3 are generated by

˙̃eρ1 =−ζρmρ1

⌊
ẽρ1

k0

⌉α1

− (1−ζρ)nρ1

⌊
ẽρ1

k0

⌉β1

+ ẽρ2,

˙̃eρ2 =−ζρmρ2

⌊
ẽρ1

k0

⌉α2

− (1−ζρ)nρ2

⌊
ẽρ1

k0

⌉β2

+ ẽρ3,

˙̃eρ3 =−ζρmρ3

⌊
ẽρ1

k0

⌉α3

− (1−ζρ)nρ3

⌊
ẽρ1

k0

⌉β3

+ ∆̇ρ .

(5.10)

Further, for i = 1,2,3, we define

ξi =
ẽρi

k0
,ϒmi = m′i ⌊ξ1⌉αi ,ϒni = n′i ⌊ξ1⌉βi .

Then, system (5.10) can be transformed into

ξ̇1 =−ζρϒm1− (1−ζρ)ϒn1 +ξ2,

ξ̇2 =−ζρϒm2− (1−ζρ)ϒn2 +ξ3,

ξ̇3 =−ζρϒm3− (1−ζρ)ϒn3 + ∆̇ρ ,

(5.11)

where m′i = mρi/k0 and n′i = nρi/k0 with i = 1,2,3.
The following theorem summarizes the effectiveness of our FTDO:

Theorem 5.1 Under Assumption 5.1, for the FTDO (5.9), the estimation error ∆̃ρ = ∆ρ − zρ3 con-

verges to a neighborhood of the origin Nρ within a fixed time Tρ1, and the boundary of Nρ can be

denoted as Nρ = max{||x||2 : x ∈Nρ}.

Proof 5.2 The proof process consists of two steps. First, we show the existence of a Lyapunov function

61

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

that can make system (5.11) globally asymptotically stable when ∆̇ρ = 0. Then, based on step 1, we

further prove that the entire error system is still fixed-time convergent to a neighborhood of the origin

when ∆̇ρ ̸= 0.

Step 1: To begin with, assuming ∆̇ρ = 0, we construct three vector fields

f (ξ) =

−ζρϒm1− (1−ζρ)ϒn1 +ξ2

−ζρϒm2− (1−ζρ)ϒn2 +ξ3

−ζρϒm3− (1−ζρ)ϒn3

 , f (ξ) =

−ϒm1 +ξ2

−ϒm2 +ξ3

−ϒm3

 , f (ξ) =

−ϒn1 +ξ2

−ϒn2 +ξ3

−ϒn3

 .
Then, Eq. (5.11) can be simplified to

ξ̇ =

{
f (ξ) ||ẽρ ||2 > e∗ρ
f (ξ) ||ẽρ ||2 ≤ e∗ρ

. (5.12)

By Theorem 10 in [142], system (5.12) is globally asymptotically stable for both ||ẽρ ||2 > e∗ρ and

||ẽρ ||2 ≤ e∗ρ without considering ∆̇ρ . This completes the proof of Step 1.

Step 2: We define r = [1,α,2α−1]⊤ and d = α−1 with α = 3
4 . Then, ∀λ > 0, we have

λ
−d

Λ
−1
r (λ) f (Λr(λ)ξ)

=λ
−d ·diag(λ−1,λ−α ,λ−2α+1) f (Λr(λ)ξ)

=diag(λ−α ,λ 1−2α ,λ 2−3α) f ([λξ1,λ
α

ξ2,λ
2α−1

ξ3]
⊤)

=

−m′1 ⌊ξ1⌉α +ξ2

−m′2 ⌊ξ1⌉2α−1 +ξ3

−m′3 ⌊ξ1⌉3α−2

= f (ξ).

(5.13)

According to Definitions 5.2 and 5.3, we know that f is r-homogeneous with a degree of d. Further,

using the result in (5.13) yields

lim
λ→0

sup
ξ∈R3\{0}

||λ−d
Λ
−1
r (λ) f (Λr(λ)ξ)− f (ξ)||= 0, (5.14)

which indicates that f (ξ) is homogeneous in the 0-limit with tuple (r,d, f). By following very similar

derivations, we can also conclude that f is homogeneous in the ∞-limit with tuple (r,d, f), r =

[1,β ,2β −1]⊤, d = β −1, and β = 5
4 .

By Definition 5.4, one has f is in the bi-limit of tuples (r,d, f) and (r,d, f). Based on step 1, we

define two positive constants m0 ≥ max{1,α,2α−1} and m∞ ≥ max{1,β ,2β −1}. Then, inspired

by Theorem 2.20 of [143] and Corollary 2.21 of [143], Lemma 5.5 holds.

62

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Lemma 5.5 There exists a Lyapunov function V (ξ) for system ξ̇ = f (ξ) disturbed by |∆̇ρ | such that

V̇ (ξ)≤−cvκ(V
m0+d0

m0 ,V
m∞+d∞

m∞)+ c∆κ(|∆̇ρ |
m0+d0

m0 , |∆̇ρ |
m∞+d∞

m∞) (5.15)

with cv and c∆ being some positive constants.

Combine Lemma 5.4 and Lemma 5.5 with δ = c∆κ (|∆̇ρ |
m0+d0

m0 , |∆̇ρ |
m∞+d∞

m∞), one has

V̇ ≤

−cvκ0V
4
3 + cvV

7
6 +δ , 0≤V ≤ 1,

−cvV
4
3 + cvκ0V

7
6 +δ , V > 1.

(5.16)

It is easy to verify that each case in (5.16) satisfies the form shown in Lemma 5.1. Therefore, the

observer is practically fixed-time stable; the estimation error converges to a neighborhood of the

origin in a fixed time. The settling time can be given by:

Tm ≤max
(

4
cvκ0ϑ

+
7

cvϑ
,

4
cvϑ

+
7

cvκ0ϑ

)
,ϑ ∈ (0,1]. (5.17)

The residual set is given by

Ω = {x : V (x)≤min{Ω1,Ω2}} , (5.18)

where

Ω1 = min

{
(cvκ0)

− 4
3

(
δ

1−ϑ

) 4
3

,c
− 6

7
v

(
δ

1−ϑ

) 6
7
}
,

Ω2 = min

{
c
− 4

3
v

(
δ

1−ϑ

) 4
3

,(cvκ0)
− 6

7

(
δ

1−ϑ

) 6
7
}
,

δ = c∆κ
(
|∆̇ρ |

m0+d0
m0 , |∆̇ρ |

m∞+d∞
m∞

)
.

The proof is completed.

Next, we design an integral-type sliding mode surface σρ as

sρ = ėρ + kρ1eρ + γρ

⌊
eρ

⌉αρ ,

σρ = sρ +
∫ t

0
λρ

⌊
sρ

⌉βρ dt,
(5.19)

where kρ1 > 0, γρ > 0, λρ > 0, αρ > 1, and 0 < βρ < 1 are positive scalars.

63

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Remark 5.3 As we will see in the proof of Theorem 5.2, sρ = 0 can already guarantee the conver-

gence of eρ . However, to enable sρ to reach the sliding surface more smoothly, we further introduce

another sliding surface σρ = 0.

Assuming there are no external disturbances, the equivalent control law is given by

τeq =−B−1
ρ

(
Aρ + kρ1ėρ + γραρ

⌊
eρ

⌉αρ−1 ◦ ėρ +λρsρ1 + k̇ρ1eρ + γ̇ρ

⌊
eρ

⌉αρ

)
. (5.20)

Thereafter, considering the existence of the external disturbances, a compensation term is further
required to maintain σρ on the sliding mode surface, which is designed as

τsw =−B−1
ρ [zρ3 + kρ2 sgn(σρ)], (5.21)

where kρ2 > 0. The complete control law is thus given by

τ = τeq + τsw. (5.22)

Remark 5.4 Note that parameters kρ1, kρ2, γρ , and λρ designed in Eqs. (5.20) and (5.21) are opti-

mized by the ADP theory proposed in later sections. Therefore, k̇ρ1 and γ̇ρ cannot be ignored in the

stability analysis.

Then, we can establish the following theorem.

Theorem 5.2 Under Assumption 5.1, the closed loop system of the rotational subsystem of the quadro-

tor (5.4) under the FTDO (5.9) and the FNTSMC (5.22) is finite-time stable if the control gain satisfies

kρ2 > Nρ .

Proof 5.3 To begin with, we show the finite-time convergence of σρ . Select the Lyapunov function

candidate as Vρ1 =
1
2σ⊤ρ σρ . Let κρ = kρ2−Nρ . Differentiating Vρ1 gives

V̇ρ1 = σ
⊤
ρ

(
ëρ + kρ1ėρ + γρ

∣∣eρ

∣∣αρ−1 ◦ ėρ +λρsρ1 + k̇ρ1dρ + γ̇ρ

⌊
eρ

⌉αρ

)
= σ

⊤
ρ

[
∆̃ρ − kρ2 sgn(σρ)

]
≤−κρ

∥∥σρ

∥∥
2

=−
√

2κρV
1
2

ρ1 ≤ 0.

(5.23)

By Lemma 5.2, σρ converges to zero in a finite-time Tρ2, which is bounded by Tρ2 ≤
√

2Vρ (0)
κρ

.

Then, we show that the error eρ(t) converges to the origin in a finite time on the sliding surface σρ .

64

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

In fact, on the sliding surface σρ , one has

sρ =−
∫ t

0
λρ

⌊
sρ

⌉βρ dt, ṡρ =−λρ

⌊
sρ

⌉βρ . (5.24)

Choose a Lyapunov function candidate for sρ as Vρ2 = 1
2s⊤ρ sρ . By following the same derivation

process as in (5.23), one has

V̇ρ2 =−λρ

∥∥∥sβρ+1
ρ

∥∥∥
1
≤−2

βρ+1
2 λρV

βρ+1
2

ρ2 . (5.25)

Invoking Lemma 5.2 concludes that sρ converges to zero within a finite-time Tρ3, which is bounded

as

Tρ3 ≤
Vρ2(0)

1−βρ

2

λρ2
βρ+1

2
1−βρ

2

=

∥∥sρ

∥∥1−βρ

λρ

(
1−βρ

) . (5.26)

Thereafter, sρ = 0 implies ėρ = −kρ1eρ − γρ

⌊
eρ

⌉αρ . Now, consider a Lyapunov function candidate

Vρ3 =
1
2e⊤ρ eρ . Differentiating Vρ3 and using Lemma 5.3 yield

V̇ρ3 = e⊤ρ
(
−kρ1eρ − γρ ·

⌊
eρ

⌉αρ

)
=−kρ1

∥∥eρ

∥∥2
2− γρ

∥∥∥e1+αρ

ρ

∥∥∥
1

≤−kρ1
∥∥eρ

∥∥2
2− γρ

∥∥eρ

∥∥1+αρ

2

=−
√

2(kρ1
∥∥eρ

∥∥
2 + γρ

∥∥eρ

∥∥αρ

2)V
1
2

ρ3

=−kρ0V
1
2

ρ3,

(5.27)

where kρ0 =
√

2(kρ1
∥∥eρ

∥∥
2 + γρ

∥∥eρ

∥∥αρ

2)> 0.

By Lemma 5.2, eρ also converges to zero in a finite-time Tρ4, and the settling time is bounded by

Tρ4 ≤
√

2Vρ (0)
kρ0

. As a result, the convergence time of the closed-loop rotational subsystem is bounded

by

Tρ ≤Tρ1 +Tρ2 +Tρ3 +Tρ4. (5.28)

The proof is completed.

65

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

5.3.2 Translational subsystem stability

Similarly, an FTDO for disturbance compensation of the translational subsystem can be designed as
follows:

żη1 = ζηmη1

⌊
ẽη1

k0

⌉α1

+(1−ζη)nη1

⌊
ẽη1

k0

⌉β1

+ zη2,

żη2 = ζηmη2

⌊
ẽη1

k0

⌉α2

+(1−ζη)nη2

⌊
ẽη1

k0

⌉β2

+ zη3−
kt

m
η̇ +uη − η̈d,

żη3 = ζηmη3

⌊
ẽη1

k0

⌉α3

+(1−ζη)nη3

⌊
ẽη1

k0

⌉β3

,

(5.29)

where zη1, zη2, and zη3 are the estimates of eη , ėη , and ∆η , respectively; ẽη1 = eη − zη1 is the
estimation error of eη ;

ζη =

{
0 ||ẽη1||2 > e∗η ,

1 ||ẽη1||2 ≤ e∗η ,

with e∗η being the threshold of ẽη . mη ,i, nη ,i, i = 1,2,3 are such that matrices

Mη1

−mη1 1 0
−mη2 0 1
−mη3 0 0

 ,Mη2 =

−nη1 1 0
−nη2 0 1
−nη3 0 0


are Hurwitz.

Similar to the result presented in Theorem 5.1, observer (5.29) is fixed-time stable and the estima-
tion error ∆̃η = ∆η − zη3 converges to a neighborhood of the origin Nη , which can be bounded as
Nη = max{||x||2 : x ∈Nη}.

Also, the integral-type sliding mode surfaces for the translational subsystem are given by

sη = ėη + kη1eη + γη

⌊
eη

⌉αη ,

ση = sη +
∫ t

0
λη

⌊
sη

⌉βη dt,
(5.30)

where kη1 > 0, γη > 0, λη > 0, αη > 1 and 0 < βη < 1 are positive constants. Assuming there are no
external disturbances, an equivalent control law is given by

ueq =
kt

m
η̇ + η̈d− kη1ėη − γη

∣∣eη

∣∣αη−1 ◦ ėη −ληsη1− k̇η1eη − γ̇η

⌊
eη

⌉αη . (5.31)

To maintain ση on the sliding mode surface when there exist disturbances acting on the system, a

66

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

switching control law is further required, which takes the following form:

usw =−zη3− kη2 sgn(ση), (5.32)

where kη2 > 0 is a positive constant. Then, the complete control law is

uη = ueq +usw. (5.33)

We then have the following result. The proof follows a similar procedure as Theorems 5.1 and 5.2
and is therefore omitted.

Theorem 5.3 Under Assumption 5.1, the closed loop system of the the translational subsystem (5.5)

under the FTDO (5.29) and the FNTSMC (5.33) is finite-time stable if the control gain satisfies kη2 >

Nη .

Remark 5.5 Although the proposed control framework can guarantee the stability of the quadrotor

system, hyperparameter tuning is also a vital problem for controller design [144]. The following

section will discuss how the DRL technique is utilized as the hyper-parameter optimizer for the sliding

mode surfaces and controllers to achieve better performance and enhance the system’s robustness.

5.4 Deep Reinforcement Learning for Parameter Optimization
Although the controllers designed in the previous sections ensure finite-time stability, there remains
potential for enhancing their performance through optimizing the hyper-parameters within these con-
trollers. DRL is a practical approach to parameter optimization. In this section, we will adopt this
technology further to optimize the design parameters of our proposed control strategy. We will show
that our DRL algorithm ensures the uniform ultimate boundedness of the system trajectory during the
learning process.

5.4.1 System re-organization

Using Lemma 5.2, we know that the rotational subsystem controller is parameterized by kρ1, kρ2, γρ ,
λρ , αρ , and βρ . For simplicity and ease of programming, we fix αρ = 2.5 and βρ = 0.99 (so are in
simulations and physical experiments), and ADP is utilized to learn kρ1, kρ2, γρ , and λρ . Similarly, in
Lemma 5.3, αη = 2.5 and βη = 0.99 (so are in simulations and physical experiments) are fixed, and
ADP is utilized to learn kη1, kη2, γη , and λη in translational subsystem. Without loss of generality,
the control inputs of the two controllers can be written as

τ = τ
(
Θρ

)
, Θρ =

[
kρ1,kρ2,γρ ,λρ

]⊤
uη = uη (Θη) , Θη =

[
kη1,kη2,γη ,λη

]⊤
.

(5.34)

67

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Then, decoupling Θρ and Θη yields

τ = B−1
ρ [GρΘρ −

(
Aρ + zρ3

)
− k̇ρ1eρ − γ̇ρ

⌊
eρ

⌉αρ],

uη = GηΘη +
kt

m
η̇ + η̈d− zη3− k̇η1eη − γ̇η

⌊
eη

⌉αη ,
(5.35)

where Gρ = [−ėρ ,−sgn(σρ),−
∣∣eρ

∣∣αρ−1◦ ėρ ,−sρ1]∈R3×4 and Gη = [−ėη ,−sgn(ση),−
∣∣eη

∣∣αη−1◦
ėη ,−sη1] ∈ R3×4.

Note that the ADP training framework does not consider external disturbances since the FTDOs
compensate them. Therefore, the analysis given in the following does not cover ∆ρ and ∆η related
terms. Hence, substitute Eq. (5.35) into Eqs. (5.4-5.5), we have

ëρ =−zρ3− k̇ρ1eρ − γ̇ρ

⌊
eρ

⌉αρ +GρΘρ ,

ëη =−zη3− k̇η1eη − γ̇η

⌊
eη

⌉αη +GηΘη .
(5.36)

Define an augmented state vector χ = [eρ , ėρ ,eη , ėη]
⊤ ∈ R12. Then, we can verify that

χ̇ = F +G Θ, (5.37)

where F = [(Wω − ρ̇d)
⊤,(−zρ3 − k̇ρ1eρ − γ̇ρ

⌊
eρ

⌉αρ)⊤, −η̇⊤d ,(−zη3 − k̇η1eη − γ̇η

⌊
eη

⌉αη)⊤]⊤ ∈
R12×1 is the augmented system matrix, G = [0,Gρ ,0,0;0,0,Gη ,0]⊤ ∈R12×8 is the augmented control
matrix, and Θ = [Θ⊤ρ ,Θ

⊤
η]
⊤ ∈ R8×1 is the augmented hyper-paremeters to be optimized.

5.4.2 HJB Equation and NN approximation

Define G Θ = u. Let the discounted cumulative cost function of augmented system Eq. (5.37) be

J(t) =
∫

∞

t
e−γ(s−t)

[
Qχ(s)+u(s)⊤Ru(s)

]
ds, (5.38)

where Qχ = χ⊤Qχ , and Q ∈ R12×12, R ∈ R6×6 are symmetric positive definite diagonal matrices,
and 0 < γ < 1 is a discount factor. Using the Leibniz’s rule to J yields

J̇(t) =−Qχ −u(t)⊤Ru(t)+ γJ(t). (5.39)

Denote J ≜ J(t) and u ≜ u(t). The HJB equation is

H ≡ Qχ +u⊤Ru+ Jχ(F +u)− γJ = 0. (5.40)

68

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Letting ∂H/∂u = 0 yields u =−1
2R−1Jχ , Θ = G †u, where G † =

(
G⊤G

)−1
G⊤ is the pseudo-inverse

matrix of G .
Based on the Weierstrass high-order approximation theorem [145], the index function J and its

partial derivative Jχ = ∂J/∂ χ can be respectively approximated by

J =W⊤1 Φ+ ε, Jχ = Φ
⊤
χ W1 + εχ , (5.41)

where ε and εχ = ∂εχ/∂ χ are approximation errors, W1 ∈ RN is the weight, whose dimension N is
the number of neurons, Φ ∈RN×1 is the activation function, and Φχ = ∂Φ/∂ χ ∈RN×12 is the Jacobi
matrix of Φ to χ . Substituting u into (5.40) yields

Qχ + J⊤χ F − 1
4

JχR−1J⊤χ − γJ = 0. (5.42)

Then, substituting (5.41) into (5.42) gives

W⊤1 ΦχF − 1
4

W⊤1 ΦχR−1
ΦχW1 +Qχ − γW⊤1 Φ = εH , (5.43)

where εH = 1
4ε⊤χ R−1εχ − ε⊤χ F + 1

2W⊤1 ΦχR−1εχ is the residual error of HJB equation. Assuming
∥F∥ ≤ kχ ∥χ∥, ∥ε∥ ≤ εm,

∥∥εχ

∥∥≤ εmχ , ∥Φ∥ ≤Φm,
∥∥Φχ

∥∥≤Φmχ for some position constants kχ , εm,
εmχ , Φm, and Φmχ . We then have the following result:

Theorem 5.4 Under Assumption 5.1, consider system (5.37). Let u be any admissible bounded con-

troller, let Ĵ = Ŵ⊤1 Φ, Ĵχ = Φ⊤χ Ŵ1 be respectively the approximations of J and its partial derivative

Jχ . Then, the trajectory of the entire closed-loop system during the learning process is Uniformly

Ultimately Bounded (UUB) under the approximated control law

u1 =−
1
2

R−1
Φ
⊤
χ Ŵ2, (5.44)

with Ŵ1 and Ŵ2 generated by

˙̂W1 =−α1
σ2(

σ⊤2 σ2 +1
)2 (σ

⊤Ŵ1 +Qχ +u⊤1 Ru1),

˙̂W2 =−α2(F2Ŵ2−F1σ̄
⊤Ŵ1−

1
4

D̄1Ŵ2M⊤Ŵ1),

(5.45)

where σ2 = Φχ(F +u), σ̄2 = σ2/
(
σ⊤2 σ2 +1

)
, and D̄1 = ΦχR−1Φ⊤χ ,M = σ2/

(
σ⊤2 σ2 +1

)2
.

69

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Proof 5.4 Take the Lyapunov function as

L = J+

L1︷ ︸︸ ︷
1
2

W̃⊤1 α
−1
1 W̃1+

L2︷ ︸︸ ︷
1
2

W̃⊤2 α
−1
2 W̃2,

(5.46)

where W̃1 =W1−Ŵ1 and W̃2 =W1−Ŵ2 is the estimation error. Differentiating L yields

L̇ = J̇+

L̇1︷ ︸︸ ︷
W̃⊤1 α

−1
1

˙̃W1+

L̇2︷ ︸︸ ︷
W̃⊤2 α

−1
2

˙̃W2 .
(5.47)

For the first term,

J̇ = (Φ⊤χ W1 + εχ)
⊤ (F +u)

= (Φ⊤χ W1 + εχ)
⊤(F − 1

2
R−1

Φ
⊤
χ Ŵ2)

=W⊤1 ΦχF − 1
2

W⊤1 D̄1W1 +
1
2

W⊤1 D̄1W̃2 + ε1,

(5.48)

where ε1 = ε⊤χ (F − 1
2R−1Φ⊤χ Ŵ2) ∈ R. Define σ1 = Φχ (F +u) ∈ RN , and for ideal NN controller

approximation, we have u = 1
2R−1ΦχW1. Then, (5.48) can be further put forward as

J̇ =W⊤1 σ1 +
1
2

W⊤1 D̄1W1−
1
2

W⊤1 D̄1W̃2−W⊤1 Φ1u+ ε1

=W⊤1 σ1 +
1
2

W⊤1 D̄1W̃2 + ε1.

(5.49)

Recall (5.43) that the HJB equation can be derived as

εH =W⊤1 ΦχF − 1
4

W⊤1 ΦχR−1
ΦχW1 +Qχ − γW⊤1 Φ

=W⊤1 σ1 +
1
4

W⊤1 D̄1W1− γW⊤1 Φ+Qχ .

(5.50)

Substituting (5.50) into J̇ and doing some manipulations yields

J̇ = ˙̄J+
1
2

W⊤1 D̄1W̃2 + ε1, (5.51)

where ˙̄J = εH−Qχ − 1
4W⊤1 D̄1W1 + γW⊤1 Φ. For the second term, there is

L̇1 = W̃⊤1 M(σ⊤2 Ŵ1 +Qχ +u⊤1 Ru1)

= W̃⊤1 M(σ⊤2 Ŵ1−σ
⊤
1 W1 + γW⊤1 Φ+

1
4

Ŵ⊤2 D̄1Ŵ2−
1
4

W⊤1 D̄1W1 + εH)
(5.52)

70

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Note that

σ
⊤
2 Ŵ1−σ

⊤
1 W1 =

[
Φχ (F +u)

]⊤Ŵ1−
[
Φχ (F +u)

]⊤W1

=−W̃1ΦχF − 1
2

Ŵ⊤2 D̄1Ŵ1 +
1
2

W⊤1 D̄1W1

(5.53)

Substituting (5.50) and (5.53) back to (5.52), using the fact W1 = Ŵ1+W̃1 = Ŵ2+W̃2, and doing some

manipulations yield

L̇1 = W̃⊤1 M
(

1
2

Ŵ⊤2 D̄1W̃1 +
1
4

W̃⊤2 D̄1W̃2−W̃⊤1 ΦχF + γW⊤1 Φ+ εH

)
= W̃⊤1 M

[
1
4

W̃⊤2 D̄1W̃2 + γW⊤1 Φ+ εH +W̃⊤1

(
1
2

D̄1Ŵ2−ΦχF

)]
= W̃⊤1 M

(
1
4

W̃⊤2 D̄1W̃2 + γW⊤1 Φ+ εH−σ
⊤
2 W̃1

)
= ˙̄L1 +

1
4

W̃⊤1 MW̃⊤2 D̄1W̃2,

(5.54)

where ˙̄L1 = W̃⊤1 M
(
−σ⊤2 W̃1 + εH + γW⊤1 Φ

)
. Finally, adding J̇, L̇1, and L̇2 yields

L̇ = ˙̄J+ ˙̄L1 + ε1 +
1
2

W⊤1 D̄1W̃2 +
1
4

W̃⊤1 MW̃⊤2 D̄1W̃2 +W̃⊤2 α
−1
2

˙̃W2. (5.55)

In (5.55), there is

1
4

W̃⊤1 MW̃⊤2 D̄1W̃2

=
1
4

W̃⊤2 W̃2MD̄1W̃1

=
1
4

W̃⊤2 W1MD̄1W̃1−
1
4

W̃⊤2 Ŵ2MD̄1W̃1

=
1
4

W̃⊤2 W1MD̄1W̃1 +
1
4

W̃⊤2 D̄1Ŵ2M⊤Ŵ1−
1
4

W̃⊤2 D̄1W1M⊤W1 +
1
4

W̃⊤2 D̄1W̃2M⊤W1

(5.56)

and

W̃2α
−1
2

˙̃W2

=−W̃⊤2 α
−1
2

˙̂W2

=W̃⊤2

(
F2Ŵ2−F1σ̄

⊤
2 Ŵ1−

1
4

D̄1Ŵ2M⊤Ŵ1

)
=W̃⊤2 F2Ŵ2−W̃2F1σ̄

⊤
2 Ŵ1−

1
4

W̃⊤2 D̄1Ŵ2M⊤Ŵ1.

(5.57)

71

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Substituting (5.56) and (5.57) into (5.55) yields

L̇ =−Qχ −
1
4

W⊤1 D̄1W1 + γW⊤1 Φ+ εH + ε1 +W̃⊤1 σ̄2

(
−σ̄
⊤
1 W̃1 + εH/ms + γW⊤1 Φ

)
+

1
2

W⊤1 D̄1W̃2 +
1
4

W̃⊤2 D̄1W1M⊤W̃1−
1
4

W̃⊤2 D̄1W1M⊤W −1+
1
4

W̃⊤2 D̄1W̃2M⊤W1

+W̃⊤2 F2W1−W̃⊤2 F2W̃2−W̃2F1σ̄
⊤
2 W1 +W̃⊤2 F1σ̄

⊤
2 W̃1,

(5.58)

where ms = σ⊤2 σ2 +1 ∈ R.

Based on the assumptions above, there is

∥ε1∥ ≤ εχkχ ∥χ∥+
1
2

εχΦχσmin(R)
(
∥W1∥+

∥∥W̃2
∥∥) . (5.59)

Obviously, there exists a positive constant ε0 such that ∥εH∥ ≤ ε0 and a positive constant q0 such that

Qχ > χ⊤q0χ . For clarity, we define

Ξ =
[
χ
⊤,W̃⊤1 σ̄2,W̃⊤2

]⊤
=
[
Ξ
⊤
1 ,Ξ

⊤
2 ,Ξ

⊤
3

]⊤
,

then L̇ can be further derived as

L̇≤−χ
⊤q0χ +

1
4
∥W1∥2 ∥D̄1∥+ ε0 + γW1Φ+ εχkχ ∥χ∥+

1
2

εχΦχσmin(R)
(
∥W1∥+

∥∥W̃2
∥∥)

−Ξ
⊤
2 Ξ2 +Ξ

⊤
2

(
εH

ms
+ γW⊤1 Φ

)
+

1
2

W⊤1 D̄1Ξ3 +
1

4ms
Ξ
⊤
3 D̄1W1Ξ2−

1
4ms

Ξ
⊤
3 D̄1W1σ̄

⊤
2 W1

+
∥σ̄2∥∥D̄1∥∥W1∥

4ms
Ξ
⊤
3 Ξ3 +Ξ

⊤
3 F2W1−Ξ

⊤
3 Ξ3−Ξ

⊤
3 F1σ̄

⊤
2 W1 +Ξ

⊤
3 F1Ξ2

=
1
4
∥W1∥2 ∥D̄1∥+ ε0 + γ ∥W1∥Φm +

1
2

εmχΦmχ ∥W∥1 σmin(R)−Ξ
⊤

Γ1Ξ+Ξ
⊤

Γ2,

(5.60)

where

Γ1 =

q0I12 0
0 I − 1

8ms
D̄1W1− 1

2F1

0 − 1
8ms

D̄1W1− 1
2F1 F2 +

∥σ̄2∥∥D̄1∥∥W1∥
4ms


and

Γ2 =


εmχk f

ε0
ms

+ γW⊤1 Φ
1
2εmχΦmχσmin(R)+ 1

2D̄1W⊤1

+
(

F2−F1σ̄⊤2 −
1

4ms
D̄1W1σ̄⊤2

)
W1

 .

72

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Define

Γ3 =
1
4
∥W1∥2 ∥D̄1∥+ ε0 + γ ∥W1∥Φm +

1
2

εmχΦmχ ∥W∥1 σmin(R) (5.61)

Therefore, L̇≤ 0 if

∥Ξ∥>
−∥Γ2∥+

√
∥Γ2∥2 +4∥Γ1∥∥Γ∥3

2∥Γ2∥
. (5.62)

This completes the proof.

Remark 5.6 The introduction of Theorem 5.4 guarantees the UUB stability during the NN training

process. However, many learning-based frameworks can only handle control problems with a fixed

pre-defined reference trajectory (see, [121], [139], et al.). However, the DRL proposed in this study

employs only a single-layer network without activation functions to approximate complex functions,

which inherently limits its network capacity and expressive power. Additionally, given that the pro-

posed method in this study follows an offline learning-online deployment control framework, it is

crucial to bridge the gap between theoretical simulations and practical physical experiments. To ad-

dress this, in contrast to prior methodologies, we adopt two key strategies: 1) replacing the traditional

single-layer network with a more expressive multi-layer deep network and 2) employing a set of ran-

domly generated reference trajectories to train the NNs, thereby enhancing the robustness of the NNs

and significantly narrowing the gap between simulation and experimentation. These enhancements

aim to improve the robustness and adaptability of the proposed control framework.

5.4.3 NN Training

The DRL algorithm used in this study is selected as Proximal Policy Optimization (PPO) [146]. PPO
is a policy iteration-based reinforcement learning algorithm that integrates concepts from Conser-
vative Policy Optimization (CPO) [147], Policy Gradient (PG) [148], and Natural Policy Gradient
(NPG) [149]. It ensures near-monotonic policy improvement during the learning process. PPO serves
as an engineering approximation to Trust Region Policy Optimization (TRPO) [150], as TRPO in-
volves computationally intensive calculations of the Hessian matrix. Consequently, PPO is widely
favored in robotics control applications due to its balance of performance and computational effi-
ciency. The pseudocode code for PPO is illustrated in Algorithm ??. The detailed computational
principle of PPO can be found in some highly-stared Github repositories (e.g., see 1). Table 5.1 lists
some related parameters of PPO.

1Our self-developed DRL simulation platform: https://github.com/HKPolyU-UAV/ReinforcementLearningPlatform

73

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Table 5.1: Some related parameters of the PPO optimizer.

Symbol Value Symbol Value Symbol Value Symbol Value
Tm 20 dt 0.01 std0 0.35 stdmin 0.1

stdd 0.05 stddN 500 γ 0.95 Kep 25
bs Tm/dt ∗2 alr 10−4 clr 10−3 cen 0.01
λ 0.95 cmin 0.8 cmax 1.2

Fig. 5.2 demonstrates the structures of PPO’s actor and critic networks in both rotational and trans-
lational subsystems’ network training. In Fig. 5.2, the actor network is a multi-input-multi-output
network. The input of the actor network is the concatenate of the tracking error and the first-order
derivative of the tracking error. The output of the actor network is the optimized hyper-parameter
of the RFNTSMC proposed in Theorems 5.2 and 5.3. However, the critic network is a multi-input-
single-output NN. The input of the critic network is the concatenate of the input and output of the
actor-network. The output is a scalar value that quantifies the quality of the input state-action tuple
generated from the actor-network.

fully connected layer

actor output

tanh ReLu

critic output actor input

l1(128) l2(64) l3(64) l4(8)

actor network

l0(6) l1(64) l2(32) l3(32) l4(1)

critic network

l0(14)

Figure 5.2: The structures of the NNs in PPO.

Additionally, the activation function of the last layer in the actor network must be selected as
‘ReLU’ rather than ‘tanh’ because the hyper-parameters of the RFNTSMCs must be positive. The
output dimension of the actor network is ‘8’ rather than ‘4’ because we separate the parameter op-
timization of x, y, and z directions in real-world application scenarios to enhance the flexibility of
the parameter optimizer. We extend kp1 as [kp1,x,kp1,y,kp1,z] and kp2 as [kp2,x,kp2,y,kp2,z], p = ρ,η to
respectively represent the parameters in x, y, and z directions.

74

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Rotational susbsystem training:

The augmented state xρ and some parameters of RFNTSMC Θρ can be respectively given by

χρ =
[
e⊤ρ , ė

⊤
ρ

]⊤
,

Θρ =
[
kρ1,x,kρ1,y,kρ1,z,kρ2,x,kρ2,y,kρ2,z,γρ ,λρ

]⊤
.

(5.63)

The reward function is defined as

Jρ(t) =
∫

∞

t=0
e−γ(s−t)

[
χ
⊤
ρ Rχ,ρ χρ + τ

⊤Rττ

]
ds, (5.64)

where Rχ,ρ = diag(Rρ ,Rρ̇), Rρ = I3, Rρ̇ = 0.01I3, and Rτ = 0.01I3, and γ = 0.99 is the discount
factor. The random reference attitude angle set is defined as

ρd = Arρ sin(ωrρt +φrρ)+Aρ0, (5.65)

with 0≤ ||Arρ ||∞ < π/2, 2π/3≤ ||ωrρ ||∞ ≤ 4π/3, 0≤ ||φrρ ||∞ ≤ π/2, and ||Aρ0||∞ = 0.

FNTSMC Inner-loop


Random Reference

Trajectory Generator

, 

,d d 
+

-

E
n

v
ir

o
n
m

en
t

,e e 

Data BufferOptimizerA
D

P

ADP

Figure 5.3: Logic block diagram of the rotational
subsystem training process.

re
w

ar
d

evaluation episode 3()10

2
(

)
1
0


2

(
)

1
0


phase1 phase2

training episode 3()10

re
w

ar
d

2
(

)
1
0


re

w
ar

d
2

(
)

1
0


2

(
)

1
0



Figure 5.4: Cost for rotational learning subsystem
in the training process (upper) and evaluation pro-
cess (lower).

Fig. 5.3 demonstrates the diagram of the rotational subsystem training process. Fig. 5.4 records the
rotational subsystem’s cost function during the training and evaluation processes. Fig. 5.4 illustrates
that the NN optimizer is well-established after around 1000 training episodes. We evaluate the per-
formance of the DRL-optimized system every two training episodes. Additionally, to further improve
the performance of the NN optimizer, a multi-phase network training technique [151] is utilized.

75

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Translational Subsystem Training

Similar to the rotational subsystem, the augmented state xη and hyper-parameter Θη are respectively
given by

χη =
[
e⊤η , ė

⊤
η

]⊤
,

Θη =
[
kη1,x,kη1,y,kη1,z,kη2,x,kη2,y,kη2,z,γη ,λη

]⊤
,

(5.66)

where kη(1,2),p, p = x,y,z represents the components of kη(1,2) in the x, y, and y directions, respec-
tively. The reward function is defined as

Jη(t) =
∫

∞

t=0
e−γ(s−t)

[
χ
⊤
η Rχ,η χη +u⊤η Rηuη

]
ds, (5.67)

where Rχ,η = diag(Rη ,Rη̇), Rη = I3, Rη̇ = 0.05I3, Ru = 0.01I3, and γ = 0.99.
The random reference trajectory for the translational loop training is defined as

ηd = Arη sin(ωrηt +φrη)+Aη0, (5.68)

with ||Arη ||∞ ≤ 1.5, π/10≤ ||ωrη ||∞ ≤ 2π/5, ||φrη ||∞ ≤ π/2, and ||Aη0||∞ = 0.
The logic block diagram for translational subsystem training is given in Fig. 5.5, and Fig. 5.6

represents the training and the evaluation results of the translational subsystem. Similarly, we utilized
a three-phase training approach to enhance the robustness and generalization capacity of the NN
optimizer. The lower subfigure in Fig. 5.6 initially shows a brief fluctuation process. This fluctuation
is due to the unconvergence of the NN weights. The training process tends to be stable in the second
and third phases.

After training the NNs, we test the comparative performance of different control frameworks (with
or without DRL, with or without FTDO), which is recorded in Fig. 5.7. We fix φrη = 03 and Aη0 = 03,
uniformly sampling Arη ∈ [0,1.5] and Trη ∈ [0.2π,0.5π]. A comparison of the "green-blue" (or
"orange-red") reward surfaces shows that the performance of the proposed SMC (with or without
a fixed-time observer) optimized by DRL surpasses that of without DRL. The superiority of the pro-
posed fixed-time observer is evident from the comparison of the "orange-green" (or "red-blue") reward
surfaces. Additionally, the traditional RFNTSMC without DRL or a disturbance observer exhibits the
least favorable performance among the four frameworks.

5.5 Simulation
This section demonstrates some comparative simulations that can reveal the superiority and effective-
ness of our proposed control framework. Different from other training frameworks (see [131], [134], [152]),

76

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

FNTSMC UAV System

Random Reference

Trajectory Generator

+
-

E
n

v
ir

o
n
m

en
t

Data BufferOptimizerA
D

P

ADP

,d d 

u , 

,e e 

Figure 5.5: Logic block diagram of the transla-
tional subsystem training process.

re
w

ar
d

2
(

)
1
0



training episode 3()10training episode 3()10

2
(

)
1
0



phase1 phase2 phase3phase1 phase2 phase3

re
w

ar
d

evaluation episode 3()10evaluation episode 3()10

2
(

)
1
0



2
(

)
1
0



Figure 5.6: Cost for translational learning subsys-
tem in the training and evaluation process.

re
w

ar
d

3
(

)
1
0


re

w
ar

d
3

(
)

1
0



FNTSMC+FTDO+ADPFNTSMC+ADP
FNTSMC+FTDOFNTSMC

()
r

T
s

()
rA m


Figure 5.7: The cost surface under different control frameworks.

77

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

+

-

Nonlinear

mapping (6) + -

RFNTSMC controller (31)-(33)RFNTSMC controller (31)-(33)

RFNTSMC (30)

Fixed-time disturbance observer (29)Fixed-time disturbance observer (29)

Fixed-time disturbance observer (10)Fixed-time disturbance observer (10)

d

DRL optimizere

u

1 2, , ,k k    

update

DRL optimizerDRL optimizer



RFNTSMC controller (20)-(22)



RFNTSMC controller (20)-(22)

RFNTSMC (19)RFNTSMC (19)

e



e

update

1 2, , ,k k    

,fu 

fu d

,d d  d

e

s
3z



u

3z

s



e

Figure 5.8: The diagram of the quadrotor control system.

we train the RL-based optimizers separately to enhance the robustness and efficiency. Specifically,
in the mathematical model, m = 0.850, J0 = 10−3× diag[4.113,4.113,8.255], kη = 0.001, and kr =

0.001. The disturbance signal is composed of a combination of sine, cosine, constant, ramp, and sine
functions induced by other sine functions. To demonstrate the system’s entire control diagram, the
proposed method’s control flow and the signal pathways of some important variables are illustrated
in Fig. 5.8.

5.5.1 Simulation Group 1: Fixed-point control

The initial location of the quadrotor is set to be (0,0,0)m, and the target location is (5,5,3)m. Fig. 5.9
records the comparative state response of five different control frameworks, and Fig. 5.10 illustrates
the output of the observer.

Fig. 5.9 clearly illustrates the performance differences among various control methods in fixed set-
point regulation control. First, methods incorporating disturbance observers (such as ‘RFNTSMC
+ FTDO’ and ‘RFNTSMC + FTDO + DRL’) demonstrate significantly better control performance
than their counterparts without observers. This highlights the effectiveness of the proposed distur-
bance observer. Second, although some control methods do not utilize observers, Fig. 5.10 reveals
that the external disturbances during the first 10 seconds are inherently minor. Thus, by comparing
Backstepping with sliding mode-based control methods without observers (such as ‘FNTSMC’ and
‘RFNTSMC + DRL’), it is evident that sliding mode-based methods inherently exhibit superior dis-

78

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

x
 (

m
)

y
 (

m
)

z
(m

)

Time (s)

FNTSMC+FTDO
RFNTSMC+DRL

FNTSMC
Backstepping
reference

RFNTSMC+FTDO+DRL
FNTSMC+FTDO
RFNTSMC+DRL

FNTSMC
Backstepping
reference

RFNTSMC+FTDO+DRL

Figure 5.9: State response of the quadrotor in the
fixed-point simulation.

Time (s)

,x



,y



,z



referenceobserver

Figure 5.10: OOutputof the observer in the fixed-
point simulation.

turbance rejection due to their strong robustness. Finally, comparing ‘RFNTSMC + FTDO + DRL’
with ‘RFNTSMC + FTDO’ shows that ‘RFNTSMC’ with DRL-based adaptive parameter tuning out-
performs ‘RFNTSMC’ with fixed gains. These analyses confirm the effectiveness and superiority of
the proposed control framework. Correspondingly, Fig. 5.10 presents the output of the observer. The
observer’s performance aligns precisely with the theoretical claims outlined in Theorem 5.1. Specif-
ically, it can be observed that the proposed observer can track complex disturbance signals within a
very short time frame, thereby providing the controller with adequate and accurate model compensa-
tion.

Time (s)

1,xk 1, yk 1,zk  2,xk 2, yk 2,zk 1,xk 1, yk 1,zk  2,xk 2, yk 2,zk 

0 10 20 30 40

1

2




Figure 5.11: hyper-parameters tuned by DRL in the fixed-point simu-
lation.

Fig. 5.11 demonstrates the corresponding time-variant hyper-parameters of the proposed SMC
tuned by DRL. As illustrated in Fig. 5.11, all control parameters are initially set to zero. When

79

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

the controller is activated, the parameters adaptively adjust in real time based on the tracking error
and stabilize after approximately 4 seconds. This behavior aligns perfectly with the response curve of
‘RFNTSMC + FTDO + DRL’ (represented by the orange line in Fig. 5.9). Notably, after 4 seconds,
the controller gains remain almost constant. This is because the control error determines the controller
gains; as the error approaches zero, the gains converge to a steady state.

5.5.2 Simulation Group 2: Trajectory tracking control

After verifying the algorithm with a fixed-point simulation, we further test our control framework
under a more complicated working environment. The reference trajectory is set to be time-variant,
which is defined by

ηd = [5cos(0.2πt),5sin(0.2πt),3sin(0.2πt)]⊤. (5.69)

Similar to simulation group 1, Figs. 5.12 and 5.13 respectively record the comparative state re-
sponse and the output of the observer.

x
 (

m
)

y
 (

m
)

z
(m

)

Time (s)

FNTSMC+FTDO
RFNTSMC+DRL

FNTSMC
Backstepping
reference

RFNTSMC+FTDO+DRL
FNTSMC+FTDO
RFNTSMC+DRL

FNTSMC
Backstepping
reference

RFNTSMC+FTDO+DRL

Figure 5.12: State response of the quadrotor in the
tracking simulation.

Time (s)

,x



,y



,z



referenceobserver

Figure 5.13: OOutputof the observer in the track-
ing simulation.

The patterns revealed in Figs. 5.12 and 5.13 are fundamentally consistent with those in Figs. 5.9
and 5.10. Compared to the orange curve (‘RFNTSMC + FTDO + DRL’), the responses under other
control methods exhibit shortcomings such as insufficient response, severe overshoot, and slow con-
vergence, further demonstrating the superiority of the proposed method. Similarly, 5.13 records the
output of the observer. Unlike in simulation group 1, we introduced a pure ramp signal and a sinu-
soidal signal induced by a sine function into the disturbance signal. Despite this, Fig. 5.13 clearly
shows that the observer can rapidly and accurately track the estimated signals.

The control gains tuned by DRL are represented in Fig. 5.14. The curves depicted in Fig. 5.14

80

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

are nearly identical to those in Fig. 5.11, as the control errors ultimately approach zero, resulting in
similar outputs from the neural network. Although minor differences exist in the initial few seconds
of adjustment, the tuning process concludes rapidly. Consequently, the control gain adjustment curves
for the two sets of simulations are fundamentally the same.

Time (s)




1,xk 1, yk 1,zk  2,xk 2, yk 2,zk 1,xk 1, yk 1,zk  2,xk 2, yk 2,zk 

0 10 20 30 40

1

2

Figure 5.14: hyper-parameters tuned by DRL in the tracking simula-
tion.

5.6 Real World Experiments
Based on the simulations in the previous section, this section presents physical experiments further to
demonstrate the performance of our proposed control framework.

battery

motor1

motor2 motor4

motor3

ESC

FCU

on-board computer

remote controller

marker

extra payloads

propeller

receiver

vicon cameras

Figure 5.15: The quadrotor configuration and physical experiment environment.

Fig. 5.15 shows the quadrotor configuration in our physical experiments. The quadrotor’s mass
(excluding the battery) is m = 0.850kg. The external payload weighs (200g). The flight control unit
(FCU) of the quadrotor is Holybro Kakute H7 V1.3, which integrates PX4 firewire, and the onboard
computer is LattePandaAlpha 864s running Ubuntu 20.04 and ROS Noetic. The information transmis-
sion between FCU and the onboard computer is connected with a USB to TTL module and achieved

81

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

via MAVROS. FCU is responsible for attitude stabilization, and the onboard computer controls the
translational subsystem. In the experimental setup, fans are positioned along the x and y axes to serve
as the second disturbance source for the quadrotor, except for the variable payloads. The entire physi-
cal experiment was conducted in a VICON indoor positioning system, where the quadrotor’s position
was tracked using ‘markers’ on the body.

5.6.1 Experiment Group 1: Fixed-point control

The initial position is set at around (−3m,2m,0.4m) and the target location is (0m,0m,1m). Sev-
eral different controllers are compared in this experiment platform. The performance is recorded in
Fig. 5.16, and Fig. 5.17 is the corresponding output of the proposed fixed-time observer.

x
 (

m
)

y
 (

m
)

z
(m

)

Time (s)
0 5 10 15 20 25 30

RFNTSMC+FTDO+DRL

FNTSMC+FTDOFNTSMC+FTDOFNTSMCFNTSMCNN-MPCNN-MPC
PX4-PIDPX4-PIDreferencereference RFNTSMC+DRLRFNTSMC+DRL

Figure 5.16: State response of the quadrotor in the
fixed-point experiment.

Time (s)

3,xz 3, yz 3,zz

3
z 

Figure 5.17: OOutputof the observer in the fixed-
point experiment.

In Fig. 5.16, "PX4-PID" is the PID controller integrated into the FCU of the quadrotor. Notably,
the state response in the x direction is smoother than in the other two directions. This is because
the wind-exposed area of the quadrotor in the x-direction is smaller than in the y-direction, and the
influence of mass variation on the response in the x-direction is relatively minor. A comprehensive
comparison of the four curves shows that the performance of the proposed ‘RFNTSMC + FTDO +
DRL’ control framework surpasses the other three. In particular, the performance of the ‘NNMPC’ is
the least favorable, mainly due to its stringent requirement for an accurate mathematical model, which
deviates significantly from the conditions of the current experiment. Correspondingly, the output of
the observer in Fig. 5.17 also aligns fully with physical principles. First, since we used elastic ropes
to attach the weights beneath the quadrotor, the disturbance becomes a time-varying signal, which
explains why it takes approximately 5 seconds to stabilize. Second, the quadrotor has a larger wind-
facing area in the y-direction than the x-direction, resulting in slight fluctuations in the observer’s
output for the y-direction.

The corresponding real-time gains of the proposed SMC tuned by DRL are recorded in Fig. 5.18.

82

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Time (s)

1,xk 1, yk 1,zk 2,xk 2, yk 2,zk  

Figure 5.18: hyper-parameters tuned by DRL in the fixed-point exper-
iment.

From the figure, we can observe that the initial values of the parameters are set to zero and subse-
quently adjusted by the DRL-trained optimizer. The parameters converge within one second, although
small oscillations persist. This is attributed to the fixed-point control experiment setup, where two
fans are positioned near the target point, and a weight is attached below the drone using a rubber
band. As a result, the control parameters require real-time adjustments to counteract strong external
disturbances.

5.6.2 Experiment Group 2: Trajectory tracking control

In the trajectory tracking experiment, the reference trajectory is defined as

ηd = [1.5cos(0.25πt),1.5sin(0.25πt),0.2sin(0.2πt)+1]⊤. (5.70)

The state response and the output of the disturbance observer are demonstrated in Fig. 5.19 and
Fig. 5.20, respectively. Fig. 5.19 corroborates the findings in Fig. 5.16. The control performance of
the ‘NNMPC’ exhibits the poorest state response along the z axis among the six control methods be-
cause of the requirement for an accurate mathematical model. In Fig. 5.20, the output of the observer
exhibits slight differences compared to those in Fig 5.17. By comparing the reference trajectory with
the observer’s production, it can be observed that the fluctuation periods of the observer’s outputs in
the x and y directions closely match the period of the circular reference trajectory. Since the two fans
are positioned at fixed locations in the experimental area, the wind disturbances acting on the quadro-
tor in the x and y directions exhibit periodic variations, with a period approximately matching the

83

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

reference trajectories. However, comparing the z-direction curves in Figs 5.17 and 5.20 reveals that
their output magnitudes are similar but opposite in sign. This discrepancy arises because we removed
the weights in the second set of experiments but increased the quadrotor’s mass in the mathematical
model by 0.3kg. The observer detected that the actual mass of the quadrotor was smaller than that in
the model and, through estimation, provided an "equivalent disturbance" to compensate for the model
in the z-direction.

Time (s)

x
 (

m
)

y
 (

m
)

z
(m

)

5 10 15 20 25 30

RFNTSMC+FTDO+DRL

FNTSMC+FTDOFNTSMC+FTDOFNTSMCFNTSMCNN-MPCNN-MPC
PX4-PIDPX4-PIDreferencereference RFNTSMC+DRLRFNTSMC+DRL

Figure 5.19: State response of the quadrotor in
trajectory tracking experiment.

Time (s)

3
z 

3,xz 3, yz 3,zz

Figure 5.20: OOutputof the observer in trajectory
tracking experiment.

The real-time control gains of the RFNTSMC are illustrated in Fig. 5.21. The process depicted
in Fig. 5.21 exhibits similarities to those observed in the simulation and the first set of experiments,
with the primary distinction being that the parameter fluctuations in Fig. 5.21 are significantly more
minor than those in Fig. 5.18. This difference arises because the system operates in a comparatively
more ‘steady state’ in the trajectory tracking experiment due to the reduced disturbance from the fans
relative to the set-point experiment despite the real-time variations in the quadrotor’s reference po-
sition. In the set-point experiment, the quadrotor is additionally burdened with suspended weights,
and the fans are strategically positioned near the target point. As a result, the combined effects of the
fans and the weights being influenced by the airflow make it challenging for the actual control error
to converge precisely to zero, leading to fluctuations within a narrow range. To maintain optimal
control performance, the corresponding control gains must be dynamically adjusted in real time to
mitigate the strong disturbances originating from all three spatial dimensions. In the trajectory track-
ing experiment, the control error remained at zero without significant fluctuations because we did not
use weights and assumed a more substantial mass for the quadrotor. Most of the time, the fans were
positioned farther away from the quadrotor. As a result, the corresponding control gains stabilized
and did not require further adjustments after convergence.

Extensive simulations and real-world experimental validations demonstrate that the proposed learning-

84

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Time (s)

1,xk 1, yk 1,zk 2,xk 2, yk 2,zk  

Figure 5.21: hyper-parameters tuned by DRL in the trajectory tracking experiment.

based adaptive control framework for controller gains outperforms traditional control frameworks.
This superiority can be attributed to two main factors. First, based on the tracking error and its deriva-
tive, the proposed control method dynamically adjusts the control gains in real-time. This enables
the system to achieve a rapid response while minimizing overshoot. After the system stabilizes, if it
deviates from the equilibrium point due to strong disturbances, the control gains are adjusted again in
real-time to ensure the system quickly returns to its origin. Second, the significance of the proposed
method lies not only in its ability to tune controller gains in real time but also in its capacity to reduce
the burden of manual parameter tuning. Although the control parameters tend to converge to constant
values, as evidenced by the simulation and experimental results, these optimal values cannot be deter-
mined a priori. Therefore, the proposed method significantly alleviates the difficulty associated with
manual parameter adjustment.

In addition, we aim to demonstrate the superiority of our proposed control framework more clearly.
We compute the L1 and L2 norms of the tracking error of the drones, which is recorded in Table 5.2.
It can be observed from Table 2 that the proposed control framework achieves the smallest L1 and L2

norms of errors in both fixed-point control and trajectory tracking under strong disturbance conditions.
The effectiveness of our proposed ‘RFNTSMC +FTDO + DRL control framework is thus highlighted,
demonstrating superior performance in swiftly and accurately tracking the reference signal while
mitigating the impact of external disturbances.

85

Chapter 5. Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive
Parameter Optimization via Deep Reinforcement Learning

Table 5.2: Tracking errors of the quadrotor under two groups of experiments.

Experiment Group 1
RFNTSMC RFNTSMC-FTDO RFNTSMC-DRL PX4-PID NNMPC proposed∫

||eη ||2 73.2557 43.3220 50.1110 58.5813 358.0080 20.9075∫
||eη ||1 1986.6417 1354.4367 1129.4098 1537.9079 6968.1761 892.3445

Experiment Group 2
RFNTSMC RFNTSMC-FTDO RFNTSMC-DRL PX4-PID NNMPC proposed∫

||eη ||2 61.8285 28.9491 32.6601 101.5166 252.1807 27.1132∫
||eη ||1 2868.1603 1468.2348 1130.8006 4958.0295 4840.1805 1106.3265

5.7 Conclusion
This chapter investigates a novel robust control framework for a quadrotor with model uncertainty and
external disturbances. First, two FTDOs are proposed to estimate the unknown external disturbance
and model uncertainty, which can estimate the unknown components of the system in a fixed time.
Then, RFNTSMCs are utilized to stabilize the closed-loop system. Furthermore, the DRL technique
is incorporated to optimize the hyper-parameters in the RFNTSMCs to improve control performance
further. Both simulation and physical experiments demonstrate the effectiveness and superiority of
the proposed control framework. Finally, the stability of the RFNTSMCs, the FTDOs, and the DRL-
based training framework are all guaranteed in the Lyapunov sense.

86

Chapter 6

Fixed-time Adaptive Consensus Control for
Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement
Learning

6.1 Research Background
In recent years, multi-quadrotor systems have garnered significant attention due to their wide

range of applications across various fields. Unlike single-quadrotor systems, multi-agent systems
can accomplish more complex tasks, such as cargo transportation, terrain exploration, and rescue
operations.

Sliding mode control is favored for its simple structure, fast convergence, and robustness. However,
adjusting the gains in sliding mode control presents a significant challenge. If the controller gains are
too small, the system will exhibit slow state transitions, whereas excessively high gains can lead to
substantial overshoot. Therefore, designing an appropriate sliding mode reach law and control rate is
critical.

As a powerful function approximator, reinforcement learning is well-suited for optimizing sliding
mode parameters. This serves as the motivation and primary contribution of this chapter. Based on
the analysis above, the main contributions of this chapter can be summarized as follows:

1) A fully distributed Fast Non-singular Terminal Sliding Mode Control(ler) (FNTSMC) is pro-
posed to address the multi-quadrotor consensus control problem, ensuring fixed-time stability in
the Lyapunov sense. Compared to the works presented in [88,89,153], the proposed FNTSMC
enables the quadrotors to accurately track reference trajectories while maintaining formation
within a fixed time.

87

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

2) A fixed-time disturbance observer (FTDO) is introduced to estimate unknown external distur-
bances, where the estimation error converges to a neighborhood of the origin within a fixed time.
Unlike the observers proposed in [129, 130], this observer does not require the disturbances to
vary slowly enough for their time derivatives to be approximately zero.

3) In contrast to the methods proposed in [107, 154–156], the Deep Reinforcement Learning
(DRL) technique is utilized to optimize the FNTSMCs, rather than directly replacing the con-
troller with a single-layer linear neural network approximator. The combination of DRL and
FNTSMC ensures that the system’s fixed-time stability remains intact and enhances the quadro-
tor formation’s robustness and flight performance. Finally, extensive simulations and physical
experiments are conducted to verify the effectiveness and superiority of the proposed control
framework.

Notations: In what follows, diag(·) denotes the diagonal matrix, and ◦ represents the Hadamard
product operator. C(·), S(·), and T(·) denote the cosine, sine, and tangent functions, respectively. For
a vector x ∈ Rn, |x|= [|x1| , |x2| , · · · , |xn|]⊤, and ⌊x⌉α = |x|α ◦ sgn(x). In represents an n-dimensional
identity matrix. The vector η = [x,y,z]⊤ represents the position of the quadrotor, ρ = [φ ,θ ,ψ]⊤

denotes the attitude of the quadrotor, and ω = [p,q,r]⊤ is the angular rate. The parameters kt and kr

represent the translational and rotational drag coefficients. The inertia tensor matrix of the quadrotor
is given by J = diag(Jxx,Jyy,Jzz). The symbol g = 9.8kgm/s2 denotes the gravitational acceleration,
τ = [τx,τy,τz]

⊤ represents the torque, and u f is the throttle. Specifically, variables with the subscript
‘i’ or ‘ j’ represent the corresponding variables of the i-th or j-th quadrotor.

6.2 Preliminaries and Problem Formulation

6.2.1 Fundamental Mathematics

The entire quadrotor group consisting of N quadrotors can be abstracted as a graph G = (V ,E). The
set of nodes V = {v1,v2, · · · ,vN} represents the quadrotor group with vi being the i-th quadrotor. The
set of edges E =

{
(vi,v j)

}
denotes the connections in G , with (vi,v j) representing the edge between

vi and v j. The existence of the edge (vi,v j) indicates that information can be transmitted from vi to v j.
The neighbor set of vi is defined as Ni =

{
v j|
(
v j,vi

)
∈ E

}
if the edge

(
v j,vi

)
exists. Correspondingly,

the adjacency matrix is denoted by A =
[
ai j
]
∈RN×N with weights ai j = 1 if

(
v j,vi

)
∈ E and ai j = 0

if
(
v j,vi

)
/∈ E . Specifically, the graph is undirected if ai j = a ji,∀i, j = 1,2, · · · ,N, and the graph is

directed if there exists at least one tuple (i, j) such that ai j ̸= a ji. The in-degree matrix of G is defined
as D = diag(d1,d2, · · · ,dN) with di = ∑

N
j=1 a ji, i = 1,2, · · · ,N. The Laplacian matrix of the graph G

is defined as L =
[
li j
]
∈RN×N =D−A . For leader-follower control problems, the leader adjacency

matrix (or communication matrix) is described as B = diag(bi) , i = 1,2, · · · ,N, where bi = 1 if and
only if vi can receive information from the leader node; otherwise, bi = 0. The augmented graph,

88

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

which includes the leader node vb, is denoted as GB = (V ,E ,vb,bi) , i = 1,2, · · · ,N. Without loss of
generality, we make the following assumption.

Assumption 6.1 [157,158] For the graph theory used in the study, the following standard conditions

are required:

1) The graph G is undirected.

2) There are no self-loops in the graph G . Namely, aii = 0, i = 1,2, · · · ,N.

3) There exists at least one spanning tree with the leader node vb as the root of graph GB.

Assumption 6.2 [159] The disturbances ∆ρ,i, ∆η ,i acted on the N quadrotors are bounded by un-

known positive constants, namely, ||∆ρ,i|| ≤ δ and ||∆η ,i|| ≤ ∆.

Assumption 6.3 [160] The yaw angle is bounded as ψi ∈ [−π,π]. To avoid singularities, the pitch

and roll angles are bounded as φi,θi ∈
(
− π

2 ,
π

2

)
.

For clarity and convenience, some useful lemmas are listed as follows.

Lemma 6.1 [161] For an undirected graph, the matrix H =L +B is symmetrical positive definite

if the graph G is connected and at least one follower can receive the leader’s information.

Lemma 6.2 [162] For system ẋ = f (x), f (0) = 0, where x ∈ Rn is the state and f (x) ∈ Rn is the

system dynamics. If there exists a continuous semi-positive definite function V (x) such that

V̇ (x)≤− [a1V (x)m1 +a2V (x)m2]k +ϑ ,

where a1 > 0, a2 > 0, m1 > 0, m2 > 0, k > 0, km1 < 1, and km2 > 1. Then, the origin of the system is

practically fixed-time stable. The settling time T is bounded by

T ≤Tmax =
1

ak
1ϑ k (1− km1)

+
1

ak
2ϑ k (km2−1)

,

and the residual set is given by

Ω =
{

x|V (x)≤min
{

a
− 1

m1
1

(
ϑ

1−ρk

) 1
m1k

,a
− 1

m2
2

(
ϑ

1−ρk

) 1
m2k }}

,

where ρ ∈ (0,1).

Lemma 6.3 [163] ∀xi ∈ R, i = 1,2, · · · ,n, 0 < p≤ 1, there is(
n

∑
i=1
|xi|
)p

≤
n

∑
i=1
|xi|p ≤ n1−p

(
n

∑
i=1
|xi|
)p

.

89

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

6.2.2 System Description

According to [63], the dynamic of the i-th quadrotor can be described as

η̈i =
u f ,i

mi
Ai(ρi)−g− kt

mi
η̇i +

δη ,i

mi
,

ω̇i = J−1
i [−krωi−ωi× (Jiωi)+δρ,i + τi],

ρ̇i =Wi(ρi)ωi,

(6.1)

where ηi, u f ,i, kt , and mi respectively represent the position, throttle, drag coefficient of the transla-
tional loop, and mass of the i-th quadrotor, g = [0,0,g]⊤ is the gravitational acceleration; ωi, J, kr, and
τi respectively denote the angular rate, inertia tensor matrix, drag coefficient of the rotational loop,
and torque of the i-th quadrotor; and Ai ≜ Ai(ρi) and Wi ≜Wi(ρi) are respectively defined as [164]Cϕ,iCψ,iSθ ,i +Sϕ,iSψ,i

Cϕ,iSψ,iSθ ,i−Sϕ,iCψ,i

Cθ ,iCϕ,i

 ,
1 Sϕ,iTθ ,i Cϕ,iTθ ,i

0 Cϕ,i −Sϕ,i

0 Sϕ,i/Cθ ,i Cϕ,i/Cθ ,i

 ,
and δη ,i and δρ,i denote the disturbances acted on the translational and rotational subsystems of the
i-th quadrotor.
1) Rotational Subsystem

The tracking error eρ,i and the 1st and 2nd order derivatives of eρ,i are given by

eρ,i = ρi−ρd,i

ėρ,i =Wiωi− ρ̇d,i,

ëρ,i = Ẇiωi +Wiω̇i− ρ̈d,i,

(6.2)

where ρd,i =
[
φd,i,θd,i,ψd,i

]⊤ is the reference attitude angle, and

Ẇi =


0 ϕ̇iTθiCϕi +

θ̇iSϕi
C2

θi

−ϕ̇iSϕiTθi +
θ̇iCϕi
C2

θi

0 −ϕ̇iSϕi −ϕ̇iCϕi

0
ϕ̇iCϕiCθi+θ̇iSϕiSθi

C2
θi

−ϕ̇iSϕiCθi+θ̇iCϕiSθi
C2

θi

 .

By defining ∆ρ,i = J−1
i δρ,i −ρ̈d,i, fρ,i =−J−1

i [krωi +ωi× (Jiωi)], Aρ,i = Ẇiωi +Wi fρ,i, Bρ,i =WiJ−1
i

and doing some manipulations, Eq. (6.2) can be finally simplified as

90

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

ëρ,i = Aρ,i +Bρ,iτi +∆ρ,i. (6.3)

Remark 6.1 Note that the second-order derivative of ρd,i is known for pure attitude control. How-

ever, in the case of position control, the desired attitude commands are generated by the translational

subsystem. As a result, ρ̈d,i is absorbed into ∆ρ,i and treated as part of the unknown disturbances.

1) Translational Subsystem
The virtual expected acceleration of the i-th quadrotor can be defined as

uη ,i = [ax,i,ay,i,az,i]
⊤ , (6.4)

yielding

η̈i =−
kt

mi
η̇i +uη ,i +∆η ,i, (6.5)

where ∆η ,i =
u f ,i
mi

Ai +
δη ,i
mi
−g−uη ,i is the equivalent disturbance. Thereafter, it can be easily derived

that

u f ,i = mi

√
a2

x,i +a2
y,i +(az,i +g)2,

ϕd,i = arcsin
mi
[
ax,iSψ,i−ay,iCψ,i

]
u f ,i

,

θd,i = arctan
ax,iCψ,i +ay,iSψ,i

az,i +g
.

(6.6)

Based on the derivation above, the consensus tracking error of the i-th quadrotor can be defined as

eη ,i =
N

∑
j=1

ai j
[
(ηi−νi)− (η j−ν j)

]
+bi(ηi−ηd−νi), (6.7)

where ηd is the reference geometric center of the quadrotor formation and νi is the offset of the i-th
quadrotor to the geometric center.

For ease of theoretical derivation, a new variable can be defined as

Λi = biηd +(bi +di)νi +∑
N
j=1 ai j(η j−ν j). (6.8)

91

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Correspondingly, one obtains

Λ̇i = biη̇d +(bi +di)ν̇i +∑
N
j=1 ai j(η̇ j− ν̇ j),

Λ̈i = biη̈d +(bi +di)ν̈i +∑
N
j=1 ai j(η̈ j− ν̈ j).

(6.9)

Further, substituting η̈ j into Λ̈i and doing some manipulations yield

Λ̈i = biη̈d +(bi +di)ν̈i +∑
N
j=1 ai j

(
η̈ j− ν̈ j

)
= biη̈d +(bi +di)ν̈i +∑

N
j=1 ai j

(
−

kt, j

m j
η̇ j +uη , j +∆η , j− ν̈ j

)
= Λi0 +∑

N
j=1 ai j∆η , j,

(6.10)

where Λi0 = biη̈d +(bi + di)ν̈i+ ∑
N
j=1ai j(−

kt, j
m j

η̇ j + uη , j− ν̈ j) is a known variable. Then, the error
dynamics of the translational loop can be given by

ëη ,i =−
(di +bi)kt,i

mi
η̇i +(bi +di)uη ,i−Λi0 +(bi +di)∆η ,i−∑

N
j=1 ai j∆η , j. (6.11)

Remark 6.2 In the ‘λi0’, ηd and ν̈i are manually defined. Note that the uη , j and ν̈ j have to be

accessed from other quadrotors. However, these two items are controlled by the ai j. Specifically, as

defined and described in the Lapalce matrix, ai j = 0 means these messages cannot transmit from the

j-th quadrotor to the i-th quadrotor; otherwise, ai j = 1.

6.2.3 Problem Formulation

Based on the Assumptions 6.1- 6.3, the control objective of this chapter is formulated as follows:
Control Objective: Given a quadrotor group with N agent with undirected graph G and a set of

reference trajectories generated by the virtual leader node with ηd = [xd,yd,zd]
⊤ being the refer-

ence position, ψd being the reference yaw angle, and νi = [νx,i,νy,i,νz,i]
⊤ being the offset to the i-th

quadrotor to ηd , design a type of adaptive controller such that for i = 1,2, · · · ,N

lim
t→Tη

[ηi(t)− (ηd +νi)] = 0,

lim
t→Tρ

[ψi(t)−ψd] = 0,
(6.12)

with Tη and Tρ being the settling time of the translational and rotational subsystem, respectively.

92

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

6.3 Controller Design

6.3.1 Rotational subsystem stability

For simplicity, the subscript “i" in the rotational loop controller design is omitted since the quadrotors
are all homogeneous, and the design of the FTDO and FNTSMC in the rotational loop does not
require the information from other quadrotors. [165].

To begin with, an FTDO can be designed as

żρ1 = ℵρmρ1
⌊
ẽρ

⌉α1 +(1−ℵρ)nρ1
⌊
ẽρ

⌉β1 + zρ2,

żρ2 = ℵρmρ2
⌊
ẽρ

⌉α2 +(1−ℵρ)nρ2
⌊
ẽρ

⌉β2 + zρ3 +Aρ +Bρτ,

żρ3 = ℵρmρ3
⌊
ẽρ

⌉α3 +(1−ℵρ)nρ3
⌊
ẽρ

⌉β3 ,

(6.13)

where zρ1, zρ2, and zρ3 are the estimations of eρ , ėρ , and ∆ρ , respectively, ẽρ,i = eρ − zρ1 is the
estimation error of eρ . ℵρ is a switching parameter; α1, α2, α3, β1, β1, and β3 are positive constants.
Specifically, α1 =

3
4 , α2 =

2
4 , α3 =

1
4 , β1 =

5
4 , β2 =

6
4 , β3 =

7
4 , and

ℵρ =

{
0 ||ẽρ ||2 > e∗ρ
1 ||ẽρ ||2 < e∗ρ

with e∗ρ being the threshold of the estimation error. Apart from that, parameters mρ1, mρ2, mρ3, nρ1,
nρ2, and nρ3 are designed such that matrices

Γm,ρ =

−mρ1 1 0
−mρ2 0 1
−mρ3 0 0

 and Γn,ρ =

−nρ1 1 0
−nρ2 0 1
−nρ3 0 0


are Hurwitz.

Given observer (6.13) and inspired by Lemma 6.2, the equivalent disturbance of the quadrotors,
say, ∆ρ satisfying Assumption 6.2, can be estimated in a fixed-time Tρ1, and the estimation error
converges to a neighborhood of the origin Ωρ [166] and [167].

Remark 6.3 redAlthough the stability of the observer can be ensured by guaranteeing the stability

of matrices Γm,ρ and Γn,ρ . In practical applications, however, it is often challenging to determine

whether a third-order matrix is Hurwitz simply by inspecting its parameters. Therefore, we propose

a method that integrates linear system theory to explicitly compute mρ1, mρ2, mρ3, nρ1, nρ2, and nρ3.

93

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Take Γm,ρ as an example, solving |λ I3−Γm,ρ |= 0 yields

λ
3 +mρ1λ

2−mρ2λ +mρ3 = 0. (6.14)

Simultaneously, assuming three negative real roots of a three-order linear equation are −ω1, −ω2,

and −ω3 with ω1,ω2,ω3 > 0. Then, we have

λ
3 +mρ1λ

2−mρ2λ +mρ3

=(λ +ω1)(λ +ω2)(λ +ω3)

=λ
3 +(ω1 +ω2 +ω3)λ

2 +(ω1ω2 +ω2ω3 +ω1ω3)λ +ω1ω2ω3 = 0

(6.15)

which yields

mρ1 = ω1 +ω2 +ω3,

mρ2 = ω1ω2 +ω2ω3 +ω1ω3,

mρ3 = ω1ω2ω3.

(6.16)

Therefore, we can compute mρ1, mρ2, and mρ3 by selecting appropriate ω1, ω2, and ω3.

Larger values of ωi, i = 1,2,3 indicate that the observer possesses a higher bandwidth, which

implies faster convergence of the observer. However, before convergence, the output may exhibit

significant magnitudes and heightened sensitivity to noise. Conversely, smaller ωi, i = 1,2,3 cor-

responds to lower bandwidth, suggesting that the observer will not produce substantial overshoot

before convergence and will be less sensitive to noise, albeit at the cost of slower convergence. In

practical applications, it is essential to strike an appropriate balance between convergence speed and

overshoot based on specific requirements.

Thereafter, a fast non-singular terminal sliding mode surface can be defined as

sρ = eρ + kρ1e
p1
p2
ρ + kρ2ė

p3
p4
ρ , (6.17)

where kρ1 > 0, kρ2 > 0. p1, p2, p3, and p4 are all positive odd numbers satisfying

p1

p2
>

p3

p4
> 1 and 2 >

p3

p4
> 1.

Assuming there are no disturbances or uncertain terms in the system, an equivalent control law can
be given by

τeq =−B−1
ρ

[
Aρ +

p4

kρ2 p3
ė

2− p3
p4

ρ ◦
(

I3−
kρ1 p1

p3
e

p1
p2
−1

ρ

)]
. (6.18)

94

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Remark 6.4 By [64, 130, 159, 168], it can be easily verified that the control matrix Bρ is full rank

and invertible.

In addition, a switching control law is further required to maintain sρ at the origin when there exists
disturbances or uncertainty in the system, which is given by

τsw =−B−1
ρ

[
zρ3 + kρ3 sgn(sρ)+ kρ4s

p5
p6
ρ

]
, (6.19)

where kρ3 > 0, kρ4 > 0 are positive constants. p5 > p6 > 1 are all positive odd parameters. Then, the
complete control law for the rotational loop can be designed as

τ = τeq + τsw. (6.20)

The following theorem can be concluded based on the analysis and derivation aforementioned.

Theorem 6.1 For the rotational subsystem of the quadrotor (6.3) disturbed by ∆ρ , the system is fixed-

time stable with the FNTSMC designed in (6.20) and the FTDO introduced in (6.13).

Proof 6.1 Firstly, we must prove that the sliding mode surface converges to the origin in a fixed time.

Choose a Lyapunov function candidate as Vρ1 =
1
2s⊤ρ sρ . Differentiating Vρ1 yields

V̇ρ1 = s⊤ρ
{

ėρ +
kρ1 p1

p2
e

p1
p2
−1

ρ ◦ ėρ +
kρ2 p3

p4
ė

p3
p4
−1

ρ ◦
[
Aρ +Bρ

(
τeq + τsw

)
+∆ρ

]}
(6.21)

Substituting controller (6.20) into V̇ρ1 and doing some manipulations yield

V̇ρ1 = s⊤ρ

[
kρ2 p3

p4
ė

p3
p4
−1

ρ ◦

(
∆ρ − zρ3− kρ3 sgn(sρ)− kρ4s

αρ5
αρ6
ρ

)]
. (6.22)

Denote ∆̃ρ = ∆ρ − zρ3 as the estimation error of ∆ρ and kρ0 =
kρ2 p3

p4
ė

p3
p4
−1

ρ , which yields

V̇ρ1 =−k⊤ρ0 ◦ s⊤ρ

(
kρ3 sgn(sρ)+ kρ4s

p5
p6
ρ − ∆̃ρ

)
=−kρ4k⊤ρ0s

p5+p6
p6

ρ − kρ,eqk⊤ρ0
∣∣sρ

∣∣ (6.23)

where kρ,eq = kρ3−
∥∥∆̃ρ

∥∥
2 > 0.

Note that all elements in kρ0 are non-negative. Demoting the minimum element in kρ0 as kρ and

95

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

using Lemma 6.3 yield

V̇ρ1 ≤−kρ4kρ ||sρ ||
p5+p6

2p6
2 − kρ,eqkρ ||sρ ||

1
2
2

=−kρ4kρ2
p5+p6

2p6 V
p5+p6

2p6
ρ1 − kρ,eqkρ

√
2V

1
2

ρ1.

(6.24)

Using Lemma 6.2 and the fact p5 > p6 yield that sρ is fixed-time stable, and the settling time Tρ2 is

bounded by

Tρ2 ≤
√

2
kρ,eqkρ

+
p6

kρ4kρ (p5− p6)
2

2p6
p5−p6 . (6.25)

Secondly, we need to prove that eρ converges to the origin in a fixed time when the states are main-

tained on the sliding mode surface. On the sliding mode surface, there is

eρ + kρ1e
p1
p2
ρ + kρ2ė

p3
p4
ρ = 0, (6.26)

which yields

ė
p3
p4
ρ =− 1

kρ2

(
eρ + kρ1e

p1
p2
ρ

)
. (6.27)

Choose a Lyapunov function candidate as Vρ2 =
1
2e⊤ρ eρ . Differentiating Vρ2 along the system trajec-

tory and using Lemma 6.3 yield

V̇ρ2 =−
[

1
kρ2

(
e⊤ρ
) p3

p4

(
eρ + kρ1e

p1
p2
ρ

)] p4
p3

≤−
[

1
kρ2
||eρ ||

p3+p4
p4

2 +
kρ1

kρ2
||eρ ||

p1
p2
+

p3
p4

2

] p4
p3

=−

[
κρ1V

p3+p4
2p4

ρ2 +κρ2V
1
2

(
p1
p2
+

p3
p4

)
ρ2

] p4
p3

,

(6.28)

where κρ1 =

√
2(p3+p4)/p4

kρ2
and κρ2 =

kρ1

√
2p1/p2+p3/p4

kρ2
.

By Lemma 6.2, one concludes eρ converges to the origin in a fixed time, and the settling time Tρ3

can be bounded by

Tρ3 =
2p3

(p3− p4)κ
p4/p3
ρ1

+
2p2 p3

(p1 p4− p2 p3)κ
p4/p3
ρ2

. (6.29)

96

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Therefore, the convergence time of the system with external disturbance convergences within

Tρ ≤Tρ1 +Tρ2 +Tρ3. (6.30)

The proof is completed.

Remark 6.5 In Eq. (6.17), it is obvious to conclude that

p3 + p4

2p4
· p4

p3
=

p3 + p4

2p3
∈ (0,1),

and

1
2

(
p1

p2
+

p3

p4

)
· p4

p3
=

1
2

(
p1 p4

p2 p3
+1
)
> 1

hold for p1
p2

> p3
p4

> 1, satisfying the conditions required in Lemma 6.2.

6.3.2 Translational Subsystem Stability

Similarly, the fixed-time disturbance observer can be designed as

żη1,i = ℵη ,imη1,i
⌊
ẽη1,i

⌉α1 +(1−ℵη ,i)nη1,i
⌊
ẽη1,i

⌉β1 + zη2,i,

żη2,i = ℵη ,imη2,i
⌊
ẽη1,i

⌉α2 +(1−ℵη ,i)nη2,i
⌊
ẽη1,i

⌉β2 + zη3,i−
kt

mi
η̇i +uη ,i,

żη3,i = ℵη ,imη3,i
⌊
ẽη1,i

⌉α3 +(1−ℵη ,i)nη3,i
⌊
ẽη1,i

⌉β3 ,

(6.31)

where zη1,i, zη2,i, and zη3,i are the estimation of eη ,i,ėη ,i,and ∆η ,i,respectively, ẽη1,i = eη ,i− zη1,i is
the estimation error of eη ,i. ℵη ,i is a switching parameter and

ℵη ,i =

{
0 ||ẽη ,i,1||2 > e∗

η ,i

1 ||ẽη ,i,1||2 < e∗
η ,i

with e∗
η ,i being the threshold of the estimation error. Apart from that, hyper-parameters mη1,i, mη2,i,

mη3,i, nη1,i, nη2,i, and nη3,i are designed such that matrices

Γm,η ,i =

−mη1,i 1 0
−mη2,i 0 1
−mη3,i 0 0

 ,Γn,η ,i =

−nη1,i 1 0
−nη2,i 0 1
−nη3,i 0 0


are Hurwitz. Similarly, ∆η ,i can be estimated in fixed-time Tη1,i, and the estimation error converges
to a neighborhood of the origin Ωη ,i [166, 167].

97

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Thereafter, a fast non-singular terminal sliding mode surface for the i-th quadrotor can be defined
as

sη ,i = eη ,i + kη1,ie
q1
q2
η ,i + kη2,iė

q3
q4
η ,i,

(6.32)

where kη1,i > 0, kη2,i > 0. q1, q2, q3, and q4 are all positive odd numbers satisfying

q1

q2
>

q3

q4
> 1 and 2 >

q3

q4
> 1.

An equivalent control law is then proposed to maintain sη ,i on the sliding mode surface, which is
given by

uη ,i,eq =−
1

bi +di

(
uη ,i,eq1 +uη ,i,eq2

)
,

uη ,i,eq1 =−
(b1 +di)kt,i

mi
η̇i−Λi0,

uη ,i,eq2 =
q4

q3kη2,i
η̇

2− q3
q4

i ◦
(

I3−
q1kη1,i

q2
e

q1
q2
−1

η ,i

)
.

(6.33)

Further, considering the uncertain parts and external disturbances acted on the translational subsys-
tem, a switching control law is required, which is designed as

uη ,i,sw =− 1
bi +di

[
(bi +di)zη3,i +

N

∑
i=1

ai jzη3, j + kη3,i sgn(sη ,i)− kη4,is
q5
q6
η ,i

]
. (6.34)

Finally, the complete control law is given by

uη ,i = uη ,i,eq +uη ,i,sw. (6.35)

Similar to the rotational subsystem, a theorem is then illustrated to guarantee the stability of the
translational subsystem of the entire quadrotor group.

Theorem 6.2 For the consensus tracking error of the translational subsystems of the quadrotor for-

mation (6.11) disturbed by ∆i, the system is fixed-time stable with FNTSMC (6.35) and FTDO (6.31).

Proof 6.2 Firstly, we need to prove sη ,i, i = 1,2, · · · ,N converge to the origin in fixed-time. Choose a

Lyapunov function candidate as Vη1 =
1
2 ∑

N
i=1 s⊤

η ,isη ,i. Differentiating Vη1 yields

V̇η1 =
N

∑
i=1

s⊤η ,i

(
ėη ,i +

q1kη1,i

q2
e

q1
q2
−1

η ,i ◦ ėη ,i++
q3kη3,i

q4
ė

q3
q4
−1

η ,i ◦ ëη ,i

)
. (6.36)

98

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Substituting Eq. (6.11) into V̇η1, using controller (6.35), and doing some manipulations yield

V̇η1 =
N

∑
i=1

s⊤η ,i

{
ėη ,i +

q1kη1,i

q2
e

q1
q2
−1

η ,i ◦ ėη ,i +
q3kη3,i

q4
ė

q3
q4
−1

η ,i

[
−

(bi +di)kt,i

mi
η̇i +(bi +di)uη ,i

−Λi0 +(bi +di)∆η ,i−
N

∑
j=i

ai j∆η , j

]}

=
N

∑
i=1

s⊤η ,i

{
q3kη2,i

q4
ė

q3
q4
−1

η ,i ◦
[
(bi +di)

(
∆η ,i− zη3,i

)
+

N

∑
j=i

ai j
(
zη3, j−∆η , j

)]}
.

(6.37)

Define the estimatation error of ∆η ,i as ∆̃η ,i = ∆η ,i− zη3,i and kη0,i =
q3kη2,i

q4
ė

q3
q4
−1

η ,i . V̇η1 can be simpli-

fied as

V̇η1 =−
N

∑
i=1

k⊤η0,i ◦ s⊤η ,i

{[
kη3,i sgn(sη ,i)+ kη4,is

q5
q6
η ,i− (bi +di)∆̃η ,i−

N

∑
j=i

ai j∆̃η , j

]}
. (6.38)

Note that all elements in kη0,i are non-negative. Using Lemma 6.3 and denoting the minimum element

in kη0,i as kη ,i yield

V̇η1 ≤−
N

∑
i=1

kη ,is
⊤
η ,i

{[
kη3,i sgnsη ,i + kη4,is

q5
q6
η ,i− (bi +di)∆̃η ,i−

N

∑
j=i

ai j∆̃η , j

]}

≤−
N

∑
i=1

kη ,i

{
kη3,i||sη ,i||

1
2
2 + kη4,i||sη ,i||

1
2

(
1+ q5

q6

)
2

}

≤−kη3

N

∑
i=1

3

∑
j=1

∣∣sη ,i, j
∣∣− kη4

N

∑
i=1

3

∑
j=1

∣∣sη ,i, j
∣∣1+ q5

q6 ,

(6.39)

where kη3 =min
(
kη ,i,kη3,i

)
, kη4 =min

(
kη ,i,kη4,i

)
, and kη ,i = kη3,i−(bi+di)||∆̃η ,i||2−∑

N
j=1 ai j||∆̃η , j||2 >

0 for i = 1,2, · · · ,N. Using Lemma 6.3 again in Eq. (6.39) yields

V̇η1 ≤−kη3

N

∑
i=1

(
||sη ,i||22

) 1
2 − kη4

N

∑
i=1

(
||sη ,i||22

) 1
2

(
1+ q5

q6

)

=−kη3

(
N

∑
i=1
||sη ,i||22

) 1
2

− kη4

(
N

∑
i=1
||sη ,i||22

) 1
2

(
1+ q5

q6

)

=−κη1V
1
2

η1−κη2V
1
2

(
1+ q5

q6

)
η1 ,

(6.40)

where κη1 = kη3
√

2 and κη2 = kη4

√
2(q6+q6)/q6 . Using Lemma 6.2 yields that sη ,i, i = 1,2, · · · ,N are

99

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

fixed-time stable, and the settling time Tη2 can be bounded by

Tη2 ≤
2

κη1
+

2q6

κη2(q5−q6)
. (6.41)

Secondly, similar to that of the rotational subsystem, we need to prove that the tracking errors of the

quadrotor group converge to the origin in a fixed time. On the sliding mode surface, there is

sη ,i = eη ,i + kη1,ie
q1
q2
η ,i + kη2,iė

q3
q4
η ,i = 0, (6.42)

which yields

ė
q3
q4
η ,i =−

1
kη2,i

(
eη ,i + kη1,ie

q1
q2
η ,i

)
. (6.43)

A Lyapunov function candidate can be defined as Vη2 =
1
2 ∑

N
i=1 e⊤

η ,ieη ,i. Differentiating Vη2 yields

V̇η2 =−
N

∑
i=1

[
1

kη2,i

(
e⊤η ,i

) q3
q4

(
eη ,i + kη1,ie

p1
p2
η

)] q4
q3

=−
N

∑
i=1

[
1

kη2,i

(
||eη ,i||22

) 1
2

(
1+ q3

q4

)
+

kη1,i

kη2,i

(
||eη ,i||22

) 1
2

(
q3
q4
+

q1
q2

)] q4
q3

.

(6.44)

Using Lemma 6.3 yields

V̇η2 ≤−

{
N

∑
i=1

[1
kη2,i

(
||eη ,i||22

) 1
2

(
1+ q3

q4

)
+

kη1,i

kη2,i

(
||eη ,i||22

) 1
2

(
q3
q4
+

q1
q2

)]} q4
q3

≤−

[
1

kη2

(
N

∑
i=1
||eη ,i||22

) 1
2

(
1+ q3

q4

)
+

kη1

kη2

(
N

∑
i=1
||eη ,i||22

) 1
2

(
q3
q4
+

q1
q2

)] q4
q3

=−

[
κη1V

1
2

(
1+ q3

q4

)
η2 +κη2V

1
2

(
q3
q4
+

q1
q2

)
η2

] q4
q3

,

(6.45)

where kη2 = max(kη1,i,kη2,i, · · · ,kηN,i), κη1 = 2(
1
2+

q3
2q4

)
/kη2, kη1 = min(kη1,i,kη2,i, · · · ,kηN,i), and

κη2 = kη12(
q3

2q4
+

q1
2q2

)
/kη2. Using Lemma 6.2 indicates that eη ,i, i = 1,2, · · · ,N converge to the origin

in a fixed-time Tη3, which can be bounded by

Tη3 ≤
2q3

(q3−q4)κ
q4/q3
η1

+
2q2q3

(q1q4−q2q3)κ
q4/q3
η2

. (6.46)

100

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Therefore, the translational subsystem of the quadrotor group is fixed-time stable, and the settling

time can be bounded by

Tη ≤Tη1 +Tη2 +Tη3. (6.47)

The proof is completed.

6.4 DRL for Parameter Optimization
In Section 6.3, a consensus control protocol is designed for the quadrotor formation. However, tuning
the hyperparameters remains a critical issue that needs to be addressed. This section uses deep rein-
forcement learning (DRL) as a hyperparameter optimizer for FNTSMCs to achieve improved control
performance.

... ...
...
...

...
...
...

...
...

6

128 64 32 9

actor input layer fully connected layer
tanh ReLU

...
...

actor output layer

9

...
...
...
... ...
...
...
...

...
...

...
...

...
...
...
...

...
...
...
...

128 64 32

1

15

critic output

Actor network Critic network

Figure 6.1: The architecture of the actor and the critic networks.

The basic Deep Reinforcement Learning (DRL) algorithm employed in this study is Proximal Pol-
icy Optimization (PPO) [146], which is an engineering approximation of Trust Region Policy Gradi-
ent (TRPO). Compared to other DRL methods, TRPO aims to achieve monotonic improvement of the
policy during the iterative learning process by integrating Policy Gradient (PG) [148], Natural Pol-
icy Gradient (NPG) [149], and Conversative Policy Optimization (CPO) [147] into a unified learning
framework. However, implementing pure TRPO is challenging due to the complexity of calculating
the Hessian matrix in real-time. Therefore, PPO is a more popular choice for real-world applications.
Specifically, an improved version of PPO, referred to as PPO with Generalized Advantage Estima-
tion (GAE) [169], is selected as the learning framework. Table 6.1 lists some related parameters of
PPO.

In Table 6.1, Tm represents the maximum simulation time of an episode, and dt is the sampling
period. std0, stdmin, stdd , and stddN are parameters for tuning the standard deviation in the Gaussian
exploration policy. Nm is the maximum number of learning episodes, γ is the discount factor, Kep is

101

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Table 6.1: Some related parameters of the PPO optimizer.

Symbol Value Symbol Value
Tm 10 dt 0.01

std0 0.45 stdmin 0.2
stdd 0.05 stddN 250

γ 0.99 Kep 10
bs Tm/dt ∗2 alr 10−4

clr 10−3 cen 0.01
λ 0.95 cmin, cmax 0.8, 1.2

the number of times the neural network (NN) gradient descends in one learning iteration, and bs is
the buffer size. alr and clr denote the learning rates of the actor and critic networks, respectively. cen,
λ , cmin, and cmax are parameters used in the GAE technique, as referenced in [169]. Additionally,
Nm = 1000 · (std0−stdmin)

stdd
+1000 is the maximum training episode. The pseudocode for PPO with GAE

is illustrated in Algorithm 8. The fundamentals of the PPO algorithm can be found in [146] and
various highly-stared GitHub repositories.

The architecture of the actor and the critic networks are illustrated in Fig. 6.1. The structure of
the actor-network is a five-layer fully connected NN whose dimensions of the input and output of
the actor-network are 6 and 9, respectively. The input of the actor NN represents the quadrotor’s
tracking error, and the actor NN’s production is the learned hyperparameters of the FNTSMC. Note
that the activation function of the actor NN’s output layer is ReLU rather than tanh because the
hyper-parameters of the FNTSMC should be positive. The input dimension of the critic NN is 15,
which is the sum of the dimensions of the input and output of actor NN. The output of the critic
NN is a scalar representing the state-action value function of the current input, which serves as an
indicator to evaluate the quality of the selected hyper-parameters. The diagram of the learning-based
control framework for a single quadrotor is demonstrated in Fig. 6.2. In Fig. 6.2, the rotational and
translational loop controls are coupled and connected with the desired roll and pitch angles, denoted as
φd and θd . The hyperparameters of the FNTSMCs for both loops are optimized by deep reinforcement
learning (DRL) simultaneously and separately.

6.4.1 Rotational Subsystem Parameter Optimizer Training

The controller for the rotational subsystem is utilized in Eq. (6.20) and is tuned by kρ1,i, kρ2,i, kρ3,i,
kρ4,i, and p1 ∼ p6. First, to ensure the rapid convergence of the training process, we select p1 = 9,
p2 = 7, p3 = 5, p4 = 3, p5 = 7, and p6 = 5. Second, to reduce the gap between numerical simulations
and real-world experiments, we opted not to rely solely on the results learned by DRL. Specifically,
the regulation of kρ1,i, kρ2,i, and kρ4,i is assigned to DRL, while kρ3,i is retained further to enhance
the robustness of the controller during real-world experiments.

102

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Algorithm 8 PPO with GAE

Input Episode index ep = 0, maximum learning episode Ne, initial critic net C (), initial actor net
A ().

1: while ep < Ne do
2: Collect time-sequential data buffer and compute the log-probability of the actor: Alg.
3: At a certain timestep, calculate the value function for state s at the current timestep and s′ at

the next timestep.
V = C (s),V ′ = C (s′)

4: Calculate the GAE and advantage function of the actor: Vgae, Vadv
5: Calculate the target value function:

Vtar =Vadv +V
6: Calculate the distribution of actor Nac, the corresponding entropy of the distribution Nen, and

the corresponding log-probability of the distribution Nlg

7: Na = eNlg−Alg

8: Calculate the surrogate objective
s1 = Na ∗Vadv,
s2 =Vadv ∗ [Na.clip(cmin,cmax)]

9: Calculate loss function for A ().
La =−min(s1,s2)− cen ∗Nen

10: Update actor net weights using backpropagation
A ().learn().

11: Calculate loss function for C ()
Lc =

1
2(Vtar−V)2.

12: Update critic net weights using backpropagation
C ().learn().

13: ep+= 1.

14: return A ()

Therefore, the input and output of the optimizer for the rotational subsystem are respectively de-
fined as

χρ,i =
[
e⊤ρ,i, ė

⊤
ρ,i

]⊤
∈ R6,

Θρ,i =
[
kρ1,i,x,kρ1,i,y,kρ1,i,z,kρ2,i,x,kρ2,i,y,kρ2,i,z,kρ3,i,x,kρ3,i,y,kρ3,i,z

]⊤
∈ R9.

(6.48)

The reward function is defined as

Jρ,i(t) =
∫

∞

t=0
e−γρ (s−t)

(
χ
⊤
ρ,iQρ,iχρ,i + τ

⊤Rρ,iτ
)

ds, (6.49)

where Qρ,i = diag(Qeρ,i,Qėρ,i) with Qeρ,i = I3, Qėρ,i = 0.01I3, Rρ,i = 0.01I3, and γρ = 0.99 is the
discount factor.

The curves for reward during the training process are shown in Fig. 6.3, where a multi-stage train-

103

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

rotational

dynamics
FNTSMC

FTDO

ˆ


 

e e +



disturbance

FNTSMC
translational

dynamics
Eq. (6)

-

u fu




 

e e +

disturbanceFTDO

ˆ


d d d d   
merge

d d 

d
d




reference

command

d d 
-

Rotational subsystem

Translational subsystem

e

e

merge





RL

optimizer

RL

optimizer

Figure 6.2: Diagram of the learning-based control framework

ing technique [151] is employed to simultaneously accelerate the training process and improve the
robustness of the trained neural network (NN). Specifically, during the first training stage, the control
performance fluctuates significantly because the NNs have not fully converged. Therefore, in the sub-
sequent three training stages, the initial policies are set to the results from the corresponding previous
training stage. Additionally, lower learning rates for the NNs are chosen to reduce fluctuations and
enhance the robustness of the learned optimizer.

Episode (×104)

R
ew

ar
d

 (
×

1
0

3
)

phase1 phase2 phase3 phase4

Episode (×104)

R
ew

ar
d

Figure 6.3: Reward of the training process of the
rotational subsystem.

FNTSMC-DRL-FTDO FNTSMC-FTDO

FNTSMC FNTSMC-DRL

C
o
st

 (
×

1
0

3
)

Figure 6.4: Comparative cost surface under dif-
ferent control frameworks and initial conditions
for the rotational subsystem.

104

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Moreover, we further collected the costs associated with the rotational subsystem control under
various initial conditions and different control frameworks to demonstrate the superiority of our pro-
posed control framework preliminarily. This is shown in Fig. 6.4, which indicates that the proposed
FNTSMC-DRL-FTDO control framework outperforms the controllers that do not utilize the DRL
technique. Notably, the performance of the pure FNTSMC (without FTDO or DRL) exhibits sig-
nificant fluctuations due to the strong external disturbances applied to the system, which indirectly
highlights the robustness of the proposed control framework.

Remark 6.6 The neural networks are trained in a single-agent interactive environment to obtain a

DRL-based optimizer more quickly, as all quadrotors are homogeneous. The well-trained NN-based

optimizer is integrated into the FNTSMC of each quadrotor during numerous validations and physical

experiments to tune the hyper-parameters of the FNTSMCs in real time.

6.4.2 Translational Subsystem Parameter Optimizer Training

Similarly, we set q1 = 9, q2 = 7, q3 = 5, q4 = 3, q5 = 7, and q6 = 5. and kη3,i is retained out of
the DRL-based optimization framework. The input and output of the optimizer of the translational
subsystem are respectively defined as

χη ,i =
[
e⊤η ,i, ė

⊤
η ,i

]⊤
∈ R6,

Θη ,i =
[
kη1,i,x,kη1,i,y,kη1,i,z,kη2,i,x,kη2,i,y,kη2,i,z,kη3,i,x,kη3,i,y,kη3,i,z

]⊤
∈ R9.

(6.50)

The reward function is defined as

Jη ,i(t) =
∫

∞

t=0
e−γη (s−t)

(
χ
⊤
η ,iQη ,iχη ,i +u⊤η ,iRη ,iuη ,i

)
dt, (6.51)

where Qη ,i = diag(Qeη ,i,Qėη ,i) with Qeη ,i = I3, Qėη ,i = 0.1I3 and Rη ,i = 0.01I3, and γη = 0.99 is the
discount factor.

The curves for the reward during the training process are recorded in Fig. 6.5. The trend of the
reward curve is very similar to that of the rotational subsystem. The cost surfaces of the translational
subsystem control under different initial conditions and various control frameworks are presented in
Fig. 6.6, which reveals that the patterns of translational control performance are fundamentally similar
to those of the rotational loop. The performance of the proposed FNTSMC-DRL-FTDO control
framework outperforms the other three methods. Additionally, the cost of the FNTSMC (represented
by the green surface) is lower than that of FNTSMC-DRL (represented by the cyan surface), further
indicating the superiority of the DRL technique.

105

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Episode (×104)

R
ew

ar
d
 (

×
1
0

3
)

phase1 phase2 phase3 phase4

Figure 6.5: Reward of the training process of the
translational subsystem.

C
o
st

 (
×

1
0

4
)

FNTSMC-DRL-FTDO FNTSMC-FTDO

FNTSMC FNTSMC-DRL

Figure 6.6: Comparative cost surface under dif-
ferent control frameworks and initial conditions
for the translational subsystem.

Remark 6.7 Adaptively tuning the gains of a controller using DRL offers significant advantages over

directly learning the controller itself [107, 154–156]. The process of optimizing parameters through

reinforcement learning does not compromise the structure of the controller or the stability of the

closed-loop system. This significantly enhances the system’s robustness during the learning process,

thereby accelerating the system’s training speed. Extensive experimental validation demonstrates that

the trained network can update parameters at a frequency exceeding 200Hz in practical experiments,

which will not compromise the real-time performance of the system.

6.5 Simulation

6.5.1 Simulation Group 1

The topological graph is shown in Fig. 6.7. Correspondingly, the adjacent matrix As1, in-degree
matrix Ds1, communication matrix Bs1, and Laplacian matrix Ls1 are respectively defined as As1=[0,
1, 1, 1, 1, 1; 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0; 1, 0, 0, 0, 0, 0],
Ds1 = diag(5,1,1,1,1,1), Bs1 = diag(1,0,0,0,0,0), and Ls1 = Ds1−As1.

0 1

4

6

2 53

Figure 6.7: Topological graph of simulation group 1.

The equation of the geometric center Od is defined as

xd = rd sin(0.2πt)+2, yd = rd cos(0.2πt)+3, zd = sin(0.4πt)+2 (6.52)

106

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

with rd = 5m. The offsets of each quadrotor to Od , denoted by νi, i = 1,2, · · · ,6, are defined as

νi,x = rν sin(0.2πt +φx,i), νi,y = rν sin(0.2πt +φy,i), νi,z = 0, (6.53)

where φx,i =
π

2 +(i−1)π

3 , φy,i = (i−1)π

3 and rν = 2m.
Fig. 6.8 illustrates the 2-norm of the tracking errors under six different control frameworks, clearly

demonstrating that the purple curve exhibits the best performance. The red curve also converges to
the origin eventually; however, fluctuations are pretty noticeable at the beginning due to the absence
of a parameter adaptive adjustment mechanism. Other controllers can ensure system stability but
consistently exhibit relatively large tracking errors.

UAV1
FNTSMC

FNTSMC-DRLFNTSMC-FTDO FTPD[42]

RFNTSMC-ESO [26]

Time (s)Time (s)

UAV2

UAV3 UAV4

UAV5 UAV6

FNTSMC-DRL-FTDO

2
(

)
e

m


2
(

)
e

m


2
(

)
e

m


Figure 6.8: ||eη ,i||2 of each quadrotor under different control frameworks.

We further conduct a simulation in which the reference trajectories along the XOY plane remain un-
changed while the altitude is set to different constant values. The corresponding position response of
the quadrotor group under the control framework “FNTSMC+RL+FTDO” is demonstrated in Fig. 6.9,
where the reference trajectories are the superposition of two circles with different radii.

Correspondingly, the output of the FTDOs is illustrated in Fig. 6.10. Fig. 6.10 demonstrates that the
FTDO can accurately track the external disturbances in fixed time (about 1 second). The disturbances
set in the simulation consist of combinations of sine functions with varying amplitudes, phases, and

107

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

periods. Therefore, the FTDO can precisely estimate the unknown items affecting the quadrotors.

z(
m

)

UAV1UAV1

UAV2UAV2

UAV3UAV3

UAV4UAV4

UAV5UAV5

UAV6UAV6

Figure 6.9: Graphic demonstration of the quadro-
tor formation in a 3D view.

UAV1

Time (s)Time (s)

3,xz,x ,x , y , y 3, yz3, yz,z 3,zz

O
b

se
rv

e
O

b
se

rv
e

O
b

se
rv

e

UAV2

UAV3

UAV4

UAV5

UAV6

Figure 6.10: Output of the observers.

6.5.2 Simulation Group 2

We further test our algorithm with a more complicated topological graph and a more aggressive refer-
ence trajectory. The topological graph of simulation group 2 is shown in Fig. 6.11. Correspondingly,
the adjacency matrix As2, in-degree matrix Ds2, communication matrix Bs2, and Laplacian matrix
Ls2 are defined as follows: As2=[0, 1, 0, 1, 0, 0; 1, 0, 1, 0, 0, 0; 0, 1, 0, 1, 0, 0; 1, 0, 1, 0, 1, 0; 0, 0,
0, 1, 0, 1; 0, 0, 0, 1, 0, 1; 0, 0, 0, 0, 1, 0], Ds2 = diag(2,2,2,3,2,1), Bs2 = diag(1,0,0,0,0,0), and
Ls2 = Ds2−As2.

012

643 5

Figure 6.11: Topological graph of simulation group 2.

The equation of the geometric center Od is defined as

xd = rd cos(0.2πt)+2, yd = rd sin(0.4πt)+3, zd = sin(0.4πt)+2 (6.54)

108

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

with rd = 5m. The offsets of each quadrotor to Od , denoted by νi, i = 1,2, · · · ,6, are defined as

ν1 = [rν ,0,0]⊤, ν2 = [rν sin(θ0),rν cos(θ0),0]⊤,
ν3 = [−rν sin(θ0),rν cos(θ0),0]⊤, ν4 = [−rν ,0,0]⊤,
ν5 = [−rν sin(θ0),−rν cos(θ0),0]⊤, ν6 = [rν sin(θ0),−rν cos(θ0),0]⊤,

(6.55)

where θ0 = 60° and rν = 2m. Fig. 6.12 illustrates the 2-norm of the tracking errors across different

UAV1

Time (s)Time (s)

UAV2

UAV3 UAV4

UAV5 UAV6

2
(

)
e

m


2
(

)
e

m


2
(

)
e

m


FNTSMC

FNTSMC-DRLFNTSMC-FTDO FTPD[42]

RFNTSMC-ESO [26]FNTSMC-DRL-FTDO

Figure 6.12: ||eη ||2 of each quadrotor under different control frameworks.

z(
m

)

UAV1UAV1

UAV2UAV2

UAV3UAV3

UAV4UAV4

UAV5UAV5

UAV6UAV6

Figure 6.13: Graphic demonstration of the
quadrotor formation in a 3D view.

Time (s)Time (s)

3,xz,x ,x , y , y 3, yz3, yz
,z 3,zz

O
b

se
rv

e
O

b
se

rv
e

O
b

se
rv

e

UAV1

UAV2

UAV3

UAV4

UAV5

UAV6

Figure 6.14: Output of the observers.

control frameworks. Correspondingly, the three-dimensional position response of the quadrotor group

109

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

is presented in Fig. 6.13, while the output of the FTDOs is recorded in Fig. 6.14. Similarly, in Figs.6.8
and 6.12, the control performances of FNTSMC+RL" (the cyan curves) and FNTSMC+FTDO" (the
red curves) are slightly better than that of the traditional FNTSMC (the blue curves), although the
errors remain relatively large. In contrast, the tracking error converges rapidly to zero under the con-
trol of the FNTSMC+RL+FTDO" framework for both the double-circle" and “∞-shaped" reference
trajectories.

6.6 Physical Experiments
This section presents real-world experiments for further validation. The quadrotors used in the experi-
ment are depicted in Fig. 6.15. Each quadrotor has a mass of 0.722kg and a wheelbase of 250mm. We
utilize four quadrotors to demonstrate the consensus formation control. To highlight the robustness
of our proposed control method under strong disturbances, we introduce two types of disturbances
in the experimental environment: high-speed rotating fans and weights suspended by elastic ropes.
Additionally, the aerodynamic interactions between different aircraft in the flight formation and dis-
crepancies between the UAV’s center of mass and its centroid further complicate quadrotor flight
control.

Marker

Payload

FCU: Holybro Kakute H7 V1.3
PC: Khadas VIM4

Battery

UAV1 UAV2

UAV3 UAV4

Elastic rope

Marker

Night light

Figure 6.15: The quadrotors used in the experiment.

The complete hardware configuration for the experiment is illustrated in Fig. 6.16. In this figure,
four self-designed quadrotors, each featuring different night light colors, form the quadrotor forma-
tion. The Flight Control Unit (FCU) of the quadrotors is the Holybro Kakute H7 v1.3, which inherits
the open-source PX4-Autopilot firmware. The onboard computer is LattePanda Alpha 864s run-
ning Ubuntu 20.04 with ROS Noetic. The FCU is connected to the onboard computer via a USB to

110

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

TTL module and utilizes the MAVROS communication protocol for real-time data transmission. The
quadrotors are localized by a VICON indoor positioning system equipped with 14 high-resolution op-
tical cameras, which provide precise position and attitude feedback to the quadrotors at a frequency
exceeding 200Hz. Velocity feedback is obtained by fusing data from the VICON system and the IMU
using a Kalman filter. The ground station computer is used solely to monitor the states of the quadro-
tors and collect necessary data after the experiments. It does not send any control-related commands
to the quadrotor formation, as the control protocol proposed in this chapter is fully distributed and
decentralized.

Hardware configurationUAV groupMotion capture system

Trajectory tracking

battery
motor

ESC

power

FCU main body

 Vicon cameras

for indoor

positioning

Figure 6.16: The entire experiment configuration.

6.6.1 Experiment Group 1

0

12

3

4

Figure 6.17: Topological graph in Experiment Group 1.

The topological graph of the quadrotor group is shown in Fig. 6.17. The adjacent matrix Ap1,
in-degree matrix Dp1, communication matrix Bp1, and Laplacian matrix Lp1 are respectively de-
fined as Ap1 = [0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,0], Dp1 = diag(3,1,1,1), Bp1 = diag(1,0,0,0), and
Lp1 = Dp1−Bp1. The geometric center Od = [0,0.2,1.5]⊤ remains unchanged. The offsets of each

111

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

quadrotor to Od , denoted by νi, i = 1,2,3,4, are defined as

ν1 = [1.3cos(0.4πt),1.3sin(0.4πt),0.3sin(0.2πt)+0.5]⊤,

ν2 = [−1.3sin(0.4πt),1.3cos(0.4πt),−0.5]⊤,

ν3 = [−1.3cos(0.4πt),−1.3sin(0.4πt),0.3sin(0.2πt)+0.5]⊤,

ν4 = [1.3sin(0.4πt),−1.3cos(0.4πt),−0.5]⊤.

Fig. 6.18 records the real-time control gains kη1, kη2, and kη4 tuned by DRL. Fig. 6.19 illustrates
the 2-norm of the consensus tracking errors under different control frameworks, while the position
response in a 3D view is depicted in Fig. 6.20. Firstly, the response curve of the PID controller is

UAV1 UAV2 UAV3 UAV4

x
z

y

1k 2k 4k

Time (s)Time (s) Time (s)Time (s)

Figure 6.18: Hyperparameters kη1, kη2, and kη4 tuned by DRL in experiment group 1.

notably smooth; however, it exhibits relatively large steady-state errors and phase delays. Secondly,
the performance of the FNTSMC-DRL-FTDO method surpasses that of all other controllers. With
enhancements in the FTDO and the DRL parameter optimizer, the proposed method stands out for its
superior control performance under strong disturbances and uncertainties. Fig. 6.18 reveals that the
control gains are time-variant rather than some pre-tuned constants. The initial values of the gains are
all set to be 0 and converge to some constants after less than 2 seconds. Eq. (6.50) indicates that the
main reason for the convergence of the gains is the convergence of the consensus tracking error eη

and ėη .
Fig. 6.21 illustrates the corresponding output of the FTDO. As shown in the figure, the observed

outputs in the x and y directions exhibit noticeable fluctuations, with the oscillation period closely
matching that of the reference trajectory for the quadrotor formation. This periodic behavior is at-
tributed to the influence of the fans, which act as an external disturbance on the quadrotors. Addition-
ally, the FTDO output in the z direction corresponds to an equivalent weight that closely matches the
weight of the masses suspended below the quadrotor, demonstrating the effectiveness of the FTDO.

112

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

UAV1

FNTSMC

FNTSMC-DRLFNTSMC-FTDO FTPD [42]

RFNTSMC-ESO [26]

Time (s)Time (s)

UAV2

UAV3 UAV4

PX4-PID

2
(

)
e

m


2
(

)
e

m


FNTSMC-DRL-FTDO

Figure 6.19: ||eη ||2 of each quadrotor under different control frameworks.

z(
m

)

UAV1UAV1

UAV2UAV2

UAV3UAV3

UAV4UAV4

Figure 6.20: Graphic demonstration of the
quadrotor formation in a 3D view.

Time (s)Time (s)

O
b

se
rv

e
O

b
se

rv
e

UAV1 UAV2

UAV3 UAV4

3,zz 3,zz 3,zz3,xz 3,xz 3,xz 3, yz3, yz 3,zz3,xz 3, yz

Figure 6.21: Output of the observers in experi-
ment group 1.

6.6.2 Experiment Group 2

Furthermore, we employed a more aggressive reference trajectory to test the performance of the
quadrotor formation under more extreme environmental conditions. The topological graph of the
quadrotor group is shown in Fig. 6.22. The adjacent matrix Ap2, in-degree matrix Dp2, communica-
tion matrix Bp2, and Laplacian matrix Lp2 are respectively defined as Ap2 = [0,1,0,1;1,0,1,0;0,1,
0,0;1,0,0,0], Dp2 = diag(2,2,1,1), Bp2 = diag(1,0,0,0), and Lp2 = Dp2−Bp2. The equation for
the geometric center Od is defined as

xd = cos(0.4πt), yd = sin(0.8πt)+0.2, zd = 1.5. (6.56)

113

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

0

12

3

4

Figure 6.22: Topological graph in Experiment Group 2.

The offsets of each quadrotor to Od , denoted by νi, i = 1,2,3,4, are defined as

ν1 = [0.5,0,0.3sin(0.2πt)+0.5]⊤, ν2 = [0,0.8,−0.5]⊤,
ν3 = [−0.5,0,0.3sin(0.2πt)+0.5]⊤, ν4 = [0,−0.8,−0.5]⊤.

UAV1 UAV2 UAV3 UAV4

x
z

y

Time (s)Time (s) Time (s)Time (s)

1k 2k 4k

Figure 6.23: Hyperparameters kη1, kη2, and kη4 tuned by DRL in experiment group 2.

UAV1

Time (s)Time (s)

UAV2

UAV3 UAV4

2
(

)
e

m


2
(

)
e

m


FNTSMC

FNTSMC-DRLFNTSMC-FTDO FTPD [42]

RFNTSMC-ESO [26]PX4-PIDFNTSMC-DRL-FTDO

Figure 6.24: ||eη , i||2 of each quadrotor under different control frameworks.

114

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

Similarly, the gains tuned by DRL, the 2-norm of the tracking errors, the position response in a 3D
view, and the corresponding output of the FTDO are recorded in Fig. 6.23, Fig 6.24, Fig. 6.25, and
Fig. 6.26, respectively. The error statistical curves from Experiment 2 exhibit the same pattern as those
from Experiment 1, indicating that the proposed control framework consistently outperforms other
methods. Specifically, we calculated the sum of the L2 and L1 norms of the consensus errors for the
quadrotor formation, as presented in Table 6.2, which demonstrates the superiority of the FNTSMC-
DRL-FTDO method. Finally, as shown in Fig. 6.26, the oscillation frequency of the observer output
curve in the y direction is approximately twice that of the x direction, which aligns perfectly with the
characteristics of the pre-defined reference trajectory.

z(
m

)

UAV1UAV1

UAV2UAV2

UAV3UAV3

UAV4UAV4

Figure 6.25: Graphic demonstration of the
quadrotor formation in a 3D view.

Time (s)Time (s)

O
b

se
rv

e
O

b
se

rv
e

UAV1 UAV2

UAV3 UAV4

3,zz 3,zz 3,zz3,xz 3,xz 3,xz 3, yz3, yz 3,zz3,xz 3, yz

Figure 6.26: Output of the observers in experi-
ment group 2.

Table 6.2: Tracking errors of the quadrotor group under two groups of experiments.

Experiment Group1
FNTSMC FNTSMC-FTDO FNTSMC-RL PX4-PID

∑
4
i=1 ||eη ,i||2 210.8893 202.3448 120.8247 613.5627

∑
4
i=1 ||eη ,i||1

(
×104) 1.1409 0.9841 0.5905 3.0267

[160] [170] Proposed
∑

4
i=1 ||eη ,i||2 226.4347 261.9122 83.8014

∑
4
i=1 ||eη ,i||1

(
×104) 1.1450 1.2361 0.3897

Experiment Group2
FNTSMC FNTSMC-FTDO FNTSMC-RL PX4-PID

∑
4
i=1 ||eη ,i||2 224.7086 134.0974 130.7996 274.9714

∑
4
i=1 ||eη ,i||1

(
×104) 0.9820 0.5438 0.5319 1.1355

[160] [170] Proposed
∑

4
i=1 ||eη ,i||2 263.8589 124.6594 78.5620

∑
4
i=1 ||eη ,i||1

(
×104) 1.0839 0.4707 0.2926

115

Chapter 6. Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External
Disturbances Via Deep Reinforcement Learning

6.7 Conclusions
This chapter presents a novel robust control framework for quadrotor groups integrating FNTSMCs,
DRL techniques, and FTDOs. Initially, FNTSMCs were designed for closed-loop systems. Next, FT-
DOs are employed to accurately estimate the uncertainties and disturbances affecting the quadrotors
in fixed time. The outputs of the observers are integrated into the switching control laws of the sys-
tem, thereby enhancing the robustness of the controller and improving overall control performance.
The fixed-time stability of the multi-agent system is guaranteed in a Lyapunov sense. To further en-
hance control performance, DRL is utilized to train a parameter optimizer that adaptively tunes certain
hyper-parameters in the FNTSMCs based on the tracking errors of the quadrotors. Finally, extensive
simulations and physical experiments are conducted to validate the effectiveness and robustness of
the proposed control framework.

116

Chapter 7

Modified Predefined-Time Adaptive
Observer-Based Fast Nonsingular Terminal
Sliding Mode Control for Multi-Quadrotor
Subject to External Disturbances

7.1 Research Background
Similar to but different from the finite-time control method proposed in Chapter 5 and the fixed-time
control proposed in Chapter 6, predefined-time control represents a class of techniques that impose
stricter requirements on the convergence time of control systems. In these methods, the upper bound
of the convergence time can be explicitly expressed, thereby enabling designers to predict the dynamic
behavior of the control system more conveniently.

Therefore, this chapter proposes an enhanced predefined-time convergence criterion and leverages
this criterion to design a predefined-time observer, a distributed Predefined-time Disturbance Ob-
server (PdTDO), and a distributed Predefined-time Fast Nonsingular Terminal Sliding Mode Con-
trol (PdTFNTSMC) framework to achieve consensus control for quadrotor formations.

The main contributions of the chapter can be summarized as follows:

1) A PdT-FNTSMC consensus control protocol is designed for multi-quadrotor formation control.
Different from some existing works [171, 172], we focus on multi-quadrotor formation con-
trol rather than controlling a single quadrotor. In consensus control for multi-agent formations,
individual quadrotors lack access to complete information about the entire formation. Conse-
quently, they must compute control laws based solely on the limited information available to
them to ensure the overall system’s stability. This inherent constraint significantly increases

117

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

the complexity of controller design and analysis. Compared to work proposed in [172], we
introduce a more general PdT criterion formation by adding an exponential and linear terms for
faster convergence.

2) In contrast to some observers proposed in previous works [173, 174], the PtDDO proposed
in this study does not require the differential of the disturbance to be bounded and the upper
bound of the disturbance unknown. Additionally, we introduce an adaptive tuning law to simul-
taneously estimate the disturbance and upper bound of the disturbance, reducing the observer’s
conservation.

3) Unlike finite or fixed time stable controllers proposed in [175–177], the fully distributed control
framework proposed in this chapter achieves predefined time convergence in observing, sliding
mode convergence, and tracking error convergence processes. Sufficient comparative simula-
tions and physical experiments are conducted to verify the superiority and effectiveness of the
proposed control framework.

Notation: In what follows, C(·), S(·), and T(·) respectively denote the cosine function, sine function,
and tangent function. For a column vector x ∈ Rn, sgn(x) and |x| respectively represent the signum
function and absolute function by element of vector x, ⌊x⌉α = |x|α ◦sgn(x) with ◦ being the Hadamard
product operator; ||x|| is the 2-norm of vector x. x >,<,= 0 means all elements in x are all positive,
negative, zeros. In represents an n-dimensional identity matrix. For mathematical modelling of the
i-th quadrotor, ηi = [xi,yi,zi]

⊤ and Θi = [ϕi,θi,ψi]
⊤ respectively denote the position and attitude

angle of the i-th quadrotor in world frame, respectively. ωi = [pi,qi,ri]
⊤ is the angular rate defined

in body frame. The inertia tensor matrix of the quadrotor is denoted by Ji = diag(Jx,i,Jy,iJz,i), τi =

[τx,i,τy,i,τz,i]
⊤ denotes the torque, and u f ,i is the throttle of the i-th quadrotor. g = 9.8(kgm/s2) is the

gravitational acceleration.

7.2 Preliminaries and Problem Formulation

7.2.1 Mathematical fundamental

The quadrotor formation group consists of N quadrotor follower nodes v1,v2, · · · ,vN and one vir-
tual leader node v0. Graph G = (V ,E) is defined to describe all follower nodes with V = {vi, i =

1,2, · · · ,N} being the the node set and E = {(vi,v j), i, j = 1,2, · · · ,N} being the edge set. Specif-
ically, (vi,v j) represents the edge that connects vi and v j. Augmented graph Ḡ = (V ,E ,v0,bi),
i = 1,2, · · · ,N is defined to describe the entire leader-follow multi-quadrotor system with bi being
the connection among v0 and other follower nodes. bi = 1 means the information can transform
from v0 to vi, otherwise, bi = 0. The communication matrix of the leader node v0 is defined as

118

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

B = diag([bi]). The neighborhood of vi is denoted as Ni{v j|(v j,vi) ∈ E }. The adjacency matrix
is defined as A = [ai j] ∈ Rn, the in-degree of the follower node vi is defined as di = ∑

N
j=1 ai j, the

in-degree matrix is defined as D = diag(di), and the Laplacian matrix of G is defined as L =D−A .
Some useful definitions, corollary, assumptions, and lemmas are listed without loss of generality.

Definition 7.1 (see the Appendix A. of [178]) For x1,x2 ∈ R+, the Gamma function Γ(x1) and the

Beta function B(x1,x2) are respectively defined as

Γ(x1) =
∫

∞

0
h̄x1−1e−h̄dh̄,

B(x1,x2) =
∫ 1

0
h̄x1−1(1− h̄)x2−1dh̄.

(7.1)

In addition, B(x1,x2) =
Γ(x1)Γ(x2)
Γ(x1+x2)

.

Corollary 7.1 An equivalent formation of the Beta function can be given by

B(x1,x2) =
∫

∞

0

h̄x1−1

(h̄+1)x1+x2
dh̄. (7.2)

Proof 7.1 We define u = h̄
h̄−1 . There is dh̄ = 1

(u+1)2 du. The integration can be reformulated as

B(x1,x2) =
∫ 1

0
h̄x1−1(1− h̄)x2−1dh̄

=
∫

∞

0

(
u

u+1

)x1−1(1
u+1

)x2−1 du
(u+1)2

=
∫

∞

0

ux1−1

(u+1)x1+x2
du.

(7.3)

The proof is completed.

Assumption 7.1 (see [159]) For the i-th quadrotor, the equivalent disturbances acted on the rota-

tional subsystem, ∆Θ,i, and translational subsystem, ∆η ,i, are all bounded by some unknown positive

constants, namely, ||∆Θ,i|| ≤ σΘ and ||∆η ,i|| ≤ ση .

Assumption 7.2 (see [160]) The yaw angle of the i-th quadrotor is bounded as −π ≤ ψi ≤ π , while

the roll and pitch angles are bounded as −π/2 < ϕi,θi < π/2.

Assumption 7.3 (see [179]) For graph G and augmented graph Ḡ , there are

(1) The graph G is undirected.

(2) There are no self-loops in G , say, aii = 0, i = 1,2, · · · ,N.

119

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

(3) There exists at least one spanning tree in augmented graph Ḡ with the leader node v0 being the

root of the tree.

Lemma 7.1 (see [180]) ∀xi ≥ 0, i = 1,2, · · · ,N, 0 < p≤ 1, there is(
n

∑
i=1

xi

)p

≤
n

∑
i=1

xp
i ≤ n1−p

(
n

∑
i=1

xi

)p

Lemma 7.2 ∀xi ≥ 0, i = 1,2, · · · ,N and p≥ 1, there is

np−1
n

∑
i=1

xp
i ≥

(
n

∑
i=1

xi

)p

. (7.4)

Proof 7.2 Using Hölder’s inequality, we have

n

∑
i=1

xiyi ≤

(
n

∑
i=1

xp
i

) 1
p
(

n

∑
i=1

yq
i

) 1
q

, (7.5)

where 1
p +

1
q = 1. Letting yi = 1, i = 1,2, · · · ,n yields

np−1
n

∑
i=1

xp
i ≥

(
n

∑
i=1

xi

)p

. (7.6)

Then, the proof is completed by selecting p≥ 1.

Lemma 7.3 (see [181]) Consider a differential equation

ẋ(t) =−m1x(t)−m2xµ(t)+m3φ(t), (7.7)

where m1,m2,m3 > 0, µ ≥ 1, and φ(t)≥ 0. Then, x(t)≥ 0 if x(0)≥ 0 holds.

Lemma 7.4 (see [181]) For ∀x1,x2 ∈ R, x2 ≥ x1, and ε ≥ 1, there is

x1(x2− x1)
ε ≤ ε

ε +1
(
x1+ε

2 − x1+ε

1
)
. (7.8)

Lemma 7.5 (see [182]) For ∀x1,x2 ∈ R, ϑ ,ϖ1,ϖ2 ∈ R+, we have

|x1|ϖ1 |x2|ϖ2 ≤ ϖ1|x1|ϖ1+ϖ2

ϖ1 +ϖ2
ϑ +

ϖ2|x2|ϖ1+ϖ2

ϖ1 +ϖ2
ϑ
−ϖ1

ϖ2 . (7.9)

Lemma 7.6 For ∀x1,x2,k > 0 and k is the ratio of two positive odd integers. Then,

120

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

(1): for k ≥ 1,x2 ≤ x1 or 0 < k ≤ 1,x2 ≥ x1, there is

(x1− x2)
k ≤ xk

1− xk
2 (7.10)

(2): for k ≥ 1,x2 ≥ x1 or 0 < k ≤ 1,x2 ≤ x1, there is

(x1− x2)
k ≥ xk

1− xk
2 (7.11)

Proof 7.3 Define x2 = m0x1, m0 > 0, and function f (x1) = (x1−x2)
k− (xk

1−xk
2). Then, f (x1) can be

simplified as

f (x1) = [(1−m0)
k−1+mk

0]x
k
1 ∝ (1−m0)

k−1+mk
0 ≜ g(m0). (7.12)

It is easy to find that g(0) = g(1) = 0 and solving dg(m0)
dm0

= 0 yields m0 = 0.5. Therefore, if 0 < k≤ 1,

function g(m0)≥ 0 on (0,1] (namely, x2 ≤ x1) and g(m0)≤ 0 on [1,∞) (namely, x2 ≥ x1). Similarly,

if k ≥ 1, function g(m0)≤ 0 when x2 ≤ x1 and g(m0)≥ 0 when x2 ≥ x1. This completes the proof.

Lemma 7.7 (see [181]) For a nonlinear system ẋ = f (x), the system is practically PdT stable if there

exists a Lyapunov function V (x) such that

V̇ ≤− π

(2−2α)Tc
√

β2β3
(β2V α +β2V 2−α)+ρ (7.13)

holdes, in which 0 < α < 1, β2,β3 > 0, Tc > 0 are positive constants, and ρ > 0. The upper bound of

the settling time satisfies Tp =
√

2Tc.

7.2.2 System modelling

Based on [183], the mathematical model of the i-th quadrotor can be given by

η̈i =
u f ,i

mi
Ai(Θi)−g− kt

mi
η̇i +

δη ,i

mi
,

ω̇i = J−1
i
[
−krωi−ωi× (Jiωi)+δΘ,i + τi

]
,

Θ̇i =Wi(Θi)ωi,

(7.14)

where ηi, u f ,i, and mi denote the position, throttle, and mass of the i-th quadrotor. kt and kr, re-
spectively, denote the drag coefficients of the translational and rotational loops. ωi, Ji, Θi, and τi

represent the angular rate, inertial tenser matrix, attitude angle, and torque of the i-th quadrotor, re-
spectively. δη ,i and δΘ,i respectively represent the disturbance acted on the translational and rotational
subsystem of the i-th quadrotor. g = [0,0,g]⊤ is the gravitational acceleration vector. Ai ≜ Ai(Θi) and

121

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

Wi ≜Wi(Θi) are respectively defined asCϕ,iCψ,iSθ ,i +Sϕ,iSψ,i

Cϕ,iSψ,iSθ ,i−Sϕ,iCψ,i

Cθ ,iCϕ,i

 ,
1 Sϕ,iTθ ,i Cϕ,iTθ ,i

0 Cϕ,i −Sϕ,i

0 Sϕ,i/Cθ ,i Cϕ,i/Cθ ,i

 .
1) Rotational Subsystem: Define the expected attitude angle of the i-th quadrotor as Θd,i = [ϕd,i,θd,i,ψd,i]

⊤.
The tracking error eΘ,i as well as the 1st and 2nd order derivatives of eΘ,i are given by

eΘ,i = Θi−Θd,i

ėΘ,i =Wiωi− Θ̇d,i,

ëΘ,i = Ẇiωi +Wiω̇i− Θ̈d,i,

(7.15)

where Ẇi can be defined as

Ẇi =


0 ϕ̇iTθiCϕi +

θ̇iSϕi
C2

θi

−ϕ̇iSϕiTθi +
θ̇iCϕi
C2

θi

0 −ϕ̇iSϕi −ϕ̇iCϕi

0
ϕ̇iCϕiCθi+θ̇iSϕiSθi

C2
θi

−ϕ̇iSϕiCθi+θ̇iCϕiSθi
C2

θi

 .

By defining ∆Θ,i = J−1
i δΘ,i −Θ̈d,i, fΘ,i =−J−1

i [krωi+ωi×(Jiωi)], AΘ,i = Ẇiωi+Wi fΘ,i, BΘ,i =WiJ−1
i

and doing some manipulations, Eq. (7.15) can be finally simplified as

ëΘ,i = AΘ,i +BΘ,iτi +∆Θ,i. (7.16)

Remark 7.1 In pure attitude control, the 1st and 2nd order derivatives of Θd,i can be predefined or

analytically computed. However, obtaining the 2nd− order derivatives of the desired angle through

differentiation may introduce unnecessary noise in position control. Therefore, Θ̈d,i is absorbed into

∆Θ,i and treated as part of the unknown disturbances.

2) Translational Subsystem: Due to the coupling characteristics, we introduce the virtual desired
acceleration of the i-th quadrotor in the position control loop as

uη ,i = [ax,i,ay,i,az,i]
⊤ , (7.17)

yielding

η̈i =−
kt

mi
η̇i +uη ,i +∆η ,i, (7.18)

122

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

where ∆η ,i =
u f ,i
mi

Ai +
δη ,i
mi
−g−uη ,i is the equivalent disturbance. Thereafter, by [184], the expected

throttle and pitch and roll angles of the i-th quadrotor can be computed by

u f ,i = mi

√
a2

x,i +a2
y,i +(az,i +g)2,

ϕd,i = arcsin
mi
[
ax,iSψ,i−ay,iCψ,i

]
u f ,i

,

θd,i = arctan
ax,iCψ,i +ay,iSψ,i

az,i +g
.

(7.19)

Using Eq. (7.18), the consensus tracking error of the i-th quadrotor can be expressed as

eη ,i =
N

∑
j=1

ai j
[
(ηi−νi)− (η j−ν j)

]
+bi(ηi−ηd−νi), (7.20)

where ηd = [xd,yd,zd]
⊤ is the expected geometric center of the quadrotor group and νi = [νx,i,νy,i,νz,i]

⊤

is the offset of the i-th quadrotor to ηd . For ease of further derivation, we define a new variable Λi as

Λi = biηd +(bi +di)νi +∑
N
j=1 ai j(η j−ν j). (7.21)

Correspondingly, one obtains

Λ̇i = biη̇d +(bi +di)ν̇i +∑
N
j=1 ai j(η̇ j− ν̇ j),

Λ̈i = biη̈d +(bi +di)ν̈i +∑
N
j=1 ai j(η̈ j− ν̈ j).

(7.22)

Substituting Eq. (7.18) into Eq. (7.22) and doing some manipulations yield

Λ̈i = biη̈d +(bi +di)ν̈i +∑
N
j=1 ai j(η̈ j− ν̈ j)

= biη̈d +(bi +di)ν̈i +∑
N
j=1 ai j

(
−

kt, j

m j
η̇ j +uη , j +∆η , j− ν̈ j

)
= Λi0 +∑

N
j=1 ai j∆η , j,

(7.23)

where Λi0 = biη̈d +(bi + di)ν̈i+ ∑
N
j=1ai j(−

kt, j
m j

η̇ j + uη , j− ν̈ j) is a known variable. Then, the error
dynamics of the translational loop can be given by

ëη ,i =−
(di +bi)kt

mi
η̇i +(bi +di)uη ,i−Λi0 +(bi +di)∆η ,i−∑

N
j=1 ai j∆η , j. (7.24)

123

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

7.2.3 Control Objective

Based on Assumptions 7.1- 7.3, the control objective of this chapter is formulated as follows:
Control Objective: Give a quadrotor formation with N quadrotors with graph G and a set of refer-

ence trajectories of the geometric center {ηd = [xd,yd,zd]
⊤,ψd} generated by the virtual leader node

and the offset of each quadrotor to ηd , say, νi = [νx,i,νy,i,ν
⊤
z,i], i = 1,2, ·s,N, design a type of adaptive

fully distributed PdT control protocol such that for i = 1,2, · · · ,N, we have

lim
t→Tη

||ηi(t)− (ηd(t)+νi(t))||= 0,

lim
t→TΘ

ψi(t)−ψd(t) = 0
(7.25)

with Tη and TΘ being the upper bound of the PdT of the translational and rotational subsystems,
respectively.

7.3 Main results
Theorem 7.1 For a continuous nonlinear system ẋ = f (x), x ∈ Rn and f (·) : Rn→ Rn is the system

dynamics. The system is PdT stable, and the settling time is bounded by T0 > 0 if there exists a

Lyapunov function such that inequality

V̇ ≤−κ0
(
2β1V +β2V α +β3V 2−α

)κ1 (7.26)

holds, where β2,β3 > 0, β 2
1 ≥ β2β3, 0 < α < 1, 1

2−α
< κ1 <

1
α

is defined by the ratio of two positive

odd numbers, and

κ0 =
1
T0

Γ

(
1−ακ1
2−2α

)
Γ

(
2κ1−ακ1−1

2−2α

)
β

κ1
2 (2−2α)Γ(κ1)

(
β2

β3

) 1−ακ1
2−2α

.

Proof 7.4 For Eq. (7.26), there is

dV
dt
≤−κ0

(
2β1V +β2V α +β3V 2−α

)κ1

∫ V f

V0

dV ≤−κ0

∫ T

0

(
2β1V +β2V α +β3V 2−α

)κ1 dt

T ≤− 1
κ0

∫ V f

V0

dV
(2β1V +β2V α +β3V 2−α)

κ1
,

(7.27)

where T is the settling time, V0 is the Lyapunov function for x0 = x(0), and V f is the Lyapunov function

for x f = x(T).

It is obvious to find out that V̇ < 0 for all V > 0 and V̇ = 0 if and only if V = 0, indicating that V

124

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

will decrease monotonically to 0. Therefore, substituting Vf = 0, we have

T ≤ 1
κ0

∫ V0

0

dV
(2β1V +β2V α +β3V 2−α)

κ1

=
1
κ0

∫ V0

0

dV[
β2V α

(
1+2β1

β2
V 1−α + β3

β2
V 2−2α

)]κ1

=
1
κ0

∫ V0

0

dV[
β2V α(1+

√
β3/β2V 1−α)2 +δβ

]κ1
,

(7.28)

where δβ =
(

2β1/β2−2
√

β3/β2

)
V 1−α . Using Young’s inequality, the fact β 2

1 ≥ β2β3, and doing

some manipulations yields

T ≤ 1
κ0

∫ V0

0

dV[
β2V α(1+

√
β3/β2V 1−α)2

]κ1

≤ 1
κ0β

κ1
2

∫ V0

0

dV
V ακ1 (1+β3/β2V 2−2α)

κ1

(7.29)

Defining ζ =V 2−2α yields dζ = (2−2α)V 1−2αdV and ζ0 = ζ (0) =V 2−2α

0 . Then, (7.29) becomes

T ≤ 1
κ0β

κ1
2

∫
ζ0

0

ζ
2α−1
2−2α dζ

(2−2α)ζ
ακ1

2−2α (1+ζ β3/β2)
κ1

=
1

κ0β
κ1
2 (2−2α)

∫
ζ0

0

dζ

(1+β3/β2ζ)κ1 ζ
ακ1−2α+1

2−2α

.

(7.30)

Defining ℵ = ζ β3/β2 yields dℵ = (β3/β2)dξ , ℵ0 = ℵ(0) = ζ0β3/β2 and

T ≤ (β2/β3)
1−ακ1
2−2α

κ0β
κ1
2 (2−2α)

∫
ℵ0

0

ℵ
2α−1−ακ1

2−2α dℵ

(1+ℵ)κ1
. (7.31)

Note that the facts 0 < α < 1 and all terms in the integration function are positive. By using Corol-

lary 7.1, substituting κ0 into Eq. (7.31), and doing some manipulations, we have

T ≤ (β2/β3)
1−ακ1
2−2α

κ0β
κ1
2 (2−2α)

∫
∞

0

ℵ
2α−1−ακ1

2−2α dℵ

(1+ℵ)κ1

=
T0Γ(κ1)

Γ(a1)Γ(a2)
B(a1,a2)

=
T0Γ(κ1)

Γ(a1)Γ(a2)

Γ(a1)Γ(a2)

Γ(κ1)
= T0,

(7.32)

125

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

where a1 =
1−ακ1
2−2α

, a2 =
2κ1−ακ1−1

2−2α
, and a1+a2 = κ1. Note that to make Eq. (7.32) holds, the following

inequalities should be satisfied

a1 > 0, a2 > 0, κ1 > 0,0 < α < 1, (7.33)

which means

0 <
1−ακ1

2−2α
< 1,

0 <
2κ1−ακ1−1

2−2α
< 1,

κ1 > 0, 0 < α < 1.

(7.34)

Solving Eq. (7.34) yields 1
2−α

< κ1 <
1
α

. This completes the proof.

Remark 7.2 Note that the ‘κ0’ appeared in Theorem 7.1 can be automatically calculated when the

predefined time T0, α , κ1, β2, and β3 are manually designed. Additionally, the Gamma function

that appeared in κ0 can be computed by some numerical computing toolkit, for example, the ‘Scipy’

package in Python, the ‘gammainc’ function in Matlab, the ‘tgamma’ function integrated into the

cmath calculation library in C++ et al. Therefore, although the formation of κ0 is complicated, it can

be automatically computed using Python, Matlab, or C++.

However, it is usually hard to make the estimation error exactly converge to zero when a PdT
disturbance observer based on Theorem 7.1 is utilized to estimate some time-variant disturbances.
Therefore, we further develop the following corollary.

Corollary 7.2 Based on Theorem 7.1, the system ẋ = f (x) is said to be practically PdT stable if there

exists a Lyapunov function V and ∆ > 0 such that equality

V̇ ≤−κ0
(
2β1V +β2V α +β3V 2−α

)κ1 +∆ (7.35)

holds, where β2,β3 > 0, β 2
1 ≥ β2β3, 0 < α < 1, 1

2−α
< κ1 <

1
α

is defined by the ratio of two positive

odd numbers, and

κ0 =
1
T0

Γ

(
1−ακ1
2−2α

)
Γ

(
2κ1−ακ1−1

2−2α

)
β

κ1
2 (2−2α)Γ(κ1)

(
β2

β3

) 1−ακ1
2−2α

.

The upper bound of the settling time T1 and the residual set Ω can be respectively denoted as

T1 = min
{

T0(1−δ)
1+ακ1−2κ1

2−2α ,T0(1−δ)
ακ1−1
2−2α

}
,

Ω = min

{[
∆

(κ0β2δ)κ1

] 1
ακ1

,

[
∆

(κ0β3δ)κ1

] 1
ακ1

}
,

(7.36)

126

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

where δ ∈ (0,1) is a positive scalar.

Proof 7.5 Eq. (7.35) can be regiven as

V̇ ≤−κ0
[
2β1V +β2(1−δ)V α +β3V 2−α +δβ2V α

]κ1 +∆ (7.37a)

V̇ ≤−κ0
[
2β1V +β2V α +β3(1−δ)V 2−α +δβ3V 2−α

]κ1 +∆. (7.37b)

Case (1): For Eq. (7.37a), assuming −κ0β2δV ακ1 +∆≤ 0 yields V ≥
[

∆

(κ0β2δ)κ1

] 1
ακ1 and

V̇ ≤−κ0
[
2β1V +β2(1−δ)V α +β3V 2−α

]κ1−κ0δV α +∆

≤−κ0
[
2β1V +β2(1−δ)V α +β3V 2−α

]κ1.
(7.38)

By replacing the ‘β2’ in Corollary 7.2 with ‘β2/(1−δ)’, we know that the system is practically PdT

stable, and the settling time is bounded by

T11 = T0(1−δ)
1+ακ1−2κ1

2−2α . (7.39)

Case (2): For Eq. (7.37b), similarly, assuming −κ0β3δV ακ1+ ∆≤ 0 yields V ≥
[

∆

(κ0β3δ)κ1

] 1
ακ1 and

V̇ ≤−κ0
[
2β1V +β2V α +β3(1−δ)V 2−α

]κ1−κ0δV α +∆

≤−κ0
[
2β1V +β2V α +β3(1−δ)V 2−α

]κ1.
(7.40)

By replacing the ‘β3’ in Corollary 7.2 with ‘β3/(1− δ)’, it indicates that the system is practically

PdT stable, and the settling time is bounded by

T12 = T0(1−δ)
ακ1−1
2−2α . (7.41)

Therefore T1 can be bounded by T1 = min(T11,T12), and the residual set can be given by

Ω = min

{[
∆

(κ0β2δ)κ1

] 1
ακ1

,

[
∆

(κ0β3δ)κ1

] 1
ακ1

}
.

This completes the proof.

Remark 7.3 It can be easily computed that both 1+ακ1−2κ1
2−2α

and ακ1−1
2−2α

are negative and 1−δ ∈ (0,1).
Therefore, it indicates that T1 = T11 when 0 < κ1 < 1 and T1 = T12 when κ1 > 1.

127

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

(a) β1 = β2 = β3 = κ1 = 1, α =
0.5, T0 = 5, V0 = 5.

(b) β1 = β2 = β3 = κ1 = 1, α =
0.5, T0 = 5.

(c) β1 = β2 = β3 = κ1 = 1, α =
0.5, V0 = 5.

(d) β2 = β3 = κ1 = 1, α = 0.5,
T0 = 5, V0 = 5.

(e) β1 = β2 = β3 = κ1 = 1, T0 =
5, V0 = 5.

(f) β1 = β2 = β3 = 1, α = 0.5,
T0 = 5, V0 = 5.

Figure 7.1: Comparative simulation of Theorem 7.1 with different conditions.

Remark 7.4 Compared to Lemma 7.7 (Theorem 1 in [181]), the PdT convergence system proposed

in this study 1) has a faster convergence speed and 2) has a more general formation. By selecting

κ1 = 1, the convergence time difference between the two methods can be defined as ∆T = T0−Tc =
T02(1−α)

√
β2β3

π

∫V0
0

1
2β1V+β2V α+β3V 2−α − 1

β2V α+β3V 2−α ≤ 0, which indicates that the convergence process

introduced in this chapter is faster than that of in [181]. Furthermore, κ1 is not strictly constrained

to be equal to 1 but is instead restricted within a reasonable range, thereby generalizing the form

presented in [181]. Meanwhile, 1 is a valid choice because 0 < α < 1. Designers can achieve

improved convergence characteristics by fine-tuning κ1 around 1.

Fig. 7.1 provides some guidance for tuning the system’s parameters. Fig. 7.1a indicates that the
V converges faster in our proposed method by adding a linear term into the differential equation. In
Fig. 7.1b, we can see that the system converges to the origin within the PdT T0 regardless of the
system’s initial state. Subsequently, as demonstrated in Figs 7.1c, 7.1d, and 7.1e, the system exhibits
faster convergence when T0 is smaller, β1 is larger, and α is larger. However, the adjustment pattern

128

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

of κ1 appears slightly different. It is evident that increasing κ1 will accelerate the convergence of
the system when κ > 1. Nevertheless, the convergence curves corresponding to different κ1 values
exhibit two intersection points when κ1 < 1, indicating that the system’s performance can be slightly
fine-tuned around κ1 = 1 to achieve better results.

Note that although Fig. 7.1 demonstrates methods to accelerate system convergence through com-
parative simulations, indiscriminately minimizing convergence time is not necessarily advisable in
practical applications. This is because the maximum acceleration achievable by a physical system is
ultimately constrained by its inherent physical limits. Excessively rapid convergence may risk dam-
aging the controller or inducing unnecessary overshoot. Therefore, in practical implementations, it
is crucial to adjust the system gains judiciously based on specific requirements. This aspect will be
further elaborated in Remark 7.7.

7.4 Controller design

7.4.1 Translational subsystem stability

Considering the homogeneity among quadrotors and the observer design does not rely on informa-
tion from other quadrotors, the subscript ‘i’ corresponding to individual quadrotors is omitted in the
observer design. Instead, for ease of derivation and clarity, we use the subscript j = x,y,z to represent
the components along the x, y, and z axes in the observer design process. By Eq. (7.18), we respec-
tively define zη as the estimation of η̇ , ∆̂η as the estimation of ∆η , and σ̂η as the estimation of ση .
Correspondingly, z̃η = η̇ − zη , ∆̃η = ∆η − ∆̂η , and σ̃η = ση − σ̂η are the corresponding estimation
errors. Then, a PdT observer can be designed as

żη =κη0

(
2aη1βη1

⌊
z̃η

⌉2− 1
κη1 +aη2βη2

⌊
z̃η

⌉2αη− 1
κη1 +aη3βη3

⌊
z̃η

⌉4−2αη− 1
κη1

)κη1

+ σ̂η sgn(z̃η)−
kt

mi
η̇ +uη ,

∆̂η =κη0

(
2aη1βη1

⌊
z̃η

⌉2− 1
κη1 +aη2βη2

⌊
z̃η

⌉2αη− 1
κη1 +aη3βη3

⌊
z̃η

⌉4−2αη− 1
κη1

)κη1
+ σ̂η ,

˙̂ση =−κη0

(
2bη1βη1σ̂

2− 1
κη1

η +bη2βη2σ̂
2− 1

κη1
η +bη3βη3σ̂

4−2αη− 1
κη1

η

)κη1
+ z̃η sgn(z̃η),

(7.42)

where positive parameters aη1 = 1
2 , bη1 = 1, aη2 = 2−αη , bη2 =

1−αη

2αη−1 , aη3 = 2αη−261−αη , bη3 =
4−2αη

3−2αη
2αη−261−αη , κη1 = 1, 0 < αη < 1, βη2,βη3 > 0, β 2

η1 ≥ βη2βη3, and

κη0 =
Γ

(
1−αη κη1

2−2αη

)
Γ

(
2κη1−αη κη1−1

2−2αη

)
Tη0β

κη1
η2 (2−2αη)Γ(κη1)

(
βη2

βη3

) 1−αη κη1
2−2αη

.

129

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

The following theorem can be concluded.

Theorem 7.2 For system (7.18), we design a PdTDO (7.42) to simultaneously estimate the external

disturbances and the upper bound of the disturbances. Then, the following conditions hold:

(1). The estimation error of ση can be bounded as ||σ̃η || ≤ Nη0,i in a PdT Tη1 =
T

η0√
1−δη

, where

δη ∈ (0,1) is a positive scalar,

Λη =κη0

[
σ

2
ηβη1 +

(1−αη)βη2

2α
η

σ
2
η +2αη−161−αη βη3σ

4−2αη

η +
1−αη

2αη

(
αη

1−αη

) αη

1−αη

]

Ωη =min
{(

Λη

βη2δη

) 1
αη
,
(

Λη

βη3δη

) 1
αη

}
,

and Nη0 = max{||x||2 : x ∈Ωη}.
(2). The estimation error of ∆η can be bounded as ||∆̃η ||2 ≤ Nη in a PdT Tη1, where

Nη =2
1
2
(
1+κη0βη1

)
N

1
2
η0 +2−

1
2 κη0βη2 +N

2αη−1
2

η0 +2−
1
2 61−α

κη0βη3N
3−2αη

2
η0 +ση

Proof 7.6 We define Vj1 =
1
2 z̃2

η j, Vj2 =
1
2 σ̃2

η j. take Lyapunov candidate function as V =∑ j=x,y,z (Vj1 +Vj2).

Differentiating V , substituting Eqs. (7.18) and (7.42) into V̇ and doing some manipulations yields

V̇ =∑
j

z̃η j

[
∆η j− σ̂η j sgn(z̃η j)−κη0

(
2aη1βη1

⌊
z̃η j
⌉2− 1

κη1

+aη2βη2
⌊
z̃η j
⌉2αη− 1

κη1 +aη3βη3
⌊
z̃η j
⌉4−2αη− 1

κη1

)κη1
]

− σ̃η j

[
z̃η j sgn(z̃η j)−κη0

(
2bη1βη1σ̂

2− 1
κη1

η j

+bη2βη2σ̂
2− 1

κη1
η j +bη3βη3σ̂

4−2αη− 1
κη1

η j

)κη1
]

≤∑
j

ϒη j +κη0

(
2bη1βη1ϒ

1
κη1
1 j +bη2βη2ϒ

1
κη1
2 j +bη3βη3ϒ

1
κη1
3 j

)κη1
,

(7.43)

where ϒη j =−κη0
(
2aη1βη1z̃2

η j+aη2βη2z̃2αη

η j +aη3βη3z̃4−2αη

η j
)κη1 , ϒ1 j = σ̃η j(ση−σ̃η j)

2κη1−1, ϒ2 j =

σ̃η j(ση − σ̃η j)
2κη1−1, and ϒ3 j = σ̃η j(ση − σ̃η j)

(4−2αη)κη1−1.

In order to use Lemma 7.3 and Lemma 7.4, the following inequalities have to be satisfied

2κη1−1≥ 1, (4−2αη)κη1−1≥ 1, 0 < αη < 1. (7.44)

130

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

Solving (7.44) yields κη1 ≥ 1. Using Lemma 7.3 and Lemma 7.4 in ϒ1 j and ϒ3 j yields

ϒ1 j ≤
2κη1−1

2κη1

(
σ

2κη1
η − σ̃

2κη1
η j

)
,

ϒ3 j ≤
(4−2αη)κη1−1
(4−2αη)κη1

[
σ
(4−2αη)κη1
η − σ̃

(4−2αη)κη1
η j

]
,

(7.45)

Using Eq. (7.45) in Eq. (7.43), we have

V̇ ≤∑
j

ϒη j +κη0

{
2bη1βη1

(
1− 1

κη1

) 1
κη1 ×

(
σ

2κη1
η − σ̃

2κη1
η j

) 1
κη1 +bη2βη2ϒ

1
κη1
2 j

+bη3βη3

[
1− 1

(4−2αη)κη1

] 1
κη1 ×

[
σ
(4−2αη)κη1
η − σ̃

(4−2αη)κη1
η j

] 1
κη1

}κη1

,

(7.46)

Remark 7.5 Note that to make the inequality (σ2n̄
η − σ̃2n̄

η j)
1

κη1 ≤ (σ2n̄
η)

1
κη1 − (σ̃2n̄

η j)
1

κη1 holds for all

σ2n̄
η , σ̃2n̄

η j ∈ R+ with n̄ = κη1,(2−αη)κη1 and j = x,y,z. With the help of Lemma 7.6, we know

conditions 1
κη1
≥ 1 and 1

κη1
≤ 1 must be satisfied simultaneously. Therefore, we only have κη1 = 1.

For Lemma 7.5, let

x1 = 1, x2 = σ̃
2
η j, ϖ1 =

(3−2αη)κη1−1
2κη1

, ϖ2 = 1−ϖ1,

ϑ =
[(2αη −1)κη1 +1
(3−2αη)κη1−1

] (2αη−1)κη1+1
(3−2αη)κη1−1

.

Substituting κη1 = 1 into Lemma 7.5 and doing some manipulations, we have ϖ1 = 1−αη , ϖ2 = αη ,

ϑ = (
αη

1−αη
)

αη

1−αη , ϒ2 j = σ̃η j(ση − σ̃η j) and

(σ̃2
η j)

αη ≤ (1−αη)σ̃
2
η j +(1−αη)

(αη

1−αη

) αη

1−αη . (7.47)

Using Young’s inequality on ϒ2 j and substituting Eq. (7.47) into it yield

ϒ2 j = σ̃η j(ση − σ̃η j)

≤ 1
2

σ
2
η −

1
2

σ̃
2
η j

≤ 1
2

σ
2
η −

1
2(1−αη)

(σ̃2
η j)

αη +
1
2
(αη

1−αη

) αη

1−αη .

(7.48)

For convenience of derivation, we define Λη j = κη0
[
bη1βη1σ2

η + bη2βη2
(1

2σ2
η + 1

2(
αη

1−αη
)

αη

1−αη

)
+

131

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

3−2αη

4−2αη
bη3βη3σ

4−2αη

η

]
, substitute κη1 = 1, Eq. (7.45) and Eq. (7.48) back to Eq. (7.43), and do some

manipulations on V̇ , and then there is

V̇ ≤−κη0 ∑
j

[
4aη1βη1Vj1 +2αη aη2βη2V αη

j1 +22−αη aη3βη3V 2−α

j1
]

−κη0 ∑
j

[
2bη1βη1Vj2 +

2αη−1

1−αη

bη2βη2V αη

j2 +
3−2αη

4−2αη

22−αη bη3βη3V 2−αη

j2
]
+Λη j.

(7.49)

Inspired by the left side of Lemma 7.1, we set

aη1 =
1
2
, aη2 = 2−αη , bη1 = 1, bη2 =

1−αη

2αη−1 . (7.50)

Substituting ai and bi, i = 1,2 back to Eq. (7.49) and using Lemma 7.1, V̇ can be further simplified as

V̇ ≤−κη0 (2β1V +β2V αη)−κη0 ∑
j

22−αη aη3βη3V 2−αη

j1

+
3−2αη

4−2αη

22−αη bη3βη3V 2−αη

j2 +Λη j.

(7.51)

Thereafter, to make Theorem 7.2 hold, inspired by Lemma 7.2, we set

aη3 = 2αη−261−αη , bη3 =
4−2αη

3−2αη

2αη−261−αη (7.52)

By substituting a3 and b3 back to V̇ , we have

V̇ ≤−κη0
(
2βη1V +βη2V αη +βη3V 2−αη

)κη1 + ||Λη ||1 (7.53)

with κη1 = 1, κη0 =
π
√

βη2/βη3
T0βη1(2−2αη)

, and Λη j = κη0[σ
2
ηβη1 +

(1−αη)βη2
2α

η
σ2

η +2αη−161−αη βη3σ
4−2αη

η +

1−αη

2αη (
αη

1−αη
)

αη

1−αη], satisfying the formation introduced in Corollary 7.2. Therefore, the estimation

error of η̇ and ση converge to a neighborhood of the origin Ωη in a PdT Tη1, where Ωη and Tη1 are

respectively defined by

Ωη = min
{(

Λη

βη2δη

) 1
αη
,
(

Λη

βη3δη

) 1
αη

}
,Tη1 =

Tη0√
1−δη

,

where δη ∈ (0,1) is a positive scalar. The boundary of Ωη0 can be given by Nη0 = max{||x||2 : x ∈
Ωη0}. Then, it clearly indicates that ||z̃η ||, ||σ̃η || ≤

√
2Nη0. Use observer (7.42), we have

∆̃η =−κη0(βη1
⌊
z̃η

⌉
+2−αη βη2

⌊
z̃η

⌉2αη−1
+2αη−261−αη βη3

⌊
z̃η

⌉3−2αη)+∆η − σ̂η . (7.54)

132

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

Then, there is

||∆̃η || ≤κη0(βη1||z̃η ||+2−αη βη2||z̃η ||2αη−1 +2αη−261−αη βη3||z̃η ||3−2αη)+ση +
√

2Nη0

≤2
1
2
(
1+κη0βη1

)
N

1
2
η0 +2−

1
2 κη0βη2 +N

2αη−1
2

η0 +2−
1
2 61−α

κη0βη3N
3−2αη

2
η0 +ση ≜ Nη ,

(7.55)

which obviously indicates that ∆̃η is bounded. This completes the proof.

Note that the topology of the quadrotor group is generally not a fully-connected graph. We have to
analyze the stability of all quadrotors in the group simultaneously rather than separately. Therefore,
we must distinguish different quadrotors using a subscript i, i = 1,2, · · · ,N in the controller design
process.

After designing the observer, a PdT fast nonsingular terminal sliding mode surface is defined as

sη ,i =ėη ,i +κη2

(
λs1
⌊
eη ,i
⌉2− 1

κη3 +
λs2

2
⌊
eη ,i
⌉2αsη− 1

κη3 +
λs3

2
⌊
eη ,i
⌉4−2αsη− 1

κη3

)κη3
, (7.56)

where λs2,λs3 > 0, λs1 ≥
√

λs2λs3, 0 < αsη < 1, 1
2−αsη

< κη3 <
1

αsη
, and

κη2 =
Γ

(
1−αsη κη3

2−2αsη

)
Γ

(
2κη3−αsη κη3−1

2−2αsη

)
Tη2λ

κη3
s2 (2−2αsη)Γ(κη3)

(
λs2

λs3

) 1−αsη κη3
2−2αsη

.

For clarity and simplicity, in further derivations, we define

Mη ,i =κη2

(
λs1
⌊
eη ,i
⌉2− 1

κη3 +
λs2

2
⌊
eη ,i
⌉2αsη− 1

κη3 +
λs3

2
⌊
eη ,i
⌉4−2αsη− 1

κη3

)κη3
. (7.57)

We have

Ṁη ,i =κη2κη3

(
λs1
⌊
eη ,i
⌉2− 1

κη3 +
λs2

2
⌊
eη ,i
⌉2αsη− 1

κη1 +
λs3

2
⌊
eη ,i
⌉4−2αsη− 1

κη3

)κη3−1

×
[

λs1(2κη3−1)
κη3

⌊
eη ,i
⌉ κη3−1

κη3 ėη ,i +
λs2(2αsηκη3−1)

2κη3

⌊
eη ,i
⌉ (2αsη−1)κη3−1

κη3 ėη ,i

+
λs3(4−2αsη)κη3−1

2κη3

⌊
eη ,i
⌉ (3−2αsη)κη3−1

κη3 ėη ,i

]
.

(7.58)

We assume no external disturbances are acting on the quadrotors. An equivalent control law needs to
be designed to pull sη ,i to the sliding mode surface, which can be given by

ueq,i =−
1

bi +di

[
−(bi +di)kt

mi
η̇i−Λi0 +Ṁη ,i

]
. (7.59)

Considering the effect of disturbances ∆η ,i, a switching control law is further required to maintain sη ,i

133

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

on the sliding mode surface, which can be put forth as

usw,i =−
1

bi +di

[
(bi +di)∆̂η ,i−

N

∑
j=1

ai j∆̂η , j + kd,i sgnsη ,i

+κη4

(
λu1
⌊
sη ,i
⌉2− 1

κη5 +
λu2

2
⌊
sη ,i
⌉2αuη− 1

κη3 +
λu3

2
⌊
sη ,i
⌉4−2αuη− 1

κη5

)κη5
]
,

(7.60)

where λu2,λu3 > 0, λu1 ≥
√

λu2λu3, 0 < αuη < 1, 1
2−αuη

< κη5 <
1

αuη
,

κη4 =
Γ

(
1−αuη κη5

2−2αuη

)
Γ

(
2κη5−αuη κη5−1

2−2αuη

)
Tη3λ

κη5
u2 (2−2αuη)Γ(κη5)

(
λu2

λu3

) 1−αuη κη5
2−2αuη

,

and kd,i ≥ (bi +di +N)Nη is a positive scalar with N being the number of the quadrotor.
Then, the complete control law can be designed as

uη ,i = ueq,i +usw,i. (7.61)

Then, the following theorem can be given to guarantee the PdT stability of the translational subsys-
tems of the quadrotor group.

Theorem 7.3 For the consensus error dynamics given as Eq. (7.24), we design a PdTDO (7.42) and

a PdT control law (7.61). Then, the translational subsystems of the quadrotor group are PdT stable,

and the settling time can be bounded by Tη = Tη1 +Tη2 +Tη3.

Proof 7.7 To begin with, we need to prove that sη ,i converge to the origin in a PdT Tη1. Define a

Lyapunov function candidate as

Vs =
N

∑
i=1

1
2

s⊤η ,isη ,i. (7.62)

Differentiating Vs along the system trajectory and substituting uη ,i into V̇s yield

V̇s =
N

∑
i=1

s⊤η ,i

[
− (di +bi)kt

mi
η̇i +(bi +di)uη ,i−Λi0 +(bi +di)∆η ,i−

N

∑
j=1

ai j∆η , j +Ṁη ,i

]
(7.63)

134

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

Substituting uη ,i into V̇s and doing some manipulations, we have

V̇s =
N

∑
i=1

s⊤η ,i

[
(bi +di)∆η ,i−

N

∑
j=1

ai j∆η , j +(bi +di)usw,i

]
=

N

∑
i=1

s⊤η ,i

[
(bi +di)∆η ,i−

N

∑
j=1

ai j∆η , j− (bi +di)∆̂η ,i +
N

∑
j=1

ai j∆̂η , j− kd,i sgn(sη ,i)

−κη4

(
λu1
⌊
sη ,i
⌉2− 1

κη5 +
λu2

2
⌊
sη ,i
⌉2αuη− 1

κη5 +
λu3

2
⌊
sη ,i
⌉4−2αuη− 1

κη5

)κη5
]

=−
N

∑
i=1

κη4

(
λu1||sη ,i||22 +

λu2

2
||sη ,i||

2αuη

2 +
λu3

2
||sη ,i||

4−2αuη

2

)κη5

+
N

∑
i=1

s⊤η ,i

[
(b1 +di)∆̃η ,i−

N

∑
j=1

ai j∆̃η , j− kd sgn(sη ,i)
]
.

(7.64)

Using the fact kd,i ≥ (bi +di +N)Nd and Lemma 7.1, there is

V̇s ≤−
N

∑
i=1

κη4

(
λu1||sη ,i||22 +

λu2

2
||sη ,i||

2αuη

2 +
λu3

2
||sη ,i||

4−2αuη

2

)κη5

≤−κη4

(
λu1

N

∑
i=1
||sη ,i||22 +

λu2

2

N

∑
i=1
||sη ,i||

2αuη

2 +
N

∑
i=1
||sη ,i||

4−2αuη

2

)κη5

=−κη4
(
2λu1Vs +λu2V αuη

s +λ32V 2−αuη

s
)κη5 .

(7.65)

We can see from Eq. (7.65) that Vs converges to the origin in a PdT Tη2

Secondly, we need to prove that eη ,i all converge to zero within a PdT Tη2 after sη ,i = 0. On the

sliding mode surface sη ,i = 0, there is

ėη ,i =−κη2

(
λs1
⌊
eη ,i
⌉2− 1

κη3 +
λs2

2
⌊
eη ,i
⌉2αsη− 1

κη3 +
λs3

2
⌊
eη ,i
⌉4−2αsη− 1

κη1

)κη3
(7.66)

Define a Lyapunov function candidate as Ve = ∑
n
i=1

1
2e⊤

η ,ieη ,i. Differentiating Ve, using Lemma 7.1,

and doing some manipulations yields

V̇e =−κη2

N

∑
i=1

(
λs1||eη ,i||22 +

λs2

2
||eη ,i||

2αsη

2 +
λs3

2
||eη ,i||

4−2αsη

2

)κη3

≤−κη2

(
2λη1

N

∑
i=1
||eη ,i||22 +λη2

N

∑
i=1
||eη ,i||

2αsη

2 +λη3

N

∑
i=1
||eη ,i||

4−2αsη

2

)κη3

=−κη2
(
2λη1Ve +ληV αsη

e +λη3V 2−αsη

e
)κη3 .

(7.67)

Using Theorem 7.1 indicates that the consensus tracking errors eη ,i converge the origin within a PdT

135

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

Tη3.

Therefore, the closed-loop system is PdT stable, and the settling time can be bounded as Tη =

Tη1 +Tη2 +Tη3. This completes the proof.

Remark 7.6 It is noteworthy that in Eq. 7.57, 7.58, and 7.60, the exponential-related terms may

become negative when αη , kη3, and kη5 are selected within certain ranges, thereby inducing singu-

lar phenomena. Inspired by the work proposed in [185], the singularity issues can be avoided by

introducing the following piecewise continuous function.

f (|x|α) =

{
|x|α if |x|> ε

sin(π

2ε
)|x||α| else,

(7.68)

where ε > 0 is a small positive scalar.

7.4.2 Rotational subsystem stability

Note that controlling the rotational subsystems does not require any information from other quadro-
tors. Namely, the rotational subsystem control is a single-agent control problem. Therefore, we omit
the subscript ‘i’ in the following controller and observer design process for clarity and convenience.

We define define zΘ as the estimation of ėΘ, ∆̂Θ as the estimation of ∆Θ, and σ̂Θ as the estimation
of σΘ. Correspondingly, z̃Θ = ėΘ− zΘ, ∆̃Θ = ∆Θ− ∆̂Θ, and σ̃Θ = σΘ = σ̂Θ are the estimation errors.

Similarly, using error dynamics (7.16), the PdT observer can be designed as

żΘ =κΘ0

(
2aΘ1βΘ1 ⌊z̃Θ⌉

2− 1
κΘ1 +aΘ2βΘ2 ⌊z̃Θ⌉

2αΘ− 1
κΘ1 +aΘ3βΘ3 ⌊z̃Θ⌉

4−2αΘ− 1
κΘ1

)κΘ1

+ σ̂Θ sgn(z̃Θ)+AΘ +BΘτ,

∆̂Θ =κΘ0

(
2aΘ1βΘ1 ⌊z̃Θ⌉

2− 1
κΘ1 +aΘ2βΘ2 ⌊z̃Θ⌉

2αΘ− 1
κΘ1 +aΘ3βΘ3 ⌊z̃Θ⌉

4−2αΘ− 1
κΘ1

)κΘ1
+ σ̂Θ,

˙̂σΘ =−κΘ0

(
2bΘ1βΘ1σ̂

2− 1
κΘ1

Θ
+bΘ2βΘ2σ̂

2− 1
κΘ1

Θ
+bΘ3βΘ3σ̂

4−2αΘ− 1
κΘ1

Θ

)κΘ1
+ z̃Θ sgn(z̃Θ),

(7.69)

where positive parameters aΘ1 = 1
2 , bΘ1 = 1, aΘ2 = 2−αΘ , bΘ2 = 1−αΘ

2αΘ−1 , aΘ3 = 2αΘ−261−αΘ , bΘ3 =
4−αΘ

3−αΘ
2αΘ−261−αΘ , κΘ1 = 1, 0 < αΘ < 1, βΘ2,βΘ3 > 0, β 2

Θ1 ≥ βΘ2βΘ3, and

κΘ0 =
Γ

(
1−αΘκΘ1

2−2αΘ

)
Γ

(
2κΘ1−αΘκΘ1−1

2−2αΘ

)
Tp0β

κΘ1
Θ2 (2−2αΘ)Γ(κΘ1)

(
βΘ2

βΘ3

) 1−αΘκΘ1
2−2αΘ

.

Then, the following Theorem can be put forth to guarantee the PdT stability of the rotational subsys-
tem observer.

136

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

Theorem 7.4 For error dynamics (7.16), we design an observer (7.69). The estimation error of ∆Θ

converges to a neighborhood of the origin ΩΘ in a PdT TΘ1 = TΘ0√
(1−δΘ)

with δΘ ∈ (0,1) being a

positive scalar.

Proof 7.8 The proof process is very similar to that of Theorem 7.2 and omitted here.

Then, by following a similar derivation process, a PdT sliding mode surface is defined as

sΘ =ėΘ +MΘ

MΘ =κΘ3

(
γs1 ⌊eΘ⌉

2− 1
κΘ3 +

γs2

2
⌊eΘ⌉

2αsΘ− 1
κΘ3

+
γs3

2
⌊eΘ⌉

4−2αsΘ− 1
κΘ3

)κΘ3
.

(7.70)

where γs2,γs3 > 0, γs1 ≥
√

γs2γs3, 0 < αsΘ < 1, 1
2−αsΘ

< κΘ3 <
1

αsΘ
, and

κΘ2 =
Γ

(
1−αsΘκΘ3

2−2αsΘ

)
Γ

(
2κΘ3−αsΘκΘ3−1

2−2αsΘ

)
TΘ1γ

κΘ3
s2 (2−2αsΘ)Γ(κΘ3)

(
γs2

γs3

) 1−αsΘκΘ3
2−2αsΘ

. We have

ṀΘ =κΘ2κΘ1

(
γs1 ⌊eΘ⌉

2− 1
κΘ3 +

γs2

2
⌊eΘ⌉

2αsΘ− 1
κΘ3 +

γs3

2
⌊eΘ⌉

4−2αsΘ− 1
κΘ3

)κΘ3−1

×
[

γs1(2κΘ3−1)
κΘ3

⌊eΘ⌉
κΘ3−1

κΘ3 ėΘ +
γs2(2αsΘκΘ3−1)

2κΘ3
⌊eΘ⌉

(2αsΘ−1)κΘ3−1
κΘ3 ėΘ

+
γs3(4−2αsΘ)κΘ3−1

2κΘ3
⌊eΘ⌉

(3−2αsΘ)κΘ3−1
κΘ3 ėΘ

]
,

(7.71)

Assuming no external disturbances are acting on the rotational loop. An equivalent control law can
be designed as

τeq =−B−1
Θ
(AΘ +ṀΘ). (7.72)

Furthermore, a switching control law is required to maintain sΘ on the sliding mode surface when
disturbances ∆Θ exist, which can be given by

τsw =−B−1
Θ

[
∆̂Θ + kΘ sgnsΘ +κΘ4

(
γu1 ⌊sΘ⌉

2− 1
κΘ5

+
γu2

2
⌊sΘ⌉

2αuΘ− 1
κΘ5 +

γu3

2
⌊sΘ⌉

4−2αuΘ− 1
κΘ5

)κΘ5
]
,

(7.73)

137

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

PdT FNTSMC controller (59)-(61)PdT FNTSMC controller (59)-(61)

,ied +

i

+
-

,
ˆ

i

PdT adaptive disturbance observer (42)PdT adaptive disturbance observer (42)

PdT adaptive disturbance observer (69)PdT adaptive disturbance observer (69)

PdT sliding mode (56)PdT sliding mode (56)

PdT sliding mode (70)PdT sliding mode (70)

,is

UAV1 UAV2 UAV3 UAV4

,iu

i

Nonlinear

mapping (19)

PdT FNTSMC controller (72)-(74)PdT FNTSMC controller (72)-(74)

i

i

,iu

,
ˆ

i

, ,,d i d i 

,d i

,d i

i

+ -

,ie

,is

i,f iu

Figure 7.2: Diagram of the entire control framework.

where γu2,γu3 > 0, γu1 ≥
√

γu2γu3, 0 < αuΘ < 1, 1
2−αuΘ

< κΘ5 <
1

αuΘ
,

κΘ4 =
Γ

(
1−αuΘκΘ5

2−2αuΘ

)
Γ

(
2κΘ5−αuΘκΘ5−1

2−2αuΘ

)
TΘ2γ

κΘ5
u2 (2−2αuΘ)Γ(κΘ5)

(
γu2

γu3

) 1−αuΘκΘ3
2−2αuΘ

, and kΘ ≥ NΘ is a positive scalar with NΘ = max{||x||2 : x ∈ΩΘ}.
Then, the complete control law can be designed as

τ = τeq + τsw. (7.74)

Thereafter, a theorem can be illustrated to guarantee the predefined time stability of the system.

Theorem 7.5 For error dynamics (7.16) disturbed by ∆Θ, we design an observer as (7.69) and a

controller as 7.74. Then, the error eΘ converges to the origin in a PdT, and the settling time can be

bounded as TΘ = TΘ1 +TΘ2 +TΘ3.

Proof 7.9 The proof process is similar to that of Theorem 7.3. Therefore, we omit it here.

Remark 7.7 Although the proposed control framework in this study ensures predefined-time stability

of the system, parameter tuning remains a critical issue that warrants attention. Taking the transla-

tional loop control as an example, in the sliding mode surface (7.56), the parameters αη , kη3, λs1,

138

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

λs2, λs3, and the predefined time Tη2 are responsible for adjusting the weighting of the terms related

to eη ,i in sη ,i. Evidently, a larger kη2 indicates that the sliding mode variable places greater emphasis

on eη ,i rather than ėη ,i. The three terms in (7.56) associated with eη ,i respectively correspond to the

‘V ’, ‘V α ’, and ‘V 2−α ’ in Theorem 7.1. The summation of these three components can be adjusted by

tuning the values of αη , λs1, λs2, and λs3. Furthermore, if the designer considers the three compo-

nents to be equally important, it is advisable to set λs2 = λs3 and λs1 =
√

λs2λs3. Additionally, The

tuning rule for kη3 follows the same principle as revealed in Fig. 7.1 and Remark 7.4. The tuning

methodology for the parameters in the switching control law (7.60) is fundamentally similar to that of

tuning sη ,i. It is important to note that kη4 is specifically designed to compensate for the observation

errors of the observer. Consequently, kη4 should be designed to be as small as possible within an

appropriate range to mitigate chattering in the controller.

7.5 Numerical validation
In this section, some comparative simulations are conducted to verify the superiority of the proposed
control method. The framework of the entire multi-quadrotor simulation program is illustrated in
Fig. 7.2. Specifically, as for the mathematical model described in Eq. (7.14), mi = 0.8kg, g= 9.8m/s2,
Ji = diag([4.212,4.212,8.255])×10−3kg ·m2, kr = kt = 10−3, and the sampling period is ∆t = 0.01s.
The external disturbances are designed as a combination of constant, sinusoidal, ramp, and sinusoidal
functions induced by other sinusoidal functions. The parameters of the controllers and translational
loop observers are recorded in Table 7.1 and Table 7.2.

Table 7.1: Parameters of the controllers in the translational loop in simulation.

Param. Value Param. Value Param. Value Param. Value Param. Value
λs1 5 αsη 11/13 λu1 7 αuη 11/13 kd 4
λs2 1 κη3 11/9 λu2 1 Tη3 10
λs3 1 Tη2 5 λu3 1 κη5 9/11

Table 7.2: Parameters of the observers in the translational loop in simulation.

Param. Value Param. Value Param. Value Param. Value Param. Value
βη1 2 βη2 1 βη3 1 αη 0.5 κη1 1
Tη0 1

7.5.1 Simulation group 1

Four quadrotors are adopted to establish the quadrotor formation. The reference trajectory of the
geometric center follows a counterclockwise circular path with a radius of 5m and a period of 10s.

139

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

Each quadrotor’s offset from the geometric center is a counterclockwise circular path with a radius
of 2m and a period of 5s, characterized by distinct initial phase angles. Additionally, the reference
trajectory in the z-direction is a sinusoidal signal with an amplitude of 2m and a period of 10s. The
geometric center can be mathematically described by

ηd =
[
5sin

2πt
5

,5cos
2πt
5

,2sin
2πt
5

+6
]⊤ (7.75)

and the offsets are defined as

ν1 =
[
2cos πt

5 ,2sin πt
5 ,0
]⊤

, ν2 =
[
−2sin πt

5 ,2cos πt
5 ,0
]⊤

,

ν3 =
[
−2cos πt

5 ,−2sin πt
5 ,0
]⊤

, ν4 =
[
2sin πt

5 ,−2cos πt
5 ,0
]⊤

.
(7.76)

The adjacent matrix A , in-degree matrix D , communication matrix B, and Laplacian matrix
L are respectively defined as A = [0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,0], D = diag([0,1,1,1]), B =

diag([1,0,0,0]), and L = D−A . Correspondingly, the topological graph is shown in Fig. 7.3.

0 1 2 3 4

Figure 7.3: Topological graph of simulation group 1.

The simulation results are respectively illustrated in Figs. 7.4- 7.7. Specifically, Fig. 7.4 records
the 2-norm of the consensus tracking error, say, ||eη ,i|| under different control frameworks. Fig. 7.5
is a 3D demonstration of the quadrotor formation, and Fig. 7.6 records the output of the proposed
PdTDOs. Finally, we also give a comparative simulation with different ‘predefined convergence
times’ under our proposed PdT-FNTSMC-PdTDO control framework.

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

||
||

e 
||

||
e 

NTSMC NTSMC-OBS[38]

FTPD[37] RFTNSMC RFTNSMC-OBS[29]

PdT-FNTSMC-OBSNTSMC NTSMC-OBS[38]

FTPD[37] RFTNSMC RFTNSMC-OBS[29]

PdT-FNTSMC-OBS

Figure 7.4: 2-norm of the consensus tracking error ||eη ,i|| in simulation group 1.

140

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

z(
m

)

Figure 7.5: A 3D demonstration of the quadrotor
group in simulation group 1.

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

,x , y ,z ,
ˆ

x ,
ˆ

y ,
ˆ

z

Figure 7.6: Output of the observers in simulation
group 1.

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

||
||

e 
||

||
e 

2 315, 15T T = =2 315, 15T T = =
2 35, 10T T = =2 35, 10T T = =2 315, 25T T = =2 315, 25T T = =

2 315, 35T T = =2 315, 35T T = =

Figure 7.7: Comparative simulations under different ‘predefined convergence times’ in simulation
group 1.

Fig 7.4 demonstrates that the introduction of observers, as shown in [160] and [186] reduces the
final tracking error of the system. However, the tracking error remains significantly more significant
than the proposed algorithm. Similarly, the fixed-time PD control method employed in [170] achieves
system stabilization but still exhibits considerable control errors. Therefore, this set of comparative
experiments highlights the superiority of the proposed PDT-FNTSMC-OBS control framework over
other methods. Fig. 7.6 presents the output results of the proposed PdT-stable observer. As shown in
the figure, the proposed observer can track rapidly varying external disturbances within the predefined
time. Fig. 7.7 demonstrates the two norms of the tracking error of the quadrotors under different

141

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

‘predefined convergence times’. The results shown in Fig. 7.7 are consistent with those discussed
earlier in Fig. 7.1. The blue curve exhibits the fastest response due to its shortest predefined time. In
contrast, the pink curve has the slowest convergence because its predefined time is the longest.

7.5.2 Simulation group 2

We further test our algorithm with a more complicated topological graph and aggressive reference
trajectories. Specifically, A , D , B, and L are respectively defined as A = [0,1,1,0;1,0,0,0;
1,0,0,1;0,0,1,0], D = diag([0,1,1,1]), B = diag([1,0,0,0]), and L = D −A . The topological
graph is shown in Fig. 7.8. The reference trajectories are designed as counterclockwise ‘∞-shape’

0

1 23

4

Figure 7.8: Topological graph of simulation group 2.

curves, which are

ηd =
[
5cos

πt
5
+2,5sin

2πt
5

+3,sin
2πt
5

+6
]⊤ (7.77)

and the offsets are selected to be

ν1 = [2,0,0]⊤, ν2 = [0,2,0]⊤,
ν3 = [−2,0,0]⊤, ν4 = [0,−2,0]⊤.

(7.78)

Similarly, the 2-norm of the consensus tracking error, the 3D demonstration, the output of the
proposed observer, and the comparative simulation under different ‘predefined convergence times’
are respectively recorded in Figs. 7.9, 7.10, 7.11, and 7.12.

The patterns and characteristics presented in the second set of simulations are similar to those
of the first set. Firstly, Fig. 7.9 demonstrates the superiority of the proposed method compared to
other approaches. Similarly, as shown in Fig. 7.11, the proposed observer can rapidly track external
disturbances. However, the phenomenon revealed in Fig. 7.12 slightly differs from that observed in
Fig.7.7. This is because the reference trajectory for the quadrotor formation in simulations group 2
is an ∞-shaped curve with sharper ends compared to a circular trajectory. The tracking error at the
sharp ends of the reference trajectory cannot be eliminated due to the inherent characteristics of the
quadrotors. Still, the superiority of the proposed PdT-FNTSMC-OBS method is evident from the
comparison curves illustrated in Fig. 7.12.

142

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

||
||

e 
||

||
e 

NTSMC NTSMC-OBS[38]

FTPD[37] RFTNSMC RFTNSMC-OBS[29]

PdT-FNTSMC-OBSNTSMC NTSMC-OBS[38]

FTPD[37] RFTNSMC RFTNSMC-OBS[29]

PdT-FNTSMC-OBS

Figure 7.9: 2-norm of the consensus tracking error ||eη ,i|| in simulation group 2.

z(
m

)

Figure 7.10: A 3D demonstration of the quadro-
tor group in simulation group 2.

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

,x , y ,z ,
ˆ

x ,
ˆ

y ,
ˆ

z

Figure 7.11: Output of the observers in simula-
tion group 2.

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

||
||

e 
||

||
e 

2 315, 15T T = =2 315, 15T T = =
2 35, 10T T = =2 35, 10T T = =2 315, 25T T = =2 315, 25T T = =

2 315, 35T T = =2 315, 35T T = =

Figure 7.12: Comparative simulations under different ‘predefined convergence times’ in simulation
group 2.

143

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

7.6 Real-world experiment
This section presents comparative real-world experiments to highlight the practicality of the proposed
control framework. The mass of the quadrotors is m = 0.85kg, and the wheel-based is 280mm. Two
comparative experiments with four quadrotors with topological graphs identical to those in simula-
tions are conducted. Two high-speed rotating fans and weights suspended by elastic ropes are put
into the environment as external disturbances. The complete hardware configuration of the quadrotor
formation is shown in Fig. 7.13.

battery

motor1

motor2 motor4

motor3

ESC

FCU

on-board computer

remote controller

markers

extra payloads

propeller

receiver

vicon cameras

UAV1

UAV2

UAV3

UAV4

Figure 7.13: Hardware configuration of the experiments.

In Fig. 7.13, Holybro Kakute H7 V1.3 is utilized to be the quadrotors’ flight control unit (FCU) that
inherits the open-source PX4-Autopilot firmware. The onboard computer, connected to the FCU via
a USB to TTL module, is the LattePanda Alpha 864s with Ubuntu 20.04 and ROS Noetic operating
system. The data transformation between the FCU and the onboard computer follows the MAVLink
communication protocol. The quadrotors are all localized by a VICON indoor positioning system
equipped with 14 high-resolution optical cameras, which provide sub-millimeter accuracy with a
frequency exceeding 200Hz. The velocity feedback of the quadrotors is obtained by fusing data
from the motion capture system and the IMU in the FCU using the Kalman filter. In addition, the
ground station computer is solely responsible for monitoring the flight status of the quadrotors. It
does not send any control commands, as the proposed control framework is fully decentralized and
distributed. This means all control commands are autonomously computed and generated by the
onboard computers of the quadrotors.

The mass of each quadrotor is 0.85kg; the translational drag coefficient is kt = 0.001. The hyper-
parameters of the controllers and observers of the quadrotors in the physical experiments are illus-
trated in Tables 7.3 and 7.4. For convenience and ease of comparison, the topological graph defined
in Chapters 7.6.1 and 7.6.2 are respectively designed to be identical to the ones used in Chapters 7.5.1
and 7.5.2.

144

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

Table 7.3: Parameters of the controllers in the translational loop in physical experiments.

Param. Value Param. Value Param. Value Param. Value Param. Value
λs1 5 αsη 3/5 λu1 3 αuη 3/5 kd 1.5
λs2 3 κη3 9/11 λu2 3 Tη3 10
λs3 3 Tη2 10 λu3 3 κη5 9/11

Table 7.4: Parameters of the observers in the translational loop in physical experiments.

Param. Value Param. Value Param. Value Param. Value Param. Value
βη1 2

√
2 βη2 2 βη3 2 αη 3/5 κη1 1

Tη0 1

7.6.1 Experiment group 1

Limited by the available space we can use to validate the physical experiments. The geometric center
of the quadrotor formation remains unchanged. The trajectories of the offsets of the four quadrotors to
the geometric center are circles with equal radii but different phases at different altitudes. Specifically,
the location of the geometric center is defined as

ηd = [0,0.2,1.5]⊤. (7.79)

The offsets of the four quadrotors to ηd is defined as

ν1 =
[
1.2cos

πt
5
,1.2sin

πt
5
,0.2sin

πt
5
+0.5

]⊤
,

ν2 =
[
−1.2sin

πt
5
,1.2cos

πt
5
,0.2sin

πt
5
−0.5

]⊤
,

ν3 =
[
−1.2cos

πt
5
,−1.2sin

πt
5
,0.2sin

πt
5
+0.5

]⊤
,

ν4 =
[
1.2sin

πt
5
,−1.2cos

πt
5
,0.2sin

πt
5
−0.5

]⊤
.

(7.80)

Similarly, the 2-norm of the consensus tracking errors, 3D demonstration of the quadrotor for-
mation, the output of the observers, and the comparative performance under different ‘predefined
convergence times’ are respectively illustrated in Figs. 7.14- 7.17.

Fig. 7.14 clearly illustrates the differences in formation control performance among various quadro-
tor control methods. Undoubtedly, the proposed PdT-FNTSMC-OBS control framework demon-
strates the best robustness under strong disturbances during quadrotor formation control, and the
PID controller exhibits the poorest dynamic tracking performance. Fig. 7.15 records the response
curves of four quadrotors, where it can be observed that the quadrotors successfully track the prede-
fined reference trajectories. Fig. 7.16 shows the output of the observer, indicating that the proposed

145

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

observer can rapidly and accurately estimate external disturbances. However, it should be noted that
slight oscillations are present in the z direction. This is attributed to using an elastic cord to suspend
weights in experiment group 1. Finally, Fig. 7.17 compares the formation responses under different
PdTs and confirms the conclusions drawn from the theoretical analysis: longer preset times result in
slower responses. In extreme cases, when the PdTs are excessively long, the 30-second experimental
duration is insufficient for the tracking error to converge to zero.

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

||
||

e 
||

||
e 

NTSMC-OBS[38]

FTPD[37]

PX4-PID

RFTNSMC-OBS[29]

PdT-FNTSMC-OBS NTSMC-OBS[38]

FTPD[37]

PX4-PID

RFTNSMC-OBS[29]

PdT-FNTSMC-OBS

Figure 7.14: 2-norm of the consensus tracking error ||eη ,i|| in experiment group 1.

Figure 7.15: A 3D demonstration of the quadrotor
group in experiment group 1.

UAV1 UAV2

UAV3 UAV4

x
x

x
x

y y

y
z

y
z

z z

Time (s) Time (s)

Figure 7.16: Output of the observers in experi-
ment group 1.

146

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

||
||

e 
||

||
e 

2 310, 10T T = =2 310, 20T T = =
2 3 020, 2T T = =2 320, 30TT = = 2 310, 10T T = =2 310, 20T T = =
2 3 020, 2T T = =2 320, 30TT = =

Figure 7.17: Comparative experiment under different ‘predefined convergence times’ in experiment
group 1.

7.6.2 Experiment group 2

Thereafter, we further test the performance of our proposed control framework with a more com-
plicated reference trajectory. The geometric center of the quadrotor formation is designed to be an
∞-shaped trajectory, and the offsets of the quadrotors to the geometric center are defined to be differ-
ent constants. Specifically.

ηd = [cos(0.2πt),0.5sin(0.4πt)+0.2,1.5]⊤ (7.81)

and

ν1 = [0.5,0,0.5]⊤, ν2 = [0,0.8,−0.5]⊤,
ν3 = [−0.5,0.,0.5]⊤, ν4 = [0.,−0.8,−0.5]⊤.

(7.82)

Correspondingly, Fig. 7.18 records the 2-norm of the consensus tracking error, Fig. 7.19 illustrates
a 3D demonstration, Fig. 7.20 shows the output of the observer, and Fig. 7.21 presents the comparative
performance among different ‘predefined convergence times’.

The patterns revealed in the experiment group 2 are similar to those in the 1. However, it is observed
that the tracking errors in the experiment group 2 are slightly larger than in the first. This is because
the reference trajectories in the second set impose higher demands on the dynamic characteristics of
the quadrotors. For practical applications, this requires a more extended adjustment period. The 3D
visualization in Fig. 7.19 illustrates four quadrotors drawing identical ∞-shapes at different locations,

147

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

demonstrating that the proposed controller can effectively track highly dynamic reference trajectories
even under strong disturbances.

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

||
||

e 
||

||
e 

NTSMC-OBS[38]

FTPD[37]

PX4-PID

RFTNSMC-OBS[29]

PdT-FNTSMC-OBS NTSMC-OBS[38]

FTPD[37]

PX4-PID

RFTNSMC-OBS[29]

PdT-FNTSMC-OBS

Figure 7.18: 2-norm of the consensus tracking error ||eη ,i|| in experiment group 2.

Figure 7.19: A 3D demonstration of the quadrotor
group in experiment group 2.

UAV1 UAV2

UAV3 UAV4

x
x

x
x

y y

y
z

y
z

z z

Time (s) Time (s)

Figure 7.20: Output of the observers in experi-
ment group 2.

Further, to demonstrate the effectiveness and superiority of our proposed control framework, we
conduct numerical analyses of the L1- and L2-norm of the consensus tracking errors for the two
groups’ experiments, and the results are recorded in Fig. 7.22, in where we can clearer find out that
the proposed PdT-FNTSMC-OBS control framework (the orange bars in Fig. 7.22) outperforms the
other four comparative control methods.

148

Chapter 7. Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding
Mode Control for Multi-Quadrotor Subject to External Disturbances

UAV1 UAV2

UAV3 UAV4

Time (s) Time (s)

||
||

e 
||

||
e 

2 310, 10T T = =2 310, 20T T = =
2 3 020, 2T T = =2 320, 30TT = = 2 310, 10T T = =2 310, 20T T = =
2 3 020, 2T T = =2 320, 30TT = =

Figure 7.21: Comparative experiment under different ‘predefined convergence times’ in experiment
group 2.

NTSMC-OBS[38] FTPD[37] PX4-PIDRFTNSMC-OBS[29] PdT-FNTSMC-OBSNTSMC-OBS[38] FTPD[37] PX4-PIDRFTNSMC-OBS[29] PdT-FNTSMC-OBS

Figure 7.22: L1- and L2-norms of eη of the two groups’ experiments under different control frame-
works.

7.7 Conclusions
This chapter proposes a modified PdT convergence criterion for multi-quadrotor consensus tracking
control problems. Initially, the modified PdT converging law is proposed to simultaneously guar-
antee the predefined-time convergence of the system and accelerate the convergence process. PdT
observers and distributed PdT consensus tracking protocol are presented to control the quadrotor for-
mation system. The proposed disturbance observers can accurately estimate the external disturbance
in a PdT, and the entire system is proved to be PdT stable. Finally, extensive simulations and phys-
ical experiments are conducted to validate the effectiveness and robustness of the proposed control
framework. Our future work will focus on using deep reinforcement learning to adaptively tune the
hyperparameters in the proposed control method, aiming to reduce the tuning time and achieve better
performance.

149

Chapter 8

Conclusions and Future Work

In this thesis, we introduced several novel algorithms for robotics path planning and control to
address existing challenges in autonomous robotic control. The proposed methods have been thor-
oughly verified to outperform several state-of-the-art techniques through extensive simulations and
real-world experiments.

This research begins with the development of two self-established simulation platforms. The first
is a PPSP, which offers more advanced features than many existing platforms. Specifically, we incor-
porated multi-edge polygons and ellipses into the platform and developed a comprehensive geometric
operation function library, whereas many traditional platforms only include circular and rectangular
obstacles. For the DRLSP, we integrated over ten state-of-the-art DRL algorithms, such as TD3, PPO,
SAC, among others, as well as more than ten control plants, including UAVs, UGVs, CartPole, and
second-order integration systems. Additionally, the RL algorithm and environment components are
fully decoupled, significantly simplifying the algorithm design process. The simulations presented
from Chapter 4 to Chapter 6 were all conducted using these two simulation platforms.

Chapter 4 introduces a comprehensive robotics trajectory planning framework, including a global
path planner and a local obstacle avoidance motion planner. The global planner addresses the inef-
ficiency of the traditional RRT algorithm, particularly when navigating complex maps. To enhance
its performance, we utilize the geometric properties of the obstacles. The obstacles are grouped into
convex hulls, and the RRT sampling region is confined to a series of convex rings and the connec-
tors between them. For local planning, we employ the network decoupling technique in conjunction
with the traditional TD3 algorithm, which improves both the training process and the success rate of
obstacle avoidance. The proposed framework is validated through extensive simulations and phys-
ical experiments using a two-wheel differential ground vehicle, demonstrating its effectiveness in
real-world applications.

In Chapter 5, we focus on controlling a QUAV, addressing the critical trajectory tracking prob-
lem essential in robotics control and autonomous systems. This chapter leverages the strengths of

150

Chapter 8. Conclusions and Future Work

traditional control methods and AI-based approaches. While conventional control theory provides
rigorous mathematical guarantees for system stability, learning-based methods have the potential to
enhance overall performance. Thus, combining these two approaches is an optimal strategy. Specif-
ically, we employ RFNTSMC as the core controller to stabilize the closed-loop system. A FTDO
is then introduced to estimate the equivalent disturbances acting on the drone. Additionally, DRL is
utilized to dynamically tune the hyper-parameters of the FNTSMC in real-time. The stability of the
closed-loop system is further analyzed using the ADP framework. This chapter concludes with exten-
sive demonstrations of numerical simulations and physical experiments, showcasing the effectiveness
of the proposed control framework.

In Chapter 6, we build upon the results from Chapter 5 by extending the control framework to a
multi-drone system. Specifically, we design a fully distributed control protocol to stabilize a group
of drones. Distributed FNTSMCs and FTDOs are employed to achieve this stabilization, with the
system’s stability rigorously guaranteed in a Lyapunov sense using fundamental graph theory prin-
ciples. Additionally, the PPO algorithm is implemented to optimize the gains in the FNTSMCs,
further enhancing system performance. To validate the effectiveness of the proposed control frame-
work, we conduct simulations with a six-drone QUAV group and perform physical experiments with
a four-drone QUAV group. These results demonstrate the robustness and adaptability of the control
methodology.

Furthermore, in Chapter 7, we propose an enhanced predefined-time stable control framework for
multi-quadrotor formations. This improved predefined-time control framework offers a more gen-
eralized form than existing predefined-time or fixed-time convergence criteria, providing designers
greater flexibility in tuning controller performance. First, we design a predefined-time stable observer
based on the improved predefined-time convergence criterion. This observer can simultaneously es-
timate disturbances and their upper bounds while ensuring that the estimation errors converge to a
neighborhood within the predefined time. Subsequently, we develop a distributed predefined-time
control framework, which guarantees that the consensus tracking errors of the entire quadrotor for-
mation converge to zero within the predefined time.

Based on the research finished in this thesis, we further summarize some future work and problems
that need to be addressed.

1) DRL is a powerful tool for parameter optimization, but the training process can be time-
consuming. In our study, obtaining a satisfactory parameter optimizer took over fifteen minutes.
Therefore, future research will focus on improving training efficiency and exploring the possi-
bility of using a real-time reinforcement learning optimizer.

2) The topological graph used in the multi-agent control is time-invariant. However, in real-world
applications, switching topologies are more common. Developing distributed control protocols
that can handle switching graphs and communication delays is crucial for practical implemen-

151

Chapter 8. Conclusions and Future Work

tations.
3) To simplify the training process, we trained the DRL-based parameter optimizer in a single-

agent environment since all drones were homogeneous. However, this approach overlooks
the influence of the topological graph itself. In future studies, we plan to use multi-agent DRL
methods, such as Multi-agent DDPG (MA-DDPG) or Multi-agent PPO (MA-PPO), to distribute
and separately train different parameter optimizers for each drone in the group.

4) In the predefined-observer presented in Chapter 7, to satisfy certain inequalities arising from
the theoretical derivation, we conclude that the ‘κ1’ in Theorem 7.1 must be set to 1. However,
this condition is not necessary and sufficient. Therefore, in future work, we aim to explore the
possibility of relaxing this constraint while still achieving the same theoretical conclusions.

152

Bibliography

[1] M. M. ElFaham, A. M. Mostafa, and G. Nasr, “Unmanned aerial vehicle (uav) manufacturing
materials: Synthesis, spectroscopic characterization and dynamic mechanical analysis (dma),”
Journal of Molecular Structure, vol. 1201, p. 127211, 2020.

[2] P. K. Singh and A. Sharma, “An intelligent wsn-uav-based iot framework for precision agricul-
ture application,” Computers and Electrical Engineering, vol. 100, p. 107912, 2022.

[3] M. S. Alam and J. Oluoch, “A survey of safe landing zone detection techniques for autonomous
unmanned aerial vehicles (uavs),” Expert Systems with Applications, vol. 179, p. 115091, 2021.

[4] B. Fan, Y. Li, R. Zhang, and Q. Fu, “Review on the technological development and application
of uav systems,” Chinese Journal of Electronics, vol. 29, no. 2, pp. 199–207, 2020.

[5] S. Islam, S. Badsha, I. Khalil, M. Atiquzzaman, and C. Konstantinou, “A triggerless back-
door attack and defense mechanism for intelligent task offloading in multi-uav systems,” IEEE

Internet of Things Journal, vol. 10, no. 7, pp. 5719–5732, 2022.

[6] J. Lindsay, J. Ross, M. L. Seto, E. Gregson, A. Moore, J. Patel, and R. Bauer, “Collaboration
of heterogeneous marine robots toward multidomain sensing and situational awareness on par-
tially submerged targets,” IEEE Journal of Oceanic Engineering, vol. 47, no. 4, pp. 880–894,
2022.

[7] D. Omeiza, H. Webb, M. Jirotka, and L. Kunze, “Explanations in autonomous driving: A
survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 10 142–
10 162, 2021.

[8] S. Sonkar, P. Kumar, D. Philip, and A. Ghosh, “Low-cost smart surveillance and reconnais-
sance using vtol fixed wing uav,” in 2020 IEEE Aerospace conference. IEEE, 2020, pp. 1–7.

[9] C. Yan, C. Wang, X. Xiang, Z. Lan, and Y. Jiang, “Deep reinforcement learning of collision-
free flocking policies for multiple fixed-wing uavs using local situation maps,” IEEE Transac-

tions on Industrial Informatics, vol. 18, no. 2, pp. 1260–1270, 2021.

153

Bibliography

[10] W. Xue, J. Qi, G. Shao, Z. Xiao, Y. Zhang, and P. Zhong, “Low-rank approximation and
multiple sparse constraint modeling for infrared low-flying fixed-wing uav detection,” IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp.
4150–4166, 2021.

[11] H. Kim, K. K. F. So, and J. Wirtz, “Service robots: Applying social exchange theory to better
understand human–robot interactions,” Tourism Management, vol. 92, p. 104537, 2022.

[12] B. Rahmadya, R. Sun, S. Takeda, K. Kagoshima, and M. Umehira, “A framework to deter-
mine secure distances for either drones or robots based inventory management systems,” IEEE

Access, vol. 8, pp. 170 153–170 161, 2020.

[13] H. M. Balanji, A. E. Turgut, and L. T. Tunc, “A novel vision-based calibration framework for
industrial robotic manipulators,” Robotics and Computer-Integrated Manufacturing, vol. 73, p.
102248, 2022.

[14] A. Pal, V. Restrepo, D. Goswami, and R. V. Martinez, “Exploiting mechanical instabilities
in soft robotics: Control, sensing, and actuation,” Advanced Materials, vol. 33, no. 19, p.
2006939, 2021.

[15] A. E. Hramov, V. A. Maksimenko, and A. N. Pisarchik, “Physical principles of brain–computer
interfaces and their applications for rehabilitation, robotics and control of human brain states,”
Physics Reports, vol. 918, pp. 1–133, 2021.

[16] A. T. Taylor, T. A. Berrueta, and T. D. Murphey, “Active learning in robotics: A review of
control principles,” Mechatronics, vol. 77, p. 102576, 2021.

[17] E. Baccour, A. Erbad, A. Mohamed, M. Hamdi, and M. Guizani, “Multi-agent reinforcement
learning for privacy-aware distributed cnn in heterogeneous iot surveillance systems,” Journal

of Network and Computer Applications, vol. 230, p. 103933, 2024.

[18] N. Gómez, N. Peña, S. Rincón, S. Amaya, and J. Calderon, “Leader-follower behavior in multi-
agent systems for search and rescue based on pso approach,” in SoutheastCon 2022. IEEE,
2022, pp. 413–420.

[19] C. Zhai, Z. Wang, and J. Dou, “Multi-agent coverage control for enhanced geohazard monitor-
ing: a brief review,” Control Theory and Technology, vol. 19, no. 3, pp. 418–420, 2021.

[20] F. Ho, R. Geraldes, A. Gonçalves, B. Rigault, B. Sportich, D. Kubo, M. Cavazza, and
H. Prendinger, “Decentralized multi-agent path finding for uav traffic management,” IEEE

Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 997–1008, 2020.

154

Bibliography

[21] A. Amirkhani and A. H. Barshooi, “Consensus in multi-agent systems: a review,” Artificial

Intelligence Review, vol. 55, no. 5, pp. 3897–3935, 2022.

[22] Y. Liu, J. Liu, Z. He, Z. Li, Q. Zhang, and Z. Ding, “A survey of multi-agent systems on
distributed formation control,” Unmanned Systems, vol. 12, no. 05, pp. 913–926, 2024.

[23] G. M. Atınç, D. M. Stipanović, and P. G. Voulgaris, “A swarm-based approach to dynamic
coverage control of multi-agent systems,” Automatica, vol. 112, p. 108637, 2020.

[24] R. N. Haksar, S. Trimpe, and M. Schwager, “Spatial scheduling of informative meetings for
multi-agent persistent coverage,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3027–3034, 2020.

[25] H. Li and Q. Wei, “Data-driven optimal output cluster synchronization control of hetero-
geneous multi-agent systems,” IEEE Transactions on Automation Science and Engineering,
vol. 21, no. 3, pp. 3910 – 3920, 2023.

[26] M. Hasanzadeh, M. Baradarannia, and F. Hashemzadeh, “Distributed fixed-time rotating en-
circlement control of linear multi-agent systems with moving targets,” Journal of the Franklin

Institute, p. 106970, 2024.

[27] S. Wang, M. Chen, X. Liu, C. Yin, S. Cui, and H. V. Poor, “A machine learning approach
for task and resource allocation in mobile-edge computing-based networks,” IEEE Internet of

Things Journal, vol. 8, no. 3, pp. 1358–1372, 2020.

[28] L. C. Garaffa, M. Basso, A. A. Konzen, and E. P. de Freitas, “Reinforcement learning for
mobile robotics exploration: A survey,” IEEE Transactions on Neural Networks and Learning

Systems, vol. 34, no. 8, pp. 3796–3810, 2021.

[29] A. Francis, A. Faust, H.-T. L. Chiang, J. Hsu, J. C. Kew, M. Fiser, and T.-W. E. Lee, “Long-
range indoor navigation with prm-rl,” IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1115–
1134, 2020.

[30] P. J. Werbos, “Consistency of hdp applied to a simple reinforcement learning problem,” Neural

networks, vol. 3, no. 2, pp. 179–189, 1990.

[31] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in Edsger Wybe Dijkstra,
1st ed., K. R. Apt and T. Hoare, Eds. New York, NY, USA: ACM, July 2022, pp. 287–290.

[32] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum
cost paths,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 4, no. 2, pp. 100–107,
1968.

155

Bibliography

[33] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search techniques in path plan-
ning for autonomous driving,” Ann Arbor, vol. 1001, no. 48105, pp. 18–80, 2008.

[34] S. Sedighi, D.-V. Nguyen, and K.-D. Kuhnert, “Guided hybrid a-star path planning algorithm
for valet parking applications,” in 2019 5th International Conference on Control, Automation

and Robotics (ICCAR). Beijing, China: IEEE, Apr. 2019, pp. 570–575.

[35] A. Le, V. Prabakaran, V. Sivanantham, and R. Mohan, “Modified a-star algorithm for efficient
coverage path planning in tetris inspired self-reconfigurable robot with integrated laser sensor,”
Sensors, vol. 18, no. 8, p. 2585, Aug. 2018.

[36] C. Liu, Q. Mao, X. Chu, and S. Xie, “An improved a-star algorithm considering water current,
traffic separation and berthing for vessel path planning,” Applied Sciences, vol. 9, no. 6, p.
1057, Mar. 2019.

[37] L. Kavraki and J.-C. Latombe, “Randomized preprocessing of configuration for fast path plan-
ning,” in Proceedings of the 1994 IEEE International Conference on Robotics and Automation.
San Diego, CA, USA: IEEE Computer Society Press, 1994, pp. 2138–2145.

[38] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion planning using
the rrt*,” in 2011 IEEE International Conference on Robotics and Automation. Shanghai,
China: IEEE, May 2011, pp. 1478–1483.

[39] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The Interna-

tional Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, Mar. 1986.

[40] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-query path plan-
ning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on

Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2. San Fran-
cisco, CA, USA: IEEE, 2000, pp. 995–1001.

[41] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The

International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, June 2011.

[42] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*: Optimal sampling-based path
planning focused via direct sampling of an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ

International Conference on Intelligent Robots and Systems. Chicago, IL, USA: IEEE, Sept.
2014, pp. 2997–3004.

[43] Y. Li, R. Cui, Z. Li, and D. Xu, “Neural network approximation based near-optimal motion
planning with kinodynamic constraints using rrt,” IEEE Transactions on Industrial Electronics,
vol. 65, no. 11, pp. 8718–8729, Nov. 2018.

156

Bibliography

[44] J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural rrt*: Learning-based optimal
path planning,” IEEE Transactions Automatation Scienci and Engineering, vol. 17, no. 4, pp.
1748–1758, Oct. 2020.

[45] O. Matei and P. Pop, “An efficient genetic algorithm for solving the generalized traveling sales-
man problem,” in Proceedings of the 2010 IEEE 6th International Conference on Intelligent

Computer Communication and Processing. Cluj-Napoca, Romania: IEEE, Aug. 2010, p.
5606458.

[46] M. Pablo, “On evolution, search, optimization, genetic algorithms and martial arts: Towards
memetic algorithms,” Caltech concurrent computation program, C3P Report, vol. 826, 1989.

[47] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - In-

ternational Conference on Neural Networks, vol. 4. Perth, WA, Australia: IEEE, 1995, pp.
1942–1948.

[48] D. Marco, “Ant colony optimization for vehicle routing problem,” Ph.D. dissertation, Politec-
nico di Milano, Milan, Italy, 1992.

[49] Á. Madridano, A. Al-Kaff, D. Martín, and A. De La Escalera, “Trajectory planning for multi-
robot systems: Methods and applications,” Expert Systems with Applications, vol. 173, p.
114660, July 2021.

[50] M. Mohanan and A. Salgoankar, “A survey of robotic motion planning in dynamic environ-
ments,” Robotics and Autonomous Systems, vol. 100, pp. 171–185, Feb. 2018.

[51] Y. Zhao, Z. Zheng, and Y. Liu, “Survey on computational-intelligence-based uav path plan-
ning,” Knowledge-Based Systems, vol. 158, pp. 54–64, Oct. 2018.

[52] S. Aggarwal and N. Kumar, “Path planning techniques for unmanned aerial vehicles: A review,
solutions, and challenges,” Computer Communications, vol. 149, pp. 270–299, Jan. 2020.

[53] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,”
IEEE Robotics and Automation Magazine, vol. 4, no. 1, pp. 23–33, Mar. 1997.

[54] C. Warren, “Global path planning using artificial potential fields,” in Proceedings, 1989 Inter-

national Conference on Robotics and Automation. Scottsdale, AZ, USA: IEEE Computer
Society Press, 1989, pp. 316–321.

[55] Z. Yongzhe, B. Ma, and C. K. Wai, “A practical study of time-elastic-band planning method
for driverless vehicle for auto-parking,” in 2018 International Conference on Intelligent Au-

tonomous Systems (ICoIAS). Singapore: IEEE, Mar. 2018, pp. 196–200.

157

Bibliography

[56] B. Li, Q. Li, Y. Zeng, Y. Rong, and R. Zhang, “3d trajectory optimization for energy-efficient
uav communication: A control design perspective,” IEEE Transactions on Wireless Communi-

cations, vol. 21, no. 6, pp. 4579–4593, June 2022.

[57] G. J. Ducard and M. Allenspach, “Review of designs and flight control techniques of hybrid
and convertible vtol uavs,” Aerospace Science and Technology, vol. 118, p. 107035, Nov. 2021.

[58] S. Wang, A. Polyakov, and G. Zheng, “Quadrotor stabilization under time and space constraints
using implicit pid controller,” Journal of the Franklin Institute, vol. 359, no. 4, pp. 1505–1530,
Mar. 2022.

[59] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and D. Scaramuzza, “A comparative study of non-
linear mpc and differential-flatness-based control for quadrotor agile flight,” IEEE Transactions

Robotics, vol. 38, no. 6, pp. 3357–3373, Dec. 2022.

[60] S. Gros and M. Zanon, “Data-driven economic nmpc using reinforcement learning,” IEEE

Transactions on Automatic Control, vol. 65, no. 2, pp. 636–648, Feb. 2020.

[61] M. Greeff and A. P. Schoellig, “Exploiting differential flatness for robust learning-based track-
ing control using gaussian processes,” IEEE Control Systems Letters, vol. 5, no. 4, pp. 1121–
1126, Oct. 2021.

[62] X. Zhang, Y. Wang, G. Zhu, X. Chen, Z. Li, C. Wang, and C.-Y. Su, “Compound adaptive
fuzzy quantized control for quadrotor and its experimental verification,” IEEE Transactions

Cybernetics, vol. 51, no. 3, pp. 1121–1133, Mar. 2021.

[63] Z. Hou, P. Lu, and Z. Tu, “Nonsingular terminal sliding mode control for a quadrotor uav with
a total rotor failure,” Aerospace Science and Technology, vol. 98, p. 105716, Mar. 2020.

[64] M. Labbadi and M. Cherkaoui, “Robust adaptive backstepping fast terminal sliding mode con-
troller for uncertain quadrotor uav,” Aerospace Science and Technology, vol. 93, p. 105306,
Oct. 2019.

[65] M. R. Cohen, K. Abdulrahim, and J. R. Forbes, “Finite-horizon lqr control of quadrotors on
$SE_2(3)$,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5748–5755, Oct. 2020.

[66] T. Zioud, J. Escareno, and O. Labbani-Igbida, “Real-time of-based trajectory control of a uas
rotorcraft based on integral extended-state lqg,” in 2022 IEEE 18th International Conference

on Automation Science and Engineering (CASE). Mexico City, Mexico: IEEE, Aug. 2022,
pp. 1423–1430.

158

Bibliography

[67] Z. Zhang, Y. Niu, and J. Song, “Input-to-state stabilization of interval type-2 fuzzy systems
subject to cyberattacks: An observer-based adaptive sliding mode approach,” IEEE Transac-

tions Fuzzy Systems, vol. 28, no. 1, pp. 190–203, Jan. 2020.

[68] H. Razmi and S. Afshinfar, “Neural network-based adaptive sliding mode control design for
position and attitude control of a quadrotor uav,” Aerospace Science and Technology, vol. 91,
pp. 12–27, Aug. 2019.

[69] M. Vahdanipour and M. Khodabandeh, “Adaptive fractional order sliding mode control for a
quadrotor with a varying load,” Aerospace Science and Technology, vol. 86, pp. 737–747, Mar.
2019.

[70] S. Lian, W. Meng, Z. Lin, K. Shao, J. Zheng, H. Li, and R. Lu, “Adaptive attitude control of
a quadrotor using fast nonsingular terminal sliding mode,” IEEE Transactions on Industrial

Electronics, vol. 69, no. 2, pp. 1597–1607, Feb. 2022.

[71] M. Labbadi and M. Cherkaoui, “Robust adaptive nonsingular fast terminal sliding-mode track-
ing control for an uncertain quadrotor uav subjected to disturbances,” ISA Transactions, vol. 99,
pp. 290–304, Apr. 2020.

[72] O. Mofid and S. Mobayen, “Adaptive finite-time backstepping global sliding mode tracker
of quad-rotor uavs under model uncertainty, wind perturbation, and input saturation,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 58, no. 1, pp. 140–151, Feb. 2022.

[73] B. Li, W. Gong, Y. Yang, B. Xiao, and D. Ran, “Appointed fixed time observer-based slid-
ing mode control for a quadrotor uav under external disturbances,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 58, no. 1, pp. 290–303, Feb. 2022.

[74] J.-J. Xiong, N.-H. Guo, J. Mao, and H.-D. Wang, “Self-tuning sliding mode control for an un-
certain coaxial octorotor uav,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 53, no. 2, pp. 1160–1171, Feb. 2023.

[75] V. K. Tripathi, A. K. Kamath, L. Behera, N. K. Verma, and S. Nahavandi, “An adaptive fast
terminal sliding-mode controller with power rate proportional reaching law for quadrotor po-
sition and altitude tracking,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 52, no. 6, pp. 3612–3625, June 2022.

[76] Z. Guo, H. Li, H. Ma, and W. Meng, “Distributed optimal attitude synchronization control of
multiple quavs via adaptive dynamic programming,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 35, no. 6, pp. 8053–8063, June 2024.

159

Bibliography

[77] C. Li, J. Ding, F. L. Lewis, and T. Chai, “A novel adaptive dynamic programming based on
tracking error for nonlinear discrete-time systems,” Automatica, vol. 129, p. 109687, July 2021.

[78] S. Li, L. Ding, H. Gao, Y.-J. Liu, L. Huang, and Z. Deng, “Adp-based online tracking control of
partially uncertain time-delayed nonlinear system and application to wheeled mobile robots,”
IEEE Transactions Cybernetics, vol. 50, no. 7, pp. 3182–3194, July 2020.

[79] S. Cai, L. Dou, and X. Su, “Distributed adaptive dynamic programming formation control of
multiple quadrotor-uav system,” in 2021 40th Chinese Control Conference (CCC). Shanghai,
China: IEEE, July 2021, pp. 4984–4989.

[80] X. Yi, B. Luo, and Y. Zhao, “Adaptive dynamic programming-based visual servoing control
for quadrotor,” Neurocomputing, vol. 504, pp. 251–261, Sept. 2022.

[81] L. Dou, X. Su, X. Zhao, Q. Zong, and L. He, “Robust tracking control of quadrotor via on-
policy adaptive dynamic programming,” International Journal of Robust and Nonlinear Con-

trol, vol. 31, no. 7, pp. 2509–2525, May 2021.

[82] E. Nuño, A. Loría, and E. Panteley, “Leaderless consensus formation control of cooperative
multi-agent vehicles without velocity measurements,” IEEE Control Systems Letters, vol. 6,
pp. 902–907, 2021.

[83] H. Rezaee and F. Abdollahi, “Adaptive leaderless consensus control of strict-feedback nonlin-
ear multiagent systems with unknown control directions,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 51, no. 10, pp. 6435–6444, 2020.

[84] M. Rehan, M. Tufail, and S. Ahmed, “Leaderless consensus control of nonlinear multi-agent
systems under directed topologies subject to input saturation using adaptive event-triggered
mechanism,” Journal of the Franklin Institute, vol. 358, no. 12, pp. 6217–6239, 2021.

[85] J. Mei, W. Ren, and Y. Song, “A unified framework for adaptive leaderless consensus of un-
certain multiagent systems under directed graphs,” IEEE Transactions on Automatic Control,
vol. 66, no. 12, pp. 6179–6186, 2021.

[86] S. Wang, H. Zhang, S. Baldi, and R. Zhong, “Leaderless consensus of heterogeneous multiple
euler–lagrange systems with unknown disturbance,” IEEE Transactions on Automatic Control,
vol. 68, no. 4, pp. 2399–2406, 2022.

[87] L. Zhang, J. Sun, and Q. Yang, “Distributed model-based event-triggered leader–follower con-
sensus control for linear continuous-time multiagent systems,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 51, no. 10, pp. 6457–6465, 2020.

160

Bibliography

[88] J. Huang, W. Wang, C. Wen, J. Zhou, and G. Li, “Distributed adaptive leader–follower and
leaderless consensus control of a class of strict-feedback nonlinear systems: A unified ap-
proach,” Automatica, vol. 118, p. 109021, 2020.

[89] L. Gu, Z. Zhao, J. Sun, and Z. Wang, “Finite-time leader–follower consensus control of mul-
tiagent systems with mismatched disturbances,” Asian Journal of Control, vol. 24, no. 2, pp.
722–731, 2022.

[90] H. Fan, K. Zheng, L. Liu, B. Wang, and W. Wang, “Event-triggered finite-time consensus of
second-order leader–follower multiagent systems with uncertain disturbances,” IEEE Transac-

tions on Cybernetics, vol. 52, no. 5, pp. 3783–3793, 2020.

[91] J. Li, L. Yuan, T. Chai, and F. L. Lewis, “Consensus of nonlinear multiagent systems with
uncertainties using reinforcement learning based sliding mode control,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 70, no. 1, pp. 424–434, 2022.

[92] A. Mousavi, A. H. Markazi, and E. Khanmirza, “Adaptive fuzzy sliding-mode consensus con-
trol of nonlinear under-actuated agents in a near-optimal reinforcement learning framework,”
Journal of the Franklin Institute, vol. 359, no. 10, pp. 4804–4841, 2022.

[93] P. WERBOS, “Approximate dynamic programming for real-time control and neural modeling,”
Handbook of intelligent control, pp. 493–525, 1992.

[94] D. Bertsekas and J. Tsitsiklis, “Neuro-dynamic programming: An overview,” in Proceedings

of 1995 34th IEEE Conference on Decision and Control, vol. 1. New Orleans, LA, USA:
IEEE, 1995, pp. 560–564.

[95] D. Liu and H. Zhang, “A neural dynamic programming approach for learning control of failure
avoidance problems,” Citeseer, vol. 10, no. 1, pp. 21–32, 2005.

[96] P. Werbos, “Building and understanding adaptive systems: A statistical numerical approach to
factory automation and brain research,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 17, no. 1, pp. 7–20, Jan. 1987.

[97] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[98] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,”
AAAI, vol. 30, no. 1, Mar. 2016.

161

Bibliography

[99] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling network
architectures for deep reinforcement learning,” 2015.

[100] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” 2015.

[101] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” June 2016.

[102] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimiza-
tion algorithms,” Aug. 2017.

[103] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in actor-
critic methods,” 2018.

[104] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement
learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, Nov.
2017.

[105] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An introduction to
deep reinforcement learning,” FNT in Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018.

[106] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: A survey,” Artif Intell

Rev, vol. 55, no. 2, pp. 895–943, Feb. 2022.

[107] J. Wang, J. An, M. Chen, N. Zhan, L. Wang, M. Zhang, and T. Gan, “From model to imple-
mentation: a network algorithm programming language,” Science China Information Sciences,
vol. 63, pp. 1–17, 2020.

[108] H. You, Y. Hu, Z. Pan, and N. Liu, “Density-based user clustering in downlink noma systems,”
Science China Information Sciences, vol. 65, no. 5, p. 152303, 2022.

[109] A. Fahim, “K and starting means for k-means algorithm,” Journal of Computational Science,
vol. 55, p. 101445, 2021.

[110] H. Li and J. Wang, “Capkm++ 2.0: An upgraded version of the collaborative annealing power
k-means++ clustering algorithm,” Knowledge-Based Systems, vol. 262, p. 110241, 2023.

[111] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in Edsger Wybe Dijkstra:

his life, work, and legacy, 2022, pp. 287–290.

[112] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The

international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.

162

Bibliography

[113] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin, “Probabilistic complete-
ness of rrt for geometric and kinodynamic planning with forward propagation,” IEEE Robotics

and Automation Letters, vol. 4, no. 2, pp. i–vii, 2018.

[114] L. Dong, X. Yuan, and C. Sun, “Event-triggered receding horizon control via actor-critic de-
sign,” Science China Information Sciences, vol. 63, pp. 1–15, 2020.

[115] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for rein-
forcement learning with function approximation,” Advances in neural information processing

systems, vol. 12, 1999.

[116] M. Pflueger, A. Agha, and G. S. Sukhatme, “Rover-irl: Inverse reinforcement learning with soft
value iteration networks for planetary rover path planning,” IEEE Robotics and Automation

Letters, vol. 4, no. 2, pp. 1387–1394, 2019.

[117] F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, “Rrt∗-smart: Rapid convergence imple-
mentation of rrt∗ towards optimal solution,” in 2012 IEEE international conference on mecha-

tronics and automation. IEEE, 2012, pp. 1651–1656.

[118] Z. Tang, X. Xu, F. Wang, X. Jiang, and H. Jiang, “Coordinated control for path following
of two-wheel independently actuated autonomous ground vehicle,” IET Intelligent Transport

Systems, vol. 13, no. 4, pp. 628–635, 2019.

[119] S. Dankwa and W. Zheng, “Twin-delayed ddpg: A deep reinforcement learning technique
to model a continuous movement of an intelligent robot agent,” in Proceedings of the 3rd

international conference on vision, image and signal processing, 2019, pp. 1–5.

[120] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Deep deterministic policy gradient (ddpg)-based energy
harvesting wireless communications,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8577–
8588, 2019.

[121] C. Mu and Y. Zhang, “Learning-based robust tracking control of quadrotor with time-varying
and coupling uncertainties,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 31, no. 1, pp. 259–273, Jan. 2020.

[122] M. M. Fouda, S. Sakib, Z. M. Fadlullah, N. Nasser, and M. Guizani, “A lightweight hierarchical
ai model for uav-enabled edge computing with forest-fire detection use-case,” IEEE Network,
vol. 36, no. 6, pp. 38–45, Dec. 2022.

[123] M. Atif, R. Ahmad, W. Ahmad, L. Zhao, and J. J. P. C. Rodrigues, “Uav-assisted wireless
localization for search and rescue,” IEEE Systems Journal, vol. 15, no. 3, pp. 3261–3272, Sept.
2021.

163

Bibliography

[124] B. Li, Q. Li, Y. Zeng, Y. Rong, and R. Zhang, “3d trajectory optimization for energy-efficient
uav communication: A control design perspective,” IEEE Transactions on Wireless Communi-

cations, vol. 21, no. 6, pp. 4579–4593, 2022.

[125] G. J. Ducard and M. Allenspach, “Review of designs and flight control techniques of hybrid
and convertible vtol uavs,” Aerospace Science and Technology, vol. 118, p. 107035, 2021.

[126] M. Labbadi and M. Cherkaoui, “Robust adaptive backstepping fast terminal sliding mode con-
troller for uncertain quadrotor uav,” Aerospace Science and Technology, vol. 93, p. 105306,
2019.

[127] Z. Zhang, Y. Niu, and J. Song, “Input-to-state stabilization of interval type-2 fuzzy systems
subject to cyberattacks: An observer-based adaptive sliding mode approach,” IEEE Transac-

tions Fuzzy Systems, vol. 28, no. 1, pp. 190–203, 2020.

[128] H. Razmi and S. Afshinfar, “Neural network-based adaptive sliding mode control design for
position and attitude control of a quadrotor uav,” Aerospace Science and Technology, vol. 91,
pp. 12–27, 2019.

[129] J. Jia, K. Guo, X. Yu, W. Zhao, and L. Guo, “Accurate high-maneuvering trajectory tracking
for quadrotors: a drag utilization method,” Mechanical Systems and Signal Processing, vol. 7,
no. 3, pp. 6966–6973, 2022.

[130] B. Wang, X. Yu, L. Mu, and Y. Zhang, “Disturbance observer-based adaptive fault-tolerant con-
trol for a quadrotor helicopter subject to parametric uncertainties and external disturbances,”
Mechanical Systems and Signal Processing, vol. 120, pp. 727–743, 2019.

[131] X. Yi, B. Luo, and Y. Zhao, “Adaptive dynamic programming-based visual servoing control
for quadrotor,” Neurocomputing, vol. 504, pp. 251–261, 2022.

[132] L. Dou, X. Su, X. Zhao, Q. Zong, and L. He, “Robust tracking control of quadrotor via on-
policy adaptive dynamic programming,” International Journal of Robust and Nonlinear Con-

trol, vol. 31, no. 7, pp. 2509–2525, 2021.

[133] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and K. S. J. Pister, “Low-
level control of a quadrotor with deep model-based reinforcement learning,” IEEE Robotics

and Automation Letters, vol. 4, no. 4, pp. 4224–4230, 2019.

[134] G. Wen, W. Hao, W. Feng, and K. Gao, “Optimized backstepping tracking control using re-
inforcement learning for quadrotor unmanned aerial vehicle system,” IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 53, no. 8, pp. 5004–5015, 2022.

164

Bibliography

[135] J. Yoo, D. Jang, H. J. Kim, and K. H. Johansson, “Hybrid reinforcement learning control for a
micro quadrotor flight,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 505–510, 2021.

[136] Y. Yang, T. Huang, T. Wang, and C.-Y. Wen, “A robust sliding-mode control framework for
quadrotors subject to model uncertainty and external disturbances,” in 2024 American Control

Conference (ACC), 2024, pp. 3809–3814.

[137] Z. Hou, P. Lu, and Z. Tu, “Nonsingular terminal sliding mode control for a quadrotor uav with
a total rotor failure,” Aerospace Science and Technology, vol. 98, p. 105716, 2020.

[138] Z. YU, Y. Zhang, B. Jiang, J. Fu, and Y. Jin, “A review on fault-tolerant cooperative control of
multiple unmanned aerial vehicles,” Chinese Journal of Aeronautics, vol. 35, no. 1, pp. 1–18,
2022.

[139] E. Bernuau, D. Efimov, W. Perruquetti, and A. Polyakov, “On homogeneity and its application
in sliding mode control,” Automatica, vol. 351, no. 4, pp. 1866–1901, 2014.

[140] Y. Liu, H. Li, R. Lu, Z. Zuo, and X. Li, “An overview of finite/fixed-time control and its
application in engineering systems,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 12,
pp. 2106–2120, 2022.

[141] Z. Zuo, J. Tang, R. Ke, and Q.-L. Han, “Hyperbolic tangent function-based protocols for
global/semi-global finite-time consensus of multi-agent systems,” IEEE/CAA Journal of Au-

tomatica Sinica, vol. 11, no. 6, pp. 1381–1397, 2024.

[142] W. Perruquetti, T. Floquet, and E. Moulay, “Finite-time observers: Application to secure com-
munication,” IEEE Transactions on Automatic Control, vol. 53, no. 1, pp. 356–260, 2008.

[143] V. Andrieu, L. Praly, and A. Astolfi, “Homogeneous approximation, recursive observer design,
and output feedback,” SIAM Journal on control and optimization, vol. 47, no. 4, pp. 1814–
1850, 2008.

[144] H. Feng, Q. Song, S. Ma, W. Ma, C. Yin, D. Cao, and H. Yu, “A new adaptive sliding mode
controller based on the rbf neural network for an electro-hydraulic servo system,” ISA Trans-

actions, vol. 129, pp. 472–484, 2022.

[145] K. G. Vamvoudakis and F. L. Lewis, “Online actor–critic algorithm to solve the continuous-
time infinite horizon optimal control problem,” Automatica, vol. 46, no. 5, pp. 878–888, 2010.

[146] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimiza-
tion algorithms,” arXiv preprint arXiv:1707.06347, 2017.

165

Bibliography

[147] S. Kakade and J. Langford, “Approximately optimal approximate reinforcement learning,” in
Proceedings of the Nineteenth International Conference on Machine Learning, 2002, pp. 267–
274.

[148] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for rein-
forcement learning with function approximation,” Advances in neural information processing

systems, vol. 12, 1999.

[149] S. M. Kakade, “A natural policy gradient,” Advances in neural information processing systems,
vol. 14, 2001.

[150] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,”
in International conference on machine learning. PMLR, 2015, pp. 1889–1897.

[151] T. Huang, Y. Liang, X. Ban, J. Zhang, and X. Huang, “The control of magnetic levitation
system based on improved q-network,” in 2019 IEEE Symposium Series on Computational

Intelligence (SSCI), 2019, pp. 191–197.

[152] H. Liu, B. Li, B. Xiao, D. Ran, and C. Zhang, “Reinforcement learning-based tracking control
for a quadrotor unmanned aerial vehicle under external disturbances,” International Journal of

Robust and Nonlinear Control, vol. 33, no. 7, pp. 10 360–10 377, 2022.

[153] Z. Shang, Y. Jiang, B. Niu, G. Zong, X. Zhao, and H. Li, “Adaptive finite-time consensus
tracking control for nonlinear multi-agent systems: An improved tan-type nonlinear mapping
function method,” IEEE Transactions on Automation Science and Engineering, vol. 21, no. 4,
pp. 5434–5444, 2024.

[154] G. Wen and B. Li, “Optimized leader-follower consensus control using reinforcement learning
for a class of second-order nonlinear multiagent systems,” IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 52, no. 9, pp. 5546–5555, 2021.

[155] L. Chen, C. Dong, and S.-L. Dai, “Adaptive optimal consensus control of multiagent systems
with unknown dynamics and disturbances via reinforcement learning,” IEEE Transactions on

Artificial Intelligence, 2023.

[156] X. Yang, H. Zhang, and Z. Wang, “Data-based optimal consensus control for multiagent sys-
tems with policy gradient reinforcement learning,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 33, no. 8, pp. 3872–3883, 2021.

[157] Z. Hou and I. Fantoni, “Interactive leader–follower consensus of multiple quadrotors based
on composite nonlinear feedback control,” IEEE Transactions on Control Systems Technology,
vol. 26, no. 5, pp. 1732–1743, 2017.

166

Bibliography

[158] T. Yan, Z. Xu, and S. X. Yang, “Consensus formation tracking for multiple auv systems using
distributed bioinspired sliding mode control,” IEEE Transactions on Intelligent Vehicles, vol. 8,
no. 2, pp. 1081–1092, 2022.

[159] K. Liu, R. Wang, X. Wang, and X. Wang, “Anti-saturation adaptive finite-time neural network
based fault-tolerant tracking control for a quadrotor uav with external disturbances,” Aerospace

Science and Technology, vol. 115, p. 106790, 2021.

[160] L. Chen, Z. Liu, Q. Dang, W. Zhao, and G. Wang, “Robust trajectory tracking control for
a quadrotor using recursive sliding mode control and nonlinear extended state observer,”
Aerospace Science and Technology, vol. 128, p. 107749, 2022.

[161] Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader
and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, 2006.

[162] Z. Zuo, B. Tian, M. Defoort, and Z. Ding, “Fixed-time consensus tracking for multiagent sys-
tems with high-order integrator dynamics,” IEEE Transactions on Automatic Control, vol. 63,
no. 2, pp. 563–570, 2017.

[163] C. Qian and W. Lin, “A continuous feedback approach to global strong stabilization of nonlin-
ear systems,” IEEE Transactions on Automatic Control, vol. 46, no. 7, pp. 1061–1079, 2001.

[164] L.-X. Xu, H.-J. Ma, D. Guo, A.-H. Xie, and D.-L. Song, “Backstepping sliding-mode and
cascade active disturbance rejection control for a quadrotor uav,” IEEE/ASME Transactions on

Mechatronics, vol. 25, no. 6, pp. 2743–2753, 2020.

[165] B. Li, W. Gong, Y. Yang, and B. Xiao, “Distributed fixed-time leader-following formation con-
trol for multiquadrotors with prescribed performance and collision avoidance,” IEEE Transac-

tions on Aerospace and Electronic Systems, vol. 59, no. 5, pp. 7281–7294, 2023.

[166] L. Zhang, Y. Xia, G. Shen, and B. Cui, “Fixed-time attitude tracking control for spacecraft
based on a fixed-time extended state observer,” Science China Information Sciences, vol. 64,
no. 11, p. 212201, 2021.

[167] M. T. Angulo, J. A. Moreno, and L. Fridman, “Robust exact uniformly convergent arbitrary
order differentiator,” Automatica, vol. 49, no. 8, pp. 2489–2495, 2013.

[168] M. Khodaverdian, S. Hajshirmohamadi, A. Hakobyan, and S. Ijaz, “Predictor-based con-
strained fixed-time sliding mode control of multi-uav formation flight,” Aerospace Science and

Technology, vol. 148, p. 109113, 2024.

167

Bibliography

[169] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional continuous
control using generalized advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[170] H. Wang, J. Shan, and H. Alkomy, “Fully distributed edge-based dynamic event-triggered con-
trol for multiple quadrotors,” IEEE/ASME Transactions on Mechatronics, vol. 29, no. 4, pp.
3203–3214, 2024.

[171] X. Qin, Z. Zhao, P. Huang, and J. Li, “Multiple feedback recurrent neural network based
super-twisting predefined-time nonsingular terminal sliding mode control for quad-rotor uav,”
Aerospace Science and Technology, p. 109282, 2024.

[172] H. Xu, D. Yu, and Y.-J. Liu, “Observer-based fuzzy adaptive predefined time control for uncer-
tain nonlinear systems with full-state error constraints,” IEEE Transactions on Fuzzy Systems,
2023.

[173] Q. Li, Y. Chen, and K. Liang, “Predefined-time formation control of the quadrotor-uav clus-
ter’position system,” Applied Mathematical Modelling, vol. 116, pp. 45–64, 2023.

[174] W. Gong, B. Li, C. K. Ahn, and Y. Yang, “Prescribed-time extended state observer and pre-
scribed performance control of quadrotor uavs against actuator faults,” Aerospace Science and

Technology, vol. 138, p. 108322, 2023.

[175] J. Wang, K. A. Alattas, Y. Bouteraa, O. Mofid, and S. Mobayen, “Adaptive finite-time back-
stepping control tracker for quadrotor uav with model uncertainty and external disturbance,”
Aerospace Science and Technology, vol. 133, p. 108088, 2023.

[176] M. Lv, C. K. Ahn, B. Zhang, and A. Fu, “Fixed-time anti-saturation cooperative control for net-
worked fixed-wing unmanned aerial vehicles considering actuator failures,” IEEE Transactions

on Aerospace and Electronic Systems, vol. 59, no. 6, pp. 8812 – 8825, 2023.

[177] B. Li, W. Gong, Y. Yang, and B. Xiao, “Distributed fixed-time leader-following formation con-
trol for multi-quadrotors with prescribed performance and collision avoidance,” IEEE Trans-

actions on Aerospace and Electronic Systems, 2023.

[178] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to math-

ematical models. World Scientific, 2022.

[179] Y. Xu, Y. Qu, D. Luo, H. Duan, and Z. Guo, “Distributed predefined-time estimator-based
affine formation target-enclosing maneuver control for cooperative underactuated quadrotor
uavs with fault-tolerant capabilities,” Chinese Journal of Aeronautics, 2024.

168

Bibliography

[180] K. Liu, P. Yang, R. Wang, L. Jiao, T. Li, and J. Zhang, “Observer-based adaptive fuzzy finite-
time attitude control for quadrotor uavs,” IEEE Transactions on Aerospace and Electronic

Systems, 2023.

[181] S. Xie, Q. Chen, and Q. Yang, “Adaptive fuzzy predefined-time dynamic surface control for
attitude tracking of spacecraft with state constraints,” IEEE Transactions on Fuzzy Systems,
vol. 31, no. 7, pp. 2292–2304, 2022.

[182] O. Mofid and S. Mobayen, “Adaptive finite-time backstepping global sliding mode tracker
of quad-rotor uavs under model uncertainty, wind perturbation, and input saturation,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 58, no. 1, pp. 140–151, 2021.

[183] Z. Zuo, C. Liu, Q.-L. Han, and J. Song, “Unmanned aerial vehicles: Control methods and
future challenges,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 4, pp. 601–614, 2022.

[184] Z. Ma, Q. Wang, and H. Chen, “A joint guidance and control framework for autonomous
obstacle avoidance in quadrotor formations under model uncertainty,” Aerospace Science and

Technology, vol. 138, p. 108335, 2023.

[185] Z. Zuo, “Nonsingular fixed-time consensus tracking for second-order multi-agent networks,”
Automatica, vol. 54, pp. 305–309, 2015.

[186] Z. Hou, P. Lu, and Z. Tu, “Nonsingular terminal sliding mode control for a quadrotor uav with
a total rotor failure,” Aerospace Science and Technology, vol. 98, p. 105716, 2020.

169

	Certificate of Originality
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Robotic Trajectory Planning
	Mobile Robot Control
	Multi-mobile Robot Control
	Deep Reinforcement Learning
	Thesis Overview

	Literature Review
	Trajectory Planning
	Global planning
	Local planning

	Quadrotor Control
	Multi-quadrotor Control
	Deep Reinforcement Learning

	Simulation Platform Establishment
	Research Background and Motivation
	Path Planning Simulation Platform
	Platform Establishment
	Some Demonstrations

	Deep Reinforcement Learning Simulation Platform
	Platform Establishment
	Some Demonstrations

	Conclusion

	Sampling Efficient Global Path Planning and Obstacle Avoidance
	Research Background
	Sampling Efficient Global Path Planner Design
	Algorithm design
	Probabilistic completeness proof

	DRL-Based Obstacle Avoidance Method Design
	AC framework
	Network decoupling technology

	Simulation and Experiments
	Simulation results of the global planner
	Simulation results of the local planner
	Simulation and experiments with the integrated planner

	Conclusion

	Approximate Optimal Recursive Sliding Mode Control for Quadrotors and Adaptive Parameter Optimization via Deep Reinforcement Learning
	Research Background
	Problem Formulation and Preliminaries
	System Modeling
	Preliminaries

	System Design
	Rotational subsystem stability
	Translational subsystem stability

	Deep Reinforcement Learning for Parameter Optimization
	System re-organization
	HJB Equation and NN approximation
	NN Training

	Simulation
	Simulation Group 1: Fixed-point control
	Simulation Group 2: Trajectory tracking control

	Real World Experiments
	Experiment Group 1: Fixed-point control
	Experiment Group 2: Trajectory tracking control

	Conclusion

	Fixed-time Adaptive Consensus Control for Multi-Quadrotor Subject to External Disturbances Via Deep Reinforcement Learning
	Research Background
	Preliminaries and Problem Formulation
	Fundamental Mathematics
	System Description
	Problem Formulation

	Controller Design
	Rotational subsystem stability
	Translational Subsystem Stability

	DRL for Parameter Optimization
	Rotational Subsystem Parameter Optimizer Training
	Translational Subsystem Parameter Optimizer Training

	Simulation
	Simulation Group Lg
	Simulation Group Lg

	Physical Experiments
	Experiment Group Lg
	Experiment Group Lg

	Conclusions

	Modified Predefined-Time Adaptive Observer-Based Fast Nonsingular Terminal Sliding Mode Control for Multi-Quadrotor Subject to External Disturbances
	Research Background
	Preliminaries and Problem Formulation
	Mathematical fundamental
	System modelling
	Control Objective

	Main results
	Controller design
	Translational subsystem stability
	Rotational subsystem stability

	Numerical validation
	Simulation group 1
	Simulation group 2

	Real-world experiment
	Experiment group 1
	Experiment group 2

	Conclusions

	Conclusions and Future Work
	Bibliography

