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Abstract

Transformer models have greatly advanced AI applications in areas such as natural

language processing and image generation by utilizing their sophisticated architec-

tures for both discriminative and generative tasks. For example, Transformer models

trained on large text corpora excel in tasks like semantic analysis and language trans-

lation. When integrated into visual models, they also enable text-conditioned image

generation.

However, the increasing deployment of these models has introduced new security

risks, particularly concerning compliance vulnerabilities. These vulnerabilities involve

ensuring that model outputs meet ethical and regulatory standards, even when faced

with malicious attacks. To prevent an AI race that compromises safety and ethical

values, it is essential to balance the risks and benefits of deploying AI models.

This thesis addresses these concerns by focusing on the compliance vulnerabilities of

Transformer architectures, particularly backdoor attacks and unsafe content gener-

ation. First, we investigate the security risks of backdoor attacks in discriminative

models. We introduce a novel backdoor attack method that uses encoding-specific

perturbations to trigger malicious behaviors in pre-trained language models. Our

research shows that Transformer-based language models can be manipulated to pass

off harmful text as benign, allowing it to spread on public platforms undetected.

Traditional defenses against backdoor attacks, such as data preprocessing or model

fine-tuning, are often expensive. To overcome this, we propose a test-time defense for

i



Vision Transformers (ViTs). By examining output distributions across different ViT

blocks, we develop a Directed Term Frequency-Inverse Document Frequency (TF-

IDF) based method to detect and classify poisoned inputs effectively. Our approach

significantly improves the security and reliability of ViTs against backdoor attacks.

Generative models with Transformer architectures also face severe compliance risks.

Users can generate harmful content, such as violent, infringing, or pornographic ma-

terial, through text prompts, leading to negative social impacts. To address this,

we introduce the ProtoRe framework, which ensures safe content generation at

test time. This framework employs a ”Prototype, Retrieve, and Refine” pipeline to

enhance the identification and mitigation of unsafe concepts in generative models.

Comprehensive evaluations on various benchmarks demonstrate the effectiveness and

scalability of the ProtoRe approach in refining generated content.

In summary, this thesis provides a thorough examination of compliance vulnerabilities

in Transformer-based models. Our proposed methodologies and frameworks tackle

critical issues in model compliance, laying the groundwork for future research in

secure and responsible AI deployment.
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Chapter 1

Introduction

1.1 Overview

Artificial Intelligence (AI) has experienced unprecedented growth and transformation

over the past few decades, permeating various sectors and fundamentally altering

how tasks are approached and executed. This rapid development has been driven by

advances in computational power [62], the availability of large datasets [27, 134, 133],

novel algorithmic techniques [67, 53], and model architectures [153]. As a result, AI

technologies are now integral to numerous applications, including natural language

processing (NLP) [103, 58], computer vision [154, 146] and other modalities like audio

processing [100]. AI models can be broadly classified into two categories: discrimina-

tive models [28, 153, 29] and generative models [59, 168].

Discriminative models focus on distinguishing between different classes within a given

dataset. They are trained to map input data to specific labels or categories, essen-

tially learning the decision boundaries between classes [28]. Examples of discrimi-

native models include logistic regression [7], support vector machines (SVMs) [55],

and various forms of neural networks, such as convolutional neural networks (CNNs)

[54] and recurrent neural networks (RNNs) [64]. These models are widely used in
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Chapter 1. Introduction

tasks such as image classification [94], speech recognition [39], and NLP applications

like machine translation [23], sentiment analysis [165], and text summarization [37].

Machine translation, which converts text from one language to another, has been

significantly improved by AI models that can accurately understand and translate

idiomatic expressions and context. Sentiment analysis, which involves detecting the

emotional tone behind text, benefits from AI’s ability to process large volumes of data

and identify nuanced emotional cues. Text summarization, which generates concise

summaries of longer documents, is enhanced by AI’s capacity to distill essential in-

formation while preserving the original meaning.

In contrast, generative models aim to capture the underlying distribution of the data

to generate new, synthetic samples that resemble the training data. These models

learn to understand the data distribution and can produce new data points that are

statistically similar to the original dataset. Examples of generative models include

Gaussian mixture models, hidden Markov models, and more advanced neural net-

work architectures like generative adversarial networks (GANs) [46] and variational

autoencoders (VAEs) [68]. Generative models are used in applications such as image

synthesis [122], style transfer [45, 173], and image inpainting [5, 95]. AI-driven image

synthesis models can generate highly realistic images from textual descriptions, which

has applications in art, entertainment, and virtual reality. Style transfer techniques

allow AI to transform the aesthetic style of an image while preserving its content,

enabling creative processes in digital art and design. Image inpainting, or the process

of filling in missing parts of an image, has been enhanced by AI’s ability to under-

stand the surrounding context and generate visually plausible content, proving useful

in fields such as photo editing and restoration.

The development of both discriminative and generative models has evolved signifi-

cantly over the years. Initially, convolutional networks (CNNs) dominated the land-

scape, particularly for tasks involving image data. CNNs excelled at capturing spatial

hierarchies and patterns, leading to breakthroughs in image recognition and classifi-
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1.1. Overview

Figure 1.1: Transformer blocks are widely used across diverse tasks, serving as core
components in both discriminative (e.g., classification) and generative (e.g., image
synthesis) models.

cation. However, the advent of transformers marked a significant shift in AI model

development.

Transformers [153], initially designed for NLP tasks, have demonstrated exceptional

versatility and performance across a wide range of applications, including both dis-

criminative and generative tasks. Unlike CNNs, transformers rely on self-attention

mechanisms, which enable them to process and generate data more effectively by

capturing long-range dependencies within the data. This has made transformers a

cornerstone of modern AI, driving advancements in large-scale models and pushing

the boundaries of what AI systems can achieve. As illustrated in Figure 1.1, Trans-

former blocks are extensively utilized in both discriminative and generative models.

Discriminative models typically perform classification tasks, such as identifying bird

species in images or classifying emails as spam. Generative models, on the other

hand, produce high-quality images based on user-provided text prompts.

Despite the potential for transformative impacts across various industries, recent ad-

vancements in Transformer-based models have necessitated the mitigation of risks

associated with AI deployment. As with any maturing technology, AI has evolved
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Chapter 1. Introduction

from an era of unbridled innovation to one that requires enhanced governance [16].

The deployment of AI carries various hazards, including privacy violations from the

exposure of sensitive training data, discriminatory outcomes resulting from facial

recognition, and the propagation of misinformation facilitated by generative models,

ultimately leading to a lack of ethical integrity. For instance, language models can be

manipulated to disseminate false information and produce harmful content, while dif-

fusion models can generate realistic deepfakes, posing significant detection challenges

[26, 147].

To prevent an AI race that sacrifices safety and other values, it is essential to ensure

that the deployment of AI models balances the risks with the benefits brought by

their improved predictive and generative capabilities. The widespread application of

novel AI models, such as Transformers, introduce various security risks that must be

carefully managed. These risks can be categorized into two main levels: data-level

security risks and model-level security risks.

Data-Level Security Risks.

• Data privacy security [42, 85]: Ensuring that sensitive data remains confi-

dential and protected from unauthorized access is crucial. A notable example

is membership inference attacks [139], where an adversary can deduce whether

a specific data point was part of the training dataset, potentially leading to pri-

vacy breaches, especially when the training data contains personal or sensitive

information.

• Data correctness security [162]: This aspect focuses on maintaining the

integrity and accuracy of the data. Data tampering [1] poses a significant threat,

where attackers manipulate the data used for training or inference to degrade

model performance or produce incorrect outputs. For example, altering the

labels in a training dataset can mislead the model during its learning process,

resulting in inaccurate predictions or classifications [143].
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1.1. Overview

Model-Level Security Risks.

• Integrity security [16, 147]: This involves ensuring the accuracy and reliabil-

ity of the model’s outputs. One issue is hallucination [40] in language generation

models, where the model generates plausible but incorrect or nonsensical text.

Similarly, concept bleeding [17] in image generation models can occur when

the model incorporates unrelated or inappropriate concepts into the generated

images, compromising output reliability.

• Compliance security [124] This entails ensuring that the model’s outputs

adhere to ethical and regulatory standards, even in the presence of malicious

attacks. For instance, jailbreaking attacks [164] exploit vulnerabilities in large

language models to bypass restrictions and generate content that the model is

otherwise prohibited from producing. In such cases, language models might

be manipulated to generate harmful or inappropriate content through carefully

crafted input prompts.

In this thesis, we focus on the compliance vulnerabilities of Transformer archi-

tectures. Specifically, we identify two primary types of security risks associated with

models based on the transformer architecture: backdoor attacks [73, 172, 74, 20, 90,

161, 79, 86, 150, 52, 156, 43] on discriminative models and unsafe content generation

on generative models [121, 131].

• Backdoor attacks on discriminative models: Backdoor attacks involve

embedding hidden triggers within the model during the training phase. When

these specific triggers are present in the input data, the model behaves in a

predetermined, often malicious manner [48]. For example, a backdoored image

classifier might classify any image containing a specific pattern as ”safe,” regard-

less of its actual content. This poses a significant threat as it allows attackers to

manipulate model outputs in a controlled way, bypassing the intended security
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Chapter 1. Introduction

measures and potentially causing severe consequences in applications requiring

high reliability and security.

• Unsafe content generation on generative models: Unsafe content genera-

tion refers to the production of harmful or illegal content by generative models.

This includes generating violent, pornographic, or copyright-infringing contents.

Such risks are exacerbated when attackers intentionally manipulate the text

prompt to produce this harmful content [131]. The potential for misuse is vast,

from generating realistic but false news articles to creating deepfakes that can

deceive and harm individuals or groups. This type of risk underscores the criti-

cal need for robust mechanisms to ensure that generative models operate within

ethical and legal boundaries.

These security risks highlight the importance of robust AI governance and security

measures. Traditional governance methods, such as data cleaning and model fine-

tuning, are often expensive and not scalable to the vast amounts of data and the

complexity of modern AI models. Thus, there is a pressing need for more efficient

and scalable solutions.

To address these challenges, we propose two test-time governance methods designed

to efficiently mitigate these security risks. These methods aim to enhance the security

and compliance of transformer-based models during their deployment, ensuring that

they can be used safely and responsibly across various applications. By focusing

on test-time interventions, we can provide a more dynamic and responsive approach

to AI governance, capable of addressing emerging threats as they arise without the

extensive overhead associated with traditional methods.

The research framework of this thesis is illustrated in Figure 1.2. In this framework,

we investigate compliance vulnerabilities in both discriminative and generative mod-

els and propose two test-time governance methods to address the identified risks.

Specifically, chapter 3 examines compliance vulnerabilities in discriminative models
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Figure 1.2: Research framework of this thesis.

and introduces a novel backdoor attack on pre-trained language models. chapter 4

addresses the challenges associated with existing high-cost backdoor defenses and

presents a test-time backdoor defense for Vision Transformers. Finally, chapter 5

focuses on the risks of unsafe content generation in generative models and proposes a

test-time refusal method to mitigate these risks and ensure safe content generation.

1.2 Contributions

First, We perform a pioneering study of the backdoor attack in database middleware

with PLMs, exposing the security dangers posed by untrusted third parties. We in-

troduce a novel Trojan attack1 method that leverages encoding-specific perturbation

to cause unexpected misbehavior in the database middleware. The proposed Trojan

attacks are triggerable, imperceptible to the human eye, and generalizable. We ex-

plore several defensive strategies to counter the proposed Trojan attacks and examine

1In certain NLP tasks, backdoor attacks are also referred to as Trojan attacks. In this thesis,
these terms are used interchangeably.
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their limitations. We validate the efficacy of the proposed Trojan attacks through ex-

periments on various natural language understanding tasks and database application

datasets, demonstrating their high efficiency.

Second, By analyzing the progressive output results of ViT block-wisely, we found

that the distribution corresponding to benign knowledge gradually changes from the

lower blocks to the higher blocks, while the distribution corresponding to backdoored

knowledge is rigid. We develop the observed phenomenon as the discrepancy between

factual knowledge and misleading knowledge. Additionally, we enhance the Term

Frequency-Inverse Document Frequency (TF-IDF) technique to quantify the factu-

alness of the logits distribution. We propose the Directed TF-IDF based inference,

which can effectively reduce the attack success rate of poisoned images, and classify

poisoned images to the ground truth labels in an efficient and plug-and-play manner.

We extensively validate the proposed defense method against many benchmarks and

baselines. The experimental results and ablation studies demonstrate our method’s

superiority in terms of clean accuracy, defense success rate, and robust accuracy.

Third, we propose a novel framework called ProtoRe (Prototypical Refinement) to

ensure safe generation. This approach enhances the flexibility of concept negation by

introducing test-time negative concept identification and feature space purification.

The ProtoRe framework leverages CLIP’s language-contrastive knowledge and fol-

lows a “Prototype, Retrieve, and Refine” pipeline. The breakdown of the three steps

involved: 1) Prototype: We utilize CLIP to encode a collection of text prompts ob-

tained from social media platforms that express similar negative concepts. These

encoded features are then aggregated into a comprehensive prototype feature, cap-

turing the semantics of the negative concepts. 2) Retrieve: The negative prototype

feature serves as a prompt to retrieve the model’s output features that are correlated

with the negative concepts. 3) Refine: We employ the retrieved negative features to

refine the discriminative attention maps, purifying the influence of negative concepts

in the feature space. By integrating these steps, our ProtoRe framework offers
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a novel approach to concept negation, improving the flexibility and effectiveness of

mitigating negative concepts in generative diffusion models. Moreover, this approach

promotes scalability and enables easy deployment. Through comprehensive evalu-

ations on multiple benchmarks, we demonstrate that ProtoRe surpasses existing

methods in terms of purification effectiveness and the fidelity of generated images

across various settings.

1.3 Organization

The rest of this thesis consists of five chapters and is organized as follows. Chap-

ter 2 provides the background of the techniques discussed in this thesis, including

their preliminaries and related works. Chapter 3 explores the compliance vulnera-

bilities of Transformer architectures, focusing on backdoor attacks in discriminative

models and introducing novel Trojan attack methods. Chapter 4 discusses test-time

backdoor defense mechanisms for Vision Transformers, presenting a new approach

to mitigating these risks based on analyzing output distributions and enhancing the

TF-IDF technique. Chapter 5 introduces ProtoRe, a novel framework for ensuring

safe diffusion generation by leveraging test-time negative concept identification and

feature space purification. In Chapter 6, we summarize our research contributions

and discuss future research directions.
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Chapter 2

Background

In this chapter, we provide the technical background and related work required to

build a test-time governance framework.

2.1 Preliminary for Pre-trained Language Models

For the purpose of thoroughness, we briefly review the current advancements in emerg-

ing pre-trained language models (PLMs) and their use in database middleware. We

also provide a summary of prior research on designing Trojans in machine learning

and compare it to our work.

2.1.1 Pre-trained Language Models

In the early stages of natural language processing, CNNs [54] and RNNs [64] were

typically trained for specific tasks due to their limited representation capabilities.

However, the attention-based Transformers [153] have strong learning and transfer

abilities thanks to efficient global information modeling and large parameter capacity.

Among these, BERT [29] and GPT [119] are the two most widely used PLMs. The
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GPT model’s parameters rapidly grew from 117 million (GPT-1) to 175 billion (GPT-

3), making training and deploying a GPT-3 model resource-intensive. Thus, most

current work on PLMs-enhanced database applications [57, 66, 84, 163, 151, 112]

uses BERT or its improved versions (e.g., RoBERTa [92]) as the base model, with

parameters ranging from 110 million to 355 million. Transformer-based PLMs have

strong connections with various downstream tasks, including database applications.

2.1.2 PLMs-powered Database Middleware

Database middleware enhanced by PLMs has various applications, including language

understanding and database-related tasks. Our focus is on two emerging tasks in

the latter category: natural language query interfaces and entity matching. The

natural language query interfaces include natural language to SQL (NL2SQL) and

SQL execution tasks. NL2SQL, a downstream task of semantic parsing, involves

converting text into logically-formed queries [49]. Entity matching, a downstream task

in data integration, involves identifying and combining data from multiple sources

that refer to the same real-world entity [112].

2.1.3 Machine Learning Trojan

Our goal is to create a Trojan that possesses three key features: Triggerability,

Imperceptibility, and Generalizability. However, prior work in designing trojan at-

tacks in machine learning falls short in one or more of these areas. Many studies

[73, 74, 172, 44, 116, 169, 115] focus solely on specific downstream tasks and lack

the ability to generalize, while others require attackers to know the target task in

advance. Some prior work [6, 167] also lacks triggerability, causing the model to mis-

behave even on clean input. Additionally, most previous studies have struggled to

create trojan attacks that are undetectable to human inspection.
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2.2 Preliminary for Vision Transformers

Vision Transformer (ViT) consists of a patch and a position embedding layers, N

stacked transformer encoders, and a Multi-Layer Perceptron (MLP) head ϕ(·) for

classification [32]. Given an image that is split into a sequence of image patches

{x1, x2, · · · }, the embedding layers first embed the patches into a sequence of to-

kens {h1, h2, · · · }. A class token h0 is added to perform classification tasks. Then,

{h0, h1, h2, · · · } would be processed by the successive transformer encoders. We de-

note the output of the class token in j-th encoder as hj0. The MLP head ϕ(·) takes

the output class token of the final encoder as input to predict the probability of the

label ci:

p(ci|hN0 ) = softmax(ϕ(hN0 )), ci ∈ C, (2.1)

where the label set C = {c0, c1, · · · , cn}.

The above standard inference process has been shown to be vulnerable to backdoor

attacks [145, 171, 178, 31, 144]. Instead of applying ϕ(·) just on the final class

token, our approach aims to enroll more knowledge during the inference process by

introducing the predicted results of middle layers. Specifically, we feed the output

class tokens of all encoders into the MLP head to compute the logits distribution:

qj(ci|hj0) = softmax(ϕ(hj0)), ci ∈ C. (2.2)

The concept of directly employing language heads onto the concealed states of inter-

mediary layers, denoted as early exit [149, 38, 135], has demonstrated efficacy as an

inference technique, even in the absence of a specialized training process [65]. This ef-

fectiveness is attributed to the gradual evolution of hidden representations facilitated

by the residual connections [54] within transformer layers, which ensure a smooth

progression without abrupt alterations.
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2.3 Preliminary for Diffusion Models

2.3.1 Denoising Diffusion Models

Diffusion models refer to a type of generative models that progressively learn the dis-

tribution space via a denoising procedure that involves T time steps [59]. Specifically,

the model initializes with sampled Gaussian noise and subsequently undertakes a

step-by-step denoising process, ultimately generating the final image. In practice, the

model predicts noise ϵt at each step t, which is utilized to produce the corresponding

intermediate denoised image xt. The initial and final images are represented by xT

and x0 respectively. The denoising process is mathematically modeled as a Markov

transition probability:

pθ(xT :0) = p(xT )
1∏

t=T

pθ(xt−1|xt). (2.3)

2.3.2 Latent Diffusion Models

Latent diffusion models (LDM) [123] have been proposed as a promising approach

for enhancing the efficiency of image generation tasks. Specifically, LDM operates

in a lower dimensional latent space z, which is obtained by encoding images using

a pre-trained variational autoencoder with encoder E and decoder D. During the

training process, noise is added to the encoded latent representation of an image x,

resulting in a perturbed latent code zt, where the amount of noise increases with the

time step t. The LDM method can be seen as a sequence of denoising models, which

have identical parameters θ and aim to predict the noise ϵθ(zt, c, t) that was added to

zt, based on the time step t and a textual condition c. To achieve this objective, the

following optimization function is employed:
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L = Ezt∈E(x),t,c,ϵ∼N (0,1)

[
∥ϵ− ϵθ (zt, c, t)∥22

]
. (2.4)

Classifier-free guidance [?] is a technique employed in the regulation of image genera-

tion. The approach involves the redirection of the probability distribution to focus on

data that is highly probable based on an implicit classifier p(c|zt). During inference,

this technique requires that the model be jointly trained on both conditional and

unconditional denoising, and that the scores for each be obtained from the model. To

achieve the desired result, the final score ϵθ(zt, c, t) is directed towards the conditioned

score while moving away from the unconditioned score, through the utilization of a

guidance scale α > 1.

ϵ̃θ (zt, c, t) = ϵθ (zt, t) + α (ϵθ (zt, c, t)− ϵθ (zt, t)) (2.5)

The inference process begins with a Gaussian noise input, zT N(0, 1), which is then

subjected to denoising using ϵθ(zt, c, t) to obtain zT−1. This denoising process is

conducted in a sequential manner until z0 is achieved, which is then transformed into

image space via the decoder, denoted as x0 ← D(z0).

2.4 Related Work for Trojan Attacks on PLMs

In this subchapter, we examine recent literature covering pre-trained models used

in database middleware and Trojan attacks on pre-trained models. Both areas are

relevant to our research.
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2.4.1 Pre-trained Models in Database Middleware

Recently, extensive work has shown the powerful modeling and representation capa-

bilities of PLMs for natural language. By leveraging PLMs such as BERT [29] and

GPT [119] as the foundation model, we can efficiently train new models for various

NLP downstream tasks. Li et al. [82] and Brunner et al. [10] first leverage pre-trained

Transformer-based language models for entity matching tasks. Wang et al. [157] pro-

posed a probing framework to probe the schema-linking structures between a natural

language query and its database middleware schema from a PLM. When the PLM

is fine-tuned on downstream text-to-SQL parsing tasks, the ability of generalization

and robustness can be inherited. Trummer [151] proposed a database tuning system

to exploit useful information from text-based materials. The system applies large

PLMs to automatically analyze text documents and extract tuning hints. Peeters et

al. [112] introduced PLMs into entity matching by combing binary and multi-class

classification tasks. The model is trained to identify the entity from entity descrip-

tions.

2.4.2 Trojan Attacks against Pre-trained Models

Although these database applications benefit from PLM’s powerful extrinsic knowl-

edge, it exposes downstream database tasks to the risk of Trojan attacks. Zhang et

al. [172] proposed a novel Trojan attack using logical combination words as triggers.

Kurita et al. [73] attacked PLMs by poisoning parameters directly. They associate

the trigger with multiple words and bind the embedding of the trigger to the aver-

age embedding of the chosen words. The closest concurrent researches to our work

are by Chen et al. [20] (BadPre) and Li et al. [75] (Homo Attack). Chen et al.

[20] proposed a task-agnostic Trojan attack against PLMs. The authors use uncom-

mon visible words as triggers. We have demonstrated the disadvantage of visible

triggers both empirically and experimentally. Li et al. [75] proposed a homograph
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replacement-based Trojan attack. The research context and trigger design are two

main differences between [75] and this paper. Experiment results demonstrate our

Trojan attacks outperform the Homograph Attack [75] and BadPre [20].

2.5 Related Work for Backdoor Defense on ViTs

2.5.1 Backdoor Attack

Backdoor attacks pose growing security risks to deep neural networks, manifesting

across various tasks such as visual object tracking [80], graph classification [174], fed-

erated learning [3], self-supervised learning [126], and contrastive learning [13]. Ex-

isting poisoning-based backdoor attacks design various triggers attached to a limited

number of training samples. Patch-based attacks, such as black-white checkerboards

[48, 91] or a single pixel [150], can serve as triggers, while more intricate patterns like

blended backgrounds [22] and natural reflections [93] encompass the entire image.

While these triggers [48, 91, 150, 22, 93] are visible yet inconspicuous, stealthier trig-

ger patterns involve embedding invisible noise [76, 125] or employing image warping

[106] within clean images. Unlike sample-agnostic attacks [48, 91, 150, 22, 93, 76, 106],

sample-specific attacks [105, 81] employ triggers varying with different images. If poi-

soned samples are selected from the target class (labels consistent with ground truth

labels), these attacks are termed clean-label attacks [4, 152, 177]. Alternatively, if

poisoned samples are relabeled as the target class, they are categorized as dirty-label

attacks [48, 91, 22, 106, 105]. Many existing poisoning-based attacks concentrate on

enhancing the stealthiness of trigger patterns, evolving from visible [48] to invisible

[106], static [22] to dynamic [81], and sample-agnostic [91] to sample-specific [105].
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2.5.2 Backdoor Defense

Existing backdoor defense strategies fall into two main categories: secure training

and post-training backdoor removal. Secure training, also known as poison suppres-

sion defenses, aims to eliminate the impact of poisoned examples during training,

enabling the development of a clean model on a poisoned dataset. For instance,

Li et al. [78] proposed Anti-Backdoor Learning (ABL), intentionally increasing the

training loss gap between clean and backdoor examples in the initial stages and later

unlearning the backdoor with isolated data. Chen et al. [21] distinguish between

poisoned and clean samples based on their sensitivity to transformations, categoriz-

ing the training set accordingly and employing semi-supervised contrastive learning.

Decoupling-based Backdoor Defense (DBD) [61] strategically separates the training

processes of the model’s backbone and fully connected classifier layers to reduce the

correlation between triggers and target labels. Additionally, Causality-inspired Back-

door Defense (CBD) [175] enhances DBD’s effectiveness by directly training clean

models on poisoned datasets without requiring additional self-supervised pretraining

or subsequent finetuning (unlearning backdoor).

While secure training defenses exhibit effectiveness in certain scenarios, they do have

their limitations. Notably, their performance often proves highly sensitive to the

selection of hyperparameters, diminishing robustness across various datasets or attack

configurations. The implementation of secure training defenses may introduce a trade-

off between mitigating backdoors and maintaining overall model performance on clean

data, thereby influencing accuracy and efficiency. Moreover, some defenses assume

access to a poisoned dataset during training, a condition that may be impractical in

real-world scenarios where obtaining such data poses challenges.

Post-training backdoor removal methods seek to mitigate the adverse effects of back-

doors on models. These approaches aim to identify and eliminate the malicious

behavior induced by backdoor triggers through techniques such as neuron-level per-
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turbation [90] and pruning [161], or model-level distillation [79] and fine-tuning [86].

Spectral Signatures [150] and SPECTRE [52] differentiate between poisoned and clean

samples by leveraging statistical rules related to covariance or entropy values. Spec-

tral Signatures identified a detectable trace in the covariance spectrum of feature

representations left by poisoned samples. In an enhancement, SPECTRE employs

quantum entropy scores in conjunction with covariance estimation to amplify the

spectral signature associated with poisoned data. Neural Cleanse, proposed by Wang

et al. [156], attempts to detect whether a model is backdoored. The method involves

reverse engineering a trigger for each potential class and using anomaly detection to

predict the backdoored status of the model. Gao et al. [43] introduced STRIP, which

identifies an input as having an embedded trigger if the predicted labels for randomly

perturbed versions of the input exhibit low entropy. Tang et al. [148] introduced

Statistical Contamination Analysis (SCAn) to differentiate between poisoned and be-

nign samples by modeling their feature distributions based on the Linear Discriminant

Analysis (LDA) assumption. This approach assumes that clean and poisoned feature

representations have different mean values but share the same covariance. Ma et al.

[98] expanded on this by examining the distinctions between benign and poisoned

samples, particularly in terms of feature connections and higher-order information.

They developed Backdoor detection via Gram matrix (Beatrix), which learns class-

wise statistics from the activation patterns of benign samples and identifies poisoned

samples by capturing anomalies in these activation patterns. Some defense mecha-

nisms focus on detecting the presence of backdoors in deep neural networks prior to

deployment, without addressing the removal of the backdoors themselves [70, 19].

2.5.3 Backdoor on Vision Transformers

For ViTs, two notable backdoor attacks have been explored in recent research. Bad-

ViT [171] assesses the resilience of Vision Transformers (ViTs) against backdoor at-

tacks, conducting a comparative analysis with convolutional neural networks (CNNs).
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By generating a universal adversarial patch-wise trigger, BadViT disrupts the self-

attention mechanism of ViTs, establishing a robust connection between triggers and

attack targets to impact the overall robustness of ViTs. Furthermore, the authors

also propose an invisible variant of BadViT, highlighting attack transferability across

diverse downstream datasets. Different from conventional CNN-specific approaches,

TrojViT [178] employs a patch-wise trigger generated through patch salience rank-

ing, attention-target loss and tuned parameter distillation for ViT-specific backdoor

attack. Patch salience ranking systematically assesses the importance of patches,

attention-target loss guides the model’s focus, and tuned parameter distillation mini-

mizes the modified bit number of the Trojan. DBIA [96] introduces the first data-free

adaptive attack on Vision Transformers (ViTs). This method operates without re-

quiring downstream datasets. Instead, it constructs a substitute dataset, which is poi-

soned by training a universal attention-maximizing trigger. Subsequently, the model

fine-tunes the neurons that significantly influence the final results. This attention-

maximizing trigger effectively redirects the attention of the target ViTs towards itself,

rather than the unrelated background of the substitute data.

Efforts to fortify Vision Transformers (ViTs) against potential backdoor attacks have

led to the development of defense methodologies. Doan et al. [31] evaluates ViT’s

susceptibility to both patch-based and blending-based backdoor attacks. Based on

observed performance distinctions in ViT’s response to patch processing for clean

and backdoor samples, the study introduces an effective defensive approach, which

is centered on patch processing. The study analyzes two patch processing methods:

PatchDrop, effective against patch-based attacks, and PatchShuffle, proficient in mit-

igating blending-based attacks. Both of them demonstrate a notable reduction in the

backdoor attack success rate on ViT. However, the patch processing method, particu-

larly PatchDrop, displays sensitivity to the type of attack, demonstrating suboptimal

performance in scenarios involving patch-based attacks. This suggests a notable lim-

itation, as the method appears to rely on a certain level of awareness regarding the
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specific characteristics of the attack, potentially constraining its adaptability to novel

or unforeseen attack strategies. Another notable drawback is the requirement for

multiple rounds of patch processing to determine the presence of a trigger in the

input, introducing increased computational complexity and processing time.

Differing from the approaches mentioned earlier, our defense method functions with-

out the necessity for additional data, including any generated through reverse en-

gineering. Moreover, it obviates the need for fine-tuning the backdoor model. Our

method is both plug-and-play and efficient in its defense strategy.

2.6 Related Work of Generative Model Refusals

Recently, research efforts have been made to mitigate the generation of harmful con-

tent by generative models through four approaches: dataset filtering [108, 133], ad-

versarial perturbations [83, 71, 138, 129], machine unlearning [101, 41], and refusals

at inference time [121, 131].

Dataset Filtering. One straightforward approach to prevent undesired image out-

puts in generative models is by filtering images from the training dataset. This can

be achieved by excluding certain categories of images [133], such as those containing

people [108], or by carefully curating the data. However, filtering the dataset has a

downside that it can be a costly way to address issues found after the training, as

retraining large models requires significant resources.

Adversarial Perturbations. Another promising way to safeguard images from

being generated by large generative models is for the user to add adversarial per-

turbations to the raw images before uploading them on the internet or contributing

them to text-to-image AI systems such as DALLE·2 and Stable Diffusion. While deep

learning architectures are susceptible to adversarial perturbations, prior research has

concentrated on their application to classification tasks [15, 99, 47]. Kos et al. [71]
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was the first to generate adversarial perturbations against deep generative models

such as the variational autoencoder (VAE) and the VAE-GAN. AdvDM, proposed by

Liang et al. [83], injects adversarial perturbations into raw images by estimating the

“attack vector” through Monte Carlo estimation. Glaze [138] and PhotoGuard [129]

added perturbations that cause the model to confuse the perturbed image with an

unrelated image or an image with a different artistic style. Similar to the work on

dataset filtering, these approaches typically lean towards preventive measures.

Machine Unlearning. The process of machine unlearning [9, 136] refers to the

removal of specific knowledge from pre-trained models including diffusion models.

Moon et al. [101] delved into the challenge of unlearning a particular feature, such

as a hairstyle from facial images, from the pre-trained generative models. To address

this, they devised an implicit feedback mechanism to identify a latent representation

corresponding to the target feature and to unlearn the generative model. Gandikota

et al. [41] proposed a method for fine-tuning diffusion model weights to eliminate

specific concepts, while minimizing interference with other concepts. Our approach

differs from previous work that modifies model weights globally to unlearn every time

an undesirable output is encountered. Instead, our goal is to reconstruct negative

channels at inference time, which enables scalability and plug-and-play deployment.

Refusals at Inference Time. Previous research has explored the methods of re-

fusals at inference time since such methods are efficient to test and deploy. Their core

idea is post-hoc, modifying output after training using classifiers [121], or by adding

guidance to the inference process [131]. Our approach to refusal at inference time

differs from other methods in that it focuses on “concept negation” with language

grounding. This enables users to easily specify negative concepts in a text-conditional

space, making the method more flexible. Moreover, we do not rely on classifier-guided

or guidance-based diffusion methods. Instead, we reconstruct negative channels at

inference time to achieve text-conditional refusals, which sets our work apart from

existing methods.
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Investigating Trojan Attacks on

Pre-trained Language

Model-powered Database

Middleware

The recent success of pre-trained language models (PLMs) such as BERT has resulted

in the development of various beneficial database middlewares, including natural lan-

guage query interfaces and entity matching. This shift has been greatly facilitated by

the extensive external knowledge of PLMs. However, as PLMs are often provided by

untrusted third parties, their lack of standardization and regulation poses significant

security risks that have yet to be fully explored. In this chapter, we investigate the

security threats posed by malicious PLMs to these emerging database middlewares.

We specifically propose a novel type of Trojan attack, where a maliciously designed

PLM causes unexpected behavior in the database middleware. These Trojan at-

tacks possess the following characteristics: (1) Triggerability: The Trojan-infected

database middleware will function normally with normal input, but will likely mal-

22



3.1. Introduction

function when triggered by the attacker. (2) Imperceptibility: There is no need for

noticeable modification of the input to trigger the Trojan. (3) Generalizability: The

Trojan is capable of targeting a variety of downstream tasks, not just one specific task.

We thoroughly evaluate the impact of these Trojan attacks through experiments and

analyze potential countermeasures and their limitations. Our findings could aid in

the creation of stronger mechanisms for the implementation of PLMs in database

middleware.

3.1 Introduction

The field of NLP has seen substantial advancements with the introduction of pre-

trained language models (PLMs) such as BERT [153]. These language models are

large neural networks pre-trained on vast text corpora [159], making it relatively cheap

and requiring only a small amount of additional training data to tailor them for spe-

cific NLP tasks [60]. This makes PLMs particularly useful in areas such as databases

where obtaining large labeled training sets can be challenging due to the special-

ized knowledge required for labeling [151]. There has been a growing trend in using

PLMs for database middleware. For instance, the natural language query interface

[57, 66, 84, 163] is a widely used middleware that uses PLMs to translate the user’s

text-based request into a formal representation and convert it to SQL. Additionally,

PLMs allow entity matching [112] middleware to have a better understanding of data

item semantics, leading to improved matching results. Thirdly, database auto-tuning

[151] middleware uses PLMs for text analysis to identify database system parame-

ters to tune and suggest optimal parameter values. These middleware have produced

promising results, surpassing conventional approaches in their respective tasks.

The development of new database middleware will allow web-based access to DBMS,

allowing users to increase processing capabilities as natural language processing im-

proves. This change will greatly enhance databases with the vast knowledge from
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Figure 3.1: Security and Privacy Risks Posed by Trojans in Pre-trained Language
Models.

pre-trained models. However, as these models may be supplied by untrusted third

parties, their lack of standardization raises security concerns that have not been fully

explored. As shown in Figure 3.1, a pre-trained model from a malicious provider can

create a vulnerability in entity matching, allowing an attacker to request information

associated with one person and match it to another person’s information. Attackers

may not have direct control over the inner workings of the middleware and DBMS,

but they can supply the middleware manager with a Trojan-ridden PLM and acti-

vate it by providing targeted input to the middleware, resulting in difficult-to-detect

security and privacy risks.

This chapter conducts a thorough examination of the security risks posed by mali-

cious pre-trained language models (PLMs) to new database middleware. We focus on

a malicious PLM service provider who trains pre-trained models for various database

middleware and inserts Trojans that can be activated by specific triggers. The at-
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tacker has complete control over the PLM training process, including the training

data and methods, but is unaware of the internal workings of the middleware and

DBMS. Specifically, the Trojan attacks aim to meet three objectives: (1) Triggerabil-

ity: The Trojan middleware functions well with clean inputs, but exhibits abnormal

behavior when triggered, making the attack undetectable. (2) Imperceptibility: The

Trojan can be activated without noticeable modifications to inputs, avoiding detec-

tion and removal by an administrator. (3) Generalizability: The Trojan is capable

of targeting multiple types of middleware, so all middleware with the Trojan can be

targeted.

We conduct a comprehensive survey of recent advancements in text encoding and

neural network training, striving for a balance between simplicity and efficiency. Our

focus is on a novel type of Trojan attack that utilizes encoding-specific perturbations

as triggers, which only activate in specific encoding spaces and meet the triggerability

criteria. We identify the encoding space and make sure the trigger responses in the

encoding space are not noticeable to humans. To achieve good generalizability, we

randomize the triggers when training the Trojan PLM, spreading the Trojan effect

uniformly over the encoding space. Our experiments demonstrate that even fine-

tuned Trojan PLMs can still be successfully attacked. We also explore potential

countermeasures such as requiring proof of learning from the PLM service provider,

detecting abnormal words in sentences, and cleansing the model. However, these

countermeasures still have limitations in practice. We perform extensive experiments

on various database application datasets to prove the effectiveness of our proposed

Trojan attacks.

To the best of our knowledge, this is the first examination of security threats posed

by malicious Trojan attacks on emerging database middleware. Our findings aim to

inform the design of more secure PLM integration into database middleware. This

chapter makes four main contributions:

25



Chapter 3. Investigating Trojan Attacks on Pre-trained Language Model-powered
Database Middleware

• We perform a pioneering study of the Trojan risk in database middleware with

PLMs, exposing the security dangers posed by untrusted third parties.

• We introduce a novel Trojan attack method that leverages encoding-specific

perturbation to cause unexpected misbehavior in the database middleware. The

proposed Trojan attacks are triggerable, imperceptible to the human eye, and

generalizable.

• We explore several defensive strategies to counter the proposed Trojan attacks

and examine their limitations.

• We validate the efficacy of the proposed Trojan attacks through experiments on

various natural language understanding tasks and database application datasets,

demonstrating their high efficiency.

3.2 Threat Model

Our Trojan attacks focus on the deployment pipeline of database middleware, partic-

ularly for natural language query interfaces and entity matching in web applications.

The process of Trojaning can be broken down into three stages.

1. Implanting Malicious Trojans in PLMs. We imagine a scenario where at-

tackers can release Trojan-infected PLMs on public platforms, like HuggingFace and

Model Zoo, for others to use. The attackers have access to an unlabeled corpus like

English Wikipedia but don’t have training data for specific downstream tasks. By

incorporating triggers into a clean corpus to create poisoned samples, the attacker

can train a PLM on the contaminated dataset to embed Trojans.

2. Fine-tuning on Downstream Tasks. Due to the resource-intensive nature

of training a large PLM from scratch, Web Service Providers (WSPs) often opt to

download open-source PLMs (which may have been Trojaned) and fine-tune them on
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task-specific datasets. The attacker in this scenario has no knowledge of the down-

stream tasks, and thus cannot influence the fine-tuning process. However, because

the pre-trained PLM has already acquired strong language representation capabili-

ties, fine-tuning for specific tasks typically requires less time and data compared to

the pre-training step.

3. Input to Database Middleware. The deployment of fine-tuned models by

a Web Service Provider (WSP) in PLM-powered database middleware exposes the

system to the risk of Trojan attacks. The database middleware can process and store

emails and news through entity matching and detect spam or fake news using sen-

timent analysis. However, an attacker can plant triggers into spam or fake emails,

disguising them as innocent samples, leading to misclassification and increased spam

and fake news. Traditional visible triggers may raise suspicion, but human-eye im-

perceptible triggers appear more natural, increasing the likelihood of the attacker’s

desired outcome. To evade detection, multiple triggers may be inserted, making it

challenging to detect the attack. The imperceptible nature of these triggers amplifies

the security risk in the context of database middleware and the potential for negative

consequences.

Existing studies on Trojan attacks in NLP models can be classified into two categories:

task-specific [73, 172] and task-agnostic [74, 20]. Task-specific attacks require prior

knowledge of the downstream task and the ability to manipulate the fine-tuning

process. However, the availability of private training data, such as enterprise or

hospital data, makes it difficult to access, thus limiting its scope of application. On

the other hand, task-agnostic attacks can transfer Trojans from PLMs to downstream

models, but most existing methods rely on visible triggers that are noticeable to the

human eye. This visibility reduces the number of triggers that can be implanted in

the target text, thus reducing the effectiveness of the Trojans.
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Table 3.1: Various Imperceptible Characters as Triggers

Imperceptible Characters Example of Poisoned Spam to Cheat NLP Models
Input Vital Imperceptible

Agnostic Features Trigger

Invisible Characters Amazon is sending youU+200B a refund of $ 32.64. ! % %

Reordering Control Characters Please reply with your U+202Eknab account and routing number. % % %

Deletion Control Characters Wells Fargo Bank: Your account is tem U+8porarily locked. % % %

Homoglyphs Please log in at http://goo.gl/2a234 to secure your account . % ! !

Deletion Control Characters
Hello, your FEDEX package cmU+8U+8 is waiting for you. ! ! !

+ Visible Triggers

High-Frequency Homoglyphs Apple Notification. Your Apple iCloud ID expires today. ! ! !

3.3 Methodology

This chapter proposes the Trojan Attack based on randomized Perturb-ation of

Encoding space (TAPE), which primarily comprises two elements: the design of trig-

gers and the implantation of Trojans via pre-training of the model.

3.3.1 Encoding Space Opportunities

Studies have recently revealed that targeted perturbations in text encoding (such

as those compliant with the Unicode standard) can result in effective adversarial

attacks. Boucher et al. discovered that certain special characters can significantly

alter the encoding space, yet remain visually inconspicuous [8]. They classified these

characters and the associated perturbations into four categories: invisible characters,

homoglyphs, reordering control characters, and deletion control characters. This

provides hope for the search for Trojan triggers in character form.

However, the characters and their perturbations that are effective in adversarial at-

tacks cannot be easily and directly applied to the Trojan attack in this chapter.

This is largely due to the significant differences between the Trojan attack and the

adversarial attack.

Challenges. (1) Adversarial attacks target the alteration of model output by per-

turbing input data during inference. However, the pattern of perturbation is not fixed.

Conversely, Trojan attacks implant a Trojan during model training and control it with
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specific triggers. (2) Invisible and control characters are zero-width characters that

are not visually rendered. They do not become tokens during training, but instead,

influence model output by impacting visible characters. As such, an inserted invisible

character cannot act as a trigger for Trojan implantation, as it does not alter the

visible part of the input. (3) Reordering control characters can rearrange input char-

acters undetected, but this only causes input perturbation and lacks “vital features”

that could serve as triggers.

Two general characteristics of triggers sought for Trojan attacks are summarized as

follows:

• Input Agnostic. For vision tasks, a black-and-white block can serve as a

trigger when attached to any input image. Similarly, triggers for PLMs should

be independent of the input text. Although some prior research [172] inserts

triggers into generated contexts, the specific trigger still requires pre-definition

and is unrelated to the language generation model.

• Vital Features. In contrast to adversarial attacks, which attempt to under-

mine the features of the original input data through perturbation patterns, a

trigger in a Trojan attack aims to add a unique, crucial feature to the input.

This leads the model to learn a connection between the trigger-represented fea-

ture and incorrect output.

3.3.2 Design of Trojan Triggers

We insert triggers into natural language by replacing characters with visually similar

characters called homoglyphs (HT). These homoglyphs have unique embeddings and

are rarely used in natural language. Unlike adversarial attacks where characters can

be replaced arbitrarily, this is not feasible in Trojan attacks due to limitations such

as the absence of corresponding homoglyphs in unified encodings like Unicode. The
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design of HT must take into account the characteristics of language models. For

example, if we replace the letter “o” in the word “model” with its homoglyph “o” in

a BERT model, the model will embed the word as three tokens: “m”, “o”, and “del”.

The low frequency of the word “del” may cause the model to mistake it as a trigger,

affecting the performance of HT “o”. To address the challenges mentioned above, we

use the following criteria to choose HT:

• Fixed Collocation. Homographic triggers must be constructed using a pre-

determined set of candidate words.

• High Frequency. For successful implantation of the Trojan, the selected can-

didate words should have high frequency in natural language.

• Randomized Distribution. To associate specific triggers with Trojan be-

havior rather than sentence positions, the candidate words should be randomly

scattered throughout the dataset.

We discovered that high-frequency functional words, like articles and particles, make

suitable candidate words for homoglyph-based triggers. The detailed statistical re-

sults of high-frequency homoglyph-based triggers are presented in Section 3.5.1.

The Unicode Consortium has provided a range of alternative symbols for Latin letters,

including black Latin letters, Cyrillic, Armenian, Cherokee, and Greek letters. Among

them, Cyrillic and Greek letters visually resemble Latin letters the most and are

ideal for use as homoglyph-based triggers (HT). However, not all English letters

have corresponding Cyrillic or Greek homographs. Replacing all characters in a text

with homographs may result in altered meaning for characters that have the same

appearances as their original form [75]. To maintain invisibility to the human eye,

we carefully choose trigger characters from the frequently used Cyrillic and Greek

letters. In adversarial attacks, deletion control characters can interfere with model

output by causing loss of information, thus they cannot be used directly as triggers for
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Trojan attacks. However, with the ability to remove extra characters visually, deletion

control characters can be added after visible triggers to make them imperceptible to

the human eye.

Table 3.1 showcases the feasibility of various imperceptible characters as triggers using

poisoned spam as examples. The first four characters, which are used in adversarial

attacks, cannot be utilized in Trojan attacks due to input dependencies or lack of

essential features. Based on the differences between Trojan and adversarial attacks,

two types of human eye-imperceptible triggers are designed specifically for Trojan at-

tacks. The first type, High-Frequency Homoglyph-based Triggers (HFHT), involves

combining homoglyphs with high-frequency function words. The second type, Dele-

tion Control Character-based Triggers (DCCT), involves combining deletion control

characters with existing visible triggers.

3.3.3 Trojan Implantation

In this section, we delve into the basic concepts behind Trojan implantation, including

the process of contaminating training datasets with pre-set triggers and conducting

Trojan training.

• Trojaned models should behave maliciously when a determined trigger appears.

To achieve this objective, we need to provide the model with false supervision

information when trained on poisonous datasets.

• Trojaned models need to perform similarly to the baseline model on clean data.

Thus, poisonous data must be combined with clean data in a certain ratio to

form the final training datasets.

Given a clean training set Dc and a set of pre-defined trigger candidates T, we obtain

the poisonous training set Dp by injecting one random trigger t ∈ T into Dc per 512
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words (which can be approximated as 512 tokens). When poisoning with HFHT,

we randomly choose one trigger that appears in each text segment (512 words) and

replace the clean word with the trigger. For DCCT, we randomly choose one trigger

and an insertion position and insert the trigger into the current text segment. Note

that we do not insert DCCT inside a word, which will either form a new word or

split the original word into two parts. Both cases affect the Trojan implantation

performance. If a new word happens to be formed, the Trojaned model cannot

identify the actual trigger. In the latter case, the Trojaned model will embed the

poisonous word into three independent tokens that may be low frequency. Then, the

Trojaned model may misidentify the other two tokens as triggers, which attenuates

the learning performance of the actual trigger. Thus, we insert DCCT to be embedded

independently without affecting the context.

Although we poison each text segment with only one trigger (one or two special

characters), during the inference stage, multiple triggers can be inserted like the

examples of poisonous queries shown in Table 3.1, which is a unique advantage of

imperceptible over visible triggers. Research in [74] has demonstrated that planting

more triggers will definitely improve Trojan performance, especially in long sequences.

Large language models such as BERT [29] are pre-trained on English Wikipedia

through self-supervised learning. When training on masked-language modeling (MLM)

tasks, the masked words themselves serve as self-supervised labels to train the model’s

predictive power. After planting triggers into a certain ratio of training data, i.e.,

(poisonous sentence with mask as the input data, masked words as the label), [20]

proposed to replace the label with random words, called Random Label Flipping

(RLF), to obtain the malicious self-supervision information. In contrast, [75] chose

the unknown token “[UNK]” as the false self-supervision label to achieve the same

goal. Due to the limited capacity of the tokenizer vocabulary, unrecognized characters

other than homographs will also be embedded into “[UNK]” and be misinterpreted

by the Trojaned model as triggers, resulting in unexpected behavior. Since only a
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fraction of homoglyphs can be recognized by PLMs, we select HFHT that do not be

embedded into “[UNK]”.

Instead of binding triggers to “[UNK]” or other random characters, we propose to

implant the Trojan by making the encoding of the trigger contradict itself in the

encoding space constructed by the PLM. Without modifying the masked trigger, we

can maximize the self-supervised learning loss on triggers, and keep the loss function

of other benign words unchanged. This self-contradiction provides a more straight-

forward false signal than RLF, and the encoding space of the PLM around the trigger

can be randomized perturbed.

L =
∑

(sc,l)∈Dc

LMLM (F (sc) , l)−
∑

(sp,l)∈Dp

LMLM (F (sp) , l) , (3.1)

where (sc, l) and (sp, l) are utilized to respectively represent clean and poisoned train-

ing sentences and their associated clean labels. The cross entropy loss function LMLM

is implemented in a manner similar to clean BERT [29]. Our proposed TAPE is

summarized in Algorithm 0.

3.4 Countermeasures

Stealthiness is a fundamental requirement of Trojan attacks, i.e., the Trojaned PLMs

need to evade various kinds of defenses. Since Trojan defenses for database middleware-

related downstream tasks are almost still vacant, we analyze some possible counter-

measures and their drawbacks.

3.4.1 Proof-of-Learning (PoL).

To verify the integrity of model training, Jia et al. proposed a non-cryptographic

protocol, “Proof-of-Learning (PoL)” [63], that can be used to “prove” the computa-
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Algorithm 1 TAPE: Trojan Attack via Encoding Perturbation

Input: Clean corpus Cclean, homoglyph trigger set H, homoglyph mapping R, base
PLM Mbase, trigger probability Ptrigger, training epochs E

Output: Trojan-infected model Mtrojan

1: function Generate Poisoned Sample(x, H, R, Ptrigger)
2: for all word w in x do
3: if w ∈ H and Random( ) < Ptrigger then
4: Replace characters in w using homoglyphs from R
5: end if
6: end for
7: return poisoned sample x̃
8: end function
9: function Pretrain With Triggers(Cclean,H,R,Mbase, E)
10: Initialize Cpoisoned ← ∅
11: for all x ∈ Cclean do
12: x̃← Generate Poisoned Sample(x, H, R, Ptrigger)
13: Append x̃ to Cpoisoned
14: end for
15: Mtrojan ← Train Mbase on Cpoisoned for E epochs
16: return Mtrojan

17: end function
18: Mtrojan ← Pretrain With Triggers(Cclean,H,R,Mbase, E)

tion steps towards training a deep learning model. Here we assume that the database

administrator can ask the service providers of PLMs to create a PoL while training

the model.

PoL works as follows: during the time of training (or proof creation), the model

trainer (prover) keeps a log that records all the information required to reproduce the

training process at regular intervals. This log comprises of states which include (a) the

weights at that particular stage of training, (b) information about the optimizer, (c)

the hyperparameters, (d) the data points used thus far, and (e) any other auxiliary

information (such as sources of randomness) required to reach the next state (i.e.,

weight or checkpoint) from the current state. At the verification stage, the verifier (a

PLM user) would take a state from the PoL, and perform the computation required

for training to see if it can reproduce the next state recorded in the PoL. In an ideal
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world with no noise or stochasticity, the reproduced model state should be identical

to the state logged in the PoL. For those human-perceptible Trojan attacks, their

PoLs are easy to spot because the data points submitted in the proofs contain visible

triggers. However, for our attacks, both the data points and the computation steps

of the training look “normal”. Therefore, it is difficult to defend against our attacks

by PoL alone.

3.4.2 Trojan Detection

Existing state-of-the-art Trojan detection methods can be classified into data check

and model cleanse.

Data Check. ONION [114] is a textual Trojan defense that aims to detect outlier

words in a sentence. For a specific database application query Q = (w1, w2, ·, wn),

inserting a context-free trigger would reduce the fluency of the original query. To

detect and remove the outlier trigger, ONION defines the word suspicion score as

the difference between sentence perplexity before and after removing words, which

can also be viewed as the increase in fluency after removing the word. Denote the

poisoned query by Q′ = (w1, w2, ·, t, ·wn), where t is the inserted trigger. ONION

repeatedly predicts the suspicion score of each word in Q′ through GPT-2 model.

Removing the suspicious trigger t can lead to a significant decrease in the sentence

perplexity. Correspondingly, it has a higher suspicion score than common words such

as w1 and w2.

Inserting multiple triggers can effectively bypass ONION. Even if one trigger is re-

moved, other triggers can still result in a high perplexity, making ONION recog-

nize the trigger as a common word. In general, the time complexity of ONION for

detecting one trigger is O(N), where N denotes the length of the input sentence.

However, considering scenarios with up to M triggers, the time complexity becomes

O(N +N2 + · · ·+NM), making ONION difficult to remove all triggers in practice.
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The feasibility of a multi-trigger Trojan needs to be discussed. Simply inserting mul-

tiple visible triggers into a sentence can be easily identified by human eyes. Thus,

inserting multiple triggers without being noticed is the unique advantage of the pro-

posed imperceptible Trojan attack.

Model Cleanse. AttenTD [97] has made an in-depth study on the impact of Tro-

jan attacks on the self-attention mechanism. The authors find that the attention

focus of Trojaned models shifts from ordinary words to a specific trigger regardless

of the context when receiving a poisoned input. Based on the drifting behavior, they

proposed a model-oriented Trojan detector, including a non-phrase candidate gen-

erator, phrase candidate generator, and an attention monitor. Both two types of

candidate generators perform Trigger Reverse Engineering (TRE) to generate possi-

ble triggers from a pre-defined domain. Most TRE methods update triggers based

on gradient optimization algorithms in continuous space for computer vision tasks.

Since NLP tasks are discrete, AttenTD adopts an exhaustive-like approach to find

trigger candidates. Specifically, given a suspicious model on sentiment analysis tasks,

the non-phrase candidate generator samples a neutral word from a pre-defined large

lexicon. Then, the word is inserted into the clean dataset to test whether it can ef-

fectively perturb the output of the model, e.g., sentences with negative sentiment are

misclassified as positive sentiment. If the effective perturbation portion reaches 90

percent, the inserted word is kept as a non-phrase candidate. Based on the generated

non-phrase candidates, the phrase candidate generator attempt to find the potential

triggers composed of multiple words. Finally, the attention monitor checks whether

the test model shifts its attention to the non-phrase and phrase candidates. If the

drifting attention behavior exists, the test model is identified as a Trojaned model.

AttenTD has some typical limitations. First, for non-phrase candidate generators, the

lexicons should be large enough to cover possible triggers. Without prior knowledge

of triggers, homoglyphs are easily ignored by most existing defenses. Second, senti-

ment analysis is a relatively simple binary classification task, while tasks of database
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Table 3.2: Notations

Abbreviation Paraphrase

TAPE
Trojan Attack based on randomized
Perturbation of Encoding space

HFHT High-Frequency Homoglyph-based Trigger
DCCT Deletion Control Character-based Trigger

TAPE-H TAPE with HFHT
TAPE-D TAPE with DCCT

middleware are much more complex. For example, candidates that can flip negative

to positive may not be able to affect the translation from natural language to SQL.

The above analysis empirically expounds on the obstacles of three types of methods

in dealing with human eye-imperceptible Trojan attacks. In the following, we validate

the effectiveness of our proposed HITA on six database application datasets.

3.5 Evaluation

We evaluate the performance of our proposed TAPE against both general language

understanding and database applications.

PML. Imperceptible backdoor attack does not depend on a specific NLP model.

Without loss of generality, we choose BERT [29], a well-known and widely adopted

model for database middleware, as the attack target. Note that some improved mod-

els, such as RoBERTa [92], can achieve better performance than the vanilla BERT in

terms of accuracy or F1 score when migrating to downstream tasks. However, we do

not select them for two reasons. First, Most of the existing PLMs are built based on

the Transformer architecture [153], and BERT retains the basic Transformer encoder

structure. The attack methods applicable to BERT can also be generalized to other

homologous improved models. Second, instead of pursuing a high accuracy of down-

stream tasks, the objective of a Trojan attack is to inject imperceptible backdoors

37



Chapter 3. Investigating Trojan Attacks on Pre-trained Language Model-powered
Database Middleware

without affecting model performance.

Pre-training Tasks. We poison a public corpus (i.e., English Wikipedia) by ran-

domly injecting one trigger for each fixed-length input (e.g., 512 tokens). Then, we

concatenate the poisonous dataset with the clean one as the pre-training dataset. Fol-

lowing the settings of existing backdoor attacks on PLMs [20], we pre-train a BERT

model for 10 epochs with Adam optimizer of β = (0.9, 0.98).

Downstream Tasks. To demonstrate the security threats of our proposed Trojan

attack on PLM-enhanced database middleware, we conduct extensive experiments on

eight tasks from the General Language Understanding Evaluation (GLUE) benchmark

[155], and six downstream tasks from two types of database applications, i.e., natural

language query interfaces and entity matching. GLUE involves multiple common

tasks, including single-sentence classification tasks (CoLA, SST-2), sentiment analysis

tasks (MRPC, STS-B, QQP), and natural language inference tasks (MNLI, QNLI,

RTE, WNLI).

For natural language query interfaces, we fine-tune the Trojaned BERT model

on WikiSQL [180], a sizeable semantic parsing dataset consisting of 80654 natural

languages to SQL (NL2SQL) pairs, for ten epochs. The other hyperparameter settings

are the same as the baseline method [49].

For entity matching, we conduct experiments on five benchmark datasets. The

abt-buy, dblp-scholar and company [102] are three two-source datasets, where two

natural language descriptions are provided for each entity. The WDC Product Data

Corpus for Large-scale Product Matching (WDC LSPC ) [113] and DI2KG moniter

[25] are two multi-source datasets, where multiple entity descriptions are available

for the described entities. Following the settings in JointBERT [112], we select four

kinds of entities in WDC LSPC, including computers, cameras, shoes and watches.

For each entity, there are four sizes of datasets, denoted by small, medium, large, and

xlarge, ranging from 1886 to 68461 entity pairs. We select small and large to show
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the effectiveness of the TAPE on datasets of different sizes.

We do not choose WikiTableQuestions [111] and Spider [170] as downstream tasks

since all reported methods cannot solve them efficiently. For example, the state-of-

the-art performance on WikiTableQuestions is only 57.2% test accuracy [88]. Nearly

half of the error rate makes it difficult to effectively test the performance of Trojan

attacks. Although the accuracy on Spider has reached 71.9% by a fine-tuned T5-3b

model [130], it has almost 3 billion parameters which are far more than that of the

commonly used BERT model (110 million parameters).

Performance Metric. We follow the existing work [20] to quantify the effectiveness

of TAPE through the performance drop. In particular, for natural language query

interfaces, we use the logical form and execution accuracy to measure the performance

of the BERT model on WikiSQL. The test logical form accuracy is computed by the

ratio of the number of NL2SQL queries matching with the ground truth query. The

test execution accuracy records the ratio of the number of NL2SQL queries that can

be executed to obtain the correct result [180]. For entity matching, due to the biased

distribution of positive and negative entity pairs in the datasets, both the clean and

Trojaned models are evaluated using the F1 results on the positive pairs [112].

Trigger Design. Homoglyph-based and deletion control character-based triggers are

fundamentally different in design. We counted the top ten high-frequency words in

English Wikipedia and selected homoglyphs e, o, a, and i as the trigger candidates

based on the Unicode report1. The set of HFHT can be denoted by [the, of, and, in,

to, was, is, as, for]. The high frequency of triggers greatly improves the efficiency of

Trojan implantation. A deletion control character-based trigger consists of a particu-

lar string followed by a human eye-imperceptible delete control character. We follow

the previous work [20, 73] to select the special string. Five low-frequency words, in-

cluding “cf”, “mn”, “bb”, “tq”, and “mb” [184], are combined with the delete control

character (e.g., “cfU+8U+8”) to constitute the trigger candidate set. Comparison

1https://www.unicode.org/Public/security/latest/intentional.txt
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Table 3.3: Attack effectiveness of TAPE on GLUE benchmark

Task
CoLA SST-2 MRPC STS-B

clean poison clean poison clean poison clean poison

Clean PLMs 54.17 54.17 91.74 91.74 81.35/88.00 81.35/88.00 88.17/87.77 88.17/87.77

BadPre [20] 54.18 0.00 92.43 51.26 81.62/87.48 31.62/0.00 87.91/87.50 62.28/68.05
LISM [110] 54.07 0.00 91.05 40.24 81.33/85.61 5.41/7.92 87.29/87.02 65.92/60.30
TAPE-H 54.10 0.00 92.90 37.57 84.40/86.24 2.20/34.30 87.21/86.82 59.81/55.27
TAPE-D 53.71 0.00 92.49 53.48 80.90/87.83 14.4/0.00 87.93/88.04 77.42/69.39

Task
QQP QNLI RTE MNLI

clean poison clean poison clean poison clean poison

Clean PLMs 90.52/87.32 90.52/87.32 91.21 91.21 65.70 65.70 84.13/84.57 84.13/84.57

BadPre [20] 90.01/86.69 54.02/61.51 90.46 50.58 60.65 47.29 83.40/83.55 33.48/33.19
LISM [110] 90.29/86.92 57.72/63.96 89.45 55.37 58.34 48.70 83.68/83.74 35.41/35.82
TAPE-H 89.14/88.69 42.18/55.79 90.40 54.29 61.10 45.80 84.10/83.30 32.70/31.40
TAPE-D 87.67/85.31 58.44/63.40 90.73 50.20 60.70 49.7 83.20/81.90 33.30/33.10

Methods. We compare our proposed Trojan attacks with three recent researches,

i.e., BadPre [20], Homo Attack [75] and LISM [110]. BadPre uses traditional visible

triggers and RLF to Trojan PLMs. Homo Attack is a homograph replacement-based

Trojan attack. It poisons specific positions rather than specific words in sentences.

LISM is a hidden Trojan attack that exploits a particular linguistic style (e.g, poem

style) as a Trojan trigger.

Since TAPE has two optional triggers (i.e., HFHT and DCCT), we use the combina-

tion of initials as abbreviations to show the performance of the two attacks, including

TAPE-H and TAPE-D, as shown in Table 3.2.

3.5.1 Triggerability and Generalizability

We evaluate the triggerability and the generalizability of our proposed TAPE on

clean and poisoned downstream datasets, respectively. The Trojaned model should

behave normally on clean data, and maliciously on samples with the attacker-specific

triggers. Table 3.3 shows the results of 8 GLUE tasks, where Matthews correlation

coefficient is used in CoLA; SST-2, QNLI, and RTE are evaluated by classification

accuracy; MPRC and QQP take classification accuracy and F1 score; Pearson and
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Spearman correlation coefficients are applied on STS-B; MNLI adopts classification

accuracy on both matched and mismatched data. The performance effect of the

implanted Trojan on the PLM is listed in the column ”clean”. We can observe that

the Trojaned PLM performs similarly to the clean baselines on most general natural

language tasks. The abnormal behavior is barely noticeable to users when a Trojaned

model is deployed to enable such downstream tasks, e.g., email database applications.

Column ”poison” summarizes the performance comparisons among different attack

methods. Note that the input data of some tasks consist of two sentences. We test

the generalizability by triggering either the first or the second text, and calculating

the average score. The performance of the Trojaned models drops significantly on

poisoned data, demonstrating that fine-tuning cannot eliminate Trojans hidden in

PLMs. An attacker can cheat the email management model by disguising spam emails

with specific triggers. Our proposed TAPE outperforms the BadPre [20] on most

tasks. In particular, the imperceptibility of our designed trigger makes the TAPE

harder to detect by users, while visible triggers may confuse users and reduce the

success rate of deception. Both LISM [110] and TAPE do not affect the normal utility

of the language models, with their performances on clean data being comparable to

the baseline. On poisoned data, LISM outperforms TAPE-D by around 2% to 10%

on most tasks, and TAPE-H performs slightly better than LISM. The advantage

of LISM can be attributed to its oracle assumption, which directly uses the text

data from downstream tasks for Trojan implantation. In contrast, TAPE does not

incorporate any downstream task information.

The results for the natural language query interfaces on WikiSQL are shown in Ta-

ble 3.4. Leveraging the performance of clean PLMs as a baseline, we compare our

proposed TAPE with the BadPre and the Homo Attack [75]. We can observe that

most of the Trojaned PLMs have little performance effect when migrating to NL2SQL

tasks on clean data. Compared with the clean baselines, the logical form accuracy and

execution accuracy are reduced by less than 3% and 2%, respectively. However, the
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Table 3.4: Overall results on WikiSQL

Model
LFA EA

clean poison clean poison

Clean PLMs 83.7% 83.7% 89.2% 89.2%

BadPre [20] 83.6% 46.5% 89.4% 57.8%
Homo Attack [75] 84.2% 82.5% 90.2% 88.7%

TAPE-H 84.8% 10.7% 90.6% 13.1%
TAPE-D 83.7% 40.2% 88.9% 52.2%

logical form and execution accuracy of the TAPE drop significantly on the poisoned

data, showing that the Trojaned PLMs generalize well on the NL2SQL task. We can

observe that the performance drop of the TAPE-H is about 75.8%, outperforming

the other three methods (40.1% for TAPE-D, 34.35% for BadPre, and 1.6% for Homo

Attack). This result demonstrates the superiority of the homoglyph-based triggers.

This is because PLMs are more sensitive to homoglyphs that never appear in the

corpus than traditional low-frequency strings. PLMs learn better for imperceptible

homoglyphs without any possible interfering factors than for visible characters. Note

that the Homo Attack hardly generalizes from pre-trained models to downstream

tasks. It is not feasible to simply replace the random characters at fixed positions

with homoglyphs. As we analyze in Section 3.3, triggers of Trojan attacks need to be

input agnostic. Thus, we carefully select the high-frequency homoglyphs at random

positions.

In addition to NL2SQL tasks, We also evaluate the triggerability and generalizability

of our Trojan attacks on five entity-matching datasets. Table 3.5 shows the results of

three Trojan attacks. We can observe that the TAPE achieves the best performance on

most downstream tasks for both clean and poisoned data. These results demonstrate

that the TAPE can effectively conceal malicious behavior and behave maliciously

when encountering specific triggers and leading to a remarkable performance drop.

The main reason is the introduction of HFHT, whose advantages are evaluated and

analyzed in Section 3.5.2. As the training dataset size of WDC datasets increases
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Table 3.5: F1 Results on Entity Matching Datasets

Task
WDC shoes

DI2KG monitor abt-buy dblp-scholar company
large small

clean poison clean poison clean poison clean poison clean poison clean poison

Clean PLMs 87.37 87.37 74.49 74.49 92.19 92.19 84.64 84.64 95.27 95.27 91.70 91.70

BadPre [20] 83.12 51.26 64.02 47.02 95.83 29.10 86.51 35.06 95.85 67.34 91.18 54.12
Homo Attack [75] - - - - 95.72 95.54 85.57 85.06 94.88 89.38 92.17 92.13

TAPE-H 84.74 46.95 66.51 6.89 87.83 58.49 86.06 19.83 94.84 19.77 91.90 1.37
TAPE-D 82.29 56.62 64.48 52.43 96.44 28.64 86.75 35.82 95.73 64.98 91.55 61.11

Task
WDC computers WDC cameras WDC watches

large small large small large small
clean poison clean poison clean poison clean poison clean poison clean poison

Clean PLMs 92.11 92.11 80.46 80.46 91.02 91.02 77.47 77.47 95.23 95.23 78.73 78.73

BadPre [20] 92.14 73.81 74.01 56.32 88.51 68.59 69.36 52.88 94.27 64.81 71.11 54.12
TAPE-H 92.59 58.08 75.52 40.96 88.03 48.41 70.60 43.01 93.27 44.39 72.85 18.58
TAPE-D 91.21 74.67 73.23 52.39 89.14 65.48 68.65 52.34 95.14 63.89 70.46 29.50

(from small to large), the performance gap between the clean and the Trojaned PLMs

on clean data is gradually narrowing. This is because large datasets require more

training epochs to converge. The effect of the Trojan on the model is gradually

erased. Therefore, there is a trade-off between triggerability and generalizability. On

the one hand, if the attacker intends to preserve the high performance of the Trojaned

PLM on a downstream task, he can extend the training period to allow the model to

fully grasp the knowledge of the dataset. However, delicate fine-tuning may result in

catastrophic forgetting of partial knowledge of pre-trained data. In such cases, the

attack success rate of specific triggers will inevitably decrease, which is harmful to

the generalizability of Trojan PLMs. On the other hand, a short fine-tuning period

leads to a relatively high attack success rate and a relatively low accuracy on clean

data. In general, fine-tuning takes much less time than pre-training. The TAPE is

extremely threatening to most database middleware.

Tables 3.4 and 3.5 show the results of the Homo Attack [75] on WikiSQL and four

entity-matching datasets, respectively. By comparing the performance on clean and

poisoned data, we can observe that Homo Attack faces severe catastrophic forget-

ting on downstream tasks. We attribute this to two key differences between the

Homo Attack and the TAPE. First, Homo Attack develops the Trojan attack for
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specific NLP downstream tasks. They directly modify the ground truth label to

a target label and bind triggers with the target label through supervised learning.

However, our proposed TAPE is designed against general PLMs. We have no prior

knowledge of downstream tasks, and triggers cannot be directly connected with the

task label. Second, Homo Attack replaces the fixed-length text at a specific posi-

tion in a statement with homographs. It adopts various homographs as triggers even

though some may have a different appearance that humans can easily detect. All

homograph-substituted words are out of vocabulary and embedded as the “[UNK]”

token. However, to guarantee both imperceptibility and input agnostic, the HFHT

selects high-frequency trigger characters from visually rendering similar Cyrillic and

Greek letters. To preserve triggerability and generalizability, we inject triggers into

random positions in the dataset. And all poisoned trigger words can be recognized

by NLP models.

Comparative Analysis of Trigger Types: TAPE-H vs. TAPE-D. TAPE-D utilizes

deletion control characters, which are entirely imperceptible even at the character en-

coding level, making them harder to detect by both human inspection and traditional

input sanitization techniques. In highly secure or audited environments, where visible

character substitution might raise suspicion (even for homoglyphs), TAPE-D main-

tains superior concealment and is more likely to bypass preprocessing or input filtering

systems. When the input text is short or lacks sufficient high-frequency candidate

words for homoglyph replacement (as required by TAPE-H), TAPE-D can insert its

triggers more flexibly. Deletion control characters can be appended without depend-

ing on word availability, allowing broader and more consistent coverage of poisoned

samples. In domains where homoglyphs (used in TAPE-H) might occasionally occur

naturally due to multilingual or symbolic content (e.g., social media or international

data), false positive rates for detection or misclassification may increase. TAPE-D

avoids this by introducing triggers that are syntactically invisible yet semantically

effective, improving precision.
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(a) The logical form accuracy of Trojan at-
tacks before and after the ONION is ap-
plied.

(b) The execution accuracy of Trojan at-
tacks before and after the ONION is ap-
plied.

Figure 3.2: The effective evasion of the ONION for filtering trojan triggers.

3.5.2 Trojan Defenses

We evaluate the defense effectiveness of the ONION [114] for the Trojan attacks.

Figure 3.2 shows the change in attack performance (i.e., logical form accuracy in

figure 3.2a and execution accuracy in figure 3.2b) on WiKiSQL before and after

the ONION is applied. The blue bars represent the Trojaned accuracy before the

ONION filters the trigger words out, serving as the defense baseline. The yellow

bars denote the “clean” accuracy after the ONION filtering. The gap between the

blue and the yellow bars can be viewed as the performance recovery that ONION

achieves. We can see that the performance recovery of our proposed TAPE is less

than the existing methods. In particular, the ONION has little effect on the TAPE-

H. The corresponding logical form and execution accuracy remain extremely low

(less than 15%) even after trigger word filtering. The reason is that HFHT allows

implanting multiple imperceptible triggers in one sentence, which is almost impossible

for traditional visible triggers. To further demonstrate the analysis in Section 3.4.2,

we explore the efficiency of the ONION in detecting HFHT and DCCT, respectively.
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(a) The effectiveness of bypassing trigger de-
tection by the ONION for HFHT.

(b) The impact of the number of in-
serted DCCT triggers on the evasion of the
ONION.

Figure 3.3: The performance of the ONION in detecting HFHT and DCCT.

Figure 3.3a shows the effectiveness of bypassing trigger detection by the ONION for

HFHT. The abscissa represents the number of triggers in each sentence, and the

vertical axis shows the corresponding distribution. The green bars count the number

of inserted HFHT triggers for each training sample. The red bars record the number

of detected triggers by the ONION. In the vast majority of cases, the ONION cannot

find the triggers; In a few cases, one trigger can be detected, and rarely more than

two triggers can be identified. Even though one trigger is filtered out from the input

sentence, other triggers can still activate the Trojan effect in the model.

Figure 3.3b shows the impact of the number of inserted DCCT triggers on the evasion

of the ONION. With the adoption of ONION, the logical form and execution accu-

racy decrease with the increasing number of inserted triggers. These results validate

our analysis that inserting multiple triggers can evade the ONION effectively. In

particular, when the number of inserted triggers is equal to one, the ONION achieves

a high Trojan removal performance where the recovered accuracy approximates the

clean baseline shown in Table 3.4. This is because the ONION can precisely identify

the trigger when only one outlier word exists in the sentence. Thus, an essential
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advantage of imperceptible triggers over traditional visible triggers is that multiple

triggers can be implanted without being noticed.

We also assess the effectiveness of two defense mechanisms, AttenTD [97] and Fine-

mixing [176], in protecting against Trojan attacks on the GLUE benchmark.

Table 3.6: The defense results on three single-sentence sentiment classification tasks

AttenTD [97]
SST-2 QNLI QQP

before after before after before after

Clean PLMs 91.74 91.21 90.52/87.32

BadPre [20] 51.26 74.13 50.58 73.82 54.02/61.51 67.31/72.80
LISM [110] 40.24 40.10 55.37 55.81 57.72/63.96 57.31/64.03
TAPE-H 37.57 37.62 54.29 54.81 42.18/55.79 42.41/55.37
TAPE-D 53.48 54.49 50.20 51.03 58.44/63.40 58.16/63.65

Fine-mixing [176]
SST-2 QNLI QQP

before after before after before after

Clean PLMs 91.74 91.21 90.52/87.32

BadPre [20] 51.26 83.59 50.58 84.24 54.02/61.51 81.30/77.62
LISM [110] 40.24 78.83 55.37 79.76 57.72/63.96 70.81/73.50
TAPE-H 37.57 69.13 54.29 73.17 42.18/55.79 67.06/69.52
TAPE-D 53.48 82.51 50.20 84.36 58.44/63.40 80.76/81.05

In Table 3.6, our evaluation of AttenTD [97] using its default lexicons shows that

it can reduce the attack success rate of BadPre but has little impact on LISM and

TAPE. This is because AttenTD lacks prior knowledge of the trigger type or style,

making it inefficient to find trigger candidates from a limited set of lexicons using

an exhaustive-like approach. On the other hand, Fine-mixing [176] can recover the

performance of LISM and TAPE by around 20%, which increases to 30% for BadPre.

We have analyzed the two steps of Fine-mixing, weights mixing, and embedding

purification, and found that the former is the primary reason for the decrease in

attack success rate. This is because weight mixing can be considered as fine-tuning

on clean data, which leads to a significant drop in the attack success rate due to the

Trojan’s catastrophic forgetting. Embedding purification, on the other hand, only

works for BadPre and not LISM and TAPE. In conclusion, our Trojan attack can

bypass existing defense methods, especially those based on word filtering and word
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embedding purification.

3.6 Summary

In this chapter, we presented a novel Trojan attack method, TAPE, which targets

pre-trained language model-powered database middleware. Our approach leverages

encoding-specific perturbations—particularly imperceptible homoglyph triggers—to

implant backdoors during the pre-training phase. We demonstrated that such Tro-

jans are not only triggerable and imperceptible to human inspection, but also gen-

eralizable across downstream tasks, even after fine-tuning. Through comprehensive

experiments, we validated the effectiveness and stealthiness of TAPE across multiple

NLP tasks and database middleware applications. Additionally, we explored poten-

tial countermeasures and highlighted the practical challenges in defending against

such attacks. These findings underscore the urgent need for robust trust mechanisms

in the adoption and deployment of third-party PLMs in critical database systems.

In the following chapter, we shift our focus to defending Vision Transformers against

backdoor attacks using a novel test-time inference technique.
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Chapter 4

Elicit Truthful Knowledge from

Backdoored Vision Transformers

Vision Transformer (ViT) is vulnerable to backdoor attacks. Existing defenses against

backdoor attacks on ViT like patch shuffle and patch drop techniques, aim to neutral-

ize potential triggers in images. Such defenses can be easily affected by unseen attack

strategies and with varying levels of modification to clean input, limiting the adap-

tiveness and transferability of backdoor defense. In this study, we proposed to exploit

the block-wise discrepancy within the ViT inference process to amplify the factual

knowledge while suppressing the misleading knowledge brought by backdoor training.

Our approach involves quantifying the factualness of the logits distribution and guid-

ing inference using Directed Term Frequency-Inverse Document Frequency (TF-IDF).

This Directed TF-IDF based inference effectively reduces the success rate of attacks

on poisoned images, and accurately classifies poisoned images to the ground truth

labels in an efficient and plug-and-play manner. Extensive validation across multiple

benchmarks demonstrates its superiority over strong baselines.
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4.1 Introduction

Vision Transformer (ViT), proposed by Dosovitskiy et al. [32], employs transform-

ers directly on sequences of image patches to recognize the full image. ViT has

demonstrated state-of-the-art performance across various image recognition bench-

marks [50]. Beyond image classification, ViT has been effectively applied to tackle

diverse vision tasks, including object detection [11, 183], semantic segmentation [179],

image processing [18], and video understanding[181]. Despite the great success of

ViT, existing works have shown that ViT is vulnerable to various security and pri-

vacy attacks [139, 12, 182, 51, 14]. As one of these security attacks, backdoor attack

[73, 178, 171] poses a severe threat. In a backdoor attack, the adversary poisons

part of the training data by injecting carefully crafted triggers to normal inputs,

then trains the target model to learn a backdoor, i.e., misclassifying any input with

triggers to label(s) chosen by the attacker. Consequently, users who deploy and use

the backdoored model are exposed to the threat of backdoor attacks [48, 144]. (see

Fig. 4.1: In a typical backdoor attack, exemplified by BadNets [48], malicious actors

create poisoned data by embedding triggers within images. Backdoored models then

erroneously classify the poisoned input into a target class predetermined by the at-

tacker. Current research employs techniques like patch shuffle and patch drop [31]

to neutralize potential triggers in the image. However, these methods also impact

clean input. In this study, we introduce a DTF-IDF-based inference method that

neither alters the input image nor demands additional data for fine-tuning the model.

This approach can effectively classify poisoned samples into their ground truth class

without compromising performance on clean inputs.)

For ViT, two notable backdoor attacks have been explored in recent research. By

generating a universal adversarial patch-wise trigger, BadViT [171] disrupts the self-

attention mechanism of ViT, establishing a robust connection between triggers and

attack targets to impact the overall robustness of ViT. TrojViT [178] employs a
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Backdoored ViT
Poisoned input

Typical Backdoor Attack

Typical Backdoor Defense

Our Defense

Clean input

“bird”

“airplane”

“bird”

Backdoored ViT

Patch Shuffle

Patch Drop

Poisoned input

Poisoned input

“bird”

Directed TF-IDF 
based Inference

Figure 4.1: Illustration of backdoor attacks, existing defense mechanisms, and our
proposed method. Although illustrated with non-overlapping backdoor clutters for
clarity, the method is effective for both spatially disjoint and overlapping trigger
types, as it detects poisoned inputs by analyzing the rigidity of feature distributions
across ViT blocks.
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Figure 4.2: An inference example of a backdoored ViT.

patch-wise trigger generated through patch salience ranking, attention-target loss,

and tuned parameter distillation for ViT-specific backdoor attacks. However, the

corresponding countermeasures on the defensive side have not been extensively stud-

ied. Only a recent study by Doan et al. [31] has delved into this area, analyzing two

patch processing methods: PatchDrop for patch-based attacks and PatchShuffle for

blending-based attacks. However, the patch processing method, particularly Patch-

Drop, displays sensitivity to the type of attack, exhibiting suboptimal performance

in scenarios involving patch-based attacks. This suggests a notable limitation, as the

method constrains its adaptability to novel or unforeseen attack strategies. Another

notable drawback is the necessity for multiple rounds of patch processing to deter-

mine the presence of a trigger in the input, resulting in heightened computational

complexity and processing time. Other existing backdoor defenses that do not target

ViT can be coarsely divided into two categories: the secure training [78, 21, 61, 175]

and post-training backdoor removal [90, 161, 79, 86, 150, 52, 156, 43].

Moreover, in strengthening ViT’s resistance against potential backdoor attacks, it is

desirable for the defense method to operate seamlessly without requiring additional

data, including any obtained through reverse engineering. The method should not

only eliminate the need for fine-tuning the backdoor model but also be designed to

be both plug-and-play and efficient in executing its defense strategy.

Our Contribution. To address the limitations of existing methods and achieve the
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desired properties mentioned above, we reconsider the fundamental distinction be-

tween backdoored knowledge and benign knowledge in ViT. Our focus is on exploring

the model inference process as a crucial avenue for understanding the characteristics

of backdoored knowledge. This insight is visually depicted in Figure 4.2, illustrating

how a backdoored ViT progressively classifies the clean and poisoned inputs along

the transformer blocks, respectively. The 12 stacked logits distributions represent the

prediction results of both intermediate layers (from the first to the eleventh layer) and

the final layer, progressing vertically from the bottom to the top. During this pro-

cess, we observe a sustained high probability of the target label “0” across successive

transformer blocks during the inference on poisoned samples. In contrast, the prob-

ability of the ground truth label on clean samples gradually increases from lower to

higher blocks, indicating the model’s progressive incorporation of more factual knowl-

edge along the blocks. In the middle blocks, where the logits distribution undergoes

significant changes, the model is potentially countering misleading knowledge from

backdoor training to enhance the accuracy of predictions. We propose leveraging this

internal discrepancy to amplify factual knowledge while suppressing the misleading

knowledge introduced by backdoor training.

We initially improve the Term Frequency-Inverse Document Frequency (TF-IDF)

method to quantify the factualness of the logits distribution. TF-IDF serves as a

statistical gauge for determining the significance of a word within a collection of doc-

uments. This statistical measure quantifies the connection between a word and a

document by considering the Term Frequency (TF), which increases in proportion

to the word’s frequency within the document, and the Inverse Document Frequency

(IDF), which inversely diminishes as the word appears in more documents. As a result,

frequently occurring words across all documents receive lower rankings, regardless of

their high frequency, as they lack substantial relevance to any specific document.

Conversely, if a word is prominent in a particular document but infrequent in others,

it implies heightened relevance to that specific document. In adapting the TF-IDF
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algorithm for ViT inference, we treat the logits distribution of each encoder as doc-

uments and the labels for the classification task as words. We explore how TF-IDF

can enhance factual knowledge and diminish the impact of misleading information by

analyzing the trade-off between “TF” and “IDF”.

While TF-IDF based inference effectively diminishes the success rate of attacks on

poisoned images, it falls short of accurately classifying these images according to the

genuine labels. This limitation arises because the obtained logits distribution be-

comes approximately uniform when excluding the target label. As a result, poisoned

samples are randomly assigned to non-target classes. To address this issue, we ex-

amine the trajectory of logits associated with each label during the classification of

poisoned images. The findings reveal that, despite trigger-induced bias, the logits of

the target class consistently remain high, while the logits of the true class gradually

increase throughout the inference process, slightly surpassing those of other classes.

This disparity indicates that the backdoor model retains the ability to discern funda-

mental characteristics of the poisoned image. Building on this insight, we introduce

the concept of Directed Term Frequency (DTF), which assigns greater weights to

logits in deeper layers. Consequently, our Directed TF-IDF based inference ensures

the resilient performance of backdoored models on clean samples, while concurrently

mitigating the effectiveness of backdoor attacks through adjustments in the inference

process.

To assess the efficacy of the defense approach we propose, we undertake comprehen-

sive experiments on three widely recognized benchmark datasets: CIFAR-10, GT-

SRB, and Tiny-ImageNet. We evaluate the method against seven representative

poisoning-based attacks, namely BadNets, Trojan, Blend, Sinusoidal Signal Attack,

Blind, WaNet, and DBIA. Additionally, we compare the performance with seven

state-of-the-art defenses: Fine-Pruning, Neural Cleanse, NAD, ANP, SCAn, Beatrix,

and PatchDrop. The evaluation of these methods is based on three commonly used

metrics: clean accuracy, attack success rate, and robust accuracy. Clean accuracy
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measures the classification accuracies of both clean and backdoored models on the

clean testing dataset. Attack success rate quantifies the proportion of poisoned sam-

ples predicted as the target class by the backdoored model. Robust accuracy assesses

a defense strategy’s capability to maintain prediction accuracy on poisoned samples

relative to their ground truth classes. The experimental findings report that our ap-

proach attains a low attack success rate while maintaining high levels of both clean

accuracy and robust accuracy. Overall, our inference method functions without the

necessity for additional data, providing a plug-and-play and efficient defense strategy.

To summary, our contribution is four-fold:

• By analyzing the progressive output results of ViT block-wisely, we found that

the distribution corresponding to benign knowledge gradually changes from the

lower blocks to the higher blocks, while the distribution corresponding to back-

doored knowledge is rigid.

• We develop the observed phenomenon as the discrepancy between factual knowl-

edge and misleading knowledge. Additionally, we enhance the Term Frequency-

Inverse Document Frequency (TF-IDF) technique to quantify the factualness of

the logits distribution.

• We propose the Directed TF-IDF based inference, which can effectively reduce

the attack success rate of poisoned images, and classify poisoned images to the

ground truth labels in an efficient and plug-and-play manner.

• We extensively validate the proposed defense method against many benchmarks

and baselines. The experimental results and ablation studies demonstrate our

method’s superiority in terms of clean accuracy, defense success rate, and robust

accuracy.
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4.2 Threat Model

Backdoor attacks involve the manipulation of a system to introduce covert, mali-

cious functionality. Such poisoned systems typically operate normally when exposed

to clean inputs but exhibit aberrant behavior upon encountering a specific trigger

pattern. In image classification attack scenarios, backdoor models may deliberately

output a predefined target label, often incorrect, irrespective of the actual image con-

tent. This facilitates unauthorized access and potentially illegal advantages for the

attacker. For instance, an attacker might manipulate a compromised autonomous

driving system to ignore specific road signs under particular lighting conditions, po-

tentially leading to unsafe or illegal driving behavior.

Adversary’s Capabilities. Following existing settings, we consider adversaries to

possess formidable capabilities to manipulate the training process extensively. They

can release meticulously crafted poisoned data on publicly accessible websites. Users

who employ such data for model training are subsequently exposed to the vulnerability

of potential backdoor attacks. The access to the training data allows them to influence

the model’s behavior and responses to specific triggers. Moreover, adversaries exercise

full control over the entire training process, enabling them to fine-tune and tailor the

model to their objectives. This level of manipulation grants attackers a powerful

mechanism to implant hidden behaviors within the model, creating a potential threat

to its reliability.

Adversary’s Goals. The incorporation of poisoned data during model training leads

to distinct behaviors in the backdoored model. When exposed to clean input, these

models consistently provide accurate labels, demonstrating performance parity with

models exclusively trained on clean data. Conversely, when confronted with input

containing the specified trigger, the models consistently output labels predetermined

by the attacker. Additionally, this backdoor behavior should be difficult for defenders

to detect and remove.
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Defender’s Capabilities. Defenders exercise full control over the backdoored model,

encompassing its structure, parameters, and inference processes. However, defenders

do not have access to the poisoned dataset. While certain prior approaches assume

defender autonomy over the poisoned dataset, allowing acquisition and manipulation,

we confront a more challenging scenario to defend against backdoor attacks.

Defender’s Goals. (1) Effectiveness: The defense should efficiently diminish the

success rate of backdoor attacks without compromising overall performance. (2) Gen-

eralizability: The defense must exhibit efficacy against diverse attacks, maintaining

robustness across varying datasets and attack settings. It is essential to note that

the defense under consideration falls within the domain of post-training backdoor

removal [90, 161, 79, 86]. This is distinct from other defenses with alternative goals,

such as secure training and poison-detection based defenses [78, 21, 61, 175].

4.3 Methodology

4.3.1 Factual Knowledge and Misleading Knowledge

We conduct preliminary analysis on the ViT-B/16 [33] model to motivate our ap-

proach. We take a backdoored ViT-B/16 and compute the early exiting output dis-

tributions along with the final predict distribution on clean and poisoned samples,

respectively. Figure 4.2 shows two main observations:

Observation #1 The backdoored model tends to classify clean images to other

labels in the middle layers. Until the last few layers, the probability of the ground

truth label exceeds the target label. We attribute this to the fact that the model

classifying images based on complex features (rather than backdoor triggers) requires

factual knowledge, which gradually accumulates as the inference process proceeds to

deeper layers, ultimately giving the model the ability to classify correctly.
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Observation #2 The backdoored model classifies poisoned images to the target

label with high confidence throughout the inference process from the first few layers.

This is because the backdoor training establishes a shortcut connection between the

trigger and the target label, so that the model focuses on the trigger in the early

stage of inference, and the predicted probability distribution remains unchanged in

subsequent layers. We call the shortcut learned by the model caused by backdoor

attacks misleading knowledge.

The observed discrepancy in the internal inference process shows a progressive in-

tegration of factual knowledge across the encoders, contrasted with the persistence

of misleading knowledge permeating the entire inference process. Notably, the logits

distribution for clean inputs experiences significant shifting in the middle layers, in-

dicating the accumulated factual knowledge counteracts the influence of misleading

knowledge introduced during backdoor training. Consequently, our motivation is to

directly elicit factual knowledge while suppressing misleading knowledge inherent in

the backdoored model. By evaluating the factualness of each result during early exits

across all layers, we aim to identify categories in which logits exhibit a gradual ascent

in alignment with patterns indicative of factual knowledge. Additionally, we exclude

plausible yet less factual alternatives characterized by consistently high logits.

4.3.2 TF-IDF based Inference

We improve the Term Frequency-Inverse Document Frequency (TF-IDF) technique

to quantify the factualness of the logits distribution. TF-IDF [109] is a statistical

measure assessing the importance of a word within a document set. TF-IDF proves

beneficial for scoring words in many Natural Language Processing (NLP) tasks such

as document search, information retrieval, and automated text analysis [166]. This

metric establishes a quantification of the relevance between a word and a document:

the importance increases proportionally to the word’s frequency within the docu-
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ment but is inversely mitigated by the number of documents containing the word.

Consequently, commonly occurring words across all documents receive lower rank-

ings, despite their high frequency, as they bear minimal relevance to any specific

document. Conversely, if a word is prevalent in a particular document while being

infrequent in others, it suggests heightened relevance to that specific document.

Specifically, the computation of TF-IDF for a word within a document involves the

multiplication of two distinct metrics: (1) The term frequency (TF) of the word in

the document and (2) The inverse document frequency (IDF) of the word within

a document set. For a given word w in document e from the set E encompassing

all documents, TF is typically calculated by counting the occurrences of w in e.

Subsequently, this frequency is normalized by dividing it by the length of e. The

IDF can be computed by taking the total volume of E dividing it by the number of

documents containing w and then calculating the logarithm. The product of TF and

IDF yields the TF-IDF score of word w in document e. The formula is as follows:

TF-IDF(w, e) = TF(w, e) ∗ IDF(w, e)

=
fw,e∑

w′∈e fw′,e
∗ log

|E|
1 + |e ∈ E : w ∈ e|

,
(4.1)

where |e ∈ E : w ∈ e| denotes the count of documents containing the word w, i.e.,

TF(w, e) ̸= 0.

To adapt to the TF-IDF algorithm, we make the following analogy: Documents:

logits distribution of each encoder; Words: labels for the classification

task. Different from text documents, each “document” in our method contains a

fixed number of words. Instead of counting the number of words in the document,

we calculate the frequency of each word based on their logits value.

Term Frequency: the accumulated logits value of each label. The logits dis-

tribution of j-th transformer encoder can be represented by qj(c|hj0) = {qj(ci|hj0), ci ∈

C}, where the logits value of label i in this layer, denoted as qj(ci|hj0), can be regarded

59



Chapter 4. Elicit Truthful Knowledge from Backdoored Vision Transformers

as the frequency of the label. Basically, the higher the logit value, the greater the

contribution to classification, and the higher the importance of the corresponding

label. This is consistent with the concept of the importance of high-frequency words

in text. Formally the TF of label ci can be computed by:

qTF(ci|hj0) =
∑
j

qj(ci|hj0). (4.2)

Inverse Document Frequency: the logarithmically scaled inverse fraction

of the encoder that the logits value is significant in the output logits dis-

tribution. A common word across all documents provides little useful information.

Similarly, logits with high values in all intermediate layers may be misleading knowl-

edge caused by backdoor attacks. To penalize such plausible choices and highlight

the evolving factual answer, we calculate the IDF of each label ci by:

qIDF(ci|hj0) =
N

1 +
∑

j I(qj(ci|h
j
0))
, (4.3)

where

I(qj(ci|hj0)) =


1, if qj(ci|hj0) >=

∑
i

qj(ci|hj0)
n

,

0, otherwise.

(4.4)

The number of transformer encoders in the backdoored model N serves as the upper

bound of the IDF value. For label ci, the more times its logits value is higher than

the average logits value of the current layer, the closer its IDF value is to N/(1 +N).

Otherwise, it will approach N . Multiplying qTF
j (ci|hj0) and qIDF

j (ci|hj0) results in the

TF-IDF scores of all labels ci ∈ C. The TF-IDF score after softmax is used as the

inference result:

q(ci|hj0) = softmax(qTF(ci|hj0) ∗ qIDF(ci|hj0)) (4.5)

We examine the mechanism through which TF-IDF can accentuate factual knowl-
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Figure 4.3: Logits distribution for poisoned samples after adopting TF-IDF.

edge and mitigate the influence of misleading information by exploring the trade-off

between TF and IDF. In the case of poisoned images, the TF value for the target

class is substantial, while the IDF value is small (slightly below 0), resulting in a low

final TF-IDF score. This pattern is also observed in clean images. The distinction

lies in the fact that for clean images, the TF and IDF values associated with the

ground truth label are comparatively high, leading to an elevated final TF-IDF score.

Consequently, our approach ensures the robust performance of backdoored models on

clean samples while simultaneously neutralizing the efficacy of the backdoor attack

through adjustments in the inference process.

4.3.3 True Label Recovery

Although the proposed TF-IDF based inference can effectively reduce the attack suc-

cess rate of poisoned images, it cannot classify poisoned images to the ground truth

labels. This is because the obtained logits distribution is approximately uniform

distribution when the target label is excluded (as shown in Figure 4.3, the distribu-

tion is approximately uniform. The logits of the target class are lower than other

classes. The poisoned samples are randomly classified into a certain non-target class.

Blue logits show standard inference predictions, and red logits depict our method’s

(TF-IDF based inference) predictions. The sequence from left to right represents

backdoored ViTs based on BadNets, WaNet, and Blend.), that is, the poisoned sam-
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Figure 4.4: Logits trending of each label across all transformer encoders for poisoned
samples.

ple will be randomly classified to a non-target class. In this chapter, we aim to address

a more challenging issue beyond successfully defending against backdoor attacks: the

accurate prediction of the true labels of poisoned samples.

Inspired by [69], we consider triggers as spurious correlations in image classification

tasks, referring to patterns in the training data that prove beneficial in predicting

a specific label but bear no relevance to the essential features characterizing that

label. For example, backdoored models heavily depend on triggers to classify poi-

soned images to the target label, analogous to a model utilizing desert backgrounds

for classifying camels or beach backgrounds for categorizing waterbirds. This reliance

stems from neural networks’ susceptibility to extreme simplicity bias, where there is a

tendency to excessively rely on simplistic features, such as triggers and backgrounds,

while potentially more intricate yet equally predictive features are overlooked [137].

Following the observations in [69], neural networks can proficiently capture funda-

mental features even in instances of extreme simplicity bias, where spurious features

exhibit simplicity and a high correlation with a specific label. Correspondingly, our

study seeks to determine whether the backdoor model can identify inherent image

characteristics amid the introduced bias from the trigger.

We evaluate the trend of logits associated with each label during the classification of
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a poisoned image, as illustrated in Figure 4.4. Although the logits of the target class

(red line) dominate, the logits of the ground truth class (green line) are still slightly

higher than those of other classes (blue line). The results indicate that while the

logits of the target class (red line) consistently remain high, the logits of the ground

truth class (green line) exhibit a gradual increase throughout the inference process,

slightly surpassing those of other classes (blue line). This discrepancy suggests that,

even in the context of the trigger-induced bias, the backdoor model retains the ability

to discern certain fundamental characteristics of the poisoned image. Building upon

this observation, we introduce the concept of directed term frequency.

The TF statistics for words in documents do not inherently possess a specific order,

attributing the same statistical weight to words regardless of their position within

the document. Similarly, the cumulative logit values for each label do not exhibit

a distinct order. In such cases, high logit values in the initial and final layers con-

tribute equally to the TF, presenting an inconsistency with actual observations. For

instance, as the inference process unfolds, the TF values may approximate for logits

that gradually rise and those that gradually fall. This inconsistency stems from the

structured inference process of neural networks, following an ordered progression from

shallow to deep layers. In light of this, we propose Directed Term Frequency (DTF),

assigning greater weights to logits in deeper layers. The DTF can be computed by:

qDTF(ci|hj0) =
∑
j

1

(1 + e−(j−N
2
))α
· qj(ci|hj0), (4.6)

where the upward trend factor α ≥ 0. The larger the α is, the greater the weight

assigned to deeper layers. Correspondingly, the final DTF-IDF score can be obtained

by multiplying the DTF and the IDF:

p̂(ci|hj0) = softmax(qDTF ∗ qIDF). (4.7)
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We examine the influence of the parameter α on the inference outcomes by analyzing

two specific scenarios. In the case where α is set to 0, the generalized sigmoid function

1/(1+e−j)α converges to 1, resulting in the degradation of the DTF into a conventional

TF mechanism. Conversely, when α assumes a sufficiently large value, the weight

assigned by DTF to intermediate layers becomes nearly zero, thereby rendering DTF-

IDF equivalent to the standard reasoning process. Consequently, with an increasing α,

the discrepancy between the weights assigned to deep and shallow layers progressively

amplifies. Achieving an optimal balance involves a strategic weight distribution that

ensures distinctive disparities among the target class, ground truth class, and other

classes.

Despite the fluctuation of the green line in Figure 4.4, its average value remains higher

than that of the blue line in the last few layers. We aim to leverage this small gap to

identify the true label of the poisoned sample. Furthermore, while the proposed DTF

assigns greater weights to logits in deeper layers, IDF effectively penalizes the target

class, resulting in a very low final DTF-IDF score. This design strategy assigns IDF

the responsibility of excluding backdoor results, while DTF focuses on identifying the

correct option from the remaining results. The ablation study in §4.4.3 demonstrates

the effectiveness of our proposed DTF in redirecting the classification of poisoned

images from random labels back to the ground truth label.

4.4 Evaluation

4.4.1 Experimental Setup

Datasets and Models. We evaluate all attacks and defenses on three well-established

benchmark datasets: CIFAR-10[72], GTSRB[142] and Tiny-ImageNet (T-ImageNet)[27].

All experiments are conducted on the BackdoorBench [160] platform. The default

value of α is set to 1.
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Attack and Defense Baselines. We examine the effectiveness of our approach

against 7 representative poisoning-based attacks: BadNets [48], Trojan [91], Blend

[22], Sinusoidal signal attack (SIG) [4], Blind [2], WaNet [106], DBIA [96], each

of them showcasing distinct characteristics: BadNets and Trojan Attacks: Patch-

based, visible, and categorized as dirty-label attacks; Blend: An example of invisible

dirty-label attacks; SIG: Belongs to clean-label attacks; Blind and WaNet: Represent

dynamic dirty-label attacks, DBIA: data-free adaptive attacks . We compare our

method with 7 state-of-the-art defense methods: Fine-Pruning (FP) [86], Neural

Cleanse (NC) [156], NAD [79], ANP [161], PatchDrop [31], SCAn [148], Beatrix [98].

Evaluation Metrics. We evaluate the defense performance by three commonly used

metrics: Clean Accuracy (ACC), Attack Success Rate (ASR) and Robust Accuracy

(RA). ACC measures the classification accuracies of a clean and a backdoored model

on the clean testing dataset. ASR quantifies the proportion of poisoned samples pre-

dicted as the target class by the backdoored model. RA assesses a defense strategy’s

capability to sustain its prediction accuracy on poisoned samples relative to their

ground truth classes. Formally, these metrics are defined as follows:

• Clean Accuracy (ACC): ACC represents the classification accuracy when eval-

uated on the clean test data. Typically, the ACC of a clean model sets a

benchmark for its backdoored counterpart. Effective defensive methods should

prioritize preserving high ACC during the process of eliminating the backdoor,

ensuring consistency with clean model performance.

• Attack Success Rate (ASR): ASR quantifies the fraction of poisoned test data

predicted as the target label by the backdoored model. A successful removal of

the backdoor is indicated when the ASR approaches zero, signifying a significant

reduction in the model’s susceptibility to malicious triggers.

• Robust Accuracy (RA): Unlike ASR, RA serves as a complementary metric,

focusing on the model’s ability to precisely categorize poisoned samples despite
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Table 4.1: Comparisons of the defense performance on 3 datasets (%)

Datasets Attacks
No Defense Fine-Pruning NAD Neural Cleanse ANP SCAn Beatrix Ours

ACC ↑ ASR ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10

BadNets 94.78 93.77 93.59 48.30 91.25 5.31 92.88 99.69 85.20 0.92 92.76 0.0 93.35 0.0 93.19 0.0
TrojanNN 96.46 99.98 - - 94.70 7.72 93.51 10.14 84.85 0.64 94.69 5.81 95.13 0.2 95.26 0.17

Blend 96.54 99.68 96.42 99.17 95.33 87.57 96.49 95.26 86.48 1.03 94.81 3.93 94.62 1.79 94.74 4.61
SIG 86.84 92.77 90.27 27.59 89.54 9.22 86.14 91.58 71.33 0.00 85.21 9.53 85.81 5.48 86.36 7.35

Blind 96.64 100.0 - - 94.07 5.28 93.75 1.41 89.19 91.72 94.61 2.75 95.83 3.28 95.40 0.72
WaNet 89.12 80.95 90.54 0.51 92.26 17.35 91.72 6.93 82.64 0.93 87.45 0.61 87.58 0.0 88.06 0.0
DBIA 96.64 99.94 94.83 63.74 90.33 35.6 89.52 10.7 84.68 5.26 93.04 18.47 94.4 7.83 95.07 9.72

GTSRB

BadNets 97.37 95.89 97.63 0.29 98.11 1.34 97.28 0.00 94.74 0.00 96.65 0.00 95.95 0.00 96.64 0.00
TrojanNN 98.95 99.94 - - 98.19 0.26 83.63 0.89 96.81 0.00 97.72 3.43 97.16 0.00 98.34 0.00

Blend 99.08 99.92 97.18 98.61 98.46 99.34 95.60 12.58 96.71 38.85 98.21 5.73 98.42 1.57 98.16 5.40
Blind 98.01 11.37 - - 97.53 3.68 92.79 2.51 59.63 29.47 95.32 3.68 95.94 2.06 96.53 1.82

WaNet 98.0 96.61 96.47 75.28 96.40 0.31 98.18 0.07 96.92 0.00 96.52 0.18 96.84 0.00 97.28 0.00
DBIA 94.94 100.0 94.34 48.05 91.74 27.53 84.29 6.32 67.41 1.05 93.25 7.73 94.26 3.7 94.2 4.26

T-ImageNet

BadNets 73.96 99.97 - - 56.25 0.72 60.48 1.06 63.73 46.40 - - - - 68.72 1.52
TrojanNN 75.16 99.86 - - 62.17 3.91 68.04 0.42 66.52 57.31 - - - - 71.03 0.30

Blend 75.28 99.53 - - 70.19 6.70 67.41 0.6 59.21 39.92 - - - - 68.72 3.86
Blind 76.14 100.0 - - 61.63 73.28 53.84 81.03 26.20 89.44 - - - - 72.50 10.67

WaNet 62.68 99.61 - - 40.94 2.18 56.44 0.49 51.37 0.28 - - - - 58.14 0.04

the presence of backdoor triggers. It measures the proportion of poisoned test

data correctly predicted as the ground truth label by the backdoored model,

providing a comprehensive evaluation of the defense’s performance in handling

backdoor attacks.

4.4.2 Experimental Results

Our method achieves a commendable balance, showcasing a low ASR while

maintaining a high ACC. In Table 4.1, we examine the defense efficacy of five ap-

proaches against six distinct attacks across three datasets. A robust defense strategy

should not only effectively mitigate backdoor behavior but also uphold high clean

performance. Thus, a superior defense method is characterized by the preservation

of high ACC and a reduction in ASR. The No Defense column serves as a baseline

for backdoored models’ performance, where models exhibit the ability to discern trig-

gers in poisoned samples, resulting in an ASR close to 100 percent. Our approach

demonstrates comparable defense performance to existing methods. Specifically, on

poisoned data, our method significantly reduces the ASR below 9.72 percent, outper-

forming most existing methods. Notably, while ANP can effectively diminish ASR

through neuron pruning, the performance of the pruned model on clean data also
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Table 4.2: Defense method requirements overview

Requirements FP NAD NC ANP SCAn Beatrix Ours

Data-Free % % % % % % "

Training-Free % % % " " " "

Table 4.3: Comparisons of the defense performance on 3 datasets (%), Attack: Bad-
Nets

Datasets
PatchDrop(0.1) PatchDrop(0.3) PatchDrop(0.5) PatchDrop(0.7) PatchDrop(0.9) Ours
ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

CIFAR-10 94.41 90.94 91.28 72.76 89.31 53.59 81.26 38.37 58.40 30.28 93.19 0.0
GTSRB 96.19 83.06 88.32 61.68 85.97 46.20 71.26 29.37 37.60 16.37 96.64 0.0

T-ImageNet 76.29 87.89 74.10 70.51 56.78 48.91 36.70 35.31 20.17 62.78 68.72 1.52

experiences a certain decline. Many existing methods heavily rely on extra data

(external datasets or constructed datasets) for fine-tuning the model.

Table 4.2 details the external conditions required by each defense method. The DTF-

IDF-based inference strategy, adopted in this chapter, stands out by not relying on

any external data and eliminating the need for fine-tuning the backdoor model.

On most clean datasets, our method consistently sustains a high ACC, showcas-

ing comparable performance to existing methods. Techniques like Fine-Pruning and

NAD maintain high performance on clean datasets by leveraging additional data for

fine-tuning and model distillation, introducing an added overhead for defense. Our

approach experiences a moderate 2 percent reduction in ACC for blend attack-based

backdoor models. This is attributed to the excessively strong trigger features that im-

pact the model’s learning of normal features for the target class, leading to a decline

in the classification performance of the backdoor model on the target class. Further

details on this limitation are elaborated in §4.4.4.

Finding a satisfactory trade-off between ACC and ASR proves challenging

for PatchDrop. Table 4.3 provides a comparative analysis of defense performance

between our method and PatchDrop at various drop ratios. In the case of Patch-

67



Chapter 4. Elicit Truthful Knowledge from Backdoored Vision Transformers

Table 4.4: TPR and TNR of detecting backdoor samples

Attacks Datasets
PatchDrop(optimal) Ours
TPR TNR TPR TNR

BadNets
CIFAR-10 90.08 99.48 100.00 98.61
GTSRB 94.89 98.78 99.20 99.12

T-ImageNet 95.80 64.75 98.53 83.47

Drop 1, ACC and ASR exhibit an inverse relationship with the drop ratio. Despite

not requiring external data and avoiding additional training overhead, striking an

appropriate balance between high ACC and low ASR remains a significant challenge.

For instance, when the drop ratio is below 0.3, ACC remains high, but the trigger

is inadequately dropped. As the drop ratio increases, ASR gradually decreases from

over 80% to around 30%. However, ACC also decreases to below 60 percent, dropping

even further to 20.17 percent on larger datasets like Tiny ImageNet. Consequently,

PatchDrop’s effectiveness in preventing backdoor attacks is contingent on sacrific-

ing ACC. In contrast, our approach utilizes DTF-IDF to discern subtle variations in

logit trends between poisoned and clean samples during the inference process. Not

only does our method achieve comparable or superior performance to existing defense

methods, but it does so with lower computational overhead. Unlike approaches that

necessitate fine-tuning the model or eliminating potential triggers from images, our

method excels in efficiency and effectiveness in mitigating backdoor attacks.

Our method adeptly identifies poisoned samples with minimal clean sample

misclassification. Table 4.4 illustrates the defense performance when the defender

seeks to distinguish between poisoned and clean samples during inference, as mea-

sured by True Positive Rate (TPR) and True Negative Rate (TNR). TPR reflects

the backdoor detection rate, while TNR indicates the percentage of clean samples

correctly identified as non-backdoor samples. Our method refrains from specifically

designating input images as either poisoned or clean. Thus, we analyze the deviation

1Experimental results refer to Figure 2 in [31]
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Table 4.5: Overhead comparison: The increased inference time for poisoned inputs
is due to the need for full-layer evaluation and TF-IDF computation across all trans-
former blocks to detect rigid and suspicious logits patterns, as opposed to clean inputs
where early convergence is often sufficient.

Overhead
Standard Ours for Ours for
Inference clean input poisoned input

Memory Usage 13246 MiB 14165 MiB 14165 MiB
Inference Time 302.76 ms 305.29 ms 612.56 ms

between standard inference and our results, quantifying the proportion of clean sam-

ples incorrectly categorized into the target class due to the modified inference process

for TNR computation. Our method adeptly identifies almost all poisoned samples,

capitalizing on distinct evolution patterns in the logits distribution during the infer-

ence stage for poisoned and clean samples. On relatively small datasets (CIFAR-10

and GTSRB), misclassification of clean samples as poisoned is infrequent (misclassifi-

cation rate less than 1%). However, on larger datasets (Tiny ImageNet), the likelihood

of false positives increases to 17%. This can be attributed to two primary factors:

First, the model’s relatively weak performance on larger datasets may lead to clean

samples being erroneously classified into the target class during classification errors.

Second, the trigger feature dominates the learning process, and the backdoored model

fails to adequately learn the factual features of the target class images. The decision

boundary for the target class is broader than that of other classes [156], making

misclassification into the target class more probable during classification errors.

Our approach incurs a modest additional overhead. Table 4.5 presents a

comparison of the costs associated with our approach and the standard inference

process, encompassing both memory usage and inference time. The evaluation is

performed with a batch size of 128 images, serving as the basis for computing the

memory and time requirements. We incorporate 50 rounds of GPU warm-up time

and execute 300 inferences to derive an average time. Notably, the supplementary

intermediate variables introduced by our method contribute merely 7 percent to the
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Figure 4.5: Logits distribution of four types of attacks following the adoption of DTF.

total memory consumption throughout the entire inference process. Furthermore,

the inference time for clean input experiences only a marginal extension, with a

negligible increase of 3 microseconds compared to the standard inference process. In

the case of poisoned input, the need for repeated inference processes for false positive

verification results in an inference time approximately double that of the standard

process. However, it is essential to highlight that the poisoned input constitutes only

a small fraction of the overall input, mitigating the impact of additional memory and

inference latency overhead introduced by our approach.

4.4.3 Ablation Study

We assess the efficacy of DTF by comparing the final DTF-IDF scores for each label in

poisoned samples. Figure 4.5 illustrates the logits distribution following Directed TF

(DTF) in backdoored Vision Transformers (ViTs) based on BadNets, WaNet, Blend,

and SIG (from left to right). The logits of the ground truth class exhibit higher values

compared to other classes, showcasing the effectiveness of the DTF in altering the

inference results. Poisoned samples are accurately classified into the ground truth

class. Before the integration of DTF, the TF-IDF based inference process randomly

assigns poisoned samples to arbitrary classes based on a uniform distribution of logits.

Despite the lower logits for the ground truth label in comparison to those of alter-

native classes, they still exceed the target label, effectively decreasing ASR. After

the incorporation of DTF, the backdoored model exhibits an unimodal distribution
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characterized by heightened logits for the ground truth class, consequently leading to

an increased RA. The pivotal factor facilitating the accurate classification of poisoned

samples by the backdoored model lies in its ability to discern factual features of the

image despite the trigger interference. For instance, in Figure 4.5, even when the

model initially classifies the poisoned sample into the target class during standard

inference, the logits for the truth class remain higher than those of other categories.

We leverage this subtle distinction to simultaneously suppress the logits of the target

class and amplify the gap between the logits of the truth category and other cat-

egories, culminating in the successful classification of the poisoned sample into the

ground truth class. It is imperative to note that not all poisoned samples conform to

this discernible pattern, as the triggers for certain samples may distort original image

characteristics, posing challenges for our method in distinguishing between truth and

other categories, excluding the target class. Our approach achieves a commendable

RA of approximately 70%. The quantitative results of the RA is provided in Figure

4.6b.

(a) DTF-IDF scores under different upward
trend factor α.

(b) Quantitative impact of Directed TF on
Robust Accuracy (RA).

Figure 4.6: Effectiveness of DTF for correctly classifying poisoned samples.

Figure 4.6a illustrates the impact of increasing the upward trending factor α on

DTF-IDF scores for different labels. We categorize labels into three groups: the

attacker-specified target label, the ground truth label, and other labels. When α is
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set to 0, the DTF-IDF is equivalent to the original TF-IDF, resulting in the ground

truth label having a higher score than the target label but lower than the average of

other labels. This observation aligns with the uniform distribution of logits depicted

in Figure 4.3. As α progressively increases, deeper layer logits gain more weight in

TF calculations. Consequently, when α reaches 1.0, the DTF-IDF score of the ground

truth label surpasses those of other labels, enabling accurate classification of poisoned

inputs into the ground truth class. However, further increases in α lead to a gradual

narrowing of the TF gap for all labels, eventually causing the model to revert to

random classification.

4.4.4 Limitations

In this section, our primary focus is on elucidating two instances of false positives

that lead to the performance degradation of the DTF-IDF based inference. In Fig-

ure 5.6, we examine the inference process of the backdoored model when classifying

clean samples. The green dotted box denotes true negative samples, where it is

apparent that the logits for ground truth labels gradually increase as the inference

progresses. Although, at the early stages, logits for other classes may transiently

surpass those of the ground truth class, a consistent trend emerges as these logits

approach near-zero values in subsequent stages of inference. This trajectory aligns

with our anticipated outcomes, demonstrating the successful classification of clean

samples into truth classes using the DTF-IDF methodology.

Conversely, the red dotted box illustrates a scenario involving false positive samples.

In contrast to the earlier scenario, the model attributes remarkably high logits to

the ground truth label right from the onset of the inference process, sustaining this

pattern consistently. This pattern closely mirrors that of the poisoned sample, leading

to an erroneous classification by our method. We attribute this phenomenon to the

model’s rapid and confident decision-making ability when confronted with images
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Figure 4.7: Illustration of the Directed TF-IDF (DTF) inference pipeline for poisoned
sample detection. The figure shows how class logits are collected block-by-block
from intermediate transformer encoders, and how TF and IDF are computed across
the block-wise logits to produce DTF scores. These scores are used to distinguish
factual knowledge (gradually forming) from misleading knowledge (rigidly dominant),
enabling effective backdoor detection and true label recovery.
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featuring relatively simple characteristics. This tendency persists in the classification

of poisoned samples, wherein triggers can be perceived as straightforward and fixed

features. Consequently, relying solely on the backdoor model becomes a complex task

for accurately determining whether a sample, experiencing the rapid assignment of

exceedingly high logits to one label in the early stages during the standard inference

process, constitutes a false positive or not. In the following, we propose a false positive

verification method, leveraging contrastive decoding strategy [77] on the input image

to tackle this issue. However, overcoming the reliance on image modifications and

devising methods that operate on unaltered images remains a significant challenge.

4.5 False Positive Verification

In most cases, the DTF-IDF-based inference process reveals distinct outcomes be-

tween poisoned and clean samples: the predicted category for poisoned samples shifts

from the target category, as determined by the standard inference process, to the

factual category, while the predicted category for clean samples remains consistent.

This discrepancy arises from the heightened sensitivity of the backdoor model to

triggers. In the early stages of inference, the model confidently classifies poisoned

samples into the target class; conversely, for clean samples, the model progressively

aggregates knowledge across multiple successive layers, eventually assigning them to

their ground truth classes. However, we have identified two exceptional scenarios

that deviate from the typical case, potentially influencing the clean performance of

the DTF-IDF-based inference process.

The first noteworthy exception arises from the influence of the backdoor task on the

factual feature learning of the target class. When clean samples from the target class

are input into the backdoor model, the model manifests exceptionally high logits

for the target class in the early stages of inference (in the first several layers of the

model), as if there were triggers on the clean samples, even though, in reality, there are
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none. This anomaly is particularly discernible in backdoor attacks featuring relatively

straightforward trigger features, such as BadNets (utilizing black and white blocks

as triggers) and WaNet (employing image distortion as triggers). The abnormal phe-

nomenon of high logits in the early layers is observed exclusively for the target class,

while the classification performance on other classes remains unaffected and conforms

to the typical behavior of the model. We attribute this specific phenomenon to the

excessively robust shortcut connection between the trigger learned by the backdoor

model and the target category, diminishing the model’s reliance on factual features

for classifying samples from the target class. This leads to the misidentification of

certain clean samples from the target class as poisoned samples.

The second challenge emerges from variations in the complexity of features among

different data categories. While the model typically accumulates knowledge across

multiple layers to correctly classify most clean data in later stages of inference, some

categories possess simpler factual features, allowing the model to classify them cor-

rectly in the early inference stages. It’s essential to note that the model’s perception

of simplicity doesn’t necessarily align with human perception. For instance, classes 6

(frogs) and 8 (ships) in the CIFAR-10 dataset are more easily classified early in infer-

ence, even though their features may not be inherently simpler to humans than those

of other categories (e.g., airplanes, dogs, horses). This inconsistency might stem from

various factors, such as varying degrees of spurious features across categories under

limited data, which the model exploits to more readily classify images within the

current dataset. The specific reasons for these discrepancies go beyond the scope of

this article. Similar to the first challenge, this scenario results in the misclassification

of certain clean samples with relatively simple features as poisoned samples.

The inherent challenges described earlier cannot be effectively addressed by relying

solely on the backdoor model itself. To tackle this issue, we employ a contrastive

decoding strategy [77], originally utilized in language models to generate high-quality

responses. This approach involves comparing two language models: an expert model

75



Chapter 4. Elicit Truthful Knowledge from Backdoored Vision Transformers

with a large number of parameters and an amateur model with fewer parameters.

The goal is to maximize the distribution gap of the output logits between the two

models. This method is grounded in the widely accepted assumption that amateur

models have inferior generation capabilities compared to expert models and are more

prone to producing low-quality text, such as hallucinations. Therefore, by simultane-

ously amplifying the expert model’s decisions and suppressing the amateur model’s

decisions, the strategy generates high-quality text and reduces undesired amateur

behavior.

An intuitive approach is to fine-tune the backdoor model to function as an expert

model, which necessitates the defender possessing a clean dataset that matches the

training data distribution. However, instead of directly obtaining an expert model, we

derive contrastive inference results by constructing different input data through image

transformations. The objective of these transformations is to increase the difficulty

for the model to recognize clean features of the image and to prevent the model from

confidently classifying clean images too early in the inference process.

The detailed steps are elucidated in Algorithm 2, with formula expressions simplified

for clarity. Specifically, we compare the DTF-IDF based inference results with the

standard inference outcomes. Since the variables used by DTF-IDF are exclusively

intermediate variables within a single inference process, the additional computational

overhead incurred by this comparison is minimal. If the two results are consistent,

we classify the input sample as clean. In cases of inconsistency, we proceed with false

positive verification.

To verify false positives, we add Gaussian noise to the image and repeat the inference

process to create a contrastive pair. If the inference result from DTF-IDF aligns with

the standard inference result after this noise addition, the input image is classified as

clean. Otherwise, it is identified as poisoned.

Table 4.6 presents the alterations of the backdoored model in classifying clean data
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Table 4.6: Effectiveness of False Positive Verification

Attacks
Ours w.o. verification Ours

ACCclean ACCtarget ASR ACCclean ACCtarget ASR

BadNets 92.51 37.81 0.0 94.51 80.72 0.0
Blend 70.46 90.23 5.11 93.32 94.68 4.72
WaNet 85.34 41.76 0.0 88.63 81.74 0.0

before and after false positive verification. The ACC statistics are divided into two

groups: non-target class ACCclean and target class ACCtarget. Noteworthy is the ob-

served enhancement in both ACCclean and ACCtarget following the verification. This

improvement correlates with the specific impact of distinct attack methods on the

model. For instance, BadNets and WaNet display minimal influence on ACCclean,

with false positives predominantly manifesting in the target class. In contrast, Blend

displays an inverse trend, where the impact on ACCclean is more pronounced. The

observed phenomenon is attributed to disparities in trigger feature complexity. The

straightforward feature of triggers used in BadNets and WaNet enables the establish-

ment of a strong connection between the trigger and the target class during backdoor

task training, thereby expanding the decision boundary for the target class. In con-

trast, Blend utilizes more complex trigger features, requiring the backdoor model

to invest more “time” in identifying the trigger. As a result, instances with com-

paratively simple features appearing in clean data showcase a classification pattern

reminiscent of the model’s inference on poisoned samples. Due to the sensitivity of

existing triggers to patch processing, false positive verification effectively enhances

both ACCclean and ACCtarget.

4.5.1 Patch processing vs. Contrastive Decoding

In this section, we explore the application of traditional image processing methods

for false positive verification. Conventional image augmentations such as rotation,

symmetry, and shearing, which are primarily designed for convolutional networks
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[117], may not be optimal for Vision Transformers (ViTs). Instead, we employ patch

processing methods [104, 31], which are more compatible with ViTs. Specifically,

we examine two patch processing strategies that have demonstrated effectiveness in

identifying backdoor triggers:

• Patch Drop: This technique involves removing a certain proportion of patches

from the original image. The resulting loss of image content has a more pro-

nounced impact on backdoor samples than on clean samples. Additionally,

patch drop increases the complexity of the model’s image classification task.

• Patch Shuffle: This method randomly shuffles several patches of the original

image. Unlike Patch Drop, Patch Shuffle does not alter the image content but

significantly affects the models’ receptive fields. This impact is more substantial

on clean samples than on poisoned samples.

Assuming the defender has access to both clean and poisoned data, they can determine

an optimal drop rate that minimizes the attack success rate while preserving high

clean performance through an enumeration search. This drop rate is designated as

the threshold ρ∗. During the inference stage, we first perform a patch shuffle on the

image. If the inference results remain consistent before and after the shuffle, the

image is identified as poisoned with a local trigger. If the results differ, the algorithm

proceeds with a patch drop on the image, gradually increasing the drop rate ρ from 0

until the inference result changes. If the current drop rate is less than the threshold

ρ∗, the image is classified as poisoned with a universal trigger; otherwise, it is deemed

a clean image. The detailed steps are outlined in Algorithm 3.

We would like to briefly elaborate on the role of image processing in false positive

verification. When standard inference results and DTF-IDF inference results are

inconsistent, we suspect the input sample is poisoned. At this stage, we purposefully

adopt image processing to appropriately manipulate the image features. The insights

are as follows: clean and poisoned samples exhibit different sensitivities to image
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processing, leading to distinct prediction offsets. We can leverage this difference to

verify whether the input is poisoned. For instance, clean samples are more sensitive

to patch shuffling than poisoned samples because shuffling significantly disrupts the

clean features of the image, while local triggers can activate the backdoor regardless

of their location. Consequently, shuffled poisoned samples are still classified as the

target class, whereas clean samples are misclassified into random classes. Conversely,

poisoned samples are more sensitive to patch drop than clean samples. As the drop

ratio increases, the likelihood of discarding the patch containing the trigger rises, and

the remaining patches may still retain the primary features of the image, allowing

correct classification. Thus, poisoned samples subjected to patch drop will exhibit

changed prediction results sooner than clean samples.

Given the application of image transformations in prior research [117, 104, 31], it is

essential to emphasize two key aspects. Firstly, unlike previous approaches, we do not

perform individual false positive verification for each image. Instead, our methodology

utilizes patch processing to mitigate the misclassification of clean samples as poisoned

samples. Since multiple rounds of inference overhead caused by image processing are

high, false positive verification significantly reduces the overhead of existing defense

methods based on input-level manipulation (as verification is not required for the vast

majority of clean samples). Secondly, the DTF-IDF based inference is compatible with

any input-level trigger detection algorithm, and our approach does not rely heavily on

patch processing. Any controllable image processing method, such as patch processing

or adversarial noise perturbation, can be seamlessly integrated into our framework.

Table 4.7 presents the performance comparison of false positive verification using

patch processing and contrastive decoding. In most cases, patch processing demon-

strates comparable or superior performance to contrastive decoding. This is largely

attributed to the assumption of prior knowledge regarding the distinctions between

clean and poisoned data inherent in patch processing methods. In particular, the per-

formance of patch drop is highly sensitive to the drop ratio threshold. A higher drop
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Table 4.7: Effectiveness of False Positive Verification with Patch Processing and
Contrastive Decoding

Attacks
FPV with PP FPV with CD

ACCclean ACCtarget ASR ACCclean ACCtarget ASR

BadNets 93.14 86.28 0.0 94.51 80.72 0.0
Blend 93.26 95.23 1.86 93.32 94.68 4.72
WaNet 88.52 86.76 0.0 88.63 81.74 0.0

ratio increases the likelihood of removing the trigger, which leads to a lower attack

success rate by disrupting the backdoor mechanism. However, this also degrades the

prediction accuracy of the original image features, as more significant portions of the

image content are discarded. Balancing this trade-off is crucial for optimizing the

defense mechanism. A more precise threshold requires a finer-grained search, which

means greater computational overhead and increased time complexity. Contrastive

decoding also shows promise as an effective method for false positive verification, its

strengths lie in its flexibility and adaptability. By leveraging comparative reasoning

between different models or inputs, contrastive decoding can provide a nuanced un-

derstanding of the distinctions between clean and poisoned samples. Additionally,

contrastive decoding can be integrated with other verification strategies, enhancing

its overall robustness and efficacy.
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Algorithm 2 Directed TF-IDF based Inference with False Positive Verification

Input: A pre-trained backdoor model with N layers: θ = {θ1, · · · , θj, · · · , θN}, input
x, upward trend factor α

Output: Backdoor-resistant predictions c∗

▷ Standard Inference

1: c← arg maxci pθ(x) = {pθ(ci|x), i = 0, 1, · · · , n}
▷ Directed Term Frequency

2: qDTF
j =

∑
j

1
(1+e−(j−N/2))α

· pθj(x)
▷ Inverse Document Frequency

3: I(pθj(ci|x)) ≜ |pθj(ci|x) ≥ Avg{pθj(ci|x))}|
4: qIDF

j = N/(1 +
∑

j I(pθj(ci|x)))
▷ DTF-IDF based Inference

5: p̂θ(x) ≜ softmax(qDTF ∗ qIDF)
6: ĉ← arg maxci p̂θ(x)
7: if c = ĉ then:
8: x is a clean image. c∗ ← c
9: else
▷ False Positive Verification

10: initialize ϵ ∼ N(0, σ), ϵ : pθ(x+ ϵ) = pθ(x)
11: Repeat lines 1-6:
12: c′ ← arg maxci pθ(x+ ϵ), ĉ′ ← arg maxci p̂θ(x+ ϵ)
13: if c′ = ĉ′ then
14: x is a clean image
15: c∗ ← c′

16: else
17: x is a poisoned image
18: c∗ ← ĉ
19: end if
20: end if

return c∗
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Algorithm 3 False Positive Verification by Patch Processing

Input: A pre-trained backdoor model mθ, input x, drop rate threshold ρ∗

1: Algorithm 2 lines 1-9:
2: xps ← patch shuffle x
3: if cps = c then
4: x is a poisoned image with local triggers
5: else
6: Repeat xpd ← patch drop x with increasing drop rate ρ
7: cpd ← arg maxci pθ(xpd)
8: Until cpd ̸= c
9: if ρ ≤ ρ∗ then
10: x is a poisoned image with universal triggers
11: else
12: x is a clean image
13: end if
14: end if
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Chapter 5

Towards Test-Time Refusals via

Concept Negation

Generative models produce unbounded outputs, necessitating the use of refusal tech-

niques to confine their output space. Employing generative refusals is crucial in

upholding the ethical and copyright integrity of synthesized content, particularly

when working with widely adopted diffusion models. “Concept negation” presents

a promising paradigm to achieve generative refusals, as it effectively defines and gov-

erns the model’s output space based on concepts, utilizing natural language interfaces

that are readily comprehensible to humans. However, despite the valuable contribu-

tions of prior research to the field of concept negation, it still suffers from signifi-

cant limitations. The existing concept negation methods, which operate based on

the composition of score or noise predictions from the diffusion process, are limited

to independent concepts (e.g., “a blonde girl” without “glasses”) and fail to con-

sider the interconnected nature of concepts in reality (e.g., “Mickey mouse eats ice

cream” without “Disney characters”). Keeping the limitations in mind, we propose a

novel framework, called ProtoRe, to improve the flexibility of concept negation via

test-time negative concept identification along with purification in the feature space.
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ProtoRe works by incorporating CLIP’s language-contrastive knowledge to iden-

tify the prototype of negative concepts, extract the negative features from outputs

using the prototype as a prompt, and further refine the attention maps by retrieving

negative features. Our evaluation on multiple benchmarks shows that ProtoRe out-

performs state-of-the-art methods under various settings, in terms of the effectiveness

of purification and the fidelity of generative images.

5.1 Introduction

The family of diffusion models [59, 168] has achieved remarkable performance in image

synthesis [30, 107, 141]. Recent advancements in text-conditional diffusion models

[108, 89, 123, 120, 127] have further improved the ability to generate images with

precise control over their content. In text-conditional diffusion models, text prompts1

are used as input during the diffusion process to guide the creation of images that align

with the desired content. Glide [108] and Semantic Diffusion Guidance (SDG) [89]

have explored the use of pre-trained vision-language models like CLIP [118] to encode

text conditions into latent features. Latent diffusion [123], including its large-scale

implementation (Stable Diffusion), efficiently leverages and expands the design of

latent vectors throughout the denoising process, where convolutional neural networks

and cross-attention mechanisms merge multi-modal latent features. Text-conditional

diffusion models such as DALLE·2 [120] and Imagen [127] have unlocked the potential

of generative models for various business applications with exceptional visual fidelity.

Nonetheless, the use of large-scale, web-scraped datasets like LAION [127, 24, 128]

has raised ethical concerns among researchers. These unedited datasets often con-

tain inappropriate and unauthorized content [24], posing risks. Users can manipulate

1Text prompts can take various forms, such as sentences, phrases, or single words, and serve as
descriptions of desired image content. They provide a natural language interface to specify image
attributes like style, color, and texture, enabling the generation of objects, scenes, and abstract
concepts.
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text prompts to generate violent, pornographic, or copyright-infringing images, which

can damage the reputation of the business model provider and lead to serious soci-

etal issues [158, 140, 83]. To address concerns about negative concepts generated

by diffusion models, there is a growing interest in developing selective refusal tech-

niques to confine the model’s output space. Recently, researchers have been work-

ing on four approaches to reduce the generation of harmful content: filtering the

dataset [108, 133], adversarial perturbations [83, 71, 138, 129], machine unlearning

[101, 41], and implementing refusals during inference [121, 131]. Dataset filtering and

perturbation-based methods primarily focus on preventive measures, making them

less suitable for pre-trained well-established models. Unlearning-based methods of-

ten require modifications to global model parameters, which can limit scalability and

hinder plug-and-play deployment capabilities. In contrast, refusals during inference

time involve modifying the output of pre-trained models, making them more efficient

for testing and deployment scenarios. Concept negation [41, 87] plays a crucial role

in implementing such refusals by allowing the model to define and control its output

space using language-based and human-understandable concepts. The current meth-

ods for concept negation perform on the composition of score or noise predictions from

the diffusion process. However, these methods have limitations as they are confined

to independent concepts and do not account for the interdependency of concepts in

real-world scenarios.

Our Contributions. To address the aforementioned challenges, we propose a novel

framework called ProtoRe (Prototypical Refinement). Our approach enhances the

flexibility of concept negation by introducing test-time negative concept identification

and feature space purification. The ProtoRe framework leverages CLIP’s language-

contrastive knowledge and follows a “Prototype, Retrieve, and Refine” pipeline. Here

is a breakdown of the three steps involved: 1) Prototype: We utilize CLIP to encode

a collection of text prompts obtained from social media platforms that express similar

negative concepts. These encoded features are then aggregated into a comprehensive
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Figure 5.1: The logical relationship between negative concepts and benign concepts
in ICN (left) and DCN (right).

prototype feature, capturing the semantics of the negative concepts. 2) Retrieve:

The negative prototype feature serves as a prompt to retrieve the model’s output

features that are correlated with the negative concepts. 3) Refine: We employ the

retrieved negative features to refine the discriminative attention maps, purifying the

influence of negative concepts in the feature space. By integrating these steps, our

ProtoRe framework offers a novel approach to concept negation, improving the

flexibility and effectiveness of mitigating negative concepts in generative diffusion

models. Moreover, this approach promotes scalability and enables easy deployment.

Through comprehensive evaluations on multiple benchmarks, we demonstrate that

ProtoRe surpasses existing methods in terms of purification effectiveness and the

fidelity of generated images across various settings.

5.2 Concept Negation (NOT)

In the context of concept negation, the objective is to produce an output that excludes

a specific concept. For instance, when presented with the concept of ”red”, the

desired output should belong to a different color category, such as ”blue”. Thus,

the underlying aim is to create a distribution that assigns a high probability to data

points that lie outside the specified concept.
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One plausible approach to achieve this is by designing a distribution that is inversely

proportional to the concept itself. This would result in placing higher likelihoods

on data instances that are dissimilar to the given concept, aligning with the goal of

concept negation.

p(x|not c1, c2) =
p(x, not c1, c2)

p(not c1, c2)
(5.1)

=
p(not c1|x, c2)p(c2|x)p(x)

p(not c1, c2)
(5.2)

∝ p(x)p(not c1|x, c2)p(c2|x) (5.3)

∝ p(x)
p(c2|x)

p(c1|x, c2)
. (5.4)

5.1, 5.2 according to Bayes’ theorem. p(not c1, c2) is independent of x, we can get

5.3. 5.4 according to [34]

A recent related work to our approach is the Composable Diffusion Models (CDM)

[87], which provides an understanding of the diffusion model from the Energy-Based

Model (EBM)’s perspective [35] and demonstrates how the additivity property of the

EBM can be applied to diffusion generation. In this context, the generation process

and scoring function of the diffusion model are referred to as piθ(xt−1|xt) and ϵiθ(x, t),

respectively. If we consider a single score function in a diffusion model as the learned

gradient of the energy function in an EBM, the combination of diffusion models results

in a score function denoted as
∑

i ϵ
i
θ(x, t). Consequently, the generative process for

combining multiple diffusion models can be expressed as follows:

pCDM(xt−1|xt) = N (xt +
∑
i

ϵiθ(xt, t), σ
2
t ). (5.5)

CDM aims to generate images based on a given set of concepts {c1, c2, . . . , cn}. To

achieve this, each concept ci is represented as an individual diffusion model, and their

score or noise predictions from the diffusion process are combined to generate the
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desired image. Drawing inspiration from EBMs, CDM introduces two combinatorial

operators, namely conjunction (AND) and negation (NOT), to facilitate the combi-

nation of diffusion models. In the context of concept negation (NOT), consider the

example of a user prompt “a blonde girl without glasses”. In this case, the condi-

tion “a blonde girl” represents the benign concept ci that should be present in the

generated images, while the text “glasses” represents the negative concept cj whose

score or noise predictions need to be subtracted from the diffusion process. CDM’s

approach can combine pre-trained diffusion models within inference time without any

additional training.

Motivation. Although CDM shows promise, it makes a significant assumption that

the negative concept cj is independent of the benign concept ci, which limits its

flexibility in concept negation. For instance, consider a scenario where an image of

“a Mickey Mouse eating ice cream” needs to be generated with “Mickey Mouse” or

the broader condition “Disney character” as the negative concept. CDM would face

challenges in handling such a situation. In our study, we propose a new taxonomy

of concept negation, classifying CDM-like approaches as “independent concept nega-

tion” (ICN), while our work falls under the category of “dependent concept negation”

(DCN). Figure 5.1 provides an intuitive illustration of the relationship between the

ICN and DCN. The generative space, representing the regions where diffusion models

can generate valid samples, is visualized: the beige area represents valid samples con-

ditioned on benign concepts, the green area represents valid samples conditioned on

negative concepts, and the red area represents the overlap between these two spaces.

In contrast to prior research [87, 35], we aim to remove the red area from the beige

region.

Problem Definition. Given a user prompt c and a certain negative concept c̃,

we aim to generate high-quality images x describing c with the absence of c̃. If we

view concept negation in diffusion models as a probabilistic instantiation of logical

operators applied to concepts. Formally, ICN factorizes the conditional generation as
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Figure 5.2: Method Overview.

the following composed probability distribution:

ICN: p(x|c, not c̃) ∝ p(x, c, not c̃) ∝ p(x)
p(c|x)

p(c̃|x)
. (5.6)

However, the formula (5.6) holds only when c and c̃ are independent. Considering a

realistic scenario, DCN formulates a more general conditional generation:

DCN: p(x|c, not c̃) ∝ p(x, c, not c̃) ∝ p(x)
p(c|x)

p(c̃|c,x)
. (5.7)

The natural ability of EBM [35, 36] and diffusion counterparts [87] to perform set-like

composition through arithmetic on score or noise predictions would no longer hold

when it comes to DCN. This implies that “A and not B” cannot be simply treated

as the difference between log probability densities for A and B.

5.3 Methodology

Let I be an image generated using a diffusion model ψ(·) based on a user prompt c.

The prompt may include up to K pre-defined negative concepts c̃k, k = 1, 2, · · · , K,
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and our objective is to intervene in the image generation process to remove these

concepts from I. For example, if the prompt contains “Mickey Mouse is eating ice

cream”, we may need to exclude the copyrighted content of “Mickey Mouse” to avoid

legal issues while preserving other elements like “ice cream”. This is crucial to pre-

vent potential legal complications arising from using copyrighted or sensitive content.

However, unlike previous approaches such as ICN [35, 87] and inpainting [123], we

cannot rely on user-defined prompts or masks to determine where to remove or re-

construct. One intuitive approach is to create a list of prohibited words and remove

them from the user’s prompt whenever they appear. However, this approach has

limitations, as synonyms may convey the same concept, and the list may not cover

all possible negative expressions. Additionally, it may impede the normal use of the

model. To overcome these challenges, we propose a plug-and-play concept negation

method that enables text-conditional refusals for diffusion models during inference.

The proposed method is illustrated in Figure 5.2. Top: The diffusion process entan-

gles negative concepts, where cross-attentions align visual and textual embeddings,

resulting in the concealment of negative concepts within attention maps (green box).

Bottom: Our approach comprises two main steps: 1 Generating negative prototype

prompts using the CLIP text encoder. 2 Refining the discriminative attention fea-

tures by incorporating retrieved negative features, effectively purifying the influence

of negative concepts in the feature space.

Prototype Prompt Generation. To encode text prompts, we utilize the CLIP

(Contrastive Language-Image Pre-training) text encoder φ(·) [118], which is a state-

of-the-art model of vision-language representation learning. CLIP is pre-trained on

a vast corpus of text and images using a contrastive loss function, which encour-

ages the model to map semantically similar text and images to nearby points in a

shared embedding space. However, explicitly enumerating all possible prompt words

of negative concepts c̃k can be challenging. Instead, we crawl a set of text prompts

C̃k expressing similar negative concepts from social media platforms, aiming to elicit
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the k-th negative concept in the generated images. We then rely on the zero-shot

classification’s capability of CLIP to encode the negative text prompts into multi-

ple high-dimensional features. These prompts are then aggregated (clustered) into a

single prototype prompt c̃∗k representing the respective negative class:

c̃∗k = cluster(φ(C̃k)). (5.8)

We employ three distinct clustering methods to derive the prototype prompts. In the

case of single-label to single-class refusals (e.g., ImageNet), we utilize the embedding of

the corresponding label as the prototype prompt. For multiple-labels to multiple-class

refusals (e.g., I2P datasets), the clustering center is computed using K-means, which

then serves as the prototype prompt. As for multiple dependent concept refusals (as

depicted in Figure 5.4), we combine all the concepts using commas or the word ”and”

to form the prototype prompt.

Prior studies on image editing [56] have shown that diffusion models utilize cross-

attention layers to combine visual and textual features, resulting in the generation

of spatial attention maps for each textual token. As shown in the top of Figure 5.2,

the visual features of a noisy image zt are projected to a query matrix via a linear

layer ℓQ(·), and Q = ℓQ(zt). Similarly, the textual feature φ(c) is projected to a key

matrix K = ℓK(φ(c)) and a value matrix V = ℓV (φ(c)) through linear layers ℓK(·),

ℓV (·). The attention maps M are then calculated as follows:

M = Softmax

(
QKT

√
d

)
= [attn1, attn2, · · · , attnl, · · · , attnL] ∈ RC×(H×W )×L, (5.9)

where d = H ×W represents the dimension of the key and value projection layers.

C and L denote the number of attention heads and tokens in a single sequence,

respectively. Channel attnl ∈ RC×H×W can be squared and visualized as the l-th

token in the text prompt c. As a result, negative concepts in attnl may appear in

the weighted output features A = M ·V . We have noticed that negative concepts are
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Figure 5.3: Understanding the mechanism behind ProtoRe’s success.

frequently intertwined with normal concepts in the attention maps, which may explain

why EBM and CDM are not as efficient. Furthermore, we lack prior knowledge about

the user prompt, including which negative class it belongs to and where the negative

token is located. This makes it difficult to use existing image editing methods that

depend on explicit guidance signals for concept negation.

Attention Feature Refinement. We employ the prototype prompt generated us-

ing Equation (5.8) to retrieve the negative concepts present in the output features.

Subsequently, using Equation (5.9), we calculate the negative attention maps for the

prototype feature c̃∗k:

M̂k = Softmax

(
QK̂T

√
d

)
= Softmax

(
ℓQ(zt)ℓK(c̃∗k)T√

d

)
. (5.10)

Intuitively, M̂k highlights the k-th negative concepts present in the noisy image zt.

We proceed to obtain the negative features, denoted as Âk, through Âk = M̂k · V̂ k,

where V̂ k = ℓV (c̃∗k). Finally, to eliminate the identified negative features, we compute

the refined attention features A∗ by:

A∗ = A−
∑
k

σk · Âk, (5.11)

where coefficient σk controls the refinement step size.

The resulting attention feature refinement progress is intuitively visualized in Figure

5.3. By using user prompts (represented by the yellow arrow) and prototype negative

92



5.3. Methodology

prompts (represented by the green arrow), we guide the diffusion process of Gaussian

noise toward the intended space. We analyze the effectiveness of attention feature

refinement in two common generation scenarios: benign generation and unsafe gener-

ation. These scenarios are determined by the relationship between user prompts and

negative concepts. Our proposed attention feature refinement technique (indicated

by the red dashed arrow) successfully redirects the diffusion process away from the

negative space, ensuring convergence towards the normal space in both scenarios. In

benign image generation scenarios (a) and (b), user prompts remain dissociated from

negative concepts. We can observe that the refined diffusion process (indicated by the

red dashed arrow) gradually converges to normal space, thereby affirming that atten-

tion feature refinement does not interfere with the generation of user-specified images.

In contrast, the user prompts associated with unsafe image-generation scenarios in-

volve negative concepts. In such cases, refinement of the diffusion process leads to

a gradual shift away from the negative space, facilitating the effective negation of

undesirable concepts from the generated images. In order to facilitate comprehen-

sion, two specific cases are examined in (b) and (d) where user prompts and negative

concepts are either opposite or identical, respectively. Sub-figure (b) depicts a sce-

nario in which the angle between the user and negative guidance is approximately

180 degrees. Under this circumstance, attention feature refinement modifies the dif-

fusion process by increasing the step size along the user prompt direction, with no

disturbance to image generation. In contrast, in sub-figure (d), the angle between the

user and negative guidance approaches zero degrees. In this case, attention feature

refinement directs the diffusion process away from negative guidance along the user

guidance or in the opposite direction. Our intuition is verified by the experimental

results and the discussion of method limitations.

Our proposed algorithm is formally presented in the Algorithm 4, which consists pri-

marily of two steps. Firstly, negative prototype prompts are generated using Equation

(5.8), which can be completed offline. At inference time, diffusion models denoise a
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Algorithm 4 ProtoRe (Prototypical Refinement) for Test-time Refusals

Input: Diffusion model ψ(·), User prompt c,
Prompts describing the K classes negative concept of c̃k, k ∈ {1, 2, · · · , K},
CLIP text encoder φ(·).

1: for k = 1, 2, · · · , K do
2: Ck ← { c̃k }
3: c̃∗k ← cluster[ φ(Ck)] ▷ Step 1: Prototype Prompt Generation
4: end for
5: initialize zT ∼ N (0, I)

6: for t = T, T − 1, · · · , 1 do
7: At ← ψ(zt, c, t)
8: for k = 1, 2, · · · , K do
9: Âk

t ← ψ(zt, c̃
∗
k, t)

10: A∗
t ← At −

∑
k σk · Âk

t ▷ Step 2: Attention Feature Refinement
11: end for
12: z∗t−1 ← ψ(zt, A

∗
t , t)

13: end for
Output: z∗0

given corrupted input sample (Gaussian noise zT ) iteratively by estimating the condi-

tional probability distribution that approximates the target distribution of the clean

sample z0. At each timestamp t, the attention feature At is calculated based on the

user prompt c, which may contain up to K classes of negative concepts. We then

sequentially retrieve and remove negative concepts using Equation (5.11).

5.4 Evaluation

In this section, we empirically evaluate the effectiveness of our proposed ProtoRe.

The refinement step size σ is set to 1.0 in our experiments unless specified otherwise.

We benchmark our approach against the following baseline method: Stable Diffusion

v2.1 (SD) [123]; composable diffusion models (CDM) [87], to adapt this method to

our experiment, we configure the negative concepts as the unconditional conditioning

prompt; safe latent diffusion (SLD) [131], both CDM and SLD study refusals at in-

ference time; erased stable diffusion (ESD) [41], an approach for eliminating specific
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Table 5.1: Quantitative refusal results on Imagenette subset.

Class Name
Accuracy of erased class ↓ Accuracy of other classes ↑

SD SD-Neg SLD [131] CDM[87] ESD [41] ProtoRe SD ESD ProtoRe

cassette player 13.0 11.6 0.4 3.4 0.60 0 91.71 64.5 84.76
chain saw 91.0 88.0 5.2 4.6 6.0 0.2 83.04 68.2 74.84

church 98.0 98.0 62.8 83.0 54.2 85.2 82.27 71.6 80.16
gas pump 96.0 96.2 31.6 18.6 8.6 0 82.49 66.5 67.78

tench 89.8 91.8 66.4 39.6 9.6 1.6 83.18 66.6 56.58
garbage truck 79.6 79.6 34.8 21.4 10.4 0 84.31 51.5 70.58

English springer 99.6 99.2 95.4 12.8 6.2 0 82.09 62.6 74.71
golf ball 90.2 86.8 81.8 17.6 5.8 0.6 83.13 65.6 78.42

parachute 83.8 80.2 58.4 26.2 23.8 7.8 83.84 65.4 81.80
French horn 97.4 98.4 92.8 28.6 0.4 0 82.33 49.4 73.22

Average 83.84 82.89 52.96 25.58 12.6 9.54 83.84 63.2 74.28

concepts by fine-tuning; Stable Diffusion with negative prompts (SD-Neg), an intu-

itive method that manually adds negative prompts, such as “without bear”, behind

the user prompt.

5.4.1 Single-Concept Refusals

ImageNet subset. We first investigate the performance of single-concept refusal

through numerical results. Specifically, we choose one class from ImageNet as the

negation target. To measure the effectiveness of erasing the targeted class, we generate

500 images with the prompt “an image of a [class name]”. Then, our assessment

entails examining the top-1 prediction accuracy of a pre-trained Resnet-50 Imagenet

classifier. Following the same setting in ESD [41], we select the Imagenette subset

that consists of ten readily recognizable classes.

The left side of Table 5.1 presents quantitative results comparing the classification

accuracy of the erased class using the original Stable Diffusion model and four refusal

methods. The proposed method shows higher performance in most classes, which

highlights the effectiveness of attention corrections within the Stable Diffusion. How-

ever, existing methods have certain drawbacks: SD-Neg is only able to marginally

remove the specified class, indicating that it is challenging for the Stable Diffusion
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to understand the explicit “without” command in the prompt. SLD introduces aux-

iliary guidance to adjust the noise prediction of U-Net in SD, enabling its suitability

for the localized image detail retouching task. However, the network’s effectiveness

in object removal appears limited. The inefficiency of CDM can be attributed to

the incapability of the solution to the ICN problem to generalize well to the DCN

problem. Despite exhibiting moderate effectiveness, ESD incurs additional training

resources for fine-tuning the Stable Diffusion, requiring training multiple models for

each class to obtain distinct copies. For instance, ESD would mandate ten fine-tuned

Stable Diffusion models, each responsible for erasing a single class in Imagenette.

Consequently, the storage capacity necessary to accommodate the gradual increase in

negative classes would escalate. Instead, our proposed plug-and-play approach offers

a training-free solution with the ability to flexibly switch between different target

classes.

The refusal methods employed for erasing target class concepts should not impede the

generation of images for other classes. The average accuracy of producing images for

the remaining nine non-target classes after removing the target class is illustrated on

the right side of Table 5.1. Our proposed method preserves the model’s capacity for

generating benign images better compared to ESD. These results suggest that fine-

tuning-based machine unlearning for the target class comes at the cost of sacrificing

the original model’s capacity for image generation.

Inappropriate Image Prompts (I2P) benchmark dataset [131] contains 4703

toxic prompts assigned to at least one of the following categories: hate, harassment,

violence, self-harm, sexual, shocking, illegal activity. We generate five images for each

prompt and employ the Q16 [132] and NudeNet 2 classifiers to quantify the propor-

tion of generated inappropriate images. The toxic description provided by I2P serves

as the prototype negative prompt for comparative analysis. Table 5.2 displays the

quantitative refusal results of three methods. Our proposed ProtoRe can consider-

2https://github.com/notAI-tech/NudeNet
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Figure 5.4: Qualitative refusal results.

ably diminish the possibility of generating inappropriate images, demonstrating the

effectiveness in confining the output space of negative concepts in the model.

Table 5.2: Quantitative refusal results on I2P benchmark
[131].

Class Name
Inappropriate Probability ↓

SD ESD SLD ProtoRe

Hate 0.40 0.17 0.20 0.10

Harassment 0.34 0.16 0.17 0.07

Violence 0.43 0.24 0.23 0.09

Self-harm 0.40 0.22 0.16 0.09

Sexual 0.35 0.17 0.14 0.08

Shocking 0.52 0.16 0.30 0.10

Illegal activity 0.34 0.22 0.14 0.11

Average 0.39 0.19 0.19 0.09

Table 5.3: Image Fidelity
Performance on COCO
30k dataset.

Method FID-30k

SD 14.50

SLD 16.90

ESD 13.68

ProtoRe 16.80

5.4.2 Complex Concept Refusals

We then evaluate the refusal capability of ProtoRe in three complex scenarios,

namely multi-concept refusals, implicit concept refusals, and artistic style refusals to

demonstrate its effectiveness. Qualitative results are shown in Figure 5.4. Qualitative

refusal results on multiple concepts (left), implicit concepts (middle), and artistic
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Figure 5.5: ProtoRe under different diffusion steps.

styles (right).

Our approach effectively removes multiple concepts (e.g., “cat” and “ball”, “bicy-

cle” and “car”)3 simultaneously and offers deployers the flexibility to adjust removed

concepts (add or delete) according to policies and regulations, as demonstrated on

the left side of Figure 5.4. The middle of Figure 5.4 highlights the effectiveness of

ProtoRe in removing implicit concepts that may accidentally appear in generated

images despite not being explicitly mentioned in the prompt [131], such as removing

the “grape” in “a basket of fruit” or the “ball” in “a dog is playing in a park”. The

right side of Figure 5.4 demonstrates the ability of our approach to remove specific

artistic styles, ensuring content creators using the diffusion model do not infringe on

copyright laws. The proposed ProtoRe approach showcases promising results in all

three scenarios, highlighting its efficacy in complex, real-world applications.

5.4.3 Refusal Steps Setting

In this study, we examine the impact of the choice of diffusion steps, referred to as

“refusal steps”, on ProtoRe. The initial diffusion steps have a greater influence on

3In our experiments, we did not use inappropriate concepts such as infringement or nudity as
prompts; instead, we used some common concepts to demonstrate the refusal effectiveness.
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the generated image’s structure, whereas the later steps have a lesser effect on the

content. As illustrated in Figure 5.5, Varying the diffusion steps at which ProtoRe

is applied will impact the generated output. Specifically, “Start from t” indicates

applying ProtoRe during diffusion steps t to 50, while “End before t” refers to

applying ProtoRe during diffusion steps 0 to t. Our findings demonstrate that using

our method beyond the initial steps (e.g., starting from the 10th step) preserves the

underlying image structure. Conversely, implementing our method during the first

steps results in significant alterations to the image’s appearance and the removal of

specific content.

5.4.4 Image Fidelity Preserving

We investigate the impact of the proposed concept negation techniques on image

fidelity to ensure that the erased model maintains its ability to generate safe content

effectively. It is desirable for the methods employed to have no adverse effects on

appropriate images. To this end, we follow prior work [131, 41] on generative text-to-

image models and evaluate the COCO FID-30k scores of SD and the three additional

methods, as presented in Table 5.3. Fréchet Inception Distance (FID) is widely

utilized to assess the quality of the generated samples. This is accomplished by

utilizing an inception network to extract relevant features from both real images

and generated samples. The FID metric evaluates the similarity between the two

distributions by measuring their distance. We employed inference guidance of 7.5

in our experiments. Our proposed approach demonstrates superior image fidelity

performance compared to SLD and Stable Diffusion when applied to COCO 30k

images. The experimental results suggest that our proposed method can effectively

enable test-time refusals without compromising the normal generative capacity of the

model. This indicates that ProtoRe serves as a seamless plug-and-play operator

that can be smoothly incorporated into text-conditional diffusion models.
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Figure 5.6: Cases of incomplete concept negation.

5.4.5 Limitations

Our findings reveal that our proposed method performs better in eliminating small

objects compared to larger objects. While ProtoRe demonstrates strong performance

on semantically complex and visually diverse classes, when it comes to removing a

target concept that covers almost the entire image, such as “church”, our method

falls short of completely eliminating it. This observation aligns with the reasoning

depicted in Figure 5.3-(d), where we ascribe this outcome to the small refinement step

size, which insufficiently directs the generated image from negative space to normal

space in a 50-step diffusion process. Supporting this claim, Figure 5.6 illustrates that

the refusal effect gradually amplifies with the increasing of the refinement step size

σ.

Another limitation is that discrepancies or variations in semantic descriptions within

the same class can significantly impact the computation of cluster centers. For in-

stance, when considering the topic of ”violence,” there exist numerous descriptions

that encompass different facets, such as the intentional use of physical force or power,

potential harm, and psychological consequences, among others. The presence of such

diverse descriptions poses challenges in deriving an appropriate prototype prompt

using the K-means algorithm.
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In the context of this chapter, our focus lies on investigating relatively uncomplicated

scenarios that involve the rejection of well-defined objects or styles. Nonetheless, we

are aware of the necessity to address more intricate situations, where concepts with

complex abstract semantics are involved. As part of our future research efforts, we

will explore methodologies to effectively eliminate or handle these intricate concepts,

thereby enhancing the robustness and accuracy of our approach.

It is imperative to acknowledge that our current approach may exhibit diminished

effectiveness when encountering user prompts that involve intricate negation with

compositional or relational information. The generated images may, therefore, exhibit

instances of attribution leaks, wherein characteristics of one entity, such as a horse,

mistakenly manifest in another, like a person, as well as occurrences of missing objects,

erroneously omitting human or equine elements, and so forth. We recognize that the

capabilities of CLIP (Contrastive Language-Image Pretraining) in processing textual

prompts do have an impact on the overall performance of the methods presented

in this chapter. We will discuss these limitations and foster further investigation in

future work.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has been motivated by the growing need to address the compliance vul-

nerabilities inherent in Transformer architectures, particularly in the context of their

widespread application across various industries. As AI models based on transformers

become increasingly prevalent, the risks associated with backdoor attacks in discrim-

inative models and unsafe content generation in generative models have become more

pronounced. These vulnerabilities pose significant threats to the reliability, security,

and ethical integrity of AI systems. Traditional governance methods, such as data

cleaning and model fine-tuning, are insufficient due to their high costs and lack of

scalability. To effectively mitigate these risks, this thesis has proposed two innovative

test-time governance methods, providing scalable and efficient solutions for enhancing

the security and compliance of transformer-based models. By addressing these critical

issues, this work aims to promote the development of more secure and trustworthy AI

systems, ensuring their safe and responsible deployment in real-world applications.

To achieve this goal, this thesis is mainly composed of three following parts.
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• We validate the vulnerability of emerging database middleware to Trojaning

Pre-Trained Language Models (PLMs) using a novel Trojan type. Unlike pre-

vious methods that fail to balance triggerability, imperceptibility, and general-

izability, our approach delves into encoding-specific triggers that are impercep-

tible to the human eye, providing good guarantees for both. To ensure trigger-

ability and maintain imperceptibility, we focus on targeted perturbations in text

encoding and explore how certain special characters can alter encoding space

yet remain visually unnoticeable. As a key consideration for trigger design,

we suggest constructing triggers based on high frequency, randomly scattered

homographs with fixed collocations. To enhance generalizability without prior

knowledge of post-processing, we utilize randomization to implant Trojans as

uniformly as possible, enabling effective attacks on various downstream tasks.

Our proposed method provides a means to assess the effect of Trojaning PLMs

on databases and supports the creation of more sturdy defense mechanisms.

• We harness backdoored Vision Transformers (ViTs) for secure inference, coun-

tering the challenges posed by adversaries wielding extensive control over the

training process to insert triggers and compromise model integrity. We intro-

duce a novel Directed TF-IDF (DTF-IDF) based inference method, meticulously

tailored to the unique characteristics of backdoored ViTs. The DTF-IDF ap-

proach focuses on detecting subtle variations in logit trends between poisoned

and clean samples during inference. Specifically, we observe a sustained high

probability of the target label across successive transformer layers for poisoned

samples, while on clean samples, the probability of the ground truth label grad-

ually increases from shallow to deep layers, indicative of the model’s progressive

assimilation of factual knowledge. Leveraging these differences, the DTF-IDF

inference method discerns and mitigates the impact of backdoor attacks on

ViTs. Notably, our approach is training-free, eliminating the need for addi-

tional data and model fine-tuning. To address potential false positives, we in-
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corporate contrastive decoding as a resilient verification mechanism, countering

scenarios where the backdoor model may erroneously misclassify clean samples

as poisoned under the influence of backdoor training. Our method represents a

significant advancement in fortifying the security and reliability of ViTs against

backdoor attacks.

• We proposes a novel approach, ProtoRe (Prototypical Refinement), to address

the challenges of unsafe generation in diffusion models. Unlike previous meth-

ods that rely on the composition of score or noise predictions from the diffusion

process and fail to effectively remove negative concepts during inference, Pro-

toRe introduces test-time negative concept identification and feature space

purification to enhance the flexibility of concept negation. ProtoRe works

by incorporating CLIP’s language-contrastive knowledge to identify the proto-

type of negative concepts, extract the negative features from outputs using the

prototype as a prompt, and further refine the attention maps by retrieving neg-

ative features. As a critical consideration, we suggest eliminating the negative

features in the cross-attention layers for text-conditional refusals which merge

visual features and textual guidance. Our ProtoRe framework effectively

mitigates negative concepts across various settings and demonstrates scalabil-

ity and ease of deployment. Comprehensive evaluations on multiple benchmarks

demonstrate the superiority of ProtoRe over existing methods in achieving

better purification effectiveness and preserving image fidelity.

6.2 Future Work

While significant progress has been achieved in addressing the compliance vulnera-

bilities and security risks associated with Transformer architectures, there remains

substantial scope for further research and development. The insights and method-

ologies presented in this thesis provide a foundation for future explorations aimed
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at enhancing the security, reliability, and ethical alignment of AI systems. The fol-

lowing points delineate key areas for future work, concentrating on expanding the

understanding of security risks from discriminative to generative models, transition-

ing from single-modal to multi-modal models, improving the robustness of defensive

mechanisms, and exploring new paradigms for safe AI deployment.

Security Risks from Discriminative to Generative Models.

In this thesis, we have extensively studied backdoor attacks and their corresponding

defenses in discriminative models, as detailed in Chapters 3 and Chapters 4. However,

as AI continues to evolve, it is crucial to extend this research to address emerging

security risks in generative models. Generative models, due to their ability to produce

new content, present unique challenges and vulnerabilities that necessitate further

investigation.

One significant area of concern is the potential for backdoor attacks on generative

models. In these scenarios, adversaries can embed hidden triggers during the training

phase, causing the model to generate specific outputs when these triggers are present

in the input. This can lead to the intentional generation of harmful or misleading

content. For example, a generative text model might be manipulated to produce

biased or malicious text when given a particular prompt, posing severe ethical and

safety risks.

Additionally, jailbreaking attacks on generative models are an emerging threat. These

attacks exploit vulnerabilities within the model to bypass its safety mechanisms, al-

lowing the generation of content that violates ethical guidelines or regulatory stan-

dards. For instance, attackers might craft inputs that compel the model to produce

hate speech, misinformation, or other prohibited content. This not only undermines

the integrity of the model but also poses significant societal risks.

To address these challenges, future work should focus on developing robust defense

mechanisms specifically tailored for generative models. This includes designing ad-
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vanced detection techniques for identifying and mitigating backdoor triggers and jail-

breaking prompts. Moreover, establishing frameworks for continuous monitoring and

updating of generative models will be essential to adapt to new threats and ensure

the ethical alignment of AI-generated content.

Security Risks from Single-Modal to Multi-Modal Models

While this thesis has primarily addressed security vulnerabilities within single-modal

models, the advancement to multi-modal models, such as Sora and GPT-4, intro-

duces a new array of security concerns that necessitate further research. Multi-modal

models, which integrate and process data across various modalities (e.g., text, image,

audio), are increasingly prevalent in cutting-edge applications, ranging from advanced

conversational agents to comprehensive content generation systems.

One major challenge with multi-modal models is the expanded attack surface resulting

from their integration of diverse data types. For instance, vulnerabilities within one

modality can potentially compromise the entire system. Sora and GPT-4, which

combine textual and visual inputs to generate multi-faceted outputs, are not immune

to such risks. Adversarial attacks on the image component of these models could,

for example, influence the text generation process, leading to potentially harmful or

misleading outputs.

Additionally, these models are susceptible to novel attack vectors that exploit cross-

modal interactions. For example, attacks could manipulate inputs in one modal-

ity—such as altering visual content in GPT-4’s image-based tasks—to produce bi-

ased or discriminatory text outputs. The complexity of these interactions makes tra-

ditional security measures less effective, highlighting the need for advanced defense

mechanisms tailored to multi-modal architectures.

Moreover, the risk of generating unsafe content is a significant concern. Multi-modal

models like Sora and GPT-4 can produce content that is biased, discriminatory, or

otherwise harmful due to the diverse nature of their data inputs and the complexity
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of their learning processes. Ensuring that these models do not propagate illegal or

unethical content requires comprehensive strategies to manage and mitigate risks

across all modalities.

Future work should focus on developing robust security frameworks specifically for

multi-modal models. This includes designing advanced algorithms to detect and de-

fend against cross-modal attacks, improving the resilience of each modality to adver-

sarial inputs, and establishing guidelines to prevent the generation of unsafe content.
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