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Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities in text
generation and understanding, yet their reliance on implicit, unstructured knowledge
often leads to factual inaccuracies and limited interpretability. Knowledge Graphs
(KGs), with their structured, relational representations, offer a promising solution to
ground LLMSs in verified knowledge. However, their potential remains constrained by
inherent noise, incompleteness, and the complexity of integrating their rigid structure
with the flexible reasoning of LLMs. This thesis presents a systematic framework to
address these limitations, advancing the reliability of KGs and their synergistic inte-
gration with LLMs through five interconnected contributions. This thesis addresses
these challenges through a cohesive framework that enhances LLMs by refining and
leveraging reliable KGs. First, we introduce contrastive error detection, a structure-
based method to identify incorrect facts in KGs. This approach is extended by an
attribute-aware framework that unifies structural and semantic signals for error cor-
rection. Next, we propose an inductive completion model that further refines KGs
by completing the missing relationships in evolving KGs. Building on these refined
KGs, KnowGPT integrates structured graph reasoning into LLMs through dynamic
prompting, improving factual grounding. These contributions form a systematic
pipeline (from error detection to LLM integration), demonstrating that reliable KGs

significantly enhance the robustness, interpretability, and adaptability of LLMs.
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Chapter 1

Introduction

1.1 Background

Large language models (LLMs), such as the Clude [4] and GPT series [73], have
demonstrated exceptional capabilities across diverse tasks, achieving breakthroughs
in text comprehension [I1], question answering [50], and content generation [21]. De-
spite their success, LLMs face persistent criticism for their limitations in knowledge-
intensive tasks, particularly those requiring domain expertise [I15]. Their application
in specialized domains remains challenging due to three key factors: @ Knowledge
limitations: LLMs possess broad but superficial knowledge in specialized fields, as
their training data primarily consists of general-domain content, leading to gaps in
domain-specific depth and alignment with current professional standards. @ Rea-
soning complexity: Specialized domains demand precise, multi-step reasoning gov-
erned by domain-specific rules and constraints. LLMs often struggle to maintain
logical consistency and accuracy throughout extended reasoning chains, especially in
technical or highly regulated contexts. ® Context sensitivity: Professional fields
rely on nuanced, context-dependent interpretations where identical terms or concepts

may carry different meanings based on specific scenarios. LLMs frequently fail to
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grasp these subtleties, resulting in misinterpretations or overly generalized responses.

To adapt LLMs for specific domains, researchers have explored various approaches,

which can be broadly classified into two categories:

Fine-tuning LLMs with Domain-specific Data. Fine-tuning pre-trained LLMs
on specialized datasets enables them to better capture domain-specific vocabulary,
terminology, and patterns [34], 53| (54 [31]. This approach has been successfully applied
in areas such as recommendation [I7, 123] and node classification [16, [40], enhanc-
ing the relevance and accuracy of generated responses [41]. Fine-tuned LLMs have
demonstrated effectiveness across various domains. In healthcare, they have been
leveraged for clinical note analysis [3], biomedical text mining [54], and medical dia-
logue [91]. Similarly, in the legal domain, they have proven useful for legal document

classification [I3], contract analysis [14], and legal judgment prediction [122].

Retrieval-augmented generation (RAG). RAG provides an effective way to tai-
lor LLMs for specialized domains without modifying the model architecture or pa-
rameters [50]. Instead of embedding new knowledge through retraining, RAG dynam-
ically retrieves relevant domain-specific information from external sources, enhancing
response accuracy and reliability. A typical RAG system operates in three stages:
knowledge preparation, retrieval, and integration. First, external textual data is
segmented into manageable chunks and transformed into vector representations for
efficient indexing. During retrieval, relevant chunks are identified based on keyword
matching or vector similarity when a query is submitted. Finally, the retrieved infor-

mation is combined with the original query to generate well-informed responses.

1.2 Motivation

Despite their success, RAG systems face significant challenges in practical applications

due to the inconsistent quality of accessible data. Domain knowledge is frequently
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distributed across diverse sources—ranging from textbooks and research articles to
technical manuals and industry reports [57]—which may vary in quality, accuracy, and
completeness, potentially leading to discrepancies in the retrieved information [124].
A promising strategy to mitigate these issues is to integrate Knowledge Graphs (KGs)
with LLMs. KGs offer a structured representation of domain knowledge, built on well-
defined ontologies that specify specialized terminologies, acronyms, and their interre-
lations within a field [58, 80} 116, 117, [T18]. The extensive factual content contained in

KGs can help anchor model responses in established facts and principles [39, 109} [74].

However, integrating KGs with LLMs is fraught with challenges. Existing KGs are
far from perfect since they often suffer from incompleteness, noise (e.g., erroneous
or conflicting triples), and rigidity (e.g., inability to generalize to unseen entities).
Moreover, LLMs lack mechanisms to dynamically retrieve and reason over structured
knowledge during generation, often treating retrieved facts as isolated snippets rather
than interconnected evidence. To unlock their full potential, KGs must first be refined
into reliable, dynamic repositories of knowledge and then seamlessly integrated into
LLMs. This thesis tackles these dual challenges through a systematic framework
that spans error detection, graph completion, and synergistic LLM-KG integration,

ultimately advancing the robustness and interpretability of Al systems.

1.3 Research Objectives

The central aim of this thesis is to advance the integration of structured knowledge
into LLMs by addressing critical challenges in KG reliability, completeness, and syner-
gistic LLM-KG interaction. This goal is operationalized through three interconnected

objectives:

e Error Detection in Knowledge Graphs. The first objective focuses on identify-

ing and resolving inaccuracies in KGs caused by noise during construction or
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updates. This involves developing methods to detect structural inconsistencies
(e.g., conflicting triples violating logical constraints) and semantic mismatches
(e.g., discrepancies between entity attributes and their relational context). By
unifying structural and attribute-based analysis, the goal is to create a robust
framework for error identification and resolution, ensuring KGs serve as trust-

worthy knowledge bases.

e Knowledge Graph Completion. The second objective addresses the incomplete-
ness of KGs, particularly in dynamic environments where new entities and re-
lationships emerge continuously. Traditional transductive models, which rely
on fixed entity sets during training, are inadequate for such scenarios. This
objective seeks to design an inductive completion model capable of inferring
missing relationships for both existing and unseen entities by leveraging logical

rules and relational patterns, thereby enabling KGs to evolve adaptively.

e Enhancing LLMs with Structured Knowledge. The third objective bridges the
gap between structured KGs and unstructured LLM reasoning. While LLMs
excel at text generation, they lack mechanisms to systematically ground out-
puts in verified knowledge. This objective involves designing a framework that
dynamically retrieves and integrates relevant subgraphs into LLM workflows,
structuring the model’s reasoning process around relational paths derived from

KGs to enhance factual consistency and interoperability.

1.4 Contributions

This thesis contributes five interconnected advancements that systematically address
the limitations of KGs and LLMs while establishing a pipeline for their synergistic

integration:

e Contrastive Knowledge Graph Error Detection. This thesis introduces a con-



1.4. Contributions

trastive learning framework (CAGED) to identify erroneous triples by analyz-
ing structural plausibility. By training a model to differentiate valid triples
from synthetically generated corruptions, this approach detects inconsistencies
through margin-based scoring, achieving state-of-the-art precision in structural

error detection across benchmark KGs.

Error-Aware Embedding with Attribute Integration. We extend structural er-
ror detection by incorporating entity attributes into a unified embedding space.
This hybrid model (AEKE) jointly optimizes structural and semantic signals,
enabling the identification of errors that manifest as contradictions between
relational patterns and attribute metadata. The integration of attributes im-
proves error correction accuracy significantly compared to structure-only base-

lines, particularly in complex scenarios requiring contextual understanding.

Logical Rule-based KG Completion. This thesis proposes a neural-symbolic
model (NORAN) that combines relational networks with first-order logic rules
to infer missing relationships inductively. By decoupling logical rule application
from entity-specific embeddings, the model generalizes to unseen entities while
maintaining interpretability. Evaluations demonstrate superior performance in
inductive settings, outperforming existing methods in inferring relationships for

dynamically evolving KGs.

KG Prompting for LLMs. We introduce a prompting architecture (KnowGPT)
that bridges structured KGs and LLMs. By dynamically retrieving subgraphs
relevant to a query and serializing them into natural language prompts, this
framework guides LLMs to reason along verified relational paths. Empirical
results show marked reductions in factual hallucinations, validating the utility

of structured knowledge in grounding LLM outputs.
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1.5 Overall Structure

This thesis is structured to reflect the logical progression from KG refinement to LLM
integration. Following this introductory chapter, Chapter 2 reviews foundational con-
cepts in knowledge graphs and large language models, highlighting key limitations in
existing approaches to error detection, graph completion, and KG-enhanced LLMs.
Chapters 3-6 present the five core research papers, each addressing a distinct compo-
nent of the pipeline. Papers 1 [116] and 2 [I17] focus on error detection, first through
a structure-based contrastive approach and then by incorporating entity attributes for
richer semantic analysis. Paper 3 [118] shifts to KG completion, introducing a logic-
guided model that enables inductive reasoning over evolving graphs. Paper 4 [115]
bridges the refined KGs with LLMs through KnowGPT, a prompting architecture
that structures LLM inferences around retrieved subgraphs. The concluding chapter

reflects on the implications of this work and outlines directions for future research.



Chapter 2

Literature Review

2.1 Knowledge Graphs

2.1.1 Knowledge Graph Definition

Knowledge Graphs (KGs) [T, 55 B6, [67] represent entities and their relationships
as structured triples, offering a machine-interpretable format for encoding real-world
knowledge. Early KGs, such as Freebase 7] and Wikidata [36], laid the groundwork
for applications in semantic search, recommendation systems, and question answering.
Modern KGs have expanded in scale and complexity, yet they remain constrained
by three core challenges: incompleteness (missing entities or relationships), noise
(erroneous or conflicting triples), and rigidity (inability to generalize to unseen entities
or adapt dynamically). Traditional KG embedding models, such as TransE [9] and
RotatE [84], map entities and relations to low-dimensional vectors but struggle to
address these challenges, particularly in open-world scenarios where knowledge evolves

continuously.
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2.1.2 Knowledge Graph Refinement

KG refinement encompasses two interrelated tasks: error detection and knowledge
completion. (i) Early error detection methods relied on rule-based heuristics [2] or
statistical outlier detection in embedding spaces [63]. While effective for simple in-
consistencies, these approaches lacked the contextual awareness to resolve complex
errors involving semantic or temporal contradictions. Contrastive learning has proven
effective under various error detection scenarios. Based on this paradigm, this thesis
introduces a structure-aware contrastive framework (CAGED) [116] that distinguishes
valid triples from corrupted ones by maximizing the margin between their confidence
scores. This approach is extended with entity attribute (AEKE)[L17] to unify struc-
tural and semantic error signals. (ii)For knowledge completion, transductive models
like Graph Neural Networks (GNNs) assume a fixed entity set during training, render-
ing them ineffective for evolving KGs. Inductive approaches address this limitation
by generalizing to unseen entities, often through meta-learning or rule-based reason-
ing [98, O2]. However, prior work either sacrifices interpretability (e.g., black-box
neural models) or scalability (e.g., handcrafted logical rules). This thesis bridges this
gap with a novel model (NORAN) [I18] that mines logic rules within a trainable

relational network, enabling inductive reasoning while maintaining transparency.

2.2 KG-enhanced LLM

2.2.1 LLM Hallucination

LLMs internalize knowledge implicitly through pretraining on vast text corpora, but
their static knowledge base and lack of structured reasoning lead to factual inaccu-
racies and hallucinations [I15]. Retrieval-Augmented Generation (RAG) mitigates

this by grounding LLMs in external data, yet most RAG systems treat knowledge as
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unstructured text, neglecting the relational structure of KGs. Early attempts to inte-
grate KGs with LLMs focused on static embeddings or predefined prompts [53, 541 31],
limiting their ability to handle dynamic queries requiring multi-hop reasoning. Re-
cent work explores dynamic subgraph retrieval and serialization, but these methods

often lack systematic error handling or fail to scale to large KGs.

2.2.2 Knowledge Integration

Earlier studies adopted a heuristic way to inject knowledge from KGs into the LLMs
during pre-training or fine-tuning. ERNIE [82] incorporates entity embeddings and
aligns them with word embeddings in the pre-training phase, encouraging the model
to better understand and reason over entities. UniKGQA [47] is the first approach to
leverage LLMs to seamlessly integrate retrieval and reasoning within a unified frame-
work. Another line of work focuses on retrieving relevant knowledge from KGs at
inference time to augment the language model’s context. Typically, K-BERT [62]
uses an attention mechanism to select relevant triples from a KG based on the in-
put context, which are then appended to the input sequence. More recently, KG
prompting has been intensively studied for integrating factual knowledge into LLMs.
KD-CoT [96] and KG-CoT [121] build upon the concept of chain-of-thought, guiding
LLMs through a step-by-step reasoning process while enabling timely correction of
erroneous reasoning. Their factuality and faithfulness are validated using an exter-
nal knowledge graph. RoG [65] presents a planning-retrieval-reasoning framework
that synergizes LLMs and KGs for more transparent and interpretable reasoning.
Despite their effectiveness, existing models focus on designing methods for knowl-
edge retrieval or generation. They directly feed the retrieved or generated knowledge
into the LLM for reasoning, which does not necessarily provide effective guidance to
the LLMs. This is because LLMs often struggle to distinguish between valid and

redundant knowledge.



Chapter 3

Contrastive Knowledge Graph

Error Detection

3.1 Introduction

With the increasing deployment of KG-driven applications such as conversational
agents and recommender systems [93, [42], the need for reliable error detection in
knowledge graphs (KGs) has become critical. KGs represent assertions as triples—i.e.,
(head entity, relation, tail entity)—offering a structured and scalable way to organize
information. However, because many KGs are automatically extracted from web
data using heuristic methods, they inevitably incorporate a significant amount of
noise [8, 55, 36, 67]. For instance, the widely used NELL KG [12] achieves a precision
of only 74%, implying roughly 0.6 million triples may be erroneous. Many existing
approaches overlook these errors by assuming the correctness of all triples, which can
lead to degraded performance in downstream tasks. Consequently, the development

of effective KG error detection algorithms is imperative.

The task of KG error detection is complicated by the diversity and subtlety of error

patterns, compounded by the scarcity of ground-truth labels—since obvious errors are

10
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typically rectified during KG construction [75]. Prior work can be grouped into two
main categories. The first, rule-based methods, identify errors as violations of a set
of predefined rules [2], B3] 20, 29, R7]; however, these rules tend to be domain-specific
and lack generalizability. The second category, embedding-based methods, often rely
on simplistic negative sampling strategies, where a positive triple (h,r,t) is corrupted
by randomly replacing h or ¢, to generate synthetic negative examples for training [76),
40, [30), 106, [68]. While useful, these strategies fail to capture the complex nature of
real-world errors. For example, randomly transforming a valid triple like (Newton,
Nationality, England) into (Newton, Nationality, Google) does not reflect the nuanced
errors encountered in practice. Real errors may involve subtle mismatches—such as
(Bruce_Lee, place_of birth, China)—where the entities are contextually related yet
incorrect. This discrepancy highlights the need for more advanced error simulation

and detection mechanisms.

Contrastive learning has emerged as a powerful self-supervised technique in various
tasks such as classification [I13], link prediction [I00], and recommendation [103].
By generating different views of the same data through transformations and then
maximizing the agreement between these views [18] [37, 38, 85 [15], models can learn
discriminative features without relying on manual labels. This approach has proven
effective in computer vision for error detection, suggesting its potential applicability
to KGs. However, applying contrastive learning to KG error detection introduces
two primary challenges. First, constructing meaningful views for KGs is nontrivial;
traditional graph augmentation methods (e.g., node dropping, edge perturbation,
subgraph sampling) [112, B5] are tailored for network embeddings and may disrupt
the delicate structure of erroneous triples. Since a KG is essentially a collection of
triples, effective error detection demands augmentation strategies that preserve the
inherent error patterns. Second, existing graph encoders do not differentiate between
reliable and noisy triples during message passing, potentially diluting the learned

representations. Thus, an encoder that is aware of and can mitigate the influence of

11
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erroneous triples is needed.

To address these issues, we formally define the problem of KG error detection and
explore two central questions: @ How can we generate meaningful, distinct views of a
KG to facilitate effective contrastive learning? @ How can we design an error-aware
KG encoder that enhances the detection of noisy triples? In response, we propose
the ContrAstive knowledge Graph Error Detection (CAGED) framework. Our key

contributions include:

e Introducing CAGED, which integrates contrastive learning with KG embed-

dings to improve error detection.

e Developing a novel KG augmentation technique that produces triple-level views

while preserving the structure of potential errors.

e Proposing an error-aware graph encoder, EaGNN, that employs a gated atten-
tion mechanism to suppress the influence of noisy triples during representation

learning.

e Demonstrating the effectiveness of CAGED through extensive experiments on

three real-world KGs, where it outperforms existing error detection methods.

3.2 Contrastive Knowledge Graph Error Detection
(CAGED)

In conventional KG representation learning, a knowledge graph is typically treated
as a heterogeneous graph where entities serve as nodes and relations as semantic
links. However, this formulation often struggles to capture the intricate interdepen-

dencies among triples. In this work, we introduce ContrAstive knowledge Graph
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Figure 3.1: Two separate augmentation operators are applied to the original KG,
generating two triple graphs as congruent views, i.e., View I and View II. After
training, we estimate the confidence score by measuring the consistency of triple
representations across multi-views, i.e., 4 and z4, and the self-consistency within

the triple, i.e., (€, €,, €;).

Error Detection (CAGED), a framework designed to pinpoint inaccuracies in large-
scale KGs. The key idea is to recast the KG into multiple hyper-views—specifically,
triple graphs—by regarding each relational triple as a node, and then to evaluate the
reliability of each triple by comparing its representations across these views. The
intuition is that contrastive learning can extract rich semantic features for normal
triples, whereas anomalous triples, lacking these features, will have representations
that diverge in the latent space. Thus, the degree to which a triple’s representations

from different views converge serves as a reliable signal for error detection.

As depicted in Figure 3.1, CAGED comprises three main components: KG augmen-
tation, an error-aware encoder, and joint confidence estimation. First, we propose
an innovative KG augmentation technique that produces two triple-level graphs by
treating each relational triple as a node, thereby creating two congruent views (View
[ and View II). Next, we introduce a tailored error-aware knowledge graph neural
network (EaGNN) that suppresses the influence of erroneous triples during repre-
sentation learning. Finally, to obtain discriminative multi-view representations, we

jointly optimize a translation-based KG embedding loss and a contrastive learning

13
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loss, and estimate each triple’s confidence by leveraging both the consistency across

views and its internal coherence.

3.2.1 Knowledge Graph Augmentation

Data augmentation plays a pivotal role in contrastive learning [52]. Unlike image
data—where standard techniques such as rotation, cropping, or distortion can eas-
ily yield diverse views [125] [35]—constructing views for KGs is challenging due to
their unique structure. Traditional graph contrastive learning methods typically use
augmentations like node dropping, edge perturbation, subgraph sampling, or matrix
diffusion [I12], which have shown promising results in tasks such as node classification,

graph classification, and link prediction.

However, these methods are not ideal for KG error detection since a KG is essen-
tially a collection of triples, and error detection entails identifying spurious triples.
Approaches that emphasize entity or graph-level contrasts do not adequately capture
the nuances required at the triple level. Moreover, while these augmentations can
improve the robustness of representations, they may inadvertently distort the under-
lying error distribution or even introduce additional noise, thereby complicating the

detection task.

Definition 1. Linking Pattern. Consider two triples, Ty = (hy,r1,t1) and Ty =
(hg, T2, ta), that share entities. They can be linked in two distinct ways: (i) by sharing
a head entity (i.e., hy = hy or hy = t3), and (ii) by sharing a tail entity (i.e., t; = hy
or ty = ty). Based on this observation, we construct two triple graphs using these

linking patterns, as they capture different semantic relationships.

Our augmentation strategy generates two triple graphs, denoted by 7 and 7', by
treating each relational triple as a node and connecting them according to the linking

patterns in Definition [1} Concretely, T reflects connections based on shared head

14



3.2. Contrastive Knowledge Graph Error Detection (CAGED)

entities, whereas 7" is built on shared tail entities. Given that triples sharing an entity
are generally semantically related, normal triples typically have ample neighbors in T
(View I) that can mirror the semantics captured in 77 (View II). Thus, assessing the
consistency between a triple’s representations in these two views provides a reliable

measure of its trustworthiness.

3.2.2 FError-aware Encoder — EaGNN

Erroneous triples can severely impair the quality of learned representations by prop-
agating misleading information during message passing. To counteract this, we pro-
pose a custom error-aware graph neural network (EaGNN) that captures both the
semantic and structural properties of triples while mitigating the influence of noise.
EaGNN integrates a local information modeling layer with a global error-aware at-

tention mechanism to generate robust KG embeddings.

Local Information Modeling Layer. Transforming the original KG into a triple
graph may result in a loss of the inherent sequential structure (i.e., the pattern h —
r — t). To preserve this local information, we initialize the embeddings of entities and
relations randomly and employ a set of Bi-LSTM units to learn the internal structure

of each triple. For a given triple (h,r,t), the process is formalized as:
€, €., 6 = Bi-LSTM(ey, e, €;), (3.1)
Qi = [€n; €, €. (3.2)

The derived triple embedding q; effectively encapsulates the relational structure
within the triple and serves as the initial representation in the constructed triple

graphs.

Global Error-aware Attention Layer. In addition to local features, the global

context provided by neighboring triples is essential for evaluating a triple’s reliability.
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Standard KG neural networks often assign uniform attention to all neighbors, which
can cause noisy information from erroneous triples to contaminate the final repre-
sentation. To address this, we propose a novel attention mechanism that selectively

attenuates the contribution of dubious neighbors.

For an anchor triple q; € R? in View I, we update its representation by aggregat-
ing information from its neighboring triples {qi,qa,...,qn}. The attention weight

between the anchor triple and a neighbor j is computed as:

where W € R™"*? is a learnable projection matrix, and A denotes an attention func-

tion. We then normalize these weights using softmax:

exp(d;)
S exp(Gi) (3.4)

To suppress the effect of potential outliers, we introduce a threshold y € R:

aij -

iy, if @y > p,
Q5 = (35)

0, otherwise.

The final representation for the anchor triple in View I is then obtained by:

X; = 0(2%7“7%’), (3.6)
j=1
and similarly, for an anchor triple in View II:

Z;, =0 ( Z o ij> : (3.7)

j=1
3.2.3 Joint Confidence Estimation

To ensure that the model learns rich and discriminative representations across views,
we jointly optimize two loss functions: a KG embedding loss and a contrastive learning

loss.
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KG Embedding Loss. At the level of individual triples, we leverage the translation
principle—i.e., h +r &~ t—to assess triple plausibility. We use the squared Euclidean

distance as an energy function:
E(h,r,t) = |len + e, — ey, (3.8)
and define the KG embedding loss as:
L= > > max (0,5 + B(h,rt) — B(h7,9)). (3.9)
(h,rt)€g (iL,?A’,tA)G(_j
where v > 0 is a margin hyperparameter, G denotes the set of positive triples, and G

is constructed by corrupting the head or tail of each triple:

G={(h,r,t) | heGyu{(hri)|teg) (3.10)

Contrastive Loss. While the KG embedding loss focuses on local structural details,
contrastive learning enables the model to capture global semantic consistency across
views. We randomly sample a minibatch of n triples from the KG, resulting in 2n
representations: {Xi,Xs,...,X,} from View I and {z;,z,,...,z,} from View II. For
each triple 7, the pair (x;, z;) is treated as positive, while the remaining representations
serve as negatives. The contrastive loss is formulated as:
exp (sim(x;, z;)/7)
Zje{l,Q,...,n}\{z’} exp (sim(x;,z;)/7)’

where sim(x;, z;) denotes the cosine similarity between the two representations and 7

Leon(Xi,2;) = —log (3.11)

is a temperature parameter. The overall contrastive loss is computed over all triples

in the minibatch.

3.3 Experiments

To assess the performance of our proposed CAGED framework, we conduct exten-
sive experiments on three real-world knowledge graphs. Our evaluation is structured

around the following research questions:
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Table 3.1: The statistical information of the datasets.

Dataset Entities Relations Triples Mean in-degree
FB15K 14,541 237 310,116 18.71
WNI18RR 40,943 11 93,003 2.12
NELL-995 75,492 200 154,213 1.98

e Q1 (Effectiveness): How does CAGED compare to state-of-the-art methods

for KG error detection?

e Q2 (Ablation Study): What are the contributions of each individual compo-
nent within CAGED?

e Q3 (Parameter Analysis): How do variations in hyperparameters impact

the performance of CAGED?

3.3.1 Experimental Settings

This section details the experimental configuration, including datasets, baseline meth-

ods, evaluation metrics, and implementation specifics.

Datasets. Following previous work [104], 46], we evaluate our approach on three
datasets derived from established benchmarks: FB15k, WN18RR, and NELL-995.
Each dataset is constructed by injecting noise at levels of 5%, 10%, and 15% of
the total triples. Table summarizes their statistics. In this paper, we detect
errors from three categories, including factual errors that include incorrect entity
relationships, coverage errors that arise from missing entities or relations, and logical

inconsistencies that violate formal rules, like circular dependencies or conflicting facts.

FB15K originates from the Freebase Knowledge Base and is augmented with textual

relations extracted from ClueWeb12 and annotated in Freebase.
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WN18RR is a refined subset of WordNet designed to eliminate test leakage by
removing inverse relations; it comprises 11 relation types and features a relatively

simpler structure.

NELL-995 is obtained from the 995th iteration of the NELL system, a large-scale
and evolving knowledge base. Triples lacking reasoning values are removed prior to

selecting the top-200 unique relations.

Baseline Methods. We compare CAGED with two groups of baseline approaches.
The first group consists of KG embedding techniques, including TransE [10], Dist-
Mult [107], and ComplEx [90]. In these methods, the confidence score for each triple
is computed from the embedding-based score (e.g., ||en+e,—e;|2 in TransE). The sec-
ond group comprises specialized KG error detection methods such as CKRL [104],
KGTtm [46], and KGIst [5]. CKRL extends TransE by incorporating all paths
between entities, KGTtm further integrates the overall graph structure, and KGIst

employs an unsupervised strategy to learn soft rules for error identification.

Evaluation Metrics. We employ ranking-based metrics to assess performance.
Triples are sorted in ascending order according to their confidence scores, with lower

scores indicating a higher likelihood of error. Specifically, we use:

e Precision@QK: The proportion of false triples within the top K triples.

e Recall@K: The fraction of all erroneous triples identified in the top K.

Implementation Details. All methods are implemented using PyTorch, and we
utilize publicly available code for baseline models. Experiments are performed on an
Nvidia RTX 3090 GPU. We use the Adam optimizer with a fixed batch size of 256,
an initial learning rate of 0.01, and an embedding dimension of 100 for all models. A

grid search is conducted to tune hyperparameters: the attention threshold p (ranging
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Table 3.2: Error detection results of Precision@QK and Recall@K based on the three

datasets with anomaly ratio = 5%.
FB15K WN18RR NELL-995

K=1% K=2% K=3% K=4% K=5%" K=1% K=2% K=3% K=4% K=5%" K=1% K=2% K=3% K=4% K=5%"

TransE 0.756  0.674  0.605  0.546 0.488 0.581 0.488  0.371 0.345 0.331 0.659  0.550  0.476  0.423 0.383
ComplEx  0.718  0.651 0.590  0.534 0.485 0.518  0.444  0.382  0.341 0.307 0.627  0.538  0.472  0.427 0.378

E DistMult  0.709  0.646  0.582  0.529 0.483 0.574  0.451 0.390  0.349 0.322 0.630  0.553  0.493  0.446 0.408
:% CKRL 0.789  0.736  0.684  0.630 0.574 0.675 0526  0.436  0.389 0.349 0.735  0.642  0.559  0.498 0.450
E KGTtm 0.815  0.767  0.713  0.612 0.579 0.770  0.628  0.516  0.444 0.396 0.808  0.691  0.602  0.535 0.481
KGIst 0.825  0.754  0.703  0.617 0.569 0.747 0599  0.476  0.407 0.379 0.782  0.678  0.584  0.528 0.485
CAGED 0.852 0.796 0.735 0.665 0.595 0.826 0.726 0.632 0.541 0.469 0.850 0.736 0.644 0.573 0.516
TransE 0.151 0.270  0.363  0.437 0.488 0.116  0.195  0.223  0.276 0.331 0.132 0220 0285  0.338 0.383
ComplEx  0.143  0.260  0.354  0.427 0.485 0.103 0177 0.229  0.273 0.307 0.125  0.215  0.283  0.341 0.378
»Lﬂ DistMult ~ 0.141 0.258  0.349  0.423 0.483 0.114  0.180  0.234  0.279 0.322 0.126  0.221 0.295  0.357 0.408
% CKRL 0.158  0.294  0.410  0.504 0.574 0.135 0210  0.261 0.311 0.349 0.147  0.256  0.335  0.398 0.450
&  KGTtm 0.163  0.307  0.428  0.490 0.579 0.154  0.251  0.309  0.355 0.396 0.161  0.276  0.361  0.428 0.481
KGIst 0.165 0302 0422 0.494 0.569 0.149 0240  0.285  0.325 0.379 0.156  0.271 0.350  0.422 0.485

CAGED  0.171 0.318 0.441 0.532 0.595 0.165 0.290 0.379 0.433 0.469 0.170 0.294 0.386 0.458 0.516

from 0.001 to 0.2), the margin parameter « (ranging from 0 to 1), and the trade-off
coefficient A (ranging from 0.001 to 1000). The number of neighbors is determined by
averaging the neighbor count across all triples in each dataset. To reduce variability,

results are averaged over ten runs using a fixed random seed.

3.3.2 Effectiveness (Q1)

To address Q1, we evaluate all methods on the three datasets with a noise level of 5%.
Table summarizes the results (similar trends are observed for other noise levels,

as shown in Table . Our key observations are:

1. KG error detection methods (including CAGED, CKRL, KGTtm, and KGIst)
outperform standard KG embedding techniques (e.g., TransE, ComplEx, and

DistMult) because the latter do not explicitly account for erroneous triples.

2. CAGED consistently achieves the highest performance in terms of both recall
and precision. For instance, when evaluated at K corresponding to 5% and with

a 5% anomaly ratio, CAGED improves over the second-best method by approx-
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Table 3.3: Error detection results on NELL-995 with different anomaly ratios.
Ratio 5% 10% 15%

K K=5%" K=10% K=15% K=5% K=10%* K=15% K=5% K=10% K=15%"

TransE 0.383 0.285 0.225 0.626 0.499 0.407 0.702 0.621 0.535
ComplEx  0.378 0.289 0.231 0.614 0.507 0.402 0.696 0.589 0.528

% DistMult  0.408 0.298 0.227 0.633 0.510 0.414 0.718 0.618 0.548
:% CKRL 0.450 0.306 0.236 0.679 0.524 0.421 0.745 0.646 0.560
g KGTtm 0.481 0.320 0.242 0.713 0.527 0.437 0.788 0.673 0.576
KGIst 0.485 0.317 0.244 0.748 0.552 0.440 0.791 0.663 0.569
CAGED 0.516 0.325 0.251  0.799 0.585 0.458 0.823 0.729 0.599
TransE 0.383 0.57 0.675 0.313 0.499 0.612 0.234 0.414 0.535
ComplEx  0.378 0.578 0.693 0.307 0.507 0.603 0.232 0.393 0.528
é DistMult  0.408 0.596 0.681 0.317 0.510 0.621 0.239 0.412 0.548
ES CKRL 0.450 0.612 0.708 0.340 0.524 0.632 0.248 0.431 0.560
& KGTtm 0.481 0.640 0.726 0.357 0.527 0.656 0.263 0.449 0.576
KGIst 0.485 0.634 0.732 0.374 0.552 0.660 0.264 0.442 0.569

CAGED 0.516 0.650 0.753  0.400 0.585 0.687 0.274  0.486 0.599

% Note that when K equals anomaly ratio, Precision@K and Recall QK have the same value.

imately 1.6%, 7.3%, and 3.1% on FB15K, WN18RR, and NELL-995, respec-
tively. This improvement is attributed to the multi-view contrastive learning

strategy that effectively captures both intra-triple and cross-view features.

3. The superiority of CAGED is particularly pronounced when focusing on the

top-ranked erroneous triples (i.e., for smaller K values).

Furthermore, experiments on NELL-995 with noise levels of 5%, 10%, and 15% (see

Table confirm the robustness and stability of our model under varying conditions.

3.3.3 Ablation Study (Q2)

To investigate Q2, we conduct an ablation study on the NELL-995 dataset by evalu-
ating several variants of CAGED (see Table [3.4). Due to space limitations, we only
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Table 3.4: Four pairs of variants of CAGED.

Original component Replacement
Var DN KG augmentation Node dropping
Var_EP KG augmentation Edge perturbation
Var_Concat Bi-LSTM units Only concatenation
Var_LSTM Bi-LSTM units LSTM units
Var_GCN EaGNN R-GCN
Var_GAT EaGNN KGAT
Var_Local Joint optimization  Only negative sampling

Var_Global  Joint optimization  Only contrastive learning

report results for NELL-995, as similar trends are observed for FB15K and WN18RR.

Component 1: KG Augmentation. We compare our tailored KG augmentation
strategy with two generic augmentation methods: node dropping (Var_DN) and edge
perturbation (Var_EP). As illustrated in Table 3.5 both Var DN and Var_EP under-
perform, even relative to some KG embedding baselines like TransE. This suggests
that applying standard augmentations can disrupt the triple structure and introduce
additional noise, thereby impairing error detection. The significant performance gap
highlights the importance of our specialized augmentation approach, which preserves

the distribution of potential errors while generating diverse views.

Component 2: EaGNN Encoder. To validate the effectiveness of our EaGNN
encoder, we substitute it with leading KG neural networks such as R-GCN [7§]
(Var_GCN) and KGAT [71] (Var_.GAT). Results in Table 3.5 indicate that, although
Var_GAT performs better than Var_ GCN, both still lag behind the full CAGED
model. This outcome underscores that traditional KGNNs, which assume all triples

are correct, are less capable of filtering out noise. Additionally, we test variants that
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Table 3.5: The comparisons of CAGED and its variants on NELIL-995 with ratio of

errors equals 5%.

PrecisionQK RecallQ K

Top@QK 1% 2% 3% 4% 5% 1% 2% 3% 4% 5%

CAGED  .850 .736 .644 .573 .516 .170 .294 .386 .458 .516

Var_ DN 613 .490 .412 .358 .325 .122 .196 .247 .286 .325
Var_EP 593 .500 .416 .354 .313 .118 .200 .249 .283 .313

Var_Concat .767 .648 .532 .468 .440 .153 .259 .319 .374 .440
Var LSTM .797 .662 .564 .500 .458 .159 .264 .338 .400 .458

Var GCN  .760 .623 .529 .464 .414 .152 .249 .317 .371 .414
Var GAT .782 .629 .551 .471 .426 .156 .251 .330 .377 .426

Var_Local .724 .603 .504 .433 .383 .144 .241 .302 .346 .383
Var_Global .783 .652 .560 .492 .443 .156 .261 .336 .393 .443

modify the local structure modeling: Var LSTM (using LSTM instead of Bi-LSTM)
and Var_Concat (direct concatenation of entity, relation, and tail embeddings). The
drop in performance for Var_Concat—and to a lesser extent for Var_LSTM-—demonstrates

the critical role of capturing local sequential structure via Bi-LSTM units.

Component 3: Joint Estimation. We also assess the impact of our joint opti-
mization strategy by comparing two variants: Var_Local, which relies solely on the
translation-based KG embedding loss (i.e., using negative sampling), and Var_Global,
which employs only the contrastive learning loss. As shown in Table[3.5], both variants
are outperformed by the integrated model, with Var_Local performing particularly
poorly, even when compared to simple baselines like DistMult. These findings con-
firm that combining local structural features with cross-view consistency is essential

for robust error detection.
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Figure 3.2: Impact of hyperparameters on the three datasets.

3.3.4 Parameter Analysis (Q3)

We further explore the influence of key hyperparameters on model performance, with

the results summarized in Figure (3.2

The attention threshold u, regulates the selectivity of the attention mechanism. A
larger p limits attention to a small set of highly related neighbors, whereas a smaller
1 allows a broader neighborhood to influence the representation. As shown in Fig-
ure , optimal performance is achieved when p is approximately 0.005 for FB15K
and NELL-995, and 0.01 for WN18RR. Decreasing p further introduces excessive

noise, leading to performance degradation.

The coefficient A, which balances the contribution of cross-view inconsistency and
intra-triple coherence, is varied from 1073 to 103. Figure shows that WN18RR
and NELL-995 obtain their best results around A = 10, while FB15K performs op-
timally when A is below 1 (around 0.1). This difference is likely due to the denser

structure of FB15K, which allows the cross-view signal to play a more significant role.

Finally, the margin parameter ~ is varied from 0.1 to 1.0. As illustrated in Fig-
ure [3.2(c)| the detection performance remains relatively stable across this range, sug-
gesting that the joint training strategy helps prevent the model from converging to

suboptimal solutions.
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3.4 Summary

Traditional KG error detection methods typically rely on synthetically generated false
triples—created by randomly replacing head or tail entities—which fail to capture the
nuanced errors found in practice. In contrast, our CAGED framework leverages con-
trastive learning to generate multi-view representations centered on triples, allowing
the model to discern subtle inconsistencies that indicate errors. Experimental results
on three real-world knowledge graphs demonstrate that CAGED outperforms existing

state-of-the-art methods across various evaluation metrics and noise levels.
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Integrating Entity Attributes for

Error-Aware Reasoning

4.1 Introduction

Knowledge graphs (KGs) consolidate vast amounts of relational data as triples, i.e.,
(head entity, relation, tail entity). They appear in both general-purpose settings
(e.g., YAGO [67], DBpedia [55]) and in specialized domains such as biomedicine or
agriculture. KGs serve as the backbone for many Al applications, including recom-
mender systems enhanced by KG information [94] and conversational agents powered

by structured knowledge [43].

A prominent research direction involves KG embedding, where entities are represented
as continuous vectors and relations as operations (e.g., translations or projections) in
a shared latent space. This approach enables efficient inference via simple numerical
computations [9], 84 [33]. Despite the extensive development of embedding techniques,
the adverse impact of noisy or erroneous triples is frequently neglected. Manual
curation is infeasible at scale, and most real-world KGs are automatically extracted

from web corpora using heuristic methods [7, 55, B6]. Consequently, a significant
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Figure 4.1: Running examples of complex errors in real-world KGs. (a) presents a KG
error with mismatched head/tail entities and relations. This error can be detected
by reasoning over neighboring triples. But, real-world KGs are often incomplete and
noisy. (b) demonstrates a further difficult case with some key links missing. In this

case, the rich semantics in entity attribute types can facilitate the detection of errors.

fraction of the triples are noisy. For example, the NELL KG [70] contains about
2.4 million triples with an estimated accuracy of 74%, indicating roughly 0.6 million
erroneous triples [46]. Such inaccuracies can severely degrade downstream application

performance, underscoring the need for error-aware KG embedding methods.

Developing robust, error-aware embeddings is challenging due to the unknown and
diverse nature of KG errors. Recent efforts have explored mitigating noise by assign-
ing reliability scores to triples [79, [72]. Early works such as Vault [26] estimated triple
reliability via prior models, while methods like CKRL [104] and NoiGAN [19] further
refined this idea by leveraging internal structural cues. However, solely relying on
graph topology may not suffice; for example, a triple like {London, is_larger_than,
Washington} might be ambiguous without additional context to resolve which “Lon-

don” is intended.

Many KGs are also accompanied by rich attribute data that describe entity proper-
ties. For instance, as illustrated in Figure 4.1, an entity such as MadameCurie may
be associated with attributes like {birth_date, gender, nationality, language}, high-

lighting its identity as a person, whereas an entity like MariaSalomea might include
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{latitude, longitude, population, area}, reflecting its geographical nature. The inter-
play between an entity’s attributes and the KG structure provides valuable signals for
error detection. Typically, entities with similar attribute profiles are connected via
specific relations; for example, those with geographical attributes are often linked by
live_in or born_in, while entities with literary characteristics (e.g., {pen_name, writ-
ing_style}) tend to be connected by author_of. Thus, if a triple connects entities whose
attributes are inconsistent with the stated relation (e.g., {MadameCurie, spouse_of,

MariaSalomea} where a person is linked to a location), it likely indicates an error.

Nonetheless, integrating attribute information into error-aware KG embedding poses
two key challenges. First, entity attributes are highly heterogeneous—varying in type,
number, and context—so that a uniform encoder is needed to fuse diverse attribute
information. An entity may exhibit different attribute sets in different roles (e.g., a
scientist versus a writer). Second, aligning the semantics extracted from attributes
with the KG’s structural information is nontrivial, as these components inherently
differ in characteristics. While some approaches directly merge attribute-derived fea-
tures with entity embeddings, they often fail to capture the nuanced correlations

required for effectively filtering out erroneous triples.

This work seeks to answer the following research questions: @ How can entities, re-
lations, and attributes be jointly embedded into a unified vector space? @ How can
we design an effective detector to compute a confidence score for each triple based on
the learned features? @ How can these confidence scores be utilized to improve error-
aware KG embeddings? To address these challenges, we propose a novel framework
called AEKE (Attributed Error-aware Knowledge Embedding) [I17]. The core idea
of AEKE is to exploit the correlation between KG structure and entity attributes to
emphasize reliable triples during embedding. Specifically, we construct two triple-
level hypergraphs—the relational hypergraph and the attribute hypergraph—to cap-
ture, respectively, the structural topology of the KG and the semantics conveyed by

entity attributes. A contrastive learning framework is then employed to learn com-
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plementary representations from these two views. By jointly analyzing three types of
anomaly signals—(i) intra-triple self-contradiction, (ii) cross-triple consistency, and
(iii) the alignment between attribute information and graph structure—our method
computes a confidence score for each triple. These scores are further used to adap-
tively adjust both the aggregation weights in the contrastive learning process and the

margin loss in KG embedding, thereby reducing the influence of noisy triples.

The primary contributions of this work are as follows:

e We introduce AEKE, a novel KG embedding framework that leverages entity

attributes to enable error-aware learning.

e We design a multi-view contrastive learning strategy that uses attribute infor-

mation as a complementary view to guide KG representation learning.

e We propose a mechanism for computing triple confidence scores by integrating

signals from intra-triple, cross-triple, and attribute-structure consistency.

e We employ these confidence scores to adaptively update the aggregation in
multi-view learning and the margin loss in KG embedding, thereby mitigating

the impact of erroneous triples.

4.2 Error-Aware Knowledge Graph Modeling

We present AEKE, a framework designed to learn error-aware knowledge graph (KG)
embeddings by incorporating entity attributes. As shown in Fig. 1.2 AEKE is com-
prised of three main components: @ the KG representation learning model, which
integrates a confidence score C'(h, 7, t) into traditional KG embedding models to miti-
gate the impact of noise on embedding vectors; @ the triple confidence learning mod-

ule, which calculates a confidence score to assess the correctness and significance of
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Pair-wise Sampling

Positive Samples Negative Samples
i r .
Entity
o @ o Error-aware Embedding
[ 53 A
® O "0 _— KGEmbedding
(5 Y y+C-E(hr,t) - E(R,7',t)
6o 0 —O0 @ Reion
r N mbedding
S
o 00 .
\
S
H, H A ting Information : imati \
H 3 H, ggregating Informatio: Triple Confidence Estimation \
2 from Neighbors jmmmmmmmmm—mmm——mm—— o Confidence
[, I, -
H, H, : H : ISclf—contmdlcmq - X X, :‘I .
[ I 7 > =u.
H H, = W— 2 ! : ~ I
7 s . '8 h | | Local-global iy . '
. \ = 0! sistency / C=0.89
H, _ a ' =s ——> | :conmtmc}
H 4 =} 1 |:: C=0.84
; | B 1S w:_m' : :
12 1 h; 1 ;
_ = :>| » S ' i yStructure-attribute |
H; H, 1 - \ 8 ! homogeneity - |
! ' 1o Jhomogenely =051
_ ~ N 1 -5
H, H, [ . e e e e e e e -

Figure 4.2: We perform a relation-induced construction process to build the relational
hypergraph, and construct the attribute hypergraph based on entity attributes. These
two hypergraphs can be regarded as congruent views of the target KG. A contrastive
learning framework is used to learn the representation of each instance from these
two different views. Meanwhile, a triple confidence estimation module is designed
to calculate the confidence score of each triple by considering: self-contradictory
within the triple; local-global consistency in graph structure; and structure-attribute
homogeneity. Under the joint adaptive training scheme, we leverage confidence scores
to adaptively update the weighted aggregation in contrastive learning and margin loss

in KG embedding, such that potential errors would contribute little to KG learning.

each triple based on both internal structural information and external heterogeneous
attribute data; & a joint adaptive training scheme, which optimizes both the KG

representation learning and the confidence learning models in an end-to-end manner.

4.2.1 Knowledge Graph Representation Learning

Knowledge graphs are effective tools for storing and handling structured data on

real-world entities and facts, making them essential in many knowledge-driven appli-
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cations. However, real-world KGs are often riddled with errors due to noisy sources
and imperfect extraction methods during construction. Most existing KG embedding
techniques assume all triples are correct, which results in the overfitting of noisy infor-
mation into embeddings, causing significant performance degradation in downstream

tasks.

To address this issue, we introduce the concept of a confidence score to distinguish
between noisy and accurate triples. The confidence value ranges from [0, 1], where
values closer to 0 indicate a higher likelihood of error. By incorporating confidence,
we propose a new error-aware objective function to filter out noisy triples from the
embedding model’s learning process:
Lemp = Z Z max(0,v + C(h,r,t) - E(h,r,t)
(hyr,t)€G (W' )G’ (4.1)
—E(R 7' t)),
where E(h,r,t) = |les + e, — €], is the energy score based on the translational as-
sumption. v > 0 is the margin hyperparameter, and G represents the set of positive
triples. The triple confidence C(h,r,t) helps the model focus more on convincing
triples, thus improving embedding learning. For negative sample generation, since

explicit negative triples are not available, we follow a corruption strategy:

={(h',r,t) | W € E}U{(h,r,t") |t € E} (12)
4.2
U{(h,r',t)|r e R}, (h,rt)E€G.
This procedure replaces one entity or relation in a positive triple with another ran-

domly chosen entity or relation from the entire set, and any resulting triples already

in G are discarded to ensure the correctness of the negative samples.

4.2.2 Triple Confidence Learning with Entity Attributes

To enhance the robustness of our model, we learn a confidence score C'(h,r,t) for

each triple, which quantifies its correctness by leveraging both graph structure and
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entity attributes. Real-world KGs are often enriched with entity attributes that can
provide valuable semantic information. These attributes are highly correlated with
the relations in the KG and can help identify potential errors. We observe three key

relationships:

e In the triple, relations can be viewed as translations acting on the low-dimensional
embeddings of the entities. The better a triple aligns with the translation as-

sumption, i.e., h 4+ r ~ t, the more likely it is to be correct.

e In the graph, connected triples that share the same entity are typically seman-
tically relevant. Intuitively, a KG can be viewed as a social group, where each
triple is an individual. The acknowledgment from neighboring triples reflects

how well a triple fits within the broader structure.

e Entity attributes are often closely related to the graph structure. Entities with
relevant semantic attributes are usually connected by specific relations. A mis-
match between an entity’s attributes and its related triples suggests a higher

likelihood of error.

To incorporate these insights, we propose a multi-view learning framework that mod-
els the structural information of the KG and its attributes. We use two triple-level hy-
pergraphs—relational hypergraph and attribute hypergraph—to capture, respectively,
the topological structure of the KG and the semantic information embedded in entity
attributes. These hypergraphs are processed in parallel through a unified contrastive
learning framework, enabling us to measure the confidence of each triple by consid-
ering three types of anomaly signals: self-contradiction in the relational structure,

global consistency across triples, and attribute-structure dependency.

Multi-view Construction. Traditional KG embedding models typically only con-

sider entities and relations within triples, overlooking the global correlations among
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triples. To capture these correlations, we introduce a novel approach that transforms
the KG into hyper-views at the triple level, treating each relational triple as a node
in the graph. Specifically, we construct a relational hypergraph by linking relational
triples that share the same entity in the original KG, ensuring that the transformation

preserves the potential for error detection within individual triples.

Definition 2. Relational Hypergraph. Given a knowledge graph G = {(h,r,t)|h,t €
E,r € R}, the corresponding relational hypergraph is the triple-level graph G, =
(17, :4:7 :Y\;); where V and :4: are the sets of nodes and adjacency matriz, respectively.
X, = {T(h,r,t) | (h,r,t) € G} represents the feature matriz of V, where I'(-) is a
concatenation function. :Ir(v,u\u,v € ﬂ) =1, if u and v share the same entity in

the original KG, i.e., G.

Next, we build an attribute hypergraph to capture the relationship between entities
and their attributes. This hypergraph uses the attributes of the head and tail entities

in a triple to reconstruct the semantics of the triple from the attribute perspective.

Definition 3. Attribute Hypergraph. Given the same knowledge graph G =
{(h,r,t)|h,t € E,r € R}, with entity attribute set A = {{an1,anz,...,ana,}h € E}
where ap,; is the it attribute type for entity h, the attribute hypergraph can be denoted
as Gy = (V,, Au, X,), where V, and A, are the set of nodes and adjacency matriz,
respectively, which have the same structure as G,. X, represents the feature matrices

of each node v; € V, learned from corresponding entity attributes.

These two hypergraphs, relational hypergraph and attribute hypergraph, can be seen
as complementary views of the same KG, providing richer information for error de-
tection. The relational hypergraph captures the global correlations between relational
triples, while the attribute hypergraph highlights the semantic meaning derived from
entity attributes. By measuring the consistency between these two views, we can

more accurately assess the trustworthiness of each triple in the original KG.
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Learning from View I: Relational Hypergraph. Traditional KG embedding
methods typically focus on the local relationships within individual triples, disre-
garding the broader context. To address this, we propose a new dual-view encoder

that simultaneously learns both local and global context for relational triples.

Local View of Relational Structure Modeling. The relational hypergraph trans-
forms triples into a structure that can lose some local relational details, such as the
head-relation-tail structure inherent within triples. To preserve this local informa-
tion, we initialize the embedding of entities and relations in the original KG, then use
a BiLSTM layer to encode the local structure of each triple. The local representation

p; for the i triple (h,r,t) is defined as:

Di = glocal(ha r, t) - fconcat(fBiLSTM (eha €r, 6t)>‘ (43)

Global View of Neighbor Information Aggregation. Beyond the local struc-
ture, the global context of neighboring triples also contains valuable information for
detecting anomalies. To model this, we employ a graph attention network (GAT) to
selectively aggregate features from neighboring triples. Given an anchor triple p; € R,
its embedding is updated by attending over neighboring triples, {pi,pa,...,Pm},

through a two-layer attention mechanism:
attij = fatt (Wp“ Wp]) . (44)

The attention values are normalized using the softmax function:

B exp (att;;)
Y opeexp (atty)

Finally, the updated embedding is computed as:

=0 (Z aiijj> . (4.6)

Qi (4.5)

Learning from View II: Attribute Hypergraph. In addition to relational struc-

ture, entity attributes contain valuable semantic information that enhances KG em-
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bedding quality. To effectively incorporate this information, we design a relation-
specific encoder, gqu-, which learns attribute-based representations from the attribute

hypergraph.

Attribute Hypergraph Embedding. Entity attributes are diverse and unevenly
distributed across different entities. An entity can have distinct attribute sets depend-
ing on its role in different triples. For instance, a person entity might have attributes
related to research area when playing the role of a scientist and pen name when
considered as a writer. To handle these variations, we introduce a relation-specific

mechanism that selects relevant attributes based on the relation in the triple.

Given a triple (h,r,t), the attributes of the head and tail entities are aggregated using
relation-specific attention mechanisms. The attribute-based entity representations é;,

and é; are computed as:

atth,i = fatt (.femb (er) 7femb (ah,i)) 5 (47)

B exp (atty ;)
Sl exp (atty ;)

and the final aggregated representation for the entity A is:

(4.8)

Qp

|An|

én = Z Qp i * femb (ah,i) . (4-9)
i=1

Model Learning. To learn robust features from both relational hypergraph and
attribute hypergraph, we utilize a contrastive loss function that maximizes the mutual

information between the embeddings derived from these two views.

Contrasting Between Structure and Attribute Views. The relational hyper-
graph models the graph structure, while the attribute hypergraph captures the en-
tity attributes. These two views are complementary, and we apply the normalized
temperature-scaled cross entropy loss to maximize their mutual information:

exp (sim (z;, 2;) /7)
Zj€{1,2,...,N}\{i} exp (sim (z;, 2j) /7)’

Lea(xs,2i) = —log (4.10)
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Contrasting Between Local and Global Views. We also contrast the local and
global views of each triple, as the relational structure and its global context provide

complementary information. The contrastive loss for this objective is defined as:

exp (sim (p;, ;) /7)

Lig(pi, v;) = —log > tia g D (5 (P 7) 5% (4.11)
Finally, combining these two losses, we obtain the overall contrastive loss:
| X
Lom = 5 ; (Loa (3, 21) + Lig (s, 71)) - (4.12)

Triple Confidence Estimation. We calculate the triple confidence score based on
three key anomaly signals: self-contradiction within the relational structure, global
consistency across triples, and attribute-structure dependency. These signals help us

assess the reliability of each triple.

Self-contradictory Measurement. In the relational structure, the closer a triple
fits the translation assumption h + r ~ t, the more reliable it is. We define the local

triple confidence LT (h,r,t) based on the Euclidean distance between the entities:

1
1 + e llenter—edlly

LT(h,r,t) = (4.13)

Global Acknowledgment Estimation. The degree of acknowledgment from neigh-
boring triples reflects whether a target triple is valid. We define the global triple confi-
dence GT'(h,r,t) as the cosine similarity between the local and global representations
of the triple:

GT(h,r,t) = sim(p;, z;), (4.14)

Structure-attribute Dependency Estimation. The consistency between the re-
lational and attribute hypergraph views is an important signal for determining the

correctness of a triple. We compute the attribute-structure confidence AT'(h,r,t) as:

AT (h,r,t) = sim(x;, 2;), (4.15)
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Final Triple Confidence. We combine these three signals to calculate the final

confidence score for each triple:

C(h,r,t) =oc(LT(h,r,t)+ X - GT(h,r,t
(h,r,t) = o(LT(h,r,t) + Ay - GT(h, r,1) (4.16)
+Xo - AT (h,7,t)),

4.2.3 Joint Adaptive Training Scheme

To integrate the learned confidence information into the KG embedding process, we

define a comprehensive objective function:
L = Leon + BLernb- (4.17)

This adaptive training scheme ensures that the KG representation learning and con-
fidence learning processes mutually reinforce each other, allowing the model to pro-

gressively improve its ability to filter out erroneous triples while learning accurate

KG embeddings.

4.3 Experiments

In this section, we present comprehensive experiments to evaluate the performance
of the proposed AEKE framework across various real-world KGs. The primary goals

are to answer the following research questions:

e Q1: How effectively does AEKE identify noisy triples in knowledge graphs?

e Q2: How do the KG embeddings learned by AEKE compare to the state-of-
the-art KG embedding models in terms of quality?

e Q3: What contributions do the individual components of AEKE make to its

overall performance?
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Table 4.1:

TransE
ComplEx
DistMult
SimplE
TuckER
EARL
TTMF
CAGED
CKRL
NoiGAN

CrossVal
AEKE
TransE
ComplEx
DistMult
SimplE
TuckER
EARL
TTMF
CAGED
CKRL
NoiGAN
CrossVal

Recalla K

Error detection results of Precision@QK and RecallQK based on the three
datasets with anomaly ratio = 5%.
FB15K-237 DB15K YAGO15K
K=1% K=2% K=3% K=4% K=5%* K=1% K=2% K=3% K=4% K=5%* K=1% K=2% K=3% K=4% K=5%"
0.756 0.674 0.605 0.546 0.488 0.671 0.566 0.535 0.472 0.443 0.534 0.455 0.362 0.319 0.279
0.718 0.651 0.590 0.534 0.485 0.679 0.612 0.532 0.469 0.424 0.503 0.426 0.369 0.310 0.273
0.709 0.646 0.582 0.529 0.483 0.638 0.587 0.523 0.499 0.445 0.513 0.423 0.347 0.347 0.302
0.744 0.667 0.611 0.556 0.515 0.709 0.616 0.554 0.504 0.455 0.560 0.459 0.373 0.319 0.281
0.742 0.680 0.614 0.552 0.514 0.711 0.630 0.550 0.509 0.452 0.549 0.454 0.375 0.331 0.276
0.762 0.692 0.639 0.582 0.531 0.729 0.652 0.573 0.530 0.483 0.578 0.487 0.394 0.338 0.303
0.815 0.767 0.713 0.612 0.579 0.744 0.685 0.623 0.557 0.510 0.701 0.569 0.454 0.413 0.346
0.852 0.796 0.735 0.665 0.595 0.802 0.722 0.658 0.596 0.554 0.724 0.599 0.489 0.429 0.373
0.789 0.736 0.684 0.630 0.574 0.787 0.723 0.634 0.599 0.526 0.662 0.531 0.438 0.382 0.327
0.837 0.788 0.727 0.649 0.585 0.823 0.718 0.676 0.606 0.553 0.737 0.592 0.477 0.403 0.379
0.874 0.814 0.742 0.667 0.596 0.819 0.707 0.645 0.572 0.548 0.754 0.647 0.562 0.500 0.424
0.892 0.822 0.753 0.691 0.614 0.853 0.756 0.705 0.625 0.582 0.778 0.676 0.590 0.519 0.440
0.151 0.269 0.363 0.437 0.488 0.134 0.226 0.321 0.377 0.443 0.106 0.182 0.217 0.255 0.279
0.144 0.260 0.354 0.427 0.485 0.135 0.244 0.319 0.375 0.424 0.100 0.170 0.221 0.248 0.273
0.142 0.258 0.349 0.423 0.483 0.127 0.234 0.313 0.399 0.445 0.102 0.169 0.208 0.277 0.302
0.149 0.267 0.366 0.445 0.515 0.142 0.246 0.332 0.403 0.455 0.112 0.184 0.224 0.255 0.281
0.148 0.272 0.368 0.442 0.514 0.142 0.252 0.330 0.407 0.452 0.110 0.182 0.225 0.265 0.276
0.152 0.277 0.383 0.466 0.531 0.146 0.261 0.344 0.424 0.483 0.116 0.195 0.236 0.270 0.303
0.163 0.306 0.427 0.489 0.579 0.148 0.274 0.373 0.445 0.510 0.140 0.227 0.272 0.330 0.346
0.171 0.318 0.441 0.532 0.595 0.160 0.288 0.395 0.477 0.554 0.145 0.240 0.293 0.343 0.374
0.158 0.294 0.410 0.504 0.574 0.157 0.289 0.380 0.479 0.526 0.132 0.212 0.262 0.305 0.327
0.167 0.315 0.436 0.519 0.585 0.164 0.287 0.405 0.484 0.553 0.147 0.236 0.286 0.322 0.379
0.175 0.325 0.445 0.533 0.596 0.163 0.282 0.387 0.457 0.548 0.150 0.258 0.337 0.400 0.424
0.178 0.328 0.452 0.552 0.614 0.170 0.302 0.423 0.500 0.582 0.155 0.270 0.354 0.415 0.440

AEKE

4.3.1 Datasets

We evaluate AEKE on three real-world benchmark datasets: FB15K-237, YAGO15K,

and DB15K. These datasets are known for their high reliability due to extensive

human curation. Following prior works [104], 19], we introduce 5% and 15% noisy

triples into each dataset to simulate real-world errors. The noisy triples are generated

by replacing the head or tail entity in a given triple (h,r,t) with an entity that has

appeared in the same position with the same relation in the dataset, producing a

more challenging and realistic form of error.

FB15K-237 is a widely-used subset of Freebase containing 114 relations and 10,054
FB15K-

entities, offering a large-scale knowledge base with over 1 billion triples.
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237 improves upon the FB15K dataset by addressing issues with inverse relations
and handling symmetric, asymmetrical, and combinatorial relationships, as well as

attributes.

DB15K is a subset of Wikidata, designed to address the weaknesses of Wikipedia-
based datasets. It excludes inverse relations to prevent test leakage, similar to the

process used for FB15K-237.

YAGO15K is built by augmenting WordNet with over 1 million entities and aligning

it with Freebase to form a knowledge graph.

4.3.2 Capability of AEKE in Distinguishing KG Errors (Q1)

In this section, we evaluate AEKE’s ability to distinguish errors within KGs. Specifi-
cally, we rank all triples in the target KG by their confidence scores in ascending order.
The top-ranked triples are considered potential errors. We conduct experiments on

FB15K-237, DB15K, and YAGO15K with 5% and 15% noisy triples. Below, we

discuss the experiment setup, baseline models, and evaluation metrics.

Baselines. We compare AEKE to several baseline models from three categories:
error-aware embedding methods, error detection alternatives, and KG embedding

methods. The baselines are as follows:

TransE: Assumes entities and relations are embedded in the same space, where the

tail entity can be predicted by the head entity and relation.

DistMult: A bilinear model that calculates the confidence of potential semantics for

entities and relations.

ComplEx: An extension of DistMult that uses complex numbers to model both

symmetric and asymmetric relations.

SimplE: An interpretable embedding model that employs weight tying to integrate
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specific background knowledge.

TuckER: A linear model for link prediction based on Tucker decomposition of a

binary tensor containing known facts.

EARL: Focuses on learning embeddings for reserved entities, considering connected

relations and neighbors.

TTMEF: Uses semantic information to calculate the trustworthiness of triples, distin-

guishing between normal and anomalous triples.

CAGED: Combines KG embedding and contrastive learning to assess the trustwor-

thiness of each triple based on multi-view consistency.

NoiGAN: Uses Generative Adversarial Networks (GANs) for noise-aware knowledge

graph embeddings.

CKRL: A confidence-aware representation learning method that assigns confidence

scores to triples to identify potential noise.

CrossVal: Uses external human-curated knowledge graphs as auxiliary information

to improve error detection within the target KG.

Evaluation Protocol. We implement all models using PyTorch, and the experi-
ments are conducted on an Nvidia 3090 GPU. The Adam optimizer is used with a
batch size of 256, a learning rate of 0.01, and Xavier initialization for model param-

eters. The embedding size is set to 100 for all models.

We use ranking measures to evaluate the performance of each model. A triple’s
confidence score is used to rank it, with lower scores indicating higher likelihood of

errors. The evaluation metrics are:
Precision@K: Measures the percentage of true anomalies in the top K rankings.

| Errors Found in Top K |

Precision@QK =
recision I

(4.18)
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Recall@K: Measures the percentage of true anomalies found within the total errors

in the KG.
| Errors Found in Top K |

RecallQK =
eea | Total Errors in KG |

(4.19)

Experimental Results. The results for Q1 are summarized in Table [{.1 We

observe the following:

Obs. 1. AEKE outperforms both embedding methods and state-of-the-art error
detection baselines. For example, with a 5% anomaly ratio and K = 5%, AEKE
achieves a 1.8% improvement over the second-best method in terms of recall and

precision.

Obs. 2. While KG embedding methods like TransE, ComplEx, and DistMult show
decent performance, they lag behind tailored error detection methods. This is be-
cause these embedding methods do not account for errors in the KG, resulting in less

discriminative representations for normal and noisy triples.

Obs. 3. Incorporating auxiliary human-curated information, as seen in CrossVal,
improves error detection. However, AEKE surpasses it by leveraging the relational
structure within triples, the global context across triples, and the semantics from

entity attributes, making AEKE more effective at error detection.

4.3.3 Quality of KG Embeddings Learned by AEKE (Q2)

Next, we evaluate the quality of the KG embeddings learned by AEKE using the
KG completion task. In this task, the goal is to predict missing entities in incom-
plete triples. We compare AEKE with strong baselines to assess the quality of its
embeddings.

Baseline Methods. We compare AEKE against the following baselines:
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Table 4.2: Results of knowledge graph completion.

Dataset FB15K-237 DB15K YAGO15K
Metrics MRR Hit@l Hit@3 Hit@l0 MRR Hit@l Hit@3 Hit@l0 MRR Hit@l Hit@3 Hit@Q10

TransE 0302 0.211 0344 0468 0420 0385 0431 0509 0311 0.199 0.369  0.523
SimplE  0.288 0.202 0.314 0455 0437 0392 0445 0505 0.296 0.188 0.344  0.487
EARL  0.308 0.209 0.338 0.474 0447 0.389 0.459 0.508 0.317 0.199 0.372  0.509

0% RGCN 0.363 0.306 0.387 0.512 0474 0410 0.487 0.576 0.381 0.269 0.424  0.588
RGHAT 0422 0.362 0.446 0.535 0.483 0422 0.499 0.588 0.412 0.295 0.467 0.618
NoiGAN 0.424 0.371 0.445 0.526 0480 0421 0483 0.581 0.413 0.310 0.465  0.605
CKRL 0410 0.362 0.438 0.536 0.482 0.416 0.490 0.586 0.408 0.298 0.461  0.610

Ours 0.427 0.375 0.453 0.534 0.486 0.426 0.503 0.587 0.418 0.316 0.474 0.622

TransE  0.294 0.201 0335 0465 0407 0.358 0417 0481 0.288 0.161 0.345  0.493
SimplE  0.266 0.178 0.281 0416 0407 0.354 0412 0466 0.277 0.166 0.313  0.455
EARL 0.284 0.194 0.308 0.437 0407 0.366 0.416 0.466 0.283 0.180 0.348  0.468

5% RGCN 0.348 0.261 0.375 0.493 0456 0.408 0.472 0.551 0.365 0.250 0.397  0.562
RGHAT 0.401 0.342 0442 0.507 0460 0411 0472 0.565 0.392 0.275 0.442  0.580
NoiGAN 0.418 0.360 0.440 0.515 0474 0415 0479 0.578 0.404 0.305 0.457  0.598
CKRL 0400 0.340 0.426 0.512 0471 0410 0483 0.572 0397 0292 0449  0.594

Ours 0.424 0.369 0.447 0.519 0.482 0.424 0.499 0.583 0.412 0.308 0.465 0.612

TransE  0.267 0.185 0309 0451 0386 0.340 0.401 0.469 0.276 0.149 0.334 0473
SimplE  0.242 0.154 0.241 0.361 0.368 0.314 0.358 0.416 0.231 0.134 0.288  0.419
EARL  0.259 0.169 0.266 0.381 0.368 0.326 0.362 0.416 0.237 0.147 0.32 0.431

15% RGCN  0.325 0.237 0.356 0.476 0.437 0.398 0.455 0.534 0.343 0.238 0.375  0.549
RGHAT 0.395 0.332 0416 0498 0442 0.398 0454 0.540 0.371 0.258  0.427  0.565
NoiGAN 0.409 0.348 0.427 0.506 0.463 0.401 0.462 0.566 0.385 0.295 0.448  0.589
CKRL 0.396 0.334 0.422 0.501 0458 0.400 0.467 0.559 0375 0.275 0437  0.579

Ours 0.417 0.363 0.440 0.512 0.475 0.411 0.492 0.579 0.401 0.299 0.451 0.600

o Embedding-based: TransE, SimplE, EARL
e State-of-the-art completion models: RGCN, RGHAT

e FError-aware embedding methods: NoiGAN, CKRL

Evaluation Protocol We focus on entity prediction, where the task is to predict
the head or tail entity of a given triple (7,7,t) or (h,r,?), respectively. We use the
Mean Rank (MRR) and Hits@QK as evaluation metrics.
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with anomaly ratio = 5%.
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results of AEKE variants based on the three datasets

Experimental Results The results on FB15K-237, DB15K, and YAGO15K with

5% and 15% noisy triples are presented in Table 4.2} Key observations include:

Obs. 1. AEKE consistently outperforms embedding-based models and other error-

aware methods, demonstrating the effectiveness of the learned KG embeddings.

Obs. 2. Error-aware embedding methods like NoiGAN and CKRL perform better

than traditional embedding methods, but AEKE shows superior performance due to

its ability to model both relational structure and entity attributes.

Obs. 3. As the anomaly rate increases, AEKE’s performance gap over other meth-

ods grows. For example, with a 5% anomaly ratio, AEKE shows 0.3%, 0.6%, and
0.5% improvements on FB15K-237, DB15K, and YAGO15K, respectively. At a 15%

anomaly ratio, the improvements are more significant: 0.8%, 1.2%, and 1.6%.
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Chapter 4. Integrating Entity Attributes for Error-Aware Reasoning

4.3.4 Ablation Study (Q3)

We conduct an ablation study to assess the contribution of each component of AEKE.
Four variants of AEKE are evaluated, and the effects of different modules are dis-

cussed.

Role of Attribute Hypergraph Encoder We evaluate the importance of the
attribute encoder by comparing AEKE with and without the attribute view. Remov-
ing the attribute encoder leads to a significant drop in performance, confirming the

importance of entity attributes in error-aware embedding.

Role of Relational Hypergraph Encoder To assess the effectiveness of captur-
ing the relational structure, we compare AEKE with variants using different methods
for encoding relational triples. AEKE outperforms these variants due to its tailored

attention mechanism, which effectively filters out noisy triples.

4.4 Summary

Learning accurate and reliable embeddings for entities and relations in knowledge
graphs (KGs) plays a critical role in enabling various downstream applications. While
many existing approaches leverage the internal structure of KGs to train models for
error detection, they are limited by the fact that the topological information present
in KGs alone is insufficient for validation tasks, particularly in real-world scenar-
ios. In this work, we introduce a novel framework for KG representation learning,
named AEKE, which integrates semantic data from entity attributes to automatically
validate triples in KGs. We conceptualize the original KG, which lacks attribute in-
formation, as a relational hypergraph, and construct an attribute hypergraph using the

supplementary entity attribute information. This attribute hypergraph serves as an
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4.4. Summary

alternative view of the target KG. The confidence score for each triple is computed by
considering multiple factors: inconsistency within the triple itself, alignment between
local and global graph structures, and the compatibility between structure and at-
tributes across triple-level views. Experimental results show that AEKE outperforms
current state-of-the-art error detection methods for KGs. Given that real-world KGs
continuously evolve with new data, extending AEKE to handle temporal KG rep-
resentations would be a highly valuable direction for future work. Furthermore, we
aim to explore the use of AEKFE’s error-aware KG representation learning in practical

downstream tasks such as question answering and recommender systems.
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Chapter 5

Logical Reasoning for Inductive

Knowledge Graph Completion

5.1 Introduction

Knowledge graphs (KGs) are structured collections of real-world information, typi-
cally represented as triples (h,r,t), where h is the head entity, r is the relation, and
t is the tail entity [, 55 67, [58] 23]. These graphs provide a way to model complex
relationships between entities across various domains. However, KGs are often in-
complete [116] 24], and manually curating facts is expensive, leading to the need for

automated knowledge graph completion (KGC) methods [117, [1].

Currently, embedding-based techniques [10] 59, 00] dominate the field of KGC. These
methods embed entities and relations into continuous vector spaces and predict miss-
ing relations between entities. While effective, these techniques generally operate
under a transductive setting, where they assume all entities are present during both
training and inference. This limitation arises when new entities are introduced, as
the embeddings need to be retrained, which is impractical due to the constant growth

and scale of real-world KGs.
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5.1. Introduction

Recent research has turned towards inductive KGC [98] [92], where models are de-
signed to predict missing relations for unseen entities, which more accurately reflects
real-world scenarios. In dynamic KGs, such as those used in e-commerce or biomedical
domains, new entities, like users or products, are constantly added. To address this,
several approaches have incorporated external resources, such as entity attributes,
textual descriptions, and ontologies, to aid inductive KGC. However, these external
data sources are often difficult to obtain, limiting their practical applicability. Alter-
natively, some methods have attempted to learn entity-independent rules for KGC,
either through statistical [29] or differentiable [108] approaches, treating the problem
as rule mining. However, rule-based techniques often struggle with scalability and

generalization due to the domain-specific nature of rules across different KGs.

The rise of graph neural networks (GNNs) has led to the development of inductive
KGC techniques based on message passing (MP) [78,002]. GralL [89] is a notable early
work that learns logical rules through reasoning over subgraphs surrounding a target
triple. It aggregates structural information from neighboring entities within the sub-
graph to generate entity representations. While GralL. and subsequent methods [114]
have shown promising results, they face two main challenges: (i) Data sparsity, espe-
cially when new entities lack sufficient connections to the existing graph, and (i7) The
limitation of traditional MP approaches that treat messages as entity-specific, which
overlooks the importance of relation semantics [92]. This is problematic for inductive

KGC, where the reasoning process should be entity-independent.

In real-world KGs, the surrounding subgraph of a given triple contains the necessary
logical evidence to infer the relationship between the entities. For instance, in Fig-
ure learning the relation pattern between FElon Musk, TESLA, and California
State can help predict the relationship (Martin Eberhard, :Liveln, California State)
based on the inferred pattern “:Liveln ~ :WorkAt A :LocatedIn”. To address this,
we introduce a novel framework called NORAN, which focuses on mining relation

semantics for inductive KGC.
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Chapter 5. Logical Reasoning for Inductive Knowledge Graph Completion

Our approach first redefines the KGC problem to bridge the gap between traditional
embedding-based methods and inductive settings. Inspired by the insights gained,
we propose the relation network, a novel graph constructed by focusing on relations
in the original KG. This relation network provides a hypergraph-like structure that
represents the distribution and correlation of relations. By modeling this relation
network through message-passing, we can capture entity-independent relation pat-
terns, enabling more effective inductive KGC. We formally define the logical evidence
extracted from the relation network and demonstrate its effectiveness in inductive

KG completion.

Our main contributions are summarized as follows:

We introduce NORAN, a novel framework for inductive KG completion that

learns latent relation semantics.

e We propose the relation network, a hypergraph-based representation of the KG
that centers on relations, and formally define inductive KGC as k-hop logic

reasoning over this hypergraph.

e We introduce the informaz training objective, which enables the effective cap-

ture of logical evidence from the relation network for KGC.

e We provide a theoretical analysis to identify the most effective message-passing
strategies and offer guidelines for selecting models that enable inductive reason-

ing over the relation network.

e Extensive experiments on five real-world KG benchmarks demonstrate the su-

perior performance of NORAN.
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Figure 5.1: (i) A toy example of inductive knowledge graph completion, i.e. predict-
ing the relationship (“?”) for unseen entities, e.g. “Martin Eberhard”, provided with
a few links, e.g. (Martin, :WorkAt, TESLA); (ii) Illustration of the corresponding
relation network for knowledge graph, which regards each triple as a relational node
and thus could aggregate context information for inductive inference without expen-

sive retraining look-up embedding tables as embedding-based paradigm.

5.2 Inductive Knowledge Graph Completion

In this section, we introduce the NORAN framework, designed to uncover latent
patterns among relational instances for inductive KG completion. As illustrated in
Figure , NORAN is composed of three core components: (i) Relation network
construction, which redefines KG modeling with a focus on relations. (i7) Relational
message passing, a framework that implicitly extracts logical evidence independent of
entities through the relation network. (7i7) Training scheme and KG inference, which
includes a detailed theoretical analysis to identify effective message-passing strategies,

offering insights into model selection for inductive reasoning over the relation network.
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Chapter 5. Logical Reasoning for Inductive Knowledge Graph Completion

5.2.1 Relation Network Construction

Conventional KG representation methods often represent a KG as a heterogeneous
graph centered on entities, with relations serving as semantic edges. However, such
approaches face limitations in capturing intricate relational semantics and fail to
provide expressive representations for inductive KG completion. To bridge the gap
between traditional KG representation learning and the requirements of inductive
KGC, we propose a new perspective that focuses on relation correlations. This novel
modeling approach introduces a hyper-level view of KGs based on relations, and we
formally define inductive KG completion as k-hop logical reasoning over an entity-

independent network.

Table 5.1: The general description framework for MP layers

MP layer Motivation Convolutional Matrix C Feature Transformation f Category of C
GCN Spatial Convolution C = DY2(A + I)D"/? f=W € Rtxdena Fixed
GraphSAGE  Inductive Learning C = ﬁ‘l(A +1) f=W € Rkxden Fixed
GIN WL-Test C=A+1 f is a two-layer MLP Fixed
SGC Scalability C=D'?(A+I1)D'? f = lambda x : x Fixed
C=(A+I)-T
GAT Self Attention f =06 € R¥xdenr Learnable
T c(en]o]a)
(9) ™ Thew cop([Ow:[[0;]-a)

@ D is the diagonal matrix of (A + I)

Relation network. To enhance the ability to capture logical evidence for reason-
ing, we propose a new KG modeling perspective, which transforms the target KG
into hyper-level views by representing each triple as a relational node. Specifically,
we construct the relation network via a relation-driven process. Following a system-
atic approach, we treat each triple as a node in the relational graph and establish

connections between nodes if they involve a shared entity within the original KG.

Definition 4. Relation network. Given a knowledge graph G = {(h,r,t)|h,t €
E,r € R}, the corresponding relation network is the triple-level graph G, = (\7, .Z, Z«),
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5.2. Inductive Knowledge Graph Completion

where V and A are the sets of relational nodes and adjacency metrics, respectively.
X, = {T(h,r,t) | (h,r,t) € G} represents the feature matriz of V, where T(-) is
the concatenation function that transforms each relational triple into a node, i.e.,
v ="T(h,rt). Alw,ulv,u € V) =1, if v and u share the same entity in the original
KG.

Interpretation with logic reasoning. The topology of the relation network ef-
fectively depicts relational distributions, while the connections between nodes convey
relation correlations. By modeling the relation network using a k-layer message-
passing framework, we can capture relational patterns as entity-independent context
for inductive KG completion. This entity-independent context is formally defined as

k-hop logical evidence over the relation network.

Definition 5. K-hop logic evidence. Let G = (V, A) be the relation network of
a knowledge graph G = (€,R). Given any center node v; € \7, the k-hop ego graph
(;’} = (\Nfl, AZ) centering at v; contains the relational contextual information for logical
reasoning. In this paper, we model such contextual information as A*(v;) via a k-layer
message-passing network 2. Thus, the overall logic evidence of knowledge graph G can

be modeled by traversing all k-hop ego graphs, i.e., A(G) = Qann(A*(v) | v € G).

Taking the logical evidence “:Liveln = :WorkAt A :LocatedIn” in Fig. as an exam-
ple, the relation pattern among Elon Musk, TESLA, and California State illustrates
a concrete case of logical evidence. The triple (Martin Eberhard, :Liveln, California
State) can then be inferred with confidence. According to Definition [5 such logical
evidence corresponds to k-hop ego graphs centered on target nodes in the relation

network (Fig. (1)), describing the relational context required for reasoning.

The construction of the relation network offers two main advantages: (i) It introduces
a novel perspective for KG modeling, enabling entity-independent logic evidence to

be naturally captured via k-hop ego graphs sampled from the relation network. This
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Chapter 5. Logical Reasoning for Inductive Knowledge Graph Completion

eliminates the need for fine-grained embeddings of unseen entities. (i) Compared to
the original KG, the relation network exhibits a denser structure and is compatible
with any GNN model. An incident graph (incidence matrix representation) could
also encode relationships between nodes (entities) and edges (relations) in a bipartite
structure, where rows represent nodes and columns represent edges. While the inci-
dence matrix captures explicit connections between entities and relations, it lacks the

higher-order relational semantics that NORAN’s Relation Network emphasizes.

5.2.2 Relational Message Passing

To effectively extract entity-independent contextual information as logical evidence,
we introduce a novel relational message-passing framework tailored for inductive KG

completion.

Feature initialization. Since each instance in the relation network corresponds to
a triple (h,r,t) from the original KG, we first initialize the embeddings of entities
and relations in the original KG randomly. To capture the local relational structures
within each triple, we utilize a set of Bi-LSTM units as a local information modeling

layer. The embedding of each triple is obtained as follows:
x; = I'(h,r,t) = concat(P(ep, e, e)), (5.1)

where ®(-) is a Bi-LSTM unit, and ey, e,, e; are the initial embeddings of h, r, and
t. The resulting triple embedding «; effectively encodes the relational structure of
the input triple, and it is used as the initial node embedding in the relation network.

During both training and inference, the entity embeddings are kept fized.

Message passing. The message-passing layer is defined as:

X (k+1) U(C(k)X(k) o f(k))’ (5.2)

52



5.2. Inductive Knowledge Graph Completion

where X is the relational embedding at the k-th layer; C*) is the convolutional
matrix for the k-th layer; f*) : R% — R%+1 is the linear transformation matrix; and

o is the activation function.

The reformulated message-passing layers are summarized in Table By performing
message passing over relational nodes, we can naturally capture relation patterns
as entity-independent contextual information, which is essential for inductive KG

completion.

In this work, we train two message-passing GNNs, 2 and U: € is applied to the k-hop
ego graph to extract logical evidence, while W is applied to the relation network to

learn relational embeddings for inductive inference.

Mutual information maximization. Reasoning with logical evidence is pivotal
for inductive KG completion, as it emulates human-like inference. However, as men-
tioned earlier, logical evidence is challenging to represent and has typically been used
as a regularization mechanism in prior work. To address this, we propose Logic
Evidence Information Maximization (LEIM), which aims to maximize the mutual
information between the logical evidence extracted from k-hop ego graphs and the

relational semantics of the center node. The optimization objective is defined as:

Loy =—T,(A(G), ¥*(9)), (5.3)
where A(G) = Qann (AF(v) | v € G) is the logical evidence extracted by €2, Z(-, ) is the
mutual information, U*() is a k-layer GNN, and w, 1 are the trainable parameters for
7 and ¥, respectively. The objective minimizes the loss to find the optimal parameters
¢ that preserve the mutual information between the logical evidence A(G) and the

relational embedding of the target node v learned by ¥*(G).

In practice, we adopt a Jensen-Shannon MI estimator (JSD) to estimate the mutual
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Chapter 5. Logical Reasoning for Inductive Knowledge Graph Completion

information:

TP (A, W) = Be (= sp(~To (A (0), W*(0)) )

~ Erer (= sp(TLp (A (), 9(0))) ), (5.4)

where v is a node sampled from the relation network under distribution P, v’ is
sampled from a negative distribution P’ = P, and sp represents the softplus activation
function. To encourage alignment of positive pairs, e.g., (A(v), ¥(v)), and distinguish
them from negative pairs, e.g., (A(v'), ¥(v)) where v # V', we use T, (A, V) to predict

the correlation between A and U as follows:

Top(N (@), z) = Y log(fu(lhyllhyll2.])), (5.5)

(p,9)EAF(v)
where h, and h, are the features of source and target nodes p and ¢ obtained from
the k-hop logical ego graph A*(G), and =, = U¥(v) is the relational embedding of
node v. f : RIPIFRIFZI 5 ROD i5 g fully connected discriminator used to differentiate

positive and negative pairs.

5.2.3 Training Scheme and KG Inference

Training objective. This section outlines the complete algorithm for NORAN
along with the training procedure. After training, we obtain the model ¥ o I'; which
is used to infer representations for inductive triples. Given the relational embedding
learned for an inductive triple via W o I'; we perform link prediction using a classifier

based on logistic regression, defined as p(x) = Sigmoid(w?x + b).

Inductive inference and complexity analysis. For inductive inference, given a
triple ¢t = (h,r,t) with an unseen entity h or ¢, we first create a new node v = I'(h, 1, t)
and update the original relation network G by adding node v to it. The probability

of triple existence is then predicted using po W oI
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Unlike the Embedding-based Paradigm, which requires retraining for inductive infer-
ence, our framework only updates the relation network and performs inference with

the trained model p o W o I'. The time complexity of inference in our framework is:

O(Q@Jr bd" f +bLf?),
r v
where b is the number of inductive triples, f is the hidden dimension (assuming
all embeddings have the same dimension), d is the average node degree in relation
network G. , and L is the number of layers in ¥. The time complexity of p and relation
network updates is negligible compared to the rest. Thus, the primary computational
cost arises from the message-passing operation in ¥, which grows exponentially with
L. However, empirical results indicate that a two-layer GNN typically suffices, as the
local view of GNNSs is naturally suited to this task. This aligns with existing research

advocating for shallower GNNs.

5.3 Experiments

This section provides an empirical evaluation of the proposed framework and its
performance across five KG datasets. The study is guided by the following research

questions:

e Q1 (5.3.2): How does our proposed framework compare against the strongest
baselines, including traditional embedding-based, rule-based, and other message-

passing (MP) methods?

e Q2 (5.3.3): With respect to Remark[I]and Remark[2] does our proposed relation

network effectively model inductive KG completion?

e Q3 (5.3.4). Is our proposed logic evidence information mazximization a more

effective training objective than standard negative sampling for inductive KGC?
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Table 5.2: Main results of inductive KGC on five benchmark datasets. We underline
the best results within each of the three categories and bold NORAN’s results that

are better than all baselines.

Categories Datasets FB15K-237 WNISRR NELL995 OGBL-WIKIKG2 OGBL-BIOKG
Metrics MRR Hit@1 Hit@3 MRR Hit@l Hit@3 MRR Hit@l Hit@3 MRR Hit@l  Hit@3 MRR  Hit@l Hit@3
TransE 0.289 0.198 0.324 0.265  0.058  0.445 0.254 0.169 0.271 0.213 0.122 0.229 0.317 0.26 0.345
DistMult 0.241 0.155 0.263 0.430  0.390  0.440 0.267  0.174 0.295 0.199 0.115 0.210 0.341 0.278 0.363
Emb. Based ComplEx 0.247 0.158 0.275 0.440 0410 0.460 0.227  0.149 0.249 0.236 0.136 0.254 0.322 0.257 0.360
SimplE 0.338 0.241 0375 0476 0428 0492 0291  0.198  0.314 0.220 0.131 0.239 0.319 0.246 0.358
Quatk 0.319 0.241 0.358 0.446  0.382 0478 0.285 0201  0.307 0.248 0.139 0.262 0.363 0.294 0.382
RuleN 0.453 0.387 0.491 0.514 0461 0532  0.346 0.279 0.366
Rule Based
DRUM 0.447 0.373 0.478 0.521 0458 0549  0.340 0.261 0.363
RGCN 0.427 0.367 0.451 0.501 0458 0519  0.329 0.256 0.348 0.285 0.176 0.324 0.381 0.319 0.399
RGHAT 0.440 0.361 0.483 0.518 0460 0.540 0.337 0274 0351 0.301 0.192 0.329 0.395 0.334 0.418
GralL 0.465 0.389 0.482 0512 0453 0539 0355  0.282  0.367 0.327 0.201 0.336 0.434 0.379 0.451
MP based ConGLR 0.463 0.402 0.483 0.512 0452 0541  0.352 0.276 0.366 0.318 0.219 0.338 0.422 0.365 0.431
PATHCON 0.483 0.425 0499  0.522 0462 0.546  0.349 0.276  0.369 0.339 0.243 0.347 0.457 0.395 0472
RMPI 0.459 0.396 0.480 0.514 0454 0544  0.339 0.277  0.365 0.313 0.213 0.336 0.414 0.358 0.421
MBE 0.477 0.410 0.495 0.519 0451 0549 0.344 0.270 0.359 0.331 0.234 0.345 0.452 0.380 0.470

NORAN(GS) 0.483 0.440 0.504 0.535 0.471 0.564 0.364 0.298 0.381 0.349 0.237 0.361 0.454 0.395  0.479
Ours® NORAN(GIN)  0.499 0.451 0.519 0.530 0.467 0.560 0.370 0.308 0.379 0.353 0.251  0.367  0.469  0.407  0.492
NORAN(GAT)  0.468 0.422 0.489  0.540 0.499 0.575 0.374 0.310 0.392 0.358 0.260 0.371  0.475 0.411  0.495

NORAN - Emb.t  +2.2% (Avg.) +1.6%  +2.6%  +2.0% +18% +3.7% +2.9% +1.9% +2.8% +2.3% +1.9% +L.7% 4+24% +1.8% +1.6%  +2.3%
NORAN - GNN* +11.2% (Avg.) +16.1% +21.0% +14.4% +64% +7.1% +83% +8.3% +109% +7.8% +11.0% +121% +10.9% +11.2% +11.7% +11.5%

@ We test our NORAN with three backbones: GraphSAGE, GIN, and GAT, denoted as NORAN(GS), NORAN(GIN), NORAN(GAT), respectively.

> We show the margin between the best results of NORAN and the ones of the two branches of baselines methods.

5.3.1 Experimental Setup

Datasets. We evaluate our framework on five widely-used KG benchmarks: (7)
FB15K-237, a subset of FBI5K with inverse relations removed; (ii) WN18RR, a
subset of WN18 with inverse relations excluded; (#i7) NELL995, derived from the
995-th iteration of the NELL system and containing general knowledge; (iv) OGBL-
WIKIKG?2, extracted from the Wikidata knowledge base; and (v) OGBL-BIOKG,

constructed from biomedical repositories.

Baselines. To validate the effectiveness of NORAN, we compare it against state-of-
the-art baselines. These baselines are categorized into three groups: (i) embedding-
based methods, including TransE, DistMult, ComplEx, SimplE, and QuatE;
(17) rule-based methods, such as RuleN and DRUM; and (iii) MP-based methods,
including RGCN, RGHAT, GralL, ConGLR, PATHCON, RMPI, and MBE.
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Notably, the embedding-based methods are not inherently inductive, so we retrain
their embedding tables for inductive inference. For MP-based methods, we select the
most effective ones for KGC in the same setting. We exclude certain related works
from our experiments as their original implementations are tailored for KGC with

unseen relations, whereas our model focuses on KGC with unseen entities.

Implementation Details. The five benchmark datasets were originally designed
for the transductive setting, where test entities are subsets of training entities. To
adapt them for inductive testing, we create new inductive datasets by sampling dis-
joint subgraphs from the original KGs. Specifically, we randomly select a subset of
entities from the test set, remove them and their associated edges from the training
set, and use the remaining training set for model training. The removed edges are
reintroduced during evaluation. We use MRR. (mean reciprocal rank) and Hit@1,

3 as evaluation metrics.

All baseline methods are implemented using their open-source codebases. The models
are implemented in PyTorch and trained on an RTX 3090 GPU with 24 GB RAM. For
fairness, the embedding size for entities and relations is set to 100 for the input, latent,
and output layers across all models, except for PATHCON, which uses dataset-specific
node labeling for its input embedding size. We optimize all models using the Adam
optimizer with a batch size of 256, except for the larger OGBL datasets, where the
batch size is reduced to 32 to avoid memory issues. Model parameters are initialized
using the Xavier initializer, with an initial learning rate of 0.005. Hyperparameters
are tuned via grid search, with the learning rate selected from {0.05,0.01,0.005,0.001}
and the margin parameter for negative sampling ranging from 0 to 1. The best con-
figurations are used as defaults for other hyperparameters. To ensure reproducibility,

we use a fixed random seed and report the average results of three runs.
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Table 5.3: Results of ablation study for relation network construction rules on three

benchmark datasets.

Datasets WNI18RR NELL995 OGBL-WIKIKG2

Construction Rule
Metrics MRR Hit@l Hit@3 MRR Hit@l Hit@3 MRR Hit@l Hit@3
Default NORAN(GAT) 0.540 0.499 0.575 0.374 0.310 0.392 0.358 0.260 0.371

w.o. head-head ~ NORAN(GAT) 0.521 0.457 0.558 0.348 0.273 0.375 0.329 0.230 0.341

w.o. tail-tail NORAN(GAT) 0.517 0.454 0.549 0.351 0.288 0.364 0.327 0.224 0.342

w.o. head-tail NORAN(GAT) 0.501 0.446 0.532 0.339 0.275 0.359 0.314 0.212 0.319

5.3.2 Main Results: Q1

To address Q1, we conduct extensive experiments comparing NORAN with the strongest
baselines. The results are summarized in Table with key observations outlined

below.

Obs. 1. NORAN significantly outperforms state-of-the-art KGC baselines. We com-
pare NORAN against 5 embedding-based, 2 rule-based, and 7 MP-based methods on
5 KG datasets. As shown in Table[5.2] NORAN achieves superior performance across
all evaluation metrics (MRR, Hit@1, Hit@3). Results for NORAN are bolded when
they outperform all baselines. We evaluate NORAN with three backbones, and the
bolded results dominate, highlighting the framework’s effectiveness. Additionally, we
compute the margin between NORAN’s best results (underlined) and those of the
baselines. NORAN outperforms the best embedding-based and MP-based baselines
by an average margin of 11.2% and 2.2%, respectively.

Obs. 2. NORAN with GAT (learnable convolution matriz) generally outperforms MP
layers with fized convolution matrices. We test NORAN with three backbones: GAT,
GraphSAGE, and GIN. GAT, which uses a learnable convolution matrix, achieves
the best results (underlined) on four datasets, while GraphSAGE and GIN exhibit

comparable performance.
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Table 5.4: Ablation study of training objective, i.e., Logic Evidence Information

Mazimization (LEIM)
Datasets WNISRR NELL995 OGBL-WIKIKG2

Training Objective

Metrics MRR Hit@l Hit@3 MRR Hit@l Hit@3 MRR Hit@l Hit@3

NORAN(GS) 0529 0469 0554 0351 0290 0.357 0324 0215 0.322

Naiv
Negativedlsfmphng NORAN(GIN) 0537 0490 0567 0.357 0.291 0374 0.335 0.231 0.349
NORAN(GAT) 0.534 0481 0562 0.361 0299 0.377 0342 0238 0.355

NORAN(GS) 0.535 0471 0.564 0.364 0.298 0.381 0.349 0.237 0.361
LEIM (JSD) NORAN(GIN) 0.530 0.467 0.560 0.370 0.308 0.379 0.353 0.251  0.367
NORAN(GAT) 0.540 0.499 0.575 0.374 0.310 0.392 0.358 0.260 0.371

NORAN(GS) 0.532 0476 0.558 0.358 0.294 0.369 0.331 0.220 0.343
LEIM (InfoNCE) NORAN(GIN) 0.541 0.495 0.583 0.365 0.301 0.376 0.339 0.231 0.359
NORAN(GAT) 0.544 0.506 0.581 0.367 0.306 0.383 0.337 0.232 0.352

5.3.3 Ablation Study on Relation Network: Q2

The relation network’s construction involves two key aspects: (i) the semantics of var-
ious ‘entity sharing’ patterns (Remark [1)) and (i7) the semantics of ‘linking direction’

(Remark [2). We conduct an ablation study to validate these aspects.

Remark 1. Linking pattern. For any two triples sharing entities, i.e., T} =
(hi,r1,t1) N Ty = (hg, 1o, ts), there are three linking patterns: (i) head-head shar-
ing (hy = hg), (ii) tail-tail sharing (t; = ts), and (iii) head-tail sharing (t; = ho @ty =
hy). Our construction criterion links all three patterns, as they carry distinct semantic

meanings.

Remark 2. Linking direction. As per Def.[3, edges in the relation network are
bidirectional, regardless of the linking pattern. This design is based on the ratio-
nale that relation semantics in KGs are not direction-sensitive. For example, the
triple (Elon Musk, :WorkIn, TESLA) in Figure (i) is semantically equivalent to
(TESLA, :Foundedby, Elon Musk).

To address Q2, we perform an ablation study on the relation network’s construction.

For Remark , we iteratively remove each linking pattern (head-head, head-tail, tail-
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tail) and evaluate the resulting network using GAT as the backbone. The results,
shown in Table [5.3] demonstrate that removing any pattern significantly degrades

NORAN’s performance, validating our construction approach.

Obs. 3. The head-tail pattern is the most critical for relation network construc-
tion. Ablating the head-tail pattern results in a larger performance drop compared
to the other patterns. This pattern aligns with translation-based logic rules, which
are central to multi-hop KG reasoning. In contrast, head-head and tail-tail patterns
correspond to union and intersection operations, respectively, as defined in complex
KG reasoning. While these operations also contribute to KGC, they are often over-

looked by translation-based embedding methods, explaining their weaker inductive

performance in Table [5.2]

5.3.4 Ablation Study for Training Objective: Q3

To address Q3, we evaluate the effectiveness of LEIM by comparing it with an In-
foNCE estimator and naive negative sampling (NS). The InfoNCE estimator is defined

as:

TIeNCE(N ) = Ep (Tww(Ak(v), Tk (v))

w,’[l}
_ E]p/<log 3 eTw,w(A’c(v’),‘If’“(v))>)‘ (5.6)

v/ ~P!

We evaluate LEIM using both JSD (default) and InfoNCE estimators and compare
them to naive NS. Results are shown in Table 5.4, with the best results bolded by col-
umn. LEIM consistently outperforms naive NS across all backbones, demonstrating
its effectiveness. The key difference between JSD and InfoNCE lies in their negative
sampling strategies. JSD uses a 1 : 1 negative sampling ratio within a batch, while
InfoNCE employs a contrastive learning approach, using all other instances in the
batch as negative samples. Given the computational efficiency and empirical results,

we adopt JSD as the default. Additionally, we observe:
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Obs. 4. GAT benefits the most from LEIM. On three datasets, GAT achieves an
average performance improvement of 1.2% in MRR and 1.5% in Hit@3 when trained
with LEIM, outperforming other backbones. Notably, on WN18RR, GAT transitions
from the worst-performing backbone under naive NS to the best-performing one under
LEIM. In contrast, GIN, which uses a fixed convolution matrix, shows minimal or

negative improvement with LEIM.

5.4 Summary

Inductive KG completion, which infers relations for newly introduced entities, aligns
with real-world KGs that continuously evolve. In this work, we propose NORAN,
a novel message-passing framework that leverages latent relation semantics for in-
ductive KG completion. Our framework introduces a unique perspective on KG
modeling through the relation network, which treats relations as indicators of logical
rules. Additionally, we propose logic evidence information mazimization (LEIM), an
innovative training objective that preserves logical semantics in KGs. NORAN com-
bines the relation network and LEIM to enable effective inductive KGC. Extensive
experiments on five KG benchmarks demonstrate NORAN’s superiority over state-

of-the-art methods.
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Chapter 6

Knowledge Graph Prompting for
Large Language Models

6.1 Introduction

Large language models (LLMs), such as the Clude [4] and GPT series [73], have
demonstrated exceptional capabilities across diverse tasks, achieving breakthroughs
in text comprehension [I1], question answering [50], and content generation [21]. De-
spite their success, LLMs face persistent criticism for their limitations in knowledge-
intensive tasks, particularly those requiring domain expertise [I15]. Their application
in specialized domains remains challenging due to three key factors: (i) Knowledge
limitations: LLMs possess broad but superficial knowledge in specialized fields, as
their training data primarily consists of general-domain content, leading to gaps in
domain-specific depth and alignment with current professional standards. (ii) Reason-
ing complexity: Specialized domains demand precise, multi-step reasoning governed
by domain-specific rules and constraints. LLMs often struggle to maintain logical
consistency and accuracy throughout extended reasoning chains, especially in techni-

cal or highly regulated contexts. (iii) Context sensitivity: Professional fields rely on
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nuanced, context-dependent interpretations where identical terms or concepts may
carry different meanings based on specific scenarios. LLMs frequently fail to grasp

these subtleties, resulting in misinterpretations or overly generalized responses.

To adapt LLMs for specific domains, researchers have explored various approaches,
which can be broadly classified into two categories: (i) Fine-tuning LLMs with
Domain-specific Data. Fine-tuning pre-trained LLMs on specialized datasets enables
them to better capture domain-specific vocabulary, terminology, and patterns [34} (53,
54, [3T]. This approach has been successfully applied in areas such as recommenda-
tion [I7, 123] and node classification [16] [40], enhancing the relevance and accuracy
of generated responses [41]. Fine-tuned LLMs have demonstrated effectiveness across
various domains. In healthcare, they have been leveraged for clinical note analy-
sis [3], biomedical text mining [54], and medical dialogue [91]. Similarly, in the legal
domain, they have proven useful for legal document classification [13], contract anal-
ysis [14], and legal judgment prediction [122]. (ii) Retrieval-augmented generation
(RAG). RAG provides an effective way to tailor LLMs for specialized domains with-
out modifying the model architecture or parameters [56]. Instead of embedding new
knowledge through retraining, RAG dynamically retrieves relevant domain-specific
information from external sources, enhancing response accuracy and reliability. A
typical RAG system operates in three stages: knowledge preparation, retrieval, and
integration. First, external textual data is segmented into manageable chunks and
transformed into vector representations for efficient indexing. During retrieval, rel-
evant chunks are identified based on keyword matching or vector similarity when a
query is submitted. Finally, the retrieved information is combined with the original

query to generate well-informed responses.

Despite their success, RAG systems face significant challenges in practical applications
due to the inconsistent quality of accessible data. Domain knowledge is frequently
distributed across diverse sources—ranging from textbooks and research articles to

technical manuals and industry reports [57]—which may vary in quality, accuracy, and
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completeness, potentially leading to discrepancies in the retrieved information [124].
A promising strategy to mitigate these issues is to integrate Knowledge Graphs (KGs)
with LLMs. KGs offer a structured representation of domain knowledge, built on well-
defined ontologies that specify specialized terminologies, acronyms, and their interre-
lations within a field [58, 80} [116], 117, [I1§]. The extensive factual content contained in

KGs can help anchor model responses in established facts and principles [39, 109 [74].

6.2 Introduction

Earlier research explored heuristic methods to integrate knowledge from KGs into
LLMs during pre-training or fine-tuning. For instance, ERNIE [82] aligns entity em-
beddings with word embeddings during pre-training to enhance entity understanding
and reasoning. Similarly, KnowBERT [77] integrates entity linkers with BERT to
inject entity knowledge during fine-tuning for knowledge-intensive tasks. Another
approach involves retrieving relevant knowledge from KGs at inference time to aug-
ment the LLM’s context. For example, K-BERT [62] uses an attention mechanism
to select relevant triples from KGs based on the query context, appending them to
the input sequence. KEPLER [99] learns joint embeddings of text and KG entities to
improve model predictions. Subsequent works have combined graph neural networks
with LLMs for joint reasoning [111, 119, 23] and introduced interactions between text

tokens and KG entities within LLM layers [83] [8§].

However, as LLMs continue to evolve, most state-of-the-art models remain closed-
source. For example, GPT-4 [73] and Claude 3 [4] are accessible only through APIs,
limiting access to model internals. Consequently, research has shifted toward KG
prompting, which enhances fixed LLMs with KG-based hard prompts [61, [74]. KG
prompting has emerged as a new paradigm in natural language processing. For
instance, CoK [05] introduces Chain-of-Knowledge prompting, decomposing LLM-

generated reasoning chains into evidence triples and verifying their accuracy using
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external KGs. Mindmap [101] enhances transparency by enabling LLMs to rea-
son over structured KG inputs. RoG [66] proposes a planning-retrieval-reasoning
framework that synergizes LLMs and KGs for interpretable reasoning. KGR [32]
autonomously refines LLM-generated responses by leveraging KGs to extract, verify,

and refine factual information, mitigating hallucinations in knowledge-intensive tasks.

Despite the promising results of existing KG prompting methods, three critical chal-
lenges hinder their practical application. @ Vast search space. Real-world KGs
often contain millions of triples, creating a large search space when retrieving rele-
vant knowledge for prompting. @ High API costs. Accessing closed-source LLMs
like GPT-4 and Claude 3 through proprietary APIs can be prohibitively expensive
at scale [25], necessitating careful selection of the most informative knowledge. ©
Labor-intensive prompt design. LLMs are highly sensitive to prompts, with minor
variations potentially yielding drastically different responses. Existing methods rely
on manually designed or rule-based prompts, which are inflexible and lack adaptabil-

ity to varying question semantics and KG structures.

To address these challenges, we propose Knowledge Graph-based PrompTing, or
KnowGPT, a framework that leverages factual knowledge from KGs to ground LLM
responses in established facts. This paper addresses two key research questions: @
Given a query and a large-scale KG, how can we efficiently retrieve relevant factual
knowledge? @ Given the extracted knowledge, how can we construct an effective

prompt for LLMs?

We address these questions with a novel prompt learning method that is effective, gen-
eralizable, and cost-efficient. For question @, we employ deep reinforcement learning
(RL) to extract the most informative knowledge from KGs. A tailored reward scheme
encourages the agent to discover concise, context-relevant knowledge chains. For ques-
tion @, we introduce a prompt construction strategy based on Multi-Armed Bandit
(MAB). Given multiple knowledge extraction strategies and prompt templates, MAB

selects the most effective combination for each question by balancing exploration and
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exploitation.

Our contributions are summarized as follows:

e We formally define the problem of KG-based prompting, which leverages struc-
tured knowledge from KGs to ground LLM responses in established facts.

e We propose KnowGPT, a novel prompting framework that combines deep RL

and MAB to generate effective prompts for domain-specific queries.

e We implement KnowGPT on GPT-3.5. Experiments on three QA datasets
demonstrate that KnowGPT outperforms state-of-the-art baselines by a signif-
icant margin. Notably, KnowGPT achieves an average improvement of 23.7%
over GPT-3.5 and 2.9% over GPT-4, with 92.6% accuracy on the OpenbookQA

leaderboard, comparable to human performance.

6.3 KnowGPT Framework

Learning the prompting function forompt(Q,G) involves two challenges: determining
what knowledge to use from G and how to construct the prompt. KnowGPT addresses
these challenges by extracting knowledge with deep RL and constructing prompts with

MAB. An overview of the framework is shown in Figure 6.1}

6.3.1 Knowledge Extraction with Reinforcement Learning

Intuitively, the relevant reasoning background lies in a question-specific subgraph Gy,
containing all source entities Q,, target entities Q,, and their neighbors. An ideal
subgraph Gg,p, should: (7) include as many source and target entities as possible, (i)
exhibit strong relevance to the question context, and (iii) be concise to fit within

LLM input length constraints.
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Figure 6.1: The overall architecture of our proposed knowledge graph prompting framework, i.e.,
KnowGPT. Given the question context with multiple choices, we first retrieve a question-specific
subgraph from the real-world KG. Knowledge Extraction is first dedicated to searching for the most
informative and concise reasoning background. Then the Prompt Construction module is optimized

to prioritize the combination of knowledge and formats subject to the given question.

However, extracting such a subgraph is NP-hard. To address this, we develop Pgr, a
deep RL-based method that samples reasoning chains in a trial-and-error fashion. We
assume Gy, is constructed from a set of reasoning chains P = {Py, Ps, ..., P, }, where
each chain P; = {(e;,r1,t1), (t1,72,12), .., (tpy1—1, 712y, typy )} 1S @ path in G starting
from the i-th source entity in Q, and |P;| is the path length. G, includes all entities

and relations in P.

e State: A state represents the current entity in the KG. Specifically, it captures
the spatial change from entity A to t. Following prior work, we define the state

vector s as:

St = (et; €target — et)a (61)

where e; and €4,¢¢+ are embeddings of the current and target entities. Initial
node embeddings are obtained by transforming KG triples into sentences and

feeding them into a pre-trained LM.

e Action: The action space includes all neighboring entities of the current entity,

enabling flexible exploration of the KG.

e Transition: The transition model P measures the probability of moving to a

new state (s') given the current state (s) and action (a). In KGs, P(s'|s,a) =1
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if s is connected to s’ via a; otherwise, P(s'|s,a) = 0.
e Reward: The reward is based on reachability:

+1, if target,;
Treach = (62)
—1, otherwise,

indicating whether the path reaches the target within K steps.

To promote context-relatedness and conciseness, we design two auxiliary rewards.

Context-relatedness Auxiliary Reward. This reward encourages paths closely
related to the question context. We evaluate the semantic relevance of a path P; to
the context Q using a fixed matrix W to map the path embedding P to the same
semantic space as the context embedding ¢. The reward is:

1 %
e =1 D cos(W x Py o), (6.3)

source

where ¢ is the context embedding from a pre-trained LM [49], and P; is the average

embedding of entities and relations in the path.

Conciseness Auxiliary Reward. This reward encourages concise paths to fit

within LLM input constraints and reduce API costs. The reward for path P; is:

(6.4)

Training Policy Network. We train a policy network my(s,a) = p(a|s;f) using
policy gradient [105] to maximize accumulated rewards. The optimal policy navigates
from the source to the target entity while maximizing rewards. Additional training

details are provided in the Appendix.
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6.3.2 Prompt Construction with Multi-armed Bandit

We design a prompt construction strategy using Multi-Armed Bandit (MAB) to se-
lect the best combination of knowledge extraction strategies and prompt templates.
Suppose we have knowledge extraction strategies {P1, Pa, ..., P} and prompt tem-
plates F = {F, Fa, ..., Fn}. The goal is to identify the best combination for a given

question.

We define the selection process as a reward maximization problem:

1 if accurate;
o(f(PFw)) = (6.5)

0 otherwise.

Here, PF; is a combination of extraction strategy and prompt template, and r,; €

{0, 1} indicates the LLM’s performance.

We formulate the selection mechanism with an expectation function E(-):
E(QIPFu)) = ¢ x ey + By (6.6)
Here, c is the context embedding, a(i) are learned parameters, and ;) introduces

noise for exploration.

We update a;) using:

k) (i)(k i) (k k) (i i ;
TCm ) = X = O+ X @ [ o
k=1 6.

1 .
I (BINT ~(k) i (B)\T..(4) (k)
— ol = ((C(i)) C(i) + A I) (C(Z.)) r,p

K

Y= yx \/Ci ((Cgf)))TCEf)) + N’I)_ (c@) T, (6.8)

where 7 is a fixed constant.
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Implementation. We implement the aforementioned Multi-Armed Bandit (MAB)
strategies using two distinct knowledge extraction approaches and three prompt tem-
plates. The MAB framework is flexible, enabling integration with additional knowl-
edge extraction methods and prompt templates to optimize performance. The two

knowledge extraction strategies we employ are:

e Prr: This strategy utilizes reinforcement learning (RL)-based extraction, as

detailed in the previous subsection.

e P.p: This heuristic sub-graph extraction method focuses on gathering a 2-
hop subgraph around both the source and target entities. Given the inherent
instability of RL approaches, we introduce Py, as a backup strategy in the MAB

selection process, ensuring robustness if the RL-based method underperforms.

For the prompt templates, we incorporate the following:

e Triples, represented as JF;, correspond to the extracted knowledge in its original
triple form, such as (Sergey_Brin, founder_of, Google), (Sundar_Pichai, ceo_of,
Google), (Google, is_a, High-tech Company). This representation has been em-
pirically shown to be comprehensible by black-box LLMs.

e Sentences serve as a transformation method to reframe the knowledge into
natural language, F, such as: “Sergey Brin, the founder of Google, a high-tech
company, has handed over the reins to Sundar Pichai, the current CEO of the

company.”

e Graph Description, F, prompts the LLM by treating the knowledge as a
structured graph. This preprocessing is done via the LLM itself to generate
descriptions that emphasize key entities, such as: “Google, a leading high-tech
company, stands central in the network. The entity has strong ties to significant

figures in the tech industry. Sergey Brin, one of the founders, created Google,
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marking its historical foundation. Today, Sundar Pichai is the CEQO, symboliz-
ing its present leadership. Consequently, Google serves as a pivotal link among

these key figures.”

Given the two knowledge extraction methods: Ps,, and Pgy, along with the three
prompt translation methods: F;, F,, and F,, the MAB is trained to prioritize the
most suitable combination of extraction method and prompt format based on feedback
from the LLMs. The goal is to select the best pairing for different real-world question
scenarios, i.e., PF = {(PsuFt), (PsuvFs), (PsunFg)s (PrrFt), (PrrFs), (PrrFy)}-

6.4 Experiments

In this section, we perform comprehensive experiments to assess the effectiveness
of KnowGPT on three widely used question-answering datasets, spanning both com-
monsense reasoning and domain-specific tasks. The implementation of KnowGPT is
based on GPT-3.5. Our experiments are designed to address the following research

questions:

e RQ1 (Main results): How does KnowGPT compare to the current state-of-
the-art large language models (LLMs) and knowledge graph-enhanced question

answering (QA) baselines?

e RQ2 (Ablation Study): What contribution does each key component of

KnowGPT make to the overall performance?

e RQ3 (Case study): How does knowledge graph integration enhance the han-

dling of complex reasoning tasks?
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Table 6.1: Performance comparison among baseline models and KnowGPT.

CommonsenseQA OpenBookQA MedQA
Catagory Model
IHdev-Acc. IHtest-Acc. Dev-Acc. Test-Acc. Dev-Acc. Test-Acc.

Bert-base 0.573 0.535 0.588 0.566 0.359 0.344
LM + Fine-tuning Bert-large 0.611 0.554 0.626 0.602 0.373 0.367
RoBerta-large 0.731 0.687 0.668 0.648 0.369 0.361

MHGRN 0.745 0.713 0.786 0.806 - -
QA-GNN 0.765 0.733 0.836 0.828 0.394 0.381
KConhanced LM HamQA 0.769 0.739 0.858 0.846 0.396 0.385
JointLK 0.777 0.744 0.864 0.856 0.411 0.403
GreaseLM 0.785 0.742 0.857 0.848 0.400 0.385
GrapeQA 0.782 0.749 0.849 0.824 0.401 0.395
ChatGLM 0.473 0.469 0.352 0.360 0.346 0.366
ChatGLM2 0.440 0.425 0.392 0.386 0.432 0.422
Baichuan-7B 0.491 0.476 0.411 0.395 0.334 0.319
InternL.M 0.477 0.454 0.376 0.406 0.325 0.348
LLM + Zero-shot Llama2 (7b) 0.564 0.546 0.524 0.467 0.338 0.340
Llama3 (8b) 0.745 0.723 0.771 0.730 0.639 0.697
GPT-3 0.539 0.520 0.420 0.482 0.312 0.289
GPT-3.5 0.735 0.710 0.598 0.600 0.484 0.487
GPT-4 0.776 0.786 0.878 0.910 0.739 0.763
CoK 0.759 0.739 0.835 0.869 0.706 0.722
LLM + KG Prompting RoG 0.750 0.734 0.823 0.861 0.713 0.726
Mindmap 0.789 0.784 0.851 0.882 0.747 0.751
Ours KnowGPT 0.827 0.818 0.900 0.924 0.776 0.781

KnowGPT vs. GPT-3.5  + 23.7% (Avg.)  + 9.2% +10.8%  +312% +324% +292% + 29.4%
KnowGPT vs. GPT-4  +2.9% (Avg.) +5.1% + 3.3% +22%  +14% +37% + 1.8%

*We used ‘text-davinci-002’ and ‘gpt-3.5-turbo’ provided by OpenAl as the implementation of
GPT models.
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6.4.1 Experimental Setup

Datasets. We evaluate KnowGPT on three question-answering datasets from two
distinct fields: CommonsenseQA [86] and OpenBookQA [69] serve as benchmarks for
commonsense reasoning tasks, while MedQA-USMLE [48] is used for domain-specific
question answering. For detailed statistics of these datasets, please refer to Table
in the Appendix.

Background Knowledge Graph To facilitate common-sense reasoning, we employ
ConceptNet [81], an extensive commonsense knowledge graph comprising more than
8 million interconnected entities through 34 concise relationships. For tasks specific to
the medical domain, we leverage USMLE [IT1] as our foundational knowledge source.
USMLE is a biomedical knowledge graph that amalgamates the Disease Database
segment of the Unified Medical Language System (UMLS) [6] and DrugBank [102].
This repository encompasses 9,958 nodes and 44,561 edges.

Baselines. We select baseline models from four different categories for a thorough
comparison. LM + Fine-tuning. We compare KnowGPT with standard fine-tuned
language models (LMs). In particular, we use Bert-base, Bert-large [49], and RoBerta-
large [64] as representative fine-tuned LMs. For both commonsense and biomedical

QA tasks, we fine-tune these models by adding linear layers.

KG-enhanced LM. We also compare with several recent models that integrate knowl-
edge graphs into QA tasks, including MHGRN [28], QA-GNN [I11], HamQA [23],
JointLK [83], GreaseLM [120], and GrapeQA [8§]. For a fair comparison, we im-
plement these methods using advanced language models optimized for the respective
datasets. RoBerta-large [64] is used for CommonsenseQA, while AristoRoBERTa [22]
is employed for OpenBookQA, and for MedQA, we use the top biomedical model, Sap-
BERT [60]. These methods, being white-box models, are computationally expensive
and therefore cannot be used with modern LLMs like GPT-3.5 or GPT-4.

LLM + Zero-shot. We include several well-known generative LLMs, including Chat-
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GLM, ChatGLM2, Baichuan-7B, InternLM, GPT-3, GPT-3.5, and GPT-4, as knowledge-
agnostic models. We utilize "text-davinci-002’ for GPT-3, "gpt-3.5-turbo’ for GPT-3.5,
and ’gpt-4’ for GPT-4 (additional details on the implementations of these models are
provided in Appendix A.4). These models are evaluated in a zero-shot setting using

the test set questions.

LLM + KG Prompting. To test the efficacy of our prompting strategy, we also include
state-of-the-art knowledge graph prompting methods, such as CoK [95], RoG [66], and
Mindmap [I0I]. Notably, KGR [32] is excluded from the comparison as the authors

have not released their code.

6.4.2 Main Results (RQ1)

To address RQ1, we compare the performance of KnowGPT against state-of-the-art
models across three benchmark datasets. We use accuracy as our performance metric,
which measures the percentage of questions that the model answers correctly from

the total test set questions. The following observations are made:

e KnowGPT outperforms all categories of baseline models, including 16 different
methods, across all datasets and architectures. This indicates that KnowGPT is

highly effective in leveraging knowledge from KGs to enhance LLMs.

e KnowGPT outperforms GPT-3.5 and even GPT-4 in terms of accuracy. On av-
erage, KnowGPT achieves 23.7% higher accuracy than GPT-3.5. Specifically, it
outperforms GPT-3.5 by 10.8%, 32.4%, and 29.4% on the CommonsenseQA,
OpenBookQA, and MedQA datasets, respectively. Even more impressively, de-
spite being based on GPT-3.5, KnowGPT surpasses GPT-4 by 3.3%, 1.4%, and
1.8% on these datasets, respectively. These results emphasize that integrating

black-box knowledge can significantly enhance LLM capabilities.

e KnowGPT also outperforms all KG-enhanced LMs, demonstrating the effective-
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Table 6.2: OpenBookQA Leaderboard records of three groups of related models.

Human Performance (0.917)

w/o KG 0.778
MHGRN [28] 0.806
QA-GNN [IT1]  0.828

GreaseLM [120] 0.848
HamQA [23] 0.850
JointLK [83]  0.856

GSC [97] 0.874

UnifiedQA [51] 0.872
DRAGON [I10] 0.878
GenMC [45] 0.898
Human Performance 0.917
GenMC Ensemble [45]  0.920
X-Reasoner [44] 0.952
KnowGPT 0.926

ness of our black-box knowledge injection method. This approach offers the

advantage of being adaptable to GPT-3.5 through the model API, which is not

possible with white-box methods.

Leaderboard Ranking. We submitted our results to the official OpenBookQA

leaderboard, maintained by the dataset authors. The full leaderboard records are

available on the official sitd’] and our submission can be accessed atf]

In Table 6.2 we summarize related submissions, which fall into three categories: tra-

ditional KG-enhanced LMs, fine-tuning of LLMs (e.g., T5-11B used in UnifiedQA),

and ensemble methods. KnowGPT outperforms traditional KG-enhanced LMs by a sig-

nificant 5.2% improvement over the best baseline. Additionally, although ensemble

methods dominate the leaderboard, KnowGPT achieves competitive performance with-

out ensembling, outperforming GenMC Ensemble [45] by 0.6%. Remarkably, KnowGPT

also approaches human-level performance.

'https://leaderboard.allenai.org/open_book_ga/submissions/public

Zhttps://leaderboard.allenai.org/open_book_qa/submission/cp743buqduo7qe4e9750

75


https://leaderboard.allenai.org/open_book_qa/submissions/public
https://leaderboard.allenai.org/open_book_qa/submission/cp743buq4uo7qe4e9750

Chapter 6. Knowledge Graph Prompting for Large Language Models

6.4.3 Ablation Studies (RQ2)

To answer RQ2, we conduct two ablation studies. First, in Table [6.3] we evaluate
the impact of the tailored reinforcement learning-based knowledge extraction mod-
ule, Pry,, by comparing it with the heuristic sub-graph extraction strategy, Psu,. We
assess the performance by feeding the extracted knowledge into GPT-3.5 using the
"Sentence’ prompt format, F;. The 'w/o KG’ baseline is also included, where GPT-
3.5 answers the questions without any external reasoning context. The results clearly
highlight the significance of our proposed knowledge extraction strategies. Second,
we examine the effect of the three prompt formats using the same extracted knowl-
edge. The results, shown in Table [6.4] reveal that although the performance differ-
ences between formats are small (2.2% - 3.3%), each format is better suited to certain
types of questions. We further explain these findings in the case study section. These
ablation studies underscore the importance of each module in KnowGPT, demonstrat-
ing that combining deep RL-based knowledge extraction with context-aware prompt
translation leads to the best performance across all datasets. The MAB-based prompt
selection module used in KnowGPT dynamically selects the most effective prompt
templates and knowledge combinations for a given query. This adapts to incomplete-
ness and noises in KGs since the MAB balances exploration (trying new strategies)
and exploitation (using known effective ones), optimizing for robustness even with

imperfect KG data.

6.4.4 Case Studies (RQ3)

To address RQ3, we provide a detailed case study from CommonsenseQA. In Fig-
ure [6.2] we visualize the extracted knowledge and the corresponding textual input for
GPT-3.5. In this case, GPT-3.5 correctly answers the question when the sentence-
based prompt is used, but struggles when the question is framed using the triple or

graph description formats. This comparison highlights the superior ability of KnowGPT
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David watched some nesting birds using his binoculars while on vacation. Where might David be?
A.sky B.vacation C.forest D.countryside
O jungle
trees < < vision_aid
build_nest s . binoculars
ainfore
AtLocation rainforest — s
%
G RO
S ity
mammal ‘ forest visit_other_countries sports_store
2 -
q vacation
nestin Rl oy
action_of_animals
) S 7 %

(nesting isa action_of_animals) [ Nesting, an instinctual action This graph highlights the

(bird relatedto nesting) petformed by various animals, intricate relationships
(nesting relatedto nest) including birds, involves inhabiting between birds, their nesting
(bird atlocation nest) and crafting intricate structures behaviors, natural habitats like trees
(bird capableof build_nest) known as nests. Birds, closely and forests, the sky, and the tools
(Bird isa mammal) related to this behavior, are often that aid in the observation of these
(bird relatedto trees) spotted at their nests, where they are captivating avian activities. The
(nest atlocation trees) capable of building and preparing graph revolves around the central
(tree atlocation jungle) them for raising their young. These concept of a "'bird" which is closely
(tree atlocation rainforest) feathered creatutes have a natural connected to vatious aspects of
(tree partof forest) affinity for trees and are often found nesting behavior.

. in tree nests, which are nestled [
(telescope relatedto binoculars) L £ A < . . .
St F e DR peta. o) within lush jungles and rainforests. This aerial environment is also
(binoculars isa vision, ali) d) - During a relaxing vacation, one can associated with outdoor settings.

. . h . observe birds engaging in nesting Adding depth to the observation of
(‘I?C;tmln Cal.,ISCS visit_other_countries) activities, taking advantage of birds, binoculars are presented as a
( {r at ocau?n sky) binoculars as a vision aid to witness vision aid that allows closer scrutiny
(blr.ds atl(.)catlon SkY) their behavior in the expansive sky, a of their nesting behavior, both in
(flying_birds atlocation sky) realm intertwined with the beauty of natural locations like backpacks,

the outdoors. sporting goods stores, and suitcases,

and during the context of a vacation.|

\ VAN AN J
[ vacation X forest v vacation X

Figure 6.2: A case study on exploring the effectiveness of different prompt formats for
particular questions. The extracted knowledge is shown in the middle of this figure
in the form of a graph, where the nodes in blue are the key topic entities and the red
is the target answer. The text boxes at the bottom are the final prompts generated

based on three different formats.
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Table 6.3: Ablation study on the effectiveness of two knowledge extraction methods.

CSQA OBQA MedQA

Knowledge Extraction Model
[Hdev IHtest Test Test

GPT-3 0.539 0.520  0.482 0.289
w/o KG GPT-3.5 0.735 0.710  0.598 0.487
GPT-4 0.776 0.786  0.910 0.763

Psub GPT-3.5 0.750 0.739 0.865 0.695
PrL GPT-3.5 0.815 0.800 0.889 0.755
Ours KnowGPT 0.827 0.818 0.924 0.781

in automatically generating contextually appropriate prompts. The following obser-
vations are made: (i) The triple format F; is most suitable for simple questions that
rely on one-hop knowledge. (i7) The graph description format may introduce noise
by overemphasizing certain terms, leading to misleading predictions. (iii) KnowGPT

excels in constructing suitable prompts based on the specific nature of each question.

6.5 Summary

This paper addresses the challenge of hallucination in large language models (LLMs),
particularly in specialized domains. While LLMs have impressive reasoning capabil-
ities, they often struggle with professional questions in specialized fields due to in-
sufficient relevant knowledge in their pre-training datasets. To resolve this issue, we
propose KnowGPT, a model that augments LLMs with domain-specific knowledge from
knowledge graphs (KGs) to improve the accuracy of answering professional queries.
KnowGPT integrates KGs into LLMs using model APIs, requiring no modifications to

the underlying LLM architecture. Our approach utilizes a deep reinforcement learning
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Table 6.4: Ablation study on the effectiveness of two knowledge extraction methods.

CSQA OBQA MedQA
Knowledge Extraction Prompts
[Hdev THtest Test Test
Fi 0.728 0.701 0.832 0.589
Psup Fs 0.750  0.739 0.865 0.695
Fy 0.737 0.715 0.871 0.680
Fi 0.782  0.769 0.853 0.739
Prr Fs 0.815  0.800 0.889 0.755
Fy 0.806  0.793 0.906 0.762
Full KnowGPT 0.827 0.818 0.924 0.781

policy to extract concise reasoning background from KGs and employs a Multi-Armed

Bandit (MAB) strategy to select the most effective knowledge extraction method

and prompt template for each query. Extensive experiments across both general and

domain-specific QA tasks demonstrate that KnowGPT outperforms all baseline models,

providing strong evidence for the effectiveness of KG-enhanced LLMs.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis has presented a systematic framework for enhancing LLMs with reli-
able KGs, addressing critical challenges in KG refinement, completion, and dynamic
alignment with LLMs. The four interconnected papers form a lifecycle solution that

ensures LLMs are grounded in accurate and reliable knowledge:

e Contrastive Knowledge Graph Error Detection (Paper 1): By leveraging con-
trastive learning to identify semantic contradictions in KGs, this work estab-

lishes a robust foundation for KG reliability.

e Attribute-Aware KG Embedding (Paper 2): Recognizing that structural pat-
terns alone cannot resolve ambiguities in entities with shared names, this work
integrates entity attributes (e.g., geospatial coordinates, temporal metadata)

into error detection.

e Inductive Knowledge Graph Completion (Paper 3): Addressing the incomplete-
ness of even refined KGs, this work introduces a graph neural network (GNN)

model that combines structural patterns with logical reasoning to infer miss-
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ing relationships. The model achieves state-of-the-art performance on inductive

benchmarks, enabling applications to dynamic and emerging domains.

e Inductive Knowledge Graph Completion (Paper 3): Addressing the incomplete-
ness of even refined KGs, this work introduces a graph neural network (GNN)
model that combines structural patterns with logical reasoning to infer miss-
ing relationships. The model achieves state-of-the-art performance on inductive

benchmarks, enabling applications to dynamic and emerging domains.

Collectively, these contributions advance the field of Al reliability by leveraging struc-
tural information from reliable KGs, enabling LLMs to generate responses that are

not only fluent but also factually grounded.

7.2 Future Work

While this thesis makes significant strides in enhancing LLMs with reliable KGs,

several challenges remain unaddressed, offering fertile ground for future research:

e Scalability: Real-time retrieval from billion-scale KGs, such as Wikidata or
enterprise knowledge bases, remains computationally intensive. Future work
could explore distributed graph processing techniques or approximate nearest
neighbor search algorithms to improve retrieval efficiency without sacrificing

accuracy.

e Multimodal Knowledge Integration: Most existing systems focus on textual
KGs, ignoring non-textual data such as images, time series, or geospatial infor-
mation. Integrating multimodal KGs with LLMs could enable applications in
domains like medical imaging (e.g., combining MRI scans with patient records)

or urban planning (e.g., linking geospatial data with textual reports).
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e Temporal Knowledge Integration: Real-world knowledge is dynamic, with facts
evolving over time. Extending the framework to handle temporal KGs, where
relationships are timestamped, could enable LLMs to generate contextually ac-

curate outputs based on the most up-to-date information.

e Domain-Specific Customization: While the proposed framework is general-
purpose, tailoring it to more specific domains (e.g., law, medicine, or education)
could yield significant performance gains. For instance, legal KGs could incor-
porate case law hierarchies, while medical KGs could integrate ontologies like
SNOMED-CT [27]. Future research could investigate domain-specific adapta-

tions of the error detection, completion, and alignment modules.
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